Science.gov

Sample records for carbonation-related microstructural changesin

  1. Seasonal changes of water carbon relations in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.; Merbold, L.; Archibald, S.

    2011-12-01

    During evolution plant species have developed different strategies to optimize the water carbon relations. These stratgies summarize to ecosystem properties. As an example we show how tropical and subtropical savannas and woodlands can respond flexibly to changes in temperature and water availability and thus optimize carbon and water fluxes between land surface and atmosphere. Several phenomena are presented and discussed in this overview from African flux sites in Zambia, Burkina Faso and South Africa: Pre-rain leaf development: Many trees developed new leaves before the first rain appeared. As a consequence of this early timing of leaf flush, the phenological increase of photosynthetic capacity (Amax) was steeper than in temperate forests. Mid-term response of conductance and photosynthesis to soil water relations: The regulation of canopy conductance was temporally changing in two ways: changes due to phenology during the course of the growing season and short-term (hours to days) acclimation to soil water conditions. The most constant parameter was water use efficiency. It was influenced by water vapour pressure deficit (VPD) during the day, but the VPD response curve of water usage only changed slightly during the course of the growing season, and decreased by about 30% during the transition from wet to dry season. The regulation of canopy conductance and photosynthetic capacity were closely related. This observation meets recent leaf-level findings that stomatal closure triggers down-regulation of Rubisco during drought. Our results may show the effects of these processes on the ecosystem scale. Furthermore, we observed that the close relationship between stomatal conductance and photosynthesis resulted in different temperature optima of GPP that were close to the average daytime temperature. Adaptation of respiration to rain pulses: Finally, the response of respiration to rain pulses showed changes throughout the growing season. The first rain events early

  2. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emissions..., determine the 5-cycle city carbon-related exhaust emissions using the following equation: (1) CityCREE =...

  3. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emission... emissions and carbon-related exhaust emissions. For each vehicle tested, determine the 5-cycle city...

  4. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emissions..., determine the 5-cycle city carbon-related exhaust emissions using the following equation: (1) CityCREE =...

  5. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emission... emissions and carbon-related exhaust emissions. For each vehicle tested, determine the 5-cycle city...

  6. Studies of oxygen-related and carbon-related defects in high-efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Corbett, J. W.

    1985-01-01

    Oxygen and carbon related defects in silicon, particularly as related to high-efficiency silicon solar cells were studied. A summary of oxygen processes in silicon versus process temperature was shown along with experimental results. The anamolous diffusion of oxygen was explained by the dissociation of the center allowing O sub i to move through the lattices.

  7. Effect of tin doping on oxygen- and carbon-related defects in Czochralski silicon

    SciTech Connect

    Chroneos, A.; Londos, C. A.; Sgourou, E. N.

    2011-11-01

    Experimental and theoretical techniques are used to investigate the impact of tin doping on the formation and the thermal stability of oxygen- and carbon-related defects in electron-irradiated Czochralski silicon. The results verify previous reports that Sn doping reduces the formation of the VO defect and suppresses its conversion to the VO{sub 2} defect. Within experimental accuracy, a small delay in the growth of the VO{sub 2} defect is observed. Regarding carbon-related defects, it is determined that Sn doping leads to a reduction in the formation of the C{sub i}O{sub i}, C{sub i}C{sub s}, and C{sub i}O{sub i}(Si{sub I}) defects although an increase in their thermal stability is observed. The impact of strain induced in the lattice by the larger tin substitutional atoms, as well as their association with intrinsic defects and carbon impurities, can be considered as an explanation to account for the above observations. The density functional theory calculations are used to study the interaction of tin with lattice vacancies and oxygen- and carbon-related clusters. Both experimental and theoretical results demonstrate that tin co-doping is an efficient defect engineering strategy to suppress detrimental effects because of the presence of oxygen- and carbon-related defect clusters in devices.

  8. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Model Year Automobiles-Test Procedures § 600.114-08 Vehicle-specific 5-cycle fuel economy and carbon... to calculate 5-cycle carbon-related exhaust emissions values for the purpose of determining optional... each vehicle tested, determine the 5-cycle city carbon-related exhaust emissions using the...

  9. Modeling white matter microstructure

    PubMed Central

    Duval, Tanguy; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Summary Quantitative magnetic resonance imaging can be combined with advanced biophysical models to measure microstructural features of white matter. Non-invasive microstructural imaging has the potential to revolutionize neuroscience, and acquiring these measures in clinically feasible times would greatly improve patient monitoring and clinical studies of drug efficacy. However, a good understanding of microstructural imaging techniques is essential to set realistic expectations and to prevent over-interpretation of results. This review explains the methodology behind microstructural modeling and imaging, and gives an overview of the breakthroughs and challenges associated with it. PMID:28072382

  10. 40 CFR 600.113-12 - Fuel economy and carbon-related exhaust emission calculations for FTP, HFET, US06, SC03 and cold...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy and carbon-related... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Year Automobiles-Test Procedures § 600.113-12 Fuel economy and carbon-related exhaust...

  11. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HFET-based fuel economy and carbon-related exhaust emission values for vehicle configurations. 600.206... POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values for 1977 and Later Model Year Automobiles §...

  12. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-based fuel economy and carbon-related exhaust emission values for a model type. 600.208-12 Section 600... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values for 1977 and Later Model Year Automobiles § 600.208-12 Calculation...

  13. Chemistry in microstructured reactors.

    PubMed

    Jähnisch, Klaus; Hessel, Volker; Löwe, Holger; Baerns, Manfred

    2004-01-16

    The application of microstructured reactors in the chemical process industry has gained significant importance in recent years. Companies that offer not only microstructured reactors, but also entire chemical process plants and services relating to them, are already in existence. In addition, many institutes and universities are active within this field, and process-engineering-oriented reviews and a specialized book are available. Microstructured systems can be applied with particular success in the investigation of highly exothermic and fast reactions. Often the presence of temperature-induced side reactions can be significantly reduced through isothermal operations. Although microstructured reaction techniques have been shown to optimize many synthetic procedures, they have not yet received the attention they deserve in organic chemistry. For this reason, this Review aims to address this by providing an overview of the chemistry in microstructured reactors, grouped into liquid-phase, gas-phase, and gas-liquid reactions.

  14. Corrosion, microstructure, and metallography

    SciTech Connect

    Northwood, D.O.; White, W.E.; Vander Voort, G.F.

    1985-01-01

    Of the forty-one papers presented, nearly half of them deal with microstructural aspects of corrosion, corrosion control and corrosion failure analysis. They describe various analytical approaches for studying corrosion and for diagnosing corrosion failure mechanisms. Details include microstructural features of corrosion on a wide range of materials or coatings and in environments ranging from within the human body to outer space. Another series of papers handles microstructure-property relationships and contains reports on hydrogen embrittlement of AISI 316 stainless steel, shell and detail cracking in railroad rails, and the precipitation of martensitic Fe-Ni-W alloys. A third grouping looks at microstructure-fracture relationships. Coverage of advancements in metal-lographic techniques includes the use of microcomputers, applied techniques of inplace analysis, and use of the Tandem Van de Graff accelerator facility.

  15. Superlattice Microstructured Optical Fiber

    PubMed Central

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693

  16. Superlattice Microstructured Optical Fiber.

    PubMed

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-06-16

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10(-4) is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure.

  17. Systemic effects of geoengineering by terrestrial carbon dioxide removal on carbon related planetary boundaries

    NASA Astrophysics Data System (ADS)

    Heck, Vera; Donges, Jonathan; Lucht, Wolfgang

    2015-04-01

    The planetary boundaries framework as proposed by Rockström et al. (2009) provides guidelines for ecological boundaries, the transgression of which is likely to result in a shift of Earth system functioning away from the relatively stable Holocene state. As the climate change boundary is already close to be transgressed, several geoengineering (GE) methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. One of the proposed GE methods is carbon extraction from the atmosphere via biological carbon sequestration. In case mitigation efforts fail to substantially reduce greenhouse gas emissions, this form of GE could act as potential measure to reduce atmospheric carbon dioxide concentrations. We here study the possible influences of human interactions in the Earth system on carbon related planetary boundaries in the form of geoengineering (terrestrial carbon dioxide removal). We use a conceptual model specifically designed to investigate fundamental carbon feedbacks between land, ocean and atmosphere (Anderies et al., 2013) and modify it to include an additional geoengineering component. With that we analyze the existence and stability of a safe operating space for humanity, which is here conceptualized in three of the 9 proposed dimensions, namely climate change, ocean acidification and land-use. References: J. M. Anderies et al., The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries. Environ. Res. Lett., 8(4):044048 (2013) J. Rockström et al., A safe operating space for humanity. Nature 461 (7263), 472-475 (2009)

  18. Synthesis and Electron Field-Emission of 1-D Carbon-Related Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Shih, Han C.

    2002-10-01

    Carbon nanotubes, a new stable form of carbon that was first identified in 1991 [1], are fullerene-related structures which consist of graphitic cylinders closed at either end with caps containing pentagonal rings. Although carbon nanotube structures are closely related to graphite, the curvature, symmetry and small size induce marked deviations from the graphitic behavior. Various methods have been used to produce carbon nanotubes, e.g., arc-discharge, laser-vaporization, catalytic chemical vapor deposition, but too many impurities also be produced, such as fullerenes, carbon nanoparticles and amorphous carbons. The microwave plasma enhanced chemical vapor deposition (MPECVD) system has been used to grow carbon nanotubes in this work and other 1-D carbon-related nanostructured materials was synthesized by the electron cyclotron resonance (ECR) plasma system. Plasma is generated by microwave excitation at 2.45 GHz by a magnetron passes through a waveguide and fed perpendicularly through a quartz dome into an 875 G magnetic field generated by the coils surrounding the resonance volume that creates the ECR condition. The deposition chamber was pumped down to the base pressure of 6.7X10-4 Pa (5X10-6 Torr) with a turbomolecular pump for ECR-plasma and subatmospheric pressures for MPECVD by a rotary mechanical pump. Well-aligned carbon-related nanostructures have been synthesized in nanoporous alumina or silicon with a uniform diameter of 30-100 nm by microwave excited plasma of CH_4, C_2H_2, N_2, H2 and Ar precursors. Nickel nanowires not only serve as catalysts to decompose hydrocarbons to form nanostructures but also function as an electrical conductor for other advanced applications. A negative dc bias is always applied to the substrate to promote the flow of ion fluxes through the nanochannels of the template materials that facilitate the physical adsorption and subsequent chemical absorption in the formation of carbon- and carbon-nitride nanotubes[2]. The electron

  19. Carbon related donor bound exciton transitions in ZnO nanowires

    SciTech Connect

    Mohammadbeigi, F.; Kumar, E. Senthil; Alagha, S.; Anderson, I.; Watkins, S. P.

    2014-08-07

    Several shallow donor bound exciton photoluminescence (PL) transitions are reported in ZnO nanowires doped with carbon. The emission energies are in the range of 3360.8–3361.9 meV, close to previously reported emission lines due to excitons bound to donor point defects, such as Ga, Al, In, and H. The addition of small amounts of hydrogen during growth results in a strong enhancement of the PL of these carbon related emission lines, yet PL and annealing measurements indicate no appreciable bulk hydrogen. The observation of two electron satellites for these emission lines enables the determination of the donor binding energies. The dependence of exciton localization energy on donor binding energy departs somewhat from the usual linear relationship observed for group III donors, indicating a qualitatively different central cell potential, as one would expect for a complex. Emission lines due to excitons bound to ionized donors associated with these defects are also observed. The dependence of the PL emission intensities on temperature and growth conditions demonstrates that the lines are due to distinct complexes and not merely excited states of each other.

  20. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for Model Year 1978 Passenger Automobiles and for 1979 and Later...

  1. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Calculation of average fuel economy and average carbon-related exhaust emissions. 600.510-12 Section 600.510-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS...

  2. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. 600.114-12 Section 600.114-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS...

  3. Microstructural lines involving luminescence

    NASA Astrophysics Data System (ADS)

    Shimada, Kazuhiko

    2004-06-01

    Japanese National Printing Bureau has been focused upon the development of anti-copy lines for many years. The basic concept with regard to security measure lies in the merge of art and technology. On this basis, our originally developed anti-copy lines show flexibility to various security designs. Our newest anti-copy lines comprising from the Tri-Branched and Divided Lines shows clearer latent image effect compared to that of our other developed anti-copy lines. However, the anti-copy effect of security printing lines with microstructure is deteriorating due to the emergence of digital image techniques with higher resolution. In this situation, this paper introduces a new security measure comprising from luminescence and security printing lines with microstructure. It gives rise to a latent image effect under UV light due to the characteristic microstructure while visually same density. The principle advantage is that the combination of the anti-copy and luminescent feature strongly enhances its secure effect in documents. There is no necessity of two kinds of inks and any specially designed equipment to produce security documents with microstructural lines involving luminescence.

  4. About the leak microstructures

    NASA Astrophysics Data System (ADS)

    Lombardi, M.; Guoxiang, H. Huo-J.; Lombardi, F. S.

    2001-04-01

    The capabilities of a new microstructure, anode point based, for the detection of gas ionizing radiations are presented. For every single detected ionizing radiation it gives a pair of "induced" charges (anodic and cathodic) of the same amount (pulses of the same amplitudes), of opposite sign, with the same collection time and essentially in time coincidence, that are proportional to the primary ionization collected. Each pulse of a pair gives the same energy and timing information, thus one can be used for these information and the other for the position. The complete lack of insulating materials in the active volume of this microstructure avoids problems of charging-up and makes its behaviour stable and repeatable. Primary avalanches with a size of more than 2.5×10 7 electrons (4 pC) giving current pulses with a peak of more than 0.26 mA on 100 Ω and about 30 ns duration are possible with 5.9 keV X-rays of 55Fe working in proportional region and in isobutane gas. Single electrons emitted by a heated filament ( Ec<1 eV) were detected in 760 Torr of isobutane; with an estimated gas gain of 1.2×10 6 a counting rate of up to 800 kpulses/s per single microstructure was achieved. Three different types of sensitive-position two-dimensional read-out detectors, based on these microstructures, in development, as well as the best geometry (height of the tip with respect to the cathode) and the shapes and strengths of the electric field in the active volume of these microstructures, evaluated with Poison Superfish and Mafia programs, are presented.

  5. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HFET-based fuel economy and carbon-related exhaust emission values for vehicle configurations. 600.206... POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-Procedures for Calculating Fuel Economy Values §...

  6. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-based fuel economy and carbon-related exhaust emission values for a model type. 600.208-12 Section 600... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-Procedures for Calculating Fuel Economy Values § 600.208-12 Calculation of FTP...

  7. Solidification microstructures: A conceptual approach

    SciTech Connect

    Trivedi, R.; Kurz, W.

    1994-01-01

    Detailed theoretical models have been developed in the literature to correlate microstructural characteristics as a function of processing parameters. These results are examined with a broad perspective to show that various laws for microstructural transitions and microstructural spacings can be represented in terms of three simple characteristic lengths of the important physical processes. Initially, the important physical processes of solute and thermal transport and capillarity effect are considered, and they are related to the microstructural lengths such as dendrite tip radius, primary and secondary spacing, and eutectic spacing. It is shown that these microstructural lengths are simply given by the geometric mean of the characteristic lengths of physical processes that are important in a given problem. New characteristic lengths that become important under rapid solidification are then developed, and how these characteristic lengths influence microstructural transition and microstructural scales is also discussed.

  8. Morphing Carbon Nanotube Microstructures

    DTIC Science & Technology

    2015-02-20

    would operate by swelling of an active material in a direction locally perpendicular to the CNTs. This shape change, in combination with the mechanical... materials and active surfaces. 15.  SUBJECT TERMS Morphing Structures, Plant-mimetic Design, Cabon Nanotube, Active Polymers 16.  SECURITY CLASSIFICATION OF...and it was proposed that morphing CNT microstructures would operate by swelling of an active material in a direction locally perpendicular to the

  9. Deionization shocks in microstructures

    NASA Astrophysics Data System (ADS)

    Mani, Ali; Bazant, Martin Z.

    2011-12-01

    Salt transport in bulk electrolytes is limited by diffusion and advection, but in microstructures with charged surfaces (e.g., microfluidic devices, porous media, soils, or biological tissues) surface conduction and electro-osmotic flow also contribute to ionic fluxes. For small applied voltages, these effects lead to well known linear electrokinetic phenomena. In this paper, we predict some surprising nonlinear dynamics that can result from the competition between bulk and interfacial transport at higher voltages. When counterions are selectively removed by a membrane or electrode, a “deionization shock” can propagate through the microstructure, leaving in its wake an ultrapure solution, nearly devoid of coions and colloidal impurities. We elucidate the basic physics of deionization shocks and develop a mathematical theory of their existence, structure, and stability, allowing for slow variations in surface charge or channel geometry. Via asymptotic approximations and similarity solutions, we show that deionization shocks accelerate and sharpen in narrowing channels, while they decelerate and weaken, and sometimes disappear, in widening channels. These phenomena may find applications in separations (deionization, decontamination, biological assays) and energy storage (batteries, supercapacitors) involving electrolytes in microstructures.

  10. Revealing the microstructure of materials

    NASA Technical Reports Server (NTRS)

    Nelson, James A.

    1990-01-01

    The objectives are to demonstrate how the microstructure of materials may be revealed by abrasive polishing and chemical etching, and to illustrate how microstructural information is used to monitor manufacturing processes, provide in-depth inspection, and perform failure analysis. Microstructural analysis is the procedure used to reveal the internal microstructural details of a material or part by sectioning and polishing the cut surface so that it may be examined under a suitable microscope. A printed wiring board was selected as the test material because it contains both metals and nonmetals that have distinctive microstructures, and because this technique is used throughout the electronic industry as a key quality control tool. The three principle component materials in printed circuit boards are glass/epoxy laminates faced with copper foil; copper, deposited by both electroless and electrolytic plating; and tin/lead solder. Sample preparation, mounting, grinding, polishing, and examination and analysis are discussed.

  11. Revealing the microstructure of materials

    NASA Technical Reports Server (NTRS)

    Nelson, James A.

    1990-01-01

    The objectives are to demonstrate how the microstructure of materials may be revealed by abrasive polishing and chemical etching, and to illustrate how microstructural information is used to monitor manufacturing processes, provide in-depth inspection, and perform failure analysis. Microstructural analysis is the procedure used to reveal the internal microstructural details of a material or part by sectioning and polishing the cut surface so that it may be examined under a suitable microscope. A printed wiring board was selected as the test material because it contains both metals and nonmetals that have distinctive microstructures, and because this technique is used throughout the electronic industry as a key quality control tool. The three principle component materials in printed circuit boards are glass/epoxy laminates faced with copper foil; copper, deposited by both electroless and electrolytic plating; and tin/lead solder. Sample preparation, mounting, grinding, polishing, and examination and analysis are discussed.

  12. Dynamic electrowetting on microstructured surfaces

    NASA Astrophysics Data System (ADS)

    Nita, Satoshi; Wang, Jiayu; Do-Quang, Minh; Chen, Yu-Chung; Suzuki, Yuji; Amberg, Gustav; Shiomi, Junichiro

    2015-11-01

    Surface modification such as surface charging or microstructuring has been shown as an effective method to control static wetting, but its influence on dynamic wetting is still unclear. Previously, we found that the initial stage of droplet spreading can be significantly hindered by surface microstructures, while previous experiments showed that the effect of surface charge on dynamic wetting on a flat surface is minor. Here, we combine microstructuring and electrowetting to further enhance the controllability of the dynamic wetting. Microstructures are fabricated on silicon wafers and the spontaneous spreading of a droplet is imaged with a high-speed camera. We reveal that the spreading rate sensitivity to surface charge increases in the presence of microstructures. Furthermore, numerical simulations solving Cahn-Hilliard/Navier-Stokes equations are performed and the effect of surface modification is quantified in terms of the contact-line friction. This work was financially supported in part by the Japan Science and Technology Agency through CREST.

  13. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.

    1994-01-01

    The primary motivation for this research was to determine the cause for space processing altering the microstructure of some eutectics, especially the MnBi-Bi eutectic. Four primary hypotheses were to be tested under this current grant: (1) A fibrous microstructure is much more sensitive to convection than a lamellar microstructure, which was assumed in our prior theoretical treatment. (2) An interface with one phase projecting out into the melt is much more sensitive to convection than a planar interface, which was assumed in our prior theoretical treatment. (3) The Soret effect is much more important in the absence of convection and has a sufficiently large influence on microstructure that its action can explain the flight results. (4) The microstructure is much more sensitive to convection when the composition of the bulk melt is off eutectic. These hypotheses were tested. It was concluded that none of these can explain the Grumman flight results. Experiments also were performed on the influence of current pulses on MnBi-Bi microstructure. A thorough review was made of all experimental results on the influence of convection on the fiber spacing in rod eutectics, including results from solidification in space or at high gravity, and use of mechanical stirring or a magnetic field. Contradictory results were noted. The predictions of models for convective influences were compared with the experimental results. Vigorous mechanical stirring appears to coarsen the microstructure by altering the concentration field in front of the freezing interface. Gentle convection is believed to alter the microstructure of a fibrous eutectic only when it causes a fluctuating freezing rate with a system for which the kinetics of fiber branching differs from that for fiber termination. These fluctuations may cause the microstructure to coarsen or to become finer, depending on the relative kinetics of these processes. The microstructure of lamellar eutectics is less sensitive to

  14. Thermal microstructure measurement system

    NASA Technical Reports Server (NTRS)

    Carver, Michael J. (Inventor)

    1985-01-01

    A thermal microstructure measurement system (TMMS) operates autonomously h its own internal power supply and telemeters data to a platform. A thermal array is mounted on a cross-braced frame designed to orient itself normal to existing currents with fixed sensor positioning bars protruding from the cross bars. A plurality of matched thermistors, conductivity probes and inclinometers are mounted on the frame. A compass and pressure transducer are contained in an electronics package suspended below the array. The array is deployed on a taut mooring below a subsurface float. Data are digitized, transmitted via cable to a surface buoy and then telemetered to the platform where the data is processed via a computer, recorded and/or displayed. The platform computer also sends commands to the array via telemetry.

  15. Microstructure inspection endoscope design

    NASA Astrophysics Data System (ADS)

    Liu, Na; Jing, Chao; Zhang, Hongxia; Zhang, Yimo; Jing, Wencai; Zhou, Ge

    2005-02-01

    A microstructure inspection endoscope, based on directly imaging, is proposed. It is designed for detecting defects on the surface of optical fiber end. It is matched with FC or SC female fiber connector. The inspection head of the endoscope can be put into a 2.5-millimeter-diameter micro-pore. Its numerical aperture is not restricted by tiny dimension of object lenses. System resolution is increased to 600 line-pairs per millimeter. The endoscope consists of object lenses, scanner slab and kohler illumination system. The design provides possibility of various utilities such as aiming at a smaller subject by micro optical scanner and modeling the surface by tri-dimensional vision. And the optical system includes low-magnification lenses and high-magnification zoom lenses. Rough observation at low-magnification and particularly inspection at high-magnification are provided. The instrument has the advantages of high identification, compact configuration and flexible manipulation.

  16. Optical Imaging in Microstructures

    SciTech Connect

    Aker, P. M.

    2001-04-11

    This research was focused on developing morphology-dependent stimulated raman scattering (MDSRS) spectroscopy as an analytic optical imaging technique. MDSRS uses the cavity modes (called morphology dependent resonances, MDRs) associated with axisymmetric dielectric microstructures to generate nonlinear optical signals. Since different cavity modes span different regions inside the microstructure, it becomes possible to generate location-specific spectra. The information gotten from MDSRS imaging experiments is analogous with that generated from magnetic resonance imaging (MRI) studies in that spatial variations in chemical composition and molecular configuration within a structure can be mapped out. The authors demonstrated that MDSRS imaging is feasible and is free from nonlinear artifact. They did this by measuring the molecular structure variations that are present in the interfaces of 180 {micro}m dia. charged water droplets. The 4 publications that resulted from these studies are attached. From a chemical perspective a water droplet is, however, a simple thing. Will it be possible to use MDSRS imaging to study more complex systems such as combusting fuel droplets, layered polymer or glass fibers, or biological cells? The long-term goal of the research was to answer this question. The answer they have come up with is yes and no. The results on nitrate aerosols show that it is possible to do imaging studies on optically non-absorbing, ion containing systems, but that the ultimate sensitivity is dictated by ion concentration. hence systems containing large quantities of mobile ions will be difficult to look at, so this essentially eliminates being able to look at biological samples in situ. But on the positive side, organic systems, such as layered polymer and glass fibers, and combusting organic fuel droplets can be looked at with MDSRS imaging.

  17. Computer simulation of microstructure

    NASA Astrophysics Data System (ADS)

    Xu, Ping; Morris, J. W.

    1992-11-01

    The microstructure that results from a martensitic transformation is largely determined by the elastic strain that develops as martensite particles grow and interact. To study the development of microstructure, it is useful to have computer simulation models that mimic the process. One such model is a finite-element model in which the transforming body is divided into elementary cells that transform when it is energetically favorable to do so. Using the linear elastic theory, the elastic energy of an arbitrary distribution of transformed cells can be calculated, and the elastic strain field can be monitored as the transformation proceeds. In the present article, a model of this type is developed and evaluated by testing its ability to generate the preferred configurations of isolated martensite particles, which can be predicted analytically from the linear elastic theory. Both two- and three-dimensional versions of the model are used. The computer model is in good agreement with analytic theory when the latter predicts single-variant martensite particles. The three-dimensional model also generates twinned martensite in reason- able agreement with the analytic predictions when the fractions of the two variants in the particle are near 0.5. It is less successful in reproducing twinned martensites when one variant is dom- inant; however, in this case, it does produce unusual morphologies, such as “butterfly mar- tensite,” that have been observed experimentally. Neither the analytic theory nor the computer simulation predicts twinned martensites in the two-dimensional transformations considered here, revealing an inherent limitation of studies that are restricted to two dimensions.

  18. Microstructure and properties of ceramics

    NASA Technical Reports Server (NTRS)

    Hamano, K.

    1984-01-01

    The history of research into the microstructure and properties of ceramic ware is discussed; methods of producing ceramics with particular characteristics are investigated. Bubbles, sintering, cracks, and electron microscopy are discussed.

  19. Computer vision in microstructural analysis

    NASA Technical Reports Server (NTRS)

    Srinivasan, Malur N.; Massarweh, W.; Hough, C. L.

    1992-01-01

    The following is a laboratory experiment designed to be performed by advanced-high school and beginning-college students. It is hoped that this experiment will create an interest in and further understanding of materials science. The objective of this experiment is to demonstrate that the microstructure of engineered materials is affected by the processing conditions in manufacture, and that it is possible to characterize the microstructure using image analysis with a computer. The principle of computer vision will first be introduced followed by the description of the system developed at Texas A&M University. This in turn will be followed by the description of the experiment to obtain differences in microstructure and the characterization of the microstructure using computer vision.

  20. Fluctuating transport in microstructures

    SciTech Connect

    Xie, X.

    1988-01-01

    In this dissertation, we study electronic transport properties of various kinds of quasi-one dimensional (Q1D) systems. The dissertation can be divided into the following categories: (1) Conductance fluctuations and phase coherence in microstructures. We study the conductance fluctuations for three different regimes of electronic transport: ballistic, diffusive and variable-range-hopping (VRH). Various numerical methods are used in the calculations. In the VRH problem, we also examine the possibility of observing the Aharonov-Bohm effect. We develop a technique based on the recursive Kubo formula to study the universal conductance fluctuations in the diffusive regime. Close comparison with relevant experiments is made and good agreement is found. (2) Drude transport properties of quasi-one dimensional systems. In this problem, we calculate the density of states and Drude conductivity for the screened impurity scattering using many body theory. The DOS and conductivity show strong oscillatory behavior as a function of the Fermi-energy. Self-consistency is included in our theory. Good agreement with experiment is found. (3) Transport in quasicrystals. In solving this problem we use the Landauer formula approach. We find that the electrical resistance of a finite 1D Fibonacci-sequence quasicrystal shows strong fluctuations as resonant tunneling occurs through the allowed energy states of the system. Power law localization and self-similarity can be seen in the transport properties. A possible experiment to observe this phenomenon is suggested.

  1. Dewetting on microstructured substrates

    NASA Astrophysics Data System (ADS)

    Kim, Taehong; Kim, Wonjung

    2016-11-01

    A thin liquid film has an equilibrium thickness in such a way as to minimize the free energy. When a liquid film thickness is out of its equilibrium, the film seeks its equilibrium state, resulting in dynamics of liquid film, which are referred to as wetting and dewetting, depending on the flow direction. We here present a combined experimental and theoretical investigation of dewetting on a substrate with parallel microstructures. Our experiments show that residue may remain on the substrate after dewetting, and residue morphologies can be classified into three modes. Based on our experimental observations, we elucidate how the modes depend on the pattern morphology and contact angle, and develop a model for the contact line motion. Our results provide a basis for controlling the thickness film, which is important for many practical applications such as oil recovery, detergency, lithography, and cleaning. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No.2015R1A2A2A04006181).

  2. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Caram, Rubens; Mohanty, A. P.; Seth, Jayshree

    1990-01-01

    The mechanism responsible for the difference in microstructure caused by solidifying the MnBi-Bi eutectic in space is sought. The objectives for the three year period are as follows: (1) completion of the following theoretical analyses - determination of the influence of the Soret effect on the average solid composition versus distance of off-eutectic mixtures directionally solidified in the absence of convection, determination of the influence of convection on the microstructure of off-eutectic mixtures using a linear velocity profile in the adjacent melt, determination of the influence of volumetric changes during solidification on microconvection near the freezing interface and on microstructure, and determination of the influence of convection on microstructure when the MnBi fibers project out in front of the bismuth matrix; (2) search for patterns in the effect of microgravity on different eutectics (for example, eutectic composition, eutectic temperature, usual microstructure, densities of pure constituents, and density changes upon solidification); and (3) determination of the Soret coefficient and the diffusion coefficient for Mn-Bi melts near the eutectic composition, both through laboratory experiements to be performed here and from data from Shuttle experiments.

  3. The Rate and Process of Mangrove Forest Expansion on Above and Below Ground Carbon Relations in Coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Doyle, T. W.; Pham, T. H.; Reyes, M. R.; Meriwether, J. R.

    2016-02-01

    Recent field studies have documented measureable mangrove expansion landward in tropical zones and poleward in temperate saltmarsh around the northern Gulf of Mexico. Louisiana, in particular, has been recolonized by black mangrove, Avicennia germinans, over a large spatial extent since complete dieback from freeze dating back two decades. Study sites were established near Fourchon, Louisiana to account for the rate and process of marsh/mangrove dominance on carbon burial and elevation change over the past 50 years. Transects were oriented perpendicular from waterway berm of tall and scrub mangrove cover on higher ground grading to low marsh settings of saltmarsh and mixed mangrove ingrowth. Elevation mapping, plant cover and biomass sampling, and soil core dating were conducted to evaluate carbon relations above and below ground. Results showed that sites with tall mangrove have significantly higher above ground biomass than Spartina marsh and mixed marsh/mangrove zone. AG biomass was positively correlated with soil surface elevation and negatively with tidal flood frequency. In addition, tall mangrove zones recorded a twofold increase in soil accretion and carbon burial rates compared with saltmarsh soils based on 137Cs dating. These findings support a positive feedback of mangrove ingrowth and persistence on carbon production and burial allowing higher accretion rates and elevation gains when favored by warmer climate periods lacking or following episodic freeze events.

  4. Non-tropical carbonates related to rocky submarine cliffs (Miocene, Almerı´a, southern Spain)

    NASA Astrophysics Data System (ADS)

    Betzler, C.; Martín, J. M.; Braga, J. C.

    2000-03-01

    Upper Miocene deposits in the Cabo de Gata region (SE Spain) provide a unique opportunity to study cliff-related temperate carbonates, a poorly known type of fossil non-tropical carbonates. The studied submarine cliffs lie on the western flank of the Monte Ricardillo volcanic dome. Two main biocenoses colonised the cliff walls: vertical and subvertical walls were either overgrown by vermetid gastropods, forming a vermetid framestone, or colonised by robust branching bryozoans, which were reworked post-mortem and accumulated as aprons at the foot of the submarine cliffs. Coralline algae in the vermetid build-up indicate palaeodepths below 15-20 m. Depressions in front of the cliffs were occupied by nodular bryozoans and bivalves. Within these depressions, barnacles settled on secondary hard substrates. With progressive flooding of the depositional area, substrate relief was filled in and a carbonate ramp with facies belts following the palaeobathymetric gradient evolved. A delicate branching bryozoan facies occurs in the proximal part of the ramp and a nodular bryozoan-bivalve facies in its middle part. Distally, these deposits give way to a coralline algal facies. These results provide a first insight into temperate-water carbonates related to rocky submarine cliffs. This work also reveals a major control of substrate relief on temperate carbonate facies and biofacies.

  5. Who Exerts Influence on Educational Changes--In Theory and in Practice?

    ERIC Educational Resources Information Center

    Askling, Berit

    This paper discusses some practical and theoretical aspects and problems of curriculum change and reform with a focus on the formal and informal power structure in professional Swedish education. Special attention is also paid to how teachers use a widened scope of action in curriculum planning and setting standards. It explains the formation of…

  6. Experimental Investigation of Microstructured Evaporators

    NASA Astrophysics Data System (ADS)

    Wibel, W.; Westermann, S.; Maikowske, S.; Brandner, J. J.

    2012-11-01

    Microfluidic devices have become more and more popular over the last decades [1]. Cooling is a topic where microstructures offer significant advantages compared to conventional techniques due the much higher possible surface to volume ratios and short heat transfer lengths. By evaporating of a fluid in microchannels, compact, fast and powerful cooling devices become possible [2]. Experimental results for different designs of microstructured evaporators are presented here. They have been obtained either using water as evaporating coolant or the refrigerant R134a (Tetrafluoroethane). A new microstructured evaporator design consisting of bended microchannels instead of straight channels for a better performance is shown and compared to previous results [2] for the evaporation of R134a in straight microchannels.

  7. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related exhaust...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy, CO2 emissions, and...-based fuel economy, CO2 emissions, and carbon-related exhaust emissions for a model type. 600.208-12... FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating...

  8. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related exhaust...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy, CO2 emissions, and...-based fuel economy, CO2 emissions, and carbon-related exhaust emissions for a model type. 600.208-12... FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating...

  9. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related exhaust...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy, CO2 emissions, and...-based fuel economy, CO2 emissions, and carbon-related exhaust emissions for a model type. 600.208-12... FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating...

  10. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in addition to miles per gasoline gallon equivalent, and fuel cell vehicles will determine miles per... HFET-based fuel economy, CO2 emissions, and carbon-related exhaust emission values for vehicle... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures...

  11. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in addition to miles per gasoline gallon equivalent, and fuel cell vehicles will determine miles per... HFET-based fuel economy, CO2 emissions, and carbon-related exhaust emission values for vehicle... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures...

  12. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in addition to miles per gasoline gallon equivalent, and fuel cell vehicles will determine miles per... HFET-based fuel economy, CO2 emissions, and carbon-related exhaust emission values for vehicle... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures...

  13. 40 CFR 600.113-12 - Fuel economy and carbon-related exhaust emission calculations for FTP, HFET, US06, SC03 and cold...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-related exhaust emissions for electric vehicles, fuel cell vehicles and plug-in hybrid electric vehicles. Manufacturers shall determine carbon-related exhaust emissions for electric vehicles, fuel cell vehicles, and plug-in hybrid electric vehicles according to the provisions of this paragraph (m). Subject to the...

  14. 40 CFR 600.113-12 - Fuel economy, CO2 emissions, and carbon-related exhaust emission calculations for FTP, HFET, US06...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emissions and carbon-related exhaust emissions for electric vehicles, fuel cell vehicles, and plug-in hybrid electric vehicles according to the provisions of this paragraph (n). Subject to the limitations on the... the proportion of electric operation of a electric vehicles and plug-in hybrid electric vehicles that...

  15. 40 CFR 600.113-12 - Fuel economy, CO2 emissions, and carbon-related exhaust emission calculations for FTP, HFET, US06...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... determine CO2 emissions and carbon-related exhaust emissions for electric vehicles, fuel cell vehicles, and plug-in hybrid electric vehicles according to the provisions of this paragraph (m). Subject to the... cell vehicles and the proportion of electric operation of a electric vehicles and plug-in hybrid...

  16. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.

    1992-01-01

    The primary motivation for this research has been to determine the cause for space processing altering the microstructure of some eutectics, especially the MnBi-Bi eutectic. Prior experimental research at Grumman and here showed that the microstructure of MnBi-Bi eutectic is twice as fine when solidified in space or in a magnetic field, is uninfluenced by interfacial temperature gradient, adjusts very quickly to changes in freezing rate, and becomes coarser when spin-up/spin-down (accelerated crucible rotation technique) is used during solidification. Theoretical work at Clarkson predicted that buoyancy driven convection on earth could not account for the two fold change in fiber spacing caused by solidification in space. However, a lamellar structure with a planar interface was assumed, and the Soret effect was not included in the analysis. Experimental work at Clarkson showed that the interface is not planar, and that MnBi fibers project out in front of the Bi matrix on the order of one fiber diameter. Originally four primary hypotheses were to be tested under this current grant: (1) a fibrous microstructure is much more sensitive to convection than a lamellar microstructure, which was assumed in our prior theoretical treatment; (2) an interface with one phase projecting out into the melt is much more sensitive to convection than a planar interface, which was assumed in our prior theoretical treatment; (3) the Soret effect is much more important in the absence of convection and has a sufficiently large influence on microstructure that its action can explain the flight results; and (4) the microstructure is much more sensitive to convection when the composition of the bulk melt is off eutectic. As reported previously, we have learned that while a fibrous microstructure and a non-planar interface are more sensitive to convection than a lamellar microstructure with a planar interface, the influence of convection remains too small to explain the flight and magnetic

  17. Microstructure of Matrix in UHTC Composites

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael I.; Chavez-Garia Jose; Doxtad, Evan

    2011-01-01

    Approaches to controlling the microstructure of Ultra High Temperature Ceramics (UHTCs) are described.. One matrix material has been infiltrated into carbon weaves to make composite materials. The microstructure of these composites is described.

  18. Microstructure and Mechanical Properties of Extruded Gamma Microstructure Met PX

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Das, G.; Locci, J.; Whittenberger, J. D.; Lerch, B. A.; Kestler, H.

    2003-01-01

    A gamma TiAl alloy with a high Nb content is being assessed as a compressor blade material. The microstructure and mechanical properties of extruded Ti-45Al-X(Nb,B,C) (at.%) were evaluated in both an as-extruded condition and after a lamellar heat treatment. Tensile behavior of both as-extruded and lamellar heat treated specimens was studied in the temperature range of RT to 926 C. In general, the yield stress and ultimate tensile strength reached relatively high values at room temperature and decreased with increasing deformation temperature. The fatigue strength of both microstructures was characterized at 650 C and compared to a baseline TiAl alloy and to a Ni-base superalloy. Tensile and fatigue specimens were also exposed to 800 C for 200 h in air to evaluate the alloy's environmental resistance. A decrease in ductility was observed at room temperature due to the 800 C. exposure but the 650 C fatigue properties were unaffected. Compressive and tensile creep testing between 727 and 1027 C revealed that the creep deformation was reproducible and predictable. Creep strengths reached superalloy-like levels at fast strain rates and lower temperatures but deformation at slower strain rates and/or higher temperature indicated significant weakening for the as-extruded condition. At high temperatures and low stresses, the lamellar microstructure had improved creep properties when compared to the as-extruded material. Microstructural evolution during heat treatment, identification of various phases, and the effect of microstructure on the tensile, fatigue, and creep behaviors is discussed.

  19. Theory and application of ultrasonic microstructural characterization

    NASA Astrophysics Data System (ADS)

    Thompson, R. Bruce

    1992-10-01

    Ultrasonic microstructural characterization techniques have been developed for a variety of reasons ranging from process control to life extension. The techniques are based on principles of wave propagation and scattering from inhomogeneities. Applications of ultrasonic techniques include predicting sheet metal formability, controlling microstructure in metal-matrix composites, monitoring diffusion bonding, measuring porosity in castings and composites, and designing microstructures for enhanced inspectability.

  20. Three Microstructural Exercises for Students.

    ERIC Educational Resources Information Center

    Means, Winthrop D.

    1986-01-01

    Describes laboratory exercises which demonstrate a new simplified technique for deforming thin samples of crystalline materials on the stage of a petrographic microscope. Discusses how this process allows students to see the development of microstructures resulting from cracking, slipping, thinning, and recrystallization. References and sources of…

  1. Microstructural processes in irradiated materials

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15-19, 2015.

  2. Microstructure Mediated Design of Material and Product

    NASA Astrophysics Data System (ADS)

    Sinha, Ayan; Allen, Janet K.; Panchal, Jitesh; Mistree, Farrokh

    In this paper, the construct of microstructure-mediated design is explored by framing a multiscale system with the appropriate aspects of the material microstructure, followed by multiscale material modeling, and then engineering the microstructure using the Inductive Design Exploration Method, to achieve the product specifications. As the microstructure represents the limiting interface between structure-property relations including system performance and process-structure relations, we have adopted the phrase microstructure mediated design. We illustrate the efficacy of this construct via the integrated design of a submersible and an Al-based matrix composite.

  3. Intersectant Microstructure of Hydroxyapatite Sheets of Shankbone

    NASA Astrophysics Data System (ADS)

    Chen, B.; Luo, J.; Wang, J. G.; Yuan, Q.; Fan, J. H.

    Bone possesses excellent mechanical properties, which are closely related to its favorable microstructures optimized by nature through millions of years. In this work, a scanning electron microscope (SEM) was used to observe the microstructures of a shankbone. It showed that the bone is a kind of bioceramic composite consisting of hydroxyapatite layers and collagen protein matrix. The hydroxyapatite layers are further composed of long and thin hydroxyapatite sheets. The hydroxyapatite sheets in different hydroxyapatite layers distribute along different orientations, which composes a kind of intersectant microstructure. The maximum pullout force of the intersectant microstructure was investigated and compared with that of 0° microstructure with their representative models. The result indicated that the maximum pullout force of the intersectant microstructure is markedly larger than that of the 0° microstructure, which was experimentally verified.

  4. Combined microstructure x-ray optics

    SciTech Connect

    Barbee, T.W. Jr.

    1989-02-01

    Multilayers are man-made microstructures which vary in depth and are now of sufficient quality to be used as x-ray, soft x-ray and extreme ultraviolet optics. Gratings are man-made in plane microstructures which have been used as optic elements for most of this century. Joining of these two optical microstructures to form combined microstructure optical microstructures to form combined microstructure optical elements has the potential for greatly enhancing both the throughput and the resolution attainable in these spectral ranges. The characteristics of these new optic elements will be presented and compared to experiment with emphasis on the unique properties of these combined microstructures. These results reported are general in nature and not limited to the soft x-ray or extreme ultraviolet spectral domains and also apply to neutrons. 19 refs., 7 figs., 4 tabs.

  5. Microstructural effects in foam fracture

    NASA Astrophysics Data System (ADS)

    Stewart, Peter; Davis, Stephen; Hilgenfeldt, Sascha

    2015-11-01

    We examine the fracture of a quasi two-dimensional aqueous foam under an applied driving pressure, using a network modelling approach developed for metallic foams by Stewart & Davis (J. Rheol., vol. 56, 2012, p. 543). In agreement with experiments, we observe two distinct mechanisms of failure analogous to those observed in a crystalline solid: a slow ductile mode when the driving pressure is applied slowly, where the void propagates as bubbles interchange neighbours through the T1 process, and a rapid brittle mode for faster application of pressures, where the void advances by successive rupture of liquid films driven by Rayleigh-Taylor instability. The simulations allow detailed insight into the mechanics of the fracturing medium and the role of its microstructure. In particular, we examine the stress distribution around the crack tip and investigate how brittle fracture localizes into a single line of breakages. We also confirm that pre-existing microstructural defects can alter the course of fracture.

  6. Food microstructure and starch digestion.

    PubMed

    Singh, Jaspreet; Kaur, Lovedeep; Singh, Harjinder

    2013-01-01

    Microstructural characteristics of starch-based natural foods such as parenchyma or cotyledon cell shape, cell size and composition, and cell wall composition play a key role in influencing the starch digestibility during gastrointestinal digestion. The stability of cell wall components and the arrangement of starch granules in the cells may affect the free access of amylolytic enzymes during digestion. Commonly used food processing techniques such as thermal processing, extrusion cooking, and post-cooking refrigerated storage alter the physical state of starch (gelatinization, retrogradation, etc.) and its digestibility. Rheological characteristics (viscosity) of food affect the water availability during starch hydrolysis and, consequently, the absorption of digested carbohydrates in the gastrointestinal tract. The nonstarch ingredients and other constituents present in food matrix, such as proteins and lipids interact with starch during processing, which leads to an alteration in the overall starch digestibility and physicochemical characteristics of digesta. Starch digestibility can be controlled by critically manipulating the food microstructure, processing techniques, and food composition.

  7. Microstructure evolution in irradiated materials

    SciTech Connect

    Caturla, M

    1999-11-30

    Study the interaction of defects produced during irradiation or deformation of a metal with the microstructure of that particular material, such as dislocations and grain boundaries. In particular we will study the interaction of dislocation with interstitial loops and stacking fault tetrahedral, and the production of displacement cascades close to dislocations and grain boundaries. The data obtained from these simulations will be used as input to diffusion models and dislocation dynamics models.

  8. Thin film diamond microstructure applications

    NASA Technical Reports Server (NTRS)

    Roppel, T.; Ellis, C.; Ramesham, R.; Jaworske, D.; Baginski, M. E.; Lee, S. Y.

    1991-01-01

    Selective deposition and abrasion, as well as etching in atomic oxygen or reduced-pressure air, have been used to prepare patterned polycrystalline diamond films which, on further processing by anisotropic Si etching, yield the microstructures of such devices as flow sensors and accelerometers. Both types of sensor have been experimentally tested in the respective functions of hot-wire anemometer and both single- and double-hinged accelerometer.

  9. Microstructural processes in irradiated materials

    SciTech Connect

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    This is an editorial article (preface) for the publication of symposium papers in the Journal of Nuclear materials: These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15–19, 2015.

  10. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Eisa, Gaber Faheem; Chandrasekhar, S.; Larrousse, Mark; Banan, Mohsen

    1988-01-01

    The influence was studied of convection during directional solidification on the resulting microstructure of eutectics, specifically lead/tin and manganese/bismuth. A theory was developed for the influence of convection on the microstructure of lamellar and fibrous eutectics, through the effect of convection on the concentration field in the melt in front of the growing eutectic. While the theory agrees with the experimental spin-up spin-down results, it predicts that the weak convection expected due to buoyancy will not produce a measurable change in eutectic microstructure. Thus, this theory does not explain the two fold decrease in MnBi fiber size and spacing observed when MnBi-Bi is solidified in space or on Earth with a magnetic field applied. Attention was turned to the morphology of the MnBi-Bi interface and to the generation of freezing rate fluctuations by convection. Decanting the melt during solidification of MnBi-Bi eutectic showed that the MnBi phase projects into the melt ahead of the Bi matrix. Temperature measurements in a Bi melt in the vertical Bridgman-Stockbarger configuration showed temperature variations of up to 25 C. Conclusions are drawn and discussed.

  11. Diamond turning microstructure optical components

    NASA Astrophysics Data System (ADS)

    Jiang, Wenda

    2009-05-01

    Microstructure optical components in the form of Fresnel, TIR, microgroove, micro lens array provide a lot design freedom for high compact optical systems. It is a key factor which enables the cutting edge technology for telecommunication, surveillance and high-definition display system. Therefore, the demand of manufacturing such element is rapidly increasing. These elements usually contain high precision, tiny structure and complex form, which have posed many new challenges for tooling, programming as well as ultra-precision machining. To cope with the fast development of the technology and meet the increasing demand of the market, we have developed our own manufacturing process to fabricate microstructure optical components by way of Diamond tuning, Shaping, Raster cutting, Slow Slide Servo (SSS), Diamond milling and Post polishing. This paper is to focus on how we employed these methods to produce complex prototype of microstructure optical components and precision mold inserts which either contains aspheric lens array or freeform V grooves. The high quality finish of these surfaces meets application requirements. Measurement results are presented. Advantages and disadvantages of these methods are compared and discussed in the paper.

  12. Contact Printing of Arrayed Microstructures

    PubMed Central

    Xu, Wei; Luikart, Alicia M.; Sims, Christopher E.; Allbritton, Nancy L.

    2010-01-01

    A novel contact printing method utilizing a sacrificial layer of polyacrylic acid (PAA) was developed to selectively modify the upper surfaces of arrayed microstructures. The method was characterized by printing polystyrene onto SU-8 microstructures to create an improved substrate for a cell-based microarray platform. Experiments measuring cell growth SU-8 arrays modified with polystyrene and fibronectin demonstrated improved growth of NIH 3T3 (93% vs. 38%), HeLa (97% vs. 77%), and HT1080 (76% vs. 20%) cells relative to that for the previously used coating method. In addition, use of the PAA sacrificial layer permitted the printing of functionalized polystyrene, carboxylate polystyrene nanospheres, and silica nanospheres onto the arrays in a facile manner. Finally, a high concentration of extracellular matrix materials (ECM), such as collagen (5 mg/mL) and gelatin (0.1%), was contact printed onto the array structures using as little as 5 μL of the ECM reagent and without the formation of a continuous film bridge across the microstructures. Murine embryonic stem cells cultured on arrays printed with this gelatin-hydrogel remained in an undifferentiated state indicating an adequate surface gelatin layer to maintain these cells over time. PMID:20425106

  13. Microstructural Control of Additively Manufactured Metallic Materials

    NASA Astrophysics Data System (ADS)

    Collins, P. C.; Brice, D. A.; Samimi, P.; Ghamarian, I.; Fraser, H. L.

    2016-07-01

    In additively manufactured (AM) metallic materials, the fundamental interrelationships that exist between composition, processing, and microstructure govern these materials’ properties and potential improvements or reductions in performance. For example, by using AM, it is possible to achieve highly desirable microstructural features (e.g., highly refined precipitates) that could not otherwise be achieved by using conventional approaches. Simultaneously, opportunities exist to manage macro-level microstructural characteristics such as residual stress, porosity, and texture, the last of which might be desirable. To predictably realize optimal microstructures, it is necessary to establish a framework that integrates processing variables, alloy composition, and the resulting microstructure. Although such a framework is largely lacking for AM metallic materials, the basic scientific components of the framework exist in literature. This review considers these key components and presents them in a manner that highlights key interdependencies that would form an integrated framework to engineer microstructures using AM.

  14. Fabrication of metallic microstructures by micromolding nanoparticles

    DOEpatents

    Morales, Alfredo M.; Winter, Michael R.; Domeier, Linda A.; Allan, Shawn M.; Skala, Dawn M.

    2002-01-01

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  15. On the analysis of microstructured surfaces

    NASA Astrophysics Data System (ADS)

    Benitez, Pablo; Minano, Juan Carlos; Hernandez, Maikel

    2004-09-01

    The study of general microstructures in 2D geometry and rotational 3D microstructures is presented. The study is based on infinitesimal microstructures for some calculations and the macro-profile of the surface can be treated as a new type of optical surface with a certain deflection law, which will be different of the reflection law or the Snell law. In two dimensions, we discuss the propagation of wavefronts by general microstructured surfaces (which do not fulfill the Fermat principle) and the discontinuity of the eikonal function at the microstructure. Naturally, a classification of the microstructures is obtained (regular and anomalous) and the concept of 2D ideal microstructures is also introduced, as those that perfectly couple two macroscopic extended bundles in 2D geometry. In 3D, after classifying the rotational optical systems into point-spot and ring-spot types, the first-order properties of both regular and anomalous rotational microstructured surfaces are discussed. Finally, an application of anomalous rotational microstructured surfaces to the problem of mixing the light from three RGB LED chips is introduced.

  16. MICROSTRUCTURE OF SUPERCONDUCTING MGB(2).

    SciTech Connect

    ZHU,Y.; LI,Q.; WU,L.; VOLKOV,V.; GU,G.; MOODENBAUGH,A.R.

    2001-07-12

    Recently, Akimitsu and co-workers [1] discovered superconductivity at 39 K in the intermetallic compound MgB{sub 2}. This discovery provides a new perspective on the mechanism for superconductivity. More specifically, it opens up possibilities for investigation of structure/properties in a new class of materials. With the exceptions of the cuprate and C{sub 60} families of compounds, MgB{sub 2} possesses the highest superconducting transition temperature T{sub c}. Its superconductivity appears to follow the BCS theory, apparently being mediated by electron-phonon coupling. The coherence length of MgB{sub 2} is reported to be longer than that of the cuprates [2]. In contrast to the cuprates, grain boundaries are strongly coupled and current density is determined by flux pinning [2,3]. Presently, samples of MgB{sub 2} commonly display inhomogeneity and porosity on the nanoscale, and are untextured. In spite of these obstacles, magnetization and transport measurements show that polycrystalline samples may carry large current densities circulating across many grains [3,4]. Very high values of critical current densities and critical fields have been recently observed in thin films [5,6]. These attributes suggest possible large scale and electronic applications. The underlying microstructure can be intriguing, both in terms of basic science and in applied areas. Subsequent to the discovery, many papers were published [1-13], most dealing with synthesis, physical properties, and theory. There have yet been few studies of microstructure and structural defects [11, 14]. A thorough understanding of practical superconducting properties can only be developed after an understanding of microstructure is gained. In this work we review transmission electron microscopy (TEM) studies of sintered MgB{sub 2} pellets [14]. Structural defects, including second phase particles, dislocations, stacking faults, and grain boundaries, are analyzed using electron diffraction, electron

  17. Microstructures of undercooled germanium droplets

    NASA Technical Reports Server (NTRS)

    Devaud, G.; Turnbull, D.

    1987-01-01

    Undercoolings at crystal nucleation onset of liquid Ge droplets are measured and the microstructures of the droplets are examined. Undercooling values ranging from 150-415 + or 20 C were obtained. It is observed that for the samples undercooled less than 300 C prior to solidification the grain size was greater than 100 microns; for samples undercooled between 300-400 C the grain size was between 50-100 microns; and for samples undercooled greater than 400 C the grain size was 10-20 microns. Consideration is given to dendritic growth and interfacial undercooling. It is noted that there is a correlation between undercooling and as-crystallized grain structure.

  18. Carbon microstructures for electrochemical studies

    SciTech Connect

    Kostecki, Robert; Song, Xiang Yun; Kinoshita, Kim

    2001-06-22

    Thin layers of photoresist were spin coated onto silicon wafers, and then carbonized to form smooth carbon films by heating in nitrogen for 1 hour at temperatures between 600 to 1100 C. Well-defined carbon microstructures on Si wafers that are being considered for electrodes in a microbattery concept were obtained by additional processing steps involving patterning and lithography of the photoresist prior to carbonization. The status of the fabrication of carbon microelectrodes obtained by pyrolysis of photoresist, characterization of the carbons by surface-sensitive techniques and electrochemical analysis by cyclic voltammetry of the I{sup -}/I{sub 3}{sup -} redox reaction is described.

  19. Deposited films with improved microstructures

    DOEpatents

    Patten, James W.; Moss, Ronald W.; McClanahan, Edwin D.

    1984-01-01

    Methods for improving microstructures of line-of-sight deposited films are described. Columnar growth defects ordinarily produced by geometrical shadowing during deposition of such films are eliminated without resorting to post-deposition thermal or mechanical treatments. The native, as-deposited coating qualities, including homogeneity, fine grain size, and high coating-to-substrate adherence, can thus be retained. The preferred method includes the steps of emitting material from a source toward a substrate to deposit a coating non-uniformly on the substrate surface, removing a portion of the coating uniformly over the surface, again depositing material onto the surface, but from a different direction, and repeating the foregoing steps. The quality of line-of-sight deposited films such as those produced by sputtering, progressively deteriorates as the angle of incidence between the flux and the surface becomes increasingly acute. Depositing non-uniformly, so that the coating becomes progressively thinner as quality deteriorates, followed by uniformly removing some of the coating, such as by resputtering, eliminates the poor quality portions, leaving only high quality portions of the coating. Subsequently sputtering from a different direction applies a high quality coating to other regions of the surface. Such steps can be performed either simultaneously or sequentially to apply coatings of a uniformly high quality, closed microstructure to three-dimensional or large planar surfaces.

  20. Microstructure of microemulsion in MEEKC.

    PubMed

    Cao, Yuhua; Sheng, Jianwei

    2010-01-01

    The influences of the composition of microemulsion on the microstructure including dimensions and zeta potentials of microdroplets were measured in details. The average dynamic dimension of microdroplets was measured by dynamic laser light scattering, and zeta potential was determined to characterize average surface charge density of microdroplets. The experiment results showed that increase of the amount of surfactant resulted in decrease of microdroplet size but almost invariant zeta potential, which would enlarge migration time of the microdroplet in MEEKC. With increment of cosurfactant concentration, the microdroplet size had an increasing trend, whereas the zeta potential decreased. Thus, observed migration velocity of microdroplets increased, which made the separation window in MEEKC shortened. Neither dimension nor zeta potential of microdroplets changed by varying both the type and the amount of the oil phase. Adding organic solvent as modifier to microemulsion did not change the microdroplet size, but lowered zeta potential. The migration time of microdroplet still became larger, since EOF slowed down owing to organic solvent in capillary. So, besides increment of surfactant concentration, organic additive could also enlarge the separation window. Increase of cosurfactant concentration was beneficial for separation efficiency thanks to the looser structure of swollen microdroplet, and the peak sharpening might compensate for the resolution and peak capacity owing to a narrow separation window. Except the oil phase, tuning the composition of microemulsion would change the microstructure, eventually could be exploited to optimize the resolution and save analysis time in MEEKC.

  1. Microstructural design of fiber composites

    NASA Astrophysics Data System (ADS)

    Chou, Tsu-Wei

    The optimum performance design of composite microstructures is discussed. The forces driving progress in fiber composites are examined, and recent developments in the mechanics of laminated composites are surveyed, emphasizing thick laminates, hygrothermal effects, and thermal transient effects. The strength of continuous-fiber composites is discussed, presenting analyses of local load redistribution due to fiber breakages and treatments of statistical tensile strength theories. Modes of failure of laminated composites are examined. Elastic, physical, and viscoelastic properties as well as the strength and fracture behavior of short-fiber composites are studied, and it is shown how the performance of composites can be controlled by selecting material systems and their geometric distributions. 2D textile structural composites based on woven, knitted, and braided preforms are considered, and techniques for analyzing and modeling the thermomechanical behavior of 2D textile composites are presented. Recent developments in the processing of 3D textile preforms are introduced and the processing-microstructure relationship is demonstrated. Finite elastic deformation of flexible composites is addressed.

  2. Microstructural analysis of radiation effects

    SciTech Connect

    Stoller, R.E.; Rice, P.M.; Farrell, K.

    1995-10-01

    Microstructural characterization was performed on long-term ({approximately}100,000-h) thermally aged and neutron-irradiated surveillance materials obtained from the Babcock & Wilcox Nuclear Technologies and a high phosphorus weld from a Russian reactor. Although mechanical testing indicated that thermal aging did not cause any significant changes in the Charpy impact properties, it is important to determine if there are any changes in the composition of the matrix and if any ultrafine precipitates had formed due to the thermal component of service environment only. The characterization of the Russian weld was performed to determine if the behavior of a steel with a phosphorus level in excess of that typically found in Western steels changes, and to ascertain whether the results for formation of copper-enriched regions are specific to the narrow composition band of the Western steels or a more general phenomenon. The ORNL APFIM is well suited to the microstructural characterization of neutron-irradiated RPV materials because of its near-atomic spatial resolution and ability to chemically analyze all elements. In addition to detecting, chemically identifying, and determining the size, morphology, and approximate number density of ultrafine features, the atom probe is able to quantify the amount of each element remaining in solution in the matrix and the amount of solute segregated to grain or lath boundaries.

  3. Microswimmers in Complex Environments with Heterogeneous Microstructure

    NASA Astrophysics Data System (ADS)

    Hyon, Yunkyong; Fu, Henry

    2011-11-01

    We will discuss the swimming of microorganisms in complex and heterogeneous environments. Microswimmers in biological complex fluids, for instance, bacteria and sperm, are often greatly influenced by heterogeneous medium microstructure with length scales comparable to themselves. We characterize the interaction between the microswimmer and the medium microstructure using the model Golestanian three-sphere swimmer, treating the hydrodynamic interaction with the microstructure through the Oseen tensor. In this investigation, the microstructure of the heterogeneous environment is modeled by fixed spheres representing obstacles, or chains consisting of spheres connected with elastic springs. We find that the swimming speed of the swimmer depends on the force and deformation exerted on micro-structure. Furthermore, we find that while short freely suspended chains and short chains anchored at their ends interact with swimmer quite differently, long enough chains interact similarly, that is, a long mobile chain acts like a anchored chain. We discuss the implications for swimmer interactions with polymer solutions and compliant networks.

  4. Introduction to glass microstructuring techniques.

    PubMed

    Mazurczyk, Radoslaw; Mansfield, Colin D

    2013-01-01

    In this chapter an overview of manufacturing methods, leading to the fabrication of microstructures in glass substrates, is presented. Glass is a material of excellent optical properties, a very good electric insulator, biocompatible and chemically stable. In addition to its intrinsic qualities, glass can be processed with the use of manufacturing methods originating from the microelectronic industry. In this text two complete manufacturing protocols are described, each composed of standard microfabrication steps; namely, the deposition of masking layers, photolithographic patterning and pattern transfer via wet or dry etching. As a result, a set of building blocks is provided, allowing the manufacture of various microfluidic components that are frequently used in the domain of micro-total analysis system technology.

  5. Microstructural formulation of stress dilatancy

    NASA Astrophysics Data System (ADS)

    Wan, Richard; Guo, Peijun

    2014-03-01

    In this work, we show that the well-known Rowe's stress-dilatancy relation can be readily recovered from a micromechanical analysis of an assembly of rigid particles as a purely dissipative system in the case of a regular packing. When the analysis is extended to a random packing, one can explicitly incorporate the dependence of fabric, density and stress level on dilatancy, a basic aspect of geomaterial behaviour. The resulting microstructurally based stress dilatancy relation can be easily implemented as a non-associated flow rule in any standard elastoplastic model. Some numerical simulations of stress-dilatancy with initial fabric as a controlling variable are presented to illustrate the developed model. xml:lang="fr"

  6. Microstructural investigations on aerated concrete

    SciTech Connect

    Narayanan, N.; Ramamurthy, K.

    2000-03-01

    Aerated concrete is characterized by the presence of large voids deliberately included in its matrix to reduce the density. This study reports the investigations conducted on the structure of cement-based autoclaved aerated concrete (AAC) and non-AAC with sand or fly ash as the filler. The reasons for changes in compressive strength and drying shrinkage are explained with reference to the changes in the microstructure. Compositional analysis was carried out using XRD. It was observed that fly ash responds poorly to autoclaving. The process of pore refinement in fly ash mixes is discussed with reference to the formation of Hadley grains as well as fly ash hydration. The paste-void interface in aerated concrete investigated in relation to the paste-aggregate interface in normal concrete revealed the existence of an interfacial transition zone.

  7. Anisotropic microstructure near the sun

    NASA Astrophysics Data System (ADS)

    Coles, W. A.; Grall, R. R.; Spangler, S. R.; Sakurai, T.; Harmon, J. K.

    1996-07-01

    Radio scattering observations provide a means of measuring a two-dimensional projection of the three-dimensional spatial spectrum of electron density, i.e., in the plane perpendicular to the line of sight. Earlier observations have shown that the microstructure at scales of the order of 10 km becomes highly field-aligned inside of 10 Rsolar [Armstrong et al., 1990]. Earlier work has also shown that density fluctuations at scales larger than 1000 km have a Kolmogorov spectrum, whereas the smaller scale structure has a flatter spectrum and is considerably enhanced above the Kolmogorov ``background'' [Coles et al., 1991]. Here we present new observations made during 1990 and 1992. These confirm the earlier work, which was restricted to one source on a few days, but they suggest that the anisotropy changes abruptly near 6 Rsolar which was not clear in the earlier data. The axial ratio measurements are shown on Figure 1 below. The new observations were made with a more uniform sampling of the spatial plane. They show that contours of constant correlation are elliptical. This is apparently inconsistent with the spatial correlation of the ISEE-3 magnetic field which shows a ``Maltese Cross'' shape [Matthaeus et al., 1990]. However this inconsistency may be only apparent: the magnetic field and density correlations need not have the same shape; the scale of the magnetic field correlations is at least 4 orders of magnitude larger; they are much further from the sun; and they are point measurements whereas ours are path-integrated. We also made two simultaneous measurements, at 10 Rsolar, of the anisotropy on scales of 200 to 4000 km. Significant anisotropy was seen on the smaller scales, but the larger scale structure was essentially isotropic. This suggests that the process responsible for the anisotropic microstructure is independent of the larger scale isotropic turbulence. It is then tempting to speculate that the damping of this anisotropic process inside of 6 Rsolar

  8. Microstructure Modeling of Third Generation Disk Alloys

    NASA Technical Reports Server (NTRS)

    Jou, Herng-Jeng

    2010-01-01

    The objective of this program was to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool was to be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishments achieved during the third year (2009) of the program are summarized. The activities of this year included: Further development of multistep precipitation simulation framework for gamma prime microstructure evolution during heat treatment; Calibration and validation of gamma prime microstructure modeling with supersolvus heat treated LSHR; Modeling of the microstructure evolution of the minor phases, particularly carbides, during isothermal aging, representing the long term microstructure stability during thermal exposure; and the implementation of software tools. During the research and development efforts to extend the precipitation microstructure modeling and prediction capability in this 3-year program, we identified a hurdle, related to slow gamma prime coarsening rate, with no satisfactory scientific explanation currently available. It is desirable to raise this issue to the Ni-based superalloys research community, with hope that in future there will be a mechanistic understanding and physics-based treatment to overcome the hurdle. In the mean time, an empirical correction factor was developed in this modeling effort to capture the experimental observations.

  9. Observation of asphalt binder microstructure with ESEM.

    PubMed

    Mikhailenko, P; Kadhim, H; Baaj, H; Tighe, S

    2017-09-01

    The observation of asphalt binder with the environmental scanning electron microscope (ESEM) has shown the potential to observe asphalt binder microstructure and its evolution with binder aging. A procedure for the induction and identification of the microstructure in asphalt binder was established in this study and included sample preparation and observation parameters. A suitable heat-sampling asphalt binder sample preparation method was determined for the test and several stainless steel and Teflon sample moulds developed, finding that stainless steel was the preferable material. The magnification and ESEM settings conducive to observing the 3D microstructure were determined through a number of observations to be 1000×, although other magnifications could be considered. Both straight run binder (PG 58-28) and an air blown oxidised binder were analysed; their structures being compared for their relative size, abundance and other characteristics, showing a clear evolution in the fibril microstructure. The microstructure took longer to appear for the oxidised binder. It was confirmed that the fibril microstructure corresponded to actual characteristics in the asphalt binder. Additionally, a 'bee' micelle structure was found as a transitional structure in ESEM observation. The test methods in this study will be used for more comprehensive analysis of asphalt binder microstructure. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  10. Microstructure of Kinetic Spray Coatings: A Review

    NASA Astrophysics Data System (ADS)

    Lee, Changhee; Kim, Jaeick

    2015-04-01

    Kinetic spray process has been applied to various industrial fields such as automotive, aviation, and defense industries due to its availability to produce high-performing coating layer. However, since the properties of kinetic-sprayed coating layer are significantly affected by the microstructures of deposit, the microstructures of the deposit should be controlled to acquire advanced coating layer and, accordingly, deep understanding of microstructural evolution must be achieved before controlling the microstructure of the coating layer. This paper gives an overview of contents related to the microstructure of kinetic-sprayed deposition. The most powerful influencing factors in microstructural evolution of kinetic-sprayed coating layer are instant generation of thermal energy and high-strain, high-strain-rate plastic deformation at the moment of particle impact. A high-density coating layer with low porosity can be produced, although some micro-cracks are occasionally induced at the interparticle boundary or at the inner region of the particles. Also, a microstructure which is distinct from the inner particle region is created in the vicinity of the particle-particle or particle-substrate interface region. However, almost no crystal phase transformation or chemical reaction is induced since the deposited particles are not heated directly by a thermal energy source.

  11. Development of Matrix Microstructures in UHTC Composites

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael

    2012-01-01

    One of the major issues hindering the use of ultra high temperature ceramics for aerospace applications is low fracture toughness. There is considerable interest in developing fiber-reinforced composites to improve fracture toughness. Considerable knowledge has been gained in controlling and improving the microstructure of monolithic UHTCs, and this paper addresses the question of transferring that knowledge to composites. Some model composites have been made and the microstructures of the matrix developed has been explored and compared to the microstructure of monolithic materials in the hafnium diboride/silicon carbide family. Both 2D and 3D weaves have been impregnated and processed.

  12. Fractal analysis of complex microstructure in castings

    SciTech Connect

    Lu, S.Z.; Lipp, D.C.; Hellawell, A.

    1995-12-31

    Complex microstructures in castings are usually characterized descriptively which often raises ambiguity and makes it difficult to relate the microstructure to the growth kinetics or mechanical properties in processing modeling. Combining the principle of fractal geometry and computer image processing techniques, it is feasible to characterize the complex microstructures numerically by the parameters of fractal dimension, D, and shape factor, a, without ambiguity. Procedures of fractal measurement and analysis are described, and a test case of its application to cast irons is provided. The results show that the irregular cast structures may all be characterized numerically by fractal analysis.

  13. Multiscale Microstructures and Microstructural Effects on the Reliability of Microbumps in Three-Dimensional Integration

    PubMed Central

    Huang, Zhiheng; Xiong, Hua; Wu, Zhiyong; Conway, Paul; Altmann, Frank

    2013-01-01

    The dimensions of microbumps in three-dimensional integration reach microscopic scales and thus necessitate a study of the multiscale microstructures in microbumps. Here, we present simulated mesoscale and atomic-scale microstructures of microbumps using phase field and phase field crystal models. Coupled microstructure, mechanical stress, and electromigration modeling was performed to highlight the microstructural effects on the reliability of microbumps. The results suggest that the size and geometry of microbumps can influence both the mesoscale and atomic-scale microstructural formation during solidification. An external stress imposed on the microbump can cause ordered phase growth along the boundaries of the microbump. Mesoscale microstructures formed in the microbumps from solidification, solid state phase separation, and coarsening processes suggest that the microstructures in smaller microbumps are more heterogeneous. Due to the differences in microstructures, the von Mises stress distributions in microbumps of different sizes and geometries vary. In addition, a combined effect resulting from the connectivity of the phase morphology and the amount of interface present in the mesoscale microstructure can influence the electromigration reliability of microbumps. PMID:28788356

  14. Ultrasound scatter in heterogeneous 3D microstructures

    NASA Astrophysics Data System (ADS)

    Engle, B. J.; Roberts, R. A.; Grandin, R. J.

    2017-02-01

    This paper reports on a computational study of ultrasound propagation in heterogeneous metal microstructures. Random spatial fluctuations in elastic properties over a range of length scales relative to ultrasound wavelength can give rise to scatter-induced attenuation, backscatter noise, and phase front aberration. It is of interest to quantify the dependence of these phenomena on the microstructure parameters, for the purpose of quantifying deleterious consequences on flaw detectability, and for the purpose of material characterization. Valuable tools for estimation of microstructure parameters (e.g. grain size) through analysis of ultrasound backscatter have been developed based on approximate weak-scattering models. While useful, it is understood that these tools display inherent inaccuracy when multiple scattering phenomena significantly contribute to the measurement. It is the goal of this work to supplement weak scattering model predictions with corrections derived through application of an exact computational scattering model to explicitly prescribed microstructures.

  15. Modeling microstructure development in gray cast irons

    NASA Astrophysics Data System (ADS)

    Goettsch, David D.; Dantzig, Jonathan A.

    1994-05-01

    Recent years have seen increasing use of solidification process modeling as a tool to aid in the analysis and elimination of manufacturing defects in castings. Grain size and other microstructural features such as second-phase morphology and distribution are the primary factors in determining the mechanical properties in cast metals. In this work, a representation of nucleation and growth kinetics for gray cast irons, based on a statistical description of the microstructure, has been coupled with a commercial finite-element method code for transient heat-flow calculation to determine microstructure. Features predicted include eutectic cell size, fractions of gray and white iron, graphite morphology, percent pearlite, percent ferrite, and pearlite spacing. The predicted microstructure can then be used to determine the strength and fatigue properties using published correlations. The theoretical development and results of the finite-elementbased model will be discussed and compared with experimental results.

  16. Center for advanced microstructures and devices (CAMD)

    NASA Astrophysics Data System (ADS)

    Craft, B. C.; Feldman, M.; Morikawa, E.; Poliakoff, E. D.; Saile, V.; Scott, J. D.; Stockbauer, R. L.

    1992-01-01

    The new synchrotron-radiation facility, Center for Advanced Microstructures and Devices, at Louisiana State University is described with regard to the status of installation of the storage ring, implementation of the various programs, and construction of the first beamlines.

  17. Cleavage fracture in bainitic and martensitic microstructures

    SciTech Connect

    Zhang, X.Z.; Knott, J.F.

    1999-09-29

    This paper addresses the mechanisms of cleavage fracture in the pressure-vessel steel A533B. Microstructures of single bainite microstructures exhibit a higher propensity for brittle cleavage fracture than do those of auto-tempered martensites. The K{sub 1c} values of mixed microstructures are determined by the statistical distribution of the two phases and the range of the values is bounded by limits set by those for the single-phase microstructures. The results are explained in terms of the RKR model, which involves a local cleavage stress {sigma}*{sub F} and a distance ahead of the macrocrack tip, X, as two critical parameters. It is found that the carbides or carbide colonies act as critical microcrack nuclei, and hence play a key role in determining the fracture toughness, although packet boundaries in bainite may give rise to pop-in arrests in displacement-controlled tests.

  18. Microstructural characterization of fiber-reinforced composites

    SciTech Connect

    Summerscales, J.

    1998-12-31

    In the past 50 years, great progress has been made in developing artificial fiber-reinforced composite materials, generally using filaments with microscopic diameters. An array of reinforcement forms can be used in commercial applications--with the microstructure being a critical factor in realizing the required properties in a material. This book comprehensively examines the application of advanced microstructural characterization techniques to fiber-reinforced composites. Its contents include: (1) flexible textile composite microstructure; (2) 3-D confocal microscopy of glass fiber-reinforced composites; (3) geometric modeling of yarn and fiber assemblies; (4) characterization of yarn shape in woven fabric composites; (5) quantitative microstructural analysis for continuous fiber composites; (6) electron microscopy of polymer composites; (7) micromechanics of reinforcement using laser raman spectroscopy; and (8) acoustic microscopy of ceramic fiber composites.

  19. Controlled Ceramic-Ceramic Eutectic Microstructures

    DTIC Science & Technology

    1976-11-18

    greater than that of the colony microstructure and MgAl2O4 single crystal. A void nucleation and growth mechanism may best describe the deformation process with eutectic ingots containing colonies or grains.

  20. Application of a new composite cubic-boron nitride gasket assembly for high pressure inelastic x-ray scattering studies of carbon related materials.

    PubMed

    Wang, Lin; Yang, Wenge; Xiao, Yuming; Liu, Bingbing; Chow, Paul; Shen, Guoyin; Mao, Wendy L; Mao, Ho-kwang

    2011-07-01

    We have developed a new composite cubic-boron nitride (c-BN) gasket assembly for high pressure diamond anvil cell studies, and applied it to inelastic x-ray scattering (IXS) studies of carbon related materials in order to maintain a larger sample thickness and avoid the interference from the diamond anvils. The gap size between the two diamond anvils remained ~80 μm at 48.0 GPa with this new composite c-BN gasket assembly. The sample can be located at the center of the gap, ~20 μm away from the surface of both diamond anvils, which provides ample distance to separate the sample signal from the diamond anvils. The high pressure IXS of a solvated C(60) sample was studied up to 48 GPa, and a pressure induced bonding transition from sp(2) to sp(3) was observed at 27 GPa.

  1. Application of a new composite cubic-boron nitride gasket assembly for high pressure inelastic x-ray scattering studies of carbon related materials

    SciTech Connect

    Wang, Lin; Yang, Wenge; Xiao, Yuming; Liu, Bingbing; Chow, Paul; Shen, Guoyin; Mao, Wendy L.; Mao, Ho-kwang

    2011-01-01

    We have developed a new composite cubic-boron nitride (c-BN) gasket assembly for high pressurediamond anvil cell studies, and applied it to inelastic x-ray scattering (IXS) studies of carbon related materials in order to maintain a larger sample thickness and avoid the interference from the diamond anvils. The gap size between the two diamond anvils remained ~80 μm at 48.0 GPa with this new composite c-BN gasket assembly. The sample can be located at the center of the gap, ~20 μm away from the surface of both diamond anvils, which provides ample distance to separate the sample signal from the diamond anvils. The high pressure IXS of a solvated C₆₀ sample was studied up to 48 GPa, and a pressure induced bonding transition from sp² to sp³ was observed at 27 GPa.

  2. Trends in microstructure modeling in weld metals

    SciTech Connect

    David, S.A.; Babu, S.S.; Vitek, J.M.

    1996-12-31

    Various physical processes, such as thermochemical reactions in liquid, solidification, and solid state transformations, control the microstructure development in weld metals. Some fundamental knowledge of the effects of these physical processes on weld microstructure development already exists. However, generalized and integrated models encompassing the current understanding are just evolving. Such models are needed in the design of successful welding procedures for new alloy systems and advanced materials. The principles, methodology, and future directions of modeling weld microstructure development are described in this paper, with examples in low-alloy steel, stainless steel, and Ni-base superalloys. In low alloy steels, the nucleation and growth of oxide inclusions in the melt was modeled as a function of the welding process and composition. This inclusion model has been recently coupled with solidification and numerical heat and mass transfer models. Recent advances in theoretical and physical modeling of the solidification process will be reviewed in this paper with regard to predicting the solidification modes, grain structure development, segregation effects, and nonequilibrium solidification in welds. In nickel-base superalloy welds, the effects of solidification and solid state transformations on microstructure development will be described. In these welds, the final microstructure was found to be dependent on the cooling rates and solidification modes. The weld microstructure was investigated with the help of advanced analytical techniques such as atom-probe field-ion microscopy. The result addresses the importance of advanced analytical techniques in modeling the solid state transformation.

  3. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Caram, Rubens; Mohanty, A. P.; Seth, Jayshree

    1990-01-01

    In eutectic growth, as the solid phases grow they reject atoms to the liquid. This results in a variation of melt composition along the solid/liquid interface. In the past, mass transfer in eutectic solidification, in the absence of convection, was considered to be governed only by the diffusion induced by compositional gradients. However, mass transfer can also be generated by a temperature gradient. This is called thermotransport, thermomigration, thermal diffusion or the Soret effect. A theoretical model of the influence of the Soret effect on the growth of eutectic alloys is presented. A differential equation describing the compositional field near the interface during unidirectional solidification of a binary eutectic alloy was formulated by including the contributions of both compositional and thermal gradients in the liquid. A steady-state solution of the differential equation was obtained by applying appropriate boundary conditions and accounting for heat flow in the melt. Following that, the average interfacial composition was converted to a variation of undercooling at the interface, and consequently to microstructural parameters. The results obtained show that thermotransport can, under certain circumstances, be a parameter of paramount importance.

  4. Snow Micro-Structure Model

    SciTech Connect

    Micah Johnson, Andrew Slaughter

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.

  5. Snow Micro-Structure Model

    SciTech Connect

    Micah Johnson, Andrew Slaughter

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.

  6. Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design

    DTIC Science & Technology

    2013-08-23

    stable nanotwinned microstructure---high-temperature strength. The long - term goal of this effort is to develop austenitic stainless steels capable of...microstructures. The long - term alloy design strategy focuses on microalloying additions to 1) reduce the stacking fault energy (SFE), enhance twinning formation...15. SUBJECT TERMS materials design, stainless steels , plastic deformation by twinning, computational materials science, experimental characterization

  7. AxTract: Toward microstructure informed tractography.

    PubMed

    Girard, Gabriel; Daducci, Alessandro; Petit, Laurent; Thiran, Jean-Philippe; Whittingstall, Kevin; Deriche, Rachid; Wassermann, Demian; Descoteaux, Maxime

    2017-08-02

    Diffusion-weighted (DW) magnetic resonance imaging (MRI) tractography has become the tool of choice to probe the human brain's white matter in vivo. However, tractography algorithms produce a large number of erroneous streamlines (false positives), largely due to complex ambiguous tissue configurations. Moreover, the relationship between the resulting streamlines and the underlying white matter microstructure characteristics remains poorly understood. In this work, we introduce a new approach to simultaneously reconstruct white matter fascicles and characterize the apparent distribution of axon diameters within fascicles. To achieve this, our method, AxTract, takes full advantage of the recent development DW-MRI microstructure acquisition, modeling, and reconstruction techniques. This enables AxTract to separate parallel fascicles with different microstructure characteristics, hence reducing ambiguities in areas of complex tissue configuration. We report a decrease in the incidence of erroneous streamlines compared to the conventional deterministic tractography algorithms on simulated data. We also report an average increase in streamline density over 15 known fascicles of the 34 healthy subjects. Our results suggest that microstructure information improves tractography in crossing areas of the white matter. Moreover, AxTract provides additional microstructure information along the fascicle that can be studied alongside other streamline-based indices. Overall, AxTract provides the means to distinguish and follow white matter fascicles using their microstructure characteristics, bringing new insights into the white matter organization. This is a step forward in microstructure informed tractography, paving the way to a new generation of algorithms able to deal with intricate configurations of white matter fibers and providing quantitative brain connectivity analysis. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Zirconia implant abutments: microstructural analysis.

    PubMed

    Vaquero-Aguilar, Cristina; Jiménez-Melendo, Manuel; Torres-Lagares, Daniel; Llena-Blasco, Oriol; Bruguera, August; Llena-Blasco, Jaime; García-Calderón, Manuel; Velázquez-Cayón, Rocío; Gutiérrez-Pérez, José-Luis

    2012-01-01

    Yttria-stabilized zirconia (ZrO₂-Y₂O₃) ceramics have received increasing attention in recent years because of their stress-induced tetragonal-to-monoclinic (martensitic) transformation. This unique process acts as a toughening mechanism, imparting strength and toughness to the ceramic alloy. This property, along with well-documented biocompatibility, is now being exploited in an increasing number of medical applications, including implant dentistry. To prevent clinical problems and predict their behavior and physical limitations, a characterization of the ceramic elements used in dental restorations is essential. The aim of the present study is to characterize the crystal structure, elemental composition, and micr ostructure of asreceived ZiReal Post (Biomet 3i) zirconium oxide abutments, as well as specimens coated with a first layer of a low-fusing fluoroapatite ceramic. Zirconium oxide abutments, both as-received and porcelain-coated, were studied using the following techniques: x-ray diffraction, x-ray fluorescence, energy dispersive x-ray spectroscopy, optical microscopy, and scanning and transmission electron microscopy. X-ray analyses detected only the presence of Zr, O, Y, and hafnium (Hf), in an amount of 3% to 4% molecular weight Y₂O₃-ZrO₂. X-ray diffraction measurements showed that the ceramic abutment crystallizes mainly in the tetragonal phase, with some residual monoclinic phase. The microstructure is characterized by a rather homogenous grain distribution, formed by equiaxed and fine grains with a mean size of 0.30 Μm. Compositional and diffraction results are consistent with polycrystalline yttria-stabilized tetragonal zirconia. The material is susceptible to undergoing the stress-induced transformation toughening mechanism because of the very fine grain size. Except for machining ring marks, the surfaces exhibit an excellent finishing quality. No structural modifications were observed in the fluoroapatite ceramic-coated abutments

  9. Understanding particulate coating microstructure development

    NASA Astrophysics Data System (ADS)

    Roberts, Christine Cardinal

    How a dispersion of particulates suspended in a solvent dries into a solid coating often is more important to the final coating quality than even its composition. Essential properties like porosity, strength, gloss, particulate order, and concentration gradients are all determined by the way the particles come together as the coating dries. Cryogenic scanning electron microscopy (cryoSEM) is one of the most effective methods to directly visualize a drying coating during film formation. Using this method, the coating is frozen, arresting particulate motion and solidifying the sample so that it be imaged in an SEM. In this thesis, the microstructure development of particulate coatings was explored with several case studies. First, the effect of drying conditions was determined on the collapse of hollow latex particles, which are inexpensive whiteners for paint. Using cryoSEM, it was found that collapse occurs during the last stages of drying and is most likely to occur at high drying temperatures, humidity, and with low binder concentration. From these results, a theoretical model was proposed for the collapse of a hollow latex particle. CryoSEM was also used to verify a theoretical model for the particulate concentration gradients that may develop in a coating during drying for various evaporation, sedimentation and particulate diffusion rates. This work created a simple drying map that will allow others to predict the character of a drying coating based on easily calculable parameters. Finally, the effect of temperature on the coalescence and cracking of latex coatings was explored. A new drying regime for latex coatings was identified, where partial coalescence of particles does not prevent cracking. Silica was shown to be an environmentally friendly additive for preventing crack formation in this regime.

  10. The evolution of dinosaur tooth enamel microstructure.

    PubMed

    Hwang, Sunny H

    2011-02-01

    The evolution of tooth enamel microstructure in both extinct and extant mammalian groups has been extensively documented, but is poorly known in reptiles, including dinosaurs. Previous intensive sampling of dinosaur tooth enamel microstructure revealed that: (1) the three-dimensional arrangement of enamel types and features within a tooth-the schmelzmuster-is most useful in diagnosing dinosaur clades at or around the family level; (2) enamel microstructure complexity is correlated with tooth morphology complexity and not necessarily with phylogenetic position; and (3) there is a large amount of homoplasy within Theropoda but much less within Ornithischia. In this study, the examination of the enamel microstructure of 28 additional dinosaur taxa fills in taxonomic gaps of previous studies and reinforces the aforementioned conclusions. Additionally, these new specimens reveal that within clades such as Sauropodomorpha, Neotheropoda, and Euornithopoda, the more basal taxa have simpler enamel that is a precursor to the more complex enamel of more derived taxa and that schmelzmusters evolve in a stepwise fashion. In the particularly well-sampled clade of Euornithopoda, correlations between the evolution of dental and enamel characters could be drawn. The ancestral schmelzmuster for Genasauria remains ambiguous due to the dearth of basal ornithischian teeth available for study. These new specimens provide new insights into the evolution of tooth enamel microstructure in dinosaurs, emphasizing the importance of thorough sampling within broadly inclusive clades, especially among their more basal members.

  11. Atomistic to continuum modeling of solidification microstructures

    SciTech Connect

    Karma, Alain; Tourret, Damien

    2015-09-26

    We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid–liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked to experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. The approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.

  12. Roundness of grains in cellular microstructures

    NASA Astrophysics Data System (ADS)

    Lutz, F. H.; Mason, J. K.; Lazar, E. A.; MacPherson, R. D.

    2017-08-01

    Many physical systems are composed of polyhedral cells of varying sizes and shapes. These structures are simple in the sense that no more than three faces meet at an edge and no more than four edges meet at a vertex. This means that individual cells can usually be considered as simple, three-dimensional polyhedra. This paper is concerned with determining the distribution of combinatorial types of such polyhedral cells. We introduce the terms fundamental and vertex-truncated types and apply these concepts to the grain growth microstructure as a testing ground. For these microstructures, we demonstrate that most grains are of particular fundamental types, whereas the frequency of vertex-truncated types decreases exponentially with the number of truncations. This can be explained by the evolutionary process through which grain growth structures are formed and in which energetically unfavorable surfaces are quickly eliminated. Furthermore, we observe that these grain types are "round" in a combinatorial sense: there are no "short" separating cycles that partition the polyhedra into two parts of similar sizes. A particular microstructure derived from the Poisson-Voronoi initial condition is identified as containing an unusually large proportion of round grains. This microstructure has an average of 14.036 faces per grain and is conjectured to be more resistant to topological change than the steady-state grain growth microstructure.

  13. Local microstructural organization in carbogenic molecular sieves

    SciTech Connect

    Kane, M.S.; Foley, H.C.

    1996-12-31

    The microstructure of nanoporous, carbogenic molecular sieves (CMS) was studied using high resolution electron microscopy and neutron diffraction. The narrow range of pore sizes observed in these complex materials suggests that although these materials are globally amorphous, the local microstructural features are more organized. This work, focused on poly(furfuryl alcohol)-derived CMS, is aimed at characterizing the evolution of this microstructure. Microscopy results show that materials synthesized at low temperature have some degree of organization but that the microstructure is featureless and symmetric at longer length scales. This symmetry is broken at higher synthesis temperatures as thermodynamic driving forces lead to further organization of the carbon atoms into more ordered structures but the length scales remain short. Micrographs of high temperature CMS show a high degree of curvature and features reminiscent of fullerene. The connectivity of the carbon atoms in the CMS has been probed using powder neutron diffraction. This data suggests that the atoms in the CMS form ordered structures on the length scale of 15{angstrom} which are distinctly different from the structure of graphite. These observed changes in the microstructure directly impact the adsorptive and molecular sieving characteristics of the CMS as illustrated by the marked differences between the diffusivities of oxygen and nitrogen. This property is crucial for the very demanding separation of nitrogen from oxygen in air.

  14. Atomistic to continuum modeling of solidification microstructures

    DOE PAGES

    Karma, Alain; Tourret, Damien

    2015-09-26

    We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid–liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked tomore » experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. The approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.« less

  15. Hydrothermal replacement of biogenic and abiogenic aragonite by Mg-carbonates - Relation between textural control on effective element fluxes and resulting carbonate phase

    NASA Astrophysics Data System (ADS)

    Jonas, Laura; Müller, Thomas; Dohmen, Ralf; Immenhauser, Adrian; Putlitz, Benita

    2017-01-01

    Dolomitization, i.e., the secondary replacement of calcite or aragonite (CaCO3) by dolomite (CaMg[CO3]2), is one of the most volumetrically important carbonate diagenetic processes. It occurs under near surface and shallow burial conditions and can significantly modify rock properties through changes in porosity and permeability. Dolomitization fronts are directly coupled to fluid pathways, which may be related to the initial porosity/permeability of the precursor limestone, an existing fault network or secondary porosity/permeability created through the replacement reaction. In this study, the textural control on the replacement of biogenic and abiogenic aragonite by Mg-carbonates, that are typical precursor phases in the dolomitization process, was experimentally studied under hydrothermal conditions. Aragonite samples with different textural and microstructural properties exhibiting a compact (inorganic aragonite single crystal), an intermediate (bivalve shell of Arctica islandica) and open porous structure (skeleton of coral Porites sp.) were reacted with a solution of 0.9 M MgCl2 and 0.015 M SrCl2 at 200 °C. The replacement of aragonite by a Ca-bearing magnesite and a Mg-Ca carbonate of non-stoichiometric dolomitic composition takes place via a dissolution-precipitation process and leads to the formation of a porous reaction front that progressively replaces the aragonite precursor. The reaction leads to the development of porosity within the reaction front and distinctive microstructures such as gaps and cavities at the reaction interface. The newly formed reaction rim consists of chemically distinct phases separated by sharp boundaries. It was found that the number of phases and their chemical variation decreases with increasing initial porosity and reactive surface area. This observation is explained by variations in effective element fluxes that result in differential chemical gradients in the fluid within the pore space of the reaction rim. Observed

  16. Modeling of Microstructure Evolution During Alloy Solidification

    NASA Astrophysics Data System (ADS)

    Zhu, Mingfang; Pan, Shiyan; Sun, Dongke

    In recent years, considerable advances have been achieved in the numerical modeling of microstructure evolution during solidification. This paper presents the models based on the cellular automaton (CA) technique and lattice Boltzmann method (LBM), which can reproduce a wide variety of solidification microstructure features observed experimentally with an acceptable computational efficiency. The capabilities of the models are addressed by presenting representative examples encompassing a broad variety of issues, such as the evolution of dendritic structure and microsegregation in two and three dimensions, dendritic growth in the presence of convection, divorced eutectic solidification of spheroidal graphite irons, and gas porosity formation. The simulations offer insights into the underlying physics of microstructure formation during alloy solidification.

  17. Microstructural characterization of next generation nuclear graphites.

    PubMed

    Karthik, Chinnathambi; Kane, Joshua; Butt, Darryl P; Windes, William E; Ubic, Rick

    2012-04-01

    This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

  18. Microstructures and properties of rapidly solidified alloys

    NASA Technical Reports Server (NTRS)

    Shechtman, D.; Horowitz, E.

    1984-01-01

    The microstructure and properties of rapidly solidified aluminum alloys were researched. The effects of powder and flake chemistry and morphology and alternative consolidation processing parameters are being conducted. Samples of the powders being utilized were obtained for comprehensive metallurgical characterization. Seven aluminum alloys in the form of thin foils were studied by a variety of techniques including optical metallography, scanning electron microscope, and transmission electron microscope. Details of the microstructural characteristics are presented along with a discussion of the solidification process. A better understanding of the microstructure of the rapidly solidified aluminum alloys prepared by a variety of techniques such as roller quenching, the vacuum atomized procedure, ultrasonically atomized in inert atmospheres, and atomized in flue gas was provided.

  19. Development of microstructural features during irradiation

    SciTech Connect

    Wiedersich, H.

    1980-01-01

    During elevated temperature irradiation with energetic neutrons, ions or electrons, the microstructure of alloys undergoes significant changes accompanied by corresponding changes in physical properties. The microstructural development is caused by the defect production throughout the material and the concurrent annihilation of the mobile point defects and small defect clusters on spatially discrete sinks such as dislocations, grain boundaries and voids. We review here the present understanding of the development of the radiation microstructure beyond the nucleation stage of stable defect clusters. After a short characterization of the dynamic state of a crystalline material during elevated temperature irradiation we discuss (a) the void swelling phenomenon; (b) radiation-enhanced, diffusion controlled processes such as precipitate coarsening; and (c) radiation-induced processes such as radiation-induced precipitation and spatial redistribution of phases in multiphase alloys.

  20. Microstructural refinement through multipass GTAW process

    SciTech Connect

    Kin, H.J.; Morris, J.W. Jr.

    1986-04-01

    The present work was undertaken to illustrate and clarify the microstructural features of martensitic Fe-Ni weld deposits made by a multipass welding process. To simulate this, rapid thermal treatments were applied to an Fe-12Ni-0.25Ti alloy using an induction furnace and bead-on-plate welding. The rapid thermal treatment refines the microstructure significantly by destroying the previous packet structure. Hence, the term ''packet refinement'' is used to distinguish its microstructural features from the grain refinement associated with recrystallization of austenite. During multipass GTAW process with an 11% Ni ferritic filler wire, a coarse columnar grain structure is formed after solidification but this structure is refined repetitively by the rapid thermal cycles of subsequent passes. The result is a fully packet refined and extremely fine structure, in the order of several microns, throughout the weldment.

  1. Microstructural Characterization of Next Generation Nuclear Graphites

    SciTech Connect

    Karthik Chinnathambi; Joshua Kane; Darryl P. Butt; William E. Windes; Rick Ubic

    2012-04-01

    This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

  2. Microstructures in rapidly solidified niobium aluminides

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Locci, Ivan E.

    1988-01-01

    The microstructures of niobium aluminides produced by chill block melt spinning were compared to those of niobium aluminides produced by conventional casting. The rapidly solidified alloys were rapidly solidified by melt spinning in an argon atmosphere, and the melt-spun ribbons were examined by optical, X-ray, and TEM techniques. Microstructures were found to range from single-phase for Nb-75 at. pct Al (NbAl3) to two phase for Nb-46 at. pct Al (NbAl3 + Nb2Al). It was found that the melt spinning of Nb-aluminides produced finer grained microstructures than those produced in induction-melted ingots or in powders produced by the rotating electrode process. Ternary additions such as Cr, Ti, and Si tended to form intermetallic phases along the grain boundaries.

  3. Connectivity Measures in EEG Microstructural Sleep Elements

    PubMed Central

    Sakellariou, Dimitris; Koupparis, Andreas M.; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K.

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an “EEG-element connectivity” methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the

  4. Biomimetic microstructures for photonic and fluidic synergies

    NASA Astrophysics Data System (ADS)

    Vasileiou, Maria; Mpatzaka, Theodora; Alexandropoulos, Dimitris; Vainos, Nikolaos A.

    2017-08-01

    Nature-inspired micro- and nano-structures offer a unique platform for the development of novel synergetic systems combining photonic and microfluidic functionalities. In this context, we examine the paradigm of butterfly Vanessa cardui and develop artificial diffractive microstructures inspired by its natural designs. Softlithographic and nanoimprint protocols are developed to replicate surfaces of natural specimens. Further to their optical behavior, interphases tailored by such microstructures exhibit enhanced hydrophobic properties, as compared to their planar counterparts made of the same materials. Such synergies exploited by new design approaches pave the way to prospective optofluidic, lab-on-chip and sensing applications.

  5. Microstructure development in particulate ceramic coatings

    SciTech Connect

    Kim, Y.J.; Wara, N.M.; Francis, L.F.; Velamakanni, B.V.

    1994-12-31

    Microstructure development in particulate coatings is influenced by the particle-particle interactions and additional mechanisms, such as reaction and phase separation, which are driven by compositional changes in a coating during deposition and drying. The effect of agglomeration rate on microstructure uniformity and pore content is demonstrated using coatings produced from aqueous alumina dispersions. The addition of cellulose acetate and acetone to the alumina dispersion leads to phase separation and a coating with large cylindrical pores. The formation of particles by reactions during deposition is also discussed. The pore content of particulate titania coatings prepared in this way can be varied from 30 to 60% by changing the coating conditions.

  6. The evolution of deformation microstructures and local orientations

    SciTech Connect

    Hughes, D.A.

    1995-12-31

    A brief overview of the evolution of microstructures during deformation is presented within the framework of grain subdivision. Three aspects of the evolving microstructure that are related to recrystallization are emphasized. These include the formation of high angle dislocation boundaries during deformation, the local environment of crystallographic orientations and a new scaling method for modeling detailed microstructural data.

  7. Role of Microstructure on the Performance of UHTCs

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Gasch, Matthew J.; Lawson, John W.; Gusman, Michael I.; Stackpoole, Mairead

    2010-01-01

    We have investigated a number of methods to control microstructure. We have routes to form: a) in situ "composites" b) Very fine microstructures. Arcjet testing and other characterization of monolithic materials. Control oxidation through microstructure and composition. Beginning to incorporate these materials as matrices for composites. Modeling effort to facilitate material design and characterization.

  8. Rapid production of polymer microstructures

    NASA Astrophysics Data System (ADS)

    Nagarajan, Pratapkumar

    The goal of this research is to develop an integrated polymer embossing module, with which difficult-to-emboss polymer microstructures and microparts can be fabricated in a cost-effective manner. In particular, the research addresses three major limitations of the hot embossing process, namely, long cycle time, difficulty in producing shell patterns, and difficulty in building up a high embossing pressure on thick substrates. To overcome these limitations, three new technical approaches - two-station embossing, rubber-assisted embossing, and through-thickness embossing - were developed and investigated. Fundamental understanding of these new embossing techniques were achieved through extensive experimental and theoretical studies involving parametric experiments, rheological characterization, surface investigation, mathematical modeling, and computer simulation. A two-station embossing process was developed to reduce the hot embossing cycle time, accomplished by decoupling the heating and cooling stations. For this purpose, the standard hot embossing mold was replaced by a shell type mold, and separate hot and cold stations were used to selectively heat and cool the shell mold during the process. With this method, microlens arrays and micro channels were fabricated onto ABS and HDPE substrates with a cycle time of approximately 10 s. Numerical simulations were performed to study the effect of different design parameters, including thermal contact resistance, shell material and shell thickness, on the thermal response at the mold surface. Furthermore, the polymer flow during the two-station embossing process for the microlens was numerically studied. The simulated filling behavior agreed with the experimental observation, and the predicted thermal and deformation history of the polymer offers a good explanation on the experimentally observed process characteristics. The second technique, rubber-assisted embossing, involving a rubber pad as a soft counter tool, was

  9. Transferable graphene oxide films with tunable microstructures.

    PubMed

    Hasan, Saad A; Rigueur, John L; Harl, Robert R; Krejci, Alex J; Gonzalo-Juan, Isabel; Rogers, Bridget R; Dickerson, James H

    2010-12-28

    This report describes methods to produce large-area films of graphene oxide from aqueous suspensions using electrophoretic deposition. By selecting the appropriate suspension pH and deposition voltage, films of the negatively charged graphene oxide sheets can be produced with either a smooth "rug" microstructure on the anode or a porous "brick" microstructure on the cathode. Cathodic deposition occurs in the low pH suspension with the application of a relatively high voltage, which facilitates a gradual change in the colloids' charge from negative to positive as they adsorb protons released by the electrolysis of water. The shift in the colloids' charge also gives rise to the brick microstructure, as the concurrent decrease in electrostatic repulsion between graphene oxide sheets results in the formation of multilayered aggregates (the "bricks"). Measurements of water contact angle revealed the brick films (79°) to be more hydrophobic than the rug films (41°), a difference we attribute primarily to the distinct microstructures. Finally, we describe a sacrificial layer technique to make these graphene oxide films free-standing, which would enable them to be placed on arbitrary substrates.

  10. Microstructured waveguides for serological examination of blood

    NASA Astrophysics Data System (ADS)

    Zanishevskaya, Anastasiya A.; Shuvalov, A. A.; Skibina, Yu. S.; Tuchin, V. V.

    2015-03-01

    The advantages of microstructured fibers application to photometrical determination of positive and negative agglutination reaction is discussed. One can use this method for blood typing and determination of Rh affinity. The method is based on discrimination of the scattering properties of blood probes with a specific and a non-specific agglutinating serum.

  11. Method to control artifacts of microstructural fabrication

    DOEpatents

    Shul, Randy J.; Willison, Christi G.; Schubert, W. Kent; Manginell, Ronald P.; Mitchell, Mary-Anne; Galambos, Paul C.

    2006-09-12

    New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Compensation for etching-related structural artifacts can be accomplished by proper use of such an etching delay layer.

  12. Microstructural characterization of pipe bomb fragments

    SciTech Connect

    Gregory, Otto; Oxley, Jimmie; Smith, James; Platek, Michael; Ghonem, Hamouda; Bernier, Evan; Downey, Markus; Cumminskey, Christopher

    2010-03-15

    Recovered pipe bomb fragments, exploded under controlled conditions, have been characterized using scanning electron microscopy, optical microscopy and microhardness. Specifically, this paper examines the microstructural changes in plain carbon-steel fragments collected after the controlled explosion of galvanized, schedule 40, continuously welded, steel pipes filled with various smokeless powders. A number of microstructural changes were observed in the recovered pipe fragments: deformation of the soft alpha-ferrite grains, deformation of pearlite colonies, twin formation, bands of distorted pearlite colonies, slip bands, and cross-slip bands. These microstructural changes were correlated with the relative energy of the smokeless powder fillers. The energy of the smokeless powder was reflected in a reduction in thickness of the pipe fragments (due to plastic strain prior to fracture) and an increase in microhardness. Moreover, within fragments from a single pipe, there was a radial variation in microhardness, with the microhardness at the outer wall being greater than that at the inner wall. These findings were consistent with the premise that, with the high energy fillers, extensive plastic deformation and wall thinning occurred prior to pipe fracture. Ultimately, the information collected from this investigation will be used to develop a database, where the fragment microstructure and microhardness will be correlated with type of explosive filler and bomb design. Some analyses, specifically wall thinning and microhardness, may aid in field characterization of explosive devices.

  13. Ultrasound and microstructures--a promising combination?

    PubMed

    Hübner, S; Kressirer, S; Kralisch, D; Bludszuweit-Philipp, C; Lukow, K; Jänich, I; Schilling, A; Hieronymus, H; Liebner, C; Jähnisch, K

    2012-02-13

    Short diffusion paths and high specific interfacial areas in microstructured devices can increase mass transfer rates and thus accelerate multiphase reactions. This effect can be intensified by the application of ultrasound. Herein, we report on the design and testing of a novel versatile setup for a continuous ultrasound-supported multiphase process in microstructured devices on a preparative scale. The ultrasonic energy is introduced indirectly into the microstructured device through pressurized water as transfer medium. First, we monitored the influence of ultrasound on the slug flow of a liquid/liquid two-phase system in a channel with a high-speed camera. To quantify the influence of ultrasound, the hydrolysis of p-nitrophenyl acetate was utilized as a model reaction. Microstructured devices with varying channel diameter, shape, and material were applied with and without ultrasonication at flow rates in the mL min(-1) range. The continuous procedures were then compared and evaluated by performing a simplified life cycle assessment. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantitative Analysis of Bone Microstructure Using Tomosynthesis

    DTIC Science & Technology

    2013-10-01

    texture, microstructural heterogeneity, osteoporosis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...radiation exposure, is a potentially viable approach to quantify endplate topography in a clinical setting. EXECUTIVE SUMMARY Osteoporosis is a progressive...Microcomputed Tomography I. INTRODUCTION Osteoporosis is a bone disease that progresses silently, often with few symptoms; as time goes on, the risk of

  15. Microstructure design for fast oxygen conduction

    DOE PAGES

    Aidhy, Dilpuneet S.; Weber, William J.

    2015-11-11

    Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations aremore » other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.« less

  16. Capturing the Complexity of Additively Manufactured Microstructures

    SciTech Connect

    Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan; Mayeur, Jason Rhea; Brown, Donald William; Dippo, Olivia

    2016-05-12

    The underlying mechanisms and kinetics controlling damage nucleation and growth as a function of material microstructure and loading paths are discussed. These experiments indicate that structural features such as grain boundaries, grain size distribution, grain morphology crystallographic texture are all factors that influence mechanical behavior.

  17. Microstructure design for fast oxygen conduction

    SciTech Connect

    Aidhy, Dilpuneet S.; Weber, William J.

    2015-11-11

    Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations are other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.

  18. Microstructural characterization of high-carbon ferrochromium

    SciTech Connect

    Lesko, A.; Navara, E.

    1996-04-01

    Light optical and scanning electron microscopy techniques were used for high-carbon ferrochromium microstructural analysis. Different microstructures were observed for industrially and laboratory-produced ferroalloys. Primary carbides of M{sub 7}C{sub 3} with chromium ferrite were found in the industrially produced, slowly solidified, and cooled ferroalloy, while primary M{sub 7}C{sub 3} carbides accompanied a eutectic mixture of M{sub 7}C{sub 3} carbides and chromium ferrite in the laboratory-melted and in the water-solidified and water-cooled materials. Different microstructural arrangements are directly related to the friability properties of this material, which characterizes its resistance to abrasion on handling and impact. In ferrochromium upgraded by carbon content reduction, the eutectic M{sub 7}C{sub 3} hexagonal carbides are partly replaced by M{sub 23}C{sub 6} dendritic carbides. The presence of dendritic carbides in the ferrochromium eutectic microstructure can be interpreted as a proof of a lower carbon content, raising the commercial value of the ferroalloy. The hexagonal M{sub 7}C{sub 3} carbides exhibited a central hollow along the longitudinal axis, and on metallographic samples they looked like screw nuts. A model of the solidification mechanism for such crystals is proposed.

  19. Topological microstructure analysis using persistence landscapes

    NASA Astrophysics Data System (ADS)

    Dłotko, Paweł; Wanner, Thomas

    2016-11-01

    Phase separation mechanisms can produce a variety of complicated and intricate microstructures, which often can be difficult to characterize in a quantitative way. In recent years, a number of novel topological metrics for microstructures have been proposed, which measure essential connectivity information and are based on techniques from algebraic topology. Such metrics are inherently computable using computational homology, provided the microstructures are discretized using a thresholding process. However, while in many cases the thresholding is straightforward, noise and measurement errors can lead to misleading metric values. In such situations, persistence landscapes have been proposed as a natural topology metric. Common to all of these approaches is the enormous data reduction, which passes from complicated patterns to discrete information. It is therefore natural to wonder what type of information is actually retained by the topology. In the present paper, we demonstrate that averaged persistence landscapes can be used to recover central system information in the Cahn-Hilliard theory of phase separation. More precisely, we show that topological information of evolving microstructures alone suffices to accurately detect both concentration information and the actual decomposition stage of a data snapshot. Considering that persistent homology only measures discrete connectivity information, regardless of the size of the topological features, these results indicate that the system parameters in a phase separation process affect the topology considerably more than anticipated. We believe that the methods discussed in this paper could provide a valuable tool for relating experimental data to model simulations.

  20. Grain Refining and Microstructural Modification during Solidification.

    DTIC Science & Technology

    1984-10-01

    and 100 ml of distilled water (called etchant A) for 5 to 15 seconds. The others were etched with aqua regia (called etchant B) for 10 to 25 seconds... reverse lide It noceoav. aid IduntIty by block um-bet) Grain refining, microstructure, solidification, phase diagrams, electromagnetic stirring, Cu-Fe

  1. Effects of microstructural heterogeneity on BGA reliability

    SciTech Connect

    Neilsen, M.K.; Burchett, S.N.; Fang, H.E.; Vianco, P.T.

    1998-07-01

    The near eutectic 60Sn-40Pb alloy is the most commonly used solder for electrical interconnections in electronic packages. This alloy has a number of processing advantages (suitable melting point of 183 C and good wetting behavior). However, under conditions of cyclic strain and temperature (thermomechanical fatigue), the microstructure of this alloy undergoes a heterogeneous coarsening and failure process that makes the prediction of solder joint lifetime complex. A viscoplastic constitutive model for solder with an internal state variable that tracks microstructural evolution is currently under development. This constitutive model was implemented in to several finite element codes. With this computational capability, the thermomechanical response of solder interconnects, including microstructural evolution, can be predicted. This capability was applied to predict the thermomechanical response of a ball grid array (BGA) solder interconnect. BGAs with both homogeneous and heterogeneous initial microstructures were evaluated. In this paper, the constitutive model used to describe the solder will first be briefly discussed. The results of computational studies to determine the thermomechanical response of BGA solder interconnects will then be presented.

  2. Microstructure devices generation by selective laser melting

    NASA Astrophysics Data System (ADS)

    Brandner, Juergen J.; Hansjosten, Edgar; Anurjew, Eugen; Pfleging, Wilhelm; Schubert, Klaus

    2007-02-01

    Selective Laser Melting (SLM) is a generative manufacturing procedure mainly known for the application with metal powders. From these, metallic structures are produced in a layer-by-layer way. This layer-related procedure is comparable to the stereolithographic manufacturing of polymer devices. On a base plate, a thin layer of metal powder is spread. The powder is locally completely melted by the application of a focused laser beam. The base plate is then lowered by a value defined by the thickness of the metal layer, metal powder is spread again, and the local melting process is re-initiated. The complete procedure is continued as described, until the device is manufactured in the defined way. Commercially available metal powder can be used as base material. In principle, the SLM process should be suitable for the generation of metallic microstructures. The main precondition for the generation of microstructures by SLM is that the spatial resolution of the laser focus is small and precise enough to generate microstructure walls of around 100μm thickness in a reproducible way by melting metal powder. The walls should be gas- and leak-tight. In this publication, experimental results of the generation of metallic microstructure devices by SLM will be given. The process will be described in details. Process parameters for the generation of stainless steel devices having wall thicknesses in the range of about 100μm will be given. Examples for microstructure devices made by SLM will be shown. The devices can be manufactured in a reproducible way. Moreover, very first preliminary results on the use of ceramic powder as base material will be presented.

  3. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells.

    PubMed

    Koh, Won-Gun; Revzin, Alexander; Pishko, Michael V

    2002-04-02

    We present an easy and effective method for the encapsulation of cells inside PEG-based hydrogel microstructures fabricated using photolithography. High-density arrays of three-dimensional microstructures were created on substrates using this method. Mammalian cells were encapsulated in cylindrical hydrogel microstructures of 600 and 50 micrometers in diameter or in cubic hydrogel structures in microfluidic channels. Reducing lateral dimension of the individual hydrogel microstructure to 50 micrometers allowed us to isolate 1-3 cells per microstructure. Viability assays demonstrated that cells remained viable inside these hydrogels after encapsulation for up to 7 days.

  4. Recent advancements in optical microstructure fabrication through glass molding process

    NASA Astrophysics Data System (ADS)

    Zhou, Tianfeng; Liu, Xiaohua; Liang, Zhiqiang; Liu, Yang; Xie, Jiaqing; Wang, Xibin

    2017-02-01

    Optical microstructures are increasingly applied in several fields, such as optical systems, precision measurement, and microfluid chips. Microstructures include microgrooves, microprisms, and microlenses. This paper presents an overview of optical microstructure fabrication through glass molding and highlights the applications of optical microstructures in mold fabrication and glass molding. The glass-mold interface friction and adhesion are also discussed. Moreover, the latest advancements in glass molding technologies are detailed, including new mold materials and their fabrication methods, viscoelastic constitutive modeling of glass, and microstructure molding process, as well as ultrasonic vibrationassisted molding technology.

  5. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells

    NASA Technical Reports Server (NTRS)

    Koh, Won-Gun; Revzin, Alexander; Pishko, Michael V.

    2002-01-01

    We present an easy and effective method for the encapsulation of cells inside PEG-based hydrogel microstructures fabricated using photolithography. High-density arrays of three-dimensional microstructures were created on substrates using this method. Mammalian cells were encapsulated in cylindrical hydrogel microstructures of 600 and 50 micrometers in diameter or in cubic hydrogel structures in microfluidic channels. Reducing lateral dimension of the individual hydrogel microstructure to 50 micrometers allowed us to isolate 1-3 cells per microstructure. Viability assays demonstrated that cells remained viable inside these hydrogels after encapsulation for up to 7 days.

  6. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells

    NASA Technical Reports Server (NTRS)

    Koh, Won-Gun; Revzin, Alexander; Pishko, Michael V.

    2002-01-01

    We present an easy and effective method for the encapsulation of cells inside PEG-based hydrogel microstructures fabricated using photolithography. High-density arrays of three-dimensional microstructures were created on substrates using this method. Mammalian cells were encapsulated in cylindrical hydrogel microstructures of 600 and 50 micrometers in diameter or in cubic hydrogel structures in microfluidic channels. Reducing lateral dimension of the individual hydrogel microstructure to 50 micrometers allowed us to isolate 1-3 cells per microstructure. Viability assays demonstrated that cells remained viable inside these hydrogels after encapsulation for up to 7 days.

  7. Microstructured polymer optical fibers: progress and promise

    NASA Astrophysics Data System (ADS)

    Large, Maryanne C. J.; van Eijkelenborg, Martijn A.; Argyros, Alexander; Zagari, Joseph; Manos, Steven; Issa, Nader A.; Bassett, Ian M.; Fleming, Simon C.; McPhedran, Ross C.; de Sterke, Martijn; Nicorovici, Nicolae A. P.

    2002-03-01

    Microstructured optical fibres (MOFs) have aroused great interest in recent years because of their unusual optical properties. These include their ability to be effectively single moded over a very large range of wavelengths, tailorisable dispersion, high or low non-linearity(depending on the hole design) and large core single mode fibres. We have recently fabricated the first Microstructured Polymer Optical Fibres (MPOFs), which further extend the range of possibilities in MOFs. The properties of polymers can be tailored to specific applications (eg:made highly non-linear or having gain) in a way that is not possible in glass. Further, the large range of fabrication methods available in polymers, including casting and extrusion, mean that the structures that can be obtained are very difficult to make by capillary stacking- the method used in glass MOFs. Here we present the latest results from our group using MPOFs, including single mode fibre and Bragg fibres.

  8. Microstructure and cleavage in lath martensitic steels

    NASA Astrophysics Data System (ADS)

    Morris, John W., Jr.; Kinney, Chris; Pytlewski, Ken; Adachi, Y.

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  9. Metallographic techniques and microstructures: uranium alloys

    SciTech Connect

    Romig, A.D. Jr.

    1982-08-01

    The techniques used for the metallographic analysis of uranium and its alloys are discussed. Sample preparation and characterization procedures are described for: optical metallography, scanning electron microscopy, electron microprobe analysis, transmission electron microscopy, and scanning transmission electron microscopy. A brief overview of electron optics, electron/sample interactions, signal detectors, and x-ray microanalysis is presented. Typical uranium alloy microstructures observed by these techniques are presented and discussed. The microstructures examined include those produced by the diffusional decomposition of ..gamma..:U-0.75Ti and ..gamma..:U-6Nb, the martensitic decomposition of U-2Mo, U-6Nb, U-0.75Ti and Mulberry, and the aging of quenched U-2Mo.

  10. Microstructure and cleavage in lath martensitic steels.

    PubMed

    Morris, John W; Kinney, Chris; Pytlewski, Ken; Adachi, Y

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified 'classic' lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  11. Phase Transformations and Microstructural Evolution: Part II

    SciTech Connect

    Clarke, Amy Jean

    2015-10-30

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance. In this issue, aspects of liquid–solid and solid-state phase transformations and microstructural evolution are highlighted. Many papers in this issue are highlighted by this paper, giving a brief summary of what they bring to the scientific community.

  12. Phase Transformations and Microstructural Evolution: Part I

    SciTech Connect

    Clarke, Amy Jean

    2015-08-29

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance, including in extreme environments, of structural metal alloys. In this paper, aspects of phase transformations and microstructural evolution are highlighted from the atomic to the microscopic scale for ferrous and non-ferrous alloys. Many papers from this issue are highlighted with small summaries of their scientific achievements given.

  13. Phase Transformations and Microstructural Evolution: Part II

    DOE PAGES

    Clarke, Amy Jean

    2015-10-30

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance. In this issue, aspects of liquid–solid and solid-state phase transformations and microstructural evolution are highlighted. Many papers in thismore » issue are highlighted by this paper, giving a brief summary of what they bring to the scientific community.« less

  14. Phase Transformations and Microstructural Evolution: Part I

    DOE PAGES

    Clarke, Amy Jean

    2015-08-29

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance, including in extreme environments, of structural metal alloys. In this paper, aspects of phase transformations and microstructural evolution aremore » highlighted from the atomic to the microscopic scale for ferrous and non-ferrous alloys. Many papers from this issue are highlighted with small summaries of their scientific achievements given.« less

  15. Biomimetic mushroom-shaped fibrillar adhesive microstructure.

    PubMed

    Gorb, S; Varenberg, M; Peressadko, A; Tuma, J

    2007-04-22

    To improve the adhesive properties of artificial fibrillar contact structures, the attachment systems of beetles from the family Chrysomelidae were chosen to serve as a model. Biomimetic mushroom-shaped fibrillar adhesive microstructure inspired by these systems was characterized using a variety of measurement techniques and compared with a control flat surface made of the same material. Results revealed that pull-off force and peel strength of the structured specimens are more than twice those of the flat specimens. In contrast to the control system, the structured one is found to be very tolerant to contamination and able to recover its adhesive properties after being washed in a soap solution. Based on the combination of several geometrical principles found in biological attachment devices, the presented microstructure exhibits a considerable step towards the development of an industrial dry adhesive.

  16. Insomnia types and sleep microstructure dynamics.

    PubMed

    Chouvarda, I; Grassi, A; Mendez, M O; Bianchi, A M; Parrino, L; Milioli, G; Terzano, M; Maglaveras, N; Cerutti, S

    2013-01-01

    This work aims to investigate sleep microstructure as expressed by Cyclic Alternating Pattern (CAP), and its possible alterations in pathological sleep. Three groups, of 10 subjects each, are considered: a) normal sleep, b) psychophysiological insomnia, and c) sleep misperception. One night sleep PSG and sleep macro- micro structure annotations were available per subject. The statistical properties and the dynamics of CAP events are in focus. Multiscale and non-linear methods are presented for the analysis of the microstructure event time series, applied for each type of CAP events, and their combination. The results suggest that a) both types of insomnia present CAP differences from normal sleep related to hyperarousal, b) sleep misperception presents more extensive differences from normal, potentially reflecting multiple sleep mechanisms, c) there are differences between the two types of insomnia as regard to the intertwining of events of different subtypes. The analysis constitutes a contribution towards new markers for the quantitative characterization of insomnia, and its subtypes.

  17. Modeling of microstructural effects on electromigration failure

    SciTech Connect

    Ceric, H.; Orio, R. L. de; Zisser, W.; Selberherr, S.

    2014-06-19

    Current electromigration models used for simulation and analysis of interconnect reliability lack the appropriate description of metal microstructure and consequently have a very limited predictive capability. Therefore, the main objective of our work was obtaining more sophisticated electromigration tools. The problem is addressed through a combination of different levels of atomistic modeling and already available, continuum level macroscopic models. A novel method for an ab initio calculation of the effective valence for electromigration is presented and its application on the analysis of EM behavior is demonstrated. Additionally, a simple analytical model for the early electromigration lifetime is obtained. We have shown that its application provides a reasonable estimate for the early electromigration failures including the effect of microstructure. A simulation study is also applied on electromigration failure in tin solder bumps, where it contributed the understanding of the role of tin crystal anisotropy in the degradation mechanism of solder bumps.

  18. From random microstructures to representative volume elements

    NASA Astrophysics Data System (ADS)

    Zeman, J.; Šejnoha, M.

    2007-06-01

    A unified treatment of random microstructures proposed in this contribution opens the way to efficient solutions of large-scale real world problems. The paper introduces a notion of statistically equivalent periodic unit cell (SEPUC) that replaces in a computational step the actual complex geometries on an arbitrary scale. A SEPUC is constructed such that its morphology conforms with images of real microstructures. Here, the appreciated two-point probability function and the lineal path function are employed to classify, from the statistical point of view, the geometrical arrangement of various material systems. Examples of statistically equivalent unit cells constructed for a unidirectional fibre tow, a plain weave textile composite and an irregular-coursed masonry wall are given. A specific result promoting the applicability of the SEPUC as a tool for the derivation of homogenized effective properties that are subsequently used in an independent macroscopic analysis is also presented.

  19. Baseline Microstructural Characterization of Outer 3013 Containers

    SciTech Connect

    Zapp, Phillip E.; Dunn, Kerry A

    2005-07-31

    Three DOE Standard 3013 outer storage containers were examined to characterize the microstructure of the type 316L stainless steel material of construction. Two of the containers were closure-welded yielding production-quality outer 3013 containers; the third examined container was not closed. Optical metallography and Knoop microhardness measurements were performed to establish a baseline characterization that will support future destructive examinations of 3013 outer containers in the storage inventory. Metallography revealed the microstructural features typical of this austenitic stainless steel as it is formed and welded. The grains were equiaxed with evident annealing twins. Flow lines were prominent in the forming directions of the cylindrical body and flat lids and bottom caps. No adverse indications were seen. Microhardness values, although widely varying, were consistent with annealed austenitic stainless steel. The data gathered as part of this characterization will be used as a baseline for the destructive examination of 3013 containers removed from the storage inventory.

  20. Optimal Microstructures Drag Reducing Mechanism of Riblets

    NASA Astrophysics Data System (ADS)

    Friedmann, Elfriede; Richter, Thomas

    2011-09-01

    We consider an optimal shape design problem of periodically distributed three-dimensional microstructures on surfaces of swimming bodies in order to reduce their drag. Our model is restricted to the flow in the viscous sublayer of the boundary layer of a turbulent flow. The costs for the optimization problem are very high because the three-dimensional flow equations have to be solved several times. We avoid this problem by approximations: the microscopic optimization problem is reduced applying homogenization. Considering a special geometry (riblets) the resulting so-called macroscopic optimization problem can be additionally reduced to a two-dimensional problem. We analyze the drag reducing mechanism of riblets which are believed to be optimal structures. Therefore we perform direct simulations on the total rough channel for different shapes of microstructures: riblets and fully three-dimensional structures.

  1. Microstructural description of shear-thickening suspensions

    NASA Astrophysics Data System (ADS)

    Singh, Abhinendra; Morris, Jeffrey F.; Denn, Morton M.

    2017-06-01

    Dynamic particle-scale numerical simulations are used to study the variation of microstructure with shear stress during shear thickening in dense non-Brownian suspensions. The microscale information is used to characterize the differences between the shear thickened (frictional) and non-thickened (lubricated, frictionless) states. Here, we focus on the force and contact networks and study the evolution of associated anisotropies with increase in shear stress. The force and contact networks are both more isotropic in the shear-thickened state than in non-thickened state. We also find that both force and structural anisotropies are rate independent for both low and high stress, while they are rate (or stress) dependent for the intermediate stress range where the shear thickening occurs. This behavior is similar to the evolution of viscosity with increasing stress, showing a clear correlation between the microstructure and the macroscopic rheology.

  2. Microstructural characterisation of nuclear grade graphite

    NASA Astrophysics Data System (ADS)

    Jones, A. N.; Hall, G. N.; Joyce, M.; Hodgkins, A.; Wen, K.; Marrow, T. J.; Marsden, B. J.

    2008-10-01

    Field emission and transmission electron microscopy are used to characterise the microstructure and morphology of baked carbon block and graphitized grades (from the same carbon block stock) of nuclear graphite. Quantitative analysis using Raman and energy dispersive spectroscopy (EDS) were used to investigate the decrease of crystallinity with graphitization and sample purity. Both baked carbon and graphitized nuclear graphites show no sensitivity of the Raman band shift to strain, consistent with strain accommodation by the porous structure.

  3. Temperature history and microstructure of alumina

    SciTech Connect

    Lin, Jiang Tsair.

    1992-05-01

    A simple process for the attainment of fully dense and improved microstructure for Al{sub 2}O{sub 3} ceramics has been developed. Pure, narrow size distribution, submicron powder is used. Homogenization heat treatment of Al{sub 2}O{sub 3} powder compacts at 800{degree}C for 50 hours produces more uniform pore structure and higher green strength. Pore size distribution becomes narrower. Near fully dense, fine-grained (< 1.2{mu}m) and uniform grain size-distribution, undoped Al{sub 2}O{sub 3} ceramics can be produced using a high quality powder, a high-pressure cold isostatic forming method, and a two-step sintering technique. Improvements in the microstructure of Al{sub 2}O{sub 3} ceramics homogenized at 800{degree}C/50 h include a smaller pore size and a more uniform pore size distribution. Prevention of differential densification in the early stages and delay of pore channel closure to the later stages of sintering are believed to be the primary mechanisms for the microstructure improvement in two-step sintering. Two-step sintering is an alternate way to improve the microstructure of Al{sub 2}O{sub 3} ceramics compared to fast firing or MgO doping. When a homogenization heat treatment and the fast firing are combined, the final density is higher than from fast firing alone. However, the two-step sintering technique is simple and there is no size limit. Generalization of two-step sintering to more systems is needed. For 250 ppM MgO-doped Al{sub 2}O{sub 3} ceramics, homogenization of powder compacts at 800{degree}C for 50 hours produces 0.80{mu}m. This improvement is explained by the distribution of MgO becoming more uniform during the homogenization heat treatment, which enhances the effectiveness of MgO doping.

  4. Rolling Spheres on Bioinspired Microstructured Surfaces.

    PubMed

    Ryu, Brian K; Dhong, Charles; Fréchette, Joëlle

    2017-01-10

    Microstructured surfaces, such as those inspired by nature, mediate surface interactions and are actively sought after to control wetting, adhesion, and friction. In particular, the rolling motion of spheres on microstructured surfaces in fluid environments is important for the transport of particles in microfluidic devices or in tribology. Here, we characterize the motion of smooth silicon nitride spheres (diameters 3-5 mm) as they roll down inclined planes decorated with hexagonal arrays of microwells and micropillars. For both types of patterned surfaces, we vary the area fraction of the micropatterned features from 0.04 to 0.96. We measure directly and independently the rotational and translational velocities of the spheres as they roll down planes with inclination angles that vary between 5 and 30°. For a given area fraction, we find that spheres have a higher translational and rotational velocity on surfaces with microwells than on micropillars. We rely on the model of Smart and Leighton [Phys. Fluids A 5, 13 (1993)] to obtain an effective gap width and coefficient of friction for all microstructured surfaces investigated. We find that the coefficient of friction is significantly higher for a surface with micropillars than that for one with microwells, likely due to the presence of interconnected drainage channels that provide additional paths for the fluid flow and favor solid-solid contact on the surface with micropillars. We find that while the effective gap width at a very low solid fraction is equal to the height of the patterned features, the effective separation decreases exponentially as the surface coverage of microstructures increases, with little measured differences between the two geometries. Superposition of resistance functions is used to relate the rapid decrease in the effective gap height with increase in the surface coverage observed in experiments.

  5. Optical properties of microstructure tellurite glass fibres

    SciTech Connect

    Gaponov, D A; Biryukov, A S

    2006-04-30

    The dispersion characteristics and waveguide optical losses are calculated by the multipole method for microstructure optical fibres with a continuous core, which can be made of a tellurite glass holding much promise for fibre optics. The effect of geometrical parameters on the optical properties is studied and conditions for the single-mode propagation of radiation in such fibres are determined. (optical fibres and waveguides)

  6. Characterization of the Microstructures of Various Materials.

    DTIC Science & Technology

    1984-04-01

    has been reviewed and is approved for publication. CHARLES R. UNDERWOOD Manager, Characterization Facility Structural Metals Branch Metals & Ceramics...Division FOR THE COMMANDER GAIL E. EICHELMAN Chief, Structural Metals Branch Metals & Ceramics Division "If your address has changed, if you wish to...number) Research on characterization of microstructures of alloys and non- metallic materials is summarized. The emphasis was on improvements in the

  7. Self-modulational formation of pulsar microstructures

    NASA Technical Reports Server (NTRS)

    Chian, A. C.-L.; Kennel, C. F.

    1987-01-01

    A nonlinear plasma theory for self modulation of pulsar radio pulses is discussed. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron positron plasma. The nonlinearities arising from wave intensity induced particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary waveforms may account for the formation of pulsar microstructures.

  8. A simple microstructure return model explaining microstructure noise and Epps effects

    NASA Astrophysics Data System (ADS)

    Saichev, A.; Sornette, D.

    2014-01-01

    We present a novel simple microstructure model of financial returns that combines (i) the well-known ARFIMA process applied to tick-by-tick returns, (ii) the bid-ask bounce effect, (iii) the fat tail structure of the distribution of returns and (iv) the non-Poissonian statistics of inter-trade intervals. This model allows us to explain both qualitatively and quantitatively important stylized facts observed in the statistics of both microstructure and macrostructure returns, including the short-ranged correlation of returns, the long-ranged correlations of absolute returns, the microstructure noise and Epps effects. According to the microstructure noise effect, volatility is a decreasing function of the time-scale used to estimate it. The Epps effect states that cross correlations between asset returns are increasing functions of the time-scale at which the returns are estimated. The microstructure noise is explained as the result of the negative return correlations inherent in the definition of the bid-ask bounce component (ii). In the presence of a genuine correlation between the returns of two assets, the Epps effect is due to an average statistical overlap of the momentum of the returns of the two assets defined over a finite time-scale in the presence of the long memory process (i).

  9. Hybrid Approach for PEMFC Electrode Microstructural Analysis

    SciTech Connect

    Cetinbas, Firat C.; Ahluwalia, Rajesh K.; Kariuki, Nancy; De Andrade, Vincent; Sharman, Jonathan; Ferreira, Paulo J.; Rasouli, S; Myers, Deborah J.

    2017-01-01

    The cost and performance of proton exchange membrane fuel cells strongly depend on the cathode electrode due to usage of expensive platinum (Pt) group metal catalyst and sluggish reaction kinetics. Development of low Pt content high performance cathodes requires comprehensive understanding of the electrode microstructure. In this study, a new approach is presented to characterize the detailed cathode electrode microstructure from nm to μm length scales by combining information from different experimental techniques. In this context, nano-scale X-ray computed tomography (nano-CT) is performed to extract the secondary pore space of the electrode. Transmission electron microscopy (TEM) is employed to determine primary C particle and Pt particle size distributions. X-ray scattering, with its ability to provide size distributions of orders of magnitude more particles than TEM, is used to confirm the TEM-determined size distributions. The number of primary pores that cannot be resolved by nano-CT is approximated using mercury intrusion porosimetry. An algorithm is developed to incorporate all these experimental data in one geometric representation. Upon validation of pore size distribution against gas adsorption and mercury intrusion porosimetry data, reconstructed ionomer size distribution is reported. In addition, transport related characteristics and effective properties are computed by performing simulations on the hybrid microstructure.

  10. Microstructural characteristics of planar granular solids

    NASA Astrophysics Data System (ADS)

    Matsushima, Takashi; Blumenfeld, Raphael

    2013-06-01

    The microstructure of granular materials is the main factor determining their macroscopic behaviour. We study systematically the statistical characteristics of volume elements (called quadrons) of microstructures of mono-and polydisperse planar disc packs granular and report a number of new results. The packs analysed were of different intergranular friction coefficients, μ, contained about 20,000 discs each and were brought to mechanical equilibrium under identical isotropic compression stresses from three different initial states: loose, intermediate and dense. Our findings are the following. (i) The rattlers volume fraction φr is not affected by the disc size distribution (DSD). (ii) Excluding the rattlers, we find that the relation between the packing fraction φ' and the mean coordination number ¯z is independent of the initial state. Together with result (i), this allows us to separate the effects of the DSD and the initial state on the microstructure. (iii) We relate analytically ¯z, φ' and the (normalised) mean quadron volume ¯ν'. (iv) Combining (iii) and a relation between ¯z and the mean cell order, ē, derived from Euler's topological relation, we show that (ii) is a result of the geometrical relation between ¯ν' and ē. (v) The probability density function of the quadron volumes, normalised by ¯ν', is universal for all the studied systems and it can be fit reasonably well by a Γ distribution.

  11. Fouling in microstructured devices: a review.

    PubMed

    Schoenitz, M; Grundemann, L; Augustin, W; Scholl, S

    2015-05-14

    Microstructured devices are widely used for manufacturing products that benefit from process intensification, with pharmaceutical products or specialties of the chemical industry being prime examples. These devices are ideally used for processing pure fluids. Where particulate or non-pure flows are involved, processes are treated with utmost caution since related fouling and blocking issues present the greatest barrier to operating microstructured devices effectively. Micro process engineering is a relatively new research field and there is limited understanding of fouling in these dimensions and its underlying processes and phenomena. A comprehensive review on fouling in microstructured devices would be helpful in this regard, but is currently lacking. This paper attempts to review recent developments of fouling in micro dimensions for all fouling categories (crystallization, particulate, chemical reaction, corrosion and biological growth fouling) and the sequential events involved (initiation, transport, attachment, removal and aging). Compared to fouling in macro dimensions, an additional sixth category is suggested: clogging by gas bubbles. Most of the reviewed papers present very specific fouling investigations making it difficult to derive general rules and parameter dependencies, and comparative or critical considerations of the studies were difficult. We therefore used a statistical approach to evaluate the research in the field of fouling in microchannels.

  12. Microstructural studies of advanced austenitic steels

    SciTech Connect

    Todd, J. A.; Ren, Jyh-Ching

    1989-11-15

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  13. Nonlinear optical effects in organic microstructures

    NASA Astrophysics Data System (ADS)

    Novikov, Vladimir B.; Mamonov, Evgeniy A.; Kopylov, Denis A.; Mitetelo, Nikolai V.; Venkatakrishnarao, D.; Narayana, YSLV; Chandrasekar, R.; Murzina, Tatiana V.

    2017-05-01

    Organic microstructures attract much attention due to their unique properties originating from the design of their shape and optical parameters. In this work we discuss the linear, second- and third-order nonlinear optical effects in arrays and in individual organic microstructures composed by self-assembling technique and formed randomly on top of a solid substrate. The structures under study consist of micro-spheres, -hemispheres or -frustums made of red laser dye and reveal an intense fluorescence (FL) in the visible spectral range. Importantly, that due to a high value of the refractive index and confined geometry, such micro-structures support the excitation of whispering gallery modes (WGM), which brings about strong and spectrally-selected light localization. We show that an amplification of the nonlinear optical effects is observed for these structures as compared to a homogeneous dye film of similar composition. The obtained data are in agreement with the results of the FDTD calculations performed for the structures of different dimensions. Perspectives of application of such type of organic nonlinear microresonators in optical devices are discussed.

  14. From Microstructures to Predict Properties of Materials

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Gang

    2010-03-01

    Understanding the precise and fundamental manner in which materials structures (nanostructures or microstructures) and their evolution influences properties and service lifetimes of advanced materials profoundly impacts material design and today materials design plays an increasingly important rôle in many engineering applications. Linking structures to properties and predicting properties of materials is fundamental step for materials design. First, a framework of applications of multiscale modeling to property prediction of advanced materials will be briefly presented. As an example, a methodology will be shown to link micro-scale to the continuum scale, integrating microstructure modeling with the large Thermo-Calc^ database. This paradigm was successfully applied to the case of Fe-12Ni-6Mn maraging steel. Next, methodology for integrating first-principle calculation into simulations of microstructure evolution will be reviewed. Our methods are sufficiently reliable to permit control and fabrication of quantum-dots structures, nanocrystals, and particle-reinforced nanocomposites, as well as assist in the predictive behavior of macro-scale colloids, aerosols, and other soft matter systems.

  15. Damage Tolerant Microstructures for Shock Environments

    NASA Astrophysics Data System (ADS)

    Cerreta, Ellen; Dennis-Koller, Darcie; Escobedo, Juan Pablo; Fensin, Saryu; Valone, Steve; Trujillo, Carl; Bronkhorst, Curt; Lebensohn, Ricardo

    While dynamic failure, due to shock loading, has been studied for many years, our current ability to predict and simulate evolving damage during dynamic loading remains limited. One reason for this is due to the lack of understanding for the linkages between process-induced as well as evolved microstructure and damage. To this end, the role of microstructure on the early stages of dynamic damage has been studied in high purity Ta and Cu. This work, which utilizes plate-impact experiments to interrogate these effects, has recently been extended to a subset to Cu-alloys (Cu-Pb, Cu-Nb, and Cu-Ag). These multi-length scale studies, have identified a number of linkages between damage nucleation and growth and microstructural features such as: grain boundary types, grain boundary orientation with respect to loading direction, grain orientation, and bi-metal interfaces. A combination of modeling and simulation techniques along with experimental observation has been utilized to examine the mechanisms for the ductile damage processes such as nucleation, growth and coalescence. This work has identified differing features of importance for damage nucleation in high purity and alloyed materials, lending insight into features of concern for mitigating shock induced damage in more complicated alloy systems.

  16. Microstructure of Horseshoe Nails Using Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Goossens, D. J.; Studer, A. J.; Stachurski, Z. H.

    2010-04-01

    Neutron diffraction allows nondestructive testing of the bulk microstructure of mechanical components. The microstructures of horseshoe nails made through three different processes have been explored as a function of position along the nail. Despite all nails being made of similar plain low-carbon steel and being process annealed after manufacture, the microstructures are far from the same. Nails made from strip, using a cold forging stamping process, show narrower diffraction peaks indicating a narrower distribution of lattice parameters and also show diffraction peak intensity ratios closer to those expected for unstrained steel. Thus, the distribution of the orientation of grains in these nails is closer to that of undistorted steel compared to nails made through the other two processes considered—one a drawing from wire and the other a combination of rolling and cold forging. The blades of the drawn nails showed little preferred orientation but the converse was true in the heads. Differing patterns of preferred orientation suggest that the various manufacturing approaches result in substantially different mechanical advantages for the three types of nails, a result in accord with mechanical testing.

  17. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology

  18. Microcontact printing of proteins inside microstructures.

    PubMed

    Foley, Jennifer; Schmid, Heinz; Stutz, Richard; Delamarche, Emmanuel

    2005-11-22

    Microfluidic devices are well suited for the miniaturization of biological assays, in particular when only small volumes of samples and reagents are available, short time to results is desirable, and multiple analytes are to be detected. Microfluidic networks (MFNs), which fill by means of capillary forces, have already been used to detect important biological analytes with high sensitivity and in a combinatorial fashion. These MFNs were coated with Au, onto which a hydrophilic, protein-repellent monolayer of thiolated poly(ethyleneglycol) (HS-PEG) was self-assembled, and the binding sites for analytes were present on a poly(dimethylsiloxane) (PDMS) sealing cover. We report here a set of simple methods to extend previous work on MFNs by integrating binding sites for analytes inside the microstructures of MFNs using microcontact printing (muCP). First, fluorescently labeled antibodies (Abs) were microcontact-printed from stamps onto planar model surfaces such as glass, Si, Si/SiO2, Au, and Au derivatized with HS-PEG to investigate how much candidate materials for MFNs would quench the fluorescence of printed, labeled Abs. Au coated with HS-PEG led to a fluorescence signal that was approximately 65% weaker than that of glass but provided a convenient surface for printing Abs and for rendering the microstructures of the MFNs wettable. Then, proteins were inked from solution onto the surface of PDMS (Sylgard 184) stamps having continuous or discontinuous micropatterns or locally inked onto planar stamps to investigate how the aspect ratio (depth:width) of microstructures and the printing conditions affected the transfer of protein and the accuracy of the resulting patterns. By applying a controlled pressure to the back of the stamp, Abs were accurately microcontact-printed into the recessed regions of MFNs if the aspect ratio of the MFN microstructures was lower than approximately 1:6. Finally, the realization of a simple assay between Abs (used as antigens

  19. Microstructural and continuum evolution modeling of sintering.

    SciTech Connect

    Braginsky, Michael V.; Olevsky, Eugene A.; Johnson, D. Lynn; Tikare, Veena; Garino, Terry J.; Arguello, Jose Guadalupe, Jr.

    2003-12-01

    All ceramics and powder metals, including the ceramics components that Sandia uses in critical weapons components such as PZT voltage bars and current stacks, multi-layer ceramic MET's, ahmindmolybdenum & alumina cermets, and ZnO varistors, are manufactured by sintering. Sintering is a critical, possibly the most important, processing step during manufacturing of ceramics. The microstructural evolution, the macroscopic shrinkage, and shape distortions during sintering will control the engineering performance of the resulting ceramic component. Yet, modeling and prediction of sintering behavior is in its infancy, lagging far behind the other manufacturing models, such as powder synthesis and powder compaction models, and behind models that predict engineering properties and reliability. In this project, we developed a model that was capable of simulating microstructural evolution during sintering, providing constitutive equations for macroscale simulation of shrinkage and distortion during sintering. And we developed macroscale sintering simulation capability in JAS3D. The mesoscale model can simulate microstructural evolution in a complex powder compact of hundreds or even thousands of particles of arbitrary shape and size by 1. curvature-driven grain growth, 2. pore migration and coalescence by surface diffusion, 3. vacancy formation, grain boundary diffusion and annihilation. This model was validated by comparing predictions of the simulation to analytical predictions for simple geometries. The model was then used to simulate sintering in complex powder compacts. Sintering stress and materials viscous module were obtained from the simulations. These constitutive equations were then used by macroscopic simulations for simulating shrinkage and shape changes in FEM simulations. The continuum theory of sintering embodied in the constitutive description of Skorohod and Olevsky was combined with results from microstructure evolution simulations to model shrinkage and

  20. Towards predicting weld metal microstructure from fundamentals of transport phenomena

    SciTech Connect

    Mundra, K.; DebRoy, T.; Babu, S.S.; David, S.A.; Paul, A.J.

    1995-06-01

    Heat transfer and fluid flow during manual metal arc welding Of low alloy steels were investigated by solving the equations of conservation of mass, momentum and energy in three dimensions. Calculated cooling rates were coupled with an existing phase transformation model to predict the microstructure in low alloy steel welds. The computed results were found to be in good agreement with experimentally observed microstructures. The agreement indicates significant promise for predicting spatial distribution of weld metal microstructure from the fundamentals of transport phenomena.

  1. Microstructures and properties of aluminum die casting alloys

    SciTech Connect

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  2. Influence of blend microstructure on bulk heterojunction organic photovoltaic performance.

    PubMed

    Brabec, Christoph J; Heeney, Martin; McCulloch, Iain; Nelson, Jenny

    2011-03-01

    The performance of organic photovoltaic devices based upon bulk heterojunction blends of donor and acceptor materials has been shown to be highly dependent on the thin film microstructure. In this tutorial review, we discuss the factors responsible for influencing blend microstructure and how these affect device performance. In particular we discuss how various molecular design approaches can affect the thin film morphology of both the donor and acceptor components, as well as their blend microstructure. We further examine the influence of polymer molecular weight and blend composition upon device performance, and discuss how a variety of processing techniques can be used to control the blend microstructure, leading to improvements in solar cell efficiencies.

  3. Relationships between microstructure and microfissuring in alloy 718

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.

    1985-01-01

    Microfissures which occur in the weld heat affected zone of alloy 718 can be a limiting factor in the material's weldability. Several studies have attempted to relate microfissuring susceptibility to processing conditions, microstructure, and/or heat-to-heat chemistry differences. The present investigation studies the relationships between microstructure and microfissuring by isolating a particular microstructural feature and measuring microfissuring as a function of that feature. Results to date include the identification of a microstructure-microfissure sequence, microfissuring susceptibility as a function of grain size, and microfissuring susceptibility as a function of solution annealing time.

  4. Liquid-filled hollow core microstructured polymer optical fiber.

    PubMed

    Cox, F M; Argyros, A; Large, M C J

    2006-05-01

    Guidance in a liquid core is possible with microstructured optical fibers, opening up many possibilities for chemical and biochemical fiber-optic sensing. In this work we demonstrate how the bandgaps of a hollow core microstructured polymer optical fiber scale with the refractive index of liquid introduced into the holes of the microstructure. Such a fiber is then filled with an aqueous solution of (-)-fructose, and the resulting optical rotation measured. Hence, we show that hollow core microstructured polymer optical fibers can be used for sensing, whilst also fabricating a chiral optical fiber based on material chirality, which has many applications in its own right.

  5. Microstructural influences on the mechanical properties of solder

    SciTech Connect

    Morris, J.W. Jr.; Goldstein, J.L.F.; Mei, Z.

    1993-04-01

    Intent of this book is to review analytic methods for predicting behavior of solder joints, based on continuum mechanics. The solder is treated as a continuous, homogeneous body, or composite of such bodies, whose mechanical behavior is uniform and governed by simple constitutive equations. The microstructure of a solder joint influences its mechanical properties in 3 ways: it governs deformation and failure; common solders deform inhomogeneously; and common solders are microstructurally unstable. The variety of microstructures often found in solder joints are briefly reviewed, and some of the ways are discussed in which the microstructure influences the common types of high-temperature mechanical behavior. 25 figs, 40 refs.

  6. A kinematic unifying theory of microstructures in subglacial tills

    NASA Astrophysics Data System (ADS)

    Menzies, J.; van der Meer, J. J. M.; Ravier, E.

    2016-10-01

    A key aspect of all subglacial tills is the nature and form of microstructures present. Microstructures are symptomatic of repeated deformation phases prior to, during, and after emplacement. Critical to understanding microstructures in subglacial tills are the probable interrelationship that exists between all of these structures. In analyzing subglacial tills a kinematic deformation relationship can be observed existing between all microstructures. Based upon the rheological conditions at the ice basal interface, a close evolving paleo-strain link can be established that relates levels of deformation to all subglacial till microstructures. As subglacial till undergoes strain during transport and emplacement involving fluctuating conditions of porewater content, percentage of clays present, and changing thermal circumstances, a series of microstructures sequentially evolve. Initially, brittle edge-to-edge grain events occur, followed by grains stack development, often allied closely in time, with microshear formation as the sediment deforms, and is consequently followed by the development of ductile rotation structures. Likewise, deformation bands, shear zone formation, and typically "isolated" domains form. As strain and other factors vary over time so many of these microstructures may be obliterated, altered, or re-oriented. Much remains to be understood regarding paleo-strain conditions and subglacial deformation but a first step has been establishing this temporal sequence of microstructure stage development and thus achieving a theory that unifies these disparate microstructures observed in all subglacial tills.

  7. Supersoft lithography: candy-based fabrication of soft silicone microstructures.

    PubMed

    Moraes, Christopher; Labuz, Joseph M; Shao, Yue; Fu, Jianping; Takayama, Shuichi

    2015-01-01

    We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based 'hard candy' recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues.

  8. Supersoft lithography: Candy-based fabrication of soft silicone microstructures

    PubMed Central

    Moraes, Christopher; Labuz, Joseph M.; Shao, Yue; Fu, Jianping; Takayama, Shuichi

    2015-01-01

    We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based ‘hard candy’ recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues. PMID:26245893

  9. Numerical Simulations of One-dimensional Microstructure Dynamics

    SciTech Connect

    Berezovski, M.; Berezovski, A.; Engelbrecht, J.

    2010-05-21

    Results of numerical simulations of one-dimensional wave propagation in microstructured solids are presented and compared with the corresponding results of wave propagation in given layered media. A linear microstructure model based on Mindlin theory is adopted and represented in the framework of the internal variable theory. Fully coupled systems of equations for macro-motion and microstructure evolution are rewritten in the form of conservation laws. A modification of wave propagation algorithm is used for numerical calculations. It is shown how the initial microstructure model can be improved in order to match the results obtained by both approaches.

  10. Nitinol Fatigue: A Review of Microstructures and Mechanisms

    NASA Astrophysics Data System (ADS)

    Pelton, A. R.

    2011-07-01

    Microstructural analyses of thermal or mechanical fatigued Nitinol show remarkable similarities and are characterized by an increase in dislocation density with increasing number of cycles. Dislocation bands, which are thought to be due to the effects of moving martensite interfaces, align with the martensite lattice invariant plane. These microstructural effects result in modification of transformation temperatures, strain (under stress-control) and stress (under strain-control). Processing has a major effect on fatigue properties, whereby optimized thermomechanically treated microstructures provide more stable (and predictable) behavior than the annealed microstructures.

  11. Anisotropic microstructured poly(vinyl alcohol) tissue-mimicking phantoms.

    PubMed

    Dawson, Andrew; Harris, Paul; Gouws, Gideon

    2010-07-01

    Novel microstructured PVA phantoms mimicking fibrous tissues have been developed using a simple freeze-casting process. Scanning electron micrographs reveal highly anisotropic microstructure with dimensions of the order of 5 to 100 microm. Characterization of an example phantom revealed acoustic properties consistent with those found in fibrous tissues. At 20 MHz, the velocity measured parallel to the microstructure orientation of 1555 ms(-1) was significantly greater than that perpendicular to the microstructure of 1537 ms(-1). The attenuation coefficient was measured to be 5 dBxmm(-1) and proportional to the 1.6 power of frequency, which is in good agreement with that for normal human myocardium.

  12. The effect of microstructure on abrasive wear of steel

    NASA Astrophysics Data System (ADS)

    Kešner, A.; Chotëborský, R.; Linda, M.

    2017-09-01

    Abrasive wear of agricultural tools is one of the biggest problems in currently being. The amount of abrasive wear, depending on the microstructure, has been investigated in this work. Steels 25CrMo4 and 51CrV4 were used in this work to determine the effect of the microstructure on the abrasive wear. These steels are commonly used for components that have to withstand abrasive wear.SEM analysis was used to detect the microstructure. The standardized ASTM G65 method was used to compare the abrasive wear of steels. The results show that the abrasive wear depends on the microstructure of steels.

  13. Microstructural evolution of neutron irradiated 3C-SiC

    DOE PAGES

    Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric; ...

    2017-03-18

    The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.

  14. Multi-scale Microstructure Characterization for Improved Understanding of Microstructure-Property Relationship in Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Song, Hye Yun

    Additive manufacturing (AM) is the process for making 3-D objects by adding materials layer by layer. It can result in a marked reduction of the time and cost associated with designing and producing highly complex parts. Over the past decade, significant progress has been made in machine hardware and control software for process development to achieve dimensional accuracy and mitigate defects. On the other hand, the knowledge on microstructure-property relationship in the additively manufactured builds is still being established. In additive manufacturing, the interactions between the heat source and the material lead to a series of physical phenomena including localized heating, melting, solidification and micro-segregation, and cooling. Far-from-equilibrium microstructure can form as the material experiences a large number of repeated, rapid heating and cooling cycles (i.e. temperature gyrations) during depositions. The mechanical properties of additively manufactured parts are significantly influenced by their final microstructure. The overarching goal of the present research is to improve the fundamental understanding of microstructure-property relationship for AM parts. Specially, it is investigated the high-temperature creep strength of InconelRTM 718 (abbreviated as IN718 thereafter) fabricated by laser-powder bed fusion (L-PBF) AM. The specific objectives include (1) effect of support on the local microstructure, (2) microstructure evolution during post-built heat treatment, and (3) creep strength. Detailed microstructure characterization is performed using a multitude of tools including micro-hardness mapping, scanning electron microscope (SEM) along with electron backscatter diffraction (EBSD), and transmission electron microscope (TEM) for selected area diffraction (SAD) analysis and energy-dispersive X-ray spectroscopy (EDS). The characterized microstructure is correlated to the mechanical properties. Highlights of the research findings are discussed in

  15. Third Generation of AHSS: Microstructure Design Concepts

    NASA Astrophysics Data System (ADS)

    Matlock, David K.; Speer, John G.

    In recent years there has been an increased emphasis on the development of new advanced high strength sheet steels (AHSS), particularly for automotive applications. Descriptive terminology has evolved to describe the “First Generation” of AHSS, i.e. steels that possess primarily ferrite-based microstructures, and the “Second Generation” of AHSS, i.e. austenitic steels with high manganese contents which include steels that are closely related to austenitic stainless steels. First generation AHSS have been referred to by a variety of names including dual phase (DP), transformation induced plasticity (TRIP), complex-phase (CP), and martensitic (MART). Second generation austenitic AHSS include twinninginduced plasticity (TWIP) steels, Al-added lightweight steels with induced plasticity (L-IP®), and shear band strengthened steels (SIP steels). Recently there has been increased interest in the development of the “Third Generation” of AHSS, i.e. steels with strength-ductility combinations significantly better than exhibited by the first generation AHSS but at a cost significantly less than required for second generation AHSS. Approaches to the development of third generation AHSS will require unique alloy/microstructure combinations to achieve the desired properties. Results from a recent composite modeling analysis have shown that the third generation of AHSS will include materials with complex microstructures consisting of a high strength phase (e.g. ultra-fine grained ferrite, martensite, or bainite) and significant amounts of a constituent with substantial ductility and work hardening (e.g. austenite). In this paper, design methodologies based on considerations of fundamental strengthening mechanisms are presented and evaluated to assess the potential for developing new materials. Several processing routes will be assessed, including the recently identified Quenching & Partitioning (Q&P) process developed in the authors’ own laboratory.

  16. Ultrasonic characterization of human trabecular bone microstructure.

    PubMed

    Hakulinen, Mikko A; Day, Judd S; Töyräs, Juha; Weinans, Harrie; Jurvelin, Jukka S

    2006-03-21

    New quantitative ultrasound (QUS) techniques involving ultrasound backscattering have been introduced for the assessment of bone quality. QUS parameters are affected by the transducer characteristics, e.g. frequency range, wave and pulse length. Although frequency-dependent backscattering has been studied extensively, understanding of the ultrasound scattering phenomenon in trabecular bone is still limited. In the present study, the relationships between QUS parameters and the microstructure of human trabecular bone were investigated experimentally and by using numerical simulations. Speed of sound (SOS), normalized broadband ultrasound attenuation (nBUA), average attenuation, integrated reflection coefficient (IRC) and broadband ultrasound backscatter (BUB) were measured for 26 human trabecular bone cylinders. Subsequently, a high-resolution microCT system was used to determine the microstructural parameters. Moreover, based on the sample-specific microCT data, a numerical model for ultrasound propagation was developed for the simulation of experimental measurements. Experimentally, significant relationships between the QUS parameters and microstructural parameters were demonstrated. The relationships were dependent on the frequency, and the strongest association (r = 0.88) between SOS and structural parameters was observed at a centre frequency of 5 MHz. nBUA, average attenuation, IRC and BUB showed somewhat lower linear correlations with the structural properties at a centre frequency of 5 MHz, as compared to those determined at lower frequencies. Multiple regression analyses revealed that the variation of acoustic parameters could best be explained by parameters reflecting the amount of mineralized tissue. A principal component analysis demonstrated that the strongest determinants of BUB and IRC were related to the trabecular structure. However, other structural characteristics contributed significantly to the prediction of the acoustic parameters as well. The

  17. Microstructural Characterization of Nodular Ductile Iron

    SciTech Connect

    Springer, H K

    2012-01-03

    The objective of this study is to quantify the graphite particle phase in nodular ductile iron (NDI). This study provides the basis for initializing microstructure in direct numerical simulations, as part of developing microstructure-fracture response models. The work presented here is a subset of a PhD dissertation on spall fracture in NDI. NDI is an ideal material for studying the influence of microstructure on ductile fracture because it contains a readily identifiable second-phase particle population, embedded in a ductile metallic matrix, which serves as primary void nucleation sites. Nucleated voids grow and coalesce under continued tensile loading, as part of the micromechanisms of ductile fracture, and lead to macroscopic failure. For this study, we used 2D optical microscopy and quantitative metallography relationships to characterize the volume fraction, size distribution, nearest-neighbor distance, and other higher-order metrics of the graphite particle phase. We found that the volume fraction was {Phi} = 0.115, the average particle diameter was d{sub avg} = 25.9 {mu}m, the Weibull shape and scaling parameters were {beta} = 1.8 and {eta} = 29.1 {mu}m, respectively, the (first) nearest neighbor distance was L{sub nn} = 32.4 {mu}m, the exponential coefficients for volume fraction fluctuations was A{sub {Phi}} = 1.89 and B{sub {Phi}} = -0.59, respectively. Based on reaching a coefficient-of-variation (COV) of 0.01, the representative volume element (RVE) size was determined to be 8.9L{sub nn} (288 {mu}m).

  18. Dendritic microstructure in argon atomized superalloy powders

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Kumar, Mahundra

    1986-01-01

    The dendritic microstructure of atomized nickel base superalloy powders (Ni-20 pct Cr, NIMONIC-80A, ASTROALOY, and ZHS6-K) was studied. Prealloyed vacuum induction melted ingots were argon-atomized, the powders were cooled to room temperature, and various powder-size fractions were examined by optical metallography. Linear correlations were obtained for the powder size dependence of the secondary dendrite arm spacing, following the expected d-alpha (R) to the m power dependence on the particle size for all four superalloy compositions. However, the Ni-20 pct Cr alloy, which had much coarser arm spacing as compared to the other three alloys, had a much larger value of m.

  19. 248nm silicon photoablation: Microstructuring basics

    SciTech Connect

    Poopalan, P.; Najamudin, S. H.; Wahab, Y.; Mazalan, M.

    2015-05-15

    248nm pulses from a KrF excimer laser was used to ablate a Si wafer in order to ascertain the laser pulse and energy effects for use as a microstructuring tool for MEMS fabrication. The laser pulses were varied between two different energy levels of 8mJ and 4mJ while the number of pulses for ablation was varied. The corresponding ablated depths were found to range between 11 µm and 49 µm, depending on the demagnified beam fluence.

  20. Silicon vertical microstructure fabrication by catalytic etching

    NASA Astrophysics Data System (ADS)

    Huang, Mao-Jung; Yang, Chii-Rong; Chang, Chun-Ming; Chu, Nien-Nan; Shiao, Ming-Hua

    2012-08-01

    This study presents an effective, simple and inexpensive process for forming micro-scale vertical structures on a (1 0 0) silicon wafer. Several modified etchants and micro-patterns including rectangular, snake-like, circular and comb patterns were employed to determine the optimum etching process. We found that an etchant solution consisting of 4.6 M hydrofluoric acid, 0.44 M hydrogen peroxide and isopropyl alcohol produces microstructures at an etching rate of 0.47 µm min-1 and surface roughness of 17.4 nm. All the patterns were transferred faithfully to the silicon substrate.

  1. The microstructural modelling of nuclear grade graphite

    NASA Astrophysics Data System (ADS)

    Hall, G.; Marsden, B. J.; Fok, S. L.

    2006-07-01

    By using the finite element method it has been possible to simulate irradiation-induced property changes, namely dimensional and Young's modulus changes, from which the probable microstructural mechanisms have been identified. In the finite element models, both property changes were shown to be dependent upon the filler particle dimensional changes and the accommodation porosity. However, these need to be corroborated through the examination of actual specimens. Further work is also required to adapt the procedure to other graphites, reactor conditions, and material properties.

  2. Microstructural examination of irradiated vanadium alloys

    SciTech Connect

    Gelles, D.S.; Chung, H.M.

    1997-04-01

    Microstructural examination results are reported for a V-5Cr-5Ti unirradiated control specimens of heat BL-63 following annealing at 1050{degrees}C, and V-4Cr-4Ti heat BL-47 irradiated in three conditions from the DHCE experiment: at 425{degrees}C to 31 dpa and 0.39 appm He/dpa, at 600{degrees}C to 18 dpa and 0.54 appm He/dpa and at 600{degrees}C to 18 dpa and 4.17 appm He/dpa.

  3. Microstructural diagnosis using electromagnetic wave scattering methodologies

    NASA Astrophysics Data System (ADS)

    Chou, Kevin Jenn Chien

    Scattered electromagnetic waves were used in the present work to characterize the microstructural effects on the performance of metallic materials. A Nisb3Al alloy with a dendritic microstructure has exhibited better creep resistance compared to similar alloys having equiaxed microstructure of grains. X-ray diffraction was applied along the dendritic arms to investigate their orientations. Both the interlocking boundaries and crystallographic texture of the dendritic arms resulted in the superior creep behavior. Non-invasive laser scattering was also used to optically probe smooth fatigue specimens to detect and monitor the development of fatigue damage. Inconel 718 specimens with a cylindrical geometry were tested under low cycle fatigue conditions with constant strain amplitudes ranging from 0.3% to 1%. A detection scheme to minimize computational time and memory was used to achieve in-situ data analysis. Both laser scanning and surface replication procedures were periodically performed throughout the life of the specimens. The scattered light signals were compared with microcrack length and density data from surface replicate SEM images. Three characteristic stages of the scattering signal were observed. The scanning laser light scattering (SLLS) technique was sufficiently robust, and well suited for the non-planar geometry in the leading edge. The SLLS signals correlated well with microstructural features over a large surface area. A physical model of microcrack size distribution within a surface grain was developed. The results of the model suggest that a SLLS signal saturation which coincides with the onset of microcrack density saturation corresponds to a transition from predominately single grain microcracks to microcracks that transverse multiple grains. The saturation of SLLS signal versus mean surface crack length also provided the following findings. Low cycle fatigue cracks were contained and saturated in those surface grains with the highest Schmid

  4. Temperature history and microstructure of alumina

    SciTech Connect

    Lin, Jiang Tsair

    1992-05-01

    A simple process for the attainment of fully dense and improved microstructure for Al2O3 ceramics has been developed. Pure, narrow size distribution, submicron powder is used. Homogenization heat treatment of Al2O3 powder compacts at 800°C for 50 hours produces more uniform pore structure and higher green strength. Pore size distribution becomes narrower. Near fully dense, fine-grained (< 1.2μm) and uniform grain size-distribution, undoped Al2O3 ceramics can be produced using a high quality powder, a high-pressure cold isostatic forming method, and a two-step sintering technique. Improvements in the microstructure of Al2O3 ceramics homogenized at 800°C/50 h include a smaller pore size and a more uniform pore size distribution. Prevention of differential densification in the early stages and delay of pore channel closure to the later stages of sintering are believed to be the primary mechanisms for the microstructure improvement in two-step sintering. Two-step sintering is an alternate way to improve the microstructure of Al2O3 ceramics compared to fast firing or MgO doping. When a homogenization heat treatment and the fast firing are combined, the final density is higher than from fast firing alone. However, the two-step sintering technique is simple and there is no size limit. Generalization of two-step sintering to more systems is needed. For 250 ppM MgO-doped Al2O3 ceramics, homogenization of powder compacts at 800°C for 50 hours produces 0.80μm. This improvement is explained by the distribution of MgO becoming more uniform during the homogenization heat treatment, which enhances the effectiveness of MgO doping.

  5. Microstructure and Mechanical Properties of Porous Mullite

    NASA Astrophysics Data System (ADS)

    Hsiung, Chwan-Hai Harold

    Mullite (3 Al2O3 : 2 SiO2) is a technologically important ceramic due to its thermal stability, corrosion resistance, and mechanical robustness. One variant, porous acicular mullite (ACM), has a unique needle-like microstructure and is the material platform for The Dow Chemical Company's diesel particulate filter AERIFY(TM). The investigation described herein focuses on the microstructure-mechanical property relationships in acicular mullites as well as those with traditional porous microstructures with the goal of illuminating the critical factors in determining their modulus, strength, and toughness. Mullites with traditional pore morphologies were made to serve as references via slipcasting of a kaolinite-alumina-starch slurry. The starch was burned out to leave behind a pore network, and the calcined body was then reaction-sintered at 1600C to form mullite. The samples had porosities of approximately 60%. Pore size and shape were altered by using different starch templates, and pore size was found to influence the stiffness and toughness. The ACM microstructure was varied along three parameters: total porosity, pore size, and needle size. Total porosity was found to dominate the mechanical behavior of ACM, while increases in needle and pore size increased the toughness at lower porosities. ACM was found to have much improved (˜130%) mechanical properties relative to its non-acicular counterpart at the same porosity. A second set of investigations studied the role of the intergranular glassy phase which wets the needle intersections of ACM. Removal of the glassy phase via an HF etch reduced the mechanical properties by ˜30%, highlighting the intergranular phase's importance to the enhanced mechanical properties of ACM. The composition of the glassy phase was altered by doping the ACM precursor with magnesium and neodymium. Magnesium doping resulted in ACM with greatly reduced fracture strength and toughness. Studies showed that the mechanical properties of the

  6. Fabrication of three dimensional microstructure fiber

    NASA Astrophysics Data System (ADS)

    Luo, Ying; Ma, Jie; Chen, Zhe; Lu, Huihui; Zhong, Yongchun

    2015-05-01

    A method of fabricating three dimensional (3D) microstructured fiber is presented. Polystyrene (PS) microspheres were coated around the surface of a micro-fiber through isothermal heating evaporation induced self-assembly method. Scanning electron microscopy (SEM) image shows that the colloidal crystal has continuous, uniform, and well-ordered face-centered cubic (FCC) structure, with [111] crystallographic direction normal to the surface of micro-fiber. This micro-fiber with three-dimensional photonic crystals structure is very useful in the applications of micro-fiber sensors or filters.

  7. Covariant balance laws in continua with microstructure

    NASA Astrophysics Data System (ADS)

    Yavari, Arash; Marsden, Jerrold E.

    2009-02-01

    The purpose of this paper is to extend the Green-Naghdi-Rivlin balance of energy method to continua with microstructure. The key idea is to replace the group of Galilean transformations with the group of diffeomorphisms of the ambient space. A key advantage is that one obtains in a natural way all the needed balance laws on both the macro and micro levels along with two Doyle-Erickson formulas. We model a structured continuum as a triplet of Riemannian manifolds: a material manifold, the ambient space manifold of material particles and a director field manifold. The Green-Naghdi-Rivlin theorem and its extensions for structured continua are critically reviewed. We show that when the ambient space is Euclidean and when the microstructure manifold is the tangent space of the ambient space manifold, postulating a single balance of energy law and its invariance under time-dependent isometries of the ambient space, one obtains conservation of mass, balances of linear and angular momenta but not a separate balance of linear momentum. We develop a covariant elasticity theory for structured continua by postulating that energy balance is invariant under time-dependent spatial diffeomorphisms of the ambient space, which in this case is the product of two Riemannian manifolds. We then introduce two types of constrained continua in which microstructure manifold is linked to the reference and ambient space manifolds. In the case when at every material point, the microstructure manifold is the tangent space of the ambient space manifold at the image of the material point, we show that the assumption of covariance leads to balances of linear and angular momenta with contributions from both forces and micro-forces along with two Doyle-Ericksen formulas. We show that generalized covariance leads to two balances of linear momentum and a single coupled balance of angular momentum. Using this theory, we covariantly obtain the balance laws for two specific examples, namely elastic

  8. Terahertz Mapping of Microstructure and Thickness Variations

    NASA Technical Reports Server (NTRS)

    Roth, Donald J.; Seebo, Jeffrey P.; Winfree, William P.

    2010-01-01

    A noncontact method has been devised for mapping or imaging spatial variations in the thickness and microstructure of a layer of a dielectric material. The method involves (1) placement of the dielectric material on a metal substrate, (2) through-the-thickness pulse-echo measurements by use of electromagnetic waves in the terahertz frequency range with a raster scan in a plane parallel to the substrate surface that do not require coupling of any kind, and (3) appropriate processing of the digitized measurement data.

  9. 248nm silicon photoablation: Microstructuring basics

    NASA Astrophysics Data System (ADS)

    Poopalan, P.; Najamudin, S. H.; Wahab, Y.; Mazalan, M.

    2015-05-01

    248nm pulses from a KrF excimer laser was used to ablate a Si wafer in order to ascertain the laser pulse and energy effects for use as a microstructuring tool for MEMS fabrication. The laser pulses were varied between two different energy levels of 8mJ and 4mJ while the number of pulses for ablation was varied. The corresponding ablated depths were found to range between 11 µm and 49 µm, depending on the demagnified beam fluence.

  10. Shape Descriptors for the Quantification of Microstructures

    DTIC Science & Technology

    2016-01-05

    SUBJECT TERMS image analysis , microstructure 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF       ABSTRACT 18.  NUMBER        OF Standard Form...image entropy becomes nearly linearly dependent on temperature. The image analysis approach is capable of characterizing the range of strain domain...recognition and image analysis . The main hurdle to be overcome is the vanishing of these odd order moments for shapes which are symmetric about the

  11. Studying microstructure and microstructural changes in plant tissues by advanced diffusion magnetic resonance imaging techniques.

    PubMed

    Morozov, Darya; Tal, Iris; Pisanty, Odelia; Shani, Eilon; Cohen, Yoram

    2017-04-08

    As sessile organisms, plants must respond to the environment by adjusting their growth and development. Most of the plant body is formed post-embryonically by continuous activity of apical and lateral meristems. The development of lateral adventitious roots is a complex process, and therefore the development of methods that can visualize, non-invasively, the plant microstructure and organ initiation that occur during growth and development is of paramount importance. In this study, relaxation-based and advanced diffusion magnetic resonance imaging (MRI) methods including diffusion tensor (DTI), q-space diffusion imaging (QSI), and double-pulsed-field-gradient (d-PFG) MRI, at 14.1 T, were used to characterize the hypocotyl microstructure and the microstructural changes that occurred during the development of lateral adventitious roots in tomato. Better contrast was observed in relaxation-based MRI using higher in-plane resolution but this also resulted in a significant reduction in the signal-to-noise ratio of the T2-weighted MR images. Diffusion MRI revealed that water diffusion is highly anisotropic in the vascular cylinder. QSI and d-PGSE MRI showed that in the vascular cylinder some of the cells have sizes in the range of 6-10 μm. The MR images captured cell reorganization during adventitious root formation in the periphery of the primary vascular bundles, adjacent to the xylem pole that broke through the cortex and epidermis layers. This study demonstrates that MRI and diffusion MRI methods allow the non-invasive study of microstructural features of plants, and enable microstructural changes associated with adventitious root formation to be followed.

  12. Microstructure of vanadium oxide used in microbolometers

    NASA Astrophysics Data System (ADS)

    Gauntt, B. D.; Li, J.; Cabarcos, O. M.; Basantani, H. A.; Venkatasubramanian, C.; Bharadwaja, S. S. N.; Podraza, N. J.; Jackson, T. N.; Allara, D. L.; Antrazi, S.; Horn, M. W.; Dickey, E. C.

    2011-06-01

    Reactive pulsed DC sputtering was used to grow a systematic series of films with resistivity ranging from 1 × 10-3 to 6.8 × 104 Ohm cm and TCR varying from 0 to -4% K-1. Throughout the parameter space studied a transition from amorphous to nano-crystalline growth was observed. Films in the resistivity range of interest for microbolometers contained a FCC VOx (0.8 < x < 1.3) phase. Altering the sputtering energetics via substrate biasing resulted in highlycolumnar, nano-twinned grains of FCC VOx, providing a microstructure reminiscent of ion beam sputtered bolometer material. Electron diffraction in the TEM confirmed the presence of a secondary, oxygen-rich amorphous phase. Micro- Raman spectroscopy, which was also found to be sensitive to the secondary amorphous phase, was used to probe the chemical composition and morphology of VOx thin films. Raman spectra from high resistivity amorphous films show a broad feature around ~890 cm-1, while spectra from lower resistivity nano-crystalline films exhibit this same amorphous feature and a second broad feature at ~320 cm-1. The resulting microstructure can be described as a nano-composite material composed of a low-resistivity crystalline phase embedded in a high-resistivity amorphous matrix. Our results suggest that both phases are required to achieve a high TCR, low resistivity material.

  13. Plasma etching a ceramic composite. [evaluating microstructure

    NASA Technical Reports Server (NTRS)

    Hull, David R.; Leonhardt, Todd A.; Sanders, William A.

    1992-01-01

    Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiC(sub W)) in a matrix of silicon nitride (Si3N4), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si3N4 grain size by removing the glass phase. However, the latter obscures the porosity. Neither technique allows the SiC(sub W) to be distinguished from the Si3N4. Plasma etching with CF4 + 4 percent O2 selectively attacks the Si3N4 grains, leaving SiC(sub W) and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si3N4, allowing Si3N4 grains to be distinguished from SiC(sub W) by back scattered electron imaging.

  14. Gender Differences in White Matter Microstructure

    PubMed Central

    Kanaan, Richard A.; Allin, Matthew; Picchioni, Marco; Barker, Gareth J.; Daly, Eileen; Shergill, Sukhwinder S.; Woolley, James; McGuire, Philip K.

    2012-01-01

    Background Sexual dimorphism in human brain structure is well recognised, but little is known about gender differences in white matter microstructure. We used diffusion tensor imaging to explore differences in fractional anisotropy (FA), an index of microstructural integrity. Methods A whole brain analysis of 135 matched subjects (90 men and 45 women) using a 1.5 T scanner. A region of interest (ROI) analysis was used to confirm those results where proximity to CSF raised the possibility of partial-volume artefact. Results Men had higher fractional anisotropy (FA) in cerebellar white matter and in the left superior longitudinal fasciculus; women had higher FA in the corpus callosum, confirmed by ROI. Discussion The size of the differences was substantial - of the same order as that attributed to some pathology – suggesting gender may be a potentially significant confound in unbalanced clinical studies. There are several previous reports of difference in the corpus callosum, though they disagree on the direction of difference; our findings in the cerebellum and the superior longitudinal fasciculus have not previously been noted. The higher FA in women may reflect greater efficiency of a smaller corpus callosum. The relatively increased superior longitudinal fasciculus and cerebellar FA in men may reflect their increased language lateralisation and enhanced motor development, respectively. PMID:22701619

  15. The Microstructural Design of Trimodal Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Jiang, Lin; Ma, Kaka; Yang, Hanry; Li, Meijuan; Lavernia, Enrique J.; Schoenung, Julie M.

    2014-06-01

    Trimodal composites, consisting of nanocrystalline or ultrafine grains (UFGs), coarse grains (CGs), and ceramic particles, were originally formulated to achieve combinations of physical and mechanical properties that are unattainable with the individual phases, such as strength, ductility, and high-strain-rate deformation. The concept of a trimodal structure is both scientifically novel as well as technologically promising because it provides multiple controllable degrees of freedom that allow for extensive microstructure design. The UFGs provide efficient obstacles for dislocation movement, such as grain boundaries and other crystalline defects. The size, distribution, and spatial arrangement of the CGs can be controlled to provide plasticity during deformation. The size, morphology, and distribution of the reinforcement particles can be tailored to attain various engineering and physical properties. Moreover, the interfaces that form among the various phases also help determine the overall behavior of the trimodal composites. In this article, a review is provided to discuss the selection and design of each component in trimodal Al composites. The toughening and strengthening mechanisms in the trimodal composite structure are discussed, paying particular attention to strategies that can be implemented to tailor microstructures for optimal mechanical behavior. Recent results obtained with high-performance trimodal Al composites that contain nanometric reinforcements are also discussed to highlight the ability to control particle-matrix interface characteristics. Finally, a perspective is provided on potential approaches that can be explored to develop the next generation of trimodal composites, and interesting scientific paradigms that evolve from the proposed design strategies are discussed.

  16. Stability Study of the RERTR Fuel Microstructure

    SciTech Connect

    Jian Gan; Dennis Keiser; Brandon Miller; Daniel Wachs

    2014-04-01

    The irradiation stability of the interaction phases at the interface of fuel and Al alloy matrix as well as the stability of the fission gas bubble superlattice is believed to be very important to the U-Mo fuel performance. In this paper the recent result from TEM characterization of Kr ion irradiated U-10Mo-5Zr alloy will be discussed. The focus will be on the phase stability of Mo2-Zr, a dominated second phase developed at the interface of U-10Mo and the Zr barrier in a monolithic fuel plate from fuel fabrication. The Kr ion irradiations were conducted at a temperature of 200 degrees C to an ion fluence of 2.0E+16 ions/cm2. To investigate the thermal stability of the fission gas bubble superlattice, a key microstructural feature in both irradiated dispersion U-7Mo fuel and monolithic U-10Mo fuel, a FIB-TEM sample of the irradiated U-10Mo fuel (3.53E+21 fission/cm3) was used for a TEM in-situ heating experiment. The preliminary result showed extraordinary thermal stability of the fission gas bubble superlattice. The implication of the TEM observation from these two experiments on the fuel microstructural evolution under irradiation will be discussed.

  17. Fresh fruit: microstructure, texture, and quality

    NASA Astrophysics Data System (ADS)

    Wood, Delilah F.; Imam, Syed H.; Orts, William J.; Glenn, Gregory M.

    2009-05-01

    Fresh-cut produce has a huge following in today's supermarkets. The trend follows the need to decrease preparation time as well as the desire to follow the current health guidelines for consumption of more whole "heart-healthy" foods. Additionally, consumers are able to enjoy a variety of fresh produce regardless of the local season because produce is now shipped world-wide. However, most fruits decompose rapidly once their natural packaging has been disrupted by cutting. In addition, some intact fruits have limited shelf-life which, in turn, limits shipping and storage. Therefore, a basic understanding of how produce microstructure relates to texture and how microstructure changes as quality deteriorates is needed to ensure the best quality in the both the fresh-cut and the fresh produce markets. Similarities between different types of produce include desiccation intolerance which produces wrinkling of the outer layers, cracking of the cuticle and increased susceptibility to pathogen invasion. Specific examples of fresh produce and their corresponding ripening and storage issues, and degradation are shown in scanning electron micrographs.

  18. Inflammatory response to nano- and microstructured hydroxyapatite.

    PubMed

    Mestres, Gemma; Espanol, Montserrat; Xia, Wei; Persson, Cecilia; Ginebra, Maria-Pau; Ott, Marjam Karlsson

    2015-01-01

    The proliferation and activation of leukocytes upon contact with a biomaterial play a crucial role in the degree of inflammatory response, which may then determine the clinical failure or success of an implanted biomaterial. The aim of this study was to evaluate whether nano- and microstructured biomimetic hydroxyapatite substrates can influence the growth and activation of macrophage-like cells. Hydroxyapatite substrates with different crystal morphologies consisting of an entangled network of plate-like and needle-like crystals were evaluated. Macrophage proliferation was evaluated on the material surface (direct contact) and also in extracts i.e. media modified by the material (indirect contact). Additionally, the effect of supplementing the extracts with calcium ions and/or proteins was investigated. Macrophage activation on the substrates was evaluated by quantifying the release of reactive oxygen species and by morphological observations. The results showed that differences in the substrate's microstructure play a major role in the activation of macrophages as there was a higher release of reactive oxygen species after culturing the macrophages on plate-like crystals substrates compared to the almost non-existent release on needle-like substrates. However, the difference in macrophage proliferation was ascribed to different ionic exchanges and protein adsorption/retention from the substrates rather than to the texture of materials.

  19. Bundled capillary electrophoresis using microstructured fibres.

    PubMed

    Rogers, Benjamin; Gibson, Graham T T; Oleschuk, Richard D

    2011-01-01

    Joule heating, arising from the electric current passing through the capillary, causes many undesired effects in CE that ultimately result in band broadening. The use of narrow-bore capillaries helps to solve this problem as smaller cross-sectional area results in decreased Joule heating and the rate of heat dissipation is increased by the larger surface-to-volume ratio. Issues arising from such small capillaries, such as poor detection sensitivity, low loading capacity and high flow-induced backpressure (complicating capillary loading) can be avoided by using a bundle of small capillaries operating simultaneously that share buffer reservoirs. Microstructured fibres, originally designed as waveguides in the telecommunication industry, are essentially a bundle of parallel ∼5 μm id channels that extend the length of a fibre having otherwise similar dimensions to conventional CE capillaries. This work presents the use of microstructured fibres for CZE, taking advantage of their relatively high surface-to-volume ratio and the small individual size of each channel to effect highly efficient separations, particularly for dye-labelled peptides.

  20. Microstructure of high-strength foam concrete

    SciTech Connect

    Just, A.; Middendorf, B.

    2009-07-15

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  1. Microstructure and homogeneity of dental porcelain frits.

    PubMed

    Ban, S; Matsuo, K; Mizutani, N; Iwase, H; Kani, T; Hasegawa, J

    1998-12-01

    The microstructure and homogeneity of three commercial dentin and incisal unfired porcelain frits (one conventional and two ultra-low fusing types, fused-to metal were analyzed by X-ray diffractometry, scanning electron microspectroscopy, and wavelength- and energy dispersive X-ray microspectroscopy. The average contents of tetragonal and cubic leucite for the conventional and one of the ultra-low fusing type frits were 20.1-22.6 wt% and 0-2.6 wt%, respectively, whereas those of another of the ultra-low fusing type frits were about 11.5-11.6 wt% and 2.9-4.6 wt%, respectively. The conventional type frits seemed to be admixtures of three kinds of glass frits. One of the ultra-low fusing type frits seemed to be an admixture of four kinds of glass frits. Another ultra-low fusing frits seemed to be only one kind of glass frit dispersed with small size, less than 1 micron, leucite crystals. There were no remarkable differences in microstructure and homogeneity between dentin and incisal porcelain frits in each brand.

  2. Towards biochips using microstructured optical fiber sensors.

    PubMed

    Rindorf, Lars; Høiby, Poul Erik; Jensen, Jesper Bo; Pedersen, Lars Hagsholm; Bang, Ole; Geschke, Oliver

    2006-08-01

    In this paper we present the first incorporation of a microstructured optical fiber (MOF) into biochip applications. A 16-mm-long piece of MOF is incorporated into an optic-fluidic coupler chip, which is fabricated in PMMA polymer using a CO(2) laser. The developed chip configuration allows the continuous control of liquid flow through the MOF and simultaneous optical characterization. While integrated in the chip, the MOF is functionalized towards the capture of a specific single-stranded DNA string by immobilizing a sensing layer on the microstructured internal surfaces of the fiber. The sensing layer contains the DNA string complementary to the target DNA sequence and thus operates through the highly selective DNA hybridization process. Optical detection of the captured DNA was carried out using the evanescent-wave-sensing principle. Owing to the small size of the chip, the presented technique allows for analysis of sample volumes down to 300 nL and the fabrication of miniaturized portable devices.

  3. Neutral color semitransparent microstructured perovskite solar cells.

    PubMed

    Eperon, Giles E; Burlakov, Victor M; Goriely, Alain; Snaith, Henry J

    2014-01-28

    Neutral-colored semitransparent solar cells are commercially desired to integrate solar cells into the windows and cladding of buildings and automotive applications. Here, we report the use of morphological control of perovskite thin films to form semitransparent planar heterojunction solar cells with neutral color and comparatively high efficiencies. We take advantage of spontaneous dewetting to create microstructured arrays of perovskite "islands", on a length-scale small enough to appear continuous to the eye yet large enough to enable unattenuated transmission of light between the islands. The islands are thick enough to absorb most visible light, and the combination of completely absorbing and completely transparent regions results in neutral transmission of light. Using these films, we fabricate thin-film solar cells with respectable power conversion efficiencies. Remarkably, we find that such discontinuous films still have good rectification behavior and relatively high open-circuit voltages due to the inherent rectification between the n- and p-type charge collection layers. Furthermore, we demonstrate the ease of "color-tinting" such microstructured perovksite solar cells with no reduction in performance, by incorporation of a dye within the hole transport medium.

  4. Microstructure and mechanical properties of sheep horn.

    PubMed

    Zhu, Bing; Zhang, Ming; Zhao, Jian

    2016-07-01

    The sheep horn presents outstanding mechanical properties of impact resistance and energy absorption, which suits the need of the vehicle bumper design, but the mechanism behind this phenomenon is less investigated. The microstructure and mechanical properties of the sheep horn of Small Tailed Han Sheep (Ovis aries) living in northeast China were investigated in this article. The effect of sampling position and orientation of the sheep horn sheath on mechanical properties were researched by tensile and compression tests. Meanwhile, the surface morphology and microstructure of the sheep horn were observed using scanning electron microscopy (SEM). The formation mechanism of the mechanical properties of the sheep horn was investigated by biological coupling analysis. The analytical results indicated that the outstanding mechanical properties of the sheep horn are determined by configuration, structure, surface morphology and material coupling elements. These biological coupling elements make the sheep horn possess super characteristics of crashworthiness and energy absorption through the internal coupling mechanism. We suppose that these findings would make a difference in vehicle bumper design. Microsc. Res. Tech. 79:664-674, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Alginate Beads Containing Lactase: Stability and Microstructure.

    PubMed

    Traffano-Schiffo, Maria Victoria; Aguirre Calvo, Tatiana R; Castro-Giraldez, Marta; Fito, Pedro J; Santagapita, Patricio R

    2017-06-12

    β-Galactosidase (lactase) is a widely used enzyme in the food industry; however, it has low stability against thermal and mechanical treatments. Due to this, the purpose of the present research was to analyze the encapsulation of lactase in alginate-Ca(II) beads in order to maintain its enzymatic activity toward freezing, freezing/thawing, and storage. Also, the effect of the addition of trehalose, and arabic and guar gums and their influence on the microstructure as well as on thermal properties and molecular mobility were studied. Lactase was successfully encapsulated in alginate-Ca(II) beads, and the inclusion of trehalose was critical for activity preservation toward treatments, being improved in guar gum-containing systems. The gums increased the Tm' values, which represents a valuable technological improvement. Finally, the presence of secondary excipients affected the microstructure, showing rods with smaller outer diameter and with lower compactness than alginate-Ca(II) beads. Also, bead composition greatly affects the size, shape, and relaxation times.

  6. Wafer-level microstructuring of glassy carbon

    NASA Astrophysics Data System (ADS)

    Hans, Loïc. E.; Prater, Karin; Kilchoer, Cédric; Scharf, Toralf; Herzig, Hans Peter; Hermerschmidt, Andreas

    2014-03-01

    Glassy carbon is used nowadays for a variety of applications because of its mechanical strength, thermal stability and non-sticking adhesion properties. One application is glass molding that allows to realize high resolution diffractive optical elements on large areas and at affordable price appropriate for mass production. We study glassy carbon microstructuring for future precision compression molding of low and high glass-transition temperature. For applications in optics the uniformity, surface roughness, edge definition and lateral resolution are very important parameters for a stamp and the final product. We study different methods of microstructuring of glassy carbon by etching and milling. Reactive ion etching with different protection layers such as photoresists, aluminium and titanium hard masks have been performed and will be compare with Ion beam etching. We comment on the quality of the structure definition and give process details as well as drawbacks for the different methods. In our fabrications we were able to realize optically flat diffractive structures with slope angles of 80° at typical feature sizes of 5 micron and 700 nm depth qualified for high precision glass molding.

  7. Inflammatory Response to Nano- and Microstructured Hydroxyapatite

    PubMed Central

    Mestres, Gemma; Espanol, Montserrat; Xia, Wei; Persson, Cecilia; Ginebra, Maria-Pau; Ott, Marjam Karlsson

    2015-01-01

    The proliferation and activation of leukocytes upon contact with a biomaterial play a crucial role in the degree of inflammatory response, which may then determine the clinical failure or success of an implanted biomaterial. The aim of this study was to evaluate whether nano- and microstructured biomimetic hydroxyapatite substrates can influence the growth and activation of macrophage-like cells. Hydroxyapatite substrates with different crystal morphologies consisting of an entangled network of plate-like and needle-like crystals were evaluated. Macrophage proliferation was evaluated on the material surface (direct contact) and also in extracts i.e. media modified by the material (indirect contact). Additionally, the effect of supplementing the extracts with calcium ions and/or proteins was investigated. Macrophage activation on the substrates was evaluated by quantifying the release of reactive oxygen species and by morphological observations. The results showed that differences in the substrate’s microstructure play a major role in the activation of macrophages as there was a higher release of reactive oxygen species after culturing the macrophages on plate-like crystals substrates compared to the almost non-existent release on needle-like substrates. However, the difference in macrophage proliferation was ascribed to different ionic exchanges and protein adsorption/retention from the substrates rather than to the texture of materials. PMID:25837264

  8. Polymer Microstructures through Two-Photon Crosslinking.

    PubMed

    Schwärzle, David; Hou, Xiaoqang; Prucker, Oswald; Rühe, Jürgen

    2017-08-18

    Two-photon crosslinking of polymers (2PC) is proposed as a novel method for the fabrication of freestanding microstructures via two-photon lithography. During this process in the confocal volume, two-photon absorption leads to (formal) C,H-insertion reactions, and consequently to a strictly localized crosslinking of the polymer. To achieve this, the polymer is coated as a solvent-free (glassy) film onto an appropriate substrate, and the desired microstructure is written by 2PC into this glass. In all regions outside of the focal volume where no two-photon process occurs, the polymer remains uncrosslinked and can be washed away during a developing process. Using a self-assembled monolayer containing the same photoreactive group allows covalent attachment of the forming freestanding structures to the substrate, and thus guarantees an improved stability of these structures against shear-induced detachment. As the two photon process is carried out in the glassy state, in a simple way, multilayer structures can be used to write structures having a varying chemical composition perpendicular to the surface. As an example, the 2PC process is used to build a structure from both protein-repellent and protein-adsorbing polymers so that the resulting 3D structure exhibits spatially controlled protein adsorption. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In-situ Characterization of Cast Stainless Steel Microstructures

    SciTech Connect

    Anderson, Michael T.; Bond, Leonard J.; Diaz, Aaron A.; Good, Morris S.; Harris, Robert V.; Mathews, Royce; Ramuhalli, Pradeep; Roberts, Kamandi C.

    2010-12-01

    Cast austenitic stainless steel (CASS) that was commonly used in U.S. nuclear power plants is a coarse-grained, elastically anisotropic material. The engineering properties of CASS made it a material of choice for selected designs of nuclear power reactor systems. However, the fabrication processes result in a variety of coarse-grain microstructures that are difficult to inspect ultrasonically, largely due to detrimental effects of wave interactions with the microstructure. To address the inspection needs, new approaches that are robust to these phenomena are being sought. However, overcoming the deleterious effects of the coarse-grained microstructure on the interrogating ultrasonic beam will require knowledge of the microstructure and the corresponding acoustic properties of the material, for potential optimization of inspection parameters to enhance the probability of detecting flaws. The goal of improving the reliability and effectiveness of ultrasonic inspection of CASS specimens can therefore potentially be achieved by first characterizing the microstructure of the component. The characterization of CASS microstructure must be done in-situ, to enable dynamic selection and optimization of the ultrasonic inspection technique. This paper discusses the application of ultrasonic measurement methods for classifying the microstructure of CASS components, when making measurements from the outside surface of the pipe or component. Results to date demonstrate the potential of ultrasonic and electromagnetic measurements to classify the material type of CASS for two consistent microstructures-equiaxed-grain material and columnar-grain material.

  10. Using prismatic microstructured films for image blending in OLEDS

    DOEpatents

    Haenichen, Lukas [Anspach, DE; Pschenitzka, Florian [San Francisco, CA

    2009-09-08

    An apparatus such as a light source is disclosed which has an OLED device and a microstructured film disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The microstructured film contains features which diffuse light emitted by said OLED device and increase the luminance of the device.

  11. Microstructural evolution of eutectic Au-Sn solder joints

    SciTech Connect

    Song, Ho Geon

    2002-05-01

    Current trends toward miniaturization and the use of lead(Pb)-free solder in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability.

  12. Essays on Market Microstructure, Behavioral Finance, and Asset Management

    ERIC Educational Resources Information Center

    Jochec, Marek

    2009-01-01

    This is a study on various aspects of market microstructure, behavioral finance and asset management. In the first chapter we put the PIN variable (Probability of Information-based trading) to test. The PIN variable has been used extensively in the microstructure literature despite the fact that its construction is based on rather strong…

  13. Autonomous patterning of cells on microstructured fine particles.

    PubMed

    Takeda, Iwori; Kawanabe, Masato; Kaneko, Arata

    2015-05-01

    Regularly patterned cells can clarify cellular function and are required in some biochip applications. This study examines cell patterning along microstructures and the effect of microstructural geometry on selective cellular adhesion. Particles can be autonomously assembled on a soda-lime glass substrate that is chemically patterned by immersion in a suspension of fine particles. By adopting various sizes of fine particles, we can control the geometry of the microstructure. Cells adhere more readily to microstructured fine particles than to flat glass substrate. Silica particles hexagonally packed in 5-40 μm line and space microstructures provide an effective cell scaffold on the glass substrate. Cultured cells tend to attach and proliferate along the microstructured region while avoiding the flat region. The difference in cell adhesion is attributed to their geometries, as both of the silica particles and soda-lime glass are hydrophilic related with cell adhesiveness. After cell seeding, cells adhered to the flat region migrated toward the microstructured region. For most of the cells to assemble on the scaffold, the scaffolding microstructures must be spaced by at most 65 μm. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Possibility of Using Microstructures in Buildings' Ventilation and Heating Systems

    NASA Astrophysics Data System (ADS)

    Majewski, Grzegorz; Orman, Łukasz J.

    2017-06-01

    The paper discusses the issue of using microstructures as the heat enhancement technique that can be applied in ventilation and heating systems. The possibilities of usage are given and the experimental test results are presented. They prove that the application of microstructures may significantly improve the heat flux value exchanged during boiling of distilled water.

  15. Essays on Market Microstructure, Behavioral Finance, and Asset Management

    ERIC Educational Resources Information Center

    Jochec, Marek

    2009-01-01

    This is a study on various aspects of market microstructure, behavioral finance and asset management. In the first chapter we put the PIN variable (Probability of Information-based trading) to test. The PIN variable has been used extensively in the microstructure literature despite the fact that its construction is based on rather strong…

  16. Microstructural development of rapid solidification in Al-Si powder

    SciTech Connect

    Jin, Feng

    1995-09-26

    The microstructure and the gradient of microstructure that forms in rapidly solidificated powder were investigated for different sized particles. High pressure gas atomization solidification process has been used to produce a series of Al-Si alloys powders between 0.2 μm to 150 μm diameter at the eutectic composition (12.6 wt pct Si). This processing technique provides powders of different sizes which solidify under different conditions (i.e. interface velocity and interface undercooling), and thus give different microstructures inside the powders. The large size powder shows dendritic and eutectic microstructures. As the powder size becomes smaller, the predominant morphology changes from eutectic to dendritic to cellular. Microstructures were quantitatively characterized by using optical microscope and SEM techniques. The variation in eutectic spacing within the powders were measured and compared with the theoretical model to obtain interface undercooling, and growth rate during the solidification of a given droplet. Also, nucleation temperature, which controls microstructures in rapidly solidified fine powders, was estimated. A microstructural map which correlates the microstructure with particle size and processing parameters is developed.

  17. New vibration-assisted magnetic abrasive polishing (VAMAP) method for microstructured surface finishing.

    PubMed

    Guo, Jiang; Kum, Chun Wai; Au, Ka Hing; Tan, Zhi'En Eddie; Wu, Hu; Liu, Kui

    2016-06-13

    In order to polish microstructured surface without deteriorating its profile, we propose a new vibration-assisted magnetic abrasive polishing (VAMAP) method. In this method, magnetic force guarantees that the magnetic abrasives can well contact the microstructured surface and access the corners of microstructures while vibration produces a relative movement between microstructures and magnetic abrasives. As the vibration direction is parallel to the microstructures, the profile of the microstructures will not be deteriorated. The relation between vibration and magnetic force was analyzed and the feasibility of this method was experimentally verified. The results show that after polishing, the surface finish around microstructures was significantly improved while the profile of microstructures was well maintained.

  18. Microstructure Improvement in Weld Metal under the Ultrasonic Application

    SciTech Connect

    Cui, Yan; Xu, Cailu; Han, Qingyou

    2007-01-01

    When considering the operational performance of weldments in the engineering projects, the most important issues to be considered are weld metal mechanical properties, integrity of the welded joint, and weldability 1 . These issues are closely related to the microstructure of the weld metal. A significant amount of research has been carried out to alter the process variables and to use external devices to obtain microstructure control of the weldments. It has been reported that grain refined microstructure not only reduces cracking behavior of alloys including solidification cracking, cold cracking and reheat cracking, 2 - 5 but also improves the mechanical properties of the weld metal, such as toughness, ductility, strength, and fatigue life. 6, 7 Weld pool stirring, 8 arc oscillation, 9, 10 arc pulsation, 11 , and magnetic arc oscillator 12, 13 have been applied to fusion welding to refine the microstructures. This article describes initial experimental results on the use of power ultrasonic vibration to refine the microstructure of weld metals.

  19. High-Resolution Characterization of UMo Alloy Microstructure

    SciTech Connect

    Devaraj, Arun; Kovarik, Libor; Joshi, Vineet V.; Jana, Saumyadeep; Manandhar, Sandeep; Arey, Bruce W.; Lavender, Curt A.

    2016-11-30

    This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools that can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.

  20. Development of the microstructure based stochastic life prediction models

    NASA Astrophysics Data System (ADS)

    Przystupa, M. A.; Vasudevan, A. K.

    This study explores the methods of incorporating material microstructural characteristics into the fatigue life prediction models based on the results of the microstructural characterizations and fatigue testing of aluminum 7050-T7451 plate alloys. The emphases in the microstructural characterization part of the program are on the identification of the fatigue-relevant microstructural features and on the characterizations of the microstructural gradients. The characterizations are carried out using both the standard and novel techniques such as tessellation, fractal and modified linear intercept methods. The key measurement is determination of the size distributions of the fatigue crack initiating flaws -- they are assumed equal to the extreme value distributions of the micropore and/or constituent particle size distributions measured on the metallographic sections.

  1. Microstructurally based model of fatigue initiation and growth

    NASA Technical Reports Server (NTRS)

    Brockenbrough, J. R.; Hinkle, A. J.; Magnusen, P. E.; Bucci, R. J.

    1994-01-01

    A model to calculate fatigue life is developed based on the assumption that fatigue life is entirely composed of crack growth from an initial microstructural inhomogeneity. Specifically, growth is considered to start from either an ellipsoidal void, a cracked particle, or a debonded particle. The capability of predicting fatigue life from material microstructure is based on linear elastic fracture mechanics principles, the sizes of the crack-initiating microstructural inhomogeneities, and an initiation parameter that is proportional to the cyclic plastic zone size. A key aspect of this modeling approach is that it is linked with a general purpose probability program to analyze the effect of the distribution of controlling microstructural features within the material. This enables prediction of fatigue stress versus life curves for various specimen geometries using distributional statistics obtained from characterizations of the microstructure. Results are compared to experimental fatigue data from an aluminum alloy.

  2. Monitoring microstructural evolution in irradiated steel with second harmonic generation

    SciTech Connect

    Matlack, Kathryn H.; Kim, Jin-Yeon; Jacobs, Laurence J.; Wall, James J.; Qu, Jianmin

    2015-03-31

    Material damage in structural components is driven by microstructural evolution that occurs at low length scales and begins early in component life. In metals, these microstructural features are known to cause measurable changes in the acoustic nonlinearity parameter. Physically, the interaction of a monochromatic ultrasonic wave with microstructural features such as dislocations, precipitates, and vacancies, generates a second harmonic wave that is proportional to the acoustic nonlinearity parameter. These nonlinear ultrasonic techniques thus have the capability to evaluate initial material damage, particularly before crack initiation and propagation occur. This paper discusses how the nonlinear ultrasonic technique of second harmonic generation can be used as a nondestructive evaluation tool to monitor microstructural changes in steel, focusing on characterizing neutron radiation embrittlement in nuclear reactor pressure vessel steels. Current experimental evidence and analytical models linking microstructural evolution with changes in the acoustic nonlinearity parameter are summarized.

  3. Strain-engineered manufacturing of freeform carbon nanotube microstructures.

    PubMed

    De Volder, M; Park, S; Tawfick, S; Hart, A J

    2014-07-29

    The skins of many plants and animals have intricate microscale surface features that give rise to properties such as directed water repellency and adhesion, camouflage, and resistance to fouling. However, engineered mimicry of these designs has been restrained by the limited capabilities of top-down fabrication processes. Here we demonstrate a new technique for scalable manufacturing of freeform microstructures via strain-engineered growth of aligned carbon nanotubes (CNTs). Offset patterning of the CNT growth catalyst is used to locally modulate the CNT growth rate. This causes the CNTs to collectively bend during growth, with exceptional uniformity over large areas. The final shape of the curved CNT microstructures can be designed via finite element modeling, and compound catalyst shapes produce microstructures with multidirectional curvature and unusual self-organized patterns. Conformal coating of the CNTs enables tuning of the mechanical properties independently from the microstructure geometry, representing a versatile principle for design and manufacturing of complex microstructured surfaces.

  4. Modelling of deformation and recrystallisation microstructures in rocks and ice

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Evans, Lynn A.; Gomez-Rivas, Enrique; Griera, Albert; Jessell, Mark W.; Lebensohn, Ricardo; Llorens, Maria-Gema; Peternell, Mark; Piazolo, Sandra; Weikusat, Ilka; Wilson, Chris J. L.

    2015-04-01

    Microstructures both record the deformation history of a rock and strongly control its mechanical properties. As microstructures in natural rocks only show the final "post-mortem" state, geologists have attempted to simulate the development of microstructures with experiments and later numerical models. Especially in-situ experiments have given enormous insight, as time-lapse movies could reveal the full history of a microstructure. Numerical modelling is an alternative approach to simulate and follow the change in microstructure with time, unconstrained by experimental limitations. Numerical models have been applied to a range of microstructural processes, such as grain growth, dynamic recrystallisation, porphyroblast rotation, vein growth, formation of mylonitic fabrics, etc. The numerical platform "Elle" (www.elle.ws) in particular has brought progress in the simulation of microstructural development as it is specifically designed to include the competition between simultaneously operating processes. Three developments significantly improve our capability to simulate microstructural evolution: (1) model input from the mapping of crystallographic orientation with EBSD or the automatic fabric analyser, (2) measurement of grain size and crystallographic preferred orientation evolution using neutron diffraction experiments and (3) the implementation of the full-field Fast Fourier Transform (FFT) solver for modelling anisotropic crystal-plastic deformation. The latter enables the detailed modelling of stress and strain as a function of local crystallographic orientation, which has a strong effect on strain localisation such as, for example, the formation of shear bands. These models can now be compared with the temporal evolution of crystallographic orientation distributions in in-situ experiments. In the last decade, the possibility to combine experiments with numerical simulations has allowed not only verification and refinement of the numerical simulation

  5. Fusion boundary microstructure evolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios Dimitrios

    2000-10-01

    A melting technique was developed to simulate the fusion boundary of aluminum alloys using the GleebleRTM thermal simulator. Using a steel sleeve to contain the aluminum, samples were heated to incremental temperatures above the solidus temperature of a number of alloys. In alloy 2195, a 4wt%Cu-1wt%Li alloy, an equiaxed non-dendritic zone (EQZ) could be formed by heating in the temperature range from approximately 630 to 640°C. At temperatures above 640°C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in alloys 5454-H34, 6061-T6, and 2219-T8. Additionally, experimental alloy compositions were produced by making bead on plate welds using an alloy 5454-H32 base metal and 5025 or 5087 filler metals. These filler metals contain zirconium and scandium additions, respectively, and were expected to influence nucleation and growth behavior. Both as-welded and welded/heat treated (540°C and 300°C) substrates were tested by melting simulation, resulting in dendritic and EQZ structures depending on composition and substrate condition. Orientation imaging microscopy (OIM(TM)) was employed to study the crystallographic character of the microstructures produced and to verify the mechanism responsible for EQZ formation. OIM(TM) proved that grains within the EQZ have random orientation. In all other cases, where the simulated microstructures were dendritic in nature, it was shown that epitaxy was the dominant mode of nucleation. The lack of any preferred crystallographic orientation relationship in the EQZ supports a theory proposed by Lippold et al that the EQZ is the result of heterogeneous nucleation within the weld unmixed zone. EDS analysis of the 2195 on STEM revealed particles with ternary composition consisted of Zr, Cu and Al and a tetragonal type crystallographic lattice. Microdiffraction line scans on EQZ grains in the alloy 2195 showed very good agreement between the measured Cu

  6. PREFACE: Processing, Microstructure and Performance of Materials

    NASA Astrophysics Data System (ADS)

    Chiu, Yu Lung; Chen, John J. J.; Hodgson, Michael A.; Thambyah, Ashvin

    2009-07-01

    A workshop on Processing, Microstructure and Performance of Materials was held at the University of Auckland, School of Engineering, on 8-9 April 2009. Organised by the Department of Chemical and Materials Engineering, University of Auckland, this meeting consisted of international participants and aimed at addressing the state-of-the-art research activities in processing, microstructure characterization and performance integrity investigation of materials. This two-day conference brought together scientists and engineers from New Zealand, Australia, Hong Kong, France, and the United Kingdom. Undoubtedly, this diverse group of participants brought a very international flair to the proceedings which also featured original research papers on areas such as Materials processing; Microstructure characterisation and microanalysis; Mechanical response at different length scales, Biomaterials and Material Structural integrity. There were a total of 10 invited speakers, 16 paper presentations, and 14 poster presentations. Consequently, the presentations were carefully considered by the scientific committee and participants were invited to submit full papers for this volume. All the invited paper submissions for this volume have been peer reviewed by experts in the various fields represented in this conference, this in accordance to the expected standards of the journal's Peer review policy for IOP Conference Series: Materials Science and Engineering. The works in this publication consists of new and original research as well as several expert reviews of current state-of-the art technologies and scientific developments. Knowing some of the real constraints on hard-copy publishing of high quality, high resolution images, the editors are grateful to IOP Publishing for this opportunity to have the papers from this conference published on the online open-access platform. Listed in this volume are papers on a range of topics on materials research, including Ferguson's high strain

  7. Comparable responses of osteoblast lineage cells to microstructured hydrophilic titanium-zirconium and microstructured hydrophilic titanium.

    PubMed

    Lotz, Ethan M; Olivares-Navarrete, Rene; Hyzy, Sharon L; Berner, Simon; Schwartz, Zvi; Boyan, Barbara D

    2017-07-01

    Although titanium (Ti) is commonly used for dental implants, Ti alloy materials are being developed to improve their physical material properties. Studies indicate that osteoblast differentiation and maturation of human mesenchymal stem cells (MSCs) and normal human osteoblasts (NHOsts) respond to microstructured Ti and titanium-aluminum-vanadium (Ti6Al4V) surfaces in a similar manner. The goal of this study was to determine whether this is the case for osteoblast lineage cells grown on microstructured TiZr surfaces and whether their response is affected by surface nanotexture and hydrophilicity. Grade 4 Ti and TiZr (13-17% Zr) disks were modified by large grit sand-blasting and acid-etching with storage in saline solution, resulting in a complex microstructured and hydrophilic surface corresponding to the commercially available implants SLActive(®) and Roxolid(®) SLActive(®) (Institut Straumann AG, Basel, Switzerland). The subsequent Ti modSLA and TiZr modSLA surfaces were characterized and osteogenic markers were measured. Evaluation of physical parameters revealed that the fabrication method was capable of inducing a microstructured and hydrophilic surface on both the Ti and TiZr disks. Overall, the surfaces were similar, but differences in nanostructure morphology/density and surface chemistry were detected. On Ti modSLA and TiZr modSLA, osteoblastic differentiation and maturation markers were enhanced in both MSCs and NHOsts, while inflammatory markers decreased compared with TCPS. These results indicate a similar positive cell response of MSCs and NHOsts when cultured on Ti modSLA and TiZr modSLA. Both surfaces were hydrophilic, indicating the importance of this property to osteoblast lineage cells. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure

    SciTech Connect

    Li Rutao Zuo Xiurong Hu Yueyue Wang Zhenwei Hu, Dingxu

    2011-08-15

    In order to satisfy the transportation of the crude oil and gas in severe environmental conditions, a ferrite/martensite dual-phase pipeline steel has been developed. After a forming process and double submerged arc welding, the microstructure of the base metal, heat affected zone and weld metal was characterized using scanning electron microscopy and transmission electron microscopy. The pipe showed good deformability and an excellent combination of high strength and toughness, which is suitable for a pipeline subjected to the progressive and abrupt ground movement. The base metal having a ferrite/martensite dual-phase microstructure exhibited excellent mechanical properties in terms of uniform elongation of 7.5%, yield ratio of 0.78, strain hardening exponent of 0.145, an impact energy of 286 J at - 10 deg. C and a shear area of 98% at 0 deg. C in the drop weight tear test. The tensile strength and impact energy of the weld metal didn't significantly reduce, because of the intragranularly nucleated acicular ferrites microstructure, leading to high strength and toughness in weld metal. The heat affected zone contained complete quenching zone and incomplete quenching zone, which exhibited excellent low temperature toughness of 239 J at - 10 deg. C. - Research Highlights: {yields}The pipe with ferrite/martensite microstructure shows high deformability. {yields}The base metal of the pipe consists of ferrite and martensite. {yields}Heat affected zone shows excellent low temperature toughness. {yields}Weld metal mainly consists of intragranularly nucleated acicular ferrites. {yields}Weld metal shows excellent low temperature toughness and high strength.

  9. The Microstructure of Lunar Micrometeorite Impact Craters

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2016-01-01

    The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.

  10. White Matter Microstructure and Cognitive Function

    PubMed Central

    Anderson, Elaine J.; Husain, Masud

    2013-01-01

    In recent years, diffusion-weighted magnetic resonance imaging (DW-MRI) has been increasingly used to explore the relationship between white matter structure and cognitive function. This technique uses the passive diffusion of water molecules to infer properties of the surrounding tissue. DW-MRI has been extensively employed to investigate how individual differences in behavior are related to variability in white matter microstructure on a range of different cognitive tasks and also to examine the effect experiential learning might have on brain structural connectivity. Using diffusion tensor tractography, large white matter pathways have been traced in vivo and used to explore patterns of white matter projections between different brain regions. Recent findings suggest that diffusion-weighted imaging might even be used to measure functional differences in water diffusion during task performance. This review describes some research highlights in diffusion-weighted imaging and how this technique can be employed to further our understanding of cognitive function. PMID:22020545

  11. Blood typing using microstructured waveguide smart cuvette

    NASA Astrophysics Data System (ADS)

    Zanishevskaya, Anastasiya A.; Shuvalov, Andrey A.; Skibina, Yulia S.; Tuchin, Valery V.

    2015-04-01

    We introduce a sensitive method that allows one to distinguish positive and negative agglutination reactions used for blood typing and determination of Rh affinity with a high precision. The method is based on the unique properties of photonic crystal waveguides, i.e., microstructured waveguides (MSWs). The transmission spectrum of an MSW smart cuvette filled by a specific or nonspecific agglutinating serum depends on the scattering, refractive, and absorptive properties of the blood probe. This concept was proven in the course of a laboratory clinical study. The obtained ratio of the spectral-based discrimination parameter for positive and negative reactions (I+/I-) was found to be 16 for standard analysis and around 2 for used sera with a weak activity.

  12. Influence of rainfall microstructure on rainfall interception

    NASA Astrophysics Data System (ADS)

    Zabret, Katarina; Rakovec, Jože; Mikoš, Matjaž; Šraj, Mojca

    2016-04-01

    Rainfall interception is part of the hydrological cycle. Precipitation, which hits vegetation, is retained on the leaves and branches, from which it eventually evaporates into the atmosphere (interception) or reaches the ground by dripping from the canopy, falling through the gaps (throughfall) and running down the stems (stemflow). The process is influenced by various meteorological and vegetation parameters. Often neglected meteorological parameter influencing rainfall interception is also rainfall microstructure. Rain is a discrete process consisting of various numbers of individual raindrops with different sizes and velocities. This properties describe rainfall microstructure which is often neglected in hydrological analysis and replaced with rainfall intensity. Throughfall, stemflow and rainfall microstructure have been measured since the beginning of the year 2014 under two tree species (Betula pendula and Pinus nigra) on a study plot in Ljubljana, Slovenia. The preliminary analysis of the influence of rainfall microstructure on rainfall interception has been conducted using three events with different characteristics measured in May 2014. Event A is quite short with low rainfall amount and moderate rainfall intensity, whereas events B and C have similar length but low and high intensities, respectively. Event A was observed on the 1st of May 2014. It was 22 minutes long and delivered 1.2 mm of rainfall. The average rainfall intensity was equal to 3.27 mm/h. The event consisted of 1,350 rain drops with average diameter of 1.517 mm and average velocity of 5.110 m/s. Both Betula pendula and Pinus nigra intercepted similar amount of rainfall, 68 % and 69 %, respectively. Event B was observed in the night from the 7th to 8th of May 2014, it was 16 hours and 18 minutes long, and delivered 4.2 mm of rainfall with average intensity of 0.97 mm/h. There were 39,108 raindrops detected with average diameter of 0.858 mm and average velocity of 3.855 m/s. Betula pendula

  13. Biomimicry of optical microstructures of Papilio palinurus

    NASA Astrophysics Data System (ADS)

    Crne, Matija; Sharma, Vivek; Blair, John; Park, Jung Ok; Summers, Christopher J.; Srinivasarao, Mohan

    2011-01-01

    The brilliant coloration of animals in nature is sometimes based on their structure rather than on pigments. The green colour on the wings of a butterfly Papilio palinurus originates from the hierarchical microstructure of individual wing scales that are tiled on the wing. The hierarchical structure gives rise to two coloured reflections of visible light, blue and yellow which when additively mixed, produce the perception of green colour on the wing scales. We used breath figure templated assembly as the starting point for the structure and, combining it with atomic layer deposition for the multilayers necessary for the production of interference colors, we have faithfully mimicked the structure and the optical effects found on the wing scale of the butterfly Papilio palinurus.

  14. Atomic level microstructural characterization by APFIM

    SciTech Connect

    Miller, M.K.

    1996-10-01

    Atom probe field ion microscopy has been used to characterize Ni aluminides in addition to changes in microstructure of pressure vessel steels as a result of exposure to neutron irradiation. Ultrafine intragranular Cu precipitates and P segregation to grain and lath boundaries have been quantified in the pressure vessel steels. In boron-doped Ni{sub 3}Al, the B additions were found to segregate to dislocations, low angle boundaries, antiphase boundaries, stacking faults, and grain boundaries. In boron-doped NiAl, B segregation to grain boundaries and ultrafine MB{sub 2} precipitates were observed. In Mo-doped NiAl, enrichments of Mo, C, N/Si, B, and Fe were observed at the grain boundaries together with Mo precipitates and low Mo matrix solubility.

  15. Blood typing using microstructured waveguide smart cuvette.

    PubMed

    Zanishevskaya, Anastasiya A; Shuvalov, Andrey A; Skibina, Yulia S; Tuchin, Valery V

    2015-04-01

    We introduce a sensitive method that allows one to distinguish positive and negative agglutination reactions used for blood typing and determination of Rh affinity with a high precision. The method is based on the unique properties of photonic crystal waveguides, i.e., microstructured waveguides (MSWs). The transmission spectrum of an MSW smart cuvette filled by a specific or nonspecific agglutinating serum depends on the scattering, refractive, and absorptive properties of the blood probe. This concept was proven in the course of a laboratory clinical study. The obtained ratio of the spectral-based discrimination parameter for positive and negative reactions (I+/I-) was found to be 16 for standard analysis and around 2 for used sera with a weak activity.

  16. Microstructure and creep properties of alumina.

    SciTech Connect

    Moreno, J. M. C.; Lopez, A. R.; Rodriguez, A. D.; Routbort, J. L.; Materials Science Division; Univ. of Seville

    1995-01-01

    High temperature creep of two zirconia toughened alumina ceramics, fabricated by powder processing and sol-gel precursors processing, has been studied in order to determine plastic deformation mechanisms. Compressive creep tests were carried out between 1300 and 1450 C, under stresses from 10 to 150 MPa. For the sample fabricated from powders, a stress exponent of 1.4 and an activation energy of 580 kJ/mol were found below a critical stress of 40 MPa. For larger stresses, accelerated creep rates developed. In the specimens processed from precursors, values of 1.8 for the stress exponent and 540 kJ/mol for the activation energy, over the entire range of stresses have been determined. Creep parameters and microstructural evolution of the samples during the experiments have been correlated with models to establish the dominant creep mechanism.

  17. Microstructural Characterization of Cast Metallic Transmutation Fuels

    SciTech Connect

    J. I. Cole; D. D. Keiser; J. R. Kennedy

    2007-09-01

    As part of the Global Nuclear Energy Partnership (GNEP) and the Advanced Fuel Cycle Initiative (AFCI), the US Department of Energy (DOE) is participating in an international collaboration to irradiate prototypic actinide-bearing transmutation fuels in the French Phenix fast reactor (FUTURIX-FTA experiment). The INL has contributed to this experiment by fabricating and characterizing two compositions of metallic fuel; a non-fertile 48Pu-12Am-40Zr fuel and a low-fertile 35U-29Pu-4Am-2Np-30Zr fuel for insertion into the reactor. This paper highlights results of the microstructural analysis of these cast fuels, which were reasonably homogeneous in nature, but had several distinct phase constituents. Spatial variations in composition appeared to be more pronounced in the low-fertile fuel when compared to the non-fertile fuel.

  18. Phase behavior and microstructure of nonaqueous microemulsions

    SciTech Connect

    Martino, A.; Kaler, E.W. )

    1990-02-22

    Phase behavior of glycerol, propylene glycol, hydrocarbon, and alkylpolyglycol ether (C{sub i}E{sub j}) surfactant microemulsions has been studied. Surfactant solubility in the polar organic phase (a mixture of glycerol and propylene glycol) decreases when glycerol content is increased, and a 2-3-2 phase transition is observed at constant temperature. The phase behavior usually observed in water microemulsions as a function of temperature is observed here as a function of the fraction of glycerol in the polar organic phase. Phase behavior is reported as a function of oil solvophobicity and the surfactant solvophilic-lipophilic balance and is compared to a well-established model developed for aqueous microemulsions. Porod analysis of small-angle X-ray scattering (SAX) measurements indicates the presence of interfaces; thus the fluids are microstructured. The SAXS measurements suggest that aqueous and nonaqueous microemulsions are structurally similar.

  19. Microstructure defect detection using thermal response

    NASA Astrophysics Data System (ADS)

    Olson, Brandon; Chen, Kuan H.

    2002-04-01

    Detecting thermal and mechanical defects within multilayered microstructures is an important research area within the microdevice community. The detection of material flaws, mechanical damage, and packaging irregularities is often critical to the overall performanc eof the end product. The technique presented hereafter uses a series of surface temperature measurements, generated by a step function heat flux, to determine the thermal properties of a one- dimensional structure. These properties can either be used directly in a design effort, or they can be used as an indicator of problems that may exist within the structure. This technique is essentially non-invasive and it places no requirements on structure size, thus it is predisposed to semiconductor and MEMS applications. The technique exploits a thermal-electrical analog to match a measured thermal resistance pattern with the pattern of a corresponding thermal structure. Typically, the dimensions of the structure and the disturbance amplitude are required for property value determination.

  20. Biologically Inspired Mushroom-Shaped Adhesive Microstructures

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Gorb, Stanislav N.

    2014-07-01

    Adhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.

  1. Microstructures in the Polar Solar Wind: Ulysses

    NASA Technical Reports Server (NTRS)

    Tsuruyani, Bruce T.; Arballo, J. K.; Galvan, C.; Goldstein, B. E.; Lakhina, G. S.; Sakurai, R.; Smith, E. J.; Neugebauer, M.

    1999-01-01

    We find that small (10-200 rP) magnetic decreases comprise a dominant part of the polar solar wind microstructure at Ulysses distances (2.2 AU). These magnetic field dips are almost always bounded by tangential discontinuities, a feature which is not well understood at this time. Hundreds of these events have been examined in detail and a variety of types have been found. These will be described. It is speculated that these structures have been generated by perpendicular heating of ions closer to the Sun and have then been convected to distances of Ulysses. Such structures may be very important for the rapid cross- field diffusion of ions in the polar regions of the heliosphere.

  2. Effect of Nanoclay on Natural Rubber Microstructure

    SciTech Connect

    Carretero-Gonzalez,J.; Retsos, H.; Verdejo, R.; Toki, S.; Hsiao, B.; Giannelis, E.; Lopez-Manchado, M.

    2008-01-01

    The inclusion of highly anisotropic clay nanoparticles (nanoclays) in cross-linked natural rubber (NR) provides a more homogeneous distributed network structure and induces an early onset as well as enhancement of crystallization under uniaxial deformation. The molecular structure of the polymer network and its morphological changes during deformation were characterized by using broadband dielectric spectroscopy and in situ synchrotron wide-angle X-ray diffraction, respectively. It was found that the presence of nanoclay introduces a dual crystallization mechanism due to the alignment of nanoparticles during stretching. The improved properties in NR-nanoclay nanocomposites can be attributed to both microstructural and morphological changes induced by nanoclay as well as to the nanoclay mobility in the NR matrix during crystallization. The interplay of these factors during deformation contributes to the formation of a supernetwork structure containing cross-linked chemical chains, nanofiller, and crystallizable networks with similar length scales.

  3. Magnetic and microstructural properties of some lodestones

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.

    1977-01-01

    A lodestone is an iron ore that behaves as a permanent magnet. A protolodestone is an iron ore capable of being charged sufficiently strongly to behave as a permanent magnet. In the present paper, important criteria are established which distinguish lodestones from other iron ores. Magnetic hysteresis-loop data provide evidence that the massive pieces of lodestone behave magnetically as fine intergrowths rather than coarse multidomain material. This means that the iron ores have been magnetically hardened. The nature and scale of the hardening microstructure is illustrated by photo micrographs. The mechanism of charging the protolodestone appears to be either transient magnetic fields with lightning-discharge currents, or presently obscure aspects of magnetization intensity enhancement associated with maghemitization of massive iron ores.

  4. Water diffusion to assess meat microstructure.

    PubMed

    Laghi, Luca; Venturi, Luca; Dellarosa, Nicolò; Petracci, Massimiliano

    2017-12-01

    In the quest for setting up rapid methods to evaluate water retention ability of meat microstructures, time domain nuclear magnetic resonance (TD-NMR) has gained a prominent role, due to the possibility to observe water located outside the myofibrils, easily lost upon storage or cooking. Diffusion weighted signals could be used to monitor the shape and dimension of the pores in which water is confined, thus boosting the information offered by TD-NMR. The work outlines a parsimonious model to describe relative abundance and diffusion coefficient of intra and extra myofibrillar water populations, exchange rate between them, diameter of the myofibrillar cells. To test our model, we registered diffusion and T2 weighted NMR signals at 20MHz on fresh meat from pectoralis major muscle of 100days old female turkey. We then purposely altered water distribution and myofibrils shape by means of freezing. The model predicted nicely the consequences of the imposed modifications. Copyright © 2016. Published by Elsevier Ltd.

  5. Microstructural aspects of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Mitchell, T. E.; Suhr, D. S.; Keller, R. J.; Lanteri, V.; Heuer, A. H.

    1985-01-01

    Various combination of plasma-sprayed bond coatings and zirconia ceramic coatings on a nickel-based superalloy substrate were tested by static thermal exposure at 1200 C and cyclic thermal exposure to 1000 C. The bond coats were based on Ni-Cr-Al alloys with additions of rare earth elements and Si. The ceramic coats were various ZrO2-Y2O3 compositions, of which the optimum was found to be ZrO2-8.9 wt percent Y2O3. Microstructural analysis showed that resistance to cracking during thermal exposure is strongly related to deleterious phase changes. Zones depleted of Al formed at the bond coat/ceramic coat interface due to oxidation and at the bond coat/substrate interface due to interdiffusion, leading eventually to breakdown of the bond coat. The 8.9 percent Y2O3 coating performed best because the as-sprayed metastable tetragonal phase converted slowly into the low-Y2O3 tetragonal plus high-Y2O3 cubic-phase mixture, so that the deleterious monoclinic phase was inhibited from forming. Failure appeared to start with the formation of circumferential cracks in the zirconia, probably due to compressive stresses during cooling, followed by the formation of radial cracks due to tensile stresses during heating. Cracks appeared to initiate at the Al2O3 scale/bond coat interface and propagate through the zirconia coating. Comparisons were made with the behavior of bulk ZrO2-Y2O3 and the relationship between the microstructure of the tetragonal phase and the phase diagram. A separate investigation was also made of the ZrO2-Al2O3 interface.

  6. Zeolite membranes: microstructure characterization and permeation mechanisms.

    PubMed

    Yu, Miao; Noble, Richard D; Falconer, John L

    2011-11-15

    Since their first synthesis in the 1940s, zeolites have found wide applications in catalysis, ion-exchange, and adsorption. Although the uniform, molecular-size pores of zeolites and their excellent thermal and chemical stability suggest that zeolites could be an ideal membrane material, continuous polycrystalline zeolite layers for separations were first prepared in the 1990s. Initial attempts to grow continuous zeolite layers on porous supports by in situ hydrothermal synthesis have resulted in membranes with the potential to separate molecules based on differences in molecular size and adsorption strength. Since then, further synthesis efforts have led to the preparation of many types of zeolite membranes and better quality membranes. However, the microstructure features of these membranes, such as defect size, number, and distribution as well as structure flexibility were poorly understood, and the fundamental mechanisms of permeation (adsorption and diffusion), especially for mixtures, were not clear. These gaps in understanding have hindered the design and control of separation processes using zeolite membranes. In this Account, we describe our efforts to characterize microstructures of zeolite membranes and to understand the fundamental adsorption and diffusion behavior of permeating solutes. This Account will focus on the MFI membranes which have been the most widely used but will also present results on other types of zeolite membranes. Using permeation, x-ray diffraction, and optical measurements, we found that the zeolite membrane structures are flexible. The size of defects changed due to adsorption and with variations in temperature. These changes in defect sizes can significantly affect the permeation properties of the membranes. We designed methods to measure mixture adsorption in zeolite crystals from the liquid phase, pure component adsorption in zeolite membranes, and diffusion through zeolite membranes. We hope that better understanding can lead

  7. Soil microstructure and factors of its formation

    NASA Astrophysics Data System (ADS)

    Alekseeva, T. V.

    2007-06-01

    The microstructural stability of soils of different geneses (steppe soils, tropical soils, and subtropical soils) developed from marine clay, loess, and weathering crusts was studied by the method of successive treatments with chemical reagents destroying the particular clay-aggregating components. The following dispersing agents were used: (1) H2O (pH 5.5), (2) 0.1 N NaCl (pH 6), (3) 0.002% Na2CO3 (pH 8.7), (4) 0.1 N NaOH (pH 11.5), (5) the Tamm reagent (pH 3.2), and (6) 0.1 N NaOH (pH 11.5). The properties of the clay subfractions obtained in the course of these treatments were studied by a set of analytical methods, including X-ray diffractometry, Mössbauer spectroscopy, and magnetic measurements. It was shown that soil microaggregates are formed under the impact of a number of physicochemical processes; the content and properties of inorganic components (clay minerals in soils with a high CEC and iron oxides in soils with a low CEC) are the controlling factors. The structure of the parent materials is transformed to different degrees to form the soil structure. For example, autonomous nondifferentiated soils inherit, to some extent, the specific microorganization of the parent material. At the same time, the redistribution of substances in the soil profile and in the landscape may exert a substantial influence on the soil structure and microstructure. This is particularly true for autonomous differentiated soils, turbated soils, accumulative soils, polylithogenic soils, and polygenetic soils. The properties of the obtained subfractions of the clay (the mineralogical composition, the Fe2+/(Fe2+ + Fe3+) ratio, the magnetic susceptibility, and the Cha/Cfa ratio) attest to the spatial heterogeneity of the composition and properties of the mineral and organic aggregated compounds in soils.

  8. Optical screw-wrench for interlocking 2PP-microstructures

    NASA Astrophysics Data System (ADS)

    Köhler, J.; Zyla, G.; Ksouri, S. I.; Esen, C.; Ostendorf, A.

    2016-03-01

    Two-photon polymerization (2PP) has emerged as a powerful platform for processing three-dimensional microstructures with high resolution. Furthermore, by adding nanoparticles of different materials to the photopolymer the microstructures can be functionalized, e.g. magnetic or electric properties can be adjusted. However, to combine different functions within one microstructure or to manufacture complex microsystems, assembling techniques for multiple 2PP written building blocks are required. In this paper a qualitative approach for assembling microstructures utilizing optical forces is presented. Therefore, screw and nut shaped microstructures are produced by 2PP-technique and screwed together using a holographic optical tweezer (HOT). The interlocking structures are trapped and rotated into each other to cause connection. In this paper the used parameters and possible designs of the interlocking connection are discussed. These findings provide not only the assembling of building blocks to complex microstructures, rather different functionalized 2PP-microstructures can be combined by simply screwing them together with the use of optical forces.

  9. Solidification microstructures in single-crystal stainless steel melt pools

    SciTech Connect

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  10. Microstructure of Tablet-Pharmaceutical Significance, Assessment, and Engineering.

    PubMed

    Sun, Changquan Calvin

    2017-05-01

    To summarize the microstructure - property relationship of pharmaceutical tablets and approaches to improve tablet properties through tablet microstructure engineering. The main topics reviewed here include: 1) influence of material properties and manufacturing process parameters on the evolution of tablet microstructure; 2) impact of tablet structure on tablet properties; 3) assessment of tablet microstructure; 4) development and engineering of tablet microstructure. Microstructure plays a decisive role on important pharmaceutical properties of a tablet, such as disintegration, drug release, and mechanical strength. Useful information on mechanical properties of a powder can be obtained from analyzing tablet porosity-pressure data. When helium pycnometry fails to accurately measure true density of a water-containing powder, non-linear regression of tablet density-pressure data is a useful alternative method. A component that is more uniformly distributed in a tablet generally exerts more influence on the overall tablet properties. During formulation development, it is highly recommended to examine the relationship between any property of interest and tablet porosity when possible. Tablet microstructure can be engineered by judicious selection of formulation composition, including the use of the optimum solid form of the drug and appropriate type and amount of excipients, and controlling manufacturing process.

  11. Microstructure characterization of Cu processed by compression with oscillatory torsion

    SciTech Connect

    Rodak, K.; Pawlicki, J.

    2014-08-15

    High purity Cu (99.9%) was subjected to severe plastic deformation up to a total effective strain ε{sub ft} = 130 through compression with the oscillatory torsion method at room temperature. This method produces an ultrafine grain microstructure. The microstructure evolution was investigated with respect to the value of the total effective strain using a scanning electron microscope with an electron-backscattered diffraction technique and a scanning transmission electron microscope. The results of the structural analyses show that increasing ε{sub ft} from 2 to 50 causes progress in the grain refinement. A quantitative study of the microstructure parameters, such as fraction of high angle boundaries, grain and subgrain diameter, and the area fraction of grains up to 1 μm, shows that deformation at ε{sub ft} = 45 guaranteed the best conditions for refining the microstructure of Cu. Using high values of ε{sub ft} in the range 60 to 130 restricts grain refinement because intensive recovery begins to dominate in the microstructure. - Highlights: • Cu was processed by SPD metodto an effective strain 130. • The microstructure evolution has been investigated. • The method allows to produce an ultrafine grain microstructure.

  12. Microstructural characterization of multiphase chocolate using X-ray microtomography.

    PubMed

    Frisullo, Pierangelo; Licciardello, Fabio; Muratore, Giuseppe; Del Nobile, Matteo Alessandro

    2010-09-01

    In this study, X-ray microtomography (μCT) was used for the image analysis of the microstructure of 12 types of Italian aerated chocolate chosen to exhibit variability in terms of cocoa mass content. Appropriate quantitative 3-dimensional parameters describing the microstructure were calculated, for example, the structure thickness (ST), object structure volume ratio (OSVR), and the percentage object volume (POV). Chemical analysis was also performed to correlate the microstructural data to the chemical composition of the samples. Correlation between the μCT parameters acquired for the pore microstructure evaluation and the chemical analysis revealed that the sugar crystals content does not influence the pore structure and content. On the other hand, it revealed that there is a strong correlation between the POV and the sugar content obtained by chemical analysis. The results from this study show that μCT is a suitable technique for the microstructural analysis of confectionary products such as chocolates and not only does it provide an accurate analysis of the pores and microstructure but the data obtained could also be used to aid in the assessment of its composition and consistency with label specifications. X-ray microtomography (μCT) is a noninvasive and nondestructive 3-D imaging technique that has several advantages over other methods, including the ability to image low-moisture materials. Given the enormous success of μCT in medical applications, material science, chemical engineering, geology, and biology, it is not surprising that in recent years much attention has been focused on extending this imaging technique to food science as a useful technique to aid in the study of food microstructure. X-ray microtomography provides in-depth information on the microstructure of the food product being tested; therefore, a better understanding of the physical structure of the product and from an engineering perspective, knowledge about the microstructure of

  13. General introduction to microstructural evolution under cascade damage conditions

    SciTech Connect

    Wiedersich, H.

    1993-06-01

    A short overview of the processes that affect the evolution of the microstructure during irradiation is given. The processes include defect production with an emphasis on the effects of the dynamic cascade events, defect clustering, irradiation-enhanced diffusion, radiation-induced segregation, phase decompositions and phase transformations. A simple model for the description of the development of the defect microstructure in a pure metal during cascade producing irradiation is also outlined which can provide, in principle, defect fluxes required for the description of the microstructural processes such as phase decomposition and irradiation-induced precipitation.

  14. Formation of Immiscible Alloy Powders with Egg-Type Microstructure

    NASA Astrophysics Data System (ADS)

    Wang, C. P.; Liu, X. J.; Ohnuma, I.; Kainuma, R.; Ishida, K.

    2002-08-01

    The egg-type core microstructure where one alloy encases another has previously been obtained during experiments in space. Working with copper-iron base alloys prepared by conventional gas atomization, we were able to obtain this microstructure under gravity conditions. The minor liquid phase always formed the core of the egg, and it sometimes also formed a shell layer. The origin of the formation of this core microstructure can be explained by Marangoni motion on the basis of the temperature dependence of the interfacial energy, which shows that this type of powder can be formed even if the cooling rate is very high.

  15. Microstructure-controllable Laser Additive Manufacturing Process for Metal Products

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chin; Chuang, Chuan-Sheng; Lin, Ching-Chih; Wu, Chih-Hsien; Lin, De-Yau; Liu, Sung-Ho; Tseng, Wen-Peng; Horng, Ji-Bin

    Controlling the cooling rate of alloy during solidification is the most commonly used method for varying the material microstructure. However, the cooling rate of selective laser melting (SLM) production is constrained by the optimal parameter settings for a dense product. This study proposes a method for forming metal products via the SLM process with electromagnetic vibrations. The electromagnetic vibrations change the solidification process for a given set of SLM parameters, allowing the microstructure to be varied via magnetic flux density. This proposed method can be used for creating microstructure-controllable bio-implant products with complex shapes.

  16. Microstructural Origins of Cement Paste Degradation by External Sulfate Attack

    PubMed Central

    Feng, Pan; Garboczi, Edward J.; Miao, Changwen; Bullard, Jeffrey W.

    2015-01-01

    A microstructure model has been applied to simulate near-surface degradation of portland cement paste in contact with a sodium sulfate solution. This new model uses thermodynamic equilibrium calculations to guide both compositional and microstructure changes. It predicts localized deformation and the onset of damage by coupling the confined growth of new solids with linear thermoelastic finite element calculations of stress and strain fields. Constrained ettringite growth happens primarily at the expense of calcium monosulfoaluminate, carboaluminate and aluminum-rich hydrotalcite, if any, respectively. Expansion and damage can be mitigated chemically by increasing carbonate and magnesium concentrations or microstructurally by inducing a finer dispersion of monosulfate. PMID:26722191

  17. 3D Microstructures for Materials and Damage Models

    DOE PAGES

    Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan

    2017-02-01

    Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less

  18. Effect of Multipasses on Microstructure and Electrochemical Behavior of Weldments

    NASA Astrophysics Data System (ADS)

    Makhdoom, Muhammad Atif; Kamran, Muhammad; Awan, Gul Hameed; Mukhtar, Sehrish

    2013-12-01

    Shielded metal arc welding was applied to AISI 1045 medium carbon steel. The microstructural changes and electrochemical corrosion behavior of the heat-affected zone (HAZ), base metal (BM), and weld zone (WZ) were investigated. The effect of welding passes on microstructural changes of BM, HAZ, and WZ were elucidated using optical microscopy, potentiodynamic Tafel scan, and linear polarization resistance (LPR) methods in plain water and 3.5 pct (w/v) NaCl solution under standard temperature and pressure using corrosion kinetic parameters. From microstructural observations, the variations in ferrite morphology in the BM and WZ showed dissimilar electrochemical corrosion behavior and a corrosion rate than that of HAZ.

  19. Influence of microstructure on laser damage threshold of IBS coatings

    SciTech Connect

    Stolz, C.J.; Genin, F.Y.; Kozlowski, M.R.

    1996-12-31

    Multilayer coatings deposited by ion-beam sputtering with amorphous layers were found to have lower damage thresholds at 1064 nm than similar coatings with crystalline layers. Interestingly, at higher fluences the damage was less severe for the amorphous coatings. The magnitude of the difference in damage thresholds between the two different microstructures was strongly influenced by the size of the tested area. To better understand the microstructure effects, single layers of HfO{sub 2} With different microstructures were studied using transmission electron microscopy, ellipsometery, and a photothermal deflection technique. Since the laser damage initiated at defects, the influence of thermal diffusivity on thermal gradients in nodular defects is also presented.

  20. Microstructural Origins of Cement Paste Degradation by External Sulfate Attack.

    PubMed

    Feng, Pan; Garboczi, Edward J; Miao, Changwen; Bullard, Jeffrey W

    2015-10-15

    A microstructure model has been applied to simulate near-surface degradation of portland cement paste in contact with a sodium sulfate solution. This new model uses thermodynamic equilibrium calculations to guide both compositional and microstructure changes. It predicts localized deformation and the onset of damage by coupling the confined growth of new solids with linear thermoelastic finite element calculations of stress and strain fields. Constrained ettringite growth happens primarily at the expense of calcium monosulfoaluminate, carboaluminate and aluminum-rich hydrotalcite, if any, respectively. Expansion and damage can be mitigated chemically by increasing carbonate and magnesium concentrations or microstructurally by inducing a finer dispersion of monosulfate.

  1. Microstructure of bidisperse ferrofluids in a thin layer

    SciTech Connect

    Minina, E. S. Muratova, A. B.; Cerda, J. J.; Kantorovich, S. S.

    2013-03-15

    In this work we present a characterization of the bidisperse ferrofluid microstructures that appear in thin layers of ferrofluid. These layers have been studied by a combination of Langevin dynamics simulations and density functional theory. Our results allow us to compare the microstructures that exist in quasi-two-dimensional ferrofluid nanolayers with the microstructures found in three-dimensional bidisperse ferrofluids. Furthermore, our results allow us to explain the influence of the geometry of the sample on the topology and size-distribution of the observed aggregates of magnetic nanoparticles.

  2. Microstructural characterization in nanocrystalline ceramic thin films

    NASA Astrophysics Data System (ADS)

    Kim, Hakkwan

    The primary objective of this research is to investigate the effects of process variables on microstructure in several fluoride and oxide thin films prepared by vapor deposition, in order to predict the properties and behaviors of nanocrystalline thin film materials. There are three distinct stages of this research. The first stage focuses on measuring of the porosity in polycrystalline thin films of a variety of fluorides as a function of the substrate temperature during deposition, and discussing the mechanism by which the porosity varies as a function of the process variables. We have measured the porosity in thin films of lithium fluoride (LiF), magnesium fluoride (MgF2), barium fluoride (BaF 2) and calcium fluoride (CaF2) using an atomic force microscope (AFM) and a quartz crystal thickness monitor. The porosity is very sensitive to the substrate temperature and decreases as the substrate temperature increases. Consistent behavior is observed among all of the materials in this study. The second stage is to understand the film microstructure including grain growth and texture development, because these factors are known to influence the behavior and stability of polycrystalline thin films. This study focuses on grain growth and texture development in polycrystalline lithium fluoride thin films using dark field (DF) transmission electron microscopy (TEM). It is demonstrated that we can isolate the size distribution of <111> surface normal grains from the overall size distribution, based on simple and plausible assumptions about the texture. The {111} texture formation and surface morphology were also observed by x-ray diffraction (XRD) and AFM, respectively. The grain size distributions become clearly bimodal as the annealing time increases, and we deduce that the short-time size distributions are also a sum of two overlapping peaks. The smaller grain-size peak in the distribution corresponds to the {111}-oriented grains which do not grow significantly, while

  3. Polymer microstructured fibers by one-step extrusion

    NASA Astrophysics Data System (ADS)

    Mignanelli, M.; Wani, K.; Ballato, J.; Foulger, S.; Brown, P.

    2007-05-01

    For the first time to our knowledge, polymer-based microstructured fibers with complex cross-sections are directly produced via melt extrusion. Two principal types of fibers were fabricated: a microstructured fiber of a single polymer with a hexagonal array of air holes and a bicomponent fiber consisting of approximately 60 coaxial rings. From the latter, strong visible iridescence was observed and is shown to exhibit a mechanochromic response. This approach, the mainstay of the textile trade for decades, offers a means of continuous high-volume low-cost manufacturing of polymer (and conceivably soft-glass) fibers. For example, in the present effort, 128 coaxially microstructured fibers were fabricated simultaneously at rates exceeding 1200 m/min from industrially mainstream polymers. This approach offers an important step forward towards commoditizing microstructured fibers and open new doors for optical engineering in fashion, marking/identification, and numerous military applications.

  4. Polymer microstructured fibers by one-step extrusion.

    PubMed

    Mignanelli, M; Wani, K; Ballato, J; Foulger, S; Brown, P

    2007-05-14

    For the first time to our knowledge, polymer-based microstructured fibers with complex cross-sections are directly produced via melt extrusion. Two principal types of fibers were fabricated: a microstructured fiber of a single polymer with a hexagonal array of air holes and a bicomponent fiber consisting of approximately 60 coaxial rings. From the latter, strong visible iridescence was observed and is shown to exhibit a mechanochromic response. This approach, the mainstay of the textile trade for decades, offers a means of continuous high-volume low-cost manufacturing of polymer (and conceivably soft-glass) fibers. For example, in the present effort, 128 coaxially microstructured fibers were fabricated simultaneously at rates exceeding 1200 m/min from industrially mainstream polymers. This approach offers an important step forward towards commoditizing microstructured fibers and open new doors for optical engineering in fashion, marking/identification, and numerous military applications.

  5. Modeling crack propagation in polycrystalline microstructure using variational multiscale method

    DOE PAGES

    Sun, Shang; Sundararaghavan, Veera

    2016-01-01

    Crack propagation in a polycrystalline microstructure is analyzed using a novel multiscale model. The model includes an explicit microstructural representation at critical regions (stress concentrators such as notches and cracks) and a reduced order model that statistically captures the microstructure at regions far away from stress concentrations. Crack propagation is modeled in these critical regions using the variational multiscale method. In this approach, a discontinuous displacement field is added to elements that exceed the critical values of normal or tangential tractions during loading. Compared to traditional cohesive zone modeling approaches, the method does not require the use of any specialmore » interface elements in the microstructure and thus can model arbitrary crack paths. As a result, the capability of the method in predicting both intergranular and transgranular failure modes in an elastoplastic polycrystal is demonstrated under tensile and three-point bending loads.« less

  6. A Combined Statistical-Microstructural Model for Simulation of Sintering

    SciTech Connect

    BRAGINSKY,MICHAEL V.; DEHOFF,ROBERT T.; OLEVSKY,EUGENE A.; TIKARE,VEENA

    1999-10-22

    Sintering theory has been developed either as the application of complex diffusion mechanisms to a simple geometry or as the deformation and shrinkage of a continuum body. They present a model that can treat in detail both the evolution of microstructure and the sintering mechanisms, on the mesoscale, so that constitutive equations with detail microstructural information can be generated. The model is capable of simulating vacancy diffusion by grain boundary diffusion, annihilation of vacancies at grain boundaries resulting in densification, and coarsening of the microstructural features. In this paper, they review the stereological theory of sintering and its application to microstructural evolution and the diffusion mechanism, which lead to sintering. They then demonstrate how these stereological concepts and diffusion mechanisms were incorporated into a kinetic Monte Carlo model to simulate sintering. Finally, they discuss the limitations of this model.

  7. Stability of Cassie-Baxter wetting states on microstructured surfaces

    NASA Astrophysics Data System (ADS)

    Guo, Hao-Yuan; Li, Bo; Feng, Xi-Qiao

    2016-10-01

    A stable Cassie-Baxter (CB) wetting state is indispensable for the superhydrophobicity of solid surfaces. In this paper, we analyze the equilibrium and stability of CB wetting states. Using an energy approach, the stability criteria of CB wetting states are established for solid surfaces with either two- or three-dimensional symmetric microstructures. A generic method is presented to calculate the critical pressure at which the CB state on a microstructured solid surface collapses. The method holds for microstructures with arbitrary generatrix, and explicit solutions are derived for a few representative microstructures with a straight or circular generatrix. In addition, some possible strategies are proposed to design surface structures with stable CB wetting states from the viewpoints of geometry and chemistry.

  8. Microstructure and Thermal History of Metal Particles in CH Chondrites

    NASA Astrophysics Data System (ADS)

    Goldstein, J. I.; Jones, R. H.; Kotula, P. G.; Michael, J. R.

    2005-03-01

    This paper provides detailed microstructural and microchemical information at the nm to µm scale (SEM, EPMA, TEM, EBSD) for a select suite of metal particles in four CH chondrites, ALH 85085, PAT 91546, Acfer 214, NWA 739.

  9. Macrosegregation and Microstructural Evolution in a Pressure-Vessel Steel

    NASA Astrophysics Data System (ADS)

    Pickering, E. J.; Bhadeshia, H. K. D. H.

    2014-06-01

    This work assesses the consequences of macrosegregation on microstructural evolution during solid-state transformations in a continuously cooled pressure-vessel steel (SA508 Grade 3). Stark spatial variations in microstructure are observed following a simulated quench from the austenitization temperature, which are found to deliver significant variations in hardness. Partial-transformation experiments are used to show the development of microstructure in segregated material. Evidence is presented which indicates the bulk microstructure is not one of upper bainite, as it has been described in the past, but one comprised of Widmanstätten ferrite and pockets of lower bainite. Segregation is observed on three different length scales, and the origins of each type are proposed. Suggestions are put forward for how the segregation might be minimized, and its detrimental effects suppressed by heat treatments.

  10. Microstructures of poly (ethylene glycol) by molding and dewetting

    NASA Astrophysics Data System (ADS)

    Suh, Kahp Y.; Langer, Robert

    2003-08-01

    We report on the fabrication of microstructures of poly (ethylene glycol) (PEG) using a soft molding technique. When a patterned poly (dimethylsiloxane) stamp is placed on a wet PEG film, the polymer in contact with the stamp spontaneously moves into the void space as a result of capillary action. Three types of microstructures are observed with the substrate surface completely exposed: a negative replica of the stamp, a two-dimensional projection of the simple cubic structure, and a two-dimensional projection of the diamond structure. A molding process is responsible for the first type and a dewetting process for the final two. A phase diagram is constructed based on the effects of molecular weight and concentration, which shows that mobility and confinement play a crucial role in determining the particular type of microstructure obtained. The PEG microstructure could be used as a lithographic resist in fabricating electronic devices and a resistant layer for preventing nonspecific adsorption of proteins or cells.

  11. Modeling microstructural development during the forging of Waspaloy

    SciTech Connect

    Shen, G.; Shivpuri, R.; Semiatin, S.L.

    1995-07-01

    A model for predicting the evolution of microstructure in Waspaloy during thermomechanical processing was developed in terms of dynamic recrystallization (DRX), metadynamic recrystallization, and grain growth phenomena. Three sets of experiments were conducted to develop the model: (1) preheating tests to model grain growth prior to hot deformation; (2) compression tests in a Gleeble testing machine with different deformation and cooling conditions to model DRX, metadynamic recrystallization, and short time grain growth during the post deformation dwell period and cooling; and (3) pancake and closed die forging tests conducted in a manufacturing environment to verify and refine the model. The microstructural model was combined with finite element modeling (FEM) to predict microstructure development during forging of Waspaloy. Model predictions showed good agreement with microstructures obtained in actual isothermal and hammer forgings carried out at a forging shop.

  12. Thermal modification of microstructures and grain boundaries in silicon carbide

    SciTech Connect

    Zhang, Xiao Feng; De Jonghe, Lutgard C.

    2003-05-23

    Polycrystalline SiC samples hot-pressed with aluminum, boron, and carbon sintering additions (ABC-SiC) were characterized using transmission electron microscopy. The study focused on the effects of high temperature treatment on microstructure.

  13. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers

    NASA Astrophysics Data System (ADS)

    Mannsfeld, Stefan C. B.; Tee, Benjamin C.-K.; Stoltenberg, Randall M.; Chen, Christopher V. H.-H.; Barman, Soumendra; Muir, Beinn V. O.; Sokolov, Anatoliy N.; Reese, Colin; Bao, Zhenan

    2010-10-01

    The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times.

  14. Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring

    PubMed Central

    Soto, Matias; Esteva, Milton; Martínez-Romero, Oscar; Baez, Jesús; Elías-Zúñiga, Alex

    2015-01-01

    A methodology was developed for the prediction of the electrical properties of carbon nanotube-polymer nanocomposites via Monte Carlo computational simulations. A two-dimensional microstructure that takes into account waviness, fiber length and diameter distributions is used as a representative volume element. Fiber interactions in the microstructure are identified and then modeled as an equivalent electrical circuit, assuming one-third metallic and two-thirds semiconductor nanotubes. Tunneling paths in the microstructure are also modeled as electrical resistors, and crossing fibers are accounted for by assuming a contact resistance associated with them. The equivalent resistor network is then converted into a set of linear equations using nodal voltage analysis, which is then solved by means of the Gauss–Jordan elimination method. Nodal voltages are obtained for the microstructure, from which the percolation probability, equivalent resistance and conductivity are calculated. Percolation probability curves and electrical conductivity values are compared to those found in the literature. PMID:28793594

  15. Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring.

    PubMed

    Soto, Matias; Esteva, Milton; Martínez-Romero, Oscar; Baez, Jesús; Elías-Zúñiga, Alex

    2015-09-30

    A methodology was developed for the prediction of the electrical properties of carbon nanotube-polymer nanocomposites via Monte Carlo computational simulations. A two-dimensional microstructure that takes into account waviness, fiber length and diameter distributions is used as a representative volume element. Fiber interactions in the microstructure are identified and then modeled as an equivalent electrical circuit, assuming one-third metallic and two-thirds semiconductor nanotubes. Tunneling paths in the microstructure are also modeled as electrical resistors, and crossing fibers are accounted for by assuming a contact resistance associated with them. The equivalent resistor network is then converted into a set of linear equations using nodal voltage analysis, which is then solved by means of the Gauss-Jordan elimination method. Nodal voltages are obtained for the microstructure, from which the percolation probability, equivalent resistance and conductivity are calculated. Percolation probability curves and electrical conductivity values are compared to those found in the literature.

  16. Challenges in microstructural metrology for advanced engineered materials

    NASA Astrophysics Data System (ADS)

    Mingard, K. P.; Roebuck, B.; Quested, P.; Bennett, E. G.

    2010-04-01

    Measurement of microstructural parameters is essential for both controlling and modelling properties of and production processes for advanced materials. In the past decade new techniques such as electron backscatter diffraction have enabled a considerable increase in the amount of data and degree of detail in microstructural measurements of, for example, the extent of recrystallization in a metal deformed at high temperatures. However, the many parameters involved and automated nature of the methods can lead to artefacts and bias in calculated values, and increased resolution will lead to disagreement with more conventional methods. Examples are given of the range of microstructural measurements possible by new techniques and how different results can be obtained from the same underlying data. The need is stressed for interlaboratory comparisons to enable underpinning data to be derived on the validity, repeatability and reproducibility of measurements of key microstructural parameters.

  17. Microstructural stability after severe plastic deformation of AZ31 Magnesium

    NASA Astrophysics Data System (ADS)

    Young, J. P.; Askari, H.; Hovanski, Y.; Heiden, M. J.; Field, D. P.

    2014-08-01

    Friction stir processing (FSP) and equal channel angular pressing (ECAP) were used to modify the microstructure of twin roll cast (TRC) AZ31 magnesium. The influence of these processes on the microstructural properties of the material was investigated. It was found that both processes produced microstructures with an average grain size of less than 10 pm, suggesting that they have the potential for superplastic deformation. Heat treatments were performed on the TRC, ECAP and FSP materials to assess their microstructural stability. Both the ECAP and TRC material were found to be fairly stable, showing normal grain growth while the FSP material grew substantially at temperatures above 200°C. The activation energy of grain boundary motion of the TRC material was calculated to be 167 kJ/mol.

  18. Microstructure and abrasive wear in silicon nitride ceramics

    SciTech Connect

    Dogan, Cynthia P.; Hawk, Jeffrey A.

    2001-10-01

    It is well known that abrasive wear resistance is not strictly a materials property, but also depends upon the specific conditions of the wear environment. Nonetheless, characteristics of the ceramic microstructure do influence its hardness and fracture toughness and must, therefore, play an active role in determining howa ceramic will respond to the specific stress states imposed upon it by the wear environment. In this study, the ways in which composition and microstructure influence the abrasive wear behavior of six commercially-produced silicon nitride based ceramics are examined. Results indicate that microstructural parameters, such as matrix grain size and orientation, porosity, and grain boundary microstructure, and thermal expansion mismatch stresses created as the result of second phase formation, influence the wear rate through their effect on wear sheet formation and subsurface fracture. It is also noted that the potential impact of these variables on the wear rate may not be reflected in conventional fracture toughness measurements.

  19. Role of Microstructural Phenomena in Magnetic Thin Films. Final Report

    SciTech Connect

    Laughlin, D. E.; Lambeth, D. N.

    2001-04-30

    Over the period of the program we systematically varied microstructural features of magnetic thin films in an attempt to better identify the role which each feature plays in determining selected extrinsic magnetic properties. This report summarizes the results.

  20. Microstructural evolution of eutectic gold-tin solder joints

    NASA Astrophysics Data System (ADS)

    Song, Ho Geon

    Current trends toward miniaturization and the use of lead (Pb)-free solders in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability. The study particularly concentrated on the effects that the joint size and the type of substrate metallization have on both the bulk and interface microstructures of the joints. The systems studied were eutectic Au-Sn on Cu and Cu/electroless Ni/Au and for each system, two sets of sample geometries were used. Eutectic Au-Sn solder joints on Cu have microstructures that are very coarse on the scale of the joint, where the microstructure is strongly affected by the amount of Cu dissolution during reflow process. During aging, steady diffusion of Cu leads to the growth of Cu-rich interfacial intermetallic layers, significant consumption of substrate Cu, and formation of Kirkendall pores along the interface. Thermal cycling of the joints caused decomposition of the thick zeta(Cu)-phase into a fine-grained multiphase microstructure. The microstructures of eutectic Au-Sn solder joints on Cu/electroless Ni/Au are also very coarse due to the dissolution of Au used as a protective layer during soldering. Electroless Ni is shown to effectively act as a diffusion barrier for Cu. The electroless Ni near the interface evolves into a complicated structure due to the interfacial reaction. The solubility characteristics and diffusional behavior of substrate metals into eutectic Au-Sn solder determines the detailed microstructure and microstructural evolution of the ultrafine eutectic Au-Sn joints. Two important things to be noted from the results are as follows: First, the overall microstructures of these joints are very coarse with respect to the size of joint, and hence the properties of the

  1. Microstructural Analysis of Welding: Deformation and Strain

    NASA Astrophysics Data System (ADS)

    Quane, S. L.; Russell, K.

    2003-12-01

    Welding in pyroclastic deposits involves the sintering, compaction and flattening of hot glassy particles and is attended by systematic changes in physical properties. Welded materials contain implicit information regarding the total accumulated strain as well as the mechanisms of deformation. Here, we use detailed microstructural analysis of synthetic and natural welded materials to make quantitative estimates of strain and constrain the rheology of these materials during the welding process. Part one of our study comprises microstructural analysis of end products from unconfined high temperature deformation experiments on sintered cores of soda-lime silica glass spheres. This analogue material has relatively simple and well-characterized starting properties. Furthermore, the initially spherical shapes of particles provide excellent strain markers. Experiments were run at a variety of temperatures, strain rates and stresses resulting in end products with varying degrees of total strain. The nature of strain partitioning and accumulation are evaluated using image analysis techniques on scanned images and photomicrographs of thin sections cut perpendicular to the loading direction of each experimental product. Shapes of the individual deformed particles (e.g., oblate spheroids) were determined and the Scion image analysis program was used to create a best-fit ellipse for each particle. Statistics collected on each particle include: axial dimension (a), vertical dimension (c) and angle from the horizontal. The data are used to calculate the oblateness of each particle (1-c/a) and the angle of deformation induced foliation. Furthermore, the relative proportions of visible blue epoxy in the sample scans determine bulk porosity. The average oblateness of the particles is a direct, independent measure of the accumulated strain in each sample. Results indicate that these measured values are equal to calculated theoretical values of oblateness for spheroids undergoing the

  2. Recording wind microstructure with a seismograph

    NASA Astrophysics Data System (ADS)

    Steeples, Don W.; Schmeissner, Chris; Macy, Brian

    In an effort to characterize the effects of atmospheric waves on seismic sensors at the surface of the earth, we used geophones to perform some simple experiments allowing us to “watch” the wind. By examining the wind noise on the resulting seismograms, we were able to characterize the microstructure of atmospheric wind gusts at a horizontal scale of 1 to 10 m. In a first experiment to detect the wind-induced wave field, we placed 96 geophones on the ground in a straight line aligned parallel with the wind at intervals of 0.3 m. We recorded the resulting data using a 96-channel exploration seismograph. In essence, the seismograph system served as a linear array of 96 ground-level wind sensors. On a 1- to 2-m scale, wind-gust details became apparent after the seismograph had recorded for a period of 7.5 s. When wind-gust speeds were between 4 and 7 m/s (as measured directly from the time-and-distance relationships obtained from the seismogram), the wavelength of the gusts was between 3 and 6 m. In a second experiment, we used an array consisting of three parallel lines of 32 geophones each and were able to detect the lateral components of wind motion and turbulence relative to the long axis of the array. We noted variations in both space and time in the effect of the wind gusts on the geophones. The sensing system we describe is preliminary; however, when further refined, it may be a useful way of looking at the microstructure of atmospheric motion near the ground. The data we obtained also suggest that when models are constructed and near-ground atmospheric observations are made using grid spacings of more than 1 m, the results may be subject to serious spatial-aliasing effects. The authors offer these results in the hope that they will stimulate new, cross-disciplinary scientific inquiry. Moreover, applications of the technique might include the generation of data to support improved modeling of atmospheric turbulence at meter scales, which could be of

  3. Modelling of nonlinear effects in microstructured fibres

    NASA Astrophysics Data System (ADS)

    Biancalana, Fabio

    In this thesis we study various nonlinear effects related to the existence of Solitons ajid Solitary Waves in solid-core Photonic Crystal Fibres (PCFs), Tapered Fibres (TFs) and Hollow-Core Photonic Crystal Fibres (HC-PCFs), collectively known as Microstructured Fibres. The influence of the strongly modified Group Velocity Dispersion (GVD) characteristics of solid-core PCFs on nonlinear parametric processes such as Modulational Instability (MI) and Four-Wave Mixing (FWM) Instability is analysed in detail. Scalar instabilities are treated rigorously using the full Maxwell Wave Equation, while vector instabilities are studied using coupled Generalised Nonlinear Schrodinger Equations (GNLSE). The strong modifications of the GVD due to the waveguide contribution of the microstructured cladding in solid-core PCFs and TFs compared to standard telecommunications fibres allow the existence of unconventional far-detuned instability regions, the properties of which are treated in detail. This thesis also presents complete analytical calculations of the amplitude of Resonant Radiation emitted by optical solitons in solid-core PCFs, due to the presence of Higher-Order Dispersion (HOD) terms, using two different but complementary approaches, which we call the 'adiabatic method' and the 'Green function method'. These calculations on Resonant Radiation serve as a solid basis for the precise understanding of the dynamics of Supercontinuum Generations in highly nonlinear solid-core PCFs and TFs, which we obtain by the use of Cross-Correlation Frequency Resolved Optical Gating (XFROG) spectrograms to visualise the behaviour of the system 'soliton + radiation'. The resonant nonlinear interaction between light and molecules of matter in a HC- PCF filled with Raman-active gases has been analysed in the framework of the full Maxwell-Bloch equations. We have discovered the existence of two different species of multi-frequency soliton, depending on whether the frequency difference of the

  4. Step-by-step growth of complex oxide microstructures

    DOE PAGES

    Datskos, Panos G.; Cullen, David A.; Sharma, Jaswinder K.

    2015-06-10

    The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. We developed a solution phase process to synthesize complex silica and silica titania hybrid microstructures by exploiting the emulsion droplet based shape control and step by step growth. The strategy is robust and can be extended to make complex hybrid structures made of two or more materials while each having its own shape.

  5. Microstructure Modeling of the Superalloy Ingot Breakdown Process

    DTIC Science & Technology

    2007-05-01

    AFRL-ML-WP-TP-2007-454 MICROSTRUCTURE MODELING OF THE SUPERALLOY INGOT BREAKDOWN PROCESS (PREPRINT) Alexander R. Bandar, Ravi Shankar, Li Cai...06-C-5203 5b. GRANT NUMBER 4. TITLE AND SUBTITLE MICROSTRUCTURE MODELING OF THE SUPERALLOY INGOT BREAKDOWN PROCESS (PREPRINT) 5c. PROGRAM...cogging of a nickel base superalloy are presented. Although this model is focused on and will be validated for cogging of nickel base superalloy U720, it

  6. Hemodynamic aspects of reduced platelet adhesion on bioinspired microstructured surfaces.

    PubMed

    Pham, Tam Thanh; Wiedemeier, Stefan; Maenz, Stefan; Gastrock, Gunter; Settmacher, Utz; Jandt, Klaus D; Zanow, Jürgen; Lüdecke, Claudia; Bossert, Jörg

    2016-09-01

    Occlusion by thrombosis due to the absence of the endothelial cell layer is one of the most frequent causes of failure of artificial vascular grafts. Bioinspired surface structures may have a potential to reduce the adhesion of platelets contributing to hemostasis. The aim of this study was to investigate the hemodynamic aspects of platelet adhesion, the main cause of thrombosis, on bioinspired microstructured surfaces mimicking the endothelial cell morphology. We tested the hypothesis that platelet adhesion is statistically significantly reduced on bioinspired microstructured surfaces compared to unstructured surfaces. Platelet adhesion as a function of the microstructure dimensions was investigated under flow conditions on polydimethylsiloxane (PDMS) surfaces by a combined experimental and theoretical approach. Platelet adhesion was statistically significantly reduced (by up to 78%; p≤0.05) on the microstructured PDMS surfaces compared to that on the unstructured control surface. Finite element method (FEM) simulations of blood flow dynamic revealed a micro shear gradient on the microstructure surfaces which plays a pivotal role in reducing platelet adhesion. On the surfaces with the highest differences of the shear stress between the top of the microstructures and the ground areas, platelet adhesion was reduced most. In addition, the microstructures help to reduce the interaction strength between fluid and surfaces, resulting in a larger water contact angle but no higher resistance to flow compared to the unstructured surface. These findings provide new insight into the fundamental mechanisms of reducing platelet adhesion on microstructured bioinspired surfaces and may lay the basis for the development of innovative next generation artificial vascular grafts with reduced risk of thrombosis.

  7. Supercontinuum Generation in a Microstructured Fiber with an Irregular Cladding

    NASA Astrophysics Data System (ADS)

    Minkovich, V. P.; Sotsky, A. B.; Vaca Pereira G., M.; Dzen, I. S.; Sotskaya, L. I.

    2016-05-01

    A broad-band supercontinuum generation was obtained at excitation of a microstructured optical fiber with an irregular cladding by femtosecond laser pulses. To explain the experimental data, calculations of the mode characteristics of microstructured fibers were performed. It was shown that the creation of air channels with different radii in the fiber cladding makes it possible to involve both the fundamental and high fiber modes in the supercontinuum generation that helps to increase the width of the generation spectrum.

  8. Development and Application of Acoustic Metamaterials with Locally Resonant Microstructures

    DTIC Science & Technology

    2012-08-02

    August 2, 2012 Development and Application of Acoustic Metamaterials with Locally Resonant Microstructures Report Documentation Page Form...COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Development and Application of Acoustic Metamaterials with Locally Resonant Microstructures 5a...Publications •H. H. Huang and C. T. Sun, “Locally Resonant Acoustic Metamaterials with 2D Anisotropic Effective Mass Density,” Philosophical Magazine

  9. TASK 7 DEMONSTRATION OF THAMES FOR MICROSTRUCTURE AND TRANSPORT PROPERTIES

    SciTech Connect

    Langton, C.; Bullard, J.; Stutzman, P.; Snyder, K.; Garboczi, E.

    2010-03-29

    The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and realible set of tools to reduce the uncertainty in predicting the structural, hydraulic and chemical performance of cement barriers used in nuclear applications that are exposed to dynamic environmental conditions over extended time frames. One of these tools, the responsibility of NIST, is THAMES (Thermodynamic Hydration and Microstructure Evolution Simulator), which is being developed to describe cementitious binder microstructures and calculate important engineering properties during hydration and degradation. THAMES is designed to be a 'micro-probe', used to evaluate changes in microstructure and properties occurring over time because of hydration or degradation reactions in a volume of about 0.001 mm{sup 3}. It will be used to map out microstructural and property changes across reaction fronts, for example, with spatial resolution adequate to be input into other models (e.g., STADIUM{reg_sign}, LeachSX{trademark}) in the integrated CBP package. THAMES leverages thermodynamic predictions of equilibrium phase assemblages in aqueous geochemical systems to estimate 3-D virtual microstructures of a cementitious binder at different times during the hydration process or potentially during degradation phenomena. These virtual microstructures can then be used to calculate important engineering properties of a concrete made from that binder at prescribed times. In this way, the THAMES model provides a way to calculate the time evolution of important material properties such as elastic stiffness, compressive strength, diffusivity, and permeability. Without this model, there would be no way to update microstructure and properties for the barrier materials considered as they are exposed to the environment, thus greatly increasing the uncertainty of long-term transport predictions. This Task 7 report demonstrates the current capabilities of THAMES. At the start of the CBP project, THAMES

  10. Transport properties of porous media from the microstructure

    SciTech Connect

    Torquato, S.

    1995-12-31

    The determination of the effective transport properties of a random porous medium remains a challenging area of research because the properties depend on the microstructure in a highly complex fashion. This paper reviews recent theoretical and experimental progress that we have made on various aspects of this problem. A unified approach is taken to characterize the microstructure and the seemingly disparate properties of the medium.

  11. Characterization of Microstructure with Low Frequency Electromagnetic Techniques (Preprint)

    DTIC Science & Technology

    2014-02-01

    about grain ensembles in the microstructure. Large-area electron backscatter diffraction ( EBSD ) data was obtained and used in conjunction with a...computed eddy current approximations based on electron backscatter diffraction ( EBSD ) data, demonstrating good agreement. The detectability of notches in...about grain ensembles in the microstructure. Large-area electron backscatter diffraction ( EBSD ) data was obtained and used in conjunction with a

  12. Stress Rupture Fracture Model and Microstructure Evolution for Waspaloy

    NASA Astrophysics Data System (ADS)

    Yao, Zhihao; Zhang, Maicang; Dong, Jianxin

    2013-07-01

    Stress rupture behavior and microstructure evolution of nickel-based superalloy Waspaloy specimens from tenon teeth of an as-received 60,000-hour service-exposed gas turbine disk were studied between 923 K and 1088 K (650 °C and 815 °C) under initial applied stresses varying from 150 to 840 MPa. Good microstructure stability and performance were verified for this turbine disk prior to stress rupture testing. Microstructure instability, such as the coarsening and dissolution of γ' precipitates at the varying test conditions, was observed to be increased with temperature and reduced stress. Little microstructure variation was observed at 923 K (650 °C). Only secondary γ' instability occurred at 973 K (700 °C). Four fracture mechanisms were obtained. Transgranular creep fracture was exhibited up to 923 K (650 °C) and at high stress. A mixed mode of transgranular and intergranular creep fracture occurred with reduced stress as a transition to intergranular creep fracture (ICF) at low stress. ICF was dominated by grain boundary sliding at low temperature and by the nucleation and growth of grain boundary cavities due to microstructure instability at high temperature. The fracture mechanism map and microstructure-related fracture model were constructed. Residual lifetime was also evaluated by the Larson-Miller parameter method.

  13. High gradient magnetic field microstructures for magnetophoretic cell separation.

    PubMed

    Abdel Fattah, Abdel Rahman; Ghosh, Suvojit; Puri, Ishwar K

    2016-08-01

    Microfluidics has advanced magnetic blood fractionation by making integrated miniature devices possible. A ferromagnetic microstructure array that is integrated with a microfluidic channel rearranges an applied magnetic field to create a high gradient magnetic field (HGMF). By leveraging the differential magnetic susceptibilities of cell types contained in a host medium, such as paramagnetic red blood cells (RBCs) and diamagnetic white blood cells (WBCs), the resulting HGMF can be used to continuously separate them without attaching additional labels, such as magnetic beads, to them. We describe the effect of these ferromagnetic microstructure geometries have on the blood separation efficacy by numerically simulating the influence of microstructure height and pitch on the HGMF characteristics and resulting RBC separation. Visualizations of RBC trajectories provide insight into how arrays can be optimized to best separate these cells from a host fluid. Periodic microstructures are shown to moderate the applied field due to magnetic interference between the adjacent teeth of an array. Since continuous microstructures do not similarly weaken the resultant HGMF, they facilitate significantly higher RBC separation. Nevertheless, periodic arrays are more appropriate for relatively deep microchannels since, unlike continuous microstructures, their separation effectiveness is independent of depth. The results are relevant to the design of microfluidic devices that leverage HGMFs to fractionate blood by separating RBCs and WBCs.

  14. Processing and mechanical behavior of aluminium oxide microstructure composites

    NASA Astrophysics Data System (ADS)

    Pavlacka, Robert J.

    We have proposed a new class of composites that accesses different component properties not through the use of distinct materials, but through the exploitation of the microstructure-property relationship within a single material. That is, we seek to adapt composite concepts to take advantage of the considerable variance in properties associated with different microstructures. This new class of composites is called microstructure composites. Microstructure composites are predominately single phase ceramics that utilize multiple distinct microstructure features in the same composite to obtain unique property combinations. Spatial control and composite connectivity of the individual microstructure components of a microstructure composite are ultimately the key to developing and controlling useful and unique properties. Microstructural features can be controlled via the starting location and transport of the dopants, minority second phases, and liquid phases that are used to manipulate microstructure development. This work focuses on textured-equiaxed microstructure in the Al2O 3 system. Texture is obtained in situ using templated grain growth (TGG). To control microstructure development locally during microstructure composite fabrication, it is important to use relatively low levels of dopant to mitigate the effects of dopant interdiffusion. Therefore, the development of texture in alpha-Al2O3 using TGG was explored under low liquid-phase dopant concentration conditions. High temperature dilatometry was performed to quantify the effect of template constraint on x-y plane shirinkage and the extent to which this constraint could be mitigated as a function of the dopant concentration. x-y plane shrinkage was observed to be increasingly constrained with increasing template loading and decreasing dopant concentration. Final x-y plane shrinkage was greater for samples with 0.14 wt% dopant than for those without dopant, despite have a much lower peak strain rate. It was

  15. 3D microstructure modeling of compressed fiber-based materials

    NASA Astrophysics Data System (ADS)

    Gaiselmann, Gerd; Tötzke, Christian; Manke, Ingo; Lehnert, Werner; Schmidt, Volker

    2014-07-01

    A novel parametrized model that describes the 3D microstructure of compressed fiber-based materials is introduced. It allows to virtually generate the microstructure of realistically compressed gas-diffusion layers (GDL). Given the input of a 3D microstructure of some fiber-based material, the model compresses the system of fibers in a uniaxial direction for arbitrary compression rates. The basic idea is to translate the fibers in the direction of compression according to a vector field which depends on the rate of compression and on the locations of fibers within the material. In order to apply the model to experimental 3D image data of fiber-based materials given for several compression states, an optimal vector field is estimated by simulated annealing. The model is applied to 3D image data of non-woven GDL in PEMFC gained by synchrotron tomography for different compression rates. The compression model is validated by comparing structural characteristics computed for experimentally compressed and virtually compressed microstructures, where two kinds of compression - using a flat stamp and a stamp with a flow-field profile - are applied. For both stamps types, a good agreement is found. Furthermore, the compression model is combined with a stochastic 3D microstructure model for uncompressed fiber-based materials. This allows to efficiently generate compressed fiber-based microstructures in arbitrary volumes.

  16. Mapping White Matter Microstructure in the One Month Human Brain.

    PubMed

    Dean, D C; Planalp, E M; Wooten, W; Adluru, N; Kecskemeti, S R; Frye, C; Schmidt, C K; Schmidt, N L; Styner, M A; Goldsmith, H H; Davidson, R J; Alexander, A L

    2017-08-29

    White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth.

  17. Microstructure, microstructural stability and mechanical properties of sand-cast Mg–4Al–4RE alloy

    SciTech Connect

    Rzychoń, Tomasz; Kiełbus, Andrzej; Lityńska-Dobrzyńska, Lidia

    2013-09-15

    This paper presents a methodology for assessing the phase composition and the results of structural stability tests of the sand-cast Mg–4Al–4RE alloy after annealing it at 175 and 250 °C for 3000 h. The microstructure was analyzed with optical, scanning electron, and transmission electron microscopy. The phase composition was determined with X-ray diffraction. The structure of the Mg–4Al–4RE (AE44) alloy is composed of large grains of α-Mg solid solution, needle-shaped precipitates of the Al{sub 11}RE{sub 3}phase, polyhedral precipitates of the Al{sub 2}RE phase and Al{sub 10}RE{sub 2}Mn{sub 7} phase. After annealing at 175 °C for 3000 h, no changes in the alloy structure are observed, whereas after annealing at 250 °C the precipitates of the Al{sub 11}RE{sub 3} phase are found to be in the initial stages of spheroidization. The coarse-grained structure and unfavorable morphology of the intermetallic phases in the sand-cast AE44 alloy, which are caused by low solidification rates, result in low creep resistance up to 200 °C and low mechanical properties at ambient temperature and at 175 °C. - Highlights: • Complement the knowledge about the microstructure of Mg-Al-RE alloys. • Clarify the mechanism of formation of Mg17Al12 phase above 180 °C. • Applying a chemical dissolution of the α-Mg in order to phase identification. • Applying a statistical test to assess the spheroidization of precipitates. • Quantitative description of microstructure of Mg-Al-RE alloys.

  18. Idealized vs. Realistic Microstructures: An Atomistic Simulation Case Study on γ/γ′ Microstructures

    PubMed Central

    Prakash, Aruna; Bitzek, Erik

    2017-01-01

    Single-crystal Ni-base superalloys, consisting of a two-phase γ/γ′ microstructure, retain high strengths at elevated temperatures and are key materials for high temperature applications, like, e.g., turbine blades of aircraft engines. The lattice misfit between the γ and γ′ phases results in internal stresses, which significantly influence the deformation and creep behavior of the material. Large-scale atomistic simulations that are often used to enhance our understanding of the deformation mechanisms in such materials must accurately account for such misfit stresses. In this work, we compare the internal stresses in both idealized and experimentally-informed, i.e., more realistic, γ/γ′ microstructures. The idealized samples are generated by assuming, as is frequently done, a periodic arrangement of cube-shaped γ′ particles with planar γ/γ′ interfaces. The experimentally-informed samples are generated from two different sources to produce three different samples—the scanning electron microscopy micrograph-informed quasi-2D atomistic sample and atom probe tomography-informed stoichiometric and non-stoichiometric atomistic samples. Additionally, we compare the stress state of an idealized embedded cube microstructure with finite element simulations incorporating 3D periodic boundary conditions. Subsequently, we study the influence of the resulting stress state on the evolution of dislocation loops in the different samples. The results show that the stresses in the atomistic and finite element simulations are almost identical. Furthermore, quasi-2D boundary conditions lead to a significantly different stress state and, consequently, different evolution of the dislocation loop, when compared to samples with fully 3D boundary conditions. PMID:28772453

  19. [Microstructural changes in hardened beans (Phaseolus vulgaris)].

    PubMed

    Mujica, Maria Virginia; Granito, Marisela; Soto, Naudy

    2015-06-01

    (Phaseolus vulgaris). The hardening of Phaseolus vulgaris beans stored at high temperature and high relative humidity is one of the main constraints for consumption. The objective of this research was to evaluate by scanning electron microscopy, structural changes in cotyledons and testa of the hardened beans. The freshly harvested grains were stored for twelve months under two conditions: 5 ° C-34% RH and 37 ° C-75% RH, in order to promote hardening. The stored raw and cooked grains were lyophilized and fractured. The sections of testa and cotyledons were observed in an electron microscope JSM-6390. After twelve months, grains stored at 37 ° C-75% RH increased their hardness by 503%, whereas there were no significant changes in grains stored at 5 ° C-34% RH. At the microstructural level, the cotyledons of the raw grains show clear differences in appearance of the cell wall, into the intercellular space size and texture matrix protein. There were also differences in compaction of palisade and sub-epidermal layer in the testa of raw grains. After cooking, cotyledon cells of the soft grains were well separated while these ofhard grains were seldom separated. In conclusion, the found differences in hard and soft grains showed a significant participation of both structures, cotyledons and testa, in the grains hardening.

  20. Microstructure and Hardness of Buffalo's Hoofs.

    PubMed

    Assis, B M; Silva, L A F; Lima, C R O; Gouveia, R F; Vulcani, V A S; de Sant'Ana, F J F; Rabelo, R E

    2017-10-01

    The aim of this study was to describe the microstructure of hoof capsules of the buffalo. In addition, the study emphasized the morphometric aspects of the horn tubules, the Vickers nanohardness of the dorsal and abaxial walls and sole of the digits of the thoracic and pelvic limbs of the buffalo. The abaxial wall in the thoracic and pelvic digits showed larger diameter of the horn tubules when compared to all dorsal wall and sole. In addition, the abaxial wall of the thoracic digits showed larger diameter of the horn tubules when compared with the pelvic digits. According to the three-dimensional microtomography, the dorsal wall was higher in density compared with the abaxial wall. The latter exhibited an intermediate density, while the sole showed the lowest density. The Vickers nanohardness test showed that there was no difference in hardness and resistance between the experienced regions. However, the elastic modulus was greater on the transversal section of the hoof capsule. In conclusion, the results of the current study show that modern technologies such as microtomography and subsequent imaging can be used to investigate details of the basic morphology in different regions of the buffalo's hoof. © 2017 Blackwell Verlag GmbH.

  1. Investigation of Human Nail Microstructure with Ultrasound

    NASA Astrophysics Data System (ADS)

    Maeva, A. R.; Bakulin, E. Y.; Denisova, L. A.; Maev, R. Gr.

    Investigation of a human fingernail and the extraction of the data on its microstructure and elastic properties is important in three main aspects. First of all, various diseases of the nail can be differentiated more precisely; second of all, it is possible to non-invasively track during time the effects of a cosmetic product upon the nail; third of all, because various processes in the organism have a strong influence upon the nail plate growth, the monitoring of the nail morphology and its mechanical properties may be used as additional information for the diagnosis of a number of medical disorders, such as systemic sclerosis, psoriasis, chronic hand eczema, anemia etc. The aim of the present study was to carry out a detailed ultrasound investigation in the high-frequency range (25-50 MHz) of a human nail including micro-anatomical structure imaging and ultrasound velocity evaluation, using B-scans obtained with a scanning acoustic microscope. On the images, exact topology of the nail, nail matrix and the underlying bone have been revealed. Additionally, a certain type of inclined internal layering along the nails of some individuals has been found, which was not reported in previous ultrasonic studies of the nail.

  2. Scaling law and microstructure of alginate hydrogel.

    PubMed

    Liu, Sijun; Li, Huijun; Tang, Bijun; Bi, Shuguang; Li, Lin

    2016-01-01

    The gelation of alginate in aqueous solution was studied as a function of Ca(2+) concentration. At each given concentration of alginate, a critical gel concentration [Formula: see text] , was successfully determined for the first time using the Winter-Chambon criterion. The critical gel concentration [Formula: see text] was found to increase linearly with alginate concentration. At the same time, the critical relaxation exponent n decreased and the critical gel strength Sg increased linearly with alginate concentration. An improved egg-box model was proposed to describe the change in gel junction and gel network. In the stable gel state, the plateau modulus Ge of alginate gel depended on Ca(2+) concentration according to a power-law scaling, Ge=kɛ(1.5), where ɛ is the relative distance of a gelling variable (Ca(2+) concentration in this case) from the gel point ( [Formula: see text] ). The FESEM images verified the microstructure of alginate gel in which alginate chains associated into fibrils in the presence of Ca(2+) ions. The fibrillar diameter and network density increased with increasing Ca(2+) ion concentration while alginate concentration had a weak influence on fibrillar diameter.

  3. Stochastic Characterization of Cast Metal Microstructure

    SciTech Connect

    Steinzig, Michael

    1999-06-01

    The major goal of this work is to provide a means to characterize the final structure of a metal that has solidified from a melt. The thermally controlled solidification of a binary alloy, nucleated at isolated sites, is described by the evolution of a probability distribution function (PDF). The relevant equation required for propagating the PDF is developed with variables for grain size and distance to nearest neighbor. The phenomena of nucleation, growth, and impingement of the grains are discussed, and used as the basis for developing rate equations that evolve the PDF. The complementary equations describing global heat and solute transfer are discussed, and coupled with the microstructure evolution equations for grain growth and PDF evolution. The full set of equations is solved numerically and results are compared with experimental data for the plutonium 1 weight percent gallium system. The three principal results of this work are: (1) The formulation of transient evolution equations for the PDF description of nucleation, growth, and impingement of a distribution of grain sizes and locations; (2) Solution of the equations to give a correlation for final average grain size as a function of material parameters, nucleation site density, and cooling rate; and (3) Solution of the equations for final distribution of grain size as a result of the initial random spatial distribution of nucleation sites.

  4. Microstructure of Hydrophobically Modified Alkyl Acrylamide Hydrogels

    NASA Astrophysics Data System (ADS)

    Tian, Jun; Seery, Thomas A. P.; Ho, Derek L.; Weiss, R. A.

    2004-03-01

    Hydrophobically modified water-soluble acrylamide polymers have a variety of applications, including viscosity thickeners, microencapsulation, biosensors and controlled drug delivery systems. The microstructure of copolymer hydrogels of N,N-dimethylacrylamide (DMA) or N-isopropylacrylamide(NIPA) modified with 2-(N-ethylfluorooctanesulfonamido)ethyl acrylate, FOSA, was studied by small angle x-ray (SAXS) and neutron scattering (SANS). Swelling and DSC measurements showed that FOSA/NIPA gels exhibited a volume phase transition (VPT), but that FOSA/DMA gels did not. A modified interacting core-shell model was used to explain the SAXS and SANS data for both gels. The crosslink junctions of the gel consisted of nanophase-separated FOSA domains as the core surrounded by a water-poor layer of the alkyl acrylamide. These nanodomains were dispersed in a matrix of water-swollen alkyl acrylamide that had large scale heterogeneities. The average spherical core radius ranged from 1 to 3 nm and the average shell thickness ranged from 1 to 1.5 nm; the aggregation number ranged from 10 to 200.

  5. A microstructural study of the Tishomingo meteorite

    NASA Technical Reports Server (NTRS)

    Ives, L. K.; Kasen, M. B.; Schramm, R. E.; Ruff, A. W.; Reed, R. P.

    1978-01-01

    Metallography, electron microscopy, and X-ray diffraction techniques were employed to study a fragment of the Tishomingo iron meteorite. The results suggest the following thermal-mechanical history: The fragment was originally a large crystal of taenite (gamma). Cooling through the alpha + gamma phase boundary did not result in accompanying precipitation of kamacite (alpha). Transformation to a martensitic structure initiated between -25 and -65 C. Transformation continued as the temperature fell to -75 to -115 C, resulting in approx 80% martensite (alpha-prime). Subsequent shock deformation and thermal aging processes substantially modified the taenite and martensite microstructures. Twins in the retained taenite phase are attributed to shock deformation at a pressure estimated for a single event at about 170 kbar. The existing complex altered martensite structure containing both taenite and kamacite (3-15% Ni) particles was apparently the product of both shock deformation and thermal aging processes. The maximum temperature reached during thermal aging is estimated to be less than 400 C and perhaps below 310 C.

  6. Magnonic holographic imaging of magnetic microstructures

    NASA Astrophysics Data System (ADS)

    Gutierrez, D.; Chiang, H.; Bhowmick, T.; Volodchenkov, A. D.; Ranjbar, M.; Liu, G.; Jiang, C.; Warren, C.; Khivintsev, Y.; Filimonov, Y.; Garay, J.; Lake, R.; Balandin, A. A.; Khitun, A.

    2017-04-01

    We propose and demonstrate a technique for magnetic microstructure imaging via their interaction with propagating spin waves. In this approach, the object of interest is placed on top of a magnetic testbed made of material with low spin wave damping. There are micro-antennas incorporated in the testbed. Two of these antennas are used for spin wave excitation while another one is used for the detecting of inductive voltage produced by the interfering spin waves. The measurements are repeated for different phase differences between the spin wave generating antennas which is equivalent to changing the angle of illumination. The collected data appear as a 3D plot - the holographic image of the object. We present experimental data showing magnonic holographic images of a low-coercivity Si/Co sample, a high-coercivity sample made of SrFe12O19 and a diamagnetic copper sample. We also present images of the three samples consisting of a different amount of SrFe12O19 powder. The imaging was accomplished on a Y3Fe2(FeO4)3 testbed at room temperature. The obtained data reveal the unique magnonic signatures of the objects. Experimental data is complemented by the results of numerical modeling, which qualitatively explain the characteristic features of the images. Potentially, magnonic holographic imaging may complement existing techniques and be utilized for non-destructive in-situ magnetic object characterization. The fundamental physical limits of this approach are also discussed.

  7. Microstructure and magnetic properties of FINEMET nanowires

    NASA Astrophysics Data System (ADS)

    Chiriac, H.; Corodeanu, S.; Óvári, T.-A.; Lupu, N.

    2013-05-01

    FINEMET (Fe73.5Cu1Nb3Si13.5B9) glass-coated nanowires and submicron wires with metallic nucleus diameters (Φm) between 100 and 500 nm and the glass coating thickness (tg) of 5 μm are reported for the first time. The microstructure of annealed ultrathin glass-coated wires evolves into a nanocrystalline one (DO3 nanograins of 10-20 nm embedded into the residual amorphous matrix) after annealing at 550 °C and 600 °C for 60 min. Despite the similar size of the nanograins, the volume occupied by them relative to the total volume increases from 50%-53% after annealing at 550 °C to 63%-65% after annealing at 600 °C, due to the increase in their number. This is reflected in a more accurate manner in the domain wall velocity measurements than in variation of the magnetic characteristics such as M(H), relative magnetic permeability or switching field. The magnetically softest nanocrystalline phase is formed at larger values of annealing temperature (Ta) for thinner wires, since larger temperature is needed to grow a sufficient number of DO3 grains at distances below the exchange length among them.

  8. Structural materials: understanding atomic scale microstructures

    SciTech Connect

    Marquis, E A; Miller, Michael K; Blavette, D; Ringer, S. P.; Sudbrack, C; Smith, G.D.W.

    2009-01-01

    With the ability to locate and identify atoms in three dimensions, atom-probe tomography (APT) has revolutionized our understanding of structure-property relationships in materials used for structural applications. The atomic-scale details of clusters, second phases, and microstructural defects that control alloy properties have been investigated, providing an unprecedented level of detail on the origins of aging behavior, strength, creep, fracture toughness, corrosion, and irradiation resistance. Moreover, atomic-scale microscopy combined with atomistic simulation and theoretical modeling of material behavior can guide new alloy design. In this article, selected examples highlight how APT has led to a deeper understanding of materials structures and therefore properties, starting with the phase transformations controlling the aging and strengthening behavior of complex Al-, Fe-, and Ni-based alloys systems. The chemistry of interfaces and structural defects that play a crucial role in high-temperature strengthening, fracture, and corrosion resistance are also discussed, with particular reference to Zr- and Al-alloys and FeAl intermetallics.

  9. Microstructure and Elastic Anisotropy of Shales

    NASA Astrophysics Data System (ADS)

    Kanitpanyacharoen, W.; Wenk, H.; Kets, F.; Mokso, R.

    2009-12-01

    Shales compose large parts of sedimentary basins and form the seal and source rocks for many hydrocarbon reservoirs. An understanding of their properties is critically important for seismic imaging, particularly due to the high anisotropy that is caused by the alignment of clay minerals during compaction and diagenesis. In this study we quantify composition and crystal preferred orientation of component minerals of a range of shales, using high energy synchrotron X-rays. From diffraction images we can infer composition and texture (relying on the Rietveld method), and from tomography we can determine 3D microstructures, including porosity. Averaging single crystal properties over orientation distributions provides estimates of polycrystal elastic properties. A comparison of shallow shales from Montana, the North Sea and Nigeria with deep shales from the Middle East and Central Europe documents that anisotropy increases with increasing phyllosilicates content (mainly illite and kaolinite) and increasing burial. The crystallite preferred orientation strengths, measured as (001) pole figure maxima, range for illite from 2.3 to 9.8 multiples of random distribution (m.r.d.) and for kaolinite from 1.2 to 9.3 m.r.d. P-wave anisotropies, obtained by averaging over the orientation distributions of mineral phases have been calculated (Vp = (200*Vpmax-Vpmin)/(Vpmax+Vpmin) and range between 10% and 40%.

  10. Ultrashort-pulsed laser microstructuring of diamond

    NASA Astrophysics Data System (ADS)

    Shirk, Michael D.; Molian, Pal; Wang, Cai; Ho, Kai M.; Malshe, Ajay P.

    2000-11-01

    Precision microfabrication of diamond has many applications in the fields of microelectronics and cutting tools. In this work, and ultra-short pulsed Ti: Sapphire laser was used to perform patterning, hold drilling, and scribing of synthetic and CVD diamonds. Scanning electron microscopy, atomic force microscopy, profilometry, and Raman spectroscopy were employed to characterize the microstructures. A tight-binding molecular dynamics (TBMD) model was used to investigate atomic movements during ablation and predict thresholds for ablation. The ultra- short pulsed laser generated holes and grooves that were nearly perfect with smooth edges, little collateral thermal damage and recast layer. The most exciting observation was the absence of graphite residue that always occurs in the longer-pulsed laser machining. The ablation threshold for ultra-short pulsed laser was two orders of magnitude lower than that of longer-pulsed laser. Finite-difference thermal modeling showed that ultra-short pulses raised the electron temperatures of diamond in excess of 100,ooo K due to multiphoton absorption, absence of hydrodynamic motion, and lack of time for energy transfer from electrons to the lattice during the pulse duration. TBMD simulations, carried out on (111) and (100) diamond surfaces, revealed that ultra-short pulses peel carbon atoms layer-by -layer from the surface, leaving a smooth surface after ablation. However, longer pulses cause thermal melting resulting in graphite residue that anchors to the diamond surface following ablation.

  11. Education mediates microstructural changes in bilateral hippocampus.

    PubMed

    Piras, Fabrizio; Cherubini, Andrea; Caltagirone, Carlo; Spalletta, Gianfranco

    2011-02-01

    Education has been extensively considered an influential factor in the modulation of interindividual differences in cognitive performance and cerebral structure. Consequently, education has been linked to the concept of reserve, which refers to an unspecified aspect of brain structure or function that enables people with more education to cope better with brain pathology or age-related changes. Nevertheless, the education-related neural mechanisms involved in reserve are still not completely understood. In this study, 150 healthy subjects were submitted to a comprehensive sociodemographic, clinical and cognitive assessment, and a high-resolution structural MRI and diffusion tensor imaging scan protocol. Data of micro- (mean diffusivity, MD) and macro- (volume) structural changes of six bilateral deep gray matter structures (thalamus, caudate nucleus, putamen, hippocampus, amygdala, and globus pallidus) were analyzed with reference to years of formal education. Results show that decreased MD in both left and right hippocampi was the only structural parameter that, along with decreasing age, significantly correlated with higher education. The present findings suggest that the hippocampal formation might be one site where education-mediated microstructural changes occur, possibly compensating for cognitive decline. Copyright © 2010 Wiley-Liss, Inc.

  12. Fabrication and characterization of special microstructured fibers

    NASA Astrophysics Data System (ADS)

    Kobelke, J.; Schuster, K.; Schwuchow, A.; Litzkendorf, D.; Spittel, R.; Kirchhof, J.; Bartelt, H.

    2011-05-01

    Microstructured optical fibers (MOFs) as a novel type of light guiding media typically combine structural elements with very different chemical and optical behavior, e.g. silica - air, silica - high refractive index glasses. The applicative potential is very manifold: devices for telecommunication, nonlinear optics, sensing devices, fiber based gas lasers, etc. We report about preparation and characterization of selected total internal reflection (TIR) guiding MOFs: Air Clad Fiber, Suspended Core Fiber and heavy metal oxide (HMO) glass core MOFs. We fabricated Air Clad Fibers with extreme air fraction. The bridge width of about 0.13 μm corresponds to a numerical aperture (NA) of about 0.6. Suspended core fibers for evanescent sensing were prepared by pressurized drawing of arrangements of three and four capillaries. By inflating the cavities the NA was increased up to 0.68. Material combined MOFs were prepared for nonlinear application (e.g. supercontinuum generation) with lanthanum aluminum silicate glass core. Thermochemical and optical behaviors of high nonlinear core glass candidates were investigated for alumina concentration up to 20 mol% and lanthanum oxide concentration up to 24 mol% in silica matrix. The manufactured HMO glass core MOF with a La2O3 concentration of 10 mol% shows a similar background loss level like the unstructured HMO glass fiber about 1 dB/m.

  13. Metamorphic, microstructural and isotopic studies of mylonites

    SciTech Connect

    Sinha, A.K.; Hewitt, D.A.; Simpson, C.; Rimstidt, J.D.; Sutter, J.

    1985-01-01

    Recent advances in tectono-thermal models of orogenic belts require that the timing of thrust stacking and its relationship to the thermal history be evaluated. Before measuring radiometric ages of mylonites in thrust zones, it is critical to document the size of texturally and mineralogically equilibrated domains. A constancy of partition coefficients for the major and minor elements of minerals in textural equilibrium would be consistent with trace elements and isotopic equilibrium. Preliminary studies along the Brevard zone show non-equilibrium assemblages even in the highest strain mylonites. Such disequilibrium prohibits the use of whole rock ages to estimate the last episode of deformation; mineral ages probably give better estimates. The authors anticipate using a variety of radiometric systems on minerals in the fault zones to decipher the ages of thrusting. Recent deep drilling in the Kola Peninsula has revealed the availability of large volumes of fluids in the 4.5 to 9 km interval with temperatures over 150/sup 0/C. The presence of such fluids in deep crustal environments should accelerate the rates of reactions, crack propagation, hydrolytic weakening, dynamic recrystallization and recovery processes. Accelerated hydration reactions could also provide zones for development of faults. Microstructural analysis of mylonites from successively deeper structural levels will indicate the predominant mode of deformation and will test the traditional view of increasing ductility with depth. Geochemical and stable isotope analyses of the mylonites may also reveal enrichment of metals from possible deep crustal fluids.

  14. Coating Microstructure-Property-Performance Issues

    SciTech Connect

    Terry C. Totemeier; Richard N. Wright

    2005-05-01

    Results of studies on the relationships between spray parameters and performance of thermally-sprayed intermetallic coatings for high-temperature oxidation and corrosion resistance are presented. Coating performance is being assessed by corrosion testing of free-standing coatings, thermal cycling of coating substrates, and coating ductility measurement. Coating corrosion resistance was measured in a simulated coal combustion gas environment (N2-CO-CO2-H2O-H2S) at temperatures from 500 to 800°C using thermo-gravimetric analysis (TGA). TGA testing was also performed on a typical ferritic-martensitic steel, austenitic stainless steel, and a wrought Fe3Al-based alloy for direct comparison to coating behavior. FeAl and Fe3Al coatings showed corrosion rates slightly greater than that of wrought Fe3Al, but markedly lower than the steels at all temperatures. The corrosion rates of the coatings were relatively independent of temperature. Thermal cycling was performed on coated 316SS and nickel alloy 600 substrates from room temperature to 800°C to assess the relative effects of coating microstructure, residual stress, and thermal expansion mismatch on coating cracking by thermal fatigue. Measurement of coating ductility was made by acoustic emission monitoring of coated 316SS tensile specimens during loading.

  15. Chaotic dynamics and conductance measurements in microstructures

    SciTech Connect

    Marcus, C.M.

    1993-05-01

    At low temperatures (T<{approximately}1K), electronic conductance through metallic or semiconductor microstructures commonly exhibits quasirandom fluctuations-for instance as a function of an applied magnetic field-resulting from quantum interference. The random character of these fluctuations does not require disorder in the materials, as such fluctuations are also observed in the ballistic regime, i.e. in devices smaller than the electron mean free path, so that essentially all large-angle scattering occurs as specular reflection from the walls of the device rather than from impurities. In principle, such fluctuations would persist even in the absence of disorder, arising purely from quantum interference of electrons scattering chaotically from the geometrical features of the device. This talk will describe recent experiments measuring conductance fluctuations at millikelvin temperatures in submicron {open_quotes}quantum dots{close_quotes} in the shape of an open circle and stadium billiard. The structures were fabricated from GaAs/AlGaAs heterostructures using precise electron beam lithography. Spectral properties of the observed fluctuations will be discussed in the context of recent semiclassical theories based on quantum chaotic scattering. Both the circle and stadium structures exhibit strong fluctuations, raising the question: what role does chaos play in these experiments?

  16. Influence of Initial Microstructure on Microstructural Stability and Mechanical Behavior of Cryorolled A356 Alloy Subjected to Annealing

    NASA Astrophysics Data System (ADS)

    Immanuel, R. J.; Panigrahi, S. K.

    2017-08-01

    In the present work, various heat treatment cycles are imposed on an A356 aluminum alloy to develop two different base microstructures, one with supersaturated aluminum matrix and the other with coarse and uniformly distributed precipitates. Both the developed materials are subjected to cryorolling and then isochronally annealed for 1 hour at various temperatures ranging from 373 K to 673 K (100 °C to 400 °C). The overall strength is maximum for the cryorolled material with supersaturated base microstructure due to the dominant dislocation strengthening and precipitation strengthening mechanisms. However, the cryorolled material with precipitated base microstructure is found to have superior microstructural stability with retained ultrafine-grained (UFG) microstructure up to the annealing temperature of 473 K (200 °C) due to effective grain boundary pinning by the precipitates. Also, the material retains about 85 pct of as-cryorolled strength with enhanced ductility even after annealing at 473 K (200 °C). A detailed investigation on the microstructural evolution of the material at various annealing temperatures along with their mechanical behavior is presented in this article.

  17. Sintering techniques for microstructure control in ceramics

    NASA Astrophysics Data System (ADS)

    Rosenberger, Andrew T.

    Sintering techniques can be manipulated to enhance densification in difficult to sinter materials and to produce property enhancing microstructures. However, the interplay between materials, sintering techniques, and end properties is not fully understood in many material systems, and some fundamental aspects of sintering such as the nature of the effects of electric fields remains unknown. The processing property relationships were examined in two classes of materials; zirconium diboride ultra high temperature ceramic composites, and all solid lithium-ion battery phosphate materials. Investigation of zirconium diboride ceramics focused on the effects of zirconium carbide as a secondary or tertiary phase in ZrB2 and ZrB2 -- SiC. Addition of zirconium carbide was observed to increase flexural strength of composites up to 590MPa at 50wt% ZrC, significantly higher than the flexural strength of 380MPa observed in similarly prepared ZrB2 -- SiC. This difference was attributed to the absence of CTE mismatch induced residual stresses in the ZrB2 -- ZrC composites. A high temperature reaction between ZrB2 and TiC producing Zr1-xTixB2 -- ZrC composites was discovered and found to enhance densification while reducing the average grain size to as small as 1.4mum, lower than the starting powder size of 1.8mum. While a high flexural strength of 670MPa was observed, a strength dependence on the ZrC grain size indicative of CTE mismatch residual stresses was also seen. Finally, the oxidation and ablation resistance of ZrB2 -- ZrC -- SiC composites as a function of ZrC fraction and ZrC:SiC ratio was investigated. Above 5vol% ZrC, the oxidation and ablation resistance of the composites was significantly reduced due to ZrC oxidation, regardless of SiC content. While ZrC can significantly enhance the mechanical properties of the composite, the volume fraction must be kept low to avoid an undesirable reduction in the oxidation resistance. The influence of applied electrical fields

  18. Microstructural Evolution Based on Fundamental Interfacial Properties

    SciTech Connect

    A. D. Rollett; D. J. Srolovitz; A. Karma

    2003-07-11

    This first CMSN project has been operating since the summer of 1999. The main achievement of the project was to bring together a community of materials scientists, physicists and mathematicians who share a common interest in the properties of interfaces and the impact of those properties on microstructural evolution. Six full workshops were held at Carnegie Mellon (CMU), Northwestern (NWU), Santa Fe, Northeastern University (NEU), National Institute for Standards and Technology (NIST), Ames Laboratory, and at the University of California in San Diego (UCSD) respectively. Substantial scientific results were obtained through the sustained contact between the members of the project. A recent issue of Interface Science (volume 10, issue 2/3, July 2002) was dedicated to the output of the project. The results include: the development of methods for extracting anisotropic boundary energy and mobility from molecular dynamics simulations of solid/liquid interfaces in nickel; the extraction of anisotropic energies and mobilities in aluminum from similar MD simulations; the application of parallel computation to the calculation of interfacial properties; the development of a method to extract interfacial properties from the fluctuations in interface position through consideration of interfacial stiffness; the use of anisotropic interface properties in studies of abnormal grain growth; the discovery of abnormal grain growth from random distributions of orientation in subgrain networks; the direct comparison at the scale of individual grains between experimentally observed grain growth and simulations, which confirmed the importance of including anisotropic interfacial properties in the simulations; the classification of a rich variety of dendritic morphologies based on slight variations in the anisotropy of the solid-liquid interface; development of phase field methods that permit both solidification and grain growth to be simulated within the same framework.

  19. Interpretation of microstructures in high temperature deformation

    SciTech Connect

    McQueen, H.J.

    1999-07-01

    In each historical period the microstructures produced by high temperature straining were probed by the current technology, this giving rise to new models and theories of rate controlling mechanisms. The progress in understanding has not been monotonic since occasionally theories were developed to high levels of sophistication while overlooking aspects of the substructure which were to become significant. New technologies such as TEM, or SEM-EBSP-OIM have made possible great leaps forward but often leave unresolved problems on a different scale. Experimental observations are presented of substructures in Al with solute, dynamic precipitates, dispersoids and reinforcing particles and in both austenitic and ferritic stainless steels, thus providing a range of crystal structures and stacking fault energies (SFE). After the historical analysis, the current view of the hot-worked state will be presented with comparison of the conflicting theories. The analysis is centered on dislocation strain and there is only mention of pertinent interactions with grain boundary related deformation. The first seventy references point to research being done during the period that Prof. Julia Weertman (also the author) was pursuing research for the Ph.D. or starting a teaching career. it was an exciting time in which the applications of dislocation theory to cold working, recovery and creep were being confirmed by intragranular structural observations. Both the new modes of microscopic examination and the enhanced theories made possible the surge in fundamental understanding of hot working mechanisms that were summarized in the following twenty classic reviews. Finally, the remaining fifty references survey the current research which attempts to clarify the more complex details of the mechanisms: dynamic recovery (DRV) and dynamic recrystallization (DRX).

  20. Nonlinear mesomechanics of composites with periodic microstructure

    NASA Technical Reports Server (NTRS)

    Walker, Kevin P.; Jordan, Eric H.; Freed, Alan D.

    1989-01-01

    This work is concerned with modeling the mechanical deformation or constitutive behavior of composites comprised of a periodic microstructure under small displacement conditions at elevated temperature. A mesomechanics approach is adopted which relates the microimechanical behavior of the heterogeneous composite with its in-service macroscopic behavior. Two different methods, one based on a Fourier series approach and the other on a Green's function approach, are used in modeling the micromechanical behavior of the composite material. Although the constitutive formulations are based on a micromechanical approach, it should be stressed that the resulting equations are volume averaged to produce overall effective constitutive relations which relate the bulk, volume averaged, stress increment to the bulk, volume averaged, strain increment. As such, they are macromodels which can be used directly in nonlinear finite element programs such as MARC, ANSYS and ABAQUS or in boundary element programs such as BEST3D. In developing the volume averaged or efective macromodels from the micromechanical models, both approaches will require the evaluation of volume integrals containing the spatially varying strain distributions throughout the composite material. By assuming that the strain distributions are spatially constant within each constituent phase-or within a given subvolume within each constituent phase-of the composite material, the volume integrals can be obtained in closed form. This simplified micromodel can then be volume averaged to obtain an effective macromodel suitable for use in the MARC, ANSYS and ABAQUS nonlinear finite element programs via user constitutive subroutines such as HYPELA and CMUSER. This effective macromodel can be used in a nonlinear finite element structural analysis to obtain the strain-temperature history at those points in the structure where thermomechanical cracking and damage are expected to occur, the so called damage critical points of

  1. Licking Microstructure Reveals Rapid Attenuation of Neophobia

    PubMed Central

    Monk, Kevin J.; Rubin, Benjamin D.

    2014-01-01

    Many animals hesitate when initially consuming a novel food and increase their consumption of that food between the first and second sessions of access—a process termed attenuation of neophobia (AN). AN has received attention as a model of learning and memory; it has been suggested that plasticity resulting from an association of the novel tastant with “safe outcome” results in a change in the neural response to the tastant during the second session, such that consumption increases. Most studies have reported that AN emerges only an hour or more after the end of the first exposure to the tastant, consistent with what is known of learning-related plasticity. But these studies have typically measured consumption, rather than real-time behavior, and thus the possibility exists that a more rapidly developing AN remains to be discovered. Here, we tested this possibility, examining both consumption and individual lick times in a novel variant of a brief-access task (BAT). When quantified in terms of consumption, data from the BAT accorded well with the results of a classic one-bottle task—both revealed neophobia/AN specific to higher concentrations (for instance, 28mM) of saccharin. An analysis of licking microstructure, however, additionally revealed a real-time correlate of neophobia—an explicit tendency, similarly specific for 28-mM saccharin, to cut short the initial bout of licks in a single trial (compared with water). This relative hesitancy (i.e., the shortness of the first lick bout to 28-mM saccharin compared with water) that constitutes neophobia not only disappeared between sessions but also gradually declined in magnitude across session 1. These data demonstrate that the BAT accurately measures AN, and that aspects of AN—and the processes underlying familiarization—begin within minutes of the very first taste. PMID:24363269

  2. Contactless laser bending of silicon microstructures

    NASA Astrophysics Data System (ADS)

    Exner, Horst; Loschner, Udo

    2003-04-01

    We are going to present a new technology for laser bending of silicon microstructures based upon a suggestion of and carried out in cooperation with Prof. Dr. J. Fr'hauf from the Technical University Chemnitz (see acknowledgement). We investigated the influence of various laser process parameters on the bending angle and its reproducibility. Bending of the silicon element as a result of the laser induced thermal stresses in the material occurs toward the incident laser beam. The bending angle depends on a lot of laser process and material parameters. In particular we found that the irra-diation regime is well suited to control the bending angle. First substantial FEM based calculations of laser induced temperature fields using a moving laser heat source show the temperature field propagation in the material and reveal some regions of complicated overheating. As a result of our experiments we show a variety of examples including mul-tiple and also continuous bendings. There are several essential advantages compared to conventional bending technologies with this new method: Laser bending is contactless without using additional tools or external forces. Because of the local laser treatment the heat flux to the neighbouring material is minimized. The laser beam can be applied through windows of glass that means to al-most hermetically sealed micro devices. So laser technology is suitable for machining of already finished microsystems. It opens up a wide field of applications in micro system technologies: clip-chip-mechanism or sliding chips for micro optical benches, the adjustment of optical mirrors or other components or the ability of continuous bending for electro-static drives and so on.

  3. Microstructure and mechanics of human resistance arteries.

    PubMed

    Bell, J S; Adio, A O; Pitt, A; Hayman, L; Thorn, C E; Shore, A C; Whatmore, J L; Winlove, C P

    2016-12-01

    Vascular diseases such as diabetes and hypertension cause changes to the vasculature that can lead to vessel stiffening and the loss of vasoactivity. The microstructural bases of these changes are not presently fully understood. We present a new methodology for stain-free visualization, at a microscopic scale, of the morphology of the main passive components of the walls of unfixed resistance arteries and their response to changes in transmural pressure. Human resistance arteries were dissected from subcutaneous fat biopsies, mounted on a perfusion myograph, and imaged at varying transmural pressures using a multimodal nonlinear microscope. High-resolution three-dimensional images of elastic fibers, collagen, and cell nuclei were constructed. The honeycomb structure of the elastic fibers comprising the internal elastic layer became visible at a transmural pressure of 30 mmHg. The adventitia, comprising wavy collagen fibers punctuated by straight elastic fibers, thinned under pressure as the collagen network straightened and pulled taut. Quantitative measurements of fiber orientation were made as a function of pressure. A multilayer analytical model was used to calculate the stiffness and stress in each layer. The adventitia was calculated to be up to 10 times as stiff as the media and experienced up to 8 times the stress, depending on lumen diameter. This work reveals that pressure-induced reorganization of fibrous proteins gives rise to very high local strain fields and highlights the unique mechanical roles of both fibrous networks. It thereby provides a basis for understanding the micromechanical significance of structural changes that occur with age and disease. Copyright © 2016 the American Physiological Society.

  4. A Hypothesis for Cast Iron Microstructures

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2009-12-01

    The various microstructures of cast irons are reviewed, including carbidic and graphite forms (flake, compacted, spheroidal, and undercooled, etc.), exploring whether the presence of externally introduced defects in the form of oxide double films (bifilms) in suspension in melts seem to provide, for the first time, a uniform explanation for all the structures and their properties. Silica-rich oxide bifilms provide the substrates on which oxysulfide particles form, nucleating graphite. The presence of the film provides the favored substrate over which graphite grows, which leads to the development of flake graphite. The addition of limited Mg to form compacted graphite destroys all but a remnant of the silica-rich bifilms. The oxide film remnant is stabilized by the presence of the graphite nucleus, which causes the graphite to grow unidirectionally in a filamentary form. The addition of excess Mg destroys all traces of the oxide bifilms, leaving only the original nuclei, around which graphite is now free to entirely enclose, initiating the spherical growth mode. Undercooled graphite is the true coupled growth form, nucleated at even lower temperatures in the absence of favorable film substrates in suspension; the graphite adopts a continuous growth mode in a matrix of austenite. Carbides in mottled and white irons form on the oxide bifilms that often lie along grain and interdendritic boundaries, which explains the apparent brittleness of these strong, hard phases. In most cases of nonspheroidal growth modes (flake and misshaped spheroids), it is proposed that the impairment of the mechanical properties of irons is not strongly determined by graphite morphology but by the presence of oxide bifilms. Spheroidal graphite iron has the potential for high properties because of the absence of bifilms.

  5. Microstructure and mechanics of human resistance arteries

    PubMed Central

    Adio, A. O.; Pitt, A.; Hayman, L.; Thorn, C. E.; Shore, A. C.; Whatmore, J. L.; Winlove, C. P.

    2016-01-01

    Vascular diseases such as diabetes and hypertension cause changes to the vasculature that can lead to vessel stiffening and the loss of vasoactivity. The microstructural bases of these changes are not presently fully understood. We present a new methodology for stain-free visualization, at a microscopic scale, of the morphology of the main passive components of the walls of unfixed resistance arteries and their response to changes in transmural pressure. Human resistance arteries were dissected from subcutaneous fat biopsies, mounted on a perfusion myograph, and imaged at varying transmural pressures using a multimodal nonlinear microscope. High-resolution three-dimensional images of elastic fibers, collagen, and cell nuclei were constructed. The honeycomb structure of the elastic fibers comprising the internal elastic layer became visible at a transmural pressure of 30 mmHg. The adventitia, comprising wavy collagen fibers punctuated by straight elastic fibers, thinned under pressure as the collagen network straightened and pulled taut. Quantitative measurements of fiber orientation were made as a function of pressure. A multilayer analytical model was used to calculate the stiffness and stress in each layer. The adventitia was calculated to be up to 10 times as stiff as the media and experienced up to 8 times the stress, depending on lumen diameter. This work reveals that pressure-induced reorganization of fibrous proteins gives rise to very high local strain fields and highlights the unique mechanical roles of both fibrous networks. It thereby provides a basis for understanding the micromechanical significance of structural changes that occur with age and disease. PMID:27663767

  6. Practical microstructured and plasmonic terahertz waveguides

    NASA Astrophysics Data System (ADS)

    Markov, Andrey

    by low-loss air layers of comparable thickness. A large fraction of the modal fields in these waveguides is guided in the low-loss air region, thus effectively reducing the waveguide transmission losses. I consider that such waveguides can be useful not only for low-loss THz wave delivery, but also for sensing of biological and chemical specimens in the terahertz region, by placing the recognition elements directly into the waveguide microstructure. The main advantage of the proposed planar porous waveguide is the convenient access to its optical mode, since the major portion of THz power launched into such a waveguide is confined within the air layers. Moreover, small spacing between the layers promotes rapid loading of the analyte into the waveguide due to strong capillary effect (< 1 s filling of a 10 cm long waveguide with an analyte). The transmission and absorption properties of such waveguides have been investigated both experimentally using THz-TDS spectroscopy and theoretically using finite element software. The modal refractive index of porous waveguides is smaller compared to pure polymer and it is easy to adjust by changing the air spacing between the layers, as well as the number of layers in the core. The porous waveguide exhibits considerably smaller transmission losses than bulk material. In the following chapters I review another promising approach towards designing of low-loss, low-dispersion THz waveguides. The hybrid metal/dielectric waveguides use a plasmonic mode guided in the gap between two parallel wires that are, in turn, encapsulated inside a low-loss, low-refractive index, micro-structured cladding that provides mechanical stability and isolation from the environment. I describe several promising techniques that can be used to encapsulate the two-wire waveguides, while minimizing the negative impact of dielectric cladding on the waveguide optical properties. In particular, I detail the use of low-density foams and microstructured plastic

  7. Investigation of porous asphalt microstructure using optical and electron microscopy.

    PubMed

    Poulikakos, L D; Partl, M N

    2010-11-01

    Direct observations of porous asphalt concrete samples in their natural state using optical and electron microscopy techniques led to useful information regarding the microstructure of two mixes and indicated a relationship between microstructure and in situ performance. This paper presents evidence that suboptimal microstructure can lead to premature failure thus making a first step in defining well or suboptimal performing pavements with a bottom-up approach (microstructure). Laboratory and field compaction produce different samples in terms of the microstructure. Laboratory compaction using the gyratory method has produced more microcracks in mineral aggregates after the binder had cooled. Well-performing mixes used polymer-modified binders, had a more homogeneous void structure with fewer elongated voids and better interlocking of the aggregates. Furthermore, well-performing mixes showed better distribution of the mastic and better coverage of the aggregates with bitumen. Low vacuum scanning electron microscopy showed that styrene butadiene styrene polymer modification in binder exists in the form of discontinuous globules and not continuous networks. A reduction in the polymer phase was observed as a result of aging and in-service use. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  8. Microstructure characterization and thermal behavior around crack tip under electropulsing

    NASA Astrophysics Data System (ADS)

    Wei, Shaopeng; Wang, Gang; Deng, Dewei; Rong, Yiming

    2015-10-01

    Electropulsing treatment is a practical method to arrest crack propagation. The microstructure characterization and research on the forming mechanism are difficult due to the small affected area (0.01-1 mm2), high-temperature gradient (102 K/mm) and change rate (104-107 K/s). In this paper, the 1045 steel plate with a preexisting crack subjected to high-voltage pulses was investigated. The surface morphologies and microstructure around the crack tip were observed using optical microscopy and scanning electron microscopy. Experimental results showed that the material around the tip melted, splashed and blunted under electropulsing treatment. The microstructure around the molten hole was divided into four distinct regions. An electro-thermal coupled model considering material ejection, cavity formation, current oscillation and temperature-dependent material properties was proposed to investigate the dynamic formation process of molten hole and gradient microstructure. The uneven temperature distribution, high cooling rate and insufficient carbon diffusion led to the formation of gradient microstructure.

  9. Microstructure synthesis control of biological polyhydroxyalkanoates with mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pederson, Erik Norman

    Polyhydroxyalkanoates (PHA's) are a class of biologically produced polymers, or plastic, that is synthesized by various microorganisms. PHA's are made from biorenewable resources and are fully biodegradable and biocompatible, making them an environmentally friendly green polymer. A method of incorporating polymer microstructure into the PHA synthesized in Ralstonia eutropha was developed. These microstructures were synthesized with polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) as the polymer domains. To synthesize the PHB V copolymer, the additional presence of valerate was required. To control valerate substrate additions to the bioreactor, an off-gas mass spectrometry (MS) feedback control system was developed. Important process information including the cell physiology, growth kinetics, and product formation kinetics in the bioreactor was obtained with MS and used to control microstructure synthesis. The two polymer microstructures synthesized were core-shell granules and block copolymers. Block copolymers control the structure of the individual polymer chains while core-shell granules control the organization of many polymer chains. Both these microstructures result in properties unattainable by blending the two polymers together. The core-shell structures were synthesized with controlled domain thickness based on a developed model. Different block copolymers compositions were synthesized by varying the switching time of the substrate pulses responsible for block copolymer synthesis. The block copolymers were tested to determine their chemical properties and cast into films to determine the materials properties. These block copolymer films possessed new properties not achieved by copolymers or blends of the two polymers.

  10. FEM simulation of hot forging process to predict microstructure evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Hong; Zhang, Hai-Yan; Song, Hong-Wu; Cheng, Ming

    2013-05-01

    Two phase titanium alloy-TC11 alloy and Superalloy-IN718 alloy are being considered for high-temperature structural applications in aero-engine because of their excellent mechanical properties at elevated temperatures. The mechanical properties of their forgings are sensitive to the microstructure. Therefore, it is crucial to obtain a corresponding microstructure by controlling the hot working process. For the forging of TC11 alloy, the ingot break down in the subtransus region is an important process which acted as the primary role in the transformation of lamellar structure to equiaxed one as well as its poor formability because of lower deformation temperature. In this paper, the lamellar globularization kinetics and fracture behavior during forging are studied and modeled. For the hot forging of IN718 alloy. the grain size evolution is an important process. As the δ phase in the alloy can control grain growth through the strong pinning effect, the effect of δ phase on the microstructure evolution during hot working has been considered in this paper, and the microstructure evolution model has been established. As a applications, The lamellar globularization and fracture during the subtransus cogging process of large size TC11 alloy billet, and the microstructure development during the hot forging process of IN718 alloy turbine disk have been investigated commercial FE Software with user subroutines. The prediction results showed good agreement with the actual ones.

  11. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Smith, Reginald W.

    1999-01-01

    The long term goal of this project is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. Prior experimental results on the influence of microgravity on the microstructure of fibrous eutectics have been contradictory. Theoretical work at Clarkson University showed that buoyancy-driven convection in the vertical Bridgman configuration is not vigorous enough to alter the concentration field in the melt sufficiently to cause a measurable change in microstructure when the eutectic grows at minimum supercooling. Currently, there are four other hypotheses that might explain the observed changes in microstructure of fibrous eutectics caused by convection: (1) Disturbance of the concentration boundary layer arising from an off-eutectic melt composition and growth at the extremum; (2) Disturbance of the concentration boundary layer of a habit-modifying impurity; (3) Disturbance of the concentration boundary layer arising from an off-eutectic interfacial composition due to non-extremum growth; and (4) A fluctuating freezing rate combined with differences in the kinetics of fiber termination and fiber formation. We favor the last of these hypotheses. Thus, the primary objective of the present grant is to determine experimentally and theoretically the influence of a periodically varying freezing rate on eutectic solidification. A secondary objective is to determine the influence of convection on the microstructure of at least one other eutectic alloy that might be suitable for flight experiments.

  12. Microstructural analysis of the 2195 aluminum-lithium alloy welds

    NASA Technical Reports Server (NTRS)

    Talia, George E.

    1993-01-01

    The principal objective of this research was to explain a tendency of 2195 Al-Li alloy to crack at elevated temperature during welding. Therefore, a study was made on the effect of welding and thermal treatment on the microstructure of Al-Li Alloy 2195. The critical roles of precipitates, boundaries, phases, and other features of the microstructure were inferred from the crack propagation paths and the morphology of fracture surface of the alloy with different microstructures. Particular emphasis was placed on the microstructures generated by the welding process and the mechanisms of crack propagation in such structures. Variation of the welding parameters and thermal treatments were used to alter the micro/macro structures, and they were characterized by optical and scanning electron microscopy. A theoretical model is proposed to explain changes in the microstructure of welded material. This model proposes a chemical reaction in which gases from the air (i.e., nitrogen) release hydrogen inside the alloy. Such a reaction could generate large internal stresses capable to induce porosity and crack-like delamination in the material.

  13. [Computational neuroanatomy and microstructure imaging using magnetic resonance imaging].

    PubMed

    Mohammadi, S; Weiskopf, N

    2017-07-18

    Current computational neuroanatomy focuses on morphological measurements of the brain using standard magnetic resonance imaging (MRI) techniques. In comparison quantitative MRI (qMRI) typically provides a better tissue contrast and also greatly improves the sensitivity and specificity with respect to the microstructural characteristics of tissue. Current methodological developments in qMRI are presented, which go beyond morphology because this provides standardized measurements of the microstructure of the brain. The concept of in-vivo histology is introduced, based on biophysical modelling of qMRI data (hMRI) for determination of quantitative histology-like markers of the microstructure. The qMRI metrics can be used as direct biomarkers of the microstructural mechanisms driving observed morphological findings. The hMRI metrics utilize biophysical models of the MRI signal in order to determine 3‑dimensional maps of histology-like measurements in the white matter. Non-invasive brain tissue characterization using qMRI or hMRI has significant implications for both scientific and clinical applications. Both approaches improve the comparability across sites and time points, facilitate multicenter and longitudinal studies as well as standardized diagnostics. The hMRI is expected to shed new light on the relationship between brain microstructure, function and behavior both in health and disease. In the future hMRI will play an indispensable role in the field of computational neuroanatomy.

  14. Observations of pulsar microstructure with the Giant Metrewave Radio Telescope

    NASA Astrophysics Data System (ADS)

    de, Kishalay; Gupta, Yashwant; Sharma, Prateek

    2017-01-01

    Microstructure emission, involving short time scale intensity fluctuations in subpulse emission, is well known in normal pulsars. However, the high time resolution and sensitivity required to detect these features has limited such studies to only few pulsars, mostly in the northern sky. The Giant Metrewave Radio Telescope (GMRT), owing to its high sensitivity, extensive sky coverage and frequency coverage at low frequencies is an attractive prospect for high time resolution single pulse studies of pulsars. In this paper, we present results from an extensive statistical analysis of the polarization (with single frequency observations) and spectral (with simultaneous dual-frequency observations) properties of microstructure emission in pulsars observed with the GMRT. We further present the first detections of quasi-periodic microstructure emission from millisecond pulsars (MSPs), in GMRT observations of two MSPs at 325 and 610 MHz. We thus extend the microstructure timescale - rotation period relationship by more than an order of magnitude, down to a rotation period of 5 ms. We discuss the physical implications of our results, pointing to a radial / temporal modulation origin of microstructure emission as a likely explanation for the observed characteristics.

  15. Local excitation and collection in polymeric fluorescent microstructures

    NASA Astrophysics Data System (ADS)

    Henrique, Franciele Renata; Mendonca, Cleber Renato

    2016-04-01

    Integrated photonics has gained attention in recent years due to its wide range of applications which span from biology to optical communications. The use of polymer-based platforms for photonic devices is of great interest because organic compounds can be easily incorporated to polymers, enabling modifications to the system physical properties. The two-photon polymerization technique has emerged as an interesting tool for the production of three-dimensional polymeric microstructures. However, for their further incorporation in photonic devices it is necessary to develop methods to perform optical excitation and signal collection on such microstructures. With such purpose, we demonstrate approaches to perform local excitation and collection in polymeric microstructures doped with fluorescent dyes, employing tapered fibers. The obtained results indicate that fiber tapers are suitable to couple light in and out of fluorescent polymeric microstructures, paving the way for their incorporation in photonic devices. We also show that microstructures doped with more than one dye can be used as built-in broadband light sources to photonic circuits and their emission spectrum can be tuned by the right choice of the excitation position.

  16. Microstructure effects on shock response of Cu nanofoams

    NASA Astrophysics Data System (ADS)

    Zhao, F. P.; Wu, H. A.; Luo, S. N.

    2013-08-01

    Microstructure effects on shock response of Cu nanofoams are investigated with molecular dynamics simulations, including elastic-plastic deformation, Hugoniot states, void collapse, nanojetting, and vaporization. The microstructure features examined include pore shape, arrangement and size, as well as grain boundaries. The elastic-plastic transition, void collapse, and jetting including vaporization, are dependent on the microstructure, although to different extents. The void arrangement and aspect ratio play an important role. The effects of grain boundaries and void size are less pronounced. Considering the measurement scatter inherent for porous materials, the high pressure Hugoniot states are not sensitive to microstructure. Jetting during void collapse is due to tensorial velocity gradients (direction and amplitude), and a combined result of forward, divergent, and convergent flows with varying contributions; this mechanism and related processes are common for different microstructures. Free surface jetting involves necking and cavitation. Elliptical voids with large aspect ratios, and with their centers aligned linearly with the shock direction, are particularly efficient in inducing high speed jetting and vaporization.

  17. Dry friction of microstructured polymer surfaces inspired by snake skin

    PubMed Central

    Heepe, Lars; Fadeeva, Elena; Gorb, Stanislav N

    2014-01-01

    Summary The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae). Frictional properties of snake-inspired microstructured polymer surface (SIMPS) made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients measured along the microstructure were about 33% lower than those measured in the opposite direction. Frictional coefficients were compared to those obtained on other types of surface microstructure: (i) smooth ones, (ii) rough ones, and (iii) ones with periodic groove-like microstructures of different dimensions. The results demonstrate the existence of a common pattern of interaction between two general effects that influence friction: (1) molecular interaction depending on real contact area and (2) the mechanical interlocking of both contacting surfaces. The strongest reduction of the frictional coefficient, compared to the smooth reference surface, was observed at a medium range of surface structure dimensions suggesting a trade-off between these two effects. PMID:25161844

  18. Microstructure-based modelling of multiphase materials and complex structures

    NASA Astrophysics Data System (ADS)

    Werner, Ewald; Wesenjak, Robert; Fillafer, Alexander; Meier, Felix; Krempaszky, Christian

    2016-09-01

    Micromechanical approaches are frequently employed to monitor local and global field quantities and their evolution under varying mechanical and/or thermal loading scenarios. In this contribution, an overview on important methods is given that are currently used to gain insight into the deformational and failure behaviour of multiphase materials and complex structures. First, techniques to represent material microstructures are reviewed. It is common to either digitise images of real microstructures or generate virtual 2D or 3D microstructures using automated procedures (e.g. Voronoï tessellation) for grain generation and colouring algorithms for phase assignment. While the former method allows to capture exactly all features of the microstructure at hand with respect to its morphological and topological features, the latter method opens up the possibility for parametric studies with respect to the influence of individual microstructure features on the local and global stress and strain response. Several applications of these approaches are presented, comprising low and high strain behaviour of multiphase steels, failure and fracture behaviour of multiphase materials and the evolution of surface roughening of the aluminium top metallisation of semiconductor devices.

  19. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.

  20. Microstructured fibres: a positive impact on defence technology?

    NASA Astrophysics Data System (ADS)

    O'Driscoll, E. J.; Watson, M. A.; Delmonte, T.; Petrovich, M. N.; Feng, X.; Flanagan, J. C.; Hayes, J. R.; Richardson, D. J.

    2006-09-01

    In this paper we seek to assess the potential impact of microstructured fibres for security and defence applications. Recent literature has presented results on using microstructured fibre for delivery of high power, high quality radiation and also on the use of microstructured fibre for broadband source generation. Whilst these two applications may appear contradictory to one another the inherent design flexibility of microstructured fibres allows fibres to be fabricated for the specific application requirements, either minimising (for delivery) or maximising (for broadband source generation) the nonlinear effects. In platform based laser applications such as infrared counter measures, remote sensing and laser directed-energy weapons, a suitable delivery fibre providing high power, high quality light delivery would allow a laser to be sited remotely from the sensor/device head. This opens up the possibility of several sensor/device types sharing the same multi-functional laser, thus reducing the complexity and hence the cost of such systems. For applications requiring broadband source characteristics, microstructured fibres can also offer advantages over conventional sources. By exploiting the nonlinear effects it is possible to realise a multifunctional source for applications such as active hyperspectral imaging, countermeasures, and biochemical sensing. These recent results suggest enormous potential for these novel fibre types to influence the next generation of photonic systems for security and defence applications. However, it is important to establish where the fibres can offer the greatest advantages and what research still needs to be done to drive the technology towards real platform solutions.

  1. Automated image analysis of microstructure changes in metal alloys

    NASA Astrophysics Data System (ADS)

    Hoque, Mohammed E.; Ford, Ralph M.; Roth, John T.

    2005-02-01

    The ability to identify and quantify changes in the microstructure of metal alloys is valuable in metal cutting and shaping applications. For example, certain metals, after being cryogenically and electrically treated, have shown large increases in their tool life when used in manufacturing cutting and shaping processes. However, the mechanisms of microstructure changes in alloys under various treatments, which cause them to behave differently, are not yet fully understood. The changes are currently evaluated in a semi-quantitative manner by visual inspection of images of the microstructure. This research applies pattern recognition technology to quantitatively measure the changes in microstructure and to validate the initial assertion of increased tool life under certain treatments. Heterogeneous images of aluminum and tungsten carbide of various categories were analyzed using a process including background correction, adaptive thresholding, edge detection and other algorithms for automated analysis of microstructures. The algorithms are robust across a variety of operating conditions. This research not only facilitates better understanding of the effects of electric and cryogenic treatment of these materials, but also their impact on tooling and metal-cutting processes.

  2. Brain microstructure of subclinical apathy phenomenology in healthy individuals.

    PubMed

    Spalletta, Gianfranco; Fagioli, Sabrina; Caltagirone, Carlo; Piras, Fabrizio

    2013-12-01

    Although apathy has been extensively studied in relation to neuropsychiatric disorders, it is still unclear whether, in healthy people, it should be considered as a physiological phenomenon or whether it is a risk factor for progression to clinical disturbances. Here, we investigated subclinical apathy phenomenology and its brain microstructural correlates in healthy individuals. We submitted 72 participants to a comprehensive clinical assessment, a high-resolution structural MRI and a diffusion tensor imaging scan protocol. Data of individual microstructural (mean diffusivity and fractional anisotropy) variations were processed across genders in relation to the Apathy Rating Scale score. In females, subclinical apathy phenomenology was associated with microstructural variation of the bilateral thalami, the anterior thalamic radiation, the forceps major, and the corona radiate. These are white matter areas mostly connecting the thalami to the frontal and occipital cortices, regions that are known to be implicated in the expression of apathy in clinical samples. No significant relationship with brain microstructure was found in males who showed a positive correlation between subclinical apathy and somatic phenomenology of depression. In conclusion, our results show that in healthy individuals subclinical apathy phenomenology is associated with different mechanisms across genders, and raise the issue about whether brain microstructural changes associated with subclinical apathy in healthy females could be a precocious marker useful in the prediction of progression to more severe apathetic conditions.

  3. Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo

    DOE PAGES

    Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena

    2017-04-19

    Additive manufacturing (AM) is of tremendous interest given its ability to realize complex, non-traditional geometries in engineered structural materials. But, microstructures generated from AM processes can be equally, if not more, complex than their conventionally processed counterparts. While some microstructural features observed in AM may also occur in more traditional solidification processes, the introduction of spatially and temporally mobile heat sources can result in significant microstructural heterogeneity. While grain size and shape in metal AM structures are understood to be highly dependent on both local and global temperature profiles, the exact form of this relation is not well understood. Wemore » implement an idealized molten zone and temperature-dependent grain boundary mobility in a kinetic Monte Carlo model to predict three-dimensional grain structure in additively manufactured metals. In order to demonstrate the flexibility of the model, synthetic microstructures are generated under conditions mimicking relatively diverse experimental results present in the literature. Simulated microstructures are then qualitatively and quantitatively compared to their experimental complements and are shown to be in good agreement.« less

  4. Ferroelectric thin film microstructure development and related property enhancement

    SciTech Connect

    Tuttle, B.; Voigt, J.A.; Headley, T.J.; Potter, B.G.; Dimos, D.; Schwartz, R.W.; Dugger, M.T.; Michael, J.; Nasby, R.D.; Garino, T.J.; Goodnow, D.C.

    1993-11-01

    Factors that control phase evolution, microstructural development and ferroelectric domain assemblage are evaluated for chemically prepared lead zirconate titanate (PZT) thin films. Zirconium to titanium stoichiometry is shown to strongly influence microstructure. As Ti content increases, there is an apparent enhancement of the perovskite phase nucleation rate, grain size becomes smaller, and the amount of pyrochlore phase, if present, decreases. While the pyrochlore matrix microstructure for near morphotropic phase boundary composition thin films consists of two interpenetrating nanophases (pyrochlore and an amorphous phase), the pyrochlore microstructure for PZT 20/80 films deposited on MgO substrates is single phase and consists of 10nm grains. Zirconium to titanium stoichiometry also has a substantial influence on process integration. Near morphotropic phase boundary films exhibit extensive reaction with underlying TiO{sub 2} diffusion barriers; conversely, there is no chemical reaction for identically processed PZT 20/80 thin films. The authors have attempted to directly correlate the optical quality of PZT thin films to the following microstructural features: (1) presence of a second phase, (2) domain orientation, and (3) nanometer surface morphology.

  5. Macro- and microstructure of superconducting alloys (with an atlas of microstructures)

    NASA Astrophysics Data System (ADS)

    Efimov, Iu. V.; Paufler, P.; Mikhailov, B. P.

    In this monograph, an attempt is made to examine the macrostructure and the microstructure of the most promising superconductors under various conditions and to show the dependence of the structure of superconducting materials on the method of material preparation. The basic concepts regarding the phenomenon of superconductivity are discussed, taking into account the disappearance of electrical resistance, the occurrence of ideal diamagnetism, the characteristics of superconductors of type I and type II, the microscopic basis of superconductivity, and phase transformations and changes in various material properties which occur in connection with the superconducting state. A physicochemical analysis of superconducting materials is considered along with the methods employed in the study of the structure of superconducting materials, and the procedures of specimen preparation. Attention is given to the superconducting condition and the basic groups of superconducting materials, and the effect of the structure on various properties related to superconductivity.

  6. Micromechanical evaluation of bone microstructures under load

    NASA Astrophysics Data System (ADS)

    Mueller, Ralph; Boesch, Tobias; Jarak, Drazen; Stauber, Martin; Nazarian, Ara; Tantillo, Michelle; Boyd, Steven

    2002-01-01

    Many bones within the axial and appendicular skeleton are subjected to repetitive, cyclic loading during the course of ordinary daily activities. If this repetitive loading is of sufficient magnitude or duration, fatigue failure of the bone tissue may result. In clinical orthopedics, trabecular fatigue fractures are observed as compressive stress fractures in the proximal femur, vertebrae, calcaneus and tibia, and are often preceded by buckling and bending of microstructural elements. However, the relative importance of bone density and architecture in the aetiology of these fractures is poorly understood. The aim of the study was to investigate failure mechanisms of 3D trabecular bone using micro-computed tomography (mCT). Because of its nondestructive nature, mCT represents an ideal approach for performing not only static measurements of bone architecture but also dynamic measurements of failure initiation and propagation as well as damage accumulation. For the purpose of the study, a novel micro-compression device was devised to measure loaded trabecular bone specimens directly in a micro-tomographic system. A 3D snapshot of the structure under load was taken for each load step in the mCT providing 34 mm nominal resolution. An integrated mini-button load cell in the compression device combined with the displacement computed directly from the mCT scout view was used to record the load-displacement curve. From the series of 3D images, failure of the trabecular architecture could be observed, and in a rod-like type of architecture it could be described by an initial buckling and bending of structural elements followed by a collapse of the overloaded trabeculae. A computational method was developed to quantify individual trabecular strains during failure. The four main steps of the algorithm were (i) sequential image alignment, (ii) identification of landmarks (trabecular nodes), (iii) determine nodal connectivity, and (iv) to compute the nodal displacements and

  7. Phylogenetic signal in bone microstructure of sauropsids.

    PubMed

    Cubo, J; Ponton, F; Laurin, M; de Margerie, E; Castanet, J

    2005-08-01

    In spite of the fact that the potential usefulness of bone histology in systematics has been discussed for over one and a half centuries, the presence of a phylogenetic signal in the variation of histological characters has rarely been assessed. A quantitative assessment of phylogenetic signal in bone histological characters could provide a justification for performing optimizations of these traits onto independently generated phylogenetic trees (as has been done in recent years). Here we present an investigation on the quantification of the phylogenetic signal in the following bone histological, microanatomical, and morphological traits in a sample of femora of 35 species of sauropsids: vascular density, vascular orientation, index of Haversian remodeling, cortical thickness, and cross-sectional area (bone size). For this purpose, we use two methods, regressions on distance matrices tested for significance using permutations (a Mantel test) and random tree length distribution. Within sauropsids, these bone microstructural traits have an optimal systematic value in archosaurs. In this taxon, a Mantel test shows that the phylogeny explains 81.8% of the variation of bone size and 86.2% of the variation of cortical thickness. In contrast, a Mantel test suggests that the phylogenetic signal in histological traits is weak: although the phylogeny explains 18.7% of the variation of vascular density in archosaurs, the phylogenetic signal is not significant either for vascular orientation or for the index of Haversian remodeling. However, Mantel tests seem to underestimate the proportion of variance of the dependent character explained by the phylogeny, as suggested by a PVR (phylogenetic eigenvector) analysis. We also deal with some complementary questions. First, we evaluate the functional dependence of bone vascular density on bone size by using phylogenetically independent contrasts. Second, we perform a variation partitioning analysis and show that the phylogenetic

  8. Composite materials for thermal energy storage: enhancing performance through microstructures.

    PubMed

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer.

  9. Bioinspired polymer microstructures for directional transport of oily liquids

    PubMed Central

    Plamadeala, C.; Hischen, F.; Friesenecker, R.; Wollhofen, R.; Jacak, J.; Buchberger, G.; Heiss, E.; Klar, T.A.; Baumgartner, W.

    2017-01-01

    Nature has always served as an inspiration for scientists, helping them to solve a large diversity of technical problems. In our case, we are interested in the directional transport of oily liquids and as a model for this application we used the flat bug Dysodius lunatus. In this report, we present arrays of drops looking like polymer microstructures produced by the two-photon polymerization technique that mimic the micro-ornamentation from the bug's cuticle. A good directionality of oil transport was achieved, directly controlled by the direction of the pointed microstructures at the surface. If the tips of the drop-like microstructures are pointing towards the left side, the liquid front moves to the right and vice versa. Similar effects could be expected for the transport of oily lubricants. These results could, therefore, be interesting for applications in friction and wear reduction. PMID:28405373

  10. Using electric current to surpass the microstructure breakup limit

    NASA Astrophysics Data System (ADS)

    Qin, Rongshan

    2017-01-01

    The elongated droplets and grains can break up into smaller ones. This process is driven by the interfacial free energy minimization, which gives rise to a breakup limit. We demonstrated in this work that the breakup limit can be overpassed drastically by using electric current to interfere. Electric current free energy is dependent on the microstructure configuration. The breakup causes the electric current free energy to reduce in some cases. This compensates the increment of interfacial free energy during breaking up and enables the processing to achieve finer microstructure. With engineering practical electric current parameters, our calculation revealed a significant increment of the obtainable number of particles, showing electric current a powerful microstructure refinement technology. The calculation is validated by our experiments on the breakup of Fe3C-plates in Fe matrix. Furthermore, there is a parameter range that electric current can drive spherical particles to split into smaller ones.

  11. Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis.

    PubMed

    Santa-Maria, Monica; Jeoh, Tina

    2010-08-09

    Changes in cellulose microstructure have been proposed to occur throughout hydrolysis that impact enzyme access and hydrolysis rates. However, there are very few direct observations of such changes in ongoing reactions. In this study, changes in the microstructure of cellulose are measured by simultaneous confocal and atomic force microscopy and are correlated to hydrolysis extents and quantities of bound enzyme in the reaction. Minimally processed and never-dried cellulose I was hydrolyzed by a purified cellobiohydrolase, Trichoderma reesei Cel7A. Early in the reaction ( approximately 30% hydrolysis), at high hydrolysis rates and high bound cellulase quantities, untwisting of cellulose microfibrils was observed. As the hydrolysis reaction neared completion (>80% hydrolysis), extensively thinned microfibrils (diameters of 3-5 nm) and channels (0.3-0.6 nm deep) along the lengths of the microfibrils were observed. The prominent microstructural changes in cellulose due to cellobiohydrolase action are discussed in the context of the overall hydrolysis reaction.

  12. Limiting factors in the production of deep microstructures

    NASA Astrophysics Data System (ADS)

    Tolfree, David W. L.; O'Neill, William; Tunna, Leslie; Sutcliffe, Christopher

    1999-10-01

    Microsystems increasingly require precision deep microstructures that can be cost-effectively designed and manufactured. New products must be able to meet the demands of the rapidly growing markets for microfluidic, micro- optical and micromechanical devices in industrial sectors which include chemicals, pharmaceuticals, biosciences, medicine and food. The realization of such products, first requires an effective process to design and manufacture prototypes. Two process methods used for the fabrication of high aspect-ratio microstructures are based on X-ray beam lithography with electroforming processes and direct micromachining with a frequency multiplied Nd:YAG laser using nanosecond pulse widths. Factors which limit the efficiency and precision obtainable using such processes are important parameters when deciding on the best fabrication method to use. A basic microstructure with narrow channels suitable for a microfluidic mixer have been fabricated using both these techniques and comparisons made of the limitations and suitability of the processes in respect of fast prototyping and manufacture or working devices.

  13. Impact of anode microstructure on solid oxide fuel cells.

    PubMed

    Suzuki, Toshio; Hasan, Zahir; Funahashi, Yoshihiro; Yamaguchi, Toshiaki; Fujishiro, Yoshinobu; Awano, Masanobu

    2009-08-14

    We report a correlation between the microstructure of the anode electrode of a solid oxide fuel cell (SOFC) and its electrochemical performance for a tubular design. It was shown that the electrochemical performance of the cell was extensively improved when the size of constituent particles was reduced so as to yield a highly porous microstructure. The SOFC had a power density of greater than 1 watt per square centimeter at an operating temperature as low as 600 degrees C with a conventional zirconia-based electrolyte, a nickel cermet anode, and a lanthanum ferrite perovskite cathode material. The effect of the hydrogen fuel flow rate (linear velocity) was also examined for the optimization of operating conditions. Higher linear fuel velocity led to better cell performance for the cell with higher anode porosity. A zirconia-based cell could be used for a low-temperature SOFC system under 600 degrees C just by optimizing the microstructure of the anode electrode and operating conditions.

  14. Direct metal writing: Controlling the rheology through microstructure

    DOE PAGES

    Chen, Wen; Thornley, Luke; Coe, Hannah G.; ...

    2017-02-27

    Most metal additive manufacturing approaches are based on powder-bed melting techniques such as laser selective melting or electron beam melting, which often yield uncontrolled microstructures with defects (e.g., pores or microcracks) and residual stresses. Here, we introduce a proof-of-concept prototype of a 3D metal freeform fabrication process by direct writing of metallic alloys in the semi-solid regime. This process is achieved through controlling the particular microstructure and the rheological behavior of semi-solid alloy slurries, which demonstrate a well suited viscosity and a shear thinning property to retain the shape upon printing. Furthermore, the ability to control the microstructure through thismore » method yields a flexible manufacturing route to fabricating 3D metal parts with full density and complex geometries.« less

  15. Direct metal writing: Controlling the rheology through microstructure

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Thornley, Luke; Coe, Hannah G.; Tonneslan, Samuel J.; Vericella, John J.; Zhu, Cheng; Duoss, Eric B.; Hunt, Ryan M.; Wight, Michael J.; Apelian, Diran; Pascall, Andrew J.; Kuntz, Joshua D.; Spadaccini, Christopher M.

    2017-02-01

    Most metal additive manufacturing approaches are based on powder-bed melting techniques such as laser selective melting or electron beam melting, which often yield uncontrolled microstructures with defects (e.g., pores or microcracks) and residual stresses. Here, we introduce a proof-of-concept prototype of a 3D metal freeform fabrication process by direct writing of metallic alloys in the semi-solid regime. This process is achieved through controlling the particular microstructure and the rheological behavior of semi-solid alloy slurries, which demonstrate a well suited viscosity and a shear thinning property to retain the shape upon printing. The ability to control the microstructure through this method yields a flexible manufacturing route to fabricating 3D metal parts with full density and complex geometries.

  16. Predicting Microstructure and Microsegregation in Multicomponent Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Xinyan; Ding, Ling; Chen, ShuangLin; Xie, Fanyou; Chu, M.; Chang, Y. Austin

    Accurate predictions of microstructure and microsegregation in metallic alloys are highly important for applications such as alloy design and process optimization. Restricted assumptions concerning the phase diagram could easily lead to erroneous predictions. The best approach is to couple microsegregation modeling with phase diagram computations. A newly developed numerical model for the prediction of microstructure and microsegregation in multicomponent alloys during dendritic solidification was introduced. The micromodel is directly coupled with phase diagram calculations using a user-friendly and robust phase diagram calculation engine-PANDAT. Solid state back diffusion, undercooling and coarsening effects are included in this model, and the experimentally measured cooling curves are used as the inputs to carry out the calculations. This model has been used to predict the microstructure and microsegregation in two multicomponent aluminum alloys, 2219 and 7050. The calculated values were confirmed using results obtained from directional solidification.

  17. Fluorescent probes for shock compression spectroscopy of microstructured materials

    NASA Astrophysics Data System (ADS)

    Christensen, James M.; Banishev, Alexandr A.; Dlott, Dana D.

    2017-01-01

    We are developing fluorescent probes to obtain dynamic two-dimensional pressure maps of shocked microstructured materials. We have fabricated silica nano-or micro-spheres doped with rhodamine 6G dye (R6G) which fluoresce strongly, and which may be dispersed throughout a microstructured sample. Alternatively we can grow thin skin layers of dye-doped silica on the surface of particles. The emissive microspheres were embedded in poly-methyl methacrylate (PMMA) and were excited by a quasi-continuous laser. When the samples were shocked to 3-8.4 GPa using laser-driven flyer plates, the emission redshifted and lost intensity. When encapsulating the dye in silica, the emission became brighter and the intensity-loss response became fast enough to monitor nanosecond shock effects. Preliminary data are reported showing the intensity loss in a shocked microstructured medium, an artificial sand, consisting of dye-coated silica microspheres.

  18. Channel microstructure and thermal insulation mechanism of sepiolite mineral nanofibers.

    PubMed

    Wang, Fei; Liang, Jinsheng; Tang, Qingguo; Chen, Cong; Chen, Yalei

    2014-05-01

    The longitudinal and cross sectional TEM images of sepiolite mineral nanofibers were prepared by cutting in the direction parallel and perpendicular to nanofibers, and the channel microstructure of sepiolite nanofibers was studied. The thermal insulation mechanism of sepiolite nanofibers was analyzed according to the diagrammatic sketch obtained from the above experimental method. The results showed that many discontinuously connected bending shape channels with about 23-26 nm in diameter existed in the center region of nanofibers, and many discontinuously connected irregular micropores and mesopores with the size of about 1-9 nm existed on the wall of nanofibers. The main reasons for the formation of channel microstructure in sepiolite nanofibers were their minerogenetic conditions and the interaction between acid and high-speed airflow in the process of nanofibers preparation, and bubbles in the hydrotherm played a significant role in the microstructure formation. The thermal insulation performance of sepiolite nanofibers could be attributed to obstructive and infrared radiative thermal insulation.

  19. Computational methods for coupling microstructural and micromechanical materials response simulations

    SciTech Connect

    HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.; FANG,HUEI ELIOT; RINTOUL,MARK DANIEL; VEDULA,VENKATA R.; GLASS,S. JILL; KNOROVSKY,GERALD A.; NEILSEN,MICHAEL K.; WELLMAN,GERALD W.; SULSKY,DEBORAH; SHEN,YU-LIN; SCHREYER,H. BUCK

    2000-04-01

    Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.

  20. Microstructure and rheology of microfibril-polymer networks.

    PubMed

    Veen, Sandra J; Versluis, Peter; Kuijk, Anke; Velikov, Krassimir P

    2015-12-14

    By using an adsorbing polymer in combination with mechanical de-agglomeration, the microstructure and rheological properties of networks of microfibrils could be controlled. By the addition of sodium carboxymethyl cellulose during de-agglomeration of networks of bacterial cellulose, the microstructure could be changed from an inhomogeneous network with bundles of microfibrils and voids to a more homogeneous spread and alignment of the particles. As a result the macroscopic rheological properties were altered. Although still elastic and gel-like in nature, the elasticity and viscous behavior of the network as a function of microfibril concentration is altered. The microstructure is thus changed by changing the surface properties of the building blocks leading to a direct influence on the materials macroscopic behavior.

  1. Using electric current to surpass the microstructure breakup limit

    PubMed Central

    Qin, Rongshan

    2017-01-01

    The elongated droplets and grains can break up into smaller ones. This process is driven by the interfacial free energy minimization, which gives rise to a breakup limit. We demonstrated in this work that the breakup limit can be overpassed drastically by using electric current to interfere. Electric current free energy is dependent on the microstructure configuration. The breakup causes the electric current free energy to reduce in some cases. This compensates the increment of interfacial free energy during breaking up and enables the processing to achieve finer microstructure. With engineering practical electric current parameters, our calculation revealed a significant increment of the obtainable number of particles, showing electric current a powerful microstructure refinement technology. The calculation is validated by our experiments on the breakup of Fe3C-plates in Fe matrix. Furthermore, there is a parameter range that electric current can drive spherical particles to split into smaller ones. PMID:28120919

  2. Predicting mesoscale microstructural evolution in electron beam welding

    DOE PAGES

    Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena; ...

    2016-03-16

    Using the kinetic Monte Carlo simulator, Stochastic Parallel PARticle Kinetic Simulator, from Sandia National Laboratories, a user routine has been developed to simulate mesoscale predictions of a grain structure near a moving heat source. Here, we demonstrate the use of this user routine to produce voxelized, synthetic, three-dimensional microstructures for electron-beam welding by comparing them with experimentally produced microstructures. When simulation input parameters are matched to experimental process parameters, qualitative and quantitative agreement for both grain size and grain morphology are achieved. The method is capable of simulating both single- and multipass welds. As a result, the simulations provide anmore » opportunity for not only accelerated design but also the integration of simulation and experiments in design such that simulations can receive parameter bounds from experiments and, in turn, provide predictions of a resultant microstructure.« less

  3. Predicting Mesoscale Microstructural Evolution in Electron Beam Welding

    NASA Astrophysics Data System (ADS)

    Rodgers, T. M.; Madison, J. D.; Tikare, V.; Maguire, M. C.

    2016-05-01

    Using the kinetic Monte Carlo simulator, Stochastic Parallel PARticle Kinetic Simulator, from Sandia National Laboratories, a user routine has been developed to simulate mesoscale predictions of a grain structure near a moving heat source. Here, we demonstrate the use of this user routine to produce voxelized, synthetic, three-dimensional microstructures for electron-beam welding by comparing them with experimentally produced microstructures. When simulation input parameters are matched to experimental process parameters, qualitative and quantitative agreement for both grain size and grain morphology are achieved. The method is capable of simulating both single- and multipass welds. The simulations provide an opportunity for not only accelerated design but also the integration of simulation and experiments in design such that simulations can receive parameter bounds from experiments and, in turn, provide predictions of a resultant microstructure.

  4. Stainless steel valves with enhanced performance through microstructure optimization

    NASA Astrophysics Data System (ADS)

    Barani, A. A.; Boukhattam, M.; Haggeney, M.; Güler, S.

    2017-08-01

    Compressor valves are made of hardened and tempered martensitic steels. The main design criterion for the material selection is the fatigue performance of the material under bending loads. In some cases impact loads and corrosive atmospheres additionally act on the part. For the first time, the microstructure of the most commonly used stainless steel and its influence on the properties relevant for flapper valves is presented and described in this paper. It is demonstrated how the tensile properties of a martensitic stainless steel can be enhanced by tailoring the microstructure. Electron back scatter diffraction method is carried out to explain the changes in monotonic mechanical properties. Through a modified heat treatment the martensite microstructure is refined resulting in an increase of yield and ultimate tensile strength and at the same time a significant increase of elongation.

  5. Modeling the deformation behavior of nanocrystalline alloy with hierarchical microstructures

    NASA Astrophysics Data System (ADS)

    Liu, Hongxi; Zhou, Jianqiu; Zhao, Yonghao

    2016-02-01

    A mechanism-based plasticity model based on dislocation theory is developed to describe the mechanical behavior of the hierarchical nanocrystalline alloys. The stress-strain relationship is derived by invoking the impeding effect of the intra-granular solute clusters and the inter-granular nanostructures on the dislocation movements along the sliding path. We found that the interaction between dislocations and the hierarchical microstructures contributes to the strain hardening property and greatly influence the ductility of nanocrystalline metals. The analysis indicates that the proposed model can successfully describe the enhanced strength of the nanocrystalline hierarchical alloy. Moreover, the strain hardening rate is sensitive to the volume fraction of the hierarchical microstructures. The present model provides a new perspective to design the microstructures for optimizing the mechanical properties in nanostructural metals.

  6. Predicting mesoscale microstructural evolution in electron beam welding

    SciTech Connect

    Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena; Maguire, Michael C.

    2016-03-16

    Using the kinetic Monte Carlo simulator, Stochastic Parallel PARticle Kinetic Simulator, from Sandia National Laboratories, a user routine has been developed to simulate mesoscale predictions of a grain structure near a moving heat source. Here, we demonstrate the use of this user routine to produce voxelized, synthetic, three-dimensional microstructures for electron-beam welding by comparing them with experimentally produced microstructures. When simulation input parameters are matched to experimental process parameters, qualitative and quantitative agreement for both grain size and grain morphology are achieved. The method is capable of simulating both single- and multipass welds. As a result, the simulations provide an opportunity for not only accelerated design but also the integration of simulation and experiments in design such that simulations can receive parameter bounds from experiments and, in turn, provide predictions of a resultant microstructure.

  7. Microstructure Evolution of HSLA Pipeline Steels after Hot Uniaxial Compression.

    PubMed

    Liu, Yongchang; Shao, Yi; Liu, Chenxi; Chen, Yan; Zhang, Dantian

    2016-08-24

    The mechanical properties of the high-strength low-alloy pipeline steels were mainly controlled by the subsequent phase transformations after rolling. The influence of hot uniaxial compression on the phase transformation of acicular ferrite was explored by viewing of the deformation degree, the deformation temperature, and the strain rate. The results show that the increase of deformation amounts raises the transformation starting and finishing temperature during the subsequent cooling and also promotes the polygonal ferrite transformation, which leads to the decrease of Vickers hardness accordingly. With the increasing of the deformation temperature, the achieved microstructure becomes coarsened and thus decreases the hardness. As the strain rate increases, the microstructure is refined and thus the hardness increases gradually; increasing the strain rate appropriately is beneficial to the refinement of the microstructure.

  8. Trabecular microstructure of the human lunate in Kienbock's disease.

    PubMed

    Han, K-J; Kim, J Y; Chung, N-S; Lee, H R; Lee, Y S

    2012-05-01

    The trabecular microstructure of normal lunates and lunates with Kienböck's disease was investigated using micro-computed tomography (micro-CT). Five lunates with advanced Kienböck's disease were obtained during lunate excision and scaphocapitate fusion, and five control lunates were from embalmed cadavers. Microstructural morphometric parameters were measured using micro-CT images. Trabeculations of lunates with Kienböck's disease were 2.67 times denser and 1.84 times thicker than those of normal lunates. Furthermore, bone surface areas were 1.43 times greater and bone volume 2.67 times greater, and structural model indices were significantly lower in lunates with Kienböck's disease. The study estimated that high mechanical stress would be applied to lunates with Kienböck's disease, and suggests that new bone formation and collapse may play important roles in the microstructural changes in the lunate with advanced Kienböck's disease.

  9. Microstructural characterization of as-cast Co-Si alloys

    SciTech Connect

    Faria, M.I.S.T. . E-mail: ismenia@phase.faenquil.br; Coelho, G.C.; Nunes, C.A.; Avillez, R.R.

    2006-01-15

    This work presents results of microstructural characterization of as-cast Co-Si alloys. The alloys of different compositions were prepared by arc melting Co (min. 99.97%) and Si (min. 99.99%) under argon atmosphere in a water-cooled copper crucible with a nonconsumable tungsten electrode and titanium getter. All samples were characterized by scanning electron microscopy (SEM) using back-scattered electron (BSE) mode and X-ray diffraction (XRD). A good conformity between the currently accepted Co-Si phase diagram and the experimental results from this work was verified. No indication of the {beta}Co{sub 2}Si was observed in the as-cast microstructures. As in previous investigations, the Co{sub 3}Si phase has not been observed in the samples at room temperature; however, microstructural evidence suggests its stability at high temperature.

  10. Microstructuring of Steel and Hard Metal using Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Manuel; Engel, Andy; Weißmantel, Steffen; Scholze, Stefan; Reisse, Guenter

    New results on three-dimensional micro-structuring of tungsten carbide hard metal and steel using femtosecond laser pulses will be presented. For the investigations, a largely automated high-precision fs-laser micromachining station was used. The fs-laser beam is focused onto the sample surface using different objectives. The investigations of the ablation behaviour of the various materials in dependence of the laser processing parameters will be presented. In the second part, complex 3D microstructures with a variety of geometries and resolutions down to a few micrometers will be presented. On of the Goal of these investigations was to create defined microstructures in tooling equipments such as cutting inserts.

  11. Microstructure and Fracture Behavior of Tungsten Heavy Alloys

    SciTech Connect

    Sunwoo, A

    2003-06-01

    The 93% W-5.6% Ni-1.4% Fe and 93.1% W-4.7% Ni-2.2% Co alloys (WHA) provided by Army Research Laboratory (ARL), Aberdeen are characterized to determine the effects of matrix alloying and swaging on the microstructure and fracture behavior. The W particles are oblong with respect to the swaging direction. The microstructure of the W-Ni-Fe alloy reveals good cohesive bonding between W particles, but there is W-matrix interface separation and matrix alloy cracking. The microstructure of the W-Ni-Co alloy reveals regions of good cohesive bonding between W particles, but also regions where some wetting has not occurred by the liquid. No evidence was observed of matrix alloy cracking. The fracture characteristic of WHA is dominantly cleavage of W particles.

  12. Rapid prototyping of microstructures by soft lithography for biotechnology.

    PubMed

    Wolfe, Daniel B; Qin, Dong; Whitesides, George M

    2010-01-01

    This chapter describes the methods and specific procedures used to fabricate microstructures by soft lithography. These techniques are useful for the prototyping of devices useful for applications in biotechnology. Fabrication by soft lithography does not require specialized or expensive equipment; the materials and facilities necessary are found commonly in biological and chemical laboratories in both academia and industry. The combination of the fact that the materials are low-cost and that the time from design to prototype device can be short (< 24 h) makes it possible to use and to screen rapidly devices that also can be disposable. Here we describe the procedures for fabricating microstructures with lateral dimensions as small as 1 mum. These types of microstructures are useful for microfluidic devices, cell-based assays, and bioengineered surfaces.

  13. Enhanced sensitivity of piezoelectric pressure sensor with microstructured polydimethylsiloxane layer

    NASA Astrophysics Data System (ADS)

    Choi, Wook; Lee, Junwoo; Kyoung Yoo, Yong; Kang, Sungchul; Kim, Jinseok; Hoon Lee, Jeong

    2014-03-01

    Highly sensitive detection tools that measure pressure and force are essential in palpation as well as real-time pressure monitoring in biomedical applications. So far, measurement has mainly been done by force sensing resistors and field effect transistor (FET) sensors for monitoring biological pressure and force sensing. We report a pressure sensor by the combination of a piezoelectric sensor layer integrated with a microstructured Polydimethylsiloxane (μ-PDMS) layer. We propose an enhanced sensing tool to be used for analyzing gentle touches without the external voltage source that is used in FET sensors, by incorporating a microstructured PDMS layer in a piezoelectric sensor. By measuring the directly induced electrical charge from the microstructure-enhanced piezoelectric signal, we observed a 3-fold increased sensitivity in a signal response. Both fast signal relaxation from force removal and wide dynamic range from 0.23 to 10 kPa illustrate the good feasibility of the thin film piezoelectric sensor for mimicking human skin.

  14. Bioinspired polymer microstructures for directional transport of oily liquids

    NASA Astrophysics Data System (ADS)

    Plamadeala, C.; Hischen, F.; Friesenecker, R.; Wollhofen, R.; Jacak, J.; Buchberger, G.; Heiss, E.; Klar, T. A.; Baumgartner, W.; Heitz, J.

    2017-03-01

    Nature has always served as an inspiration for scientists, helping them to solve a large diversity of technical problems. In our case, we are interested in the directional transport of oily liquids and as a model for this application we used the flat bug Dysodius lunatus. In this report, we present arrays of drops looking like polymer microstructures produced by the two-photon polymerization technique that mimic the micro-ornamentation from the bug's cuticle. A good directionality of oil transport was achieved, directly controlled by the direction of the pointed microstructures at the surface. If the tips of the drop-like microstructures are pointing towards the left side, the liquid front moves to the right and vice versa. Similar effects could be expected for the transport of oily lubricants. These results could, therefore, be interesting for applications in friction and wear reduction.

  15. Optimization of Forming Processes in Microstructure Sensitive Design

    NASA Astrophysics Data System (ADS)

    Garmestani, H.; Li, D. S.

    2004-06-01

    Optimization of the forming processes from initial microstructures of raw materials to desired microstructures of final products is an important topic in materials design. Processing path model proposed in this study gives an explicit mathematical solution about how the microstructure evolves during thermomechanical processing. Based on a conservation principle in the orientation space (originally proposed by Bunge), this methodology is independent of the underlying deformation mechanisms. The evolutions of texture coefficients are modeled using a texture evolution matrix calculated from the experimental results. For the same material using the same processing method, the texture evolution matrix is the same. It does not change with the initial texture. This processing path model provides functions of processing paths and streamlines.

  16. Microstructurally based finite element simulation of solder joint behavior

    SciTech Connect

    Frear, D.R.; Burchett, S.N.; Neilsen, M.K.; Stephens, J.J.

    1996-01-01

    The most commonly used solder for electrical interconnects in electronic packages is the near eutectic 60Sn-40Pb alloy. This alloy has a number of processing advantages (suitable melting point of 183C and good wetting behavior). However, under conditions of cyclic strain and temperature (thermomechanical fatigue) the microstructure of this alloy undergoes a heterogeneous coarsening and failure process that makes the prediction of solder joint lifetime complex. A finite element simulation methodology to predict solder joint mechanical behavior, that includes microstructural evolution, has been developed. The mechanical constitutive behavior was incorporated into the time dependent internal state variable viscoplastic model through experimental creep tests. The microstructural evolution is incorporated through a series of mathematical relations that describe mass flow in a temperature/strain environment. The model has been found to simulate observed thermomechanical fatigue behavior in solder joints.

  17. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    PubMed Central

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  18. Microstructural fracture mechanics in high-cycle fatigue

    SciTech Connect

    Rios, E.R. de los; Navarro, A.

    1997-12-31

    Microstructural Fracture Mechanics principles are used to develop a model of crack growth in long life fatigue. In its simplest form microstructural modelling considers the material as a polycrystal of uniform grain size D, with a crack system divided into three zones: the crack, the plastic zone and the microstructural barrier zone. The solution of the equilibrium equation allows for the calculation of the stresses sustained by the crack wake, plastic zone, barrier zone and elastic enclave, and the crack tip plastic displacement {phi}. Crack growth rate is calculated through a Paris type relationship in terms of {phi}, i.e., da/dN = C{phi}{sup n}. Conditions for crack arrest and instability are established.

  19. Fabrication of fillable microparticles and other complex 3D microstructures.

    PubMed

    McHugh, Kevin J; Nguyen, Thanh D; Linehan, Allison R; Yang, David; Behrens, Adam M; Rose, Sviatlana; Tochka, Zachary L; Tzeng, Stephany Y; Norman, James J; Anselmo, Aaron C; Xu, Xian; Tomasic, Stephanie; Taylor, Matthew A; Lu, Jennifer; Guarecuco, Rohiverth; Langer, Robert; Jaklenec, Ana

    2017-09-15

    Three-dimensional (3D) microstructures created by microfabrication and additive manufacturing have demonstrated value across a number of fields, ranging from biomedicine to microelectronics. However, the techniques used to create these devices each have their own characteristic set of advantages and limitations with regards to resolution, material compatibility, and geometrical constraints that determine the types of microstructures that can be formed. We describe a microfabrication method, termed StampEd Assembly of polymer Layers (SEAL), and create injectable pulsatile drug-delivery microparticles, pH sensors, and 3D microfluidic devices that we could not produce using traditional 3D printing. SEAL allows us to generate microstructures with complex geometry at high resolution, produce fully enclosed internal cavities containing a solid or liquid, and use potentially any thermoplastic material without processing additives. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Using electric current to surpass the microstructure breakup limit.

    PubMed

    Qin, Rongshan

    2017-01-25

    The elongated droplets and grains can break up into smaller ones. This process is driven by the interfacial free energy minimization, which gives rise to a breakup limit. We demonstrated in this work that the breakup limit can be overpassed drastically by using electric current to interfere. Electric current free energy is dependent on the microstructure configuration. The breakup causes the electric current free energy to reduce in some cases. This compensates the increment of interfacial free energy during breaking up and enables the processing to achieve finer microstructure. With engineering practical electric current parameters, our calculation revealed a significant increment of the obtainable number of particles, showing electric current a powerful microstructure refinement technology. The calculation is validated by our experiments on the breakup of Fe3C-plates in Fe matrix. Furthermore, there is a parameter range that electric current can drive spherical particles to split into smaller ones.

  1. Microstructure Evolution of HSLA Pipeline Steels after Hot Uniaxial Compression

    PubMed Central

    Liu, Yongchang; Shao, Yi; Liu, Chenxi; Chen, Yan; Zhang, Dantian

    2016-01-01

    The mechanical properties of the high-strength low-alloy pipeline steels were mainly controlled by the subsequent phase transformations after rolling. The influence of hot uniaxial compression on the phase transformation of acicular ferrite was explored by viewing of the deformation degree, the deformation temperature, and the strain rate. The results show that the increase of deformation amounts raises the transformation starting and finishing temperature during the subsequent cooling and also promotes the polygonal ferrite transformation, which leads to the decrease of Vickers hardness accordingly. With the increasing of the deformation temperature, the achieved microstructure becomes coarsened and thus decreases the hardness. As the strain rate increases, the microstructure is refined and thus the hardness increases gradually; increasing the strain rate appropriately is beneficial to the refinement of the microstructure. PMID:28773842

  2. Method of producing improved microstructure and properties for ceramic superconductors

    DOEpatents

    Singh, Jitendra P.; Guttschow, Rob A.; Dusek, Joseph T.; Poeppel, Roger B.

    1996-01-01

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2). The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C. resulted in a fine-grain microstructure, with an average grain size of approximately 4 .mu.m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity.

  3. Method of producing improved microstructure and properties for ceramic superconductors

    DOEpatents

    Singh, J.P.; Guttschow, R.A.; Dusek, J.T.; Poeppel, R.B.

    1996-06-11

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa{sub 2}Cu{sub 3}O{sub x} indicates that sintering kinetics are enhanced at reduced p(O{sub 2}). The density of specimens sintered at 910 C increased from 79 to 94% theoretical when p(O{sub 2}) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O{sub 2}) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910 C resulted in a fine-grain microstructure, with an average grain size of approximately 4 {micro}m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity. 20 figs.

  4. TEM study of the microstructure of HSLA100 steel

    SciTech Connect

    Dong Wenpu; Fu Zuobao; Yang Lang

    1996-10-01

    In this study, investigations of microstructures of as-quenched and aged HSLA100 steel by using transmission electron microscopy showed that as-quenched HSLA100 has a mixed microstructure of 50% lath martensite + 40% acicular ferrite + 9% retained austenite + 1% twinned martensite. During aging, HSLA100 undergoes the following microstructural changes: (1) tempering of lath martensite and twinned martensite, (2) recovery of acicular ferrite, and (3) precipitation of a second phase during aging. Retained austenite is very stable and remains undecomposed even after aging at 650 C for 1 1/2 h. The precipitates observed in this study include {epsilon}-Cu, Mo{sub 2}C, M{sub 23}C{sub 6}, TiN, and Nb(C,N). The contribution of precipitation strengthening for HSLA100 steel after 1 1/2 h of aging at 60 C is about 140 MPa.

  5. Responses of microstructure optical fibers to strain and pressure

    NASA Astrophysics Data System (ADS)

    Jin, W.; Pang, M.

    2010-11-01

    The phase/birefringence sensitivities of the fundamental mode of air-silica microstructure optical fibers to strain and pressure are investigated. Theoretical models are built for both hollow-core photonic bandgap fibers and solid-core highly non-linear photonic crystal fibers to study the effects of axial strain, lateral pressure, and acoustic pressure on the fiber length and the effective refractive indexes of the fundamental mode. Numerical simulation shows that the phase/birefringence sensitivity to pressure of a hollow-core photonic bandgap fiber depends strongly on the thickness of the outer solid-silica layer and the air-filling ratio of the microstructure inner-cladding, and the normalized phase sensitivity to acoustic pressure can be 35 dB higher than that of the conventional single mode fiber. Potential applications of the microstructure optical fibers for high sensitivity hydrophones and novel polarization controllers are discussed.

  6. Controlling the microstructure of binary carbide films with elemental substitutions

    NASA Astrophysics Data System (ADS)

    Feller, K.; Haider, M.; Hodges, A.; Spreng, R.; Posbergh, E.; Woodward, H.; Lofland, S. E.; Hettinger, J. D.; Heon, M.; Gogotsi, Y.

    2011-03-01

    We report on experiments to control the microstructure of textured binary carbide thin films deposited by reactive magnetron sputter deposition. Controlling the microstructure in these materials is important as the microstructure of these films provides a template for the resulting carbide-derived carbon (CDC) film and impacts their performance. Specifically, a combinatorial approach is used to add chromium to TiC films creating a compositional gradient as a function of position. We present a measurement of surface roughness as a function of material composition. The resulting materials, (Ti 1-x Cr x) C films, are significantly smoother than their pure TiC counterparts and the resulting CDC's have correlated defects which will improve the performance of the CDC in supercapacitor applications. This work was supported by Rowan University and NSF under contract DMR-0503711.

  7. Advanced composite applications for sub-micron biologically derived microstructures

    NASA Technical Reports Server (NTRS)

    Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas

    1991-01-01

    A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.

  8. Effects of Machining on the Microstructure of Aluminum Alloy 7075

    NASA Astrophysics Data System (ADS)

    Tabei, A.; Liang, S. Y.; Garmestani, H.

    Experimental investigations show that depending on the parameters, aggressive machining of aluminum alloy 7075 can trigger several microstructural phenomena including recrystallization, grain growth and crystallographic texture modifications below the machined surface. Increasing the depth of cut will lead to a significant recrystallization and consequently grain refinement. On the other hand, increasing the feed rate will result into development of a unique crystallographic texture. The mechanical and thermal loads imposed to the material experiences by machining leads to such microstructural phenomena. Finite element analysis is used to determine these loads.

  9. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  10. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, S. L.; Williams, P. A.; Burke, E. R.

    2015-01-01

    A novel concept for the detection of x-rays with microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide is presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dots application technique are discussed.

  11. Microstructural and superplastic characteristics of friction stir processed aluminum alloys

    NASA Astrophysics Data System (ADS)

    Charit, Indrajit

    Friction stir processing (FSP) is an adapted version of friction stir welding (FSW), which was invented at The Welding Institute (TWI), 1991. It is a promising solid state processing tool for microstructural modification at localized scale. Dynamic recrystallization occurs during FSP resulting in fine grained microstructure. The main goal of this research was to establish microstructure/superplasticity relationships in FSP aluminum alloys. Different aluminum alloys (5083 Al, 2024 Al, and Al-8.9Zn-2.6Mg-0.09Sc) were friction stir processed for investigating the effect of alloy chemistry on resulting superplasticity. Tool rotation rate and traverse speeds were controlled as the prime FSP parameters to produce different microstructures. In another study, lap joints of 7475 Al plates were also studied to explore the possibility of developing FSW/superplastic forming route. Microstructures were evaluated using optical, scanning and transmission electron microscopy, orientation imaging microscopy and differential scanning calorimetry. Mechanical properties were evaluated using tensile testing. FSP 2024 Al (3.9 mum grain size) exhibited an optimum ductility of 525% at a strain rate of 10-2 s-1 and 430°C. Grain boundary sliding mechanism was found to be the dominant mode of deformation in this alloy. In 5083 Al alloy, it was found that changing the process parameters, grain sizes in the range of 3.5--8.5 mum grain size could be obtained. Material processed with colder processing parameters showed a decrease in ductility due to microstructural instability, and followed solute drag dislocation glide mechanism. On the other hand, materials processed with hotter parameter combinations showed mode of deformation related to grain boundary sliding mechanism. FSP of as-cast Al-Zn-Mg-Sc alloy resulted in ultrafine grains (0.68 mum) with attractive combination of high strain rate and low temperature superplasticity. This also demonstrated that superplastic microstructures could be

  12. Microstructure Of MnBi/Bi Eutectic Alloy

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Eisa, G. F.; Baskaran, B.; Richardson, Donald C.

    1988-01-01

    Collection of three reports describes studies of directional solidification of MnBi/Bi eutectic alloy. Two of the reports, "Influence of Convection on Lamellar Spacing of Eutectics" and "Influence of Convection on Eutectic Microstructure," establish theoretical foundation for remaining document. Reports seek to quantify effect of convection on concentration field of growing lamellar eutectic. Remaining report, "Study of Eutectic Formation," begins by continuing theoretical developments. New technique under development by one of the authors helps to reveal three-dimensional microstructures of alloys.

  13. Phase transformations in steels: Processing, microstructure, and performance

    SciTech Connect

    Gibbs, Paul J.

    2014-04-03

    In this study, contemporary steel research is revealing new processing avenues to tailor microstructure and properties that, until recently, were only imaginable. Much of the technological versatility facilitating this development is provided by the understanding and utilization of the complex phase transformation sequences available in ferrous alloys. Today we have the opportunity to explore the diverse phenomena displayed by steels with specialized analytical and experimental tools. Advances in multi-scale characterization techniques provide a fresh perspective into microstructural relationships at the macro- and micro-scale, enabling a fundamental understanding of the role of phase transformations during processing and subsequent deformation.

  14. Microstructural characterization of as-cast Co-B alloys

    SciTech Connect

    Faria, M.I.S.T. . E-mail: ismenia@phase.faenquil.br; Leonardi, T.; Coelho, G.C.; Nunes, C.A.; Avillez, R.R.

    2007-04-15

    This work presents results of microstructural characterization of as-cast Co-B alloys. Samples of different compositions were prepared by arc melting Co (min. 99.97%) and B (min. 99.5%) under argon atmosphere in a water-cooled copper crucible with non-consumable tungsten electrode and titanium getter. All samples were characterized by scanning electron microscopy (SEM) in back-scattered electron (BSE) mode, X-ray diffraction (XRD) and wavelength dispersive spectrometry (WDS). A good agreement is observed between the obtained microstructures and those expected by the currently accepted Co-B phase diagram.

  15. Creep of Two-Phase Microstructures for Microelectronic Applications

    SciTech Connect

    Reynolds, Heidi Linch

    1998-12-01

    The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a

  16. Quantum dots microstructured optical fiber for x-ray detection

    NASA Astrophysics Data System (ADS)

    DeHaven, S. L.; Williams, P. A.; Burke, E. R.

    2016-02-01

    A novel concept for the detection of x-rays with microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide is presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dots application technique are discussed.

  17. Microstructural Evaluation and Thermal Creep Behavior of Zr-Excel

    NASA Astrophysics Data System (ADS)

    Ahmmed, Kazi Foyez

    Dual phase (alpha-beta) Zr-Excel Pressure Tube (PT) material has been heat treated in the (alpha+beta) or beta-phase regime to generate variable microstructures. These heat-treated microstructures revealed significant modification in the inital microstructure. The microstructural changes by heat-treatment will have a profound influence on their deformation behavior; characterizing those properties is the main goal of this study. In this dissertation, the experimental results are presented in a manuscript format, which is divided in three technical chapters. Chapter 3 discusses the effect of heat treatment on texture modification; where, as received (ASR) PT materials were heated to a range of temperatures and cooled either in water or in air. It has been observed that due to the orientation relationship between alpha and beta-phase, the ASR microstructure has been significantly altered during heating and cooling. The extent of this alteration strongly depends on the solution temperature and cooling rate. Although, variant selection is observed during texture modification, significant randomization is noticed in the room temperature texture. In Chapter 4, line profile analysis technique has been used to quantitatively analyze the microstructural details of the heat-treated materials. Diffraction pattern analyses demonstrated significant peak broadening in the heat-treated material; which is attributed due to the increase of volume fraction of martensitic alpha and alteration in the dislocation structures. Line profile analyses also revealed that primary alpha consists with large sub-grains and correlated dislocations but the martensitic alpha are highly dislocated. Finally in Chapter 5, thermal creep behavior of the heat treated materials has been studied. Microstructural analyses were also conducted in the pre- and post-creep materials to understand the creep mechanism. Creep anisotropy of the heat treated materials has been investigated by correlating the

  18. Microstructural evolution and grain morphology of ZrN pellets

    NASA Astrophysics Data System (ADS)

    Park, Sungho; Han, Ilsu; Lee, Hyunjun; Huh, Sunchul; Park, Wonjo

    2009-04-01

    Improvements in the mechanical integrity of zirconium nitride (ZrN) inert matrixes in advanced nuclear fuels were addressed in this work. This was done by first better understanding and then controlling texture and microstructural evolution of the former. Several samples were examined via orientation imaging microscopy: several monolithic specimens were hot isostatically pressed (HIP), and two sintered specimens with 80 % and 85 % density Grain size and crystallographic orientation studies revealed sample microstructure and their evolution during sintering. A correlation between larger grains and orientations near to <111> parallel to the compression axis during cold pressing was present for the 85 % density sample.

  19. The effect of microstructure on microbiologically influenced corrosion

    NASA Technical Reports Server (NTRS)

    Walsh, Dan; Pope, Dan; Danford, Merlin; Huff, Tim

    1993-01-01

    Results of several investigations involving stainless steels, aluminum alloys, and low-alloy steels are reviewed, and the effect of welding on microbiologically influenced corrosion (MIC) susceptibility in these materials is discussed. Emphasis is placed on research performed at California Polytechnic State University on the relationship between MIC and metallurgical microstructure. Topics addressed include initial stages of film development in materials with different microstructure and surface conditions, effects of inclusion on the MIC response of materials, aluminum 2219, effects of welding, and constitutional liquation.

  20. Microstructure of depleted uranium under uniaxial strain conditions

    SciTech Connect

    Zurek, A.K.; Embury, J.D.; Kelly, A.; Thissell, W.R.; Gustavsen, R.L.; Vorthman, J.E.; Hixson, R.H.

    1997-09-01

    Uranium samples of two different purities were used for spall strength measurements. Samples of depleted uranium were taken from very high purity material (38 ppM carbon) and from material containing 280 ppM C. Experimental conditions were chosen to effectively arrest the microstructural damage at two places in the development to full spall separation. Samples were soft recovered and characterized with respect to the microstructure and the form of damage. This allowed determination of the dependence of spall mechanisms on stress level, stress state, and sample purity. This information is used in developing a model to predict the mode of fracture.

  1. Reversible and irreversible magnetoresistance of quasisingle domain permalloy microstructures

    NASA Astrophysics Data System (ADS)

    Steiner, M.; Pels, C.; Meier, G.

    2004-06-01

    Permalloy microstructures are investigated by magnetoresistance measurements at 2.0 K and by magnetic-force microscopy at room temperature. While the reversible anisotropic magnetoresistance is determined to be 2.4% at saturation fields of Bsat=1020 mT, the irreversible switching yields a resistance change of the order of 0.05% at 13 mT. By tilting the external magnetic field relative to the easy axis of the quasi single-domain microstructures insight in the reversal process is gained. Comparison with an analytical model provides evidence for magnetization reversal by curling.

  2. Microstructure and martensitic transformation of Ni-Ti-Pr alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Chunwang; Zhao, Shilei; Jin, Yongjun; Guo, Shaoqiang; Hou, Qingyu

    2017-09-01

    The effect of Pr addition on the microstructure and martensitic transformation behavior of Ni50Ti50- x Pr x ( x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) alloys were investigated experimentally. Results show that the microstructures of Ni-Ti-Pr alloys consist of the NiTi matrix and the NiPr precipitate with the Ti solute. The martensitic transformation start temperature decreases gradually with the increase in Pr fraction. The stress around NiPr precipitates is responsible for the decrease in martensitic transformation temperature with the increase in Pr fraction in Ni-Ti-Pr alloys.

  3. Method of fabricating a high aspect ratio microstructure

    DOEpatents

    Warren, John B.

    2003-05-06

    The present invention is for a method of fabricating a high aspect ratio, freestanding microstructure. The fabrication method modifies the exposure process for SU-8, an negative-acting, ultraviolet-sensitive photoresist used for microfabrication whereby a UV-absorbent glass substrate, chosen for complete absorption of UV radiation at 380 nanometers or less, is coated with a negative photoresist, exposed and developed according to standard practice. This UV absorbent glass enables the fabrication of cylindrical cavities in a negative photoresist microstructures that have aspect ratios of 8:1.

  4. Imaging microstructure in the living human brain: A viewpoint.

    PubMed

    Paus, Tomáš

    2017-10-09

    This special issue summarizes an impressive body of work concerned with in vivo imaging of brain microstructure. Collectively, papers included here demonstrate the power of multi-modal magnetic resonance imaging (MRI) for mapping various structural properties of brain tissue. In this introduction, I provide a user's perspective vis-à-vis motivations for these efforts, review briefly the cellular composition of grey and white matter in the human brain, and provide a few examples of how we can bridge the gap between ex vivo and in vivo datasets to facilitate interpretation of studies measuring brain macro- and microstructure. Copyright © 2017. Published by Elsevier Inc.

  5. Optimization of microstructure development during hot working using control theory

    NASA Astrophysics Data System (ADS)

    Malas, James C.; Frazier, W. Garth; Medina, Enrique A.; Medeiros, Steven; Mullins, W. M.; Chaudhary, Anil; Venugopal, S.; Irwin, R. Dennis; Srinivasan, Raghavan

    1997-09-01

    A new approach for controlling microstructure development during hot working processes is proposed. This approach is based on optimal control theory and involves state-space type models for describing the material behavior and the mechanics of the process. The effect of process control parameters such as strain, strain rate, and temperature on important microstructural features can be systematically formulated and then solved as an optimal control problem. This method has been applied to the optimization of grain size and process parameters such as die geometry and ram velocity during the extrusion of plain carbon steel. Experimental results of this investigation show good agreement with those predicted in the design stage.

  6. Microstructural characterization of nitrogen implanted 440C steel

    NASA Astrophysics Data System (ADS)

    Kustas, F. M.; Misra, M. S.; Williamson, D. L.

    1988-05-01

    This study utilized three complementary techniques, Auger electron spectroscopy, Mössbauer effect spectroscopy and transmission electron microscopy to determine the microstructural alterations from nitrogen implantation of 440C bearing steel. Implantation with N + (2 × 10 17 ions/cm 2 at 60 keV) induced the following microstructural modifications: (1) reduced near-surface (about 100 nm) austenite content, (2) formation of Cr-modified Fe-nitrides, and (3) N trapping in carbides thereby forming complex Fe-Cr carbonitrides.

  7. Residual stress measurement and microstructural characterization of thick beryllium films

    SciTech Connect

    Detor, A; Wang, M; Hodge, A M; Chason, E; Walton, C; Hamza, A V; Xu, H; Nikroo, A

    2008-02-11

    Beryllium films are synthesized by a magnetron sputtering technique incorporating in-situ residual stress measurement. Monitoring the stress evolution in real time provides quantitative through-thickness information on the effects of various processing parameters, including sputtering gas pressure and substrate biasing. Specimens produced over a wide range of stress states are characterized via transmission and scanning electron microscopy, and atomic force microscopy, in order to correlate the stress data with microstructure. A columnar grain structure is observed for all specimens, and surface morphology is found to be strongly dependent on processing conditions. Analytical models of stress generation are reviewed and discussed in terms of the observed microstructure.

  8. Microstructural Development in HSLA-100 Steel Weld Metals

    DTIC Science & Technology

    1991-01-01

    AD-A2 3 7 931 MICROSTRUCTURAL DEVELOPMENT IN HSLA-100 STEEL WELD METALS A*.t - AI* Final Report Grant No. N00014-89-J-1958 -. .o, Submitted by j Paul...on pages 30-32. The microstructures that develop in the coarse-grained heat affected zone (CG- HAZ) of the welds are discussed on page 21 and figures...stringent welding procedures as well as reduce the mechanical property deterioration from welding operations. The development of the ultra low carbon

  9. Microstructure and chemical composition of giant avian eggshells.

    PubMed

    Dauphin, Yannicke; Cuif, Jean-Pierre; Salomé, Murielle; Susini, Jean; Williams, C Terry

    2006-11-01

    The microstructure and composition of the layers of two giant avian eggshells were investigated using a combination of scanning electron microscopy, electron probe microanalyses, and X-ray absorption near-edge structure spectroscopy (XANES). The two species have some similarities and differences in their microstructure and composition; the composition is not homogeneous throughout the eggshell thickness. XANES studies show that sulfur is associated with amino acids in the inner organic membranes, whereas in the mineralised layers the sulfur is mainly associated with sulfated polysaccharides. These results are similar to those obtained on chicken eggshells, and confirm the active role of sulfated acidic polysaccharides in biomineralisation processes of carbonate skeletons.

  10. A Universal Approach Towards Computational Characterization of Dislocation Microstructure

    NASA Astrophysics Data System (ADS)

    Steinberger, Dominik; Gatti, Riccardo; Sandfeld, Stefan

    2016-08-01

    Dislocations—linear defects within the crystal lattice of, e.g., metals—have been directly observed and analyzed for nearly a century. While experimental characterization methods can nowadays reconstruct three-dimensional pictures of complex dislocation networks, simulation methods are at the same time more and more able to predict the evolution of such systems in great detail. Concise methods for analyzing and comparing dislocation microstructure, however, are still lagging behind. We introduce a universal microstructure "language" which could be used for direct comparisons and detailed analysis of very different experimental and simulation methods.

  11. Transfer function concept for ultrasonic characterization of material microstructures

    NASA Technical Reports Server (NTRS)

    Vary, A.; Kautz, H. E.

    1986-01-01

    The approach given depends on treating material microstructures as elastomechanical filters that have analytically definable transfer functions. These transfer functions can be defined in terms of the frequency dependence of the ultrasonic attenuation coefficient. The transfer function concept provides a basis for synthesizing expressions that characterize polycrystalline materials relative to microstructural factors such as mean grain size, grain-size distribution functions, and grain boundary energy transmission. Although the approach is nonrigorous, it leads to a rational basis for combining the previously mentioned diverse and fragmented equations for ultrasonic attenuation coefficients.

  12. The effect of microstructure on microbiologically influenced corrosion

    SciTech Connect

    Walsh, D.; Pope, D.; Danford, M.; Huff, T. Bioindustries Technologies, Georgetown, TX NASA, Marshall Space Flight Center, Huntsville, AL Sverdrup Technologies, Inc., Huntsville, AL )

    1993-09-01

    Results of several investigations involving stainless steels, aluminum alloys, and low-alloy steels are reviewed, and the effect of welding on microbiologically influenced corrosion (MIC) susceptibility in these materials is discussed. Emphasis is placed on research performed at California Polytechnic State University on the relationship between MIC and metallurgical microstructure. Topics addressed include initial stages of film development in materials with different microstructure and surface conditions, effects of inclusion on the MIC response of materials, aluminum 2219, effects of welding, and constitutional liquation. 37 refs.

  13. Microstructure-mediated Optical Effects in Southern African Snakes

    NASA Astrophysics Data System (ADS)

    Singh, Ishan; Alexander, Graham

    2017-03-01

    The scales of the African Viper Bitis arietans were tested for optical effects. Spectral intensity was recorded at incident angles over the visible spectrum for dark, pale, and ventral scale regions. The lowest spectral intensity recordings were associated with scales which have the greatest level of micro-structuring. Our results indicate that scale appearance in B. arietans is a product of microstructure-mediated optical effects. The optical effect may play a role in improving the ecological performance of the snake in its natural environment.

  14. Carbon related defects in irradiated silicon revisited

    PubMed Central

    Wang, H.; Chroneos, A.; Londos, C. A.; Sgourou, E. N.; Schwingenschlögl, U.

    2014-01-01

    Electronic structure calculations employing hybrid functionals are used to gain insight into the interaction of carbon (C) atoms, oxygen (O) interstitials, and self-interstitials in silicon (Si). We calculate the formation energies of the C related defects Ci(SiI), CiOi, CiCs, and CiOi(SiI) with respect to the Fermi energy for all possible charge states. The Ci(SiI)2+ state dominates in almost the whole Fermi energy range. The unpaired electron in the CiOi+ state is mainly localized on the C interstitial so that spin polarization is able to lower the total energy. The three known atomic configurations of the CiCs pair are reproduced and it is demonstrated that hybrid functionals yield an improved energetic order for both the A and B-types as compared to previous theoretical studies. Different structures of the CiOi(SiI) cluster result for positive charge states in dramatically distinct electronic states around the Fermi energy and formation energies. PMID:24809804

  15. The Effects of Heat Treatment and Microstructure Variations on Disk Superalloy Properties at High Temperature

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Telesman, Jack; Garg, Anita

    2008-01-01

    The effects of heat treatment and resulting microstructure variations on high temperature mechanical properties were assessed for a powder metallurgy disk superalloy LSHR. Blanks were consistently supersolvus solution heat treated and quenched at two cooling rates, than aged at varying temperatures and times. Tensile, creep, and dwell fatigue crack growth tests were then performed at 704 C. Gamma' precipitate microstructures were quantified. Relationships between heat treatment-microstructure, heat treatment-mechanical properties, and microstructure-mechanical properties were assessed.

  16. Effect of Initial Microstructure on the Microstructural Evolution and Joint Efficiency of a WE43 Alloy During Friction Stir Welding

    DTIC Science & Technology

    2013-04-01

    0.5% Zr –bal Mg (all in wt%). The alloy was subjected to ageing at 210 0Cfor 48h to maximize the base strength. The samples were longitudinally...mechanical properties of Mg –Gd–Y– Zr casting via friction stir processing,” Journal of Alloys and Compounds 509 (2011), 2879–2884. 12. T.A. Freeney... Effect of Initial Microstructure on the Microstructural Evolution and Joint Efficiency of a WE43 Alloy During Friction Stir Welding by S

  17. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2005-06-07

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  18. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2003-11-25

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  19. A Novel Three-Phase Model of Brain Tissue Microstructure

    PubMed Central

    Gevertz, Jana L.; Torquato, Salvatore

    2008-01-01

    We propose a novel biologically constrained three-phase model of the brain microstructure. Designing a realistic model is tantamount to a packing problem, and for this reason, a number of techniques from the theory of random heterogeneous materials can be brought to bear on this problem. Our analysis strongly suggests that previously developed two-phase models in which cells are packed in the extracellular space are insufficient representations of the brain microstructure. These models either do not preserve realistic geometric and topological features of brain tissue or preserve these properties while overestimating the brain's effective diffusivity, an average measure of the underlying microstructure. In light of the highly connected nature of three-dimensional space, which limits the minimum diffusivity of biologically constrained two-phase models, we explore the previously proposed hypothesis that the extracellular matrix is an important factor that contributes to the diffusivity of brain tissue. Using accurate first-passage-time techniques, we support this hypothesis by showing that the incorporation of the extracellular matrix as the third phase of a biologically constrained model gives the reduction in the diffusion coefficient necessary for the three-phase model to be a valid representation of the brain microstructure. PMID:18704170

  20. Dynamic designing of microstructures by chemical gradient-mediated growth

    PubMed Central

    Shim, Tae Soup; Yang, Seung-Man; Kim, Shin-Hyun

    2015-01-01

    Shape is one of the most important determinants of the properties of microstructures. Despite of a recent progress on microfabrication techniques, production of three-dimensional micro-objects are yet to be fully achieved. Nature uses reaction–diffusion process during bottom-up self-assembly to create functional shapes and patterns with high complexity. Here we report a method to produce polymeric microstructures by using a dynamic reaction–diffusion process during top-down photolithography, providing unprecedented control over shape and composition. In radical polymerization, oxygen inhibits reaction, and therefore diffusion of oxygen significantly alters spatial distribution of growth rate. Therefore, growth pathways of the microstructures can be controlled by engineering a concentration gradient of oxygen. Moreover, stepwise control of chemical gradients enables the creation of highly complex microstructures. The ease of use and high controllability of this technology provide new opportunities for microfabrication and for fundamental studies on the relationships between shape and function for the materials. PMID:25766762

  1. Enhanced Ultrafast Nonlinear Optics With Microstructure Fibers And Photonic Crystals

    DTIC Science & Technology

    2004-07-01

    NANOHOLES FREQUENCY-TUNABLE ANTI-STOKES LINE EMISSION BY EIGENMODES OF A BIREFRINGENT MICROSTRUCTURE FIBER GENERATION OF FEMTOSECOND ANTI-STOKES PULSES...laser technologies, and ultrafast photonics. ANTI-STOKES GENERATION IN GUIDED MODES OF PHOTONIC-CRYSTAL FIBERS MODIFIED WITH AN ARRAY OF NANOHOLES

  2. Pulse Compression using a Tapered Microstructure Optical Fiber

    DTIC Science & Technology

    2006-04-01

    Pulse compression using a tapered microstructure optical fiber Jonathan Hu, Brian S. Marks, and Curtis R. Menyuk University of Maryland Baltimore...R. Menyuk , ”Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems,” J. Lightwave Technol. 21, 61–68 (2003

  3. Microstructural Evaluation of Porous Nutritional Sustainment Module Extrudates and Infusates

    DTIC Science & Technology

    1989-07-01

    TECHNICAL REPORT NATICK/TR-89/034 fi- MICROSTRUCTURAL EVALUATION OF POROUS NUTRITIONAL SUSTAINMENT MODULE EXTRUDATES AND INFUSATES BY SAMUEL...Security Program Regulation, Chapter IX For Unclassified/Limited Distribution Documents: Destroy by any method that prevents disclosure of contents... Nutritional Sustainment Module Extrudates and Infusates 12. PERSONAL AUTHOR(S) Samuel Cohen, Charles Voyle, Richard Harniman, Robyn Rufner, Ann

  4. Microstructural Development in Al-Si Powder During Rapid Solidification

    SciTech Connect

    Genau, Amber Lynn

    2004-01-01

    Powder metallurgy has become an increasingly important form of metal processing because of its ability to produce materials with superior mechanical properties. These properties are due in part to the unique and often desirable microstructures which arise as a result of the extreme levels of undercooling achieved, especially in the finest size powder, and the subsequent rapid solidification which occurs. A better understanding of the fundamental processes of nucleation and growth is required to further exploit the potential of rapid solidification processing. Aluminum-silicon, an alloy of significant industrial importance, was chosen as a model for simple eutectic systems displaying an unfaceted/faceted interface and skewed coupled eutectic growth zone, Al-Si powder produced by high pressure gas atomization was studied to determine the relationship between microstructure and alloy composition as a function of powder size and atomization gas. Critical experimental measurements of hypereutectic (Si-rich) compositions were used to determine undercooling and interface velocity, based on the theoretical models which are available. Solidification conditions were analyzed as a function of particle diameter and distance from nucleation site. A revised microstructural map is proposed which allows the prediction of particle morphology based on temperature and composition. It is hoped that this work, by providing enhanced understanding of the processes which govern the development of the solidification morphology of gas atomized powder, will eventually allow for better control of processing conditions so that particle microstructures can be optimized for specific applications.

  5. Microstructure Modeling of 3rd Generation Disk Alloys

    NASA Technical Reports Server (NTRS)

    Jou, Herng-Jeng

    2010-01-01

    The objective of this program is to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool will be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishment achieved during the second year (2008) of the program is summarized. The activities of this year include final selection of multicomponent thermodynamics and mobility databases, precipitate surface energy determination from nucleation experiment, multiscale comparison of predicted versus measured intragrain precipitation microstructure in quench samples showing good agreement, isothermal coarsening experiment and interaction of grain boundary and intergrain precipitates, primary microstructure of subsolvus treatment, and finally the software implementation plan for the third year of the project. In the following year, the calibrated models and simulation tools will be validated against an independently developed experimental data set, with actual disc heat treatment process conditions. Furthermore, software integration and implementation will be developed to provide material engineers valuable information in order to optimize the processing of the 3rd generation gas turbine disc alloys.

  6. Sulfur Impurities and the Microstructure of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1997-01-01

    The relationship between the microstructure of alumina scales, adhesion, and sulfur content was examined through a series of nickel alloys oxidized in 1100 to 1200 deg. C cyclic or isothermal exposures in air. In cyclic tests of undoped NiCrAl, adhesion was produced when the sulfur content was reduced, without any change in scale microstructure. Although interfacial voids were not observed in cyclic tests of NiCrAl, they were promoted by long-term isothermal exposures, by sulfur doping, and in most exposures of NiAl. Two single crystal superalloys, PWA 1480 and Rene' N5, were also tested, either in the as-received condition or after the sulfur content had been reduced to less than 1 ppmw by hydrogen annealing. The unannealed alloys always exhibited spalling to bare metal, but interfacial voids were not observed consistently. Desulfurized PWA 1480 and Rene' N5 exhibited remarkable adhesion and no voidage for either isothermal or cyclic exposures. The most consistent microstructural feature was that, for the cases where voids did form, the scale undersides exhibited corresponding areas with ridged oxide grain boundaries. Voids were not required for spallation nor were other microstructural features essential for adhesion. These observations are consistent with the model whereby scale spallation is controlled primarily by interfacial sulfur segregation and the consequent degradation of oxide-metal bonding.

  7. Rheological and microstructural changes in Queso Fresco during storage

    USDA-ARS?s Scientific Manuscript database

    Queso Fresco is a traditional Hispanic cheese that is increasing in popularity in the United States. Rheological and microstructural studies were performed on samples refrigerated at 4 and 10 deg C for up to 8 wk. The hardness of all cheeses as measured by texture profile analysis (TPA) was low a...

  8. Environmentally responsive optical microstructured hybrid actuator assemblies and applications thereof

    DOEpatents

    Aizenberg, Joanna; Aizenberg, Michael; Kim, Philseok

    2016-01-05

    Microstructured hybrid actuator assemblies in which microactuators carrying designed surface properties to be revealed upon actuation are embedded in a layer of responsive materials. The microactuators in a microactuator array reversibly change their configuration in response to a change in the environment without requiring an external power source to switch their optical properties.

  9. Microstructural, Structural, and Thermal Characterization of Annealed Carbon Steels

    NASA Astrophysics Data System (ADS)

    Lara-Guevara, A.; Ortiz-Echeverri, C. J.; Rojas-Rodriguez, I.; Mosquera-Mosquera, J. C.; Ariza-Calderón, H.; Ayala-Garcia, I.; Rodriguez-García, M. E.

    2016-10-01

    As is well known, the metallurgical microstructure of carbon steel is formed by ferrite and pearlite after the annealing heat treatment. When the cooling rate increases, the diffusive process is interrupted causing a change in the metallurgical microstructure which will affect steel properties. The aim of this work was to study thermal, structural, and microstructural properties of annealed carbon steel samples with four different carbon contents. Crystalline structure and crystalline quality were studied by the X-ray diffraction technique, where the full width at half maximum analysis showed that as the carbon content increased, the crystalline quality decreased. The metallurgical microstructure morphology was studied by scanning electron microscopy. The thermal diffusivity and the heat capacity were determined by the photoacoustic technique and by the thermal relaxation method, respectively. The thermal diffusivity and the thermal conductivity decreased as the carbon content increased. The amplitude signal of photothermal radiometry increased as the carbon content increased, while the phase signal of photothermal radiometry did not show significant differences among studied carbon steel types. The photoacoustic technique represents an important alternative in the steel characterization field.

  10. Evolution of microstructural disorder in annealed bismuth telluride nanowires

    DOE PAGES

    Erickson, Kristopher J.; Limmer, Steven J.; Yelton, W. Graham; ...

    2017-03-01

    Controlling the distribution of structural defects in nanostructures is important since such defects can strongly affect critical properties, including thermal and electronic transport. However, characterizing the defect arrangements in individual nanostructures is difficult because of the small length scales involved. Here, we investigate the evolution of microstructural disorder with annealing in electrochemically deposited Bi2Te3 nanowires, which are of interest for thermoelectrics. We combine Convergent Beam Electron Diffraction (CBED) and Scanning Transmission Electron Microscopy (STEM) to provide the necessary spatial and orientational resolution. We find that despite their large initial grain sizes and strong Formula crystallographic texturing, the as-deposited nanowires stillmore » exhibit significant intragranular orientational disorder. Annealing drives both grain growth and a significant reduction in the intragranular disorder. The results are discussed in the context of the existing understanding of the initial microstructure of electrodeposited materials and the understanding of annealing microstructures in both electrochemically deposited and bulk-deformed materials. Finally, this analysis highlights the importance of assessing both the grain size and intragranular disorder in understanding the microstructural evolution of individual nanostructures.« less

  11. Microstructural Evolution and interfacial motion in systems with diffusion barriers

    SciTech Connect

    Perry H. Leo

    2009-03-05

    This research program was designed to model and simulate phase transformations in systems containing diffusion barriers. The modeling work included mass flow, phase formation, and microstructural evolution in interdiffusing systems. Simulation work was done by developing Cahn-Hilliard and phase field equations governing both the temporal and spatial evolution of the composition and deformation fields and other important phase variables.

  12. Uncooled IR photon detection using MEMS micro-structures

    SciTech Connect

    Datskos, P.G.; Rajic, S.

    1998-08-01

    Generation of free carriers in a semiconductor gives rise to mechanical stress. Photo-induced stress phenomena in MEMS micro-structures can be used in the room temperature detection of infrared photons. Choice of the appropriate semiconductor material for the MEMS micro-structures determines the cutoff wavelength of the uncooled infrared photon detector. The authors have measured the deflection of silicon and indium antimonide micro-structures resulting from a photo-induced stress. The excess charge carriers responsible for the photo-induced stress were produced via photon irradiation from both a diode laser and a black body source. In the case of Si, the photo-induced stress is of opposite direction and about four times larger than the thermal stress. For indium antimonide the direction of stress is the same as due to thermal effects. The photo-induced stress can be distinguished from the thermal stress based on the cut-off wavelength, response speed, and perhaps the direction of the microstructure deflection.

  13. Microstructural characterization of {alpha}{sub 2} + {gamma} titanium aluminides

    SciTech Connect

    Larson, D.J.; Miller, M.K.

    1997-04-01

    Two-phase titanium/aluminium alloys with microalloying additions are of interest due to the high strength-to-weight ratio they can provide in automotive and aircraft applications. This paper describes the microstructure of boron doped alloys with chromium, niobium, and tungsten.

  14. Microstructural characterization of pressed HMX material sets at differing densities

    NASA Astrophysics Data System (ADS)

    Molek, C. D.; Welle, E. J.; Wixom, R. R.; Ritchey, M. B.; Samuels, P.; Horie, Y.

    2017-01-01

    The detonation physics community has embraced the idea that initiation of high explosives (HE) proceeds from an ignition event through subsequent growth to steady detonation. A weakness of all the commonly used ignition and growth models is the microstructural characteristics of the HE are not explicitly incorporated in their ignition and growth terms. This is the case in spite of a demonstrated, but not well-understood, empirical link between particle morphology and initiation of HE. Morphological effects have been parametrically studied in many ways, the majority of efforts focus on establishing a tie between bulk powder metrics and initiation of the pressed beds. More recently, there has been a shift toward characterizing the microstructure of pressed beds in order to understand the underlying mechanisms governing initiation behavior. In this work, we have characterized the microstructures of two HMX classes pressed at three densities using ion bombardment techniques. We find more significant compaction associated with the larger crystalline material - Class 3 - than the smaller fluid energy milled material. The Class 3 material exhibits evidence of crystal cracking. Finally, we discuss this evidence and our attempt to correlate microstructural features to observed changes in continuum level initiation behavior.

  15. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications.

    PubMed

    Ennen, Inga; Kappe, Daniel; Rempel, Thomas; Glenske, Claudia; Hütten, Andreas

    2016-06-17

    The giant magnetoresistance (GMR) effect is a very basic phenomenon that occurs in magnetic materials ranging from nanoparticles over multilayered thin films to permanent magnets. In this contribution, we first focus on the links between effect characteristic and underlying microstructure. Thereafter, we discuss design criteria for GMR-sensor applications covering automotive, biosensors as well as nanoparticular sensors.

  16. Tract-specific white matter microstructure and gait in humans.

    PubMed

    Verlinden, Vincentius J A; de Groot, Marius; Cremers, Lotte G M; van der Geest, Jos N; Hofman, Albert; Niessen, Wiro J; van der Lugt, Aad; Vernooij, Meike W; Ikram, M Arfan

    2016-07-01

    Gait is a complex sequence of movements, requiring cooperation of many brain areas, such as the motor cortex, somatosensory cortex, and cerebellum. However, it is unclear which connecting white matter tracts are essential for communication across brain areas to facilitate proper gait. Using diffusion tensor imaging, we investigated associations of microstructural organization in 14 brain white matter tracts with gait, among 2330 dementia- and stroke-free community-dwelling individuals. Gait was assessed by electronic walkway and summarized into Global Gait, and 7 gait domains. Higher white matter microstructure associated with higher Global Gait, Phases, Variability, Pace, and Turning. Microstructure in thalamic radiations, followed by association tracts and the forceps major, associated most strongly with gait. Hence, in community-dwelling individuals, higher white matter microstructure associated with better gait, including larger strides, more single support, less stride-to-stride variability, and less turning steps. Our findings suggest that intact thalamocortical communication, cortex-to-cortex communication, and interhemispheric visuospatial integration are most essential in human gait. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Automated microstructural analysis of titanium alloys using digital image processing

    NASA Astrophysics Data System (ADS)

    Campbell, A.; Murray, P.; Yakushina, E.; Marshall, S.; Ion, W.

    2017-02-01

    Titanium is a material that exhibits many desirable properties including a very high strength to weight ratio and corrosive resistance. However, the specific properties of any components depend upon the microstructure of the material, which varies by the manufacturing process. This means it is often necessary to analyse the microstructure when designing new processes or performing quality assurance on manufactured parts. For Ti6Al4V, grain size analysis is typically performed manually by expert material scientists as the complicated microstructure of the material means that, to the authors knowledge, no existing software reliably identifies the grain boundaries. This manual process is time consuming and offers low repeatability due to human error and subjectivity. In this paper, we propose a new, automated method to segment microstructural images of a Ti6Al4V alloy into its constituent grains and produce measurements. The results of applying this technique are evaluated by comparing the measurements obtained by different analysis methods. By using measurements from a complete manual segmentation as a benchmark we explore the reliability of the current manual estimations of grain size and contrast this with improvements offered by our approach.

  18. Microstructural defects in some rare earth laves phase single crystals

    SciTech Connect

    Bi, Y.J.; Abell, J.S. . School of Metallurgy and Materials.)

    1993-08-15

    With the extensive research in magnetic behavior of rare earth intermetallic compounds, more specific microstructural characterization on the available single crystals is obviously necessary because many interpretations of the physical property measurements can be particularly dependent on the knowledge of the microstructural defects, impurity distributions, etc. Among the more interesting and also the most extensively investigated rare earth intermetallics are RAl[sub 2](R = rare earth elements) compounds, which have the C15 cubic Laves phase structure with the tetrahedra of smaller Al atoms residing at the four corners of the cubic cell. While much effort has been devoted to understanding the nature of the magnetism of RAl[sub 2] single crystals by neutron diffraction, e.g. heat capacity measurements, x-ray topography, etc., little work has been performed on characterization of microstructural defects and their effects on physical property measurements. In this work, the authors report a microstructural study on as-grown single crystals of CeAl[sub 2] and TbAl[sub 2] by transmission electron microscopy (TEM). The presence of (001) growth faults in CeAl[sub 2] single crystals and (111) planar defects in TbAl[sub 2] single crystals have been identified, and the possible formation mechanism and the influence on the magnetic properties are discussed.

  19. Materials Processing and Microstructure Control in High Temperature Ordered Intermetallics.

    DTIC Science & Technology

    2007-11-02

    an integrated approach that couples processing with microstructure control as guided by the operative phase equilibria has been used to identify...several promising intermetallic alloys. The experimental efforts have focused on three areas involving a coordination of phase equilibria information with

  20. Synthesis and microstructural control of flower-like cadmium germanate

    SciTech Connect

    Pei, L.Z. Yang, Y.; Pei, Y.Q.; Ran, S.L.

    2011-11-15

    Flower-like Cd{sub 2}Ge{sub 2}O{sub 6} have been synthesized using a facile hydrothermal process with ethylenediamine. The roles of hydrothermal conditions on the size and morphology of the flower-like Cd{sub 2}Ge{sub 2}O{sub 6} were investigated. The research results show that the obtained Cd{sub 2}Ge{sub 2}O{sub 6} presents a flower-like microstructures composed by radial nanorods with diameter of 50-100 nm and length of 0.5-2 {mu}m, respectively. The formation mechanism of the flower-like Cd{sub 2}Ge{sub 2}O{sub 6} is explained according to the ethylenediamine-assisted nucleation-'Ostwald ripening' process. - Highlights: {yields}Cd{sub 2}Ge{sub 2}O{sub 6} flower-like microstructures were synthesized using ethylenediamine. {yields}Cd{sub 2}Ge{sub 2}O{sub 6} flower-like microstructures can be controlled by growth conditions. {yields}Ethylenediamine induces the growth of the Cd{sub 2}Ge{sub 2}O{sub 6} flower-like microstructures.

  1. Microstructure And Weld Cracking In Inconel 718(R)

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.

    1988-01-01

    Theories on relationship between metallurgy and microfissuring confirmed. Report describes research on effects of microstructure on cracking of heat-affected zones of welds in Inconel 718(R) alloy. In experimental studies, specimens subjected to various combinations of time-varying thermal and mechanical stresses to simulate welding conditions and to identify physical and chemical effects causing microfissuring.

  2. Microstructure of cold swaged tantalum at large strains

    SciTech Connect

    Sandim, H.R.Z.; McQueen, H.J.; Blum, W.

    1999-12-31

    High purity tantalum ingots processed by electron beam melting are typical oligocrystalline materials. They are composed of a few coarse columnar grains aligned to the longitudinal ingot axis. The processing of this material into wires involves cold swaging up to large strains. The present work attempts to clarify the evolution of the microstructure during swaging which determines the subsequent changes related with annealing.

  3. Microstructural contributions to the fracture resistance of silicon nitride ceramics

    SciTech Connect

    Becher, P.F.; Hwang, S.L.; Lin, H.T.; Tiegs, T.N.

    1994-09-01

    There is a need to understand the parameters that influence the fracture resistance and strength response in self-reinforced silicon nitride ceramics. This paper attempts to address a few of the microstructural factors that are found to in influence crack wake processes and the fracture resistance response in self-reinforced silicon nitride ceramics and similar systems.

  4. A novel three-phase model of brain tissue microstructure.

    PubMed

    Gevertz, Jana L; Torquato, Salvatore

    2008-08-15

    We propose a novel biologically constrained three-phase model of the brain microstructure. Designing a realistic model is tantamount to a packing problem, and for this reason, a number of techniques from the theory of random heterogeneous materials can be brought to bear on this problem. Our analysis strongly suggests that previously developed two-phase models in which cells are packed in the extracellular space are insufficient representations of the brain microstructure. These models either do not preserve realistic geometric and topological features of brain tissue or preserve these properties while overestimating the brain's effective diffusivity, an average measure of the underlying microstructure. In light of the highly connected nature of three-dimensional space, which limits the minimum diffusivity of biologically constrained two-phase models, we explore the previously proposed hypothesis that the extracellular matrix is an important factor that contributes to the diffusivity of brain tissue. Using accurate first-passage-time techniques, we support this hypothesis by showing that the incorporation of the extracellular matrix as the third phase of a biologically constrained model gives the reduction in the diffusion coefficient necessary for the three-phase model to be a valid representation of the brain microstructure.

  5. Fundamentals of ultrasonic NDE for microstructure/material property interrelations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1982-01-01

    Some fundamental aspects of ultrasonic nondestructive evaluation for material properties and microstructure assessment are given. Ultrasonic wave interaction concepts, some recent findings, and practical ramifications are illustrated. The concepts are discussed in nonmathematical, narrative form. Additional information can be found in the references cited herein.

  6. Cryomilled and spark plasma sintered titanium: the evolution of microstructure

    NASA Astrophysics Data System (ADS)

    Kozlík, Jiří; Becker, Hanka; Harcuba, Petr; Stráský, Josef; Janeček, Milos

    2017-05-01

    Bulk ultra-fine grained (UFG) commercially pure Ti was prepared by cryogenic milling in liquid argon and subsequent spark plasma sintering (SPS). During cryogenic milling, individual powder particles are repetitively severely deformed by attrition forces. Powder particles were not significantly refined, but due to severe repetitive plastic deformation, ultra-fine grained microstructure emerges within each powder particle. Cryogenic milling can be therefore considered as a specific severe plastic deformation (SPD) method. Compactization of cryomilled powder by SPS technique (also referred to as field assisted sintering technique - FAST) requires significantly lower sintering temperatures and shorter sintering times for successful compaction when compared to any other sintering technique. This is crucial for maintaining the UFG microstructure due to its limited thermal stability. Several specimens were prepared by varying processing parameters, in particular the sintering temperature. The microstructure of powders and compacted samples was observed by scanning electron microscopy (SEM). Increased sintering temperature results in recrystallization and grain growth. A trade-off relationship between the density of compacted material and grain size was identified. Microhardness of the material was found to depend on residual porosity rather than grain size. This contribution presents cryogenic milling and spark plasma sintering as a viable alternative for achieving UFG microstructure in commercially pure Ti.

  7. Mechanical properties and microstructure of centrifugally cast alloy 718

    NASA Astrophysics Data System (ADS)

    Michel, D. J.; Smith, H. H.

    1985-07-01

    The relationship between the microstructure and mechanical properties of alloy 718 was investigated for two discs centrifugally cast at 50 and 200 rpm and given a duplex age heat treatment. The results of mechanical property tests at temperatures from 426 to 649 °C showed that the tensile yield and ultimate strength levels of both castings were similar. However, the creep-rupture properties were considerably enhanced for the casting produced at 200 rpm. Comparison of the radial and transverse creep properties of each disc indicated that creep life was generally independent of orientation, but ductility was greatest for specimens oriented transverse to the radial direction of the casting. Fatigue crack propagation performance was not greatly influenced by orientation or mold speed parameters and was comparable to wrought alloy 718 when compared on the basis of stress intensity factor range. The centrifugal casting process was found to produce a homogeneous microstructure free of porosity but with the expected segregation of solute alloying elements to Laves and carbide phases. The effect of the as-cast microstructure on the mechanical behavior and the potential influence of hot isostatic pressing to improve the microstructure are discussed.

  8. Microstructural Observations on High Strength Polycrystalline Iron Whiskers.

    DTIC Science & Technology

    1978-08-01

    found that the whiskers consisted of a unique and complex microdispersion of iron oxides, iron carbide, and atomic carbon which bond the very small alpha ... iron crystallites into a non-porous microstructure of high integrity. The mixing of strong covalent bonding with metallic bonding is proposed to explain the exceptionally high tensile strength of the whiskers. (Author)

  9. Microstructural Effects on the Ignition Behavior of Various HMX Materials

    NASA Astrophysics Data System (ADS)

    Welle, Eric

    2013-06-01

    The detonation physics community has embraced the idea that initiation of high explosives proceeds from an ignition event through subsequent growth to steady detonation. This construct is the basis for the well-known Lee-Tarver reactive flow model. A weakness of all the commonly used ignition and growth models is that microstructural characteristics are not explicitly incorporated in their ignition terms. This is the case in spite of a demonstrated, but not well-understood, empirical link between morphology and initiation of energetic materials. Morphological effects have been parametrically studied in many ways, with the majority of efforts focused on establishing a tie between bulk powder metrics and ignition of the consolidated material. More recently, there has been a shift toward characterizing the microstructure of consolidated materials in order to understand the underlying mechanisms governing performance. We have assessed the utility of using the James' Ignition model as a tool to quantify effects of bed microstructure on ignition behavior. We have studied the ignition behavior of four types of HMX materials ranging from fine particle fluid energy milled to course particle material. We will also report characterization of the pressed microstructure of each of the various materials and discuss how the measured ignition behavior may have been influenced. DISTRIBUTION A. Approved for public release, distribution unlimited. (96ABW-2013-0063) R.R. Wixom, Sandia National Laboratories/Explosives Technologies Group; C. Molek, Air Force Research Laboratory/Munitions Directorate; and P. Samuels, Army Research Development and Engineering Center/Picatinny Arsenal.

  10. Sediment Formation in Nearshore Environments: Strength, Rheology, Microstructure, and Stability

    DTIC Science & Technology

    2006-01-01

    Sediment Formation in Nearshore Environments: Strength, Rheology, Microstructure, and Stability Homa Lee U.S. Geological Survey 345 Middlefield ...ES) U.S. Geological Survey,345 Middlefield Road,Menlo Park,CA,94025 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S

  11. Microstructure And Weld Cracking In Inconel 718(R)

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.

    1988-01-01

    Theories on relationship between metallurgy and microfissuring confirmed. Report describes research on effects of microstructure on cracking of heat-affected zones of welds in Inconel 718(R) alloy. In experimental studies, specimens subjected to various combinations of time-varying thermal and mechanical stresses to simulate welding conditions and to identify physical and chemical effects causing microfissuring.

  12. Microstructure characteristics of Ni/WC composite cladding coatings

    NASA Astrophysics Data System (ADS)

    Yang, Gui-rong; Huang, Chao-peng; Song, Wen-ming; Li, Jian; Lu, Jin-jun; Ma, Ying; Hao, Yuan

    2016-02-01

    A multilayer tungsten carbide particle (WCp)-reinforced Ni-based alloy coating was fabricated on a steel substrate using vacuum cladding technology. The morphology, microstructure, and formation mechanism of the coating were studied and discussed in different zones. The microstructure morphology and phase composition were investigated by scanning electron microscopy, optical microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. In the results, the coating presents a dense and homogeneous microstructure with few pores and is free from cracks. The whole coating shows a multilayer structure, including composite, transition, fusion, and diffusion-affected layers. Metallurgical bonding was achieved between the coating and substrate because of the formation of the fusion and diffusion-affected layers. The Ni-based alloy is mainly composed of γ-Ni solid solution with finely dispersed Cr7C3/Cr23C6, CrB, and Ni+Ni3Si. WC particles in the composite layer distribute evenly in areas among initial Ni-based alloying particles, forming a special three-dimensional reticular microstructure. The macrohardness of the coating is HRC 55, which is remarkably improved compared to that of the substrate. The microhardness increases gradually from the substrate to the composite zone, whereas the microhardness remains almost unchanged in the transition and composite zones.

  13. A Stochastic Multiscale Model for Microstructure Model Reduction

    DTIC Science & Technology

    2011-12-19

    methods. In [4, 5] the principle of maximum entropy ( MaxEnt ) was used to describe the microstructure topology of binary and polycrystalline materials. A...such MaxEnt distribution and interrogated using appropriate physical model, e.g. a crystal plasticity finite element method (CPFEM) [6] for polycrystals

  14. Microstructural Effects of Sulphate Attack in Sustainable Grouts for Micropiles.

    PubMed

    Ortega Álvarez, José Marcos; Esteban Pérez, María Dolores; Rodríguez Escribano, Raúl Rubén; Pastor Navarro, José Luís; Sánchez Martín, Isidro

    2016-11-08

    Nowadays, the use of micropiles has undergone a great development. In general, they are made with cement grout, reinforced with steel tubing. In Spain, these grouts are prepared using OPC, although the standards do not forbid the use of other cements, like sustainable ones. Micropiles are in contact with soils and groundwater, in which the presence of sulphates is common. Their deleterious effects firstly affect to the microstructure. Then, the aim of this research is to study the effects of sulphate attack in the microstructure of micropiles grouts, prepared with OPC, fly ash and slag commercial cements, compared to their behaviour when they are exposed to an optimum hardening condition. The microstructure evolution has been studied with the non-destructive impedance spectroscopy technique, which has never been used for detecting the effects of sulphate attack when slag and fly ash cements are used. Its results have been contrasted with mercury intrusion porosimetry and "Wenner" resistivity ones. The 28-day compressive strength of grouts has been also determined. The results of microstructure characterization techniques are in agreement, although impedance spectroscopy is the most sensitive for following the changes in the porous network of grouts. The results showed that micropiles made using fly ash and slag cements could have a good performance in contact with aggressive sodium sulphate media, even better than OPC ones.

  15. Microstructural Effects of Sulphate Attack in Sustainable Grouts for Micropiles

    PubMed Central

    Ortega Álvarez, José Marcos; Esteban Pérez, María Dolores; Rodríguez Escribano, Raúl Rubén; Pastor Navarro, José Luís; Sánchez Martín, Isidro

    2016-01-01

    Nowadays, the use of micropiles has undergone a great development. In general, they are made with cement grout, reinforced with steel tubing. In Spain, these grouts are prepared using OPC, although the standards do not forbid the use of other cements, like sustainable ones. Micropiles are in contact with soils and groundwater, in which the presence of sulphates is common. Their deleterious effects firstly affect to the microstructure. Then, the aim of this research is to study the effects of sulphate attack in the microstructure of micropiles grouts, prepared with OPC, fly ash and slag commercial cements, compared to their behaviour when they are exposed to an optimum hardening condition. The microstructure evolution has been studied with the non-destructive impedance spectroscopy technique, which has never been used for detecting the effects of sulphate attack when slag and fly ash cements are used. Its results have been contrasted with mercury intrusion porosimetry and “Wenner” resistivity ones. The 28-day compressive strength of grouts has been also determined. The results of microstructure characterization techniques are in agreement, although impedance spectroscopy is the most sensitive for following the changes in the porous network of grouts. The results showed that micropiles made using fly ash and slag cements could have a good performance in contact with aggressive sodium sulphate media, even better than OPC ones. PMID:28774026

  16. Laser origami: a new technique for assembling 3D microstructures

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Mathews, Scott A.; Charipar, Nicholas A.; Birnbaum, Andrew J.

    2012-03-01

    The ability to manufacture and assemble complex three-dimensional (3D) systems via traditional photolithographic techniques has attracted increasing attention. However, most of the work to date still utilizes the traditional patterning and etching processes designed for the semiconductor industry where 2D structures are first fabricated, followed by some alternative technique for releasing these structures out-of-plane. Here we present a novel technique called Laser Origami, which has demonstrated the ability to generate 3D microstructures through the controlled out-of-plane folding of 2D patterns. This non-lithographic, and non silicon-based process is capable of microfabricating 3D structures of arbitrary shape and geometric complexity on a variety of substrates. The Laser Origami technique allows for the design and fabrication of arrays of 3D microstructures, where each microstructure can be made to fold independently of the others. Application of these folded micro-assemblies might make possible the development of highly complex and interconnected electrical, optical and mechanical 3D systems. This article will describe the unique advantages and capabilities of Laser Origami, discuss its applications and explore its role for the assembly and generation of 3D microstructures.

  17. Microstructural and Computer Simulation Studies on Some EFP Materials

    NASA Astrophysics Data System (ADS)

    Pappu, Sridhar

    1999-06-01

    Explosively Formed Penetrators (EFPs) are self-forming ballistic projectiles deriving their energy from the detonation of a high explosive. As they form in-flight, strains up to 3 are reached at strain rates of about 10^4 per second, resulting in extreme deformation related changes in microstructure. In this study, we report microstructural features of three different EFP materials in an effort to understand the underlying mechanism behind EFP formation. The materials studied are Cu, Fe and Ta and represent different crystal structures and widely differing melting temperatures, properties that seem to play a significant role in microstructural evolution during the EFP formation process. Computer simulations using AUTODYN 2D software program will be carried out and the generated temperature and stress contours will be correlated with the observed microstructural features and measured microhardness data along the EFP half-section. This would help validate the hydrocodes and give useful insight into the unobservable part of the EFP formation process. Such a correlation of experimental and mathematical models would not only help understand the mechanism behind this process but also help design more effective projectiles without carrying out expensive experimental tests.

  18. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs)

    NASA Astrophysics Data System (ADS)

    Fronk, Ryan G.; Bellinger, Steven L.; Henson, Luke C.; Ochs, Taylor R.; Smith, Colten T.; Kenneth Shultis, J.; McGregor, Douglas S.

    2015-12-01

    Microstructured semiconductor neutron detectors (MSNDs) have in recent years received much interest as high-efficiency replacements for thin-film-coated thermal neutron detectors. The basic device structure of the MSND involves micro-sized trenches that are etched into a vertically-oriented pvn-junction diode that are backfilled with a neutron converting material. Neutrons absorbed within the converting material induce fission of the parent nucleus, producing a pair of energetic charged-particle reaction products that can be counted by the diode. The MSND deep-etched microstructures produce good neutron-absorption and reaction-product counting efficiencies, offering a 10× improvement in intrinsic thermal neutron detection efficiency over thin-film-coated devices. Performance of present-day MSNDs are nearing theoretical limits; streaming paths between the conversion-material backfilled trenches, allow a considerable fraction of neutrons to pass undetected through the device. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs) have been developed that utilize a complementary second set of trenches on the back-side of the device to count streaming neutrons. DSMSND devices are theoretically capable of greater than 80% intrinsic thermal neutron detection efficiency for a 1-mm thick device. The first such prototype DSMSNDs, presented here, have achieved 29.48±0.29% nearly 2× better than MSNDs with similar microstructure dimensions.

  19. Microstructural Characterization of Laser-Deposited Al 4047 Alloy

    NASA Astrophysics Data System (ADS)

    Dinda, G. P.; Dasgupta, A. K.; Bhattacharya, S.; Natu, H.; Dutta, B.; Mazumder, J.

    2013-05-01

    Direct metal deposition (DMD) technology is a laser-aided rapid prototyping method that can be used to fabricate near net shape components from their CAD files. In the present study, a series of Al-Si samples have been deposited by DMD in order to optimize the laser deposition parameters to produce high quality deposit with minimum porosity and maximum deposition rate. This paper presents the microstructural evolution of the as-deposited Al 4047 sample produced with optimized process parameters. Optical, scanning, and transmission electron microscopes have been employed to characterize the microstructure of the deposit. The electron backscattered diffraction method was used to investigate the grain size distribution, grain boundary misorientation, and texture of the deposits. Metallographic investigation revealed that the microstructural morphology strongly varies with the location of the deposit. The layer boundaries consist of equiaxed Si particles distributed in the Al matrix. However, a systematic transition from columnar Al dendrites to equiaxed dendrites has been observed in each layer. The observed variation of the microstructure was correlated with the thermal history and local cooling rate of the melt pool.

  20. Effects of Rare Earth Metals on Steel Microstructures.

    PubMed

    Pan, Fei; Zhang, Jian; Chen, Hao-Long; Su, Yen-Hsun; Kuo, Chia-Liang; Su, Yen-Hao; Chen, Shin-Hau; Lin, Kuan-Ju; Hsieh, Ping-Hung; Hwang, Weng-Sing

    2016-05-27

    Rare earth metals are used in semiconductors, solar cells and catalysts. This review focuses on the background of oxide metallurgy technologies, the chemical and physical properties of rare earth (RE) metals, the background of oxide metallurgy, the functions of RE metals in steelmaking, and the influences of RE metals on steel microstructures. Future prospects for RE metal applications in steelmaking are also presented.

  1. Ceramics overview: classification by microstructure and processing methods.

    PubMed

    Giordano, Russell; McLaren, Edward A

    2010-01-01

    The plethora of ceramic systems available today for all types of indirect restorations can be confusing--and overwhelming--for the clinician. Having a better understanding of them is key. The authors use classification systems based on the microstructural components of ceramics and the processing techniques to help illustrate the various properties and uses.

  2. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.; Anderegg, J.W.; Shechtman, D.

    2009-12-01

    In a simplified process to produce precursor powders for oxide dispersion-strength- ened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  3. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.

    2011-08-09

    In a simplified process to produce precursor powders for oxide dispersion-strengthened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  4. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications

    PubMed Central

    Ennen, Inga; Kappe, Daniel; Rempel, Thomas; Glenske, Claudia; Hütten, Andreas

    2016-01-01

    The giant magnetoresistance (GMR) effect is a very basic phenomenon that occurs in magnetic materials ranging from nanoparticles over multilayered thin films to permanent magnets. In this contribution, we first focus on the links between effect characteristic and underlying microstructure. Thereafter, we discuss design criteria for GMR-sensor applications covering automotive, biosensors as well as nanoparticular sensors. PMID:27322277

  5. Characterization of Microstructure with Low Frequency Electromagnetic Techniques (Postprint)

    DTIC Science & Technology

    2013-08-01

    microstructure. Large-area electron backscatter diffraction ( EBSD ) data was obtained and used in conjunction with a synthetic aperture approach to...based on electron backscatter diffraction ( EBSD ) data, demonstrating good agreement. The detectability of notches in the presence of noise from

  6. Study Design for Assessing Species Environment Relationships and Developing Indicator Systems for Ecological Changesin Floodplains - The Approach of the RIVA Project

    NASA Astrophysics Data System (ADS)

    Henle, Klaus; Dziock, Frank; Foeckler, Francis; Volker, Klaus; Hüsing, Volker; Hettrich, Anke; Rink, Marcus; Stab, Sabine; Scholz, Mathias

    2006-08-01

    In this article the study design and data sampling of the RIVA project - Development and Testing of a Robust Indicator System for Ecological Changes in Floodplain Systems - are described. The project was set up to improve existing approaches to study species environment relationships as a basis for the development of indicator systems and predictive models. Periodically flooded grassland was used as a model system. It is agriculturally used at a level of intermediate intensity and is the major habitat type along the Middle Elbe, Germany. We chose a main study area to analyse species environment relationships and two reference sites for testing the transferability of the results. Using a stratified random sampling scheme, we distributed 36 study plots across the main study site and 12 plots each within the reference sites. In each of the study plots, hydrological and soil variables were measured and plants, molluscs, and carabid beetles were sampled. Hoverflies were collected on a subset of the sampling plots. A brief summary of first results is then provided.

  7. Two point microstructure sensitive design and experimental verification

    NASA Astrophysics Data System (ADS)

    Gao, Xiang

    Rectangular models of material microstructure are described by their 1- and 2-point (spatial) correlation statistics of placement of local state. It is illustrated that generalized 2-point Hashin-Shtrikman bounds for elastic stiffness can be obtained that are linear in components of the correlation statistics. The concept of an eigen-microstructure within the microstructure hull is introduced. A method is developed for generating a sequence of archetypes of eigen-microstructure, from the 2-point correlation statistics of local state, assuming that the 1-point statistics are stationary. The method is illustrated by a case study. Extension of the first-order theory of microstructure design to considerations of morphological texture is addressed. It is shown that the correlation functions can be expressed in terms of an intermediate construct, called the texture function; the correlation functions have quadratic dependence in the texture functions. A complete (finite) texture hull is readily constructed for the texture functions in Fourier space, and is found to be a convex polytope. Eigen-texture functions occupy its corner (extreme) points. This gives rise to (combined) properties closures, from which second-order microstructure design can proceed. This is demonstrated in a brief case study. Experimental methods are introduced for obtaining two-point microstructure pair correlation functions in polycrystalline material. A particular tessellation of the fundamental zone of Euler angle space is described; individual orientations of the data set are binned into discrete tesserae. Elementary relationships between the two-point pair correlation functions and the grain size distribution and coherence length are explored. The one- and two-point distributions of orientation were recovered for three textures (as-received stainless steel, as-received copper and copper with cube texture). Elastic bounds for these textures are calculated including one-point bounds and

  8. Microstructure and Mechanical Properties of Extruded Gamma Met PX

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Das, G.; Locci, I.; Whittenberger, J. D.; Lerch, B. A.; Kestler, H.

    2003-01-01

    A gamma TiAl alloy with a high Nb content is being assessed as a compressor blade material. The microstructure and mechanical properties of extruded Ti-45Al-X(Nb,B,C) (at %) were evaluated in both an as-extruded condition and after a lamellar heat treatment. Tensile behavior of both as-extruded and lamellar heat treated specimens was studied in the temperature range of RT to 926 C. In general, the yield stress and ultimate tensile strength reached relatively high values at room temperature and decreased with increasing deformation temperature. The fatigue strength of both microstructures was characterized at 650 C and compared to a baseline TiAl alloy and to a Ni-base superalloy. Tensile and fatigue specimens were also exposed to 800 C for 200 h in air to evaluate the alloy's environmental resistance. A decrease in ductility was observed at room temperature due to the 800 C exposure but the 650 C fatigue properties were unaffected. Compressive and tensile creep testing between 727 and 1027 C revealed that the creep deformation was reproducible and predictable. Creep strengths reached superalloy-like levels at fast strain rates and lower temperatures but deformation at slower strain rates and/or higher temperature indicated significant weakening for the as-extruded condition. At high temperatures and low stresses, the lamellar microstructure had improved creep properties when compared to the as-extruded material. Microstructural evolution during heat treatment, identification of various phases, and the effect of microstructure on the tensile, fatigue, and creep behaviors is discussed.

  9. Role of Soil Microstructure in Microbially-mediated Drying Resistance

    NASA Astrophysics Data System (ADS)

    Cruz, B. C.; Shor, L. M.; Gage, D. J.

    2015-12-01

    The retention of soil moisture between rainfall or irrigation events is imperative to the productivity of terrestrial ecosystems. Amplified weather conditions are expected to result in widespread reduction in soil moisture. Extracellular polysaccharides (EPS) produced by soil bacteria have the ability to influence soil moisture by (i) retaining water directly within the hydrogel matrix, and (ii) promoting an aggregated soil structure. We have developed microfluidic devices that emulate realistic soil microstructures and enable direct observation of EPS production and drying resistance. The objective of this study was to compare moisture retention in emulated soil micromodels containing different soil microstructures. "Aggregated" devices contain a greater number of small (<30 μm) and large (>100 μm) pores, while "non-aggregated" devices contained more intermediate-sized (30-100 μm) pores. Particle-size distributions, similar to a sandy loam, were identical in both cases. Dilute suspensions of either of two strains of Sinorhizobium meliloti were introduced into replicate micromodels: one strain produced EPS ("EPS+") and the other did not produce EPS ("EPS-"). Loaded micromodels were equilibrated at saturated conditions, then dried at 83% RH for several days. Direct observation showed micro-scale patterns of air infiltration. The rate and extent of moisture loss was determined as a function of bacterial strain and microstructure aggregation state. Results showed devices loaded with EPS+ bacteria retained moisture longer than devices loaded with EPS- bacteria. Moisture retention by EPS+ bacteria was enhanced in aggregated versus non-aggregated microstructures. This work illustrates how moisture retention in soil is the result of microbial processes acting within pore-scale soil microstructures. Validated microfluidics-based approaches may help quantitatively link pore-scale phenomena to ecosystem function.

  10. Durable Microstructured Surfaces: Combining Electrical Conductivity with Superoleophobicity.

    PubMed

    Pan, Zihe; Wang, Tianchang; Sun, Shaofan; Zhao, Boxin

    2016-01-27

    In this study, electrically conductive and superoleophobic polydimethylsiloxane (PDMS) has been fabricated through embedding Ag flakes (SFs) and Ag nanowires (SNWs) into microstructures of the trichloroperfluorooctylsilane (FDTS)-blended PDMS elastomer. Microstructured PDMS surfaces became conductive at the percolation surface coverage of 3.0 × 10(-2) mg/mm(2) for SFs; the highest conductivity was 1.12 × 10(5) S/m at the SFs surface coverage of 6.0 × 10(-2) mg/mm(2). A significant improvement of the conductivity (increased 3 times at the SNWs fraction of 11%) was achieved by using SNWs to replace some SFs because of the conductive pathways from the formed SNWs networks and its connections with SFs. These conductive fillers bonded strongly with microstructured FDTS-blended PDMS and retained surface properties under the sliding preload of 8.0 N. Stretching tests indicated that the resistance increased with the increasing strains and returned to its original state when the strain was released, showing highly stretchable and reversible electrical properties. Compared with SFs embedded surfaces, the resistances of SFs/SNWs embedded surfaces were less dependent on the strain because of bridging effect of SNWs. The superoleophobicity was achieved by the synergetic effect of surface modification through blending FDTS and the microstructures transferred from sand papers. The research findings demonstrate a simple approach to make the insulating elastomer to have the desired surface oleophobicity and electrical conductivity and help meet the needs for the development of conductive devices with microstructures and multifunctional properties.

  11. Characterisation of clot microstructure properties in stable coronary artery disease

    PubMed Central

    Sabra, Ahmed; Lawrence, Matthew James; Aubrey, Robert; Obaid, Daniel; Chase, Alexander; Smith, Dave; Thomas, Phillip; Storton, Sharon; Davies, Gareth R; Hawkins, Karl; Williams, Phylip Rhodri; Morris, Keith; Evans, Phillip Adrian

    2017-01-01

    Background Coronary artery disease (CAD) is associated with an increased prothrombotic tendency and is also linked to unfavourably altered clot microstructure. We have previously described a biomarker of clot microstructure (df) that is unfavourably altered in acute myocardial infarction. The df biomarker assesses whether the blood will form denser or looser microstructures when it clots. In this study we assessed in patients with stable chest pain whether df can differentiate between obstructed and unobstructed CAD. Methods A blood sample prior to angiography was obtained from 251 consecutive patients undergoing diagnostic coronary angiography. Patients were categorised based on angiographic findings as presence or absence of obstructive CAD (stenosis ≥50%). The blood sample was assessed using the df biomarker, standard laboratory markers and platelet aggregometry (Multiplate). Results A significant difference (p=0.028) in df was observed between obstructive CAD (1.748±0.057, n=83) and unobstructive CAD (1.732±0.052, n=168), where patients with significant CAD produce denser, more tightly packed clots. df was also raised in men with obstructive CAD compared with women (1.745±0.055 vs 1.723±0.052, p=0.007). Additionally df significantly correlated with the platelets response to arachidonic acid as measured by the ASPItest area under the curve readings from platelet aggregometry (correlation coefficient=0.166, p=0.008), a low value of the ASPItest indicating effective aspirin use was associated with looser, less dense clots. Conclusions For the first time, we characterise clot microstructure, as measured by df, in patients with stable CAD. df can potentially be used to risk-stratify patients with stable CAD and assess the efficacy of therapeutic interventions by measuring changes in clot microstructure. PMID:28761676

  12. Microstructure characterization via stereological relations — A shortcut for beginners

    SciTech Connect

    Pabst, Willi Gregorová, Eva; Uhlířová, Tereza

    2015-07-15

    Stereological relations that can be routinely applied for the quantitative characterization of microstructures of heterogeneous single- and two-phase materials via global microstructural descriptors are reviewed. It is shown that in the case of dense, single-phase polycrystalline materials (e.g., transparent yttrium aluminum garnet ceramics) two quantities have to be determined, the interface density (or, equivalently, the mean chord length of the grains) and the mean curvature integral density (or, equivalently, the Jeffries grain size), while for two-phase materials (e.g., highly porous, cellular alumina ceramics), one additional quantity, the volume fraction (porosity), is required. The Delesse–Rosiwal law is recalled and size measures are discussed. It is shown that the Jeffries grain size is based on the triple junction line length density, while the mean chord length of grains is based on the interface density (grain boundary area density). In contrast to widespread belief, however, these two size measures are not alternative, but independent (and thus complementary), measures of grain size. Concomitant with this fact, a clear distinction between linear and planar grain size numbers is proposed. Finally, based on our concept of phase-specific quantities, it is shown that under certain conditions it is possible to define a Jeffries size also for two-phase materials and that the ratio of the mean chord length and the Jeffries size has to be considered as an invariant number for a certain type of microstructure, i.e., a characteristic value that is independent of the absolute size of the microstructural features (e.g., grains, inclusions or pores). - Highlights: • Stereology-based image analysis is reviewed, including error considerations. • Recipes are provided for measuring global metric microstructural descriptors. • Size measures are based on interface density and mean curvature integral density. • Phase-specific quantities and a generalized

  13. BoneNET: a network model of bone microstructure and dynamics.

    PubMed

    Kim, Taehyong; Bone, Lawrence; Ramanathan, Murali; Zhang, Aidong

    2013-01-01

    We develop a network model of bone microstructure and dynamics, BoneNET, which is capable of quantitative assessment of Bone Mineral Density (BMD) and bone remodelling dynamics. First, we introduce a network model of bone microstructure by describing structural properties and process of bone network modelling. Secondly, we explain a mathematical model of bone microstructure by analysing the density for mineralised fibres of bone microstructure. Finally, we provide a bone remodelling dynamics among osteoblast and osteoclast and study bone networks by proposing several measurements to calculate bone strength and identify critical elements in bone microstructure.

  14. Engineering bioceramic microstructure for customized drug delivery

    NASA Astrophysics Data System (ADS)

    Pacheco Gomez, Hernando Jose

    One of the most efficient approaches to treat cancer and infection is to use biomaterials as a drug delivery system (DDS). The goal is for the material to provide a sustained release of therapeutic drug dose locally to target the ill tissue without affecting other organs. Silica Calcium Phosphate nano composite (SCPC) is a drug delivery platform that successfully demonstrated the ability to bind and release several therapeutics including antibiotics, anticancer drugs, and growth factors. The aim of the present work is to analyze the role of SCPC microstructure on drug binding and release kinetics. The main crystalline phases of SCPC are alpha-cristobalite (SiO2, Cris) and beta-rhenanite (NaCaPO4, Rhe); therefore, these two phases were prepared and characterized separately. Structural and compositional features of Cris, Rhe and SCPC bioceramics demonstrated a significant influence on the loading capacity and release kinetics profile of Vancomycin (Vanc) and Cisplatin (Cis). Fourier Transform Infrared (FTIR) spectroscopy analyses demonstrated that the P-O functional group in Rhe and SCPC has high affinity to the (C=O and N-H) of Vanc and (N-H and O-H) of Cis. By contrast, a weak chemical interaction between the Si-O functional group in Cris and SCPC and the two drugs was observed. Vanc loading per unit surface area increased in the order 8.00 microg Vanc/m2 for Rhe > 4.49 microg Vanc /m2 for SCPC>3.01 microg Vanc /m2 for Cris (p<0.05). Cis loading capacity increased in the order 8.59 microg Vanc /m2 for Cris, 17.8 microg Vanc/m2 for Rhe and 6.03 microg Vanc /m2 for SCPC (p<0.05). Drug release kinetics was dependent on the carrier as well as on the kind of drug. Different burst release and sustained release rates were measured for Vanc and Cis from the same carrier. The percentages of drug amount released from Cris, Rhe and SCPC during the burst stage (the first 2h) were: 50%, 50%, and 46% of Vanc; and 53.4%, 36.6%, and 30.6 % of Cis, respectively. Burst release was

  15. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox. William R.; Regel, Liya L.

    1999-01-01

    This grant began in June of 1996. Its long term goal is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. The primary objective of the projects in the present grant is to test hypotheses for the reported influence of microgravity on the microstructure of eutectics. The prior experimental results on the influence of microgravity on the microstructure of eutectics have been contradictory. With lamellar eutectics, microgravity had a negligible effect on the microstructure. Microgravity experiments with fibrous eutectics sometimes showed a finer microstructure and sometimes a coarser microstructure. Most research has been done on the MnBi/Bi rod-like eutectic. Larson and Pirich obtained a two-fold finer microstructure both from microgravity and by use of a magnetic field to quench buoyancy-driven convection. Smith, on the other hand, observed no change in microgravity. Prior theoretical work at Clarkson University showed that buoyancy-driven convection in the vertical Bridgman configuration is not vigorous enough to alter the concentration field in front of a growing eutectic sufficiently to cause a measurable change in microstructure. We assumed that the bulk melt was at the eutectic composition and that freezing occurred at the extremum, i.e. with minimum total undercooling at the freezing interface. There have been four hypotheses attempting to explain the observed changes in microstructure of fibrous eutectics caused by convection: I .A fluctuating freezing rate, combined with unequal kinetics for fiber termination and branching. 2. Off-eutectic composition, either in the bulk melt due to an off-eutectic feed or at the freezing interface because of departure from the extremum condition. 3. Presence of a strong habit modifying impurity whose concentration at the freezing interface would be altered by convection. At the beginning of the present grant, we favored the

  16. Robust and fast nonlinear optimization of diffusion MRI microstructure models.

    PubMed

    Harms, R L; Fritz, F J; Tobisch, A; Goebel, R; Roebroeck, A

    2017-07-15

    Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of

  17. Surface microstructure of bitumen characterized by atomic force microscopy.

    PubMed

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  18. Microstructure and mechanical properties of bulk highly faulted fcc/hcp nanostructured cobalt microstructures

    SciTech Connect

    Barry, Aliou Hamady; Dirras, Guy; Schoenstein, Frederic; Tétard, Florent; Jouini, Noureddine

    2014-05-01

    Nanostructured cobalt powders with an average particle size of 50 nm were synthesized using a polyol method and subsequently consolidated by spark plasma sintering (SPS). SPS experiments performed at 650 °C with sintering times ranging from 5 to 45 min under a pressure of 100 MPa, yielded to dense bulk nanostructured cobalt (relative density greater than 97%). X-ray diffraction patterns of the as-prepared powders showed only a face centered cubic (fcc) crystalline phase, whereas the consolidated samples exhibited a mixture of both fcc and hexagonal close packed (hcp) phases. Transmission electron microscopy observations revealed a lamellar substructure with a high density of nanotwins and stacking faults in every grain of the sintered samples. Room temperature compression tests, carried out at a strain rate of 10{sup −3} s{sup −1}, yielded to highest strain to fracture values of up to 5% for sample of holding time of 15 min, which exhibited a yield strength of 1440 MPa, an ultimate strength as high as 1740 MPa and a Young's modulus of 205 GPa. The modulus of elasticity obtained from the nanoindentation tests, ranges from 181 to 218 GPa. The lowest modulus value of 181 GPa was obtained for the sample with the highest sintering time (45 min), which could be related to mass density loss as a consequence of trapped gases releasing. - Highlights: • Co nanopowder (50 nm) was prepared by reduction in polyol medium. • SPS was used to process bulk nanostructured Co specimens. • Microstructures were made of intricate fcc/hcp, along with nanotwins and SFs. • High strengths and moderate compressive ductility were obtained. • Deformation mechanisms related to complex interplay of different length scales.

  19. Influence of the Initial Microstructure on the Heat Treatment Response and Tensile Properties of TRIP-Assisted Steel

    NASA Astrophysics Data System (ADS)

    Lee, Kyooyoung; Ryu, Joo Hyun; Lee, Sea Woong; Lee, Won Hwi; Kim, Jeong In; Suh, Dong-Woo

    2016-11-01

    Microstructure evolution and mechanical properties were investigated in transformation-induced plasticity (TRIP) steel having a different initial microstructure. Compared with the cold-rolled structure that evolves into a typical microstructure of TRIP steel, the martensitic initial structure produces a more lath-type microstructure as the fraction of retained austenite increases in the initial microstructure. The interlath austenite after heat treatment contributes to improving the tensile properties by the enhanced stability and the refinement of the matrix phase.

  20. 3D Printing Optical Engine for Controlling Material Microstructure

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chin; Chang, Kuang-Po; Wu, Ping-Han; Wu, Chih-Hsien; Lin, Ching-Chih; Chuang, Chuan-Sheng; Lin, De-Yau; Liu, Sung-Ho; Horng, Ji-Bin; Tsau, Fang-Hei

    Controlling the cooling rate of alloy during melting and resolidification is the most commonly used method for varying the material microstructure and consequently the resuling property. However, the cooling rate of a selective laser melting (SLM) production is restricted by a preset optimal parameter of a good dense product. The head room for locally manipulating material property in a process is marginal. In this study, we invent an Optical Engine for locally controlling material microstructure in a SLM process. It develops an invovative method to control and adjust thermal history of the solidification process to gain desired material microstucture and consequently drastically improving the quality. Process parameters selected locally for specific materials requirement according to designed characteristics by using thermal dynamic principles of solidification process. It utilize a technique of complex laser beam shape of adaptive irradiation profile to permit local control of material characteristics as desired. This technology could be useful for industrial application of medical implant, aerospace and automobile industries.