Science.gov

Sample records for carbonation-related microstructural changesin

  1. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emissions..., determine the 5-cycle city carbon-related exhaust emissions using the following equation: (1) CityCREE =...

  2. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emission... emissions and carbon-related exhaust emissions. For each vehicle tested, determine the 5-cycle city...

  3. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emission... emissions and carbon-related exhaust emissions. For each vehicle tested, determine the 5-cycle city...

  4. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emissions..., determine the 5-cycle city carbon-related exhaust emissions using the following equation: (1) CityCREE =...

  5. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and average carbon-related exhaust emissions. 600.510-12 Section 600.510-12 Protection of Environment... Carbon-Related Exhaust Emissions § 600.510-12 Calculation of average fuel economy and average carbon.... (iv) (2) Average carbon-related exhaust emissions will be calculated to the nearest one gram per...

  6. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emission... emissions and carbon-related exhaust emissions. For each vehicle tested, determine the 5-cycle city...

  7. Diagnostics of optical anisotropy changesin biological tissues using Mueller matrix

    SciTech Connect

    Ushenko, Yu A; Tomka, Yu Ya; Dubolazov, A V; Telen'ga, O Yu

    2011-03-31

    We study the efficiency of Mueller matrix diagnostics of birefringence in biological tissue layers with different optical thickness by measuring a set of third- and fourth-order statistical moments, characterising the coordinate distributions of the matrix element Z{sub 44} at different points of the histological section. (laser applications and other problems in quantum electronics)

  8. Effect of tin doping on oxygen- and carbon-related defects in Czochralski silicon

    SciTech Connect

    Chroneos, A.; Londos, C. A.; Sgourou, E. N.

    2011-11-01

    Experimental and theoretical techniques are used to investigate the impact of tin doping on the formation and the thermal stability of oxygen- and carbon-related defects in electron-irradiated Czochralski silicon. The results verify previous reports that Sn doping reduces the formation of the VO defect and suppresses its conversion to the VO{sub 2} defect. Within experimental accuracy, a small delay in the growth of the VO{sub 2} defect is observed. Regarding carbon-related defects, it is determined that Sn doping leads to a reduction in the formation of the C{sub i}O{sub i}, C{sub i}C{sub s}, and C{sub i}O{sub i}(Si{sub I}) defects although an increase in their thermal stability is observed. The impact of strain induced in the lattice by the larger tin substitutional atoms, as well as their association with intrinsic defects and carbon impurities, can be considered as an explanation to account for the above observations. The density functional theory calculations are used to study the interaction of tin with lattice vacancies and oxygen- and carbon-related clusters. Both experimental and theoretical results demonstrate that tin co-doping is an efficient defect engineering strategy to suppress detrimental effects because of the presence of oxygen- and carbon-related defect clusters in devices.

  9. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Model Year Automobiles-Test Procedures § 600.114-08 Vehicle-specific 5-cycle fuel economy and carbon... to calculate 5-cycle carbon-related exhaust emissions values for the purpose of determining optional... each vehicle tested, determine the 5-cycle city carbon-related exhaust emissions using the...

  10. Systemic effects of geoengineering by terrestrial carbon dioxide removal on carbon related planetary boundaries

    NASA Astrophysics Data System (ADS)

    Heck, Vera; Donges, Jonathan; Lucht, Wolfgang

    2015-04-01

    The planetary boundaries framework as proposed by Rockström et al. (2009) provides guidelines for ecological boundaries, the transgression of which is likely to result in a shift of Earth system functioning away from the relatively stable Holocene state. As the climate change boundary is already close to be transgressed, several geoengineering (GE) methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. One of the proposed GE methods is carbon extraction from the atmosphere via biological carbon sequestration. In case mitigation efforts fail to substantially reduce greenhouse gas emissions, this form of GE could act as potential measure to reduce atmospheric carbon dioxide concentrations. We here study the possible influences of human interactions in the Earth system on carbon related planetary boundaries in the form of geoengineering (terrestrial carbon dioxide removal). We use a conceptual model specifically designed to investigate fundamental carbon feedbacks between land, ocean and atmosphere (Anderies et al., 2013) and modify it to include an additional geoengineering component. With that we analyze the existence and stability of a safe operating space for humanity, which is here conceptualized in three of the 9 proposed dimensions, namely climate change, ocean acidification and land-use. References: J. M. Anderies et al., The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries. Environ. Res. Lett., 8(4):044048 (2013) J. Rockström et al., A safe operating space for humanity. Nature 461 (7263), 472-475 (2009)

  11. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must meet the minimum driving range requirements established by the Secretary of Transportation (49 CFR... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS...

  12. Emissivity of microstructured silicon.

    PubMed

    Maloney, Patrick G; Smith, Peter; King, Vernon; Billman, Curtis; Winkler, Mark; Mazur, Eric

    2010-03-01

    Infrared transmittance and hemispherical-directional reflectance data from 2.5 to 25 microm on microstructured silicon surfaces have been measured, and spectral emissivity has been calculated for this wavelength range. Hemispherical-total emissivity is calculated for the samples and found to be 0.84 before a measurement-induced annealing and 0.65 after the measurement for the sulfur-doped sample. Secondary samples lack a measurement-induced anneal, and reasons for this discrepancy are presented. Emissivity numbers are plotted and compared with a silicon substrate, and Aeroglaze Z306 black paint. Use of microstructured silicon as a blackbody or microbolometer surface is modeled and presented, respectively.

  13. Hierarchical microstructures in CZT

    NASA Astrophysics Data System (ADS)

    Sundaram, S. K.; Henager, C. H.; Edwards, D. J.; Schemer-Kohrn, A. L.; Bliss, M.; Riley, B. R.; Toloczko, M. B.; Lynn, K. G.

    2011-10-01

    Advanced characterization tools, such as electron backscatter diffraction and transmitted IR microscopy, are being applied to study critical microstructural features and orientation relations in as-grown CZT crystals to aid in understanding the relation between structure and properties in radiation detectors. Even carefully prepared single crystals of CZT contain regions of slight misorientation, Te-particles, and dislocation networks that must be understood for more accurate models of detector response. This paper describes initial research at PNNL into the hierarchy of microstructures observed in CZT grown via the vertical gradient freeze or vertical Bridgman method at PNNL and WSU.

  14. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... HFET-based fuel economy, CO2 emissions, and carbon-related exhaust emission values for vehicle... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values § 600.206-12 Calculation and use of...

  15. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HFET-based fuel economy, CO2 emissions, and carbon-related exhaust emission values for vehicle... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values § 600.206-12 Calculation and use of...

  16. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related exhaust...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-based fuel economy, CO2 emissions, and carbon-related exhaust emissions for a model type. 600.208-12... FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values § 600.208-12 Calculation of FTP-based and...

  17. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related exhaust...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-based fuel economy, CO2 emissions, and carbon-related exhaust emissions for a model type. 600.208-12... FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values § 600.208-12 Calculation of FTP-based and...

  18. 40 CFR 600.008-08 - Review of fuel economy and carbon-related exhaust emission data, testing by the Administrator.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Review of fuel economy and carbon... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Regulations for 1977 and...

  19. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related exhaust...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-based fuel economy, CO2 emissions, and carbon-related exhaust emissions for a model type. 600.208-12... FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values § 600.208-12 Calculation of FTP-based and...

  20. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HFET-based fuel economy and carbon-related exhaust emission values for vehicle configurations. 600.206... POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-Procedures for Calculating Fuel Economy Values §...

  1. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-based fuel economy and carbon-related exhaust emission values for a model type. 600.208-12 Section 600... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-Procedures for Calculating Fuel Economy Values § 600.208-12 Calculation of...

  2. Solidification microstructures: A conceptual approach

    SciTech Connect

    Trivedi, R.; Kurz, W.

    1994-01-01

    Detailed theoretical models have been developed in the literature to correlate microstructural characteristics as a function of processing parameters. These results are examined with a broad perspective to show that various laws for microstructural transitions and microstructural spacings can be represented in terms of three simple characteristic lengths of the important physical processes. Initially, the important physical processes of solute and thermal transport and capillarity effect are considered, and they are related to the microstructural lengths such as dendrite tip radius, primary and secondary spacing, and eutectic spacing. It is shown that these microstructural lengths are simply given by the geometric mean of the characteristic lengths of physical processes that are important in a given problem. New characteristic lengths that become important under rapid solidification are then developed, and how these characteristic lengths influence microstructural transition and microstructural scales is also discussed.

  3. Laser microstructured biodegradable scaffolds.

    PubMed

    Koroleva, Anastasia; Kufelt, Olga; Schlie-Wolter, Sabrina; Hinze, Ulf; Chichkov, Boris

    2013-10-01

    The two-photon polymerization technique (2PP) uses non-linear absorption of femtosecond laser pulses to selectively polymerize photosensitive materials. 2PP has the ability to fabricate structures with a resolution from tens of micrometers down to hundreds of nanometers. Three-dimensional microstructuring by the 2PP technique provides many interesting possibilities for biomedical applications. This microstructuring technique is suitable with many biocompatible polymeric materials, such as polyethylene glycol, polylactic acid, polycaprolactone, gelatin, zirconium-based hybrids, and others. The process of fabrication does not require clean room conditions and does not use hazard chemicals or high temperatures. The most beneficial property of 2PP is that it is capable of producing especially complex three-dimensional (3-D) structures, including devices with overhangs, without using any supportive structure. The flexibility in controlling geometries and feature sizes and the possibility to fabricate structures without the addition of new material layers makes this technique particularly appealing for fabrication of 3-D scaffolds for tissue engineering. PMID:23729598

  4. Dynamic electrowetting on microstructured surfaces

    NASA Astrophysics Data System (ADS)

    Nita, Satoshi; Wang, Jiayu; Do-Quang, Minh; Chen, Yu-Chung; Suzuki, Yuji; Amberg, Gustav; Shiomi, Junichiro

    2015-11-01

    Surface modification such as surface charging or microstructuring has been shown as an effective method to control static wetting, but its influence on dynamic wetting is still unclear. Previously, we found that the initial stage of droplet spreading can be significantly hindered by surface microstructures, while previous experiments showed that the effect of surface charge on dynamic wetting on a flat surface is minor. Here, we combine microstructuring and electrowetting to further enhance the controllability of the dynamic wetting. Microstructures are fabricated on silicon wafers and the spontaneous spreading of a droplet is imaged with a high-speed camera. We reveal that the spreading rate sensitivity to surface charge increases in the presence of microstructures. Furthermore, numerical simulations solving Cahn-Hilliard/Navier-Stokes equations are performed and the effect of surface modification is quantified in terms of the contact-line friction. This work was financially supported in part by the Japan Science and Technology Agency through CREST.

  5. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.

    1994-01-01

    The primary motivation for this research was to determine the cause for space processing altering the microstructure of some eutectics, especially the MnBi-Bi eutectic. Four primary hypotheses were to be tested under this current grant: (1) A fibrous microstructure is much more sensitive to convection than a lamellar microstructure, which was assumed in our prior theoretical treatment. (2) An interface with one phase projecting out into the melt is much more sensitive to convection than a planar interface, which was assumed in our prior theoretical treatment. (3) The Soret effect is much more important in the absence of convection and has a sufficiently large influence on microstructure that its action can explain the flight results. (4) The microstructure is much more sensitive to convection when the composition of the bulk melt is off eutectic. These hypotheses were tested. It was concluded that none of these can explain the Grumman flight results. Experiments also were performed on the influence of current pulses on MnBi-Bi microstructure. A thorough review was made of all experimental results on the influence of convection on the fiber spacing in rod eutectics, including results from solidification in space or at high gravity, and use of mechanical stirring or a magnetic field. Contradictory results were noted. The predictions of models for convective influences were compared with the experimental results. Vigorous mechanical stirring appears to coarsen the microstructure by altering the concentration field in front of the freezing interface. Gentle convection is believed to alter the microstructure of a fibrous eutectic only when it causes a fluctuating freezing rate with a system for which the kinetics of fiber branching differs from that for fiber termination. These fluctuations may cause the microstructure to coarsen or to become finer, depending on the relative kinetics of these processes. The microstructure of lamellar eutectics is less sensitive to

  6. Optical Imaging in Microstructures

    SciTech Connect

    Aker, P. M.

    2001-04-11

    This research was focused on developing morphology-dependent stimulated raman scattering (MDSRS) spectroscopy as an analytic optical imaging technique. MDSRS uses the cavity modes (called morphology dependent resonances, MDRs) associated with axisymmetric dielectric microstructures to generate nonlinear optical signals. Since different cavity modes span different regions inside the microstructure, it becomes possible to generate location-specific spectra. The information gotten from MDSRS imaging experiments is analogous with that generated from magnetic resonance imaging (MRI) studies in that spatial variations in chemical composition and molecular configuration within a structure can be mapped out. The authors demonstrated that MDSRS imaging is feasible and is free from nonlinear artifact. They did this by measuring the molecular structure variations that are present in the interfaces of 180 {micro}m dia. charged water droplets. The 4 publications that resulted from these studies are attached. From a chemical perspective a water droplet is, however, a simple thing. Will it be possible to use MDSRS imaging to study more complex systems such as combusting fuel droplets, layered polymer or glass fibers, or biological cells? The long-term goal of the research was to answer this question. The answer they have come up with is yes and no. The results on nitrate aerosols show that it is possible to do imaging studies on optically non-absorbing, ion containing systems, but that the ultimate sensitivity is dictated by ion concentration. hence systems containing large quantities of mobile ions will be difficult to look at, so this essentially eliminates being able to look at biological samples in situ. But on the positive side, organic systems, such as layered polymer and glass fibers, and combusting organic fuel droplets can be looked at with MDSRS imaging.

  7. Microstructure and properties of ceramics

    NASA Technical Reports Server (NTRS)

    Hamano, K.

    1984-01-01

    The history of research into the microstructure and properties of ceramic ware is discussed; methods of producing ceramics with particular characteristics are investigated. Bubbles, sintering, cracks, and electron microscopy are discussed.

  8. Computer vision in microstructural analysis

    NASA Technical Reports Server (NTRS)

    Srinivasan, Malur N.; Massarweh, W.; Hough, C. L.

    1992-01-01

    The following is a laboratory experiment designed to be performed by advanced-high school and beginning-college students. It is hoped that this experiment will create an interest in and further understanding of materials science. The objective of this experiment is to demonstrate that the microstructure of engineered materials is affected by the processing conditions in manufacture, and that it is possible to characterize the microstructure using image analysis with a computer. The principle of computer vision will first be introduced followed by the description of the system developed at Texas A&M University. This in turn will be followed by the description of the experiment to obtain differences in microstructure and the characterization of the microstructure using computer vision.

  9. Prebiotic organic microstructures.

    PubMed

    Bassez, Marie-Paule; Takano, Yoshinori; Kobayashi, Kensei

    2012-08-01

    Micro- and sub-micrometer spheres, tubules and fiber-filament soft structures have been synthesized in our experiments conducted with 3 MeV proton irradiations of a mixture of simple inorganic constituents, CO, N(2) and H(2)O. We analysed the irradiation products, with scanning electron microscopy (SEM) and atomic force microscopy (AFM). These laboratory organic structures produced a wide variety of proteinaceous and non-proteinaceous amino acids after HCl hydrolysis. The enantiomer analysis for D,L-alanine confirmed that the amino acids were abiotically synthesized during the laboratory experiment. We discuss the presence of CO(2) and the production of H(2) during exothermic processes of serpentinization and consequently we discuss the production of hydrothermal CO in a ferromagnesian silicate mineral environment. We also discuss the low intensity of the Earth's magnetic field during the Paleoarchaean Era and consequently we conclude that excitation sources arising from cosmic radiation were much more abundant during this Era. We then show that our laboratory prebiotic microstructures might be synthesized during the Archaean Eon, as a product of the serpentinization process of the rocks and of their mineral contents. PMID:22886610

  10. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... economy or carbon-related exhaust emission value for the base level. (7) For alcohol dual fuel automobiles... basic engine (i.e., they are not included in the calculation of the original base level fuel economy...) If only one vehicle configuration within a base level has been tested, the fuel economy and...

  11. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Caram, Rubens; Mohanty, A. P.; Seth, Jayshree

    1990-01-01

    The mechanism responsible for the difference in microstructure caused by solidifying the MnBi-Bi eutectic in space is sought. The objectives for the three year period are as follows: (1) completion of the following theoretical analyses - determination of the influence of the Soret effect on the average solid composition versus distance of off-eutectic mixtures directionally solidified in the absence of convection, determination of the influence of convection on the microstructure of off-eutectic mixtures using a linear velocity profile in the adjacent melt, determination of the influence of volumetric changes during solidification on microconvection near the freezing interface and on microstructure, and determination of the influence of convection on microstructure when the MnBi fibers project out in front of the bismuth matrix; (2) search for patterns in the effect of microgravity on different eutectics (for example, eutectic composition, eutectic temperature, usual microstructure, densities of pure constituents, and density changes upon solidification); and (3) determination of the Soret coefficient and the diffusion coefficient for Mn-Bi melts near the eutectic composition, both through laboratory experiements to be performed here and from data from Shuttle experiments.

  12. Computer simulation of microstructural dynamics

    SciTech Connect

    Grest, G.S.; Anderson, M.P.; Srolovitz, D.J.

    1985-01-01

    Since many of the physical properties of materials are determined by their microstructure, it is important to be able to predict and control microstructural development. A number of approaches have been taken to study this problem, but they assume that the grains can be described as spherical or hexagonal and that growth occurs in an average environment. We have developed a new technique to bridge the gap between the atomistic interactions and the macroscopic scale by discretizing the continuum system such that the microstructure retains its topological connectedness, yet is amenable to computer simulations. Using this technique, we have studied grain growth in polycrystalline aggregates. The temporal evolution and grain morphology of our model are in excellent agreement with experimental results for metals and ceramics.

  13. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.

    1992-01-01

    The primary motivation for this research has been to determine the cause for space processing altering the microstructure of some eutectics, especially the MnBi-Bi eutectic. Prior experimental research at Grumman and here showed that the microstructure of MnBi-Bi eutectic is twice as fine when solidified in space or in a magnetic field, is uninfluenced by interfacial temperature gradient, adjusts very quickly to changes in freezing rate, and becomes coarser when spin-up/spin-down (accelerated crucible rotation technique) is used during solidification. Theoretical work at Clarkson predicted that buoyancy driven convection on earth could not account for the two fold change in fiber spacing caused by solidification in space. However, a lamellar structure with a planar interface was assumed, and the Soret effect was not included in the analysis. Experimental work at Clarkson showed that the interface is not planar, and that MnBi fibers project out in front of the Bi matrix on the order of one fiber diameter. Originally four primary hypotheses were to be tested under this current grant: (1) a fibrous microstructure is much more sensitive to convection than a lamellar microstructure, which was assumed in our prior theoretical treatment; (2) an interface with one phase projecting out into the melt is much more sensitive to convection than a planar interface, which was assumed in our prior theoretical treatment; (3) the Soret effect is much more important in the absence of convection and has a sufficiently large influence on microstructure that its action can explain the flight results; and (4) the microstructure is much more sensitive to convection when the composition of the bulk melt is off eutectic. As reported previously, we have learned that while a fibrous microstructure and a non-planar interface are more sensitive to convection than a lamellar microstructure with a planar interface, the influence of convection remains too small to explain the flight and magnetic

  14. Microstructure and Mechanical Properties of Extruded Gamma Microstructure Met PX

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Das, G.; Locci, J.; Whittenberger, J. D.; Lerch, B. A.; Kestler, H.

    2003-01-01

    A gamma TiAl alloy with a high Nb content is being assessed as a compressor blade material. The microstructure and mechanical properties of extruded Ti-45Al-X(Nb,B,C) (at.%) were evaluated in both an as-extruded condition and after a lamellar heat treatment. Tensile behavior of both as-extruded and lamellar heat treated specimens was studied in the temperature range of RT to 926 C. In general, the yield stress and ultimate tensile strength reached relatively high values at room temperature and decreased with increasing deformation temperature. The fatigue strength of both microstructures was characterized at 650 C and compared to a baseline TiAl alloy and to a Ni-base superalloy. Tensile and fatigue specimens were also exposed to 800 C for 200 h in air to evaluate the alloy's environmental resistance. A decrease in ductility was observed at room temperature due to the 800 C. exposure but the 650 C fatigue properties were unaffected. Compressive and tensile creep testing between 727 and 1027 C revealed that the creep deformation was reproducible and predictable. Creep strengths reached superalloy-like levels at fast strain rates and lower temperatures but deformation at slower strain rates and/or higher temperature indicated significant weakening for the as-extruded condition. At high temperatures and low stresses, the lamellar microstructure had improved creep properties when compared to the as-extruded material. Microstructural evolution during heat treatment, identification of various phases, and the effect of microstructure on the tensile, fatigue, and creep behaviors is discussed.

  15. Microstructure of the Interplanetary Medium

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1972-01-01

    High time resolution measurements of the interplanetary magnetic field and plasma reveal a complex microstructure which includes hydromagnetic wave and discontinuities. The identification of hydromagnetic waves and discontinuities, their statistical properties, their relation to large-scale structure, and their relative contribution to power spectra are discussed.

  16. Three Microstructural Exercises for Students.

    ERIC Educational Resources Information Center

    Means, Winthrop D.

    1986-01-01

    Describes laboratory exercises which demonstrate a new simplified technique for deforming thin samples of crystalline materials on the stage of a petrographic microscope. Discusses how this process allows students to see the development of microstructures resulting from cracking, slipping, thinning, and recrystallization. References and sources of…

  17. Microstructural processes in irradiated materials

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15-19, 2015.

  18. Microstructure in plasticity without nonconvexity

    NASA Astrophysics Data System (ADS)

    Das, Amit; Acharya, Amit; Suquet, Pierre

    2016-03-01

    A simplified one dimensional rate dependent model for the evolution of plastic distortion is obtained from a three dimensional mechanically rigorous model of mesoscale field dislocation mechanics. Computational solutions of variants of this minimal model are investigated to explore the ingredients necessary for the development of microstructure. In contrast to prevalent notions, it is shown that microstructure can be obtained even in the absence of non-monotone equations of state. In this model, incorporation of wave propagative dislocation transport is vital for the modeling of spatial patterning. One variant gives an impression of producing stochastic behavior, despite being a completely deterministic model. The computations focus primarily on demanding macroscopic limit situations, where a convergence study reveals that the model-variant including non-monotone equations of state cannot serve as effective equations in the macroscopic limit; the variant without non-monotone ingredients, in all likelihood, can.

  19. Microstructure Characterization of RERTR Fuel

    SciTech Connect

    J. Gan; B. D. Miller; D. D. Keiser; T. R. Allen; D. M. Wachs

    2008-09-01

    A variety of phases have the potential to develop in the irradiated fuels for the reduced enrichment research test reactor (RERTR) program. To study the radiation stability of these potential phases, three depleted uranium alloys were cast. The phases of interest were identified including U(Si,Al)3, (U,Mo)(Si,Al)3, UMo2Al20, UAl4, and U6Mo4Al43. These alloys were irradiated with 2.6 MeV protons at 200ºC up to 3.0 dpa. The microstructure is characterized using SEM and TEM. Microstructural characterization for an archive dispersion fuel plate (U-7Mo fuel particles in Al-2%Si cladding) was also carried out. TEM sample preparation for the irradiated dispersion fuel has been developed.

  20. Microstructural effects in foam fracture

    NASA Astrophysics Data System (ADS)

    Stewart, Peter; Davis, Stephen; Hilgenfeldt, Sascha

    2015-11-01

    We examine the fracture of a quasi two-dimensional aqueous foam under an applied driving pressure, using a network modelling approach developed for metallic foams by Stewart & Davis (J. Rheol., vol. 56, 2012, p. 543). In agreement with experiments, we observe two distinct mechanisms of failure analogous to those observed in a crystalline solid: a slow ductile mode when the driving pressure is applied slowly, where the void propagates as bubbles interchange neighbours through the T1 process, and a rapid brittle mode for faster application of pressures, where the void advances by successive rupture of liquid films driven by Rayleigh-Taylor instability. The simulations allow detailed insight into the mechanics of the fracturing medium and the role of its microstructure. In particular, we examine the stress distribution around the crack tip and investigate how brittle fracture localizes into a single line of breakages. We also confirm that pre-existing microstructural defects can alter the course of fracture.

  1. Random Telegraph Noise in Microstructures

    SciTech Connect

    Kogan, S.

    1998-10-01

    The theory of random current switchings in conductors with S -type current-voltage characteristic is presented. In the range of bistability, the mean time spent by the system in the low-current state before a transition to the high-current state occurs, {bar {tau}}{sub l} , decreases with voltage, and that for the high-current state, {bar {tau}}{sub h} , grows with voltage; both variations are exponential-like. {bar {tau}}{sub l}={bar {tau}}{sub h} at a definite voltage in the bistability range. These results are in full accordance with experiments on microstructures. Because of the growth of both times with the size of the conductor, such noise is observable just in microstructures. {copyright} {ital 1998} {ital The American Physical Society}

  2. Microstructural effects in shock ignition

    SciTech Connect

    Conley, P.; Benson, D.; Howe, P.M.

    1998-07-01

    The dynamic response of explosive microstructures has been explicitly modeled, with the intention of gaining insight into initiation processes from hotspot formation to transition to detonation. In this paper, the authors focus attention upon the inert material response leading to hotspot ignition. Of interest are particle size and shape effects, constitutive effects of both binder and explosive, and their importance to hotspot formation. Effects of chemical reaction are considered elsewhere.

  3. Thin film diamond microstructure applications

    NASA Technical Reports Server (NTRS)

    Roppel, T.; Ellis, C.; Ramesham, R.; Jaworske, D.; Baginski, M. E.; Lee, S. Y.

    1991-01-01

    Selective deposition and abrasion, as well as etching in atomic oxygen or reduced-pressure air, have been used to prepare patterned polycrystalline diamond films which, on further processing by anisotropic Si etching, yield the microstructures of such devices as flow sensors and accelerometers. Both types of sensor have been experimentally tested in the respective functions of hot-wire anemometer and both single- and double-hinged accelerometer.

  4. Microstructure evolution in irradiated materials

    SciTech Connect

    Caturla, M

    1999-11-30

    Study the interaction of defects produced during irradiation or deformation of a metal with the microstructure of that particular material, such as dislocations and grain boundaries. In particular we will study the interaction of dislocation with interstitial loops and stacking fault tetrahedral, and the production of displacement cascades close to dislocations and grain boundaries. The data obtained from these simulations will be used as input to diffusion models and dislocation dynamics models.

  5. Contact Printing of Arrayed Microstructures

    PubMed Central

    Xu, Wei; Luikart, Alicia M.; Sims, Christopher E.; Allbritton, Nancy L.

    2010-01-01

    A novel contact printing method utilizing a sacrificial layer of polyacrylic acid (PAA) was developed to selectively modify the upper surfaces of arrayed microstructures. The method was characterized by printing polystyrene onto SU-8 microstructures to create an improved substrate for a cell-based microarray platform. Experiments measuring cell growth SU-8 arrays modified with polystyrene and fibronectin demonstrated improved growth of NIH 3T3 (93% vs. 38%), HeLa (97% vs. 77%), and HT1080 (76% vs. 20%) cells relative to that for the previously used coating method. In addition, use of the PAA sacrificial layer permitted the printing of functionalized polystyrene, carboxylate polystyrene nanospheres, and silica nanospheres onto the arrays in a facile manner. Finally, a high concentration of extracellular matrix materials (ECM), such as collagen (5 mg/mL) and gelatin (0.1%), was contact printed onto the array structures using as little as 5 μL of the ECM reagent and without the formation of a continuous film bridge across the microstructures. Murine embryonic stem cells cultured on arrays printed with this gelatin-hydrogel remained in an undifferentiated state indicating an adequate surface gelatin layer to maintain these cells over time. PMID:20425106

  6. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Eisa, Gaber Faheem; Chandrasekhar, S.; Larrousse, Mark; Banan, Mohsen

    1988-01-01

    The influence was studied of convection during directional solidification on the resulting microstructure of eutectics, specifically lead/tin and manganese/bismuth. A theory was developed for the influence of convection on the microstructure of lamellar and fibrous eutectics, through the effect of convection on the concentration field in the melt in front of the growing eutectic. While the theory agrees with the experimental spin-up spin-down results, it predicts that the weak convection expected due to buoyancy will not produce a measurable change in eutectic microstructure. Thus, this theory does not explain the two fold decrease in MnBi fiber size and spacing observed when MnBi-Bi is solidified in space or on Earth with a magnetic field applied. Attention was turned to the morphology of the MnBi-Bi interface and to the generation of freezing rate fluctuations by convection. Decanting the melt during solidification of MnBi-Bi eutectic showed that the MnBi phase projects into the melt ahead of the Bi matrix. Temperature measurements in a Bi melt in the vertical Bridgman-Stockbarger configuration showed temperature variations of up to 25 C. Conclusions are drawn and discussed.

  7. Microstructural Control of Additively Manufactured Metallic Materials

    NASA Astrophysics Data System (ADS)

    Collins, P. C.; Brice, D. A.; Samimi, P.; Ghamarian, I.; Fraser, H. L.

    2016-07-01

    In additively manufactured (AM) metallic materials, the fundamental interrelationships that exist between composition, processing, and microstructure govern these materials’ properties and potential improvements or reductions in performance. For example, by using AM, it is possible to achieve highly desirable microstructural features (e.g., highly refined precipitates) that could not otherwise be achieved by using conventional approaches. Simultaneously, opportunities exist to manage macro-level microstructural characteristics such as residual stress, porosity, and texture, the last of which might be desirable. To predictably realize optimal microstructures, it is necessary to establish a framework that integrates processing variables, alloy composition, and the resulting microstructure. Although such a framework is largely lacking for AM metallic materials, the basic scientific components of the framework exist in literature. This review considers these key components and presents them in a manner that highlights key interdependencies that would form an integrated framework to engineer microstructures using AM.

  8. Fabrication of metallic microstructures by micromolding nanoparticles

    DOEpatents

    Morales, Alfredo M.; Winter, Michael R.; Domeier, Linda A.; Allan, Shawn M.; Skala, Dawn M.

    2002-01-01

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  9. Modelling fracture in fibrous microstructures

    SciTech Connect

    Beyerlein, I.

    1998-04-01

    This work describes some complementary studies directed towards micromechanical modeling and simulation of the statistical fracture process in composites with fibrous microstructures. A few studies involve combining efficient computational stress analyses and piezospectroscopic measurement techniques to quantify interface deformation around a single break in model composites. It is shown how estimated interface parameters can be used to predict activity around more complex break arrangement in much larger composites. The final studies involve incorporating these experimentally refined stress analyses into large scale simulation for statistical predictions and subsequent analytical modeling of composite fracture.

  10. Deposited films with improved microstructures

    DOEpatents

    Patten, James W.; Moss, Ronald W.; McClanahan, Edwin D.

    1984-01-01

    Methods for improving microstructures of line-of-sight deposited films are described. Columnar growth defects ordinarily produced by geometrical shadowing during deposition of such films are eliminated without resorting to post-deposition thermal or mechanical treatments. The native, as-deposited coating qualities, including homogeneity, fine grain size, and high coating-to-substrate adherence, can thus be retained. The preferred method includes the steps of emitting material from a source toward a substrate to deposit a coating non-uniformly on the substrate surface, removing a portion of the coating uniformly over the surface, again depositing material onto the surface, but from a different direction, and repeating the foregoing steps. The quality of line-of-sight deposited films such as those produced by sputtering, progressively deteriorates as the angle of incidence between the flux and the surface becomes increasingly acute. Depositing non-uniformly, so that the coating becomes progressively thinner as quality deteriorates, followed by uniformly removing some of the coating, such as by resputtering, eliminates the poor quality portions, leaving only high quality portions of the coating. Subsequently sputtering from a different direction applies a high quality coating to other regions of the surface. Such steps can be performed either simultaneously or sequentially to apply coatings of a uniformly high quality, closed microstructure to three-dimensional or large planar surfaces.

  11. Area scalable optically induced photorefractive photonic microstructures

    NASA Astrophysics Data System (ADS)

    Jin, Wentao; Xue, Yan Ling; Jiang, Dongdong

    2016-07-01

    A convenient approach to fabricate area scalable two-dimensional photonic microstructures was experimentally demonstrated by multi-face optical wedges. The approach is quite compact and stable without complex optical alignment equipment. Large-area square lattice microstructures are optically induced inside an iron-doped lithium niobate photorefractive crystal. The induced large-area microstructures are analyzed and verified by plane wave guiding, Brillouin-zone spectroscopy, angle-dependent transmission spectrum, and lateral Bragg reflection patterns. The method can be easily extended to generate other more complex area scalable photonic microstructures, such as quasicrystal lattices, by designing the multi-face optical wedge appropriately. The induced area scalable photonic microstructures can be fixed or erased even re-recorded in the photorefractive crystal, which suggests potential applications in micro-nano photonic devices.

  12. Microswimmers in Complex Environments with Heterogeneous Microstructure

    NASA Astrophysics Data System (ADS)

    Hyon, Yunkyong; Fu, Henry

    2011-11-01

    We will discuss the swimming of microorganisms in complex and heterogeneous environments. Microswimmers in biological complex fluids, for instance, bacteria and sperm, are often greatly influenced by heterogeneous medium microstructure with length scales comparable to themselves. We characterize the interaction between the microswimmer and the medium microstructure using the model Golestanian three-sphere swimmer, treating the hydrodynamic interaction with the microstructure through the Oseen tensor. In this investigation, the microstructure of the heterogeneous environment is modeled by fixed spheres representing obstacles, or chains consisting of spheres connected with elastic springs. We find that the swimming speed of the swimmer depends on the force and deformation exerted on micro-structure. Furthermore, we find that while short freely suspended chains and short chains anchored at their ends interact with swimmer quite differently, long enough chains interact similarly, that is, a long mobile chain acts like a anchored chain. We discuss the implications for swimmer interactions with polymer solutions and compliant networks.

  13. Microstructural investigation of innovative UHPC

    SciTech Connect

    Reda, M.M.; Shrive, N.G.; Gillott, J.E.

    1999-03-01

    The production of ultra high performance concrete (UHPC) with target strengths greater than 200 MPa has recently been considered for specific structural applications that need this enhanced mechanical performance. The main purpose of developing these innovative UHPC mixtures is to produce high-strength precast concrete elements with excellent durability to serve as both the inner wedges and the outer barrel of a new nonmetallic anchorage system. The anchorage is for post-tensioning applications using carbon fiber-reinforced polymer tendons. The UHPC mixtures examined show very dense microstructures with some unique characteristics. The bond between the micro carbon fibers and the cement paste seems to be very good and the cement paste observed in the vicinity of the fibers was shown to be very dense and homogeneous. The micro carbon fibers seem to govern the strength and postcracking behavior of these materials.

  14. Application of a new composite cubic-boron nitride gasket assembly for high pressure inelastic x-ray scattering studies of carbon related materials

    SciTech Connect

    Wang, Lin; Yang, Wenge; Xiao, Yuming; Liu, Bingbing; Chow, Paul; Shen, Guoyin; Mao, Wendy L.; Mao, Ho-kwang

    2011-01-01

    We have developed a new composite cubic-boron nitride (c-BN) gasket assembly for high pressurediamond anvil cell studies, and applied it to inelastic x-ray scattering (IXS) studies of carbon related materials in order to maintain a larger sample thickness and avoid the interference from the diamond anvils. The gap size between the two diamond anvils remained ~80 μm at 48.0 GPa with this new composite c-BN gasket assembly. The sample can be located at the center of the gap, ~20 μm away from the surface of both diamond anvils, which provides ample distance to separate the sample signal from the diamond anvils. The high pressure IXS of a solvated C₆₀ sample was studied up to 48 GPa, and a pressure induced bonding transition from sp² to sp³ was observed at 27 GPa.

  15. Microstructure Modeling of Third Generation Disk Alloys

    NASA Technical Reports Server (NTRS)

    Jou, Herng-Jeng

    2010-01-01

    The objective of this program was to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool was to be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishments achieved during the third year (2009) of the program are summarized. The activities of this year included: Further development of multistep precipitation simulation framework for gamma prime microstructure evolution during heat treatment; Calibration and validation of gamma prime microstructure modeling with supersolvus heat treated LSHR; Modeling of the microstructure evolution of the minor phases, particularly carbides, during isothermal aging, representing the long term microstructure stability during thermal exposure; and the implementation of software tools. During the research and development efforts to extend the precipitation microstructure modeling and prediction capability in this 3-year program, we identified a hurdle, related to slow gamma prime coarsening rate, with no satisfactory scientific explanation currently available. It is desirable to raise this issue to the Ni-based superalloys research community, with hope that in future there will be a mechanistic understanding and physics-based treatment to overcome the hurdle. In the mean time, an empirical correction factor was developed in this modeling effort to capture the experimental observations.

  16. Microstructure of Kinetic Spray Coatings: A Review

    NASA Astrophysics Data System (ADS)

    Lee, Changhee; Kim, Jaeick

    2015-04-01

    Kinetic spray process has been applied to various industrial fields such as automotive, aviation, and defense industries due to its availability to produce high-performing coating layer. However, since the properties of kinetic-sprayed coating layer are significantly affected by the microstructures of deposit, the microstructures of the deposit should be controlled to acquire advanced coating layer and, accordingly, deep understanding of microstructural evolution must be achieved before controlling the microstructure of the coating layer. This paper gives an overview of contents related to the microstructure of kinetic-sprayed deposition. The most powerful influencing factors in microstructural evolution of kinetic-sprayed coating layer are instant generation of thermal energy and high-strain, high-strain-rate plastic deformation at the moment of particle impact. A high-density coating layer with low porosity can be produced, although some micro-cracks are occasionally induced at the interparticle boundary or at the inner region of the particles. Also, a microstructure which is distinct from the inner particle region is created in the vicinity of the particle-particle or particle-substrate interface region. However, almost no crystal phase transformation or chemical reaction is induced since the deposited particles are not heated directly by a thermal energy source.

  17. Microstructured polyacrylamide hydrogels made with hydrophobic nanoparticles.

    PubMed

    Nuño-Donlucas, S M; Sánchez-Díaz, J C; Rabelero, M; Cortés-Ortega, J; Luhrs-Olmos, C C; Fernández-Escamilla, V V; Mendizábal, E; Puig, J E

    2004-02-01

    Poly(methyl methacrylate) nanosize particles, made by microemulsion polymerization, were dispersed in an acrylamide aqueous solution, which was polymerized in the presence of a cross-linking agent to yield microstructured hydrogels. The kinetics of swelling and the mechanical properties of these hydrogels were investigated as a function of concentration of particles. The microstructured hydrogels exhibit higher equilibrium swelling and larger Young modulus than conventional (that is, without particles) polyacrylamide hydrogel. The morphology of the microstructured hydrogels was examined by transmission electron microscopy.

  18. Development of Matrix Microstructures in UHTC Composites

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael

    2012-01-01

    One of the major issues hindering the use of ultra high temperature ceramics for aerospace applications is low fracture toughness. There is considerable interest in developing fiber-reinforced composites to improve fracture toughness. Considerable knowledge has been gained in controlling and improving the microstructure of monolithic UHTCs, and this paper addresses the question of transferring that knowledge to composites. Some model composites have been made and the microstructures of the matrix developed has been explored and compared to the microstructure of monolithic materials in the hafnium diboride/silicon carbide family. Both 2D and 3D weaves have been impregnated and processed.

  19. Morphology and microstructure of composite materials

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Srinivansan, K.

    1991-01-01

    Lightweight continuous carbon fiber based polymeric composites are currently enjoying increasing acceptance as structural materials capable of replacing metals and alloys in load bearing applications. As with most new materials, these composites are undergoing trials with several competing processing techniques aimed at cost effectively producing void free consolidations with good mechanical properties. As metallic materials have been in use for several centuries, a considerable database exists on their morphology - microstructure; and the interrelationships between structure and properties have been well documented. Numerous studies on composites have established the crucial relationship between microstructure - morphology and properties. The various microstructural and morphological features of composite materials, particularly those accompanying different processing routes, are documented.

  20. Nonequilibrium microstructures for Ag-Ni nanowires.

    PubMed

    Rai, Rajesh K; Srivastava, Chandan

    2015-04-01

    This work illustrates that a variety of nanowire microstructures can be obtained either by controlling the nanowire formation kinetics or by suitable thermal processing of as-deposited nanowires with nonequilibrium metastable microstructure. In the present work, 200-nm diameter Ag-Ni nanowires with similar compositions, but with significantly different microstructures, were electrodeposited. A 15 mA deposition current produced nanowires in which Ag-rich crystalline nanoparticles were embedded in a Ni-rich amorphous matrix. A 3 mA deposition current produced nanowires in which an Ag-rich crystalline phase formed a backbone-like configuration in the axial region of the nanowire, whereas the peripheral region contained Ni-rich nanocrystalline and amorphous phases. Isothermal annealing of the nanowires illustrated a phase evolution pathway that was extremely sensitive to the initial nanowire microstructure.

  1. Microstructural characterization of fiber-reinforced composites

    SciTech Connect

    Summerscales, J.

    1998-12-31

    In the past 50 years, great progress has been made in developing artificial fiber-reinforced composite materials, generally using filaments with microscopic diameters. An array of reinforcement forms can be used in commercial applications--with the microstructure being a critical factor in realizing the required properties in a material. This book comprehensively examines the application of advanced microstructural characterization techniques to fiber-reinforced composites. Its contents include: (1) flexible textile composite microstructure; (2) 3-D confocal microscopy of glass fiber-reinforced composites; (3) geometric modeling of yarn and fiber assemblies; (4) characterization of yarn shape in woven fabric composites; (5) quantitative microstructural analysis for continuous fiber composites; (6) electron microscopy of polymer composites; (7) micromechanics of reinforcement using laser raman spectroscopy; and (8) acoustic microscopy of ceramic fiber composites.

  2. Exponential kinetics of formation of organic microstructures

    NASA Technical Reports Server (NTRS)

    Fraser, C. L.; Folsome, C. E.

    1975-01-01

    Organic microstructure production in Miller-Urey spark discharge flasks is an energy-dependent, autocatalytic process which follows first order kinetics similar to microbial growth curves. These relationships hold for all three major morphological types of microstructures observed. The three types are assembled from smaller precursor subunits which associate according to a binomial distribution. These structures could have formed bounded systems in which pre-biological processes might have occurred.

  3. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Caram, Rubens; Mohanty, A. P.; Seth, Jayshree

    1990-01-01

    In eutectic growth, as the solid phases grow they reject atoms to the liquid. This results in a variation of melt composition along the solid/liquid interface. In the past, mass transfer in eutectic solidification, in the absence of convection, was considered to be governed only by the diffusion induced by compositional gradients. However, mass transfer can also be generated by a temperature gradient. This is called thermotransport, thermomigration, thermal diffusion or the Soret effect. A theoretical model of the influence of the Soret effect on the growth of eutectic alloys is presented. A differential equation describing the compositional field near the interface during unidirectional solidification of a binary eutectic alloy was formulated by including the contributions of both compositional and thermal gradients in the liquid. A steady-state solution of the differential equation was obtained by applying appropriate boundary conditions and accounting for heat flow in the melt. Following that, the average interfacial composition was converted to a variation of undercooling at the interface, and consequently to microstructural parameters. The results obtained show that thermotransport can, under certain circumstances, be a parameter of paramount importance.

  4. Snow Micro-Structure Model

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implementedmore » using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.« less

  5. Snow Micro-Structure Model

    SciTech Connect

    Micah Johnson, Andrew Slaughter

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.

  6. Atomistic to continuum modeling of solidification microstructures

    SciTech Connect

    Karma, Alain; Tourret, Damien

    2015-09-26

    We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid–liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked to experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. The approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.

  7. Atomistic to continuum modeling of solidification microstructures

    DOE PAGES

    Karma, Alain; Tourret, Damien

    2015-09-26

    We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid–liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked tomore » experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. The approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.« less

  8. Microstructures in rapidly solidified niobium aluminides

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Locci, Ivan E.

    1988-01-01

    The microstructures of niobium aluminides produced by chill block melt spinning were compared to those of niobium aluminides produced by conventional casting. The rapidly solidified alloys were rapidly solidified by melt spinning in an argon atmosphere, and the melt-spun ribbons were examined by optical, X-ray, and TEM techniques. Microstructures were found to range from single-phase for Nb-75 at. pct Al (NbAl3) to two phase for Nb-46 at. pct Al (NbAl3 + Nb2Al). It was found that the melt spinning of Nb-aluminides produced finer grained microstructures than those produced in induction-melted ingots or in powders produced by the rotating electrode process. Ternary additions such as Cr, Ti, and Si tended to form intermetallic phases along the grain boundaries.

  9. Microstructural Characterization of Next Generation Nuclear Graphites

    SciTech Connect

    Karthik Chinnathambi; Joshua Kane; Darryl P. Butt; William E. Windes; Rick Ubic

    2012-04-01

    This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

  10. Microstructural characterization of nitrided Timetal 834.

    PubMed

    Moskalewicz, T; Grogger, W; Czyrska-Filemonowicz, A

    2006-09-01

    The microstructure of Timetal 834, in as-received condition and after nitriding under glow discharge has been examined by light microscopy and analytical transmission electorn microscopy (TEM) methods (SAED, EDS, EELS and EFTEM). The microstructure of the as-received alloy consists of the alpha phase and a small amount of the beta phase. Silicide precipitates (Zr5Si4) are present both inside the grains and at the grain boundaries. TEM investigations of cross-sectional thin foils allow for detailed analysis of the nitrided layer microstructure. It was found that the nitrided layer exhibits a graded character with continuously varying nitrogen content. The outermost sublayer consists of nanocrystals of delta-TiN. The following sublayers consist mainly of delta'-Ti2N and epsilon-Ti2N grains. The last sublayer, closest to the substrate, is identified as a nitrogen-rich alpha(N) solid solution containing up to 14 at% of nitrogen. PMID:17059528

  11. Connectivity Measures in EEG Microstructural Sleep Elements

    PubMed Central

    Sakellariou, Dimitris; Koupparis, Andreas M.; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K.

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an “EEG-element connectivity” methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the

  12. Manipulation of microstructure in laser additive manufacturing

    NASA Astrophysics Data System (ADS)

    Bai, Shuang; Yang, Lihmei; Liu, Jian

    2016-05-01

    In this paper, additive manufacturing (AM) of tungsten parts is investigated by using femtosecond fiber lasers. For the first time, manipulating microstructures of AM parts is systematically investigated and reported. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, and microstructural and mechanical properties of the processed components. Fully dense tungsten part with refined grain and increased hardness was obtained for femtosecond laser, compared with parts made with different pulse widths and CW laser. Micro-hardness is investigated for the fabricated samples. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  13. Quantitative ultrasound assessment of cervical microstructure.

    PubMed

    Feltovich, Helen; Nam, Kibo; Hall, Timothy J

    2010-07-01

    The objective of this preliminary study was to determine whether quantitative ultrasound (QUS) can provide insight into, and characterization of, uterine cervical microstructure. Throughout pregnancy, cervical collagen reorganizes (from aligned and anisotropic to disorganized and isotropic) as the cervix changes in preparation for delivery. Premature changes in collagen are associated with premature birth in mammals. Because QUS is able to detect structural anisotropy/isotropy, we hypothesized that it may provide a means of noninvasively assessing cervical microstructure. Thorough study of cervical microstructure has been limited by lack of technology to detect small changes in collagen organization, which has in turn limited our ability to detect abnormal and/or premature changes in collagen that may lead to preterm birth. In order to determine whether QUS may be useful for detection of cervical microstructure, radiofrequency (rf) echo data were acquired from the cervices of human hysterectomy specimens (n = 10). The angle between the acoustic beam and tissue was used to assess anisotropic acoustic propagation by control of transmit/receive angles from -20 degrees to +20 degrees. The power spectrum of the echo signals from within a region of interest was computed in order to investigate the microstructure of the tissue. An identical analysis was performed on a homogeneous phantom with spherical scatterers for system calibration. Power spectra of backscattered rf from the cervix were 6 dB higher for normal (0 degree) than steered (+/- 20 degrees) beams. The spectral power for steered beams decreased monotonically (0.4 dB at +5 degrees to 3.6 dB at +20 degrees). The excess difference (compared to similar analysis for the phantom) in normally-incident (0 degree) versus steered beams is consistent with scattering from an aligned component of the cervical microstructure. Therefore, QUS appears to reliably identify an aligned component of cervical microstructure

  14. Role of Microstructure on the Performance of UHTCs

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Gasch, Matthew J.; Lawson, John W.; Gusman, Michael I.; Stackpoole, Mairead

    2010-01-01

    We have investigated a number of methods to control microstructure. We have routes to form: a) in situ "composites" b) Very fine microstructures. Arcjet testing and other characterization of monolithic materials. Control oxidation through microstructure and composition. Beginning to incorporate these materials as matrices for composites. Modeling effort to facilitate material design and characterization.

  15. The evolution of deformation microstructures and local orientations

    SciTech Connect

    Hughes, D.A.

    1995-12-31

    A brief overview of the evolution of microstructures during deformation is presented within the framework of grain subdivision. Three aspects of the evolving microstructure that are related to recrystallization are emphasized. These include the formation of high angle dislocation boundaries during deformation, the local environment of crystallographic orientations and a new scaling method for modeling detailed microstructural data.

  16. Microstructural examination of the α- ω Two-Phase Shock-Induced Microstructure in Zirconium

    NASA Astrophysics Data System (ADS)

    Morrow, Benjamin M.; Escobedo, J. Pablo; Field, Robert D.; Dickerson, Robert M.; Dickerson, Patricia O.; Trujillo, Carl P.; Cerreta, Ellen K.

    2015-06-01

    Omega phase can be formed in alpha-phase Zr during shock loading. Interestingly, the high pressure phase can be retained upon release allowing for post-mortem study of the omega phase. Currently, the transformation pathway is not well understood. To provide more insight into this pathway during dynamic loading, shocked-induced microstructures of Zr have been studied. Soft recovered, plate impact specimens have been examined via electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) to characterize the orientation relationships (OR) and habit planes (HP) between phases. This enables a better understanding of transformation path that is then compared to Molecular Dynamics (MD) simulations. Based on key microstructural features observed in the post-mortem microstructures, a significant amount of the observed alpha phase appears to have originated from the reverse transformation upon release. Results of microstructural analysis will be discussed, along with implications toward phase transformation pathways.

  17. Prospective for biodegradable microstructured optical fibers

    NASA Astrophysics Data System (ADS)

    Dupuis, Alexandre; Guo, Ning; Gao, Yan; Godbout, Nicolas; Lacroix, Suzanne; Dubois, Charles; Skorobogatiy, Maksim

    2007-01-01

    We report fabrication of a novel microstructured optical fiber made of biodegradable and water soluble materials that features ˜1dB/cm transmission loss. Two cellulose butyrate tubes separated with hydroxypropyl cellulose powder were codrawn into a porous double-core fiber offering integration of optical, microfluidic, and potentially drug release functionalities.

  18. Precise patterning of silk microstructures using photolithography.

    PubMed

    Kurland, Nicholas E; Dey, Tuli; Kundu, Subhas C; Yadavalli, Vamsi K

    2013-11-20

    Photolithography is used in conjunction with a "silk fibroin photoresist" to form precise protein microstructures directly and rapidly on a variety of substrates. High-resolution features in two and three dimensions with line widths down to one micrometer are formed. Photo-crosslinked protein structures guide cell adhesion, providing precise spatial control of cells without requiring adhesive ligands.

  19. Microstructural characterization of pipe bomb fragments

    SciTech Connect

    Gregory, Otto; Oxley, Jimmie; Smith, James; Platek, Michael; Ghonem, Hamouda; Bernier, Evan; Downey, Markus; Cumminskey, Christopher

    2010-03-15

    Recovered pipe bomb fragments, exploded under controlled conditions, have been characterized using scanning electron microscopy, optical microscopy and microhardness. Specifically, this paper examines the microstructural changes in plain carbon-steel fragments collected after the controlled explosion of galvanized, schedule 40, continuously welded, steel pipes filled with various smokeless powders. A number of microstructural changes were observed in the recovered pipe fragments: deformation of the soft alpha-ferrite grains, deformation of pearlite colonies, twin formation, bands of distorted pearlite colonies, slip bands, and cross-slip bands. These microstructural changes were correlated with the relative energy of the smokeless powder fillers. The energy of the smokeless powder was reflected in a reduction in thickness of the pipe fragments (due to plastic strain prior to fracture) and an increase in microhardness. Moreover, within fragments from a single pipe, there was a radial variation in microhardness, with the microhardness at the outer wall being greater than that at the inner wall. These findings were consistent with the premise that, with the high energy fillers, extensive plastic deformation and wall thinning occurred prior to pipe fracture. Ultimately, the information collected from this investigation will be used to develop a database, where the fragment microstructure and microhardness will be correlated with type of explosive filler and bomb design. Some analyses, specifically wall thinning and microhardness, may aid in field characterization of explosive devices.

  20. Microstructured waveguides for serological examination of blood

    NASA Astrophysics Data System (ADS)

    Zanishevskaya, Anastasiya A.; Shuvalov, A. A.; Skibina, Yu. S.; Tuchin, V. V.

    2015-03-01

    The advantages of microstructured fibers application to photometrical determination of positive and negative agglutination reaction is discussed. One can use this method for blood typing and determination of Rh affinity. The method is based on discrimination of the scattering properties of blood probes with a specific and a non-specific agglutinating serum.

  1. Method to control artifacts of microstructural fabrication

    DOEpatents

    Shul, Randy J.; Willison, Christi G.; Schubert, W. Kent; Manginell, Ronald P.; Mitchell, Mary-Anne; Galambos, Paul C.

    2006-09-12

    New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Compensation for etching-related structural artifacts can be accomplished by proper use of such an etching delay layer.

  2. Microstructure design for fast oxygen conduction

    SciTech Connect

    Aidhy, Dilpuneet S.; Weber, William J.

    2015-11-11

    Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations are other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.

  3. Topological microstructure analysis using persistence landscapes

    NASA Astrophysics Data System (ADS)

    Dłotko, Paweł; Wanner, Thomas

    2016-11-01

    Phase separation mechanisms can produce a variety of complicated and intricate microstructures, which often can be difficult to characterize in a quantitative way. In recent years, a number of novel topological metrics for microstructures have been proposed, which measure essential connectivity information and are based on techniques from algebraic topology. Such metrics are inherently computable using computational homology, provided the microstructures are discretized using a thresholding process. However, while in many cases the thresholding is straightforward, noise and measurement errors can lead to misleading metric values. In such situations, persistence landscapes have been proposed as a natural topology metric. Common to all of these approaches is the enormous data reduction, which passes from complicated patterns to discrete information. It is therefore natural to wonder what type of information is actually retained by the topology. In the present paper, we demonstrate that averaged persistence landscapes can be used to recover central system information in the Cahn-Hilliard theory of phase separation. More precisely, we show that topological information of evolving microstructures alone suffices to accurately detect both concentration information and the actual decomposition stage of a data snapshot. Considering that persistent homology only measures discrete connectivity information, regardless of the size of the topological features, these results indicate that the system parameters in a phase separation process affect the topology considerably more than anticipated. We believe that the methods discussed in this paper could provide a valuable tool for relating experimental data to model simulations.

  4. Microstructure design for fast oxygen conduction

    DOE PAGES

    Aidhy, Dilpuneet S.; Weber, William J.

    2015-11-11

    Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations aremore » other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.« less

  5. Analysis of in-service failures and advances in microstructural characterization. Microstructural science Volume 26

    SciTech Connect

    Abramovici, E.; Northwood, D.O.; Shehata, M.T.; Wylie, J.

    1999-01-01

    The contents include Analysis of In-Service Failures (tutorials, transportation industry, corrosion and materials degradation, electronic and advanced materials); 1998 Sorby Award Lecture by Kay Geels, Struers A/S (Metallographic Preparation from Sorby to the Present); Advances in Microstructural Characterization (characterization techniques using high resolution and focused ion beam, characterization of microstructural clustering and correlation with performance); Advanced Applications (advanced alloys and intermetallic compounds, plasma spray coatings and other surface coatings, corrosion, and materials degradation).

  6. In-Situ Roughening of Polymeric Microstructures

    PubMed Central

    Shadpour, Hamed; Allbritton, Nancy L.

    2010-01-01

    A method to perform in-situ roughening of arrays of microstructures weakly adherent to an underlying substrate was presented. SU8, 1002F, and polydimethylsiloxane (PDMS) microstructures were roughened by polishing with a particle slurry. The roughness and the percentage of dislodged or damaged microstructures was evaluated as a function of the roughening time for both SU8 and 1002F structures. A maximal RMS roughness of 7-18 nm for the surfaces was obtained within 15 to 30 s of polishing with the slurry. This represented a 4-9 fold increase in surface roughness relative to that of the native surface. Less than 0.8% of the microstructures on the array were removed or damage after 5 min of polishing. Native and roughened arrays were assessed for their ability to support fibronectin adhesion and cell attachment and growth. The quantity of adherent fibronectin was increased on roughened arrays by two-fold over that on native arrays. Cell adhesion to the roughened surfaces was also increased compared to native surfaces. Surface roughening with the particle slurry also improved the ability to stamp molecules onto the substrate during microcontact printing. Roughening both the PDMS stamp and substrate resulted in up to a 20-fold improvement in the transfer of BSA-Alexa Fluor 647 from the stamp to the substrate. Thus roughening of micron-scale surfaces with a particle slurry increased the adhesion of biomolecules as well as cells to microstructures with little to no damage to large scale arrays of the structures. PMID:20423129

  7. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells

    NASA Technical Reports Server (NTRS)

    Koh, Won-Gun; Revzin, Alexander; Pishko, Michael V.

    2002-01-01

    We present an easy and effective method for the encapsulation of cells inside PEG-based hydrogel microstructures fabricated using photolithography. High-density arrays of three-dimensional microstructures were created on substrates using this method. Mammalian cells were encapsulated in cylindrical hydrogel microstructures of 600 and 50 micrometers in diameter or in cubic hydrogel structures in microfluidic channels. Reducing lateral dimension of the individual hydrogel microstructure to 50 micrometers allowed us to isolate 1-3 cells per microstructure. Viability assays demonstrated that cells remained viable inside these hydrogels after encapsulation for up to 7 days.

  8. Multiple wavelength photolithography for preparing multilayer microstructures

    SciTech Connect

    Dentinger, Paul Michael; Krafcik, Karen Lee

    2003-06-24

    The invention relates to a multilayer microstructure and a method for preparing thereof. The method involves first applying a first photodefinable composition having a first exposure wavelength on a substrate to form a first polymeric layer. A portion of the first photodefinable composition is then exposed to electromagnetic radiation of the first exposure wavelength to form a first pattern in the first polymeric layer. After exposing the first polymeric layer, a second photodefinable composition having a second exposure wavelength is applied on the first polymeric layer to form a second polymeric layer. A portion of the second photodefinable composition is then exposed to electromagnetic radiation of the second exposure wavelength to form a second pattern in the second polymeric layer. In addition, a portion of each layer is removed according to the patterns to form a multilayer microstructure having a cavity having a shape that corresponds to the portions removed.

  9. Microstructure anisotropy in polyolefin flexible foams

    NASA Astrophysics Data System (ADS)

    Antunes, M.; Arencón, D.; Realinho, V.; Velasco, J. I.

    2009-09-01

    The use of polyolefin flexible foams with typical thicknesses between 1 and 3 mm produced by a physical foaming extrusion process is nowadays quite widespread in the packaging sector. Their high flexibility and closed-cell structure allows them to show good energy absorption properties under low loading conditions. Although the compressive response of these materials is well known, the inner microstructure developed during processing induce a high anisotropy that is responsible for their direction-dependent tensile and fracture behaviours. In this work, two different polyolefin-based foams, with densities ranging from 20 to 45 kg/m3, were studied. The induced microstructure anisotropy was characterized by micro-Raman. With this technique, the relative orientations of both crystalline and amorphous phases in the foam's base polymer could be determined and thus related to their mechanical properties measured in the different directions.

  10. Modeling of microstructural effects on electromigration failure

    SciTech Connect

    Ceric, H.; Orio, R. L. de; Zisser, W.; Selberherr, S.

    2014-06-19

    Current electromigration models used for simulation and analysis of interconnect reliability lack the appropriate description of metal microstructure and consequently have a very limited predictive capability. Therefore, the main objective of our work was obtaining more sophisticated electromigration tools. The problem is addressed through a combination of different levels of atomistic modeling and already available, continuum level macroscopic models. A novel method for an ab initio calculation of the effective valence for electromigration is presented and its application on the analysis of EM behavior is demonstrated. Additionally, a simple analytical model for the early electromigration lifetime is obtained. We have shown that its application provides a reasonable estimate for the early electromigration failures including the effect of microstructure. A simulation study is also applied on electromigration failure in tin solder bumps, where it contributed the understanding of the role of tin crystal anisotropy in the degradation mechanism of solder bumps.

  11. Baseline Microstructural Characterization of Outer 3013 Containers

    SciTech Connect

    Zapp, Phillip E.; Dunn, Kerry A

    2005-07-31

    Three DOE Standard 3013 outer storage containers were examined to characterize the microstructure of the type 316L stainless steel material of construction. Two of the containers were closure-welded yielding production-quality outer 3013 containers; the third examined container was not closed. Optical metallography and Knoop microhardness measurements were performed to establish a baseline characterization that will support future destructive examinations of 3013 outer containers in the storage inventory. Metallography revealed the microstructural features typical of this austenitic stainless steel as it is formed and welded. The grains were equiaxed with evident annealing twins. Flow lines were prominent in the forming directions of the cylindrical body and flat lids and bottom caps. No adverse indications were seen. Microhardness values, although widely varying, were consistent with annealed austenitic stainless steel. The data gathered as part of this characterization will be used as a baseline for the destructive examination of 3013 containers removed from the storage inventory.

  12. Metallographic techniques and microstructures: uranium alloys

    SciTech Connect

    Romig, A.D. Jr.

    1982-08-01

    The techniques used for the metallographic analysis of uranium and its alloys are discussed. Sample preparation and characterization procedures are described for: optical metallography, scanning electron microscopy, electron microprobe analysis, transmission electron microscopy, and scanning transmission electron microscopy. A brief overview of electron optics, electron/sample interactions, signal detectors, and x-ray microanalysis is presented. Typical uranium alloy microstructures observed by these techniques are presented and discussed. The microstructures examined include those produced by the diffusional decomposition of ..gamma..:U-0.75Ti and ..gamma..:U-6Nb, the martensitic decomposition of U-2Mo, U-6Nb, U-0.75Ti and Mulberry, and the aging of quenched U-2Mo.

  13. Microstructural aspects of spallation in copper

    SciTech Connect

    Zurek, A.K.; Frantz, C.E.

    1987-01-01

    Compressive shock waves result in a specific kind of fracture called a spall. The metallurgical aspects of copper spalling and crack or void initiation sites, the effects of grain size and substructure, and the micromechanical aspects of growth and coalescence have not received the detailed attention that other deformation phenomena have received. The present work was stimulated by the observation that under identical shock loading conditions the spall strength of copper can vary between 0.4 to 2.4 GPa - an unusually wide range - merely as a result of changes in its microstructure. Examples of fracture morphology are presented and possible micromechanics of fracture resulting from different microstructures are discussed. Finally, the implications of these observations on modeling are presented.

  14. Temperature history and microstructure of alumina

    SciTech Connect

    Lin, Jiang Tsair.

    1992-05-01

    A simple process for the attainment of fully dense and improved microstructure for Al{sub 2}O{sub 3} ceramics has been developed. Pure, narrow size distribution, submicron powder is used. Homogenization heat treatment of Al{sub 2}O{sub 3} powder compacts at 800{degree}C for 50 hours produces more uniform pore structure and higher green strength. Pore size distribution becomes narrower. Near fully dense, fine-grained (< 1.2{mu}m) and uniform grain size-distribution, undoped Al{sub 2}O{sub 3} ceramics can be produced using a high quality powder, a high-pressure cold isostatic forming method, and a two-step sintering technique. Improvements in the microstructure of Al{sub 2}O{sub 3} ceramics homogenized at 800{degree}C/50 h include a smaller pore size and a more uniform pore size distribution. Prevention of differential densification in the early stages and delay of pore channel closure to the later stages of sintering are believed to be the primary mechanisms for the microstructure improvement in two-step sintering. Two-step sintering is an alternate way to improve the microstructure of Al{sub 2}O{sub 3} ceramics compared to fast firing or MgO doping. When a homogenization heat treatment and the fast firing are combined, the final density is higher than from fast firing alone. However, the two-step sintering technique is simple and there is no size limit. Generalization of two-step sintering to more systems is needed. For 250 ppM MgO-doped Al{sub 2}O{sub 3} ceramics, homogenization of powder compacts at 800{degree}C for 50 hours produces 0.80{mu}m. This improvement is explained by the distribution of MgO becoming more uniform during the homogenization heat treatment, which enhances the effectiveness of MgO doping.

  15. Self-modulational formation of pulsar microstructures

    NASA Technical Reports Server (NTRS)

    Chian, A. C.-L.; Kennel, C. F.

    1987-01-01

    A nonlinear plasma theory for self modulation of pulsar radio pulses is discussed. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron positron plasma. The nonlinearities arising from wave intensity induced particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary waveforms may account for the formation of pulsar microstructures.

  16. FAME: Software for analysing rock microstructures

    NASA Astrophysics Data System (ADS)

    Hammes, Daniel M.; Peternell, Mark

    2016-05-01

    Determination of rock microstructures leads to a better understanding of the formation and deformation of polycrystalline solids. Here, we present FAME (Fabric Analyser based Microstructure Evaluation), an easy-to-use MATLAB®-based software for processing datasets recorded by an automated fabric analyser microscope. FAME is provided as a MATLAB®-independent Windows® executable with an intuitive graphical user interface. Raw data from the fabric analyser microscope can be automatically loaded, filtered and cropped before analysis. Accurate and efficient rock microstructure analysis is based on an advanced user-controlled grain labelling algorithm. The preview and testing environments simplify the determination of appropriate analysis parameters. Various statistic and plotting tools allow a graphical visualisation of the results such as grain size, shape, c-axis orientation and misorientation. The FAME2elle algorithm exports fabric analyser data to an elle (modelling software)-supported format. FAME supports batch processing for multiple thin section analysis or large datasets that are generated for example during 2D in-situ deformation experiments. The use and versatility of FAME is demonstrated on quartz and deuterium ice samples.

  17. Modelling the microstructure of thermal barrier coatings

    SciTech Connect

    Cirolini, S.; Marchese, M.; Jacucci, G.; Harding, J.H.; Mulheran, P.A.

    1994-12-31

    Thermal barrier coatings produced by plasma spraying have a characteristic microstructure of lamellae, pores and cracks. The lamellae are produced by the splashing of particles onto the substrate. As the coating grows, the lamellae pile on top of each other, producing an interlocking structure. In most cases the growth is rapid and chaotic. The result is a microstructure characterized by pores and cracks. The authors present an improved model for the deposition process of thermal barrier coatings. The task of modeling the coating growth is split into two parts: first the authors consider a description of the particle on arrival at the film, based on the available theoretical, numerical and experimental findings. Second they define and discuss a set of physically-based rules for combining these events to obtain the film. The splats run along the surface and are permitted to curl up (producing pores) or interlock. The computer model uses a mesh to combine these processes and build the coating. They discuss the use of the proposed model in predicting microstructures and hence in correlating the properties of these coatings with the parameters of the process used to make them.

  18. From Microstructures to Predict Properties of Materials

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Gang

    2010-03-01

    Understanding the precise and fundamental manner in which materials structures (nanostructures or microstructures) and their evolution influences properties and service lifetimes of advanced materials profoundly impacts material design and today materials design plays an increasingly important rôle in many engineering applications. Linking structures to properties and predicting properties of materials is fundamental step for materials design. First, a framework of applications of multiscale modeling to property prediction of advanced materials will be briefly presented. As an example, a methodology will be shown to link micro-scale to the continuum scale, integrating microstructure modeling with the large Thermo-Calc^ database. This paradigm was successfully applied to the case of Fe-12Ni-6Mn maraging steel. Next, methodology for integrating first-principle calculation into simulations of microstructure evolution will be reviewed. Our methods are sufficiently reliable to permit control and fabrication of quantum-dots structures, nanocrystals, and particle-reinforced nanocomposites, as well as assist in the predictive behavior of macro-scale colloids, aerosols, and other soft matter systems.

  19. Micro-EDM for silicon microstructure fabrication

    NASA Astrophysics Data System (ADS)

    Song, Xiaozhong; Reynaerts, Dominiek; Meeusen, Wim; Van Brussel, Hendrik

    1999-03-01

    Currently, most silicon microstructures used in microstructures are produced by photolithographic methods. The reason for this is the well-developed etching technology, used in microelectronics, that has been transferred to the microsystem domain. But since the making of an arbitrary shape or angle on silicon mainly depends on the crystal orientation, some severe limits exist in the production of 3D structures. Electro-discharge machining (EDM) is basically a thermal process. During the EDM process material is removed by electric sparking. It is therefore completely different from etching. In this work, micro-EDM is introduce as a potential approach for solving the above mentioned drawbacks. First, this work presents several testing experiments with different process parameters to investigate the influence of the micro-EDM process on the silicon structure. Main emphasis is put on the surface roughness and on avoiding microcracks generated by the sparking process. It is found that microstructures with a sufficiently low surface roughness and with small microcracks can be produced. The remainder of the work concentrates on making small beam structures, which is a common structure in many microsensor designs. It is found that for a wafer thickness of 650 micrometers , the thinnest beam that can be produced is about 30 micrometers wide. This means that micro-EDM can offer an aspect ratio of 20 in combination with a god dimensional control.

  20. Microstructural studies of advanced austenitic steels

    SciTech Connect

    Todd, J. A.; Ren, Jyh-Ching

    1989-11-15

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  1. Optical modeling of laser ablated microstructures

    NASA Astrophysics Data System (ADS)

    Gower, M. C.; Davies, E.; Holmes, A. S.

    2012-11-01

    From only an a priori knowledge of the optical parameters of a laser beam, the delivery system together with a substrate's material properties, a ray-tracing model capable of predicting the 3-D topology of micro/nanostructures machined by pulsed laser ablation has been developed. The model includes secondary illumination effects produced by the microstructure created by successive pulses (wall reflections, refraction, wave guiding, shadowing, etc.) as well as the complete optical properties of the beam delivery system. We have used material ablation by pulsed excimer lasers and associated beam delivery systems to demonstrate some of the capabilities of the model. Good agreement is obtained between computations and experimental results in terms of the predicted ablation depth per pulse and the wall taper angle of channels and holes. The model can predict ablated profiles of holes and indicate the most efficient drilling strategy in terms of material removal rates. The model also shows diffraction effects are not required to explain the tapering vertical walls observed when ablating microstructures. Finally, the model has been used to demonstrate aberrations in an optical imaging system limiting the creation of submicron features in an ablated microstructure. Provided photons are absorbed linearly in a substrate according to Beer's law with negligible thermal diffusion effects, the model is equally applicable to using other types of pulsed laser sources and systems with imaged or focused beams.

  2. Fouling in microstructured devices: a review.

    PubMed

    Schoenitz, M; Grundemann, L; Augustin, W; Scholl, S

    2015-05-14

    Microstructured devices are widely used for manufacturing products that benefit from process intensification, with pharmaceutical products or specialties of the chemical industry being prime examples. These devices are ideally used for processing pure fluids. Where particulate or non-pure flows are involved, processes are treated with utmost caution since related fouling and blocking issues present the greatest barrier to operating microstructured devices effectively. Micro process engineering is a relatively new research field and there is limited understanding of fouling in these dimensions and its underlying processes and phenomena. A comprehensive review on fouling in microstructured devices would be helpful in this regard, but is currently lacking. This paper attempts to review recent developments of fouling in micro dimensions for all fouling categories (crystallization, particulate, chemical reaction, corrosion and biological growth fouling) and the sequential events involved (initiation, transport, attachment, removal and aging). Compared to fouling in macro dimensions, an additional sixth category is suggested: clogging by gas bubbles. Most of the reviewed papers present very specific fouling investigations making it difficult to derive general rules and parameter dependencies, and comparative or critical considerations of the studies were difficult. We therefore used a statistical approach to evaluate the research in the field of fouling in microchannels.

  3. Assessment of Bone Microstructural Changes by NMR

    NASA Astrophysics Data System (ADS)

    Ni, Qingwen; Wang, Xiaodu

    2008-03-01

    Previous studies have shown that age related increases in bone porosity without significant changes in bone mineral density (BMD) (without bone microstructural information) result in a decrease in bone strength. Bone fracture toughness is also significantly correlated to changes in porosity, microarchitecture, collagen integrity, microdamage, and water distribution, all of which are measures of bone quality. Unfortunately, current technology does not allow the non-destructive and non-invasive detection of bone water distribution or other measures of bone quality including microporosity. On the other hand, Nuclear Magnetic Resonance (NMR) proton spin-spin (T2) relaxation time measurements and computational analytical method have been used to determine microstructural characteristics of various types of fluid filled porous materials. The study in here is to demonstrate that non-destructive and non-invasive NMR proton spin-spin (T2) relaxation techniques has been developed and applied to quantify the porosity, pore size distribution and water distribution in human cortical bone. This new bone microstructural information can then be used as descriptions of bone quality and, along or in combination with existing method (BMD) to more accurately assess bone fracture risk, and the results could help doctors and researchers to detect osteoporosis and other conditions related to weak bones in persons.

  4. Microcontact printing of proteins inside microstructures.

    PubMed

    Foley, Jennifer; Schmid, Heinz; Stutz, Richard; Delamarche, Emmanuel

    2005-11-22

    Microfluidic devices are well suited for the miniaturization of biological assays, in particular when only small volumes of samples and reagents are available, short time to results is desirable, and multiple analytes are to be detected. Microfluidic networks (MFNs), which fill by means of capillary forces, have already been used to detect important biological analytes with high sensitivity and in a combinatorial fashion. These MFNs were coated with Au, onto which a hydrophilic, protein-repellent monolayer of thiolated poly(ethyleneglycol) (HS-PEG) was self-assembled, and the binding sites for analytes were present on a poly(dimethylsiloxane) (PDMS) sealing cover. We report here a set of simple methods to extend previous work on MFNs by integrating binding sites for analytes inside the microstructures of MFNs using microcontact printing (muCP). First, fluorescently labeled antibodies (Abs) were microcontact-printed from stamps onto planar model surfaces such as glass, Si, Si/SiO2, Au, and Au derivatized with HS-PEG to investigate how much candidate materials for MFNs would quench the fluorescence of printed, labeled Abs. Au coated with HS-PEG led to a fluorescence signal that was approximately 65% weaker than that of glass but provided a convenient surface for printing Abs and for rendering the microstructures of the MFNs wettable. Then, proteins were inked from solution onto the surface of PDMS (Sylgard 184) stamps having continuous or discontinuous micropatterns or locally inked onto planar stamps to investigate how the aspect ratio (depth:width) of microstructures and the printing conditions affected the transfer of protein and the accuracy of the resulting patterns. By applying a controlled pressure to the back of the stamp, Abs were accurately microcontact-printed into the recessed regions of MFNs if the aspect ratio of the MFN microstructures was lower than approximately 1:6. Finally, the realization of a simple assay between Abs (used as antigens

  5. Microstructural and continuum evolution modeling of sintering.

    SciTech Connect

    Braginsky, Michael V.; Olevsky, Eugene A.; Johnson, D. Lynn; Tikare, Veena; Garino, Terry J.; Arguello, Jose Guadalupe, Jr.

    2003-12-01

    All ceramics and powder metals, including the ceramics components that Sandia uses in critical weapons components such as PZT voltage bars and current stacks, multi-layer ceramic MET's, ahmindmolybdenum & alumina cermets, and ZnO varistors, are manufactured by sintering. Sintering is a critical, possibly the most important, processing step during manufacturing of ceramics. The microstructural evolution, the macroscopic shrinkage, and shape distortions during sintering will control the engineering performance of the resulting ceramic component. Yet, modeling and prediction of sintering behavior is in its infancy, lagging far behind the other manufacturing models, such as powder synthesis and powder compaction models, and behind models that predict engineering properties and reliability. In this project, we developed a model that was capable of simulating microstructural evolution during sintering, providing constitutive equations for macroscale simulation of shrinkage and distortion during sintering. And we developed macroscale sintering simulation capability in JAS3D. The mesoscale model can simulate microstructural evolution in a complex powder compact of hundreds or even thousands of particles of arbitrary shape and size by 1. curvature-driven grain growth, 2. pore migration and coalescence by surface diffusion, 3. vacancy formation, grain boundary diffusion and annihilation. This model was validated by comparing predictions of the simulation to analytical predictions for simple geometries. The model was then used to simulate sintering in complex powder compacts. Sintering stress and materials viscous module were obtained from the simulations. These constitutive equations were then used by macroscopic simulations for simulating shrinkage and shape changes in FEM simulations. The continuum theory of sintering embodied in the constitutive description of Skorohod and Olevsky was combined with results from microstructure evolution simulations to model shrinkage and

  6. Microstructures and properties of aluminum die casting alloys

    SciTech Connect

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  7. Supersoft lithography: Candy-based fabrication of soft silicone microstructures

    PubMed Central

    Moraes, Christopher; Labuz, Joseph M.; Shao, Yue; Fu, Jianping; Takayama, Shuichi

    2015-01-01

    We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based ‘hard candy’ recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues. PMID:26245893

  8. Supersoft lithography: candy-based fabrication of soft silicone microstructures.

    PubMed

    Moraes, Christopher; Labuz, Joseph M; Shao, Yue; Fu, Jianping; Takayama, Shuichi

    2015-01-01

    We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based 'hard candy' recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues. PMID:26245893

  9. Supersoft lithography: candy-based fabrication of soft silicone microstructures.

    PubMed

    Moraes, Christopher; Labuz, Joseph M; Shao, Yue; Fu, Jianping; Takayama, Shuichi

    2015-01-01

    We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based 'hard candy' recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues.

  10. Influence of microstructure on the properties of resistance spot welds

    SciTech Connect

    Santella, M.L.; Babu, S.S.; Riemer, B.W.; Feng, Z.

    1998-11-01

    An integrated model approach was proposed for relating resistance welding parameters to weldment properties. A key element of the approach is microstructure modeling. It was demonstrated that existing process models and microstructure models can be used to determine the spatial distribution of microstructures and properties in resistance spot welds of a plain carbon steel. It was also shown by finite element analysis that the existence of microstructure gradients in the welds is expected to reduce their ability to support shear loads by about 50%.

  11. Microstructural influences on the mechanical properties of solder

    SciTech Connect

    Morris, J.W. Jr.; Goldstein, J.L.F.; Mei, Z.

    1993-04-01

    Intent of this book is to review analytic methods for predicting behavior of solder joints, based on continuum mechanics. The solder is treated as a continuous, homogeneous body, or composite of such bodies, whose mechanical behavior is uniform and governed by simple constitutive equations. The microstructure of a solder joint influences its mechanical properties in 3 ways: it governs deformation and failure; common solders deform inhomogeneously; and common solders are microstructurally unstable. The variety of microstructures often found in solder joints are briefly reviewed, and some of the ways are discussed in which the microstructure influences the common types of high-temperature mechanical behavior. 25 figs, 40 refs.

  12. Numerical Simulations of One-dimensional Microstructure Dynamics

    SciTech Connect

    Berezovski, M.; Berezovski, A.; Engelbrecht, J.

    2010-05-21

    Results of numerical simulations of one-dimensional wave propagation in microstructured solids are presented and compared with the corresponding results of wave propagation in given layered media. A linear microstructure model based on Mindlin theory is adopted and represented in the framework of the internal variable theory. Fully coupled systems of equations for macro-motion and microstructure evolution are rewritten in the form of conservation laws. A modification of wave propagation algorithm is used for numerical calculations. It is shown how the initial microstructure model can be improved in order to match the results obtained by both approaches.

  13. Microstructure Related Properties of Optical Thin Films.

    NASA Astrophysics Data System (ADS)

    Wharton, John James, Jr.

    Both the optical and physical properties of thin film optical interference coatings depend upon the microstructure of the deposited films. This microstructure is strongly columnar with voids between the columns. Computer simulations of the film growth process indicate that the two most important factors responsible for this columnar growth are a limited mobility of the condensing molecules and self-shadowing by molecules already deposited. During the vacuum deposition of thin films, the microstructure can be influenced by many parameters, such as substrate temperature and vacuum pressure. By controlling these parameters and introducing additional ones, thin film coatings can be improved. In this research, ultraviolet irradiation and ion bombardment were examined as additional parameters. Past studies have shown that post-deposition ultraviolet irradiation can be used to relieve stress and reduce absorption in the far ultraviolet of silicon dioxide films. Ion bombardment has been used to reduce stress, improve packing density, and increase resistance to moisture penetration. Three refractory oxide materials commonly used in thin film coatings were studied; they are silicon dioxide, titanium dioxide, and zirconium dioxide. Both single-layer films and narrowband filters made of these materials were examined. A 1000-watt mercury-xenon lamp was used to provide ultraviolet irradiation. An inverted magnetron ion source was used to produce argon and oxygen ions. Ultraviolet irradiation was found to reduce the absorption and slightly increase the index of refraction in zirconium oxide films. X-ray diffraction analysis revealed that ultraviolet irradiation caused titanium oxide films to become more amorphous; their absorption in the ultraviolet was slightly reduced. No changes were noted in film durability. Ion bombardment enhanced the tetragonal (lll) peak of zirconium oxide but increased the absorption of both zirconium oxide and titanium oxide films. The titanium oxide

  14. Microstructure Informed Tractography: Pitfalls and Open Challenges.

    PubMed

    Daducci, Alessandro; Dal Palú, Alessandro; Descoteaux, Maxime; Thiran, Jean-Philippe

    2016-01-01

    One of the major limitations of diffusion MRI tractography is that the fiber tracts recovered by existing algorithms are not truly quantitative. Local techniques for estimating more quantitative features of the tissue microstructure exist, but their combination with tractography has always been considered intractable. Recent advances in local and global modeling made it possible to fill this gap and a number of promising techniques for microstructure informed tractography have been suggested, opening new and exciting perspectives for the quantification of brain connectivity. The ease-of-use of the proposed solutions made it very attractive for researchers to include such advanced methods in their analyses; however, this apparent simplicity should not hide some critical open questions raised by the complexity of these very high-dimensional problems, otherwise some fundamental issues may be pushed into the background. The aim of this article is to raise awareness in the diffusion MRI community, notably researchers working on brain connectivity, about some potential pitfalls and modeling choices that make the interpretation of the outcomes from these novel techniques rather cumbersome. Through a series of experiments on synthetic and real data, we illustrate practical situations where erroneous and severely biased conclusions may be drawn about the connectivity if these pitfalls are overlooked, like the presence of partial/missing/duplicate fibers or the critical importance of the diffusion model adopted. Microstructure informed tractography is a young but very promising technology, and by acknowledging its current limitations as done in this paper, we hope our observations will trigger further research in this direction and new ideas for truly quantitative and biologically meaningful analyses of the connectivity.

  15. Third Generation of AHSS: Microstructure Design Concepts

    NASA Astrophysics Data System (ADS)

    Matlock, David K.; Speer, John G.

    In recent years there has been an increased emphasis on the development of new advanced high strength sheet steels (AHSS), particularly for automotive applications. Descriptive terminology has evolved to describe the “First Generation” of AHSS, i.e. steels that possess primarily ferrite-based microstructures, and the “Second Generation” of AHSS, i.e. austenitic steels with high manganese contents which include steels that are closely related to austenitic stainless steels. First generation AHSS have been referred to by a variety of names including dual phase (DP), transformation induced plasticity (TRIP), complex-phase (CP), and martensitic (MART). Second generation austenitic AHSS include twinninginduced plasticity (TWIP) steels, Al-added lightweight steels with induced plasticity (L-IP®), and shear band strengthened steels (SIP steels). Recently there has been increased interest in the development of the “Third Generation” of AHSS, i.e. steels with strength-ductility combinations significantly better than exhibited by the first generation AHSS but at a cost significantly less than required for second generation AHSS. Approaches to the development of third generation AHSS will require unique alloy/microstructure combinations to achieve the desired properties. Results from a recent composite modeling analysis have shown that the third generation of AHSS will include materials with complex microstructures consisting of a high strength phase (e.g. ultra-fine grained ferrite, martensite, or bainite) and significant amounts of a constituent with substantial ductility and work hardening (e.g. austenite). In this paper, design methodologies based on considerations of fundamental strengthening mechanisms are presented and evaluated to assess the potential for developing new materials. Several processing routes will be assessed, including the recently identified Quenching & Partitioning (Q&P) process developed in the authors’ own laboratory.

  16. Microstructural Characterization of Nodular Ductile Iron

    SciTech Connect

    Springer, H K

    2012-01-03

    The objective of this study is to quantify the graphite particle phase in nodular ductile iron (NDI). This study provides the basis for initializing microstructure in direct numerical simulations, as part of developing microstructure-fracture response models. The work presented here is a subset of a PhD dissertation on spall fracture in NDI. NDI is an ideal material for studying the influence of microstructure on ductile fracture because it contains a readily identifiable second-phase particle population, embedded in a ductile metallic matrix, which serves as primary void nucleation sites. Nucleated voids grow and coalesce under continued tensile loading, as part of the micromechanisms of ductile fracture, and lead to macroscopic failure. For this study, we used 2D optical microscopy and quantitative metallography relationships to characterize the volume fraction, size distribution, nearest-neighbor distance, and other higher-order metrics of the graphite particle phase. We found that the volume fraction was {Phi} = 0.115, the average particle diameter was d{sub avg} = 25.9 {mu}m, the Weibull shape and scaling parameters were {beta} = 1.8 and {eta} = 29.1 {mu}m, respectively, the (first) nearest neighbor distance was L{sub nn} = 32.4 {mu}m, the exponential coefficients for volume fraction fluctuations was A{sub {Phi}} = 1.89 and B{sub {Phi}} = -0.59, respectively. Based on reaching a coefficient-of-variation (COV) of 0.01, the representative volume element (RVE) size was determined to be 8.9L{sub nn} (288 {mu}m).

  17. Microstructure Informed Tractography: Pitfalls and Open Challenges

    PubMed Central

    Daducci, Alessandro; Dal Palú, Alessandro; Descoteaux, Maxime; Thiran, Jean-Philippe

    2016-01-01

    One of the major limitations of diffusion MRI tractography is that the fiber tracts recovered by existing algorithms are not truly quantitative. Local techniques for estimating more quantitative features of the tissue microstructure exist, but their combination with tractography has always been considered intractable. Recent advances in local and global modeling made it possible to fill this gap and a number of promising techniques for microstructure informed tractography have been suggested, opening new and exciting perspectives for the quantification of brain connectivity. The ease-of-use of the proposed solutions made it very attractive for researchers to include such advanced methods in their analyses; however, this apparent simplicity should not hide some critical open questions raised by the complexity of these very high-dimensional problems, otherwise some fundamental issues may be pushed into the background. The aim of this article is to raise awareness in the diffusion MRI community, notably researchers working on brain connectivity, about some potential pitfalls and modeling choices that make the interpretation of the outcomes from these novel techniques rather cumbersome. Through a series of experiments on synthetic and real data, we illustrate practical situations where erroneous and severely biased conclusions may be drawn about the connectivity if these pitfalls are overlooked, like the presence of partial/missing/duplicate fibers or the critical importance of the diffusion model adopted. Microstructure informed tractography is a young but very promising technology, and by acknowledging its current limitations as done in this paper, we hope our observations will trigger further research in this direction and new ideas for truly quantitative and biologically meaningful analyses of the connectivity. PMID:27375412

  18. Microstructurally Controlled Composites with Optimal Elastodynamic Properties

    NASA Astrophysics Data System (ADS)

    Sadeghi, Hossein

    Periodic composites (PCs) are artificial materials with specially designed microstructure to manage stress waves. The objective of this dissertation is to study various techniques for microstructural design of PCs for a desired elastodynamic response. A mixed variational formulation is studied for band structure calculation of PCs. Dynamic homogenization is studied for calculation of the frequency dependent effective properties of PCs. Optimization techniques are used together with mixed variational formulation and dynamic homogenization to make a computational platform for microstructural design of PCs. Several PCs are designed and fabricated, and various tests are performed for experimental verification. First, band-gap in one- and two-dimensional PCs is investigated experimentally. Mixed variational formulation is used to design samples with band-gaps at frequencies convenient to conduct experiment. Samples are fabricated and their transmission coefficient is measured. Experimental data are compared with theoretical results for evaluation of the band structure. Using constituent materials with temperature dependent material properties, it is also shown that band structure of PCs can be tuned by changing the ambient temperature. Furthermore, dynamic homogenization is used to design a one-dimensional PC for acoustic impedance matching. As a result, the reflection of stress waves at the interface of two impedance matched media becomes zero. Samples are fabricated and ultrasound tests are performed to measure the reflection coefficient for experimental verification. In addition, a one-dimensional PC with metamaterial response is designed to achieve a composite with both high stiffness-to-density ratio and high attenuation at low frequency regime. Samples are fabricated and the attenuation coefficient is measured for experimental verification. Moreover, optimal design of PCs for shock wave mitigation is investigated. A genetic algorithm is used to design the

  19. Microstructure and Mechanical Properties of Porous Mullite

    NASA Astrophysics Data System (ADS)

    Hsiung, Chwan-Hai Harold

    Mullite (3 Al2O3 : 2 SiO2) is a technologically important ceramic due to its thermal stability, corrosion resistance, and mechanical robustness. One variant, porous acicular mullite (ACM), has a unique needle-like microstructure and is the material platform for The Dow Chemical Company's diesel particulate filter AERIFY(TM). The investigation described herein focuses on the microstructure-mechanical property relationships in acicular mullites as well as those with traditional porous microstructures with the goal of illuminating the critical factors in determining their modulus, strength, and toughness. Mullites with traditional pore morphologies were made to serve as references via slipcasting of a kaolinite-alumina-starch slurry. The starch was burned out to leave behind a pore network, and the calcined body was then reaction-sintered at 1600C to form mullite. The samples had porosities of approximately 60%. Pore size and shape were altered by using different starch templates, and pore size was found to influence the stiffness and toughness. The ACM microstructure was varied along three parameters: total porosity, pore size, and needle size. Total porosity was found to dominate the mechanical behavior of ACM, while increases in needle and pore size increased the toughness at lower porosities. ACM was found to have much improved (˜130%) mechanical properties relative to its non-acicular counterpart at the same porosity. A second set of investigations studied the role of the intergranular glassy phase which wets the needle intersections of ACM. Removal of the glassy phase via an HF etch reduced the mechanical properties by ˜30%, highlighting the intergranular phase's importance to the enhanced mechanical properties of ACM. The composition of the glassy phase was altered by doping the ACM precursor with magnesium and neodymium. Magnesium doping resulted in ACM with greatly reduced fracture strength and toughness. Studies showed that the mechanical properties of the

  20. Microstructural examination of irradiated vanadium alloys

    SciTech Connect

    Gelles, D.S.; Chung, H.M.

    1997-04-01

    Microstructural examination results are reported for a V-5Cr-5Ti unirradiated control specimens of heat BL-63 following annealing at 1050{degrees}C, and V-4Cr-4Ti heat BL-47 irradiated in three conditions from the DHCE experiment: at 425{degrees}C to 31 dpa and 0.39 appm He/dpa, at 600{degrees}C to 18 dpa and 0.54 appm He/dpa and at 600{degrees}C to 18 dpa and 4.17 appm He/dpa.

  1. Microstructure of explosively compacted aluminum nitride ceramic

    SciTech Connect

    Gourdin, W.H.; Echer, C.J.; Cline, C.F.; Tanner, L.E.

    1981-05-01

    Observations are reported of the microstructure of aluminum nitride (A1N) ceramic produced by explosive consolidation of the powder. Similarities between the grain structure of the compact and the starting powders are striking. Grain growth does not occur during densification and the 0.1 ..mu.. particle size of the powder is retained, although considerable deformation is introduced into individual grains. Of particular interest is an intergranular phase which appears throughout the compact. Observations in the transmission electron microscope indicate that this phase is amorphous.The influence of this glassy intergranular phase on bonding is discussed. 5 figures.

  2. Microstructural characterization of terbium-doped ceria

    SciTech Connect

    Ye, F. . E-mail: fei.ye@nims.go.jp; Mori, Toshiyuki; Ou, D.R.; Zou Jin; Drennan, John

    2007-05-03

    The microstructures of Ce{sub 1-x}Tb {sub x}O{sub 2-{delta}} (0.10 {<=} x {<=} 0.50) sintered samples were studied systematically using transmission electron microscopy. The sintered samples consist of not only fluorite-structured matrix but also nano-sized precipitates. Correspondingly, diffuse scattering and extra reflections related to the precipitates were observed in the selected area diffraction patterns. The composition of the precipitates was studied quantitatively by electron energy-loss spectroscopy, indicating that the precipitates have higher Tb concentration than that of the matrix. Furthermore, Tb{sup 3+} and Ce{sup 3+} cations were observed to segregate in the precipitates.

  3. Dendritic microstructure in argon atomized superalloy powders

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Kumar, Mahundra

    1986-01-01

    The dendritic microstructure of atomized nickel base superalloy powders (Ni-20 pct Cr, NIMONIC-80A, ASTROALOY, and ZHS6-K) was studied. Prealloyed vacuum induction melted ingots were argon-atomized, the powders were cooled to room temperature, and various powder-size fractions were examined by optical metallography. Linear correlations were obtained for the powder size dependence of the secondary dendrite arm spacing, following the expected d-alpha (R) to the m power dependence on the particle size for all four superalloy compositions. However, the Ni-20 pct Cr alloy, which had much coarser arm spacing as compared to the other three alloys, had a much larger value of m.

  4. Designed microstructures in textured barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Hovis, David Brian

    It is a fundamental principle of materials science that the microstructure of a material defines its properties and ultimately its performance for a given application. A prime example of this can be found in the large conch shell Strombus gigas, which has an intricate microstructure extending across five distinct length scales. This microstructure gives extraordinary damage tolerance to the shell. The structure of Strombus gigas cannot be replicated in a modern engineering ceramic with any existing processing technique, so new processing techniques must be developed to apply this structure to a model material. Barium hexaferrite was chosen as a model material to create microstructures reminiscent of Strombus gigas and evaluate its structure-property relations. This work describes novel processing methods to produce textured barium hexaferrite with no coupling between the sample geometry and the texture direction. This technique, combining magnetic field-assisted gelcasting with templated grain growth, also allows multilayer samples to be fabricated with different texture directions in adjacent layers. The effects of adding either B2O3 or excess BaCO 3 on the densification and grain growth of barium hexaferrite was studied. The texture produced using this technique was assessed using orientation imaging microscopy (OIM) at Oak Ridge National Laboratory. These measurements showed peak textures as high as 60 MRD and sharp interfaces between layers cast with different texture directions. The effect of oxygen on the quality of gelcasting is also discussed, and it is shown that with proper mold design, it is possible to gelcast multiple layers with differing texture directions without delamination. Monolithic and multilayer samples were produced and tested in four point bending to measure the strength and work of fracture. Modulus measurements, made with the ultrasonic pulse-echo technique, show clear signs of microcracking in both the isotropic and textured samples

  5. Rheology and microstructure of filled polymer melts

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin John

    The states of particle dispersion in polymer nanocomposite melts are studied through rheological characterization of nanocomposite melt mechanical properties and small angle X-ray scattering measurement of the particle microstructure. The particle microstructure probed with scattering is related to bulk flow mechanics to determine the origin of slow dynamics in these complex dispersions: whether a gel or glass transition or a slowing down of dispersing phase dynamics. These studies were conducted to understand polymer mediated particle-particle interactions and potential particle-polymer phase separation. The phase behavior of the dispersion will be governed by enthalpic and entropic contributions. A variety of phases are expected: homogeneous fluid, phase separated, or non-equilibrium gel. The effects of dispersion control parameters, namely particle volume fraction, polymer molecular weight, and polymer-particle surface affinity, on the phase behavior of 44 nm silica dispersions are studied in low molecular weight polyethylene oxide (PEO), polyethylene oxide dimethylether (PEODME), and polytetrahydrofuran (PTHF). Scattering measurements of the particle second virial coefficient in PEO melts indicates repulsive particles by a value slightly greater than unity. In PEO nanocomposites, dispersion dynamics slow down witnessed by a plateau in the elastic modulus as the particle separation approaches the length scale of the polymer radius of gyration. As the polymer molecular weight is increased, the transition shifts to lower particle volume fractions. Below polymer entanglement, the slow dynamics mimics that of a colloidal glass by the appearance of two relaxation times in the viscous modulus that display power law scaling with volume fraction. Above entanglement, the slow dynamics is qualitatively different resembling the behavior of a gelled suspension yet lacking any sign of scattering from particle agglomerates. As polymer molecular weight is increased at a fixed

  6. Electrochemical microstructuring with short voltage pulses.

    PubMed

    Schuster, Rolf

    2007-01-01

    The application of short (nanosecond) voltage pulses between a tool electrode and a work piece immersed in an electrolyte solution allows the three-dimensional machining of electrochemically active materials with submicrometer resolution. The method is based on the finite charging time constant of the double-layer capacitance, which varies approximately linearly with the local separation between the electrode surfaces. Hence, the polarization of the electrodes during short pulses and subsequent electrochemical reactions are confined to regions where the electrodes are in sufficiently close proximity. This Minireview describes the principles behind electrochemical micro-structuring with short voltage pulses, and its current achievements and limitations. PMID:17111455

  7. 248nm silicon photoablation: Microstructuring basics

    SciTech Connect

    Poopalan, P.; Najamudin, S. H.; Wahab, Y.; Mazalan, M.

    2015-05-15

    248nm pulses from a KrF excimer laser was used to ablate a Si wafer in order to ascertain the laser pulse and energy effects for use as a microstructuring tool for MEMS fabrication. The laser pulses were varied between two different energy levels of 8mJ and 4mJ while the number of pulses for ablation was varied. The corresponding ablated depths were found to range between 11 µm and 49 µm, depending on the demagnified beam fluence.

  8. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology

  9. Fresh fruit: microstructure, texture, and quality

    NASA Astrophysics Data System (ADS)

    Wood, Delilah F.; Imam, Syed H.; Orts, William J.; Glenn, Gregory M.

    2009-05-01

    Fresh-cut produce has a huge following in today's supermarkets. The trend follows the need to decrease preparation time as well as the desire to follow the current health guidelines for consumption of more whole "heart-healthy" foods. Additionally, consumers are able to enjoy a variety of fresh produce regardless of the local season because produce is now shipped world-wide. However, most fruits decompose rapidly once their natural packaging has been disrupted by cutting. In addition, some intact fruits have limited shelf-life which, in turn, limits shipping and storage. Therefore, a basic understanding of how produce microstructure relates to texture and how microstructure changes as quality deteriorates is needed to ensure the best quality in the both the fresh-cut and the fresh produce markets. Similarities between different types of produce include desiccation intolerance which produces wrinkling of the outer layers, cracking of the cuticle and increased susceptibility to pathogen invasion. Specific examples of fresh produce and their corresponding ripening and storage issues, and degradation are shown in scanning electron micrographs.

  10. Inflammatory response to nano- and microstructured hydroxyapatite.

    PubMed

    Mestres, Gemma; Espanol, Montserrat; Xia, Wei; Persson, Cecilia; Ginebra, Maria-Pau; Ott, Marjam Karlsson

    2015-01-01

    The proliferation and activation of leukocytes upon contact with a biomaterial play a crucial role in the degree of inflammatory response, which may then determine the clinical failure or success of an implanted biomaterial. The aim of this study was to evaluate whether nano- and microstructured biomimetic hydroxyapatite substrates can influence the growth and activation of macrophage-like cells. Hydroxyapatite substrates with different crystal morphologies consisting of an entangled network of plate-like and needle-like crystals were evaluated. Macrophage proliferation was evaluated on the material surface (direct contact) and also in extracts i.e. media modified by the material (indirect contact). Additionally, the effect of supplementing the extracts with calcium ions and/or proteins was investigated. Macrophage activation on the substrates was evaluated by quantifying the release of reactive oxygen species and by morphological observations. The results showed that differences in the substrate's microstructure play a major role in the activation of macrophages as there was a higher release of reactive oxygen species after culturing the macrophages on plate-like crystals substrates compared to the almost non-existent release on needle-like substrates. However, the difference in macrophage proliferation was ascribed to different ionic exchanges and protein adsorption/retention from the substrates rather than to the texture of materials.

  11. Triple junction motion and grain microstructure evolution

    SciTech Connect

    Gottstein, G. . E-mail: gottstein@imm.rwth-aachen.de; Ma, Y.; Shvindlerman, L.S.

    2005-03-01

    The classical concepts of grain growth in polycrystals are based on the dominant role of grain boundaries. This is reflected by the well known von Neumann-Mullins relation. According to this approach triple junctions do not affect grain boundary motion, and their role in grain growth is reduced to maintaining the thermodynamically prescribed equilibrium angles at the lines where boundaries meet. In the current study the experimental data of triple junction mobility are considered with respect to the process of grain growth in 2D systems, in particular with regard to the controlling kinetics. When boundary kinetics prevails grain growth in a polycrystal complies with the von Neumann-Mullins relation. When grain growth is governed by the mobility of triple junctions the kinetics change, and the von Neumann-Mullins relation does not hold anymore. This is the more pronounced the smaller the triple junction mobility. We present a generalized theory of 2D grain growth including a limited triple junction mobility. In this concept the criterion {lambda} plays a central role. It reflects the ratio of boundary to triple junction mobility but is proportional to the grain size as well. The generalized von Neumann-Mullins relation can be expressed in terms of {lambda}. For small values of {lambda}, conspicuous changes of microstructure evolution during grain growth and of microstructural stability are predicted. The theoretical predictions are compared to results of computer simulations by a virtual vertex model.

  12. Stability Study of the RERTR Fuel Microstructure

    SciTech Connect

    Jian Gan; Dennis Keiser; Brandon Miller; Daniel Wachs

    2014-04-01

    The irradiation stability of the interaction phases at the interface of fuel and Al alloy matrix as well as the stability of the fission gas bubble superlattice is believed to be very important to the U-Mo fuel performance. In this paper the recent result from TEM characterization of Kr ion irradiated U-10Mo-5Zr alloy will be discussed. The focus will be on the phase stability of Mo2-Zr, a dominated second phase developed at the interface of U-10Mo and the Zr barrier in a monolithic fuel plate from fuel fabrication. The Kr ion irradiations were conducted at a temperature of 200 degrees C to an ion fluence of 2.0E+16 ions/cm2. To investigate the thermal stability of the fission gas bubble superlattice, a key microstructural feature in both irradiated dispersion U-7Mo fuel and monolithic U-10Mo fuel, a FIB-TEM sample of the irradiated U-10Mo fuel (3.53E+21 fission/cm3) was used for a TEM in-situ heating experiment. The preliminary result showed extraordinary thermal stability of the fission gas bubble superlattice. The implication of the TEM observation from these two experiments on the fuel microstructural evolution under irradiation will be discussed.

  13. Wafer-level microstructuring of glassy carbon

    NASA Astrophysics Data System (ADS)

    Hans, Loïc. E.; Prater, Karin; Kilchoer, Cédric; Scharf, Toralf; Herzig, Hans Peter; Hermerschmidt, Andreas

    2014-03-01

    Glassy carbon is used nowadays for a variety of applications because of its mechanical strength, thermal stability and non-sticking adhesion properties. One application is glass molding that allows to realize high resolution diffractive optical elements on large areas and at affordable price appropriate for mass production. We study glassy carbon microstructuring for future precision compression molding of low and high glass-transition temperature. For applications in optics the uniformity, surface roughness, edge definition and lateral resolution are very important parameters for a stamp and the final product. We study different methods of microstructuring of glassy carbon by etching and milling. Reactive ion etching with different protection layers such as photoresists, aluminium and titanium hard masks have been performed and will be compare with Ion beam etching. We comment on the quality of the structure definition and give process details as well as drawbacks for the different methods. In our fabrications we were able to realize optically flat diffractive structures with slope angles of 80° at typical feature sizes of 5 micron and 700 nm depth qualified for high precision glass molding.

  14. Microstructure and mechanical properties of sheep horn.

    PubMed

    Zhu, Bing; Zhang, Ming; Zhao, Jian

    2016-07-01

    The sheep horn presents outstanding mechanical properties of impact resistance and energy absorption, which suits the need of the vehicle bumper design, but the mechanism behind this phenomenon is less investigated. The microstructure and mechanical properties of the sheep horn of Small Tailed Han Sheep (Ovis aries) living in northeast China were investigated in this article. The effect of sampling position and orientation of the sheep horn sheath on mechanical properties were researched by tensile and compression tests. Meanwhile, the surface morphology and microstructure of the sheep horn were observed using scanning electron microscopy (SEM). The formation mechanism of the mechanical properties of the sheep horn was investigated by biological coupling analysis. The analytical results indicated that the outstanding mechanical properties of the sheep horn are determined by configuration, structure, surface morphology and material coupling elements. These biological coupling elements make the sheep horn possess super characteristics of crashworthiness and energy absorption through the internal coupling mechanism. We suppose that these findings would make a difference in vehicle bumper design. Microsc. Res. Tech. 79:664-674, 2016. © 2016 Wiley Periodicals, Inc.

  15. Microstructural analysis of Iberian expanded clay aggregates.

    PubMed

    Bogas, J Alexandre; Mauricio, António; Pereira, M F C

    2012-10-01

    This article presents a detailed study of the microstructure of Iberian expanded clay lightweight aggregates (LWA). Other than more commonly used mercury porosimetry (MP) and water absorption methods, the experimental study involves optical microscopy, scanning electron microscopy (SEM), and microtomography (μ-CT). Pore connectivity and how it is deployed are shown to some degree, and the pore size spectrum is estimated. LWA are in general characterized by a dense outer shell up to 200 μm thick, encasing an inner cellular structure of 10-100 times bigger pore size. Aggregate pore sizes may span from some hundreds of nanometers up to over 1 mm, though the range of 1-25 μm is more typical. A noteworthy fraction of these pores is closed, and they are mainly up to 1 μm. It is also shown that macropore spatial arrangement is affected by the manufacturing process. A step forward is given to understanding how the outer shell and the inner pore network influence the mechanical and physical LWA properties, particularly the density and water absorption. The joint consideration of μ-CT and SEM seems to be the most appropriate methodology to study LWA microstructure. MP analysis is likely to distort LWA pore spectrum assessment. PMID:23031601

  16. Plasma etching a ceramic composite. [evaluating microstructure

    NASA Technical Reports Server (NTRS)

    Hull, David R.; Leonhardt, Todd A.; Sanders, William A.

    1992-01-01

    Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiC(sub W)) in a matrix of silicon nitride (Si3N4), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si3N4 grain size by removing the glass phase. However, the latter obscures the porosity. Neither technique allows the SiC(sub W) to be distinguished from the Si3N4. Plasma etching with CF4 + 4 percent O2 selectively attacks the Si3N4 grains, leaving SiC(sub W) and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si3N4, allowing Si3N4 grains to be distinguished from SiC(sub W) by back scattered electron imaging.

  17. Microstructure Evolution of a Multifunctional Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Tian, Yu Xing; Hao, Yu Lin

    2016-06-01

    To optimize both mechanical and functional properties of multifunctional titanium alloys via grain refinement, an example of such alloys termed as Ti2448 is adopted to investigate its microstructure evolution and strain rate sensitivity by compression in the single β-phase field. The results show that flow stress and strain rate follow a bilinear relation, which is in sharp contrast with other metallic materials exhibiting a monotonic linearity. Below the critical strain of 1 s-1, the alloy has a normal strain rate sensitivity factor of 0.265. Above the critical value, its hardening rate is ultra-low with a factor of 0.03. Inspite of ultra-low hardening, the alloy is plastic stable under the tested conditions. With the aid of electron back-scattering diffraction and transmission electron microscopy analyses, microstructure evolution via several mechanisms such as dynamic recovery and recrystallization is evaluated by quantitative measurements of grain misorientation and its distribution, sub-grain formation, and localized grain refinement. These results are helpful to obtain the homogenous ultrafine-grained alloy by multi-step thermo-mechanical processing.

  18. Osteoporotic bone microstructure by collagenase etching.

    PubMed Central

    Mackie, I G; Green, M; Clarke, H; Isaac, D H

    1989-01-01

    Collagenase etching has been used to show the microstructure of bone from patients suffering from primary osteoporosis. Both polished and unpolished surfaces of trabecular bone from femoral heads were treated with collagenase solution before study in the scanning electron microscope. The polished surfaces show the mineral component of this bone as small rounded units approximately 10-20 nm across, which aggregate to form a continuous phase of contiguous spheroidal particles approximately 100 nm across. Lamellations are clearly seen to be due to the removal of collagen fibres up to approximately 200 nm across, fibres in adjacent lamellae being arranged approximately perpendicular to each other. The unpolished surfaces also show small rounded units, which aggregate into rods of mineral approximately 100 nm across. Although these rods form a connected system, they are loosely packed, compatible with their being interspersed with the collagen fibres in vivo. This model for the detailed microstructure of bone is consistent with specimens from a number of other sources and shows no features unique to osteoporosis. Images PMID:2545170

  19. Microstructures, percolation thresholds, and rock physical properties

    NASA Astrophysics Data System (ADS)

    Guéguen, Y.; Chelidze, T.; Le Ravalec, M.

    1997-09-01

    The physical properties (transport properties and mechanical properties) of porous/cracked rocks are mainly functions of their microstructure. In this connection the problem of critical (threshold) porosity for transport, elasticity and mechanical strength is especially important. Two dominant mathematical formalisms — effective medium theory (EMT) and percolation theory — pretend to give answers to this problem. Some of the EMT models do not predict any threshold (differential effective medium). Other EMT models (self-consistent models) do predict thresholds, but it is shown that these thresholds are fictitious and result from an extension of a theory beyond its limit of validity. The failure of EMT methods at high pores/crack concentrations is the result of clustering effects. The appropriate formalism to correctly describe the phenomenon of clustering of pores and cracks and the behaviour of a system close to its critical porosity is percolation theory. Percolation thresholds can be predicted in that case from classical site or bond percolation on regular or random lattices. The threshold values depend on the density and average size of pores/cracks so that porosity is not sufficient in general to characterize the threshold for a specific physical property. The general term 'critical porosity' should thus be used with caution and it is preferable to specify which property is concerned and what kind of microstructure is present. This term can be more safely used for a population of rocks which have an identical average shape of pores/cracks and for a given physical property.

  20. Microstructure and mechanical properties of sheep horn.

    PubMed

    Zhu, Bing; Zhang, Ming; Zhao, Jian

    2016-07-01

    The sheep horn presents outstanding mechanical properties of impact resistance and energy absorption, which suits the need of the vehicle bumper design, but the mechanism behind this phenomenon is less investigated. The microstructure and mechanical properties of the sheep horn of Small Tailed Han Sheep (Ovis aries) living in northeast China were investigated in this article. The effect of sampling position and orientation of the sheep horn sheath on mechanical properties were researched by tensile and compression tests. Meanwhile, the surface morphology and microstructure of the sheep horn were observed using scanning electron microscopy (SEM). The formation mechanism of the mechanical properties of the sheep horn was investigated by biological coupling analysis. The analytical results indicated that the outstanding mechanical properties of the sheep horn are determined by configuration, structure, surface morphology and material coupling elements. These biological coupling elements make the sheep horn possess super characteristics of crashworthiness and energy absorption through the internal coupling mechanism. We suppose that these findings would make a difference in vehicle bumper design. Microsc. Res. Tech. 79:664-674, 2016. © 2016 Wiley Periodicals, Inc. PMID:27184115

  1. Neutral color semitransparent microstructured perovskite solar cells.

    PubMed

    Eperon, Giles E; Burlakov, Victor M; Goriely, Alain; Snaith, Henry J

    2014-01-28

    Neutral-colored semitransparent solar cells are commercially desired to integrate solar cells into the windows and cladding of buildings and automotive applications. Here, we report the use of morphological control of perovskite thin films to form semitransparent planar heterojunction solar cells with neutral color and comparatively high efficiencies. We take advantage of spontaneous dewetting to create microstructured arrays of perovskite "islands", on a length-scale small enough to appear continuous to the eye yet large enough to enable unattenuated transmission of light between the islands. The islands are thick enough to absorb most visible light, and the combination of completely absorbing and completely transparent regions results in neutral transmission of light. Using these films, we fabricate thin-film solar cells with respectable power conversion efficiencies. Remarkably, we find that such discontinuous films still have good rectification behavior and relatively high open-circuit voltages due to the inherent rectification between the n- and p-type charge collection layers. Furthermore, we demonstrate the ease of "color-tinting" such microstructured perovksite solar cells with no reduction in performance, by incorporation of a dye within the hole transport medium.

  2. Autonomous patterning of cells on microstructured fine particles.

    PubMed

    Takeda, Iwori; Kawanabe, Masato; Kaneko, Arata

    2015-05-01

    Regularly patterned cells can clarify cellular function and are required in some biochip applications. This study examines cell patterning along microstructures and the effect of microstructural geometry on selective cellular adhesion. Particles can be autonomously assembled on a soda-lime glass substrate that is chemically patterned by immersion in a suspension of fine particles. By adopting various sizes of fine particles, we can control the geometry of the microstructure. Cells adhere more readily to microstructured fine particles than to flat glass substrate. Silica particles hexagonally packed in 5-40 μm line and space microstructures provide an effective cell scaffold on the glass substrate. Cultured cells tend to attach and proliferate along the microstructured region while avoiding the flat region. The difference in cell adhesion is attributed to their geometries, as both of the silica particles and soda-lime glass are hydrophilic related with cell adhesiveness. After cell seeding, cells adhered to the flat region migrated toward the microstructured region. For most of the cells to assemble on the scaffold, the scaffolding microstructures must be spaced by at most 65 μm.

  3. Microstructural evolution of eutectic Au-Sn solder joints

    SciTech Connect

    Song, Ho Geon

    2002-05-31

    Current trends toward miniaturization and the use of lead(Pb)-free solder in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability.

  4. Using prismatic microstructured films for image blending in OLEDS

    DOEpatents

    Haenichen, Lukas; Pschenitzka, Florian

    2009-09-08

    An apparatus such as a light source is disclosed which has an OLED device and a microstructured film disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The microstructured film contains features which diffuse light emitted by said OLED device and increase the luminance of the device.

  5. Essays on Market Microstructure, Behavioral Finance, and Asset Management

    ERIC Educational Resources Information Center

    Jochec, Marek

    2009-01-01

    This is a study on various aspects of market microstructure, behavioral finance and asset management. In the first chapter we put the PIN variable (Probability of Information-based trading) to test. The PIN variable has been used extensively in the microstructure literature despite the fact that its construction is based on rather strong…

  6. In-situ Characterization of Cast Stainless Steel Microstructures

    SciTech Connect

    Anderson, Michael T.; Bond, Leonard J.; Diaz, Aaron A.; Good, Morris S.; Harris, Robert V.; Mathews, Royce; Ramuhalli, Pradeep; Roberts, Kamandi C.

    2010-12-01

    Cast austenitic stainless steel (CASS) that was commonly used in U.S. nuclear power plants is a coarse-grained, elastically anisotropic material. The engineering properties of CASS made it a material of choice for selected designs of nuclear power reactor systems. However, the fabrication processes result in a variety of coarse-grain microstructures that are difficult to inspect ultrasonically, largely due to detrimental effects of wave interactions with the microstructure. To address the inspection needs, new approaches that are robust to these phenomena are being sought. However, overcoming the deleterious effects of the coarse-grained microstructure on the interrogating ultrasonic beam will require knowledge of the microstructure and the corresponding acoustic properties of the material, for potential optimization of inspection parameters to enhance the probability of detecting flaws. The goal of improving the reliability and effectiveness of ultrasonic inspection of CASS specimens can therefore potentially be achieved by first characterizing the microstructure of the component. The characterization of CASS microstructure must be done in-situ, to enable dynamic selection and optimization of the ultrasonic inspection technique. This paper discusses the application of ultrasonic measurement methods for classifying the microstructure of CASS components, when making measurements from the outside surface of the pipe or component. Results to date demonstrate the potential of ultrasonic and electromagnetic measurements to classify the material type of CASS for two consistent microstructures-equiaxed-grain material and columnar-grain material.

  7. Autonomous patterning of cells on microstructured fine particles.

    PubMed

    Takeda, Iwori; Kawanabe, Masato; Kaneko, Arata

    2015-05-01

    Regularly patterned cells can clarify cellular function and are required in some biochip applications. This study examines cell patterning along microstructures and the effect of microstructural geometry on selective cellular adhesion. Particles can be autonomously assembled on a soda-lime glass substrate that is chemically patterned by immersion in a suspension of fine particles. By adopting various sizes of fine particles, we can control the geometry of the microstructure. Cells adhere more readily to microstructured fine particles than to flat glass substrate. Silica particles hexagonally packed in 5-40 μm line and space microstructures provide an effective cell scaffold on the glass substrate. Cultured cells tend to attach and proliferate along the microstructured region while avoiding the flat region. The difference in cell adhesion is attributed to their geometries, as both of the silica particles and soda-lime glass are hydrophilic related with cell adhesiveness. After cell seeding, cells adhered to the flat region migrated toward the microstructured region. For most of the cells to assemble on the scaffold, the scaffolding microstructures must be spaced by at most 65 μm. PMID:25746259

  8. Microstructural development of rapid solidification in Al-Si powder

    SciTech Connect

    Jin, F.

    1995-11-01

    The microstructure and the gradient of microstructure that forms in rapidly solidificated powder were investigated for different sized particles. High pressure gas atomization solidification process has been used to produce a series of Al-Si alloys powders between 0.2 {mu}m to 150 {mu}m diameter at the eutectic composition (12.6 wt pct Si). This processing technique provides powders of different sizes which solidify under different conditions (i.e. interface velocity and interface undercooling), and thus give different microstructures inside the powders. The large size powder shows dendritic and eutectic microstructures. As the powder size becomes smaller, the predominant morphology changes from eutectic to dendritic to cellular. Microstructures were quantitatively characterized by using optical microscope and SEM techniques. The variation in eutectic spacing within the powders were measured and compared with the theoretical model to obtain interface undercooling, and growth rate during the solidification of a given droplet. Also, nucleation temperature, which controls microstructures in rapidly solidified fine powders, was estimated. A microstructural map which correlates the microstructure with particle size and processing parameters is developed.

  9. New vibration-assisted magnetic abrasive polishing (VAMAP) method for microstructured surface finishing.

    PubMed

    Guo, Jiang; Kum, Chun Wai; Au, Ka Hing; Tan, Zhi'En Eddie; Wu, Hu; Liu, Kui

    2016-06-13

    In order to polish microstructured surface without deteriorating its profile, we propose a new vibration-assisted magnetic abrasive polishing (VAMAP) method. In this method, magnetic force guarantees that the magnetic abrasives can well contact the microstructured surface and access the corners of microstructures while vibration produces a relative movement between microstructures and magnetic abrasives. As the vibration direction is parallel to the microstructures, the profile of the microstructures will not be deteriorated. The relation between vibration and magnetic force was analyzed and the feasibility of this method was experimentally verified. The results show that after polishing, the surface finish around microstructures was significantly improved while the profile of microstructures was well maintained.

  10. A Markov random field approach for microstructure synthesis

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Nguyen, L.; DeGraef, M.; Sundararaghavan, V.

    2016-03-01

    We test the notion that many microstructures have an underlying stationary probability distribution. The stationary probability distribution is ubiquitous: we know that different windows taken from a polycrystalline microstructure are generally ‘statistically similar’. To enable computation of such a probability distribution, microstructures are represented in the form of undirected probabilistic graphs called Markov Random Fields (MRFs). In the model, pixels take up integer or vector states and interact with multiple neighbors over a window. Using this lattice structure, algorithms are developed to sample the conditional probability density for the state of each pixel given the known states of its neighboring pixels. The sampling is performed using reference experimental images. 2D microstructures are artificially synthesized using the sampled probabilities. Statistical features such as grain size distribution and autocorrelation functions closely match with those of the experimental images. The mechanical properties of the synthesized microstructures were computed using the finite element method and were also found to match the experimental values.

  11. Monitoring microstructural evolution in irradiated steel with second harmonic generation

    NASA Astrophysics Data System (ADS)

    Matlack, Kathryn H.; Kim, Jin-Yeon; Wall, James J.; Qu, Jianmin; Jacobs, Laurence J.

    2015-03-01

    Material damage in structural components is driven by microstructural evolution that occurs at low length scales and begins early in component life. In metals, these microstructural features are known to cause measurable changes in the acoustic nonlinearity parameter. Physically, the interaction of a monochromatic ultrasonic wave with microstructural features such as dislocations, precipitates, and vacancies, generates a second harmonic wave that is proportional to the acoustic nonlinearity parameter. These nonlinear ultrasonic techniques thus have the capability to evaluate initial material damage, particularly before crack initiation and propagation occur. This paper discusses how the nonlinear ultrasonic technique of second harmonic generation can be used as a nondestructive evaluation tool to monitor microstructural changes in steel, focusing on characterizing neutron radiation embrittlement in nuclear reactor pressure vessel steels. Current experimental evidence and analytical models linking microstructural evolution with changes in the acoustic nonlinearity parameter are summarized.

  12. Monitoring microstructural evolution in irradiated steel with second harmonic generation

    SciTech Connect

    Matlack, Kathryn H.; Kim, Jin-Yeon; Jacobs, Laurence J.; Wall, James J.; Qu, Jianmin

    2015-03-31

    Material damage in structural components is driven by microstructural evolution that occurs at low length scales and begins early in component life. In metals, these microstructural features are known to cause measurable changes in the acoustic nonlinearity parameter. Physically, the interaction of a monochromatic ultrasonic wave with microstructural features such as dislocations, precipitates, and vacancies, generates a second harmonic wave that is proportional to the acoustic nonlinearity parameter. These nonlinear ultrasonic techniques thus have the capability to evaluate initial material damage, particularly before crack initiation and propagation occur. This paper discusses how the nonlinear ultrasonic technique of second harmonic generation can be used as a nondestructive evaluation tool to monitor microstructural changes in steel, focusing on characterizing neutron radiation embrittlement in nuclear reactor pressure vessel steels. Current experimental evidence and analytical models linking microstructural evolution with changes in the acoustic nonlinearity parameter are summarized.

  13. Strain-engineered manufacturing of freeform carbon nanotube microstructures

    NASA Astrophysics Data System (ADS)

    de Volder, M.; Park, S.; Tawfick, S.; Hart, A. J.

    2014-07-01

    The skins of many plants and animals have intricate microscale surface features that give rise to properties such as directed water repellency and adhesion, camouflage, and resistance to fouling. However, engineered mimicry of these designs has been restrained by the limited capabilities of top-down fabrication processes. Here we demonstrate a new technique for scalable manufacturing of freeform microstructures via strain-engineered growth of aligned carbon nanotubes (CNTs). Offset patterning of the CNT growth catalyst is used to locally modulate the CNT growth rate. This causes the CNTs to collectively bend during growth, with exceptional uniformity over large areas. The final shape of the curved CNT microstructures can be designed via finite element modeling, and compound catalyst shapes produce microstructures with multidirectional curvature and unusual self-organized patterns. Conformal coating of the CNTs enables tuning of the mechanical properties independently from the microstructure geometry, representing a versatile principle for design and manufacturing of complex microstructured surfaces.

  14. Microstructure Improvement in Weld Metal under the Ultrasonic Application

    SciTech Connect

    Cui, Yan; Xu, Cailu; Han, Qingyou

    2007-01-01

    When considering the operational performance of weldments in the engineering projects, the most important issues to be considered are weld metal mechanical properties, integrity of the welded joint, and weldability 1 . These issues are closely related to the microstructure of the weld metal. A significant amount of research has been carried out to alter the process variables and to use external devices to obtain microstructure control of the weldments. It has been reported that grain refined microstructure not only reduces cracking behavior of alloys including solidification cracking, cold cracking and reheat cracking, 2 - 5 but also improves the mechanical properties of the weld metal, such as toughness, ductility, strength, and fatigue life. 6, 7 Weld pool stirring, 8 arc oscillation, 9, 10 arc pulsation, 11 , and magnetic arc oscillator 12, 13 have been applied to fusion welding to refine the microstructures. This article describes initial experimental results on the use of power ultrasonic vibration to refine the microstructure of weld metals.

  15. PREFACE: Processing, Microstructure and Performance of Materials

    NASA Astrophysics Data System (ADS)

    Chiu, Yu Lung; Chen, John J. J.; Hodgson, Michael A.; Thambyah, Ashvin

    2009-07-01

    A workshop on Processing, Microstructure and Performance of Materials was held at the University of Auckland, School of Engineering, on 8-9 April 2009. Organised by the Department of Chemical and Materials Engineering, University of Auckland, this meeting consisted of international participants and aimed at addressing the state-of-the-art research activities in processing, microstructure characterization and performance integrity investigation of materials. This two-day conference brought together scientists and engineers from New Zealand, Australia, Hong Kong, France, and the United Kingdom. Undoubtedly, this diverse group of participants brought a very international flair to the proceedings which also featured original research papers on areas such as Materials processing; Microstructure characterisation and microanalysis; Mechanical response at different length scales, Biomaterials and Material Structural integrity. There were a total of 10 invited speakers, 16 paper presentations, and 14 poster presentations. Consequently, the presentations were carefully considered by the scientific committee and participants were invited to submit full papers for this volume. All the invited paper submissions for this volume have been peer reviewed by experts in the various fields represented in this conference, this in accordance to the expected standards of the journal's Peer review policy for IOP Conference Series: Materials Science and Engineering. The works in this publication consists of new and original research as well as several expert reviews of current state-of-the art technologies and scientific developments. Knowing some of the real constraints on hard-copy publishing of high quality, high resolution images, the editors are grateful to IOP Publishing for this opportunity to have the papers from this conference published on the online open-access platform. Listed in this volume are papers on a range of topics on materials research, including Ferguson's high strain

  16. Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure

    SciTech Connect

    Li Rutao Zuo Xiurong Hu Yueyue Wang Zhenwei Hu, Dingxu

    2011-08-15

    In order to satisfy the transportation of the crude oil and gas in severe environmental conditions, a ferrite/martensite dual-phase pipeline steel has been developed. After a forming process and double submerged arc welding, the microstructure of the base metal, heat affected zone and weld metal was characterized using scanning electron microscopy and transmission electron microscopy. The pipe showed good deformability and an excellent combination of high strength and toughness, which is suitable for a pipeline subjected to the progressive and abrupt ground movement. The base metal having a ferrite/martensite dual-phase microstructure exhibited excellent mechanical properties in terms of uniform elongation of 7.5%, yield ratio of 0.78, strain hardening exponent of 0.145, an impact energy of 286 J at - 10 deg. C and a shear area of 98% at 0 deg. C in the drop weight tear test. The tensile strength and impact energy of the weld metal didn't significantly reduce, because of the intragranularly nucleated acicular ferrites microstructure, leading to high strength and toughness in weld metal. The heat affected zone contained complete quenching zone and incomplete quenching zone, which exhibited excellent low temperature toughness of 239 J at - 10 deg. C. - Research Highlights: {yields}The pipe with ferrite/martensite microstructure shows high deformability. {yields}The base metal of the pipe consists of ferrite and martensite. {yields}Heat affected zone shows excellent low temperature toughness. {yields}Weld metal mainly consists of intragranularly nucleated acicular ferrites. {yields}Weld metal shows excellent low temperature toughness and high strength.

  17. Atomic level microstructural characterization by APFIM

    SciTech Connect

    Miller, M.K.

    1996-10-01

    Atom probe field ion microscopy has been used to characterize Ni aluminides in addition to changes in microstructure of pressure vessel steels as a result of exposure to neutron irradiation. Ultrafine intragranular Cu precipitates and P segregation to grain and lath boundaries have been quantified in the pressure vessel steels. In boron-doped Ni{sub 3}Al, the B additions were found to segregate to dislocations, low angle boundaries, antiphase boundaries, stacking faults, and grain boundaries. In boron-doped NiAl, B segregation to grain boundaries and ultrafine MB{sub 2} precipitates were observed. In Mo-doped NiAl, enrichments of Mo, C, N/Si, B, and Fe were observed at the grain boundaries together with Mo precipitates and low Mo matrix solubility.

  18. Diffuse Interface Model for Microstructure Evolution

    NASA Astrophysics Data System (ADS)

    Nestler, Britta

    A phase-field model for a general class of multi-phase metallic alloys is proposed which describes both, multi-phase solidification phenomena as well as polycrystalline grain structures. The model serves as a computational method to simulate the motion and kinetics of multiple phase boundaries and enables the visualization of the diffusion processes and of the phase transitions in multi-phase systems. Numerical simulations are presented which illustrate the capability of the phase-field model to recover a variety of complex experimental growth structures. In particular, the phase-field model can be used to simulate microstructure evolutions in eutectic, peritectic and monotectic alloys. In addition, polycrystalline grain structures with effects such as wetting, grain growth, symmetry properties of adjacent triple junctions in thin film samples and stability criteria at multiple junctions are described by phase-field simulations.

  19. Fluid microstructures and enhanced oil recovery

    SciTech Connect

    Puig, J.E.; Scriven, L.E.; Davis, H.T.; Miller, W.G.

    1982-01-01

    Ultralow interfacial tensions between oil and water are caused not by monolayer adsorption but by a film of surfactant-rich third phase-either viscous material derived from liquid crystalline dispersions, or less viscous equilibrium microemulsion. The sometimes transparent dispersions, which had been overlooked before, become ultradispersions of vesicles upon sonication, and can be dissolved by certain alcohols. These and other findings are summarized from a concerted study of a petroleum sulfonate surfactant system representative of surfactant waterflooding, and of pure surfactant systems that mimic it. Reviewed are the relationships between surfactant-rich microstructures and their compositions, recovery of residual oil from short sandstone cores, and surfactant retention in such cores. Vesicular surfactant delivery is examined. 87 references.

  20. Blood typing using microstructured waveguide smart cuvette

    NASA Astrophysics Data System (ADS)

    Zanishevskaya, Anastasiya A.; Shuvalov, Andrey A.; Skibina, Yulia S.; Tuchin, Valery V.

    2015-04-01

    We introduce a sensitive method that allows one to distinguish positive and negative agglutination reactions used for blood typing and determination of Rh affinity with a high precision. The method is based on the unique properties of photonic crystal waveguides, i.e., microstructured waveguides (MSWs). The transmission spectrum of an MSW smart cuvette filled by a specific or nonspecific agglutinating serum depends on the scattering, refractive, and absorptive properties of the blood probe. This concept was proven in the course of a laboratory clinical study. The obtained ratio of the spectral-based discrimination parameter for positive and negative reactions (I+/I-) was found to be 16 for standard analysis and around 2 for used sera with a weak activity.

  1. White Matter Microstructure and Cognitive Function

    PubMed Central

    Anderson, Elaine J.; Husain, Masud

    2013-01-01

    In recent years, diffusion-weighted magnetic resonance imaging (DW-MRI) has been increasingly used to explore the relationship between white matter structure and cognitive function. This technique uses the passive diffusion of water molecules to infer properties of the surrounding tissue. DW-MRI has been extensively employed to investigate how individual differences in behavior are related to variability in white matter microstructure on a range of different cognitive tasks and also to examine the effect experiential learning might have on brain structural connectivity. Using diffusion tensor tractography, large white matter pathways have been traced in vivo and used to explore patterns of white matter projections between different brain regions. Recent findings suggest that diffusion-weighted imaging might even be used to measure functional differences in water diffusion during task performance. This review describes some research highlights in diffusion-weighted imaging and how this technique can be employed to further our understanding of cognitive function. PMID:22020545

  2. Microstructures in the Polar Solar Wind: Ulysses

    NASA Technical Reports Server (NTRS)

    Tsuruyani, Bruce T.; Arballo, J. K.; Galvan, C.; Goldstein, B. E.; Lakhina, G. S.; Sakurai, R.; Smith, E. J.; Neugebauer, M.

    1999-01-01

    We find that small (10-200 rP) magnetic decreases comprise a dominant part of the polar solar wind microstructure at Ulysses distances (2.2 AU). These magnetic field dips are almost always bounded by tangential discontinuities, a feature which is not well understood at this time. Hundreds of these events have been examined in detail and a variety of types have been found. These will be described. It is speculated that these structures have been generated by perpendicular heating of ions closer to the Sun and have then been convected to distances of Ulysses. Such structures may be very important for the rapid cross- field diffusion of ions in the polar regions of the heliosphere.

  3. The Microstructure of Lunar Micrometeorite Impact Craters

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2016-01-01

    The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.

  4. Langevin Simulation of Microstructure in Martensitic Transformations

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Lookman, T.; Shenoy, S. R.; Saxena, A.; Bishop, A. R.

    1996-03-01

    We present a dynamical model to simulate microstructure in martensitic transformations within the context of shape memory alloys. The Hamiltonian of the system includes a triple-well potential (φ^6 model) in local shear strain, (2) strain gradient terms up to second order in strain and fourth order in gradient, and (3) all symmetry allowed compositional fluctuation induced strain gradient terms. We show the formation of twinned martensite below the transformation temperature and tweed precursors above the transformation temperature, as well as indications of hierarchical structures near the habit plane. These phases result from a competition between short range attraction and long range elastic repulsive forces. The long range interaction is incorporated via Fourier spectral methods as discussed by C. Roland and R.C.Desai [Phys. Rev. B 42, 6658 (1990)].

  5. Effect of Nanoclay on Natural Rubber Microstructure

    SciTech Connect

    Carretero-Gonzalez,J.; Retsos, H.; Verdejo, R.; Toki, S.; Hsiao, B.; Giannelis, E.; Lopez-Manchado, M.

    2008-01-01

    The inclusion of highly anisotropic clay nanoparticles (nanoclays) in cross-linked natural rubber (NR) provides a more homogeneous distributed network structure and induces an early onset as well as enhancement of crystallization under uniaxial deformation. The molecular structure of the polymer network and its morphological changes during deformation were characterized by using broadband dielectric spectroscopy and in situ synchrotron wide-angle X-ray diffraction, respectively. It was found that the presence of nanoclay introduces a dual crystallization mechanism due to the alignment of nanoparticles during stretching. The improved properties in NR-nanoclay nanocomposites can be attributed to both microstructural and morphological changes induced by nanoclay as well as to the nanoclay mobility in the NR matrix during crystallization. The interplay of these factors during deformation contributes to the formation of a supernetwork structure containing cross-linked chemical chains, nanofiller, and crystallizable networks with similar length scales.

  6. Biomimicry of optical microstructures of Papilio palinurus

    NASA Astrophysics Data System (ADS)

    Crne, Matija; Sharma, Vivek; Blair, John; Park, Jung Ok; Summers, Christopher J.; Srinivasarao, Mohan

    2011-01-01

    The brilliant coloration of animals in nature is sometimes based on their structure rather than on pigments. The green colour on the wings of a butterfly Papilio palinurus originates from the hierarchical microstructure of individual wing scales that are tiled on the wing. The hierarchical structure gives rise to two coloured reflections of visible light, blue and yellow which when additively mixed, produce the perception of green colour on the wing scales. We used breath figure templated assembly as the starting point for the structure and, combining it with atomic layer deposition for the multilayers necessary for the production of interference colors, we have faithfully mimicked the structure and the optical effects found on the wing scale of the butterfly Papilio palinurus.

  7. Highly nonlinear layered spiral microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Rodrigues, Sílvia M.; Facão, Margarida M.; Latas, Sofia C.; Ferreira, Mário F.

    2013-08-01

    A layered spiral microstructured optical fiber (LS-MOF) is presented, which offers the possibility of a good control of both the dispersion and the nonlinear properties. The proposed design is analyzed using a finite element method considering silica and air as the materials. Zero dispersion, low confinement loss, and a record value of γ = 70.0 W-1/km for the LS-MOF nonlinear parameter are simultaneously obtained at 1.55 μm, whereas a higher value γ = 169.4 W-1/km can be achieved at 1.06 μm. Our results demonstrate the great potential of the LS-MOF for several nonlinear applications, namely for an efficient generation of the supercontinuum.

  8. Microstructural Characterization of Cast Metallic Transmutation Fuels

    SciTech Connect

    J. I. Cole; D. D. Keiser; J. R. Kennedy

    2007-09-01

    As part of the Global Nuclear Energy Partnership (GNEP) and the Advanced Fuel Cycle Initiative (AFCI), the US Department of Energy (DOE) is participating in an international collaboration to irradiate prototypic actinide-bearing transmutation fuels in the French Phenix fast reactor (FUTURIX-FTA experiment). The INL has contributed to this experiment by fabricating and characterizing two compositions of metallic fuel; a non-fertile 48Pu-12Am-40Zr fuel and a low-fertile 35U-29Pu-4Am-2Np-30Zr fuel for insertion into the reactor. This paper highlights results of the microstructural analysis of these cast fuels, which were reasonably homogeneous in nature, but had several distinct phase constituents. Spatial variations in composition appeared to be more pronounced in the low-fertile fuel when compared to the non-fertile fuel.

  9. Biologically Inspired Mushroom-Shaped Adhesive Microstructures

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Gorb, Stanislav N.

    2014-07-01

    Adhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.

  10. Influence of rainfall microstructure on rainfall interception

    NASA Astrophysics Data System (ADS)

    Zabret, Katarina; Rakovec, Jože; Mikoš, Matjaž; Šraj, Mojca

    2016-04-01

    Rainfall interception is part of the hydrological cycle. Precipitation, which hits vegetation, is retained on the leaves and branches, from which it eventually evaporates into the atmosphere (interception) or reaches the ground by dripping from the canopy, falling through the gaps (throughfall) and running down the stems (stemflow). The process is influenced by various meteorological and vegetation parameters. Often neglected meteorological parameter influencing rainfall interception is also rainfall microstructure. Rain is a discrete process consisting of various numbers of individual raindrops with different sizes and velocities. This properties describe rainfall microstructure which is often neglected in hydrological analysis and replaced with rainfall intensity. Throughfall, stemflow and rainfall microstructure have been measured since the beginning of the year 2014 under two tree species (Betula pendula and Pinus nigra) on a study plot in Ljubljana, Slovenia. The preliminary analysis of the influence of rainfall microstructure on rainfall interception has been conducted using three events with different characteristics measured in May 2014. Event A is quite short with low rainfall amount and moderate rainfall intensity, whereas events B and C have similar length but low and high intensities, respectively. Event A was observed on the 1st of May 2014. It was 22 minutes long and delivered 1.2 mm of rainfall. The average rainfall intensity was equal to 3.27 mm/h. The event consisted of 1,350 rain drops with average diameter of 1.517 mm and average velocity of 5.110 m/s. Both Betula pendula and Pinus nigra intercepted similar amount of rainfall, 68 % and 69 %, respectively. Event B was observed in the night from the 7th to 8th of May 2014, it was 16 hours and 18 minutes long, and delivered 4.2 mm of rainfall with average intensity of 0.97 mm/h. There were 39,108 raindrops detected with average diameter of 0.858 mm and average velocity of 3.855 m/s. Betula pendula

  11. Microstructural investigation of some biocompatible ferrofluids

    NASA Astrophysics Data System (ADS)

    Răcuciu, M.; Creangă, D. E.; Bădescu, V.; Sulitanu, N.

    2007-09-01

    Two batches of aqueous ferrofluids based on iron oxide particles as solid nanomagnetic phase have been prepared by applying the chemical precipitation method. Tetramethylammonium hydroxide (N(CH 3) 4OH) and citric acid (C 6H 8O 7) were used to functionalize magnetic cores. Physical tests have been performed in order to reveal the microstructural and magnetic features, both needed for biomedical utilization. The particle size was investigated using transmission electron microscopy (TEM), magnetization measurements and X-ray diffraction (for composition and phase information). The dimensional distribution of the ferrophase physical diameter was comparatively discussed using the box-plot statistical method revealing the fulfilling of the main requirements for ferrofluid stability.

  12. Microstructural aspects of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Mitchell, T. E.; Suhr, D. S.; Keller, R. J.; Lanteri, V.; Heuer, A. H.

    1985-01-01

    Various combination of plasma-sprayed bond coatings and zirconia ceramic coatings on a nickel-based superalloy substrate were tested by static thermal exposure at 1200 C and cyclic thermal exposure to 1000 C. The bond coats were based on Ni-Cr-Al alloys with additions of rare earth elements and Si. The ceramic coats were various ZrO2-Y2O3 compositions, of which the optimum was found to be ZrO2-8.9 wt percent Y2O3. Microstructural analysis showed that resistance to cracking during thermal exposure is strongly related to deleterious phase changes. Zones depleted of Al formed at the bond coat/ceramic coat interface due to oxidation and at the bond coat/substrate interface due to interdiffusion, leading eventually to breakdown of the bond coat. The 8.9 percent Y2O3 coating performed best because the as-sprayed metastable tetragonal phase converted slowly into the low-Y2O3 tetragonal plus high-Y2O3 cubic-phase mixture, so that the deleterious monoclinic phase was inhibited from forming. Failure appeared to start with the formation of circumferential cracks in the zirconia, probably due to compressive stresses during cooling, followed by the formation of radial cracks due to tensile stresses during heating. Cracks appeared to initiate at the Al2O3 scale/bond coat interface and propagate through the zirconia coating. Comparisons were made with the behavior of bulk ZrO2-Y2O3 and the relationship between the microstructure of the tetragonal phase and the phase diagram. A separate investigation was also made of the ZrO2-Al2O3 interface.

  13. Microstructured fibers for high power applications

    NASA Astrophysics Data System (ADS)

    Baggett, J. C.; Petrovich, M. N.; Hayes, J. R.; Finazzi, V.; Poletti, F.; Amezcua, R.; Broderick, N. G. R.; Richardson, D. J.; Monro, T. M.; Salter, P. L.; Proudley, G.; O'Driscoll, E. J.

    2005-10-01

    Fiber delivery of intense laser radiation is important for a broad range of application sectors, from medicine through to industrial laser processing of materials, and offers many practical system design and usage benefits relative to free space solutions. Optical fibers for high power transmission applications need to offer low optical nonlinearity and high damage thresholds. Single-mode guidance is also often a fundamental requirement for the many applications in which good beam quality is critical. In recent years, microstructured fiber technology has revolutionized the dynamic field of optical fibers, bringing with them a wide range of novel optical properties. These fibers, in which the cladding region is peppered with many small air holes, are separated into two distinct categories, defined by the way in which they guide light: (1) index-guiding holey fibers (HFs), in which the core is solid and light is guided by a modified form of total internal reflection, and (2) photonic band-gap fibers (PBGFs) in which guidance in a hollow core can be achieved via photonic band-gap effects. Both of these microstructured fiber types offer attractive qualities for beam delivery applications. For example, using HF technology, large-mode-area, pure silica fibers with robust single-mode guidance over broad wavelength ranges can be routinely fabricated. In addition, the ability to guide light in an air-core within PBGFs presents obvious power handling advantages. In this paper we review the fundamentals and current status of high power, high brightness, beam delivery in HFs and PBGFs, and speculate as to future prospects.

  14. Microstructural development to toughen SiC

    SciTech Connect

    Moberlychan, W.J.; Cannon, R.M.; Chan, L.H.; Cao, J.J.; Gilbert, C.J.; Ritchie, R.O.; De Jonghe, L.C.

    1996-12-31

    SiC offers a promise for high strength applications at high temperature; however, poor fracture resistance has inhibited its utility. Recent developments to control microstructure during hot pressing have improved fracture toughness > 3 fold, while also improving strength 50% above that of a commercial SiC, Hexoloy. This ABC-SiC (designated for the Al, B, and C additives) utilizes liquid phase sintering to obtain full densification at 1,650 C, and to induce the {beta}-3C to {alpha}-4H phase transformation below 1,900 C. Interlocking, plate-like, {alpha} grains, coupled with a thin ({approximately}1 nm) amorphous layer, provide for tortuous intergranular fracture and high toughness. This study focuses on the developing microstructure; how the {alpha}-4H polytype grow as a stacking modification of the {beta}-3C grains, and how amorphous grain boundaries and crystalline triple point phases develop and interact with the crack geometry. HR-TEM and Image-Filtered EELS characterize the amorphous grain boundaries. Field Emission-SEM, EDS and Auger Electron Spectroscopy characterize the fracture morphology and the chemistry of grain boundaries and triple points. Electron Diffraction and HR-TEM depict an epitaxial relationship between triple point phases (Al{sub 8}B{sub 4}C{sub 7} and Al{sub 4}O{sub 4}C) and matrix {alpha}-SiC grains, the development of which affects the mechanical toughening. The transformation to toughen SiC is compared to the well-studied transformation processing in Si{sub 3}N{sub 4}. A distinct advantage is the interlocked nature of the plate-like grains, which causes strong elastic bridging behind the crack tip.

  15. Abnormal Cerebral Microstructure in Premature Neonates with Congenital Heart Disease

    PubMed Central

    Paquette, Lisa B.; Wisnowski, Jessica L.; Ceschin, Rafael; Pruetz, Jay D.; Detterich, Jon A.; Del Castillo, Sylvia; Nagasunder, Arabhi C.; Kim, Richard; Painter, Michael J.; Gilles, Floyd H.; Nelson, Marvin D.; Williams, Roberta G.; Blüml, Stefan; Panigrahy, Ashok

    2013-01-01

    Background and Purpose Abnormal cerebral microstructure has been documented in term neonates with congenital heart disease (CHD) portending risk for injury and poor neurodevelopmental outcome. Our hypothesis was that preterm neonates with CHD would demonstrate diffuse cerebral microstructural abnormalities when compared to critically ill neonates without CHD. A secondary aim was to identify any association between microstructural abnormalities, white matter injury (e.g., punctate white matter lesions, pWMLs) and other clinical variables, including heart lesion. Material and Methods Using Tract-Based-Spatial-Statistics (TBSS), an unbiased, voxel-wise method for analyzing diffusion tensor imaging data, we compared 21 preterm neonates with CHD to two cohorts of neonates without CHD: 28 term and 27 preterm neonates, identified from the same neonatal intensive care unit. Results Compared to term neonates without CHD, preterm neonates with CHD had microstructural abnormalities in widespread regions of the central white matter. However, 42% of the preterm CHD neonates had pWMLs. When neonates with pWMLs were excluded, microstructural abnormalities remained only in the splenium. Preterms with CHD had similar microstructure to preterms without CHD. Conclusion Diffuse microstructural abnormalities were observed in preterm neonates with CHD, strongly associated with pWMLs. Independently, regional vulnerability of the splenium, a structure associated with visual spatial function, was observed in all preterm CHD neonates. PMID:23703146

  16. Microstructure characterization of Cu processed by compression with oscillatory torsion

    SciTech Connect

    Rodak, K.; Pawlicki, J.

    2014-08-15

    High purity Cu (99.9%) was subjected to severe plastic deformation up to a total effective strain ε{sub ft} = 130 through compression with the oscillatory torsion method at room temperature. This method produces an ultrafine grain microstructure. The microstructure evolution was investigated with respect to the value of the total effective strain using a scanning electron microscope with an electron-backscattered diffraction technique and a scanning transmission electron microscope. The results of the structural analyses show that increasing ε{sub ft} from 2 to 50 causes progress in the grain refinement. A quantitative study of the microstructure parameters, such as fraction of high angle boundaries, grain and subgrain diameter, and the area fraction of grains up to 1 μm, shows that deformation at ε{sub ft} = 45 guaranteed the best conditions for refining the microstructure of Cu. Using high values of ε{sub ft} in the range 60 to 130 restricts grain refinement because intensive recovery begins to dominate in the microstructure. - Highlights: • Cu was processed by SPD metodto an effective strain 130. • The microstructure evolution has been investigated. • The method allows to produce an ultrafine grain microstructure.

  17. Solidification microstructures in single-crystal stainless steel melt pools

    SciTech Connect

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  18. Optical screw-wrench for interlocking 2PP-microstructures

    NASA Astrophysics Data System (ADS)

    Köhler, J.; Zyla, G.; Ksouri, S. I.; Esen, C.; Ostendorf, A.

    2016-03-01

    Two-photon polymerization (2PP) has emerged as a powerful platform for processing three-dimensional microstructures with high resolution. Furthermore, by adding nanoparticles of different materials to the photopolymer the microstructures can be functionalized, e.g. magnetic or electric properties can be adjusted. However, to combine different functions within one microstructure or to manufacture complex microsystems, assembling techniques for multiple 2PP written building blocks are required. In this paper a qualitative approach for assembling microstructures utilizing optical forces is presented. Therefore, screw and nut shaped microstructures are produced by 2PP-technique and screwed together using a holographic optical tweezer (HOT). The interlocking structures are trapped and rotated into each other to cause connection. In this paper the used parameters and possible designs of the interlocking connection are discussed. These findings provide not only the assembling of building blocks to complex microstructures, rather different functionalized 2PP-microstructures can be combined by simply screwing them together with the use of optical forces.

  19. Microstructure-failure mode correlations in braided composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.; Sadler, Robert L.; El-Shiekh, Aly

    1992-01-01

    Explication of the fracture processes of braided composites is needed for modeling their behavior. Described is a systematic exploration of the relationship between microstructure, loading mode, and micro-failure mechanisms in carbon/epoxy braided composites. The study involved compression and fracture toughness tests and optical and scanning electron fractography, including dynamic in-situ testing. Principal failure mechanisms of low sliding, buckling, and unstable crack growth are correlated to microstructural parameters and loading modes; these are used for defining those microstructural conditions which are strength limiting.

  20. Stochastic Analysis and Design of Heterogeneous Microstructural Materials System

    NASA Astrophysics Data System (ADS)

    Xu, Hongyi

    Advanced materials system refers to new materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to superior properties over the conventional materials. To accelerate the development of new advanced materials system, the objective of this dissertation is to develop a computational design framework and the associated techniques for design automation of microstructure materials systems, with an emphasis on addressing the uncertainties associated with the heterogeneity of microstructural materials. Five key research tasks are identified: design representation, design evaluation, design synthesis, material informatics and uncertainty quantification. Design representation of microstructure includes statistical characterization and stochastic reconstruction. This dissertation develops a new descriptor-based methodology, which characterizes 2D microstructures using descriptors of composition, dispersion and geometry. Statistics of 3D descriptors are predicted based on 2D information to enable 2D-to-3D reconstruction. An efficient sequential reconstruction algorithm is developed to reconstruct statistically equivalent random 3D digital microstructures. In design evaluation, a stochastic decomposition and reassembly strategy is developed to deal with the high computational costs and uncertainties induced by material heterogeneity. The properties of Representative Volume Elements (RVE) are predicted by stochastically reassembling SVE elements with stochastic properties into a coarse representation of the RVE. In design synthesis, a new descriptor-based design framework is developed, which integrates computational methods of microstructure characterization and reconstruction, sensitivity analysis, Design of Experiments (DOE), metamodeling and optimization the enable parametric optimization of the microstructure for achieving the desired material properties. Material informatics is studied to efficiently reduce the

  1. Microstructural Evolution of DP980 Steel during Friction Bit Joining

    NASA Astrophysics Data System (ADS)

    Huang, T.; Sato, Y. S.; Kokawa, H.; Miles, M. P.; Kohkonen, K.; Siemssen, B.; Steel, R. J.; Packer, S.

    2009-12-01

    The authors study a new solid-state spot joining process, friction bit joining (FBJ), which relies on the use of a consumable joining bit. It has been reported that FBJ is feasible for the joining of steel/steel and aluminum/steel, but the metallurgical characteristics of the joint for enhancement of the properties and reliability remain unclear. Therefore, this study produced friction bit joints in DP980 steel and then examined the microstructures in the joint precisely. In this article, the microstructure distribution associated with hardness in the friction-bit-joined DP980 steel and the microstructural evolution during FBJ are reported.

  2. Microstructure of bidisperse ferrofluids in a thin layer

    SciTech Connect

    Minina, E. S. Muratova, A. B.; Cerda, J. J.; Kantorovich, S. S.

    2013-03-15

    In this work we present a characterization of the bidisperse ferrofluid microstructures that appear in thin layers of ferrofluid. These layers have been studied by a combination of Langevin dynamics simulations and density functional theory. Our results allow us to compare the microstructures that exist in quasi-two-dimensional ferrofluid nanolayers with the microstructures found in three-dimensional bidisperse ferrofluids. Furthermore, our results allow us to explain the influence of the geometry of the sample on the topology and size-distribution of the observed aggregates of magnetic nanoparticles.

  3. Microstructures fabricated by dynamically controlled femtosecond patterned vector optical fields.

    PubMed

    Cai, Meng-Qiang; Li, Ping-Ping; Feng, Dan; Pan, Yue; Qian, Sheng-Xia; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-04-01

    We have presented and demonstrated a method for the fabrication of various complicated microstructures based on dynamically controlled patterned vector optical fields (PVOFs). We design and generate dynamic PVOFs by loading patterned holograms displayed on the spatial light modulator and moving traces of focuses with different patterns. We experimentally fabricate the various microstructures in z-cut lithium niobate plates. The method we present has some benefits such as no motion of the fabricated samples and high efficiency due to its parallel feature. Moreover, our approach is able to fabricate three-dimensional microstructures. PMID:27192265

  4. General introduction to microstructural evolution under cascade damage conditions

    SciTech Connect

    Wiedersich, H.

    1993-06-01

    A short overview of the processes that affect the evolution of the microstructure during irradiation is given. The processes include defect production with an emphasis on the effects of the dynamic cascade events, defect clustering, irradiation-enhanced diffusion, radiation-induced segregation, phase decompositions and phase transformations. A simple model for the description of the development of the defect microstructure in a pure metal during cascade producing irradiation is also outlined which can provide, in principle, defect fluxes required for the description of the microstructural processes such as phase decomposition and irradiation-induced precipitation.

  5. Microstructural characteristics of Hadfield steel solidified under high pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzi; Li, Yanguo; Han, Bo; Zhang, Fucheng; Qian, Lihe

    2011-12-01

    Samples of Hadfield steel, high manganese austenite steel with 13 wt% manganese and 1.2 wt% carbon, were solidified under a pressure of 6 GPa. The microstructures of the samples were analyzed by metallography and X-ray diffraction. The results indicate that the solidification microstructure of the Hadfield steel was remarkably refined under high pressure. Additionally, the carbide of M23C6 was obtained in the Hadfield steel solidified under high pressure was different from the carbide of M3C obtained by solidification under normal pressure. Furthermore, high pressure promoted the formation of orientational solidified microstructure of the Hadfield steel.

  6. Microstructural Origins of Cement Paste Degradation by External Sulfate Attack

    PubMed Central

    Feng, Pan; Garboczi, Edward J.; Miao, Changwen; Bullard, Jeffrey W.

    2015-01-01

    A microstructure model has been applied to simulate near-surface degradation of portland cement paste in contact with a sodium sulfate solution. This new model uses thermodynamic equilibrium calculations to guide both compositional and microstructure changes. It predicts localized deformation and the onset of damage by coupling the confined growth of new solids with linear thermoelastic finite element calculations of stress and strain fields. Constrained ettringite growth happens primarily at the expense of calcium monosulfoaluminate, carboaluminate and aluminum-rich hydrotalcite, if any, respectively. Expansion and damage can be mitigated chemically by increasing carbonate and magnesium concentrations or microstructurally by inducing a finer dispersion of monosulfate. PMID:26722191

  7. Ferrofluids: Thermophysical properties and formation of microstructures

    NASA Astrophysics Data System (ADS)

    Mousavi Khoeini, NargesSadat Susan

    This work is a combined effort of experimental and theoretical studies toward better understanding the structural and physical properties of aqueous ferrofluids containing nano-sized magnetite (iron oxide magnetic particles) of about 10nm. Ferrofluids have attracted remarkable attention mainly because their properties can be controlled by means of an externally applied magnetic field. The dispersion of nano-sized magnets in a carrier liquid exhibits superparamagnetic behaviour while retaining its fluid properties. The interplay between hydrodynamic and magnetic phenomena has made ferrofluids an extremely promising and useful tool in wide spectra of applications, from technical applications to biomedical ones. In the presence of a magnetic field, magnetic moments of the nanomagnets suspended in the host liquid are aligned toward the field direction and begin to form microstructures such as short chains, strands and long stripes. As this process advances the microstructures may collapse into bundles and thick chains and form macrostructures. Upon the removal of the magnetic field, nanoparticles will be homogeneously redistributed throughout the sample due to thermal agitation. Zero-field structures, and especially the field-induced assembly of magnetic nanoparticles, are primarily responsible for the change in physical properties of ferrofluids, including thermophysical, optical, rheological, and magnetization properties. Because of the field-induced assembly of magnetic nanoparticles in the field direction, ferrofluids become strongly anisotropic and as a result, ferrofluids can significantly enhance directional heat transfer in a thermal system. Thermophysical properties of a ferrofluid are important in studying heat transfer processes in any thermal application, making the study of their behavior a necessity. Taking into account the influence of the formation and growth of microstructures on change in properties of ferrofluids, one can find the significance of

  8. Role of Microstructural Phenomena in Magnetic Thin Films. Final Report

    SciTech Connect

    Laughlin, D. E.; Lambeth, D. N.

    2001-04-30

    Over the period of the program we systematically varied microstructural features of magnetic thin films in an attempt to better identify the role which each feature plays in determining selected extrinsic magnetic properties. This report summarizes the results.

  9. Stability of Cassie-Baxter wetting states on microstructured surfaces

    NASA Astrophysics Data System (ADS)

    Guo, Hao-Yuan; Li, Bo; Feng, Xi-Qiao

    2016-10-01

    A stable Cassie-Baxter (CB) wetting state is indispensable for the superhydrophobicity of solid surfaces. In this paper, we analyze the equilibrium and stability of CB wetting states. Using an energy approach, the stability criteria of CB wetting states are established for solid surfaces with either two- or three-dimensional symmetric microstructures. A generic method is presented to calculate the critical pressure at which the CB state on a microstructured solid surface collapses. The method holds for microstructures with arbitrary generatrix, and explicit solutions are derived for a few representative microstructures with a straight or circular generatrix. In addition, some possible strategies are proposed to design surface structures with stable CB wetting states from the viewpoints of geometry and chemistry.

  10. Nanomotor-based biocatalytic patterning of helical metal microstructures.

    PubMed

    Manesh, Kalayil Manian; Campuzano, Susana; Gao, Wei; Lobo-Castañón, María Jesús; Shitanda, Isao; Kiantaj, Kiarash; Wang, Joseph

    2013-02-21

    A new nanomotor-based surface-patterning technique based on the movement of a magnetically powered enzyme-functionalized flexible nanowire swimmer offers the ability to create complex helical metal microstructures.

  11. Microstructural evaluatoin of ceramic matrix composites produced by polymer pyrolysis

    SciTech Connect

    Gould, P.J.; Day, R.J.; TAylor, R.

    1995-09-01

    A microstructural characterisation of carbon fibre/silicon carbide matrix campsites is reported. Unidirectional- and bidirectional composites were studied and the silicon carbide matrix was deposited by decomposition of a polymer precursor.

  12. A Combined Statistical-Microstructural Model for Simulation of Sintering

    SciTech Connect

    BRAGINSKY,MICHAEL V.; DEHOFF,ROBERT T.; OLEVSKY,EUGENE A.; TIKARE,VEENA

    1999-10-22

    Sintering theory has been developed either as the application of complex diffusion mechanisms to a simple geometry or as the deformation and shrinkage of a continuum body. They present a model that can treat in detail both the evolution of microstructure and the sintering mechanisms, on the mesoscale, so that constitutive equations with detail microstructural information can be generated. The model is capable of simulating vacancy diffusion by grain boundary diffusion, annihilation of vacancies at grain boundaries resulting in densification, and coarsening of the microstructural features. In this paper, they review the stereological theory of sintering and its application to microstructural evolution and the diffusion mechanism, which lead to sintering. They then demonstrate how these stereological concepts and diffusion mechanisms were incorporated into a kinetic Monte Carlo model to simulate sintering. Finally, they discuss the limitations of this model.

  13. Microstructure and Thermal History of Metal Particles in CH Chondrites

    NASA Astrophysics Data System (ADS)

    Goldstein, J. I.; Jones, R. H.; Kotula, P. G.; Michael, J. R.

    2005-03-01

    This paper provides detailed microstructural and microchemical information at the nm to µm scale (SEM, EPMA, TEM, EBSD) for a select suite of metal particles in four CH chondrites, ALH 85085, PAT 91546, Acfer 214, NWA 739.

  14. The influence of microstructure on the mechanical properties of solder

    SciTech Connect

    Morris, J.W. Jr.; Reynolds, H.L.

    1996-06-01

    Solder joints in microelectronics devices consist of low-melting solder compositions that wet and join metal contacts and are, ordinarily, used at high homologous temperatures in the as-solidified condition. Differences in solidification rate and substrate interactions have the consequence that even solder joints of similar compositions exhibit a wide range of microstructures. The variation in microstructure causes a variation in properties; in particular, the high-temperature creep properties that govern much of the mechanical behavior of the solder may differ significantly from joint to joint. The present paper reviews the varieties of microstructure that are found in common solder joints, and describes some of the ways in which microstructural changes affect mechanical properties and joint reliability.

  15. Modeling Crack Propagation in Polycrystalline Microstructure Using Variational Multiscale Method

    DOE PAGES

    Sun, S.; Sundararaghavan, V.

    2016-01-01

    Crack propagation in a polycrystalline microstructure is analyzed using a novel multiscale model. The model includes an explicit microstructural representation at critical regions (stress concentrators such as notches and cracks) and a reduced order model that statistically captures the microstructure at regions far away from stress concentrations. Crack propagation is modeled in these critical regions using the variational multiscale method. In this approach, a discontinuous displacement field is added to elements that exceed the critical values of normal or tangential tractions during loading. Compared to traditional cohesive zone modeling approaches, the method does not require the use of any specialmore » interface elements in the microstructure and thus can model arbitrary crack paths. The capability of the method in predicting both intergranular and transgranular failure modes in an elastoplastic polycrystal is demonstrated under tensile and three-point bending loads.« less

  16. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers

    NASA Astrophysics Data System (ADS)

    Mannsfeld, Stefan C. B.; Tee, Benjamin C.-K.; Stoltenberg, Randall M.; Chen, Christopher V. H.-H.; Barman, Soumendra; Muir, Beinn V. O.; Sokolov, Anatoliy N.; Reese, Colin; Bao, Zhenan

    2010-10-01

    The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times.

  17. Microstructural evolution of eutectic gold-tin solder joints

    NASA Astrophysics Data System (ADS)

    Song, Ho Geon

    Current trends toward miniaturization and the use of lead (Pb)-free solders in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability. The study particularly concentrated on the effects that the joint size and the type of substrate metallization have on both the bulk and interface microstructures of the joints. The systems studied were eutectic Au-Sn on Cu and Cu/electroless Ni/Au and for each system, two sets of sample geometries were used. Eutectic Au-Sn solder joints on Cu have microstructures that are very coarse on the scale of the joint, where the microstructure is strongly affected by the amount of Cu dissolution during reflow process. During aging, steady diffusion of Cu leads to the growth of Cu-rich interfacial intermetallic layers, significant consumption of substrate Cu, and formation of Kirkendall pores along the interface. Thermal cycling of the joints caused decomposition of the thick zeta(Cu)-phase into a fine-grained multiphase microstructure. The microstructures of eutectic Au-Sn solder joints on Cu/electroless Ni/Au are also very coarse due to the dissolution of Au used as a protective layer during soldering. Electroless Ni is shown to effectively act as a diffusion barrier for Cu. The electroless Ni near the interface evolves into a complicated structure due to the interfacial reaction. The solubility characteristics and diffusional behavior of substrate metals into eutectic Au-Sn solder determines the detailed microstructure and microstructural evolution of the ultrafine eutectic Au-Sn joints. Two important things to be noted from the results are as follows: First, the overall microstructures of these joints are very coarse with respect to the size of joint, and hence the properties of the

  18. Step-by-step growth of complex oxide microstructures

    SciTech Connect

    Datskos, Panos G.; Cullen, David A.; Sharma, Jaswinder K.

    2015-06-10

    The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. We developed a solution phase process to synthesize complex silica and silica titania hybrid microstructures by exploiting the emulsion droplet based shape control and step by step growth. The strategy is robust and can be extended to make complex hybrid structures made of two or more materials while each having its own shape.

  19. Studies of microstructural imperfections of powdered Zirconium-based alloys

    SciTech Connect

    Chowdhury, P.S.; Mukherjee, P.

    2010-11-15

    Different model based approaches of X-ray diffraction line profile analysis have been applied on the heavily deformed zirconium-based alloys in the powdered form to characterize the microstructural parameters like domain size, microstrain and dislocation density. In characterizing the microstructure of the material, these methods are complimentary to each other. Though the parameters obtained by different techniques are differently defined and thus not necessarily comparable, the values of domain size and microstrain obtained from the different techniques show similar trends.

  20. Supercontinuum Generation in a Microstructured Fiber with an Irregular Cladding

    NASA Astrophysics Data System (ADS)

    Minkovich, V. P.; Sotsky, A. B.; Vaca Pereira G., M.; Dzen, I. S.; Sotskaya, L. I.

    2016-05-01

    A broad-band supercontinuum generation was obtained at excitation of a microstructured optical fiber with an irregular cladding by femtosecond laser pulses. To explain the experimental data, calculations of the mode characteristics of microstructured fibers were performed. It was shown that the creation of air channels with different radii in the fiber cladding makes it possible to involve both the fundamental and high fiber modes in the supercontinuum generation that helps to increase the width of the generation spectrum.

  1. TASK 7 DEMONSTRATION OF THAMES FOR MICROSTRUCTURE AND TRANSPORT PROPERTIES

    SciTech Connect

    Langton, C.; Bullard, J.; Stutzman, P.; Snyder, K.; Garboczi, E.

    2010-03-29

    The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and realible set of tools to reduce the uncertainty in predicting the structural, hydraulic and chemical performance of cement barriers used in nuclear applications that are exposed to dynamic environmental conditions over extended time frames. One of these tools, the responsibility of NIST, is THAMES (Thermodynamic Hydration and Microstructure Evolution Simulator), which is being developed to describe cementitious binder microstructures and calculate important engineering properties during hydration and degradation. THAMES is designed to be a 'micro-probe', used to evaluate changes in microstructure and properties occurring over time because of hydration or degradation reactions in a volume of about 0.001 mm{sup 3}. It will be used to map out microstructural and property changes across reaction fronts, for example, with spatial resolution adequate to be input into other models (e.g., STADIUM{reg_sign}, LeachSX{trademark}) in the integrated CBP package. THAMES leverages thermodynamic predictions of equilibrium phase assemblages in aqueous geochemical systems to estimate 3-D virtual microstructures of a cementitious binder at different times during the hydration process or potentially during degradation phenomena. These virtual microstructures can then be used to calculate important engineering properties of a concrete made from that binder at prescribed times. In this way, the THAMES model provides a way to calculate the time evolution of important material properties such as elastic stiffness, compressive strength, diffusivity, and permeability. Without this model, there would be no way to update microstructure and properties for the barrier materials considered as they are exposed to the environment, thus greatly increasing the uncertainty of long-term transport predictions. This Task 7 report demonstrates the current capabilities of THAMES. At the start of the CBP project, THAMES

  2. Dissipative energy as an indicator of material microstructural evolution

    NASA Astrophysics Data System (ADS)

    Connesson, N.; Maquin, F.; Pierron, F.

    2010-06-01

    In this study, the material microstructure evolution has been studied thanks to two indicators: the cumulated plastic strain and the energy dissipation due to internal friction under cyclic loading. An experimental procedure has been designed to underline the variations of the dissipative energy due to cold work on a DP600 specimen. The results showed that the dissipative energy increases with the plastic strain and can be used as an indicator of material microstructural evolution.

  3. Ultrasonic nondestructive evaluation, microstructure, and mechanical property interrelations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1984-01-01

    Ultrasonic techniques for mechanical property characterizations are reviewed and conceptual models are advanced for explaining and interpreting the empirically based results. At present, the technology is generally empirically based and is emerging from the research laboratory. Advancement of the technology will require establishment of theoretical foundations for the experimentally observed interrelations among ultrasonic measurements, mechanical properties, and microstructure. Conceptual models are applied to ultrasonic assessment of fracture toughness to illustrate an approach for predicting correlations found among ultrasonic measurements, microstructure, and mechanical properties.

  4. Transport properties of porous media from the microstructure

    SciTech Connect

    Torquato, S.

    1995-12-31

    The determination of the effective transport properties of a random porous medium remains a challenging area of research because the properties depend on the microstructure in a highly complex fashion. This paper reviews recent theoretical and experimental progress that we have made on various aspects of this problem. A unified approach is taken to characterize the microstructure and the seemingly disparate properties of the medium.

  5. Microstructure, microstructural stability and mechanical properties of sand-cast Mg–4Al–4RE alloy

    SciTech Connect

    Rzychoń, Tomasz; Kiełbus, Andrzej; Lityńska-Dobrzyńska, Lidia

    2013-09-15

    This paper presents a methodology for assessing the phase composition and the results of structural stability tests of the sand-cast Mg–4Al–4RE alloy after annealing it at 175 and 250 °C for 3000 h. The microstructure was analyzed with optical, scanning electron, and transmission electron microscopy. The phase composition was determined with X-ray diffraction. The structure of the Mg–4Al–4RE (AE44) alloy is composed of large grains of α-Mg solid solution, needle-shaped precipitates of the Al{sub 11}RE{sub 3}phase, polyhedral precipitates of the Al{sub 2}RE phase and Al{sub 10}RE{sub 2}Mn{sub 7} phase. After annealing at 175 °C for 3000 h, no changes in the alloy structure are observed, whereas after annealing at 250 °C the precipitates of the Al{sub 11}RE{sub 3} phase are found to be in the initial stages of spheroidization. The coarse-grained structure and unfavorable morphology of the intermetallic phases in the sand-cast AE44 alloy, which are caused by low solidification rates, result in low creep resistance up to 200 °C and low mechanical properties at ambient temperature and at 175 °C. - Highlights: • Complement the knowledge about the microstructure of Mg-Al-RE alloys. • Clarify the mechanism of formation of Mg17Al12 phase above 180 °C. • Applying a chemical dissolution of the α-Mg in order to phase identification. • Applying a statistical test to assess the spheroidization of precipitates. • Quantitative description of microstructure of Mg-Al-RE alloys.

  6. Stress Rupture Fracture Model and Microstructure Evolution for Waspaloy

    NASA Astrophysics Data System (ADS)

    Yao, Zhihao; Zhang, Maicang; Dong, Jianxin

    2013-07-01

    Stress rupture behavior and microstructure evolution of nickel-based superalloy Waspaloy specimens from tenon teeth of an as-received 60,000-hour service-exposed gas turbine disk were studied between 923 K and 1088 K (650 °C and 815 °C) under initial applied stresses varying from 150 to 840 MPa. Good microstructure stability and performance were verified for this turbine disk prior to stress rupture testing. Microstructure instability, such as the coarsening and dissolution of γ' precipitates at the varying test conditions, was observed to be increased with temperature and reduced stress. Little microstructure variation was observed at 923 K (650 °C). Only secondary γ' instability occurred at 973 K (700 °C). Four fracture mechanisms were obtained. Transgranular creep fracture was exhibited up to 923 K (650 °C) and at high stress. A mixed mode of transgranular and intergranular creep fracture occurred with reduced stress as a transition to intergranular creep fracture (ICF) at low stress. ICF was dominated by grain boundary sliding at low temperature and by the nucleation and growth of grain boundary cavities due to microstructure instability at high temperature. The fracture mechanism map and microstructure-related fracture model were constructed. Residual lifetime was also evaluated by the Larson-Miller parameter method.

  7. Processing and mechanical behavior of aluminium oxide microstructure composites

    NASA Astrophysics Data System (ADS)

    Pavlacka, Robert J.

    We have proposed a new class of composites that accesses different component properties not through the use of distinct materials, but through the exploitation of the microstructure-property relationship within a single material. That is, we seek to adapt composite concepts to take advantage of the considerable variance in properties associated with different microstructures. This new class of composites is called microstructure composites. Microstructure composites are predominately single phase ceramics that utilize multiple distinct microstructure features in the same composite to obtain unique property combinations. Spatial control and composite connectivity of the individual microstructure components of a microstructure composite are ultimately the key to developing and controlling useful and unique properties. Microstructural features can be controlled via the starting location and transport of the dopants, minority second phases, and liquid phases that are used to manipulate microstructure development. This work focuses on textured-equiaxed microstructure in the Al2O 3 system. Texture is obtained in situ using templated grain growth (TGG). To control microstructure development locally during microstructure composite fabrication, it is important to use relatively low levels of dopant to mitigate the effects of dopant interdiffusion. Therefore, the development of texture in alpha-Al2O3 using TGG was explored under low liquid-phase dopant concentration conditions. High temperature dilatometry was performed to quantify the effect of template constraint on x-y plane shirinkage and the extent to which this constraint could be mitigated as a function of the dopant concentration. x-y plane shrinkage was observed to be increasingly constrained with increasing template loading and decreasing dopant concentration. Final x-y plane shrinkage was greater for samples with 0.14 wt% dopant than for those without dopant, despite have a much lower peak strain rate. It was

  8. Microstructural effects on the ignition behavior of HMX

    NASA Astrophysics Data System (ADS)

    Welle, E. J.; Molek, C. D.; Wixom, R. R.; Samuels, P.

    2014-05-01

    The detonation physics community has embraced the idea that initiation of high explosives proceeds from an ignition event through subsequent growth to steady detonation. A weakness of all the commonly used ignition and growth models is that microstructural characteristics are not explicitly incorporated in their ignition and terms. This is the case in spite of a demonstrated, but not well-understood, empirical link between morphology and initiation of energetic materials. Morphological effects have been parametrically studied in many ways, with the majority of efforts focused on establishing a tie between bulk powder metrics and ignition of the pressed beds. More recently, there has been a shift toward characterizing the microstructure of pressed beds in order to understand the underlying mechanisms governing behavior. We have assessed the utility of using a modified James' model as a tool to quantify effects of bed microstructure on ignition behavior. Using this construct, we have studied the ignition behavior of two types of HMX materials in an attempt to quantify effects of microstructure (i.e. mesoscale features) on continuum level ignition behavior. Microstructures of the two HMX materials were characterized using ion bombardment cross sectioning techniques that expose the microstructure of pellets studied in the ignition experiments.

  9. Investigation of Human Nail Microstructure with Ultrasound

    NASA Astrophysics Data System (ADS)

    Maeva, A. R.; Bakulin, E. Y.; Denisova, L. A.; Maev, R. Gr.

    Investigation of a human fingernail and the extraction of the data on its microstructure and elastic properties is important in three main aspects. First of all, various diseases of the nail can be differentiated more precisely; second of all, it is possible to non-invasively track during time the effects of a cosmetic product upon the nail; third of all, because various processes in the organism have a strong influence upon the nail plate growth, the monitoring of the nail morphology and its mechanical properties may be used as additional information for the diagnosis of a number of medical disorders, such as systemic sclerosis, psoriasis, chronic hand eczema, anemia etc. The aim of the present study was to carry out a detailed ultrasound investigation in the high-frequency range (25-50 MHz) of a human nail including micro-anatomical structure imaging and ultrasound velocity evaluation, using B-scans obtained with a scanning acoustic microscope. On the images, exact topology of the nail, nail matrix and the underlying bone have been revealed. Additionally, a certain type of inclined internal layering along the nails of some individuals has been found, which was not reported in previous ultrasonic studies of the nail.

  10. Microstructure evolution of lime putty upon aging

    NASA Astrophysics Data System (ADS)

    Mascolo, Giuseppe; Mascolo, Maria Cristina; Vitale, Alessandro; Marino, Ottavio

    2010-08-01

    The microstructure evolution of lime putty upon aging was investigated by slaking quicklime (CaO) with an excess of water for 3, 12, 24, 36, 48 and 66 months. The as-obtained lime putties were characterized in the water retention and in the particle size distribution using the static laser scattering (SLS). The same lime putties, dehydrated by lyophilization, were also investigated in the pore size distribution by mercury intrusion porosimetry, in the surface area by the BET method and, finally, in particle morphology by scanning electron microscopy (SEM). The effect of the extended exposure of quicklime to water confirms a shape change from prismatic crystals of portlandite, Ca(OH) 2, into platelike ones. Simultaneously a growth of larger hexagonal crystals at the expense of the smallest ones (Ostwald ripening) favours a secondary precipitation of submicrometer platelike crystals of portlandite. The shape change and the broader particles size distribution of portlandite crystals upon aging seem to contribute to a better plasticity of lime putty.

  11. Stochastic Characterization of Cast Metal Microstructure

    SciTech Connect

    Steinzig, M.

    1999-06-01

    The major goal of this work is to provide a means to characterize the final structure of a metal that has solidified from a melt. The thermally controlled solidification of a binary alloy, nucleated at isolated sites, is described by the evolution of a probability distribution function (PDF). The relevant equation required for propagating the PDF is developed with variables for grain size and distance to nearest neighbor. The phenomena of nucleation, growth, and impingement of the grains are discussed, and used as the basis for developing rate equations that evolve the PDF. The complementary equations describing global heat and solute transfer are discussed, and coupled with the microstructure evolution equations for grain growth and PDF evolution. The full set of equations is solved numerically and results are compared with experimental data for the plutonium 1 weight percent gallium system. The three principal results of this work are: (1) The formulation of transient evolution equations for the PDF description of nucleation, growth, and impingement of a distribution of grain sizes and locations; (2) Solution of the equations to give a correlation for final average grain size as a function of material parameters, nucleation site density, and cooling rate; and (3) Solution of the equations for final distribution of grain size as a result of the initial random spatial distribution of nucleation sites.

  12. Chalcogenide-tellurite composite microstructured optical fibre

    NASA Astrophysics Data System (ADS)

    Kohoutek, T.; Duan, Z.; Kawashima, H.; Yan, X.; Suzuki, T.; Matsumoto, M.; Misumi, Takashi; Ohishi, Y.

    2012-02-01

    We report on fabrication a composite microstructured optical fibre composed of highly nonlinear chalcogenide Ge-Ga- Sb-S glass core and tellurite TeO2-ZnO-Li20-Bi2O3 glass clad. We aimed at obtaining more flattened chromatic dispersion for pumping chalcogenide glass based optical fibre by a pulse laser at current telecommunication wavelengths, i.e. λ = 1.35 - 1.7 μm, which is difficult to achieve by using a single material chalcogenide fibers due to their high refractive index (n > 2.1). A fibre design exploiting a composite of two glasses and one ring of the air holes brings similar options for tuning the fibre dispersion such as use of complex multi rings of air-holes approach. A good choice of glasses, allows for fabricating a composite chalcogenide-tellurite optical fibre benefiting from high nonlinearity of chalcogenide core glass but exploiting a tellurite glass technology and fibre drawing. In the paper, we discuss some aspects of CMOF design concerning current chalcogenide and tellurite glass choice. Also, we show the supercontinuum spectra recorded from current chalcogenide-tellurite CMOF pumped with a custom made femtosecond fibre laser at λ = 1.55 μm with the pulse duration of 400 fs.

  13. Structural materials: understanding atomic scale microstructures

    SciTech Connect

    Marquis, E A; Miller, Michael K; Blavette, D; Ringer, S. P.; Sudbrack, C; Smith, G.D.W.

    2009-01-01

    With the ability to locate and identify atoms in three dimensions, atom-probe tomography (APT) has revolutionized our understanding of structure-property relationships in materials used for structural applications. The atomic-scale details of clusters, second phases, and microstructural defects that control alloy properties have been investigated, providing an unprecedented level of detail on the origins of aging behavior, strength, creep, fracture toughness, corrosion, and irradiation resistance. Moreover, atomic-scale microscopy combined with atomistic simulation and theoretical modeling of material behavior can guide new alloy design. In this article, selected examples highlight how APT has led to a deeper understanding of materials structures and therefore properties, starting with the phase transformations controlling the aging and strengthening behavior of complex Al-, Fe-, and Ni-based alloys systems. The chemistry of interfaces and structural defects that play a crucial role in high-temperature strengthening, fracture, and corrosion resistance are also discussed, with particular reference to Zr- and Al-alloys and FeAl intermetallics.

  14. Microstructures of negative and positive azeotropes.

    PubMed

    Shephard, J J; Callear, S K; Imberti, S; Evans, J S O; Salzmann, C G

    2016-07-28

    Azeotropes famously impose fundamental restrictions on distillation processes, yet their special thermodynamic properties make them highly desirable for a diverse range of industrial and technological applications. Using neutron diffraction, we investigate the structures of two prototypical azeotropes, the negative acetone-chloroform and the positive benzene-methanol azeotrope. C-HO hydrogen bonding is the dominating interaction in the negative azeotrope but C-ClO halogen bonding contributes as well. Hydrogen-bonded chains of methanol molecules, which are on average longer than in pure methanol, are the defining structural feature of the positive azeotrope illustrating the fundamentally different local mixing in the two kinds of azeotropes. The emerging trend for both azeotropes is that the more volatile components experience the more pronounced structural changes in their local environments as the azeotropes form. The mixing of the acetone-chloroform azeotrope is essentially random above 20 Å, where the running Kirkwood-Buff integrals of our structural model converge closely to the ones expected from thermodynamic data. The benzene-methanol azeotrope on the other hand displays extended methanol-rich regions and consequently the running Kirkwood-Buff integrals oscillate up to at least 60 Å. Our study provides the first experimental insights into the microstructures of azeotropes and a direct link with their thermodynamic properties. Ultimately, this will provide a route for creating tailored molecular environments in azeotropes to improve and fine-tune their performances. PMID:27367534

  15. Microstructure and momentum transport in concentrated suspensions

    SciTech Connect

    Mondy, L.A.; Graham, A.L.; Brenner, H.

    1996-06-01

    This paper reviews several coupled theoretical and experimental investigations of the effect of microstructure on momentum transport in concentrated suspensions. An expression to predict the apparent suspension viscosity of mixtures of rods and spheres is developed and verified with falling-ball viscometry experiments. The effects of suspension-scale slip (relative to the bulk continuum) are studied with a sensitive spinning-ball rheometer, and the results are explained with a novel theoretical method. The first noninvasive, nuclear magnetic resonance imaging measurements of the evolution of velocity and concentration profiles in pressure-driven entrance flows of initially well mixed suspensions in a circular conduit are described, as well as more complex two-dimensional flows with recirculation, e.g. flow in a journal bearing. These data in nonhomogeneous flows and complementary three-dimensional video imaging of individual tracer particles in homogeneous flows are providing much needed information on the effects of flow on particle interactions and effective theological properties at the macroscale.

  16. Coating Microstructure-Property-Performance Issues

    SciTech Connect

    Terry C. Totemeier; Richard N. Wright

    2005-05-01

    Results of studies on the relationships between spray parameters and performance of thermally-sprayed intermetallic coatings for high-temperature oxidation and corrosion resistance are presented. Coating performance is being assessed by corrosion testing of free-standing coatings, thermal cycling of coating substrates, and coating ductility measurement. Coating corrosion resistance was measured in a simulated coal combustion gas environment (N2-CO-CO2-H2O-H2S) at temperatures from 500 to 800°C using thermo-gravimetric analysis (TGA). TGA testing was also performed on a typical ferritic-martensitic steel, austenitic stainless steel, and a wrought Fe3Al-based alloy for direct comparison to coating behavior. FeAl and Fe3Al coatings showed corrosion rates slightly greater than that of wrought Fe3Al, but markedly lower than the steels at all temperatures. The corrosion rates of the coatings were relatively independent of temperature. Thermal cycling was performed on coated 316SS and nickel alloy 600 substrates from room temperature to 800°C to assess the relative effects of coating microstructure, residual stress, and thermal expansion mismatch on coating cracking by thermal fatigue. Measurement of coating ductility was made by acoustic emission monitoring of coated 316SS tensile specimens during loading.

  17. Mechanocapillary forming of carbon nanotube microstructures

    NASA Astrophysics Data System (ADS)

    Hart, A. John

    2012-02-01

    The hierarchical structure and organization of filaments within both natural and synthetic materials can determine a wide variety of collective chemical and physical functionalities. Carbon nanotubes (CNTs) are known for their record properties, and densely packed CNTs are therefore expected to enable new materials having outstanding multifunctional performance. However, it remains a significant challenge to build highly ordered assembles of CNTs, and this challenge has largely limited the design and properties of macroscale CNT yarns and sheets, and CNT-based surfaces and interfaces. We have created a versatile technique called capillary forming to manipulate patterned vertically aligned (VA-) CNTs into diverse 3D microarchitectures, and to enable their integration in applications ranging from microsystems to macroscale functional films. Capillary forming relies on shape-directed capillary rise during solvent condensation, followed by evaporation-induced shrinkage. Three-dimensional transformations result from shrinkage of the vapor-liquid-solid interface and the resulting heterogeneous strain distribution in the microstructures. A portfolio of microscale CNT assemblies with highly ordered internal structure and freeform geometries including straight, bent, folded and helical profiles, are fabricated using capillary forming. The mechanical stiffness and electrical conductivity of capillary formed CNT micropillars are 5 GPa and 10^4 S/m respectively. These values are at least hundred-fold higher than as-grown CNT forests and exceed the properties of typical microfabrication polymers. Finally, the potential applications of these structures are demonstrates as vertical microsprings with geometrically tunable compliance, and hydrogel-driven microtransducers.

  18. Analysis and control of microstructure in binary alloys

    NASA Astrophysics Data System (ADS)

    Lee, Kyuyong

    When metallic alloys solidify, various microstructures form inside the alloys. Most solidified alloys have a polycrystalline structure, which is an assembly of crystalline grains with boundaries between any two grains. Each grain is a single crystal with a unique crystalline orientation. Many physical properties of polycrystalline alloys are determined by the arrangement of these grains and grain boundaries. During solidification of a single crystal, microstructures with even smaller microscopic lengthscales form, such as dendritic and eutectic structures. The physical properties of single crystal alloys are largely influenced by the lengthscales of these structures. Therefore, the understanding and control of microstructure formation in solidification is important in order to achieve desired properties. Microstructures form while the system is not in equilibrium. What microstructures form is not based on minimization of free energy of the system, but depends on the dynamics of the solidification process, which is the focus of our study. We used an alloy model system, succinonitrile-coumarin152 (SCN-C152), to experimentally investigate dynamic selection and control of grain boundary structures and dendritic structures in binary alloys. We found that in a temperature gradient the grain boundaries drift toward the high temperature region in addition to the migration due to grain coarsening. We show how we can control grain boundary orientations by generating local temperature gradient through UV or laser heatings. We show that perturbations also permit accurate control of the microstructure within a single crystal during the directional solidification process. Dendritic patterns can be controlled either by guiding the initial formation of the pattern or by triggering subcritical transitions between stable microstructures. We also investigated the role of surface tension anisotropy on the stability of cellular/dendritic arrays using three crystals of different growth

  19. Nonlinear mesomechanics of composites with periodic microstructure

    NASA Technical Reports Server (NTRS)

    Walker, Kevin P.; Jordan, Eric H.; Freed, Alan D.

    1989-01-01

    This work is concerned with modeling the mechanical deformation or constitutive behavior of composites comprised of a periodic microstructure under small displacement conditions at elevated temperature. A mesomechanics approach is adopted which relates the microimechanical behavior of the heterogeneous composite with its in-service macroscopic behavior. Two different methods, one based on a Fourier series approach and the other on a Green's function approach, are used in modeling the micromechanical behavior of the composite material. Although the constitutive formulations are based on a micromechanical approach, it should be stressed that the resulting equations are volume averaged to produce overall effective constitutive relations which relate the bulk, volume averaged, stress increment to the bulk, volume averaged, strain increment. As such, they are macromodels which can be used directly in nonlinear finite element programs such as MARC, ANSYS and ABAQUS or in boundary element programs such as BEST3D. In developing the volume averaged or efective macromodels from the micromechanical models, both approaches will require the evaluation of volume integrals containing the spatially varying strain distributions throughout the composite material. By assuming that the strain distributions are spatially constant within each constituent phase-or within a given subvolume within each constituent phase-of the composite material, the volume integrals can be obtained in closed form. This simplified micromodel can then be volume averaged to obtain an effective macromodel suitable for use in the MARC, ANSYS and ABAQUS nonlinear finite element programs via user constitutive subroutines such as HYPELA and CMUSER. This effective macromodel can be used in a nonlinear finite element structural analysis to obtain the strain-temperature history at those points in the structure where thermomechanical cracking and damage are expected to occur, the so called damage critical points of

  20. Microstructural Evolution Based on Fundamental Interfacial Properties

    SciTech Connect

    A. D. Rollett; D. J. Srolovitz; A. Karma

    2003-07-11

    This first CMSN project has been operating since the summer of 1999. The main achievement of the project was to bring together a community of materials scientists, physicists and mathematicians who share a common interest in the properties of interfaces and the impact of those properties on microstructural evolution. Six full workshops were held at Carnegie Mellon (CMU), Northwestern (NWU), Santa Fe, Northeastern University (NEU), National Institute for Standards and Technology (NIST), Ames Laboratory, and at the University of California in San Diego (UCSD) respectively. Substantial scientific results were obtained through the sustained contact between the members of the project. A recent issue of Interface Science (volume 10, issue 2/3, July 2002) was dedicated to the output of the project. The results include: the development of methods for extracting anisotropic boundary energy and mobility from molecular dynamics simulations of solid/liquid interfaces in nickel; the extraction of anisotropic energies and mobilities in aluminum from similar MD simulations; the application of parallel computation to the calculation of interfacial properties; the development of a method to extract interfacial properties from the fluctuations in interface position through consideration of interfacial stiffness; the use of anisotropic interface properties in studies of abnormal grain growth; the discovery of abnormal grain growth from random distributions of orientation in subgrain networks; the direct comparison at the scale of individual grains between experimentally observed grain growth and simulations, which confirmed the importance of including anisotropic interfacial properties in the simulations; the classification of a rich variety of dendritic morphologies based on slight variations in the anisotropy of the solid-liquid interface; development of phase field methods that permit both solidification and grain growth to be simulated within the same framework.

  1. Densification, microstructure and strength evolution in sintering

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoping

    2000-10-01

    Powder metallurgy has the ability to fabricate high quality, complex components to close tolerances in an economical manner. In many applications, a high sintered density is desirable for an improved performance. However, sintering to a high density demands a large shrinkage, often resulting in difficulties with dimensional control. Recent studies indicate the occurrence of a sufficient densification requires a low in situ strength at high sintering temperatures. On the other hand, the low in situ strength often leads to component's distortion in response to the external forces, such as gravity. Unfortunately, lack of knowledge on strength evolution in sintering has been a major challenge to achieve an optimized combination of densification and shape retention. Therefore, the present study investigates strength evolution in sintering and the effects of processing factors. Experiments are performed on prealloyed bronze and elemental mixture of Fe-2Ni powders. For the bronze, a loose casting method is used to fabricate transverse rupture bars, while bars are injection molded for the Fe-2Ni. The in situ transverse rupture strength is measured using the Penn State Flaming Tensile Tester. Experimental results indicate a dependence of densification and strength on sintering temperature. High temperatures enhance densification and interparticle bonding, resulting in strong sintered structures. However, a low in situ strength at high test temperatures indicates the dominance of thermal softening. A strength model combining sintering theories and microstructural parameters is developed to predict both the in situ strength and the post-sintering strength. The model demonstrates the strength of the sintered materials depends on the inherent material strength, the square of neck size ratio, sintered density, and thermal softening. The model is verified by comparison of model predictions with experimental data of the bronze and Fe-2Ni. Compared to prior strength models, this

  2. Dislocation Microstructures in Experimentally Deformed wet Olivine

    NASA Astrophysics Data System (ADS)

    Sharp, T. G.; Jung, H.; Karato, S.

    2002-12-01

    Seismic anisotropy in the upper mantle is generally considered to be the result of lattice preferred orientations (LPOs) of olivine as a result of mantle flow. Therefore seismic anisotropy in the upper mantle can be used to probe fabrics and therefore flow directions. Jung and Karato (2001) have demonstrated that fabrics developed in experimentally deformed olivine are dependent on H2O fugacity and stress. Fabric type C, which develops at moderate experimental stresses and high H2O fugacities, has [001] subparallel to the slip direction and (100) subparallel to the shear plane. Fabric type B, which develops at high stresses and high H2O fugacities has [001] subparallel to the slip direction and (010) subparallel to the shear plane. To investigate the role of H2O in olivine fabric transitions, we are using high-resolution and conventional transmission electron microscopy (HRTEM and TEM) to characterize the dislocation microstructures and core structures in experimentally deformed samples of Fabric types B and C. Initial results for Fabric type C (sample JK11 of Jung and Karato, 2001) show a dominance of mixed-character and screw dislocations with Burgers vectors b = [001]. This Burgers vector, combined with the (100) being subparallel to the shear plane, is consistent with the (100)[001] slip system being dominant in the C-type fabric. This slip system, which is of minor importance in dry olivine, may be favored in wet samples by changes in the dislocation core structure. We are currently using HRTEM imaging to characterize the dislocation core structures in deformed samples with type C and type B fabrics.

  3. Microstructural aspects in Inconel X-750

    SciTech Connect

    Sinha, A.K.

    1984-01-01

    The precipitation hardened Inconel X-750 is extensively used in both PWR and BWR as bolts, pins, spring components, etc., mainly because of this alloy's excellent high temperature strength and good oxidation and corrosion resistance. However, this alloy has experienced some intergranular stress corrosion cracking. It has been reported that the SCC resistance of Inconel X-750 can be improved by direct aging in the precipitation regime of 704 to 871/sup 0/C. Therefore, the microstructural changes that occur when Inconel X-750 is thermally treated between 704/sup 0/C and 871/sup 0/C for up to 200 hours following a 2-hour solution anneal at 1075/sup 0/C, or 1149/sup 0/C, or 1204/sup 0/C has been studied. Optical, transmission electron, and scanning and Auger electron microscopy were used in order to establish the most appropriate aging sequence for this alloy which will produce a suitable precipitation morphology and distribution of secondary carbides and intermetallics. The precipitation morphology and analysis of ..gamma..' (L1/sub 2/), secondary M/sub 23/C/sub 6/ and primary MC carbide phases for each heat treatment cycle were studied using TEM techniques. The coarsening kinetics of the ..gamma..' particle growth obeyed the time-law prediction of Lipshitz-Slazor-Wagner theory of diffusion controlled growth at all aging temperatures. The ..gamma..' precipitate lost coherency by the nucleation of dislocation loops within the precipitate, the interaction of dislocation at the interface and attraction of matrix dislocations to the particle/matrix interface.

  4. Spontaneous evolution of microstructure in materials

    NASA Astrophysics Data System (ADS)

    Kirkaldy, J. S.

    1993-08-01

    Microstructures which evolve spontaneously from random solutions in near isolation often exhibit patterns of remarkable symmetry which can only in part be explained by boundary and crystallographic effects. With reference to the detailed experimental record, we seek the source of causality in this natural tendency to constructive autonomy, usually designated as a principle of pattern or wavenumber selection in a free boundary problem. The phase field approach which incorporates detailed boundary structure and global rate equations has enjoyed some currency in removing internal degrees of freedom, and this will be examined critically in reference to the migration of phase-antiphase boundaries produced in an order-disorder transformation. Analogous problems for singular interfaces including solute trapping are explored. The microscopic solvability hypothesis has received much attention, particularly in relation to dendrite morphology and the Saffman-Taylor fingering problem in hydrodynamics. A weak form of this will be illustrated in relation to local equilibrium binary solidification cells which renders the free boundary problem unique. However, the main thrust of this article concerns dynamic configurations at anisotropic singular interfaces and the related patterns of eutectoid(ic)s, nonequilibrium cells, cellular dendrites, and Liesegang figures where there is a recognizable macroscopic phase space of pattern fluctuations and/or solitons. These possess a weakly defective stability point and thereby submit to a statistical principle of maximum path probability and to a variety of corollary dissipation principles in the determination of a unique average patterning behavior. A theoretical development of the principle based on Hamilton's principle for frictional systems is presented in an Appendix. Elements of the principles of scaling, universality, and deterministic chaos are illustrated.

  5. Femtosecond laser microstructuring of zirconia dental implants.

    PubMed

    Delgado-Ruíz, R A; Calvo-Guirado, J L; Moreno, P; Guardia, J; Gomez-Moreno, G; Mate-Sánchez, J E; Ramirez-Fernández, P; Chiva, F

    2011-01-01

    This study evaluated the suitability of femtosecond laser for microtexturizing cylindrical zirconia dental implants surface. Sixty-six cylindrical zirconia implants were used and divided into three groups: Control group (with no laser modification), Group A (microgropored texture), and Group B (microgrooved texture). Scanning electron microscopy observation of microgeometries revealed minimal collateral damage of the original surface surrounding the treated areas. Optical interferometric profilometry showed that ultrafast laser ablation increased surface roughness (R(a), R(q), R(z), and R(t)) significantly for both textured patterns from 1.2 x to 6 x-fold when compared with the control group (p < 0.005). With regard to chemical composition, microanalysis revealed a significant decrease of the relative content of contaminants like carbon (Control 19.7% ± 0.8% > Group B 8.4% ± 0.42% > Group A 1.6% ± 0.35%) and aluminum (Control 4.3% ± 0.9% > Group B 2.3% ± 0.3% > Group A 1.16% ± 0.2%) in the laser-treated surfaces (p < 0.005). X-ray diffraction and Raman spectra analysis were carried out to investigate any change in the crystalline structure induced by laser processing. The original predominant tetragonal phase of zirconia was preserved, whereas the traces of monoclinic phase present in the treated surfaces were reduced (Control 4.32% > Group A 1.94% > Group B 1.72%) as the surfaces were processed with ultrashort laser pulses. We concluded that femtosecond laser microstructuring offers an interesting alternative to conventional surface treatments of zirconia implants as a result of its precision and minimal damage of the surrounding areas.

  6. Ferrofluids: Thermophysical properties and formation of microstructures

    NASA Astrophysics Data System (ADS)

    Mousavi Khoeini, NargesSadat Susan

    This work is a combined effort of experimental and theoretical studies toward better understanding the structural and physical properties of aqueous ferrofluids containing nano-sized magnetite (iron oxide magnetic particles) of about 10nm. Ferrofluids have attracted remarkable attention mainly because their properties can be controlled by means of an externally applied magnetic field. The dispersion of nano-sized magnets in a carrier liquid exhibits superparamagnetic behaviour while retaining its fluid properties. The interplay between hydrodynamic and magnetic phenomena has made ferrofluids an extremely promising and useful tool in wide spectra of applications, from technical applications to biomedical ones. In the presence of a magnetic field, magnetic moments of the nanomagnets suspended in the host liquid are aligned toward the field direction and begin to form microstructures such as short chains, strands and long stripes. As this process advances the microstructures may collapse into bundles and thick chains and form macrostructures. Upon the removal of the magnetic field, nanoparticles will be homogeneously redistributed throughout the sample due to thermal agitation. Zero-field structures, and especially the field-induced assembly of magnetic nanoparticles, are primarily responsible for the change in physical properties of ferrofluids, including thermophysical, optical, rheological, and magnetization properties. Because of the field-induced assembly of magnetic nanoparticles in the field direction, ferrofluids become strongly anisotropic and as a result, ferrofluids can significantly enhance directional heat transfer in a thermal system. Thermophysical properties of a ferrofluid are important in studying heat transfer processes in any thermal application, making the study of their behavior a necessity. Taking into account the influence of the formation and growth of microstructures on change in properties of ferrofluids, one can find the significance of

  7. Carbon related defects in irradiated silicon revisited.

    PubMed

    Wang, H; Chroneos, A; Londos, C A; Sgourou, E N; Schwingenschlögl, U

    2014-05-09

    Electronic structure calculations employing hybrid functionals are used to gain insight into the interaction of carbon (C) atoms, oxygen (O) interstitials, and self-interstitials in silicon (Si). We calculate the formation energies of the C related defects Ci(SiI), CiOi, CiCs, and CiOi(SiI) with respect to the Fermi energy for all possible charge states. The Ci(SiI)(2+) state dominates in almost the whole Fermi energy range. The unpaired electron in the CiOi(+) state is mainly localized on the C interstitial so that spin polarization is able to lower the total energy. The three known atomic configurations of the CiCs pair are reproduced and it is demonstrated that hybrid functionals yield an improved energetic order for both the A and B-types as compared to previous theoretical studies. Different structures of the CiOi(SiI) cluster result for positive charge states in dramatically distinct electronic states around the Fermi energy and formation energies.

  8. Nucleation mechanisms of refined alpha microstructure in beta titanium alloys

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng

    Due to a great combination of physical and mechanical properties, beta titanium alloys have become promising candidates in the field of chemical industry, aerospace and biomedical materials. The microstructure of beta titanium alloys is the governing factor that determines their properties and performances, especially the size scale, distribution and volume fraction of precipitate phase in parent phase matrix. Therefore in order to enhance the performance of beta titanium alloys, it is critical to obtain a thorough understanding of microstructural evolution in beta titanium alloys upon various thermal and/or mechanical processes. The present work is focusing on the study of nucleation mechanisms of refined alpha microstructure and super-refined alpha microstructure in beta titanium alloys in order to study the influence of instabilities within parent phase matrix on precipitates nucleation, including compositional instabilities and/or structural instabilities. The current study is primarily conducted in Ti-5Al-5Mo-5V-3Cr (wt%, Ti-5553), a commercial material for aerospace application. Refined and super-refined precipitates microstructure in Ti-5553 are obtained under specific accurate temperature controlled heat treatments. The characteristics of either microstructure are investigated in details using various characterization techniques, such as SEM, TEM, STEM, HRSTEM and 3D atom probe to describe the features of microstructure in the aspect of morphology, distribution, structure and composition. Nucleation mechanisms of refined and super-refined precipitates are proposed in order to fully explain the features of different precipitates microstructure in Ti-5553. The necessary thermodynamic conditions and detailed process of phase transformations are introduced. In order to verify the reliability of proposed nucleation mechanisms, thermodynamic calculation and phase field modeling simulation are accomplished using the database of simple binary Ti-Mo system

  9. The Effect of Microstructure On Transport Properties of Porous Electrodes

    NASA Astrophysics Data System (ADS)

    Peterson, Serena W.

    The goal of this work is to further understand the relationships between porous electrode microstructure and mass transport properties. This understanding allows us to predict and improve cell performance from fundamental principles. The investigated battery systems are the widely used rechargeable Li-ion battery and the non-rechargeable alkaline battery. This work includes three main contributions in the battery field listed below. Direct Measurement of Effective Electronic Transport in Porous Li-ion Electrodes. An accurate assessment of the electronic conductivity of electrodes is necessary for understanding and optimizing battery performance. The bulk electronic conductivity of porous LiCoO2-based cathodes was measured as a function of porosity, pressure, carbon fraction, and the presence of an electrolyte. The measurements were performed by delamination of thin-film electrodes from their aluminum current collectors and by use of a four-line probe. Imaging and Correlating Microstructure To Conductivity. Transport properties of porous electrodes are strongly related to microstructure. An experimental 3D microstructure is needed not only for computation of direct transport properties, but also for a detailed electrode microstructure characterization. This work utilized X-ray tomography and focused ion beam (FIB)/scanning electron microscopy (SEM) to obtain the 3D structures of alkaline battery cathodes. FIB/SEM has the advantage of detecting carbon additives; thus, it was the main tomography tool employed. Additionally, protocols and techniques for acquiring, processing and segmenting series of FIB/SEM images were developed as part of this work. FIB/SEM images were also used to correlate electrodes' microstructure to their respective conductivities for both Li-ion and alkaline batteries. Electrode Microstructure Metrics and the 3D Stochastic Grid Model. A detailed characterization of microstructure was conducted in this work, including characterization of the

  10. Simulated evolution process of core-shell microstructures

    NASA Astrophysics Data System (ADS)

    Qin, Tao; Wang, Haipeng; Wei, Bingbo

    2007-08-01

    The evolution process of core-shell microstructures formed in monotectic alloys under the space environment condition was investigated by the numerical simulation method. In order to account for the effect of surface segregation on phase separation, Model H was modified by introducing a surface free energy term into the total free energy of alloy droplet. Three Fe-Cu alloys were taken as simulated examples, which usually exhibit metastable phase separation in undercooled and microgravity states. It was revealed by the dynamic simulation process that the formation of core-shell microstructures depends mainly on surface segregation and Marangoni convection. The phase separation of Fe65Cu35 alloy starts from a dispersed structure and gradually evolves into a triple-layer core-shell micro-structure. Similarly, Fe50Cu50 alloy experiences a structural evolution process of “bicontinuous phase → quadruple-layer core-shell → triple-layer core-shell”, while the microstructures of Fe35Cu65 alloy transfer from the dispersed structure into the final double-layer core-shell morphology. The Cu-rich phase always forms the outer layer because of surface segregation, whereas the internal microstructural evolution is controlled mainly by the Marangoni convection resulting from the temperature gradient.

  11. Microstructure-based modelling of multiphase materials and complex structures

    NASA Astrophysics Data System (ADS)

    Werner, Ewald; Wesenjak, Robert; Fillafer, Alexander; Meier, Felix; Krempaszky, Christian

    2016-09-01

    Micromechanical approaches are frequently employed to monitor local and global field quantities and their evolution under varying mechanical and/or thermal loading scenarios. In this contribution, an overview on important methods is given that are currently used to gain insight into the deformational and failure behaviour of multiphase materials and complex structures. First, techniques to represent material microstructures are reviewed. It is common to either digitise images of real microstructures or generate virtual 2D or 3D microstructures using automated procedures (e.g. Voronoï tessellation) for grain generation and colouring algorithms for phase assignment. While the former method allows to capture exactly all features of the microstructure at hand with respect to its morphological and topological features, the latter method opens up the possibility for parametric studies with respect to the influence of individual microstructure features on the local and global stress and strain response. Several applications of these approaches are presented, comprising low and high strain behaviour of multiphase steels, failure and fracture behaviour of multiphase materials and the evolution of surface roughening of the aluminium top metallisation of semiconductor devices.

  12. Dry friction of microstructured polymer surfaces inspired by snake skin

    PubMed Central

    Heepe, Lars; Fadeeva, Elena; Gorb, Stanislav N

    2014-01-01

    Summary The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae). Frictional properties of snake-inspired microstructured polymer surface (SIMPS) made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients measured along the microstructure were about 33% lower than those measured in the opposite direction. Frictional coefficients were compared to those obtained on other types of surface microstructure: (i) smooth ones, (ii) rough ones, and (iii) ones with periodic groove-like microstructures of different dimensions. The results demonstrate the existence of a common pattern of interaction between two general effects that influence friction: (1) molecular interaction depending on real contact area and (2) the mechanical interlocking of both contacting surfaces. The strongest reduction of the frictional coefficient, compared to the smooth reference surface, was observed at a medium range of surface structure dimensions suggesting a trade-off between these two effects. PMID:25161844

  13. In-situ Characterization of Cast Stainless Steel Microstructures

    SciTech Connect

    Ramuhalli, Pradeep; Meyer, Ryan M.; Cinson, Anthony D.; Moran, Traci L.; Prowant, Matthew S.; Watson, Bruce E.; Mathews, Royce; Harris, Robert V.; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    Cast austenitic stainless steel (CASS) was commonly used in selected designs of nuclear power reactor systems for corrosion resistance and enhanced durability in service. CASS materials are generally coarse-grained and elastically anisotropic in nature, and are consequently difficult to inspect ultrasonically, largely due to detrimental effects of ultrasonic wave interactions with the coarse-grain microstructures. To address the inspection needs for these materials, new approaches that are robust to these phenomena are being developed. However, to enhance the probability of detecting flaws, knowledge of the microstructure and the corresponding acoustic properties of the material may be required. This paper discusses the application of ultrasonic backscatter measurement methods for classifying the microstructure of CASS components, when making measurements from the outside surface of the pipe or component. Results to date from laboratory experiments demonstrate the potential of these measurements to classify the material type of CASS for two homogeneous microstructures—equiaxed-grain material or columnar-grain material. Measurements on mixed or banded microstructures also show correlation with the estimated volume-fraction of columnar grains in the material. However, several operational issues will need to be addressed prior to applying this method for in-situ characterization of CASS microstructure.

  14. Low-temperature intracrystalline deformation microstructures in quartz

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2015-02-01

    A review of numerous genetic interpretations of the individual low-temperature intracrystalline deformation microstructures in quartz shows that there is no consensus concerning their formation mechanisms. Therefore, we introduce a new, purely descriptive terminology for the three categories of intracrystalline deformation microstructures formed in the low-quartz stability field: fine extinction bands (FEB), wide extinction bands (WEB) and localised extinction bands (LEB). The localised extinction bands are further subdivided into blocky (bLEB), straight (sLEB) and granular (gLEB) morphological types. A detailed polarised light microscopy study of vein-quartz from the low-grade metamorphic High-Ardenne slate belt (Belgium) further reveals a series of particular geometric relationships between these newly defined intracrystalline deformation microstructures. These geometric relationships are largely unrecognised or underemphasised in the literature and need to be taken into account in any future genetic interpretation. Based on our observations and a critical assessment of the current genetic models, we argue that the interpretation of the pertinent microstructures in terms of ambient conditions and deformation history should be made with care, as long as the genesis of these microstructures is not better confined.

  15. Scales microstructure of snakes from the Egyptian area.

    PubMed

    Allam, Ahmed A; Abo-Eleneen, Rasha E

    2012-11-01

    The morphology of many organisms seems to be related to the environments in which they live. Many snakes are so similar in their morphological patterns that it becomes quite difficult to distinguish any adaptive divergence that may have occurred. Many authors have suggested that the microstructure of the reptile's scales has important functional value. Herein, we investigate variations on the micromorphology of the external surface of dorsal scales on the head, the mid-body region (trunk), and the tail of Rhomphotyphlops braminus (Typhlopidae), Eryx jaculus (Boidae), Psammophis sibilans (Colubridae), Naja haje (Elapidae) and Echis carinatus (Viperidae). The specimens were metallized and analyzed by scanning electron microscopy. All species displayed unique dorsal scale surface microstructures of the investigated regions. The microstructural pattern of the scales of head, trunk, and tail differs in different species of these snakes. In conclusion, we detected ecomorphologic relationships between extant dorsal scale microstructures and snake microhabitat, enabling us to hypothesize that environmental pressures have significant influences not only on these animals' macrostructure, but also on its microstructure as well. PMID:23106563

  16. Microstructure characterization and thermal behavior around crack tip under electropulsing

    NASA Astrophysics Data System (ADS)

    Wei, Shaopeng; Wang, Gang; Deng, Dewei; Rong, Yiming

    2015-10-01

    Electropulsing treatment is a practical method to arrest crack propagation. The microstructure characterization and research on the forming mechanism are difficult due to the small affected area (0.01-1 mm2), high-temperature gradient (102 K/mm) and change rate (104-107 K/s). In this paper, the 1045 steel plate with a preexisting crack subjected to high-voltage pulses was investigated. The surface morphologies and microstructure around the crack tip were observed using optical microscopy and scanning electron microscopy. Experimental results showed that the material around the tip melted, splashed and blunted under electropulsing treatment. The microstructure around the molten hole was divided into four distinct regions. An electro-thermal coupled model considering material ejection, cavity formation, current oscillation and temperature-dependent material properties was proposed to investigate the dynamic formation process of molten hole and gradient microstructure. The uneven temperature distribution, high cooling rate and insufficient carbon diffusion led to the formation of gradient microstructure.

  17. Microstructure synthesis control of biological polyhydroxyalkanoates with mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pederson, Erik Norman

    Polyhydroxyalkanoates (PHA's) are a class of biologically produced polymers, or plastic, that is synthesized by various microorganisms. PHA's are made from biorenewable resources and are fully biodegradable and biocompatible, making them an environmentally friendly green polymer. A method of incorporating polymer microstructure into the PHA synthesized in Ralstonia eutropha was developed. These microstructures were synthesized with polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) as the polymer domains. To synthesize the PHB V copolymer, the additional presence of valerate was required. To control valerate substrate additions to the bioreactor, an off-gas mass spectrometry (MS) feedback control system was developed. Important process information including the cell physiology, growth kinetics, and product formation kinetics in the bioreactor was obtained with MS and used to control microstructure synthesis. The two polymer microstructures synthesized were core-shell granules and block copolymers. Block copolymers control the structure of the individual polymer chains while core-shell granules control the organization of many polymer chains. Both these microstructures result in properties unattainable by blending the two polymers together. The core-shell structures were synthesized with controlled domain thickness based on a developed model. Different block copolymers compositions were synthesized by varying the switching time of the substrate pulses responsible for block copolymer synthesis. The block copolymers were tested to determine their chemical properties and cast into films to determine the materials properties. These block copolymer films possessed new properties not achieved by copolymers or blends of the two polymers.

  18. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Smith, Reginald W.

    1999-01-01

    The long term goal of this project is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. Prior experimental results on the influence of microgravity on the microstructure of fibrous eutectics have been contradictory. Theoretical work at Clarkson University showed that buoyancy-driven convection in the vertical Bridgman configuration is not vigorous enough to alter the concentration field in the melt sufficiently to cause a measurable change in microstructure when the eutectic grows at minimum supercooling. Currently, there are four other hypotheses that might explain the observed changes in microstructure of fibrous eutectics caused by convection: (1) Disturbance of the concentration boundary layer arising from an off-eutectic melt composition and growth at the extremum; (2) Disturbance of the concentration boundary layer of a habit-modifying impurity; (3) Disturbance of the concentration boundary layer arising from an off-eutectic interfacial composition due to non-extremum growth; and (4) A fluctuating freezing rate combined with differences in the kinetics of fiber termination and fiber formation. We favor the last of these hypotheses. Thus, the primary objective of the present grant is to determine experimentally and theoretically the influence of a periodically varying freezing rate on eutectic solidification. A secondary objective is to determine the influence of convection on the microstructure of at least one other eutectic alloy that might be suitable for flight experiments.

  19. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.

  20. Microstructural analysis of the 2195 aluminum-lithium alloy welds

    NASA Technical Reports Server (NTRS)

    Talia, George E.

    1993-01-01

    The principal objective of this research was to explain a tendency of 2195 Al-Li alloy to crack at elevated temperature during welding. Therefore, a study was made on the effect of welding and thermal treatment on the microstructure of Al-Li Alloy 2195. The critical roles of precipitates, boundaries, phases, and other features of the microstructure were inferred from the crack propagation paths and the morphology of fracture surface of the alloy with different microstructures. Particular emphasis was placed on the microstructures generated by the welding process and the mechanisms of crack propagation in such structures. Variation of the welding parameters and thermal treatments were used to alter the micro/macro structures, and they were characterized by optical and scanning electron microscopy. A theoretical model is proposed to explain changes in the microstructure of welded material. This model proposes a chemical reaction in which gases from the air (i.e., nitrogen) release hydrogen inside the alloy. Such a reaction could generate large internal stresses capable to induce porosity and crack-like delamination in the material.

  1. Local excitation and collection in polymeric fluorescent microstructures

    NASA Astrophysics Data System (ADS)

    Henrique, Franciele Renata; Mendonca, Cleber Renato

    2016-04-01

    Integrated photonics has gained attention in recent years due to its wide range of applications which span from biology to optical communications. The use of polymer-based platforms for photonic devices is of great interest because organic compounds can be easily incorporated to polymers, enabling modifications to the system physical properties. The two-photon polymerization technique has emerged as an interesting tool for the production of three-dimensional polymeric microstructures. However, for their further incorporation in photonic devices it is necessary to develop methods to perform optical excitation and signal collection on such microstructures. With such purpose, we demonstrate approaches to perform local excitation and collection in polymeric microstructures doped with fluorescent dyes, employing tapered fibers. The obtained results indicate that fiber tapers are suitable to couple light in and out of fluorescent polymeric microstructures, paving the way for their incorporation in photonic devices. We also show that microstructures doped with more than one dye can be used as built-in broadband light sources to photonic circuits and their emission spectrum can be tuned by the right choice of the excitation position.

  2. Microstructure development in viscoelastic fluid systems

    NASA Astrophysics Data System (ADS)

    Li, Huaping

    This thesis deals with the mechanisms of microstructure development in polymer blends. Much work has been performed on the breakup process of immiscible systems where the dispersed phase is suspended inside another matrix. The fluids used were polymer melts or model viscoelastic fluids, and the processing flows were model shear flow or processing flows seen in industry. It is found that in industrial extruders or batch mixers, the morphology of the dispersed polymer evolves from pellets to films, and subsequently to fibers and particles. In this thesis, it is demonstrated based on force analysis that the in-situ graft reactive compatibilization facilitates breakup of the dispersed phase by suppressing slip at the interface of the dispersed phase and matrix phase. The morphology development of polymer blends in industrial mixers was simulated by performing experiments of model viscoelastic drop deformation and breakup under shear flow. Two distinct modes of drop deformation and breakup were observed. Namely, viscoelastic drops can elongate and breakup either in (1) the flow direction or (2) the vorticity direction. The first normal stress difference N1 plays a decisive role in the conditions and modes of drop breakup. Drop size is an important factor which determines to a great extent the mode of drop breakup and the critical point when the drop breakup mechanism changes. Small drops break along the vorticity direction, whereas large drops break in the flow direction. A dramatic change in the critical shear rate was found when going from one breakup mode to another. Polymer melts processed under shear flow present different morphology development mechanisms: films, fibers, vorticity elongation and surface instability. The mechanisms depend greatly on the rheological properties of both the dispersed and matrix phases, namely the viscosity ratio and elasticity ratio. High viscosity ratio and high elasticity ratio result elongation of the dispersed phase in the

  3. Micromechanical evaluation of bone microstructures under load

    NASA Astrophysics Data System (ADS)

    Mueller, Ralph; Boesch, Tobias; Jarak, Drazen; Stauber, Martin; Nazarian, Ara; Tantillo, Michelle; Boyd, Steven

    2002-01-01

    Many bones within the axial and appendicular skeleton are subjected to repetitive, cyclic loading during the course of ordinary daily activities. If this repetitive loading is of sufficient magnitude or duration, fatigue failure of the bone tissue may result. In clinical orthopedics, trabecular fatigue fractures are observed as compressive stress fractures in the proximal femur, vertebrae, calcaneus and tibia, and are often preceded by buckling and bending of microstructural elements. However, the relative importance of bone density and architecture in the aetiology of these fractures is poorly understood. The aim of the study was to investigate failure mechanisms of 3D trabecular bone using micro-computed tomography (mCT). Because of its nondestructive nature, mCT represents an ideal approach for performing not only static measurements of bone architecture but also dynamic measurements of failure initiation and propagation as well as damage accumulation. For the purpose of the study, a novel micro-compression device was devised to measure loaded trabecular bone specimens directly in a micro-tomographic system. A 3D snapshot of the structure under load was taken for each load step in the mCT providing 34 mm nominal resolution. An integrated mini-button load cell in the compression device combined with the displacement computed directly from the mCT scout view was used to record the load-displacement curve. From the series of 3D images, failure of the trabecular architecture could be observed, and in a rod-like type of architecture it could be described by an initial buckling and bending of structural elements followed by a collapse of the overloaded trabeculae. A computational method was developed to quantify individual trabecular strains during failure. The four main steps of the algorithm were (i) sequential image alignment, (ii) identification of landmarks (trabecular nodes), (iii) determine nodal connectivity, and (iv) to compute the nodal displacements and

  4. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    PubMed Central

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  5. Limiting factors in the production of deep microstructures

    NASA Astrophysics Data System (ADS)

    Tolfree, David W. L.; O'Neill, William; Tunna, Leslie; Sutcliffe, Christopher

    1999-10-01

    Microsystems increasingly require precision deep microstructures that can be cost-effectively designed and manufactured. New products must be able to meet the demands of the rapidly growing markets for microfluidic, micro- optical and micromechanical devices in industrial sectors which include chemicals, pharmaceuticals, biosciences, medicine and food. The realization of such products, first requires an effective process to design and manufacture prototypes. Two process methods used for the fabrication of high aspect-ratio microstructures are based on X-ray beam lithography with electroforming processes and direct micromachining with a frequency multiplied Nd:YAG laser using nanosecond pulse widths. Factors which limit the efficiency and precision obtainable using such processes are important parameters when deciding on the best fabrication method to use. A basic microstructure with narrow channels suitable for a microfluidic mixer have been fabricated using both these techniques and comparisons made of the limitations and suitability of the processes in respect of fast prototyping and manufacture or working devices.

  6. Composite materials for thermal energy storage: enhancing performance through microstructures.

    PubMed

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  7. Computational methods for coupling microstructural and micromechanical materials response simulations

    SciTech Connect

    HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.; FANG,HUEI ELIOT; RINTOUL,MARK DANIEL; VEDULA,VENKATA R.; GLASS,S. JILL; KNOROVSKY,GERALD A.; NEILSEN,MICHAEL K.; WELLMAN,GERALD W.; SULSKY,DEBORAH; SHEN,YU-LIN; SCHREYER,H. BUCK

    2000-04-01

    Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.

  8. Fog collecting biomimetic surfaces: Influence of microstructure and wettability.

    PubMed

    Azad, M A K; Ellerbrok, D; Barthlott, W; Koch, K

    2015-01-19

    We analyzed the fog collection efficiency of three different sets of samples: replica (with and without microstructures), copper wire (smooth and microgrooved) and polyolefin mesh (hydrophilic, superhydrophilic and hydrophobic). The collection efficiency of the samples was compared in each set separately to investigate the influence of microstructures and/or the wettability of the surfaces on fog collection. Based on the controlled experimental conditions chosen here large differences in the efficiency were found. We found that microstructured plant replica samples collected 2-3 times higher amounts of water than that of unstructured (smooth) samples. Copper wire samples showed similar results. Moreover, microgrooved wires had a faster dripping of water droplets than that of smooth wires. The superhydrophilic mesh tested here was proved more efficient than any other mesh samples with different wettability. The amount of collected fog by superhydrophilic mesh was about 5 times higher than that of hydrophilic (untreated) mesh and was about 2 times higher than that of hydrophobic mesh.

  9. Microstructure and rheology of microfibril-polymer networks.

    PubMed

    Veen, Sandra J; Versluis, Peter; Kuijk, Anke; Velikov, Krassimir P

    2015-12-14

    By using an adsorbing polymer in combination with mechanical de-agglomeration, the microstructure and rheological properties of networks of microfibrils could be controlled. By the addition of sodium carboxymethyl cellulose during de-agglomeration of networks of bacterial cellulose, the microstructure could be changed from an inhomogeneous network with bundles of microfibrils and voids to a more homogeneous spread and alignment of the particles. As a result the macroscopic rheological properties were altered. Although still elastic and gel-like in nature, the elasticity and viscous behavior of the network as a function of microfibril concentration is altered. The microstructure is thus changed by changing the surface properties of the building blocks leading to a direct influence on the materials macroscopic behavior. PMID:26434637

  10. Fast microstructuring of silica glasses surface by NIR laser radiation

    NASA Astrophysics Data System (ADS)

    Kostyuk, G. K.; Sergeev, M. M.; Zakoldaev, R. A.; Yakovlev, E. B.

    2015-05-01

    The glass surface microstructuring technology using laser radiation with NIR wavelength (λ=1.064 μm) was revealed in this work. Glass plates were placed on the cellular graphite surface. Focused laser radiation passed through the glass plate and interacted with cellular graphite. The radiation heated the graphite surface and thus the high temperature influenced the back side of the glass plate. After consecutive laser scans, having certain periods and interruptions of laser radiation, the microstructures with depth ~0.5 μm were formed. Besides, in this work we suggested the method to calculate optical characteristics of formed elements. It was experimentally shown that these microstructures could be used to form phase diffraction gratings (PDGs) and random phase plates (RPPs). We experimentally demonstrated the possibility of these elements being used as RPPs which are suitable for multimode laser radiation homogenization and as PDGs which are suitable for laser simultaneous processing of metal films.

  11. Fabrication of zinc oxide microstructures and their properties

    NASA Astrophysics Data System (ADS)

    Kumari, Latha; Li, Wenzhi; Vannoy, Charles H.; Leblanc, Roger M.; Wang, Dezhi

    2009-03-01

    The bitter-melon-like and prism-like zinc oxide (ZnO) microstructures have been synthesized by hydrothermal route. Besides these microstructures, the ZnO material also consists of spherical nanoparticles with narrow size distribution. The as-synthesized ZnO material depicts hexagonal crystal structure. An optical band gap of 2.95 eV is determined from the UV-vis absorption band edge. The prism-like ZnO microstructure shows an ultraviolet near-band-edge emission at about 3.27 eV (380 nm) at room temperature which can be assigned to the radiative annihilation of excitons. The wide-band gap oxide materials like ZnO with short-wavelength PL emission can find application in light emitting devices.

  12. Microstructure and rheology of microfibril-polymer networks.

    PubMed

    Veen, Sandra J; Versluis, Peter; Kuijk, Anke; Velikov, Krassimir P

    2015-12-14

    By using an adsorbing polymer in combination with mechanical de-agglomeration, the microstructure and rheological properties of networks of microfibrils could be controlled. By the addition of sodium carboxymethyl cellulose during de-agglomeration of networks of bacterial cellulose, the microstructure could be changed from an inhomogeneous network with bundles of microfibrils and voids to a more homogeneous spread and alignment of the particles. As a result the macroscopic rheological properties were altered. Although still elastic and gel-like in nature, the elasticity and viscous behavior of the network as a function of microfibril concentration is altered. The microstructure is thus changed by changing the surface properties of the building blocks leading to a direct influence on the materials macroscopic behavior.

  13. Predicting Mesoscale Microstructural Evolution in Electron Beam Welding

    NASA Astrophysics Data System (ADS)

    Rodgers, T. M.; Madison, J. D.; Tikare, V.; Maguire, M. C.

    2016-05-01

    Using the kinetic Monte Carlo simulator, Stochastic Parallel PARticle Kinetic Simulator, from Sandia National Laboratories, a user routine has been developed to simulate mesoscale predictions of a grain structure near a moving heat source. Here, we demonstrate the use of this user routine to produce voxelized, synthetic, three-dimensional microstructures for electron-beam welding by comparing them with experimentally produced microstructures. When simulation input parameters are matched to experimental process parameters, qualitative and quantitative agreement for both grain size and grain morphology are achieved. The method is capable of simulating both single- and multipass welds. The simulations provide an opportunity for not only accelerated design but also the integration of simulation and experiments in design such that simulations can receive parameter bounds from experiments and, in turn, provide predictions of a resultant microstructure.

  14. Microstructural design of cellular materials I: Honeycomb beams and plates

    SciTech Connect

    Huang, J.S.; Gibson, L.J.

    1992-06-01

    Performance indices for materials describe the mechanical efficiency of a component under a given mode of loading: The higher the performance index, the lower the mass of the component for a given mechanical requirement. Material selection charts (Ashby, 1989) offer a graphical means of comparing performance indices for a wide range of materials. Performance indices are described. Micromechanical models for behaviour of cellular materials are used to suggest novel microstructural designs for cellular materials with improved performance. Three novel microstructural designs, described in companion papers, have been fabricated and tested. Results of the tests indicate that the new microstructures have higher values of some performance indices than those of the solids from which they are made.

  15. Microstructural fracture mechanics in high-cycle fatigue

    SciTech Connect

    Rios, E.R. de los; Navarro, A.

    1997-12-31

    Microstructural Fracture Mechanics principles are used to develop a model of crack growth in long life fatigue. In its simplest form microstructural modelling considers the material as a polycrystal of uniform grain size D, with a crack system divided into three zones: the crack, the plastic zone and the microstructural barrier zone. The solution of the equilibrium equation allows for the calculation of the stresses sustained by the crack wake, plastic zone, barrier zone and elastic enclave, and the crack tip plastic displacement {phi}. Crack growth rate is calculated through a Paris type relationship in terms of {phi}, i.e., da/dN = C{phi}{sup n}. Conditions for crack arrest and instability are established.

  16. Predicting mesoscale microstructural evolution in electron beam welding

    DOE PAGES

    Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena; Maguire, Michael C.

    2016-03-16

    Using the kinetic Monte Carlo simulator, Stochastic Parallel PARticle Kinetic Simulator, from Sandia National Laboratories, a user routine has been developed to simulate mesoscale predictions of a grain structure near a moving heat source. Here, we demonstrate the use of this user routine to produce voxelized, synthetic, three-dimensional microstructures for electron-beam welding by comparing them with experimentally produced microstructures. When simulation input parameters are matched to experimental process parameters, qualitative and quantitative agreement for both grain size and grain morphology are achieved. The method is capable of simulating both single- and multipass welds. As a result, the simulations provide anmore » opportunity for not only accelerated design but also the integration of simulation and experiments in design such that simulations can receive parameter bounds from experiments and, in turn, provide predictions of a resultant microstructure.« less

  17. Enhanced sensitivity of piezoelectric pressure sensor with microstructured polydimethylsiloxane layer

    NASA Astrophysics Data System (ADS)

    Choi, Wook; Lee, Junwoo; Kyoung Yoo, Yong; Kang, Sungchul; Kim, Jinseok; Hoon Lee, Jeong

    2014-03-01

    Highly sensitive detection tools that measure pressure and force are essential in palpation as well as real-time pressure monitoring in biomedical applications. So far, measurement has mainly been done by force sensing resistors and field effect transistor (FET) sensors for monitoring biological pressure and force sensing. We report a pressure sensor by the combination of a piezoelectric sensor layer integrated with a microstructured Polydimethylsiloxane (μ-PDMS) layer. We propose an enhanced sensing tool to be used for analyzing gentle touches without the external voltage source that is used in FET sensors, by incorporating a microstructured PDMS layer in a piezoelectric sensor. By measuring the directly induced electrical charge from the microstructure-enhanced piezoelectric signal, we observed a 3-fold increased sensitivity in a signal response. Both fast signal relaxation from force removal and wide dynamic range from 0.23 to 10 kPa illustrate the good feasibility of the thin film piezoelectric sensor for mimicking human skin.

  18. Method of producing improved microstructure and properties for ceramic superconductors

    DOEpatents

    Singh, J.P.; Guttschow, R.A.; Dusek, J.T.; Poeppel, R.B.

    1996-06-11

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa{sub 2}Cu{sub 3}O{sub x} indicates that sintering kinetics are enhanced at reduced p(O{sub 2}). The density of specimens sintered at 910 C increased from 79 to 94% theoretical when p(O{sub 2}) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O{sub 2}) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910 C resulted in a fine-grain microstructure, with an average grain size of approximately 4 {micro}m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity. 20 figs.

  19. Method of producing improved microstructure and properties for ceramic superconductors

    DOEpatents

    Singh, Jitendra P.; Guttschow, Rob A.; Dusek, Joseph T.; Poeppel, Roger B.

    1996-01-01

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2). The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C. resulted in a fine-grain microstructure, with an average grain size of approximately 4 .mu.m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity.

  20. Microstructure Evolution of a Medium Manganese Steel During Thermomechanical Processing

    NASA Astrophysics Data System (ADS)

    Sun, Binhan; Aydin, Huseyin; Fazeli, Fateh; Yue, Stephen

    2016-04-01

    An as-cast Fe-0.2C-10Mn-3Si-3Al medium manganese steel with a ferrite plus austenite duplex microstructure was subjected to hot compression tests at deformation temperatures within two-phase ( α + γ) range and various strain rates. The microstructure evolution of the experimental steel during hot deformation was investigated. The flow curves were characterized by a discontinuous yielding at the beginning of plastic deformation, followed by a weak work hardening to a peak and a subsequent mild softening stage. Two restoration processes took place during hot deformation, namely dynamic recrystallization (DRX) of austenite and continuous dynamic recrystallization of ferrite. The DRX of austenite was believed to dominate the softening stage of the flow curves. The discontinuous yielding stemmed from the existing Kurdjumov-Sachs (K-S) orientation relationship between ferrite and austenite in the initial undeformed microstructure, which gradually weakened during subsequent deformation.

  1. Channel microstructure and thermal insulation mechanism of sepiolite mineral nanofibers.

    PubMed

    Wang, Fei; Liang, Jinsheng; Tang, Qingguo; Chen, Cong; Chen, Yalei

    2014-05-01

    The longitudinal and cross sectional TEM images of sepiolite mineral nanofibers were prepared by cutting in the direction parallel and perpendicular to nanofibers, and the channel microstructure of sepiolite nanofibers was studied. The thermal insulation mechanism of sepiolite nanofibers was analyzed according to the diagrammatic sketch obtained from the above experimental method. The results showed that many discontinuously connected bending shape channels with about 23-26 nm in diameter existed in the center region of nanofibers, and many discontinuously connected irregular micropores and mesopores with the size of about 1-9 nm existed on the wall of nanofibers. The main reasons for the formation of channel microstructure in sepiolite nanofibers were their minerogenetic conditions and the interaction between acid and high-speed airflow in the process of nanofibers preparation, and bubbles in the hydrotherm played a significant role in the microstructure formation. The thermal insulation performance of sepiolite nanofibers could be attributed to obstructive and infrared radiative thermal insulation.

  2. Microstructure and Fracture Behavior of Tungsten Heavy Alloys

    SciTech Connect

    Sunwoo, A

    2003-06-01

    The 93% W-5.6% Ni-1.4% Fe and 93.1% W-4.7% Ni-2.2% Co alloys (WHA) provided by Army Research Laboratory (ARL), Aberdeen are characterized to determine the effects of matrix alloying and swaging on the microstructure and fracture behavior. The W particles are oblong with respect to the swaging direction. The microstructure of the W-Ni-Fe alloy reveals good cohesive bonding between W particles, but there is W-matrix interface separation and matrix alloy cracking. The microstructure of the W-Ni-Co alloy reveals regions of good cohesive bonding between W particles, but also regions where some wetting has not occurred by the liquid. No evidence was observed of matrix alloy cracking. The fracture characteristic of WHA is dominantly cleavage of W particles.

  3. Method of fabricating a high aspect ratio microstructure

    DOEpatents

    Warren, John B.

    2003-05-06

    The present invention is for a method of fabricating a high aspect ratio, freestanding microstructure. The fabrication method modifies the exposure process for SU-8, an negative-acting, ultraviolet-sensitive photoresist used for microfabrication whereby a UV-absorbent glass substrate, chosen for complete absorption of UV radiation at 380 nanometers or less, is coated with a negative photoresist, exposed and developed according to standard practice. This UV absorbent glass enables the fabrication of cylindrical cavities in a negative photoresist microstructures that have aspect ratios of 8:1.

  4. A Universal Approach Towards Computational Characterization of Dislocation Microstructure

    NASA Astrophysics Data System (ADS)

    Steinberger, Dominik; Gatti, Riccardo; Sandfeld, Stefan

    2016-06-01

    Dislocations—linear defects within the crystal lattice of, e.g., metals—have been directly observed and analyzed for nearly a century. While experimental characterization methods can nowadays reconstruct three-dimensional pictures of complex dislocation networks, simulation methods are at the same time more and more able to predict the evolution of such systems in great detail. Concise methods for analyzing and comparing dislocation microstructure, however, are still lagging behind. We introduce a universal microstructure "language" which could be used for direct comparisons and detailed analysis of very different experimental and simulation methods.

  5. Step-by-Step Growth of Complex Oxide Microstructures.

    PubMed

    Datskos, Panos; Cullen, David A; Sharma, Jaswinder

    2015-07-27

    The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. A solution-phase process to synthesize complex silica and silica-titania hybrid microstructures was developed by exploiting the emulsion-droplet-based step-by-step growth featuring shape control. The strategy is robust and can be extended to the preparation of complex hybrid structures consisting of two or more materials, with each having its own shape. PMID:26095228

  6. Phase transformations in steels: Processing, microstructure, and performance

    SciTech Connect

    Gibbs, Paul J.

    2014-04-03

    In this study, contemporary steel research is revealing new processing avenues to tailor microstructure and properties that, until recently, were only imaginable. Much of the technological versatility facilitating this development is provided by the understanding and utilization of the complex phase transformation sequences available in ferrous alloys. Today we have the opportunity to explore the diverse phenomena displayed by steels with specialized analytical and experimental tools. Advances in multi-scale characterization techniques provide a fresh perspective into microstructural relationships at the macro- and micro-scale, enabling a fundamental understanding of the role of phase transformations during processing and subsequent deformation.

  7. Microstructural characterization of as-cast Co-B alloys

    SciTech Connect

    Faria, M.I.S.T. . E-mail: ismenia@phase.faenquil.br; Leonardi, T.; Coelho, G.C.; Nunes, C.A.; Avillez, R.R.

    2007-04-15

    This work presents results of microstructural characterization of as-cast Co-B alloys. Samples of different compositions were prepared by arc melting Co (min. 99.97%) and B (min. 99.5%) under argon atmosphere in a water-cooled copper crucible with non-consumable tungsten electrode and titanium getter. All samples were characterized by scanning electron microscopy (SEM) in back-scattered electron (BSE) mode, X-ray diffraction (XRD) and wavelength dispersive spectrometry (WDS). A good agreement is observed between the obtained microstructures and those expected by the currently accepted Co-B phase diagram.

  8. A Universal Approach Towards Computational Characterization of Dislocation Microstructure

    NASA Astrophysics Data System (ADS)

    Steinberger, Dominik; Gatti, Riccardo; Sandfeld, Stefan

    2016-08-01

    Dislocations—linear defects within the crystal lattice of, e.g., metals—have been directly observed and analyzed for nearly a century. While experimental characterization methods can nowadays reconstruct three-dimensional pictures of complex dislocation networks, simulation methods are at the same time more and more able to predict the evolution of such systems in great detail. Concise methods for analyzing and comparing dislocation microstructure, however, are still lagging behind. We introduce a universal microstructure "language" which could be used for direct comparisons and detailed analysis of very different experimental and simulation methods.

  9. Advanced composite applications for sub-micron biologically derived microstructures

    NASA Technical Reports Server (NTRS)

    Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas

    1991-01-01

    A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.

  10. Thermal stability and strength of deformation microstructures in pure copper

    SciTech Connect

    Saldana, C.; King, Alex H.; Chandrasekar, S.

    2012-05-18

    The plastic flow field produced by machining is utilized to access a range of deformation parameters in pure copper: strains of 1–7, strain rates of 1–1000 s−1 and temperatures as low as 77 K. The strength and stability of the severe plastic deformation microstructures including cellular, elongated, equiaxed and twinned types are characterized. Unique combinations of strengthening and stability are identified in the case of heavily twinned microstructures. These observations offer insights for improving the stability of both single-phase and multicomponent ultrafine-grained alloys.

  11. Residual stress measurement and microstructural characterization of thick beryllium films

    SciTech Connect

    Detor, A; Wang, M; Hodge, A M; Chason, E; Walton, C; Hamza, A V; Xu, H; Nikroo, A

    2008-02-11

    Beryllium films are synthesized by a magnetron sputtering technique incorporating in-situ residual stress measurement. Monitoring the stress evolution in real time provides quantitative through-thickness information on the effects of various processing parameters, including sputtering gas pressure and substrate biasing. Specimens produced over a wide range of stress states are characterized via transmission and scanning electron microscopy, and atomic force microscopy, in order to correlate the stress data with microstructure. A columnar grain structure is observed for all specimens, and surface morphology is found to be strongly dependent on processing conditions. Analytical models of stress generation are reviewed and discussed in terms of the observed microstructure.

  12. Internal microstructure evolution of aluminum foams under compression

    SciTech Connect

    Wang Min; Hu Xiaofang . E-mail: huxf@ustc.edu.cn; Wu Xiaoping

    2006-10-12

    In this paper, the internal microstructure deformation of open-cell and closed-cell aluminum foams under compression was investigated by using synchrotron radiation X-ray computed tomography (SR-CT) technique and digital image analysis method. The reconstructed images were obtained by using filtered back projection algorithm based on the original images taken from SR-CT experiments. Several important parameters including cross-section porosity, total porosity and cross-section deformation were computed from the reconstructed images. The variation of these parameters provided useful evolution information of internal microstructure of aluminum foams under compression.

  13. Microstructural Studies on Bonds and Crystal Growth in a Snowpack

    NASA Astrophysics Data System (ADS)

    Adams, E. E.

    2002-12-01

    The role of microstructure in a snowpack influences virtually all of its thermo-mechanical properties. Density, grain size and importantly the structure of the bonds between grains have a very significant influence. We have focused on the microstructure of snow in a number of studies. Among these, the restructuring of a processed snowpack subjected to a persistent temperature gradient resulted in a microstructure, which metamorphosed from an essentially isotropic configuration into what appears to be transversely isotropic. Considering the geometric relationship of the bond to grain to be the significant microstructural consideration, a fabric tensor for snow has recently been developed and demonstrated by application to the evolving microstructure of the processed snow. Although the specific form of the tensor is not unique, it demonstrates promise for using a fabric tensor as a means to quantify the microstructural configuration of a snow pack. Using a scanning electron microscope (SEM) to examine the bonds between grains of well-sintered snow, a raised feature that encircled the contact between grains, which we termed a grain boundary ridge, was revealed. The ridge has implications to grain boundary diffusion as a sintering mechanism and may be influenced by contamination concentrated at the grain boundary. Focusing the SEM on the attachment or bond area of very well developed depth hoar crystals revealed a complex microstructure, (of much smaller scale than the crystal itself) which merge into the large striated crystal. The many vacancies and sharp corners in this region should lead to stress concentrations, however, the mechanism of formation and a definitive notion on the role of these microstructural features on strength, beyond mere speculation, is unknown. In another study relevant to depth hoar crystal development, a substrate of large crystals of known crystallographic orientation where placed in a supersaturated vapor environment. The numerous hopper

  14. Microstructured light guides overcoming the two-dimensional concentration limit.

    PubMed

    Leutz, Ralf; Ries, Harald

    2005-11-10

    Light guides are employed to homogenize an illumination distribution, to translate cross-sectional beam shapes, and to provide concentration. Microstructures enhance the performance of light guides based on the selective mixing of direction vector components in the two-dimensional phase space (etendue) that is perpendicular to the system's optical axis. For linear concentrators we find that the microstructured light guide beats the two-dimensional concentration limit and roughly allows for a three-dimensional concentration ratio. This result is verified in simulation and experiment.

  15. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  16. Development of silica glass microstructured optical fibers technology in Poland

    NASA Astrophysics Data System (ADS)

    Wójcik, J.; Janoszczyk, B.; Poturaj, K.; Makara, M.; Walewski, A.; Mergo, P.; Klimek, J.; Skorupski, K.; Czyżewska, L.

    2007-04-01

    Paper presents the state of advance of the silica glass microstructured optical fibers technology n Poland especially in Department of Optical Fibers Technology Maria Curie Sklodowska University. Only in this Department there are the technological apparatus for advanced investigations on the technology of the silica glass optical fibers. In paper was describe the technology of optical fiber photonic structure manufacturing, high silica glass synthesis from vapor phase with MCVD and OVD methods. Next was describe some kinds of microstructured optical fibers witch technologies elaborated in UMCS in support of own and received from cooperated research teams optical fibers structures, modeling and measurements results.

  17. Transfer function concept for ultrasonic characterization of material microstructures

    NASA Technical Reports Server (NTRS)

    Vary, A.; Kautz, H. E.

    1986-01-01

    The approach given depends on treating material microstructures as elastomechanical filters that have analytically definable transfer functions. These transfer functions can be defined in terms of the frequency dependence of the ultrasonic attenuation coefficient. The transfer function concept provides a basis for synthesizing expressions that characterize polycrystalline materials relative to microstructural factors such as mean grain size, grain-size distribution functions, and grain boundary energy transmission. Although the approach is nonrigorous, it leads to a rational basis for combining the previously mentioned diverse and fragmented equations for ultrasonic attenuation coefficients.

  18. The effect of microstructure on microbiologically influenced corrosion

    NASA Technical Reports Server (NTRS)

    Walsh, Dan; Pope, Dan; Danford, Merlin; Huff, Tim

    1993-01-01

    Results of several investigations involving stainless steels, aluminum alloys, and low-alloy steels are reviewed, and the effect of welding on microbiologically influenced corrosion (MIC) susceptibility in these materials is discussed. Emphasis is placed on research performed at California Polytechnic State University on the relationship between MIC and metallurgical microstructure. Topics addressed include initial stages of film development in materials with different microstructure and surface conditions, effects of inclusion on the MIC response of materials, aluminum 2219, effects of welding, and constitutional liquation.

  19. Microstructures of A 4(BC)4 star copolymers and the influence of architecture

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Peng, J.; Cheng, M. F.; Fang, J. H.

    2016-07-01

    The self-consistent field theory is used to investigate the microstructures of A 4(BC)4 star copolymers. The phase diagram is mapped out to show different phase regions. Compared with A(BC)4 star copolymers, several microstructures are lost, and more lamellar structures are found due to the stronger topological constraint of the junction. The results may be helpful to understand the influence of molecular architectures on microstructures and provide an effective way to design controllable microstructures.

  20. The Effects of Heat Treatment and Microstructure Variations on Disk Superalloy Properties at High Temperature

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Telesman, Jack; Garg, Anita

    2008-01-01

    The effects of heat treatment and resulting microstructure variations on high temperature mechanical properties were assessed for a powder metallurgy disk superalloy LSHR. Blanks were consistently supersolvus solution heat treated and quenched at two cooling rates, than aged at varying temperatures and times. Tensile, creep, and dwell fatigue crack growth tests were then performed at 704 C. Gamma' precipitate microstructures were quantified. Relationships between heat treatment-microstructure, heat treatment-mechanical properties, and microstructure-mechanical properties were assessed.

  1. Lattice Structures Manufactured by SLM: On the Effect of Geometrical Dimensions on Microstructure Evolution During Processing

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Schaper, Mirko

    2014-08-01

    Employing selective laser melting direct microstructure manipulation is feasible through adjustment of thermal gradients and solidification velocity. Currently, the exposure strategy and laser energy have to be adapted in order to meet a processing window suited for introducing highly anisotropic microstructures. As selective laser melting allows for production of filigree complex structures, the impact of geometry on the microstructure evolution is investigated in the current study and it is shown that miniaturization of structures as well leads to the evolution of anisotropic microstructure.

  2. Integrated thermal-microstructure model to predict the property gradients in resistance spot steel welds

    SciTech Connect

    Babu, S.S.; Riemer, B.W.; Santella, M.L.; Feng, Z.

    1998-11-01

    An integrated model approach was proposed for relating resistance welding parameters to weldment properties. An existing microstructure model was used to determine the microstructural and property gradients in resistance spot welds of plain carbon steel. The effect of these gradients on the weld integrity was evaluated with finite element analysis. Further modifications to this integrated thermal-microstructure model are discussed.

  3. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2003-11-25

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  4. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2005-06-07

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  5. Synthesis and microstructural control of flower-like cadmium germanate

    SciTech Connect

    Pei, L.Z. Yang, Y.; Pei, Y.Q.; Ran, S.L.

    2011-11-15

    Flower-like Cd{sub 2}Ge{sub 2}O{sub 6} have been synthesized using a facile hydrothermal process with ethylenediamine. The roles of hydrothermal conditions on the size and morphology of the flower-like Cd{sub 2}Ge{sub 2}O{sub 6} were investigated. The research results show that the obtained Cd{sub 2}Ge{sub 2}O{sub 6} presents a flower-like microstructures composed by radial nanorods with diameter of 50-100 nm and length of 0.5-2 {mu}m, respectively. The formation mechanism of the flower-like Cd{sub 2}Ge{sub 2}O{sub 6} is explained according to the ethylenediamine-assisted nucleation-'Ostwald ripening' process. - Highlights: {yields}Cd{sub 2}Ge{sub 2}O{sub 6} flower-like microstructures were synthesized using ethylenediamine. {yields}Cd{sub 2}Ge{sub 2}O{sub 6} flower-like microstructures can be controlled by growth conditions. {yields}Ethylenediamine induces the growth of the Cd{sub 2}Ge{sub 2}O{sub 6} flower-like microstructures.

  6. Microstructural Development in Al-Si Powder During Rapid Solidification

    SciTech Connect

    Genau, Amber Lynn

    2004-01-01

    Powder metallurgy has become an increasingly important form of metal processing because of its ability to produce materials with superior mechanical properties. These properties are due in part to the unique and often desirable microstructures which arise as a result of the extreme levels of undercooling achieved, especially in the finest size powder, and the subsequent rapid solidification which occurs. A better understanding of the fundamental processes of nucleation and growth is required to further exploit the potential of rapid solidification processing. Aluminum-silicon, an alloy of significant industrial importance, was chosen as a model for simple eutectic systems displaying an unfaceted/faceted interface and skewed coupled eutectic growth zone, Al-Si powder produced by high pressure gas atomization was studied to determine the relationship between microstructure and alloy composition as a function of powder size and atomization gas. Critical experimental measurements of hypereutectic (Si-rich) compositions were used to determine undercooling and interface velocity, based on the theoretical models which are available. Solidification conditions were analyzed as a function of particle diameter and distance from nucleation site. A revised microstructural map is proposed which allows the prediction of particle morphology based on temperature and composition. It is hoped that this work, by providing enhanced understanding of the processes which govern the development of the solidification morphology of gas atomized powder, will eventually allow for better control of processing conditions so that particle microstructures can be optimized for specific applications.

  7. Microwave heating effect on rheology and microstructure of white sauces.

    PubMed

    Guardeño, Luis M; Sanz, Teresa; Fiszman, Susana M; Quiles, Amparo; Hernando, Isabel

    2011-10-01

    The microstructure and rheological properties of white sauces formulated with different starches were analyzed after being microwave-heated for different times. Significant differences (P < 0.05) in rheological parameters analyzed-storage modulus (G'), loss modulus (G″), and loss tangent (tanδ)-were obtained for sauces made with different starches. Microwave reheating did not affect G' and G″ values until water evaporation became significant. In addition, tanδ values did not change significantly (P < 0.05) even during long reheating times showing that sauce viscoelastic properties did not change after microwave irradiation. However, microstructure assessed by confocal laser scanning microscopy showed changes in fat globule and protein. These microstructural changes did not seem to have a significant effect on rheological measurements since starch and ι-carrageenan are mainly responsible for the viscoelastic behavior of the sauces. Practical Application:  The development of products appropriate to microwave heating is constantly rising in food industry. It is necessary to understand the behavior of the ingredients and the final product to microwave heating in order to choose those ingredients which will develop the best performance. Starches are common ingredients in industrial sauces, and rheological and microstructural techniques have shown their usefulness in characterization of starch-based systems. PMID:21913921

  8. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications

    PubMed Central

    Ennen, Inga; Kappe, Daniel; Rempel, Thomas; Glenske, Claudia; Hütten, Andreas

    2016-01-01

    The giant magnetoresistance (GMR) effect is a very basic phenomenon that occurs in magnetic materials ranging from nanoparticles over multilayered thin films to permanent magnets. In this contribution, we first focus on the links between effect characteristic and underlying microstructure. Thereafter, we discuss design criteria for GMR-sensor applications covering automotive, biosensors as well as nanoparticular sensors. PMID:27322277

  9. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.

    2011-08-09

    In a simplified process to produce precursor powders for oxide dispersion-strengthened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  10. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.; Anderegg, J.W.; Shechtman, D.

    2009-12-01

    In a simplified process to produce precursor powders for oxide dispersion-strength- ened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  11. Bulk and thin film microstructures in untwinned martensites

    NASA Astrophysics Data System (ADS)

    Hane, Kevin F.

    1999-09-01

    The microstructure in alloys for which the martensite phase is either the 9R or 18R long-period stacking order structure is investigated. A choice of a new unit cell to describe the lattice of the product phase is made, and it is found to give an exact austenite-martensite interface. A comparison with experimental observations for several different material systems supports this choice of unit cell, and the predictions of the shape strain and habit plane normal vectors are the same as those given by a phenomenological calculation. The approach followed here de-emphasizes the role of the internal defects within the unit cell of the martensite lattice in providing the mechanism by which compatibility between the phases is achieved. It is this reason that the name untwinned martensites is proposed to replace the older name faulted martensites. In addition, microstructures in thin film specimens of the alloys exhibiting the untwinned martensite are studied. In particular, a tent microstructure is constructed in a specially oriented film, and such microstructures have potential applications in micro-devices to act as either a pump or an actuator.

  12. Microstructural Evolution and interfacial motion in systems with diffusion barriers

    SciTech Connect

    Perry H. Leo

    2009-03-05

    This research program was designed to model and simulate phase transformations in systems containing diffusion barriers. The modeling work included mass flow, phase formation, and microstructural evolution in interdiffusing systems. Simulation work was done by developing Cahn-Hilliard and phase field equations governing both the temporal and spatial evolution of the composition and deformation fields and other important phase variables.

  13. Microstructure Modeling of 3rd Generation Disk Alloys

    NASA Technical Reports Server (NTRS)

    Jou, Herng-Jeng

    2010-01-01

    The objective of this program is to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool will be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishment achieved during the second year (2008) of the program is summarized. The activities of this year include final selection of multicomponent thermodynamics and mobility databases, precipitate surface energy determination from nucleation experiment, multiscale comparison of predicted versus measured intragrain precipitation microstructure in quench samples showing good agreement, isothermal coarsening experiment and interaction of grain boundary and intergrain precipitates, primary microstructure of subsolvus treatment, and finally the software implementation plan for the third year of the project. In the following year, the calibrated models and simulation tools will be validated against an independently developed experimental data set, with actual disc heat treatment process conditions. Furthermore, software integration and implementation will be developed to provide material engineers valuable information in order to optimize the processing of the 3rd generation gas turbine disc alloys.

  14. Environmentally responsive optical microstructured hybrid actuator assemblies and applications thereof

    DOEpatents

    Aizenberg, Joanna; Aizenberg, Michael; Kim, Philseok

    2016-01-05

    Microstructured hybrid actuator assemblies in which microactuators carrying designed surface properties to be revealed upon actuation are embedded in a layer of responsive materials. The microactuators in a microactuator array reversibly change their configuration in response to a change in the environment without requiring an external power source to switch their optical properties.

  15. Statistical models and NMR analysis of polymer microstructure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Statistical models can be used in conjunction with NMR spectroscopy to study polymer microstructure and polymerization mechanisms. Thus, Bernoullian, Markovian, and enantiomorphic-site models are well known. Many additional models have been formulated over the years for additional situations. Typica...

  16. Toughening and strengthening of ceramics composite through microstructural refinement

    NASA Astrophysics Data System (ADS)

    Anggraini, Lydia; Isonishi, Kazuo; Ameyama, Kei

    2016-04-01

    Silicon carbide with 50 mass% zirconia ceramic matrix composites were processed by mechanical milling (MM) followed by spark plasma sintering (SPS). By controlling the parameters of MM and SPS, an ultra-fine ZrO2 grain was homogeneously dispersed and refined on the surface of a fine SiC powder, forming a harmonic microstructure. The mechanical properties and the densification behavior of the SiC-ZrO2 composites were investigated. The effects of the milling time on the microstructure and on the mechanical properties of the composite are discussed. The results indicate that the composite mechanically milled for 144 ks and sintered at 1773 K had the highest relative density of 98 %, along with a fracture toughness of 10.7 MPa.m1/2 and a bending strength of 1128 MPa. These superior mechanical properties were influenced by the microstructure characteristics such as the homogeneous grain dispersion. Thus, the microstructural refinement forming harmonic dispersion can be considered a remarkable design tool for improving the mechanical properties of SiC-ZrO2, as well as other ceramic composite materials.

  17. Ceramics overview: classification by microstructure and processing methods.

    PubMed

    Giordano, Russell; McLaren, Edward A

    2010-01-01

    The plethora of ceramic systems available today for all types of indirect restorations can be confusing--and overwhelming--for the clinician. Having a better understanding of them is key. The authors use classification systems based on the microstructural components of ceramics and the processing techniques to help illustrate the various properties and uses.

  18. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications.

    PubMed

    Ennen, Inga; Kappe, Daniel; Rempel, Thomas; Glenske, Claudia; Hütten, Andreas

    2016-01-01

    The giant magnetoresistance (GMR) effect is a very basic phenomenon that occurs in magnetic materials ranging from nanoparticles over multilayered thin films to permanent magnets. In this contribution, we first focus on the links between effect characteristic and underlying microstructure. Thereafter, we discuss design criteria for GMR-sensor applications covering automotive, biosensors as well as nanoparticular sensors. PMID:27322277

  19. Tract-specific white matter microstructure and gait in humans.

    PubMed

    Verlinden, Vincentius J A; de Groot, Marius; Cremers, Lotte G M; van der Geest, Jos N; Hofman, Albert; Niessen, Wiro J; van der Lugt, Aad; Vernooij, Meike W; Ikram, M Arfan

    2016-07-01

    Gait is a complex sequence of movements, requiring cooperation of many brain areas, such as the motor cortex, somatosensory cortex, and cerebellum. However, it is unclear which connecting white matter tracts are essential for communication across brain areas to facilitate proper gait. Using diffusion tensor imaging, we investigated associations of microstructural organization in 14 brain white matter tracts with gait, among 2330 dementia- and stroke-free community-dwelling individuals. Gait was assessed by electronic walkway and summarized into Global Gait, and 7 gait domains. Higher white matter microstructure associated with higher Global Gait, Phases, Variability, Pace, and Turning. Microstructure in thalamic radiations, followed by association tracts and the forceps major, associated most strongly with gait. Hence, in community-dwelling individuals, higher white matter microstructure associated with better gait, including larger strides, more single support, less stride-to-stride variability, and less turning steps. Our findings suggest that intact thalamocortical communication, cortex-to-cortex communication, and interhemispheric visuospatial integration are most essential in human gait. PMID:27255826

  20. Microstructural, Structural, and Thermal Characterization of Annealed Carbon Steels

    NASA Astrophysics Data System (ADS)

    Lara-Guevara, A.; Ortiz-Echeverri, C. J.; Rojas-Rodriguez, I.; Mosquera-Mosquera, J. C.; Ariza-Calderón, H.; Ayala-Garcia, I.; Rodriguez-García, M. E.

    2016-10-01

    As is well known, the metallurgical microstructure of carbon steel is formed by ferrite and pearlite after the annealing heat treatment. When the cooling rate increases, the diffusive process is interrupted causing a change in the metallurgical microstructure which will affect steel properties. The aim of this work was to study thermal, structural, and microstructural properties of annealed carbon steel samples with four different carbon contents. Crystalline structure and crystalline quality were studied by the X-ray diffraction technique, where the full width at half maximum analysis showed that as the carbon content increased, the crystalline quality decreased. The metallurgical microstructure morphology was studied by scanning electron microscopy. The thermal diffusivity and the heat capacity were determined by the photoacoustic technique and by the thermal relaxation method, respectively. The thermal diffusivity and the thermal conductivity decreased as the carbon content increased. The amplitude signal of photothermal radiometry increased as the carbon content increased, while the phase signal of photothermal radiometry did not show significant differences among studied carbon steel types. The photoacoustic technique represents an important alternative in the steel characterization field.

  1. Microstructural characterization of {alpha}{sub 2} + {gamma} titanium aluminides

    SciTech Connect

    Larson, D.J.; Miller, M.K.

    1997-04-01

    Two-phase titanium/aluminium alloys with microalloying additions are of interest due to the high strength-to-weight ratio they can provide in automotive and aircraft applications. This paper describes the microstructure of boron doped alloys with chromium, niobium, and tungsten.

  2. Microstructural observation of elastic domains in ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Craciunescu, Corneliu M.; Mitelea, Ion; Sgavardea, Gheorghe

    2012-08-01

    The microstructure of ferromagnetic shape memory alloys belonging to the Co-Ni-Ga and Ni-Mn-Ga system is analyzed in the martensitic state and during the martensitic phase transition, in order to explore the influence of the composition on the occurrence of the shape memory properties. The compositional range of the Co-Ni-Ga alloys investigated is associated with a two-phase microstructure, where the matrix shows the martensitic structure and a transformation into austenite on heating. The microstructure in the Co-Ni-Ga system shows a phase transition between the B2 austenite and L10 martensite, but the γ (disordered fcc A1) and the ordered γ' (fcc L12) can also be present - depending on the composition, and state, and influence the phase transition in as-cast, quenched and aged alloys. The exploration of the microstructural aspects reveals typical elastic domains that form in the martensitic phase, but also precipitates that can influence the overall martensitic transformation, thus hindering the total output. Compared to the NiMnGa system, the CoNiGa shows significantly less brittleness when deformed in the martensitic state.

  3. Microstructure characteristics of Ni/WC composite cladding coatings

    NASA Astrophysics Data System (ADS)

    Yang, Gui-rong; Huang, Chao-peng; Song, Wen-ming; Li, Jian; Lu, Jin-jun; Ma, Ying; Hao, Yuan

    2016-02-01

    A multilayer tungsten carbide particle (WCp)-reinforced Ni-based alloy coating was fabricated on a steel substrate using vacuum cladding technology. The morphology, microstructure, and formation mechanism of the coating were studied and discussed in different zones. The microstructure morphology and phase composition were investigated by scanning electron microscopy, optical microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. In the results, the coating presents a dense and homogeneous microstructure with few pores and is free from cracks. The whole coating shows a multilayer structure, including composite, transition, fusion, and diffusion-affected layers. Metallurgical bonding was achieved between the coating and substrate because of the formation of the fusion and diffusion-affected layers. The Ni-based alloy is mainly composed of γ-Ni solid solution with finely dispersed Cr7C3/Cr23C6, CrB, and Ni+Ni3Si. WC particles in the composite layer distribute evenly in areas among initial Ni-based alloying particles, forming a special three-dimensional reticular microstructure. The macrohardness of the coating is HRC 55, which is remarkably improved compared to that of the substrate. The microhardness increases gradually from the substrate to the composite zone, whereas the microhardness remains almost unchanged in the transition and composite zones.

  4. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications.

    PubMed

    Ennen, Inga; Kappe, Daniel; Rempel, Thomas; Glenske, Claudia; Hütten, Andreas

    2016-01-01

    The giant magnetoresistance (GMR) effect is a very basic phenomenon that occurs in magnetic materials ranging from nanoparticles over multilayered thin films to permanent magnets. In this contribution, we first focus on the links between effect characteristic and underlying microstructure. Thereafter, we discuss design criteria for GMR-sensor applications covering automotive, biosensors as well as nanoparticular sensors.

  5. Microwave heating effect on rheology and microstructure of white sauces.

    PubMed

    Guardeño, Luis M; Sanz, Teresa; Fiszman, Susana M; Quiles, Amparo; Hernando, Isabel

    2011-10-01

    The microstructure and rheological properties of white sauces formulated with different starches were analyzed after being microwave-heated for different times. Significant differences (P < 0.05) in rheological parameters analyzed-storage modulus (G'), loss modulus (G″), and loss tangent (tanδ)-were obtained for sauces made with different starches. Microwave reheating did not affect G' and G″ values until water evaporation became significant. In addition, tanδ values did not change significantly (P < 0.05) even during long reheating times showing that sauce viscoelastic properties did not change after microwave irradiation. However, microstructure assessed by confocal laser scanning microscopy showed changes in fat globule and protein. These microstructural changes did not seem to have a significant effect on rheological measurements since starch and ι-carrageenan are mainly responsible for the viscoelastic behavior of the sauces. Practical Application:  The development of products appropriate to microwave heating is constantly rising in food industry. It is necessary to understand the behavior of the ingredients and the final product to microwave heating in order to choose those ingredients which will develop the best performance. Starches are common ingredients in industrial sauces, and rheological and microstructural techniques have shown their usefulness in characterization of starch-based systems.

  6. Constrained sequential lamination: Nonconvex optimization and material microstructure

    NASA Astrophysics Data System (ADS)

    Fago, Matt

    A practical algorithm has been developed to construct, through sequential lamination, the partial relaxation of multiwell energy densities such as those characteristic of shape memory alloys. The resulting microstructures are in static and configurational equilibrium, and admit arbitrary deformations. The laminate topology evolves during deformation through branching and pruning operations, while a continuity constraint provides a simple model of metastability and hysteresis. In cases with strict separation of length scales, the method may be integrated into a finite element calculation at the subgrid level. This capability is demonstrated with a calculation of the indentation of a Cu-Al-Ni shape memory alloy by a spherical indenter. In verification tests the algorithm attained the analytic solution in the computation of three benchmark problems. In the fourth case, the four-well problem (of, e.g., Tartar), results indicate that the method for microstructural evolution imposes an energy barrier for branching, hindering microstructural development in some cases. Although this effect is undesirable for purely mathematical problems, it is reflective of the activation energies and metastabilities present in applications involving natural processes. The method was further used to model Shield's tension test experiment, with initial calculations generating reasonable transformation strains and microstructures that compared well with the sequential laminates obtained experimentally.

  7. Sulfur Impurities and the Microstructure of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1997-01-01

    The relationship between the microstructure of alumina scales, adhesion, and sulfur content was examined through a series of nickel alloys oxidized in 1100 to 1200 deg. C cyclic or isothermal exposures in air. In cyclic tests of undoped NiCrAl, adhesion was produced when the sulfur content was reduced, without any change in scale microstructure. Although interfacial voids were not observed in cyclic tests of NiCrAl, they were promoted by long-term isothermal exposures, by sulfur doping, and in most exposures of NiAl. Two single crystal superalloys, PWA 1480 and Rene' N5, were also tested, either in the as-received condition or after the sulfur content had been reduced to less than 1 ppmw by hydrogen annealing. The unannealed alloys always exhibited spalling to bare metal, but interfacial voids were not observed consistently. Desulfurized PWA 1480 and Rene' N5 exhibited remarkable adhesion and no voidage for either isothermal or cyclic exposures. The most consistent microstructural feature was that, for the cases where voids did form, the scale undersides exhibited corresponding areas with ridged oxide grain boundaries. Voids were not required for spallation nor were other microstructural features essential for adhesion. These observations are consistent with the model whereby scale spallation is controlled primarily by interfacial sulfur segregation and the consequent degradation of oxide-metal bonding.

  8. Microstructure characterization via stereological relations — A shortcut for beginners

    SciTech Connect

    Pabst, Willi Gregorová, Eva; Uhlířová, Tereza

    2015-07-15

    Stereological relations that can be routinely applied for the quantitative characterization of microstructures of heterogeneous single- and two-phase materials via global microstructural descriptors are reviewed. It is shown that in the case of dense, single-phase polycrystalline materials (e.g., transparent yttrium aluminum garnet ceramics) two quantities have to be determined, the interface density (or, equivalently, the mean chord length of the grains) and the mean curvature integral density (or, equivalently, the Jeffries grain size), while for two-phase materials (e.g., highly porous, cellular alumina ceramics), one additional quantity, the volume fraction (porosity), is required. The Delesse–Rosiwal law is recalled and size measures are discussed. It is shown that the Jeffries grain size is based on the triple junction line length density, while the mean chord length of grains is based on the interface density (grain boundary area density). In contrast to widespread belief, however, these two size measures are not alternative, but independent (and thus complementary), measures of grain size. Concomitant with this fact, a clear distinction between linear and planar grain size numbers is proposed. Finally, based on our concept of phase-specific quantities, it is shown that under certain conditions it is possible to define a Jeffries size also for two-phase materials and that the ratio of the mean chord length and the Jeffries size has to be considered as an invariant number for a certain type of microstructure, i.e., a characteristic value that is independent of the absolute size of the microstructural features (e.g., grains, inclusions or pores). - Highlights: • Stereology-based image analysis is reviewed, including error considerations. • Recipes are provided for measuring global metric microstructural descriptors. • Size measures are based on interface density and mean curvature integral density. • Phase-specific quantities and a generalized

  9. Laser damage threshold measurements of microstructure-based high reflectors

    NASA Astrophysics Data System (ADS)

    Hobbs, Douglas S.

    2008-10-01

    In 2007, the pulsed laser induced damage threshold (LIDT) of anti-reflecting (AR) microstructures built in fused silica and glass was shown to be up to three times greater than the LIDT of single-layer thin-film AR coatings, and at least five times greater than multiple-layer thin-film AR coatings. This result suggested that microstructure-based wavelength selective mirrors might also exhibit high LIDT. Efficient light reflection over a narrow spectral range can be produced by an array of sub-wavelength sized surface relief microstructures built in a waveguide configuration. Such surface structure resonant (SSR) filters typically achieve a reflectivity exceeding 99% over a 1-10nm range about the filter center wavelength, making SSR filters useful as laser high reflectors (HR). SSR laser mirrors consist of microstructures that are first etched in the surface of fused silica and borosilicate glass windows and subsequently coated with a thin layer of a non-absorbing high refractive index dielectric material such as tantalum pent-oxide or zinc sulfide. Results of an initial investigation into the LIDT of single layer SSR laser mirrors operating at 532nm, 1064nm and 1573nm are described along with data from SEM analysis of the microstructures, and spectral reflection measurements. None of the twelve samples tested exhibited damage thresholds above 3 J/cm2 when illuminated at the resonant wavelength, indicating that the simple single layer, first order design will need further development to be suitable for high power laser applications. Samples of SSR high reflectors entered in the Thin Film Damage Competition also exhibited low damage thresholds of less than 1 J/cm2 for the ZnS coated SSR, and just over 4 J/cm2 for the Ta2O5 coated SSR.

  10. Wear and microstructural integrity of ceramic plasma sprayed coatings

    NASA Astrophysics Data System (ADS)

    Erickson, Lynn C.

    1999-10-01

    In this work a series of ceramic plasma sprayed (PS) coatings, both alumina- and chromia-based, were sprayed according to a matrix of deposition parameters in order to produce a broad range of microstructures. To investigate the effect of splat size on the coating response, a series of mono-crystalline a -alumina powders with very narrow particle size ranges, nominally 5, 10 and 18 microns in diameter, was sprayed. The coatings were extensively characterized for a variety of microstructural features, including porosity, the angular distribution and density of microcracks as well as the lamellar, or splat, dimensions, using techniques of metallurgical analysis and electron microscopy. The coatings were then evaluated using a series of micromechanical techniques, including indentation, controlled scratch testing, abrasion and dry particle erosion, to investigate their response to different contact situations. It was found that the microstructural features with the most influence on the behaviour of ceramic PS coatings during contact, or wear, by hard particles include, in order of importance: (1) macro-porosity, (2) horizontal crack density, (3) degree of flattening of the splats and (4) volume of unmelted particles, which are all linked to the level and strength of interlamellar bonding in the coating. The major effect of the inter-lamellar bonding in ceramic PS coatings was seen in the wear mechanism transitions. As the level of inter-splat bonding in the coating decreases, the contact load at which the transition from plastic deformation to splat fracture and debonding occurs does as well. However, the load at which catastrophic brittle fracture and spalling occur is increased. All of the micromechanical and wear methods evaluated in the present work were sensitive to differences in the coating microstructures to varying degrees. The low load abrasion results showed the most sensitivity to the microstructural differences of the coatings, followed by controlled

  11. Durable Microstructured Surfaces: Combining Electrical Conductivity with Superoleophobicity.

    PubMed

    Pan, Zihe; Wang, Tianchang; Sun, Shaofan; Zhao, Boxin

    2016-01-27

    In this study, electrically conductive and superoleophobic polydimethylsiloxane (PDMS) has been fabricated through embedding Ag flakes (SFs) and Ag nanowires (SNWs) into microstructures of the trichloroperfluorooctylsilane (FDTS)-blended PDMS elastomer. Microstructured PDMS surfaces became conductive at the percolation surface coverage of 3.0 × 10(-2) mg/mm(2) for SFs; the highest conductivity was 1.12 × 10(5) S/m at the SFs surface coverage of 6.0 × 10(-2) mg/mm(2). A significant improvement of the conductivity (increased 3 times at the SNWs fraction of 11%) was achieved by using SNWs to replace some SFs because of the conductive pathways from the formed SNWs networks and its connections with SFs. These conductive fillers bonded strongly with microstructured FDTS-blended PDMS and retained surface properties under the sliding preload of 8.0 N. Stretching tests indicated that the resistance increased with the increasing strains and returned to its original state when the strain was released, showing highly stretchable and reversible electrical properties. Compared with SFs embedded surfaces, the resistances of SFs/SNWs embedded surfaces were less dependent on the strain because of bridging effect of SNWs. The superoleophobicity was achieved by the synergetic effect of surface modification through blending FDTS and the microstructures transferred from sand papers. The research findings demonstrate a simple approach to make the insulating elastomer to have the desired surface oleophobicity and electrical conductivity and help meet the needs for the development of conductive devices with microstructures and multifunctional properties.

  12. Microstructure and Mechanical Properties of Extruded Gamma Met PX

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Das, G.; Locci, I.; Whittenberger, J. D.; Lerch, B. A.; Kestler, H.

    2003-01-01

    A gamma TiAl alloy with a high Nb content is being assessed as a compressor blade material. The microstructure and mechanical properties of extruded Ti-45Al-X(Nb,B,C) (at %) were evaluated in both an as-extruded condition and after a lamellar heat treatment. Tensile behavior of both as-extruded and lamellar heat treated specimens was studied in the temperature range of RT to 926 C. In general, the yield stress and ultimate tensile strength reached relatively high values at room temperature and decreased with increasing deformation temperature. The fatigue strength of both microstructures was characterized at 650 C and compared to a baseline TiAl alloy and to a Ni-base superalloy. Tensile and fatigue specimens were also exposed to 800 C for 200 h in air to evaluate the alloy's environmental resistance. A decrease in ductility was observed at room temperature due to the 800 C exposure but the 650 C fatigue properties were unaffected. Compressive and tensile creep testing between 727 and 1027 C revealed that the creep deformation was reproducible and predictable. Creep strengths reached superalloy-like levels at fast strain rates and lower temperatures but deformation at slower strain rates and/or higher temperature indicated significant weakening for the as-extruded condition. At high temperatures and low stresses, the lamellar microstructure had improved creep properties when compared to the as-extruded material. Microstructural evolution during heat treatment, identification of various phases, and the effect of microstructure on the tensile, fatigue, and creep behaviors is discussed.

  13. Analyses of Impedance Microstructure and Wave Propagation Characteristics in Rocks

    NASA Astrophysics Data System (ADS)

    Prasad, M.; Mukerji, T.

    2002-12-01

    Seismic methods are our primary tools to image subsurface structures and to derive information about microstructural properties at subsurface that are pertinent to exploration. However, velocity - physical property transforms are mostly empirical or qualitative in nature, mainly because microstructural descriptions are qualitative. Although, sedimentary systems produce distinctive textures that influence physical properties and seismic signatures, these textures are not quantified in terms comparable to seismic. We present a method to quantify microsctructure in terms of acoustic impedance and show how these microstructural impedance maps can be used to analyze wave propagation characteristics in rocks. Using image analyses techniques, the texture of the calibrated scanned images is quantified by spatial autocorrelation functions and binary morphological operations. Parametric modeling of the empirical autocorrelation functions is used to estimate the textural anisotropy. We quantify microstructural impedance anisotropy and compare these textural maps to ultrasonic velocity anisotropy measurements. Inclusion based effective medium theory is used to upscale the impedances at the microstructural scale to the core plug scale. In the example of optically opaque kerogen-rich shales, we find that 1. Acoustic impedance in kerogen shales increases with shale maturity, 2. Impedance measured on a micrometer scale and centimeter scale match well, indicating that seismic wave propagation are controlled by the microtexture 3. With increasing maturity, there is a transition from kerogen supported to grain supported framework We thank the Fraunhofer Institute for Nondestructive Testing (IZfP) for use of AM facilities, Walter Arnold (IZfP) for discussions about acoustic microscopy, ARCO and SRB Project for support. This work was performed under the auspices of National Science Foundation (Grant No. EAR 0074330) and Department of Energy (Award No. DE-FC26-01BC15354).

  14. Microstructure-property relationships of SiC fiber-reinforced magnesium aluminosilicates. 1: Microstructural characterization

    SciTech Connect

    Kumar, A.; Knowles, K.M.

    1996-07-01

    The microstructure of two magnesium aluminosilicates unidirectionally reinforced with SiC fibers (Nicalon) has been examined. A diphasic interlayer having a higher O/Si ratio than in the fibers was found on the surface of the fibers in both composites. This interlayer could be identified as an amorphous mixture of silica and carbon in the composite hot-pressed just below the liquidus temperature of stoichiometric cordierite (composite A). In the other composite hot-pressed at 920 C and subsequently ceramed at 1,150 C (composite B), a relatively thicker diphasic interlayer was observed, consisting of turbostratic carbon together with amorphous silica. A distinct interlayer of turbostratic carbon was identified in composite A. A thin interlayer consisting mostly of matrix elements was also identified between the diphasic interlayer and the discrete carbon interlayer in this composite. Differences in the structure and morphology of interfacial regions in the two composites could clearly be attributed to differences in the hot-pressing schedules. The basal planes of turbostratic carbon were aligned parallel to the fiber-matrix interfaces in both composites.

  15. Engineering bioceramic microstructure for customized drug delivery

    NASA Astrophysics Data System (ADS)

    Pacheco Gomez, Hernando Jose

    One of the most efficient approaches to treat cancer and infection is to use biomaterials as a drug delivery system (DDS). The goal is for the material to provide a sustained release of therapeutic drug dose locally to target the ill tissue without affecting other organs. Silica Calcium Phosphate nano composite (SCPC) is a drug delivery platform that successfully demonstrated the ability to bind and release several therapeutics including antibiotics, anticancer drugs, and growth factors. The aim of the present work is to analyze the role of SCPC microstructure on drug binding and release kinetics. The main crystalline phases of SCPC are alpha-cristobalite (SiO2, Cris) and beta-rhenanite (NaCaPO4, Rhe); therefore, these two phases were prepared and characterized separately. Structural and compositional features of Cris, Rhe and SCPC bioceramics demonstrated a significant influence on the loading capacity and release kinetics profile of Vancomycin (Vanc) and Cisplatin (Cis). Fourier Transform Infrared (FTIR) spectroscopy analyses demonstrated that the P-O functional group in Rhe and SCPC has high affinity to the (C=O and N-H) of Vanc and (N-H and O-H) of Cis. By contrast, a weak chemical interaction between the Si-O functional group in Cris and SCPC and the two drugs was observed. Vanc loading per unit surface area increased in the order 8.00 microg Vanc/m2 for Rhe > 4.49 microg Vanc /m2 for SCPC>3.01 microg Vanc /m2 for Cris (p<0.05). Cis loading capacity increased in the order 8.59 microg Vanc /m2 for Cris, 17.8 microg Vanc/m2 for Rhe and 6.03 microg Vanc /m2 for SCPC (p<0.05). Drug release kinetics was dependent on the carrier as well as on the kind of drug. Different burst release and sustained release rates were measured for Vanc and Cis from the same carrier. The percentages of drug amount released from Cris, Rhe and SCPC during the burst stage (the first 2h) were: 50%, 50%, and 46% of Vanc; and 53.4%, 36.6%, and 30.6 % of Cis, respectively. Burst release was

  16. Engineering bioceramic microstructure for customized drug delivery

    NASA Astrophysics Data System (ADS)

    Pacheco Gomez, Hernando Jose

    One of the most efficient approaches to treat cancer and infection is to use biomaterials as a drug delivery system (DDS). The goal is for the material to provide a sustained release of therapeutic drug dose locally to target the ill tissue without affecting other organs. Silica Calcium Phosphate nano composite (SCPC) is a drug delivery platform that successfully demonstrated the ability to bind and release several therapeutics including antibiotics, anticancer drugs, and growth factors. The aim of the present work is to analyze the role of SCPC microstructure on drug binding and release kinetics. The main crystalline phases of SCPC are alpha-cristobalite (SiO2, Cris) and beta-rhenanite (NaCaPO4, Rhe); therefore, these two phases were prepared and characterized separately. Structural and compositional features of Cris, Rhe and SCPC bioceramics demonstrated a significant influence on the loading capacity and release kinetics profile of Vancomycin (Vanc) and Cisplatin (Cis). Fourier Transform Infrared (FTIR) spectroscopy analyses demonstrated that the P-O functional group in Rhe and SCPC has high affinity to the (C=O and N-H) of Vanc and (N-H and O-H) of Cis. By contrast, a weak chemical interaction between the Si-O functional group in Cris and SCPC and the two drugs was observed. Vanc loading per unit surface area increased in the order 8.00 microg Vanc/m2 for Rhe > 4.49 microg Vanc /m2 for SCPC>3.01 microg Vanc /m2 for Cris (p<0.05). Cis loading capacity increased in the order 8.59 microg Vanc /m2 for Cris, 17.8 microg Vanc/m2 for Rhe and 6.03 microg Vanc /m2 for SCPC (p<0.05). Drug release kinetics was dependent on the carrier as well as on the kind of drug. Different burst release and sustained release rates were measured for Vanc and Cis from the same carrier. The percentages of drug amount released from Cris, Rhe and SCPC during the burst stage (the first 2h) were: 50%, 50%, and 46% of Vanc; and 53.4%, 36.6%, and 30.6 % of Cis, respectively. Burst release was

  17. BoneNET: a network model of bone microstructure and dynamics.

    PubMed

    Kim, Taehyong; Bone, Lawrence; Ramanathan, Murali; Zhang, Aidong

    2013-01-01

    We develop a network model of bone microstructure and dynamics, BoneNET, which is capable of quantitative assessment of Bone Mineral Density (BMD) and bone remodelling dynamics. First, we introduce a network model of bone microstructure by describing structural properties and process of bone network modelling. Secondly, we explain a mathematical model of bone microstructure by analysing the density for mineralised fibres of bone microstructure. Finally, we provide a bone remodelling dynamics among osteoblast and osteoclast and study bone networks by proposing several measurements to calculate bone strength and identify critical elements in bone microstructure.

  18. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox. William R.; Regel, Liya L.

    1999-01-01

    This grant began in June of 1996. Its long term goal is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. The primary objective of the projects in the present grant is to test hypotheses for the reported influence of microgravity on the microstructure of eutectics. The prior experimental results on the influence of microgravity on the microstructure of eutectics have been contradictory. With lamellar eutectics, microgravity had a negligible effect on the microstructure. Microgravity experiments with fibrous eutectics sometimes showed a finer microstructure and sometimes a coarser microstructure. Most research has been done on the MnBi/Bi rod-like eutectic. Larson and Pirich obtained a two-fold finer microstructure both from microgravity and by use of a magnetic field to quench buoyancy-driven convection. Smith, on the other hand, observed no change in microgravity. Prior theoretical work at Clarkson University showed that buoyancy-driven convection in the vertical Bridgman configuration is not vigorous enough to alter the concentration field in front of a growing eutectic sufficiently to cause a measurable change in microstructure. We assumed that the bulk melt was at the eutectic composition and that freezing occurred at the extremum, i.e. with minimum total undercooling at the freezing interface. There have been four hypotheses attempting to explain the observed changes in microstructure of fibrous eutectics caused by convection: I .A fluctuating freezing rate, combined with unequal kinetics for fiber termination and branching. 2. Off-eutectic composition, either in the bulk melt due to an off-eutectic feed or at the freezing interface because of departure from the extremum condition. 3. Presence of a strong habit modifying impurity whose concentration at the freezing interface would be altered by convection. At the beginning of the present grant, we favored the

  19. Correlation Between Microstructure and Ageing of Iron Manganite Thermistors

    NASA Astrophysics Data System (ADS)

    Battault, T.; Legros, R.; Brieu, M.; Coudere, J. J.; Bernard, L.; Rousset, A.

    1997-05-01

    Negative Temperature Coefficient (NTC) thermistors made of spinel structure transition metal manganites usually display ageing phenomena under thermal stress. Their resistance drift depends on their composition, crystal structure (cubic or tetragonal) and heat treatments. We have previously shown in iron manganite thermistors, Mn{3-x}FexO4 (with 0 leq x leq 1.51), that the ageing is due to the migration of Fe^{3+} and Mn^{2+} ions between tetrahedral and octahedral sites of the spinel structure. Iron manganites were investigated by Transmission Electron Microscopy (TEM) in order to relate microstructure to electrical stability. For iron manganites with iron content x leq 0.78, two dimensional defects result in a domain microstructure (microtwins). As x increases and exceeds 0.78, the domain structure gradually vanishes and transforms into a tweed microstructure (x = 1.05) and, for x > 1.30, no bidimensional defects are observed. Thus it is suggested that the microstructural disturbance plays an important role in the kinetics of the ion migration during the ageing of the studied ceramics. Les thermistances à Coefficient de Température Négatif (CTN) élaborées à partir de manganites de métaux de transition à structure spinelle présentent, sous contrainte thermique, le phénomène de vieillissement. La dérive de leur résistance dépend de la composition chimique, de la structure cristallographique (cubique ou quadratique) et des traitements thermiques. Précédemment, nous avons montré, pour les thermistances à base de manganites de fer de composition Mn{3-x}FexO4 (avec 0 leq x leq 1,51), que le vieillissement est dû à une migration des ions Fe^{3+} et Mn^{2+} entre les sites tétraédriques et octaédriques de la structure spinelle. Une étude des manganites de fer a été réalisée par Microscopie Électronique à Transmission (MET) afin de relier la microstructure à la stabilité électrique. Pour les manganites de fer ayant une teneur en fer x leq

  20. Microstructure and mechanical properties of bulk highly faulted fcc/hcp nanostructured cobalt microstructures

    SciTech Connect

    Barry, Aliou Hamady; Dirras, Guy; Schoenstein, Frederic; Tétard, Florent; Jouini, Noureddine

    2014-05-01

    Nanostructured cobalt powders with an average particle size of 50 nm were synthesized using a polyol method and subsequently consolidated by spark plasma sintering (SPS). SPS experiments performed at 650 °C with sintering times ranging from 5 to 45 min under a pressure of 100 MPa, yielded to dense bulk nanostructured cobalt (relative density greater than 97%). X-ray diffraction patterns of the as-prepared powders showed only a face centered cubic (fcc) crystalline phase, whereas the consolidated samples exhibited a mixture of both fcc and hexagonal close packed (hcp) phases. Transmission electron microscopy observations revealed a lamellar substructure with a high density of nanotwins and stacking faults in every grain of the sintered samples. Room temperature compression tests, carried out at a strain rate of 10{sup −3} s{sup −1}, yielded to highest strain to fracture values of up to 5% for sample of holding time of 15 min, which exhibited a yield strength of 1440 MPa, an ultimate strength as high as 1740 MPa and a Young's modulus of 205 GPa. The modulus of elasticity obtained from the nanoindentation tests, ranges from 181 to 218 GPa. The lowest modulus value of 181 GPa was obtained for the sample with the highest sintering time (45 min), which could be related to mass density loss as a consequence of trapped gases releasing. - Highlights: • Co nanopowder (50 nm) was prepared by reduction in polyol medium. • SPS was used to process bulk nanostructured Co specimens. • Microstructures were made of intricate fcc/hcp, along with nanotwins and SFs. • High strengths and moderate compressive ductility were obtained. • Deformation mechanisms related to complex interplay of different length scales.

  1. Microstructure of neat alcohols: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zoranić, Larisa; Sokolić, Franjo; Perera, Aurélien

    2007-07-01

    Neat methanol and tert-butanol are studied by molecular dynamics with the focus on the microstructure of these two alcohols. The site-site radial distribution functions, the corresponding structure factors, and an effective local one-body density function are shown to be the appropriate statistical quantities that point in a complementary manner towards the same microstructure for any given liquid. Methanol is found to be a weakly associated liquid forming various chainlike patterns (open and closed) while tert-butanol is almost entirely associated and forms micellelike primary pattern. The presence of stable local microheterogeneity within homogeneous disordered phase appears as a striking feature of these liquids. The absence of any such apparent clustering in water—a stronger hydrogen bonding liquid—through the same two statistical quantities is analyzed.

  2. Dominant processes for microstructure evolution in polar ice

    NASA Astrophysics Data System (ADS)

    Jansen, Daniela; Faria, Sergio H.; Weikusat, Ilka; Azuma, Nobuhiko

    2013-04-01

    The microstructure of polycrystalline polar ice is affected by many recrystallization processes, which can occur simultaneously as well as in succession. The size and shape of individual grains, the orientation of c-axes and the occurrence of sub-grain boundaries are all influenced by a number of agents, including stress, strain, impurity content, and temperature within the ice. To interpret the structures found in ice core data with respect to the generating deformation mechanisms, it is necessary to better understand the feedback between microstructure and rheology of the ice. A better knowledge of ice rheology is also required for improving macroscopic ice flow models and producing realistic projections of the mass balance of ice sheets. The analysis of microstructural data of deep ice cores within the last decades contributed significantly to the understanding of recrystallization processes. The review paper by Faria et al. (in preparation) revisits some historic results: The analysis of grain sizes and c-axis orientation distributions with depth of the Byrd deep ice core, Antarctica, suggested that microstructural evolution could be characterized by three main depth ranges of the ice core, defined by their predominant recrystallization regimes. A generalization of these results gave rise to the tripartite paradigm of polar ice microstructure, also called the "three-stage model": (1) In the upper part Normal Grain Growth (NGG) dominates the evolution of the microstructure, leading to steady increase of the average grain size with age/depth. (2) In the central part the NGG is balanced by rotation recrystallization (sometimes also called "polygonisation"), which describes splitting of grains along sub-grain boundaries and consequently leads to a stationary average grain size. (3) In the lower (and warmer) parts of the ice core strain-induced boundary migration including nucleation of new grains was thought to be the dominant factor, resulting in larger average

  3. Application of Terahertz Field Enhancement Effect in Metal Microstructures

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Kurihara, T.; Tadokoro, Y.; Kang, B.; Takano, K.; Yamaguchi, K.; Watanabe, H.; Oto, K.; Suemoto, T.; Hangyo, M.

    2016-10-01

    Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.

  4. Improving resolution of optical coherence tomography for imaging of microstructures

    NASA Astrophysics Data System (ADS)

    Shen, Kai; Lu, Hui; Wang, James H.; Wang, Michael R.

    2015-03-01

    Multi-frame superresolution technique has been used to improve the lateral resolution of spectral domain optical coherence tomography (SD-OCT) for imaging of 3D microstructures. By adjusting the voltages applied to ? and ? galvanometer scanners in the measurement arm, small lateral imaging positional shifts have been introduced among different C-scans. Utilizing the extracted ?-? plane en face image frames from these specially offset C-scan image sets at the same axial position, we have reconstructed the lateral high resolution image by the efficient multi-frame superresolution technique. To further improve the image quality, we applied the latest K-SVD and bilateral total variation denoising algorithms to the raw SD-OCT lateral images before and along with the superresolution processing, respectively. The performance of the SD-OCT of improved lateral resolution is demonstrated by 3D imaging a microstructure fabricated by photolithography and a double-layer microfluidic device.

  5. Hardness and Microstructure of Binary and Ternary Nitinol Compounds

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2016-01-01

    The hardness and microstructure of twenty-six binary and ternary Nitinol (nickel titanium, nickel titanium hafnium, nickel titanium zirconium and nickel titanium tantalum) compounds were studied. A small (50g) ingot of each compound was produced by vacuum arc remelting. Each ingot was homogenized in vacuum for 48 hr followed by furnace cooling. Specimens from the ingots were then heat treated at 800, 900, 1000 or 1100 degree C for 2 hr followed by water quenching. The hardness and microstructure of each specimen was compared to the baseline material (55-Nitinol, 55 at.% nickel - 45 at.% titanium, after heat treatment at 900 degC). The results show that eleven of the studied compounds had higher hardness values than the baseline material. Moreover, twelve of the studied compounds had measured hardness values greater 600HV at heat treatments from 800 to 900 degree C.

  6. Origin of the visible emission of black silicon microstructures

    SciTech Connect

    Fabbri, Filippo E-mail: giancarlo.salviati@cnr.it; Lin, Yu-Ting; Bertoni, Giovanni; Rossi, Francesca; Salviati, Giancarlo E-mail: giancarlo.salviati@cnr.it; Mazur, Eric

    2015-07-13

    Silicon, the mainstay semiconductor in microelectronics, is considered unsuitable for optoelectronic applications due to its indirect electronic band gap that limits its efficiency as light emitter. Here, we univocally determine at the nanoscale the origin of visible emission in microstructured black silicon by cathodoluminescence spectroscopy and imaging. We demonstrate the formation of amorphous silicon oxide microstructures with a white emission. The white emission is composed by four features peaking at 1.98 eV, 2.24 eV, 2.77 eV, and 3.05 eV. The origin of such emissions is related to SiO{sub x} intrinsic point defects and to the sulfur doping due to the laser processing. Similar results go in the direction of developing optoelectronic devices suitable for silicon-based circuitry.

  7. Coupled dynamics of flow, microstructure, and conductivity in sheared suspensions.

    PubMed

    Olsen, Tyler; Helal, Ahmed; McKinley, Gareth H; Kamrin, Ken

    2016-09-28

    We propose a model for the evolution of the conductivity tensor for a flowing suspension of electrically conductive particles. We use discrete particle numerical simulations together with a continuum physical framework to construct an evolution law for the suspension microstructure during flow. This model is then coupled with a relationship between the microstructure and the electrical conductivity tensor. Certain parameters of the joint model are fit experimentally using rheo-electrical conductivity measurements of carbon black suspensions under flow over a range of shear rates. The model is applied to the case of steady shearing as well as time-varying conductivity of unsteady flow experiments. We find that the model prediction agrees closely with the measured experimental data in all cases. PMID:27532243

  8. OLEDs as prospective light sources for microstructured photoreactors.

    PubMed

    Ziegenbalg, Dirk; Kreisel, Günter; Weiß, Dieter; Kralisch, Dana

    2014-07-01

    In this work, the use of OLEDs as light sources to initiate photochemical reactions is presented for the first time. A newly developed modular photoreactor system utilising microstructured reactors was equipped with commercially available OLED panels. The technical feature of being a surface emitter, the low thickness and the potentially high luminescent efficiency give reason to expect this kind of light source to be well suited for photochemical reactions. The reactor system was investigated by using photooxygenations as benchmark reactions. In detail, photosensitised [4 + 2]-cycloadditions and [2 + 2]-cycloadditions of (1)O2 were examined as well as Schenck-ene-reactions. It was demonstrated that OLEDs can be successfully used for conducting photochemical reactions. Moreover the equilibrium concentration of (1)O2 can be increased by varying the process conditions. Based on the experimental investigations, a reactor comparison showed that, with respect to productivity and efficiency, the investigated microstructured photoreactor is currently not outperforming conventional batch reactors.

  9. Microstructure of room temperature ionic liquids at stepped graphite electrodes

    SciTech Connect

    Feng, Guang; Li, Song; Zhao, Wei; Cummings, Peter T.

    2015-07-14

    Molecular dynamics simulations of room temperature ionic liquid (RTIL) [emim][TFSI] at stepped graphite electrodes were performed to investigate the influence of the thickness of the electrode surface step on the microstructure of interfacial RTILs. A strong correlation was observed between the interfacial RTIL structure and the step thickness in electrode surface as well as the ion size. Specifically, when the step thickness is commensurate with ion size, the interfacial layering of cation/anion is more evident; whereas, the layering tends to be less defined when the step thickness is close to the half of ion size. Furthermore, two-dimensional microstructure of ion layers exhibits different patterns and alignments of counter-ion/co-ion lattice at neutral and charged electrodes. As the cation/anion layering could impose considerable effects on ion diffusion, the detailed information of interfacial RTILs at stepped graphite presented here would help to understand the molecular mechanism of RTIL-electrode interfaces in supercapacitors.

  10. Prediction of Microstructure in High-Strength Ductile Forging Parts

    SciTech Connect

    Urban, M.; Back, A.; Hirt, G.; Keul, C.; Bleck, W.

    2010-06-15

    Governmental, environmental and economic demands call for lighter, stiffer and at the same time cheaper products in the vehicle industry. Especially safety relevant parts have to be stiff and at the same time ductile. The strategy of this project was to improve the mechanical properties of forging steel alloys by employing a high-strength and ductile bainitic microstructure in the parts while maintaining cost effective process chains to reach these goals for high stressed forged parts. Therefore, a new steel alloy combined with an optimized process chain has been developed. To optimize the process chain with a minimum of expensive experiments, a numerical approach was developed to predict the microstructure of the steel alloy after the process chain based on FEM simulations of the forging and cooling combined with deformation-time-temperature-transformation-diagrams.

  11. Microstructure Sensitive Design and Processing in Solid Oxide Electrolyzer Cell

    SciTech Connect

    Dr. Hamid Garmestani; Dr. Stephen Herring

    2009-06-12

    The aim of this study was to develop and inexpensive manufacturing process for deposition of functionally graded thin films of LSM oxides with porosity graded microstructures for use as IT-SOFCs cathode. The spray pyrolysis method was chosen as a low-temperature processing technique for deposition of porous LSM films onto dense YXZ substrates. The effort was directed toward the optimization of the processing conditions for deposition of high quality LSM films with variety of morphologies in the range of dense to porous microstructures. Results of optimization studies of spray parameters revealed that the substrate surface temperature is the most critical parameter influencing the roughness and morphology, porosity, cracking and crystallinity of the film.

  12. Patch microstructure in cement-based materials: Fact or artefact?

    SciTech Connect

    Wong, H.S. . E-mail: hong.wong@imperial.ac.uk; Buenfeld, N.R.

    2006-05-15

    The appearance of patch microstructure, i.e. broad dense and porous regions separated by sharp and distinct boundaries and occurring randomly in bulk and interfacial transition zones, has been reported previously in various site- and laboratory-mixed concretes and mortars. In this paper, evidence is presented to show that patch microstructure is an artefact of sample preparation and does not reflect the true nature of the hydrated cement paste. The appearance of dense patches comes from paste areas that have been ground and polished beyond the epoxy resin intrusion depth. In a backscattered electron image, pores not filled with epoxy are not visible because the signal is generated from the base or side walls of the pores. A modified method for epoxy impregnation, which can achieve a much deeper epoxy penetration than conventional vacuum impregnation, is presented.

  13. Microstructural analysis of martensite constituents in quenching and partitioning steels

    SciTech Connect

    Santofimia, M.J.; Petrov, R.H.; Zhao, L.; Sietsma, J.

    2014-06-01

    A methodology to distinguish martensite formed in the first quench (M1) from martensite formed in the second quench (M2) of the Quenching and Partitioning process is presented, enabling the study of the structural characteristics of both microstructural constituents. Investigations show that M1 displays larger block size and less lattice imperfections than M2, differences that can be related to their respective carbon contents. - Highlights: • An approach to distinguish “old” from “new” martensite in Q and P steels is presented • Methodology allows separate characterization of microstructure and crystallography “Old” martensite has larger block size and more perfect lattice than the “new” one • The differences between the old and new martensite depend on their carbon contents.

  14. Microstructural Preparation and Examination of Polymer-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Elban, Wayne L.; Rutzebeck, Maddy M.; Small, Ryan A.; Walsh, Adam M.

    1996-01-01

    Adapting procedures widely used in the metallographic characterization of metals and alloys, the microstructural preparation and examination of three polymer-matrix composites (PMC's) is described. The materials investigated contained either hollow ceramic filler particles or woven, continuous carbon/graphite fibers. Since the two particulate composites were considered to be isotropic, only one sample orientation was prepared. For the fiber composite, both longitudinal and planar orientations were studied. Once prepared, the samples were examined using reflected light microscopy. A number of microstructural features were evaluated qualitatively, including porosity and cracks, filler-matrix interfacial bonding, filler particle characteristics (shape, size, size distribution, and loading variation) and fiber characteristics (orientation, packing variation, and discontinuities).

  15. 3-D printed composites with ultrasonically arranged complex microstructure

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, Thomas M.; Drinkwater, Bruce W.; Trask, Richard S.

    2016-04-01

    This paper demonstrates the efficacy of implementing ultrasonic manipulation within a modified form of stereolithographic 3D printing to form complex microstructures in printed components. Currently 3D printed components are limited both in terms of structural performance and specialised functionality. This study aims to demonstrate a novel method for 3D printing composite materials, by arranging microparticles suspended within a photocurable resin. The resin is selectively cured by a 3-axis gantry-mounted 405nm laser. Ultrasonic forces are used to arrange the microfibres into predetermined patterns within the resin, with unidirectional microfibre alignment and a hexagonal lattice structure demonstrated. An example of dynamic microstructure variation within a single print layer is also presented.

  16. Thermodynamics and nonlinear mechanics of materials with photoresponsive microstructure

    NASA Astrophysics Data System (ADS)

    Oates, William S.; Bin, Jonghoon

    2014-03-01

    The ability to directly convert visible light radiation into useful mechanical work provides many opportunities in the field of smart materials and adaptive structures ranging from biomedical applications to control of heliostat mirrors for solar harvesting. The complexities associated with coupling time-dependent Maxwell's equations with linear momentum and mechanics is discussed by introducing a set of electronic order parameters that govern the coupling between electromagnetic radiation and mechanics of a deformable solid. Numerical examples are given illustrating how this methodology is applied to a special class of liquid crystal polymer networks containing azobenzene. The dynamics associated with light absorption and its effect on deformation of the polymer are solved in three dimensions using finite difference methods and compared to experimental results. Particular emphasis is placed on the effect of polarized light on microstructure evolution and stresses that occur during photoisomerization of the optically active microstructure.

  17. Microstructural evolution during stress relaxation of gold thin films

    NASA Astrophysics Data System (ADS)

    Syarbaini, Luthfia Amra

    Microstructure evolution in metal thin films for use in microelectronic devices was studied due to the formation of defects such as whiskers and hillocks that may cause problems in electrical circuits. Thin film stress relaxation can occur through a variety of processes. Understanding such mechanisms and the conditions under which certain mechanism dominate can potentially lead to the improved control of thin film stability. Studies of the 3D microstructural changes in Au thin films on silicon and other substrates with different thermal expansion coefficients aid us in understanding thin film relaxation phenomena such as hillock/whisker formation. Techniques such as in-situ scanning electron microscopy (SEM) heating and cooling experiments, electron backscattered diffraction (EBSD), focus ion beam (FIB) cross sections and atomic force microscopy (AFM) enabled us to quantify the kinetic relationships between relaxation mechanisms and local morphological changes.

  18. Microstructure and stability of melt spun INCONEL 713 LC

    NASA Technical Reports Server (NTRS)

    Antolovich, S. D.; Bowman, R. R.

    1986-01-01

    The alloy IN-714LC was used in an investigation of the effect of process parameters on the microstructure of a rapidly solidified melt-spun material. The resultant ribbon microstructure consisted of several distinct regions, each of which corresponds to a different thermal history during processing. A chill zone of equiaxed randomly-oriented grains exists in a region of the foil which was in contact with the wheel during casting. This zone develops into a dendritic growth morphology with distance away from the lower ribbon surface. Dendrites inclined in the direction of wheel rotation result from growth into a flowing stream. TEM studies showed that a cell structure formed, the cell size decreasing with increasing wheel speed. Aging studies indicated that the cell structure plays an important role in gamma prime precipitation. Results relating to heat treatments (as would be encountered in compaction and use) and the stability of the melt-spun structure are considered.

  19. Analysis of microstructural development in single crystal welds

    SciTech Connect

    Rappaz, M.; David, S.A.; Vitek, J.M.; Boatner, L.A.

    1989-01-01

    A detailed analysis of the dendritic microstructure produced in autogenously welded single crystals Fe-15Ni-15Cr has been performed in order to investigate the relationship between growth crystallography and solidification behavior. From a geometrical analysis relating the dendrite growth velocities to the weld velocity, it has been shown that, at a given point of the melt pool surface, selection of the preferred dendrite trunk growth direction occurs according to a minimum velocity (i.e., minimum undercooling) criterion. Knowing the growth rate of the selected dendrite orientation, the dendrite tip radius and the dendrite trunk spacing have been computed using recent theories of rapid solidification of ternary systems. The predicted dendrite growth orientation and spacing have been successfully compared to experimental observations made on electron beam and laser welds, thus clearly demonstrating the effect of crystallography on the microstructural development during weld pool solidification. 13 refs., 6 figs.

  20. Surface tension and contact angles: Molecular origins and associated microstructure

    NASA Technical Reports Server (NTRS)

    Davis, H. T.

    1982-01-01

    Gradient theory converts the molecular theory of inhomogeneous fluid into nonlinear boundary value problems for density and stress distributions in fluid interfaces, contact line regions, nuclei and microdroplets, and other fluid microstructures. The relationship between the basic patterns of fluid phase behavior and the occurrence and stability of fluid microstructures was clearly established by the theory. All the inputs of the theory have molecular expressions which are computable from simple models. On another level, the theory becomes a phenomenological framework in which the equation of state of homogeneous fluid and sets of influence parameters of inhomogeneous fluids are the inputs and the structures, stress tensions and contact angles of menisci are the outputs. These outputs, which find applications in the science and technology of drops and bubbles, are discussed.

  1. Microstructures of Si surface layers implanted with Cu

    SciTech Connect

    Follstaedt, D.M.; Myers, S.M.

    1993-12-31

    Microstructures of Si ion-implanted with Cu have been characterized by TEM after annealing. For 1.2 at.%, the Cu is trapped at planar defects, but for 10 at.%, {eta}-Cu{sub 3}Si forms and Cu diffuses at its equilibrium solubility. These observations allow proper evaluation of the binding energies of Cu to previously formed internal cavities (2.2 eV) and {eta}-Cu{sub 3}Si (1.7 eV). The 10 at.% Cu layer promotes oxidation of Si catalyzed by {eta}-Cu{sub 3}Si. The microstructures also indicate that Si implanted with {approximately}2 at.% Cu reforms epitaxially with embedded defects after 8 hr at 700C, but for {approximately}10 at.% Cu, epitaxy is not recovered after 6 hours at 600C.

  2. Characterization of microstructure with low frequency electromagnetic techniques

    SciTech Connect

    Cherry, Matthew R.; Sathish, Shamachary; Pilchak, Adam L.; Blodgett, Mark P.; Cherry, Aaron J.

    2014-02-18

    A new computational method for characterizing the relationship between surface crystallography and electrical conductivity in anisotropic materials with low frequency electromagnetic techniques is presented. The method is discussed from the standpoint of characterizing the orientation of a single grain, as well as characterizing statistical information about grain ensembles in the microstructure. Large-area electron backscatter diffraction (EBSD) data was obtained and used in conjunction with a synthetic aperture approach to simulate the eddy current response of beta annealed Ti-6Al-4V. Experimental eddy current results are compared to the computed eddy current approximations based on electron backscatter diffraction (EBSD) data, demonstrating good agreement. The detectability of notches in the presence of noise from microstructure is analyzed with the described simulation method and advantages and limitations of this method are discussed relative to other NDE techniques for such analysis.

  3. Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617

    SciTech Connect

    Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J.

    2014-02-18

    Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, β) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.

  4. Chemically-modified cellulose paper as a microstructured catalytic reactor.

    PubMed

    Koga, Hirotaka; Kitaoka, Takuya; Isogai, Akira

    2015-01-15

    We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  5. Transport properties and microstructural characteristics of a thermally cracked mylonite

    NASA Astrophysics Data System (ADS)

    Le Ravalec, M.; Darot, M.; Reuschlé, T.; Guéguen, Y.

    1996-03-01

    An experimental study was carried out on a granitic mylonite (La Bresse, France) to analyze the influence of pore microstructure on transport properties. Different crack networks were obtained by a controlled thermal treatment. Microstructures were analyzed by means of gas adsorption and mercury porosimetry. Transport properties have been investigated by measuring gas permeability and electrical conductivity. The dependence of permeability on confining pressure shows an exponential decrease, characteristic of a porosity made of cracks. Correlations between measured parameters have been analyzed by comparing them with relations deduced from theoretical models. Linking the formation factor to the porosity leads to a rather low tortuosity value (about 2.4), characterizing a medium with a well connected porosity. Correlation between permeability k and formation factor F leads to a power-law relation k ∝ F -n where n≈2.9, which is consistent with a crack model describing the behavior of the thermally treated rock.

  6. Experimental study on laser microstructures using long pulse

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Shen, Hong; Pan, Yanqing; Ding, Xiaohong

    2016-03-01

    Laser surface texturing has applications in mechanical, medical and electrical industries. Many experiments using the short pulsed laser in air have been performed. In this study, the mechanism of the microstructure produced by using the long pulsed laser from the bump to the dimple is analyzed, in which the surface tension is dominant for the bump shape. The microstructure produced underwater is more regular than the one in air because the spatter of material on the entrance disappears. Due to additional mechanical impacts, liquid-assisted ablation efficiency with a water layer of 0.5 mm shows upto four times higher ablation volume than that in air. More heat dissipation with a thicker liquid layer reduced ablation efficiency.

  7. Thermodynamically consistent microstructure prediction of additively manufactured materials

    NASA Astrophysics Data System (ADS)

    Smith, Jacob; Xiong, Wei; Cao, Jian; Liu, Wing Kam

    2016-03-01

    Additive manufacturing has risen to the top of research interest in advanced manufacturing in recent years due to process flexibility, achievability of geometric complexity, and the ability to locally modify and optimize materials. The present work is focused on providing an approach for incorporating thermodynamically consistent properties and microstructure evolution for non-equilibrium supercooling, as observed in additive manufacturing processes, into finite element analysis. There are two primary benefits of this work: (1) the resulting prediction is based on the material composition and (2) the nonlinear behavior caused by the thermodynamic properties of the material during the non-equilibrium solution is accounted for with extremely high resolution. The predicted temperature response and microstructure evolution for additively manufactured stainless steel 316L using standard handbook-obtained thermodynamic properties are compared with the thermodynamic properties calculated using the CALculation of PHAse Diagrams (CALPHAD) approach. Data transfer from the CALPHAD approach to finite element analysis is discussed.

  8. Influence of heating rate on the microstructure of glass foams.

    PubMed

    Pokorny, Andrea; Vicenzi, Juliane; Pérez Bergmann, Carlos

    2011-02-01

    In the present study, glass foams made of ground soda-lime glass obtained from transparent glass bottles and dolomite were investigated. The objective of this paper was to evaluate the influence of the heating rate on the microstructure of the obtained material and on its properties. The technological characterization of the ceramic bodies involved the determination of the volumetric expansion and average diameter of the pore. The microstructure was investigated by optical microscopy and scanning electron microscopy. Experimental results showed that the heating rate influenced both the volumetric expansion and the average diameter of the pore. Lower heating rates resulted in lower volumetric expansions since more CO(2) escaped from within the ceramic body.

  9. All-solid all-chalcogenide microstructured optical fiber.

    PubMed

    Toupin, Perrine; Brilland, Laurent; Renversez, Gilles; Troles, Johann

    2013-06-17

    The realization of an all-solid microstructured optical fiber based on chalcogenide glasses was achieved. The fiber presents As(2)S(3) inclusions selected as low refractive index material (n = 2.4) embedded in a As(38)Se(62) glass matrix (n = 2.8). The single mode regime of the fiber was demonstrated both theoretically by multipole method calculations and experimentally by near field measurements. Optical transmission measurements of the microstructured fiber and single index fibers made of the initial glasses reveal an excess of losses as high as 6-7 dB/m. This excess is not due to the guide geometry but can be explained by the presence of defects in the glass interface regions.

  10. Microstructure of bentonite in iron ore green pellets.

    PubMed

    Bhuiyan, Iftekhar U; Mouzon, Johanne; Schröppel, Birgit; Kaech, Andres; Dobryden, Illia; Forsmo, Seija P E; Hedlund, Jonas

    2014-02-01

    Sodium-activated calcium bentonite is used as a binder in iron ore pellets and is known to increase strength of both wet and dry iron ore green pellets. In this article, the microstructure of bentonite in magnetite pellets is revealed for the first time using scanning electron microscopy. The microstructure of bentonite in wet and dry iron ore pellets, as well as in distilled water, was imaged by various imaging techniques (e.g., imaging at low voltage with monochromatic and decelerated beam or low loss backscattered electrons) and cryogenic methods (i.e., high pressure freezing and plunge freezing in liquid ethane). In wet iron ore green pellets, clay tactoids (stacks of parallel primary clay platelets) were very well dispersed and formed a voluminous network occupying the space available between mineral particles. When the pellet was dried, bentonite was drawn to the contact points between the particles and formed solid bridges, which impart strength to the solid compact. PMID:24397939

  11. 3D Printing Optical Engine for Controlling Material Microstructure

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chin; Chang, Kuang-Po; Wu, Ping-Han; Wu, Chih-Hsien; Lin, Ching-Chih; Chuang, Chuan-Sheng; Lin, De-Yau; Liu, Sung-Ho; Horng, Ji-Bin; Tsau, Fang-Hei

    Controlling the cooling rate of alloy during melting and resolidification is the most commonly used method for varying the material microstructure and consequently the resuling property. However, the cooling rate of a selective laser melting (SLM) production is restricted by a preset optimal parameter of a good dense product. The head room for locally manipulating material property in a process is marginal. In this study, we invent an Optical Engine for locally controlling material microstructure in a SLM process. It develops an invovative method to control and adjust thermal history of the solidification process to gain desired material microstucture and consequently drastically improving the quality. Process parameters selected locally for specific materials requirement according to designed characteristics by using thermal dynamic principles of solidification process. It utilize a technique of complex laser beam shape of adaptive irradiation profile to permit local control of material characteristics as desired. This technology could be useful for industrial application of medical implant, aerospace and automobile industries.

  12. Polyimide foam-like microstructures: technology and mechanical properties

    NASA Astrophysics Data System (ADS)

    Dobrzynska, J. A.; Joris, P.; Jiguet, S.; Renaud, P.; Gijs, M. A. M.

    2011-10-01

    We report a process for the realization of polyimide films with custom-designed microporosity based on the heat-induced depolymerization of polyimide-embedded polypropylene carbonate microstructures. The foam-like microstructures are up to 40 µm thick and incorporate air cavities with a width ranging from 20 to 200 µm, a length up to 5 mm and a height of 20 µm. We model the mechanical stress-strain properties of the microcavities using both analytical and numerical methods. The simulation data are in good agreement with the results of nanoindentation and microcompression experiments, which show the reduction of the effective Young's modulus from 5.77 ± 0.06 GPa for bulk polyimide to 2.51 ± 0.03 GPa for a foam-like layer.

  13. The manufacture and performance of homogeneous microstructure SBR MOX fuel

    SciTech Connect

    Barker, Matthew A.; Stephenson, Keith; Weston, Rebecca

    2007-07-01

    In the early 1980's, British experience in the manufacture of mixed-oxide fast reactor fuel was used to develop a new thermal MOX manufacturing route called the Short Binder-less Route (SBR). Laboratory- scale development led to the manufacture of commercial PWR fuel in a small pilot plant, and the construction of the full-scale dual-line Sellafield MOX Plant (SMP). SMP's first MOX assemblies are now under irradiation. SBR MOX is manufactured with 100% co-milled feedstock, leading to a microstructure dominated by a solid solution of (U,Pu)O{sub 2} at the nominal enrichment. A comprehensive fuel performance research programme has demonstrated the benign performance of SBR MOX up to 54 MWd/kgHM. In particular, the homogeneous microstructure is believed to be instrumental in the favourable fission gas retention and PCI resistance properties. (authors)

  14. Microstructured gradient-index lenses for THz photoconductive antennas

    NASA Astrophysics Data System (ADS)

    Brincker, Mads; Karlsen, Peter; Skovsen, Esben; Søndergaard, Thomas

    2016-02-01

    A new type of substrate lens for photoconductive antennas (PCA's) based on sub-wavelength microstructuring is presented and studied theoretically by the use of Greens function integral equation methods (GFIEM's). By etching sub-wavelength trenches into a flat substrate, the effective dielectric constant can be designed to function like a gradient index (GRIN) lens. The proposed GRIN substrate lenses have sub-mm dimension, which is smaller than the dimensions of a typical hyper-hemispherical substrate lens (HSL), and could enable fabrication of arrays of closely packed PCA's with individual lenses integrated directly into the PCA substrate. The performance of different GRIN lenses is compared to a HSL and shown to be comparable with regards to the terahertz radiation extraction efficiency, and it is shown that the collimating properties of these GRIN lenses can be tailored by changing the parameters used for microstructuring.

  15. Effect of Helium Accumulation on the Spent Fuel Microstructure

    SciTech Connect

    Ferry, Cecile; Piron, Jean-Paul; Stout, Ray

    2007-07-01

    In a nuclear spent fuel repository, the aqueous rapid release of radio-activity from exposed spent fuel surfaces will depend on the pellet microstructure at the arrival time of water into the disposal container. Research performed on spent fuel evolution in a closed system has shown that the evolution of microstructure under disposal conditions should be governed by the cumulated {alpha}-decay damage and the subsequent helium behavior. The evolution of fission gas bubble characteristics under repository conditions has to be assessed. In UO{sub 2} fuels with a burnup of 47.5 GWd/t, the pressure in fission gas bubbles, including the pressure increase from {alpha}-decay helium atoms, is not expected to reach the critical bubble pressure that will cause failure, thus micro-cracking in UO{sub 2} spent fuel grains is not expected. (authors)

  16. Influence of the Initial Microstructure on the Heat Treatment Response and Tensile Properties of TRIP-Assisted Steel

    NASA Astrophysics Data System (ADS)

    Lee, Kyooyoung; Ryu, Joo Hyun; Lee, Sea Woong; Lee, Won Hwi; Kim, Jeong In; Suh, Dong-Woo

    2016-08-01

    Microstructure evolution and mechanical properties were investigated in transformation-induced plasticity (TRIP) steel having a different initial microstructure. Compared with the cold-rolled structure that evolves into a typical microstructure of TRIP steel, the martensitic initial structure produces a more lath-type microstructure as the fraction of retained austenite increases in the initial microstructure. The interlath austenite after heat treatment contributes to improving the tensile properties by the enhanced stability and the refinement of the matrix phase.

  17. Influence of the Initial Microstructure on the Heat Treatment Response and Tensile Properties of TRIP-Assisted Steel

    NASA Astrophysics Data System (ADS)

    Lee, Kyooyoung; Ryu, Joo Hyun; Lee, Sea Woong; Lee, Won Hwi; Kim, Jeong In; Suh, Dong-Woo

    2016-11-01

    Microstructure evolution and mechanical properties were investigated in transformation-induced plasticity (TRIP) steel having a different initial microstructure. Compared with the cold-rolled structure that evolves into a typical microstructure of TRIP steel, the martensitic initial structure produces a more lath-type microstructure as the fraction of retained austenite increases in the initial microstructure. The interlath austenite after heat treatment contributes to improving the tensile properties by the enhanced stability and the refinement of the matrix phase.

  18. Microstructure of selective laser melted nickel–titanium

    SciTech Connect

    Bormann, Therese; Müller, Bert; Kessler, Anja; Thalmann, Peter

    2014-08-15

    In selective laser melting, the layer-wise local melting of metallic powder by means of a scanning focused laser beam leads to anisotropic microstructures, which reflect the pathway of the laser beam. We studied the impact of laser power, scanning speed, and laser path onto the microstructure of NiTi cylinders. Here, we varied the laser power from 56 to 100 W and the scanning speed from about 100 to 300 mm/s. In increasing the laser power, the grain width and length increased from (33 ± 7) to (90 ± 15) μm and from (60 ± 20) to (600 ± 200) μm, respectively. Also, the grain size distribution changed from uni- to bimodal. Ostwald-ripening of the crystallites explains the distinct bimodal size distributions. Decreasing the scanning speed did not alter the microstructure but led to increased phase transformation temperatures of up to 40 K. This was experimentally determined using differential scanning calorimetry and explained as a result of preferential nickel evaporation during the fabrication process. During selective laser melting of the NiTi shape memory alloy, the control of scanning speed allows restricted changes of the transformation temperatures, whereas controlling the laser power and scanning path enables us to tailor the microstructure, i.e. the crystallite shapes and arrangement, the extent of the preferred crystallographic orientation and the grain size distribution. - Highlights: • Higher laser powers during selective laser melting of NiTi lead to larger grains. • Selective laser melting of NiTi gives rise to preferred <111> orientation. • The observed Ni/Ti ratio depends on the exposure time. • Ostwald ripening explains the bimodal grain size distribution.

  19. Acetone evaporation monitoring using a caterpillar-like microstructured fiber

    NASA Astrophysics Data System (ADS)

    Gomes, A. D.; Ferreira, M. F. S.; Moura, J. P.; André, R. M.; Silva, S. O.; Kobelke, J.; Bierlich, J.; Wondraczek, K.; Schuster, K.; Frazão, O.

    2015-09-01

    A new microstructured optical fiber is demonstrated to detect acetone evaporation by observing the time response of the reflected signal at 1550nm. The sensor consists on a caterpillar-like fiber, with a transversal microfluidic channel created with a Focused Ion Beam technique, spliced to a single-mode fiber. Different stages were visible between the dipping and the evaporation of acetone and of a mixture of water and acetone. It was also possible to detect the presence of water vapor.

  20. Compositional Effects on Nickel-Base Superalloy Single Crystal Microstructures

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Garg,Anita; Rogers, Richard B.; Nathal, Michael V.

    2012-01-01

    Fourteen nickel-base superalloy single crystals containing 0 to 5 wt% chromium (Cr), 0 to 11 wt% cobalt (Co), 6 to 12 wt% molybdenum (Mo), 0 to 4 wt% rhenium (Re), and fixed amounts of aluminum (Al) and tantalum (Ta) were examined to determine the effect of bulk composition on basic microstructural parameters, including gamma' solvus, gamma' volume fraction, volume fraction of topologically close-packed (TCP) phases, phase chemistries, and gamma - gamma'. lattice mismatch. Regression models were developed to describe the influence of bulk alloy composition on the microstructural parameters and were compared to predictions by a commercially available software tool that used computational thermodynamics. Co produced the largest change in gamma' solvus over the wide compositional range used in this study, and Mo produced the largest effect on the gamma lattice parameter and the gamma - gamma' lattice mismatch over its compositional range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had a significant impact on their concentrations in the gamma matrix and, to a smaller extent, in the gamma' phase. The gamma phase chemistries exhibited strong temperature dependencies that were influenced by the gamma and gamma' volume fractions. A computational thermodynamic modeling tool significantly underpredicted gamma' solvus temperatures and grossly overpredicted the amount of TCP phase at 982 C. Furthermore, the predictions by the software tool for the gamma - gamma' lattice mismatch were typically of the wrong sign and magnitude, but predictions could be improved if TCP formation was suspended within the software program. However, the statistical regression models provided excellent estimations of the microstructural parameters based on bulk alloy composition, thereby demonstrating their usefulness.

  1. Microstructures and Mechanical Properties of Irradiated Metals and Alloys

    SciTech Connect

    Zinkle, Steven J

    2008-01-01

    The effects of neutron irradiation on the microstructural evolution of metals and alloys are reviewed, with an emphasis on the roles of crystal structure, neutron dose and temperature. The corresponding effects of neutron irradiation on mechanical properties of metals and alloys are summarized, with particular attention on the phenomena of low temperature radiation hardening and embrittlement. The prospects of developing improved high-performance structural materials with high resistance to radiation-induced property degradation are briefly discussed.

  2. Effect of the microstructure on the lifetime of dental ceramics

    PubMed Central

    Borba, Márcia; de Araújo, Maico D.; Fukushima, Karen A.; Yoshimura, Humberto N.; Cesar, Paulo F.; Griggs, Jason A.; Della Bona, Álvaro

    2011-01-01

    Objectives To evaluate the effect of the microstructure on the Weibull and slow crack growth (SCG) parameters and on the lifetime of three ceramics used as framework materials for fixed partial dentures (FPDs) (YZ - Vita In-Ceram YZ; IZ - Vita In-Ceram Zirconia; AL - Vita In-Ceram AL) and of two veneering porcelains (VM7 and VM9). Methods Bar-shaped specimens were fabricated according to the manufacturer’s instructions. Specimens were tested in three-point flexure in 37°C artificial saliva. Weibull analysis (n=30) and a constant stress-rate test (n=10) were used to determine the Weibull modulus (m) and SCG coefficient (n), respectively. Microstructural and fractographic analyses were performed using SEM. ANOVA and Tukey’s test (α=0.05) were used to statistically analyze data obtained with both microstructural and fractographic analyses. Results YZ and AL presented high crystalline content and low porosity (0.1–0.2%). YZ had the highest characteristic strength (σ0) value (911 MPa) followed by AL (488 MPa) and IZ (423 MPa). Lower σ0 values were observed for the porcelains (68–75 MPa). Except for IZ and VM7, m values were similar among the ceramic materials. Higher n values were found for YZ (76) and AL (72), followed by IZ (54) and the veneering materials (36–44). Lifetime predictions showed that YZ was the material with the best mechanical performance. The size of the critical flaw was similar among the framework materials (34–48 µm) and among the porcelains (75–86 µm). Significance The microstructure influenced the mechanical and SCG behavior of the studied materials and, consequently, the lifetime predictions. PMID:21536324

  3. POWDER METALLURGY TiAl ALLOYS: MICROSTRUCTURES AND PROPERTIES

    SciTech Connect

    Hsiung, L

    2006-12-11

    The microstructures and properties of powder metallurgy TiAl alloys fabricated by hot extrusion of gas-atomized powder at different elevated temperatures were investigated. Microstructure of the alloy fabricated at 1150 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains and coarse ordered B2 grains. Particles of ordered hexagonal {omega} phase were also observed in some B2 grains. The alloy containing B2 grains displayed a low-temperature superplastic behavior: a tensile elongation of 310% was measured when the alloy was tested at 800 C under a strain rate of 2 x 10{sup -5} s{sup -1}. Microstructure of the alloy fabricated at 1250 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains, coarse {alpha}{sub 2} grains, and lamellar ({gamma} + {alpha}{sub 2}) colonies. An observation of stacking faults associated with fine {gamma} lamellae in {alpha}{sub 2} grains reveals that the stacking fault of {alpha}{sub 2} phase plays an important role in the formation of lamellar ({gamma} + {alpha}{sub 2}) colonies. Unlike the alloy fabricated at 1150{sup o}, the alloy fabricated at 1250{sup o} displayed no low-temperature superplasticity, but a tensile elongation of 260% at 1000 C was measured. Microstructure of the alloy fabricated at 1400 C consisted of fully lamellar ({gamma} + {alpha}{sub 2}) colonies with the colony size ranging between 50 {micro}m and 100 {micro}m, in which the width of {gamma} lamella is in a range between 100 nm and 350 nm, and the width of {alpha}{sub 2} lamella is in a range between 10 nm and 50 nm. Creep behavior of the ultrafine lamellar alloy and the effects of alloying addition on the creep resistance of the fully lamellar alloy are also investigated.

  4. Synthetic Microstructure-Based Lifing of Nickel-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Tucker, Joseph C.

    This work focuses on the root cause of life limiting behavior in Ni-based superalloys for high pressure and temperature turbine disks applications in low cycle fatigue (LCF) by generating statistical volume elements (SVEs) of directly measured 3D microstructures for finite element method (FEM) simulations with crystal plasticity. Synthetic microstructures with experimentally determined microstructurally small fatigue crack (MSFC) weakest link features of as large as (ALA) grains and long annealing twins comprise the test cases. Upper limit truncated log-normal distributions account for the log-normal upper tail departure in grain size distributions of Ni-based superalloys more accurately representing ALA grains. Probability plots quantify the log-normality of grain sizes more effectively than traditional histograms. Twins are inserted into synthetic microstructures according to the coherent Sigma3 orientation relationship. A 3D measured dataset of the Inconel 100 (IN100) validates the Saltykov method stereology technique for estimating 3D grain size distributions from 2D; the 3D grain size distribution mean field and upper tail of IN100 is accurately predicted. The Saltykov method gave 3D grain sizes from a Rene 88 Damage Tolerant (R88DT) 2D dataset resulting in fatigue SVEs of approximately 1.5 million elements and 200 grains from FEM sensitivity studies. Changing mesh resolution minimally impacted global damage response, but converging locally requires significantly higher refinement. Fatigue interrogating FEM studies evolved hot spots in the local MSFC environment in one SVE, but not in another SVE with different crystallographic orientations, suggesting strong 3D full-field neighbor effects. The study revealed a need for slip line length considerations in crystal plasticity to better capture life limiting behavior. The findings point towards strictly limiting the ALA grain size in Ni-based superalloys to extend service life.

  5. Microstructural aspects of fatigue in Ni-base superalloys.

    PubMed

    Antolovich, Stephen D

    2015-03-28

    Nickel-base superalloys are primarily used as components in jet engines and land-based turbines. While compositionally complex, they are microstructurally simple, consisting of small (50-1000 nm diameter), ordered, coherent Ni(3)(Al,Ti)-type L1(2) or Ni(3)Nb-type DO(22) precipitates (called γ(') and γ(''), respectively) embedded in an FCC substitutional solid solution consisting primarily of Ni and other elements which confer desired properties depending upon the application. The grain size may vary from as small as 2 μm for powder metallurgy alloys used in discs to single crystals the actual size of the component for turbine blades. The fatigue behaviour depends upon the microstructure, deformation mode, environment and cycle time. In many cases, it can be controlled or modified through small changes in composition which may dramatically change the mechanism of damage accumulation and the fatigue life. In this paper, the fundamental microstructural, compositional, environmental and deformation mode factors which affect fatigue behaviour are critically reviewed. Connections are made across a range of studies to provide more insight. Modern approaches are pointed out in which the wealth of available microstructural, deformation and damage information is used for computerized life prediction. The paper ends with a discussion of the very important and highly practical subject of thermo-mechanical fatigue (TMF). It is shown that physics-based modelling leads to significantly improved life prediction. Suggestions are made for moving forward on the critical subject of TMF life prediction in notched components. PMID:25713453

  6. Quantitative microstructure characterization and elastic properties upscaling of carbonate rocks

    NASA Astrophysics Data System (ADS)

    Vialle, Stephanie; Lebedev, Maxim

    2016-04-01

    Most Rock Physics models commonly used to predict elastic properties rely on a very simplified representation of the pore and grains geometry. Initially developed for siliclastic rocks, they do not apply easily and/or with as much success, to rocks with more complicated microstructure such as carbonates, which exhibit complex relationships between geophysical attributes and rock properties, such as P-wave velocity versus porosity. Furthermore, until recently, most microstructure imaging techniques such as optical microscopy, SEM, X-ray micro-CT, etc., only give a qualitative description of the pore and grain arrangement. Nano-indentation technique is a method that gives quantitative information by mean of local (micrometer size) measurements of elastic moduli. We used this technique to obtain 300 μm * 300 μm maps of Young's moduli (around 1000 data points) of two microporous carbonates of same mineralogy but of two different microstructures. As the size of the indenter tip is much smaller than the characteristic length of the heterogeneities in microstructure, the distribution of the Young's moduli can be deconvolved into its component parts (i.e. phases). SEM imaging of the same areas than the ones mapped by nano-indentation shows correlations between type of micrite and phases of different mean Young's modulus: tight micrites exhibiting a higher Young's modulus (up to 64 GPa) than microporous micrites (as low as 9 GPa). We then investigate different ways to upscale the measurements in order to get the effective bulk and shear moduli, from simply using volume fractions of the different phases, classical Hashin-Shrikman bounds, and Hill average; to using micro-CT imaging and analysis combined with rock physics models. Though more work is still needed to render nano-indentation technique a robust method for rock physics, both on the theory behind and on the upscaling of the measurements, these results that use nano-indentation method in a statistical way are very

  7. Prediction of microstructural modification in dynamically consolidated metal powders

    SciTech Connect

    Gourdin, W.H.

    1983-07-01

    A model is presented which describes the deposition of energy at the surface of powder particles during shock-wave consolidation. Solution of the thermal transport equation subject to boundary conditions of constant surface flux yields thermal histories which can be used to predict the type and extent of microstructural modifications following compaction. The application of the model to compacts of several different metal powders is discussed.

  8. Microstructures of ancient and modern cast silver–copper alloys

    SciTech Connect

    Northover, S.M.; Northover, J.P.

    2014-04-01

    The microstructures of modern cast Sterling silver and of cast silver objects about 2500 years old have been compared using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray microanalysis (EDX) and electron backscatter diffraction (EBSD). Microstructures of both ancient and modern alloys were typified by silver-rich dendrites with a few pools of eutectic and occasional cuprite particles with an oxidised rim on the outer surface. EBSD showed the dendrites to have a complex internal structure, often involving extensive twinning. There was copious intragranular precipitation within the dendrites, in the form of very fine copper-rich rods which TEM, X-ray diffraction (XRD), SEM and STEM suggest to be of a metastable face-centred-cubic (FCC) phase with a cube–cube orientation relationship to the silver-rich matrix but a higher silver content than the copper-rich β in the eutectic. Samples from ancient objects displayed a wider range of microstructures including a fine scale interpenetration of the adjoining grains not seen in the modern material. Although this study found no unambiguous evidence that this resulted from microstructural change produced over archaeological time, the copper supersaturation remaining after intragranular precipitation suggests that such changes, previously proposed for wrought and annealed material, may indeed occur in ancient silver castings. - Highlights: • Similar twinned structures and oxidised surfaces seen in ancient and modern cast silver • General precipitation of fine Cu-rich rods apparently formed by discontinuous precipitation is characteristic of as-cast silver. • The fine rods are cube-cube related to the matrix in contrast with the eutectic. • The silver-rich phase remains supersaturated with copper. • Possibly age-related grain boundary features seen in ancient cast silver.

  9. Small scale shear zone in calcite: AMS and microstructure

    NASA Astrophysics Data System (ADS)

    Roxerová, Zuzana; Machek, Matěj; Kusbach, Vladimír; Racek, Martin; Silva, Pedro F.

    2016-04-01

    Two structural profiles across thin shear zone in calcite from quarry in Estremoz (Portugal) were studied to find a relationship between AMS and strain in natural rocks. The mesoscopic fabric is characterized by the change from the subhorizontal coarse-grained foliation towards the ~2cm-wide shear zone center with subvertical fine-grained foliation. In microstructure, the shear zone records dynamic recrystallization of calcite aggregate which resulted in development of porphyroclastic microstructure with increasing proportion of fine-grained recrystallized matrix towards the shear zone center. Two distinct crystallographic preferred orientations of calcite were recorded. One related with porphyroclasts, characterized by subvertical orientation of calcite axes and another associated with recrystallized matrix showing subhorizontal calcite axes orientation. The magnetic susceptibility ranges from -8e-6SI to 9e-6SI, with the average -4e-6SI. The majority of the rock mass is diamagnetic, corresponding well with the thermomagnetic curves, with local paramagnetic accumulations in form of thin bands. The AMS of the both profiles exhibits stable subvertical foliation bearing vertical lineation which is locally alternated by the medium-angle foliation. We interpret the AMS fabric pattern which is perpendicular to the mineral one as a type of inverse AMS fabric, due to high iron content in major part of calcite grains The magnetic and microstructural description of the shear zone is accompanied by numerical modeling of AMS based on CPO and different proportion of porphyroclasts, matrix and mica for purposes of deciphering the influence of present microstructural features on AMS.

  10. Microstructural evolution and nanoscale crystallography in scleractinian coral spherulites.

    PubMed

    van de Locht, Renée; Verch, Andreas; Saunders, Martin; Dissard, Delphine; Rixen, Tim; Moya, Aurélie; Kröger, Roland

    2013-07-01

    One of the most important aspects in the research on reef-building corals is the process by which corals accrete biogenic calcium carbonate. This process leads to the formation of a mineral/organic composite and it is believed that the development of the nano- and microstructure of the mineral phase is highly sensitive to the growth conditions. Transmission electron microscopy (TEM) analysis of large-scale (10×30μm) focused ion beam (FIB) prepared lamellae was performed on adult and juvenile scleractinian coral skeleton specimens. This allowed for the investigation of the nano and microstructure and the crystallographic orientation of the aragonite mineral. We found the following microstructural evolution in the adult Porites lobata specimens: randomly oriented nanocrystals with high porosity, partly aligned nanocrystals with high porosity and areas of dense acicular crystals of several micrometers extension, the latter two areas are aligned close to the [001] direction (Pmcn space group). To the best of our knowledge, for the first time the observed microstructure could be directly correlated with the dark/bright bands characteristic of the diurnal growth cycle. We hypothesize that this mineral structure sequence and alignment in the adult specimen is linked to the photosynthetic diurnal cycle of the zooxanthellea regulating the oxygen levels and organic molecule transport to the calcifying medium. These observations reveal a strong control of crystal morphology by the organism and the correlation of the accretion process. No indication for a self-assembly of nanocrystalline units, i.e., a mesocrystal structure, on the micrometer scale could be found.

  11. Lead silicate microstructured optical fibres for electro-optical applications.

    PubMed

    Zhang, Wen Qi; Manning, Sean; Ebendorff-Heidepriem, Heike; Monro, Tanya M

    2013-12-16

    We report progress towards the realization of optical modulators based on electro-optic effects in soft glass fibres. A hybrid fabrication procedure was developed for producing microstructured lead silicate glass fibres with internal electrodes. Electro-optical characterization confirms experimentally that the enhanced nonlinear properties and superior isolation between the optical field and the electrodes make these fibres an ideal candidate platform for efficient electro-optical devices.

  12. THz propagation in kagome hollow-core microstructured fibers.

    PubMed

    Anthony, Jessienta; Leonhardt, Rainer; Leon-Saval, Sergio G; Argyros, Alexander

    2011-09-12

    We demonstrate single mode terahertz (THz) guidance in hollow-core kagome microstructured fibers over a broad frequency bandwidth. The fibers are characterized using a THz time-domain spectroscopy (THz-TDS) setup, incorporating specially designed THz lenses to achieve good mode overlap with the fundamental mode field distribution. Losses 20 times lower than the losses of the fiber material are observed in the experiments, as well as broad frequency ranges of low dispersion, characteristic of hollow-core fibers.

  13. Microstructure And Patterning Of Laser Initiated Oxide Growth

    NASA Astrophysics Data System (ADS)

    Boyd, Ian W.

    1989-05-01

    Microstructural studies of silicon dioxide films grown by laser and by traditional means using infrared spectrometry are described. Broad similarities and intriguing thickness dependences are discussed. A new technique of Direct Growth Lithography (DGL) is reported, whereby oxide patterns are selectively and directly grown over significant regions of a silicon wafer, with spatial features extending over a 3mm square area with linewidths down to around one micron.

  14. Experimental studies of the coherence of microstructure-fiber supercontinuum.

    PubMed

    Gu, Xun; Kimmel, Mark; Shreenath, Aparna; Trebino, Rick; Dudley, John; Coen, Stéphane; Windeler, Robert

    2003-10-20

    The phase coherence of supercontinuum generation in microstructure fiber is quantified by performing a Young's type interference experiment between independently generated supercontinua from two separate fiber segments. Analysis of the resulting interferogram yields the wavelength dependence of the magnitude of the mutual degree of coherence, and a comparison of experimental results with numerical simulations suggests that the primary source of coherence degradation is the technical noise-induced fluctuations in the injected peak power. PMID:19471384

  15. Highly birefringent low-mode-asymmetry microstructured optical fibres

    SciTech Connect

    Denisov, A N; Levchenko, A E; Semenov, S L; Dianov, Evgenii M

    2011-03-31

    A novel birefringent microstructured fibre (BMF) design is proposed, and its birefringence and dispersion characteristics are analysed using the finite element method. The results indicate that the proposed BMF design ensures high birefringence ({approx}5x10{sup -3}) at a low mode asymmetry. At a certain core ellipticity, the BMF configurations considered may have equal mode field sizes along two orthogonal axes. (fibre optics)

  16. Measurement of dispersion in optical fibres with a microstructure cladding

    SciTech Connect

    Levchenko, A E; Kurkov, Andrei S; Semenov, S L

    2005-09-30

    Based on the interferometric technique, a setup is built for measuring the spectral dependence of chromatic dispersion in fibres with a microstructure cladding. The setup provides measurements in a broad spectral range from 670 to 1550 nm taking birefringence in the fibre into account. The results of measurements of dispersion in a standard fibre with this setup and a commercial device are in good agreement. (optical fibres)

  17. Microstructuring of polypyrrole by maskless direct femtosecond laser ablation.

    PubMed

    Lee, Kenneth K C; Herman, Peter R; Shoa, Tina; Haque, Moez; Madden, John D W; Yang, Victor X D

    2012-03-01

    Ultrafast laser micromachining was optimized for microstructuring polypyrrole as a facile new approach towards tailoring electrochemical and mechanical responses desirable for microactuator, sensors, neural probing, and nerve conduit applications. Laser perforation of high-density and high aspect ratio through-holes generated greater than 5-fold increase in surface area. The flexible machining technique offers micron-size resolution and fast prototyping capability for optimizing properties and opening new directions for polypyrrole-based devices. PMID:22290691

  18. Optofluidic magnetometer developed in a microstructured optical fiber.

    PubMed

    Candiani, A; Konstantaki, M; Margulis, W; Pissadakis, S

    2012-11-01

    A directional, in-fiber optofluidic magnetometer based on a microstructured optical fiber (MOF) Bragg-grating infiltrated with a ferrofluidic defect is presented. Upon application of a magnetic field, the ferrofluidic defect moves along the length of the MOF Bragg grating, modifying its reflection spectrum. The magnetometer is capable of measuring magnetic fields from 317 to 2500 G. The operational principle of such in-fiber magnetic field probe allows the elaboration of directional measurements of the magnetic field flux.

  19. Microstructural evolution and nanoscale crystallography in scleractinian coral spherulites.

    PubMed

    van de Locht, Renée; Verch, Andreas; Saunders, Martin; Dissard, Delphine; Rixen, Tim; Moya, Aurélie; Kröger, Roland

    2013-07-01

    One of the most important aspects in the research on reef-building corals is the process by which corals accrete biogenic calcium carbonate. This process leads to the formation of a mineral/organic composite and it is believed that the development of the nano- and microstructure of the mineral phase is highly sensitive to the growth conditions. Transmission electron microscopy (TEM) analysis of large-scale (10×30μm) focused ion beam (FIB) prepared lamellae was performed on adult and juvenile scleractinian coral skeleton specimens. This allowed for the investigation of the nano and microstructure and the crystallographic orientation of the aragonite mineral. We found the following microstructural evolution in the adult Porites lobata specimens: randomly oriented nanocrystals with high porosity, partly aligned nanocrystals with high porosity and areas of dense acicular crystals of several micrometers extension, the latter two areas are aligned close to the [001] direction (Pmcn space group). To the best of our knowledge, for the first time the observed microstructure could be directly correlated with the dark/bright bands characteristic of the diurnal growth cycle. We hypothesize that this mineral structure sequence and alignment in the adult specimen is linked to the photosynthetic diurnal cycle of the zooxanthellea regulating the oxygen levels and organic molecule transport to the calcifying medium. These observations reveal a strong control of crystal morphology by the organism and the correlation of the accretion process. No indication for a self-assembly of nanocrystalline units, i.e., a mesocrystal structure, on the micrometer scale could be found. PMID:23685125

  20. Microstructures and Nanostructures for Environmental Carbon Nanotubes and Nanoparticulate Soots

    PubMed Central

    Murr, L. E.

    2008-01-01

    This paper examines the microstructures and nanostructures for natural (mined) chrysotile asbestos nanotubes (Mg3 Si2O5 (OH)4) in comparison with commercial multiwall carbon nanotubes (MWCNTs), utilizing scanning and transmission electron microscopy (SEM and TEM). Black carbon (BC) and a variety of specific soot particulate (aggregate) microstructures and nanostructures are also examined comparatively by SEM and TEM. A range of MWCNTs collected in the environment (both indoor and outdoor) are also examined and shown to be similar to some commercial MWCNTs but to exhibit a diversity of microstructures and nanostructures, including aggregation with other multiconcentric fullerenic nanoparticles. MWCNTs formed in the environment nucleate from special hemispherical graphene “caps” and there is evidence for preferential or energetically favorable chiralities, tube growth, and closing. The multiconcentric graphene tubes (∼5 to 50 nm diameter) differentiate themselves from multiconcentric fullerenic nanoparticles and especially turbostratic BC and carbonaceous soot nanospherules (∼8 to 80 nm diameter) because the latter are composed of curved graphene fragments intermixed or intercalated with polycyclic aromatic hydrocarbon (PAH) isomers of varying molecular weights and mass concentrations; depending upon combustion conditions and sources. The functionalizing of these nanostructures and photoxidation and related photothermal phenomena, as these may influence the cytotoxicities of these nanoparticulate aggregates, will also be discussed in the context of nanostructures and nanostructure phenomena, and implications for respiratory health. PMID:19151426

  1. Microstructural development during directional solidification of peritectic alloys

    NASA Technical Reports Server (NTRS)

    Lograsso, Thomas A.

    1992-01-01

    Despite the widespread commercial use of peritectic alloys (e.g., steels, brass, bronze, intermetallic compounds, Co based superalloys and A3B type superconductors), the characterization of the microstructural development during directional solidification of peritectics has historically lagged behind similar efforts directed towards other types of binary invariant reactions such as eutectic or monotectic. A wide variety of possible microstructures has been shown to form in peritectics depending upon the imposed temperature gradient, G, the solidification velocity, V, as well as the presence or absence of convection in the melt. This has important technological implications since many commercially important alloys exhibit peritectics and processing methods such as casting and welding often involve widely changing conditions. It has been the aim of this project to examine, in a systematic fashion, both experimentally and theoretically, the influence of gravitationally driven convection on segregation and microstructural development during solidification in peritectic systems under terrestrial conditions. The scientific results of the project will be used to establish ground based data in support of a meaningful microgravity flight experiment.

  2. Collagenous microstructure of the glenoid labrum and biceps anchor

    PubMed Central

    Hill, A M; Hoerning, E J; Brook, K; Smith, C D; Moss, J; Ryder, T; Wallace, A L; Bull, A M J

    2008-01-01

    The glenoid labrum is a significant passive stabilizer of the shoulder joint. However, its microstructural form remains largely unappreciated, particularly in the context of its variety of functions. The focus of labral microscopy has often been histology and, as such, there is very little appreciation of collagen composition and arrangement of the labrum, and hence the micromechanics of the structure. On transmission electron microscopy, significant differences in diameter, area and perimeter were noted in the two gross histological groups of collagen fibril visualized; this suggests a heterogeneous collagenous composition with potentially distinct mechanical function. Scanning electron microscopy demonstrated three distinct zones of interest: a superficial mesh, a dense circumferential braided core potentially able to accommodate hoop stresses, and a loosely packed peri-core zone. Confocal microscopy revealed an articular surface fine fibrillar mesh potentially able to reduce surface friction, bundles of circumferential encapsulated fibres in the bulk of the tissue, and bone anchoring fibres at the osseous interface. Varying microstructure throughout the depth of the labrum suggests a role in accommodating different types of loading. An understanding of the labral microstructure can lead to development of hypotheses based upon an appreciation of this component of material property. This may aid an educated approach to surgical timing and repair. PMID:18429974

  3. Epitaxy and Microstructure Evolution in Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Basak, Amrita; Das, Suman

    2016-07-01

    Metal additive manufacturing (AM) works on the principle of incremental layer-by-layer material consolidation, facilitating the fabrication of objects of arbitrary complexity through the controlled melting and resolidification of feedstock materials by using high-power energy sources. The focus of metal AM is to produce complex-shaped components made of metals and alloys to meet demands from various industrial sectors such as defense, aerospace, automotive, and biomedicine. Metal AM involves a complex interplay between multiple modes of energy and mass transfer, fluid flow, phase change, and microstructural evolution. Understanding the fundamental physics of these phenomena is a key requirement for metal AM process development and optimization. The effects of material characteristics and processing conditions on the resulting epitaxy and microstructure are of critical interest in metal AM. This article reviews various metal AM processes in the context of fabricating metal and alloy parts through epitaxial solidification, with material systems ranging from pure-metal and prealloyed to multicomponent materials. The aim is to cover the relationships between various AM processes and the resulting microstructures in these material systems.

  4. Angstrom-to-millimeter characterization of sedimentary rock microstructure.

    PubMed

    Radlinski, A P; Ioannidis, M A; Hinde, A L; Hainbuchner, M; Baron, M; Rauch, H; Kline, S R

    2004-06-15

    Backscatter SEM imaging and small-angle neutron scattering (SANS) data are combined within a statistical framework to quantify the microstructure of a porous solid in terms of a continuous pore-size distribution spanning over five orders of magnitude of length scale, from 10 A to 500 microm. The method is demonstrated on a sample of natural sandstone and the results are tested against mercury porosimetry (MP) and nuclear magnetic resonance (NMR) relaxation data. The rock microstructure is fractal (D=2.47) in the pore-size range 10 A-50 microm and Euclidean for larger length scales. The pore-size distribution is consistent with that determined by MP. The NMR data show a bimodal distribution of proton T(2) relaxation times, which is interpreted quantitatively using a model of relaxation in fractal pores. Pore-length scales derived from the NMR data are consistent with the geometrical parameters derived from both the SEM/SANS and MP data. The combined SANS/BSEM method furnishes new microstructural information that should facilitate the study of capillary phenomena in hydrocarbon reservoir rocks and other porous solids exhibiting broad pore-size distributions.

  5. Chemical and biological microstructures as probed by dynamic processes

    SciTech Connect

    Drake, J.M. ); Klafter, J. ); Levitz, P. )

    1991-03-29

    The dynamic process of electronic energy transfer (DET) is shown to be an important tool for probing the microstructure of molecular systems, particularly those in which donors and acceptors occupy specifically labeled sites of spatially confining host matrices. Special attention is given to analyzing the temporal behavior of the direct energy transfer reaction for systems in which the dipolar coupling is between a donor and randomly distributed acceptors. This dynamic process is dependent on two competing lengths when the donor and acceptor distribution is determined by the microstructure of the confining system: R{sub p}, the dominant length characterizing the size of the confinement, and R{sub o}, which scales the strength of the dipolar coupling. When energy transfer processes are viewed in the context of these two competing lengths, a picture emerges of the microstructure of the confinement that is consistent with and corroborated by other structural probes. The authors believe that their approach to analyzing the dynamics of the DET process broadens the scope of the applicability of the concept of the spectroscopic ruler and that the temporal analysis technique, which they demonstrate using model porous glasses, can be generally applied to other systems.

  6. Evolution of Local Microstructures (ELMS): Spatial Instabilities of Coarsening

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin E.; Frazier, Donald O.; Rogers, Jan R.; Witherow, William K.; Downey, J. Patton; Facemire, Barbara R.

    1999-01-01

    This work examines the diffusional growth of discrete phase particles dispersed within a matrix. Engineering materials are microstructurally heterogeneous, and the details of the microstructure determine how well that material performs in a given application. Critical to the development of designing multiphase microstructures with long-term stability is the process of Ostwald ripening. Ripening, or phase coarsening, is a diffusion-limited process which arises in polydisperse multiphase materials. Growth and dissolution occur because fluxes of solute, driven by chemical potential gradients at the interfaces of the dispersed phase material, depend on particle size. The kinetics of these processes are "competitive," dictating that larger particles grow at the expense of smaller ones, overall leading to an increase of the average particle size. The classical treatment of phase coarsening was done by Todes, Lifshitz, and Slyozov, (TLS) in the limit of zero volume fraction, V(sub v), of the dispersed phase. Since the publication of TLS theory there have been numerous investigations, many of which sought to describe the kinetic scaling behavior over a range of volume fractions. Some studies in the literature report that the relative increase in coarsening rate at low (but not zero) volume fractions compared to that / 2 1/ 3 predicted by TLS is proportional to V(sub v)(exp 1/2), whereas others suggest V(sub v)(exp 1/3). This issue has been resolved recently by simulation studies at low volume fractions in three dimensions by members of the Rensselaer/MSFC team.

  7. Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin E.; Frazier, Donald O.; Rogers, Jan R.; Witherow, William K.; Downey, J. Patton

    2001-01-01

    This work examines the diffusional growth of discrete phase particles dispersed within a matrix. Engineering materials are often microstructurally heterogeneous, and the details of the microstructure determine how well that material performs in a given application. Critical to the development of designing multiphase microstructures with long-term stability is the process of Ostwald ripening. Ripening, or phase coarsening, is diffusion-limited and arises in polydisperse multiphase materials. Growth and dissolution occur because fluxes of solute, driven by chemical potential gradients at the interfaces of the dispersed phase material, depend on particle size. Competitive kinetics of these processes dictates that larger particles grow at the expense of smaller ones, overall leading to an increase of the average particle size. The classical treatment of phase coarsening was done by Todes, Lifshitz, and Slyozov, (TLS) in the limit of zero volume fraction, V(sub V)=0 of the dispersed phase. Since the publication of TLS theory, there have been numerous investigations, many of which sought to describe the kinetic scaling behavior over a range of volume fractions. Some studies in the literature report that the relative increase in coarsening rate at low (but not zero) volume fractions compared to that predicted by TLS is proportional to V(exp 1/2)(sub v) whereas others suggest V(exp 1/3)(sub v).This issue has been addressed recently by simulation studies at low volume fractions in three dimensions by members of the Rensselaer/MSFC team.

  8. Compost addition reduces porosity and chlordecone transfer in soil microstructure.

    PubMed

    Woignier, Thierry; Clostre, Florence; Fernandes, Paula; Rangon, Luc; Soler, Alain; Lesueur-Jannoyer, Magalie

    2016-01-01

    Chlordecone, an organochlorine insecticide, pollutes soils and contaminates crops and water resources and is biomagnified by food chains. As chlordecone is partly trapped in the soil, one possible alternative to decontamination may be to increase its containment in the soil, thereby reducing its diffusion into the environment. Containing the pesticide in the soil could be achieved by adding compost because the pollutant has an affinity for organic matter. We hypothesized that adding compost would also change soil porosity, as well as transport and containment of the pesticide. We measured the pore features and studied the nanoscale structure to assess the effect of adding compost on soil microstructure. We simulated changes in the transport properties (hydraulic conductivity and diffusion) associated with changes in porosity. During compost incubation, the clay microstructure collapsed due to capillary stresses. Simulated data showed that the hydraulic conductivity and diffusion coefficient were reduced by 95 and 70% in the clay microstructure, respectively. Reduced transport properties affected pesticide mobility and thus helped reduce its transfer from the soil to water and to the crop. We propose that the containment effect is due not only to the high affinity of chlordecone for soil organic matter but also to a trapping mechanism in the soil porosity.

  9. Microstructural and Chemical Rejuvenation of a Ni-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Yao, Zhiqi; Degnan, Craig C.; Jepson, Mark A. E.; Thomson, Rachel C.

    2016-10-01

    The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime morphology, size, and distribution after high-temperature degradation and subsequent rejuvenation heat treatments has been examined using field emission gun scanning electron microscopy and transmission electron microscopy. In this paper, it is shown that there are significant differences in the size of the `channels' between gamma prime particles, the degree of rafting, and the size of tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical analysis has been carried out to compare rejuvenated and pre-service samples after the same subsequent degradation procedure. The results indicate that although the microstructures of pre-service and rejuvenated samples are similar, chemical differences are more pronounced in the rejuvenated samples, suggesting that chemical segregation from partitioning of the elements was not completely eliminated through the applied rejuvenation heat treatment. A number of modified rejuvenation heat treatment trials were carried out to reduce the chemical segregation prior to creep testing. The creep test results suggest that chemical segregation has an immeasurable influence on the short-term mechanical properties under the test conditions used here, indicating that further work is required to fully understand the suitability of specific rejuvenation heat treatments and their role in the extension of component life in power plant applications.

  10. Fish oil disrupts seabird feather microstructure and waterproofing.

    PubMed

    Morandin, Lora A; O'Hara, Patrick D

    2014-10-15

    Seabirds and other aquatic avifauna are highly sensitive to exposure to petroleum oils. A small amount of oil is sufficient to break down the feather barrier that is necessary to prevent water penetration and hypothermia. Far less attention has been paid to potential effects on aquatic birds of so called 'edible oils', non-petroleum oils such as vegetable and fish oils. In response to a sardine oil discharge by a vessel off the coast of British Columbia, we conducted an experiment to assess if feather exposure to sheens of sardine oil (ranging from 0.04 to 3 μm in thickness) resulted in measurable oil and water uptake and significant feather microstructure disruption. We designed the experiment based on a previous experiment on effects of petroleum oils on seabird feathers. Feathers exposed to the thinnest fish oil sheens (0.04 μm) resulted in measurable feather weight gain (from oil and water uptake) and significant feather microstructure disruption. Both feather weight gain and microstructure disruption increased with increasing fish oil thickness. Because of the absence of primary research on effects of edible oils on sea birds, we conducted interviews with wildlife rehabilitation professionals with experience rehabilitating sea birds after edible oil exposure. The consensus from interviews and our experiment indicated that physical contact with fish and other 'edible oils' in the marine environment is at least as harmful to seabirds as petroleum oils.

  11. Microstructural alterations of sputum in cystic fibrosis lung disease

    PubMed Central

    Duncan, Gregg A.; Jung, James; Joseph, Andrea; Thaxton, Abigail L.; West, Natalie E.; Boyle, Michael P.; Hanes, Justin

    2016-01-01

    The stasis of mucus secretions in the lungs of cystic fibrosis (CF) patients leads to recurrent infections and pulmonary exacerbations, resulting in decreased survival. Prior studies have assessed the biochemical and biophysical features of airway mucus in individuals with CF. However, these measurements are unable to probe mucus structure on microscopic length scales relevant to key players in the progression of CF-related lung disease, namely, viruses, bacteria, and neutrophils. In this study, we quantitatively determined sputum microstructure based on the diffusion of muco-inert nanoparticle probes in CF sputum and found that a reduction in sputum mesh pore size is characteristic of CF patients with reduced lung function, as indicated by measured FEV1. We also discovered that the effect of ex vivo treatment of CF sputum with rhDNase I (Pulmozyme) on microstructure is dependent upon the time interval between the most recent inhaled rhDNase I treatment and the sample collection. Microstructure of mucus may serve as a marker for the extent of CF lung disease and as a parameter for assessing the effectiveness of mucus-altering agents. PMID:27812540

  12. Microstructural characterization of concrete prepared with recycled aggregates.

    PubMed

    Guedes, Mafalda; Evangelista, Luís; de Brito, Jorge; Ferro, Alberto C

    2013-10-01

    Several authors have reported the workability, mechanical properties, and durability of concrete produced with construction waste replacing the natural aggregate. However, a systematic microstructural characterization of recycled aggregate concrete has not been reported. This work studies the use of fine recycled aggregate to replace fine natural aggregate in the production of concrete and reports the resulting microstructures. The used raw materials were natural aggregate, recycled aggregate obtained from a standard concrete, and Portland cement. The substitution extent was 0, 10, 50, and 100 vol%; hydration was stopped at 9, 24, and 96 h and 28 days. Microscopy was focused on the cement/aggregate interfacial transition zone, enlightening the effect of incorporating recycled aggregate on the formation and morphology of the different concrete hydration products. The results show that concretes with recycled aggregates exhibit typical microstructural features of the transition zone in normal strength concrete. Although overall porosity increases with increasing replacement, the interfacial bond is apparently stronger when recycled aggregates are used. An addition of 10 vol% results in a decrease in porosity at the interface with a corresponding increase of the material hardness. This provides an opportunity for development of increased strength Portland cement concretes using controlled amounts of concrete waste. PMID:23673273

  13. Profiles of aberrant white matter microstructure in fragile X syndrome.

    PubMed

    Hall, Scott S; Dougherty, Robert F; Reiss, Allan L

    2016-01-01

    Previous studies attempting to quantify white matter (WM) microstructure in individuals with fragile X syndrome (FXS) have produced inconsistent findings, most likely due to the various control groups employed, differing analysis methods, and failure to examine for potential motion artifact. In addition, analyses have heretofore lacked sufficient specificity to provide regional information. In this study, we used Automated Fiber-tract Quantification (AFQ) to identify specific regions of aberrant WM microstructure along WM tracts in patients with FXS that differed from controls who were matched on age, IQ and degree of autistic symptoms. Participants were 20 patients with FXS, aged 10 to 23 years, and 20 matched controls. Using Automated Fiber-tract Quantification (AFQ), we created Tract Profiles of fractional anisotropy and mean diffusivity along 18 major WM fascicles. We found that fractional anisotropy was significantly increased in the left and right inferior longitudinal fasciculus (ILF), right uncinate fasciculus, and left cingulum hippocampus in individuals with FXS compared to controls. Conversely, mean diffusivity was significantly decreased in the right ILF in patients with FXS compared to controls. Age was significantly negatively associated with MD values across both groups in 11 tracts. Taken together, these findings indicate that FXS results in abnormal WM microstructure in specific regions of the ILF and uncinate fasciculus, most likely caused by inefficient synaptic pruning as a result of decreased or absent Fragile X Mental Retardation Protein (FMRP). Longitudinal studies are needed to confirm these findings.

  14. Microstructure analysis of magnesium alloy melted by laser irradiation

    NASA Astrophysics Data System (ADS)

    Liu, S. Y.; Hu, J. D.; Yang, Y.; Guo, Z. X.; Wang, H. Y.

    2005-12-01

    The effects of laser surface melting (LSM) on microstructure of magnesium alloy containing Al8.57%, Zn 0.68%, Mn0.15%, Ce0.52% were investigated. In the present work, a pulsed Nd:YAG laser was used to melt and rapidly solidify the surface of the magnesium alloy with the objective of changing microstructure and improving the corrosion resistance. The results indicate that laser-melted layer contains the finer dendrites and behaviors good resistance corrosion compared with the untreated layer. Furthermore, the absorption coefficient of the magnesium alloy has been estimated according to the numeral simulation of the thermal conditions. The formation process of fine microstructure in melted layers was investigated based on the experimental observation and the theoretical analysis. Some simulation results such as the re-solidification velocities are obtained. The phase constitutions of the melted layers determined by X-ray diffraction were β-Mg 17Al 12 and α-Mg as well as some phases unidentified.

  15. Compost addition reduces porosity and chlordecone transfer in soil microstructure.

    PubMed

    Woignier, Thierry; Clostre, Florence; Fernandes, Paula; Rangon, Luc; Soler, Alain; Lesueur-Jannoyer, Magalie

    2016-01-01

    Chlordecone, an organochlorine insecticide, pollutes soils and contaminates crops and water resources and is biomagnified by food chains. As chlordecone is partly trapped in the soil, one possible alternative to decontamination may be to increase its containment in the soil, thereby reducing its diffusion into the environment. Containing the pesticide in the soil could be achieved by adding compost because the pollutant has an affinity for organic matter. We hypothesized that adding compost would also change soil porosity, as well as transport and containment of the pesticide. We measured the pore features and studied the nanoscale structure to assess the effect of adding compost on soil microstructure. We simulated changes in the transport properties (hydraulic conductivity and diffusion) associated with changes in porosity. During compost incubation, the clay microstructure collapsed due to capillary stresses. Simulated data showed that the hydraulic conductivity and diffusion coefficient were reduced by 95 and 70% in the clay microstructure, respectively. Reduced transport properties affected pesticide mobility and thus helped reduce its transfer from the soil to water and to the crop. We propose that the containment effect is due not only to the high affinity of chlordecone for soil organic matter but also to a trapping mechanism in the soil porosity. PMID:26250815

  16. Microstructure core photonic crystal fiber for gas sensing applications.

    PubMed

    Morshed, Monir; Imran Hassan, Md; Roy, Tusher Kanti; Uddin, Muhammad Shahin; Abdur Razzak, S M

    2015-10-10

    In this paper, a highly sensitive gas sensor based on the microstructure core and cladding photonic crystal fiber (PCF) is presented over the wavelength range from 1.3 to 2.2 μm, which is advantageous for sensor fabrication. The guiding properties of the proposed structure are dependent on geometrical parameters and wavelengths, which are numerically investigated by using a finite element method (FEM). Introducing the microstructure core makes it possible to obtain higher relative sensitivity and achieves low confinement loss. Moreover, it can be shown that increasing the diameter of the air holes in the microstructure core and decreasing the size of hole to hole space (pitch), the relative sensitivity is enhanced. In addition, the confinement loss is reduced by increasing the value of the diameter of the air holes in the cladding. Simulation results reveal that for the optimum design of the proposed PCF it is possible to obtain the highest relative sensitivity of about 42.27% at the wavelength λ=1.33  μm for the absorption line of methane (CH4) and hydrogen fluoride (HF) gases. In this case, the confinement loss of the fiber is 4.78345×10-6  dB/m. PMID:26479798

  17. Simulation of springback and microstructural analysis of dual phase steels

    NASA Astrophysics Data System (ADS)

    Kalyan, T. Sri.; Wei, Xing; Mendiguren, Joseba; Rolfe, Bernard

    2013-12-01

    With increasing demand for weight reduction and better crashworthiness abilities in car development, advanced high strength Dual Phase (DP) steels have been progressively used when making automotive parts. The higher strength steels exhibit higher springback and lower dimensional accuracy after stamping. This has necessitated the use of simulation of each stamped component prior to production to estimate the part's dimensional accuracy. Understanding the micro-mechanical behaviour of AHSS sheet may provide more accuracy to stamping simulations. This work can be divided basically into two parts: first modelling a standard channel forming process; second modelling the micro-structure of the process. The standard top hat channel forming process, benchmark NUMISHEET'93, is used for investigating springback effect of WISCO Dual Phase steels. The second part of this work includes the finite element analysis of microstructures to understand the behaviour of the multi-phase steel at a more fundamental level. The outcomes of this work will help in the dimensional control of steels during manufacturing stage based on the material's microstructure.

  18. Alkali-activated cementitious materials: Mechanisms, microstructure and properties

    NASA Astrophysics Data System (ADS)

    Jiang, Weimin

    The goal of this study was to examine the activation reaction, microstructure, properties, identify the mechanisms of activation, and achieve an enhanced understanding of activation processes occurring during the synthesis of alkali activated cementitious materials (AAC). The discussions classify the following categories. (1) alkali activated slag cement; (2) alkali activated portland-slag cement; (3) alkali activated fly ash-slag cement; (4) alkali activated pozzolana-lime cement; (5) alkali activated pozzolana cement. The activators involved are NaOH, KOH; Nasb2SOsb4;\\ Nasb2COsb3;\\ CaSOsb4, and soluble silicate of sodium and potassium. The effect of alkali activation on the microstructure of these materials were analyzed at the micro-nanometer scale by SEM, EDS, ESEM, and TEM. Also sp{29}Si and sp{27}Al MAS-NMR, IR, Raman, TGA, and DTA were performed to characterize the phase in these systems. Slag, fly ash, silica fume, as well as blended cements containing mixtures of these and other components were characterized. A set of ordinary portland cement paste samples served as a control. This study confirmed that AAC materials have great potential because they could generate very early high strength, greater durability and high performance. Among the benefits to be derived from this research is a better understanding of the factors that control concrete properties when using AAC materials, and by controlling the chemistry and processing to produce desired microstructures and properties, as well as their durability.

  19. MUTLI-OBJECTIVE OPTIMIZATION OF MICROSTRUCTURE IN WROUGHT MAGNESIUM ALLOYS

    SciTech Connect

    Radhakrishnan, Balasubramaniam; Gorti, Sarma B; Simunovic, Srdjan

    2013-01-01

    The microstructural features that govern the mechanical properties of wrought magnesium alloys include grain size, crystallographic texture, and twinning. Several processes based on shear deformation have been developed that promote grain refinement, weakening of the basal texture, as well as the shift of the peak intensity away from the center of the basal pole figure - features that promote room temperature ductility in Mg alloys. At ORNL, we are currently exploring the concept of introducing nano-twins within sub-micron grains as a possible mechanism for simultaneously improving strength and ductility by exploiting a potential dislocation glide along the twin-matrix interface a mechanism that was originally proposed for face-centered cubic materials. Specifically, we have developed an integrated modeling and optimization framework in order to identify the combinations of grain size, texture and twin spacing that can maximize strength-ductility combinations. A micromechanical model that relates microstructure to material strength is coupled with a failure model that relates ductility to a critical shear strain and a critical hydrostatic stress. The micro-mechanical model is combined with an optimization tool based on genetic algorithm. A multi-objective optimization technique is used to explore the strength-ductility space in a systematic fashion and identify optimum combinations of the microstructural parameters that will simultaneously maximize the strength-ductility in the alloy.

  20. Microstructural analysis of conditioned and unconditioned responses to maltodextrin.

    PubMed

    Dwyer, Dominic M

    2008-05-01

    The microstructure of licking responses was analyzed to investigate the interaction between unconditioned responses to maltodextrin and the responses to flavor cues previously associated with maltodextrin. Experiment 1 demonstrated that although the consumption of maltodextrin peaked at intermediate concentrations, the mean lick cluster size showed a positive, monotonic increase with concentration. In Experiment 2, a (conditioned stimulus) CS+ flavor was paired with 16% maltodextrin, whereas a CS- flavor was paired with 2% maltodextrin. During test, consumption of the CS+ was higher than that of the CS- when the flavors were combined with 2% maltodextrin, but not when combined with 16% maltodextrin. In contrast, cluster size was larger with the CS+ than with the CS-, regardless of the concentration of maltodextrin present on test. Previous analyses of licking microstructure indicate that cluster size reflects the palatability of the ingested solution. Thus, the present results indicate that flavor conditioning can change the palatability of the cue flavors. Adding the CS+ flavor to maltodextrin produced results analogous to increasing the concentration of maltodextrin (in terms of both consumption and licking microstructure measures), which is consistent with the idea that after conditioning, responses to the CS+ flavor and to the unconditioned stimulus are mediated via the same representation.

  1. Ultrasonic characterization of microstructure in powder metal alloy

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  2. Detailed Microstructural Characterization of the Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Garg, Anita; Ellis, David L.; O'Connor, Kenneth M.

    2004-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA/General Electric/Pratt & Whitney HSR/EPM disk program to have extended durability for large disks at maximum temperatures of 600 to 700 C. Scaled-up disks of this alloy were then produced at the conclusion of that program to demonstrate these properties in realistic disk shapes. The objective of the present study was to assess the microstructural characteristics of these ME3 disks at two consistent locations, in order to enable estimation of the variations in microstructure across each disk and across several disks of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor/Turbine Disk program had been sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. For this study, microstructures of grip sections from tensile specimens in the bore and rim were evaluated from these disks. The major and minor phases were identified and quantified using transmission electron microscopy (TEM). Particular attention was directed to the .' precipitates, which along with grain size can predominantly control the mechanical properties of superalloy disks.

  3. Bioinspired materials that self-shape through programmed microstructures.

    PubMed

    Studart, André R; Erb, Randall M

    2014-03-01

    Nature displays numerous examples of materials that can autonomously change their shape in response to external stimuli. Remarkably, shape changes in biological systems can be programmed within the material's microstructure to enable self-shaping capabilities even in the absence of cellular control. Here, we revisit recent attempts to replicate in synthetic materials the shape-changing behavior of selected natural materials displaying deliberately tuned fibrous architectures. Simple processing methods like drawing, spinning or casting under magnetic fields are shown to be effective in mimicking the orientation and spatial distribution of reinforcing fibers of natural materials, thus enabling unique shape-changing features in synthetic systems. The bioinspired design and creation of self-shaping microstructures represent a new pathway to program shape changes in synthetic materials. In contrast to shape-memory polymers and metallic alloys, the self-shaping capabilities in these bioinspired materials originate at the microstructural level rather than the molecular scale. This enables the creation of programmable shape changes using building blocks that would otherwise not display the intrinsic molecular/atomic phase transitions required in conventional shape-memory materials.

  4. Microstructure analysis of monodisperse ferrofluid monolayers: theory and simulation.

    PubMed

    Kantorovich, Sofia; Cerdà, Juan J; Holm, Christian

    2008-04-14

    We try to elucidate the microstructure formation in a monodisperse ferrofluid monolayer. The system under study consists of soft sphere magnetic dipolar particles confined to a thin fluid layer. The positions of the particles are constrained to a 2D geometry, whereas the particle magnetic dipole moments are not fixed to the body systems, and are free to rotate in 3 dimensions, hence forming in what we call a quasi-2D geometry. Using a combination of analytical density functional theory and molecular dynamics (MD) simulations, we find that for the studied range of parameters the majority of aggregates might be divided into two types: chains and rings. Their sizes and area fractions are strongly influenced by the geometrical constraints. We show that for quasi-2D systems the excluded area effects play one of the most important parts in the microstructure formation. The simulation technique and the theoretical model put forward in the present paper agree qualitatively with the results of recent in situ observations of the microstructures observed in ferrofluid monolayers [M. Klokkenberg, R. P. A. Dullens, W. K. Regel, B. H. Erné, A. P. Philipse, Phys. Rev. Lett., 2006, 96, 037203]. PMID:18368181

  5. Subgenual Cingulum Microstructure Supports Control of Emotional Conflict

    PubMed Central

    Keedwell, Paul A.; Doidge, Amie N.; Meyer, Marcel; Lawrence, Natalia; Lawrence, Andrew D.; Jones, Derek K.

    2016-01-01

    Major depressive disorder (MDD) is associated with specific difficulties in attentional disengagement from negatively valenced material. Diffusion MRI studies have demonstrated altered white matter microstructure in the subgenual cingulum bundle (CB) in individuals with MDD, though the functional significance of these alterations has not been examined formally. This study explored whether individual differences in selective attention to negatively valenced stimuli are related to interindividual differences in subgenual CB microstructure. Forty-six individuals (21 with remitted MDD, 25 never depressed) completed an emotional Stroop task, using happy and angry distractor faces overlaid by pleasant or unpleasant target words and a control gender-based Stroop task. CBs were reconstructed in 38 individuals using diffusion-weighted imaging and tractography, and mean fractional anisotropy (FA) computed for the subgenual, retrosplenial, and parahippocampal subdivisions. No significant correlations were found between FA and performance in the control gender-based Stroop task in any CB region. However, the degree of interference produced by angry face distractors on time to identify pleasant words (emotional conflict) correlated selectively with FA in the subgenual CB (r = −0.53; P = 0.01). Higher FA was associated with reduced interference, irrespective of a diagnosis of MDD, suggesting that subgenual CB microstructure is functionally relevant for regulating attentional bias toward negative interpersonal stimuli. PMID:27048427

  6. Microstructural characterization of concrete prepared with recycled aggregates.

    PubMed

    Guedes, Mafalda; Evangelista, Luís; de Brito, Jorge; Ferro, Alberto C

    2013-10-01

    Several authors have reported the workability, mechanical properties, and durability of concrete produced with construction waste replacing the natural aggregate. However, a systematic microstructural characterization of recycled aggregate concrete has not been reported. This work studies the use of fine recycled aggregate to replace fine natural aggregate in the production of concrete and reports the resulting microstructures. The used raw materials were natural aggregate, recycled aggregate obtained from a standard concrete, and Portland cement. The substitution extent was 0, 10, 50, and 100 vol%; hydration was stopped at 9, 24, and 96 h and 28 days. Microscopy was focused on the cement/aggregate interfacial transition zone, enlightening the effect of incorporating recycled aggregate on the formation and morphology of the different concrete hydration products. The results show that concretes with recycled aggregates exhibit typical microstructural features of the transition zone in normal strength concrete. Although overall porosity increases with increasing replacement, the interfacial bond is apparently stronger when recycled aggregates are used. An addition of 10 vol% results in a decrease in porosity at the interface with a corresponding increase of the material hardness. This provides an opportunity for development of increased strength Portland cement concretes using controlled amounts of concrete waste.

  7. Novel Micropatterned Cardiac Cell Cultures with Realistic Ventricular Microstructure

    PubMed Central

    Badie, Nima; Bursac, Nenad

    2009-01-01

    Systematic studies of cardiac structure-function relationships to date have been hindered by the intrinsic complexity and variability of in vivo and ex vivo model systems. Thus, we set out to develop a reproducible cell culture system that can accurately replicate the realistic microstructure of native cardiac tissues. Using cell micropatterning techniques, we aligned cultured cardiomyocytes at micro- and macroscopic spatial scales to follow local directions of cardiac fibers in murine ventricular cross sections, as measured by high-resolution diffusion tensor magnetic resonance imaging. To elucidate the roles of ventricular tissue microstructure in macroscopic impulse conduction, we optically mapped membrane potentials in micropatterned cardiac cultures with realistic tissue boundaries and natural cell orientation, cardiac cultures with realistic tissue boundaries but random cell orientation, and standard isotropic monolayers. At 2 Hz pacing, both microscopic changes in cell orientation and ventricular tissue boundaries independently and synergistically increased the spatial dispersion of conduction velocity, but not the action potential duration. The realistic variations in intramural microstructure created unique spatial signatures in micro- and macroscopic impulse propagation within ventricular cross-section cultures. This novel in vitro model system is expected to help bridge the existing gap between experimental structure-function studies in standard cardiac monolayers and intact heart tissues. PMID:19413993

  8. White matter microstructure correlates of mathematical giftedness and intelligence quotient.

    PubMed

    Navas-Sánchez, Francisco J; Alemán-Gómez, Yasser; Sánchez-Gonzalez, Javier; Guzmán-De-Villoria, Juan A; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2014-06-01

    Recent functional neuroimaging studies have shown differences in brain activation between mathematically gifted adolescents and controls. The aim of this study was to investigate the relationship between mathematical giftedness, intelligent quotient (IQ), and the microstructure of white matter tracts in a sample composed of math-gifted adolescents and aged-matched controls. Math-gifted subjects were selected through a national program based on detecting enhanced visuospatial abilities and creative thinking. We used diffusion tensor imaging to assess white matter microstructure in neuroanatomical connectivity. The processing included voxel-wise and region of interest-based analyses of the fractional anisotropy (FA), a parameter which is purportedly related to white matter microstructure. In a whole-sample analysis, IQ showed a significant positive correlation with FA, mainly in the corpus callosum, supporting the idea that efficient information transfer between hemispheres is crucial for higher intellectual capabilities. In addition, math-gifted adolescents showed increased FA (adjusted for IQ) in white matter tracts connecting frontal lobes with basal ganglia and parietal regions. The enhanced anatomical connectivity observed in the forceps minor and splenium may underlie the greater fluid reasoning, visuospatial working memory, and creative capabilities of these children.

  9. Subgenual Cingulum Microstructure Supports Control of Emotional Conflict.

    PubMed

    Keedwell, Paul A; Doidge, Amie N; Meyer, Marcel; Lawrence, Natalia; Lawrence, Andrew D; Jones, Derek K

    2016-06-01

    Major depressive disorder (MDD) is associated with specific difficulties in attentional disengagement from negatively valenced material. Diffusion MRI studies have demonstrated altered white matter microstructure in the subgenual cingulum bundle (CB) in individuals with MDD, though the functional significance of these alterations has not been examined formally. This study explored whether individual differences in selective attention to negatively valenced stimuli are related to interindividual differences in subgenual CB microstructure. Forty-six individuals (21 with remitted MDD, 25 never depressed) completed an emotional Stroop task, using happy and angry distractor faces overlaid by pleasant or unpleasant target words and a control gender-based Stroop task. CBs were reconstructed in 38 individuals using diffusion-weighted imaging and tractography, and mean fractional anisotropy (FA) computed for the subgenual, retrosplenial, and parahippocampal subdivisions. No significant correlations were found between FA and performance in the control gender-based Stroop task in any CB region. However, the degree of interference produced by angry face distractors on time to identify pleasant words (emotional conflict) correlated selectively with FA in the subgenual CB (r = -0.53; P = 0.01). Higher FA was associated with reduced interference, irrespective of a diagnosis of MDD, suggesting that subgenual CB microstructure is functionally relevant for regulating attentional bias toward negative interpersonal stimuli. PMID:27048427

  10. Controlled synthesis and thermal stability of hydroxyapatite hierarchical microstructures

    SciTech Connect

    Sun, Ruixue; Chen, Kezheng; Liao, Zhongmiao; Meng, Nan

    2013-03-15

    Highlights: ► Hydroxyapatite hierarchical microstructures have been synthesized by a facile method. ► The morphology and size of the building units of 3D structures can be controlled. ► The hydroxyapatite with 3D structure is morphologically and structurally stable up to 800 °C. - Abstract: Hydroxyapatite (HAp) hierarchical microstructures with novel 3D morphology were prepared through a template- and surfactant-free hydrothermal homogeneous precipitation method. Field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) were used to characterize the morphology and composition of the synthesized products. Interestingly, the obtained HAp with 3D structure is composed of one-dimensional (1D) nanorods or two-dimensional (2D) nanoribbons, and the length and morphology of these building blocks can be controlled through controlling the pH of the reaction. The building blocks are single crystalline and have different preferential orientation growth under different pH conditions. At low pH values, octacalcium phosphate (OCP) phase formed first and then transformed into HAp phase due to the increased pH value caused by the decomposition of urea. The investigation on the thermal stability reveals that the prepared HAp hierarchical microstructures are morphologically and structurally stable up to 800 °C.

  11. Three-dimensional microstructural characterization of porous cubic zirconia.

    PubMed

    Bobrowski, Piotr; Pędzich, Zbigniew; Faryna, Marek

    2015-11-01

    A set of cubic zirconia samples were investigated using 3-dimensional electron backscatter diffraction (3D EBSD) to analyze the grain structure, grain boundary networks and pore morphology. 3D EBSD is a variation of conventional EBSD, whereby a focused ion beam (FIB) is used in a dual beam scanning electron microscope (SEM) i.e. FIB-SEM to mill away material and to create 'serial sections' through the material being analyzed. Each new surface revealed is subject to an EBSD scan, which continues sequentially until a desired volume of material has been removed. In this manner, many consecutive 2D EBSD scans can be rendered in 3D to gain a greater insight of microstructural features and parameters. The three samples were examined in order to determine the effect of differences in the manufacturing process used for each. For each sample, a volume of ca. 15,000 μm(3) was studied. The analysis of several microstructure parameters revealed a strong dependence on manufacturing conditions. Subsequently, the results of 3D EBSD analysis were compared to conventional 2D EBSD. Significant differences between the values of microstructure parameters determined by 2D and 3D EBSD were observed.

  12. Quantitative Analysis of the Microstructure of Auxetic Foams

    SciTech Connect

    Gaspar, N.; Smith, C.W.; Miller, E.A.; Seidler, G.T.; Evans, K.E.

    2008-07-28

    The auxetic foams first produced by Lakes have been modelled in a variety of ways, each model trying to reproduce some observed feature of the microscale of the foams. Such features include bent or broken ribs or inverted angles between ribs. These models can reproduce the Poisson's ratio or Poisson's function of auxetic foam if the model parameters are carefully chosen. However these model parameters may not actually reflect the internal structure of the foams. A big problem is that measurement of parameters such as lengths and angles is not straightforward within a 3-d sample. In this work a sample of auxetic foam has been imaged by 3-d X-ray computed tomography. The resulting image is translated to a form that emphasises the geometrical structure of connected ribs. This connected rib data are suitably analysed to describe both the microstructural construction of auxetic foams and the statistical spread of structure, that is, the heterogeneity of an auxetic foam. From the analysis of the microstructure, observations are made about the requirements for microstructural models and comparisons made to previous existing models. From the statistical data, measures of heterogeneity are made that will help with future modelling that includes the heterogeneous aspect of auxetic foams.

  13. Microstructure characteristics of laser MIG hybrid welded mild steel

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Zeng, Xiaoyan; Yan, Jun; Hu, Qianwu

    2008-07-01

    To deepen the understanding of laser-arc hybrid welding, the weld shape and microstructure characteristics of laser-metal inert gas hybrid welded mild steel were analyzed. The results showed typical hybrid weld could be classified as two parts: the wide upper zone and the narrow nether zone, which were defined as arc zone and laser zone, respectively. In the hybrid weld, the microstructure, alloy element distribution and microhardness all have evident difference between laser zone and arc zone. The microstructure of arc zone consists of coarse columnar dendrite and fine acicular dendrite between the columnar dendrites, but that of laser zone is composed of fine equiaxed dendrite in weld center and columnar dendrite around the equiaxed dendrite. Compared to arc zone, laser zone has finer grain size, higher microhardness, smaller alloy element content in the fusion zone and narrower heat affected zone. The discussions demonstrated that the observed difference was caused by the difference of temperature gradient, crystallizing and the effects of arc pressure on the molten pool between laser zone and arc zone.

  14. Hippocampal diffusion tensor imaging microstructural changes in vascular dementia.

    PubMed

    Ostojic, Jelena; Kozic, Dusko; Pavlovic, Aleksandra; Semnic, Marija; Todorovic, Aleksandar; Petrovic, Kosta; Covickovic-Sternic, Nadezda

    2015-12-01

    To explore microstructural integrity of hippocampus in vascular dementia (VD) using DTI. Twenty-five individuals with VD, without magnetic resonance imaging (MRI) evidence of gray matter pathology, and 25 matched healthy control (HC) individuals underwent a 3T MRI protocol including T2, FLAIR, and PD in the axial plane, 3D whole-brain T1-weighted with an isotropic resolution of 1 mm, and DTI acquired using 64 diffusion sensitizing directions, b value of 1,500 s/mm(2), 65 axial slices, isotropic resolution of 1.8 mm. Images were processed to obtain indices of microstructural variations of bilateral hippocampi. Mean diffusivity (MD) in the hippocampus of patients with VD was significantly increased (p < 0.05) bilaterally with respect to that of the group of HC examinees. In VD group left hippocampal MD (10(-6 )× mm(2)/s) was 833.4 ± 92.8; in HC group left MD was 699.8 ± 56. In VD group, right hippocampal MD was 859.1 ± 69.8; in HC group right MD was 730.4 ± 40.2. No group differences were found in hippocampal FA. DTI shows microstructural hippocampal damage in VD in patients with normal appearing gray matter structures on conventional MRI, indicating the need for further research on the link between VD and AD. PMID:25555903

  15. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2011-01-01

    Detailed two-dimensional finite element analyses of the cross-sections of a model CVI (chemical vapor infiltrated) SiC/SiC (silicon carbide fiber in a silicon carbide matrix) ceramic matrix composites are performed. High resolution images of the cross-section of this composite material are generated using serial sectioning of the test specimens. These images are then used to develop very detailed finite element models of the cross-sections using the public domain software OOF2 (Object Oriented Analysis of Material Microstructures). Examination of these images shows that these microstructures have significant variability and irregularity. How these variabilities manifest themselves in the variability in effective properties as well as the stress distribution, damage initiation and damage progression is the overall objective of this work. Results indicate that even though the macroscopic stress-strain behavior of various sections analyzed is very similar, each section has a very distinct damage pattern when subjected to in-plane tensile loads and this damage pattern seems to follow the unique architectural and microstructural details of the analyzed sections.

  16. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    NASA Astrophysics Data System (ADS)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  17. Microstructural studies of dental amalgams using analytical transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Hooghan, Tejpal Kaur

    Dental amalgams have been used for centuries as major restorative materials for decaying teeth. Amalgams are prepared by mixing alloy particles which contain Ag, Sn, and Cu as the major constituent elements with liquid Hg. The study of microstructure is essential in understanding the setting reactions and improving the properties of amalgams. Until the work reported in this dissertation, optical microscopy (OM), scanning electron microscopy (SEM), and x-ray diffractometry (XRD) were used commonly to analyze amalgam microstructures. No previous systematic transmission electron microscopy (TEM) study has been performed due to sample preparation difficulties and composite structure of dental amalgams. The goal of this research was to carry out detailed microstructural and compositional studies of dental amalgams. This was accomplished using the enhanced spatial resolution of the TEM and its associated microanalytical techniques, namely, scanning transmission electron microscopy (STEM), x-ray energy dispersive spectroscopy (XEDS) and micro-microdiffraction (mumuD). A new method was developed for thinning amalgam samples to electron transparency using the "wedge technique." Velvalloy, a low-Cu amalgam, and Tytin, a high-Cu amalgam, were the two amalgams characterized. Velvalloy is composed of a Agsb2Hgsb3\\ (gammasb1)/HgSnsb{7-9}\\ (gammasb2) matrix surrounding unreacted Agsb3Sn (gamma) particles. In addition, hitherto uncharacterized reaction layers between Agsb3Sn(gamma)/Agsb2Hgsb3\\ (gammasb2)\\ and\\ Agsb2Hgsb3\\ (gammasb1)/HgSnsb{7-9}\\ (gammasb2) were observed and analyzed. An Ag-Hg-Sn (betasb1) phase was clearly identified for the first time. In Tytin, the matrix consists of Agsb2Hgsb3\\ (gammasb1) grains. Fine precipitates of Cusb6Snsb5\\ (etasp') are embedded inside the gammasb1 and at the grain boundaries. These precipitates are responsible for the improved creep resistance of Tytin compared to Velvalloy. The additional Cu has completely eliminated the gammasb

  18. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    NASA Astrophysics Data System (ADS)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.

    2016-06-01

    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld

  19. Three dimensional rock microstructures: insights from FIB-SEM tomography

    NASA Astrophysics Data System (ADS)

    Drury, Martyn; Pennock, Gill; de Winter, Matthijs

    2016-04-01

    Most studies of rock microstructures investigate two-dimensional sections or thin slices of three dimensional grain structures. With advances of X-ray and electron tomography methods the 3-D microstructure can be(relatively) routinely investigated on scales from a few microns to cm. 3D studies are needed to investigate the connectivity of microstructures and to test the assumptions we use to calculate 3D properties from 2D sections. We have used FIB-SEM tomography to study the topology of melts in synthetic olivine rocks, 3D crystal growth microstructures, pore networks and subgrain structures. The technique uses a focused ion beam to make serial sections with a spacing of tens to hundreds of nanometers. Each section is then imaged or mapped using the electron beam. The 3D geometry of grains and subgrains can be investigated using orientation contrast or EBSD mapping. FIB-SEM tomography of rocks and minerals can be limited by charging of the uncoated surfaces exposed by the ion beam. The newest generation of FIB-SEMs have much improved low voltage imaging capability allowing high resolution charge free imaging. Low kV FIB-SEM tomography is now widely used to study the connectivity of pore networks. In-situ fluids can also be studied using cryo-FIB-SEM on frozen samples, although special freezing techniques are needed to avoid artifacts produced by ice crystallization. FIB-SEM tomography is complementary, in terms of spatial resolution and sampled volume, to TEM tomography and X-ray tomography, and the combination of these methods can cover a wide range of scales. Our studies on melt topology in synthetic olivine rocks with a high melt content show that many grain boundaries are wetted by nanometre scale melt layers that are too thin to resolve by X-ray tomography. A variety of melt layer geometries occur consistent with several mechanisms of melt layer formation. The nature of melt geometries along triple line junctions and quadruple points can be resolved

  20. Microstructure evolution in austenitic Fe-Cr-Ni alloys irradiated with rotons: comparison with neutron-irradiated microstructures

    NASA Astrophysics Data System (ADS)

    Gan, J.; Was, G. S.

    2001-08-01

    Irradiation-induced microstructures of high purity and commercial purity austenitic stainless steels were investigated using proton-irradiation. For high purity alloys, Fe-20Cr-9Ni (HP 304 SS), Fe-20Cr-24Ni and Ni-18Cr-9Fe were irradiated using 3.2 MeV protons between 300°C and 600°C at a dose rate of 7×10 -6 dpa/ s to doses up to 3.0 dpa. The commercial purity alloys, CP 304 SS and CP 316 SS were irradiated at 360°C to doses between 0.3 and 5.0 dpa. The dose, temperature and composition dependence of the number density and size of dislocation loops and voids were characterized. The changes in yield strength due to irradiation were estimated from Vickers hardness measurements and compared to calculations using a dispersed-barrier-hardening (DBH) model. The dose and temperature dependence of proton-irradiated microstructure (loops, voids) and the irradiation hardening are consistent with the neutron-data trend. Results indicate that proton-irradiation can accurately reproduce the microstructure of austenitic alloys irradiated in LWR cores.

  1. A New Microstructure Device for Efficient Evaporation of Liquids

    NASA Astrophysics Data System (ADS)

    Brandner, Juergen J.; Maikowske, Stefan; Vittoriosi, Alice

    Evaporation of liquids is of major interest for many topics in process engineering. One of these is chemical process engineering, where evaporation of liquids and generation of superheated steam is mandatory for numerous processes. Generally, this is performed by use of classical pool boiling and evaporation process equipment. Another possibility is creating mixtures of gases and liquids, combined with a heating of this haze. Both methods provide relatively limited performance. Due to the advantages of microstructure devices especially in chemical process engineering [1] the interest in microstructure evaporators and steam generators have been increased through the last decade. In this publication several microstructure devices used for evaporation and generation of steam as well as superheating will be described. Here, normally electrically powered devices containing micro channels as well as non-channel microstructures are used due to better controllability of the temperature level. Micro channel heat exchangers have been designed, manufactured and tested at the Institute for Micro Process Engineering of the Karlsruhe Institute of Technology for more than 15 years. Starting with the famous Karlsruhe Cube, a cross-flow micro channel heat exchanger of various dimensions, not only conventional heat transfer between liquids or gases have been theoretically and experimentally examined but also phase transition from liquids to gases (evaporation) and condensation of liquids. However, the results obtained with sealed microstructure devices have often been unsatisfying. Thus, to learn more onto the evaporation process itself, an electrically powered device for optical inspection of the microstructures and the processes inside has been designed and manufactured [2]. This was further optimized and improved for better controllability and reliable experiments [3]. Exchangeable metallic micro channel array foils as well as an optical inspection of the evaporation process by

  2. Microstructure of Mixed Surfactant Solutions by Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Naranjo, Edward

    1995-01-01

    Surfactant mixtures add a new dimension to the design of complex fluid microstructure. By combining different surfactants it is not only possible to modify aggregate morphology and control the macrascopic properties of colloidal dispersions but also to produce a variety of novel synergistic phases. Mixed systems produce new microstructures by altering the intermolecular and interaggregate forces in ways impossible for single component systems. In this dissertation, we report on the phase behavior and microstructure of several synthetic and biological surfactant mixtures as elucidated by freeze-fracture and cryo-transmission electron microscopy. We have discovered that stable, spontaneous unilamellar vesicles can be prepared from aqueous mixtures of commercially available single-tailed cationic and anionic surfactants. Vesicle stability is determined by the length and volume of the hydrocarbon chains of the "catanionic" pairs. Mixtures containing bulky or branched surfactant pairs (C _{16}/C_{12 -14}) in water produce defect-free fairly monodisperse equilibrium vesicles at high dilution. In contrast, mixtures of catanionic surfactants with highly asymmetric tails (C_{16}/C_8 ) form phases of porous vesicles, dilute lamellar L_{alpha}, and anomalous isotropic L_3 phases. Images of the microstructure by freeze-fracture microscopy show that the L_3 phase consists of multiconnected self-avoiding bilayers with saddle shaped curvature. The forces between bilayers of vesicle-forming cationic and anionic surfactant mixtures were also measured using the Surface Force Apparatus (SFA). We find that the vesicles are stabilized by a long range electrostatic repulsion at large separations (>20 A) and an additional salt-independent repulsive force below 20 A. The measured forces correlate very well with the ternary phase diagram and the vesicle microstructures observed by electron microscopy. In addition to studying ionic surfactants, we have also done original work with

  3. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  4. A Markov random field approach for modeling spatio-temporal evolution of microstructures

    NASA Astrophysics Data System (ADS)

    Acar, Pinar; Sundararaghavan, Veera

    2016-10-01

    The following problem is addressed: ‘Can one synthesize microstructure evolution over a large area given experimental movies measured over smaller regions?’ Our input is a movie of microstructure evolution over a small sample window. A Markov random field (MRF) algorithm is developed that uses this data to estimate the evolution of microstructure over a larger region. Unlike the standard microstructure reconstruction problem based on stationary images, the present algorithm is also able to reconstruct time-evolving phenomena such as grain growth. Such an algorithm would decrease the cost of full-scale microstructure measurements by coupling mathematical estimation with targeted small-scale spatiotemporal measurements. The grain size, shape and orientation distribution statistics of synthesized polycrystalline microstructures at different times are compared with the original movie to verify the method.

  5. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    PubMed

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  6. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  7. Microstructure and self-sharpening of the magnetite cap in chiton tooth.

    PubMed

    Wang, C; Li, Q Y; Wang, S N; Qu, S X; Wang, X X

    2014-04-01

    The magnetite cap of chiton tooth (Acanthochiton rubrolineatus) was studied with SEM. Three microstructurally distinct regions were recognized: Region I, close to the anterior surface of the cusp and composed of thick rod microstructure units; Region III, close to the posterior surface and composed of fine fibers; and Region II, sandwiched between Regions I and II and composed of thin sheets. The microstructure units in the three regions constitute a continuous and integrated architecture component. The hardness of Regions I and II was measured to be Hv270 and Hv490, respectively. Based on these microstructure observation and hardness data, the abrasive behavior and microstructural mechanism of self-sharpening of the chiton tooth were discussed in the paper. The self-sharpening was attributed to the combined effect of the hardness and the texture orientation of the microstructure units in Regions I and II.

  8. Microstructure and self-sharpening of the magnetite cap in chiton tooth.

    PubMed

    Wang, C; Li, Q Y; Wang, S N; Qu, S X; Wang, X X

    2014-04-01

    The magnetite cap of chiton tooth (Acanthochiton rubrolineatus) was studied with SEM. Three microstructurally distinct regions were recognized: Region I, close to the anterior surface of the cusp and composed of thick rod microstructure units; Region III, close to the posterior surface and composed of fine fibers; and Region II, sandwiched between Regions I and II and composed of thin sheets. The microstructure units in the three regions constitute a continuous and integrated architecture component. The hardness of Regions I and II was measured to be Hv270 and Hv490, respectively. Based on these microstructure observation and hardness data, the abrasive behavior and microstructural mechanism of self-sharpening of the chiton tooth were discussed in the paper. The self-sharpening was attributed to the combined effect of the hardness and the texture orientation of the microstructure units in Regions I and II. PMID:24582215

  9. Microstructure Evolution in a New Refractory High-Entropy Alloy W-Mo-Cr-Ti-Al

    NASA Astrophysics Data System (ADS)

    Gorr, Bronislava; Azim, Maria; Christ, Hans-Juergen; Chen, Hans; Szabo, Dorothee Vinga; Kauffmann, Alexander; Heilmaier, Martin

    2016-02-01

    The microstructure of a body-centered cubic 20W-20Mo-20Cr-20Ti-20Al alloy in the as-cast condition as well as its microstructural evolution during heat treatment was investigated. Different characterization techniques, such as focused ion beam-scanning electron microscope, X-ray diffraction, and transmission electron microscope, were applied. Experimental observations were supported by thermodynamic calculations. The alloy exhibits a pronounced dendritic microstructure in the as-cast condition with the respective dendritic and interdendritic regions showing significant fluctuations of the element concentrations. Using thermodynamic calculations, it was possible to rationalize the measured element distribution in the dendritic and the interdendritic regions. Observations of the microstructure evolution reveal that during heat treatment, substantial homogenization takes place leading to the formation of a single-phase microstructure. Driving forces for the microstructural evolution were discussed from a thermodynamic point of view.

  10. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    DOE PAGES

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-03-03

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can revealmore » salient microstructural features that cannot be observed from conventional metallographic techniques. As a result, examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.« less

  11. Effect of solidification rate on microstructure evolution in dual phase microalloyed steel

    PubMed Central

    Kostryzhev, A. G.; Slater, C. D.; Marenych, O. O.; Davis, C. L.

    2016-01-01

    In steels the dependence of ambient temperature microstructure and mechanical properties on solidification rate is not well reported. In this work we investigate the microstructure and hardness evolution for a low C low Mn NbTi-microalloyed steel solidified in the cooling rate range of 1–50 Cs−1. The maximum strength was obtained at the intermediate solidification rate of 30 Cs−1. This result has been correlated to the microstructure variation with solidification rate. PMID:27759109

  12. Microstructures and Dielectric Properties of PZT Coatings Prepared by Supersonic Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Li, Guolu; Gu, Linsong; Wang, Haidou; Xing, Zhiguo; Zhu, Lina

    2014-02-01

    This paper studied the microstructures and dielectric properties of PZT coatings prepared by supersonic plasma spraying. Samples of the PZT coatings were evaluated by various techniques. The phases and microstructures of the coatings were investigated by XRD, SEM, and TEM, respectively. The results showed that the coatings deposited on steel substrate had a dense microstructure, and there was no phase transformation during spraying. Additionally, the Curie temperature of the PZT coatings was about 370 °C by the investigation of dielectric constant.

  13. Improvement of fluorescence intensity of nitrogen vacancy centers in self-formed diamond microstructures

    SciTech Connect

    Furuyama, S.; Yaita, J.; Kondo, M.; Tahara, K.; Iwasaki, T.; Shimizu, M.; Kodera, T.; Hatano, M.

    2015-10-19

    We present umbrella-shaped diamond microstructures with metal mirrors at the bottom in order to improve the amount of collected photons from nitrogen vacancy centers. The metal mirrors at the bottom are self-aligned to the umbrella-shaped diamond microstructures which are selectively grown through holes created on a metal mask. By the finite-difference time-domain simulations, we found that the umbrella-shaped microstructures, which have an effect similar to solid immersion lens, could collect photons more efficiently than bulk or pillar-shaped microstructures. Improvement of the fluorescence intensity by factors of from 3 to 5 is shown experimentally.

  14. Microstructural Evolution of Ti-6Al-4V during High Strain Rate Conditions of Metal Cutting

    NASA Technical Reports Server (NTRS)

    Dong, Lei; Schneider, Judy

    2009-01-01

    The microstructural evolution following metal cutting was investigated within the metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior grains and equiaxed primary located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary grains and lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the transus temperature.

  15. Comprehensive Microstructure and Molar Mass Analysis of Polybutadiene by Multidimensional Liquid Chromatography.

    PubMed

    Maiko, Khumo; Pasch, Harald

    2015-12-01

    For the first time, polybutadiene is separated according to microstructure using solvent gradient interaction chromatography (SGIC). Superior separation of polybutadienes having different microstructures is obtained on a silica-based reversed stationary phase and a mobile phase of acetone-hexane. This SGIC system enables the baseline separation of 1,2-polybutadienes and 1,4-polybutadienes even in cases where the samples have similar molar masses. 2D liquid chromatography is performed with the SGIC method separating according to microstructure in the first dimension coupled to size exclusion chromatography separating according to molar mass in the second dimension, thus providing comprehensive information on both microstructure and molar mass.

  16. Comprehensive Microstructure and Molar Mass Analysis of Polybutadiene by Multidimensional Liquid Chromatography.

    PubMed

    Maiko, Khumo; Pasch, Harald

    2015-12-01

    For the first time, polybutadiene is separated according to microstructure using solvent gradient interaction chromatography (SGIC). Superior separation of polybutadienes having different microstructures is obtained on a silica-based reversed stationary phase and a mobile phase of acetone-hexane. This SGIC system enables the baseline separation of 1,2-polybutadienes and 1,4-polybutadienes even in cases where the samples have similar molar masses. 2D liquid chromatography is performed with the SGIC method separating according to microstructure in the first dimension coupled to size exclusion chromatography separating according to molar mass in the second dimension, thus providing comprehensive information on both microstructure and molar mass. PMID:26461063

  17. Observations of microstructural coarsening in micro flip-chip solder joints

    NASA Astrophysics Data System (ADS)

    Barney, Monica M.; Morris, J. W.

    2001-09-01

    Coarsening of solder microstructures dramatically affects fatigue lifetimes. This paper presents a study of microstructural evolution due to thermal cycling and aging of small solder joints. The lead-tin solder joints in this study have a height of 55 5 m and a tin content of 65 70 wt.%, with a degenerate eutectic microstructure. The joint microstructure coarsens more rapidly during aging at 160°C than cycling from 0 160°C. No coarsened bands are observed. The cycling data scales with standard coarsening equations, while the aging data fits to an enhanced trend. The joints experiencing 2.8% strain during cycling fail by 1000 cycles.

  18. Improvement of fluorescence intensity of nitrogen vacancy centers in self-formed diamond microstructures

    NASA Astrophysics Data System (ADS)

    Furuyama, S.; Tahara, K.; Iwasaki, T.; Shimizu, M.; Yaita, J.; Kondo, M.; Kodera, T.; Hatano, M.

    2015-10-01

    We present umbrella-shaped diamond microstructures with metal mirrors at the bottom in order to improve the amount of collected photons from nitrogen vacancy centers. The metal mirrors at the bottom are self-aligned to the umbrella-shaped diamond microstructures which are selectively grown through holes created on a metal mask. By the finite-difference time-domain simulations, we found that the umbrella-shaped microstructures, which have an effect similar to solid immersion lens, could collect photons more efficiently than bulk or pillar-shaped microstructures. Improvement of the fluorescence intensity by factors of from 3 to 5 is shown experimentally.

  19. Application of Image Analysis for Characterization of Spatial Arrangements of Features in Microstructure

    NASA Technical Reports Server (NTRS)

    Louis, Pascal; Gokhale, Arun M.

    1995-01-01

    A number of microstructural processes are sensitive to the spatial arrangements of features in microstructure. However, very little attention has been given in the past to the experimental measurements of the descriptors of microstructural distance distributions due to the lack of practically feasible methods. We present a digital image analysis procedure to estimate the micro-structural distance distributions. The application of the technique is demonstrated via estimation of K function, radial distribution function, and nearest-neighbor distribution function of hollow spherical carbon particulates in a polymer matrix composite, observed in a metallographic section.

  20. Effect of irradiation spectrum on the microstructural evolution in ceramic insulators

    SciTech Connect

    Zinkle, S.J.

    1995-04-01

    The objective of this study is to determine and examine the effect of variations in the ionizing and displacive radiation environments on the microstructure of oxide ceramic insulators. Cross section transmission electron microscopy has been used to investigate the microstructure of MgAl{sub 2}O{sub 4} (spinel) and Al{sub 2}O{sub 3} (alumina) following irradiation with ions of varying mass and energy at room temperature and 650{degree}C. These results clearly indicate that light ion and electron irradiations produce microstructures which are not representative of the microstructure that would form in these ceramics during fission or fusion neutron irradiation.

  1. Microstructural Evolution and Wear Resistance of Friction Stir-Processed AISI 52100 Steel

    NASA Astrophysics Data System (ADS)

    Seraj, R. A.; Abdollah-zadeh, A.; Hajian, M.; Kargar, F.; Soltanalizadeh, R.

    2016-07-01

    Friction stir processing (FSP) was successfully applied on AISI 52100 steel. The influence of process parameters on the microstructure and mechanical properties of the material was evaluated. It was observed that the initial ferritic-pearlitic microstructure of the base metal is transformed to the martensitic microstructure with retained austenite in the stir zone. The results also showed that microhardness and wear resistance of the FSP samples are, respectively, at least 2 and 15 times higher than those of the base metal. The improvement of the mechanical properties of FSP samples was attributed to their microstructural characteristics. The mechanisms controlling the wear behavior of the base metal and FSP samples were also discussed.

  2. Microstructure and texture studies on magnesium sheet alloys

    NASA Astrophysics Data System (ADS)

    Masoumi, Mohsen

    The AZ3, the most common Mg sheet alloy, is currently produced by hot rolling of the DC cast ingot. Mg wrought alloys, in general have limited formability due to hexagonal close-packed structure and preferred orientation (texture). In order to improve magnesium sheet formability, a good understanding of microstructure and texture evolution in twin-roll casting is necessary. The objectives of this research are to study the microstructural and texture evolution in twin-roll cast AZ31 Mg sheet alloy and to develop/modify alloy compositions with improved mechanical properties (weakened texture). In the first part of study, the influence of cooling rate (CR) on the casting structure of AZ31 magnesium alloy has been investigated, as a background to understand microstructural development in TRC AZ31, using different moulds to obtain slow to moderate cooling rates. It was found that grain size and secondary dendrite arm spacing (SDAS) reduces as the cooling rate increases. Moreover, it was observed that with an increase in cooling rate the fraction of second phase particles increases and the second phase particles become finer. The second part focused on the microstructure and texture study of the twin-roll cast (TRC) AZ31 (Mg-3wt.%Al-1wt.%Zn) sheet. The results indicate that TRC AZ31 exhibits a dendritic microstructure with columnar and equiaxed grains. It was noted that the amount of these second phases in the TRC alloy is greater than the conventionally cast AZ31. Recrystallization at 420 °C leads to a bimodal grain-size distribution, while a fine-grain structure is obtained after rolling and annealing. The TRC AZ31 sheet exhibits basal textures in the (i) as-received, (ii) rolled and (iii) rolled-annealed conditions. However, post-annealing of the TRC AZ31 at 420 °C produces a relatively random texture that has not been previously observed in the conventional AZ31 sheet. The texture randomization is attributed to the particle-stimulated nucleation (PSN) of new grains

  3. Three-dimensional printing of freeform helical microstructures: a review.

    PubMed

    Farahani, R D; Chizari, K; Therriault, D

    2014-09-21

    Three-dimensional (3D) printing is a fabrication method that enables creation of structures from digital models. Among the different structures fabricated by 3D printing methods, helical microstructures attracted the attention of the researchers due to their potential in different fields such as MEMS, lab-on-a-chip systems, microelectronics and telecommunications. Here we review different types of 3D printing methods capable of fabricating 3D freeform helical microstructures. The techniques including two more common microfabrication methods (i.e., focused ion beam chemical vapour deposition and microstereolithography) and also five methods based on computer-controlled robotic direct deposition of ink filament (i.e., fused deposition modeling, meniscus-confined electrodeposition, conformal printing on a rotating mandrel, UV-assisted and solvent-cast 3D printings) and their advantages and disadvantages regarding their utilization for the fabrication of helical microstructures are discussed. Focused ion beam chemical vapour deposition and microstereolithography techniques enable the fabrication of very precise shapes with a resolution down to ∼100 nm. However, these techniques may have material constraints (e.g., low viscosity) and/or may need special process conditions (e.g., vacuum chamber) and expensive equipment. The five other techniques based on robotic extrusion of materials through a nozzle are relatively cost-effective, however show lower resolution and less precise features. The popular fused deposition modeling method offers a wide variety of printable materials but the helical microstructures manufactured featured a less precise geometry compared to the other printing methods discussed in this review. The UV-assisted and the solvent-cast 3D printing methods both demonstrated high performance for the printing of 3D freeform structures such as the helix shape. However, the compatible materials used in these methods were limited to UV-curable polymers and

  4. Three-dimensional printing of freeform helical microstructures: a review.

    PubMed

    Farahani, R D; Chizari, K; Therriault, D

    2014-09-21

    Three-dimensional (3D) printing is a fabrication method that enables creation of structures from digital models. Among the different structures fabricated by 3D printing methods, helical microstructures attracted the attention of the researchers due to their potential in different fields such as MEMS, lab-on-a-chip systems, microelectronics and telecommunications. Here we review different types of 3D printing methods capable of fabricating 3D freeform helical microstructures. The techniques including two more common microfabrication methods (i.e., focused ion beam chemical vapour deposition and microstereolithography) and also five methods based on computer-controlled robotic direct deposition of ink filament (i.e., fused deposition modeling, meniscus-confined electrodeposition, conformal printing on a rotating mandrel, UV-assisted and solvent-cast 3D printings) and their advantages and disadvantages regarding their utilization for the fabrication of helical microstructures are discussed. Focused ion beam chemical vapour deposition and microstereolithography techniques enable the fabrication of very precise shapes with a resolution down to ∼100 nm. However, these techniques may have material constraints (e.g., low viscosity) and/or may need special process conditions (e.g., vacuum chamber) and expensive equipment. The five other techniques based on robotic extrusion of materials through a nozzle are relatively cost-effective, however show lower resolution and less precise features. The popular fused deposition modeling method offers a wide variety of printable materials but the helical microstructures manufactured featured a less precise geometry compared to the other printing methods discussed in this review. The UV-assisted and the solvent-cast 3D printing methods both demonstrated high performance for the printing of 3D freeform structures such as the helix shape. However, the compatible materials used in these methods were limited to UV-curable polymers and

  5. Three-dimensional printing of freeform helical microstructures: a review

    NASA Astrophysics Data System (ADS)

    Farahani, R. D.; Chizari, K.; Therriault, D.

    2014-08-01

    Three-dimensional (3D) printing is a fabrication method that enables creation of structures from digital models. Among the different structures fabricated by 3D printing methods, helical microstructures attracted the attention of the researchers due to their potential in different fields such as MEMS, lab-on-a-chip systems, microelectronics and telecommunications. Here we review different types of 3D printing methods capable of fabricating 3D freeform helical microstructures. The techniques including two more common microfabrication methods (i.e., focused ion beam chemical vapour deposition and microstereolithography) and also five methods based on computer-controlled robotic direct deposition of ink filament (i.e., fused deposition modeling, meniscus-confined electrodeposition, conformal printing on a rotating mandrel, UV-assisted and solvent-cast 3D printings) and their advantages and disadvantages regarding their utilization for the fabrication of helical microstructures are discussed. Focused ion beam chemical vapour deposition and microstereolithography techniques enable the fabrication of very precise shapes with a resolution down to ~100 nm. However, these techniques may have material constraints (e.g., low viscosity) and/or may need special process conditions (e.g., vacuum chamber) and expensive equipment. The five other techniques based on robotic extrusion of materials through a nozzle are relatively cost-effective, however show lower resolution and less precise features. The popular fused deposition modeling method offers a wide variety of printable materials but the helical microstructures manufactured featured a less precise geometry compared to the other printing methods discussed in this review. The UV-assisted and the solvent-cast 3D printing methods both demonstrated high performance for the printing of 3D freeform structures such as the helix shape. However, the compatible materials used in these methods were limited to UV-curable polymers and

  6. Microstructural characterization of Charpy-impact-tested nanostructured bainite

    SciTech Connect

    Tsai, Y.T.; Chang, H.T.; Huang, B.M.; Huang, C.Y.; Yang, J.R.

    2015-09-15

    In this work, a possible cause of the extraordinary low impact toughness of nanostructured bainite has been investigated. The microstructure of nanostructured bainite consisted chiefly of carbide-free bainitic ferrite with retained austenite films. X-ray diffractometry (XRD) measurement indicated that no retained austenite existed in the fractured surface of the Charpy-impact-tested specimens. Fractographs showed that cracks propagated mainly along bainitic ferrite platelet boundaries. The change in microstructure after impact loading was verified by transmission electron microscopy (TEM) observations, confirming that retained austenite was completely transformed to strain-induced martensite during the Charpy impact test. However, the zone affected by strained-induced martensite was found to be extremely shallow, only to a depth of several micrometers from the fracture surface. It is appropriately concluded that upon impact, as the crack forms and propagates, strain-induced martensitic transformation immediately occurs ahead of the advancing crack tip. The successive martensitic transformation profoundly facilitates the crack propagation, resulting in the extremely low impact toughness of nanostructured bainite. Retained austenite, in contrast to its well-known beneficial role, has a deteriorating effect on toughness during the course of Charpy impact. - Highlights: • The microstructure of nanostructured bainite consisted of nano-sized bainitic ferrite subunits with retained austenite films. • Special sample preparations for SEM, XRD and TEM were made, and the strain-affected structures have been explored. • Retained austenite films were found to transform into martensite after impact loading, as evidenced by XRD and TEM results. • The zone of strain-induced martensite was found to extend to only several micrometers from the fracture surface. • The poor Charpy impact toughness is associated with the fracture of martensite at a high strain rate during

  7. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    SciTech Connect

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.

  8. Microstructure and texture evolution of Cu–Nb composite wires

    SciTech Connect

    Deng, Liping; Yang, Xiaofang; Han, Ke; Lu, Yafeng; Liang, Ming; Liu, Qing

    2013-07-15

    The evolution of microstructure and texture in Cu–Nb composite wires fabricated by an accumulative drawing and bundling process was investigated by backscattered electron (BSE), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results indicate the onset of severe curling and shape changing occurred at the size of Nb ∼ 400 nm with a surface increase of about 6.91 μm{sup 2}/μm{sup 3} (the area per unit volume). Two kinds of grain boundaries in Nb are suggested: one is 20°–50° boundary with a rotate/tilt axis around <110> parallel to drawing direction (DD), and another is > 50° boundary with the axis perpendicular to DD. The curling phenomenon occurred at the Cu–Nb interface and is related not only to the deformation mechanism of Nb but also to the presence of interface. This result is distinct from reported works showing that curling takes place when BCC metals are heavily drawn (Area reduction > 73%). The variation in microstructure and texture evolution between Cu and Nb filaments was discussed based on the differences in deformation mechanisms of these two metals. - Highlights: • Microstructure and texture evolution were studied systematically by EBSD. • In Nb, grain boundaries of 20°–50° have a rotate/tile axis around <110>//DD. • The rotation axes of above 50° boundaries are concentrated around <111> ⊥ DD in Nb. • Curling is related to not only deformation mode of BCC but also Cu–Nb interface.

  9. Environmental effects on shell microstructures of Cerastoderma edule

    NASA Astrophysics Data System (ADS)

    Milano, Stefania; Schöne, Bernd R.; Witbaard, Rob

    2015-04-01

    Bivalve shells serve as sensitive recorders of environmental conditions. However, reconstruction of a specific environmental parameter is still challenging. For example, variable shell growth rates simultaneously provide information on water temperature, food availability and food quality. Likewise, shell oxygen isotope values function as a dual proxy of water temperature and salinity (=oxygen isotope signature of the ambient water). Reconstruction of water temperature from δ18Oshell requires knowledge of δ18Oshell and vice versa. Unfortunately, the incorporation of trace elements in the shell is strongly controlled by biological effects and, hence, the element-to-calcium ratios of the shell are difficult to interpret in terms of environmental variables. Here, we studied if the structural properties (shell architecture, shell microstructures, fabrics) of the shell of the common cockle can function as an alternative proxy of environmental variables. Specimens of C. edule were collected alive from the intertidal zone of the North Sea. Temperature and salinity were monitored at the site where the shells lived on hourly basis for almost one year. Each portion of the shell was temporally contextualized with the tidally-deposited growth increments. Shell microstructures (composite prismatic structures) were analyzed under with a scanning electron microscope (SEM). The change of the size and shape of the mesocrystals was strongly correlated to water temperature during the growing season (May - Sep.). With rising temperatures, the size of mesocrystals increased and their morphology changed from rounded to elongated shape. Our findings suggest that shell microstructures of C. edule may serve a new, independent proxy for water temperature.

  10. Examining brain microstructure using structure tensor analysis of histological sections.

    PubMed

    Budde, Matthew D; Frank, Joseph A

    2012-10-15

    The mammalian central nervous system has a tremendous structural complexity, and diffusion tensor imaging (DTI) is unique in its ability to extract microstructural tissue properties at a macroscopic scale. However, despite its widespread use and applications in clinical and research settings, accurate validation of DTI has notoriously lagged the advances in image acquisition and analysis. In this report, we demonstrate an approach to visualize and quantify the microscopic features of histological sections on multiple length scales using techniques derived from image texture analysis. Structure tensor (ST) analysis was applied to fluorescence microscopy images of rat brain sections to visualize and quantify tissue microstructure. Images were digitally color-coded based on the local orientation in the pixelwise ST implementation, which allowed direct visualization of white matter complexity at the microscopic level. A piecewise ST algorithm was also employed to quantify anisotropy and orientation at a resolution comparable to that typically acquired with DTI. Anisotropy measured with ST analysis of stained histological sections was highly correlated with anisotropy measured by ex vivo DTI of the same brains (R(2)=0.92). Furthermore, angular histograms, or Fiber Orientation Distributions (FODs), were computed to mimic similar measures derived from high angular resolution diffusion imaging methods. The FODs for each pixel were fit to a mixture of von Mises distributions to identify putative regions of multiple fiber populations (i.e. crossing fibers). Despite its current application to two-dimensional microscopy, the ST analysis is a novel approach to visualize and quantify microstructure in the central nervous system in both health and disease, and advances the available set of tools for validating DTI and other diffusion MRI techniques. PMID:22759994

  11. A neural network technique for remeshing of bone microstructure.

    PubMed

    Fischer, Anath; Holdstein, Yaron

    2012-01-01

    Today, there is major interest within the biomedical community in developing accurate noninvasive means for the evaluation of bone microstructure and bone quality. Recent improvements in 3D imaging technology, among them development of micro-CT and micro-MRI scanners, allow in-vivo 3D high-resolution scanning and reconstruction of large specimens or even whole bone models. Thus, the tendency today is to evaluate bone features using 3D assessment techniques rather than traditional 2D methods. For this purpose, high-quality meshing methods are required. However, the 3D meshes produced from current commercial systems usually are of low quality with respect to analysis and rapid prototyping. 3D model reconstruction of bone is difficult due to the complexity of bone microstructure. The small bone features lead to a great deal of neighborhood ambiguity near each vertex. The relatively new neural network method for mesh reconstruction has the potential to create or remesh 3D models accurately and quickly. A neural network (NN), which resembles an artificial intelligence (AI) algorithm, is a set of interconnected neurons, where each neuron is capable of making an autonomous arithmetic calculation. Moreover, each neuron is affected by its surrounding neurons through the structure of the network. This paper proposes an extension of the growing neural gas (GNN) neural network technique for remeshing a triangular manifold mesh that represents bone microstructure. This method has the advantage of reconstructing the surface of a genus-n freeform object without a priori knowledge regarding the original object, its topology, or its shape. PMID:22692609

  12. Microstructures and flow mechanisms in regional metamorphic rocks of Japan

    NASA Astrophysics Data System (ADS)

    Toriumi, Mitsuhiro; Teruya, Jun; Masui, Megumi; Kuwahara, Hidesato

    1986-09-01

    A number of microstructural features indicate a difference in the dominant deformation mechanism between the higher temperature Ryoke and the lower temperature Sambagawa and Shimanto metamorphic belts of Japan. The microstructures of metacherts containing deformed radiolaria are divided into two types: in both the Sambagawa and Shimanto belts the quartz grains are tabular while in the Ryoke belt they are equiaxed. TEM studies of these metacherts revealed that the tabular grains contain abundant subboundaries consisting of large numbers of network dislocations and bowe-out dislocations, while the equiaxed grains contain no subboundaries and have low densities of dislocations which are not bowed-out. There is a corresponding difference in the textures (lattice preferred orientation of quartz): the Ryoke metacherts display randomly distributed c-axes of quartz, while the Sambagawa and Shimanto metacherts show conspicuous crossed girdle patterns with some asymmetry. There is a third difference between these regions: in the metacherts of the Ryoke metamorphic belt, the strain magnitudes determined from deformed radiolaria increase with increasing volume fraction of mica in the same metamorphic P and T conditions, while in the Sambagawa and the Shimanto metamorphic cherts the strain magnitudes decrease with increasing the mica fraction. These microstructures, textures, and rheological behaviours of quartz-mica rocks suggest a change of deformation mechanism between the lower temperature Sambagawa and Shimanto, and the higher temperature Ryoke metamorphic belts. Since random fabrics of c-axes of quartz are inconsistent with lattice rotation due to dislocation glide, the Ryoke metacherts may have deformed by pressure-solution.

  13. Microstructure preserving cryo-sampling of friable faults

    NASA Astrophysics Data System (ADS)

    Exner, Ulrike; Tschegg, Cornelius

    2010-05-01

    Microstructures of deformation bands and faults in uncemented, friable sediments are of particular interest, as they give insight on the mechanical and chemical processes of deformation in granular material under extremely low burial conditions. However, structure preserving sampling of the microfabric is hardly possible, as common geoscientific rock sampling techniques immediately would destroy the original pore geometries and obliterate evidence of grain fracturing or flaking. We present two unconventional probing-methods to guarantee conservation of all original microstructures for further preparation of thin sections, admitting analysis using cathodoluminescence, electron microprobe and scanning electron microscope techniques. During suitable weather conditions well below freezing temperature of water, we sampled coarse, friable sands by carefully sprinkling water onto the area of interest. After some few minutes, the uppermost 2-4 cm of the sample are fixated, and can oriented be removed from their position without internal destruction. In order to protect the sample during transport to the lab, it is embedded in a plaster bandage, with the top left uncovered to permit later dehydration. This way, the dried sample can be saturated with resin, enabling proper polishing for thin section preparation. Alternatively, if climatic or weather conditions do not permit natural freezing of the samples, we used liquid nitrogen, which is available in most labs at low cost. The nitrogen can be easily held in place by an insulating cup, and causes instant freezing of a suitably sized sample. The following procedure is identical to the aforementioned method. In summary, the microstructures observed indicate that the both sampling techniques perfectly preserve the sedimentary and deformation fabrics, and can thus be recommended for gathering of samples from friable sediments.

  14. Altered clot microstructure detected in obstructive sleep apnoea hypopnoea syndrome

    PubMed Central

    D׳Silva, Lindsay; Wilczynska, Maria; Lewis, Keir; Lawrence, Matthew; Hawkins, Karl; Williams, Rhodri; Stanford, Sophia; Davidson, Simon; Morris, Keith; Evans, Adrian

    2016-01-01

    Abnormal clot microstructure plays a pivotal role in the pathophysiology of thromboembolic diseases. Assessing the viscoelastic properties of clot microstructure using novel parameters, Time to Gel Point (TGP), Fractal Dimension (df) and clot elasticity (G׳GP) could explain the increased cardiovascular and thromboembolic events in patients with Obstructive Sleep Apnoea Hypopnea Syndrome (OSAHS). We wanted to compare TGP, df, and G׳GP and their diurnal variation in OSAHS and symptomatic comparators. thirty six patients attending a sleep disturbed breathing clinic with symptoms of OSAHS were recruited. TGP, df and G׳GP were measured alongside standard coagulation screening, thrombin generation assays, and platelet aggregometry at 16:00 h and immediately after an in-patient sleep study at 07:30 h. OSAHS group had significantly lower afternoon df than comparators (1.705±0.033 vs. 1.731±0.031, p<0.05). df showed diurnal variation and only in the OSAHS group, being significantly lower in the afternoon than morning (p<0.05). Diurnal changes in df correlated with 4% DR, even after controlling for BMI (r=0.37, p=0.02). The lower df in the afternoon in OSAHS suggests a partial compensatory change that may make up for other pro-clotting abnormalities/hypertension during the night. The change to the thrombotic tendency in the afternoon is biggest in severe OSAHS. df Shows promise as a new microstructural indicator for abnormal haemostasis in OSAHS. PMID:27226818

  15. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography

    NASA Technical Reports Server (NTRS)

    Revzin, A.; Russell, R. J.; Yadavalli, V. K.; Koh, W. G.; Deister, C.; Hile, D. D.; Mellott, M. B.; Pishko, M. V.

    2001-01-01

    The fabrication of hydrogel microstructures based upon poly(ethylene glycol) diacrylates, dimethacrylates, and tetraacrylates patterned photolithographically on silicon or glass substrates is described. A silicon/silicon dioxide surface was treated with 3-(trichlorosilyl)propyl methacrylate to form a self-assembled monolayer (SAM) with pendant acrylate groups. The SAM presence on the surface was verified using ellipsometry and time-of-flight secondary ion mass spectrometry. A solution containing an acrylated or methacrylated poly(ethylene glycol) derivative and a photoinitiator (2,2-dimethoxy-2-phenylacetophenone) was spin-coated onto the treated substrate, exposed to 365 nm ultraviolet light through a photomask, and developed with either toluene, water, or supercritical CO2. As a result of this process, three-dimensional, cross-linked PEG hydrogel microstructures were immobilized on the surface. Diameters of cylindrical array members were varied from 600 to 7 micrometers by the use of different photomasks, while height varied from 3 to 12 micrometers, depending on the molecular weight of the PEG macromer. In the case of 7 micrometers diameter elements, as many as 400 elements were reproducibly generated in a 1 mm2 square pattern. The resultant hydrogel patterns were hydrated for as long as 3 weeks without delamination from the substrate. In addition, micropatterning of different molecular weights of PEG was demonstrated. Arrays of hydrogel disks containing an immobilized protein conjugated to a pH sensitive fluorophore were also prepared. The pH sensitivity of the gel-immobilized dye was similar to that in an aqueous buffer, and no leaching of the dye-labeled protein from the hydrogel microstructure was observed over a 1 week period. Changes in fluorescence were also observed for immobilized fluorophore labeled acetylcholine esterase upon the addition of acetyl acholine.

  16. Microstructural characterization of rapidly solidified Al-Li-Co powders

    NASA Astrophysics Data System (ADS)

    Samuel, Fawzy H.

    1986-01-01

    A study of the combined effect of alloying elements and melt superheat has been carried out on the as-solidified structure of rapidly solidified Al-Li-Co powders. Three alloys, viz., Al-3 pct Li, Al-3 pct Li-0.4 pct Co, and Al-3 pct Li-0.8 pct Co were chosen, and the liquid melt in each alloy atomized from the temperatures 1173 and 1073 K, using the centrifugal atomization technique. The microstructural characterization was done using light, scanning, and transmission electron microscopy. Four types of microstructures, viz., dendritic, cellular, equiaxed-type, and featureless structures, were observed by light microscopy. The cooling rate, as determined from the same, lay in the range 104 to 106 Ks-1, but was seen to go beyond 107 Ks-1 when estimated from TEM micrographs. On the micro-level, the Al-Li powders were found to exhibit dendritic structures with differing morphologies, whereas low-angle cell walls with perturbed interfaces were the main structural features observed in the Al-Li-Co alloys. Increasing both cobalt content and powder particle diameter favored transition from dendritic into cellular structure. The featureless zone was comprised mainly of elongated columnar grains (0.2 μm width and 1.5 μm length). A mechanism describing the cellular structure formation has been proposed. Aging of the melt-quenched powders at 473 K for times up to 100 hours results in the dissolution of the cellular structure. A mechanism for the same has been postulated. The difference in the superheats chosen in the present work is found not sufficient to cause drastic microstructural changes.

  17. Microstructure and texture analyses of polycrystalline ice during hot torsion

    NASA Astrophysics Data System (ADS)

    Journaux, B.; Montagnat, M.; Gest, L.; Barou, F.; Chauve, T.

    2015-12-01

    Water ice Ih is a material with very high plastic anisotropy where deformation is mainly accommodated by dislocation glide on the (0001) plane. This anisotropy gives rise to strong strain incompatibilities between grains during deformation, and therefore impacts texture and microstructure evolution. Accurate understanding of ice mechanical properties is significant for several areas of research such as glaciology, planetary sciences, but also in geosciences and metallurgy as ice can be seen as a model material with easier experimental handling at near melting temperatures. In the present study, we used torsion experiments to study non-coaxial shear strain (γ), very common in natural environments, up to very high values of γ. Numerous studies determined microstructure and texture evolution in polycrystalline assemblage submitted to torsion (metallic alloys and geological materials) but a very limited number focused on polycrystalline ice. Full cylinders of randomly oriented polycrystalline ice (grain size ~ 1 mm) were placed in a torsion apparatus and deformed under ductile regime under constant imposed torque at 266K (0.97 Tf). Macroscopic shear was monitored using a LVDT device or a rotary encoder. Several torsion tests with maximal shear strain up to γmax = 1 were performed. Tangent and axial sections were analyzed ex-situ using Automatic Ice Texture Analyzer (AITA) and Electron BackScatter Diffraction (EBSD). We were able to confirm the previously observed bimodal preferred orientation of the basal slip plane. Macroscopic strain evolution γ(t) displays a weakening after γmax = 0.04 (ɛmax ≃ 2 %), due to the beginning of dynamic recrystallization (DRX) processes. EBSD data provide novel informations on the microstructure that suggest very efficient grain boundary migration processes. In particular, we were able to measure differences of intra-granular misorientations density between the two ODF maxima populations that can highlight the role of DRX

  18. Microstructural analysis of aluminum high pressure die castings

    NASA Astrophysics Data System (ADS)

    David, Maria Diana

    Microstructural analysis of aluminum high pressure die castings (HPDC) is challenging and time consuming. Automating the stereology method is an efficient way in obtaining quantitative data; however, validating the accuracy of this technique can also pose some challenges. In this research, a semi-automated algorithm to quantify microstructural features in aluminum HPDC was developed. Analysis was done near the casting surface where it exhibited fine microstructure. Optical and Secondary electron (SE) and backscatter electron (BSE) SEM images were taken to characterize the features in the casting. Image processing steps applied on SEM and optical micrographs included median and range filters, dilation, erosion, and a hole-closing function. Measurements were done on different image pixel resolutions that ranged from 3 to 35 pixel/μm. Pixel resolutions below 6 px/μm were too low for the algorithm to distinguish the phases from each other. At resolutions higher than 6 px/μm, the volume fraction of primary α-Al and the line intercept count curves plateaued. Within this range, comparable results were obtained validating the assumption that there is a range of image pixel resolution relative to the size of the casting features at which stereology measurements become independent of the image resolution. Volume fraction within this curve plateau was consistent with the manual measurements while the line intercept count was significantly higher using the computerized technique for all resolutions. This was attributed to the ragged edges of some primary α-Al; hence, the algorithm still needs some improvements. Further validation of the code using other castings or alloys with known phase amount and size may also be beneficial.

  19. Coated U(Mo) Fuel: As-Fabricated Microstructures

    SciTech Connect

    Emmanuel Perez; Dennis D. Keiser, Jr.; Ann Leenaers; Sven Van den Berghe; Tom Wiencek

    2014-04-01

    As part of the development of low-enriched uranium fuels, fuel plates have recently been tested in the BR-2 reactor as part of the SELENIUM experiment. These fuel plates contained fuel particles with either Si or ZrN thin film coating (up to 1 µm thickness) around the U-7Mo fuel particles. In order to best understand irradiation performance, it is important to determine the starting microstructure that can be observed in as-fabricated fuel plates. To this end, detailed microstructural characterization was performed on ZrN and Si-coated U-7Mo powder in samples taken from AA6061-clad fuel plates fabricated at 500°C. Of interest was the condition of the thin film coatings after fabrication at a relatively high temperature. Both scanning electron microscopy and transmission electron microscopy were employed. The ZrN thin film coating was observed to consist of columns comprised of very fine ZrN grains. Relatively large amounts of porosity could be found in some areas of the thin film, along with an enrichment of oxygen around each of the the ZrN columns. In the case of the pure Si thin film coating sample, a (U,Mo,Al,Si) interaction layer was observed around the U-7Mo particles. Apparently, the Si reacted with the U-7Mo and Al matrix during fuel plate fabrication at 500°C to form this layer. The microstructure of the formed layer is very similar to those that form in U-7Mo versus Al-Si alloy diffusion couples annealed at higher temperatures and as-fabricated U-7Mo dispersion fuel plates with Al-Si alloy matrix fabricated at 500°C.

  20. Identifying Early Changes in Myocardial Microstructure in Hypertensive Heart Disease

    PubMed Central

    Hiremath, Pranoti; Bauer, Michael; Aguirre, Aaron D.; Cheng, Hui-Wen; Unno, Kazumasa; Patel, Ravi B.; Harvey, Bethany W.; Chang, Wei-Ting; Groarke, John D.; Liao, Ronglih; Cheng, Susan

    2014-01-01

    The transition from healthy myocardium to hypertensive heart disease is characterized by a series of poorly understood changes in myocardial tissue microstructure. Incremental alterations in the orientation and integrity of myocardial fibers can be assessed using advanced ultrasonic image analysis. We used a modified algorithm to investigate left ventricular myocardial microstructure based on analysis of the reflection intensity at the myocardial-pericardial interface on B-mode echocardiographic images. We evaluated the extent to which the novel algorithm can differentiate between normal myocardium and hypertensive heart disease in humans as well as in a mouse model of afterload resistance. The algorithm significantly differentiated between individuals with uncomplicated essential hypertension (N = 30) and healthy controls (N = 28), even after adjusting for age and sex (P = 0.025). There was a trend in higher relative wall thickness in hypertensive individuals compared to controls (P = 0.08), but no difference between groups in left ventricular mass (P = 0.98) or total wall thickness (P = 0.37). In mice, algorithm measurements (P = 0.026) compared with left ventricular mass (P = 0.053) more clearly differentiated between animal groups that underwent fixed aortic banding, temporary aortic banding, or sham procedure, on echocardiography at 7 weeks after surgery. Based on sonographic signal intensity analysis, a novel imaging algorithm provides an accessible, non-invasive measure that appears to differentiate normal left ventricular microstructure from myocardium exposed to chronic afterload stress. The algorithm may represent a particularly sensitive measure of the myocardial changes that occur early in the course of disease progression. PMID:24831515

  1. Microstructural evolution during the thermomechanical fatigue of solder joints

    SciTech Connect

    Frear, D R

    1991-01-01

    Solder joints in electronic packages are electrical interconnections that also function as mechanical bonds. The solder often constrains materials of different coefficients of thermal expansion that, when thermal fluctuations are encountered, causes the solder joint to experience cyclical deformation. Due to the catastrophic consequences of electrical or mechanical failure of solder joints, a great deal of work has been performed to develop a better understanding of the metallurgical response of solder joints subjected to thermomechanical fatigue. This work reviews the microstructural and mechanical evolution that occurs in solder joints during thermomechanical fatigue. The eutectic Sn-Pb solder alloy is highlighted. Unlike most materials that experience thermomechanical fatigue, solder is commonly used at temperatures of up to nine-tenths of its melting point. Therefore extensive creep, solid state diffusion, recrystallization and grain growth occur in this alloy resulting in the evolution of a heterogeneous coarsened band through which failure eventually takes place. Two other solder alloys are compared with the Sn-Pb eutectic, a Pb-rich Sn-Pb alloy and a ternary near eutectic (40In-40Sn-20Pb, all alloys are given in wt. %). The Pb-rich alloy is a precipitated single phase matrix that does not evolve during thermomechanical fatigue and subsequently has a shorter lifetime. Conversely, the 40In-40Sn-20Pb solder is a two phase eutectic in which the microstructures refines during thermomechanical fatigue giving it a longer lifetime than the eutectic Sn-Pb solder. The microstructural processes that occur during thermomechanical fatigue and final fracture behavior are discussed for the three solder alloys. 47 refs., 14 figs.

  2. Experimental Diagenesis and 3D Printing of Evolving Carbonate Microstructures

    NASA Astrophysics Data System (ADS)

    Vanorio, T.

    2014-12-01

    Understanding how rock microstructures and, in turn, the spatial distribution of the properties of the rock skeleton (porosity, permeability, and elastic properties) evolve because of time-variant, thermo-chemo-mechanical processes is fundamental to decipher changes in the earth's crust due to rock-fluid interactions using remote geophysical monitoring methods. Laboratory experiments undoubtedly play a vital role in understanding the underlying basic rules that are needed to inform both simulations and modeling. Nevertheless, capturing coupled chemo-mechanical processes experimentally is a very challenging problem because as pore space deforms chemo-mechanically, the fluid reacts and flows through a deforming pore space. The result is that as much as we strive to achieve controlled conditions in laboratory experiments, it is extremely difficult to control for all of the possible responses of the highly heterogeneous pore network. To overcome such a limitation, we often resort to the fabrication of rock samples in the laboratory. Nevertheless, analogs are not rocks. This level of complexity requires an approach that advances beyond the limitations of each method, be it experimental or computational. I present an approach that takes advantage of the favorable aspects of experimental diagenesis, multi-scale imaging techniques (from pore scale to 3D rock volumes) and 3D printed models of varying carbonate microstructures. This approach allows us to study the evolution of natural pore network geometries from diagenesis experiments, use the basic rules of the evolving microstructures to drive the digital change of the pore network of the printed models in a well-controlled fashion as much possible in the analog experiments, and then iteratively measure the properties of the printed models at the scale of the laboratory. This integration can help make sense of the trackless evolution of properties in apparently scattered datasets such as those characterizing carbonate

  3. Microstructural Origins of Dynamic Fracture in Ductile Metals

    SciTech Connect

    Becker, R; Belak, J; Campbell, G

    2002-12-16

    From the formation of microscopic cracks in the fuel pipe liner of the space shuttle to the safety of roadway bridges, the fracture of materials has enormous implications throughout our society. The ability to assess and design safe engineering structures requires a detailed knowledge of this failure process. The fracture process depends on both the loading history and the detailed microscopic structure (microstructure) of the material. Weak points, such as inclusions and grain boundary junctions, are the locations from which microscopic fractures (voids and cracks) originate. Once nucleated, these fractures quickly link together to form a macroscopic crack. Despite this qualitative understanding, little is known about voids nucleation, plastic deformation in the surrounding material, and the mechanisms of linking. Central to Stockpile Stewardship is an understanding of shock loading of materials. During the passage of a shock wave, the material is compressed at a very high rate. This compression produces a high density of dislocation defects and other changes to the microstructure that are poorly understood. When the shock wave reflects from a free surface, the compression is rapidly released and extreme tension is produced inside the material. If this tension exceeds the internal rupture strength, microscopic fractures form and link up to create a spallation scab--a thin scab that separates from the bulk of the material. In this project, we use the LLNL gas gun facility to produce a planar stress pulse with controlled duration and amplitude. The sample is carefully captured in soft foam while measuring the free surface velocity profile. The amount of change in the surface velocity during release is related to the spallation strength. We study light metals (Al, V, Ti, Cu) with known initial microstructure: single crystal, polycrystalline, and single crystal with engineered inclusions. Light metals enable direct measurement of the three dimensional distribution of

  4. Localized microstructures induced by fluid flow in directional solidification.

    PubMed

    Jamgotchian, H; Bergeon, N; Benielli, D; Voge, P; Billia, B; Guérin, R

    2001-10-15

    The dynamical process of microstructure localization by multiscale interaction between instabilities is uncovered in directional solidification of transparent alloy. As predicted by Chen and Davis, morphological instability of the interface is observed at inward flow-stagnation regions of the cellular convective field. Depending on the driving force of fluid flow, focus-type and honeycomb-type localized patterns form in the initial transient of solidification, that then evolves with time. In the case of solute-driven flow, the analysis of the onset of thermosolutal convection in initial transient of solidification enables a complete understanding of the dynamics and of the localization of morphological instability.

  5. Microstructures of Rare Silicate Stardust from Nova and Supernovae

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S

    2011-01-01

    Most silicate stardust analyzed in the laboratory and observed around stellar environments derives from O-rich red giant and AGB stars [1,2]. Supernova (SN) silicates and oxides are comparatively rare, and fewer than 10 grains from no-va or binary star systems have been identified to date. Very little is known about dust formation in these stellar environments. Mineralogical studies of only three O-rich SN [3-5] and no nova grains have been performed. Here we report the microstructure and chemical makeup of two SN silicates and one nova grain.

  6. Direct handling of sharp interfacial energy for microstructural evolution

    SciTech Connect

    Hernández–Rivera, Efraín; Tikare, Veena; Noirot, Laurence; Wang, Lumin

    2014-08-24

    In this study, we introduce a simplification to the previously demonstrated hybrid Potts–phase field (hPPF), which relates interfacial energies to microstructural sharp interfaces. The model defines interfacial energy by a Potts-like discrete interface approach of counting unlike neighbors, which we use to compute local curvature. The model is compared to the hPPF by studying interfacial characteristics and grain growth behavior. The models give virtually identical results, while the new model allows the simulator more direct control of interfacial energy.

  7. Microstructures and critical currents in high-{Tc} superconductors

    SciTech Connect

    Suenaga, Masaki

    1998-11-01

    Microstructural defects are the primary determining factors for the values of critical-current densities in a high {Tc} superconductor after the electronic anisotropy along the a-b plane and the c-direction. A review is made to assess firstly what would be the maximum achievable critical-current density in YBa{sub 2}Cu{sub 3}O{sub 7} if nearly ideal pinning sites were introduced and secondly what types of pinning defects are currently introduced or exist in YBa{sub 2}Cu{sub 3}O{sub 7} and how effective are these in pinning vortices.

  8. The spiral staircase: Tonotopic microstructure and cochlear tuning

    NASA Astrophysics Data System (ADS)

    Shera, Christopher A.

    2015-12-01

    Cochlear frequency-position maps are predicted to manifest a staircase-like structure comprising plateaus of nearly constant characteristic frequency separated by abrupt discontinuities. The height and width of the stair steps are determined by parameters of cochlear frequency tuning and vary with location in the cochlea. The step height is approximately equal to the critical band, and the step width matches that of the spatial excitation pattern produced by a low-level pure tone. Stepwise tonotopy is an emergent property arising from wave reflection and interference within the cochlea. Possible relationships between the microstructure of the cochlear map and the tiered tonotopy observed in the inferior colliculus are explored.

  9. Small, but perfectly formed: The microstructure of nanocrystalline oxides

    NASA Astrophysics Data System (ADS)

    Chadwick, A. V.

    2003-01-01

    There is considerable interest in nanocrystalline materials due to their unusual properties that offer the possibility of exciting technological applications. This paper concentrates on the microstructure of nanocrystalline binary oxides as revealed by X-ray absorption studies. It will be shown that these experiments yield a picture of the materials in which, even when the particles are only a few nanometres in size, the crystallites are highly ordered and the interfaces are similar to grain boundaries in normal bulk solids. This is in conflict with earlier ideas where it was often assumed the surfaces of nanocrystals and the interfaces between them were very disordered.

  10. Stroboscopic white-light interferometry of vibrating microstructures.

    PubMed

    Shavrin, Igor; Lipiäinen, Lauri; Kokkonen, Kimmo; Novotny, Steffen; Kaivola, Matti; Ludvigsen, Hanne

    2013-07-15

    We describe a LED-based stroboscopic white-light interferometer and a data analysis method that allow mapping out-of-plane surface vibration fields in electrically excited microstructures with sub-nm amplitude resolution for vibration frequencies ranging up to tens of MHz. The data analysis, which is performed entirely in the frequency domain, makes use of the high resolution available in the measured interferometric phase data. For demonstration, we image the surface vibration fields in a square-plate silicon MEMS resonator for three vibration modes ranging in frequency between 3 and 14 MHz. The minimum detectable vibration amplitude in this case was less than 100 pm.

  11. Solidification Conditions and Microstructure in Continuously Cast Aluminum

    NASA Astrophysics Data System (ADS)

    Buxmann, K.; Gold, E.

    1982-04-01

    The well-known relationship between cell size or dendrite spacing and local solidification time gives the possibility of calculating the thermal parameters of solidification from the microstructure of the as-cast product. As a basis for such calculations, the dendrite spacing of different aluminum castings (DC cast ingots of different diameters, cast in conventional and electromagnetic molds; cast strip from roll casters, belt casters, and block casters; and Properzi cast rod) has been measured through their cross sections. Based on these measurements, a qualitative discussion of the thermal conditions during the solidification of these products is given, and the influence of a variation in the casting conditions discussed.

  12. Plutonium microstructures. Part 2. Binary and ternary alloys

    SciTech Connect

    Cramer, E.M.; Bergin, J.B.

    1983-12-01

    This report is the second of three parts that exhibit illustrations of inclusions in plutonium metal from inherent and tramp impurities, of intermetallic and nonmetallic constituents from alloy additions, and of the effects of thermal and mechanical treatments. This part includes illustrations of the microstructures in binary cast alloys and a few selected ternary alloys that result from measured additions of diluent elements, and of the microconstituents that are characteristic of phase fields in extended alloy systems. Microhardness data are given and the etchant used in the preparation of each sample is described.

  13. Resonant Transport in Nb/gaas/algaas/gaas Microstructures

    NASA Astrophysics Data System (ADS)

    Giazotto, F.; Pingue, P.; Beltram, F.; Lazzarino, M.; Orani, D.; Rubini, S.; Franciosi, A.

    2003-03-01

    Resonant transport in a hybrid semiconductor-superconductor microstructure grown by MBE on GaAs in presented. This structure experimentally realizes the prototype system originally proposed by de Gennes and Saint-James in 1963 in all-metal structures. A low temperature single peak superimposed to the characteristic Andreev-dominated subgap conductance represents the mark of such resonant behavior. Random matrix theory of quantum transport was employed in order to analyze the observed magnetotransport properties and ballistic effects were included by directly solving the Bogoliubov-de Gennes equations.

  14. Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.

    1999-01-01

    This work examines the diffusional growth of discrete phase particles dispersed within a matrix. Engineering materials are microstructurally heterogeneous, and the details of the microstructure determine how well that material performs in a given application. Critical to the development of designing multiphase microstructures with long-term stability is the process of Ostwald ripening. Ripening, or phase coarsening, is a diffusion-limited process which arises in polydisperse multiphase materials. Growth and dissolution occur because fluxes of solute, driven by chemical potential gradients at the interfaces of the dispersed phase material, depend on particle size. The kinetics of these processes are "competitive," dictating that larger particles grow at the expense of smaller ones, overall leading to an increase of the average particle size. The classical treatment of phase coarsening was done by Todes, Lifshitz, and Slyozov, (TLS) in the limit of zero volume fraction, V(sub v), of the dispersed phase. Since the publication of TLS theory there have been numerous investigations, many of which sought to describe the kinetic scaling behavior over a 0 range of volume fractions. Some studies in the literature report that the relative increase in coarsening rate at low (but not zero) volume fractions compared to that predicted by TLS is proportional to v(sub v)(exp 1/2), whereas others suggcest V(sub v)(exp 1/3). This issue has been resolved recently by simulation studies at low volume fractions in three dimensions by members of the Rensselaer/MSFC team. Our studies of ripening behavior using large-scale numerical simulations suggest that although there are different circumstances which can lead to either scaling law, the most important length scale at low volume fractions is the diffusional analog of the Debye screening length. The numerical simulations we employed exploit the use of a recently developed "snapshot" technique, and identifies the nature of the coarsening

  15. Mode field expansion in index-guiding microstructured optical fibers

    NASA Astrophysics Data System (ADS)

    Sharma, Dinesh Kumar; Sharma, Anurag

    2013-05-01

    The mode-field expander (MFE) is a microstructured optical fiber (MOF) based device that enlarges the modal field distribution and can couple light from large mode area (LMA) fibers into small core fibers or vice-versa and other optical waveguides. Using our earlier developed analytical field model, we studied the mode-field expansion in MOFs having triangular lattice, and low-loss splicing of MOFs to standard single-mode fibers (SMFs), based on the controlled all airhole collapse method, which leads to an optimum mode-field match at the joint interface of the MOF-SMF. Comparisons with available experimental and simulation results have also been included.

  16. A Krill's Eye View: Sea Ice Microstructure and Microchemistry

    NASA Astrophysics Data System (ADS)

    Obbard, R. W.; Lieb-Lappen, R.

    2015-12-01

    Sea ice plays important roles in the marine ecosystem and our environment, and a detailed understanding of all aspects of its microstructure is especially important in this time of changing climate. For many months of the year, the ice forms a permeable barrier between Polar oceans and the atmosphere, and as it freezes and melts, its microstructure evolves and changes in ways that affect other parts of that system. Sea ice also provides a microhabitat that is an important part of the marine ecosystem, but much remains to be learned about it on this scale. In material terms, sea ice is multiphase and very close to its melting point, and these properties make its microstructure particularly complex and dynamic, as well as challenging and interesting to study. We use a combination of analytical methods to achieve a very detailed understanding of sea ice microstructure - specifically the morphology and distribution of ice crystals and brine channels. Overall porosity affects freeboard, emissivity, and optical and mechanical properties, but pore connectivity is critical to gas and fluid transport, salt flux to polar oceans, the transfer of halogens to the boundary layer troposphere, and the transport of nutrients and pollutants to microorganisms. When sea ice forms, salts are expelled from newly formed ice crystals and concentrated on grain boundaries and in brine pockets and channels. We use synchrotron-based X-ray fluorescence spectroscopy (SXRF) and scanning electron microscope-based energy dispersive spectroscopy (EDS) to map the location in two dimensions of several important salt components in sea ice: SXRF for bromine, chlorine, potassium, calcium and iron, EDS for these as well as some lighter elements such as sodium, magnesium, and silicon. We use X-ray microcomputed tomography (microCT) to produce three-dimensional models of brine channels and to study changes in brine network topology due to warming and cooling. Both microCT and optical thin sections provide

  17. Composition, microstructure, and surface barrier layer development during brine salting.

    PubMed

    Melilli, C; Carcò, D; Barbano, D M; Tumino, G; Carpino, S; Licitra, G

    2005-07-01

    The goal of this study was to characterize the changes in chemical composition, porosity, and structure that occur at the surface of a block of brine-salted cheese and their relationship to the rate at which salt is taken up from the brine. To create a difference in composition, salt uptake, and barrier layer properties, identical blocks of Ragusano cheese were placed in saturated and 18% salt brine at 18 degrees C for 12 d. The overall moisture content and porosity decreased, whereas salt and salt in moisture content increased near the surface of blocks of brine-salted Ragusano cheese for all treatments. The general appearance of the microstructure of the surface of the blocks of brine-salted cheese was much more compact than the microstructure 1 mm inside the block at both brine concentrations. Large differences in porosity of the barrier layer were produced by brine-salting cheese in 18% vs. saturated brine, with cheese in saturated brine having much lower porosity at the surface and taking up much less salt during brining. The macro network of water channels within the microstructure of the cheese was less open near the surface of the block for cheese in both saturated and 18% brine after 4 d. However, no large differences in the size of the macro channels in the cheese structure due to the difference in brine concentration were observed by scanning electron microscopy. It is possible that the shrinkage of the much smaller pore structure within the casein matrix of the cheese is more important and will become more limiting to the rate of salt diffusion. Further microstructure work at higher resolution is needed to answer this question. The calculated decrease in porosity at the exterior 1-mm portion of the block was 50.8 and 29.2% for cheeses that had been in saturated vs. 18% brine for 12 d, respectively. The difference in brine concentration had a very large impact on the salt in moisture content of the cheese. The exterior of the cheese in 18% brine reached

  18. Microstructure imaging of human rectal mucosa using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liu, N. R.; Chen, G.; Chen, J. X.; Yan, J.; Zhuo, S. M.; Zheng, L. Q.; Jiang, X. S.

    2011-01-01

    Multiphoton microscopy (MPM) has high resolution and sensitivity. In this study, MPM was used to image microstructure of human rectal mucosa. The morphology and distribution of the main components in mucosa layer, absorptive cells and goblet cells in the epithelium, abundant intestinal glands in the lamina propria and smooth muscle fibers in the muscularis mucosa were clearly monitored. The variations of these components were tightly relevant to the pathology in gastrointestine system, especially early rectal cancer. The obtained images will be helpful for the diagnosis of early colorectal cancer.

  19. Clouds of venus: a preliminary assessment of microstructure.

    PubMed

    Knollenberg, R G; Hunten, D M

    1979-07-01

    The multimodal microstructure of the Venus cloud system has been examined. In addition to confirmed H(2)SO(4) droplets and suspected elemental sulfur, a highly concentrated aerosol population has been observed extending above, within, and below the cloud system. These aerosols appear to cycle through the cloud droplets, but can never be removed by the weak precipitation mechanisms present. All cloud particles are likely laced with aerosol contaminants. Sedimentation and decomposition of H(2)SO(4) in the droplets of the lower cloud region contribute more than 7 watts per square meter of heat flux equaling one-fourth of the solar net flux at 50 kilometers.

  20. Microstructural Considerations of Transporting Sea Ice Samples from Polar Regions

    NASA Astrophysics Data System (ADS)

    Lieb-Lappen, R.; Obbard, R. W.

    2012-12-01

    High latitude regions are at the forefront of climate change research as these regions have and will experience the greatest impact due to changing environmental conditions (e.g. Antarctic and recent Arctic stratospheric ozone holes, large temperature increases on the Antarctic Peninsula, changes in the extent and age of Arctic sea ice). One of the major challenges of polar scientific research is the preservation of frozen sea ice samples during their transport back to the laboratory and subsequent storage. Small fluctuations in temperature have been shown to have a significant effect on the microstructure of snow and ice samples. This is especially true for sea ice specimens where transport and storage temperatures are often only slightly below the eutectic point for its different constituents (i.e. salts). Furthermore, sea ice can have a 30 deg C in situ vertical temperature gradient that is lost during transport and storage. Sea ice plays a critical role in mediating the exchange of heat, gases, and chemical species across the ocean-atmosphere interface. The kinetics of these exchanges is highly dependent upon the brine channel microstructure, which is strongly coupled to temperature. To determine the degree of microstructural variation between samples shipped at different temperatures, ten samples of a single sea ice core collected in March 2012 were transported from Barrow, Alaska to Hanover, NH using two common techniques: with blue ice packs enclosed in a Styrofoam box (~ -25 deg C) and in a dry liquid nitrogen cryoshipper (~ -182 deg C). In addition, snow lying on the sea ice and blowing snow samples were collected and shipped via both techniques. All samples were then stored for analysis in a cold room maintained at ~ -33 deg C. The microstructure of both sets of samples was analyzed using x-ray micro-computed tomography (μ-CT), with samples on a Peltier cold stage to maintain a scanning temperature of -20 deg C. We compare sea ice porosity and brine

  1. Superalloy microstructural variations induced by gravity level during directional solidification

    SciTech Connect

    Johnston, M.H.; Curreri, P.A.; Parr, R.A.; Alter, W.S.

    1985-09-01

    The Ni-base superalloy MAR-M246 (Hf) was directionally solidified during low gravity maneuvers aboard a NASA KC-135 aircraft. Gravity force variations during this process yielded a concomitant variation in microstructure and microsegregation. Secondary dendrite arm spacings are noted to be larger in the low-g portion; this, in turn, decreases the extent of interdendritic segregation. The amount of Hf in both the carbides and interdendritic eutectic increases as the gravity force diminishes. Fewer carbides are present in the low-g regions. 6 references.

  2. Microstructured shape memory polymer surfaces with reversible dry adhesion.

    PubMed

    Eisenhaure, Jeffrey D; Xie, Tao; Varghese, Stephen; Kim, Seok

    2013-08-28

    We present a shape memory polymer (SMP) surface with repeatable, very strong (>18 atm), and extremely reversible (strong to weak adhesion ratio of >1 × 10(4)) dry adhesion to a glass substrate. This was achieved by exploiting bulk material properties of SMP and surface microstructuring. Its exceptional dry adhesive performance is attributed to the SMP's rigidity change in response to temperature and its capabilities of temporary shape locking and permanent shape recovery, which when combined with a microtip surface design enables time-independent control of contact area.

  3. Advanced imaging of the macrostructure and microstructure of bone

    NASA Technical Reports Server (NTRS)

    Genant, H. K.; Gordon, C.; Jiang, Y.; Link, T. M.; Hans, D.; Majumdar, S.; Lang, T. F.

    2000-01-01

    Noninvasive and/or nondestructive techniques are capable of providing more macro- or microstructural information about bone than standard bone densitometry. Although the latter provides important information about osteoporotic fracture risk, numerous studies indicate that bone strength is only partially explained by bone mineral density. Quantitative assessment of macro- and microstructural features may improve our ability to estimate bone strength. The methods available for quantitatively assessing macrostructure include (besides conventional radiographs) quantitative computed tomography (QCT) and volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), micro-computed tomography (muCT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (muMR). vQCT, hrCT and hrMR are generally applicable in vivo; muCT and muMR are principally applicable in vitro. Although considerable progress has been made in the noninvasive and/or nondestructive imaging of the macro- and microstructure of bone, considerable challenges and dilemmas remain. From a technical perspective, the balance between spatial resolution versus sampling size, or between signal-to-noise versus radiation dose or acquisition time, needs further consideration, as do the trade-offs between the complexity and expense of equipment and the availability and accessibility of the methods. The relative merits of in vitro imaging and its ultrahigh resolution but invasiveness versus those of in vivo imaging and its modest resolution but noninvasiveness also deserve careful attention. From a clinical perspective, the challenges for bone imaging include balancing the relative advantages of simple bone densitometry against the more complex architectural features of bone or, similarly, the deeper research requirements against the broader clinical needs. The

  4. Follicle Microstructure and Innervation Vary between Pinniped Micro- and Macrovibrissae.

    PubMed

    Mattson, Erin E; Marshall, Christopher D

    2016-01-01

    Histological data from terrestrial, semiaquatic, and fully aquatic mammal vibrissa (whisker) studies indicate that follicle microstructure and innervation vary across the mystacial vibrissal array (i.e. medial microvibrissae to lateral macrovibrissae). However, comparative data are lacking, and current histological studies on pinniped vibrissae only focus on the largest ventrolateral vibrissae. Consequently, we investigated the microstructure, medial-to-lateral innervation, and morphometric trends in harp seal (Pagophilus groenlandicus) vibrissal follicle-sinus complexes (F-SCs). The F-SCs were sectioned either longitudinally or in cross-section and stained with a modified Masson's trichrome stain (microstructure) or Bodian's silver stain (innervation). All F-SCs exhibited a tripartite blood organization system. The dermal capsule thickness, the distribution of major branches of the deep vibrissal nerve, and the hair shaft design were more symmetrical in medial F-SCs, but these features became more asymmetrical as the F-SCs became more lateral. Overall, the mean axon count was 1,221 ± 422.3 axons/F-SC and mean axon counts by column ranged from 550 ± 97.4 axons/F-SC (medially, column 11) to 1,632 ± 173.2 axons/F-SC (laterally, column 2). These values indicate a total of 117,216 axons innervating the entire mystacial vibrissal array. The mean axon count of lateral F-SCs was 1,533 ± 192.9 axons/ F-SC, which is similar to values reported in the literature for other pinniped F-SCs. Our data suggest that conventional studies that only examine the largest ventrolateral vibrissae may overestimate the total innervation by ∼20%. However, our study also accounts for variation in quantification methods and shows that conventional analyses likely only overestimate innervation by ∼10%. The relationship between axon count and cross-sectional F-SC surface area was nonlinear, and axon densities were consistent across the snout. Our data indicate that harp seals exhibit

  5. Fibre optic pressure sensor using a microstructured POF

    NASA Astrophysics Data System (ADS)

    Arrizabalaga, Oskar; Durana, Gaizka; Aldabaldetreku, Gotzon; Zubia, Joseba

    2015-05-01

    Based on the attractive elasto-optic properties of single-mode microstructured polymer optical fibres (SM mPOFs) reported elsewhere,10 mode polarisation may be used as sensing probe for several parameters of interest like mechanical pressure. We report on a simplified detection scheme that does not require measuring the actual polarisation state of the light emerging from the mPOF. A polariser and a photodetector in a proper configuration are only required. The detected light intensity shows a high linearity with applied force to the mPOF.

  6. Study on photocatalytic performance of nano- and microstructured materials

    NASA Astrophysics Data System (ADS)

    Dinh, Thang C.; Hoang, Yen; Bui, Linh H.; Le, Lan K.; Dang, Phuong T.; Do, Hung M.; Tran, Vinh Q.; Vu, Tuan A.

    2006-12-01

    Novel nano TS-1, Ti-MCM-41 and Ti-SBA-15 analogues were successfully synthesized by hydrothermal treatment using TS-1 nano-seeds as precursors. The samples were characterized by IR, XRD, FESEM, TEM and BET. The characterization results revealed that the synthesized TS-1 had microstructure with crystal size of 50 - 60 nm, Ti-MCM- 41 and Ti-SBA-15 analogues had mesostructure with high ordering. The samples were tested in photocatalytic oxidation of Red Phenol and in photocatalytic reduction of Cr(VI) to Cr(III). The samples exhibited high activities in both reactions. Photocatalytic performances of all samples were compared and discussed.

  7. Direct characterization of hydrodynamic loading on a microelectromechanical systems microstructure

    NASA Astrophysics Data System (ADS)

    Mehrnezhad, Ali; Bashir, Rashid; Park, Kidong

    2016-03-01

    Hydrodynamic loading greatly affects resonant characteristic of microfabricated structures immersed in a viscous fluid. In this letter, we demonstrate a technique to measure hydrodynamic loading on a MEMS resonator in a broad range of actuation frequency. The extracted hydrodynamic loading is in a good agreement with an analytical solution of an oscillating sphere, and a highly accurate model is developed for the hydrodynamic loading of the resonator. The developed technique can directly characterize the hydrodynamic loading of a microstructure with an arbitrary geometry and will facilitate the optimization of MEMS devices and AFM probes operating in a viscous fluid.

  8. Microstructures of laser deposited 304L austenitic stainless steel

    SciTech Connect

    BROOKS,JOHN A.; HEADLEY,THOMAS J.; ROBINO,CHARLES V.

    2000-05-22

    Laser deposits fabricated from two different compositions of 304L stainless steel powder were characterized to determine the nature of the solidification and solid state transformations. One of the goals of this work was to determine to what extent novel microstructure consisting of single-phase austenite could be achieved with the thermal conditions of the LENS [Laser Engineered Net Shape] process. Although ferrite-free deposits were not obtained, structures with very low ferrite content were achieved. It appeared that, with slight changes in alloy composition, this goal could be met via two different solidification and transformation mechanisms.

  9. Printing microstructures in a polymer matrix using a ferrofluid droplet

    NASA Astrophysics Data System (ADS)

    Abdel Fattah, Abdel Rahman; Ghosh, Suvojit; Puri, Ishwar K.

    2016-03-01

    We print complex curvilinear microstructures in an elastomer matrix using a ferrofluid droplet as the print head. A magnetic field moves the droplet along a prescribed path in liquid polydimethylsiloxane (PDMS). The droplet sheds magnetic nanoparticle (MNP) clusters in its wake, forming printed features. The PDMS is subsequently heated so that it crosslinks, which preserves the printed features in the elastomer matrix. The competition between magnetic and drag forces experienced by the ferrofluid droplet and its trailing MNPs highlight design criteria for successful printing, which are experimentally confirmed. The method promises new applications, such as flexible 3D circuitry.

  10. Microstructure and Elemental Distribution in a Cast Austenitic Steel

    SciTech Connect

    Kenik, Edward A; Busby, Jeremy T; Hoelzer, David T; Rowcliffe, Arthur Frederick; Vitek, John Michael

    2007-01-01

    Casting of austenitic stainless steels offers the possibility of directly producing large and/or complex structures, such as the first wall shield module or the diverter cassette for the International Tokomak Experimental Reactor. However, the resulting mechanical properties and the corrosion resistance of such cast components can be inferior compared to conventionally forged components because of the larger grain size, lower dislocation density and extensive segregation inherent in the cast material. This study examines the microstructural and compositional heterogeneities of a large casting of 316N stainless steel, as well as the possibility of improving the homogeneity and mechanical properties of such a cast material.

  11. Magnetic domains and microstructural defects in Terfenol-D

    NASA Astrophysics Data System (ADS)

    Al-Jiboory, M.; Lord, D. G.; Bi, Y. J.; Abell, J. S.; Hwang, A. M. H.; Teter, J. P.

    1993-05-01

    The ternary alloy Tb0.3Dy0.7Fe2 (Terfenol-D) is of significant technological interest as it possesses the largest known magnetostriction to anisotropy ratio near room temperature. Results of microstructural and magnetic domain observations by Lorentz microscopy and reflection x-ray topography are presented from both stoichiometric twinned single crystals prepared by a free-standing zoning technique, and pseudo single crystals prepared by the Czochralski method. Direct evidence of wall interactions with dislocations, twin boundaries and precipitates are presented which demonstrate the complex interaction between the magnetic and strain energies within this material.

  12. Microstructure and twinning in epitaxial NiMnGa films

    NASA Astrophysics Data System (ADS)

    Mahnke, Guido J.; Seibt, M.; Mayr, S. G.

    2008-07-01

    Although magnetic shape memory alloys have attracted large scientific interest, miniaturization as single-crystalline thin films is still a greatly unresolved issue. In the present work we investigate the microstructure of epitaxial NiMnGa thin films which are fabricated by sputter deposition on magnesium oxide substrates at elevated temperatures. Transmission and scanning electron microscopy as well as atomic force microscopy studies are employed to relate surface topography to twin formation in 7 M martensitic NiMnGa films. Additional findings include pore formation in substrate proximity as well as minor precipitation with reduced nickel and gallium contents.

  13. Gravitational contributions to microstructural coarsening in liquid phase sintering

    NASA Technical Reports Server (NTRS)

    Kipphut, C. M.; Kishi, T.; Bose, A.; German, R. M.

    1987-01-01

    Preliminary experiments for determining the role of gravity in liquid phase sintering have been carried out. Tungsten heavy alloys were selected for this investigation because of the large density difference between solid and liquid, extensive interest in the alloys and considerable data on these alloys. By identifying and isolating the role that gravity plays in shape distortion and microstructural coarsening, further insight into the mechanisms of coarsening kinetics may be realized. Improvements in mechanical properties, shape complexity, and dimensional stability may be realized in the future from low gravity sintering.

  14. Microstructure in Worn Surface of Hadfield Steel Crossing

    NASA Astrophysics Data System (ADS)

    Zhang, F. C.; Lv, B.; Wang, T. S.; Zheng, C. L.; Li, M.; Zhang, M.

    In this paper a failed Hadfield (high manganese austenite) steel crossing used in railway system was studied. The microstructure in the worn surfaces of the crossing was investigated using optical microscopy, scanning electron microscopy, transmission electron microscopy and Mössbauer spectroscopy. The results indicated that a nanocrystallization layer formed on the surface of the crossing served. The formation mechanism of the nanocrystalline is the discontinuous dynamic recrystallization. The energy for the recrystallization nucleus formation originates from the interactions between the twins, the dislocations, as well as twin and dislocation. High-density vacancies promoted the recrystallization process including the dislocation climb and the atom diffusion.

  15. Microstructured Optical Fiber for X-ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stanton L.

    2009-01-01

    A novel scintillating optical fiber is presented using a composite micro-structured quartz optical fiber. Scintillating materials are introduced into the multiple inclusions of the fiber. This creates a composite optical fiber having quartz as a cladding with an organic scintillating material core. X-ray detection using these fibers is compared to a collimated cadmium telluride (CdTe) detector over an energy range from 10 to 40 keV. Results show a good correlation between the fiber count rate trend and that of the CdTe detector.

  16. Microstructural studies of thermal spray coatings for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sun, Limin

    2002-01-01

    This project aims to address two major concerns with the use of hydroxyapatite [Ca10(PO4)6(OH)2, i.e., HA] coatings; i.e., (i) the resorption of the coating, and (ii) the resorption of bone. The objective is to optimize coating design through microstructural studies of two coating systems: a HA coating and a HA/polymer composite coating. For the HA coating, the HA powders were atmospherically plasma sprayed (APS) using various process parameters. The phase, structure and microstructure of the coatings were investigated and the mechanical property and dissolution behavior measured. Both crystallinity and hydroxyl contents decreased with increasing spray power and stand-off distance (SOD), and increased from the coating interface to surface. Impurity phase contents increased with increasing spray power. Crystallinity alone cannot reflect coating quality due to the existence of various HA, i.e., unmelted, recrystallized and dehydroxylated, and the gradient structure. Coating microstructure varied from a porous structure to a smooth glassy structure or a typical lamellar structure, and some newly formed nanocrystalline regions were revealed. These effects were associated with the temperature-time experiences of particles, their cooling rates and the heat and hydroxyl accumulation during coating buildup. Different coating properties and performance resulted from the characteristic differences. The coating with highest recrystallization displayed the highest microhardness. Dissolution of all coatings reached a saturation value much lower compared to their pulverized counterparts in a fresh solution despite a higher and similar dissolution in the initial immersion stage. The coating with higher recrystallization exhibited higher saturation value. Microstructural analysis indicated the complete and preferential dissolution of amorphous and impurity phases and some precipitation of apatite observable for coatings with higher recrystallization. For the composite coating, HA

  17. Microstructural and mechanical property evaluation of solar collectors. Final report

    SciTech Connect

    Inal, O.T.

    1985-06-01

    The overall contributions of the program can be divided into three major areas: (1) nucleation and growth studies of adatom layers through transmission electron microscopy, reflection electron diffraction, and field-ion microscopy techniques; (2) electrodeposition parameter optimization studies for the production of photothermal collector surfaces made in terms of the as plated as well as thermally degraded microstructures; and (3) the thermal degradation mechanisms that emanate from structural alterations were optically modelled for the coatings produced in (2). These three topics are individually summarized.

  18. Cardiomyocyte Death: Insights from Molecular and Microstructural Magnetic Resonance Imaging

    PubMed Central

    Berry, Natalia C.

    2011-01-01

    Cardiomyocytes can die via necrosis, apoptosis, and autophagy. Although the molecular signals and pathways underlying these processes have been well elucidated, the pathophysiology of cardiomyocyte death remains incompletely understood. This review describes the development and application of novel imaging techniques to detect and characterize cardiomyocyte death noninvasively in vivo. It focuses on molecular and microstructural magnetic resonance images (MRIs) and their respective abilities to image cellular events such as apoptosis, inflammation, and myofiber architecture. These in vivo imaging techniques have the potential to provide novel insights into the mechanisms of cardiomyocyte death and to help guide the development of novel cardioprotective therapies. PMID:21298427

  19. Advanced Microstructured Semiconductor Neutron Detectors: Design, Fabrication, and Performance

    NASA Astrophysics Data System (ADS)

    Bellinger, Steven Lawrence

    The microstructured semiconductor neutron detector (MSND) was investigated and previous designs were improved and optimized. In the present work, fabrication techniques have been refined and improved to produce three-dimensional microstructured semiconductor neutron detectors with reduced leakage current, reduced capacitance, highly anisotropic deep etched trenches, and increased signal-to-noise ratios. As a result of these improvements, new MSND detection systems function with better gamma-ray discrimination and are easier to fabricate than previous designs. In addition to the microstructured diode fabrication improvement, a superior batch processing backfill-method for 6LiF neutron reactive material, resulting in a nearly-solid backfill, was developed. This method incorporates a LiF nano-sizing process and a centrifugal batch process for backfilling the nanoparticle LiF material. To better transition the MSND detector to commercialization, the fabrication process was studied and enhanced to better facilitate low cost and batch process MSND production. The research and development of the MSND technology described in this work includes fabrication of variant microstructured diode designs, which have been simulated through MSND physics models to predict performance and neutron detection efficiency, and testing the operational performance of these designs in regards to neutron detection efficiency, gamma-ray rejection, and silicon fabrication methodology. The highest thermal-neutron detection efficiency reported to date for a solid-state semiconductor detector is presented in this work. MSNDs show excellent neutron to gamma-ray (n/γ) rejection ratios, which are on the order of 106, without significant loss in thermal-neutron detection efficiency. Individually, the MSND is intrinsically highly sensitive to thermal neutrons, but not extrinsically sensitive because of their small size. To improve upon this, individual MSNDs were tiled together into a 6x6-element array

  20. Spun microstructured optical fibres for Faraday effect current sensors

    SciTech Connect

    Chamorovsky, Yury K; Starostin, Nikolay I; Morshnev, Sergey K; Gubin, Vladimir P; Ryabko, Maksim V; Sazonov, Aleksandr I; Vorob'ev, Igor' L

    2009-11-30

    We report a simple design of spun holey fibres and the first experimental study of the magneto-optical response of spun microstructured fibres with high built-in birefringence. Such fibres enable the Faraday-effect-induced phase shift to effectively accumulate in a magnetic field even at very small coiling diameters. For example, the magneto-optical sensitivity of a 5-mm-diameter fibre coil consisting of 100 turns is {approx}70% that of an ideal fibre, in good agreement with theoretical predictions. (optical fibres and fibreoptic sensors)