Science.gov

Sample records for carbonyl derivatives relevance

  1. Human TTR conformation altered by rhenium tris-carbonyl derivatives.

    PubMed

    Ciccone, Lidia; Policar, Clotilde; Stura, Enrico A; Shepard, William

    2016-09-01

    Transthyretin (TTR) is a 54 kDa homotetrameric serum protein that transports thyroxine (T4) and retinol. TTR is potentially amyloidogenic due to homotetramer dissociation into monomeric intermediates that self-assemble as amyloid deposits and insoluble fibrils. Most crystallographic structures, including those of amyloidogenic variants show the same tetramer without major variations in the monomer-monomer interface nor in the volume of the interdimeric cavity. Soaking TTR crystals in a solution containing rhenium tris-carbonyl derivatives yields a TTR conformer never observed before. Only one of the two monomers of the crystallographic dimer is significantly altered, and the inner part of the T4 binding cavity is expanded at one end and shrunk at the other. The result redefines the mechanism of allosteric communication between the two sites, suggesting that negative cooperativity is a function of dimer asymmetry, which can be induced through internal or external binding. An aspect that remains unexplained is why the conformational changes are ubiquitous throughout the crystal although the heavy metal content of the derivatized crystals is relatively low. The conformational changes observed, which include Leu(82), may represent a form of TTR better at scavenging β-Amyloid. At a resolution of 1.69Å, with excellent refinement statistics and well defined electron density for all parts of the structure, it is possible to envisage answering important questions that range from protein cooperative behavior to heavy atom induced protein conformational modifications that can result in crystallographic non-isomorphism. PMID:27402536

  2. Lipid Peroxide-Derived Short-Chain Carbonyls Mediate Hydrogen Peroxide-Induced and Salt-Induced Programmed Cell Death in Plants1[OPEN

    PubMed Central

    Biswas, Md. Sanaullah; Mano, Jun’ichi

    2015-01-01

    Lipid peroxide-derived toxic carbonyl compounds (oxylipin carbonyls), produced downstream of reactive oxygen species (ROS), were recently revealed to mediate abiotic stress-induced damage of plants. Here, we investigated how oxylipin carbonyls cause cell death. When tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells were exposed to hydrogen peroxide, several species of short-chain oxylipin carbonyls [i.e. 4-hydroxy-(E)-2-nonenal and acrolein] accumulated and the cells underwent programmed cell death (PCD), as judged based on DNA fragmentation, an increase in terminal deoxynucleotidyl transferase dUTP nick end labeling-positive nuclei, and cytoplasm retraction. These oxylipin carbonyls caused PCD in BY-2 cells and roots of tobacco and Arabidopsis (Arabidopsis thaliana). To test the possibility that oxylipin carbonyls mediate an oxidative signal to cause PCD, we performed pharmacological and genetic experiments. Carnosine and hydralazine, having distinct chemistry for scavenging carbonyls, significantly suppressed the increase in oxylipin carbonyls and blocked PCD in BY-2 cells and Arabidopsis roots, but they did not affect the levels of ROS and lipid peroxides. A transgenic tobacco line that overproduces 2-alkenal reductase, an Arabidopsis enzyme to detoxify α,β-unsaturated carbonyls, suffered less PCD in root epidermis after hydrogen peroxide or salt treatment than did the wild type, whereas the ROS level increases due to the stress treatments were not different between the lines. From these results, we conclude that oxylipin carbonyls are involved in the PCD process in oxidatively stressed cells. Our comparison of the ability of distinct carbonyls to induce PCD in BY-2 cells revealed that acrolein and 4-hydroxy-(E)-2-nonenal are the most potent carbonyls. The physiological relevance and possible mechanisms of the carbonyl-induced PCD are discussed. PMID:26025050

  3. Lipid Peroxide-Derived Short-Chain Carbonyls Mediate Hydrogen Peroxide-Induced and Salt-Induced Programmed Cell Death in Plants.

    PubMed

    Biswas, Md Sanaullah; Mano, Jun'ichi

    2015-07-01

    Lipid peroxide-derived toxic carbonyl compounds (oxylipin carbonyls), produced downstream of reactive oxygen species (ROS), were recently revealed to mediate abiotic stress-induced damage of plants. Here, we investigated how oxylipin carbonyls cause cell death. When tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells were exposed to hydrogen peroxide, several species of short-chain oxylipin carbonyls [i.e. 4-hydroxy-(E)-2-nonenal and acrolein] accumulated and the cells underwent programmed cell death (PCD), as judged based on DNA fragmentation, an increase in terminal deoxynucleotidyl transferase dUTP nick end labeling-positive nuclei, and cytoplasm retraction. These oxylipin carbonyls caused PCD in BY-2 cells and roots of tobacco and Arabidopsis (Arabidopsis thaliana). To test the possibility that oxylipin carbonyls mediate an oxidative signal to cause PCD, we performed pharmacological and genetic experiments. Carnosine and hydralazine, having distinct chemistry for scavenging carbonyls, significantly suppressed the increase in oxylipin carbonyls and blocked PCD in BY-2 cells and Arabidopsis roots, but they did not affect the levels of ROS and lipid peroxides. A transgenic tobacco line that overproduces 2-alkenal reductase, an Arabidopsis enzyme to detoxify α,β-unsaturated carbonyls, suffered less PCD in root epidermis after hydrogen peroxide or salt treatment than did the wild type, whereas the ROS level increases due to the stress treatments were not different between the lines. From these results, we conclude that oxylipin carbonyls are involved in the PCD process in oxidatively stressed cells. Our comparison of the ability of distinct carbonyls to induce PCD in BY-2 cells revealed that acrolein and 4-hydroxy-(E)-2-nonenal are the most potent carbonyls. The physiological relevance and possible mechanisms of the carbonyl-induced PCD are discussed.

  4. Exploring the biology of lipid peroxidation-derived protein carbonylation.

    PubMed

    Fritz, Kristofer S; Petersen, Dennis R

    2011-09-19

    The sustained overproduction of reactive oxygen and nitrogen species results in an imbalance of cellular prooxidant-antioxidant systems and is implicated in numerous disease states, including alcoholic liver disease, cancer, neurological disorders, inflammation, and cardiovascular disease. The accumulation of reactive aldehydes resulting from sustained oxidative stress and lipid peroxidation is an underlying factor in the development of these pathologies. Determining the biochemical factors that elicit cellular responses resulting from protein carbonylation remains a key element to developing therapeutic approaches and ameliorating disease pathologies. This review details our current understanding of the generation of reactive aldehydes via lipid peroxidation resulting in protein carbonylation, focusing on pathophysiologic factors associated with 4-hydroxynonenal-protein modification. Additionally, an overview of in vitro and in vivo model systems used to study the physiologic impact of protein carbonylation is presented. Finally, an update of the methods commonly used in characterizing protein modification by reactive aldehydes provides an overview of isolation techniques, mass spectrometry, and computational biology. It is apparent that research in this area employing state-of-the-art proteomics, mass spectrometry, and computational biology is rapidly evolving, yielding foundational knowledge concerning the molecular mechanisms of protein carbonylation and its relation to a spectrum of diseases associated with oxidative stress. PMID:21812433

  5. Alkenyl carbonyl derivatives in enantioselective redox relay Heck reactions: accessing α,β-unsaturated systems.

    PubMed

    Zhang, Chun; Santiago, Celine B; Kou, Lei; Sigman, Matthew S

    2015-06-17

    A highly enantioselective and site-selective Pd-catalyzed arylation of alkenes linked to carbonyl derivatives to yield α,β-unsaturated systems is reported. The high site selectivity is attributed to both a solvent effect and the polarized nature of the carbonyl group, both of which have been analyzed through multidimensional analysis tools. The reaction can be performed in an iterative fashion allowing for a diastereoselective installation of two aryl groups along an alkyl chain.

  6. Protection against Photooxidative Injury of Tobacco Leaves by 2-Alkenal Reductase. Detoxication of Lipid Peroxide-Derived Reactive Carbonyls1

    PubMed Central

    Mano, Jun'ichi; Belles-Boix, Enric; Babiychuk, Elena; Inzé, Dirk; Torii, Yoshimitsu; Hiraoka, Eiji; Takimoto, Koichi; Slooten, Luit; Asada, Kozi; Kushnir, Sergei

    2005-01-01

    Degradation of lipid peroxides leads to the formation of cytotoxic 2-alkenals and oxenes (collectively designated reactive carbonyls). The novel NADPH-dependent oxidoreductase 2-alkenal reductase (AER; EC 1.3.1.74) from Arabidopsis (Arabidopsis thaliana), which is encoded by the gene At5g16970, catalyzes the reduction of the α,β-unsaturated bond of reactive carbonyls, and hence is presumed to function in antioxidative defense in plants. Here we show that Arabidopsis AER (At-AER) has a broad substrate spectrum to biologically relevant reactive carbonyls. Besides 2-alkenals, the enzyme recognized as substrates the lipid peroxide-derived oxenes 9-oxo-octadeca-(10E),(12Z)-dienoic acid and 13-oxo-octadeca-(9E),(11Z)-dienoic acid, as well as the potent genotoxin 4-oxo-(2E)-nonenal, altogether suggesting AER has a key role in the detoxification of reactive carbonyls. To validate this conclusion by in vivo studies, transgenic tobacco (Nicotiana tabacum) plants that had 100- to 250-fold higher AER activity levels than control plants were generated. The engineered plants exhibited significantly less damage from either (1) the exogenously administered 4-hydroxy-(2E)-nonenal, (2) treatment with methyl viologen plus light, or (3) intense light. We further show that the At-AER protein fused with the Aequorea victoria green fluorescent protein localizes in cytosol and the nucleus in Bright-Yellow 2 cells. These results indicate that reactive carbonyls mediate photooxidative injury in leaf cells, and At-AER in the cytosol protects the cells by reducing the α,β-unsaturated bond of the photoproduced reactive carbonyls. PMID:16299173

  7. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls

    PubMed Central

    Singh, Mahavir; Kapoor, Aniruddh; Bhatnagar, Aruni

    2015-01-01

    Extensive research has shown that increased production of reactive oxygen species (ROS) results in tissue injury under a variety of pathological conditions and chronic degenerative diseases. While ROS are highly reactive and can incite significant injury, polyunsaturated lipids in membranes and lipoproteins are their main targets. ROS-triggered lipid peroxidation reactions generate a range of reactive carbonyl species (RCS), and these RCS spread and amplify ROS-related injury. Several RCS generated in oxidizing lipids, such as 4-hydroxy trans-2-nonenal (HNE), 4-oxo-2-(E)-nonenal (ONE), acrolein, malondialdehyde (MDA) and phospholipid aldehydes have been shown to be produced under conditions of oxidative stress and contribute to tissue injury and dysfunction by depleting glutathione and other reductants leading to the modification of proteins, lipids, and DNA. To prevent tissue injury, these RCS are metabolized by several oxidoreductases, including members of the aldo-keto reductase (AKR) superfamily, aldehyde dehydrogenases (ALDHs), and alcohol dehydrogenases (ADHs). Metabolism via these enzymes results in RCS inactivation and detoxification, although under some conditions, it can also lead to the generation of signaling molecules that trigger adaptive responses. Metabolic transformation and detoxification of RCS by oxidoreductases prevent indiscriminate ROS toxicity, while at the same time, preserving ROS signaling. A better understanding of RCS metabolism by oxidoreductases could lead to the development of novel therapeutic interventions to decrease oxidative injury in several disease states and to enhance resistance to ROS-induced toxicity. PMID:25559856

  8. Characterisation and optimisation of a method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    NASA Astrophysics Data System (ADS)

    Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.

    2015-01-01

    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds (VOC). Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. Thus a method was systematically characterised and improved to quantify carbonyl compounds. Quantification with the present method can be carried out for each carbonyl compound sampled in the aqueous phase regardless of their source. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). The main advantage of the improved method presented in this study is the low detection limit in the range of 0.01 and 0.17 μmol L-1 depending on carbonyl compounds. Furthermore best results were found for extraction with dichloromethane for 30 min followed by derivatisation with PFBHA for 24 h with 0.43 mg mL-1 PFBHA at a pH value of 3. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione.

  9. Electrophilic Carbonyl Activation: Competing Condensative Cyclizations of Tryptamine Derivatives

    PubMed Central

    Liu, Fan; Movassaghi, Mohammad

    2014-01-01

    A series of tryptamine derived bisindole substrates were subject to electrophilic activation of the functional grouping at their alpha-nitrogen in the form of iminium ions to enable cyclization onto the sterically hindered indole substructure. Our observations regarding divergent cyclization outcomes using electronically distinct bisindole substrates are described. Surprising preference for Friedel-Crafts alkylation reaction and evidence for an intriguing reversible spirocyclization are discussed. PMID:26120209

  10. Synthesis, spectroscopic characterizations, crystal structures and DFT studies of nalidixic acid carbonyl hydrazones derivatives

    NASA Astrophysics Data System (ADS)

    Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.

    2016-09-01

    This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.

  11. Amino acid decarboxylations produced by lipid-derived reactive carbonyls in amino acid mixtures.

    PubMed

    Hidalgo, Francisco J; León, M Mercedes; Zamora, Rosario

    2016-10-15

    The formation of 2-phenylethylamine and phenylacetaldehyde in mixtures of phenylalanine, a lipid oxidation product, and a second amino acid was studied to determine the role of the second amino acid in the degradation of phenylalanine produced by lipid-derived reactive carbonyls. The presence of the second amino acid usually increased the formation of the amine and reduced the formation of the Strecker aldehyde. The reasons for this behaviour seem to be related to the α-amino group and the other functional groups (mainly amino or similar groups) present in the side-chain of the amino acid. These groups are suggested to modify the lipid-derived reactive carbonyl but not the reaction mechanism because the Ea of formation of both 2-phenylethylamine and phenylacetaldehyde remained unchanged in all studied systems. All these results suggest that the amine/aldehyde ratio obtained by amino acid degradation can be modified by adding free amino acids during food formulation.

  12. Diverse roles of hydrogen in rhenium carbonyl chemistry: hydrides, dihydrogen complexes, and a formyl derivative.

    PubMed

    Li, Nan; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2010-11-01

    Rhenium carbonyl hydride chemistry dates back to the 1959 synthesis of HRe(CO)₅ by Hieber and Braun. The binuclear H₂Re₂(CO)₈ was subsequently synthesized as a stable compound with a central Re₂(μ-H)₂ unit analogous to the B₂(μ-H)₂ unit in diborane. The complete series of HRe(CO)(n) (n = 5, 4, 3) and H₂Re₂(CO)(n) (n = 9, 8, 7, 6) derivatives have now been investigated by density functional theory. In contrast to the corresponding manganese derivatives, all of the triplet rhenium structures are found to lie at relatively high energies compared with the corresponding singlet structures consistent with the higher ligand field splitting of rhenium relative to manganese. The lowest energy HRe(CO)₅ structure is the expected octahedral structure. Low-energy structures for HRe(CO)(n) (n = 4, 3) are singlet structures derived from the octahedral HRe(CO)₅ structure by removal of one or two carbonyl groups. For H₂Re₂(CO)₉ a structure HRe₂(CO)₉(μ-H), with one terminal and one bridging hydrogen atom, lies within 3 kcal/mol of the structure Re₂(CO)₉(η²-H₂), similar to that of Re₂(CO)₁₀. For H₂Re₂(CO)(n) (n = 8, 7, 6) the only low-energy structures are doubly bridged singlet Re₂(μ-H)₂(CO)(n) structures. Higher energy dihydrogen complex structures are also found.

  13. Antagonism between lipid-derived reactive carbonyls and phenolic compounds in the Strecker degradation of amino acids.

    PubMed

    Delgado, Rosa M; Hidalgo, Francisco J; Zamora, Rosario

    2016-03-01

    The Strecker-type degradation of phenylalanine in the presence of 2-pentanal and phenolic compounds was studied to investigate possible interactions that either promote or inhibit the formation of Strecker aldehydes in food products. Phenylacetaldehyde formation was promoted by 2-pentenal and also by o- and p-diphenols, but not by m-diphenols. This is consequence of the ability of phenolic compounds to be converted into reactive carbonyls and produce the Strecker degradation of the amino acid. When 2-pentenal and phenolic compounds were simultaneously present, an antagonism among them was observed. This antagonism is suggested to be a consequence of the ability of phenolic compounds to either react with both 2-pentenal and phenylacetaldehyde, or compete with other carbonyl compounds for the amino acids, a function that is determined by their structure. All these results suggest that carbonyl-phenol reactions may be used to modulate flavor formation produced in food products by lipid-derived reactive carbonyls.

  14. Antiatherogenic effect of bisvanillyl-hydralazone, a new hydralazine derivative with antioxidant, carbonyl scavenger, and antiapoptotic properties.

    PubMed

    Bouguerne, Benaissa; Belkheiri, Nadji; Bedos-Belval, Florence; Vindis, Cécile; Uchida, Koji; Duran, Hubert; Grazide, Marie-Hélène; Baltas, Michel; Salvayre, Robert; Nègre-Salvayre, Anne

    2011-06-01

    Reactive oxygen species (ROS) generated within the vascular wall trigger low-density lipoprotein (LDL) oxidation, lipid peroxidation, and carbonyl stress that are involved in atherogenesis. We recently reported that the antihypertensive drug, hydralazine, exhibits carbonyl scavenger and antiatherogenic properties, but only moderate antioxidant activity, so that high concentrations are required for inhibiting LDL oxidation. We aimed to develop agents sharing both antioxidant and carbonyl scavenger properties. We have synthesized a new hydralazine derivative, the bisvanillyl-hydralazone (BVH). BVH strongly inhibited LDL oxidation induced by copper and by human endothelial cells (HMEC-1), and prevented the formation of macrophagic foam cells. BVH reduced both the extracellular generation of ROS (superoxide anion and hydrogen peroxide) induced by oxidized LDL (oxLDL), as well as intracellular oxidative stress and proteasome activation, NFkappaB activation, and oxLDL-mediated proinflammatory signaling. In parallel, BVH prevented the carbonyl stress induced by oxLDL on cellular proteins, and blocked the apoptotic cascade as assessed by the inhibition of Bid cleavage, cytochrome C release, and DEVDase activation. Lastly, BVH prevented atherogenesis and carbonyl stress in apoE(-/-) mice. In conclusion, BVH is the prototype of a new class of antioxidant and carbonyl scavenger agents designed for new therapeutical approaches in atherosclerosis.

  15. Synthesis of conformationally restricted glutamate and glutamine derivatives from carbonylation of orthopalladated phenylglycine derivatives

    PubMed Central

    Laga, Eduardo; Cativiela, Carlos

    2012-01-01

    Summary A new method for the regioselective synthesis of 2-alkoxycarbonyl- and 2-(aminocarbonyl)phenylglycinate methyl esters has been developed. The reaction of the orthopalladated complex [Pd(μ-Cl)(C6H4(CH(CO2Me)NMe2)-2)]2 (1) with nucleophiles HNu under a CO atmosphere results in the selective incorporation of the C(O)Nu moiety to the phenyl ring and formation of the carbonyl species ortho-C6H4(C(O)Nu)(CH(CO2Me)NMe2) (2a–j) (Nu = OR, NHR, NR2). Compounds 2a–j are conformationally restricted analogues of glutamic acid and glutamine and are interesting due to their biological and pharmacological properties. The reaction of [Pd(μ-Cl)(C6H4(CH(CO2Me)NHTf)-2)]2 (3) with nucleophiles in a CO atmosphere results, however, in the formation of the cyclic isoindolinone or the open 2-carboxyphenylglycine methyl esters, with the reaction outcome being driven by the choice of the solvent. PMID:23209488

  16. White light generation by carbonyl based indole derivatives due to proton transfer: an efficient fluorescence sensor.

    PubMed

    Singla, Nidhi; Bhadram, Venkata Srinu; Narayana, Chandrabhas; Chowdhury, Papia

    2013-04-01

    The motivation of the present work is to understand the optical, chemical, and electrical aspects of the proton transfer mechanism of indole (I) and some carbonyl based indole derivatives: indole-3-carboxaldehyde (I3C) and indole-7-carboxaldehyde (I7C) for both powder form and their liquid solution. Structural information for indole derivatives (isolated molecule and in solution) is obtained with density functional theory (DFT) and time dependent DFT (TD-DFT) methods. Calculated transition energies are used to generate UV-vis, FTIR, Raman, and NMR spectra which are later verified with the experimental spectra. The occurrence of different conformers [cis (N(c)), trans (N(t)), and zwitterion (Z*)] have been interpreted by Mulliken charge, natural bond orbital (NBO) analysis, and polarization versus electric field (P-E loop) studies. (1)H and (13)C NMR and molecular vibrational frequencies of the fundamental modes established the stability of Nc due to the presence of intramolecular hydrogen bonding (IHB) in the ground state (S0). Computed/experimental UV-vis absorption/emission studies reveal the creation of new species: zwitterion (Z*) and anion (A*) in the excited state (S1) due to excited state intramolecular and intermolecular proton transfer (ESI(ra)PT and ESI(er)PT). Increased electrical conductivity (σ(ac)) with temperature and increased ferroelectric polarization at higher field verifies proton conduction in I7C.

  17. On the Formation of Amide Polymers via Carbonyl-Amino Group Linkages in Energetically Processed Ices of Astrophysical Relevance

    NASA Astrophysics Data System (ADS)

    Förstel, Marko; Maksyutenko, Pavlo; Jones, Brant M.; Sun, Bing J.; Lee, Huan C.; Chang, Agnes H. H.; Kaiser, Ralf I.

    2016-04-01

    We report on the formation of organic amide polymers via carbonyl-amino group linkages in carbon monoxide and ammonia bearing energetically processed ices of astrophysical relevance. The first group comprises molecules with one carboxyl group and an increasing number of amine moieties starting with formamide (45 u), urea (60 u), and hydrazine carboxamide (75 u). The second group consists of species with two carboxyl (58 u) and up to three amine groups (73 u, 88 u, and 103 u). The formation and polymerization of these linkages from simple inorganic molecules via formamide und urea toward amide polymers is discussed in an astrophysical and astrobiological context. Our results show that long chain molecules, which are closely related to polypeptides, easily form by energetically processing simple, inorganic ices at very low temperatures and can be released into the gas phase by sublimation of the ices in star-forming regions. Our experimental results were obtained by employing reflectron time-of-flight mass spectroscopy, coupled with soft, single photon vacuum ultraviolet photoionization; they are complemented by theoretical calculations.

  18. Characterisation and optimisation of a sample preparation method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    NASA Astrophysics Data System (ADS)

    Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.

    2015-06-01

    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds. Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). With the present method quantification can be carried out for each carbonyl compound originating from fog, cloud and rain or sampled from the gas- and particle phase in water. Detection limits between 0.01 and 0.17 μmol L-1 were found, depending on carbonyl compounds. Furthermore, best results were found for the derivatisation with a PFBHA concentration of 0.43 mg mL-1 for 24 h followed by a subsequent extraction with dichloromethane for 30 min at pH = 1. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione after a reaction time of 5 h.

  19. Reductive alkylation of active methylene compounds with carbonyl derivatives, calcium hydride and a heterogeneous catalyst.

    PubMed

    Guyon, Carole; Duclos, Marie-Christine; Sutter, Marc; Métay, Estelle; Lemaire, Marc

    2015-07-01

    A one-pot two-step reaction (Knoevenagel condensation - reduction of the double bond) has been developed using calcium hydride as a reductant in the presence of a supported noble metal catalyst. The reaction between carbonyl compounds and active methylene compounds such as methylcyanoacetate, 1,3-dimethylbarbituric acid, dimedone and the more challenging dimethylmalonate, affords the corresponding monoalkylated products in moderate to good yields (up to 83%) with minimal reduction of the starting carbonyl compounds. PMID:26053131

  20. Antagonism between lipid-derived reactive carbonyls and phenolic compounds in the Strecker degradation of amino acids.

    PubMed

    Delgado, Rosa M; Hidalgo, Francisco J; Zamora, Rosario

    2016-03-01

    The Strecker-type degradation of phenylalanine in the presence of 2-pentanal and phenolic compounds was studied to investigate possible interactions that either promote or inhibit the formation of Strecker aldehydes in food products. Phenylacetaldehyde formation was promoted by 2-pentenal and also by o- and p-diphenols, but not by m-diphenols. This is consequence of the ability of phenolic compounds to be converted into reactive carbonyls and produce the Strecker degradation of the amino acid. When 2-pentenal and phenolic compounds were simultaneously present, an antagonism among them was observed. This antagonism is suggested to be a consequence of the ability of phenolic compounds to either react with both 2-pentenal and phenylacetaldehyde, or compete with other carbonyl compounds for the amino acids, a function that is determined by their structure. All these results suggest that carbonyl-phenol reactions may be used to modulate flavor formation produced in food products by lipid-derived reactive carbonyls. PMID:26471665

  1. 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides with Carbonyl Dipolarophiles Yielding Oxazolidine Derivatives.

    PubMed

    Meyer, Adam G; Ryan, John H

    2016-01-01

    We provide a comprehensive account of the 1,3-dipolar cycloaddition reactions of azomethine ylides with carbonyl dipolarophiles. Many different azomethine ylides have been studied, including stabilized and non-stabilized ylides. Of the carbonyl dipolarophiles, aldehydes including formaldehyde are the most studied, although there are now examples of cycloadditions with ketones, ketenes and carboxyl systems, in particular isatoic anhydrides and phthalic anhydrides. Intramolecular cycloadditions with esters can also occur under certain circumstances. The oxazolidine cycloadducts undergo a range of reactions triggered by the ring-opening of the oxazolidine ring system. PMID:27455230

  2. A rhenium tris-carbonyl derivative as a model molecule for incorporation into phospholipid assemblies for skin applications.

    PubMed

    Fernández, Estibalitz; Rodríguez, Gelen; Hostachy, Sarah; Clède, Sylvain; Cócera, Mercedes; Sandt, Christophe; Lambert, François; de la Maza, Alfonso; Policar, Clotilde; López, Olga

    2015-07-01

    A rhenium tris-carbonyl derivative (fac-[Re(CO)3Cl(2-(1-dodecyl-1H-1,2,3,triazol-4-yl)-pyridine)]) was incorporated into phospholipid assemblies, called bicosomes, and the penetration of this molecule into skin was monitored using Fourier-transform infrared microspectroscopy (FTIR). To evaluate the capacity of bicosomes to promote the penetration of this derivative, the skin penetration of the Re(CO)3 derivative dissolved in dimethyl sulfoxide (DMSO), a typical enhancer, was also studied. Dynamic light scattering results (DLS) showed an increase in the size of the bicosomes with the incorporation of the Re(CO)3 derivative, and the FTIR microspectroscopy showed that the Re(CO)3 derivative incorporated in bicosomes penetrated deeper into the skin than when dissolved in DMSO. When this molecule was applied on the skin using the bicosomes, 60% of the Re(CO)3 derivative was retained in the stratum corneum (SC) and 40% reached the epidermis (Epi). Otherwise, the application of this molecule via DMSO resulted in 95% of the Re(CO)3 derivative being in the SC and only 5% reaching the Epi. Using a Re(CO)3 derivative with a dodecyl-chain as a model molecule, it was possible to determine the distribution of molecules with similar physicochemical characteristics in the skin using bicosomes. This fact makes these nanostructures promising vehicles for the application of lipophilic molecules inside the skin.

  3. Reactive Carbonyl Species Derived from Omega-3 and Omega-6 Fatty Acids.

    PubMed

    Wang, Yu; Cui, Ping

    2015-07-22

    Inflammation-related reactive oxygen species (ROS) and reactive nitrogen species (RNS) are associated with the development of cancer. ROS and RNS can directly damage biomacromolecules such as proteins, DNA, and lipids. Lipid peroxidation, however, can result in reactive carbonyl species (RCS) that can also modify proteins and DNA. In contrast to an extensive literature on the modification of proteins and DNA from omega-6 fatty acids, there are few studies on RCS generation from other fatty acids, particularly omega-3 fatty acids, which are frequently consumed from the diet and diet supplements. Therefore, a comparison between omega-3 and omega-6 fatty acids has been conducted. LC-MS/MS analysis of carbonyl-dinitrophenylhydrazine (DNPH) standards yielded characteristic fragment ions. Autoxidation products of α-linolenic acid and linoleic acid were then derivatized with DNPH and analyzed by LC-MS/MS. The results showed that α-linolenic acid, an omega-3 fatty acid, generated more acrolein and crotonaldehyde than did linoleic acid, an omega-6 fatty acid. Omega-3 fatty acids might be easily degraded to smaller monoaldehydes or dicarbonyls. Omega-3 fatty acids have been considered as health improvement components for a long time. However, on the basis of the results presented here, use of omega-3 fatty acids should be re-evaluated in vivo for safety purposes.

  4. Efficient synthesis of frutinone A and its derivatives through palladium-catalyzed C - H activation/carbonylation.

    PubMed

    Shin, Yongje; Yoo, Changho; Moon, Youngtaek; Lee, Yunho; Hong, Sungwoo

    2015-04-01

    Frutinone A, a biologically active ingredient of an antimicrobial herbal extract, demonstrates potent inhibitory activity towards the CYP1A2 enzyme. A three-step total synthesis of frutinone A with an overall yield of 44 % is presented. The construction of the chromone-annelated coumarin core was achieved through palladium-catalyzed CH carbonylation of 2-phenolchromones. The straightforward synthetic route allowed facile substitutions around the frutinone A core and thus rapid exploration of the structure-activity relationship (SAR) profile of the derivatives. The inhibitory activity of the synthesized frutinone A derivatives were determined for CYP1A2, and ten compounds exhibited one-to-two digit nanomolar inhibitory activity towards the CYP1A2 enzyme.

  5. Protonation Sites, Tandem Mass Spectrometry and Computational Calculations of o-Carbonyl Carbazolequinone Derivatives.

    PubMed

    Martínez-Cifuentes, Maximiliano; Clavijo-Allancan, Graciela; Zuñiga-Hormazabal, Pamela; Aranda, Braulio; Barriga, Andrés; Weiss-López, Boris; Araya-Maturana, Ramiro

    2016-01-01

    A series of a new type of tetracyclic carbazolequinones incorporating a carbonyl group at the ortho position relative to the quinone moiety was synthesized and analyzed by tandem electrospray ionization mass spectrometry (ESI/MS-MS), using Collision-Induced Dissociation (CID) to dissociate the protonated species. Theoretical parameters such as molecular electrostatic potential (MEP), local Fukui functions and local Parr function for electrophilic attack as well as proton affinity (PA) and gas phase basicity (GB), were used to explain the preferred protonation sites. Transition states of some main fragmentation routes were obtained and the energies calculated at density functional theory (DFT) B3LYP level were compared with the obtained by ab initio quadratic configuration interaction with single and double excitation (QCISD). The results are in accordance with the observed distribution of ions. The nature of the substituents in the aromatic ring has a notable impact on the fragmentation routes of the molecules. PMID:27399676

  6. Protonation Sites, Tandem Mass Spectrometry and Computational Calculations of o-Carbonyl Carbazolequinone Derivatives

    PubMed Central

    Martínez-Cifuentes, Maximiliano; Clavijo-Allancan, Graciela; Zuñiga-Hormazabal, Pamela; Aranda, Braulio; Barriga, Andrés; Weiss-López, Boris; Araya-Maturana, Ramiro

    2016-01-01

    A series of a new type of tetracyclic carbazolequinones incorporating a carbonyl group at the ortho position relative to the quinone moiety was synthesized and analyzed by tandem electrospray ionization mass spectrometry (ESI/MS-MS), using Collision-Induced Dissociation (CID) to dissociate the protonated species. Theoretical parameters such as molecular electrostatic potential (MEP), local Fukui functions and local Parr function for electrophilic attack as well as proton affinity (PA) and gas phase basicity (GB), were used to explain the preferred protonation sites. Transition states of some main fragmentation routes were obtained and the energies calculated at density functional theory (DFT) B3LYP level were compared with the obtained by ab initio quadratic configuration interaction with single and double excitation (QCISD). The results are in accordance with the observed distribution of ions. The nature of the substituents in the aromatic ring has a notable impact on the fragmentation routes of the molecules. PMID:27399676

  7. Protonation Sites, Tandem Mass Spectrometry and Computational Calculations of o-Carbonyl Carbazolequinone Derivatives.

    PubMed

    Martínez-Cifuentes, Maximiliano; Clavijo-Allancan, Graciela; Zuñiga-Hormazabal, Pamela; Aranda, Braulio; Barriga, Andrés; Weiss-López, Boris; Araya-Maturana, Ramiro

    2016-07-05

    A series of a new type of tetracyclic carbazolequinones incorporating a carbonyl group at the ortho position relative to the quinone moiety was synthesized and analyzed by tandem electrospray ionization mass spectrometry (ESI/MS-MS), using Collision-Induced Dissociation (CID) to dissociate the protonated species. Theoretical parameters such as molecular electrostatic potential (MEP), local Fukui functions and local Parr function for electrophilic attack as well as proton affinity (PA) and gas phase basicity (GB), were used to explain the preferred protonation sites. Transition states of some main fragmentation routes were obtained and the energies calculated at density functional theory (DFT) B3LYP level were compared with the obtained by ab initio quadratic configuration interaction with single and double excitation (QCISD). The results are in accordance with the observed distribution of ions. The nature of the substituents in the aromatic ring has a notable impact on the fragmentation routes of the molecules.

  8. A theoretical investigation of the interaction between substituted carbonyl derivatives and water: open or cyclic complexes?

    PubMed

    Chandra, Asit K; Zeegers-Huyskens, Thérèse

    2012-04-30

    The structures and binding energies of complexes between substituted carbonyl bases and water are the B3LYP/6-311++G(d,p) computational level. The calculations also include the proton affinity (PA) of the O of the C=O group, the deprotonation enthalpies (DPE) of the CH bonds along a natural bond orbital analysis. The calculations reveal that stable open C=O···H(w) O(w) as well as cyclic CH···O(w)H(w) ···O=C complexes are formed. The binding energies for the open complexes are linearly related to the PAs, whereas the binding energies for the cyclic complexes depend on both the PA and DPE. Different indicators of hydrogen bonds strength such as electron charge density, intramolecular and intermolecular hyperconjugation energy, occupation of orbitals, and charge transfer show significant differences between open and cyclic complexes. The contraction of the CH bond of the formyl group and the corresponding blue shift of the ν(CH) vibration are explained by the classical trans lone pair effect. In contrast, the elongation or contraction of the CH(3) group involved in the interaction with water results from the variation of the orbital interaction energies from the σ(CH) bonding orbital to the σ* and π* antibonding orbitals of the C=O group. The resulting blue or red shifts of the ν(CH(3)) vibrations are calculated in the partially deuterated isotopomers. PMID:22344933

  9. Reductive Umpolung of Carbonyl Derivatives with Visible‐Light Photoredox Catalysis: Direct Access to Vicinal Diamines and Amino Alcohols via α‐Amino Radicals and Ketyl Radicals

    PubMed Central

    Fava, Eleonora; Millet, Anthony; Nakajima, Masaki; Loescher, Sebastian

    2016-01-01

    Abstract Visible‐light‐mediated photoredox‐catalyzed aldimine–aniline and aldehyde–aniline couplings have been realized. The reductive single electron transfer (SET) umpolung of various carbonyl derivatives enabled the generation of intermediary ketyl and α‐amino radical anions, which were utilized for the synthesis of unsymmetrically substituted 1,2‐diamines and amino alcohols. PMID:27136443

  10. Antimycobacterial evaluation of novel [4,5-dihydro-1H-pyrazole-1-carbonyl]pyridine derivatives synthesized by microwave-mediated Michael addition.

    PubMed

    Sedighi, Vida; Azerang, Parisa; Sardari, Soroush

    2015-06-01

    The focus of this study is the synthesis and biological activity evaluation of a series of dibenzalaceton derivatives (3a-3n) and novel [4,5-dihydro-1H-pyrazole-1-carbonyl]pyridine derivatives (5a-5g) against Mycobacterium bovis, Bacillus Calmette-Guerin (BCG). Dibenzalacetone derivatives were synthesized by benzaldehyde derivatives. The [4,5-dihydro-1H-pyrazole-1-carbonyl]pyridine derivatives were synthesized by Michael addition reaction and using green chemistry microwave-mediated method. All compounds were evaluated against BCG and the activity expressed as minimum inhibitory concentration (MIC) in μM. The result showed good activity for all the compounds especially compounds (3a), (3n), and (5a) illustrated high activity (7.03, 8.10 and 5.37 μM, respectively). PMID:25219796

  11. Antimycobacterial evaluation of novel [4,5-dihydro-1H-pyrazole-1-carbonyl]pyridine derivatives synthesized by microwave-mediated Michael addition.

    PubMed

    Sedighi, Vida; Azerang, Parisa; Sardari, Soroush

    2015-06-01

    The focus of this study is the synthesis and biological activity evaluation of a series of dibenzalaceton derivatives (3a-3n) and novel [4,5-dihydro-1H-pyrazole-1-carbonyl]pyridine derivatives (5a-5g) against Mycobacterium bovis, Bacillus Calmette-Guerin (BCG). Dibenzalacetone derivatives were synthesized by benzaldehyde derivatives. The [4,5-dihydro-1H-pyrazole-1-carbonyl]pyridine derivatives were synthesized by Michael addition reaction and using green chemistry microwave-mediated method. All compounds were evaluated against BCG and the activity expressed as minimum inhibitory concentration (MIC) in μM. The result showed good activity for all the compounds especially compounds (3a), (3n), and (5a) illustrated high activity (7.03, 8.10 and 5.37 μM, respectively).

  12. The Calvin cycle inevitably produces sugar-derived reactive carbonyl methylglyoxal during photosynthesis: a potential cause of plant diabetes.

    PubMed

    Takagi, Daisuke; Inoue, Hironori; Odawara, Mizue; Shimakawa, Ginga; Miyake, Chikahiro

    2014-02-01

    Sugar-derived reactive carbonyls (RCs), including methylglyoxal (MG), are aggressive by-products of oxidative stress known to impair the functions of multiple proteins. These advanced glycation end-products accumulate in patients with diabetes mellitus and cause major complications, including arteriosclerosis and cardiac insufficiency. In the glycolytic pathway, the equilibration reactions between dihydroxyacetone phosphate and glyceraldehyde 3-phosphate (GAP) have recently been shown to generate MG as a by-product. Because plants produce vast amounts of sugars and support the same reaction in the Calvin cycle, we hypothesized that MG also accumulates in chloroplasts. Incubating isolated chloroplasts with excess 3-phosphoglycerate (3-PGA) as the GAP precursor drove the equilibration reaction toward MG production. The rate of oxygen (O2) evolution was used as an index of 3-PGA-mediated photosynthesis. The 3-PGA- and time-dependent accumulation of MG in chloroplasts was confirmed by HPLC. In addition, MG production increased with an increase in light intensity. We also observed a positive linear relationship between the rates of MG production and O2 evolution (R = 0.88; P < 0.0001). These data provide evidence that MG is produced by the Calvin cycle and that sugar-derived RC production is inevitable during photosynthesis. Furthermore, we found that MG production is enhanced under high-CO2 conditions in illuminated wheat leaves.

  13. Synthesis of new simplified hemiasterlin derivatives with α,β-unsaturated carbonyl moiety.

    PubMed

    The, Chinh Pham; Thi, Tuyet Anh Dang; Hoang, Thi Phuong; Ngo, Quoc Anh; Doan, Duy Tien; Thi, Thu Ha Nguyen; Thi, Tham Pham; Thi, Thu Ha Vu; Jean, M; van de Weghe, P; Van, Tuyen Nguyen

    2014-05-15

    In this Letter, we report a convenient and efficient method for the synthesis of new simplified derivatives of hemiasterlin in which the α,α-dimethylbenzylic moiety A is replaced by α,β-unsaturated aryl groups as Michael acceptor. Most of these derivatives have a strong cytotoxic activity on three human tumor cell lines (KB, Hep-G2 and MCF7). Analogs 17b and 17f showed a high cytotoxicity against KB and Hep-G2 cancer cell lines comparable to paclitaxel and ellipticine.

  14. Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels

    SciTech Connect

    Zhong, Linlin; Liu, Ziwen; Yan, Ruilan; Johnson, Stephen; Zhao, Yupei; Fang, Xiubin; Cao, Deliang

    2009-09-18

    Alpha, beta-unsaturated carbonyls are highly reactive mutagens and carcinogens to which humans are exposed on a daily basis. This study demonstrates that aldo-keto reductase family 1 member B10 (AKR1B10) is a critical protein in detoxifying dietary and lipid-derived unsaturated carbonyls. Purified AKR1B10 recombinant protein efficiently catalyzed the reduction to less toxic alcohol forms of crotonaldehyde at 0.90 {mu}M, 4-hydroxynonenal (HNE) at 0.10 {mu}M, trans-2-hexanal at 0.10 {mu}M, and trans-2,4-hexadienal at 0.05 {mu}M, the concentrations at or lower than physiological exposures. Ectopically expressed AKR1B10 in 293T cells eliminated immediately HNE at 1 (subtoxic) or 5 {mu}M (toxic) by converting to 1,4-dihydroxynonene, protecting the cells from HNE toxicity. AKR1B10 protein also showed strong enzymatic activity toward glutathione-conjugated carbonyls. Taken together, our study results suggest that AKR1B10 specifically expressed in the intestine is physiologically important in protecting the host cell against dietary and lipid-derived cytotoxic carbonyls.

  15. Synthesis of Aminoboronic Acid Derivatives from Amines and Amphoteric Boryl Carbonyl Compounds.

    PubMed

    Diaz, Diego B; Scully, Conor C G; Liew, Sean K; Adachi, Shinya; Trinchera, Piera; St Denis, Jeffrey D; Yudin, Andrei K

    2016-10-01

    Herein, we demonstrate the use of α-boryl aldehydes and acyl boronates in the synthesis of aminoboronic acid derivatives. This work highlights the untapped potential of boron-substituted iminium ions and offers insights into the behavior of N-methyliminodiacetyl (MIDA) boronates during condensation and tautomerization processes. The preparative value of this contribution lies in the demonstration that various amines, including linear and cyclic peptides, can be readily conjugated with boron-containing fragments. A mild deprotection of amino MIDA-boronates enables access to α- and β-aminoboronic acids in high chemical yields. This simple process should be applicable to the synthesis of a wide range of bioactive molecules as well as precursors for cross-coupling reactions. PMID:27584917

  16. Nickel carbonyl

    Integrated Risk Information System (IRIS)

    Nickel carbonyl ; CASRN 13463 - 39 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  17. Carbonyl sulfide

    Integrated Risk Information System (IRIS)

    Carbonyl sulfide ; CASRN 463 - 58 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  18. Carbonyl stress and schizophrenia.

    PubMed

    Arai, Makoto; Miyashita, Mitsuhiro; Kobori, Akiko; Toriumi, Kazuya; Horiuchi, Yasue; Itokawa, Masanari

    2014-09-01

    Appropriate biological treatment and psychosocial support are essential to achieve and maintain recovery for patients with schizophrenia. Despite extensive efforts to clarify the underlying disease mechanisms, the main cause and pathophysiology of schizophrenia remain unclear. This is due in large part to disease heterogeneity, which results in biochemical differences within a single disease entity. Other factors include variability across clinical symptoms and disease course, along with varied risk factors and treatment responses. Although schizophrenia's positive symptoms are largely managed through treatment with atypical antipsychotics, new classes of drugs are needed to address the unmet medical need for improving cognitive dysfunction and promoting recovery of negative symptoms in these patients. Accumulation of toxic reactive dicarbonyls, such as methylglyoxal, are typical indicators of carbonyl stress, and result in the modification of proteins and the formation of advanced glycation end products, such as pentosidine. In June 2010, we reported on idiopathic carbonyl stress in a subpopulation of schizophrenia patients, leading to a failure of metabolic systems with plasma pentosidine accumulation and serum pyridoxal depletion. Our findings suggest two markers, pentosidine and pyridoxal, as beneficial for distinguishing a specific subgroup of schizophrenics. We believe that this information, derived from in vitro and in vivo studies, is beneficial in the search for personalized and hopefully more effective treatment regimens in schizophrenia. Here, we define a subtype of schizophrenia based on carbonyl stress and the potential for using carbonyl stress as a biomarker in the challenge of overcoming heterogeneity in schizophrenia treatment. PMID:24995521

  19. Altered serum glyceraldehyde-derived advanced glycation end product (AGE) and soluble AGE receptor levels indicate carbonyl stress in patients with schizophrenia.

    PubMed

    Takeda, Mayu; Ohnuma, Tohru; Takeuchi, Masayoshi; Katsuta, Narimasa; Maeshima, Hitoshi; Takebayashi, Yuto; Higa, Motoyuki; Nakamura, Toru; Nishimon, Shohei; Sannohe, Takahiro; Hotta, Yuri; Hanzawa, Ryo; Higashiyama, Ryoko; Shibata, Nobuto; Gohda, Tomohito; Suzuki, Yusuke; Yamagishi, Sho-ichi; Tomino, Yasuhiko; Arai, Heii

    2015-04-23

    Recent cross-sectional and longitudinal studies indicate that measurements of peripheral blood carbonyl stress markers such as the advanced glycation end product (AGE) pentosidine and the reactive carbonyl-detoxifying B6 vitamin pyridoxal could be used as therapeutic biological markers in subpopulations of schizophrenia patients. Glyceraldehyde-derived AGEs (Glycer-AGE) have strong neurotoxicity, and soluble receptors for AGEs (sRAGE) may ameliorate the effects of AGEs. In the present study, we measured Glycer-AGEs and sRAGE levels to determine their potential as diagnostic, therapeutic, or clinical biological markers in patients with schizophrenia. After enrollment of 61 admitted Japanese patients with acute schizophrenia and 39 healthy volunteers, 54 patients were followed up from the acute stage to remission. Serum biomarkers were measured in blood samples taken before breakfast using competitive enzyme-linked immunosorbent assays, and Glycer-AGEs were significantly higher and sRAGE levels were significantly lower in patients with acute schizophrenia than in healthy controls. Glycer-AGEs/sRAGE ratios were also higher in schizophrenia patients and were stable during the clinical course. Furthermore, discriminant analyses confirmed that Glycer-AGEs and Glycer-AGEs/sRAGE ratios are significant diagnostic markers for schizophrenia, and distinguished between patients and healthy controls in 70.0% of cases. However, these markers of carbonyl stress were not correlated with clinical features, including disease severity, or with daily chlorpromazine doses. These data indicate the potential of Glycer-AGEs, RAGEs, and their relative ratios as diagnostic markers for patients with schizophrenia.

  20. Conformational and configurational analysis of an N,N carbonyl dipyrrinone-derived oximate and nitrone by NMR and quantum chemical calculations.

    PubMed

    Walton, Ian; Davis, Marauo; Yang, Liu; Zhang, Yong; Tillman, Destin; Jarrett, William L; Huggins, Michael T; Wallace, Karl J

    2011-05-01

    The geometries and relative energies of new N,N carbonyl dipyrrinone-derived oxime molecules (E/Z-s-cis 4a and E/Z-s-cis 4b) have been investigated. The calculated energies, molecular geometries, and (1) H/(13) C NMR chemical shifts agree with experimental data, and the results are presented herein. The E-s-cis conformations of 4a and 4b and the Z-s-cis conformation of 5b were found to be the thermodynamically most stable isomers with the oxime hydrogen atom or the methyl functional group adopting an anti-orientation with respect to the dipyrrinone group. This conformation was unambiguously supported by a number of 2D NMR experiments.

  1. Clinical relevance of endothelium-derived relaxing factor (EDRF)

    PubMed Central

    Bassenge, E.

    1992-01-01

    1 In addition to metabolic and neurohumoral factors endothelium-derived autacoids like the nitric oxide radical NO and prostacyclin are effective regulators of vascular tone and thus tissue perfusion. NO is produced in endothelial cells from L-arginine by a Ca2+/calmodulin-dependent enzyme NO synthase. In addition, the NO radical is ultimately cleaved from all nitrovasodilators and resembles their vasoactive and antiaggregatory principle, which is used under pathological conditions as substitution therapy for impaired endothelial function and autacoid production. Impaired endothelium-dependent vasomotor control has been documented in hypercholesterolaemia, atheromatosis, diabetes, hypertension, and in reperfusion damage. L-arginine supplementation is effective in a few instances. PMID:1633078

  2. Biological evaluation of synthetic α,β-unsaturated carbonyl based cyclohexanone derivatives as neuroprotective novel inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation.

    PubMed

    Zha, Gao-Feng; Zhang, Cheng-Pan; Qin, Hua-Li; Jantan, Ibrahim; Sher, Muhammad; Amjad, Muhammad Wahab; Hussain, Muhammad Ajaz; Hussain, Zahid; Bukhari, Syed Nasir Abbas

    2016-05-15

    A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1-42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1-42 aggregation. The compound 3o exhibited best AChE (IC50=0.037μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.

  3. Metal Carbonyl-Hydrosilane Reactions and Hydrosilation Catalysis

    SciTech Connect

    Cutler, A. R.

    2001-04-14

    Manganese carbonyl complexes serve as hydrosilation precatalysts for selectively transforming a carbonyl group into a siloxy methylene or a fully reduced methylene group. Substrates of interest include (1) aldehydes, ketones, carboxylic acids, silyl esters, and esters, and (2) their organometallic acyl counterparts. Three relevant catalytic reactions are shown. Two types of manganese precatalysts have been reported: (a) alkyl and acyl complexes (L)(C0){sub 4}MnR [L = CO, PPh{sub 3}; R = COCH{sub 3}, COPh, CH{sub 3}] and (b) halides (CO){sub 5}MnX and [(CO){sub 4}MnX]{sub 2} (X = Br, I). The former promote hydrosilation and deoxygenation catalysis; the latter promote dehydrogenative silation of alcohols and carboxylic acids as well as hydrosilation and deoxygenation of some metallocarboxylic acid derivatives. In every case studied, these Mn precatalysts are far more reactive or selective than traditional Rh(I) precatalysts.

  4. Prospects for three-electron donor boronyl (BO) ligands and dioxodiborene (B2O2) ligands as bridging groups in binuclear iron carbonyl derivatives.

    PubMed

    Chang, Yu; Li, Qian-Shu; Xie, Yaoming; King, R Bruce

    2012-08-20

    Recent experimental work (2010) on (Cy(3)P)(2)Pt(BO)Br indicates that the oxygen atom of the boronyl (BO) ligand is more basic than that in the ubiquitous CO ligand. This suggests that bridging BO ligands in unsaturated binuclear metal carbonyl derivatives should readily function as three-electron donor bridging ligands involving both the oxygen and the boron atoms. In this connection, density functional theory shows that three of the four lowest energy singlet Fe(2)(BO)(2)(CO)(7) structures have such a bridging η(2)-μ-BO group as well as a formal Fe-Fe single bond. In addition, all four of the lowest energy singlet Fe(2)(BO)(2)(CO)(6) structures have two bridging η(2)-μ-BO groups and formal Fe-Fe single bonds. Other Fe(2)(BO)(2)(CO)(n) (n = 7, 6) structures are found in which the two BO groups have coupled to form a bridging dioxodiborene (B(2)O(2)) ligand with B-B bonding distances of ~1.84 Å. All of these Fe(2)(μ-B(2)O(2))(CO)(n) structures have long Fe···Fe distances indicating a lack of direct iron-iron bonding. One of the singlet Fe(2)(BO)(2)(CO)(7) structures has such a bridging dioxodiborene ligand with cis stereochemistry functioning as a six-electron donor to the pair of iron atoms. In addition, the lowest energy triplet structures for both Fe(2)(BO)(2)(CO)(7) and Fe(2)(BO)(2)(CO)(6) have bridging dioxodiborene ligands with trans stereochemistry functioning as a four-electron donor to the pair of iron atoms. PMID:22862812

  5. C1-C14 carbonyls in Los Angeles air

    SciTech Connect

    Grosjean, E.; Grosjean, D.; Fraser, M.; Cass, G.R.

    1995-12-01

    Air samples collected at five Los Angeles locations have been analyzed for carbonyls as their DNPH derivatives using liquid chromatography and chemical ionization mass spectrometry. Twenty-three carbonyls have been measured: 14 aliphatic aldehydes (from formaldehyde to tetradecanal); 2 aromatics (benzaldehyde and m-tolualdehyde), 3 ketones (acetone, 2-butanone and cyclohexanone), one unsaturated carbonyl (crotonaldehyde) and 3 dicarbonyls (glyoxal, methylglyoxal and biacetyl). Another nineteen carbonyls have been tentatively identified including four high MW (C{sub 15}-C{sub 18}) aliphatic carbonyls.

  6. Concise review: the relevance of human stem cell-derived organoid models for epithelial translational medicine.

    PubMed

    Hynds, Robert E; Giangreco, Adam

    2013-03-01

    Epithelial organ remodeling is a major contributing factor to worldwide death and disease, costing healthcare systems billions of dollars every year. Despite this, most fundamental epithelial organ research fails to produce new therapies and mortality rates for epithelial organ diseases remain unacceptably high. In large part, this failure in translating basic epithelial research into clinical therapy is due to a lack of relevance in existing preclinical models. To correct this, new models are required that improve preclinical target identification, pharmacological lead validation, and compound optimization. In this review, we discuss the relevance of human stem cell-derived, three-dimensional organoid models for addressing each of these challenges. We highlight the advantages of stem cell-derived organoid models over existing culture systems, discuss recent advances in epithelial tissue-specific organoids, and present a paradigm for using organoid models in human translational medicine. PMID:23203919

  7. Organocatalyzed Intramolecular Carbonyl-Ene Reactions.

    PubMed

    Dahlmann, Heidi A; McKinney, Amanda J; Santos, Maria P; Davis, Lindsey O

    2016-05-31

    An organocatalyzed intramolecular carbonyl-ene reaction was developed to produce carbocyclic and heterocyclic 5- and 6-membered rings from a citronellal-derived trifluoroketone and a variety of aldehydes. A phosphoramide derivative was found to promote the cyclization of the trifluoroketone, whereas a less acidic phosphoric acid proved to be a superior catalyst for the aldehyde substrates.

  8. Direct photolysis of carbonyl compounds dissolved in cloud and fog~droplets

    NASA Astrophysics Data System (ADS)

    Epstein, S. A.; Tapavicza, E.; Furche, F.; Nizkorodov, S. A.

    2013-09-01

    Gas-phase photolysis is an important tropospheric sink for many carbonyl compounds; however the significance of direct photolysis of these compounds dissolved in cloud and fog droplets is uncertain. We develop a theoretical approach to assess the importance of aqueous photolysis for a series of carbonyls that possess carboxyl and hydroxyl functional groups by comparison with rates of other atmospheric processes. We use computationally and experimentally derived effective Henry's law constants, hydration equilibrium parameters, aqueous hydroxyl radical (OH) rate constants, and optical extinction coefficients to identify types of compounds that will (or will not) have competitive aqueous photolysis rates. We also present molecular dynamics simulations designed to estimate gas- and aqueous-phase extinction coefficients of unstudied atmospherically relevant compounds found in d-limonene and isoprene secondary organic aerosol. In addition, experiments designed to measure the photolysis rate of glyceraldehyde, an atmospherically relevant water-soluble organic compound, reveal that aqueous quantum yields are highly molecule-specific and cannot be extrapolated from measurements of structurally similar compounds. We find that only two out of the 92 carbonyl compounds investigated, pyruvic acid and acetoacetic acid, may have aqueous photolysis rates that exceed the rate of oxidation by dissolved OH. For almost all carbonyl compounds lacking α,β-conjugation that were investigated, atmospheric removal by direct photolysis in cloud and fog droplets can be neglected under typical atmospheric conditions.

  9. COATING URANIUM FROM CARBONYLS

    DOEpatents

    Gurinsky, D.H.; Storrs, S.S.

    1959-07-14

    Methods are described for making adherent corrosion resistant coatings on uranium metal. According to the invention, the uranium metal is heated in the presence of an organometallic compound such as the carbonyls of nickel, molybdenum, chromium, niobium, and tungsten at a temperature sufficient to decompose the metal carbonyl and dry plate the resultant free metal on the surface of the uranium metal body. The metal coated body is then further heated at a higher temperature to thermally diffuse the coating metal within the uranium bcdy.

  10. Importance of being Nernst: Synaptic activity and functional relevance in stem cell-derived neurons

    PubMed Central

    Bradford, Aaron B; McNutt, Patrick M

    2015-01-01

    Functional synaptogenesis and network emergence are signature endpoints of neurogenesis. These behaviors provide higher-order confirmation that biochemical and cellular processes necessary for neurotransmitter release, post-synaptic detection and network propagation of neuronal activity have been properly expressed and coordinated among cells. The development of synaptic neurotransmission can therefore be considered a defining property of neurons. Although dissociated primary neuron cultures readily form functioning synapses and network behaviors in vitro, continuously cultured neurogenic cell lines have historically failed to meet these criteria. Therefore, in vitro-derived neuron models that develop synaptic transmission are critically needed for a wide array of studies, including molecular neuroscience, developmental neurogenesis, disease research and neurotoxicology. Over the last decade, neurons derived from various stem cell lines have shown varying ability to develop into functionally mature neurons. In this review, we will discuss the neurogenic potential of various stem cells populations, addressing strengths and weaknesses of each, with particular attention to the emergence of functional behaviors. We will propose methods to functionally characterize new stem cell-derived neuron (SCN) platforms to improve their reliability as physiological relevant models. Finally, we will review how synaptically active SCNs can be applied to accelerate research in a variety of areas. Ultimately, emphasizing the critical importance of synaptic activity and network responses as a marker of neuronal maturation is anticipated to result in in vitro findings that better translate to efficacious clinical treatments. PMID:26240679

  11. NADP(+)-dependent dehydrogenase activity of carbonyl reductase on glutathionylhydroxynonanal as a new pathway for hydroxynonenal detoxification.

    PubMed

    Moschini, Roberta; Peroni, Eleonora; Rotondo, Rossella; Renzone, Giovanni; Melck, Dominique; Cappiello, Mario; Srebot, Massimo; Napolitano, Elio; Motta, Andrea; Scaloni, Andrea; Mura, Umberto; Del-Corso, Antonella

    2015-06-01

    An NADP(+)-dependent dehydrogenase activity on 3-glutathionyl-4-hydroxynonanal (GSHNE) was purified to electrophoretic homogeneity from a line of human astrocytoma cells (ADF). Proteomic analysis identified this enzymatic activity as associated with carbonyl reductase 1 (EC 1.1.1.184). The enzyme is highly efficient at catalyzing the oxidation of GSHNE (KM 33 µM, kcat 405 min(-1)), as it is practically inactive toward trans-4-hydroxy-2-nonenal (HNE) and other HNE-adducted thiol-containing amino acid derivatives. Combined mass spectrometry and nuclear magnetic resonance spectroscopy analysis of the reaction products revealed that carbonyl reductase oxidizes the hydroxyl group of GSHNE in its hemiacetal form, with the formation of the corresponding 3-glutathionylnonanoic-δ-lactone. The relevance of this new reaction catalyzed by carbonyl reductase 1 is discussed in terms of HNE detoxification and the recovery of reducing power.

  12. Tolerance of human embryonic stem cell derived islet progenitor cells to vitrification-relevant solutions.

    PubMed

    Lahmy, Reyhaneh; Bolyukh, Vladimir F; Castilla, Sergio Mora; Laurent, Louise C; Katkov, Igor I; Itkin-Ansari, Pamela

    2015-06-01

    We have previously shown that human embryonic stem cell derived islet progenitors (hESC-IPs), encapsulated inside an immunoprotective device, mature in vivo and ameliorate diabetes in mice. The ability to cryopreserve hESC-IPs preloaded in these devices would enhance consistency and portability, but traditional 'slow freezing' methods did not work well for cells encapsulated in the device. Vitrification is an attractive alternative cryopreservation approach. To assess the tolerance of hESC-IPs to vitrification relevant conditions, we here are reporting cell survival following excursions in tonicity, exposure to fifteen 40% v/v combinations of 4 cryoprotectants, and varied methods for addition and elution. We find that 78% survival is achieved using a protocol in which cells are abruptly (in one step) exposed to a solution containing 10% v/v each dimethyl sulfoxide, propylene glycol, ethylene glycol, and glycerol on ice, and eluted step-wise with DPBS+0.5M sucrose at 37°C. Importantly, the hESC-IPs also maintain expression of the critical islet progenitor markers PDX-1, NKX6.1, NGN3 and NEURO-D1. Thus, hESC-IPs exhibit robust tolerance to exposure to vitrification solutions in relevant conditions. PMID:25817378

  13. Asymmetric synthesis of chiral β-alkynyl carbonyl and sulfonyl derivatives via sequential palladium and copper catalysis† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc01724j Click here for additional data file.

    PubMed Central

    Masters, James T.; Taft, Benjamin R.; Lumb, Jean-Philip

    2016-01-01

    We present a full account detailing the development of a sequential catalysis strategy for the synthesis of chiral β-alkynyl carbonyl and sulfonyl derivatives. A palladium-catalyzed cross coupling of terminal alkyne donors with acetylenic ester, ketone, and sulfone acceptors generates stereodefined enynes in high yield. These compounds are engaged in an unprecedented, regio- and enantioselective copper-catalyzed conjugate reduction. The process exhibits a high functional group tolerance, and this enables the synthesis of a broad range of chiral products from simple, readily available alkyne precursors. The utility of the method is demonstrated through the elaboration of the chiral β-alkynyl products into a variety of different molecular scaffolds. Its value in complex molecule synthesis is further validated through a concise, enantioselective synthesis of AMG 837, a potent GPR40 receptor agonist. PMID:27746892

  14. THE METAL CARBONYLS.

    PubMed

    Blanchard, A A

    1941-10-01

    When the metal carbonyls were first discovered, their properties were startling because they seemed to violate nearly all the previously recognized generalizations of chemistry. Even to-day the existence of the carbonyls is not particularly emphasized in elementary courses of chemistry because it is rather hard to reconcile them with the first presentations of the generalizations of chemistry. Nevertheless, as the student progresses deeper into the knowledge of chemistry it becomes desirable to include the knowledge of the carbonyls both because they become more comprehensible when viewed in the light of Werner's system of coordination and because they themselves contribute to the comprehension of the Werner theory. As long ago as 1931, Reiff in his discussion of cobalt nitrosyl carbonyl recognized the correlation between the effective atomic number and the volatility of carbonyls. A more recent study of charged Werner coordination complexes, that is, of complex ions, has shown a similar role of the effective atomic number. We are standing on fairly firm ground when we point out the correlation between E.A.N. and the volatility of the carbonyl complexes and the existence of complex ions. Be it noted that we have made no postulates as to the arrangement of the electrons in quantum levels. In the inert gases the outer principal quantum group is supposed always to contain eight electrons. In the carbonyls and other Werner complexes there is no compelling reason to suppose that the electrons in the coordinating layer, be this layer of eight, ten, twelve or sixteen electrons, are not all at the same energy level. Although we have confined our discussion almost exclusively to the property of volatility, the carbonyls are very interesting from the standpoint of several other properties, for example, magnetic susceptibility and dielectric constant. Enthusiasts in the interpretation of such properties try to draw conclusions as to the condition of the electrons, sometimes

  15. Acute nickel carbonyl poisoning.

    PubMed

    Kurta, D L; Dean, B S; Krenzelok, E P

    1993-01-01

    Nickel carbonyl [Ni(CO)4], is formed when metallic nickel combines with carbon monoxide. It is used in the refining process of nickel and as a catalyst in petroleum, plastic, and rubber production. Nickel carbonyl is considered to be one of the most toxic chemicals used industrially and the magnitude of its morbidity and mortality has been compared to that of hydrogen cyanide. A 46-year-old man presented to the emergency department 24 hours after accidental occupational exposure to nickel carbonyl. He admitted to dermal contamination and inhaling the vapor from his clothing after his respiratory protection was removed. On presentation the patient was alert and oriented, complained of shortness of breath, chest tightness, and paresthesias. Examination revealed decreased breath sounds bilaterally and arterial blood gas PO2 of 39% with calculated O2 saturation of 75%. After face mask O2 at 60% his PO2 increased to 85%. The patient required 60% O2 with continuous positive airway pressure of 5 for 4 days. Disulfiram (Antabuse) was administered for the first 2 days until sodium diethyldithiocarbamate (dithiocarb) was obtained. Disulfiram was used because it is metabolized to two molecules of dithiocarb and is hypothetically of value. Dithiocarb was obtained and continued over the next several days. The patient's urine nickel level on the day of admission was 172 micrograms/dL (normal < 5 micrograms/dL) and a serum level of 14.6 micrograms/dL (normal .26-.46 micrograms/dL). The patient's condition gradually improved over the next 10 days. Nickel carbonyl exposure produces mild transient initial symptoms which are followed within 24 hours by more severe life-threatening events.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Acute nickel carbonyl poisoning.

    PubMed

    Kurta, D L; Dean, B S; Krenzelok, E P

    1993-01-01

    Nickel carbonyl [Ni(CO)4], is formed when metallic nickel combines with carbon monoxide. It is used in the refining process of nickel and as a catalyst in petroleum, plastic, and rubber production. Nickel carbonyl is considered to be one of the most toxic chemicals used industrially and the magnitude of its morbidity and mortality has been compared to that of hydrogen cyanide. A 46-year-old man presented to the emergency department 24 hours after accidental occupational exposure to nickel carbonyl. He admitted to dermal contamination and inhaling the vapor from his clothing after his respiratory protection was removed. On presentation the patient was alert and oriented, complained of shortness of breath, chest tightness, and paresthesias. Examination revealed decreased breath sounds bilaterally and arterial blood gas PO2 of 39% with calculated O2 saturation of 75%. After face mask O2 at 60% his PO2 increased to 85%. The patient required 60% O2 with continuous positive airway pressure of 5 for 4 days. Disulfiram (Antabuse) was administered for the first 2 days until sodium diethyldithiocarbamate (dithiocarb) was obtained. Disulfiram was used because it is metabolized to two molecules of dithiocarb and is hypothetically of value. Dithiocarb was obtained and continued over the next several days. The patient's urine nickel level on the day of admission was 172 micrograms/dL (normal < 5 micrograms/dL) and a serum level of 14.6 micrograms/dL (normal .26-.46 micrograms/dL). The patient's condition gradually improved over the next 10 days. Nickel carbonyl exposure produces mild transient initial symptoms which are followed within 24 hours by more severe life-threatening events.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8383493

  17. Millimeter wave spectra of carbonyl cyanide ⋆

    PubMed Central

    Bteich, S.B.; Tercero, B.; Cernicharo, J.; Motiyenko, R.A.; Margulès, L.; Guillemin, J.-C.

    2016-01-01

    Context More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods The rotational spectrum of carbonyl cyanide was measured in the frequency range 152 - 308 GHz and analyzed using Watson’s A- and S-reduction Hamiltonians. Results The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. PMID:27738349

  18. Specific coupling between the 13-keto carbonyl and chlorin skeletal vibrational modes of synthetic 13 1- 18O-(un)labelled metallochlorophyll derivatives

    NASA Astrophysics Data System (ADS)

    Morishita, Hidetada; Tamiaki, Hitoshi

    2009-03-01

    Metal complexes of methyl 13 1- 18O-labelled pyropheophorbide- a1-M- 18O (M = Zn, Cu and Ni) were prepared by metallation of the 18O-labelled free base ( 1- 18O) and 18O-labelling of unlabelled nickel complex ( 1-Ni). The FT-IR spectra of 1-Zn and 1-Zn- 18O in CH 2Cl 2 showed that the 13-keto carbonyl stretching vibration mode moved to about a 30-cm -1 lower wavenumber by 18O-labelling of the 13 1-oxo moiety. In 1-Cu- 18O and 1-Ni- 18O, the 13-C dbnd 18O stretching modes were close to the highest-energy wavenumber mode of chlorin skeletal C-C/C-N vibrations at around 1650 cm -1 and they were coupled in CH 2Cl 2 to give two split IR bands (Fermi resonance). A similar coupling was observed in the resonance Raman scattering of 1-Ni- 18O in the solid state. The hydrogen-bonded 13-C dbnd 16O vibration mode of 1-Ni similarly coupled with the skeletal C-C/C-N mode in CCl 4 containing 1% (v/v) 1,1,1,3,3,3-hexafluoro-2-propanol, while such a coupling was not observed in a neat CCl 4 solution of 1-Ni possessing the 13-C dbnd 16O free from any interaction. The skeletal C-C/C-N band selectively coupled with the 13-C dbnd O, not with the 3-C dbnd O, when the difference in their peak maxima was less than 20 cm -1.

  19. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    SciTech Connect

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  20. Miniaturized iPS-Cell-Derived Cardiac Muscles for Physiologically Relevant Drug Response Analyses

    PubMed Central

    Huebsch, Nathaniel; Loskill, Peter; Deveshwar, Nikhil; Spencer, C. Ian; Judge, Luke M.; Mandegar, Mohammad A.; B. Fox, Cade; Mohamed, Tamer M.A.; Ma, Zhen; Mathur, Anurag; Sheehan, Alice M.; Truong, Annie; Saxton, Mike; Yoo, Jennie; Srivastava, Deepak; Desai, Tejal A.; So, Po-Lin; Healy, Kevin E.; Conklin, Bruce R.

    2016-01-01

    Tissue engineering approaches have the potential to increase the physiologic relevance of human iPS-derived cells, such as cardiomyocytes (iPS-CM). However, forming Engineered Heart Muscle (EHM) typically requires >1 million cells per tissue. Existing miniaturization strategies involve complex approaches not amenable to mass production, limiting the ability to use EHM for iPS-based disease modeling and drug screening. Micro-scale cardiospheres are easily produced, but do not facilitate assembly of elongated muscle or direct force measurements. Here we describe an approach that combines features of EHM and cardiospheres: Micro-Heart Muscle (μHM) arrays, in which elongated muscle fibers are formed in an easily fabricated template, with as few as 2,000 iPS-CM per individual tissue. Within μHM, iPS-CM exhibit uniaxial contractility and alignment, robust sarcomere assembly, and reduced variability and hypersensitivity in drug responsiveness, compared to monolayers with the same cellular composition. μHM mounted onto standard force measurement apparatus exhibited a robust Frank-Starling response to external stretch, and a dose-dependent inotropic response to the β-adrenergic agonist isoproterenol. Based on the ease of fabrication, the potential for mass production and the small number of cells required to form μHM, this system provides a potentially powerful tool to study cardiomyocyte maturation, disease and cardiotoxicology in vitro. PMID:27095412

  1. Age-dependent relevance of endogenous 5-lipoxygenase derivatives in anxiety-like behavior in mice.

    PubMed

    Leo, Luciana M; Almeida-Corrêa, Suellen; Canetti, Claudio A; Amaral, Olavo B; Bozza, Fernando A; Pamplona, Fabricio A

    2014-01-01

    When 5-lipoxygenase (5-LO) is inhibited, roughly half of the CNS effect of the prototypic endocannabinoid anandamide (AEA) is lost. Therefore, we decided to investigate whether inhibiting this enzyme would influence physiological functions classically described as being under control of the endocannabinoid system. Although 5-LO inhibition by MK-886 reduced lipoxin A4 levels in the brain, no effect was found in the elevated plus maze (EPM), even at the highest possible doses, via i.p. (10 mg/kg,) or i.c.v. (500 pmol/2 µl) routes. Accordingly, no alterations in anxiety-like behavior in the EPM test were observed in 5-LO KO mice. Interestingly, aged mice, which show reduced circulating lipoxin A4 levels, were sensitive to MK-886, displaying an anxiogenic-like state in response to treatment. Moreover, exogenous lipoxin A4 induced an anxiolytic-like profile in the EPM test. Our findings are in line with other reports showing no difference between FLAP KO or 5-LO KO and their control strains in adult mice, but increased anxiety-like behavior in aged mice. We also show for the first time that lipoxin A4 affects mouse behavior. In conclusion, we propose an age-dependent relevancy of endogenous 5-LO derivatives in the modulation of anxiety-like behavior, in addition to a potential for exogenous lipoxin A4 in producing an anxiolytic-like state.

  2. Novel and Stress Relevant EST Derived SSR Markers Developed and Validated in Peanut.

    PubMed

    Bosamia, Tejas C; Mishra, Gyan P; Thankappan, Radhakrishnan; Dobaria, Jentilal R

    2015-01-01

    With the aim to increase the number of functional markers in resource poor crop like cultivated peanut (Arachis hypogaea), large numbers of available expressed sequence tags (ESTs) in the public databases, were employed for the development of novel EST derived simple sequence repeat (SSR) markers. From 16424 unigenes, 2784 (16.95%) SSRs containing unigenes having 3373 SSR motifs were identified. Of these, 2027 (72.81%) sequences were annotated and 4124 gene ontology terms were assigned. Among different SSR motif-classes, tri-nucleotide repeats (33.86%) were the most abundant followed by di-nucleotide repeats (27.51%) while AG/CT (20.7%) and AAG/CTT (13.25%) were the most abundant repeat-motifs. A total of 2456 EST-SSR novel primer pairs were designed, of which 366 unigenes having relevance to various stresses and other functions, were PCR validated using a set of 11 diverse peanut genotypes. Of these, 340 (92.62%) primer pairs yielded clear and scorable PCR products and 39 (10.66%) primer pairs exhibited polymorphisms. Overall, the number of alleles per marker ranged from 1-12 with an average of 3.77 and the PIC ranged from 0.028 to 0.375 with an average of 0.325. The identified EST-SSRs not only enriched the existing molecular markers kitty, but would also facilitate the targeted research in marker-trait association for various stresses, inter-specific studies and genetic diversity analysis in peanut.

  3. High throughput assay for evaluation of reactive carbonyl scavenging capacity☆

    PubMed Central

    Vidal, N.; Cavaille, J.P.; Graziani, F.; Robin, M.; Ouari, O.; Pietri, S.; Stocker, P.

    2014-01-01

    Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal. PMID:24688895

  4. High throughput assay for evaluation of reactive carbonyl scavenging capacity.

    PubMed

    Vidal, N; Cavaille, J P; Graziani, F; Robin, M; Ouari, O; Pietri, S; Stocker, P

    2014-01-01

    Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  5. Millimeter wave spectra of carbonyl cyanide

    NASA Astrophysics Data System (ADS)

    Bteich, S. B.; Tercero, B.; Cernicharo, J.; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.

    2016-07-01

    Context. More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims: The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods: The rotational spectrum of carbonyl cyanide was measured in the frequency range 152-308 GHz and analyzed using Watson's A- and S-reduction Hamiltonians. Results: The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of

  6. Age-related carbonyl stress and erythrocyte membrane protein carbonylation.

    PubMed

    Li, Guolin; Liu, Li; Hu, Hui; Zhao, Qiong; Xie, Fuxia; Chen, Keke; Liu, Shenglin; Chen, Yaqin; Shi, Wang; Yin, Dazhong

    2010-01-01

    Reactive carbonyl species (RCS) have been widely used as indicators of oxidative stress. However, the associations of carbonyl stress with aging process and biochemical alteration of erythrocyte are still poorly understood. Fresh blood samples in vacutainer tubes containing sodium heparinate were obtained from 874 volunteers who were divided into young, adult and old groups based on their age. Plasma RCS and thiols concentrations between different age groups and erythrocyte membrane protein carbonylation in the adult group were detected within 24h of the blood sampling. Results showed that the plasma thiols concentration decreased gradually during aging process, and the p-values between all three groups are less than 0.05. The plasma RCS concentration in different age groups showed a nonlinear association with age. The levels in the young group were slightly higher than the adult group (not significant) and lower than the old group (p < 0.01). The protein carbonylation of erythrocyte membrane was positively correlated with plasma RCS concentration (p < 0.01), but not plasma thiols concentration. We conclude that higher levels of RCS, not lower levels of thiols, in plasma are a direct risk factor for the protein carbonylation of erythrocyte membrane. Owing to the decrease of thiols levels and increase of RCS levels during aging process, a shift from RCS-related redox allostasis to carbonyl stress would contribute to age-related biological dysfunction and even aging process.

  7. Simultaneous determination of airborne carbonyls and aromatic hydrocarbons using mixed sorbent collection and thermal desorption-gas chromatography/mass spectrometric analysis.

    PubMed

    Chien, Yeh-Chung; Yin, Ko-Ghun

    2009-05-01

    Volatile organic chemicals (VOC) such as aromatics and carbonyls are ubiquitous, and have environmental and health significance. This work presents a novel analytical method for simultaneously monitoring airborne carbonyls compounds and aromatic hydrocarbons. Carbonyls were collected onto an adsorbent (Tenax TA, coated with pentafluorophenyl hydrazine (PFPH)) that reacted with carbonyl groups to form thermo-stable derivatives that are suitable for subsequent analysis by thermal-desorption and GC/MS. Aromatic hydrocarbons were collected onto Tenax TA that was packed in the same sampling tube, and analyzed using the same method as carbonyls. Six carbonyls (formaldehyde, acetaldehyde, benzaldehyde, acetone, methyl ethyl ketone and methyl isobutyl ketone) and five aromatics (benzene, toluene, ethylbenzene, xylenes and styrene) were evaluated following standard test protocols. Calibration ranges were 30-200 ng per tube for most test chemicals, and 200-1000 ng per tube for formaldehyde. The analytical precision was 7% or better, and the collection efficiency, tested using a static sampling bag, was between 94 and 98%. PFPH-coated Tenax TA (for collecting carbonyls) needs to be placed in the front section of the tube, and Tenax TA in the back section (for collecting aromatics). The method detection limits of the current method ranged between 0.2 and 25 ng per tube, which corresponded to sub- to 17.2 ppbv (for formaldehyde), based on a typical 6 l sample from a sampling rate of 25 ml/min. Samples were stable for at least ten days under ambient conditions. The proposed method was also tested in the field and proved satisfactory. The proposed method is simple, feasible and has an acceptable accuracy and precision. It can thus be adopted as a reference method for making relevant measurements. PMID:19436859

  8. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  9. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  10. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  11. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  12. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  13. Effect of hydrogen atoms on the structures of trinuclear metal carbonyl clusters: trinuclear manganese carbonyl hydrides.

    PubMed

    Liu, Xian-mei; Wang, Chao-yang; Li, Qian-shu; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2009-05-18

    The structures of the trinuclear manganese carbonyl hydrides H(3)Mn(3)(CO)(n) (n = 12, 11, 10, 9) have been investigated by density functional theory (DFT). Optimization of H(3)Mn(3)(CO)(12) gives the experimentally known structure in which all carbonyl groups are terminal and each edge of a central Mn(3) equilateral triangle is bridged by a single hydrogen atom. This structure establishes the canonical distance 3.11 A for the Mn-Mn single bond satisfying the 18-electron rule. The central triangular (mu-H)(3)Mn(3) unit is retained in the lowest energy structure of H(3)Mn(3)(CO)(11), which may thus be derived from the H(3)Mn(3)(CO)(12) structure by removal of a carbonyl group with concurrent conversion of one of the remaining carbonyl groups into a semibridging carbonyl group to fill the resulting hole. The potential energy surface of H(3)Mn(3)(CO)(10) is relatively complicated with six singlet and five triplet structures. One of the lower energy H(3)Mn(3)(CO)(10) structures has one of the hydrogen atoms bridging the entire Mn(3) triangle and the other two hydrogen atoms bridging Mn-Mn edges. This H(3)Mn(3)(CO)(10) structure achieves the favored 18-electron configuration with a very short MnMn triple bond of 2.36 A. The other low energy H(3)Mn(3)(CO)(10) structure retains the (mu-H)(3)Mn(3) core of H(3)Mn(3)(CO)(12) but has a unique six-electron donor eta(2)-mu(3) carbonyl group bridging the entire Mn(3) triangle similar to the unique carbonyl group in the known compound Cp(3)Nb(3)(CO)(6)(eta(2)-mu(3)-CO). For H(3)Mn(3)(CO)(9) a structure with a central (mu(3)-H)(2)Mn(3) trigonal bipyramid lies >20 kcal/mol below any of the other structures. Triplet structures were found for the unsaturated H(3)Mn(3)(CO)(n) (n = 11, 10, 9) systems but at significantly higher energies than the lowest lying singlet structures.

  14. Ab initio calculations of scytonemin derivatives of relevance to extremophile characterization by Raman spectroscopy.

    PubMed

    Varnali, Tereza; Edwards, Howell G M

    2010-07-13

    The recognition that scytonemin, the radiation protectant pigment produced by extremophilic cyanobacterial colonies in stressed terrestrial environments, is a key biomarker for extinct or extant life preserved in geological scenarios is critically important for the detection of life signatures by remote analytical instrumentation on planetary surfaces and subsurfaces. The ExoMars mission to seek life signatures on Mars is just one experiment that will rely upon the detection of molecules such as scytonemin in the Martian regolith. Following a detailed structural analysis of the parent scytonemin, we report here for the first time a similar analysis of several of its methoxy derivatives that have recently been extracted from stressed cyanobacteria. Ab initio calculations have been carried out to determine the most stable molecular configurations, and the implications of the structural changes imposed by the methoxy group additions on the spectral characteristics of the parent molecule are discussed. The calculated electronic absorption bands of the derivative molecules reveal that their capability of removing UVA wavelengths is removed while preserving the ability to absorb the shorter wavelength UVB and UVC radiation, in contrast to scytonemin itself. This is indicative of a special role for these molecules in the protective strategy of the cyanobacterial extremophiles. PMID:20529954

  15. Ambient levels of carbonyl compounds and their sources in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Feng, Yanli; Wen, Sheng; Chen, Yingjun; Wang, Xinming; Lü, Huixiong; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    Ambient levels of carbonyl compounds and their possible sources, vehicular exhaust and cooking exhaust, were studied at seven places in Guangzhou, including five districts (a residential area, an industrial area, a botanical garden, a downtown area and a semi-rural area), a bus station and a restaurant during the period of June-September 2003. Nineteen carbonyl compounds were identified in the ambient air, of which acetone was the most abundant carbonyl, followed by formaldehyde and acetaldehyde. Only little changes were found in carbonyl concentration levels in the five different districts because of their dispersion and mixture in the atmosphere in summer. The lower correlations between the carbonyls' concentrations might result from the mixture of carbonyls derived from different sources, including strong photochemical reactions at noon in summer. Formaldehyde and acetaldehyde were the main carbonyls in bus station, while straight-chain carbonyls were comparatively abundant in cooking exhaust. Besides vehicular exhaust, cooking might be another major source of carbonyl compounds in Guangzhou City, especially for high molecular weight carbonyls.

  16. Adamantane derivatives of sulfonamides: sublimation, solubility, solvation and transfer processes in biologically relevant solvents.

    PubMed

    Perlovich, G L; Volkova, T V; Sharapova, A V; Kazachenko, V P; Strakhova, N N; Proshin, A N

    2016-04-01

    Eight adamantane derivatives of sulfonamides were synthesized and characterized. Temperature dependencies of saturation vapor pressure were obtained using the transpiration method and thermodynamic functions of the sublimation processes were calculated. Solubility values of the selected compounds in buffer (pH 7.4), 1-octanol and 1-hexane were determined at different temperatures using the isothermal saturation method. Thermophysical characteristics of fusion processes (melting points and fusion enthalpies) of the substances were studied using the DSC method. Transfer processes from buffer to 1-octanol, from buffer to 1-hexane and 1-hexane to 1-octanol were analyzed. The impact of the molecules' structural modification on sublimation, solubility and solvation/hydration processes in the solvents was studied. Correlation equations connecting the thermodynamic functions with physicochemical descriptors were obtained.

  17. Adamantane derivatives of sulfonamides: sublimation, solubility, solvation and transfer processes in biologically relevant solvents.

    PubMed

    Perlovich, G L; Volkova, T V; Sharapova, A V; Kazachenko, V P; Strakhova, N N; Proshin, A N

    2016-04-01

    Eight adamantane derivatives of sulfonamides were synthesized and characterized. Temperature dependencies of saturation vapor pressure were obtained using the transpiration method and thermodynamic functions of the sublimation processes were calculated. Solubility values of the selected compounds in buffer (pH 7.4), 1-octanol and 1-hexane were determined at different temperatures using the isothermal saturation method. Thermophysical characteristics of fusion processes (melting points and fusion enthalpies) of the substances were studied using the DSC method. Transfer processes from buffer to 1-octanol, from buffer to 1-hexane and 1-hexane to 1-octanol were analyzed. The impact of the molecules' structural modification on sublimation, solubility and solvation/hydration processes in the solvents was studied. Correlation equations connecting the thermodynamic functions with physicochemical descriptors were obtained. PMID:26976747

  18. Photoreaction of thioxanthone with indolic and phenolic derivatives of biological relevance: magnetic field effect study.

    PubMed

    Das, Doyel; Nath, Deb Narayan

    2008-11-20

    The photoinduced reaction of thioxanthone (TX) with various indolic and phenolic derivatives and amino acids like tryptophan and tyrosine has been monitored in sodium dodecyl sulfate micellar medium. Laser flash photolysis and magnetic field effect (MFE) experiments have been used to study the dynamics of the radical pairs. The quenching rate constant with different quenchers in SDS micellar solution has been measured. For indoles the electron-transfer reaction has been found to be followed by proton transfer from the donor molecule, which gives rise to the TX ketyl radical. On the other hand, the electron-transfer reaction in the case of phenols is preceded with formation of a hydrogen-bonded exciplex. The extent of the MFE and magnitude of the magnetic field corresponding to one-half of the saturation value of MFE ( B 1/2) support the fact that hyperfine mechanism plays the primary role. Quenching of MFE in the presence of gadolinium ions confirms that the radical pair is located near the micellar interface. MFE study has been further extended to protein-like bovine serum albumin in micellar solution. The results indicate loss in mobililty of radical pairs in the protein surfactant complex.

  19. Myeloid-derived suppressor cells: general characteristics and relevance to clinical management of pancreatic cancer

    PubMed Central

    Goedegebuure, P.; Mitchem, J.B.; Porembka, M.R.; Tan, M.C.B.; Belt, B.A.; Wang-Gillam, A.; Gillanders, W.E.; Hawkins, W.G.; Linehan, D.C.

    2013-01-01

    Recent studies describe a heterogeneous population of cells of the myeloid lineage, termed myeloid derived suppressor cells (MDSC), which are observed with increased prevalence in the peripheral blood and tumor microenvironment of cancer patients, including pancreatic cancer. Accumulation of MDSC in the peripheral circulation has been related to extent of disease, and correlates with stage. MDSC have primarily been implicated in promoting tumor growth by suppressing antitumor immunity. There is also compelling evidence MDSC are also involved in angiogenesis and metastatic spread. Two main subsets of MDSC have been identified in cancer patients: a monocytic subset, characterized by expression of CD14, and a granulocytic subset characterized by expression of CD15. Both subsets of MDSC actively suppress host immunity through a variety of mechanisms including production of reactive oxygen species and arginase. Just as in humans, accumulation of monocytic and granulocytic MDSC has been noted in the bone marrow, spleen, peripheral circulation, and tumors of tumor bearing mice. Successful targeting of MDSC in mice is associated with improved immune responses, delayed tumor growth, improved survival, and increased efficacy of vaccine therapy. By further elucidating mechanisms of MDSC recruitment and maintenance in the tumor environment, strategies could be developed to reverse immune tolerance to tumor. We discuss here what is currently known about MDSC as well as some potential strategies targeting MDSC in the context of our work on pancreatic cancer and recent literature. Due to the number of new reports on MDSC, the most pertinent ones have been selected. PMID:21599634

  20. Isolation and Characterization of Vaccine-Derived Polioviruses, Relevance for the Global Polio Eradication Initiative.

    PubMed

    Xu, Wenbo; Zhang, Yong

    2016-01-01

    Stool specimens were collected from children with acute flaccid paralysis (AFP) and their contacts, and viral isolation was performed according to standard procedures. If the specimens tested positive for poliovirus, then intratypic differentiation (ITD) methods were performed on the viral isolates to determine whether the poliovirus isolates were wild or of vaccine origin, these include a poliovirus diagnostic ITD real-time PCR method and a vaccine-derived poliovirus (VDPV) screening real-time PCR method.Viral RNA was extracted from the poliovirus isolates by using the QIAamp Mini Viral RNA Extraction Kit (Qiagen) and was used for RT-PCR amplification by the standard method. The entire VP1 region of the poliovirus isolates was amplified by RT-PCR with primers that flanked the VP1-coding region. After purification of the PCR products by the QIAquick Gel Extraction Kit (Qiagen), the amplicons were bidirectionally sequenced with the ABI PRISM 3130 Genetic Analyzer (Applied Biosystems). A neurovirulence test of polioviruses isolates was carried out using PVR-Tg21 mice that expressed the human poliovirus receptor (CD155). And the temperature sensitivities of polioviruses isolates were assayed on monolayer RD cells in 24-well plates as described. PMID:26983736

  1. Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity.

    PubMed

    Suri, D; Vaidya, V A

    2013-06-01

    Glucocorticoids serve as key stress response hormones that facilitate stress coping. However, sustained glucocorticoid exposure is associated with adverse consequences on the brain, in particular within the hippocampus. Chronic glucocorticoid exposure evokes neuronal cell damage and dendritic atrophy, reduces hippocampal neurogenesis and impairs synaptic plasticity. Glucocorticoids also alter expression and signaling of the neurotrophin, brain-derived neurotrophic factor (BDNF). Since BDNF is known to promote neuroplasticity, enhance cell survival, increase hippocampal neurogenesis and cellular excitability, it has been hypothesized that specific adverse effects of glucocorticoids may be mediated by attenuating BDNF expression and signaling. The purpose of this review is to summarize the current state of literature examining the influence of glucocorticoids on BDNF, and to address whether specific effects of glucocorticoids arise through perturbation of BDNF signaling. We integrate evidence of glucocorticoid regulation of BDNF at multiple levels, spanning from the well-documented glucocorticoid-induced changes in BDNF mRNA to studies examining alterations in BDNF receptor-mediated signaling. Further, we delineate potential lines of future investigation to address hitherto unexplored aspects of the influence of glucocorticoids on BDNF. Finally, we discuss the current understanding of the contribution of BDNF to the modulation of structural and functional plasticity by glucocorticoids, in particular in the context of the hippocampus. Understanding the mechanistic crosstalk between glucocorticoids and BDNF holds promise for the identification of potential therapeutic targets for disorders associated with the dysfunction of stress hormone pathways.

  2. Vitamin A and its derivatives in experimental photocarcinogenesis: preventive effects and relevance to humans.

    PubMed

    Shapiro, Stanley S; Seiberg, Miri; Cole, Curtis A

    2013-04-01

    The 1925 classical observation that vitamin A deficiency leads to squamous metaplasia and epithelial keratinization, coupled with the later finding that excess vitamin A inhibits keratinization of chick embryo skin, set the foundation for the potential therapeutic use of retinoids in cutaneous conditions of keratinization. Significant progress has since been made understanding the molecular biology, biochemistry, pharmacology, and toxicology of vitamin A and its derivatives, collectively named retinoids. Natural and synthetic retinoids are now routinely used to treat acne, psoriasis, skin keratinization disorders, and photodamage. Retinoids also inhibit tumor formation and skin cancer development in experimental systems and in humans. Retinol and retinyl palmitate (RP) are found in cosmetic products and in foods and dietary supplements, which are all considered safe, by inclusion in the Generally Recognized as Safe Substances Database. However, the safety of topical retinoids was questioned in one publication and in a recent National Toxicology Program report of RP-containing topical preparations, suggesting the possible earlier onset of ultraviolet-induced squamous cell carcinomas in the hairless mouse photocarcinogenesis model. This suggestion contradicts a large body of data indicating that topical retinoids are chemoprotective in humans, and it was immediately challenged by new reviews on the safety of RP in general and within sunscreens. This paper will review the preclinical and clinical data supporting the safety and chemopreventive activity of retinoids, with an emphasis on RP, and will examine the experimental systems used to evaluate the safety of topical vitamin A preparations in order to provide perspective relative to human skin. PMID:23652895

  3. The pharmacology and therapeutic relevance of endocannabinoid derived cyclo-oxygenase (COX)-2 products.

    PubMed

    Woodward, D F; Carling, R W C; Cornell, C L; Fliri, H G; Martos, J L; Pettit, S N; Liang, Y; Wang, J W

    2008-10-01

    The discovery of anandamide and 2-arachidonyl glycerol (2-AG) as naturally occurring mammalian endocannabinoids has had important and wide-reaching therapeutic implications. This, to a large extent, ensues from the complexity of endocannabinoid biology. One facet of endocannabinoid biology now receiving increased attention is the cyclo-oxygenase-2 (COX-2) derived oxidation products. Anandamide and 2-AG are oxidized to a range of PG-ethanolamides and PG-glyceryl esters that closely approaches that of the prostaglandins (PGs) formed from arachidonic acid. The pharmacology of these electrochemically neutral PG-ethanolamides (prostamides) and PG-glyceryl esters appears to be unique. No meaningful interaction with natural or recombinant prostanoid receptors is apparent. Nevertheless, in certain cells and tissues, prostamides and PG-glyceryl esters exert potent effects. The recent discovery of selective antagonists for the putative prostamide receptor has been a major advance in further establishing prostamide pharmacology as an entity distinct from prostanoid receptors. Since discovery of the prototype prostamide antagonist (AGN 204396), rapid progress has been made. The latest prostamide antagonists (AGN 211334-6) are 100 times more potent than the prototype and are, therefore, sufficiently active to be used in living animal studies. These compounds will allow a full evaluation of the role of prostamides in health and disease. To date, the only therapeutic application for prostamides is in glaucoma. The prostamide analog, bimatoprost, being the most effective ocular hypotensive drug currently available. Interestingly, PGE(2)-glyceryl ester and its chemically stable analog PGE(2)-serinolamide also lower intraocular pressure in dogs. Nevertheless, the therapeutic future of PGE(2)-glyceryl ester is more likely to reside in inflammation. PMID:18700152

  4. Gene expression changes induced by Trypanosoma cruzi shed microvesicles in mammalian host cells: relevance of tRNA-derived halves.

    PubMed

    Garcia-Silva, Maria R; Cabrera-Cabrera, Florencia; das Neves, Roberta Ferreira Cura; Souto-Padrón, Thaís; de Souza, Wanderley; Cayota, Alfonso

    2014-01-01

    At present, noncoding small RNAs are recognized as key players in novel forms of posttranscriptional gene regulation in most eukaryotes. However, canonical small RNA pathways seem to be lost or excessively simplified in some unicellular organisms including Trypanosoma cruzi which lack functional RNAi pathways. Recently, we reported the presence of alternate small RNA pathways in T. cruzi mainly represented by homogeneous populations of tRNA- and rRNA-derived small RNAs, which are secreted to the extracellular medium included in extracellular vesicles. Extracellular vesicle cargo could be delivered to other parasites and to mammalian susceptible cells promoting metacyclogenesis and conferring susceptibility to infection, respectively. Here we analyzed the changes in gene expression of host HeLa cells induced by extracellular vesicles from T. cruzi. As assessed by microarray assays a large set of genes in HeLa cells were differentially expressed upon incorporation of T. cruzi-derived extracellular vesicles. The elicited response modified mainly host cell cytoskeleton, extracellular matrix, and immune responses pathways. Some genes were also modified by the most abundant tRNA-derived small RNAs included in extracellular vesicles. These data suggest that microvesicles secreted by T. cruzi could be relevant players in early events of the T. cruzi host cell interplay.

  5. Erosion relevant topographical parameters derived from different height models - a comparative study from the Indian Lesser Himalayas

    NASA Astrophysics Data System (ADS)

    Datta, Pawanjeet; Schack-Kirchner, Helmer; Maier, Martin

    2010-05-01

    Topography is a crucial surface characteristic in soil erosion modelling studies. Soil erosion models use a digital elevation model (DEM) to derive the topographical characteristics. In a majority of cases, it is incorporated as a given parameter and is not tested extensively in contrast to soil, land use and climate related parameters. However, the data accuracy in case of topographical parameters depends largely on the derivation method and the resolution of the DEM. This study compares erosion relevant parameters - elevation, slope, aspect and topographical LS-factor computed from three DEMs at original resolutions and a 20m interpolated resolution for a 13 km2 watershed located in the Indian Lesser Himalayas. The DEMs used were a digitized DEM generated from contour lines on a 1:50,000 topographical map, a SRTM DEM at 90m resolution and an ASTER DEM at 15m resolution. The DEM derived topographical parameters were compared with 152 field measurements from the catchment. Significant differences across the DEMs were observed for all the parameters. The high resolution ASTER DEM was observed to fail for the mountainous watershed. TOPO DEM which is, theoretically, more detailed showed similar behavior to the coarser SRTM DEM in its variability from the field measurements. Field control as well as mixed regression modeling show SRTM DEM to be the DEM of choice for the study area and it was found to be reliable at catchment scale but not at sub-watershed or hillslope scales. Keywords: soil erosion modelling, DEM, topographical parameters, Lesser Himalaya

  6. Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective.

    PubMed

    Møller, Ian M; Rogowska-Wrzesinska, Adelina; Rao, R S P

    2011-10-19

    Proteins can become oxidatively modified in many different ways, either by direct oxidation of amino acid side chains and protein backbone or indirectly by conjugation with oxidation products of polyunsaturated fatty acids and carbohydrates. While reversible oxidative modifications are thought to be relevant in physiological processes, irreversible oxidative modifications are known to contribute to cellular damage and disease. The most well-studied irreversible protein oxidation is carbonylation. In this work we first examine how protein carbonylation occurs via metal-catalyzed oxidation (MCO) in vivo and in vitro with an emphasis on cellular metal ion homeostasis and metal binding. We then review proteomic methods currently used for identifying carbonylated proteins and their sites of modification. Finally, we discuss the identified carbonylated proteins and the pattern of carbonylation sites in relation to cellular metabolism using the mitochondrion as a case story.

  7. Computational calculation of equilibrium constants: addition to carbonyl compounds.

    PubMed

    Gómez-Bombarelli, Rafael; González-Pérez, Marina; Pérez-Prior, María Teresa; Calle, Emilio; Casado, Julio

    2009-10-22

    Hydration reactions are relevant for understanding many organic mechanisms. Since the experimental determination of hydration and hemiacetalization equilibrium constants is fairly complex, computational calculations now offer a useful alternative to experimental measurements. In this work, carbonyl hydration and hemiacetalization constants were calculated from the free energy differences between compounds in solution, using absolute and relative approaches. The following conclusions can be drawn: (i) The use of a relative approach in the calculation of hydration and hemiacetalization constants allows compensation of systematic errors in the solvation energies. (ii) On average, the methodology proposed here can predict hydration constants within +/- 0.5 log K(hyd) units for aldehydes. (iii) Hydration constants can be calculated for ketones and carboxylic acid derivatives within less than +/- 1.0 log K(hyd), on average, at the CBS-Q level of theory. (iv) The proposed methodology can predict hemiacetal formation constants accurately at the MP2 6-31++G(d,p) level using a common reference. If group references are used, the results obtained using the much cheaper DFT-B3LYP 6-31++G(d,p) level are almost as accurate. (v) In general, the best results are obtained if a common reference for all compounds is used. The use of group references improves the results at the lower levels of theory, but at higher levels, this becomes unnecessary. PMID:19761202

  8. Computational Calculation of Equilibrium Constants: Addition to Carbonyl Compounds

    NASA Astrophysics Data System (ADS)

    Gómez-Bombarelli, Rafael; González-Pérez, Marina; Pérez-Prior, María Teresa; Calle, Emilio; Casado, Julio

    2009-09-01

    Hydration reactions are relevant for understanding many organic mechanisms. Since the experimental determination of hydration and hemiacetalization equilibrium constants is fairly complex, computational calculations now offer a useful alternative to experimental measurements. In this work, carbonyl hydration and hemiacetalization constants were calculated from the free energy differences between compounds in solution, using absolute and relative approaches. The following conclusions can be drawn: (i) The use of a relative approach in the calculation of hydration and hemiacetalization constants allows compensation of systematic errors in the solvation energies. (ii) On average, the methodology proposed here can predict hydration constants within ± 0.5 log Khyd units for aldehydes. (iii) Hydration constants can be calculated for ketones and carboxylic acid derivatives within less than ± 1.0 log Khyd, on average, at the CBS-Q level of theory. (iv) The proposed methodology can predict hemiacetal formation constants accurately at the MP2 6-31++G(d,p) level using a common reference. If group references are used, the results obtained using the much cheaper DFT-B3LYP 6-31++G(d,p) level are almost as accurate. (v) In general, the best results are obtained if a common reference for all compounds is used. The use of group references improves the results at the lower levels of theory, but at higher levels, this becomes unnecessary.

  9. Carbonylation reactions of alkyl iodides through the interplay of carbon radicals and Pd catalysts.

    PubMed

    Sumino, Shuhei; Fusano, Akira; Fukuyama, Takahide; Ryu, Ilhyong

    2014-05-20

    Numerous methods for transition metal catalyzed carbonylation reactions have been established. Examples that start from aryl, vinyl, allyl, and benzyl halides to give the corresponding carboxylic acid derivatives have all been well documented. In contrast, the corresponding alkyl halides often encounter difficulty. This is inherent to the relatively slow oxidative addition step onto the metal center and subsequent β-hydride elimination which causes isomerization of the alkyl metal species. Radical carbonylation reactions can override such problems of reactivity; however, carbonylation coupled to iodine atom transfer (atom transfer carbonylation), though useful, often suffers from a slow iodine atom transfer step that affects the outcome of the reaction. We found that atom transfer carbonylation of primary, secondary, and tertiary alkyl iodides was efficiently accelerated by the addition of a palladium catalyst under light irradiation. Stereochemical studies support a mechanistic pathway based on the synergic interplay of radical and Pd-catalyzed reaction steps which ultimately lead to an acylpalladium species. The radical/Pd-combined reaction system has a wide range of applications, including the synthesis of carboxylic acid esters, lactones, amides, lactams, and unsymmetrical ketones such as alkyl alkynyl and alkyl aryl ketones. The design of unique multicomponent carbonylation reactions involving vicinal C-functionalization of alkenes, double and triple carbonylation reactions, in tandem with radical cyclization reactions, has also been achieved. Thus, the radical/Pd-combined strategy provides a solution to a longstanding problem of reactivity involving the carbonylation of alkyl halides. This novel methodology expands the breadth and utility of carbonylation chemistry over either the original radical carbonylation reactions or metal-catalyzed carbonylation reactions.

  10. A step-by-step protocol for assaying protein carbonylation in biological samples.

    PubMed

    Colombo, Graziano; Clerici, Marco; Garavaglia, Maria Elisa; Giustarini, Daniela; Rossi, Ranieri; Milzani, Aldo; Dalle-Donne, Isabella

    2016-04-15

    Protein carbonylation represents the most frequent and usually irreversible oxidative modification affecting proteins. This modification is chemically stable and this feature is particularly important for storage and detection of carbonylated proteins. Many biochemical and analytical methods have been developed during the last thirty years to assay protein carbonylation. The most successful method consists on protein carbonyl (PCO) derivatization with 2,4-dinitrophenylhydrazine (DNPH) and consequent spectrophotometric assay. This assay allows a global quantification of PCO content due to the ability of DNPH to react with carbonyl giving rise to an adduct able to absorb at 366 nm. Similar approaches were also developed employing chromatographic separation, in particular HPLC, and parallel detection of absorbing adducts. Subsequently, immunological techniques, such as Western immunoblot or ELISA, have been developed leading to an increase of sensitivity in protein carbonylation detection. Currently, they are widely employed to evaluate change in total protein carbonylation and eventually to highlight the specific proteins undergoing selective oxidation. In the last decade, many mass spectrometry (MS) approaches have been developed for the identification of the carbonylated proteins and the relative amino acid residues modified to carbonyl derivatives. Although these MS methods are much more focused and detailed due to their ability to identify the amino acid residues undergoing carbonylation, they still require too expensive equipments and, therefore, are limited in distribution. In this protocol paper, we summarise and comment on the most diffuse protocols that a standard laboratory can employ to assess protein carbonylation; in particular, we describe step-by-step the different protocols, adding suggestions coming from our on-bench experience.

  11. Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel

    NASA Astrophysics Data System (ADS)

    He, Chao; Ge, Yunshan; Tan, Jianwei; You, Kewei; Han, Xunkun; Wang, Junfang; You, Qiuwen; Shah, Asad Naeem

    The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h) -1 and that of diesel is 30.7 mg (kW h) -1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.

  12. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (PHB) from a Process Relevant Lignocellulosic Derived Sugar (Poster)

    SciTech Connect

    Wang, W.; Mittal, A.; Mohagheghi, A.; Johnson, D. K.

    2014-04-01

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose, glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.

  13. Synthetic and mechanistic aspects of titanium-mediated carbonyl olefinations

    SciTech Connect

    Petasis, N.A.; Staszewski, J.P.; Hu, Yong-Han; Lu, Shao-Po

    1995-12-31

    A new method for the olefination of carbonyl compounds with dimethyl titanocene, and other related bishydrocarbyl titanocene derivatives has been recently developed in the author`s laboratories. This process is experimentally convenient and works with various types of carbonyl compounds, including aldehydes, ketones, esters, lactones, carbonates, anhydrides, amides, imides, lactams, thioesters, selenoesters, and acylsilanes. More recent studies have focused on the scope and utility of this reaction, including mechanistic studies and synthetic applications. In addition to varying the reaction conditions, the authors have examined several mixed titanocene derivatives and have found ways for carrying out this type of olefination at room temperature, such as the use of tris(trimethylsilyl) titanacyclobutene. The authors have also employed this reaction in the modification of carbohydrates and cyclobutenediones. This olefination was also followed-up with subsequent transformations to produce carbocycles and heterocycles, including tetrahydrofurans and tetrahydropyrans.

  14. Vibrational scaling factors for transition metal carbonyls

    NASA Astrophysics Data System (ADS)

    Assefa, M. K.; Devera, J. L.; Brathwaite, A. D.; Mosley, J. D.; Duncan, M. A.

    2015-11-01

    Vibrational frequencies for a selected set of transition metal carbonyl complexes are computed with various forms of density functional theory (B3LYP, BP86, M06, and M06-L), employing several different basis sets. The computed frequencies for the carbonyl stretches are compared to the experimental values obtained from gas phase infrared spectra of isolated neutrals and ions. Recommended carbonyl-stretch scaling factors which are developed vary significantly for different functionals, but there is little variation with basis set. Scaled frequencies compared to experimental spectra for cobalt and tantalum carbonyl cations reveal additional variations in multiplet patterns and relative band intensities for different functionals.

  15. Evidence for pyrroloquinolinequinone as the carbonyl cofactor in lysyl oxidase by absorption and resonance Raman spectroscopy.

    PubMed

    Williamson, P R; Moog, R S; Dooley, D M; Kagan, H M

    1986-12-15

    The present study investigated the possibility that pyrroloquinolinequinone (PQQ), an aromatic carbonyl recently indicated to be the carbonyl cofactor in bovine plasma amine oxidase, may also be present at the active site of lysyl oxidase. The absorption and resonance Raman spectra of the phenylhydrazones of bovine plasma amine oxidase, of peptides derived from the active site of bovine aorta lysyl oxidase, and of PQQ were very similar, indicating that the carbonyl cofactor of lysyl oxidase is PQQ or a compound which closely resembles PQQ.

  16. Inhibition of human aldehyde oxidase activity by diet-derived constituents: structural influence, enzyme-ligand interactions, and clinical relevance.

    PubMed

    Barr, John T; Jones, Jeffrey P; Oberlies, Nicholas H; Paine, Mary F

    2015-01-01

    The mechanistic understanding of interactions between diet-derived substances and conventional medications in humans is nascent. Most investigations have examined cytochrome P450-mediated interactions. Interactions mediated by other phase I enzymes are understudied. Aldehyde oxidase (AO) is a phase I hydroxylase that is gaining recognition in drug design and development programs. Taken together, a panel of structurally diverse phytoconstituents (n = 24) was screened for inhibitors of the AO-mediated oxidation of the probe substrate O(6)-benzylguanine. Based on the estimated IC50 (<100 μM), 17 constituents were advanced for Ki determination. Three constituents were described best by a competitive inhibition model, whereas 14 constituents were described best by a mixed-mode model. The latter model consists of two Ki terms, Kis and Kii, which ranged from 0.26-73 and 0.80-120 μM, respectively. Molecular modeling was used to glean mechanistic insight into AO inhibition. Docking studies indicated that the tested constituents bound within the AO active site and elucidated key enzyme-inhibitor interactions. Quantitative structure-activity relationship modeling identified three structural descriptors that correlated with inhibition potency (r(2) = 0.85), providing a framework for developing in silico models to predict the AO inhibitory activity of a xenobiotic based solely on chemical structure. Finally, a simple static model was used to assess potential clinically relevant AO-mediated dietary substance-drug interactions. Epicatechin gallate and epigallocatechin gallate, prominent constituents in green tea, were predicted to have moderate to high risk. Further characterization of this uncharted type of interaction is warranted, including dynamic modeling and, potentially, clinical evaluation. PMID:25326286

  17. Enantioselective cycloaddition of carbonyl ylides with arylallenes using Rh2(S-TCPTTL)4.

    PubMed

    Krishnamurthi, Janagiraman; Nambu, Hisanori; Takeda, Koji; Anada, Masahiro; Yamano, Akihito; Hashimoto, Shunichi

    2013-08-28

    The first catalytic asymmetric carbonyl ylide cycloaddition with arylallenes is described. With dirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate], Rh2(S-TCPTTL)4, the cycloaddition of carbonyl ylides derived from diazoketoesters with arylallenes proceeded in a fully chemo- and regioselective manner to give highly functionalized 8-oxabicyclo[3.2.1]octanes with up to 99% ee and perfect exo diastereoselectivity.

  18. Increased Adipose Protein Carbonylation in Human Obesity

    PubMed Central

    Frohnert, Brigitte I.; Sinaiko, Alan R.; Serrot, Federico J.; Foncea, Rocio E.; Moran, Antoinette; Ikramuddin, Sayeed; Choudry, Umar; Bernlohr, David A.

    2015-01-01

    Insulin resistance is associated with obesity but mechanisms controlling this relationship in humans are not fully understood. Studies in animal models suggest a linkage between adipose reactive oxygen species (ROS) and insulin resistance. ROS oxidize cellular lipids to produce a variety of lipid hydroperoxides that in turn generate reactive lipid aldehydes that covalently modify cellular proteins in a process termed carbonylation. Mammalian cells defend against reactive lipid aldehydes and protein carbonylation by glutathionylation using glutathione-S-transferase A4 (GSTA4) or carbonyl reduction/oxidation via reductases and/or dehydrogenases. Insulin resistance in mice is linked to ROS production and increased level of protein carbonylation, mitochondrial dysfunction, decreased insulin-stimulated glucose transport, and altered adipokine secretion. To assess protein carbonylation and insulin resistance in humans, eight healthy participants underwent subcutaneous fat biopsy from the periumbilical region for protein analysis and frequently sampled intravenous glucose tolerance testing to measure insulin sensitivity. Soluble proteins from adipose tissue were analyzed using two-dimensional gel electrophoresis and the major carbonylated proteins identified as the adipocyte and epithelial fatty acid–binding proteins. The level of protein carbonylation was directly correlated with adiposity and serum free fatty acids (FFAs). These results suggest that in human obesity oxidative stress is linked to protein carbonylation and such events may contribute to the development of insulin resistance. PMID:21593812

  19. Surface decorated platinum carbonyl clusters

    NASA Astrophysics Data System (ADS)

    Ciabatti, Iacopo; Femoni, Cristina; Iapalucci, Maria Carmela; Longoni, Giuliano; Zacchini, Stefano; Zarra, Salvatore

    2012-06-01

    Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters.Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters. CCDC 867747 and 867748. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30400g

  20. Catalytic Carbonylative Spirolactonization of Hydroxycyclopropanols.

    PubMed

    Davis, Dexter C; Walker, Katherine L; Hu, Chunhua; Zare, Richard N; Waymouth, Robert M; Dai, Mingji

    2016-08-24

    A palladium-catalyzed cascade carbonylative spirolactonization of hydroxycyclopropanols has been developed to efficiently synthesize oxaspirolactones common to many complex natural products of important therapeutic value. The mild reaction conditions, high atom economy, broad substrate scope, and scalability of this new method were highlighted in expedient total syntheses of the Turkish tobacco natural products α-levantanolide and α-levantenolide in two and four steps, respectively. The hydroxycyclopropanol substrates are readily available in one step via a Kulinkovich reaction of the corresponding lactones. Mechanistic studies utilizing high-resolution electrospray ionization mass spectrometry (ESI-MS) identified several key intermediates in the catalytic cycle, as well as those related to catalyst decomposition and competitive pathways. PMID:27459274

  1. Carbonyl sulfide (OCS) as a proxy for GPP: Complications derived from studies on the impact of CO2, soil humidity and sterilization on the OCS exchange between soils and atmosphere

    NASA Astrophysics Data System (ADS)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide is discussed to be used as a proxy for gross primary productivity (GPP) of forest ecosystems. However, soils may interfere. Soils play an important role in budgeting global and local carbonyl sulfide (OCS) fluxes, yet the available data on the uptake and emission behavior of soils in conjunction with environmental factors is limited. The work of many authors has shown that the OCS exchange of soils depends on various factors, such as soil type, atmospheric OCS concentrations, temperature or soil water content (Kesselmeier et al., J. Geophys. Res., 104, No. D9, 11577-11584, 1999; Van Diest & Kesselmeier, Biogeosciences, 5, 475-483, 2008; Masyek et al., PNAS, 111, No 25, 9064-9069, doi: 10.1073/pnas.1319132111, 2014; Whelan and Rhew, J. Geophys. Res. Biogeosciences., 120, 54-62, doi: 10.1002/2014JG002661, 2015) and the light dependent and obviously abiotic OCS production as reported by Whelan and Rhew (2015). To get a better constraint on the impact of some environmental factors on the OCS exchange of soils we used a new laser based integrated cavity output spectroscopy instrument (LGR COS/CO Analyzer Model 907-0028, Los Gatos, Mountain View, California, USA) in conjunction with an automated soil chamber system (as described in Behrendt et al, Biogeosciences, 11, 5463-5492, doi: 10.5194/bg-11-5463-2014, 2014). The OCS exchange of various soils under the full range of possible soil humidity and various CO2 mixing ratios was examined. Additionally OCS exchange of chloroform sterilized subsamples was compared to their live counterparts to illuminate the influence of microorganisms. Results were quite heterogeneous between different soils. With few exceptions, all examined soils show dependence between OCS exchange and soil humidity, usually with strongest uptake at a certain humidity range and less uptake or even emission at higher and lower humidity. Differences in CO2 mixing ratio also clearly impacts on OCS exchange, but trends for different soils

  2. Iron(III)-catalysed carbonyl-olefin metathesis.

    PubMed

    Ludwig, Jacob R; Zimmerman, Paul M; Gianino, Joseph B; Schindler, Corinna S

    2016-04-27

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  3. Iron(III)-catalysed carbonyl-olefin metathesis

    NASA Astrophysics Data System (ADS)

    Ludwig, Jacob R.; Zimmerman, Paul M.; Gianino, Joseph B.; Schindler, Corinna S.

    2016-05-01

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  4. Iron(III)-catalysed carbonyl-olefin metathesis.

    PubMed

    Ludwig, Jacob R; Zimmerman, Paul M; Gianino, Joseph B; Schindler, Corinna S

    2016-05-19

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis. PMID:27120158

  5. Development of a test method for carbonyl compounds from stationary source emissions

    SciTech Connect

    Zhihua Fan; Peterson, M.R.; Jayanty, R.K.M.

    1997-12-31

    Carbonyl compounds have received increasing attention because of their important role in ground-level ozone formation. The common method used for the measurement of aldehydes and ketones is 2,4-dinitrophenylhydrazine (DNPH) derivatization followed by high performance liquid chromatography and ultra violet (HPLC-UV) analysis. One of the problems associated with this method is the low recovery for certain compounds such as acrolein. This paper presents a study in the development of a test method for the collection and measurement of carbonyl compounds from stationary source emissions. This method involves collection of carbonyl compounds in impingers, conversion of carbonyl compounds to a stable derivative with O-2,3,4,5,6-pentafluorobenzyl hydroxylamine hydrochloride (PFBHA), and separation and measurement by electron capture gas chromatography (GC-ECD). Eight compounds were selected for the evaluation of this method: formaldehyde, acetaldehyde, acrolein, acetone, butanal, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and hexanal.

  6. Are Alphabetic Language-Derived Models of L2 Reading Relevant to L1 Logographic Background Readers?

    ERIC Educational Resources Information Center

    Ehrich, John Fitzgerald; Zhang, Lawrence Jun; Mu, Jon Congjun; Ehrich, Lisa Catherine

    2013-01-01

    In this paper, we argue that second language (L2) reading research, which has been informed by studies involving first language (L1) alphabetic English reading, may be less relevant to L2 readers with non-alphabetic reading backgrounds, such as Chinese readers with an L1 logographic (Chinese character) learning history. We provide both…

  7. Protein Carbonylation and Adipocyte Mitochondrial Function*

    PubMed Central

    Curtis, Jessica M.; Hahn, Wendy S.; Stone, Matthew D.; Inda, Jacob J.; Droullard, David J.; Kuzmicic, Jovan P.; Donoghue, Margaret A.; Long, Eric K.; Armien, Anibal G.; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J.; Bernlohr, David A.

    2012-01-01

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte. PMID:22822087

  8. The influence of the new enkephalin derivative, cyclo[N(ε),N(β)-carbonyl-d-Lys(2),Dap(5)] enkephalinamide (cUENK6), on reinstatement of ethanol-induced conditioned place preference in rats.

    PubMed

    Gibula-Bruzda, Ewa; Marszalek-Grabska, Marta; Gawel, Kinga; Witkowska, Ewa; Izdebski, Jan; Kotlinska, Jolanta H

    2015-06-01

    The aim of the present study was to determine whether a new cyclic analog of enkephalin, cyclo[N(ε),N(β)-carbonyl-d-Lys(2),Dap(5)] enkephalinamide (cUENK6), a preferential μ-(MORs), and, to a lower extent, a δ-opioid receptor (DORs) agonist in vitro, could reinstate ethanol-induced conditioned place preference (CPP). In our work, male Wistar rats were first conditioned either with ethanol (10% w/v, 0.5g/kg, intraperitoneally (i.p.)) or 0.9% NaCl in a biased CPP procedure. The intracerebroventricular (i.c.v.) administration of DORs antagonist (naltrindole, 2.5 and 5nmol) or MORs antagonist (β-funaltrexamine, 5 and 10nmol), but not the κ opioid receptor (KORs) antagonist (norbinaltorphimine, 5 and 10nmol) was then administered and inhibited the expression of ethanol-induced CPP. After the extinction session, i.c.v. administration of cUENK6 at the dose of 0.125, 0.25 and 0.5nmol occurred, and was found to reinstate the ethanol-induced CPP similar to that of the priming injection of ethanol. However, the reinstated effect of cUENK6 (0.25nmol) was strongly abolished by administration of naltrindole and, to lesser extent, by β-funaltrexamine. Furthermore, the preferential MORs agonist-morphine (13nmol, i.c.v.) and the DORs agonist-[Leu(5)]-enkephalin (2.7 and 5.4nmol, i.c.v.) also reinstated the ethanol-induced CPP. cUENK6 given alone at the dose of 0.25nmol before the testing phase had no effect in animals that received 0.9% NaCl during the conditioning phase and also did not influence their locomotor activity. These data suggest that the effects of cUENK6 did not have an impact on the results obtained in the reinstatement procedure of CPP. Overall, the data support the idea that both MORs and DORs are normally involved in the expression and reinstatement of ethanol conditioned seeking behavior - as indexed by CPP in rats.

  9. The influence of the new enkephalin derivative, cyclo[N(ε),N(β)-carbonyl-d-Lys(2),Dap(5)] enkephalinamide (cUENK6), on reinstatement of ethanol-induced conditioned place preference in rats.

    PubMed

    Gibula-Bruzda, Ewa; Marszalek-Grabska, Marta; Gawel, Kinga; Witkowska, Ewa; Izdebski, Jan; Kotlinska, Jolanta H

    2015-06-01

    The aim of the present study was to determine whether a new cyclic analog of enkephalin, cyclo[N(ε),N(β)-carbonyl-d-Lys(2),Dap(5)] enkephalinamide (cUENK6), a preferential μ-(MORs), and, to a lower extent, a δ-opioid receptor (DORs) agonist in vitro, could reinstate ethanol-induced conditioned place preference (CPP). In our work, male Wistar rats were first conditioned either with ethanol (10% w/v, 0.5g/kg, intraperitoneally (i.p.)) or 0.9% NaCl in a biased CPP procedure. The intracerebroventricular (i.c.v.) administration of DORs antagonist (naltrindole, 2.5 and 5nmol) or MORs antagonist (β-funaltrexamine, 5 and 10nmol), but not the κ opioid receptor (KORs) antagonist (norbinaltorphimine, 5 and 10nmol) was then administered and inhibited the expression of ethanol-induced CPP. After the extinction session, i.c.v. administration of cUENK6 at the dose of 0.125, 0.25 and 0.5nmol occurred, and was found to reinstate the ethanol-induced CPP similar to that of the priming injection of ethanol. However, the reinstated effect of cUENK6 (0.25nmol) was strongly abolished by administration of naltrindole and, to lesser extent, by β-funaltrexamine. Furthermore, the preferential MORs agonist-morphine (13nmol, i.c.v.) and the DORs agonist-[Leu(5)]-enkephalin (2.7 and 5.4nmol, i.c.v.) also reinstated the ethanol-induced CPP. cUENK6 given alone at the dose of 0.25nmol before the testing phase had no effect in animals that received 0.9% NaCl during the conditioning phase and also did not influence their locomotor activity. These data suggest that the effects of cUENK6 did not have an impact on the results obtained in the reinstatement procedure of CPP. Overall, the data support the idea that both MORs and DORs are normally involved in the expression and reinstatement of ethanol conditioned seeking behavior - as indexed by CPP in rats. PMID:25817357

  10. Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus domestica Borkh.) embryos.

    PubMed

    Krasuska, Urszula; Ciacka, Katarzyna; Dębska, Karolina; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-08-15

    Deep dormancy of apple (Malus domestica Borkh.) embryos can be overcome by short-term pre-treatment with nitric oxide (NO) or hydrogen cyanide (HCN). Dormancy alleviation of embryos modulated by NO or HCN and the first step of germination depend on temporary increased production of reactive oxygen species (ROS). Direct oxidative attack on some amino acid residues or secondary reactions via reactive carbohydrates and lipids can lead to the formation of protein carbonyl derivatives. Protein carbonylation is a widely accepted covalent and irreversible modification resulting in inhibition or alteration of enzyme/protein activities. It also increases the susceptibility of proteins to proteolytic degradation. The aim of this work was to investigate protein carbonylation in germinating apple embryos, the dormancy of which was removed by pre-treatment with NO or HCN donors. It was performed using a quantitative spectrophotometric method, while patterns of carbonylated protein in embryo axes were analyzed by immunochemical techniques. The highest concentration of protein carbonyl groups was observed in dormant embryos. It declined in germinating embryos pre-treated with NO or HCN, suggesting elevated degradation of modified proteins during seedling formation. A decrease in the concentration of carbonylated proteins was accompanied by modification in proteolytic activity in germinating apple embryos. A strict correlation between the level of protein carbonyl groups and cotyledon growth and greening was detected. Moreover, direct in vitro carbonylation of BSA treated with NO or HCN donors was analyzed, showing action of both signaling molecules as protein oxidation agents. PMID:24973585

  11. Mitochondrial ATP synthase is a target for TNBS-induced protein carbonylation in XS-106 dendritic cells.

    PubMed

    Je, Jeong Hwan; Lee, Tae Hyung; Kim, Dong Hyun; Cho, Young Hun; Lee, Ju Hee; Kim, Soo Chan; Lee, Sang-Kyou; Lee, Jaewon; Lee, Min-Geol

    2008-06-01

    ROS are produced in dendritic cells (DCs) during antigen presentation in contact hypersensitivity (CHS). As a result, ROS cause a number of nonenzymatic protein modifications, including carbonylation, which is the most widely used marker of oxidative stress. 2,4,6-Trinitrobenzene sulfonic acid (TNBS) is a well-characterized contact allergen that results in the formation of ROS. However, proteins that are carbonylated in DCs in response to TNBS have not been identified. To study ROS-dependent protein carbonylation in response to TNBS, we used the well-established mouse DC line, XS-106. We focused on the effects of TNBS on oxidation by examining selected oxidative markers. We identified TNBS-induced ROS and myeloperoxidase (MPO) proteins and demonstrated that the increase in ROS resulted in IL-12 production. The increase in oxidation was further confirmed by an oxidation-dependent increase in protein modifications, such as carbonylation. In fact, TNBS strongly induced carbonylation of mitochondrial adenosine triphosphate (ATP) synthase in XS-106 DCs, as determined by MALDI-TOF analysis and 2-D Western blotting. ROS production and protein carbonylation were confirmed in human monocyte-derived DCs (Mo-DCs). Furthermore, glutathione (GSH) decreased ROS and protein carbonylation in Mo-DCs. Carbonylation of ATP synthase in DCs may contribute to the pathophysiology of CHS.

  12. Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus domestica Borkh.) embryos.

    PubMed

    Krasuska, Urszula; Ciacka, Katarzyna; Dębska, Karolina; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-08-15

    Deep dormancy of apple (Malus domestica Borkh.) embryos can be overcome by short-term pre-treatment with nitric oxide (NO) or hydrogen cyanide (HCN). Dormancy alleviation of embryos modulated by NO or HCN and the first step of germination depend on temporary increased production of reactive oxygen species (ROS). Direct oxidative attack on some amino acid residues or secondary reactions via reactive carbohydrates and lipids can lead to the formation of protein carbonyl derivatives. Protein carbonylation is a widely accepted covalent and irreversible modification resulting in inhibition or alteration of enzyme/protein activities. It also increases the susceptibility of proteins to proteolytic degradation. The aim of this work was to investigate protein carbonylation in germinating apple embryos, the dormancy of which was removed by pre-treatment with NO or HCN donors. It was performed using a quantitative spectrophotometric method, while patterns of carbonylated protein in embryo axes were analyzed by immunochemical techniques. The highest concentration of protein carbonyl groups was observed in dormant embryos. It declined in germinating embryos pre-treated with NO or HCN, suggesting elevated degradation of modified proteins during seedling formation. A decrease in the concentration of carbonylated proteins was accompanied by modification in proteolytic activity in germinating apple embryos. A strict correlation between the level of protein carbonyl groups and cotyledon growth and greening was detected. Moreover, direct in vitro carbonylation of BSA treated with NO or HCN donors was analyzed, showing action of both signaling molecules as protein oxidation agents.

  13. Comparison of Two Old Phytochemicals versus Two Newly Researched Plant-Derived Compounds: Potential for Brain and Other Relevant Ailments

    PubMed Central

    Wang, Chun-Mei; Yew, D. T.

    2014-01-01

    Among hundreds of formulae of Chinese herbal prescriptions and recently extracted active components from the herbs, some of which had demonstrated their functions on nervous system. For the last decade or more, Gingko biloba and Polygala tenuifolia were widely studied for their beneficial effects against damage to the brain. Two compounds extracted from Apium graveolens and Rhizoma coptidis, butylphthalide and berberine, respectively, received much attention recently as potential neuroprotective agents. In this review, the two traditionally used herbs and the two relatively new compounds will be discussed with regard to their potential advantages in alleviating brain and other relevant ailments. PMID:24949079

  14. Relevance of near-Earth magnetic field modeling in deriving SEP properties using ground-based data

    NASA Astrophysics Data System (ADS)

    Kanellakopoulos, Anastasios; Plainaki, Christina; Mavromichalaki, Helen; Laurenza, Monica; Gerontidou, Maria; Storini, Marisa; Andriopoulou, Maria

    2014-05-01

    Ground Level Enhancements (GLEs) are short-term increases observed in cosmic ray intensity records of ground-based particle detectors such as neutron monitors (NMs) or muon detectors; they are related to the arrival of solar relativistic particles in the terrestrial environment. Hence, GLE events are related to the most energetic class of solar energetic particle (SEP) events. In this work we investigate how the use of different magnetospheric field models can influence the derivation of the relativistic SEP properties when modeling GLE events. As a case study, we examine the event of 2012 May 17 (also known as GLE71), registered by ground-based NMs. We apply the Tsyganenko 89 and the Tsyganenko 96 models in order to calculate the trajectories of the arriving SEPs in the near-Earth environment. We show that the intersection of the SEP trajectories with the atmospheric layer at ~20 km from the Earth's surface (i.e., where the flux of the generated secondary particles is maximum), forms for each ground-based neutron monitor a specified viewing region that is dependent on the magnetospheric field configuration. Then, we apply the Neutron Monitor Based Anisotropic GLE Pure Power Law (NMBANGLE PPOLA) model (Plainaki et al. 2010, Solar Phys, 264, 239), in order to derive the spectral properties of the related SEP event and the spatial distributions of the SEP fluxes impacting the Earth's atmosphere. We examine the dependence of the results on the used magnetic field models and evaluate their range of validity. Finally we discuss information derived by modeling the SEP spectrum in the frame of particle acceleration scenarios.

  15. Alterations in the Secretome of Clinically Relevant Preparations of Adipose-Derived Mesenchymal Stem Cells Cocultured with Hyaluronan

    PubMed Central

    Succar, Peter; Breen, Edmond J.; Kuah, Donald; Herbert, Benjamin R.

    2015-01-01

    Osteoarthritis (OA) can be a debilitating degenerative disease and is the most common form of arthritic disease. There is a general consensus that current nonsurgical therapies are insufficient for younger OA sufferers who are not candidates for knee arthroplasties. Adipose-derived mesenchymal stem cells (MSCs) therapy for the treatment of OA can slow disease progression and lead to neocartilage formation. The mechanism of action is secretion driven. Current clinical preparations from adipose tissue for the treatment of OA include autologous stromal vascular fraction (SVF), SVF plus mature adipocytes, and culture-purified MSCs. Herein we have combined these human adipose-derived preparations with Hyaluronan (Hylan G-F 20: Synvisc) in vitro and measured alterations in cytokine profile. SVF plus mature adipocytes showed the greatest decreased in the proinflammatory cytokines IL-1β, IFN-γ, and VEGF. MCP-1 and MIP-1α decreased substantially in the SVF preparations but not the purified MSCs. The purified MSC preparation was the only one to show increase in MIF. Overall the SVF plus mature adipocytes preparation may be most suited of all the preparations for combination with HA for the treatment of OA, based on the alterations of heavily implicated cytokines in OA disease progression. This will require further validation using in vivo models. PMID:26257790

  16. Process and catalyst for carbonylating olefins

    DOEpatents

    Zoeller, J.R.

    1998-06-02

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  17. Characteristic infrared intensities of carbonyl stretching vibrations.

    PubMed

    Richter, Wagner E; Silva, Arnaldo F; Vidal, Luciano N; Bruns, Roy E

    2016-07-14

    The experimental infrared fundamental intensities of gas phase carbonyl compounds obtained by the integration of spectral bands in the Pacific Northwest National Laboratory (PNNL) spectral database are in good agreement with the intensities reported by other laboratories having a root mean square error of 27 km mol(-1) or about 13% of the average intensity value. The Quantum Theory of Atoms in Molecules/Charge-Charge Transfer-Counterpolarization (QTAIM/CCTCP) model indicates that the large intensity variation from 61.7 to 415.4 km mol(-1) is largely due to static atomic charge contributions, whereas charge transfer and counterpolarization effects essentially cancel one another leaving only a small net effect. The Characteristic Substituent Shift Model estimates the atomic charge contributions to the carbonyl stretching intensities within 30 km mol(-1) or 10% of the average contribution. However, owing to the size of the 2 × C × CTCP interaction contribution, the total intensities cannot be estimated with this degree of accuracy. The dynamic intensity contributions of the carbon and oxygen atoms account for almost all of the total stretching intensities. These contributions vary over large ranges with the dynamic contributions of carbon being about twice the size of the oxygen ones for a large majority of carbonyls. Although the carbon monoxide molecule has an almost null dipole moment contrary to the very polar bond of the characteristic carbonyl group, its QTAIM/CCTCP model is very similar to those found for the carbonyl compounds. PMID:27306140

  18. A Filtered Database Search Algorithm for Endogenous Serum Protein Carbonyl Modifications in a Mouse Model of Inflammation*

    PubMed Central

    Slade, Peter G.; Williams, Michelle V.; Chiang, Alison; Iffrig, Elizabeth; Tannenbaum, Steven R.; Wishnok, John S.

    2011-01-01

    During inflammation, the resulting oxidative stress can damage surrounding host tissue, forming protein-carbonyls. The SJL mouse is an experimental animal model used to assess in vivo toxicological responses to reactive oxygen and nitrogen species from inflammation. The goals of this study were to identify the major serum proteins modified with a carbonyl functionality and to identify the types of carbonyl adducts. To select for carbonyl-modified proteins, serum proteins were reacted with an aldehyde reactive probe that biotinylated the carbonyl modification. Modified proteins were enriched by avidin affinity and identified by two-dimensional liquid chromatography tandem MS. To identify the carbonyl modification, tryptic peptides from serum proteins were subjected to avidin affinity and the enriched modified peptides were analyzed by liquid chromatography tandem MS. It was noted that the aldehyde reactive probe tag created tag-specific fragment ions and neutral losses, and these extra features in the mass spectra inhibited identification of the modified peptides by database searching. To enhance the identification of carbonyl-modified peptides, a program was written that used the tag-specific fragment ions as a fingerprint (in silico filter program) and filtered the mass spectrometry data to highlight only modified peptides. A de novo-like database search algorithm was written (biotin peptide identification program) to identify the carbonyl-modified peptides. Although written specifically for our experiments, this software can be adapted to other modification and enrichment systems. Using these routines, a number of lipid peroxidation-derived protein carbonyls and direct side-chain oxidation proteins carbonyls were identified in SJL mouse serum. PMID:21768395

  19. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    PubMed

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative. PMID:17844744

  20. Toxicity assessment strategies, data requirements, and risk assessment approaches to derive health based guidance values for non-relevant metabolites of plant protection products.

    PubMed

    Dekant, Wolfgang; Melching-Kollmuss, Stephanie; Kalberlah, Fritz

    2010-03-01

    In Europe, limits for tolerable concentrations of "non-relevant metabolites" for active ingredients (AI) of plant protection products in drinking water between 0.1 and 10 microg/L are discussed depending on the toxicological information available. "Non-relevant metabolites" are degradation products of AIs, which do not or only partially retain the targeted toxicities of AIs. For "non-relevant metabolites" without genotoxicity (to be confirmed by testing in vitro), the application of the concept of "thresholds of toxicological concern" results in a health-based drinking water limit of 4.5 microg/L even for Cramer class III compounds, using the TTC threshold of 90 microg/person/day (divided by 10 and 2). Taking into account the thresholds derived from two reproduction toxicity data bases a drinking water limit of 3.0 microg/L is proposed. Therefore, for "non-relevant metabolites" whose drinking water concentration is below 3.0 microg/L, no toxicity testing is necessary. This work develops a toxicity assessment strategy as a basis to delineate health-based limits for "non-relevant metabolites" in ground and drinking water. Toxicological testing is recommended to investigate, whether the metabolites are relevant or not, based on the hazard properties of the parent AIs, as outlined in the SANCO Guidance document. Also, genotoxicity testing of the water metabolites is clearly recommended. In this publication, tiered testing strategies are proposed for non-relevant metabolites, when drinking water concentrations >3.0 microg/L will occur. Conclusions based on structure-activity relationships and the detailed toxicity database on the parent AI should be included. When testing in animals is required for risk assessment, key aspects are studies along OECD-testing guidelines with "enhanced" study designs addressing additional endpoints such as reproductive toxicity and a developmental screening test to derive health-based tolerable drinking water limits with a limited number

  1. Fluorescence of carbonyl-containing intraionic polymethines

    NASA Astrophysics Data System (ADS)

    Kulinich, Andrii V.

    2016-09-01

    Electronic structure and spectral-fluorescent properties of four related indole-based intraionic polymethines are discussed. They all comprise at least one carbonyl group in the acceptor part of their molecule but the effects of the carbonyls upon their UV/Vis and fluorescence spectra depend substantially on its position within the polymethine chromophore. At that, solvation of the carbonyls with highly electrophilic protic solvents can, as a function of dye structure, cause both a rise and decrease of fluorescence quantum yield of a dye or have no tangible effect at all. To get insight into the regularities of such behaviour, the dyes were examined closely using both their absorption and fluorescence spectral data and the (TD) DFT quantum chemical simulation.

  2. Carbonyl compounds indoors in a changing climate

    PubMed Central

    2012-01-01

    Background Formic acid, acetic acid and formaldehyde are important compounds in the indoor environment because of the potential for these acids to degrade calcareous materials (shells, eggs, tiles and geological specimens), paper and corrode or tarnish metals, especially copper and lead. Carbonyl sulfide tarnishes both silver and copper encouraging the formation of surface sulfides. Results Carbonyls are evolved more quickly at higher temperatures likely in the Cartoon Gallery at Knole, an important historic house near Sevenoaks in Kent, England where the study is focused. There is a potential for higher concentrations to accumulate. However, it may well be that in warmer climates they will be depleted more rapidly if ventilation increases. Conclusions Carbonyls are likely to have a greater impact in the future. PMID:22439648

  3. Relevance of risk predictions derived from a chronic species sensitivity distribution with cadmium to aquatic populations and ecosystems

    USGS Publications Warehouse

    Mebane, C.A.

    2010-01-01

    Criteria to protect aquatic life are intended to protect diverse ecosystems, but in practice are usually developed from compilations of single-species toxicity tests using standard test organisms that were tested in laboratory environments. Species sensitivity distributions (SSDs) developed from these compilations are extrapolated to set aquatic ecosystem criteria. The protectiveness of the approach was critically reviewed with a chronic SSD for cadmium comprising 27 species within 21 genera. Within the data set, one genus had lower cadmium effects concentrations than the SSD fifth percentile-based criterion, so in theory this genus, the amphipod Hyalella, could be lost or at least allowed some level of harm by this criteria approach. However, population matrix modeling projected only slightly increased extinction risks for a temperate Hyalella population under scenarios similar to the SSD fifth percentile criterion. The criterion value was further compared to cadmium effects concentrations in ecosystem experiments and field studies. Generally, few adverse effects were inferred from ecosystem experiments at concentrations less than the SSD fifth percentile criterion. Exceptions were behavioral impairments in simplified food web studies. No adverse effects were apparent in field studies under conditions that seldom exceeded the criterion. At concentrations greater than the SSD fifth percentile, the magnitudes of adverse effects in the field studies were roughly proportional to the laboratory-based fraction of species with adverse effects in the SSD. Overall, the modeling and field validation comparisons of the chronic criterion values generally supported the relevance and protectiveness of the SSD fifth percentile approach with cadmium. ?? 2009 Society for Risk Analysis.

  4. Calibration of commercial microwave link derived- rainfall and its relevance to flash flood occurrence in the Dead Sea area

    NASA Astrophysics Data System (ADS)

    Eshel, Adam; Alpert, Pinhas; Raich, Roi; Laronne, Jonathan; Merz, Ralf; Geyer, Stefan; Corsmeier, Ulrich

    2016-04-01

    Flash floods are a common phenomenon in arid and semi-arid areas such as the Dead Sea. These floods are generated due to a combination of short lasting, yet intense rainfall and typical low infiltration rates. The rare flow events in ephemeral rivers have significant importance in the replenishment of groundwater via transmission losses and in sustaining the vivid ecology of drylands. In some cases, flash floods cause severe damage to infrastructure as well as to private property, constituting a threat to human life. The temporal variation of rainfall intensity is the main driver generating the majority of flash floods in the Judean Desert, hence its monitoring is crucial in this area as in other remote arid areas worldwide. Cellular communication towers are profusely located. Commercial Microwave Links (CML) attenuation data obtained by cellular companies can be used for environmental monitoring. Rain is one of the most effective meteorological phenomena to attenuate a CML signal which, unlike radar backscatter, relates to near-surface conditions and is, therefore, suitable for surface hydrology. A 16 km CML crosses the Wadi Ze'elim drainage basin (~250 square kilometers), at the outlet of which the discharge is calculated using the Manning formula. The hydrometric data include accurate longitudinal and cross sectional measurements, water level and importantly mean water surface velocity when present during a flash flood. The latter is first-ever obtained in desert flash floods by portable, radar-based surface velocimetry. Acquisition of water velocity data is essential to avoid assuming a constant roughness coefficient, thereby more accurately calculating water discharge. Calibrating the CML-rain intensity, derived from the International Telecommunication Union (ITU)'s power law, is necessary to correlate the surface hydrologic response to the link. Our calibration approach is as follows: all the Israel Meteorological Service C-band radar cells over the CML

  5. Copper-Catalyzed Carbonylative Coupling of Cycloalkanes and Amides.

    PubMed

    Li, Yahui; Dong, Kaiwu; Zhu, Fengxiang; Wang, Zechao; Wu, Xiao-Feng

    2016-06-13

    Carbonylation reactions are a most powerful method for the synthesis of carbonyl-containing compounds. However, most known carbonylation procedures still require noble-metal catalysts and the use of activated compounds and good nucleophiles as substrates. Herein, we developed a copper-catalyzed carbonylative transformation of cycloalkanes and amides. Imides were prepared in good yields by carbonylation of a C(sp(3) )-H bond of the cycloalkane with the amides acting as weak nucleophiles. Notably, this is the first report of copper-catalyzed carbonylative C-H activation. PMID:27167881

  6. Intrapericardial Delivery of Cardiosphere-Derived Cells: An Immunological Study in a Clinically Relevant Large Animal Model

    PubMed Central

    Crisóstomo, Verónica; Báez, Claudia; Maestre, Juan; Álvarez, Verónica

    2016-01-01

    Introduction The intrapericardial delivery has been defined as an efficient method for pharmacological agent delivery. Here we hypothesize that intrapericardial administration of cardiosphere-derived cells (CDCs) may have an immunomodulatory effect providing an optimal microenvironment for promoting cardiac repair. To our knowledge, this is the first report studying the effects of CDCs for myocardial repair using the intrapericardial delivery route. Material and Methods CDCs lines were isolated, expanded and characterized by flow cytometry and PCR. Their differentiation ability was determined using specific culture media and differential staining. 300,000 CDCs/kg were injected into the pericardial space of a swine myocardial infarcted model. Magnetic resonance imaging, biochemical analysis of pericardial fluid and plasma, cytokine measurements and flow cytometry analysis were performed. Results Our results showed that, phenotype and differentiation behavior of porcine CDCs were equivalent to previously described CDCs. Moreover, the intrapericardial administration of CDCs fulfilled the safety aspects as non-adverse effects were reported. Finally, the phenotypes of resident lymphocytes and TH1 cytokines in the pericardial fluid were significantly altered after CDCs administration. Conclusions The pericardial fluid could be considered as a safe and optimal vehicle for CDCs administration. The observed changes in the studied immunological parameters could exert a modulation in the inflammatory environment of infarcted hearts, indirectly benefiting the endogenous cardiac repair. PMID:26866919

  7. The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants.

    PubMed

    van den Eede, G; Aarts, H; Buhk, H-J; Corthier, G; Flint, H J; Hammes, W; Jacobsen, B; Midtvedt, T; van der Vossen, J; von Wright, A; Wackernagel, W; Wilcks, A

    2004-07-01

    In 2000, the thematic network ENTRANSFOOD was launched to assess four different topics that are all related to the testing or assessment of food containing or produced from genetically modified organisms (GMOs). Each of the topics was linked to a European Commission (EC)-funded large shared cost action (see http://www.entransfood.com). Since the exchange of genetic information through horizontal (lateral) gene transfer (HGT) might play a more important role, in quantity and quality, than hitherto imagined, a working group dealing with HGT in the context of food and feed safety was established. This working group was linked to the GMOBILITY project (GMOBILITY, 2003) and the results of the deliberations are laid down in this review paper. HGT is reviewed in relation to the potential risks of consuming food or feed derived from transgenic crops. First, the mechanisms for obtaining transgenic crops are described. Next, HGT mechanisms and its possible evolutionary role are described. The use of marker genes is presented in detail as a special case for genes that may pose a risk. Furthermore, the exposure to GMOs and in particular to genetically modified (GM) deoxyribonucleic acid (DNA) is discussed as part of the total risk assessment. The review finishes off with a number of conclusions related to GM food and feed safety. The aim of this paper is to provide a comprehensive overview to assist risk assessors as well as regulators and the general public in understanding the safety issues related to these mechanisms.

  8. The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants.

    PubMed

    van den Eede, G; Aarts, H; Buhk, H-J; Corthier, G; Flint, H J; Hammes, W; Jacobsen, B; Midtvedt, T; van der Vossen, J; von Wright, A; Wackernagel, W; Wilcks, A

    2004-07-01

    In 2000, the thematic network ENTRANSFOOD was launched to assess four different topics that are all related to the testing or assessment of food containing or produced from genetically modified organisms (GMOs). Each of the topics was linked to a European Commission (EC)-funded large shared cost action (see http://www.entransfood.com). Since the exchange of genetic information through horizontal (lateral) gene transfer (HGT) might play a more important role, in quantity and quality, than hitherto imagined, a working group dealing with HGT in the context of food and feed safety was established. This working group was linked to the GMOBILITY project (GMOBILITY, 2003) and the results of the deliberations are laid down in this review paper. HGT is reviewed in relation to the potential risks of consuming food or feed derived from transgenic crops. First, the mechanisms for obtaining transgenic crops are described. Next, HGT mechanisms and its possible evolutionary role are described. The use of marker genes is presented in detail as a special case for genes that may pose a risk. Furthermore, the exposure to GMOs and in particular to genetically modified (GM) deoxyribonucleic acid (DNA) is discussed as part of the total risk assessment. The review finishes off with a number of conclusions related to GM food and feed safety. The aim of this paper is to provide a comprehensive overview to assist risk assessors as well as regulators and the general public in understanding the safety issues related to these mechanisms. PMID:15123384

  9. Reaction of (chloro carbonyl) phenyl ketene with 5-amino pyrazolones: Synthesis, characterization and theoretical studies of 7-hydroxy-6-phenyl-3-(phenyldiazenyl)pyrazolo[1,5-a]pyrimidine-2,5(1H,4H)-dione derivatives

    NASA Astrophysics Data System (ADS)

    Zahedifar, Mahboobeh; Razavi, Razieh; Sheibani, Hassan

    2016-12-01

    New 7-hydroxy-6-phenyl-3-(phenyldiazenyl)pyrazolo[1,5-a]pyrimidine-2,5(1H,4H)-dione derivatives were synthesized from the reaction of (chlorocarbonyl)phenyl ketene and 5-amino pyrazolones in high to excellent yields and short reaction times. Structures of the new compounds were fully characterized by their spectral data IR, 1H NMR, and 13C NMR and by the theoretical results. Density Functional Theory (DFT) was used to optimize the structures, compute the energies and vibrational frequencies IR and 1H NMR shielding tensors of the desired products. The theoretical results excellent are compared with the experimental data.

  10. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues.

    PubMed

    Ghahrizjani, Fatemeh Ahmadi; Ghaedi, Kamran; Salamian, Ahmad; Tanhaei, Somayeh; Nejati, Alireza Shoaraye; Salehi, Hossein; Nabiuni, Mohammad; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2015-02-25

    Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process.

  11. Rhodium-catalyzed Carbonylation of 3-Acyloxy-1,4-enynes for the Synthesis of Cyclopentenones

    PubMed Central

    Li, Xiaoxun; Huang, Suyu; Schienebeck, Casi M.; Shu, Dongxu; Tang, Weiping

    2012-01-01

    Functionalized cyclopentenones were synthesized by a Rh-catalyzed carbonylation of 3-acyloxy-1,4-enynes, derived from alkynes and α,β-unsaturated aldehydes. The reaction involved a Saucy-Marbet 1,3-acyloxy migration of propargyl esters and a [4+1] cycloaddition of the resulting acyloxy substituted vinylallene with CO. PMID:22381143

  12. Palladium/copper-catalyzed oxidative C-H alkenylation/N-dealkylative carbonylation of tertiary anilines.

    PubMed

    Shi, Renyi; Lu, Lijun; Zhang, Hua; Chen, Borui; Sha, Yuchen; Liu, Chao; Lei, Aiwen

    2013-09-27

    C-H/C-N activation: The first palladium/copper-catalyzed aerobic oxidative C-H alkenylation/N-dealkylative carbonylation of tertiary anilines has been developed. Various functional groups were tolerated and acrylic ester could also be suitable substrates. This transformation provided efficient and straightforward synthesis of biologically active 3-methyleneindolin-2-one derivatives from cheap and simple substrates.

  13. High Pressure Synthesis of Transition Metal Carbonyls.

    ERIC Educational Resources Information Center

    Hagen, A. P.; And Others

    1979-01-01

    Presents an experiment which uses readily available starting materials and inexpensive equipment for synthesis of transition metal carbonyls at 1000 atm and which is intended to give students experience in techniques used in research and industry. Safety precautions are emphasized. (Author/SA)

  14. Waterpipe smoking: the role of humectants in the release of toxic carbonyls.

    PubMed

    Schubert, Jens; Heinke, Volkmar; Bewersdorff, Jana; Luch, Andreas; Schulz, Thomas G

    2012-08-01

    In recent years, the number of waterpipe smokers has increased substantially worldwide. Here, we present a study on the identification and quantification of seven carbonylic compounds including formaldehyde, acetaldehyde and acrolein in the mainstream smoke of the waterpipe. Smoking was conducted with a smoking machine, and carbonyls were scavenged from the smoke with two impingers containing an acidic solution of 2,4-dinitrophenylhydrazine. The derivatives were then analyzed by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). For instance, during one waterpipe smoking session, up to 111 ± 12 μg formaldehyde could be detected. This value is about 5 times higher when compared to one 2R4F reference cigarette. We also found a distinct filter effect of the bowl water for all carbonyls investigated. Our data further demonstrate that increasing amounts of humectants in the unburned tobacco lowers the temperature in the waterpipe head during smoking, thereby resulting in decreasing levels of carbonyls in the smoke produced. Altogether, considerable amounts of toxic carbonyls are present in the waterpipe smoke, thus conferring a health risk to waterpipe smokers.

  15. Method for conversion of .beta.-hydroxy carbonyl compounds

    DOEpatents

    Lilga, Michael A.; White, James F.; Holladay, Johnathan E.; Zacher, Alan H.; Muzatko, Danielle S.; Orth, Rick J.

    2010-03-30

    A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

  16. Transition-Metal-Catalyzed Carbonylation of Methyl Acetate.

    ERIC Educational Resources Information Center

    Polichnowski, S. W.

    1986-01-01

    Presents a study of the rhodium-catalyzed, ioding-promoted carbonylation of methyl acetate. This study provides an interesting contrast between the carbonylation of methyl acetate and the carbonylation of methanol when similar rhodium/iodine catalyst systems are used. (JN)

  17. Detoxification of Carbonyl Compounds by Carbonyl Reductase in Neurodegeneration.

    PubMed

    Rashid, Mohammad Abdur; Haque, Mahmuda; Akbar, Mohammed

    2016-01-01

    Oxidative stress in the brain is the major cause of neurodegenerative disorders, including Alzheimer's, Parkinson's, Huntington's, and Creutzfeldt-Jakob diseases or amyotrophic lateral sclerosis. Under conditions of oxidative stress, the production of highly reactive oxygen species (ROS) overwhelms antioxidant defenses, resulting in the modification of macromolecules and their deposition in neuronal cell tissues. ROS plays an important role in neuronal cell death that they generate reactive aldehydes from membrane lipid peroxidation. Several neuronal diseases are associated with increased accumulation of abnormal protein adducts of reactive aldehydes, which mediate oxidative stress-linked pathological events, including cell growth inhibition and apoptosis induction. Combining findings on neurodegeneration and oxidative stress in Drosophila with studies on the metabolic characteristics of the human enzyme CBR1, it is clear now that CBR1 has a potential physiological role of neuroprotection in humans. Several studies suggest that CBR1 represents a significant pathway for the detoxification of reactive aldehydes derived from lipid peroxidation and that CBR1 in humans is essential for neuronal cell survival and to confer protection against oxidative stress-induced brain degeneration. Recently, it was discovered that HIF1alpha, AP-1, and Nrf2 could all regulate CBR1 at the transcriptional level. Nrf2 is known to regulate the transcription of antioxidant enzymes, and CBR1 functions as an antioxidant enzyme, suggesting that transcriptional regulation of CBR1 is a major contributor to the control of oxidative stress in neurodegeneration. PMID:27651263

  18. Determination of gaseous and particulate carbonyls (glycolaldehyde, hydroxyacetone, glyoxal, methylglyoxal, nonanal and decanal) in the atmosphere at Mt. Tai

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Okuzawa, K.; Aggarwal, S. G.; Irie, H.; Kanaya, Y.; Wang, Z.

    2013-01-01

    Gaseous and particulate semi-volatile carbonyl compounds were determined every three hours in the atmosphere of Mount Tai (elevation, 1534 m) in the North China Plain during 2-5, 23-24 and 25 June, 2006 under a clear sky condition. Using two-step filter cartridge in a series, particulate carbonyls were first collected on a quartz filter and then gaseous carbonyls were collected on a quartz filter impregnated with O-benzylhydroxylamine (BHA). After the two-step derivatization with BHA and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA), carbonyl derivatives were measured using a gas chromatography. The gaseous concentrations were obtained as follow: glycolaldehyde (range 0-1271 ng m-3, average 555 ng m-3), hydroxyacetone (0-707 ng m-3, 163 ng m-3), glyoxal (198-1396 ng m-3, 720 ng m-3), methylglyoxal (410-3170 ng m-3, 1376 ng m-3), n-nonanal (0-236 ng m-3, 71 ng m-3), and n-decanal (0-159 ng m-3, 31 ng m-3). These concentrations are among the highest ever reported in the urban and forest atmosphere. We found that gaseous carbonyls are more than 10 times more abundant than particulate carbonyls. Time-resolved variations of carbonyls did not show any a clear diurnal pattern, except for hydroxyacetone. We found that glyoxal, methylglyoxal and glycolaldehyde positively correlated with levoglucosan (a tracer of biomass burning), suggesting that a contribution from field burning of agricultural wastes (wheat crops) is significant for the bifunctional carbonyls in the atmosphere of Mt. Tai. Upward transport of the pollutants to the mountaintop from the low lands in the North China Plain is a major process to control the distributions of carbonyls in the upper atmosphere over Mt. Tai.

  19. Selective transformation of carbonyl ligands to organic molecules

    SciTech Connect

    Cutler, A.R.

    1992-05-12

    Studies on the carbonylation of ({eta}{sup 5}-indenyl)(L)(CO)Ru-R complexes (L = CO, PPh{sub 3}; R = CH{sub 2}OMe, CH{sub 3}) have been completed. Particularly noteworthy is that the methoxymethyl complexes readily transform to their acyl derivatives under mild conditions that leave their iron congeners inert towards CO. Surprisingly, even ({eta}{sup 5}-indenyl)(PPh{sub 3}){sub 2}Ru-CH{sub 3} carbonylates and gives ({eta}{sup 5}-indenyl)(PPh{sub 3})(CO)Ru-C(O)CH{sub 3}. Mechanistic studies on the non catalyzed'' hydrosilation of the manganese acyls (CO){sub 5}Mn-C(O)CH{sub 2}R (R = H, OCH{sub 3}, CH{sub 3}) with Et{sub 3}SiH and of cobalt acetyls (CO){sub 3}(PR{sub 3})CoC(O)CH{sub 3} with several monohydrosilanes have been completed. The cobalt acetyls cleanly give ethoxysilanes (not acetaldehyde), and the manganese acyls provide {alpha}-siloxyvinyl complexes Z-(CO){sub 5}Mn-C(OSiEt{sub 3})=CHR (R = H, CH{sub 3}, OCH{sub 3}). Carbonylation and protolytic cleavage of the latter generate pyruvoyl complexes (CO){sub 5}Mn-COCOR (R = CH{sub 3}, CH{sub 2}CH{sub 3}), formally the products of net double carbonylation'' sequences. Studies in progress are concerned with how manganese complexes as diverse as (CO){sub 5}Mn-Y (Y = C(O)R, R, BR - but not SiMe{sub 3} or Mn(CO){sub 5}) and ({eta}{sup 3}-C{sub 3}H{sub 5})Mn(CO){sub 2}L (but not CpMn(CO){sub 3} or CpMn(CO){sub 2}({eta}{sup 2}HSiR{sub 3})) function as efficient hydrosilation catalysts towards Cp(CO){sub 2}FeC(O)CH{sub 3}, for example. These reactions cleanly afford fully characterized {alpha}-siloxyethyl complexes Fp-CH(OSiR{sub 3})CH{sub 3} under conditions where typically Rh(1) hydrosilation catalysts are inactive. Several of these manganese complexes also catalytically hydrosilate organic esters, including lactones, to their ethers R-CH{sub 2}OR; these novel ester reductions occur quantitatively at room temperature and appear to be general in scope.

  20. Development of a photolabile carbonyl-protecting group toolbox.

    PubMed

    Yang, Haishen; Zhang, Xin; Zhou, Lei; Wang, Pengfei

    2011-04-01

    New salicyl alcohol derived photolabile carbonyl protecting groups have been developed, and the effect of substituents on the photochemical properties of photolabile protecting groups (PPGs) has been studied. The 3-(dimethylamino)phenyl groups at the α position prove to be important to the efficiency of the deprotection reactions, as shown in the photo reactions of the acetal 9. On the other hand, expansion of the salicyl alcohol's benzene skeleton to naphthalene does not improve the photochemical properties of PPGs. A neutral protecting protocol has been generalized to new PPGs with α,α-diaryl salicyl alcohol backbone. Thus, installation of PPGs onto aldehydes is readily achieved at 140 °C without using any other chemical reagents. These PPGs are stable under acidic conditions typical for hydrolyzing acetals and constitute orthogonal protecting groups with traditional 1,3-dioxane/1,3-dioxolane for carbonyl compounds. Highly efficient release of carbohydrate molecules is demonstrated, which can be potentially useful in site-specific release and immobilization of carbohydrates for preparation of high-density microarrays. With the enriched PPG toolbox, PPGs are divided into three subgroups based on their UV absorption profiles. PPGs from different subgroups can be sequentially removed by using different UV irradiation wavelengths. For PPGs absorbing UVA (λ >315 nm), photochemical deprotection can be carried out with sunlight in high yields. PMID:21370916

  1. Reactive Carbonyl Species In Vivo: Generation and Dual Biological Effects

    PubMed Central

    Semchyshyn, Halyna M.

    2014-01-01

    Reactive carbonyls are widespread species in living organisms and mainly known for their damaging effects. The most abundant reactive carbonyl species (RCS) are derived from oxidation of carbohydrates, lipids, and amino acids. Chemical modification of proteins, nucleic acids, and aminophospholipids by RCS results in cytotoxicity and mutagenicity. In addition to their direct toxicity, modification of biomolecules by RCS gives rise to a multitude of adducts and cross links that are increasingly implicated in aging and pathology of a wide range of human diseases. Understanding of the relationship between metabolism of RCS and the development of pathological disorders and diseases may help to develop effective approaches to prevent a number of disorders and diseases. On the other hand, constant persistence of RCS in cells suggests that they perform some useful role in living organisms. The most beneficial effects of RCS are their establishment as regulators of cell signal transduction and gene expression. Since RCS can modulate different biological processes, new tools are required to decipher the precise mechanisms underlying dual effects of RCS. PMID:24634611

  2. A detailed kinetic mechanism including methanol and nitrogen pollutants relevant to the gas-phase combustion and pyrolysis of biomass-derived fuels

    SciTech Connect

    Coda Zabetta, Edgardo; Hupa, Mikko

    2008-01-15

    A detailed chemical kinetic mechanism for the simulation of the gas-phase combustion and pyrolysis of biomass-derived fuels was compiled by assembling selected reaction subsets from existing mechanisms (parents). The mechanism, here referred to as ''AaA,'' includes reaction subsets for the oxidation of hydrogen (H{sub 2}), carbon monoxide (CO), light hydrocarbons (C{sub 1} and C{sub 2}), and methanol (CH{sub 3}OH). The mechanism also takes into account reaction subsets of nitrogen pollutants, including the reactions relevant to staged combustion, reburning, and selective noncatalytic reduction (SNCR). The AaA mechanism was validated against suitable experimental data from the literature. Overall, the AaA mechanism gave more accurate predictions than three other mechanisms of reference, although the reference mechanisms performed better occasionally. The predictions from AaA were also found to be consistent with the predictions of its parent mechanisms within most of their range of validity, thus transferring the validity of the parents to the inheriting mechanism (AaA). In parametric studies the AaA mechanism predicted that the effect of methanol on combustion and pollutants is often similar to that of light hydrocarbons, but it also showed that there are important exceptions, thus suggesting that methanol should be taken into account when simulating biomass combustion. To our knowledge, the AaA mechanism is currently the only mechanism that accounts for the chemistry of methanol and nitrogen relevant to the gas-phase combustion and pyrolysis of biomass-derived fuels. (author)

  3. Ab initio determination of dark structures in radiationless transitions for aromatic carbonyl compounds.

    PubMed

    Fang, Wei-Hai

    2008-03-01

    Mechanistic photodissociation of a polyatomic molecule has long been regarded as an intellectually challenging area of chemical physics, the results of which are relevant to atmospheric chemistry, biological systems, and many application fields. Carbonyl compounds play a unique role in the development of our understanding of the spectroscopy, photochemistry, and photophysics of polyatomic molecules and their photodissociation has been the subject of numerous studies over many decades. Upon irradiation, a molecule can undergo internal conversion (IC) and intersystem crossing (ISC) processes, besides photochemical and other photophysical processes. Transient intermediates formed in the IC and ISC radiationless processes, which are termed "dark", are not amenable to detection by conventional light absorption or emission. However, these dark intermediates play critical roles in IC and ISC processes and thus are essential to understanding mechanistic photochemistry of a polyatomic molecule. We have applied the multiconfiguration complete active space self-consistent field (CASSCF) method to determine the dark transient structures involved in radiationless processes for acetophenone and the related aromatic carbonyl compounds. The electronic and geometric structures predicted for the dark states are in a good agreement with those determined by ultrafast electron diffraction experiments. Intersection structure of different electronic states provides a very efficient "funnel" for the IC or ISC process. However, experimental determination of the intersection structure involved in radiationless transitions of a polyatomic molecule is impossible at present. We have discovered a minimum energy crossing point among the three potential energy surfaces (S1, T1, and T2) that appears to be common to a wide variety of aromatic carbonyl compounds with a constant structure. This new type of crossing point holds the key to understanding much about radiationless processes after

  4. Environmental relevance of laboratory-derived kinetic models to predict trace metal bioaccumulation in gammarids: Field experimentation at a large spatial scale (France).

    PubMed

    Urien, N; Lebrun, J D; Fechner, L C; Uher, E; François, A; Quéau, H; Coquery, M; Chaumot, A; Geffard, O

    2016-05-15

    Kinetic models have become established tools for describing trace metal bioaccumulation in aquatic organisms and offer a promising approach for linking water contamination to trace metal bioaccumulation in biota. Nevertheless, models are based on laboratory-derived kinetic parameters, and the question of their relevance to predict trace metal bioaccumulation in the field is poorly addressed. In the present study, we propose to assess the capacity of kinetic models to predict trace metal bioaccumulation in gammarids in the field at a wide spatial scale. The field validation consisted of measuring dissolved Cd, Cu, Ni and Pb concentrations in the water column at 141 sites in France, running the models with laboratory-derived kinetic parameters, and comparing model predictions and measurements of trace metal concentrations in gammarids caged for 7 days to the same sites. We observed that gammarids poorly accumulated Cu showing the limited relevance of that species to monitor Cu contamination. Therefore, Cu was not considered for model predictions. In contrast, gammarids significantly accumulated Pb, Cd, and Ni over a wide range of exposure concentrations. These results highlight the relevance of using gammarids for active biomonitoring to detect spatial trends of bioavailable Pb, Cd, and Ni contamination in freshwaters. The best agreements between model predictions and field measurements were observed for Cd with 71% of good estimations (i.e. field measurements were predicted within a factor of two), which highlighted the potential for kinetic models to link Cd contamination to bioaccumulation in the field. The poorest agreements were observed for Ni and Pb (39% and 48% of good estimations, respectively). However, models developed for Ni, Pb, and to a lesser extent for Cd, globally underestimated bioaccumulation in caged gammarids. These results showed that the link between trace metal concentration in water and in biota remains complex, and underlined the limits of

  5. Oxidative carbonylation of styrene to methyl cinnamate

    SciTech Connect

    Hsu, C.Y.

    1987-04-01

    Oxidative carbonylation technology is used for making methyl cinnamate from styrene as an alternative to Claisen condensation of benzaldehyde with methyl acetate. Using this approach, the optimum yield of cinnamate is greater than 90%, with CO{sub 2}, acetophenone, and phenylsuccinate as the major by-products. The conversion of styrene and the selectivity to cinnamate depend upon the types of catalysts and reaction conditions used. A plausible reaction mechanism is proposed to account for the selective formation of cinnamate.

  6. Carbonyl compounds generated from electronic cigarettes.

    PubMed

    Bekki, Kanae; Uchiyama, Shigehisa; Ohta, Kazushi; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2014-10-28

    Electronic cigarettes (e-cigarettes) are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols) when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.

  7. Zirconocene-Mediated Carbonylative Coupling of Grignard Reagents.

    PubMed

    Moss, Melissa; Han, Xinping; Ready, Joseph M

    2016-08-16

    Organozirconocenes are versatile synthetic intermediates that can undergo carbonylation to yield acyl anion equivalents. Zirconocene hydrochloride ([Cp2 ZrHCl]) is often the reagent of choice for accessing these intermediates but generates organozirconocenes only from alkenes and alkynes. This requirement eliminates a broad range of substrates. For example, organozirconocenes in which the zirconium center is bonded to an aromatic ring, a benzylic group, or an alkyl group that possesses a tertiary or quaternary carbon atom α to the carbon-zirconium bond can not be formed in this way. To provide more generalized access to acyl zirconium reagents, we explored the transmetalation of Grignard reagents with zirconocene dichloride under a CO atmosphere. This protocol generates acyl zirconium(IV) complexes that are inaccessible with the Schwartz reagent, including those derived from secondary and tertiary alkyl and aryl Grignard reagents. PMID:27410720

  8. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    SciTech Connect

    Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith; Green, Peter G.; Kleeman, Michael J.

    2007-12-01

    Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde forcarbonyls and 6-fluoro-4-chromanone for>_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.

  9. Carbonyl emissions from gasoline and diesel motor vehicles.

    PubMed

    Jakober, Chris A; Robert, Michael A; Riddle, Sarah G; Destaillats, Hugo; Charles, M Judith; Green, Peter G; Kleeman, Michael J

    2008-07-01

    Carbonyls from gasoline-powered light-duty vehicles (LDVs) and heavy-duty diesel-powered vehicles (HDDVs) operated on chassis dynamometers were measured by use of an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery: 4-fluorobenzaldehyde for < C8 carbonyls and 6-fluoro-4-chromanone for > or = C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 to 2000 microg/L of fuel for LDVs and from 1.8 to 27 000 microg/L of fuel for HDDVs. Gas-phase species accounted for 81-95% of the total carbonyls from LDVs and 86-88% from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19% of particulate organic carbon (POC) emissions from low-emission LDVs and 37% of POC emissions from three-way catalyst-equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9% depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas and particle phases under the dilution factors of 126-584 used in the present study.

  10. Infrapatellar fat pad-derived stem cells maintain their chondrogenic capacity in disease and can be used to engineer cartilaginous grafts of clinically relevant dimensions.

    PubMed

    Liu, Yurong; Buckley, Conor Timothy; Almeida, Henrique V; Mulhall, Kevin J; Kelly, Daniel John

    2014-11-01

    A therapy for regenerating large cartilaginous lesions within the articular surface of osteoarthritic joints remains elusive. While tissue engineering strategies such as matrix-assisted autologous chondrocyte implantation can be used in the repair of focal cartilage defects, extending such approaches to the treatment of osteoarthritis will require a number of scientific and technical challenges to be overcome. These include the identification of an abundant source of chondroprogenitor cells that maintain their chondrogenic capacity in disease, as well as the development of novel approaches to engineer scalable cartilaginous grafts that could be used to resurface large areas of damaged joints. In this study, it is first demonstrated that infrapatellar fat pad-derived stem cells (FPSCs) isolated from osteoarthritic (OA) donors possess a comparable chondrogenic capacity to FPSCs isolated from patients undergoing ligament reconstruction. In a further validation of their functionality, we also demonstrate that FPSCs from OA donors respond to the application of physiological levels of cyclic hydrostatic pressure by increasing aggrecan gene expression and the production of sulfated glycosaminoglycans. We next explored whether cartilaginous grafts could be engineered with diseased human FPSCs using a self-assembly or scaffold-free approach. After examining a range of culture conditions, it was found that continuous supplementation with both transforming growth factor-β3 (TGF-β3) and bone morphogenic protein-6 (BMP-6) promoted the development of tissues rich in proteoglycans and type II collagen. The final phase of the study sought to scale-up this approach to engineer cartilaginous grafts of clinically relevant dimensions (≥2 cm in diameter) by assembling FPSCs onto electrospun PLLA fiber membranes. Over 6 weeks in culture, it was possible to generate robust, flexible cartilage-like grafts of scale, opening up the possibility that tissues engineered using FPSCs

  11. Translating textiles to tissue engineering: Creation and evaluation of microporous, biocompatible, degradable scaffolds using industry relevant manufacturing approaches and human adipose derived stem cells.

    PubMed

    Haslauer, Carla M; Avery, Matthew R; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2015-07-01

    Polymeric scaffolds have emerged as a means of generating three-dimensional tissues, such as for the treatment of bone injuries and nonunions. In this study, a fibrous scaffold was designed using the biocompatible, degradable polymer poly-lactic acid in combination with a water dispersible sacrificial polymer, EastONE. Fibers were generated via industry relevant, facile scale-up melt-spinning techniques with an islands-in-the-sea geometry. Following removal of EastONE, a highly porous fiber remained possessing 12 longitudinal channels and pores throughout all internal and external fiber walls. Weight loss and surface area characterization confirmed the generation of highly porous fibers as observed via focused ion beam/scanning electron microscopy. Porous fibers were then knit into a three-dimensional scaffold and seeded with human adipose-derived stem cells (hASC). Confocal microscopy images confirmed hASC attachment to the fiber walls and proliferation throughout the knit structure. Quantification of cell-mediated calcium accretion following culture in osteogenic differentiation medium confirmed hASC differentiation throughout the porous constructs. These results suggest incorporation of a sacrificial polymer within islands-in-the-sea fibers generates a highly porous scaffold capable of supporting stem cell viability and differentiation with the potential to generate large three-dimensional constructs for bone regeneration and/or other tissue engineering applications.

  12. Translating Textiles to Tissue Engineering: Creation and Evaluation of Microporous, Biocompatible, Degradable Scaffolds Using Industry Relevant Manufacturing Approaches and Human Adipose Derived Stem Cells

    PubMed Central

    Haslauer, Carla M.; Avery, Matthew R.; Pourdeyhimi, Behnam; Loboa, Elizabeth G.

    2014-01-01

    Polymeric scaffolds have emerged as a means of generating three-dimensional tissues, such as for the treatment of bone injuries and non-unions. In this study, a fibrous scaffold was designed using the biocompatible, degradable polymer poly-lactic acid in combination with a water dispersible sacrificial polymer, EastONE. Fibers were generated via industry relevant, facile scale-up melt-spinning techniques with an islands-in-the-sea geometry. Following removal of EastONE, a highly porous fiber remained possessing 12 longitudinal channels and pores throughout all internal and external fiber walls. Weight loss and surface area characterization confirmed the generation of highly porous fibers as observed via focused ion beam/scanning electron microscopy. Porous fibers were then knit into a three-dimensional scaffold and seeded with human adipose-derived stem cells (hASC). Confocal microscopy images confirmed hASC attachment to the fiber walls and proliferation throughout the knit structure. Quantification of cell-mediated calcium accretion following culture in osteogenic differentiation medium confirmed hASC differentiation throughout the porous constructs. These results suggest incorporation of a sacrificial polymer within islands-in-the-sea fibers generates a highly porous scaffold capable of supporting stem cell viability and differentiation with the potential to generate large three-dimensional constructs for bone regeneration and/or other tissue engineering applications. PMID:25229198

  13. Hepatocellular carcinoma protein carbonylation in virus C and metabolic syndrome patients.

    PubMed

    Martin, Fernando Ariel; Mebarki, Mouniya; Paradis, Valérie; Friguet, Bertrand; Radman, Miroslav

    2014-10-01

    Metabolic syndrome (MS) is becoming the leading cause of chronic liver diseases worldwide. Hepatocellular carcinoma (HCC) development in MS is peculiar compared to other chronic liver diseases. Carbohydrate and lipid metabolic imbalance in MS increase reactive oxygen species damaging proteins. In the present work we study the difference in protein oxidative damage (carbonylation) in human HCC derived from virus C infection (VHC) and from MS (MS_HCC) as the only subjacent cause. We selected a patient cohort containing of 10 non-tumoral and 10 tumoral liver resections in each study group (virus C and MS HCC) based on clinical patient history and histological parameters. Protein samples were labeled to saturation using CF 647-hydrazide™ dye. This approach allows us to perform carbonyl detection alongside with a DIGE experiment. We detected a total of 1184 spots with 36 differentially expressed proteins and 47 spots differentially carbonylated between VHC and MS_HCC (fold change >1.5, p<0.05). VHC up-regulated proteins are involved in signaling pathways related to cancer development such as signaling by EGFR, Wnt, Cdc20 and cell cycle. Further, up-regulated proteins in MS HCC, are implicated in metabolism of carbohydrates and amino acids. Differential carbonylation analysis between VHC and MS_HCC showed protein damage in proteins such as glucose phosphate isomerase, isocitrate dehydrogenase, and 3-ketoacyl-CoA thiolase. Higher protein carbonylation in MS_HCC samples was observed in proteins involved in redox response and lipid metabolism. In conclusion, the observed difference in protein oxidative damage between MS and Virus C derived carcinoma could account for the different cancer development pathway. PMID:26461368

  14. Acute inhalation toxicity of carbonyl sulfide

    SciTech Connect

    Benson, J.M.; Hahn, F.F.; Barr, E.B.

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  15. A computational method to predict carbonylation sites in yeast proteins.

    PubMed

    Lv, H Q; Liu, J; Han, J Q; Zheng, J G; Liu, R L

    2016-01-01

    Several post-translational modifications (PTM) have been discussed in literature. Among a variety of oxidative stress-induced PTM, protein carbonylation is considered a biomarker of oxidative stress. Only certain proteins can be carbonylated because only four amino acid residues, namely lysine (K), arginine (R), threonine (T) and proline (P), are susceptible to carbonylation. The yeast proteome is an excellent model to explore oxidative stress, especially protein carbonylation. Current experimental approaches in identifying carbonylation sites are expensive, time-consuming and limited in their abilities to process proteins. Furthermore, there is no bioinformational method to predict carbonylation sites in yeast proteins. Therefore, we propose a computational method to predict yeast carbonylation sites. This method has total accuracies of 86.32, 85.89, 84.80, and 86.80% in predicting the carbonylation sites of K, R, T, and P, respectively. These results were confirmed by 10-fold cross-validation. The ability to identify carbonylation sites in different kinds of features was analyzed and the position-specific composition of the modification site-flanking residues was discussed. Additionally, a software tool has been developed to help with the calculations in this method. Datasets and the software are available at https://sourceforge.net/projects/hqlstudio/ files/CarSpred.Y/. PMID:27420944

  16. Copper-catalyzed one-pot trifluoromethylation/aryl migration/carbonyl formation with homopropargylic alcohols.

    PubMed

    Gao, Pin; Shen, Yong-Wen; Fang, Ran; Hao, Xin-Hua; Qiu, Zi-Hang; Yang, Fan; Yan, Xiao-Biao; Wang, Qiang; Gong, Xiang-Jun; Liu, Xue-Yuan; Liang, Yong-Min

    2014-07-14

    A novel copper-catalyzed one-pot functionalization of homopropargylic alcohols that involves trifluoromethylation, aryl migration, and formation of a carbonyl moiety has been developed. This reaction constitutes the first direct conversion of homopropargylic alcohols into CF3-containing 3-butenal or 3-buten-1-one derivatives in a regioselective manner. Mechanistic studies indicate that the 1,4-aryl migration proceeds through a radical pathway. PMID:24938432

  17. Organocatalytic enantioselective tandem aldol-cyclization reaction of α-isothiocyanato imides and activated carbonyl compounds

    PubMed Central

    Guang, Jie; Zhao, Cong-Gui

    2011-01-01

    The organocatalytic enantioselective tandem aldol-cyclization reactions of α-isothiocyanato imides and activated carbonyl compounds, such as isatins, an α-ketolactone and a 1,2-dione, have been studied with cinchona alkaloid-derived thiourea-catalysts. This methodology provided an easy way to access enantiomerically enriched spirobicyclic thiocarbamates with high yields and good to excellent stereoselectivity, which have been demonstrated to be useful precursors for the synthesis of biologically active molecules. PMID:21921975

  18. Gas-phase chemistry of ruthenium and rhodium carbonyl complexes.

    PubMed

    Cao, Shiwei; Wang, Yang; Qin, Zhi; Fan, Fangli; Haba, Hiromitsu; Komori, Yukiko; Wu, Xiaolei; Tan, Cunmin; Zhang, Xin

    2016-01-01

    Short-lived ruthenium and rhodium isotopes were produced from a (252)Cf spontaneous fission (SF) source. Their volatile carbonyl complexes were formed in gas-phase reactions in situ with the carbon-monoxide containing gas. A gas-jet system was employed to transport the volatile carbonyls from the recoil chamber to the chemical separation apparatus. The gas-phase chemical behaviors of these carbonyl complexes were studied using an online low temperature isothermal chromatography (IC) technique. Long IC columns made up of FEP Teflon were used to obtain the chemical information of the high-volatile Ru and Rh carbonyls. By excluding the influence of precursor effects, short-lived isotopes of (109-110)Ru and (111-112)Rh were used to represent the chemical behaviours of Ru and Rh carbonyls. Relative chemical yields of about 75% and 20% were measured for Ru(CO)5 and Rh(CO)4, respectively, relative to the yields of KCl aerosols transported in Ar gas. The adsorption enthalpies of ruthenium and rhodium carbonyl complexes on a Teflon surface were determined to be around ΔHads = -33(+1)(-2) kJ mol(-1) and -36(+2)(-1) kJ mol(-1), respectively, by fitting the breakthrough curves of the corresponding carbonyl complexes with a Monte Carlo simulation program. Different from Mo and Tc carbonyls, a small amount of oxygen gas was found to be not effective for the chemical yields of ruthenium and rhodium carbonyl complexes. The general chemical behaviors of short-lived carbonyl complexes of group VI-IX elements were discussed, which can be used in the future study on the gas-phase chemistry of superheavy elements - Bh, Hs, and Mt carbonyls. PMID:26573993

  19. FT-IR quantification of the carbonyl functional group in aqueous-phase secondary organic aerosol from phenols

    NASA Astrophysics Data System (ADS)

    George, Kathryn M.; Ruthenburg, Travis C.; Smith, Jeremy; Yu, Lu; Zhang, Qi; Anastasio, Cort; Dillner, Ann M.

    2015-01-01

    Recent findings suggest that secondary organic aerosols (SOA) formed from aqueous-phase reactions of some organic species, including phenols, contribute significantly to particulate mass in the atmosphere. In this study, we employ a Fourier transform infrared (FT-IR) spectroscopic technique to identify and quantify the functional group makeup of phenolic SOA. Solutions containing an oxidant (hydroxyl radical or 3,4-dimethoxybenzaldehyde) and either one phenol (phenol, guaiacol, or syringol) or a mixture of phenols mimicking softwood or hardwood emissions were illuminated to make SOA, atomized, and collected on a filter. We produced laboratory standards of relevant organic compounds in order to develop calibrations for four functional groups: carbonyls (Cdbnd O), saturated C-H, unsaturated C-H and O-H. We analyzed the SOA samples with transmission FT-IR to identify and determine the amounts of the four functional groups. The carbonyl functional group accounts for 3-12% of the SOA sample mass in single phenolic SOA samples and 9-14% of the SOA sample mass in mixture samples. No carbonyl functional groups are present in the initial reactants. Varying amounts of each of the other functional groups are observed. Comparing carbonyls measured by FT-IR (which could include aldehydes, ketones, esters, and carboxylic acids) with eight small carboxylic acids measured by ion chromatography indicates that the acids only account for an average of 20% of the total carbonyl reported by FT-IR.

  20. Carbonyl emissions in diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Machado Corrêa, Sérgio; Arbilla, Graciela

    With the use of biodiesel in clear growth, it is important to quantify any potential emission benefits or liabilities of this fuel. Several researches are available concerning the regulated emissions of biodiesel/diesel blends, but there is a lack of information about non-regulated emissions. In a previous paper [Corrêa, S.M., Arbilla, G., 2006. Emissões de formaldeído e acetaldeído de misturas biodiesel/diesel. Periódico Tchê Química, 3, 54-68], the emissions of aromatic hydrocarbons were reported. In this work, seven carbonyl emissions (formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, butyraldehyde, and benzaldehyde) were evaluated by a heavy-duty diesel engine fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were conducted using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, in a steady-state condition under 1000, 1500, and 2000 rpm. The exhaust gases were diluted nearly 20 times and the carbonyls were sampled with SiO 2-C18 cartridges, impregnated with acid solution of 2,4-dinitrophenylhydrazine. The chemical analyses were performed by high performance liquid chromatography using UV detection. Using average values for the three modes of operation (1000, 1500, and 2000 rpm) benzaldehyde showed a reduction on the emission (-3.4% for B2, -5.3% for B5, -5.7% for B10, and -6.9% for B20) and all other carbonyls showed a significative increase: 2.6, 7.3, 17.6, and 35.5% for formaldehyde; 1.4, 2.5, 5.4, and 15.8% for acetaldehyde; 2.1, 5.4, 11.1, and 22.0% for acrolein+acetone; 0.8, 2.7, 4.6, and 10.0% for propionaldehyde; 3.3, 7.8, 16.0, and 26.0% for butyraldehyde.

  1. Synthesis of main-chain metal carbonyl organometallic macromolecules (MCMCOMs).

    PubMed

    Cao, Kai; Murshid, Nimer; Wang, Xiaosong

    2015-04-01

    Synthesis of main-chain metal carbonyl organometallic macromolecules (MCMCOMs) is difficult, mainly due to the instability of metal carbonyl complexes. Despite its challenge a number of MCMCOMs has been prepared by strategically using organometallic, organic, and polymer synthetic chemistry. Main contributions to this research field were reported by the groups of Tyler, Pannell, and Wang and are briefly summarized in this article.

  2. Protein carbonylation as a novel mechanism in redox signaling.

    PubMed

    Wong, Chi Ming; Cheema, Amrita K; Zhang, Lihua; Suzuki, Yuichiro J

    2008-02-15

    Reactive oxygen species serve as second messengers for signal transduction; however, molecular targets of oxidant signaling have not been defined. Here, we show that ligand-receptor-mediated signaling promotes reactive oxygen species-dependent protein carbonylation. Treatment of pulmonary artery smooth muscle cells with endothelin-1 increased protein carbonyls. Carbonylation of the majority of proteins occurred transiently, suggesting that there is also a mechanism for decarbonylation induced by endothelin-1. Decarbonylation was suppressed by inhibition of thioredoxin reductase, and cellular thioredoxin was upregulated during the decarbonylation phase. These results indicate that endothelin-1 promotes oxidant signaling as well as thioredoxin-mediated reductive signaling to regulate carbonylation and decarbonylation mechanisms. In cells treated with endothelin receptor antagonists, hydrogen peroxide scavengers, or an iron chelator, we identified, via mass spectrometry, proteins that are carbonylated in a receptor- and Fenton reaction-dependent manner, including annexin A1, which promotes apoptosis and suppresses cell growth. Carbonylation of annexin A1 by endothelin-1 was followed by proteasome-dependent degradation of this protein. We propose that carbonylation and subsequent degradation of annexin A1 may play a role in endothelin-mediated cell growth and survival, important events in pulmonary vascular remodeling. Protein carbonylation in response to ligand-receptor interactions represents a novel mechanism in redox signaling.

  3. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    PubMed Central

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  4. Carbonyl-Olefin Exchange Reaction: Present State and Outlook

    NASA Astrophysics Data System (ADS)

    Kalinova, Radostina; Jossifov, Christo

    The carbonyl-olefin exchange reaction (COER) is a new reaction between carbonyl group and olefin double bond, which has a formal similarity with the olefin metathesis (OM) - one carbon atom in the latter is replaced with an oxygen atom. Till now the new reaction is performed successfully only when the two functional groups (carbonyl group and olefin double bond) are in one molecule and are conjugated. The α, β-unsaturated carbonyl compounds (substituted propenones) are the compounds with such a structure. They polymerize giving substituted polyacetylenes. The chain propagation step of this polymerization is in fact the COER. The question arises: is it possible the COER to take place when the two functional groups are not in one molecule and are not conjugated, and could this reaction became an alternative of the existing carbonyl olefination reactions?

  5. Detection of carbonyl fluoride in the stratosphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Park, J. H.; Russell, J. M., III; Zander, R.; Brown, L. R.; Farmer, C. B.; Norton, R. H.; Raper, O. F.

    1986-01-01

    Infrared solar absorption spectra of the stratosphere recorded at a resolution of 0.01/cm by the ATMOS (Atmospheric Trace Molecule Spectroscopy) instrument from onboard Spacelab 3 (04/30 to 05/6/85) have revealed the existence of many previously unobserved absorption features in the 1925 to 1960/cm and 1249 to 1255/cm regions and one at 774/cm. On the basis of comparisons with laboratory spectra, these features have been identified as belonging to the nu1, nu4, and nu6 bands of carbonyl fluoride, respectively. Volume mixing ratios of COF2 between 17 and 40 km have been deduced from analysis of the nu1 and nu6 bands.

  6. Atmospheric carbonyl sulfide exchange in bog microcosms

    SciTech Connect

    Fried, A.; Klinger, L.F.; Erickson, D.J. III )

    1993-01-22

    Measurements of Carbonyl sulfide (OCS) fluxes were carried out on bog microcosms using chamber sampling and tunable diode laser analysis. Intact bog microcosms (vascular plants, mosses, and peat) removed ambient levels of OCS in the light and dark with rates from [minus]2.4 to [minus]8.1 ng S min[sup [minus]1] m[sup [minus]2]. Peat and peat plus mosses emitted OCS in the light with rates of 17.4 and 10.9 ng S min[sup [minus]1] m[sup [minus]2], respectively. In the dark, the mosses apparently removed OCS at a rate equivalent to the peat emissions. A 3-D numerical tracer model using this data indicated that boreal bog ecosystems remove at most 1% of ambient OCS, not sufficient to account for an observed OCS depletion in boreal air masses. 13 refs., 1 fig., 1 tab.

  7. Metal-free carbonylations by photoredox catalysis.

    PubMed

    Majek, Michal; Jacobi von Wangelin, Axel

    2015-02-01

    The synthesis of benzoates from aryl electrophiles and carbon monoxide is a prime example of a transition-metal-catalyzed carbonylation reaction which is widely applied in research and industrial processes. Such reactions proceed in the presence of Pd or Ni catalysts, suitable ligands, and stoichiometric bases. We have developed an alternative procedure that is free of any metal, ligand, and base. The method involves a redox reaction driven by visible light and catalyzed by eosin Y which affords alkyl benzoates from arene diazonium salts, carbon monoxide, and alcohols under mild conditions. Tertiary esters can also be prepared in high yields. DFT calculations and radical trapping experiments support a catalytic photoredox pathway without the requirement for sacrificial redox partners.

  8. Reductive carbonylation of aromatic nitro compounds

    SciTech Connect

    Wehman, P.; Kamer, P.C.J.; Leeuwen, P.W.N.M. van

    1995-12-31

    In the reductive carbonylation of aromatic nitro compounds carbamates and isocyanates are prepared through a direct reaction between the nitro group and CO under the influence of a catalyst. This route avoids the major disadvantages of the traditional process for the production of the industrially important isocyanates and carbamates. The authors have developed a stable, active, and rather selective homogeneous palladium catalyst for the reductive carbonylation of the nitro substrate. Best results were obtained with Pd-phenanthroline complexes in which the ligands bear moderately donating substituents. Noncoordinating anions in the catalyst complex are clearly preferable. The highest activity was reached with the Pd(4,7-Me{sub 2}-1,10-phen){sub 2}(OTf){sub 2} catalyst complex (t.o.f. = 311 mol/mol/h, selectivity toward the desired carbamate = 84%). With the Pd(1,10-phenanthroline){sub 2}(OTf){sub 2} catalyst complex, the authors studied the scope of the reaction in order to prepare a wide range of functionalized carbamates for the fine chemistry. During this study, it was found that a remarkable improvement of the catalytic activity and selectivity on addition of a benzoic acid (t.o.f. > 365 mol/mol/h, selectivity toward carbamate = 94%). In the presence of 4-chlorobenzoic acid even aromatic dinitro compounds could be converted easily, resulting in the best results reported ever for the conversion of 1,4-dinitrobenzene into the corresponding dicarbamate (t.o.f. = 73 mol/mol/h, selectivity toward the dicarbamate = 86%).

  9. Gas-phase chemistry of technetium carbonyl complexes.

    PubMed

    Wang, Yang; Qin, Zhi; Fan, Fang-Li; Haba, Hiromitsu; Komori, Yukiko; Cao, Shi-Wei; Wu, Xiao-Lei; Tan, Cun-Min

    2015-05-28

    Gas-phase chemical behaviors of short-lived technetium carbonyl complexes were studied using a low temperature isothermal chromatograph (IC) coupled with a (252)Cf spontaneous fission (SF) source. Fission products recoiled from the (252)Cf SF source were thermalized in a mixed gas containing CO, and then technetium carbonyl complexes were formed from reactions between CO gas and various technetium isotopes. A gas-jet system was employed to transport the volatile carbonyl complexes from a recoil chamber to the IC. Short IC columns made of Fluorinated Ethylene Propylene (FEP) Teflon and quartz were used to obtain chemical information about the technetium carbonyl complexes. The results for the (104)Tc-(106)Tc carbonyl complexes were found to be strongly influenced by the precursors, and showed the chemical behaviors of (104)Mo-(106)Mo carbonyl complexes, respectively. However, (107)Tc and (108)Tc could represent the chemical information of the element technetium due to their high independent yields and the very short half-lives of their precursors (107)Mo and (108)Mo. An adsorption enthalpy of about ΔHads = -43 kJ mol(-1) was determined for the Tc carbonyl complexes on both the Teflon and quartz surfaces by fitting the breakthrough curves of the (107)Tc and (108)Tc carbonyl complexes with a Monte Carlo simulation program. Chemical yields of around 25% were measured for the Tc carbonyl complexes relative to the transport yields obtained with the gas-jet transport of KCl aerosol particles with Ar carrier gas. Furthermore, the influence of a small amount of O2 gas on the yields of the Mo and Tc carbonyl complexes was studied.

  10. Carbonyl emissions from gasoline and diesel motor vehicles.

    PubMed

    Jakober, Chris A; Robert, Michael A; Riddle, Sarah G; Destaillats, Hugo; Charles, M Judith; Green, Peter G; Kleeman, Michael J

    2008-07-01

    Carbonyls from gasoline-powered light-duty vehicles (LDVs) and heavy-duty diesel-powered vehicles (HDDVs) operated on chassis dynamometers were measured by use of an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery: 4-fluorobenzaldehyde for < C8 carbonyls and 6-fluoro-4-chromanone for > or = C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 to 2000 microg/L of fuel for LDVs and from 1.8 to 27 000 microg/L of fuel for HDDVs. Gas-phase species accounted for 81-95% of the total carbonyls from LDVs and 86-88% from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19% of particulate organic carbon (POC) emissions from low-emission LDVs and 37% of POC emissions from three-way catalyst-equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9% depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas and particle phases under the dilution factors of 126-584 used in the present study. PMID:18677993

  11. Gas-phase chemistry of technetium carbonyl complexes.

    PubMed

    Wang, Yang; Qin, Zhi; Fan, Fang-Li; Haba, Hiromitsu; Komori, Yukiko; Cao, Shi-Wei; Wu, Xiao-Lei; Tan, Cun-Min

    2015-05-28

    Gas-phase chemical behaviors of short-lived technetium carbonyl complexes were studied using a low temperature isothermal chromatograph (IC) coupled with a (252)Cf spontaneous fission (SF) source. Fission products recoiled from the (252)Cf SF source were thermalized in a mixed gas containing CO, and then technetium carbonyl complexes were formed from reactions between CO gas and various technetium isotopes. A gas-jet system was employed to transport the volatile carbonyl complexes from a recoil chamber to the IC. Short IC columns made of Fluorinated Ethylene Propylene (FEP) Teflon and quartz were used to obtain chemical information about the technetium carbonyl complexes. The results for the (104)Tc-(106)Tc carbonyl complexes were found to be strongly influenced by the precursors, and showed the chemical behaviors of (104)Mo-(106)Mo carbonyl complexes, respectively. However, (107)Tc and (108)Tc could represent the chemical information of the element technetium due to their high independent yields and the very short half-lives of their precursors (107)Mo and (108)Mo. An adsorption enthalpy of about ΔHads = -43 kJ mol(-1) was determined for the Tc carbonyl complexes on both the Teflon and quartz surfaces by fitting the breakthrough curves of the (107)Tc and (108)Tc carbonyl complexes with a Monte Carlo simulation program. Chemical yields of around 25% were measured for the Tc carbonyl complexes relative to the transport yields obtained with the gas-jet transport of KCl aerosol particles with Ar carrier gas. Furthermore, the influence of a small amount of O2 gas on the yields of the Mo and Tc carbonyl complexes was studied. PMID:25920667

  12. Carbonyl Emissions From Oil and Gas Production Facilities

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; O'Neil, T.; Tran, T.

    2015-12-01

    A number of recent studies have targeted emissions of methane and other hydrocarbons from oil and gas exploration and production activity. These measurements are greatly increasing understanding of the atmospheric impacts of oil and gas development. Very few measurements exist, however, of emissions of formaldehyde and other carbonyls from oil and gas equipment. Carbonyls are toxic and serve as important ozone precursors, especially during winter ozone episodes in places like Utah's Uintah Basin. Current air quality models are only able to reproduce observed high wintertime ozone if they incorporate emissions inventories with very high carbonyl emissions. We measured carbonyl emissions from oil and gas equipment and facilities—including glycol dehydrators, liquid storage tanks, raw gas leaks, raw gas-burning engines, and produced water surface impoundments—in Rocky Mountain oil and gas fields. Carbonyl emissions from raw gas were below detection, but emissions of formaldehyde, acetaldehyde, and other carbonyls were detected from liquid storage tanks, glycol dehydrators, and other oil and gas equipment. In some cases, carbonyls may be formed from the degradation of methanol and other chemicals used in oil and gas production, but the collected data provide evidence for other non-combustion formation pathways. Raw gas-burning engines also emitted carbonyls. Emissions from all measured sources were a small fraction of total volatile organic compound emissions. We incorporated our measurements into an emissions inventory, used that inventory in an air quality model (WRF-SMOKE-CAMx), and were unable to reproduce observed high wintertime ozone. This could be because (1) emission sources we have not yet measured, including compressors, gas processing plants, and others, are large; (2) non-carbonyl emissions, especially those that quickly degrade into carbonyls during photochemical processing, are underestimated in the inventory; or (3) the air quality model is unable

  13. Characteristics and personal exposures of carbonyl compounds in the subway stations and in-subway trains of Shanghai, China.

    PubMed

    Feng, Yanli; Mu, Cuicui; Zhai, Jinqing; Li, Jian; Zou, Ting

    2010-11-15

    Carbonyl compounds including their concentrations, potential sources, diurnal variations and personal exposure were investigated in six subway stations and in-subway trains in Shanghai in June 2008. The carbonyls were collected onto solid sorbent (Tenax TA) coated with pentafluorophenyl hydrazine (PFPH), followed by solvent extraction and gas chromatography (GC)/mass spectrometry (MS) analysis of the PFPH derivatives. The total carbonyl concentrations of in-subway train were about 1.4-2.5 times lower than in-subway stations. A significant correlation (R>0.5, p<0.01) between the concentrations of the low molecular-weight carbonyl compounds (carbonyls were much higher in the morning rush hour than in other sampling periods. Additionally, pronounced diurnal variations of acetaldehyde concentration before and after the evening peak hour in the subway train suggested that passengers contributed to high acetaldehyde levels. The personal exposure showed that the underground subway stations were important microenvironment for exposure to formaldehyde and acetaldehyde. PMID:20692096

  14. Synthesis, characterization and biological relevance of some metal (II) complexes with oxygen, nitrogen and oxygen (ONO) donor Schiff base ligand derived from thiazole and 2-hydroxy-1-naphthaldehyde

    NASA Astrophysics Data System (ADS)

    Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2015-04-01

    The novel Schiff base ligand 2-((2-hydroxynaphthalen-1-yl)methylene)-N-(4-phenylthiazol-2-yl)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-hydroxy-1-naphthaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), Zn(II) and Cd(II) complexes have been characterized by microanalysis, molar conductance, IR, 1H NMR, ESI-mass, UV-Visible, TGA/DTA, ESR and powder X-ray diffraction data to explicate their structures. The IR results confirmed the tridentate binding of the ligand involving oxygen atom of amide carbonyl, azomethine nitrogen and naphthol oxygen. 1H NMR spectral data of the ligand (L) and its Zn(II) complex agreed well with the proposed structures. Thermogravimetric studies for Cu(II) and Ni(II) complexes indicated the presence of coordinated water molecules and the final product is the metal oxide. In order to appraise the effect of antimicrobial activity of metal ions upon chelation, the newly synthesized ligand and its metal complexes were screened for their antimicrobial activity by minimum inhibitory concentration (MIC) method. The DNA cleavage activities were studied using plasmid DNA pBR322 (Bangal re Genei, Bengaluru, Cat. No 105850) as a target molecule by agarose gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties against Artemia salina. Furthermore, the antioxidant activity were determined in vitro by reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH). The ligand exhibited better in vitro-antioxidant activity than its metal complexes.

  15. Relevancy 101

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris; Newman, Doug

    2016-01-01

    Where we present an overview on why relevancy is a problem, how important it is and how we can improve it. The topic of relevancy is becoming increasingly important in earth data discovery as our audience is tuned to the accuracy of standard search engines like Google.

  16. Seasonal and diurnal characteristics of atmospheric carbonyls in Nanning, China

    NASA Astrophysics Data System (ADS)

    Guo, Songjun; Chen, Mei; Tan, Jihua

    2016-03-01

    For the first time, atmospheric carbonyls were measured to identify seasonal and diurnal variations in Nanning from October 2011 to July 2012. Formaldehyde (6.79 ± 3.39 μg/m3), acetaldehyde (15.81 ± 10.48 μg/m3) and acetone (5.43 ± 6.91 μg/m3) were the three most abundant carbonyls, accounting for ~ 85% of the total carbonyls. The average total concentrations of carbonyls and three abundant carbonyls showed significant high levels in summer compared to those in winter. Diurnal variations suggested that photochemical conditions, combustion of charcoal and straw, and solvent usage are important for the distributions of atmospheric carbonyls. The highest average C1/C2 ratio was observed in summer (0.75) compared to those (0.31-0.70) in other seasons, implying the positive effect of photochemical activities on raising C1/C2 ratio, and the significant low C2/C3 ratio (12.01-18.23) in winter and autumn than those (95.83-24.49) in both spring and summer suggested the important anthropogenic emissions such as charcoal and biomass combustion. O3 formation potentials in summer and spring were significantly higher by ~ 2 times than those in autumn and winter. Formaldehyde and acetaldehyde are the top two carbonyls which contribute 82-97% to total O3 formation potentials.

  17. Blot-MS of Carbonylated Proteins: A Tool to Identify Oxidized Proteins.

    PubMed

    Ferreira, Rita; Domingues, Pedro; Amado, Francisco; Vitorino, Rui

    2016-01-01

    The efficiency of proteostasis regulation declines during aging and the failure of protein homeostasis is common in age-related diseases. Protein oxidation is a major contributor to the loss of proteome homeostasis, also called "proteostasis," precluding protein misfolding and aggregation. So, the identification of the molecular pathways impaired by protein oxidation will increase the understanding of proteostasis and the pathophysiological conditions related to the loss of proteostasis. Sample derivatization with dinitrophenyl hydrazine and western blot immunoassay detection of carbonylated proteins (commonly known as Oxyblot™) coupled to mass spectrometry (blot-MS) is an attractive methodological approach to identify proteins that are more prone to carbonylation, a typical oxidative modification of amino acid residues. The integration of blot-MS data of carbonylated proteins with bioinformatics tools allows the identification of the biological processes more affected by protein oxidation and that, eventually, result in the loss of proteostasis.In this chapter, we describe a blot-MS methodology to identify the proteins more prone to oxidation in biological samples, as cell and tissue extracts, and biofluids. Analysis of mitochondria isolated from cardiac tissue is provided as an example. Bioinformatic strategy to deal with data retrieved from blot-MS experiments are proposed for the identification of relevant biological processes modulated by oxidative stress stimuli. PMID:27613049

  18. Investigation of carbonyl compounds in bottled waters from Poland.

    PubMed

    Nawrocki, J; Dabrowska, A; Borcz, A

    2002-11-01

    Poly(ethylene terephtalate) (PET) bottles are commonly used for storing mineral water. The migration of carbonyl compounds from PET bottles into mineral water was observed. Carbonation of water, sunlight and high temperature enhance the process of migration. Formaldehyde, acetaldehyde and acetone were the most important carbonyls identified in series of bottled water samples. The concentration of carbonyls can change depending on the time of storage as well as storage conditions. It was identified particularly high concentration of acetaldehyde (more than 100 microg 1(-1)) in samples of mineral water saturated with CO2 gas. PMID:12448533

  19. Do lab-derived distribution coefficient values of pesticides match distribution coefficient values determined from column and field-scale experiments? A critical analysis of relevant literature.

    PubMed

    Vereecken, H; Vanderborght, J; Kasteel, R; Spiteller, M; Schäffer, A; Close, M

    2011-01-01

    In this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5. PMID:21546674

  20. Deposition of carbonyl sulphide to soils

    NASA Astrophysics Data System (ADS)

    Kluczewski, S. M.; Brown, K. A.; Bel, J. N. B.

    Carbonyl sulphide (COS) is a trace constituent of the atmosphere and is also the main form in which 35S is released from CO 2-cooled nuclear reactors. Measurements of its deposition velocity ( Vg) are therefore important for validating radiological dose models and for interpreting the role of COS in the global S cycle. The Vg of [ 35S]COS to thin layers of several contrasting soils was measured in a through-flow fumigation system. Deposition velocity was not significantly affected by soil type, although deposition to moist soil was significantly greater ( P < 0.001) than for air-dried soils, mean values being 5.71 × 10 -6 ms -1 and 3.06 × 10 -6 ms -1, respectively. The results obtained are about three orders of magnitude smaller than published Vg values for SO 2 to similar soils, which suggests that uptake by soils is not a major sink for atmospheric COS. The results are consistent with the hypothesis that deposition to soil of [ 35S]COS from nuclear reactors is unlikely to contribute significantly to radiation dose from the food chain pathway. The reduction in Vg observed in heat-treated soils indicates a microbial involvement in uptake. However, it seems unlikely that microbial metabolism is the rate-controlling step, since stimulation of the microflora by the addition of nutrients did not increase COS deposition.

  1. 31P{1H}NMR and carbonyl force constants of unsymmetrical bidentate phosphine complexes of group (VI) metal carbonyls

    NASA Astrophysics Data System (ADS)

    Jesu Raj, Joe Gerald; Pathak, Devendra Deo; Kapoor, Pramesh N.

    2015-05-01

    In our present work we report synthesis of an unsymmetrical diphos ligand, 1-diphenylphosphino-2-di-m-tolylphosphinoethane and its coordinate complexes with group (VI) metal carbonyls such as Cr(CO)6 Mo(CO)6 and W(CO)6. The synthesized ligand and its complexes have been completely characterized by elemental analyses, FTIR, 1HNMR, 31P{1H}NMR and FAB mass spectrometry methods. Special emphasis has been given to calculations of carbonyl force constants. Based on the spectroscopic evidences it has been confirmed that these metal carbonyl complexes with the ditertiary phosphine ligand showed cis geometry in their molecular structure.

  2. ansa-Chromocene complexes. 1. Synthesis and characterization of Cr(II) carbonyl and tert-butyl isocyanide complexes

    SciTech Connect

    Matare, G.J.; Foo, D.M.; Kane, K.M.; Zehnder, R.; Wagener, M.; Shapiro, P.J.; Concolino, T.; Rheingold, A.L.

    2000-04-17

    ansa-Calcocene compounds are effective reagents for the synthesis of ansa-chromocene complexes from CrCl{sub 2} in the presence of a trapping ligand such as carbon monoxide or an isonitrile. A variety of ansa-chromocene carbonyl and tert-butyl isocyanide complexes have been prepared in this manner in high yields. The X-ray crystal structure of one of these complexes, [trans-1,2-(3,4-(CH{sub 3}O){sub 2}C{sub 6}H{sub 3}){sub 2}C{sub 2}H{sub 2}{l_brace}{eta}{sup 5}-C{sub 5}H{sub 4}{r_brace}{sub 2}]CrCO, is described. Electrochemical studies on these complexes show that the isonitrile derivatives are more easily oxidized than the carbonyl derivatives. Preliminary examination of the reactivity of these complexes indicates that the nature of the substitution along the ethanediyl ansa-bridge influences the relative stabilities of the carbonyl complexes to oxidation in air, the ease with which the carbonyl ligands undergo substitution with tert-butyl isocyanide, and the relative sensitivities of the tert-butyl isocyanide adducts to photodecomposition. The ansa-bridge substitution also appears to influence the ability of the complexes to undergo structural changes, such as ring slippage, as revealed in their cyclic voltammograms.

  3. Targeting Reactive Carbonyl Species with Natural Sequestering Agents.

    PubMed

    Hwang, Sung Won; Lee, Yoon-Mi; Aldini, Giancarlo; Yeum, Kyung-Jin

    2016-01-01

    Reactive carbonyl species generated by the oxidation of polyunsaturated fatty acids and sugars are highly reactive due to their electrophilic nature, and are able to easily react with the nucleophilic sites of proteins as well as DNA causing cellular dysfunction. Levels of reactive carbonyl species and their reaction products have been reported to be elevated in various chronic diseases, including metabolic disorders and neurodegenerative diseases. In an effort to identify sequestering agents for reactive carbonyl species, various analytical techniques such as spectrophotometry, high performance liquid chromatography, western blot, and mass spectrometry have been utilized. In particular, recent advances using a novel high resolution mass spectrometry approach allows screening of complex mixtures such as natural products for their sequestering ability of reactive carbonyl species. To overcome the limited bioavailability and bioefficacy of natural products, new techniques using nanoparticles and nanocarriers may offer a new attractive strategy for increased in vivo utilization and targeted delivery of bioactives. PMID:26927058

  4. Gas chromatographic analysis of reactive carbonyl compounds formed from lipids upon UV-irradiation

    SciTech Connect

    Dennis, K.J.; Shibamoto, T. )

    1990-08-01

    Peroxidation of lipids produces carbonyl compounds; some of these, e.g., malonaldehyde and 4-hydroxynonenal, are genotoxic because of their reactivity with biological nucleophiles. Analysis of the reactive carbonyl compounds is often difficult. The methylhydrazine method developed for malonaldehyde analysis was applied to simultaneously measure the products formed from linoleic acid, linolenic acid, arachidonic acid, and squalene upon ultraviolet-irradiation (UV-irradiation). The photoreaction products, saturated monocarbonyl, alpha,beta-unsaturated carbonyls, and beta-dicarbonyls, were derivatized with methylhydrazine to give hydrazones, pyrazolines, and pyrazoles, respectively. The derivatives were analyzed by gas chromatography and gas chromatography-mass spectrometry. Lipid peroxidation products identified included formaldehyde, acetaldehyde, acrolein, malonaldehyde, n-hexanal, and 4-hydroxy-2-nonenal. Malonaldehyde levels formed upon 4 hr of irradiation were 0.06 micrograms/mg from squalene, 2.4 micrograms/mg from linolenic acid, and 5.7 micrograms/mg from arachidonic acid. Significant levels of acrolein (2.5 micrograms/mg) and 4-hydroxy-2-nonenal (0.17 micrograms/mg) were also produced from arachidonic acid upon 4 hr irradiation.

  5. Comparison of extraction methods and detection systems in the gas chromatographic analysis of volatile carbonyl compounds.

    PubMed

    Stashenko, E E; Ferreira, M C; Sequeda, L G; Martínez, J R; Wong, J W

    1997-08-29

    High-resolution gas chromatography (HRGC) with electron-capture detection (ECD), nitrogen-phosphorus detection (NPD), flame ionization detection (FID) or with mass spectrometry-selected ion monitoring (MS-SIM) was used in the analysis of volatile carbonyl compounds. Eighteen carbonyl compounds that are typically produced during lipid peroxidation were derivatized quantitatively with pentafluorophenylhydrazine (PFPH) at room temperature, to afford their corresponding water-insoluble hydrazones. These derivatives were extracted into non-polar phases by means of either liquid-liquid extraction (LLE) (hexane) or solid-phase extraction (SPE) on 3 ml C18 octadecyl-bonded phase cartridges. Detection limits of 10(-14) and 10(-12) mol/ml per aldehyde were achieved with the ECD and MS-SIM systems, respectively. The effects of extraction conditions on sensitivity and recovery were determined by performing parallel HRGC-ECD and HRGC-MS-SIM analyses of pentafluorophenylhydrazones of the eighteen compounds under study. Recoveries of 51.4-78.9 +/- 1.2-4.5 and 80.9-98.3 +/- 1.0-3.5% were obtained with LLE and SPE, respectively. The method was applied to the analysis of the volatile carbonyl compounds in various heated vegetable oils (corn, palm or sunflower) and to the analysis of volatile aldehydes in human urine. PMID:9335127

  6. Carbonyl-Olefin Exchange Reaction and Related Chemistry

    NASA Astrophysics Data System (ADS)

    Jossifov, Christo; Kalinova, Radostina

    A new carbon—carbon double bond forming reaction (carbonyl olefin exchange reaction) mediated by transition metal catalytic systems has been discovered. The catalytic systems used (transition metal halides or oxohalides alone or in combination with Lewis acids) are active only in the case when the two reacting groups are in one molecules and are conjugated. In addition these systems accelerate other reactions which run simultaneously with the carbonyl olefin metathesis rendering a detailed investigation of the process very complicated.

  7. Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux

    NASA Astrophysics Data System (ADS)

    Asaf, David; Rotenberg, Eyal; Tatarinov, Fyodor; Dicken, Uri; Montzka, Stephen A.; Yakir, Dan

    2013-03-01

    Limited understanding of carbon dioxide sinks and sources on land is often linked to the inability to distinguish between the carbon dioxide taken up by photosynthesis, and that released by respiration. Carbonyl sulphide, a sulphur-containing analogue of carbon dioxide, is also taken up by plants, and could potentially serve as a powerful proxy for photosynthetic carbon dioxide uptake, which cannot be directly measured above the leaf scale. Indeed, variations in atmospheric concentrations of carbonyl sulphide are closely related to those of carbon dioxide at regional, local and leaf scales. Here, we use eddy covariance and laser spectroscopy to estimate the net exchange of carbon dioxide and carbonyl sulphide across three pine forests, a cotton field and a wheat field in Israel. We estimate gross primary productivity--a measure of ecosystem photosynthesis--directly from the carbonyl sulphide fluxes, and indirectly from carbon dioxide fluxes. The two estimates agree within an error of +/-15%. The ratio of carbonyl sulphide to carbon dioxide flux at the ecosystem scale was consistent with the variability in mixing ratios observed on seasonal timescales in the background atmosphere. We suggest that atmospheric measurements of carbonyl sulphide flux could provide an independent constraint on estimates of gross primary productivity, key to projecting the response of the land biosphere to climate change.

  8. Carbonyl species characteristics during the evaporation of essential oils

    NASA Astrophysics Data System (ADS)

    Chiang, Hsiu-Mei; Chiu, Hua-Hsien; Lai, Yen-Ming; Chen, Ching-Yen; Chiang, Hung-Lung

    2010-06-01

    Carbonyls emitted from essential oils can affect the air quality when they are used in indoors, especially under poor ventilation conditions. Lavender, lemon, rose, rosemary, and tea tree oils were selected as typical and popular essential oils to investigate in terms of composition, thermal characteristics and fifteen carbonyl constituents. Based on thermogravimetric (TG) analysis, the activation energy was 7.6-8.3 kcal mol -1, the reaction order was in the range of 0.6-0.7 and the frequency factor was 360-2838 min -1. Formaldehyde, acetaldehyde, acetone, and propionaldehyde were the dominant carbonyl compounds, and their concentrations were 0.034-0.170 ppm. The emission factors of carbonyl compounds were 2.10-3.70 mg g -1, and acetone, propionaldehyde, acetaldehyde, and formaldehyde accounted for a high portion of the emission factor of carbonyl compounds in essential oil exhaust. Some unhealthy carbonyl species such as formaldehyde and valeraldehyde, were measured at low-temperature during the vaporization of essential oils, indicating a potential effect on indoor air quality and human health.

  9. Genome Sequences of Industrially Relevant Saccharomyces cerevisiae Strain M3707, Isolated from a Sample of Distillers Yeast and Four Haploid Derivatives

    SciTech Connect

    Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Clum, Alicia; Aerts, Andrea; Salamov, Asaf; Sharma, Aditi; Zane, Matthew; Barry, Kerrie; Grigoriev, Igor V.; Davison, Brian H.; Lynd, Lee R.; Gilna, Paul; Hau, Heidi; Hogsett, David A.; Froehlich, Allan C.

    2013-04-19

    Saccharomyces cerevisiae strain M3707 was isolated from a sample of commercial distillers yeast, and its genome sequence together with the genome sequences for the four derived haploid strains M3836, M3837, M3838, and M3839 has been determined. Yeasts have potential for consolidated bioprocessing (CBP) for biofuel production, and access to these genome sequences will facilitate their development.

  10. Ambient air measurement of acrolein and other carbonyls at the Oakland-San Francisco Bay Bridge toll plaza.

    PubMed

    Destaillats, Hugo; Spaulding, Reggie S; Charles, M Judith

    2002-05-15

    Interest in ambient concentrations of acrolein and other alpha,beta-unsaturated aldehydes and dicarbonyls (e.g., crotonaldehyde, methyl glyoxal, glyoxal, malonaldehyde (malondialdehyde)) is growing because either they exist at high levels in motor vehicle emissions or they arise from photooxidation of other hydrocarbons emitted from mobile sources. In addition, their mutagenic, genotoxic, or carcinogenic properties are well-established, and the results of a dispersion-modeling study regarding the health risks posed by the 188 hazardous air pollutants in California attributes the highest noncancer risk to exposure to acrolein. Such modeling studies, conducted by the U.S. Environmental Protection Agency (U.S. EPA), also predict median ambient air concentrations of acrolein higher than 0.06 microg/m3, the chronic inhalation reference exposure level stipulated by the California Office of Environmental Health Hazard Assessment in counties surrounding the Oakland-San Francisco Bay Bridge. We measured acrolein and other potentially toxic carbonyls in air sampled at the San Francisco Bay Bridge toll plaza during rush hour traffic, which may be considered a "worst case scenario" for outdoor airborne carbonyls. We identified 36 carbonyls in the sample extracts, including 14 saturated aliphatic carbonyls, six unsaturated carbonyls, four aromatic carbonyls, six dicarbonyls, and six hydroxy carbonyls. Structural information to support tentative identification of carbonyls and hydroxycarbonyls was obtained by using a method that involves O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) and PFBHA/bis(trimethylsilyl)trifluoroacetamide (BSTFA) derivatization in concert with gas chromatography/ion trap mass spectrometry. Most notably, we report for the first time the presence of malonaldehyde in the ambient atmospheric environment. A relatively linear relationship between retention time and the molecular weight of the derivatives was established to assist in obtaining structural

  11. Determination of gaseous and particulate carbonyls (glycolaldehyde, hydroxyacetone, glyoxal, methylglyoxal, nonanal and decanal) in the atmosphere at Mt. Tai

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Okuzawa, K.; Aggarwal, S. G.; Irie, H.; Kanaya, Y.; Wang, Z.

    2013-05-01

    Gaseous and particulate semi-volatile carbonyl compounds were determined every three hours in the atmosphere of Mount Tai (elevation, 1534 m) in the North China Plain during 2-5, 23-24 and 25 June 2006 under clear sky conditions. Using a two-step filter cartridge in a series, particulate carbonyls were first collected on a quartz filter and then gaseous carbonyls were collected on a quartz filter impregnated with O-benzylhydroxylamine (BHA). After the two-step derivatization with BHA and N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA), carbonyl derivatives were measured using a gas chromatography. The gaseous concentrations were obtained as follow: glycolaldehyde (range 0-826 ng m-3, average 303 ng m-3), hydroxyacetone (0-579 ng m-3, 126 ng m-3), glyoxal (46-1200 ng m-3, 487 ng m-3), methylglyoxal (88-2690 ng m-3, 967 ng m-3), n-nonanal (0-500 ng m-3, 89 ng m-3), and n-decanal (0-230 ng m-3, 39 ng m-3). These concentrations are among the highest ever reported in the urban and forest atmosphere. We found that gaseous α-dicarbonyls (glyoxal and methylglyoxal) are more than 20 times more abundant than particulate carbonyls and that glycolaldehyde is one order of magnitude more abundant than in aerosol phase. In contrast, hydroxyacetone and normal aldehydes (nonanal and decanal) are equally present in both phases. Time-resolved variations of carbonyls did not show any a clear diurnal pattern, except for hydroxyacetone. We found that glyoxal, methylglyoxal and glycolaldehyde positively correlated with levoglucosan (a tracer of biomass burning), suggesting that a contribution from field burning of agricultural wastes (wheat crops) is significant for the bifunctional carbonyls in the atmosphere of Mt. Tai. Upward transport of the pollutants to the mountaintop from the low lands in the North China Plain is a major process to control the distributions of carbonyls in the upper atmosphere over Mt. Tai.

  12. Carbonyl emissions from vehicular exhausts sources in Hong Kong.

    PubMed

    Ho, Steven Sai Hang; Ho, Kin Fai; Lee, Shun Cheng; Cheng, Yan; Yu, Jian Zhen; Lam, Ka Man; Feng, Natale Sin Yau; Huang, Yu

    2012-02-01

    Vehicular emission (VE) is one of the important anthropogenic sources for airborne carbonyls in urban area. Six types of VE-dominated samples were collected at representative locations in Hong Kong where polluted by a particular fueled type of vehicles, including (i) a gas refilling taxis station (liquefied petroleum gas [LPG] emission); (ii) a light-duty passenger car park (gasoline emission); (iii) a minibus station (diesel emission); (iv) a single-deck-bus depot (diesel emission); (v) a double-deck-bus depot (diesel emission); and (vi) a whole-food market entrance for light- and heavy-duty vehicles (diesel emission). A total of 15 carbonyls in the samples were quantified. Formaldehyde was the most abundant carbonyl among the VE-dominated samples, and its contribution to the total quantified amount on a molar basis ranged from 54.8% to 60.8%. Acetaldehyde and acetone were the next two abundant carbonyls. The carbonyls were quantified at three roadside locations in Hong Kong. The highest concentrations of formaldehyde and acetaldehyde, 22.7 +/- 8.4 and 6.0 +/- 2.8 microg/m3, respectively, were determined in the samples collected at a main transportation gate for goods between Hong Kong and Mainland China. The total quantified carbonyl concentration, 37.9 +/- 9.3 microg/m3, was the highest at an entrance of a cross-harbor tunnel in downtown area. The theoretical carbonyls compositions of the three roadside locations were estimated according to the VE-dominated sample profiles and the statistics on vehicle numbers and types during the sampling period. The measured compositions of formaldehyde were much higher than the theoretical compositions in summer, demonstrating that photochemical reactions significantly contributed to the formaldehyde production in the roadsides. PMID:22442938

  13. Toxicologically Relevant Aldehydes Produced during the Frying Process Are Trapped by Food Phenolics.

    PubMed

    Zamora, Rosario; Aguilar, Isabel; Granvogl, Michael; Hidalgo, Francisco J

    2016-07-13

    The lipid-derived carbonyl trapping ability of phenolic compounds under common food processing conditions was studied by determining the presence of carbonyl-phenol adducts in both onions fried in the laboratory and commercially crispy fried onions. Four carbonyl-phenol adducts produced between quercetin and acrolein, crotonaldehyde, or (E)-2-pentenal were prepared and characterized by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy and high performance liquid chromatography coupled to high resolution mass spectrometry (HPLC-HRMS). The synthesized compounds were 2-(3,4-dihydroxyphenyl)-3,5,8-trihydroxy-9,10-dihydro-4H,8H-pyrano[2,3-f]chromen-4-one (4), 2-(3,4-dihydroxyphenyl)-3,5,8-trihydroxy-10-methyl-9,10-dihydro-4H,8H-pyrano[2,3-f]chromen-4-one (5), 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-8-methyl-4H,8H-pyrano[2,3-f]chromen-4-one (9), and 2-(3,4-dihydroxyphenyl)-8-ethyl-3,5-dihydroxy-4H,8H-pyrano[2,3-f]chromen-4-one (10). When onions were fried in fresh rapeseed oil spiked with acrolein, crotonaldehyde, and (E)-2-pentenal (2.7 μmol/g of oil), adduct 10 was the major compound produced, and trace amounts of adducts 4 and 5, but not of adduct 9, were also detected. In contrast, compound 4 was the major adduct present in commercially crispy fried onions. Compound 10 was also present to a lower extent, and trace amounts of compound 5, but not of compound 9, were also detected. These data suggested that lipid-derived carbonyl-phenol adducts are formed in food products under standard cooking conditions. They also pointed to a possible protective role of food polyphenols, which might contribute to the removal of toxicologically relevant aldehydes produced during deep-frying, assuming that the formed products are stable during food consumption in the human organism. PMID:27322490

  14. Toxicologically Relevant Aldehydes Produced during the Frying Process Are Trapped by Food Phenolics.

    PubMed

    Zamora, Rosario; Aguilar, Isabel; Granvogl, Michael; Hidalgo, Francisco J

    2016-07-13

    The lipid-derived carbonyl trapping ability of phenolic compounds under common food processing conditions was studied by determining the presence of carbonyl-phenol adducts in both onions fried in the laboratory and commercially crispy fried onions. Four carbonyl-phenol adducts produced between quercetin and acrolein, crotonaldehyde, or (E)-2-pentenal were prepared and characterized by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy and high performance liquid chromatography coupled to high resolution mass spectrometry (HPLC-HRMS). The synthesized compounds were 2-(3,4-dihydroxyphenyl)-3,5,8-trihydroxy-9,10-dihydro-4H,8H-pyrano[2,3-f]chromen-4-one (4), 2-(3,4-dihydroxyphenyl)-3,5,8-trihydroxy-10-methyl-9,10-dihydro-4H,8H-pyrano[2,3-f]chromen-4-one (5), 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-8-methyl-4H,8H-pyrano[2,3-f]chromen-4-one (9), and 2-(3,4-dihydroxyphenyl)-8-ethyl-3,5-dihydroxy-4H,8H-pyrano[2,3-f]chromen-4-one (10). When onions were fried in fresh rapeseed oil spiked with acrolein, crotonaldehyde, and (E)-2-pentenal (2.7 μmol/g of oil), adduct 10 was the major compound produced, and trace amounts of adducts 4 and 5, but not of adduct 9, were also detected. In contrast, compound 4 was the major adduct present in commercially crispy fried onions. Compound 10 was also present to a lower extent, and trace amounts of compound 5, but not of compound 9, were also detected. These data suggested that lipid-derived carbonyl-phenol adducts are formed in food products under standard cooking conditions. They also pointed to a possible protective role of food polyphenols, which might contribute to the removal of toxicologically relevant aldehydes produced during deep-frying, assuming that the formed products are stable during food consumption in the human organism.

  15. Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation

    NASA Astrophysics Data System (ADS)

    Reda, Ahmed A.; Schnelle-Kreis, J.; Orasche, J.; Abbaszade, G.; Lintelmann, J.; Arteaga-Salas, J. M.; Stengel, B.; Rabe, R.; Harndorf, H.; Sippula, O.; Streibel, T.; Zimmermann, R.

    2014-09-01

    Gas phase emission samples of carbonyl compounds (CCs) were collected from a research ship diesel engine at Rostock University, Germany. The ship engine was operated using two different types of fuels, heavy fuel oil (HFO) and diesel fuel (DF). Sampling of CCs was performed from diluted exhaust using cartridges and impingers. Both sampling methods involved the derivatization of CCs with 2,4-Dinitrophenylhydrazine (DNPH). The CCs-hydrazone derivatives were analyzed by two analytical techniques: High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) and Gas Chromatography-Selective Ion Monitoring-Mass Spectrometry (GC-SIM-MS). Analysis of DNPH cartridges by GC-SIM-MS method has resulted in the identification of 19 CCs in both fuel operations. These CCs include ten aliphatic aldehydes (formaldehyde, acetaldehyde, propanal, isobutanal, butanal, isopentanal, pentanal, hexanal, octanal, nonanal), three unsaturated aldehydes (acrolein, methacrolein, crotonaldehyde), three aromatic aldehyde (benzaldehyde, p-tolualdehyde, m,o-molualdehyde), two ketones (acetone, butanone) and one heterocyclic aldehyde (furfural). In general, all CCs under investigation were detected with higher emission factors in HFO than DF. The total carbonyl emission factor was determined and found to be 6050 and 2300 μg MJ-1 for the operation with HFO and DF respectively. Formaldehyde and acetaldehyde were found to be the dominant carbonyls in the gas phase of ship engine emission. Formaldehyde emissions factor varied from 3500 μg MJ-1 in HFO operation to 1540 μg MJ-1 in DF operation, which is 4-30 times higher than those of other carbonyls. Emission profile contribution of CCs showed also a different pattern between HFO and DF operation. The contribution of formaldehyde was found to be 58% of the emission profile of HFO and about 67% of the emission profile of DF. Acetaldehyde showed opposite behavior with higher contribution of 16% in HFO compared to 11% for DF. Heavier carbonyls

  16. [Protein carbonylation and its role in physiological processes in plants].

    PubMed

    Debska, Karolina; Bogatek, Renata; Gniazdowska, Agnieszka

    2012-01-01

    Plant cells produce reactive oxygen species (ROS) continuously as a byproducts of oxygen metabolism and reaction to various environmental stresses. ROS are considered as chemicals inducing damage of cellular components (DNA, lipids and proteins), but also might act as signaling agents. Protein oxidation is one of covalent modification of protein induced by ROS or other products of oxidative stress. Carbonylation of particular amino acid residues (arginine, lysine, treonine or proline) is one of the most commonly occurring oxidative modification of proteins. This modification might lead to alteration in protein activity, its proteolytic breakdown or, in the opposite, aggregate formation. Carbonylated proteins have been identified in many plant species at different stage of growth and development. The analysis of subcellular localization of carbonylated proteins arised the hypothesis on their signaling function. We summarize the current knowledge on the detection of carbonylation protein in plants taking to the account the conditions which may influence their production or removal. We present also their putative role in plant physiology and discuss interaction between ROS and RNS in regulation of protein carbonylation. PMID:23214127

  17. Emissions of carbonyl compounds from various cookstoves in China

    SciTech Connect

    Zhang, J. . Environmental and Occupational Health Sciences Inst. East-West Center, Honolulu, HI ); Smith, K.R. Univ. of California, Berkeley, CA . Center for Occupational and Environmental Health)

    1999-07-15

    This paper presents a new database of carbonyl emission factors for commonly used cookstoves in China. The emission factors, reported both on a fuel-mass basis (mg/kg) and on a defined cooking-task basis (mg/task), were determined using a carbon balance approach for 22 types of fuel/stove combinations. These include various stoves using different species of crop residues and wood, kerosene, and several types of coals and gases. The results show that all the tested cookstoves produced formaldehyde and acetaldehyde and that the vast majority of the biomass stoves produced additional carbonyl compounds such as acetone, acrolein, propionaldehyde, crotonaldehyde, 2-butanone, isobutyraldehyde, butyraldehyde, isovaleraldehyde, valeraldehyde, hexaldehyde, benzaldehyde, o-tolualdehyde, m,p-tolualdehyde, and 2,4-dimethylbenzaldehyde. Carbonyls other than formaldehyde and acetaldehyde, however, were rarely generated by burning coal, coal gas, and natural gas. Kerosene and LPG stoves generated more carbonyl compounds than coal, coal gas, and natural gas stoves, but less than biomass stoves. Indoor levels of carbonyl compounds for typical village houses during cooking hours, estimated using a mass balance model and the measured emission factors, can be high enough to cause acute health effects documented for formaldehyde exposure, depending upon house parameters and individuals' susceptibility.

  18. Electron and bromine transfer reactions between metal carbonyl anions and metal carbonyl bromides. Crystal and molecular structure of dimeric indenyl molybdenum tricarbonyl

    SciTech Connect

    Striejewske, W.S.; See, R.F.; Churchill, M.R.; Atwood, J.D. )

    1993-11-01

    Reactions of metal carbonyl anions with metal carbonyl halides proceed by two separate paths. When the reactant anion is a strong nucleophile, the halogen is transferred, resulting in a new metal carbonyl halide and a new metal carbonyl anion as intermediates. The ultimate products, in this case, are the homobimetallic complexes. In cases where the reactant metal carbonyl anion is a poor nucleophile, a single electron transfer occurs, leading to the two homobimetallic complexes and to the heterobimetallic complex. Halide effects and possible indenyl effects are examined. The complex [Mo(indenyl)(CO)[sub 3

  19. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  20. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  1. Determination of Protein Carbonylation and Proteasome Activity in Seeds.

    PubMed

    Xia, Qiong; El-Maarouf-Bouteau, Hayat; Bailly, Christophe; Meimoun, Patrice

    2016-01-01

    Reactive oxygen species (ROS) have been shown to be toxic but also function as signaling molecules in a process called redox signaling. In seeds, ROS are produced at different developmental stages including dormancy release and germination. Main targets of oxidation events by ROS in cell are lipids, nucleic acids, and proteins. Protein oxidation has various effects on their function, stability, location, and degradation. Carbonylation represents an irreversible and unrepairable modification that can lead to protein degradation through the action of the 20S proteasome. Here, we present techniques which allow the quantification of protein carbonyls in complex protein samples after derivatization by 2,4-dinitrophenylhydrazine (DNPH) and the determination proteasome activity by an activity-based protein profiling (ABPP) using the probe MV151. These techniques, routinely easy to handle, allow the rapid assessment of protein carbonyls and proteasome activity in seeds in various physiological conditions where ROS may act as signaling or toxic elements. PMID:27424756

  2. Comparison of antimicrobial properties of monoterpenes and their carbonylated products.

    PubMed

    Naigre, R; Kalck, P; Roques, C; Roux, I; Michel, G

    1996-06-01

    Some monoterpenes and their carbonylated products were evaluated for their antibacterial and antifungal properties. The carbonylation of tested monoterpenes was shown to increase the bacteriostatic and fungistatic activities specifically by the contact method. Concerning the killing effects, only (1R,2S,5R)-isopulegol, its carbonylated products, and (R)-carvone showed significant bactericidal activities, particularly against Enterococcus faecium and Escherichia coli above a concentration of 10 microliters/ml. A fungicidal efficiency of (1R,2S,5R)-isopulegol and (R)-carvone against Aspergillus niger was also noted. It seems that the presence of an oxygenated function in the framework increases the antimicrobial properties. However, monoterpenes were more active using a micro-atmosphere method. PMID:8693045

  3. Migration statistics relevant for malaria transmission in Senegal derived from mobile phone data and used in an agent-based migration model.

    PubMed

    Tompkins, Adrian M; McCreesh, Nicky

    2016-01-01

    One year of mobile phone location data from Senegal is analysed to determine the characteristics of journeys that result in an overnight stay, and are thus relevant for malaria transmission. Defining the home location of each person as the place of most frequent calls, it is found that approximately 60% of people who spend nights away from home have regular destinations that are repeatedly visited, although only 10% have 3 or more regular destinations. The number of journeys involving overnight stays peaks at a distance of 50 km, although roughly half of such journeys exceed 100 km. Most visits only involve a stay of one or two nights away from home, with just 4% exceeding one week. A new agent-based migration model is introduced, based on a gravity model adapted to represent overnight journeys. Each agent makes journeys involving overnight stays to either regular or random locations, with journey and destination probabilities taken from the mobile phone dataset. Preliminary simulations show that the agent-based model can approximately reproduce the patterns of migration involving overnight stays. PMID:27063741

  4. Hydrocarboxylation of olefins in presence of carbonyl forms of cobalt

    SciTech Connect

    Gvozdovskii, G.N.; Gavrilova, V.M.; Rybakov, V.A.; Blanshtein, I.B.

    1987-09-10

    The increasing shortage of plant and animal fats for the production of the higher carboxylic acids has necessitated the development of methods for the production of these acids from petroleum. This paper studies the hydrocarboxylation of petroleum olefins in the presence of cobalt carbonyls and the effect of three promoters--pyridine, acetone, and cyclohexanone--on the hydrolysis rate and catalytic behavior of the carbonyls and the subsequent rate of hydrocarboxylation of the olefines. Ethylene is used as the sample olefin. The role of water in the reactions is also assessed.

  5. Magnetorheological Fluids with Carbonyl and Water Atomized Iron Powders

    NASA Astrophysics Data System (ADS)

    Bombard, Antonio J. F.; Teodoro, João Victor R.

    Our aim in this work was to propose the use of a ternary blend of two carbonyl iron powder CIP, mixed with water atomized iron powder (WAIP), to reduce the off-state viscosity, without prejudice of MRF performance in terms of yield stress and torque output. The idea of mix water atomized iron powder with carbonyl iron powder is not new. The US Pat. # 5,900,184 by Weiss et al. (1999) describes that a binary blend, half-to-half, can reduces the viscosity of MRF in the absence of magnetic field, and increase the torque output under field.

  6. Regioselectivity in the reaction of tantalum-unsymmetrical acetylene complexes with carbonyl compounds. Stereoselective preparation of 1-alkenyl sulfides, [alpha],[beta]-unsaturated esters, and amides

    SciTech Connect

    Kataoka, Yasutaka; Miyai, Jiro; Tezuka, Makoto; Takai, Kazuhiko; Utimoto, Kiitiro )

    1992-12-04

    Tantalum-alkyne complexes, derived by treatment of aklynes with low-valent tantalum (TaCl[sub 5] and zinc), react in situ with carbonyl compounds to give (E)-allylic alcohols stereoselectively. When unsymmetrical acetylenes are employed in the reaction, two regioisomeric allylic alcohols are produced. The regioselectivity of the reaction depends on the steric and electronic effects of the substituents on the acetylenes. For example, treatment of tantalum-allkyne complexes derived from methyl alkynyl sulfides with carbonyl compounds yields (E)-3-hydroxy-1-propenyl methyl sulfides in a regioselective manner. Tantalum-alkyne complexes derived from acetylenic esters react with carbonyl compounds regioselectively at the [alpha]-position of the esters to give Z-isomers of trisubstituted [alpha],[beta]-unsaturated esters. In contract, tantalum-alkyne complexes derived from acetylenic amides react with carbonyl compounds predominantly at the [beta]-position of the amides. The regioselectivity of the reaction between acytylenic amides and aldehydes, however, cannot be explained solely in terms of the steric and electronic effects of the substituents. Strong coordination of the amide group to the tantalum center could also be responsible for the observed selectivity, which is opposite to that observed with tantalum-acetylenic ester complexes. 18 refs., 1 tab.

  7. Alkyl nitrates and carbonyl compounds in the troposphere: Field observations and their atmospheric photochemistry

    NASA Astrophysics Data System (ADS)

    Stroud, Craig Allan

    2000-10-01

    The trace gas composition of the troposphere is to a large extent determined by photochemical processes. These photochemical processes result in the oxidation of hydrocarbons and the formation of stable products such as organic nitrates and carbonyl compounds. This thesis involves ambient measurements of hydrocarbon oxidation products and uses them to address several questions: (1)can the relationship between hydrocarbons and their oxidation products be explained by our current understanding of photochemistry, and (2)can photochemical ages be estimated from ratios of oxidation products to hydrocarbons? These questions were studied using measurements of C3-C 5 alkyl nitrates, C3-C6 alkanes, C2-C 4 carbonyls, and other related species from the Stratospheric Tropospheric Experiment: Radiation, Aerosols and Ozone (STERAO 1996), the North Atlantic Regional Experiment (NARE 1997) and the Southern Oxidant Study (SOS 1999). Air samples were collected with a Tenax adsorbent sampler and analyzed for alkyl nitrates with a gas chromatograph/electron capture detector (GC/ECD). A reduction gas detector (RGD) was tested for its selectivity and sensitivity to carbonyl compounds. However, its performance was limited by tailing chromatographic peaks. As a consequence, carbonyls were analyzed with an instrument based on Tenax collection and gas chromatography/flame ionization detection (GC/FID). Hydrocarbon oxidation was modeled by a sequential reaction scheme. Good agreement was found between the model and observations for 2-butyl nitrate and 3-pentyl nitrate, which suggests that laboratory-derived oxidation mechanisms can explain 2-butyl nitrate and 3-pentyl nitrate photochemistry. Comparison of observations with predictions suggests that there are other important sources for the C3 alkyl nitrates besides propane. The apparent photochemical ages ranged between 0.1-4 days for the midwestern U.S. and 0.5-8 days for the North Atlantic. Several Lagrangian experiments were performed

  8. Sequential hepatogenic transdifferentiation of adipose tissue-derived stem cells: relevance of different extracellular signaling molecules, transcription factors involved, and expression of new key marker genes.

    PubMed

    Bonora-Centelles, A; Jover, R; Mirabet, V; Lahoz, A; Carbonell, F; Castell, J V; Gómez-Lechón, M J

    2009-01-01

    Adipose tissue contains a mesenchymal stem cell (MSC) population known as adipose-derived stem cells (ASCs) capable of differentiating into different cell types. Our aim was to induce hepatic transdifferentiation of ASCs by sequential exposure to several combinations of cytokines, growth factors, and hormones. The most efficient hepatogenic protocol includes fibroblastic growth factors (FGF) 2 and 4 and epidermal growth factor (EGF) (step 1), hepatocyte growth factor (HGF), FGF2, FGF4, and nicotinamide (Nic) (step 2), and oncostatin M (OSM), dexamethasone (Dex), and insulin-tranferrin-selenium (step 3). This protocol activated transcription factors [GATA6, Hex, CCAAT/enhancer binding protein alpha and beta (CEBPalpha and beta), peroxisome proliferator-activated receptor-gamma, coactivator 1 alpha (PGC1alpha), and hepatocyte nuclear factor 4 alpha (HNF4alpha)], which promoted a characteristic hepatic phenotype, as assessed by new informative markers for the step-by-step hepatic transdifferentiation of hMSC [early markers: albumin (ALB), alpha-2-macroglobuline (alpha2M), complement protein C3 (C3), and selenoprotein P1 (SEPP1); late markers: cytochrome P450 3A4 (CYP3A4), apolipoprotein E (APOE), acyl-CoA synthetase long-chain family member 1 (ACSL1), and angiotensin II receptor, type 1 (AGTR1)]. The loss of adipose adult stem cell phenotype was detected by losing expression of Thy1 and inhibitor of DNA binding 3 (Id3). The reexpression of phosphoenolpyruvate corboxykinase (PEPCK), apolipoprotein C3 (APOCIII), aldolase B (ALDOB), and cytochrome P450 1A2 (CYP1A2) was achieved by transduction with a recombinant adenovirus for HNF4alpha and finally hepatic functionality was also assessed by analyzing specific biochemical markers. We conclude that ASCs could represent an alternative tool in clinical therapy for liver dysfunction and regenerative medicine.

  9. Carbonyl atmospheric reaction products of aromatic hydrocarbons in ambient air

    NASA Astrophysics Data System (ADS)

    Obermeyer, Genevieve; Aschmann, Sara M.; Atkinson, Roger; Arey, Janet

    To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.

  10. Metal-Diazo Radicals of α-Carbonyl Diazomethanes.

    PubMed

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-01-01

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [Rh(I)Cl(cod)]2, [Co(II)(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [Rh(I)Cl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N∙ (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C∙, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C∙, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals. PMID:26960916

  11. CARBONYLATION OF MYOSIN HEAVY CHAINS IN RAT HEARTS DURING DIABETES

    PubMed Central

    Shao, Chun-Hong; Rozanski, George J.; Nagai, Ryoji; Stockdale, Frank E.; Patel, Kaushik P.; Wang, Mu; Singh, Jaipaul; Mayhan, William G.; Bidasee, Keshore R.

    2010-01-01

    Cardiac inotropy progressively declines during diabetes mellitus. To date, the molecular mechanisms underlying this defect remain incompletely characterized. This study tests the hypothesis that ventricular myosin heavy chains (MHC) undergo carbonylation by reactive carbonyl species (RCS) during diabetes and these modifications contribute to the inotropic decline. Male Sprague-Dawley rats were injected with streptozotocin (STZ). Fourteen days later animals were divided into two groups: one group was treated with the RCS blocker aminoguanidine for six weeks, while the other group received no treatment. After eight weeks of diabetes, cardiac ejection fraction, fractional shortening, left ventricular pressure development (+dP/dt) and myocyte shortening were decreased by 9%, 16%, 34% and 18%, respectively. Ca2+- and Mg2+-actomyosin ATPase activities and peak actomyosin syneresis were also reduced by 35%, 28%, and 72%. MHC-α to MHC-β ratio was 12:88. Mass spectrometry and Western blots revealed the presence of carbonyl adducts on MHC-α and MHC-β. Aminoguandine treatment did not alter MHC composition, but it blunted formation of carbonyl adducts and decreases in actomyosin Ca2+-sensitive ATPase activity, syneresis, myocyte shortening, cardiac ejection fraction, fractional shortening and +dP/dt induced by diabetes. From these new data it can be concluded that in addition to isozyme switching, modification of MHC by RCS also contributes to the inotropic decline seen during diabetes. PMID:20359464

  12. Carbonylation of myosin heavy chains in rat heart during diabetes.

    PubMed

    Shao, Chun-Hong; Rozanski, George J; Nagai, Ryoji; Stockdale, Frank E; Patel, Kaushik P; Wang, Mu; Singh, Jaipaul; Mayhan, William G; Bidasee, Keshore R

    2010-07-15

    Cardiac inotropy progressively declines during diabetes mellitus. To date, the molecular mechanisms underlying this defect remain incompletely characterized. This study tests the hypothesis that ventricular myosin heavy chains (MHC) undergo carbonylation by reactive carbonyl species (RCS) during diabetes and these modifications contribute to the inotropic decline. Male Sprague-Dawley rats were injected with streptozotocin (STZ). Fourteen days later the animals were divided into two groups: one group was treated with the RCS blocker aminoguanidine for 6 weeks, while the other group received no treatment. After 8 weeks of diabetes, cardiac ejection fraction, fractional shortening, left ventricular pressure development (+dP/dt) and myocyte shortening were decreased by 9%, 16%, 34% and 18%, respectively. Ca(2+)- and Mg(2+)-actomyosin ATPase activities and peak actomyosin syneresis were also reduced by 35%, 28%, and 72%. MHC-alpha to MHC-beta ratio was 12:88. Mass spectrometry and Western blots revealed the presence of carbonyl adducts on MHC-alpha and MHC-beta. Aminoguanidine treatment did not alter MHC composition, but it blunted formation of carbonyl adducts and decreases in actomyosin Ca(2+)-sensitive ATPase activity, syneresis, myocyte shortening, cardiac ejection fraction, fractional shortening and +dP/dt induced by diabetes. From these new data it can be concluded that in addition to isozyme switching, modification of MHC by RCS also contributes to the inotropic decline seen during diabetes.

  13. Iron-Sulfur-Carbonyl and -Nitrosyl Complexes: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Glidewell, Christopher; And Others

    1985-01-01

    Background information, materials needed, procedures used, and typical results obtained, are provided for an experiment on iron-sulfur-carbonyl and -nitrosyl complexes. The experiment involved (1) use of inert atmospheric techniques and thin-layer and flexible-column chromatography and (2) interpretation of infrared, hydrogen and carbon-13 nuclear…

  14. Methyl substituted polyimides containing carbonyl and ether connecting groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1992-01-01

    Polyimides were prepared from the reaction of aromatic dianhydrides with novel aromatic diamines having carbonyl and ether groups connecting aromatic rings containing pendant methyl groups. The methyl substituent polyimides exhibit good solubility and form tough, strong films. Upon exposure to ultraviolet irradiation and/or heat, the methyl substituted polyimides crosslink to become insoluble.

  15. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOEpatents

    Rathke, J.W.; Klingler, R.J.

    1993-03-30

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  16. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOEpatents

    Rathke, Jerome W.; Klingler, Robert J.

    1993-01-01

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  17. Comparing Carbonyl Chemistry in Comprehensive Introductory Organic Chemistry Textbooks

    ERIC Educational Resources Information Center

    Nelson, Donna J.; Kumar, Ravi; Ramasamy, Saravanan

    2015-01-01

    Learning the chemistry of compounds containing carbonyl groups is difficult for undergraduate students partly because of a convolution of multiple possible reaction sites, competitive reactions taking place at those sites, different criteria needed to discern between the mechanisms of these reactions, and no straightforward selection method…

  18. Metal-Diazo Radicals of α-Carbonyl Diazomethanes

    PubMed Central

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-01-01

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [RhICl(cod)]2, [CoII(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [RhICl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N∙ (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C∙, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C∙, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals. PMID:26960916

  19. Metal-Diazo Radicals of α-Carbonyl Diazomethanes

    NASA Astrophysics Data System (ADS)

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-03-01

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [RhICl(cod)]2, [CoII(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [RhICl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N• (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C•, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C•, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals.

  20. CARBONYL SULFIDE INHALATION PRODUCES BRAIN LESIONS IN F344 RATS.

    EPA Science Inventory

    Carbonyl sulfide (COS) is an intermediate in the production of pesticides and herbicides, and is a metabolite of the neurotoxicant carbon disulfide. The potential neurotoxicity of inhaled COS was investigated in F344 rats. Male rats were exposed to 0, 75, 150, 300, or 600 ppm COS...

  1. Assignment of congested NMR spectra: Carbonyl backbone enrichment via the Entner Doudoroff pathway

    NASA Astrophysics Data System (ADS)

    Goldbourt, Amir; Day, Loren A.; McDermott, Ann E.

    2007-12-01

    In NMR spectra of complex proteins, sparse isotope enrichment can be important, in that the removal of many 13C- 13C homonuclear J-couplings can narrow the lines and thereby facilitate the process of spectral assignment and structure elucidation. We present a simple scheme for selective yet extensive isotopic enrichment applicable for production of proteins in organisms utilizing the Entner-Doudoroff (ED) metabolic pathway. An enrichment scheme so derived is demonstrated in the context of a magic-angle spinning solid-state NMR (MAS SSNMR) study of Pf1 bacteriophage, the host of which is Pseudomonas aeruginosa, strain K (PAK), an organism that uses the ED pathway for glucose catabolism. The intact and infectious Pf1 phage in this study was produced by infected PAK cells grown on a minimal medium containing 1- 13C D-glucose ( 13C in position 1) as the sole carbon source, as well as 15NH 4Cl as the only nitrogen source. The 37 MDa Pf1 phage consists of about 93% major coat protein, 1% minor coat proteins, and 6% single-stranded, circular DNA. As a consequence of this composition and the enrichment scheme, the resonances in the MAS SSNMR spectra of the Pf1 sample were almost exclusively due to carbonyl carbons in the major coat protein. Moreover, 3D heteronuclear NCOCX correlation experiments also show that the amino acids leucine, serine, glycine, and tyrosine were not isotopically enriched in their carbonyl positions (although most other amino acids were), which is as expected based upon considerations of the ED metabolic pathway. 3D NCOCX NMR data and 2D 15N- 15N data provided strong verification of many previous assignments of 15N amide and 13C carbonyl shifts in this highly congested spectrum; both the semi-selective enrichment patterns and the narrowed linewidths allowed for greater certainty in the assignments as compared with use of uniformly enriched samples alone.

  2. Elevated protein carbonylation in the brain white matter and gray matter of patients with multiple sclerosis.

    PubMed

    Bizzozero, Oscar A; DeJesus, Gisela; Callahan, Kelly; Pastuszyn, Andrzej

    2005-09-01

    Oxidative stress has been implicated in the pathophysiology of multiple sclerosis (MS). Increased levels of reactive oxygen species (ROS) derived from infiltrating macrophages and microglial cells have been shown to reduce the levels of endogenous antioxidants and to cause the oxidation of various substrates within the MS plaque. To determine whether oxidative damage takes place beyond visible MS plaques, the occurrence of total carbonyls (TCOs) and protein carbonyls (PCOs) in the normal-appearing white matter (NAWM) and gray matter (NAGM) of eight MS brains was assessed and compared with those of four control brains. The data show that most (7/8) of the MS-WM samples contain increased amounts of PCOs as determined by reaction with 2,4-dinitrophenylhydrazine and Western blot analysis. These samples also have high levels of glial fibrilary acidic protein (GFAP), suggesting that oxidative damage is related to the presence of small lesions. In contrast, we detected no evidence of protein thiolation (glutathionylation and cysteinylation) in the diseased tissue. To our surprise, MS-NAGM specimens with high GFAP content also showed three times the concentration of TCOs and PCOs as the controls. The increase in PCOs is likely to be a consequence of reduced levels of antioxidants, in that the concentration of nonprotein thiols in both MS-WM and -GM decreased by 30%. Overall, our data support the current view that both NAWM and -GM from MS brains contain considerable biochemical alterations. The involvement of GM in MS was also supported by the decrease in the levels of neurofilament light protein in all the specimens analyzed. To the best of our knowledge, this is the first study demonstrating the presence of increased protein carbonylation in post-mortem WM and GM tissue of MS patients.

  3. Age-related variations of protein carbonyls in human saliva and plasma: is saliva protein carbonyls an alternative biomarker of aging?

    PubMed

    Wang, Zhihui; Wang, Yanyi; Liu, Hongchen; Che, Yuwei; Xu, Yingying; E, Lingling

    2015-06-01

    Free radical hypothesis which is one of the most acknowledged aging theories was developed into oxidative stress hypothesis. Protein carbonylation is by far one of the most widely used markers of protein oxidation. We studied the role of age and gender in protein carbonyl content of saliva and plasma among 273 Chinese healthy subjects (137 females and 136 males aged between 20 and 79) and discussed the correlation between protein carbonyl content of saliva and plasma. Protein carbonyl content of saliva and plasma were, respectively, 2.391 ± 0.639 and 0.838 ± 0.274 nmol/mg. Variations of saliva and plasma different age groups all reached significant differences in both male and female (all p < 0.05) while both saliva and plasma protein carbonyls were found to be significantly correlated with age (r = 0.6582 and r = 0.5176, all p < 0.001). Gender was discovered to be unrelated to saliva and plasma protein carbonyl levels (all p > 0.05). Saliva and plasma protein carbonyls were positively related (r = 0.4405, p < 0.001). Surprisingly, saliva and plasma protein carbonyls/ferric reducing ability of plasma (FRAP) ratios were proved to be significantly correlated with age (r = 0.7796 and r = 0.6938, all p < 0.001) while saliva protein carbonyls/FRAP ratio and plasma protein carbonyls/FRAP ratio were also correlated (r = 0.5573, p < 0.001). We concluded that saliva protein carbonyls seem to be an alternative biomarker of aging while the mechanisms of protein carbonylation and oxidative stress and the relationship between saliva protein carbonyls and diseases need to be further investigated.

  4. Quantitative structure-retention relationships applied to liquid chromatography gradient elution method for the determination of carbonyl-2,4-dinitrophenylhydrazone compounds.

    PubMed

    Cirera-Domènech, Elisenda; Estrada-Tejedor, Roger; Broto-Puig, Francesc; Teixidó, Jordi; Gassiot-Matas, Miquel; Comellas, Lluís; Lliberia, Josep Lluís; Méndez, Alberto; Paz-Estivill, Susanna; Delgado-Ortiz, Maria Rosa

    2013-02-01

    A usual method for the determination of aldehydes and ketones in different matrices consists of a derivatization with 2,4-dinitrophenylhydrazine (DNPH) followed by HPLC-UV analysis. In the present work, a HPLC-UV gradient elution method has been applied to the analysis of 13 aldehydes and ketones-DNPH in automotive emission samples. In addition to these 13 compounds-DNPH, several carbonyl-DNPH compounds (linear, ramified and cyclic, saturated and unsaturated compounds) have been analyzed by HPLC-UV. Quantitative structure-retention relationships (QSRR) methods have been applied to predict the logarithm of capacity factor (logk') of carbonyl-DNPH compounds. According to its physicochemical meaning, combinations of 2 and 3 molecular descriptors have been proposed in order to achieve higher correlation with logk'. Using linear and non-linear QSRR methodologies, the resulting prediction models allowed the screening of the most probable carbonyl-DNPH derivative candidates that correspond to unknown compounds detected in automotive emission samples. This information has been useful for their identification by UPLC(®)-MS/MS. In addition, the chromatographic retention of different carbonyl-DNPH compound families was studied using two HPLC isocratic methods working with two orthogonal stationary phases (octadecylpolyethoxysilane and cyanopropyl). Differences between the retention indexes obtained for each column were used for classifying carbonyl-DNPH into compounds families. PMID:23298845

  5. Plasma protein carbonyl levels and breast cancer risk.

    PubMed

    Rossner, Pavel; Terry, Mary Beth; Gammon, Marilie D; Agrawal, Meenakshi; Zhang, Fang Fang; Ferris, Jennifer S; Teitelbaum, Susan L; Eng, Sybil M; Gaudet, Mia M; Neugut, Alfred I; Santella, Regina M

    2007-01-01

    To study the role of oxidative stress in breast cancer risk, we analysed plasma levels of protein carbonyls in 1050 cases and 1107 controls. We found a statistically significant trend in breast cancer risk in relation to increasing quartiles of plasma protein carbonyl levels (OR = 1.2, 95% CI = 0.9-1.5; OR = 1.5, 95% CI = 1.2-2.0; OR = 1.6, 95% CI = 1.2-2.1, for the 2(nd), 3(rd) and 4(th) quartile relative to the lowest quartile, respectively, P for trend = 0.0001). The increase in risk was similar for younger (<50 years) and older women, more pronounced among women with higher physical activity levels (0.7 hrs/week for 4(th) quartile versus lowest quartile OR = 2.0, 95% CI = 1.4-3.0), higher alcohol consumption (> or = 15 grams/day for 4(th) quartile versus lowest quartile OR = 2.3, 95% CI = 1.1-4.7), and hormone replacement therapy use (HRT, OR = 2.6, 95% CI = 1.6-4.4 for 4(th) quartile versus lowest quartile). The multiplicative interaction terms were statistically significant only for physical activity and HRT. The positive association between plasma protein carbonyl levels and breast cancer risk was also observed when the analysis was restricted to women who had not received chemotherapy or radiation therapy prior to blood collection. Among controls, oxidized protein levels significantly increased with cigarette smoking and higher fruit and vegetable consumption, and decreased with alcohol consumption >30 grams per day. Women with higher levels of plasma protein carbonyl and urinary 15F(2t)-isoprostane had an 80% increase in breast cancer risk (OR = 1.8, 95% CI = 1.2-2.6) compared to women with levels below the median for both markers of oxidative stress. In summary, our results suggest that increased plasma protein carbonyl levels may be associated with breast cancer risk.

  6. Imaging of oxidative stress at subcellular level by confocal laser scanning microscopy after fluorescent derivatization of cellular carbonyls.

    PubMed Central

    Pompella, A.; Comporti, M.

    1993-01-01

    Confocal laser scanning fluorescence microscopy plus image videoanalysis was used to visualize the tissue areas and the subcellular sites first involved by oxidative stress and lipid peroxidation, in the well-established experimental model of lipid peroxidation induced by haloalkane intoxication in the liver cell. The fluorescent reagent 3-hydroxy-2-naphthoic acid hydrazide was employed to derivativize the carbonyl functions originating from the lipoperoxidative process in situ, in liver cryostat sections from in vivo intoxicated rats, as well as in isolated hepatocytes exposed in vitro to the pro-oxidant action of haloalkanes. The results obtained indicate that: 1) the detection of fluorescent derivatives of carbonyls indeed offers a gain in sensitivity, 2) haloalkane-induced lipid peroxidation in hepatocytes primarily involves the perinuclear endoplasmic reticulum, whereas the plasma membrane and the nuclear compartment are unaffected, and 3) lipid peroxidation also induces an increase of liver autofluorescence. Images Figure 2 Figure 4 PMID:8494040

  7. Catalysis of the carbonylation of olefins by the cationic chromium complexes allyl(arene)dicarbonylchromium(I) tetrafluoroborates

    SciTech Connect

    Magomedov, G.K.I.; Morozova, L.V.; Sigachev, S.A.; Krivykh, V.V.; Taits, E.S.; Rybinskaya, M.I.

    1986-11-10

    A qualitative comparison of the catalytic activities of the title complexes and cobalt carbonyl showed that (arene)allyldicarbonylchromium(I) tetrafluoroborates are more active than cobalt carbonyl, and this applies particularly to (C/sub 6/H/sub 6/Cr(CO)/sub 2/..pi..-C/sub 3/H/sub 5/)/sup +/BF/sub 4/. The possibility is not ruled out that in the course of the synthesis the acid HBF/sub 4/ is generated, and this is known to be a catalyst for the Koch reaction, but in this reaction only secondary and tertiary carboxy derivatives, i.e., only products of addition in accordance with the Markovnikov rule, are formed. In view of these results the authors investigated the activity of the title complexes in the hydroformylation process, an important industrial method for the preparation of aldehydes and alcohols.

  8. Effects of low concentration biodiesel blends application on modern passenger cars. Part 2: impact on carbonyl compound emissions.

    PubMed

    Fontaras, Georgios; Karavalakis, Georgios; Kousoulidou, Marina; Ntziachristos, Leonidas; Bakeas, Evangelos; Stournas, Stamoulis; Samaras, Zissis

    2010-07-01

    Today in most European member states diesel contains up to 5% vol biodiesel. Since blending is expected to increase to 10% vol, the question arises, how this higher mixing ratio will affect tailpipe emissions particularly those linked to adverse health effects. This paper focuses on the impact of biodiesel on carbonyl compound emissions, attempting also to identify possible relationship between biodiesel feedstock and emissions. The blends were produced from five different feedstocks, commonly used in Europe. Measurements were conducted on a Euro 3 common-rail passenger car over various driving cycles. Results indicate that generally the use of biodiesel at low concentrations has a minor effect on carbonyl compound emissions. However, certain biodiesels resulted in significant increases while others led to decreases. Biodiesels associated with increases were those derived from rapeseed oil (approx. 200%) and palm oil (approx. 180%), with the highest average increases observed at formaldehyde and acroleine/acetone.

  9. 40 CFR 721.10409 - Poly(oxyalkylenediyl), .alpha. - [ [ [methyl - 3 - [ [ [ (polyfluoroalkyl)oxy]carbonyl ] amino...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly(oxyalkylenediyl), .alpha... Poly(oxyalkylenediyl), .alpha. - carbonyl ] amino] phenyl]amino]carbonyl] - .omega. - methoxy... identified generically as poly(oxyalkylenediyl), .alpha.- carbonyl]amino]phenyl]amino]...

  10. A new atmospherically relevant oxidant of sulphur dioxide.

    PubMed

    Mauldin, R L; Berndt, T; Sipilä, M; Paasonen, P; Petäjä, T; Kim, S; Kurtén, T; Stratmann, F; Kerminen, V-M; Kulmala, M

    2012-08-01

    Atmospheric oxidation is a key phenomenon that connects atmospheric chemistry with globally challenging environmental issues, such as climate change, stratospheric ozone loss, acidification of soils and water, and health effects of air quality. Ozone, the hydroxyl radical and the nitrate radical are generally considered to be the dominant oxidants that initiate the removal of trace gases, including pollutants, from the atmosphere. Here we present atmospheric observations from a boreal forest region in Finland, supported by laboratory experiments and theoretical considerations, that allow us to identify another compound, probably a stabilized Criegee intermediate (a carbonyl oxide with two free-radical sites) or its derivative, which has a significant capacity to oxidize sulphur dioxide and potentially other trace gases. This compound probably enhances the reactivity of the atmosphere, particularly with regard to the production of sulphuric acid, and consequently atmospheric aerosol formation. Our findings suggest that this new atmospherically relevant oxidation route is important relative to oxidation by the hydroxyl radical, at least at moderate concentrations of that radical. We also find that the oxidation chemistry of this compound seems to be tightly linked to the presence of alkenes of biogenic origin.

  11. Selective transformation of carbonyl ligands to organic molecules. Progress report, September 1, 1989--November 14, 1992

    SciTech Connect

    Cutler, A.R.

    1992-05-12

    Studies on the carbonylation of ({eta}{sup 5}-indenyl)(L)(CO)Ru-R complexes (L = CO, PPh{sub 3}; R = CH{sub 2}OMe, CH{sub 3}) have been completed. Particularly noteworthy is that the methoxymethyl complexes readily transform to their acyl derivatives under mild conditions that leave their iron congeners inert towards CO. Surprisingly, even ({eta}{sup 5}-indenyl)(PPh{sub 3}){sub 2}Ru-CH{sub 3} carbonylates and gives ({eta}{sup 5}-indenyl)(PPh{sub 3})(CO)Ru-C(O)CH{sub 3}. Mechanistic studies on the ``non catalyzed`` hydrosilation of the manganese acyls (CO){sub 5}Mn-C(O)CH{sub 2}R (R = H, OCH{sub 3}, CH{sub 3}) with Et{sub 3}SiH and of cobalt acetyls (CO){sub 3}(PR{sub 3})CoC(O)CH{sub 3} with several monohydrosilanes have been completed. The cobalt acetyls cleanly give ethoxysilanes (not acetaldehyde), and the manganese acyls provide {alpha}-siloxyvinyl complexes Z-(CO){sub 5}Mn-C(OSiEt{sub 3})=CHR (R = H, CH{sub 3}, OCH{sub 3}). Carbonylation and protolytic cleavage of the latter generate pyruvoyl complexes (CO){sub 5}Mn-COCOR (R = CH{sub 3}, CH{sub 2}CH{sub 3}), formally the products of net ``double carbonylation`` sequences. Studies in progress are concerned with how manganese complexes as diverse as (CO){sub 5}Mn-Y [Y = C(O)R, R, BR - but not SiMe{sub 3} or Mn(CO){sub 5}] and ({eta}{sup 3}-C{sub 3}H{sub 5})Mn(CO){sub 2}L [but not CpMn(CO){sub 3} or CpMn(CO){sub 2}({eta}{sup 2}HSiR{sub 3})] function as efficient hydrosilation catalysts towards Cp(CO){sub 2}FeC(O)CH{sub 3}, for example. These reactions cleanly afford fully characterized {alpha}-siloxyethyl complexes Fp-CH(OSiR{sub 3})CH{sub 3} under conditions where typically Rh(1) hydrosilation catalysts are inactive. Several of these manganese complexes also catalytically hydrosilate organic esters, including lactones, to their ethers R-CH{sub 2}OR; these novel ester reductions occur quantitatively at room temperature and appear to be general in scope.

  12. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions

    PubMed Central

    Weber, Daniela; Davies, Michael J.; Grune, Tilman

    2015-01-01

    Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples. PMID:26141921

  13. Computational Mechanistic Study of Thionation of Carbonyl Compounds with Lawesson's Reagent.

    PubMed

    Legnani, L; Toma, L; Caramella, P; Chiacchio, M A; Giofrè, S; Delso, I; Tejero, T; Merino, P

    2016-09-01

    The thionation reaction of carbonyl compounds with Lawesson's reagent (LR) has been studied using density functional theory methods and topological analyses. After dissociation of LR, the reaction takes place through a two-step mechanism involving (i) a concerted cycloaddition between one monomer and the carbonyl compound to form a four-membered intermediate and (ii) a cycloreversion leading to the thiocarbonyl derivative and phenyl(thioxo)phosphine oxide. Topological analyses confirmed the concertedness and asynchronicity of the process. The second step is the rate-limiting one, and the whole process resembles the currently accepted mechanism for the lithium salt-free Wittig reaction. No zwitterionic intermediates are formed during the reaction, although stabilizing electrostatic interactions are present in initial stages. Phenyl(thioxo)phosphine oxide formed in the thionation reaction is capable of performing a second thionation, although with energy barriers higher than the first one. The driving force of the thionation reactions is the formation of trimers from the resulting monomers. In agreement with experimental observations, the amides are the most reactive when compared with esters, aldehydes, and ketones and the reaction is slightly influenced by the polarity of the solvent. Whereas for amides and esters substituents have little effect, aldehydes and ketones are influenced by both steric and electronic effects.

  14. Computational Mechanistic Study of Thionation of Carbonyl Compounds with Lawesson's Reagent.

    PubMed

    Legnani, L; Toma, L; Caramella, P; Chiacchio, M A; Giofrè, S; Delso, I; Tejero, T; Merino, P

    2016-09-01

    The thionation reaction of carbonyl compounds with Lawesson's reagent (LR) has been studied using density functional theory methods and topological analyses. After dissociation of LR, the reaction takes place through a two-step mechanism involving (i) a concerted cycloaddition between one monomer and the carbonyl compound to form a four-membered intermediate and (ii) a cycloreversion leading to the thiocarbonyl derivative and phenyl(thioxo)phosphine oxide. Topological analyses confirmed the concertedness and asynchronicity of the process. The second step is the rate-limiting one, and the whole process resembles the currently accepted mechanism for the lithium salt-free Wittig reaction. No zwitterionic intermediates are formed during the reaction, although stabilizing electrostatic interactions are present in initial stages. Phenyl(thioxo)phosphine oxide formed in the thionation reaction is capable of performing a second thionation, although with energy barriers higher than the first one. The driving force of the thionation reactions is the formation of trimers from the resulting monomers. In agreement with experimental observations, the amides are the most reactive when compared with esters, aldehydes, and ketones and the reaction is slightly influenced by the polarity of the solvent. Whereas for amides and esters substituents have little effect, aldehydes and ketones are influenced by both steric and electronic effects. PMID:27459366

  15. The chemistry of carbonyl compounds in the atmosphere—A review

    NASA Astrophysics Data System (ADS)

    Carlier, P.; Hannachi, H.; Mouvier, G.

    Carbonyl compounds are very important for the trophospheric physico-chemistry because they are the result of the first photo-oxidation stage of almost all organic compounds and they are the essential originators of the free radicals. In the present review we make a synthesis of the studies on the carbonyl compounds chemistry in the trophosphere by successively examining: measurement methods in the trophosphere, sources of primary carbonyl compounds, formation of secondary carbonyl compounds in the atmosphere, reactivity of carbonyl compounds in the atmosphere.

  16. Phenolic carbonyls undergo rapid aqueous photodegradation to form low-volatility, light-absorbing products

    NASA Astrophysics Data System (ADS)

    Smith, Jeremy D.; Kinney, Haley; Anastasio, Cort

    2016-02-01

    We investigated the aqueous photochemistry of six phenolic carbonyls - vanillin, acetovanillone, guaiacyl acetone, syringaldehyde, acetosyringone, and coniferyl aldehyde - that are emitted from wood combustion. The phenolic carbonyls absorb significant amounts of solar radiation and decay rapidly via direct photodegradation, with lifetimes (τ) of 13-140 min under Davis, CA winter solstice sunlight at midday (solar zenith angle = 62°). The one exception is guaiacyl acetone, where the carbonyl group is not directly connected to the aromatic ring: This species absorbs very little sunlight and undergoes direct photodegradation very slowly (τ > 103 min). We also found that the triplet excited states (3C*) of the phenolic carbonyls rapidly oxidize syringol (a methoxyphenol without a carbonyl group), on timescales of 1-5 h for solutions containing 5 μM phenolic carbonyl. The direct photodegradation of the phenolic carbonyls, and the oxidation of syringol by 3C*, both efficiently produce low volatility products, with SOA mass yields ranging from 80 to 140%. Contrary to most aliphatic carbonyls, under typical fog conditions we find that the primary sink for the aromatic phenolic carbonyls is direct photodegradation in the aqueous phase. In areas of significant wood combustion, phenolic carbonyls appear to be small but significant sources of aqueous SOA: over the course of a few hours, nearly all of the phenolic carbonyls will be converted to SOA via direct photodegradation, enhancing the POA mass from wood combustion by approximately 3-5%.

  17. Role of Carbonyl Modifications on Aging-Associated Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Tanase, Maya; Urbanska, Aleksandra M.; Zolla, Valerio; Clement, Cristina C.; Huang, Liling; Morozova, Kateryna; Follo, Carlo; Goldberg, Michael; Roda, Barbara; Reschiglian, Pierluigi; Santambrogio, Laura

    2016-01-01

    Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis. The analysis indicated that compared to younger mice an increase in protein post-translational carbonylation was observed. The causative role of these modifications in inducing protein misfolding and aggregation was determined by inducing carbonyl stress in young mice, which recapitulated the increased protein aggregation observed in old mice. Altogether our analysis indicates that oxidative stress-related post-translational modifications accumulate in the aging proteome and are responsible for increased protein aggregation and altered cell proteostasis.

  18. Nuclear chemistry. Synthesis and detection of a seaborgium carbonyl complex.

    PubMed

    Even, J; Yakushev, A; Düllmann, Ch E; Haba, H; Asai, M; Sato, T K; Brand, H; Di Nitto, A; Eichler, R; Fan, F L; Hartmann, W; Huang, M; Jäger, E; Kaji, D; Kanaya, J; Kaneya, Y; Khuyagbaatar, J; Kindler, B; Kratz, J V; Krier, J; Kudou, Y; Kurz, N; Lommel, B; Miyashita, S; Morimoto, K; Morita, K; Murakami, M; Nagame, Y; Nitsche, H; Ooe, K; Qin, Z; Schädel, M; Steiner, J; Sumita, T; Takeyama, M; Tanaka, K; Toyoshima, A; Tsukada, K; Türler, A; Usoltsev, I; Wakabayashi, Y; Wang, Y; Wiehl, N; Yamaki, S

    2014-09-19

    Experimental investigations of transactinoide elements provide benchmark results for chemical theory and probe the predictive power of trends in the periodic table. So far, in gas-phase chemical reactions, simple inorganic compounds with the transactinoide in its highest oxidation state have been synthesized. Single-atom production rates, short half-lives, and harsh experimental conditions limited the number of experimentally accessible compounds. We applied a gas-phase carbonylation technique previously tested on short-lived molybdenum (Mo) and tungsten (W) isotopes to the preparation of a carbonyl complex of seaborgium, the 106th element. The volatile seaborgium complex showed the same volatility and reactivity with a silicon dioxide surface as those of the hexacarbonyl complexes of the lighter homologs Mo and W. Comparison of the product's adsorption enthalpy with theoretical predictions and data for the lighter congeners supported a Sg(CO)6 formulation.

  19. Nuclear chemistry. Synthesis and detection of a seaborgium carbonyl complex.

    PubMed

    Even, J; Yakushev, A; Düllmann, Ch E; Haba, H; Asai, M; Sato, T K; Brand, H; Di Nitto, A; Eichler, R; Fan, F L; Hartmann, W; Huang, M; Jäger, E; Kaji, D; Kanaya, J; Kaneya, Y; Khuyagbaatar, J; Kindler, B; Kratz, J V; Krier, J; Kudou, Y; Kurz, N; Lommel, B; Miyashita, S; Morimoto, K; Morita, K; Murakami, M; Nagame, Y; Nitsche, H; Ooe, K; Qin, Z; Schädel, M; Steiner, J; Sumita, T; Takeyama, M; Tanaka, K; Toyoshima, A; Tsukada, K; Türler, A; Usoltsev, I; Wakabayashi, Y; Wang, Y; Wiehl, N; Yamaki, S

    2014-09-19

    Experimental investigations of transactinoide elements provide benchmark results for chemical theory and probe the predictive power of trends in the periodic table. So far, in gas-phase chemical reactions, simple inorganic compounds with the transactinoide in its highest oxidation state have been synthesized. Single-atom production rates, short half-lives, and harsh experimental conditions limited the number of experimentally accessible compounds. We applied a gas-phase carbonylation technique previously tested on short-lived molybdenum (Mo) and tungsten (W) isotopes to the preparation of a carbonyl complex of seaborgium, the 106th element. The volatile seaborgium complex showed the same volatility and reactivity with a silicon dioxide surface as those of the hexacarbonyl complexes of the lighter homologs Mo and W. Comparison of the product's adsorption enthalpy with theoretical predictions and data for the lighter congeners supported a Sg(CO)6 formulation. PMID:25237098

  20. Role of Carbonyl Modifications on Aging-Associated Protein Aggregation

    PubMed Central

    Tanase, Maya; Urbanska, Aleksandra M.; Zolla, Valerio; Clement, Cristina C.; Huang, Liling; Morozova, Kateryna; Follo, Carlo; Goldberg, Michael; Roda, Barbara; Reschiglian, Pierluigi; Santambrogio, Laura

    2016-01-01

    Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis. The analysis indicated that compared to younger mice an increase in protein post-translational carbonylation was observed. The causative role of these modifications in inducing protein misfolding and aggregation was determined by inducing carbonyl stress in young mice, which recapitulated the increased protein aggregation observed in old mice. Altogether our analysis indicates that oxidative stress-related post-translational modifications accumulate in the aging proteome and are responsible for increased protein aggregation and altered cell proteostasis. PMID:26776680

  1. [Carbonyl stress and oxidatively modified proteins in chronic renal failure].

    PubMed

    Bargnoux, A-S; Morena, M; Badiou, S; Dupuy, A-M; Canaud, B; Cristol, J-P

    2009-01-01

    Oxidative stress is commonly observed in chronic renal failure patients resulting from an unbalance between overproduction of reactive oxygen species and impairement of defense mechanisms. Proteins appear as potential targets of uremia-induced oxidative stress and may undergo qualitative modifications. Proteins could be directly modified by reactive oxygen species which leads to amino acid oxydation and cross-linking. Proteins could be indirectly modified by reactive carbonyl compounds produced by glycoxidation and lipo-peroxidation. The resulting post-traductional modifications are known as carbonyl stress. In addition, thiols could be oxidized or could react with homocystein leading to homocysteinylation. Finally, tyrosin could be oxidized by myeloperoxidase leading to advanced oxidative protein products (AOPP). Oxidatively modified proteins are increased in chronic renal failure patients and may contribute to exacerbate the oxidative stress/inflammation syndrome. They have been involved in long term complications of uremia such as amyloidosis and accelerated atherosclerosis. PMID:19297289

  2. Round Robin analysis of alcolol and carbonyl synthetic exhaust samples

    SciTech Connect

    Clark, W.L.; Biller, W.F.; Tejada, S.B.; Siegl, W.O.; Jensen, T.E.

    1994-07-25

    Recent changes in regulatory practices have brought about a need for speciated analysis of the volatile organic components of vehicle exhaust. The purpose of the study was to allow interested laboratories to participate in a Round Robin so that each could assess their speciation methodologies. 'Synthetic exhaust' samples were prepared of mixed DN-carbonyl standards deposited on DNPH-coated cartridges, and solutions of alcohol in water. The fifteen participating laboratories included automotive, contract, petroleum, and regulatory organizations. The results described in this paper consider only variability asociated with the analytical measurement of the samples that have already been collected in impingers or on cartridges. In general, alochols (methanol and ethanol) were quantified without difficulty. With the exception of acrolein and crotonaldehyde, the quantitation of the carbonyl samples was fairly good considering the variety of analytical methods that were employed.

  3. Round robin analysis of alcohol and carbonyl synthetic exhaust samples

    SciTech Connect

    Clark, W.L.; Biller, W.F.; Tejada, S.B.; Siegl, W.O.; Rosenhamer, D.; Newkirk, M.S.; Crowley, R.J.

    1994-10-01

    Recent changes in regulatory practices have brought about a need for speciated analysis of the volatile organic components of vehicle exhaust. The purpose of this study was to allow interested laboratories to participate in a Round Robin so that each could assess their speciation methodologies. `Synthetic exhaust` samples were prepared of mixed DNPH-carbonyl standards deposited on DNPH cartridges, and solutions of alcohol in water. The fifteen participating laboratories included automotive, contract, petroleum and regulatory organizations. The results described in this paper consider only variability associated with the analyltical measurement of samples that have already been collected in impingers or on cartridges. In general, alcohols (methanol and ethanol) were quantified without difficulty. With the exception of acrolein and crotonaldehyde, the quantitation of the carbonyl samples was very good considering the variety of analytical methods that were used. 9 refs., 4 figs., 12 tabs.

  4. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst

    DOEpatents

    Feder, Harold M.; Rathke, Jerome W.

    1979-01-01

    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  5. The modulation of carbonyl reductase 1 by polyphenols.

    PubMed

    Boušová, Iva; Skálová, Lenka; Souček, Pavel; Matoušková, Petra

    2015-01-01

    Carbonyl reductase 1 (CBR1), an enzyme belonging to the short-chain dehydrogenases/reductases family, has been detected in all human tissues. CBR1 catalyzes the reduction of many xenobiotics, including important drugs (e.g. anthracyclines, nabumetone, bupropion, dolasetron) and harmful carbonyls and quinones. Moreover, it participates in the metabolism of a number of endogenous compounds and it may play a role in certain pathologies. Plant polyphenols are not only present in many human food sources, but are also a component of many popular dietary supplements and herbal medicines. Many studies reviewed herein have demonstrated the potency of certain flavonoids, stilbenes and curcuminoids in the inhibition of the activity of CBR1. Interactions of these polyphenols with transcriptional factors, which regulate CBR1 expression, have also been reported in several studies. As CBR1 plays an important role in drug metabolism as well as in the protection of the organism against potentially harmful carbonyls, the modulation of its expression/activity may have significant pharmacological and/or toxicological consequences. Some polyphenols (e.g. luteolin, apigenin and curcumin) have been shown to be very potent CBR1 inhibitors. The inhibition of CBR1 seems useful regarding the increased efficacy of anthracycline therapy, but it may cause the worse detoxification of reactive carbonyls. Nevertheless, all known information about the interactions of polyphenols with CBR1 have only been based on the results of in vitro studies. With respect to the high importance of CBR1 and the frequent consumption of polyphenols, in vivo studies would be very helpful for the evaluation of risks/benefits of polyphenol interactions with CBR1.

  6. Strongly driven quantum pendulum of the carbonyl sulfide molecule

    NASA Astrophysics Data System (ADS)

    Trippel, Sebastian; Mullins, Terry; Müller, Nele L. M.; Kienitz, Jens S.; Omiste, Juan J.; Stapelfeldt, Henrik; González-Férez, Rosario; Küpper, Jochen

    2014-05-01

    We demonstrate and analyze a strongly driven quantum pendulum in the angular motion of state-selected and laser-aligned carbonyl sulfide molecules. Raman couplings during the rising edge of a 50-ps laser pulse create a wave packet of pendular states, which propagates in the confining potential formed by the polarizability interaction between the molecule and the laser field. This wave-packet dynamics manifests itself as pronounced oscillations in the degree of alignment with a laser-intensity-dependent period.

  7. Method for determination of some soluble atmospheric carbonyl compounds

    SciTech Connect

    Lee, Y.N.; Zhou, X. )

    1993-04-01

    A technique was developed for the measurement of soluble atmospheric carbonyl compounds, which uses a pyrex coil gas-liquid scrubber sampler in conjunction with a high-performance liquid chromatograph equipped with a UV-visible detector for separation and identification following derivatization with 2,4-dinitrophenylhydrazine. Carbonyls exhibiting a Henry's law solubility similar to or greater than that of formaldehyde (FA) can be determined by this method; these include FA, glycolaldehyde (GA), glyoxal (GL), and methylglyoxal (MG). Based on liquid standards and field-developed chromatographic characteristics, the limits of detection are about 0.005 ppb (in the gas phase) for MG, about 0.01 ppb for GL, and about 0.02 ppb for FA and GA. Because of the short air-liquid contact time in the coil sampler (smaller than 10 s), interferences from aqueous-phase reactions of ozone are insignificant. Also, at the low pH of the scrubbing solution, interference resulting from reactions of carbonyls with S(IV) is unimportant. 43 refs., 7 figs., 3 tabs.

  8. 40 CFR 721.10409 - Poly(oxyalkylenediyl), .alpha.-[[[methyl-3-[[[(polyfluoroalkyl)oxy]carbonyl] amino]phenyl]amino...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly(oxyalkylenediyl), .alpha...(oxyalkylenediyl), .alpha.- carbonyl] amino]phenyl]amino]carbonyl]- .omega.-methoxy-(generic). (a) Chemical... as poly(oxyalkylenediyl), .alpha.- carbonyl]amino]phenyl]amino] carbonyl]-.omega.-methoxy- (PMN...

  9. 40 CFR 721.10409 - Poly(oxyalkylenediyl), .alpha.-[[[methyl-3-[[[(polyfluoroalkyl) oxy]carbonyl]amino]phenyl]amino...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Poly(oxyalkylenediyl), .alpha...(oxyalkylenediyl), .alpha.- carbonyl]amino]phenyl]amino] carbonyl]-.omega.-methoxy- (generic). (a) Chemical... as poly(oxyalkylenediyl), .alpha.- carbonyl]amino]phenyl]amino] carbonyl]-.omega.-methoxy- (PMN...

  10. The long underestimated carbonyl function of carbohydrates – an organocatalyzed shot into carbohydrate chemistry.

    PubMed

    Mahrwald, R

    2015-09-21

    The aggressive and strong development of organocatalysis provides several protocols for the convenient utilization of the carbonyl function of unprotected carbohydrates in C-C-bond formation processes. These amine-catalyzed mechanisms enable multiple cascade-protocols for the synthesis of a wide range of carbohydrate-derived compound classes. Several, only slightly different protocols, have been developed for the application of 1,3-dicarbonyl compounds in the stereoselective chain-elongation of unprotected carbohydrates and the synthesis of highly functionalized C-glycosides of defined configuration. In addition, C-glycosides can also be accessed by amine-catalyzed reactions with methyl ketones. By a one-pot cascade reaction of isocyanides with unprotected aldoses and amino acids access to defined configured glycopeptide mimetics is achieved. Depending on the reaction conditions different origins to control the installation of configuration during the bond-formation process were observed.

  11. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C, 15N-labeled peptides and proteins

    NASA Astrophysics Data System (ADS)

    Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir

    2010-03-01

    In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly 13C, 15N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22 kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600 MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i - 2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed.

  12. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C,15N-labeled peptides and proteins.

    PubMed

    Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir

    2010-03-01

    In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly (13)C,(15)N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i-2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed. PMID:20060344

  13. [Chemical Characteristics and Sources of Atmospheric Carbonyls During the 2014 Beijing APEC].

    PubMed

    He, Xiao-lang; Tan, Ji-hua; Guo, Song-jun; Ma, Yong-liang; He, Ke-bin

    2016-03-15

    Pollution characteristic and variation trend of atmospheric carbonyls were investigated in November during the 2014 Beijing APEC. Formaldehyde, acetaldehyde and acetone were the dominant carbonyls, accounting for 82.66% of total carbonyls, and especially, formaldehyde accounted for 40.12% of total carbonyls. Atmospheric concentrations of total carbonyls decreased by around 64.10% after the clean air policy was carried out during the Beijing APEC, and the variation trend of carbonyls showed a similar pattern to those of other pollutants like PM₂.₅ during the APEC. Strong correlations (R² of 0.67-0.98) were observed among formaldehyde, acetaldehyde, acetone and total carbonyls during and after the APEC, indicating that they had similar sources; however, poor correlations (R² of -0.11-0.42 and 0.16-0.94, respectively) were observed before the APEC, implying different emission sources for ambient carbonyls. The calculated ratios of C1/C2, C2/C3 and OC/EC indicated that both vehicles and coal emissions were responsible for atmospheric carbonyls before the APEC, and emissions from coal burning were the major contributor to atmospheric carbonyls during and after the APEC, especially after the APEC. PMID:27337869

  14. On-road measurement of carbonyls in California light-duty vehicle emissions.

    PubMed

    Kean, A J; Grosjean, E; Grosjean, D; Harley, R A

    2001-11-01

    Emissions of carbonyls by motor vehicles are of concern because these species can be hazardous to human health and highly reactive in the atmosphere. The objective of this research was to measure carbonyl emission factors for California light-duty motor vehicles. Measurements were made at the entrance and exit of a San Francisco Bay area highway tunnel, in the center bore where heavy-duty trucks are not allowed. During summer 1999, approximately 100 carbonyls were identified, including saturated aliphatic aldehydes and ketones, unsaturated aliphatic carbonyls, aliphatic dicarbonyls, and aromatic carbonyls. Concentrations were measured for 32 carbonyls and were combined with NMOC, CO, and CO2 concentrations to calculate by carbon balance emission factors per unit of fuel burned. The measured carbonyl mass emitted from light-duty vehicles was 68 +/- 4 mg L(-1). Formaldehyde accounted for 45% of the measured mass emissions, acetaldehyde 12%, tolualdehydes 10%, benzaldehyde 7.2%, and acetone 5.9%. The ozone forming potential of the carbonyl emissions was dominated by formaldehyde (70%) and acetaldehyde (14%). Between 1994 and 1999, emission factors measured at the same tunnel for formaldehyde, acetaldehyde, and benzaldehyde decreased by 45-70%. Carbonyls constituted 3.9% of total NMOC mass emissions and 5.2% of NMOC reactivity. A comparison of carbonyl emissions with gasoline composition supports previous findings that aromatic aldehyde emissions are related to aromatics in gasoline. Carbonyl concentrations in liquid gasoline were also measured. Acetone and MEK were the most abundant carbonyls in unburned gasoline; eight other carbonyls were detected and quantified.

  15. Palladium-Catalyzed Oxidative N-Dealkylation/Carbonylation of Tertiary Amines with Alkynes to α,β-Alkynylamides.

    PubMed

    Mane, Rajendra S; Bhanage, Bhalchandra M

    2016-06-17

    The first highly effective Pd/C-catalyzed oxidative N-dealkylation/carbonylation of various aliphatic as well as cyclic tertiary amines with alkynes has been described. The selective sp(3) C-N bond activation of tertiary amines at the less steric side using O2 as a sole oxidant and a plausible reaction pathway for the reaction are discussed. The general and operationally simple methodology provides an alternative for the synthesis of a wide range of alk-2-ynamide derivatives under mild conditions. The present protocol is ecofriendly and practical, and it shows significant recyclability. PMID:27182623

  16. Line intensities and collisional-broadening parameters for the nu4 and nu6 bands of carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1992-01-01

    Line intensities, air- and self-broadening parameters have been measured for selected lines in the nu4 (1243/cm) and nu6 (774/cm) bands of carbonyl fluoride at 296 and 215 K using a tunable diode-laser spectrometer. Measured line intensities are in good agreement +/- 6 percent with recently reported values derived from rotational analyses of the nu4 and nu6 bands. The measured average air-broadening coefficient at 296 K also agrees well (+/- 5 percent) with N2-broadening coefficients determined from microwave studies, while the average self-broadening coefficient reported here is smaller than a previously reported value by 45 percent.

  17. The Personal Relevance of the Social Studies.

    ERIC Educational Resources Information Center

    VanSickle, Ronald L.

    1990-01-01

    Conceptualizes a personal-relevance framework derived from Ronald L. VanSickle's five areas of life integrated with four general motivating goals from Abraham Maslow's hierarchy of needs and Richard and Patricia Schmuck's social motivation theory. Illustrates ways to apply the personal relevance framework to make social studies more relevant to…

  18. Integrated production of superconductor insulation for chemical vapor deposition of nickel carbonyl

    SciTech Connect

    Snyder, T.S.; Stoltz, R.A.; Wagner, G.R.

    1991-06-04

    This paper describes a process for use in fabrication of nickel suboxide insulation on a superconductor. It comprises: reacting essentially oxygen-free nickel powder with essentially oxygen-free carbon monoxide at a temperature of at least 50{degrees} C. to produce a nickel carbonyl; separating the nickel carbonyl from reaction by-products and excess reagents by cooling the carbonyl to 10{degrees}-43{degrees} C and decanting the nickel carbonyl liquor to produce a purified carbonyl; and at least periodically contacting the purified carbonyl to a surface of a wire containing superconductor or superconductor precursors in an atmosphere at least periodically containing a controlled amount of oxygen, with the wire being at a temperature of 50{degrees}-800{degrees}C to produce nickel suboxide insulation on the wire.

  19. Levels, sources, and health risks of carbonyls in residential indoor air in Hangzhou, China.

    PubMed

    Weng, Mili; Zhu, Lizhong; Yang, Kun; Chen, Shuguang

    2010-04-01

    Concentrations of formaldehyde, acetaldehyde, acetone, propionaldehyde, i-pentanal, and butyraldehyde in residential indoor air in Hangzhou were determined. The mean concentration of the total carbonyl compounds in summer was 222.6 microg/m(3), higher than that in winter (68.5 microg/m(3)). The concentration of a specific carbonyl in indoor air was higher than the outdoor air measurement, indicating the release of carbonyls from the indoor sources. Formaldehyde and acetone were the most abundant carbonyls detected in summer and winter, respectively. Multiple regression analysis indicated that carbonyl concentrations in residential indoor air depended on the age of decoration and furniture, as well as their concentrations in outdoor air. In addition, a primary estimation showed that the health risks of carbonyls in summer were higher than those in winter.

  20. Palladium-Catalyzed Regioselective Difluoroalkylation and Carbonylation of Alkynes.

    PubMed

    Wang, Qiang; He, Yu-Tao; Zhao, Jia-Hui; Qiu, Yi-Feng; Zheng, Lan; Hu, Jing-Yuan; Yang, Yu-Chen; Liu, Xue-Yuan; Liang, Yong-Min

    2016-06-01

    A novel, four-component synthetic strategy to synthesize a series of β-difluoroalkyl unsaturated esters/amides with high regioslectivity is described. This Pd-catalyzed difluoroalkylation and carbonylation reaction can be carried out with simple starting materials. Through this protocol, two new C-C bonds (including one C-CF2 bond) and one C-O(N) bond are constructed simultaneously in a single step. The synthetic utility of this reaction system has been certified by the applicability to a wide scope of alkynes and nucleophiles. Preliminary mechanistic studies suggest that the difluoroalkyl radical pathway is involved in this reaction. PMID:27191858

  1. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.

    PubMed

    Chakraborty, Sumit; Bhattacharya, Papri; Dai, Huiguang; Guan, Hairong

    2015-07-21

    The reductions of aldehydes, ketones, and esters to alcohols are important processes for the synthesis of chemicals that are vital to our daily life, and the reduction of CO2 to methanol is expected to provide key technology for carbon management and energy storage in our future. Catalysts that affect the reduction of carbonyl compounds often contain ruthenium, osmium, or other precious metals. The high and fluctuating price, and the limited availability of these metals, calls for efforts to develop catalysts based on more abundant and less expensive first-row transition metals, such as nickel and iron. The challenge, however, is to identify ligand systems that can increase the thermal stability of the catalysts, enhance their reactivity, and bypass the one-electron pathways that are commonly observed for first-row transition metal complexes. Although many other strategies exist, this Account describes how we have utilized pincer ligands along with other ancillary ligands to accomplish these goals. The bis(phosphinite)-based pincer ligands (also known as POCOP-pincer ligands) create well-defined nickel hydride complexes as efficient catalysts for the hydrosilylation of aldehydes and ketones and the hydroboration of CO2 to methanol derivatives. The hydride ligands in these complexes are substantially nucleophilic, largely due to the enhancement by the strongly trans-influencing aryl groups. Under the same principle, the pincer-ligated nickel cyanomethyl complexes exhibit remarkably high activity (turnover numbers up to 82,000) for catalytically activating acetonitrile and the addition of H-CH2CN across the C═O bonds of aldehydes without requiring a base additive. Cyclometalation of bis(phosphinite)-based pincer ligands with low-valent iron species "Fe(PR3)4" results in diamagnetic Fe(II) hydride complexes, which are active catalysts for the hydrosilylation of aldehydes and ketones. Mechanistic investigation suggests that the hydride ligand is not delivered to the

  2. Levels and health risks of carbonyl compounds in selected public places in Hangzhou, China.

    PubMed

    Weng, Mili; Zhu, Lizhong; Yang, Kun; Chen, Shuguang

    2009-05-30

    The concentrations of six carbonyl compounds in indoor air were measured for selected public places in Hangzhou, including shopping centers, supermarkets, furniture store, inter-city bus stations, railway stations and cinemas. In indoor air of the public places, the mean concentration was 146.5 microg/m(3) for total carbonyls, in which formaldehyde was found to be the most abundant carbonyls with an average value of 90.6 microg/m(3) and followed by acetone and acetaldehyde. Among the selected public places, the furniture store presented the highest carbonyl concentrations in the indoor air, followed by shopping centers, supermarkets, cinemas, while the railway stations and inter-city bus stations presented relatively lower carbonyl concentrations. Carbonyl concentrations in indoor air for the different areas of shopping centers and supermarkets were also investigated. The results showed that the highest carbonyl concentrations were found in restaurant and bedclothes areas for shopping centers and in the cooked food areas for supermarkets. The average ratios of the indoor/outdoor (I/O) for carbonyl concentrations were greater than 1, which indicated that the indoor sources significantly contributed to carbonyls, such as indoor materials and anthropogenic activities. Preliminary estimate of the health risk for staffs, customers and passengers in public places was discussed.

  3. Two-dimensional gel electrophoretic detection of protein carbonyls derivatized with biotin-hydrazide.

    PubMed

    Wu, Jinzi; Luo, Xiaoting; Jing, Siqun; Yan, Liang-Jun

    2016-04-15

    Protein carbonyls are protein oxidation products that are often used to measure the magnitude of protein oxidative damage induced by reactive oxygen or reactive nitrogen species. Protein carbonyls have been found to be elevated during aging and in age-related diseases such as stroke, diabetes, and neurodegenerative diseases. In the present article, we provide detailed protocols for detection of mitochondrial protein carbonyls labeled with biotin-hydrazide followed by 2-dimensional isoelectric focusing (IEF)/SDS-PAGE and Western blotting probed with horse-radish peroxidase-conjugated streptavidin. The presented procedures can also be modified for detection of carbonylation of non-mitochondrial proteins. PMID:26590475

  4. Borane-Catalyzed Reductive α-Silylation of Conjugated Esters and Amides Leaving Carbonyl Groups Intact.

    PubMed

    Kim, Youngchan; Chang, Sukbok

    2016-01-01

    Described herein is the development of the B(C6F5)3-catalyzed hydrosilylation of α,β-unsaturated esters and amides to afford synthetically valuable α-silyl carbonyl products. The α-silylation occurs chemoselectively, thus leaving the labile carbonyl groups intact. The reaction features a broad scope of both acyclic and cyclic substrates, and the synthetic utility of the obtained α-silyl carbonyl products is also demonstrated. Mechanistic studies revealed two operative steps: fast 1,4-hydrosilylation of conjugated carbonyls and then slow silyl group migration of a silyl ether intermediate. PMID:26549843

  5. Deuterium enrichment by selective photo-induced dissociation of an organic carbonyl compound

    DOEpatents

    Marling, John B.

    1981-01-01

    A method for producing a deuterium enriched material by photoinduced dissociation which uses as the working material a gas phase photolytically dissociable organic carbonyl compound containing at least one hydrogen atom bonded to an atom which is adjacent to a carbonyl group and consisting of molecules wherein said hydrogen atom is present as deuterium and molecules wherein said hydrogen atom is present as another isotope of hydrogen. The organic carbonyl compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of the deuterium containing species to yield a deuterium enriched stable molecular product. Undissociated carbonyl compound, depleted in deuterium, is preferably redeuterated for reuse.

  6. Identification of oxidatively modified proteins in salt-stressed Arabidopsis: a carbonyl-targeted proteomics approach.

    PubMed

    Mano, Jun'ichi; Nagata, Mitsuaki; Okamura, Shoutarou; Shiraya, Takeshi; Mitsui, Toshiaki

    2014-07-01

    In plants, environmental stresses cause an increase in the intracellular level of reactive oxygen species (ROS), leading to tissue injury. To obtain biochemical insights into this damage process, we investigated the protein carbonyls formed by ROS or by the lipid peroxide-derived α,β-unsaturated aldehydes and ketones (i.e. reactive carbonyl species, or RCS) in the leaves of Arabidopsis thaliana under salt stress. A. thaliana Col-0 plants that we treated with 300 mM NaCl for 72 h under continuous illumination suffered irreversible leaf damage. Several RCS such as 4-hydroxy-(E)-2-nonenal (HNE) were increased within 12 h of this salt treatment. Immunoblotting using distinct antibodies against five different RCS, i.e. HNE, 4-hydroxy-(E)-2-hexenal, acrolein, crotonaldehyde and malondialdehyde, revealed that RCS-modified proteins accumulated in leaves with the progress of the salt stress treatment. The band pattern of Western blotting suggested that these different RCS targeted a common set of proteins. To identify the RCS targets, we collected HNE-modified proteins via an anti-HNE antiserum affinity trap and performed an isobaric tag for relative and absolute quantitation, as a quantitative proteomics approach. Seventeen types of protein, modified by 2-fold more in the stressed plants than in the non-stressed plants, were identified as sensitive RCS targets. With aldehyde-reactive probe-based affinity trapping, we collected the oxidized proteins and identified 22 additional types of protein as sensitive ROS targets. These RCS and ROS target proteins were distributed in the cytosol and apoplast, as well as in the ROS-generating organelles the peroxisome, chloroplast and mitochondrion, suggesting the participation of plasma membrane oxidation in the cellular injury. Possible mechanisms by which these modified targets cause cell death are discussed.

  7. Detoxification reactions: relevance to aging

    PubMed Central

    Zimniak, Piotr

    2008-01-01

    It is widely (although not universally) accepted that organismal aging is the result of two opposing forces: (i) processes that destabilize the organism and increase the probability of death, and (ii) longevity assurance mechanisms that prevent, repair, or contain damage. Processes of the first group are often chemical and physico-chemical in nature, and are either inevitable or only under marginal biological control. In contrast, protective mechanisms are genetically determined and are subject to natural selection. Life span is therefore largely dependent on the investment into protective mechanisms which evolve to optimize reproductive fitness. Recent data indicate that toxicants, both environmental and generated endogenously by metabolism, are major contributors to macromolecular damage and physiological dysregulation that contribute to aging; electrophilic carbonyl compounds derived from lipid peroxidation appear to be particularly important. As a consequence, detoxification mechanisms, including the removal of electrophiles by glutathione transferase-catalyzed conjugation, are major longevity assurance mechanisms. The expression of multiple detoxification enzymes, each with a significant but relatively modest effect on longevity, is coordinately regulated by signaling pathways such as insulin/insulin-like signaling, explaining the large effect of such pathways on life span. The major aging-related toxicants and their cognate detoxification systems are discussed in this review. PMID:18547875

  8. The unexpected mechanism of carbonyl hydrosilylation catalyzed by (Cp)(ArN[double bond, length as m-dash])Mo(H)(PMe(3)).

    PubMed

    Shirobokov, Oleg G; Gorelsky, Serge I; Simionescu, Razvan; Kuzmina, Lyudmila G; Nikonov, Georgii I

    2010-11-01

    Complex (Cp)(ArN[double bond, length as m-dash])Mo(H)(PMe(3)) (2, Ar = 2,6-diisopropylphenyl) catalyzes the hydrosilylation of carbonyls by an unexpected associative mechanism. Complex 2 also reacts with PhSiH(3) by a σ-bond metathesis mechanism to give the silyl derivative (Cp)(ArN[double bond, length as m-dash])Mo(SiH(2)Ph)(PMe(3)).

  9. Multicomponent Synthesis of Uracil Analogues Promoted by Pd-Catalyzed Carbonylation of α-Chloroketones in the Presence of Isocyanates and Amines.

    PubMed

    Perrone, Serena; Capua, Martina; Salomone, Antonio; Troisi, Luigino

    2015-08-21

    A short and efficient one-pot synthesis of uracil derivatives with a high structural variability is described. The process is a multicomponent reaction based on a palladium-catalyzed carbonylation of α-chloroketones in the presence of primary amines and isocyanates. In most cases, when the formation of unsymmetrical N,N'-disubstituted uracil derivatives can occur, the methodology demonstrates to be highly regioselective. A mechanistic hypothesis involving β-dicarbonyl palladium intermediates and urea derivatives, generated in situ, has been discussed.

  10. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account.

    PubMed

    Wu, Xiao-Feng; Fang, Xianjie; Wu, Lipeng; Jackstell, Ralf; Neumann, Helfried; Beller, Matthias

    2014-04-15

    Carbon monoxide was discovered and identified in the 18th century. Since the first applications in industry 80 years ago, academic and industrial laboratories have broadly explored CO's use in chemical reactions. Today organic chemists routinely employ CO in organic chemistry to synthesize all kinds of carbonyl compounds. Despite all these achievements and a century of carbonylation catalysis, many important research questions and challenges remain. Notably, apart from academic developments, industry applies carbonylation reactions with CO on bulk scale. In fact, today the largest applications of homogeneous catalysis (regarding scale) are carbonylation reactions, especially hydroformylations. In addition, the vast majority of acetic acid is produced via carbonylation of methanol (Monsanto or Cativa process). The carbonylation of olefins/alkynes with nucleophiles, such as alcohols and amines, represent another important type of such reactions. In this Account, we discuss our work on various carbonylations of unsaturated compounds and related reactions. Rhodium-catalyzed isomerization and hydroformylation reactions of internal olefins provide straightforward access to higher value aldehydes. Catalytic hydroaminomethylations offer an ideal way to synthesize substituted amines and even heterocycles directly. More recently, our group has also developed so-called alternative metal catalysts based on iridium, ruthenium, and iron. What about the future of carbonylation reactions? CO is already one of the most versatile C1 building blocks for organic synthesis and is widely used in industry. However, because of CO's high toxicity and gaseous nature, organic chemists are often reluctant to apply carbonylations more frequently. In addition, new regulations have recently made the transportation of carbon monoxide more difficult. Hence, researchers will need to develop and more frequently use practical and benign CO-generating reagents. Apart from formates, alcohols, and metal

  11. Influences of characteristic meteorological conditions on atmospheric carbonyls in Beijing, China

    NASA Astrophysics Data System (ADS)

    Pang, Xiaobing; Mu, Yujing; Lee, Xinqing; Zhang, Yujie; Xu, Zhu

    2009-08-01

    Atmospheric pollutants are controlled not only by their production rates but also by meteorological conditions. The influences of dust storm, sauna weather (haze with high temperature and high humidity), wet precipitation and wind speed on atmospheric carbonyls in Beijing were investigated. During a severe dust episode (April 17, 2006), the mixing ratios of carbonyls were significantly elevated to 13-27 ppbV from 7 to 13 ppbV in the previous non-dust days (April 15 and 16) with the increasing extents of 38-154%. The accumulating effect and the lower photolysis rate in the dust day may be responsible for the increases of carbonyls' levels. Additionally, the contribution from heterogeneous reactions occurring on dust particles to formaldehyde and acetaldehyde cannot be ruled out. During the period of typical sauna weather, the concentrations of atmospheric carbonyls increased to 18-60 ppbV from 10 to 17 ppbV before the sauna days. The air mass over Beijing during the sauna days was controlled by a subtropical anticyclone and the boundary layer became quite stable, which was beneficial to the rapid accumulation of air pollutants including carbonyls. Wet precipitation was found to be an effective removal process to the atmospheric carbonyls. After one-hour of rain in summer, the total concentrations of atmospheric carbonyls decreased to less than half of that before the rainfall. The similar temporal varying patterns of carbonyls and inorganic ions in rainwater indicated that carbonyls were mainly washed out from the atmosphere into rainwater as inorganic ions were. Strong wind could evidently dilute atmospheric carbonyls and a negative correlation was found between wind speeds and the concentrations of carbonyls in spring in Beijing.

  12. Reactions of rhodium(I) carbonyl chloride with olefins

    SciTech Connect

    Varshavskii, Yu.S.; Kiseleva, N.V.; Cherkasova, T.G.; Buzina, N.A.; Bresler, L.S.

    1987-01-01

    The reactions of (Rh(CO)/sub 2/Cl)/sub 2/ (Y/sub 0/) with cyclooctene and several other olefins (1-heptene, 1-hexene, ethylene, and cyclohexene) have been studied by IR and /sup 13/C NMR spectroscopy. The main reaction products are the binuclear complexes Rh/sub 2/L(CO)/sub 3/Cl/sub 2/ (Y/sub 1/) and (RhL(CO)Cl)/sub 2/ (Y/sub 2/), where L denotes the olefin. The extent of replacement of the carbonyl groups depends on the nature of the olefin and the conditions under which the reaction is carried out (the L:Rh ratio and the removal of CO from the reaction sphere). The liquid olefins form the following series according to their ability to replace the carbonyl groups: C/sub 8/H/sub 14/ > C/sub 7/H/sub 14/, C/sub 6/H/sub 12/ > C/sub 6/H/sub 10/. In the presence of an excess of C/sub 8/H/sub 14/, Y/sub 2/ disproportionates with the formation of a dicarbonyl product, which presumably corresponds to the formula Rh(C/sub 8/H/sub 14/)/sub 2/(CO)/sub 2/Cl (a pentacoordinate complex with a trigonal-bipyramidal structure). The /sup 13/C signal in the NMR spectrum of a solution of Y/sub 2/ in C/sub 8/H/sub 14/ is a singlet with sigma(/sup 13/C) 180.3 ppm, which is an indication of the rapid exchange of the carbonyl groups. Rapid exchange of the CO ligands is also observed in solutions of Y/sub 0/ in the olefins (with the exception of C/sub 6/H/sub 10/). For example, the /sup 13/C signal in the spectrum of a solution of Y/sub 0/ in C/sub 8/H/sub 14/ is a singlet with sigma(/sup 13/C) 179.8 ppm. The spectrum of Y/sub 0/ in C/sub 6/H/sub 10/ is a doublet with sigma(/sup 13/C) = 178.5 ppm and /sup 1/J(CRh) = 76.3 Hz. A scheme for the interaction of Y/sub 0/ with olefins based on the conception of the trans antagonism of ..pi..-acceptor ligands has been proposed.

  13. Ketene as a Reaction Intermediate in the Carbonylation of Dimethyl Ether to Methyl Acetate over Mordenite.

    PubMed

    Rasmussen, Dominik B; Christensen, Jakob M; Temel, Burcin; Studt, Felix; Moses, Poul Georg; Rossmeisl, Jan; Riisager, Anders; Jensen, Anker D

    2015-06-15

    Unprecedented insight into the carbonylation of dimethyl ether over Mordenite is provided through the identification of ketene (CH2CO) as a reaction intermediate. The formation of ketene is predicted by detailed DFT calculations and verified experimentally by the observation of doubly deuterated acetic acid (CH2DCOOD), when D2O is introduced in the feed during the carbonylation reaction. PMID:25967363

  14. PROCESS OF COATING WITH NICKEL BY THE DECOMPOSITION OF NICKEL CARBONYL

    DOEpatents

    Hoover, T.B.

    1959-04-01

    An improved process is presented for the deposition of nickel coatings by the thermal decomposition of nickel carbonyl vapor. The improvement consists in incorporating a small amount of hydrogen sulfide gas in the nickel carbonyl plating gas. It is postulated that the hydrogen sulfide functions as a catalyst. i

  15. Metal-atom fluorescence from the quenching of metastable rare gases by metal carbonyls

    SciTech Connect

    Hollingsworth, W.E.

    1982-11-01

    A flowing afterglow apparatus was used to study the metal fluorescence resulting from the quenching of metastable rare-gas states by metal carbonyls. The data from the quenching or argon, neon, and helium by iron and nickel carbonyl agreed well with a restricted degree of freedom model indicating a concerted bond-breaking dissociation.

  16. Protective mechanisms of Cucumis sativus in diabetes-related modelsof oxidative stress and carbonyl stress

    PubMed Central

    Heidari, Himan; Kamalinejad, Mohammad; Noubarani, Maryam; Rahmati, Mokhtar; Jafarian, Iman; Adiban, Hasan; Eskandari, Mohammad Reza

    2016-01-01

    Introduction: Oxidative stress and carbonyl stress have essential mediatory roles in the development of diabetes and its related complications through increasing free radicals production and impairing antioxidant defense systems. Different chemical and natural compounds have been suggested for decreasing such disorders associated with diabetes. The objectives of the present study were to investigate the protective effects of Cucumis sativus (C. sativus) fruit (cucumber) in oxidative and carbonyl stress models. These diabetes-related models with overproduction of reactive oxygen species (ROS) and reactive carbonyl species (RCS) simulate conditions observed in chronic hyperglycemia. Methods: Cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonyl stress model) were measured and the protective effects of C. sativus were evaluated using freshly isolated rat hepatocytes. Results: Aqueous extract of C. sativus fruit (40 μg/mL) prevented all cytotoxicity markers in both the oxidative and carbonyl stress models including cell lysis, ROS formation, membrane lipid peroxidation, depletion of glutathione, mitochondrial membrane potential decline, lysosomal labialization, and proteolysis. The extract also protected hepatocytes from protein carbonylation induced by glyoxal. Our results indicated that C. sativus is able to prevent oxidative stress and carbonyl stress in the isolated hepatocytes. Conclusion: It can be concluded that C. sativus has protective effects in diabetes complications and can be considered a safe and suitable candidate for decreasing the oxidative stress and carbonyl stress that is typically observed in diabetes mellitus. PMID:27340622

  17. Intermediates to ethylene glycol: carbonylation of formaldehyde catalyzed by Nafion solid perfluorosulfonic acid resin

    SciTech Connect

    Hendriksen, D.E.

    1983-01-01

    Details of a series of reactions for the production of ethylene glycol using a catalyst of Nafion solid perfluorosulfonic acid resin was detailed. The reactions included the carbonylation of formaldehyde and esterification and then hydrogenation of the product of the carbonylation, glycolic acid. Other preparations included in the work included methyl glycolate, acetylglycolic acid, methyl acetylglycolate, and methyl methoxyacetate.

  18. Versatile, mild, and selective reduction of various carbonyl groups using an electron-deficient boron catalyst.

    PubMed

    Lucas, Katherine M; Kleman, Adam F; Sadergaski, Luke R; Jolly, Caitlyn L; Bollinger, Brady S; Mackesey, Brittany L; McGrath, Nicholas A

    2016-06-15

    A mild and selective new method was discovered to reduce acetanilides and other carbonyl compounds. Unlike sodium borohydride, which is selective in reducing aldehydes and ketones, this new protocol is uniquely selective in reducing acetanilides and nitriles over other carbonyl containing functional groups. Additionally, β-ketoamides were shown to be reduced at the ketone preferentially over the amide.

  19. meso-Phbox-Pd(II) catalyzed tandem carbonylative cyclization of 1-ethynyl-1-propargyl acetate.

    PubMed

    Kato, Keisuke; Teraguchi, Ryuhei; Motodate, Satoshi; Uchida, Akira; Mochida, Tomoyuki; Peganova, Tat'yana A; Vologdin, Nikolai V; Akita, Hiroyuki

    2008-08-21

    Palladium(II) catalyzed carbonylation of 1-ethynyl-1-propargyl acetate is described; in the absence of the bisoxazoline (box) ligand, the second triple bond did not react, affording cyclic orthoesters and . The use of meso-Phbox-Pd(ii) strikingly changed the course of the reaction, yielding bicyclic lactone by tandem carbonylative cyclization as a result of insertion of the second triple bond.

  20. Proteomic identification of carbonylated proteins in the kidney of trichloroethene-exposed MRL+/+ mice

    PubMed Central

    Fan, Xiuzhen; Wang, Gangduo; English, Robert D.; Khan, M. Firoze

    2013-01-01

    Trichloroethene (TCE), a common environmental and occupational pollutant, is associated with multi-organ toxicity. Kidney is one of major target organs affected as a result of TCE exposure. Our previous studies have shown that exposure to TCE causes increased protein oxidation (protein carbonylation) in the kidneys of autoimmune-prone MRL +/+ mice, and suggested a potential role of protein oxidation in TCE-mediated nephrotoxicity. To assess the impact of chronic TCE exposure on protein oxidation, particularly to identify the carbonylated proteins in kidneys, female MRL+/+ mice were treated with TCE at the dose of 2 mg/ml via drinking water for 36 weeks and kidney protein extracts were analyzed for protein carbonyls and carbonylated proteins identified using proteomic approaches (2D gel, Western blot, MALDI TOF/TOF MS/MS, etc.). TCE treatment led to significantly increased protein carbonyls in the kidney protein extracts (20,000g pellet fraction). Interestingly, among 18 identified carbonylated proteins, 10 were found only in the kidneys of TCE-treated mice, whereas other 8 were present in the kidneys of both control and TCE-treated mice. The identified carbonylated proteins represent skeletal proteins, chaperones, stress proteins, enzymes, plasma protein, and proteins involved in signaling pathways. The findings provide a map for further exploring the role of carbonylated proteins in TCE-mediated nephrotoxicity. PMID:24024666

  1. Iron(III)-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    PubMed

    Saá, Carlos

    2016-09-01

    Recent developments in catalytic carbonyl-olefin metathesis are summarized in this Highlight. Schindler and co-workers have reported that the environmentally benign FeCl3 catalyst promotes ring-closing carbonyl-olefin metathesis (RCCOM) in high yield under very mild conditions.

  2. VizieR Online Data Catalog: Millimeter wave spectra of carbonyl cyanide (Bteich+, 2016)

    NASA Astrophysics Data System (ADS)

    Bteich, S. B.; Tercero, B.; Cernicharo, J.; Motiyenko, R. A.; Margules, L.; Guillemin, J.-C.

    2016-05-01

    Table 3 contains assigned rotational transitions of the ground state and the first excited vibrational state (v5=1) of carbonyl cyanide. Table 4 contains predicted transitions of the ground vibrational state of carbonyl cyanide in the frequency range up to 1THz. (2 data files).

  3. 40 CFR 721.10705 - Aromatic amine with cyclo amino carbonyls (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aromatic amine with cyclo amino... Specific Chemical Substances § 721.10705 Aromatic amine with cyclo amino carbonyls (generic). (a) Chemical... as aromatic amine with cyclo amino carbonyls (PMN P-12-572) is subject to reporting under...

  4. Iron(III)-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    PubMed

    Saá, Carlos

    2016-09-01

    Recent developments in catalytic carbonyl-olefin metathesis are summarized in this Highlight. Schindler and co-workers have reported that the environmentally benign FeCl3 catalyst promotes ring-closing carbonyl-olefin metathesis (RCCOM) in high yield under very mild conditions. PMID:27491787

  5. Protein carbonylation after traumatic brain injury: cell specificity, regional susceptibility, and gender differences.

    PubMed

    Lazarus, Rachel C; Buonora, John E; Jacobowitz, David M; Mueller, Gregory P

    2015-01-01

    Protein carbonylation is a well-documented and quantifiable consequence of oxidative stress in several neuropathologies, including multiple sclerosis, Alzheimer׳s disease, and Parkinson׳s disease. Although oxidative stress is a hallmark of traumatic brain injury (TBI), little work has explored the specific neural regions and cell types in which protein carbonylation occurs. Furthermore, the effect of gender on protein carbonylation after TBI has not been studied. The present investigation was designed to determine the regional and cell specificity of TBI-induced protein carbonylation and how this response to injury is affected by gender. Immunohistochemistry was used to visualize protein carbonylation in the brains of adult male and female Sprague-Dawley rats subjected to controlled cortical impact (CCI) as an injury model of TBI. Cell-specific markers were used to colocalize the presence of carbonylated proteins in specific cell types, including astrocytes, neurons, microglia, and oligodendrocytes. Results also indicated that the injury lesion site, ventral portion of the dorsal third ventricle, and ventricular lining above the median eminence showed dramatic increases in protein carbonylation after injury. Specifically, astrocytes and limited regions of ependymal cells adjacent to the dorsal third ventricle and the median eminence were most susceptible to postinjury protein carbonylation. However, these patterns of differential susceptibility to protein carbonylation were gender dependent, with males showing significantly greater protein carbonylation at sites distant from the lesion. Proteomic analyses were also conducted and determined that the proteins most affected by carbonylation in response to TBI include glial fibrillary acidic protein, dihydropyrimidase-related protein 2, fructose-bisphosphate aldolase C, and fructose-bisphosphate aldolase A. Many other proteins, however, were not carbonylated by CCI. These findings indicate that there is both regional

  6. Protein carbonylation after traumatic brain injury: cell specificity, regional susceptibility, and gender differences.

    PubMed

    Lazarus, Rachel C; Buonora, John E; Jacobowitz, David M; Mueller, Gregory P

    2015-01-01

    Protein carbonylation is a well-documented and quantifiable consequence of oxidative stress in several neuropathologies, including multiple sclerosis, Alzheimer׳s disease, and Parkinson׳s disease. Although oxidative stress is a hallmark of traumatic brain injury (TBI), little work has explored the specific neural regions and cell types in which protein carbonylation occurs. Furthermore, the effect of gender on protein carbonylation after TBI has not been studied. The present investigation was designed to determine the regional and cell specificity of TBI-induced protein carbonylation and how this response to injury is affected by gender. Immunohistochemistry was used to visualize protein carbonylation in the brains of adult male and female Sprague-Dawley rats subjected to controlled cortical impact (CCI) as an injury model of TBI. Cell-specific markers were used to colocalize the presence of carbonylated proteins in specific cell types, including astrocytes, neurons, microglia, and oligodendrocytes. Results also indicated that the injury lesion site, ventral portion of the dorsal third ventricle, and ventricular lining above the median eminence showed dramatic increases in protein carbonylation after injury. Specifically, astrocytes and limited regions of ependymal cells adjacent to the dorsal third ventricle and the median eminence were most susceptible to postinjury protein carbonylation. However, these patterns of differential susceptibility to protein carbonylation were gender dependent, with males showing significantly greater protein carbonylation at sites distant from the lesion. Proteomic analyses were also conducted and determined that the proteins most affected by carbonylation in response to TBI include glial fibrillary acidic protein, dihydropyrimidase-related protein 2, fructose-bisphosphate aldolase C, and fructose-bisphosphate aldolase A. Many other proteins, however, were not carbonylated by CCI. These findings indicate that there is both regional

  7. Gas-phase basicities of polyfunctional molecules. Part 4: Carbonyl groups as basic sites.

    PubMed

    Bouchoux, Guy

    2015-01-01

    This article constitutes the fourth part of a general review of the gas-phase protonation thermochemistry of polyfunctional molecules (Part 1: Theory and methods, Mass Spectrom Rev 2007, 26:775-835, Part 2: Saturated basic sites, Mass Spectrom Rev 2012, 31:353-390, Part 3: Amino acids, Mass Spectrom Rev 2012, 31:391-435). This fourth part is devoted to carbonyl containing polyfunctional molecules. After a short reminder of the methods of determination of gas-phase basicity and the underlying physicochemical concepts, specific examples are examined under two major chapters. In the first one, aliphatic and unsaturated (conjugated and cyclic) ketones, diketones, ketoalcohols, and ketoethers are considered. A second chapter describes the protonation energetic of gaseous acids and derivatives including diacids, diesters, diamides, anhydrides, imides, ureas, carbamates, amino acid derivatives, and peptides. Experimental data were re-evaluated according to the presently adopted basicity scale. Structural and energetic information given by G3 and G4 quantum chemistry computations on typical systems are presented.

  8. Interaction of S-nitrosoglutathione with methemoglobin under conditions of modeling carbonyl stress.

    PubMed

    Kosmachevskaya, Olga V; Shumaev, Konstantin B; Nasybullina, Elvira I; Gubkina, Svetlana A; Topunov, Alexey F

    2013-01-01

    The Maillard reaction is the key process in protein modification during pathologies connected with carbonyl stress. It was shown in system modeling that Maillard reaction interaction of L-lysine (L-lys) with methylglyoxal (MG) led to the formation of compounds reducing methemoglobin (metHb). Under the above conditions and in the presence of S-nitrosoglutathione (GSNO), metHb nitrosylation took place. Processes of metHb reduction and nitrosylation had the lag phase that was dependent on the presence of oxygen (O2) in the reaction mixture. Oxygen interacting with organic free radicals of the Maillard reaction inhibited hemoglobin (Hb) reduction and hence Hb nitrosylation during the first minutes of the reaction. It was also shown that the yield of organic free-radical intermediates of the L-lys with MG was increased in the presence of GSNO and metHb. All effects described could be a result of the formation of active red-ox GSNO derivates in the Maillard reaction. These derivates are probably mediators of one-electron oxidation of dialkylimine by MG. Anion radicals of S-nitrosothiols can function as such mediators. PMID:23662713

  9. Carbonyl compounds in the lower marine troposphere over the Caribbean Sea and Bahamas

    SciTech Connect

    Xianliang Zhou; Mopper, K. )

    1993-02-15

    Formaldehyde, acetaldehyde, acetone, and butanone were measured in 59 samples of marine air. Average clean air background concentrations were about 0.55, 0.50, 0.38, and 0.03 ppbv, respectively, in agreement with past measurements. The formaldehyde concentration is also in agreement with that predicted from photooxidation of methane and other locally derived organic matter. Formaldehyde and acetaldehyde showed strong diurnal variations throughout the 12-day sampling period. Photochemical oxidation of locally derived organic matter, such as nonmethane hydrocarbons and long-chained lipids, appears to be the major source for both formaldehyde and acetaldehyde in the lower marine boundary layer. Acetone, on the other hand, showed weaker diurnal fluctuations, consistent with its significantly longer lifetime in the trophosphere. Sinks for carbonyl compounds in the lower marine boundary layer are less clearly known. The results suggest that photolysis, reaction with free radicals, and deposition at the sea surface are minor, short-term sinks during the study. The main sink appears to be vertical mixing, probably followed by photolysis in the upper marine boundary layer and free troposphere. 34 refs., 6 figs., 2 tabs.

  10. Development and application of a sensitive method to determine concentrations of acrolein and other carbonyls in ambient air.

    PubMed

    Cahill, Thomas M; Charles, M Judith; Seaman, Vincent Y

    2010-05-01

    Acrolein, an unsaturated aldehyde, has been identified as one of the most important toxic air pollutants in recent assessments of ambient air quality. Current methods for determining acrolein concentrations, however, suffer from poor sensitivity, selectivity, and reproducibility. The collection and analysis of unsaturated carbonyls, and acrolein in particular, is complicated by unstable derivatives, coelution of similar compounds, and ozone interference. The primary objective of this research was to develop an analytical method to measure acrolein and other volatile carbonyls present in low part-per-trillion concentrations in ambient air samples obtained over short sampling periods. The method we devised uses a mist chamber in which carbonyls from air samples form water-soluble adducts with bisulfite in the chamber solution, effectively trapping the carbonyls in the solution. The mist chamber methodology proved effective, with collection efficiency for acrolein of at least 70% for each mist chamber at a flow rate of approximately 17 L/min. After the sample collection, the carbonyls are liberated from the bisulfite adducts through the addition of hydrogen peroxide, which converts the bisulfite to sulfate, reversing the bisulfite addition reaction. The free carbonyls are then derivatized by o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA*), which stabilizes the analytes and makes them easier to detect by electron-capture negative ionization mass spectrometry (ECNI-MS). The derivatives are then extracted and analyzed by gas chromatography-mass spectrometry (GC-MS). The mist chamber method was applied in a field test to determine the extent of acrolein in ambient air near the Peace Bridge plaza in Buffalo, New York, an area of heavy traffic near a major border crossing between the United States and Canada. In addition, XAD-2 adsorbent cartridges coated with 2-(hydroxymethyl)piperidine (2-HMP) according to Occupational Safety and Health Administration (OSHA) Method

  11. Development and application of a sensitive method to determine concentrations of acrolein and other carbonyls in ambient air.

    PubMed

    Cahill, Thomas M; Charles, M Judith; Seaman, Vincent Y

    2010-05-01

    Acrolein, an unsaturated aldehyde, has been identified as one of the most important toxic air pollutants in recent assessments of ambient air quality. Current methods for determining acrolein concentrations, however, suffer from poor sensitivity, selectivity, and reproducibility. The collection and analysis of unsaturated carbonyls, and acrolein in particular, is complicated by unstable derivatives, coelution of similar compounds, and ozone interference. The primary objective of this research was to develop an analytical method to measure acrolein and other volatile carbonyls present in low part-per-trillion concentrations in ambient air samples obtained over short sampling periods. The method we devised uses a mist chamber in which carbonyls from air samples form water-soluble adducts with bisulfite in the chamber solution, effectively trapping the carbonyls in the solution. The mist chamber methodology proved effective, with collection efficiency for acrolein of at least 70% for each mist chamber at a flow rate of approximately 17 L/min. After the sample collection, the carbonyls are liberated from the bisulfite adducts through the addition of hydrogen peroxide, which converts the bisulfite to sulfate, reversing the bisulfite addition reaction. The free carbonyls are then derivatized by o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA*), which stabilizes the analytes and makes them easier to detect by electron-capture negative ionization mass spectrometry (ECNI-MS). The derivatives are then extracted and analyzed by gas chromatography-mass spectrometry (GC-MS). The mist chamber method was applied in a field test to determine the extent of acrolein in ambient air near the Peace Bridge plaza in Buffalo, New York, an area of heavy traffic near a major border crossing between the United States and Canada. In addition, XAD-2 adsorbent cartridges coated with 2-(hydroxymethyl)piperidine (2-HMP) according to Occupational Safety and Health Administration (OSHA) Method

  12. Proteomic identification of mitochondrial carbonylated proteins in two maturation stages of pepper fruits.

    PubMed

    Camejo, Daymi; Jiménez, Ana; Palma, José M; Sevilla, Francisca

    2015-08-01

    Pepper fruits in green and red maturation stages were selected to study the protein pattern modified by oxidation measuring carbonylated proteins in isolated mitochondria, together with the accumulation of superoxide radical and hydrogen peroxide in the fruits. MALDI-TOF/TOF analysis identified as carbonylated proteins in both green and red fruits, formate dehydrogenase, NAD-dependent isocitrate dehydrogenase, porin, and defensin, pointing to a common regulation by carbonylation of these proteins independently of the maturation stage. However, other proteins such as glycine dehydrogenase P subunit and phosphate transporter were identified as targets of carbonylation only in green fruits, whereas aconitase, ATPase β subunit, prohibitin, orfB protein, and cytochrome C oxidase, were identified only in red fruits. In general, the results suggest that carbonylation of mitochondrial proteins is a PTM that drives the complex ripening process, probably establishing the accumulation and functionality of some mitochondrial proteins in the nonclimacteric pepper fruit.

  13. Impact of HVAC filter on indoor air quality in terms of ozone removal and carbonyls generation

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Chi; Chen, Hsuan-Yu

    2014-06-01

    This study aims at detecting ozone removal rates and corresponding carbonyls generated by ozone reaction with HVAC filters from various building, i.e., shopping mall, school, and office building. Studies were conducted in a small-scale environmental chamber. By examining dust properties including organic carbon proportion and specific surface area of dusts adsorbed on filters along with ozone removal rates and carbonyls generation rate, the relationship among dust properties, ozone removal rates, and carbonyls generation was identified. The results indicate a well-defined positive correlation between ozone removal efficiency and carbonyls generation on filters, as well as a positive correlation among the mass of organic carbon on filters, ozone removal efficiency and carbonyls generations.

  14. Earthdata Search: The Relevance of Relevance

    NASA Technical Reports Server (NTRS)

    Quinn, Patrick

    2016-01-01

    Through recent usability studies, the issue of relevance became increasingly clear in the Earthdata Search Client. After all, if a user can't find the data they are looking for, nothing else we do matters. This presentation walks through usability testing findings and recent relevance improvements made to the Earthdata Search Client.

  15. Photosynthetic Control of Atmospheric Carbonyl Sulfide during the Growing Season

    NASA Technical Reports Server (NTRS)

    Campbell, J. Elliott; Carmichael, Gregory R.; Chai, T.; Mena-Carrasco, M.; Tang, Y.; Blake, D. R.; Blake, N. J.; Vay, Stephanie A.; Collatz, G. James; Baker, I.; Berry, J. A.; Montzka, S. A.; Sweeney, C.; Schnoor, J. L.; Stanier, Charles O.

    2008-01-01

    Climate models incorporate photosynthesis-climate feedbacks, yet we lack robust tools for large-scale assessments of these processes. Recent work suggests that carbonyl sulfide (COS), a trace gas consumed by plants, could provide a valuable constraint on photosynthesis. Here we analyze airborne observations of COS and carbon dioxide concentrations during the growing season over North America with a three-dimensional atmospheric transport model. We successfully modeled the persistent vertical drawdown of atmospheric COS using the quantitative relation between COS and photosynthesis that has been measured in plant chamber experiments. Furthermore, this drawdown is driven by plant uptake rather than other continental and oceanic fluxes in the model. These results provide quantitative evidence that COS gradients in the continental growing season may have broad use as a measurement-based photosynthesis tracer.

  16. Carbonyl mediated conductance through metal bound peptides: a computational study

    NASA Astrophysics Data System (ADS)

    Perrine, Trilisa M.; Dunietz, Barry D.

    2007-10-01

    Large increases in the conductance of peptides upon binding to metal ions have recently been reported experimentally. The mechanism of the conductance switching is examined computationally. It is suggested that oxidation of the metal ion occurs after binding to the peptide. This is caused by the bias potential placed across the metal-peptide complex. A combination of configurational changes, metal ion involvement and interactions between carbonyl group oxygen atoms and the gold leads are all shown to be necessary for the large improvement in the conductance seen experimentally. Differences in the molecular orbitals of the nickel and copper complexes are noted and serve to explain the variation of the improvement in conductance upon binding to either a nickel or copper ion.

  17. The Development and Application of Two-Chamber Reactors and Carbon Monoxide Precursors for Safe Carbonylation Reactions.

    PubMed

    Friis, Stig D; Lindhardt, Anders T; Skrydstrup, Troels

    2016-04-19

    , an array of low-pressure carbonylations were developed applying only near stoichiometric amounts of carbon monoxide. Importantly, carbon isotope variants of the CO precursors, such as (13)COgen, Sila(13)COgen, or even (14)COgen, provide a simple means for performing isotope-labeling syntheses. Finally, the COware applicability has been extended to reactions with other gases, such as hydrogen, CO2, and ethylene including their deuterium and (13)C-isotopically labeled versions where relevant. The COware system has been repeatedly demonstrated to be a valuable reactor for carrying out a wide number of transition metal-catalyzed transformations, and we believe this technology will have a significant place in many organic research laboratories. PMID:26999377

  18. The Development and Application of Two-Chamber Reactors and Carbon Monoxide Precursors for Safe Carbonylation Reactions.

    PubMed

    Friis, Stig D; Lindhardt, Anders T; Skrydstrup, Troels

    2016-04-19

    , an array of low-pressure carbonylations were developed applying only near stoichiometric amounts of carbon monoxide. Importantly, carbon isotope variants of the CO precursors, such as (13)COgen, Sila(13)COgen, or even (14)COgen, provide a simple means for performing isotope-labeling syntheses. Finally, the COware applicability has been extended to reactions with other gases, such as hydrogen, CO2, and ethylene including their deuterium and (13)C-isotopically labeled versions where relevant. The COware system has been repeatedly demonstrated to be a valuable reactor for carrying out a wide number of transition metal-catalyzed transformations, and we believe this technology will have a significant place in many organic research laboratories.

  19. Enantioselective catalytic double and triple carbonylation of olefins

    SciTech Connect

    Sperrle, M.; Consiglio, G.

    1995-12-31

    The first enantioselective double carbonylation of olefins to succinates was realized using PdX{sub 2}(L-L) complexes (X is a weakly or non-coordinating anion, L-L a chelate phosphorus ligand) as the catalyst precursor. With [Pd(H{sub 2}O){sub 2}((S)-2,2{prime}-dimethoxy-6,6{prime}-bis(diphenyl-phosphino)biphenyl)][CF{sub 3}SO{sub 3}]{sub 2} high enantioselectivity (up to 95% ee) for styrene (R = C{sub 6}H{sub 5}) was achieved. For aliphatic olefins with the same catalytic system enantioselectivity is modest (15-30% ee). Basic ligands such as 2,2{prime}-dimethoxy-6,6{prime}-bis(dicyclohexylphosphino)-biphenyl bring about an improvement of the enantioselectivity (e.g., {approximately}70% for propene). By increasing the carbon monoxide pressure an increasing formation of other products, namely dimethyl 2-oxoglutarates is observed. This is the first observed example of a triple carbonylation of olefins. Even though the chemoselectivity is not high, this reaction allows a one step synthesis of substituted 2-oxoglutarates with fair to excellent enantioselectivity (e.e. up to 95%). The reaction is completely regioselective for styrene giving exclusive formation of dimethyl 2-oxo-3-phenylglutarate (R = C{sub 6}H{sub 5}); with aliphatic olefins two regioisomers are usually formed. For propene various diphosphine ligands have been used. The enantioselectivity is interpreted on the basis of an asymmetric induction that is mostly sterically controlled and that arises from an interplay between regioselectivity and enantioface selection during olefin insertion.

  20. Serum-responsive expression of carbonyl-metabolizing enzymes in normal and transformed human buccal keratinocytes.

    PubMed

    Staab, C A; Ceder, R; Roberg, K; Grafström, R C; Höög, J-O

    2008-11-01

    Gene expression of carbonyl-metabolizing enzymes (CMEs) was investigated in normal buccal keratinocytes (NBK) and the transformed buccal keratinocyte lines SVpgC2a and SqCC/Y1. Studies were performed at a serum concentration known to induce terminal squamous differentiation (TSD) in normal cells. Overall, 39 of 58 evaluated CMEs were found to be expressed at the transcript level. Together the transformed cell lines showed altered transcription of eight CME genes compared to NBK, substantiating earlier results. Serum increased transcript levels of ALDH1A3, DHRS3, HPGD and AKR1A1, and decreased those of ALDH4A1 in NBK; of these, the transformed, TSD-deficient cell lines partly retained regulation of ALDH1A3 and DHRS3. Activity measurements in crude cell lysates, including relevant enzymatic inhibitors, indicated significant capacity for CME-mediated xenobiotic metabolism among the cell lines, notably with an increase in serum-differentiated NBK. The results constitute the first evidence for differential CME gene expression and activity in non-differentiated and differentiated states of epithelial cells. PMID:18854940

  1. Variation of ambient carbonyl levels in urban Beijing between 2005 and 2012

    NASA Astrophysics Data System (ADS)

    Chen, Wentai; Shao, Min; Wang, Ming; Lu, Sihua; Liu, Ying; Yuan, Bin; Yang, Yudong; Zeng, Limin; Chen, Zhongming; Chang, Chih-Chung; Zhang, Qian; Hu, Min

    2016-03-01

    Carbonyl compounds are important precursors of secondary air pollutants. With the rapid economic development and the implementation of stricter control measures in Beijing, the sources of carbonyls possibly changed. Based on measurement data obtained at an urban site in Beijing between 2005 and 2012, we investigated annual variations in carbonyl levels and sources during these years. In summer, formaldehyde and acetaldehyde levels decreased significantly at a rate of 9.1%/year and 7.2%/year, respectively, while acetone levels increased at a rate of 4.3%/year. In winter, formaldehyde levels increased and acetaldehyde levels decreased. We also investigated the factors driving the variation in carbonyls levels during summer by determination of emission ratios for carbonyls and their precursors, and calculation of photochemical formation of carbonyls. The relative declines for primary formaldehyde and acetaldehyde levels were larger than those for secondary formation. This is possibly due to the increasing usage of natural gas and liquefied petroleum gas which could result in the rise of carbonyl precursor emission ratios. The increase in acetone levels might be related to the rising solvent usage in Beijing during these years. The influences of these sources should be paid more attention in future research.

  2. Paraquat exposure and Sod2 knockdown have dissimilar impacts on the Drosophila melanogaster carbonylated protein proteome

    PubMed Central

    Narayanasamy, Suresh K.; Simpson, David C.; Martin, Ian; Grotewiel, Mike; Gronert, Scott

    2014-01-01

    Exposure to Paraquat and RNA interference knockdown of Mn or mitochondrial superoxide dismutase (Sod2) are known to result in significant lifespan reduction, locomotor dysfunction, and mitochondrial degeneration in Drosophila melanogaster. Both perturbations increase the flux of the progenitor ROS, superoxide, but the molecular underpinnings of the resulting phenotypes are poorly understood. Improved understanding of such processes could lead to advances in the treatment of numerous age-related disorders. Superoxide toxicity can act through protein carbonylation. Analysis of carbonylated proteins is attractive since carbonyl groups are not present in the twenty canonical amino acids and are amenable to labeling and enrichment strategies. Here, carbonylated proteins were labeled with biotin hydrazide and enriched on streptavidin beads. On-bead digestion was used to release carbonylated protein peptides, with relative abundance ratios versus controls obtained using the iTRAQ MS-based proteomics approach. Western blotting and biotin quantitation assay approaches were also investigated. By both western blotting and proteomics, Paraquat exposure, but not Sod2 knockdown, resulted in increased carbonylated protein relative abundance. For Paraquat exposure versus control, the median carbonylated protein relative abundance ratio (1.53) determined using MS-based proteomics was in good agreement with that obtained using a commercial biotin quantitation kit (1.36). PMID:25091824

  3. Electroless plating preparation and electromagnetic properties of Co-coated carbonyl iron particles/polyimide composite

    NASA Astrophysics Data System (ADS)

    Zhou, Yingying; Zhou, Wancheng; Li, Rong; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2016-03-01

    To solve the serious electromagnetic interference problems at elevated temperature, one thin microwave-absorbing sheet employing Co-coated carbonyl iron particles and polyimide was prepared. The Co-coated carbonyl iron particles were successfully prepared using an electroless plating method. The microstructure, composition, phase and static magnetic properties of Co-coated carbonyl iron particles were characterized by combination of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The electromagnetic parameters of Co-coated carbonyl iron particles/polyimide composite were measured in the frequency range of 2-18 GHz, and the electromagnetic loss mechanism of the material-obtained was discussed. The microwave absorption properties of composites before and after heat treatment at 300 °C for 100 h were characterized in 2-18 GHz frequency range. It was established that composites based on Co-coated carbonyl iron demonstrate thermomagnetic stability, indicating that Co coating reduces the oxidation of carbonyl iron. Thus, Co-coated carbonyl iron particles/polyimide composites are useful in the design of microwave absorbers operating at temperatures up to 300 °C.

  4. Characteristics of carbonyls: Concentrations and source strengths for indoor and outdoor residential microenvironments in China

    NASA Astrophysics Data System (ADS)

    Wang, B.; Lee, S. C.; Ho, K. F.

    Indoor and outdoor carbonyl concentrations were measured simultaneously in 12 urban dwellings in Beijing, Shanghai, Guangzhou, and Xi'an, China in summer (from July to September in 2004) and winter (from December 2004 to February 2005). Formaldehyde was the most abundant indoor carbonyls species, while formaldehyde, acetaldehyde and acetone were found to be the most abundant outdoor carbonyls species. The average formaldehyde concentrations in summer indoor air varied widely between cities, ranging from a low of 19.3 μg m -3 in Xi'an to a high of 92.8 μg m -3 in Beijing. The results showed that the dwellings with tobacco smoke, incense burning or poor ventilation had significantly higher indoor concentrations of certain carbonyls. It was noticed that although one half of the dwellings in this study installed with low emission building materials or furniture, the carbonyls levels were still significantly high. It was also noted that in winter both the indoor and outdoor acetone concentrations in two dwellings in Guangzhou were significantly high, which were mainly caused by the usage of acetone as industrial solvent in many paint manufacturing and other industries located around Guangzhou and relatively longer lifetime of acetone for removal by photolysis and OH reaction than other carbonyls species. The indoor carbonyls levels in Chinese dwellings were higher than that in dwellings in the other countries. The levels of indoor and ambient carbonyls showed great seasonal differences. Six carbonyls species were carried out the estimation of indoor source strengths. Formaldehyde had the largest indoor source strength, with an average of 5.25 mg h -1 in summer and 1.98 mg h -1 in winter, respectively. However, propionaldehyde, crotonaldehyde and benzaldehyde had the weakest indoor sources.

  5. Virtual Screening and Biological Evaluation of Piperazine Derivatives as Human Acetylcholinesterase Inhibitors

    PubMed Central

    Varadaraju, Kavitha Raj; Kumar, Jajur Ramanna; Mallesha, Lingappa; Muruli, Archana; Mohana, Kikkeri Narasimha Shetty; Mukunda, Chethan Kumar; Sharanaiah, Umesha

    2013-01-01

    The piperazine derivatives have been shown to inhibit human acetylcholinesterase. Virtual screening by molecular docking of piperazine derivatives 1-(1,4-benzodioxane-2-carbonyl) piperazine (K), 4-(4-methyl)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S1), and 4-(4-chloro)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S3) has been shown to bind at peripheral anionic site and catalytic sites, whereas 4-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S4) and 4-(2,5-dichloro)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S7) do not bind either to peripheral anionic site or catalytic site with hydrogen bond. All the derivatives have differed in number of H-bonds and hydrophobic interactions. The peripheral anionic site interacting molecules have proven to be potential therapeutics in inhibiting amyloid peptides aggregation in Alzheimer's disease. All the piperazine derivatives follow Lipinski's rule of five. Among all the derivatives 1-(1,4-benzodioxane-2-carbonyl) piperazine (K) was found to have the lowest TPSA value. PMID:24288651

  6. Visible Light-Induced Carbonylation Reactions with Organic Dyes as the Photosensitizers.

    PubMed

    Peng, Jin-Bao; Qi, Xinxin; Wu, Xiao-Feng

    2016-09-01

    Dyes can CO do it: Organic dyes and pigments are usually applied in textile dyeing, which can be dated back to the Neolithic period. Interestingly, the possibility to use organic dyes as photoredox catalysts has also been noticed by organic chemists and applied in organic synthesis. Carbonylation reactions as a powerful procedure in carbonyl-containing compound preparation have also been studied. In this manuscript, the recent achievements in using organic dyes as visible-light sensitizers in carbonylation chemistry are summarized and discussed.

  7. Visible Light-Induced Carbonylation Reactions with Organic Dyes as the Photosensitizers.

    PubMed

    Peng, Jin-Bao; Qi, Xinxin; Wu, Xiao-Feng

    2016-09-01

    Dyes can CO do it: Organic dyes and pigments are usually applied in textile dyeing, which can be dated back to the Neolithic period. Interestingly, the possibility to use organic dyes as photoredox catalysts has also been noticed by organic chemists and applied in organic synthesis. Carbonylation reactions as a powerful procedure in carbonyl-containing compound preparation have also been studied. In this manuscript, the recent achievements in using organic dyes as visible-light sensitizers in carbonylation chemistry are summarized and discussed. PMID:27488198

  8. FeCl3 -Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    PubMed

    Ma, Lina; Li, Wenjuan; Xi, Hui; Bai, Xiaohui; Ma, Enlu; Yan, Xiaoyu; Li, Zhiping

    2016-08-22

    Exploiting catalytic carbonyl-olefin metathesis is an ongoing challenge in organic synthesis. Reported herein is an FeCl3 -catalyzed ring-closing carbonyl-olefin metathesis. The protocol allows access to a range of carbo-/heterocyclic alkenes with good efficiency and excellent trans diastereoselectivity. The methodology presents one of the rare examples of catalytic ring-closing carbonyl-olefin metathesis. This process is proposed to take place by FeCl3 -catalyzed oxetane formation followed by retro-ring-opening to deliver metathesis products.

  9. FeCl3 -Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    PubMed

    Ma, Lina; Li, Wenjuan; Xi, Hui; Bai, Xiaohui; Ma, Enlu; Yan, Xiaoyu; Li, Zhiping

    2016-08-22

    Exploiting catalytic carbonyl-olefin metathesis is an ongoing challenge in organic synthesis. Reported herein is an FeCl3 -catalyzed ring-closing carbonyl-olefin metathesis. The protocol allows access to a range of carbo-/heterocyclic alkenes with good efficiency and excellent trans diastereoselectivity. The methodology presents one of the rare examples of catalytic ring-closing carbonyl-olefin metathesis. This process is proposed to take place by FeCl3 -catalyzed oxetane formation followed by retro-ring-opening to deliver metathesis products. PMID:27431372

  10. Enantioselective Palladium-Catalyzed Oxidative β,β-Fluoroarylation of α,β-Unsaturated Carbonyl Derivatives.

    PubMed

    Miró, Javier; Del Pozo, Carlos; Toste, F Dean; Fustero, Santos

    2016-07-25

    The site-selective palladium-catalyzed three-component coupling of deactivated alkenes, arylboronic acids, and N-fluorobenzenesulfonimide is disclosed herein. The developed methodology establishes a general, modular, and step-economical approach to the stereoselective β-fluorination of α,β-unsaturated systems. PMID:27272390

  11. Quantitative modeling of bioconcentration factors of carbonyl herbicides using multivariate image analysis.

    PubMed

    Freitas, Mirlaine R; Barigye, Stephen J; Daré, Joyce K; Freitas, Matheus P

    2016-06-01

    The bioconcentration factor (BCF) is an important parameter used to estimate the propensity of chemicals to accumulate in aquatic organisms from the ambient environment. While simple regressions for estimating the BCF of chemical compounds from water solubility or the n-octanol/water partition coefficient have been proposed in the literature, these models do not always yield good correlations and more descriptive variables are required for better modeling of BCF data for a given series of organic pollutants, such as some herbicides. Thus, the logBCF values for a set of carbonyl herbicides comprising amide, urea, carbamate and thiocarbamate groups were quantitatively modeled using multivariate image analysis (MIA) descriptors, derived from colored image representations for chemical structures. The logBCF model was calibrated and vigorously validated (r(2) = 0.79, q(2) = 0.70 and rtest(2) = 0.81), providing a comprehensive three-parameter linear equation after variable selection (logBCF = 5.682 - 0.00233 × X9774 - 0.00070 × X813 - 0.00273 × X5144); the variables represent pixel coordinates in the multivariate image. Finally, chemical interpretation of the obtained models in terms of the structural characteristics responsible for the enhanced or reduced logBCF values was performed, providing key leads in the prospective development of more eco-friendly synthetic herbicides. PMID:26971171

  12. Bismuth-catalyzed addition of silyl nucleophiles to carbonyl compounds and imines.

    PubMed

    Ollevier, Thierry

    2012-01-01

    Bismuth triflate was found to be an efficient catalyst both in the Mannich-type reaction of silyl enolates and in the Sakurai reaction of allyltrimethylsilane with N-alkoxycarbonylamino sulfones. The reactions proceeded smoothly with a low catalyst loading of Bi(OTf)(3)·4H(2)O (0.5-5.0 mol%) to afford the corresponding protected β-amino carbonyl compounds and homoallylic amines in very good yields (up to 96%). The latter compounds could also be obtained via a bismuth-mediated three-component reaction. We have also developed an efficient vinylogous Mukaiyama aldol reaction of 2-(trimethylsilyloxy)furan with various aromatic aldehydes mediated by bismuth triflate in a low catalyst loading (1 mol%). The reaction proceeds rapidly and affords the corresponding 5-[hydroxy(aryl)methyl]furan-2(5H)-ones in high yields with good to very good diastereoselectivities (diastereoisomeric ratios>98:2). Such selectivities, although previously reported with other Lewis acids, could be achieved with a much lower catalyst loading. 5-[Hydroxy(alkyl)methyl]furan-2(5H)-ones derived from ketones could also be obtained with good diastereoselectivities. The vinylogous Mukaiyama aldol reaction has also been extended to 2,2-dimethyl-6-methylene-4-(trimethyl-silyloxy)-1,3-diox-4-ene using 1 mol% of Bi(OTf)(3)·4H(2)O. PMID:22048688

  13. Carbonyl compounds over urban Beijing: Concentrations on haze and non-haze days and effects on radical chemistry

    NASA Astrophysics Data System (ADS)

    Rao, Zhihan; Chen, Zhongming; Liang, Hao; Huang, Liubin; Huang, Dao

    2016-01-01

    Carbonyl compounds play an important role in the formation of secondary aerosols and the cycling of free radicals in the atmosphere. We measured carbonyl compounds over urban Beijing, a megacity in the North China Plain, in summer and winter to investigate the relation of carbonyl compounds with haze and the interaction between carbonyl compounds and atmospheric radical cycling. We also determined carbonyl compounds in summer rainwater. Data of carbonyl compounds were analyzed in four cases, i.e., summer haze days (SHD), summer non-haze days (SND), winter haze days (WHD), and winter non-haze days (WND). Interestingly, the level of carbonyl compounds during WHD approached that of summer days. The results of the principal component analysis showed that there was no obvious source difference between SHD and SND. On WHD, however, more carbonyl compounds originated from the "diesel engine exhaust emission" than those on WND. We evaluated the effect of carbonyl compounds on the free radical cycling and the NO consumption potential for OH formation in the photochemical reactions using a novel ratio method. It was found that the production rate of ROx (the sum of OH, HO2 and RO2 radicals) was highest on SND, while the yield of ROx radicals from the reactions of carbonyl compounds was highest on WHD. Further, carbonyl compounds consumed more NO to produce OH radicals on WHD compared to the other three cases.

  14. The oceanic cycle and global atmospheric budget of carbonyl sulfide

    SciTech Connect

    Weiss, P.S.

    1994-12-31

    A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

  15. Seasonal fluxes of carbonyl sulfide in a midlatitude forest.

    PubMed

    Commane, Róisín; Meredith, Laura K; Baker, Ian T; Berry, Joseph A; Munger, J William; Montzka, Stephen A; Templer, Pamela H; Juice, Stephanie M; Zahniser, Mark S; Wofsy, Steven C

    2015-11-17

    Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale.

  16. Seasonal fluxes of carbonyl sulfide in a midlatitude forest

    NASA Astrophysics Data System (ADS)

    Commane, Róisín; Meredith, Laura K.; Baker, Ian T.; Berry, Joseph A.; Munger, J. William; Montzka, Stephen A.; Templer, Pamela H.; Juice, Stephanie M.; Zahniser, Mark S.; Wofsy, Steven C.

    2015-11-01

    Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale.

  17. Teratogenicity and embryotoxicity of nickel carbonyl in Syrian hamsters

    SciTech Connect

    Sunderman, F.W. Jr.; Shen, S.K.; Reid, M.C.; Allpass, P.R.

    1980-01-01

    Nickel carbonyl was administered to groups of pregnant hamsters by inhalation on days 4, 5, 6, 7, or 8 of gestation. The dams were killed on day 15 of gestation, and the fetuses were examined for malformations. Exposure to Ni(CO)/sub 4/ on days 4 or 5 of gestation resulted in malformation in 5.5% and 5.8% of the progeny, respectively. Progeny included 9 fetuses with cystic lungs, 7 fetuses with exencephaly, 1 fetus with exencephaly plus fused rib and 1 fetus with anophthalmia plus cleft palate. Hemorrhages into serious cavities were found. In progeny of dams exposed to Ni(CO)/sub 4/ on days 6 or 7 of gestation, there was 1 fetus with fused ribs and there were 2 fetuses with hydronephrosis. In another experiment, pregnant hamsters were exposed to inhalation of Ni(CO)/sub 4/ on day 5 of gestation; these dams were permitted to deliver their litters and to nurse their pups. There was no significant difference in the average number of live pups in the Ni(CO)/sub 4/-exposed litters compared to control litters. Neonatal mortality was increased in Ni(CO)/sub 4/-exposed litters. This study demonstrates that Ni(CO)/sub 4/ is teratogenic and embryotoxic in Syrian hamsters.

  18. Total Synthesis of (-)-Spinosyn A via Carbonylative Macrolactonization.

    PubMed

    Bai, Yu; Shen, Xingyu; Li, Yong; Dai, Mingji

    2016-08-31

    Spinosyn A (1), a complex natural product featuring a unique 5,6,5,12-fused tetracyclic core structure, is the major component of spinosad, an organic insecticide and an FDA-approved agent used worldwide. Herein, we report an efficient total synthesis of (-)-spinosyn A with 15 steps in the longest linear sequence and 23 steps total from readily available compounds 14 and 23. The synthetic approach features several important catalytic transformations including a chiral amine-catalyzed intramolecular Diels-Alder reaction to afford 22 in excellent diastereoselectivity, a one-step gold-catalyzed propargylic acetate rearrangement to convert 28 to α-iodoenone 31, an unprecedented palladium-catalyzed carbonylative Heck macrolactonization to form the 5,12-fused macrolactone in one step, and a gold-catalyzed Yu glycosylation to install the challenging β-forosamine. This total synthesis is highly convergent and modular, thus offering opportunities to synthesize spinosyn analogues in order to address the emerging cross-resistance problems. PMID:27510806

  19. Seasonal fluxes of carbonyl sulfide in a midlatitude forest.

    PubMed

    Commane, Róisín; Meredith, Laura K; Baker, Ian T; Berry, Joseph A; Munger, J William; Montzka, Stephen A; Templer, Pamela H; Juice, Stephanie M; Zahniser, Mark S; Wofsy, Steven C

    2015-11-17

    Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale. PMID:26578759

  20. Seasonal fluxes of carbonyl sulfide in a midlatitude forest

    PubMed Central

    Commane, Róisín; Meredith, Laura K.; Baker, Ian T.; Berry, Joseph A.; Munger, J. William; Montzka, Stephen A.; Templer, Pamela H.; Juice, Stephanie M.; Zahniser, Mark S.; Wofsy, Steven C.

    2015-01-01

    Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale. PMID:26578759

  1. Pathology of dietary carbonyl iron overload in rats.

    PubMed

    Park, C H; Bacon, B R; Brittenham, G M; Tavill, A S

    1987-11-01

    Serial light microscopic and ultrastructural studies were performed in rats with experimental iron overload produced by dietary supplementation with carbonyl (elemental) iron over a 12-month period. Hepatic iron increased rapidly to concentrations approximately 40 to 90 times those of control rats by 3 months. Within the liver, iron deposition was initially confined to periportal (zone 1) hepatocytes but subsequently extended to midzonal (zone 2) and centrilobular (zone 3) hepatocytes. Reticuloendothelial cell deposits of iron increased gradually and became prominent after 3 months. At this time, morphologic evidence of hepatocellular injury was mild and subtle with occasional foci of spotty necrosis and ultrastructural subcellular organelle damage. By 8 months, iron deposition was massive. Portal areas were enlarged with collections of iron-loaded macrophages and increased collagenous tissue. This portal fibrous tissue extended between periportal (zone 1) hepatocytes at sites of maximal iron deposition and around iron-loaded Kupffer cells and macrophages. At 12 months, the periportal (zone 1) fibrosis was more pronounced. These serial morphologic studies are the first to demonstrate the production of hepatic fibrosis by chronic dietary iron overload. This experimental model may reproduce important components of the pathophysiologic sequence of chronic liver damage seen in iron overload states in humans.

  2. Atmospheric Sulfur Cycle Effects of Carbonyl Sulfide (OCS)

    NASA Technical Reports Server (NTRS)

    McBee, Joshua

    1996-01-01

    Carbonyl Sulfide(OCS) is considered to be one of the major sources of sulfur appearing in the stratosphere due to its relative inertness, about I to 10 yearsl. However, the roles of OCS as well as other reduced sulfur compounds such as carbon disulfide (CS2), hydrogen sulfide (H2S), and dimethyl disulfide(CH3)2S2, are not completely understood in the atmosphenc sulfur cycle. Consequently vely little information is available about the effect of sulfur compounds in the stratosphere. The ability of OCS to penetrate into the stratosphere makes it an excellent tracer for study of the role of the sulfi r cycle in stratospheric chemistry. Previously techniques such as gas chromatography and whole air sampling have been used to measure OCS analytically. Each technique had its drawbacks however, with both being quite slow, and whole air sampling being somewhat unreliable. With molecular spectroscopy, however, it has been found in recent years that the tunable diode laser absorption spectrometer (TDL) provides a very rapid and accurate method of measuring OCS and other trace gases

  3. Tropical sources and sinks of carbonyl sulfide observed from space

    NASA Astrophysics Data System (ADS)

    Glatthor, N.; Höpfner, M.; Baker, I. T.; Berry, J.; Campbell, J. E.; Kawa, S. R.; Krysztofiak, G.; Leyser, A.; Sinnhuber, B.-M.; Stiller, G. P.; Stinecipher, J.; Clarmann, T.

    2015-11-01

    According to current budget estimations the seasonal variation of carbonyl sulfide (COS) is governed by oceanic release and vegetation uptake. Its assimilation by plants is assumed to be similar to the photosynthetic uptake of CO2 but, contrary to the latter process, to be irreversible. Therefore, COS has been suggested as cotracer of the carbon cycle. Observations of COS, however, are sparse, especially in tropical regions. We use the comprehensive data set of spaceborne measurements of the Michelson Interferometer for Passive Atmospheric Sounding to analyze its global distribution. Two major features are observed in the tropical upper troposphere around 250 hPa: enhanced amounts over the western Pacific and the Maritime Continent, peaking around 550 parts per trillion by volume (pptv) in boreal summer, and a seasonally varying depletion of COS extending from tropical South America to Africa. The large-scale COS depletion, which in austral summer amounts up to -40 pptv as compared to the rest of the respective latitude band, has not been observed before and reveals the seasonality of COS uptake through tropical vegetation. The observations can only be reproduced by global models, when a large vegetation uptake and a corresponding increase in oceanic emissions as proposed in several recent publications are assumed.

  4. Tropical sources and sinks of carbonyl sulfide observed from space

    NASA Astrophysics Data System (ADS)

    Glatthor, Norbert; Höpfner, Michael; Baker, Ian T.; Berry, Joe; Campbell, Elliott; Kawa, Stephan R.; Krysztofiak, Gisele; Sinnhuber, Björn-Martin; Stiller, Gabriele; Stinecipher, Jim; von Clarmann, Thomas

    2016-04-01

    According to current budget estimations the seasonal variation of carbonyl sulfide (COS) is governed by oceanic release and vegetation uptake. Its assimilation by plants is assumed to be similar to the photosynthetic uptake of CO2 but, contrary to the latter process, to be irreversible. Therefore COS has been suggested as co-tracer of the carbon cycle. Observations of COS, however, are sparse, especially in tropical regions. We use the comprehensive data set of spaceborne measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) to analyze its global distribution. Two major features are observed in the tropical upper troposphere around 250 hPa: enhanced amounts over the western Pacific and the Maritime Continent, peaking around 550 pptv in boreal summer, and a seasonally varying depletion of COS extending from tropical South America to Africa. The large-scale COS depletion, which in austral summer amounts up to -40 pptv as compared to the rest of the respective latitude band, has not been observed before and reveals the seasonality of COS uptake through tropical vegetation. The observations can only be reproduced by global models, when a large vegetation uptake and a corresponding increase in oceanic emissions as proposed in several recent publications is assumed.

  5. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  6. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, R.

    1985-04-02

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  7. Carrier effects of active carbon for methanol carbonylation with supported transition metal catalysts

    SciTech Connect

    Fujimoto, K.; Omata, K.; Yagita, H.

    1996-10-01

    Transition metals such as nickel or noble metals showed excellent catalytic activities for the vapor phase carbonylation of methanol to acetic acid. Reaction proceeded via the carbonylation of methanol to methyl acetate and its successive carbonylation to acetic acid anhydride followed by the hydrolysis. Under slightly pressurized conditions and at around 250{degrees}C methanol was completely carbonylated to acetic acid with the selectivity of 97% or higher. Also, other group 8 metals including noble metals showed excellent catalytic activity only when they were supported on active carbon, whose activity, ordered by strength of metal-halogen bonding showed a volcano-shape relationship with the peak at Rh. The role of active carbon as the active carrier was clarified by kinetics and catalyst characterization which showed that active carbon promoted the reductive elimination of intermediate for acetic acid formation by donating electron from carbon to nickel species.

  8. Spectroscopic line parameters for the nu6 band of carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    Goldman, Aaron; Blatherwick, Ronald D.; Bonomo, Francis S.; Rinsland, Curtis P.

    1990-01-01

    New measurements and analysis of high-resolution (0.0025/cm) laboratory spectra of the carbonyl fluoride nu6 band are described. The data are used to generate line parameters suitable for high-resolution atmospheric studies.

  9. Reaction or organomagnesium compounds of the adamantane series with carbonyl compounds

    SciTech Connect

    Yurchenko, A.G.; Fedorenko, T.V.

    1987-10-10

    In the transformations of organomagnesium compounds of the adamantane series involving aldehydes, ketones, esters, and acid chlorides the nature of the reaction products and their yields are determined by the steric hindrances at the reaction centers of the organomagnesium and carbonyl compounds and by the ease of homolysis of the C-H bonds of the carbonyl reagent. The retardation of the faster addition of the Grignard reagent at the carbonyl group as a result of steric hindrances permits homolytic removal of a hydrogen atom from the carbonyl compound by the adamantyl radical. The PMR spectra were measured on a Tesla BS-487C spectrometer at 80 MHz in carbon tetrachloride with the substances at concentrations of 5-20% and with TMS as internal standard. The IR spectra were obtained in carbon tetrachloride on a UR-10 spectrophotometer.

  10. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  11. A carbonyl iron/carbon fiber material for electromagnetic wave absorption.

    PubMed

    Youh, Meng-Jey; Wu, Hung-Chih; Lin, Wang-Hua; Chiu, Sheng-Cheng; Huang, Chien-Fa; Yu, Hsin-Chih; Hsu, Jen-Sung; Li, Yuan-Yao

    2011-03-01

    A carbonyl iron/carbon fiber material consisting of carbon fibers grown on micrometer-sized carbonyl iron sphere, was synthesized by chemical vapor deposition using a mixture of C2H2 and H2. The hollow-core carbon fibers (outer diameter: 140 nm and inner diameter: 40 nm) were composed of well-ordered graphene layers which were almost parallel to the long axis of the fibers. A composite (2 mm thick) consisting of the carbonyl iron/carbon fibers and epoxy resin demonstrated excellent electromagnetic (EM) wave absorption. Minimum reflection losses of -36 dB (99.95% of EM wave absorption) at 7.6 GHz and -32 dB (99.92% of EM wave absorption) at 34.1 GHz were achieved. The well-dispersed and network-like carbon fibers in the resin matrix affected the dielectric loss of the EM wave while the carbonyl iron affected the magnetic loss.

  12. (E)-2-Cyano-3-(substituted phenyl)acrylamide analogs as potent inhibitors of tyrosinase: A linear β-phenyl-α,β-unsaturated carbonyl scaffold.

    PubMed

    Son, Sujin; Kim, Haewon; Yun, Hwi Young; Kim, Do Hyun; Ullah, Sultan; Kim, Seong Jin; Kim, Yeon-Jeong; Kim, Min-Soo; Yoo, Jin-Wook; Chun, Pusoon; Moon, Hyung Ryong

    2015-12-15

    In this study, we synthesized (E)-2-cyano-3-(substituted phenyl)acrylamide (CPA) derivatives which possess a linear β-phenyl-α,β-unsaturated carbonyl scaffold and examined their inhibitory activities against tyrosinase. CPA analogs exerted inhibitory activity against mushroom tyrosinase. Results from the docking simulation indicated that CPA2 could bind directly to the active site of mushroom tyrosinase and the binding affinity of CPA2 for tyrosinase might be higher than that of kojic acid, a well-known potent tyrosinase inhibitor. In B16F10 cells, CPA2 significantly suppressed tyrosinase activity and melanogenesis in a dose-dependent manner. At the concentration of 25μM, CPA2 exhibited tyrosinase inhibitory activity comparable to that of kojic acid with no cytotoxic effect. Results from the present study suggest that CPA2 bearing a linear β-phenyl-α,β-unsaturated carbonyl scaffold may be the potential candidate for treatment of diseases associated with hyperpigmentation and that a linear β-phenyl-α,β-unsaturated carbonyl scaffold might be closely related to potent tyrosinase inhibition.

  13. The effect of N-stearoylethanolamine on cholesterol content, fatty acid composition and protein carbonylation level in rats with alimentary obesity-induced insulin resistance.

    PubMed

    Onopchenko, O V; Kosiakova, G V; Meged, E F; Klimashevsky, V M; Hula, N M

    2014-01-01

    The effect of N-stearoylethanolamine (NSE) on liver free fatty acid composition, cholesterol content and carbonylated protein level in rats with obesity-induced insulin resistance (IR) was studied in the work. The experimental insulin resistance was induced by prolonged high fat diet (58% of energy derived from fat) for 6 months combined with one injection of low-dose (15 mg/kg) of streptozotocin. The lipid assay showed a rise in liver free cholesterol content anda significant reduction in cholesterol esters level. Analyzing liver fatty acid composition, a decrease in polyunsaturated of fatty acid (PUFA) level and an increase in monounsaturated fatty acid (MUFA) content was found. Fatty acid imbalance with high content of MUFA was associated with elevated level ofprotein carbonylation. The NSE administration (50 mg/kg of body weight) for 2 weeks decreased free cholesterol content, increased cholesterol esters level and reduced free oleic fatty acid content in the liver of rats with IR. The effect of NSE on lipid imbalance led to a decrease in protein carbonylation level that may result in improvement of transmembrane protein function under obesity-induced insulin resistance state. PMID:25816612

  14. The Epoxidation of Carbonyl Compounds with a Benzyne-Triggered Sulfur Ylide.

    PubMed

    Lou, Mei-Mei; Wang, Han; Song, Li; Liu, Hong-Yi; Li, Zhong-Qiu; Guo, Xiao-Shuang; Zhang, Fu-Geng; Wang, Bin

    2016-07-15

    An efficient method for the synthesis of epoxides from carbonyl compounds, sulfoxides, and benzyne is presented. The strategy involved an epoxidation by a sulfur ylide which is formed in situ from sulfoxide and benzyne through the S-O bond insertion and deprotonation. This one-pot reaction proceeds under mild and base-free conditions, providing a convenient way to introduce the substituted methylene groups onto the carbonyl carbon.

  15. Effects of low doses of quercetin and genistein on oxidation and carbonylation in hemoglobin and myoglobin.

    PubMed

    Boadi, William Y; Johnson, Damitea

    2014-09-01

    Protein-bound carbonyls have been shown to increase with age as well as in numerous diseases including rheumatoid arthritis, adult respiratory syndrome pulmonary fibrosis, diabetes, Parkinson's disease, and Alzheimer's just to mention a few. The effects of the flavonoids quercetin and genistein were investigated according to their ability to inhibit the oxidation of hemoglobin and myoglobin via the Fenton's pathway. Antioxidative activity of the flavonoids were determined by oxidizing hemoglobin and myoglobin in separate experiments with 50 μM Fe(2+) and 0.01 mM hydrogen peroxide (H2O2) with and without quercetin and/or genistein. The samples were treated singly with either quercetin, genistein, or in combination at concentrations of 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 μM, respectively, dissolved in dimethyl sulfoxide (DMSO). Samples were then incubated in a water bath at 37°C for 8, 12, and 24 hr, respectively. Levels of carbonylation were assayed by the protein carbonyl assay and the carbonyl levels quantified and expressed per mg of protein. The results indicate that protein carbonyls for samples treated with quercetin or genistein decreased in a dose-dependent manner compared to the controls. That of quercetin compared to genistein was more efficient in reducing the levels of protein carbonylation in hemoglobin and myoglobin, respectively. The combination of both flavonoids did show a gradual decrease in carbonyl compounds for only hemoglobin for all the doses and times tested. The results indicate that both flavonoids at low doses inhibited carbonylation in both hemoglobin and myoglobin and the inhibition may be attributed to the prevention of protein oxidation. PMID:25026201

  16. 1,2,3-Triazoles from carbonyl azides and alkynes: filling the gap.

    PubMed

    Haldón, Estela; Álvarez, Eleuterio; Nicasio, M Carmen; Pérez, Pedro J

    2014-08-18

    Electron deficient azides are challenging substrates in CuAAC reactions. Particularly, when N-carbonyl azides are applied the formation of N-carbonyl triazoles has not yet been observed. We report herein the first example of this class of reaction, with a copper-based system that efficiently enables the synthesis of N-carbamoyl 1,2,3-triazoles by [3+2] cycloaddition of N-carbamoyl azides and alkynes.

  17. Impact of the water dimer on the atmospheric reactivity of carbonyl oxides.

    PubMed

    Anglada, Josep M; Solé, Albert

    2016-06-29

    The reactions of twelve carbonyl oxides or Criegee intermediates with the water monomer and with the water dimer have been investigated employing high level theoretical methods. The study includes all possible carbonyl oxides arising from the isoprene ozonolysis and the methyl and dimethyl carbonyl oxides that originated from the reaction of ozone with several hydrocarbons. These reactions have great significance in the chemistry of the atmosphere because Criegee intermediates have recently been identified as important oxidants in the troposphere and as precursors of secondary organic aerosols. Moreover, water vapor is one of the most abundant trace gases in the atmosphere and the water dimer can trigger the atmospheric decomposition of Criegee intermediates. Our calculations show that the nature and position of the substituents in carbonyl oxides play a very important role in the reactivity of these species with both the water monomer and the water dimer. This fact results in differences in rate constants of up to six orders of magnitude depending on the carbonyl oxide. In this work we have defined an effective rate constant (keff) for the atmospheric reaction of carbonyl oxides with water vapor, which depends on the temperature and on the relative humidity as well. With this keff we show that the water dimer, despite its low tropospheric concentration, enhances the atmospheric reactivity of Criegee intermediates, but its effect changes with the nature of carbonyl oxide, ranging between 59 and 295 times in the most favorable case (syn-methyl carbonyl oxide), and between 1.4 and 3 times only in the most unfavorable case. PMID:27308802

  18. 1,2,3-Triazoles from carbonyl azides and alkynes: filling the gap.

    PubMed

    Haldón, Estela; Álvarez, Eleuterio; Nicasio, M Carmen; Pérez, Pedro J

    2014-08-18

    Electron deficient azides are challenging substrates in CuAAC reactions. Particularly, when N-carbonyl azides are applied the formation of N-carbonyl triazoles has not yet been observed. We report herein the first example of this class of reaction, with a copper-based system that efficiently enables the synthesis of N-carbamoyl 1,2,3-triazoles by [3+2] cycloaddition of N-carbamoyl azides and alkynes. PMID:24980244

  19. Carbonyl Compounds in Electronic Cigarette Vapors: Effects of Nicotine Solvent and Battery Output Voltage

    PubMed Central

    Kosmider, Leon; Sobczak, Andrzej; Fik, Maciej; Knysak, Jakub; Zaciera, Marzena; Kurek, Jolanta

    2014-01-01

    Introduction: Glycerin (VG) and propylene glycol (PG) are the most common nicotine solvents used in e-cigarettes (ECs). It has been shown that at high temperatures both VG and PG undergo decomposition to low molecular carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. The aim of this study was to evaluate how various product characteristics, including nicotine solvent and battery output voltage, affect the levels of carbonyls in EC vapor. Methods: Twelve carbonyl compounds were measured in vapors from 10 commercially available nicotine solutions and from 3 control solutions composed of pure glycerin, pure propylene glycol, or a mixture of both solvents (50:50). EC battery output voltage was gradually modified from 3.2 to 4.8V. Carbonyl compounds were determined using the HPLC/DAD method. Results: Formaldehyde and acetaldehyde were found in 8 of 13 samples. The amounts of formaldehyde and acetaldehyde in vapors from lower voltage EC were on average 13- and 807-fold lower than in tobacco smoke, respectively. The highest levels of carbonyls were observed in vapors generated from PG-based solutions. Increasing voltage from 3.2 to 4.8V resulted in a 4 to more than 200 times increase in formaldehyde, acetaldehyde, and acetone levels. The levels of formaldehyde in vapors from high-voltage device were in the range of levels reported in tobacco smoke. Conclusions: Vapors from EC contain toxic and carcinogenic carbonyl compounds. Both solvent and battery output voltage significantly affect levels of carbonyl compounds in EC vapors. High-voltage EC may expose users to high levels of carbonyl compounds. PMID:24832759

  20. A new agent for derivatizing carbonyl species used to investigate limonene ozonolysis

    NASA Astrophysics Data System (ADS)

    Wells, J. R.; Ham, Jason E.

    2014-12-01

    A new method for derivatizing carbonyl compounds is presented. The conversion of a series of dicarbonyls to oximes in aqueous solution and from gas-phase sampling was achieved using O-tert-butylhydroxylamine hydrochloride (TBOX). Some advantages of using this derivatization agent include: aqueous reactions, lower molecular weight oximes, and shortened oxime-formation reaction time. Additionally, the TBOX derivatization technique was used to investigate the carbonyl reaction products from limonene ozonolysis. With ozone (O3) as the limiting reagent, four carbonyl compounds were detected: 7-hydroxy-6-oxo-3-(prop-1-en-2-yl)heptanal; 3-Isopropenyl-6-oxoheptanal (IPOH), 3-acetyl-6-oxoheptanal (3A6O) and one carbonyl of unknown structure. Using cyclohexane as a hydroxyl (OHrad) radical scavenger, the relative yields (peak area) of the unknown carbonyl, IPOH, and 3A6O were reduced indicating the influence secondary OH radicals have on limonene ozonolysis products. The relative yield of the hydroxy-dicarbonyl based on the chromatogram was unchanged suggesting it is only made by the limonene + O3 reaction. The detection of 3A6O using TBOX highlights the advantages of a smaller molecular weight derivatization agent for the detection of multi-carbonyl compounds. The use of TBOX derivatization if combined with other derivatization agents may address a recurring need to simply and accurately detect multi-functional oxygenated species in air.

  1. Proteomic analysis of carbonylated proteins in the monkey substantia nigra after ischemia-reperfusion.

    PubMed

    Oikawa, Shinji; Kobayashi, Hatasu; Kitamura, Yuki; Zhu, Hong; Obata, Kumi; Minabe, Yoshio; Dazortsava, Maryia; Ohashi, Kyoko; Tada-Oikawa, Saeko; Takahashi, Hitoshi; Yata, Kenichiro; Murata, Mariko; Yamashima, Tetsumori

    2014-06-01

    In Parkinson's disease (PD), oxidative stresses cause cell death of dopaminergic neurons of the substantia nigra (SN), but its molecular mechanism still remains unclarified. Our previous study of proteomic analysis in the monkey CA1 hippocampus after ischemia-reperfusion revealed reactive oxygen species (ROS)-induced carbonyl modification of a molecular chaperone, heat shock 70-kDa protein 1 (Hsp70.1), especially in its key site, Arg469. Here, to clarify the mechanism of neurodegeneration in PD, the SN tissue of the same monkey experimental paradigm was studied for identifying and characterizing carbonylated proteins by the two-dimensional gel electrophoresis with immunochemical detection of protein carbonyls (2D Oxyblot). We found carbonyl modification not only of Hsp70.1 but also of mitochondrial aconitase, dihydropyrimidinase-related protein 2, T-complex protein 1 subunit alpha, dihydrolipoyl dehydrogenase, fructose-bisphosphate aldolase C, glutamate dehydrogenase 1, and aspartate aminotransferase. Intriguingly, in the SN also, the carbonylation site of Hsp70.1 was identified to be Arg469. Since Hsp70.1 is recently known to stabilize the lysosomal membrane, its oxidative injury conceivably plays an important role in the ROS-mediated neuronal cell death by inducing lysosomal destabilization. Implications of each carbonylated proteins for the dopaminergic neuronal death were discussed, in comparison with the CA1 neuronal death. PMID:24697733

  2. Detection of oxidative stress-induced carbonylation in live mammalian cells.

    PubMed

    Mukherjee, Kamalika; Chio, Tak Ian; Sackett, Dan L; Bane, Susan L

    2015-07-01

    Oxidative stress is often associated with etiology and/or progression of disease conditions, such as cancer, neurodegenerative diseases, and diabetes. At the cellular level, oxidative stress induces carbonylation of biomolecules such as lipids, proteins, and DNA. The presence of carbonyl-containing biomolecules as a hallmark of these diseases provides a suitable target for diagnostic detection. Here, a simple, robust method for detecting cellular aldehydes and ketones in live cells using a fluorophore is presented. A hydrazine-functionalized synthetic fluorophore serves as an efficient nucleophile that rapidly reacts with reactive carbonyls in the cellular milieu. The product thus formed exhibits a wavelength shift in the emission maximum accompanied by an increase in emission intensity. The photochemical characteristics of the fluorophore enable the identification of the fluorophore-conjugated cellular biomolecules in the presence of unreacted dye, eliminating the need for removal of excess fluorophore. Moreover, this fluorophore is found to be nontoxic and is thus appropriate for live cell analysis. Utility of the probe is demonstrated in two cell lines, PC3 and A549. Carbonylation resulting from serum starvation and hydrogen peroxide-induced stress is detected in both cell lines using fluorescence microscopy and a fluorescence plate reader. The fluorescent signal originates from carbonylated proteins and lipids but not from oxidized DNA, and the majority of the fluorescence signal (>60%) is attributed to fluorophore-conjugated lipid oxidation products. This method should be useful for detecting cellular carbonylation in a high-content assay or high-throughput assay format. PMID:25801292

  3. Oxidative Stress and Carbonyl Lesions in Ulcerative Colitis and Associated Colorectal Cancer

    PubMed Central

    Wang, Zhiqi; Li, Sai; Cao, Yu; Tian, Xuefei; Zeng, Rong; Liao, Duan-Fang; Cao, Deliang

    2016-01-01

    Oxidative stress has long been known as a pathogenic factor of ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC), but the effects of secondary carbonyl lesions receive less emphasis. In inflammatory conditions, reactive oxygen species (ROS), such as superoxide anion free radical (O2∙−), hydrogen peroxide (H2O2), and hydroxyl radical (HO∙), are produced at high levels and accumulated to cause oxidative stress (OS). In oxidative status, accumulated ROS can cause protein dysfunction and DNA damage, leading to gene mutations and cell death. Accumulated ROS could also act as chemical messengers to activate signaling pathways, such as NF-κB and p38 MAPK, to affect cell proliferation, differentiation, and apoptosis. More importantly, electrophilic carbonyl compounds produced by lipid peroxidation may function as secondary pathogenic factors, causing further protein and membrane lesions. This may in turn exaggerate oxidative stress, forming a vicious cycle. Electrophilic carbonyls could also cause DNA mutations and breaks, driving malignant progression of UC. The secondary lesions caused by carbonyl compounds may be exceptionally important in the case of host carbonyl defensive system deficit, such as aldo-keto reductase 1B10 deficiency. This review article updates the current understanding of oxidative stress and carbonyl lesions in the development and progression of UC and CAC. PMID:26823956

  4. Characteristics of carbonyl compounds in public vehicles of Beijing city: Concentrations, sources, and personal exposures

    NASA Astrophysics Data System (ADS)

    Pang, Xiaobing; Mu, Yujing

    The characteristics of carbonyl compounds (carbonyls) including concentrations, major sources, and personal exposure were investigated for 29 vehicles including taxi, bus and subway in Beijing. It was found that the taxis (Xiali, TA) and buses (Huanghe, BA) fueled by gasoline with longer service years had the higher indoor carbonyl levels (178±42.7 and 188±31.6 μg m -3) while subways energized by electricity without exhaust and the jingwa buses (BB) driven in the suburb had the lower levels with total concentrations of 98.5±26.3 and 92.1±20.3 μg m -3, respectively. Outdoor carbonyls of taxi cars and buses were nearly at the same level with their total concentrations varying from 80 to 110 μg m -3. The level of outdoor subways carbonyls was equal with the ambient air levels. Exhaust leakage, indoor material emissions, photochemical formation, and infiltration of outdoor air were considered to be the major sources to in-vehicle carbonyls. Personal exposures and cancer risk to formaldehyde and acetaldehyde were calculated for professional bus and taxi drivers, respectively. Taxi drivers had the highest cancer risk with personal exposure to formaldehyde and acetaldehyde of 212 and 243 μg day -1, respectively. The public concern should pay considerable attention to professional drivers' health.

  5. Carbonylation of myofibrillar proteins through the maillard pathway: effect of reducing sugars and reaction temperature.

    PubMed

    Villaverde, Adriana; Estévez, Mario

    2013-03-27

    Carbonylation is recognized as one of the most remarkable chemical modifications in oxidized proteins and is generally ascribed to the direct attack of free radicals to basic amino acid residues. The purpose of this work was to investigate the formation of specific carbonyls, α-aminoadipic and γ-glutamic semialdehydes (AAS and GGS, respectively), in myofibrillar proteins (MP) through a Maillard-type pathway in the presence of reducing sugars. The present study confirmed the concurrent formation of protein carbonyls and advanced glycation end-products (AGEs) during incubation (80 °C/48 h) of MP (4 mg/mL) in the presence of reducing sugars (0.5 M). Copper irons (10 μM) were found to promote the formation of protein carbonyls, and a specific inhibitor of the Maillard reaction (0.02 M pyridoxamine) blocked the carbonylation process which emphasize the occurrence of a Maillard-type pathway. The Maillard-mediated carbonylation occurred in a range of reducing sugars (0.02-0.5 M) and reaction temperatures (4-110 °C) compatible with food systems. Upcoming studies on this topic may contribute further to shed light on the complex interactions between protein oxidation and the Maillard reaction and the impact of the protein damage on food quality and human health.

  6. Protein carbonylation, protein aggregation and neuronal cell death in a murine model of multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Dasgupta, Anushka

    Many studies have suggested that oxidative stress plays an important role in the pathophysiology of both multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Yet, the mechanism by which oxidative stress leads to tissue damage in these disorders is unclear. Recent work from our laboratory has revealed that protein carbonylation, a major oxidative modification caused by severe and/or chronic oxidative stress conditions, is elevated in MS and EAE. Furthermore, protein carbonylation has been shown to alter protein structure leading to misfolding/aggregation. These findings prompted me to hypothesize that carbonylated proteins, formed as a consequence of oxidative stress and/or decreased proteasomal activity, promote protein aggregation to mediate neuronal apoptosis in vitro and in EAE. To test this novel hypothesis, I first characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of myelin-oligodendrocyte glycoprotein (MOG)35-55 peptide-induced EAE in C57BL/6 mice [Chapter 2]. The results show that carbonylated proteins accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. I discovered not only that there is a temporal correlation between protein carbonylation and apoptosis but also that carbonyl levels are significantly higher in apoptotic cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are also present during the course of EAE, which seems to be due to reduced autophagy. In chapter 3, I show that when gluthathione levels are reduced to those in EAE spinal cord, both neuron-like PC12 (nPC12) cells and primary neuronal cultures accumulate carbonylated proteins and undergo cell death (both by necrosis and apoptosis). Immunocytochemical and biochemical studies also revealed a temporal

  7. Metabolism of bupropion by carbonyl reductases in liver and intestine.

    PubMed

    Connarn, Jamie N; Zhang, Xinyuan; Babiskin, Andrew; Sun, Duxin

    2015-07-01

    Bupropion's metabolism and the formation of hydroxybupropion in the liver by cytochrome P450 2B6 (CYP2B6) has been extensively studied; however, the metabolism and formation of erythro/threohydrobupropion in the liver and intestine by carbonyl reductases (CR) has not been well characterized. The purpose of this investigation was to compare the relative contribution of the two metabolism pathways of bupropion (by CYP2B6 and CR) in the subcellular fractions of liver and intestine and to identify the CRs responsible for erythro/threohydrobupropion formation in the liver and the intestine. The results showed that the liver microsome generated the highest amount of hydroxybupropion (Vmax = 131 pmol/min per milligram, Km = 87 μM). In addition, liver microsome and S9 fractions formed similar levels of threohydrobupropion by CR (Vmax = 98-99 pmol/min per milligram and Km = 186-265 μM). Interestingly, the liver has similar capability to form hydroxybupropion (by CYP2B6) and threohydrobupropion (by CR). In contrast, none of the intestinal fractions generate hydroxybupropion, suggesting that the intestine does not have CYP2B6 available for metabolism of bupropion. However, intestinal S9 fraction formed threohydrobupropion to the extent of 25% of the amount of threohydrobupropion formed by liver S9 fraction. Enzyme inhibition and Western blots identified that 11β-dehydrogenase isozyme 1 in the liver microsome fraction is mainly responsible for the formation of threohydrobupropion, and in the intestine AKR7 may be responsible for the same metabolite formation. These quantitative comparisons of bupropion metabolism by CR in the liver and intestine may provide new insight into its efficacy and side effects with respect to these metabolites.

  8. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    DOE PAGES

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; Nelson, Nicholas; Kandel, Kapil; Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek; Sadow, Aaron D.

    2015-11-04

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe2)4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe2)n@MSN. Exhaustive characterization of Zr(NMe2)n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe2)3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe2)n@MSN material reacts with pinacolborane (HBpin) to provide Me2NBpin and the material ZrH/Bpin@MSN that is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpinmore » moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D2. The zirconium hydride material or the zirconium amide precursor Zr(NMe2)n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.« less

  9. Binding of ether and carbonyl oxygens to lithium ion

    SciTech Connect

    Blint, R.J.

    1994-12-31

    The electrolyte for a lithium battery is a lithium salt (e.g. lithium Perchlorate) dissolved in an organic solvent or a mixture of organic solvents. The conductivity in these electrolytes is ionic and needs to be as high as possible to efficiently remove energy from the battery. The diffusion coefficient of the solvated ion in liquid electrolytes is inversely dependent on the radius of the salvation sphere. Consequently conductivity will increase with a decrease in the size of the salvation shell. The size of the salvation shell is determined by the size and coordination number of the solvent molecules. The types of organic solvents in electrolytes used in lithium battery applications are usually differentiated based on their perceived solvation properties. These solvents are often small, oxygen containing organic molecules which move with the Li{sup +} ions. This paper calculates the binding energies of some of these solvents to Li{sup +} using molecular quantum mechanics (MQM) techniques. The binding energies of the various solvents to Li{sup +} may determine which solvents will be preferentially bound to the ion. In liquid organic electrolytes, then, it will be the identity of the solvent and the coordination number which most affect the conductivity; the binding energies determine both of these properties. Carbonyl oxygens which occur in formaldehyde, acetaldehyde, acetone, ethylene carbonate and propylene carbonate have different Li{sup +} bonding properties than do the ether oxygens which occur in water, dimethyl ether and diethyl ether. Polymer solvents for the lithium salts such as the polyethers have chains which are too long to move with the binding energies then serve as the basis for a different Li{sup +} transport. Dimethyl ether and diethyl ether serve both as solvents and models for the polyethers.

  10. Soil fluxes of carbonyl sulfide (COS) across four distinct ecosystems

    NASA Astrophysics Data System (ADS)

    Sun, W.; Maseyk, K. S.; Lett, C.; Juarez, S.; Kooijmans, L.; Mammarella, I.; Vesala, T.; Chen, H.; Seibt, U.

    2015-12-01

    Soils are additional but poorly resolved sinks of carbonyl sulfide (COS) in terrestrial ecosystems. COS has been proposed as a tracer for quantifying gross photosynthesis based on the coupled stomatal uptake of COS and CO2. But applying this tracer requires the soil COS flux to be subtracted from the ecosystem flux to obtain the actual plant flux. To simulate soil COS fluxes, we have built a 1-D diffusion-reaction model accounting for vertical transport in the soil, microbial sinks and sources, and a litter layer. Uptake and production of COS in the soil column are linked with soil temperature and moisture through empirical functions adapted from enzyme kinetics and lab incubations. We have measured soil COS fluxes and the related soil variables in four distinct ecosystems: a wheat field (Southern Great Plains, OK, USA), an oak woodland (Santa Monica Mountains, CA, USA), a tropical rainforest (La Selva Biological Station, Costa Rica) and a boreal pine forest (Hyytiälä, Finland). Across all sites, a lower soil temperature and a humid climate are generally favorable to soil COS uptake. Strong COS emissions were observed in the wheat field at high soil temperatures after harvesting but were absent in other ecosystems, indicating that COS exchange may behave differently in agricultural soils. We simulated the soil fluxes in all ecosystems using the diffusion-reaction model, and optimized the source/sink strength parameters with field data. The optimized model provides insights that are not attainable from data analysis alone: For example, the wheat field soil must have continued uptake activity even when it showed net emissions, and leaf litter contributed dominantly to the COS sink after rain in the oak woodland. We expect the new model to be useful for simulating global soil COS fluxes as field data on soil fluxes from a broader range of ecosystems become available.

  11. Culturally Relevant Pedagogy

    ERIC Educational Resources Information Center

    Irvine, Jacqueline Jordan

    2010-01-01

    Many teachers have only a cursory understanding of culturally relevant pedagogy, and their efforts to bridge the cultural gap often fall short. Culturally relevant pedagogy is a term that describes effective teaching in culturally diverse classrooms. It can be a daunting idea to understand and implement. Yet people tend to appreciate culturally…

  12. Making Science Relevant

    ERIC Educational Resources Information Center

    Eick, Charles; Deutsch, Bill; Fuller, Jennifer; Scott, Fletcher

    2008-01-01

    Science teachers are always looking for ways to demonstrate the relevance of science to students. By connecting science learning to important societal issues, teachers can motivate students to both enjoy and engage in relevant science (Bennet, Lubben, and Hogarth 2007). To develop that connection, teachers can help students take an active role in…

  13. Proteomic identification of carbonylated proteins in F344 rat hippocampus after 1-bromopropane exposure

    SciTech Connect

    Huang, Zhenlie; Ichihara, Sahoko; Oikawa, Shinji; Chang, Jie; Zhang, Lingyi; Subramanian, Kaviarasan; Mohideen, Sahabudeen Sheik; Ichihara, Gaku

    2012-08-15

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and humans. Previous proteomic analysis of rat hippocampus implicated alteration of protein expression in oxidative stress, suggesting that oxidative stress plays a role in 1-BP-induced neurotoxicity. To understand this role at the protein level, we exposed male F344 rats to 1-BP at 0, 400, or 1000 ppm for 8 h/day for 1 week or 4 weeks by inhalation and quantitated changes in hippocampal protein carbonyl using a protein carbonyl assay, two-dimensional gel electrophoresis (2-DE), immunoblotting, and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-TOF/MS). Hippocampal reactive oxygen species and protein carbonyl were significantly increased, demonstrating 1-BP-associated induction of oxidative stress and protein damage. MALDI-TOF-TOF/MS identified 10 individual proteins with increased carbonyl modification (p < 0.05; fold-change ≥ 1.5). The identified proteins were involved in diverse biological processes including glycolysis, ATP production, tyrosine catabolism, GTP binding, guanine degradation, and neuronal metabolism of dopamine. Hippocampal triosephosphate isomerase (TPI) activity was significantly reduced and negatively correlated with TPI carbonylation (p < 0.001; r = 0.83). Advanced glycation end-product (AGE) levels were significantly elevated both in the hippocampus and plasma, and hippocampal AGEs correlated negatively with TPI activity (p < 0.001; r = 0.71). In conclusion, 1-BP-induced neurotoxicity in the rat hippocampus seems to involve oxidative damage of cellular proteins, decreased TPI activity, and elevated AGEs. -- Highlights: ► 1-BP increases hippocampal ROS levels and hippocampal and plasma protein carbonyls. ► 1-BP increases TPI carbonylation and decreases TPI activity in the hippocampus. ► 1-BP increases hippocampal and plasma AGE levels.

  14. Carbonyl and nitrogen dioxide emissions from gasoline- and diesel-powered motor vehicles.

    PubMed

    Ban-Weiss, George A; McLaughlin, John P; Harley, Robert A; Kean, Andrew J; Grosjean, Eric; Grosjean, Daniel

    2008-06-01

    Carbonyls can be toxic and highly reactive in the atmosphere. To quantify trends in carbonyl emissions from light-duty (LD) vehicles, measurements were made in a San Francisco Bay area highwaytunnel bore containing essentially all LD vehicles during the summers of 1999, 2001, and 2006. The LD vehicle emission factor for formaldehyde, the most abundant carbonyl, did not change between 1999 and 2001, then decreased by 61 +/- 7% between 2001 and 2006. This reduction was due to fleet turnover and the removal of MTBE from gasoline. Acetaldehyde emissions decreased by 19 +/- 2% between 1999 and 2001 and by the same amount between 2001 and 2006. Absent the increased use of ethanol in gasoline after 2003, acetaldehyde emissions would have further decreased by 2006. Carbonyl emission factors for medium- (MD) and heavy-duty (HD) diesel trucks were measured in 2006 in a separate mixed-traffic bore of the tunnel. Emission factors for diesel trucks were higher than those for LD vehicles for all reported carbonyls. Diesel engine exhaust dominates over gasoline engines as a direct source of carbonyl emissions in California. Carbonyl concentrations were also measured in liquid-gasoline samples and were found to be low (< 20 ppm). The gasoline brands that contained ethanol showed higher concentrations of acetaldehyde in unburned fuel versus gasoline that was formulated without ethanol. Measurements of NO2 showed a yearly rate of decrease for LD vehicle emissions similar to that of total NOx in this study. The observed NO2/NOx ratio was 1.2 +/- 0.3% and 3.7 +/- 0.3% for LD vehicles and diesel trucks, respectively.

  15. Concentrations of formaldehyde and other carbonyls in environments affected by incense burning.

    PubMed

    Ho, Steven Sai Hang; Yu, Jian Zhen

    2002-10-01

    Burning incense to pay homage to deities is common in Chinese homes and temples. Air samples were collected and analyzed for carbonyls from a home and a temple in Hong Kong where incense burning occurs on a daily basis. Carbonyls in the air were trapped on a solid sorbent coated with O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine, followed by thermal desorption and subsequent GC/MS analysis. The carbonyls identified include formaldehyde, acetaldehyde, acrolein, 2-furfural, benzaldehyde, glyoxal, and methylglyoxal. The levels of the above carbonyls correlate with the intensity of the incense-burning activities. The total mixing ratios of the carbonyls in the temple exceed those in the ambient air outside the temple by 11-23 times. Formaldehyde is the most abundant species, contributing to approximately 55% of the total carbonyl mixing ratios in both the temple and the home environments during incense burning. The mixing ratio of formaldehyde ranges from 108 to 346 ppbv in the temple and averages 103 ppbv in the home during incense burning. These values exceed the World Health Organization (WHO) air quality guideline of 100 microg m(-3) (88 ppbv) for formaldehyde. The highest formaldehyde level in the temple exceeds the WHO guideline by 3 times at peak incense burning hours. The mixing ratio of acrolein in the temple ranges from 20 to 99 ppbv, approaching or exceeding the WHO air quality guideline of 50 microg m(-3) (22 ppbv) for acrolein. Our measurements indicate that incense burning significantly elevates the concentrations of a number of carbonyls, most notably formaldehyde and acrolein, in the surrounding environments. This study provides preliminary insights on indoor air quality problems created by incense burning.

  16. Positive trends in Southern Hemisphere observations of carbonyl sulfide

    NASA Astrophysics Data System (ADS)

    Kremser, Stefanie; Jones, Nicholas; Smale, Dan; Palm, Mathias; Lejeune, Bernard; Wang, Yuting; Deutscher, Nicholas

    2016-04-01

    Carbonyl sulfide (OCS; lifetime of about 5.7 years) is the longest lived reduced sulfur-containing gas in the atmosphere. The primary source of OCS is the ocean, which is both a direct source (through OCS emission) and an indirect source (due to oxidation of carbon disulfide, CS2, and dimethyl sulfide). Other natural sources of OCS include volcanic outgassing and direct fluxes from wetland regions. The removal of OCS from the atmosphere is dominated by soil and vegetation uptake, with minor contributions from reactions with the hydroxyl radical. Small anthropogenic sources of OCS are coal combustion, biomass burning, and aluminum production. A dominant indirect source results from CS2 emissions from the rayon industry. Transport of tropospheric OCS to the stratosphere during volcanically quiescent periods has been suggested to contribute sulfur to the stratospheric aerosol layer which affects atmospheric radiative balance. If, however, production of stratospheric aerosols from OCS oxidation is smaller than typical estimates, this OCS contribution would be overestimated. The magnitude of the OCS flux to the stratosphere is currently not well quantified as is the relative contribution of OCS to background aerosol loading. While earlier model simulations indicate OCS fluxes into the atmosphere exceeding removal, past total column observations of OCS show no significant trend. Analysis of tropospheric OCS columns at Arrival Heights (Antarctica) and Lauder (New Zealand) show strong positive trends from 2001-2008 followed by weaker trends to 2015, with unexpected temporal coherence. Since trends in ocean and land sources/sinks at these two sites, respectively, are unlikely to be similar, the coherence in trend structure likely results from changes in transport of OCS from the tropics to middle and high latitudes. Potential causes for OCS increases are (i) increases in tropical lower stratospheric OCS and/or (ii) strengthening of the large-scale circulation which

  17. Removal of carbonyl sulfide using activated carbon adsorption.

    PubMed

    Sattler, Melanie L; Rosenberk, Ranjith Samuel

    2006-02-01

    Wastewater treatment plant odors are caused by compounds such as hydrogen sulfide (H2S), methyl mercaptans, and carbonyl sulfide (COS). One of the most efficient odor control processes is activated carbon adsorption; however, very few studies have been conducted on COS adsorption. COS is not only an odor causing compound but is also listed in the Clean Air Act as a hazardous air pollutant. Objectives of this study were to determine the following: (1) the adsorption capacity of 3 different carbons for COS removal; (2) the impact of relative humidity (RH) on COS adsorption; (3) the extent of competitive adsorption of COS in the presence of H2S; and (4) whether ammonia injection would increase COS adsorption capacity. Vapor phase react (VPR; reactivated), BPL (bituminous coal-based), and Centaur (physically modified to enhance H2S adsorption) carbons manufactured by Calgon Carbon Corp. were tested in three laboratory-scale columns, 6 in. in depth and 1 in. in diameter. Inlet COS concentrations varied from 35 to 49 ppmv (86-120 mg/m3). RHs of 17%, 30%, 50%, and 90% were tested. For competitive adsorption studies, H2S was tested at 60 ppmv, with COS at 30 ppmv. COS, RH, H2S, and ammonia concentrations were measured using an International Sensor Technology Model IQ-350 solid state sensor, Cole-Parmer humidity stick, Interscan Corp. 1000 series portable analyzer, and Drager Accuro ammonia sensor, respectively. It was found that the adsorption capacity of Centaur carbon for COS was higher than the other two carbons, regardless of RH. As humidity increased, the percentage of decrease in adsorption capacity of Centaur carbon, however, was greater than the other two carbons. The carbon adsorption capacity for COS decreased in proportion to the percentage of H2S in the gas stream. More adsorption sites appear to be available to H2S, a smaller molecule. Ammonia, which has been found to increase H2S adsorption capacity, did not increase the capacity for COS.

  18. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    SciTech Connect

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; Nelson, Nicholas; Kandel, Kapil; Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek; Sadow, Aaron D.

    2015-11-04

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe2)4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe2)n@MSN. Exhaustive characterization of Zr(NMe2)n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe2)3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe2)n@MSN material reacts with pinacolborane (HBpin) to provide Me2NBpin and the material ZrH/Bpin@MSN that is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpin moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D2. The zirconium hydride material or the zirconium amide precursor Zr(NMe2)n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.

  19. Infrared and reflectron time-of-flight mass spectroscopic analysis of methane (CH4)-carbon monoxide (CO) ices exposed to ionization radiation--toward the formation of carbonyl-bearing molecules in extraterrestrial ices.

    PubMed

    Kaiser, Ralf I; Maity, Surajit; Jones, Brant M

    2014-02-28

    Ice mixtures of methane and carbon monoxide were exposed to ionizing radiation in the form of energetic electrons at 5.5 K to investigate the formation of carbonyl bearing molecules in extraterrestrial ices. The radiation induced chemical processing of the mixed ices along with their isotopically labeled counterparts was probed online and in situ via infrared spectroscopy (solid state) aided with reflectron time-of-flight mass spectrometry (ReTOFMS) coupled to single photon photoionization (PI) at 10.49 eV (gas phase). Deconvolution of the carbonyl absorption feature centered at 1727 cm(-1) in the processed ices and subsequent kinetic fitting to the temporal growth of the newly formed species suggests the formation of acetaldehyde (CH3CHO) together with four key classes of carbonyl-bearing molecules: (i) alkyl aldehydes, (ii) alkyl ketones, (iii) α,β-unsaturated ketones/aldehydes and (iv) α,β,γ,δ-unsaturated ketones/α,β-dicarbonyl compounds in keto-enol form. The mechanistical studies indicate that acetaldehyde acts as the key building block of higher aldehydes (i) and ketones (ii) with unsaturated ketones/aldehydes (iii) and/or α,β-dicarbonyl compounds (iv) formed from the latter. Upon sublimation of the newly synthesized molecules, ReTOFMS together with isotopic shifts of the mass-to-charge ratios was exploited to identify eleven product classes containing molecules with up to six carbon atoms, which can be formally derived from C1-C5 hydrocarbons incorporating up to three carbon monoxide building blocks. The classes are (i) saturated aldehydes/ketones, (ii) unsaturated aldehydes/ketones, (iii) doubly unsaturated aldehydes/ketones, (iv) saturated dicarbonyls (aldehydes/ketones), (v) unsaturated dicarbonyls (aldehydes/ketones), (vi) saturated tricarbonyls (aldehydes/ketones), molecules containing (vii) one carbonyl - one alcohol (viii), two carbonyls - one alcohol, (ix) one carbonyl - two alcohol groups along with (x) alcohols and (xi) diols. Reaction

  20. Improving North American gross primary production (GPP) estimates using atmospheric measurements of carbonyl sulfide (COS)

    NASA Astrophysics Data System (ADS)

    Chen, Huilin; Montzka, Steve; Andrews, Arlyn; Sweeney, Colm; Jacobson, Andy; Miller, Ben; Masarie, Ken; Jung, Martin; Gerbig, Christoph; Campbell, Elliott; Abu-Naser, Mohammad; Berry, Joe; Baker, Ian; Tans, Pieter

    2013-04-01

    Understanding the responses of gross primary production (GPP) to climate change is essential for improving our prediction of climate change. To this end, it is important to accurately partition net ecosystem exchange of carbon into GPP and respiration. Recent studies suggest that carbonyl sulfide is a useful tracer to provide a constraint on GPP, based on the fact that both COS and CO2 are simultaneously taken up by plants and the quantitative correlation between GPP and COS plant uptake. We will present an assessment of North American GPP estimates from the Simple Biosphere (SiB) model, the Carnegie-Ames-Stanford Approach (CASA) model, and the MPI-BGC model through atmospheric transport simulations of COS in a receptor oriented framework. The newly upgraded Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) will be employed to compute the influence functions, i.e. footprints, to link the surface fluxes to the concentration changes at the receptor observations. The HYSPLIT is driven by the 3-hourly archived NAM 12km meteorological data from NOAA NCEP. The background concentrations are calculated using empirical curtains along the west coast of North America that have been created by interpolating in time and space the observations at the NOAA/ESRL marine boundary layer stations and from aircraft vertical profiles. The plant uptake of COS is derived from GPP estimates of biospheric models. The soil uptake and anthropogenic emissions are from Kettle et al. 2002. In addition, we have developed a new soil flux map of COS based on observations of molecular hydrogen (H2), which shares a common soil uptake term but lacks a vegetative sink. We will also improve the GPP estimates by assimilating atmospheric observations of COS in the receptor oriented framework, and then present the assessment of the improved GPP estimates against variations of climate variables such as temperature and precipitation.

  1. Exposure to carbonyl compounds in charcoal production plants in Bahia, Brazil.

    PubMed

    de Carvalho, Albertinho B; Kato, Mina; Rezende, Mariângela M; de P Pereira, Pedro Afonso; de Andrade, Jaílson B

    2013-03-01

    Studies have investigated the exposure levels of carbonyl compounds (CC) in the indoor and outdoor air of homes, vehicles, workplaces, urban and industrial areas, and rural sites. However, an investigation of these emissions and occupational exposure to CC in charcoal production facilities has not been previously conducted. The objective of this study was to measure the atmospheric concentrations of several CC to assess the exposure of workers of two charcoal plants located north of Salvador, Bahia, Brazil. Stationary and personal samples were collected using Sep-Pak® C18 cartridges that were coated with a 0.2 % acidic solution of 2,4-dinitrophenylhydrazine. The quantification of the resulting 2,4-dinitrophenylhydrazone derivatives was conducted using a high-performance liquid chromatography system with UV detection. In the personal samples, the concentrations of formaldehyde, acetaldehyde, propanone, furfural, and C4 isomers (n-butanal-isobutanal-butanone) ranged from 12 to 139, 38 to 165, 136 to 483, 39 to 114, and 63 to 132 μg m(-3), respectively. In the stationary samples, the concentrations of these CC ranged from 20 to 160, 111 to 284, 328 to 644, 70 to 163, and 100 to 176 μg m(-3), respectively. When compared to the occupational exposure limits for 8 h, the concentrations of formaldehyde were often greater than the levels recommended by the American National Institute for Occupational Safety and Health, which indicates a health risk for charcoal workers. These results are the first reported concerning the occupational exposure to CC in charcoal plants.

  2. Up-Regulation of Carbonyl Reductase 1 Renders Development of Doxorubicin Resistance in Human Gastrointestinal Cancers.

    PubMed

    Matsunaga, Toshiyuki; Kezuka, Chihiro; Morikawa, Yoshifumi; Suzuki, Ayaka; Endo, Satoshi; Iguchi, Kazuhiro; Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki; El-Kabbani, Ossama; Hara, Akira; Ikari, Akira

    2015-01-01

    Doxorubicin (DOX) is widely used for the treatment of a wide range of cancers such as breast and lung cancers, and malignant lymphomas, but is generally less efficacious in gastrointestinal cancers. The most accepted explanation for the DOX refractoriness is its resistance development. Here, we established DOX-resistant phenotypes of human gastric MKN45 and colon LoVo cells by continuous exposure to incremental concentrations of the drug. While the parental MKN45 and LoVo cells expressed carbonyl reductase 1 (CBR1) highly and moderately, respectively, the gain of DOX resistance further elevated the CBR1 expression. Additionally, the DOX-elicited cytotoxicity was lowered by overexpression of CBR1 and inversely strengthened by knockdown of the enzyme using small interfering RNA or pretreating with the specific inhibitor quercetin, which also reduced the DOX refractoriness of the two resistant cells. These suggest that CBR1 is a key enzyme responsible for the DOX resistance of gastrointestinal cancer cells and that its inhibitor is useful in the adjuvant therapy. Although CBR1 is known to metabolize DOX to a less toxic anticancer metabolite doxorubicinol, its overexpression in the parental cells hardly show significant reductase activity toward low concentration of DOX. In contrast, the overexpression of CBR1 increased the reductase activity toward an oxidative stress-derived cytotoxic aldehyde 4-oxo-2-nonenal. The sensitivity of the DOX-resistant cells to 4-oxo-2-nonenal was lower than that of the parental cells, and the resistance-elicited hyposensitivity was almost completely ameliorated by addition of the CBR1 inhibitor. Thus, CBR1 may promote development of DOX resistance through detoxification of cytotoxic aldehydes, rather than the drug's metabolism. PMID:26328486

  3. Using NDACC column measurements of carbonyl sulfide to estimate its sources and sinks

    NASA Astrophysics Data System (ADS)

    Wang, Yuting; Marshall, Julia; Palm, Mathias; Deutscher, Nicholas; Roedenbeck, Christian; Warneke, Thorsten; Notholt, Justus; Baker, Ian; Berry, Joe; Suntharalingam, Parvadha; Jones, Nicholas; Mahieu, Emmanuel; Lejeune, Bernard; Hannigan, James; Conway, Stephanie; Strong, Kimberly; Campbell, Elliott; Wolf, Adam; Kremser, Stefanie

    2016-04-01

    Carbonyl sulfide (OCS) is taken up by plants during photosynthesis through a similar pathway as carbon dioxide (CO2), but is not emitted by respiration, and thus holds great promise as an additional constraint on the carbon cycle. It might act as a sort of tracer of photosynthesis, a way to separate gross primary productivity (GPP) from the net ecosystem exchange (NEE) that is typically derived from flux modeling. However the estimates of OCS sources and sinks still have significant uncertainties, which make it difficult to use OCS as a photosynthetic tracer, and the existing long-term surface-based measurements are sparse. The NDACC-IRWG measures the absorption of OCS in the atmosphere, and provides a potential long-term database of OCS total/partial columns, which can be used to evaluate OCS fluxes. We have retrieved OCS columns from several NDACC sites around the globe, and compared them to model simulation with OCS land fluxes based on the simple biosphere model (SiB). The disagreement between the measurements and the forward simulations indicates that (1) the OCS land fluxes from SiB are too low in the northern boreal region; (2) the ocean fluxes need to be optimized. A statistical linear flux model describing OCS is developed in the TM3 inversion system, and is used to estimate the OCS fluxes. We performed flux inversions using only NOAA OCS surface measurements as an observational constraint and with both surface and NDACC OCS column measurements, and assessed the differences. The posterior uncertainties of the inverted OCS fluxes decreased with the inclusion of NDACC data comparing to those using surface data only, and could be further reduced if more NDACC sites were included.

  4. Fructose-Induced Carbonyl/Oxidative Stress in S. cerevisiae: Involvement of TOR.

    PubMed

    Valishkevych, Bohdana V; Vasylkovska, Ruslana A; Lozinska, Liudmyla M; Semchyshyn, Halyna M

    2016-01-01

    The TOR (target of rapamycin) signaling pathway first described in the budding yeast Saccharomyces cerevisiae is highly conserved in eukaryotes effector of cell growth, longevity, and stress response. TOR activation by nitrogen sources, in particular amino acids, is well studied; however its interplay with carbohydrates and carbonyl stress is poorly investigated. Fructose is a more potent glycoxidation agent capable of producing greater amounts of reactive carbonyl (RCS) and oxygen species (ROS) than glucose. The increased RCS/ROS production, as a result of glycoxidation in vivo, is supposed to be involved in carbonyl/oxidative stress, metabolic disorders, and lifespan shortening of eukaryotes. In this work we aim to expand our understanding of how TOR is involved in carbonyl/oxidative stress caused by reducing monosaccharides. It was found that in fructose-grown compared with glucose-grown cells the level of carbonyl/oxidative stress markers was higher. The defects in the TOR pathway inhibited metabolic rate and suppressed generation of glycoxidation products in fructose-grown yeast. PMID:27019749

  5. Fructose-Induced Carbonyl/Oxidative Stress in S. cerevisiae: Involvement of TOR

    PubMed Central

    Valishkevych, Bohdana V.; Vasylkovska, Ruslana A.; Lozinska, Liudmyla M.; Semchyshyn, Halyna M.

    2016-01-01

    The TOR (target of rapamycin) signaling pathway first described in the budding yeast Saccharomyces cerevisiae is highly conserved in eukaryotes effector of cell growth, longevity, and stress response. TOR activation by nitrogen sources, in particular amino acids, is well studied; however its interplay with carbohydrates and carbonyl stress is poorly investigated. Fructose is a more potent glycoxidation agent capable of producing greater amounts of reactive carbonyl (RCS) and oxygen species (ROS) than glucose. The increased RCS/ROS production, as a result of glycoxidation in vivo, is supposed to be involved in carbonyl/oxidative stress, metabolic disorders, and lifespan shortening of eukaryotes. In this work we aim to expand our understanding of how TOR is involved in carbonyl/oxidative stress caused by reducing monosaccharides. It was found that in fructose-grown compared with glucose-grown cells the level of carbonyl/oxidative stress markers was higher. The defects in the TOR pathway inhibited metabolic rate and suppressed generation of glycoxidation products in fructose-grown yeast. PMID:27019749

  6. Detection of Oxidative Stress-Induced Carbonylation in Live Mammalian Cells

    PubMed Central

    Mukherjee, Kamalika; Chio, Tak Ian; Sackett, Dan L.; Bane, Susan L.

    2015-01-01

    Oxidative stress is often associated with etiology and/or progression of disease conditions, such as cancer, neurodegenerative diseases, and diabetes. At the cellular level, oxidative stress induces carbonylation of biomolecules such as lipids, proteins and DNA. The presence of carbonylcontaining biomolecules as a hallmark of these diseases provides a suitable target for diagnostic detection. Here, a simple, robust method for detecting cellular aldehydes and ketones in live cells using a fluorophore is presented. A hydrazine-functionalized synthetic fluorophore serves as an efficient nucleophile that rapidly reacts with reactive carbonyls in the cellular milieu. The product thus formed exhibits a wavelength shift in the emission maximum accompanied by an increase in emission intensity. The photochemical characteristics of the fluorophore enable the identification of the fluorophore-conjugated cellular biomolecules in the presence of unreacted dye, eliminating the need for removal of excess fluorophore. Moreover, this fluorophore is found to be non-toxic and is thus appropriate for live cell analysis. Utility of the probe is demonstrated in two cell lines, PC3 and A549. Carbonylation resulting from serum starvation and hydrogen peroxide induced stress is detected in both cell lines using fluorescence microscopy and a fluorescence plate reader. The fluorescent signal originates from carbonylated proteins and lipids but not from oxidized DNA, and the majority of the fluorescence signal (>60%) is attributed to fluorophore-conjugated lipid oxidation products. This method should be useful for detecting cellular carbonylation in a high content assay or high throughput assay format. PMID:25801292

  7. Fructose-Induced Carbonyl/Oxidative Stress in S. cerevisiae: Involvement of TOR.

    PubMed

    Valishkevych, Bohdana V; Vasylkovska, Ruslana A; Lozinska, Liudmyla M; Semchyshyn, Halyna M

    2016-01-01

    The TOR (target of rapamycin) signaling pathway first described in the budding yeast Saccharomyces cerevisiae is highly conserved in eukaryotes effector of cell growth, longevity, and stress response. TOR activation by nitrogen sources, in particular amino acids, is well studied; however its interplay with carbohydrates and carbonyl stress is poorly investigated. Fructose is a more potent glycoxidation agent capable of producing greater amounts of reactive carbonyl (RCS) and oxygen species (ROS) than glucose. The increased RCS/ROS production, as a result of glycoxidation in vivo, is supposed to be involved in carbonyl/oxidative stress, metabolic disorders, and lifespan shortening of eukaryotes. In this work we aim to expand our understanding of how TOR is involved in carbonyl/oxidative stress caused by reducing monosaccharides. It was found that in fructose-grown compared with glucose-grown cells the level of carbonyl/oxidative stress markers was higher. The defects in the TOR pathway inhibited metabolic rate and suppressed generation of glycoxidation products in fructose-grown yeast.

  8. Water-Soluble alpha,beta-unsaturated aldehydes of cigarette smoke induce carbonylation of human serum albumin.

    PubMed

    Colombo, Graziano; Aldini, Giancarlo; Orioli, Marica; Giustarini, Daniela; Gornati, Rosalba; Rossi, Ranieri; Colombo, Roberto; Carini, Marina; Milzani, Aldo; Dalle-Donne, Isabella

    2010-03-01

    Cigarette smoking is a major risk factor for developing pulmonary and cardiovascular diseases as well as some forms of cancer. Understanding the mechanisms by which smoking contributes to disease remains a major research focus. Increased levels of carbonylated serum proteins are present in smokers; albumin is the major carbonylated protein in the bronchoalveolar lavage fluid of older smokers. We have investigated the susceptibility of human serum albumin (HSA) to alpha,beta-unsaturated aldehyde-induced carbonylation when exposed to whole-phase cigarette smoke extract (CSE). Fluorescence studies with fluorescent probes showed depletion of HSA Cys34 free thiol and marked decrease of free Lys residues. Spectrophotometric and immunochemical carbonyl assays after carbonyl derivatization with 2,4-dinitrophenylhydrazine revealed the formation of covalent carbonyl adducts. Nanoscale capillary liquid chromatography and electrospray tandem mass spectrometry analysis detected acrolein and crotonaldehyde Michael adducts at Cys34, Lys525, Lys351, and His39 at all the CSE concentrations tested. Lys541 and Lys545 were also found to form a Schiff base with acrolein. The carbonyl scavenger drugs, hydralazine and pyridoxamine, partially prevented CSE-induced HSA carbonylation. Carbonylation of HSA associated with cigarette smoking might result in modifications of its antioxidant properties and transport functions of both endogenous and exogenous compounds.

  9. The Relevant Counselor.

    ERIC Educational Resources Information Center

    Herr, Edwin L.

    1986-01-01

    Addresses the questions of school counselors' obsolescence and relevance. Cites examples of national indicators of support for school counselors. Suggests the need for sharpening the counselor's role and reducing the unevenness in guidance services' availability. (ABB)

  10. Metal carbonyl-hydrosilane reactions and hydrosilation catalysis. Final report for period May 1, 1995 - August 14, 1999

    SciTech Connect

    Cutler, Alan R.

    2001-04-14

    Manganese carbonyl complexes serve as hydrosilation precatalysts for selectively transforming a carbonyl group into a doxy methylene or a fully reduced methylene group. Substrates of interest include (1) aldehydes, ketones, carboxylic acids, silyl esters, and esters, and (2) their organometallic acyl counterparts. Two types of manganese precatalysts have been reported: (a) alkyl and acyl complexes (L)(CO){sub 4}MnR [L = CO, PPh{sub 3}; R = COCH{sub 3}, COPh, CH{sub 3}] and (b) halides (CO){sub 5}MnX and [(CO){sub 4}MnX]{sub 2} (X = Br, I). The former promote hydrosilation and deoxygenation catalysis; the latter promote dehydrogenative silation of alcohols and carboxylic acids as well as hydrosilation and deoxygenation of some metallocarboxylic acid derivatives. In every case studied, these Mn precatalysts are far more reactive or selective than traditional Rh(l) precatalysts. The reaction chemistry of the above and other Mn alkyl complexes with hydrosilanes was studied in order to probe catalysis mechanism(s). Thus, Mn(CO){sub 5} methyl, benzyl, acetyl, and benzoyl (4 p-substituents) complexes reacted with hydrosilines by four different mechanisms, which were established. A noteworthy development was that the methyl and benzoyl complexes gave moderate yields of a new ({eta}{sup 2}-Si-H) silane adduct (CO){sub 4}Mn(SiMe{sub 2}Ph)(H-SiMe{sub 2}Ph), which is stable in the presence of excess silane. This silane adduct promotes all three catalytic reactions; its extraordinary activity and potential selectivity are under study.

  11. Probing the Carbonyl Functionality of a Petroleum Resin and Asphaltene through Oximation and Schiff Base Formation in Conjunction with N-15 NMR.

    PubMed

    Thorn, Kevin A; Cox, Larry G

    2015-01-01

    Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected.

  12. Probing the Carbonyl Functionality of a Petroleum Resin and Asphaltene through Oximation and Schiff Base Formation in Conjunction with N-15 NMR.

    PubMed

    Thorn, Kevin A; Cox, Larry G

    2015-01-01

    Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected. PMID:26556054

  13. Probing the Carbonyl Functionality of a Petroleum Resin and Asphaltene through Oximation and Schiff Base Formation in Conjunction with N-15 NMR

    PubMed Central

    Thorn, Kevin A.; Cox, Larry G.

    2015-01-01

    Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected. PMID:26556054

  14. Probing the carbonyl functionality of a petroleum resin and asphaltene through oximation and schiff base formation in conjunction with N-15 NMR

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2015-01-01

    Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected.

  15. Effect of carbonyl iron particles composition on the physical characteristics of MR grease

    NASA Astrophysics Data System (ADS)

    Mohamad, Norzilawati; Mazlan, Saiful Amri; Ubaidillah

    2016-03-01

    Magnetorheological (MR) grease is an extension of the study of magnetorheological materials. The MR grease can help to reduce the particles sedimentation problem occurred in the MR fluids. Within this study, an effort has been taken to investigate the effect of different weight compositions of carbonyl iron particles on the physical and chemical characteristics of the MR grease under off-state condition (no magnetic field). The MR grease is prepared by mixing carbonyl iron particles having a size range of 1 to 10 µm with commercial NPC Highrex HD-3 grease. Characterizations of MR grease are investigated using Vibrating Sample Magnetometer (VSM), Environmental Scanning Electron Microscopy (ESEM), Differential Scanning Calorimeter (DSC) and rheometer. The dependency of carbonyl iron particles weight towards the magnetic properties of MR grease and other characterizations are investigated.

  16. Carbonylation of {alpha}-ketoalkynes catalyzed by nickel cyanide under phase transfer conditions

    SciTech Connect

    Arzoumanian, H.; Jean, M.; Nuel, D.; Guiterrez, J.L.; Rosas, N. |

    1995-12-31

    Carbonylation of organic substrates mediated by transition metal complexes under phase transfer conditions is a well studied reaction. Although cobalt and iron have been the most commonly used metals, nickel has aroused increasing interest since Alper and coworkers showed that nickel cyanide is a versatile carbonylation catalyst precursor. The active species formed in situ is postulated as being an anionic reduced nickel species [Ni(CO){sub 3}(CN)]{sup -}. Using this system, a variety of substrates have been successfully carbonylated. The authors have now extended this reaction to alkynes bearing a keto function in the propargylic position. When treated by Ni(CN){sub 2} under CO (1 atm) under biphasic conditions (NaOH, organic solvent) {alpha}-ketoalkynes are carboxylated to give either unsaturated hydroxylactones or unsaturated keto-acids. The structure of the final product is dependent of the nature of the sustituent on the alkynyl group.

  17. Influence of carbonyl iron particle coating with silica on the properties of magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Małecki, P.; Królewicz, M.; Hiptmair, F.; Krzak, J.; Kaleta, J.; Major, Z.; Pigłowski, J.

    2016-10-01

    In this paper, the influence of encapsulating carbonyl iron particles with various silica coatings on the properties of magnetorheological elastomers (MREs) was investigated. A soft styrene-ethylene-butylene-styrene thermoplastic elastomer was used as the composite’s polymer matrix. Spherical carbonyl iron powder (CIP) acted as the ferromagnetic filler. In order to improve the metal-polymer interaction, carbonyl iron particles were coated with two types of single and six types of double silica layers. The first layer was created through a TMOS or TEOS hydrolysis whereas the second one was composed of organosilanes. The mechanical properties of MREs containing 38.5 vol% of CIP were analysed under dynamic loading conditions. To investigate the magnetorheological effect in these composites, a 430 mT magnetic field, generated by an array of permanent magnets, was applied during testing. The results revealed that the magnetomechanical response of the MREs differs substantially, depending on the kind of particle coating.

  18. Silver-catalyzed oxidative coupling of aniline and ene carbonyl/acetylenic carbonyl compounds: an efficient route for the synthesis of quinolines.

    PubMed

    Zhang, Xu; Xu, Xuefeng

    2014-11-01

    An efficient silver-mediated coupling of aniline with ene carbonyl/acetylenic carbonyl compounds for the synthesis of quinolines is reported. The transformation is effective for a broad range of substrates, thus enabling the expansion of substituent architectures on the heterocyclic framework. The electronic properties of the substituents on the amine have been investigated. It was found that molecules with both electron-donating and electron-withdrawing substituents were suitable substrates for this transformation, and the expected products were obtained in moderate to excellent yields. The use of a single catalytic system to mediate chemical transformations in a synthetic operation is important for the development of new atom-economic strategies and this strategy is efficient in building complex structures from simple starting materials in an environmentally benign fashion.

  19. Carbonyl-carbonyl interactions and amide π-stacking as the directing motifs of the supramolecular assembly of ethyl N-(2-acetylphenyl)oxalamate in a synperiplanar conformation.

    PubMed

    Cabrera-Pérez, Laura C; García-Báez, Efrén V; Franco-Hernández, Marina O; Martínez-Martínez, Francisco J; Padilla-Martínez, Itzia I

    2015-05-01

    The title compound, C12H13NO4, is one of the few examples that exhibits a syn conformation between the amide and ester carbonyl groups of the oxalyl group. This conformation allows the engagement of the amide H atom in an intramolecular three-centred hydrogen-bonding S(6)S(5) motif. The compound is self-assembled by C=O...C=O and amide-π interactions into stacked columns along the b-axis direction. The concurrence of both interactions seems to be responsible for stabilizing the observed syn conformation between the carbonyl groups. The second dimension, along the a-axis direction, is developed by soft C-H...O hydrogen bonding. Density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) level of theory were performed to support the experimental findings.

  20. Design strategies to improve the sensitivity of photoactive metal carbonyl complexes (photoCORMs) to visible light and their potential as CO-donors to biological targets.

    PubMed

    Chakraborty, Indranil; Carrington, Samantha J; Mascharak, Pradip K

    2014-08-19

    The recent surprising discovery of the beneficial effects of carbon monoxide (CO) in mammalian physiology has drawn attention toward site-specific delivery of CO to biological targets. To avoid difficulties in handling of this noxious gas in hospital settings, researchers have focused their attention on metal carbonyl complexes as CO-releasing molecules (CORMs). Because further control of such CO delivery through light-triggering can be achieved with photoactive metal carbonyl complexes (photoCORMs), we and other groups have attempted to isolate such complexes in the past few years. Typical metal carbonyl complexes release CO when exposed to UV light, a fact that often deters their use in biological systems. From the very beginning, our effort therefore was directed toward identifying design principles that could lead to photoCORMs that release CO upon illumination with low-power (5-15 mW/cm(2)) visible and near-IR light. In our work, we have utilized Mn(I), Re(I), and Ru(II) centers (all d(6) ground state configuration) to ensure overall stability of the carbonyl complexes. We also hypothesized that transfer of electron density from the electron-rich metal centers to π* MOs of the ligand frame via strong metal-to-ligand charge transfer (MLCT) transitions in the visible/near-IR region would weaken metal-CO back-bonding and promote rapid CO photorelease. This expectation has been realized in a series of carbonyl complexes derived from a variety of designed ligands and smart choice of ligand/coligand combinations. Several principles have emerged from our systematic approach to the design of principal ligands and the choice of auxiliary ligands (in addition to the number of CO) in synthesizing these photoCORMs. In each case, density functional theory (DFT) and time-dependent DFT (TDDFT) study afforded insight into the dependence of the CO photorelease from a particular photoCORM on the wavelength of light. Results of these theoretical studies indicate that extended

  1. Reactive carbonyls and polyunsaturated fatty acids produce a hydroxyl radical-like species: a potential pathway for oxidative damage of retinal proteins in diabetes.

    PubMed

    Pennathur, Subramaniam; Ido, Yasuo; Heller, Jozsef I; Byun, Jaeman; Danda, Ratna; Pergola, Pablo; Williamson, Joseph R; Heinecke, Jay W

    2005-06-17

    The pattern of oxidized amino acids in aortic proteins of nonhuman primates suggests that a species resembling hydroxyl radical damages proteins when blood glucose levels are high. However, recent studies argue strongly against a generalized increase in diabetic oxidative stress, which might instead be confined to the vascular wall. Here, we describe a pathway for glucose-stimulated protein oxidation and provide evidence of its complicity in diabetic microvascular disease. Low density lipoprotein incubated with pathophysiological concentrations of glucose became selectively enriched in ortho-tyrosine and meta-tyrosine, implicating a hydroxyl radical-like species in protein damage. Model system studies demonstrated that the reaction pathway requires both a reactive carbonyl group and a polyunsaturated fatty acid, involves lipid peroxidation, and is blocked by the carbonyl scavenger aminoguanidine. To explore the physiological relevance of the pathway, we used mass spectrometry and high pressure liquid chromatography to quantify oxidation products in control and hyperglycemic rats. Hyperglycemia raised levels of ortho-tyrosine, meta-tyrosine, and oxygenated lipids in the retina, a tissue rich in polyunsaturated fatty acids. Rats that received aminoguanidine did not show this increase in protein and lipid oxidation. In contrast, rats with diet-induced hyperlipidemia in the absence of hyperglycemia failed to exhibit increased protein and lipid oxidation products in the retina. Our observations suggest that generation of a hydroxyl radical-like species by a carbonyl/polyunsaturated fatty acid pathway might promote localized oxidative stress in tissues vulnerable to diabetic damage. This raises the possibility that antioxidant therapies that specifically inhibit the pathway might delay the vascular complications of diabetes.

  2. Carbonylation of nitrobenzene in methanol on the sulfur-containing catalyst potassium ethylxanthate-rubeanic acid

    SciTech Connect

    Bordzilovskii, V.Ya.; Gerega, V.F.; Redoshkin, B.A.; Dergunov, Yu.I.

    1988-05-10

    The kinetics of nitrobenzene carbonylation with carbon monoxide in methanol over the two-component catalyst potassium ethylxanthate-rubeanic acid was studied from 383-423/sup 0/K and pressures of 11-32 MPa. It was established that at low (< 15%) conversion of nitrobenzene the investigated process is second order in sulfur-containing catalyst and first order in nitrobenzene. The apparent activation energy was (113 +/- 6) 10/sup 3/ J/mole. A scheme of carbonylation of nitrobenzene in methanol in the presence of sulfur-containing catalyst was proposed which includes formation of complexes of nitrobenzene and CO with catalyst.

  3. Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols.

    PubMed

    Jang, Myoseon; Carroll, Brian; Chandramouli, Bharadwaj; Kamens, Richard M

    2003-09-01

    Aerosol growth by the heterogeneous reactions of different aliphatic and alpha,beta-unsaturated carbonyls in the presence/absence of acidified seed aerosols was studied in a 2 m long flow reactor (2.5 cm i.d.) and a 0.5-m3 Teflon film bag under darkness. For the flow reactor experiments, 2,4-hexadienal, 5-methyl-3-hexen-2-one, 2-cyclohexenone, 3-methyl-2-cyclopentenone, 3-methyl-2-cyclohexenone, and octanal were studied. The carbonyls were selected based on their reactivity for acid-catalyzed reactions, their proton affinity, and their similarity to the ring-opening products from the atmospheric oxidation of aromatics. To facilitate acid-catalyzed heterogeneous hemiacetal/acetal formation, glycerol was injected along with inorganic seed aerosols into the flow reactor system. Carbonyl heterogeneous reactions were accelerated in the presence of acid catalysts (H2SO4), leading to higher aerosol yields than in their absence. Aldehydes were more reactive than ketones for acid-catalyzed reactions. The conjugated functionality also resulted in higher organic aerosol yieldsthan saturated aliphatic carbonyls because conjugation with the olefinic bond increases the basicity of the carbonyl leading to increased stability of the protonated carbonyl. Aerosol population was measured from a series of sampling ports along the length of the flow reactor using a scanning mobility particle sizer. Fourier transform infrared spectrometry of either an impacted liquid aerosol layer or direct reaction of carbonyls as a thin liquid layer on a zinc selenide FTIR disk was employed to demonstrate the direct transformation of chemical functional groups via the acid-catalyzed reactions. These results strongly indicate that atmospheric multifunctional organic carbonyls, which are created by atmospheric photooxidation reactions, can contribute significantly to secondary organic aerosol formation through acid-catalyzed heterogeneous reactions. Exploratory studies in 25- and 190-m3 outdoor chambers

  4. Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media

    SciTech Connect

    Román-Leshkov, Yuriy; Davis, Mark E.

    2011-09-28

    Current interest in reacting carbonyl-containing molecules in aqueous media is primarily due to the growing emphasis on conversion of biomass to fuels and chemicals. Recently, solid Lewis acids have been shown to perform catalytic reactions with carbonyl-containing molecules such as sugars in aqueous media. Here, catalysis mediated by Lewis acids is briefly discussed, Lewis acid solids that perform catalysis in aqueous media are then described, and the review is concluded with a few comments on the outlook for the future.

  5. Synthesis of diversely substituted 2-(furan-3-yl)acetates from allenols through cascade carbonylations.

    PubMed

    He, Yan; Zhang, Xinying; Fan, Xuesen

    2015-11-21

    Novel synthesis of diversely substituted 2-(furan-3-yl)acetates via palladium-catalyzed one-pot multi-component reactions of allenols, aryl iodides, alcohols, and carbon monoxide has been developed. Notably, the formation of the title compounds features a cascade process combining carbonylation of aryl iodide, alcohoxyl carbonylation of the in situ formed allyl palladium complex, and intramolecular condensation of the α-hydroxyl enone intermediate. Moreover, the 2-(furan-3-yl)acetates obtained herein were found to be ready intermediates for the construction of the biologically significant naphtho[1,2-b]furan-5-ol scaffold. PMID:26399394

  6. Relevance, Derogation and Permission

    NASA Astrophysics Data System (ADS)

    Stolpe, Audun

    We show that a recently developed theory of positive permission based on the notion of derogation is hampered by a triviality result that indicates a problem with the underlying full-meet contraction operation. We suggest a solution that presupposes a particular normal form for codes of norms, adapted from the theory of relevance through propositional letter sharing. We then establish a correspondence between contractions on sets of norms in input/output logic (derogations), and AGM-style contractions on sets of formulae, and use it as a bridge to migrate results on propositional relevance from the latter to the former idiom. Changing the concept accordingly we show that positive permission now incorporates a relevance requirement that wards off triviality.

  7. The Limits to Relevance

    NASA Astrophysics Data System (ADS)

    Averill, M.; Briggle, A.

    2006-12-01

    Science policy and knowledge production lately have taken a pragmatic turn. Funding agencies increasingly are requiring scientists to explain the relevance of their work to society. This stems in part from mounting critiques of the "linear model" of knowledge production in which scientists operating according to their own interests or disciplinary standards are presumed to automatically produce knowledge that is of relevance outside of their narrow communities. Many contend that funded scientific research should be linked more directly to societal goals, which implies a shift in the kind of research that will be funded. While both authors support the concept of useful science, we question the exact meaning of "relevance" and the wisdom of allowing it to control research agendas. We hope to contribute to the conversation by thinking more critically about the meaning and limits of the term "relevance" and the trade-offs implicit in a narrow utilitarian approach. The paper will consider which interests tend to be privileged by an emphasis on relevance and address issues such as whose goals ought to be pursued and why, and who gets to decide. We will consider how relevance, narrowly construed, may actually limit the ultimate utility of scientific research. The paper also will reflect on the worthiness of research goals themselves and their relationship to a broader view of what it means to be human and to live in society. Just as there is more to being human than the pragmatic demands of daily life, there is more at issue with knowledge production than finding the most efficient ways to satisfy consumer preferences or fix near-term policy problems. We will conclude by calling for a balanced approach to funding research that addresses society's most pressing needs but also supports innovative research with less immediately apparent application.

  8. Synthesis of 3,3'-carbonyl-bis(chromones) and their activity as mammalian alkaline phosphatase inhibitors.

    PubMed

    Miliutina, Mariia; Ejaz, Syeda Abida; Iaroshenko, Viktor O; Villinger, Alexander; Iqbal, Jamshed; Langer, Peter

    2016-01-14

    Hitherto unknown 3,3'-carbonyl-bis(chromones) 8, dimeric chromones bridged by a carbonyl group, were prepared by reaction of chromone-3-carboxylic acid chloride with 3-(dimethylamino)-1- (2-hydroxyphenyl)-2-propen-1-ones 9. The method is generally applicable for the synthesis of novel symmetrical or non-symmetrical products which were found to inhibit mammalian alkaline phosphatases.

  9. Tandem semi-hydrogenation/isomerization of propargyl alcohols to saturated carbonyl analogues by dodecanethiolate-capped palladium nanoparticle catalysts†

    PubMed Central

    Gavia, Diego J.; Koeppen, Jordan; Sadeghmoghaddam, Elham; Shon, Young-Seok

    2016-01-01

    The efficient one-pot conversion of propargyl alcohols to their saturated carbonyl analogues is carried out for the first time using metal nanoparticle catalysts, dodecanethiolate-capped Pd nanoparticles. Kinetic studies reveal that the reaction progresses through a semi-hydrogenation intermediate (allyl alcohols) followed by isomerization to carbonyls.

  10. Shotgun Redox Proteomics: Identification and Quantitation of Carbonylated Proteins in the UVB-Resistant Marine Bacterium, Photobacterium angustum S14

    PubMed Central

    Matallana-Surget, Sabine; Cavicchioli, Ricardo; Fauconnier, Charles; Wattiez, Ruddy; Leroy, Baptiste; Joux, Fabien; Raftery, Mark J.; Lebaron, Philippe

    2013-01-01

    UVB oxidizes proteins through the generation of reactive oxygen species. One consequence of UVB irradiation is carbonylation, the irreversible formation of a carbonyl group on proline, lysine, arginine or threonine residues. In this study, redox proteomics was performed to identify carbonylated proteins in the UVB resistant marine bacterium Photobacterium angustum. Mass-spectrometry was performed with either biotin-labeled or dinitrophenylhydrazide (DNPH) derivatized proteins. The DNPH redox proteomics method enabled the identification of 62 carbonylated proteins (5% of 1221 identified proteins) in cells exposed to UVB or darkness. Eleven carbonylated proteins were quantified and the UVB/dark abundance ratio was determined at both the protein and peptide levels. As a result we determined which functional classes of proteins were carbonylated, which residues were preferentially modified, and what the implications of the carbonylation were for protein function. As the first large scale, shotgun redox proteomics analysis examining carbonylation to be performed on bacteria, our study provides a new level of understanding about the effects of UVB on cellular proteins, and provides a methodology for advancing studies in other biological systems. PMID:23874515

  11. Is Information Still Relevant?

    ERIC Educational Resources Information Center

    Ma, Lia

    2013-01-01

    Introduction: The term "information" in information science does not share the characteristics of those of a nomenclature: it does not bear a generally accepted definition and it does not serve as the bases and assumptions for research studies. As the data deluge has arrived, is the concept of information still relevant for information…

  12. The Relevance of Literature.

    ERIC Educational Resources Information Center

    Dunham, L. L.

    1971-01-01

    The "legacy" of the humanities is discussed in terms of relevance, involvement, and other philosophical considerations. Reasons for studying foreign literature in language classes are developed in the article. Comment is also made on attitudes and ideas culled from the writings of Clifton Fadiman, Jean Paul Sartre, and James Baldwin. (RL)

  13. Relevance and Definition.

    ERIC Educational Resources Information Center

    Watson, Rita

    1995-01-01

    Examined whether the use of superordinate terms in 206 children's definitions is predictable by relevance theory. Children (ages 5-10) gave definitions for 16 basic-level words and 4 superordinate words from natural kind and artifact semantic domains. Superordinate terms were used more frequently when they supported more inferences. Findings…

  14. Reading, Writing and Relevance.

    ERIC Educational Resources Information Center

    Hoffman, Mary

    This monograph presents classroom activities that were designed to encourage children to read and write in a self-reliant and responsible manner. The activities were chosen for their relevance to the children involved and because the vocabulary involved was interesting, familiar, and worth remembering and using again. The topics are arranged in…

  15. 1,3:2,4-Dibenzylidene-D-sorbitol (DBS) and its derivatives--efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future.

    PubMed

    Okesola, Babatunde O; Vieira, Vânia M P; Cornwell, Daniel J; Whitelaw, Nicole K; Smith, David K

    2015-06-28

    Dibenzylidene-D-sorbitol (DBS) has been a well-known low-molecular-weight gelator of organic solvents for over 100 years. As such, it constitutes a very early example of a supramolecular gel--a research field which has recently developed into one of intense interest. The ability of DBS to self-assemble into sample-spanning networks in numerous solvents is predicated upon its 'butterfly-like' structure, whereby the benzylidene groups constitute the 'wings' and the sorbitol backbone the 'body'--the two parts representing the molecular recognition motifs underpinning its gelation mechanism, with the nature of solvent playing a key role in controlling the precise assembly mode. This gelator has found widespread applications in areas as diverse as personal care products and polymer nucleation/clarification, and has considerable potential in applications such as dental composites, energy technology and liquid crystalline materials. Some derivatives of DBS have also been reported which offer the potential to expand the scope and range of applications of this family of gelators and endow the nansocale network with additional functionality. This review aims to explain current trends in DBS research, and provide insight into how by combining a long history of application, with modern methods of derivatisation and analysis, the future for this family of gelators is bright, with an increasing number of high-tech applications, from environmental remediation to tissue engineering, being within reach.

  16. Synthesis of 9-amino(9-deoxy)epi cinchona alkaloids, general chiral organocatalysts for the stereoselective functionalization of carbonyl compounds.

    PubMed

    Cassani, Carlo; Martín-Rapún, Rafael; Arceo, Elena; Bravo, Fernando; Melchiorre, Paolo

    2013-02-01

    We describe two procedures for the synthesis of primary amines derived from 9-amino(9-deoxy)epi cinchona alkaloids, valuable catalysts used in the asymmetric functionalization of carbonyl compounds. The first approach allows the one-pot 5-g-scale syntheses of four cinchona-based analogs (1, 3, 5 and 7) from the alkaloids quinine (QN), quinidine (QD), dihydroquinine (DHQN) and dihydroquinidine (DHQD), respectively, performed by means of a Mitsunobu reaction to introduce an azide group, followed by reduction and hydrolysis. Demethylation of 1, 3, 5 and 7 with BBr(3) provided direct access to the bifunctional aminocatalysts 2, 4, 6 and 8. A second approach, more convenient for scale-up (tested to a 20-g scale), is also provided. In this second procedure, the azides, formed from the O-mesylated derivatives of QN and QD, are selectively reduced with LiAlH(4) to afford catalysts 1 and 3, whereas hydrogenation (Pd/C) provides 5 and 7. Demethylation of 1, 3, 5 and 7 using an alkylthiolate affords 2, 4, 6 and 8 in a process in which the less-expensive QN and QD are the only starting materials used.

  17. Synthesis of an Epoxide Carbonylation Catalyst: Exploration of Contemporary Chemistry for Advanced Undergraduates

    ERIC Educational Resources Information Center

    Getzler, Yutan D. Y. L.; Schmidt, Joseph A. R.; Coates, Geoffrey W.

    2005-01-01

    A class of highly active, well-defined compounds for the catalytic carbonylation of epoxides and aziridines to beta-lactones and beta-lactams are introduced. The synthesis of one of the catalysts involves a simple imine condensation to form the ligand followed by air-sensitive metalation and salt metathesis steps.

  18. The Potential of Carbonyl Sulfide as a Proxy for Gross Primary Production at Flux Tower Sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regional and continental scale studies of the seasonal dynamics of atmospheric carbonyl sulfide (OCS) mole fractions and leaf-level studies of plant OCS exchange have shown a close relationship with those for CO2. CO2 has sinks and sources within terrestrial ecosystems, but the primary terrestrial e...

  19. The Potential of Carbonyl Sulfide as a Tracer for Gross Primary Productivity at Flux Tower Sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regional/continental scale studies of atmospheric carbonyl sulfide (OCS) seasonal dynamics and leaf level studies of plant OCS uptake have shown a close relationship to CO2 dynamics and uptake, suggesting potential for OCS as a tracer for gross primary productivity (GPP). Canopy CO2 and OCS differen...

  20. Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells.

    PubMed

    Semchyshyn, Halyna M; Lozinska, Liudmyla M; Miedzobrodzki, Jacek; Lushchak, Volodymyr I

    2011-05-15

    Fructose is commonly used as an industrial sweetener and has been excessively consumed in human diets in the last decades. High fructose intake is causative in the development of metabolic disorders, but the mechanisms underlying fructose-induced disturbances are under debate. Fructose compared to glucose has been found to be a more potent initiator of the glycation reaction. Therefore, we supposed that glucose and fructose might have different vital effects. Here we compare the effects of glucose and fructose on yeast cell viability and markers of carbonyl/oxidative stress. Analysis of the parameters in cells growing on glucose and fructose clearly reveals that yeast growing on fructose has higher levels of carbonyl groups in proteins, α-dicarbonyl compounds and reactive oxygen species. This may explain the observation that fructose-supplemented growth as compared with growth on glucose resulted in more pronounced age-related decline in yeast reproductive ability and higher cell mortality. The results are discussed from the point of view that fructose rather than glucose is more extensively involved in glycation and ROS generation in vivo, yeast aging and development of carbonyl/oxidative stress. It should be noted that carbohydrate restriction used in this study does not reveal a significant difference between markers of aging and carbonyl/oxidative stress in yeasts cultivated on glucose and fructose.

  1. First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation.

    PubMed

    Riisager, Anders; Jørgensen, Betina; Wasserscheid, Peter; Fehrmann, Rasmus

    2006-03-01

    A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)2I2]-[BMIM]I-SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation.

  2. HYDROGENATION OF UNSATURATED CARBONYLS IN SCCO2 AS REACTION MEDIUM OVER NI-SUPPORTED CATALYSTS

    EPA Science Inventory

    Selective hydrogenation of a, a unsaturated carbonyls where molecules containing C=C and C=O double bonds has both practical importance for fine chemicals industry and theoretical significance. Various studies are reported to enhance the selective hydrogenation of C=O over group...

  3. NEUROTOXICITY OF CARBONYL SULFIDE IN F344 RATS FOLLOWING INHALATION EXPOSURE FOR UP TO 12 WEEKS.

    EPA Science Inventory

    Carbonyl sulfide (COS) was nominated to the National Toxicology Program for testing in 1996 due to emissions levels and a lack of data. Through an inter-agency collaboration, functional and electrophysiological endpoints were included in the studies. This manuscript describes b...

  4. Towards a General Understanding of Carbonyl-Stabilised Ammonium Ylide-Mediated Epoxidation Reactions.

    PubMed

    Novacek, Johanna; Roiser, Lukas; Zielke, Katharina; Robiette, Raphaël; Waser, Mario

    2016-08-01

    The key factors for carbonyl-stabilised ammonium ylide-mediated epoxidation reactions were systematically investigated by experimental and computational means and the hereby obtained energy profiles provide explanations for the observed experimental results. In addition, we were able to identify the first tertiary amine-based chiral auxiliary that allows for high enantioselectivities and high yields for such epoxidation reactions. PMID:27381752

  5. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  6. [pi] Backbonding in Carbonyl Complexes and Carbon-Oxygen Stretching Frequencies: A Molecular Modeling Exercise

    ERIC Educational Resources Information Center

    Montgomery, Craig D.

    2007-01-01

    An exercise is described that has illustrated the effect of various factors on [pi] backbonding to carbonyl ligands, where the students can view the molecular orbitals corresponding to the M-CO [pi] interaction as well as the competing interaction between the metal and co-ligands. The visual and hands-on nature of the modeling exercise has helped…

  7. Formation of phenol under conditions of the reaction of oxidative carbonylation of benzene to benzoic acid

    SciTech Connect

    Kalinovsky, I.O.; Leshcheva, A.N.; Pogorelov, V.V.; Gelbshtein, A.I.

    1993-12-31

    This paper describes conditions for the oxidation of benzene to phenol. It is shown that a reaction mixture of water, carbon monoxide, and oxygen are essential to the oxidation. The oxidation is a side reaction found to occur during the oxidative carbonylation of benzene to benzoic acid in a medium of trifluoroacetic acid.

  8. Protein targets for carbonylation by 4-hydroxy-2-nonenal in rat liver mitochondria

    PubMed Central

    Guo, Jia; Prokai-Tatrai, Katalin; Ngyuen, Vien; Rauniyar, Navin; Ughy, Bettina; Prokai, Laszlo

    2011-01-01

    Protein carbonylation has been associated with various pathophysiological processes. A representative reactive carbonyl species (RCS), 4-hydroxy-2-nonenal (HNE), has been implicated specifically as a causative factor for the initiation and/or progression of various diseases. To date, however, little is known about the proteins and their modification sites susceptible to “carbonyl stress” by this RCS, especially in the liver. Using chemoprecipitation based on a solid phase hydrazine chemistry coupled with LC-MS/MS bottom-up approach and database searching, we identified several protein-HNE adducts in isolated rat liver mitochondria upon HNE exposure. The identification of selected major protein targets, such as the ATP synthase β-subunit, was further confirmed by immunoblotting and a gel-based approach in combination with LC–MS/MS. A network was also created based on the identified protein targets that showed that the main protein interactions were associated with cell death, tumor morphology and drug metabolism, implicating the toxic nature of HNE in the liver mitoproteome. The functional consequence of carbonylation was illustrated by its detrimental impact on the activity of ATP synthase, a representative major mitochondrial protein target for HNE modifications. PMID:21801862

  9. α-Regioselective Barbier Reaction of Carbonyl Compounds and Allyl Halides Mediated by Praseodymium.

    PubMed

    Wu, San; Li, Ying; Zhang, Songlin

    2016-09-01

    The first utility of praseodymium as a mediating metal in the Barbier reaction of carbonyl compounds with allyl halides was reported in this paper. In contrast to the traditional metal-mediated or catalyzed Barbier reactions, exclusive α-adducts were obtained in this one-pot reaction with a broad scope of substrates and feasible reaction conditions.

  10. Unsuitability of using the DNPH-coated solid sorbent cartridge for determination of airborne unsaturated carbonyls

    NASA Astrophysics Data System (ADS)

    Ho, Steven Sai Hang; Ho, K. F.; Liu, W. D.; Lee, S. C.; Dai, W. T.; Cao, J. J.; Ip, H. S. S.

    2011-01-01

    Measurements of aldehydes and ketones are typically conducted by derivatization using sorbent cartridges coated with 2,4-dinitrophenylhydrazine (DNPH). The collected samples are eluted with acetonitrile and analyzed by high-pressure liquid chromatography coupled with an ultra-violet detector (HPLC/UV). This paper intends to examine artifacts about its suitability in identification of unsaturated carbonyls. Kinetic tests for acrolein, crotonaldehyde, methacrolein and methyl vinyl ketone (MVK) showed formations of carbonyl-DNP-hydrazone during sampling, which could further react with DNPH, resulting in undesired UV absorption products [e.g., carbonyl-DNP-hydrazone-DNPH (dimer) and 2(carbonyl-DNP-hydrazone)-DNPH (trimer)]. The dimerization and trimerization occurred for acrolein and MVK whereas only dimerization for crotonaldehyde and methacrolein. The polymerization products undoubtedly affect the integrity of the chromatogram, leading to misidentification and inaccurate quantification. Whether precautions taken during sampling and/or sample treatment could avoid or minimize this artifact has not been thoughtfully investigated. More often, such artifacts are usually overlooked by scientists when the data are reported.

  11. Towards a General Understanding of Carbonyl-Stabilised Ammonium Ylide-Mediated Epoxidation Reactions.

    PubMed

    Novacek, Johanna; Roiser, Lukas; Zielke, Katharina; Robiette, Raphaël; Waser, Mario

    2016-08-01

    The key factors for carbonyl-stabilised ammonium ylide-mediated epoxidation reactions were systematically investigated by experimental and computational means and the hereby obtained energy profiles provide explanations for the observed experimental results. In addition, we were able to identify the first tertiary amine-based chiral auxiliary that allows for high enantioselectivities and high yields for such epoxidation reactions.

  12. A general palladium-catalyzed carbonylative synthesis of chromenones from salicylic aldehydes and benzyl chlorides.

    PubMed

    Wu, Xiao-Feng; Wu, Lipeng; Jackstell, Ralf; Neumann, Helfried; Beller, Matthias

    2013-09-01

    Cute CO! An interesting and straightforward procedure for the carbonylative synthesis of chromenones from readily available salicylic aldehydes and benzyl chlorides has been developed (see scheme; DPPP = 1,3-bis(diphenylphosphino)propane). In the presence of a palladium catalyst, various coumarins were produced in good to excellent yields.

  13. DETERMINATION OF NEW CARBONYL-CONTAINING DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Only a subset of all disinfection by-products were targeted for an intense occurrence study during the Information Collection Rule. Among 50 additional compounds selected for study because of their potential for significant toxicity, a group of carbonyl-containing compounds is be...

  14. Measurement and source characteristics of carbonyl compounds in the atmosphere in Kaohsiung city, Taiwan.

    PubMed

    Wang, H K; Huang, C H; Chen, K S; Peng, Y P; Lai, C H

    2010-07-15

    The concentrations of eighteen atmospheric carbonyls species were measured by the LpDNPH-Cartridge and the microcomputer air sampling device at Nan-Chie (northern part) and Hsiung-Kong (southern part) sites in Kaohsiung city, southern Taiwan. These samples were then analyzed using a high performance liquid chromatography (HPLC). Measurements showed that the highest concentrations of carbonyls were formaldehyde (18.33 and 18.74 microg m(-3)) at the Nan-Chie and Hsiung-Kong site, followed by acetaldehyde (14.90 and 15.71 microg m(-3)). The concentrations of total carbonyls were higher at Hsiung-Kong site (66.96 microg m(-3)) than at Nan-Chie site (60.41 microg m(-3)). The concentrations of total carbonyls at Nan-Chie site (or Hsiung-Kong site) were 74.06 microg m(-3) (89.99 microg m(-3)) in summer and 37.14 microg m(-3) (46.50 microg m(-3)) in winter, due to the fact that photochemical activities are stronger in summer than in winter. The results of principal component analysis (PCA)/absolute principal component scores (APCS) suggest that the primary pollution sources at Nan-Chie were vehicle exhausts (gasoline and diesel engines), stationary emissions (petrochemical and food industry) and restaurant emissions, and the primary pollution sources at Hsiung-Kong were vehicle exhausts (gasoline and diesel engines), stationary emissions (metal assembly and petrochemical industry) and restaurant emissions. PMID:20427126

  15. Towards a General Understanding of Carbonyl-Stabilised Ammonium Ylide-Mediated Epoxidation Reactions

    PubMed Central

    Robiette, Raphaël; Waser, Mario

    2016-01-01

    The key factors for carbonyl-stabilised ammonium ylide-mediated epoxidation reactions were systematically investigated by experimental and computational means and the hereby obtained energy profiles provide explanations for the observed experimental results. In addition, we were able to identify the first tertiary amine-based chiral auxiliary that allows for high enantioselectivities and high yields for such epoxidation reactions. PMID:27381752

  16. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  17. NMR Studies of Structure-Reactivity Relationships in Carbonyl Reduction: A Collaborative Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Marincean, Simona; Smith, Sheila R.; Fritz, Michael; Lee, Byung Joo; Rizk, Zeinab

    2012-01-01

    An upper-division laboratory project has been developed as a collaborative investigation of a reaction routinely taught in organic chemistry courses: the reduction of carbonyl compounds by borohydride reagents. Determination of several trends regarding structure-activity relationship was possible because each student contributed his or her results…

  18. Palladium-catalyzed oxidative carbonylation of ethylene and propylene by butyl nitrite and carbon monoxide

    SciTech Connect

    Brechot, P.; Chauvin, Y.; Commereuc, D.; Saussine, L. )

    1990-01-01

    In the oxidative carbonylation of ethylene by carbon monoxide and butyl nitrite catalyzed by PdCl{sub 2}(PhCN){sub 2} in the presence of triphenylphosphine, the pentacoordinated tetravalent palladium complex PdCl{sub 2}(COOBu)NO(PPh{sub 3}) has been isolated and has proved to be an intermediate in the catalytic cycle.

  19. α-Regioselective Barbier Reaction of Carbonyl Compounds and Allyl Halides Mediated by Praseodymium.

    PubMed

    Wu, San; Li, Ying; Zhang, Songlin

    2016-09-01

    The first utility of praseodymium as a mediating metal in the Barbier reaction of carbonyl compounds with allyl halides was reported in this paper. In contrast to the traditional metal-mediated or catalyzed Barbier reactions, exclusive α-adducts were obtained in this one-pot reaction with a broad scope of substrates and feasible reaction conditions. PMID:27490708

  20. Protein carbonylation and heat shock proteins in human skeletal muscle: relationships to age and sarcopenia.

    PubMed

    Beltran Valls, Maria R; Wilkinson, Daniel J; Narici, Marco V; Smith, Kenneth; Phillips, Bethan E; Caporossi, Daniela; Atherton, Philip J

    2015-02-01

    Aging is associated with a gradual loss of muscle mass termed sarcopenia, which has significant impact on quality-of-life. Because oxidative stress is proposed to negatively impact upon musculoskeletal aging, we investigated links between human aging and markers of oxidative stress, and relationships to muscle mass and strength in young and old nonsarcopenic and sarcopenic adults. Sixteen young and 16 old males (further subdivided into "old" and "old sarcopenic") were studied. The abundance of protein carbonyl adducts within skeletal muscle sarcoplasmic, myofibrillar, and mitochondrial protein subfractions from musculus vastus lateralis biopsies were determined using Oxyblot immunoblotting techniques. In addition, concentrations of recognized cytoprotective proteins (eg, heat shock proteins [HSP], αβ-crystallin) were also assayed. Aging was associated with increased mitochondrial (but not myofibrillar or sarcoplasmic) protein carbonyl adducts, independently of (stage-I) sarcopenia. Correlation analyses of all subjects revealed that mitochondrial protein carbonyl abundance negatively correlated with muscle strength ([1-repetition maximum], p = .02, r (2) = -.16), but not muscle mass (p = .13, r (2) = -.08). Abundance of cytoprotective proteins, including various HSPs (HSP 27 and 70), were unaffected by aging/sarcopenia. To conclude, these data reveal that mitochondrial protein carbonylation increases moderately with age, and that this increase may impact upon skeletal muscle function, but is not a hallmark of (stage-I) sarcopenia, per se.

  1. Protein carbonyl formation in response to propiconazole-induced oxidative stress.

    PubMed

    Bruno, Maribel; Moore, Tanya; Nesnow, Stephen; Ge, Yue

    2009-04-01

    Propiconazole, a widely used fungicide, is hepatotoxic and hepatotumorigenic in mice. Previous genomic analysis of liver tissues from propiconazole-treated mice identified genes and pathways involved in oxidative stress, suggesting that oxidative stress may play a role in propiconazole-induced toxicity. To understand the contribution of oxidative stress on toxicity at the protein level, we developed an integrated approach for the systematic measurement of protein oxidation in the livers from propiconazole-treated mice. Liver protein carbonylation increased significantly after treatment with propiconazole, demonstrating propiconazole-associated induction of oxidative stress. Utilizing two-dimensional gel electrophoresis (2-DE), immunoblotting, and mass spectrometry, we identified 17 carbonylated proteins that were altered with varying intensities by propiconazole treatment. The potential effects of protein carbonylation on protein functions and cellular activities in the liver of propiconazole-treated mice were further investigated. A significant negative correlation between protein carbonylation and cytochrome c reductase activity was found. We conclude that glycolysis, mitochondrial respiratory chain, ATP production, amino acid metabolism, CO2 hydration, cellular antioxidant defense and detoxification system, and tetrahydrobiopterin pathways are affected by oxygen radicals in the livers of propiconazole-treated mice. This study suggests a mode of propiconazole-induced toxicity in mouse liver which primarily involves oxidative damage to cellular proteins.

  2. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    EPA Science Inventory

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  3. Oxyfunctionalization of unactivated C-H bonds in triterpenoids with tert-butylhydroperoxide catalyzed by meso-5,10,15,20-tetramesitylporphyrinate osmium(II) carbonyl complex.

    PubMed

    Ogawa, Shoujiro; Wakatsuki, Yasuo; Makino, Mitsuko; Fujimoto, Yasuo; Yasukawa, Ken; Kikuchi, Takashi; Ukiya, Motohiko; Akihisa, Toshihiro; Iida, Takashi

    2010-02-01

    A system consisting of meso-5,10,15,20-tetramesitylporphyrinate osmium(II) carbonyl complex [Os(TMP)CO] as a precatalyst and tert-butylhydroperoxide (TBHP) as an oxygen donor is shown to be an efficient, regioselective oxidant system for the allylic oxidation, ketonization and hydroxylation of unactivated C-H bonds in a series of the peracetate derivatives of penta- and tetracyclic triterpenoids. Treatment of the substrates with this oxidant system afforded a variety of novel or scarce oxygenated derivatives in one-step. Structures of the isolated components, after chromatographic separation, were determined by spectroscopic methods including GC-MS and shift-correlated 2D-NMR techniques. Factors governing the regioselectivity and the possible mechanism for the oxyfunctionalization of the unactivated carbons are also discussed.

  4. The chemistry of carbonyl sulfide: Final report, July 1, 1985-February 28, 1986

    SciTech Connect

    Dunkerton, L.V.; Tyrrell, J.; Sasa, M.; Combariza, J.

    1986-05-01

    Molecular orbital calculations using effective core potential (ECP) have been carried out on a variety of complexes of carbonyl sulfide (OCS) with transition metals (Pd and Pt). An initial scan of the potential energy surface (the geometry for the carbonyl sulfide molecule was held constant at its experimental values) was carried out in order to determine the most probable sites for the attack of the transition matal on the carbonyl sulfide molecule. Two sites were shown to be energetically favorable: the approach of the transition metal towards the oxygen atom along the internuclear axis and the approach of the transition metal above or below the C-S bond region. After optimization of these two structures, the second minima was shown to be energetically more stable than the linear arrangement. In this optimum structure, the carbonyl sulfide molecule is bent. The higher affinity of palladium and platinum towards sulfur is shown in the tendency of these transition metal to form eta/sup 2 -/(OCS) type of bonds, in the order Pt > Pd. Dialkylaluminumchloride (R/sub 2/AlCl)-catalyzed ene reactions of carbonyl sulfide as an enophile with alkenes were performed. R/sub 2/AlCl selectively complexed to the thionyl sulfur of OCS, then reacted with different alkenes and formed corresponding alkenyl thioicacids as ene adducts. Those alkenes were limonene (1), ..beta..-pinene (2), and methylenecyclohexane (3). The reaction with 1 gave E and Z 3-(4 -(1'-hydroxy-1' -methyl-cyclohexyl))but-2-ene thiocacid (4) as a major product, which was formed from hydration of the thioicacid, a rearranged conjugated form of the original ene adduct. The reaction with 2 and 3 gave corresponding ..beta..,..gamma..-unsaturated original thioicacids, 2-(2'-(6',6'-dimethylbicyclo(3.1.1)hept-2'-ene))ethane thioicacid (5) and 2-(1' -cyclohexenyl)ethane thioicacid (6), respectively, as major products. 23 refs, 6 tabs.

  5. Chaperone heat shock protein 90 mobilization and hydralazine cytoprotection against acrolein-induced carbonyl stress.

    PubMed

    Burcham, Philip C; Raso, Albert; Kaminskas, Lisa M

    2012-11-01

    Toxic carbonyls such as acrolein participate in many degenerative diseases. Although the nucleophilic vasodilatory drug hydralazine readily traps such species under "test-tube" conditions, whether these reactions adequately explain its efficacy in animal models of carbonyl-mediated disease is uncertain. We have previously shown that hydralazine attacks carbonyl-adducted proteins in an "adduct-trapping" reaction that appears to take precedence over direct "carbonyl-sequestering" reactions, but how this reaction conferred cytoprotection was unclear. This study explored the possibility that by increasing the bulkiness of acrolein-adducted proteins, adduct-trapping might alter the redistribution of chaperones to damaged cytoskeletal proteins that are known targets for acrolein. Using A549 lung adenocarcinoma cells, the levels of chaperones heat shock protein (Hsp) 40, Hsp70, Hsp90, and Hsp110 were measured in intermediate filament extracts prepared after a 3-h exposure to acrolein. Exposure to acrolein alone modestly increased the levels of all four chaperones. Coexposure to hydralazine (10-100 μM) strongly suppressed cell ATP loss while producing strong adduct-trapping in intermediate filaments. Most strikingly, hydralazine selectively boosted the levels of cytoskeletal-associated Hsp90, including a high-mass species that was sensitive to the Hsp90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin. Biochemical fractionation of acrolein- and hydralazine-treated cells revealed that hydralazine likely promoted Hsp90 migration from cytosol into other subcellular compartments. A role for Hsp90 mobilization in cytoprotection was confirmed by the finding that brief heat shock treatment suppressed acute acrolein toxicity in A549 cells. Taken together, these findings suggest that by increasing the steric bulk of carbonyl-adducted proteins, adduct-trapping drugs trigger the intracellular mobilization of the key molecular chaperone Hsp90.

  6. Preparation and characterization of carbonyl iron/poly(butylcyanoacrylate) core/shell nanoparticles.

    PubMed

    Arias, J L; Gallardo, V; Linares-Molinero, F; Delgado, A V

    2006-07-15

    In this article a method is described to prepare composite colloidal nanoparticles, consisting of a magnetic core (carbonyl iron) and a biodegradable polymeric shell [poly(butylcyanoacrylate) or PBCA]. The method is based on the so-called anionic polymerization procedure, often used in the synthesis of poly(alkylcyanoacrylate) nanospheres designed for drug delivery. Interest of this investigation is based upon the fact that the heterogeneous structure of the particles can confer them both the possibility to respond to external magnetic fields and to be used as drug carriers. In order to investigate to what extent do the particles participate of this mixed properties, we compare in this work the physical characteristics (structure, chemical composition, specific surface area and surface electrical and thermodynamic properties) of the core/shell particles with those of both the nucleus and the coating material. This preliminary study shows that the mixed particles display an intermediate behavior between that of carbonyl iron and PBCA spheres. Electrophoretic mobility measurements as a function of pH and as a function of KNO3 concentration, show a great similarity between the core/shell and pure polymer nanoparticles. Similarly, a surface thermodynamic study performed on the three types of particles demonstrated that the electron-donor component of the surface free energy of the solids is very sensitive to the surface composition. In fact, a measurable decrease of such component is found for core/shell particles as compared to carbonyl iron. We also analyzed the influence of the relative amounts of polymer and carbonyl iron on the characteristics of the composite particles: data on the coating thickness, the amount of polymer bound to the magnetic nuclei, the redispersibility characteristics of the suspensions and the surface electrical and thermodynamic properties, suggest that the optimal synthesis conditions are obtained for a 4/3 initial monomer/carbonyl iron

  7. Soil emission and uptake of carbonyl sulfide at a temperate mountain grassland

    NASA Astrophysics Data System (ADS)

    Kitz, Florian; Hammerle, Albin; Laterza, Tamara; Spielmann, Felix M.; Wohlfahrt, Georg

    2016-04-01

    Flux partitioning, i.e. inferring gross primary productivity (GPP) and ecosystem respiration from the measured net ecosystem carbon dioxide (CO2) exchange, is one uncertainty in modelling the carbon cycle and in times where robust models are needed to assess future global changes a persistent problem. A promising new approach is to derive GPP by measuring carbonyl sulfide (COS), the most abundant sulfur-containing trace gas in the atmosphere, with a mean concentration of about 500 pptv in the troposphere. This is possible because COS and CO2 enter the leaf via a similar pathway and are processed by the same enzyme (carbonic anhydrase). A prerequisite to use COS as a proxy for canopy photosynthesis is a robust estimation of COS sources and sinks in an ecosystem. Past studies described soils either as a sink or source, depending on properties like soil temperature and soil water content. The main aim of this study was to quantify the soil COS exchange and its drivers of a temperate mountain grassland in order to aid the use of COS as tracer for canopy CO2 and water vapor exchange. We conducted a field campaign with a Quantum cascade laser at a temperate mountain grassland to estimate the soil COS fluxes under ambient conditions and while simulating a drought. We used self-built fused silica (i.e. light-transparent) soil chambers to avoid COS emissions from built-in materials and to assess the impact of radiation. Vegetation was removed within the chambers, therefor more radiation reached the soil surface compared to natural conditions. This might be the reason for highly positive fluxes during daytime more similar to agricultural study sites. To further investigate this large soil COS source we conducted within canopy concentration measurements near the soil surface and still recorded fluxes confirming the soil as a COS source during daytime. Results from the drought experiment suggested a strong impact of incoming radiation on soil COS fluxes followed by soil

  8. Identification, quantification, and functional aspects of skeletal muscle protein-carbonylation in vivo during acute oxidative stress.

    PubMed

    Fedorova, Maria; Kuleva, Nadezhda; Hoffmann, Ralf

    2010-05-01

    Reactive oxidative species (ROS) play important roles in cellular signaling but can also modify and often functionally inactivate other biomolecules. Thus, cells have developed effective enzymatic and nonenzymatic strategies to scavenge ROS. However, under oxidative stress, ROS production is able to overwhelm the scavenging systems, increasing the levels of functionally impaired proteins. A major class of irreversible oxidative modifications is carbonylation, which refers to reactive carbonyl-groups. In this investigation, we have studied the production and clearance rates for skeletal muscle proteins in a rat model of acute oxidative stress over a time period of 24 h using a gel-based proteomics approach. Optimized ELISA and Western blots with 10-fold improved sensitivities showed that the carbonylation level was stable at 4 nmol per mg protein 3 h following ROS induction. The carbonylation level then increased 3-fold over 6 h and then remained stable. In total, the oxidative stress changed the steady state levels of 20 proteins and resulted in the carbonylation of 38 skeletal muscle proteins. Carbonylation of these proteins followed diverse kinetics with some proteins being highly carbonylated very quickly, whereas others peaked in the 9 h sample or continued to increase up to 24 h after oxidative stress was induced. PMID:20377239

  9. Effect of olive mill wastewater phenol compounds on reactive carbonyl species and Maillard reaction end-products in ultrahigh-temperature-treated milk.

    PubMed

    Troise, Antonio Dario; Fiore, Alberto; Colantuono, Antonio; Kokkinidou, Smaro; Peterson, Devin G; Fogliano, Vincenzo

    2014-10-15

    Thermal processing and Maillard reaction (MR) affect the nutritional and sensorial qualities of milk. In this paper an olive mill wastewater phenolic powder (OMW) was tested as a functional ingredient for inhibiting MR development in ultrahigh-temperature (UHT)-treated milk. OMW was added to milk at 0.1 and 0.05% w/v before UHT treatment, and the concentration of MR products was monitored to verify the effect of OMW phenols in controlling the MR. Results revealed that OMW is able to trap the reactive carbonyl species such as hydroxycarbonyls and dicarbonyls, which in turn led to the increase of Maillard-derived off-flavor development. The effect of OMW on the formation of Amadori products and N-ε-(carboxymethyl)-lysine (CML) showed that oxidative cleavage, C2-C6 cyclization, and the consequent reactive carbonyl species formation were also inhibited by OMW. Data indicated that OMW is a functional ingredient able to control the MR and to improve the nutritional and sensorial attributes of milk.

  10. Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong.

    PubMed

    Guo, H; Lee, S C; Louie, P K K; Ho, K F

    2004-12-01

    Ambient air quality measurements of 156 species including 39 alkanes, 32 alkenes, 2 alkynes, 24 aromatic hydrocarbons, 43 halocarbons and 16 carbonyls, were carried out for 120 air samples collected at two sampling stations (CW and TW) in 2001 throughout Hong Kong. Spatial variations of volatile organic compounds (VOCs) in the atmosphere were investigated. Levels of most alkanes and alkenes at TW site were higher than that at the CW site, while the BTEX concentrations at the two sites were close. The BTEX ratios at CW and TW were 1.6:10.1:1.0:1.6 and 2.1:10.8:1.0:2.0, respectively. For major halogenated hydrocarbons, the mean concentrations of chloromethane, CFCs 12 and 22 did not show spatial variations at the two sites. However, site-specific differences were observed for trichloroethene and tetrachloroethene. Furthermore, there were no significant differences for carbonyls such as formaldehyde, acetaldehyde and acetone between the two sites. The levels of selected hydrocarbons in winter were 1-5 times that in summer. There were no common seasonal trends for carbonyls in Hong Kong. The ambient level of formaldehyde, the most abundant carbonyl, was higher in summer. However, levels of acetaldehyde, acetone and benzaldehyde in winter were 1.6-3.8 times that in summer. The levels of CFCs 11 and 12, and chloromethane in summer were higher than that in winter. Strong correlation of most hydrocarbons with propene and n-butane suggested that the primary contributors of hydrocarbons were vehicular emissions in Hong Kong. In addition, gasoline evaporation, use of solvents, leakage of liquefied petroleum gas (LPG), natural gas leakage and other industrial emissions, and even biogenic emissions affected the ambient levels of hydrocarbons. The sources of halocarbons were mainly materials used in industrial processes and as solvents. Correlation analysis suggested that photochemical reactions made significant contributions to the ambient levels of carbonyls in summer whereas

  11. Polysulfides protect SH-SY5Y cells from methylglyoxal-induced toxicity by suppressing protein carbonylation: A possible physiological scavenger for carbonyl stress in the brain.

    PubMed

    Koike, Shin; Kayama, Tasuku; Yamamoto, Shigeyoshi; Komine, Daisuke; Tanaka, Ryo; Nishimoto, Shoichi; Suzuki, Toshihiro; Kishida, Atsushi; Ogasawara, Yuki

    2016-07-01

    The formation of advanced glycation end products (AGEs) is associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease and schizophrenia. Methylglyoxal (MG), a highly reactive dicarbonyl compound, is known to be a major precursor for AGEs in modified proteins. Thus, a scavenger of MG might provide beneficial effects by suppressing the accumulation of AGEs and the occurrence of diseases induced by carbonyl stress. Meanwhile, polysulfides, one of the typical bound sulfur species, are oxidized forms of hydrogen sulfide (H2S) and may play a variety of roles in the brain. Herein, we assessed the scavenging ability of polysulfides against neuronal carbonyl stress induced by MG. First, we showed that polysulfides could protect differentiated (df)-SH-SY5Y cells from MG-induced cytotoxicity. When cells were pretreated with polysulfides, MG-induced cytotoxicity was attenuated with a rapid decrease in intracellular MG levels. Moreover, we found that polysulfides significantly suppressed the formation of MG-modified proteins in df-SH-SY5Y cells. Although polysulfide treatment increased endogenous GSH levels in the neuronal cells, its effects on MG-induced cytotoxicity were not affected by GSH concentration. Our results demonstrated that polysulfides had the direct potentials to protect neuronal cells against MG separate to the enzymatic detoxification system that required GSH. PMID:27163164

  12. Infrared spectra and density functional theory calculations of the tantalum and niobium carbonyl dinitrogen complexes.

    PubMed

    Lu, Zhang-Hui; Jiang, Ling; Xu, Qiang

    2009-07-21

    Laser-ablated tantalum and niobium atoms react with CO and N(2) mixtures in excess neon to produce carbonyl metal dinitrogen complexes, NNMCO (M = Ta, Nb), (NN)(2)TaCO, and NNTa(CO)(2), as well as metal carbonyls and dinitrogen complexes. These carbonylmetal dinitrogen complexes are characterized using infrared spectroscopy on the basis of the results of the isotopic substitution and mixed isotopic splitting patterns. Density functional theory calculations have been performed on these novel species. The good agreement between the experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts supports the identification of these species from the matrix infrared spectra. Natural bond orbital analysis and plausible reaction mechanisms for the formation of the products are discussed.

  13. Reaction pathway of methylenation of carbonyl compounds with bis(iodozincio)methane.

    PubMed

    Sada, Mutsumi; Komagawa, Shinsuke; Uchiyama, Masanobu; Kobata, Masami; Mizuno, Tsuyoshi; Utimoto, Kiitiro; Oshima, Koichiro; Matsubara, Seijiro

    2010-12-15

    About 40 years have passed since methylene dizinc reagent was discovered as a substitute for Wittig reagent. Density functional theory (DFT) calculations have been performed to understand the reaction pathways of methylenation of carbonyl compounds with bis(iodozincio)methane. The present computational/theoretical study concluded that the methylenation reaction with gem-dizinc reagent proceeds as a two-step reaction, that is, methylene addition (RDS) and olefination. In the first step, the nucleophilic attack of the CH2 group enhanced by two Zn proceeds under the assistance of the electrophilic activation of the carbonyl group with the Zn atom. In the second step, the olefination is facilitated by both Zn atoms of the gem-dizinc reagent without an electron transfer process. PMID:21082850

  14. Proton-Coupled Electron Transfer in the Reduction of Carbonyls by Samarium Diiodide-Water Complexes.

    PubMed

    Chciuk, Tesia V; Anderson, William R; Flowers, Robert A

    2016-07-20

    Reduction of carbonyls by SmI2 is significantly impacted by the presence of water, but the fundamental step(s) of initial transfer of a formal hydrogen atom from the SmI2-water reagent system to produce an intermediate radical is not fully understood. In this work, we provide evidence consistent with the reduction of carbonyls by SmI2-water proceeding through proton-coupled electron transfer (PCET). Combined rate and computational studies show that a model aldehyde and ketone are likely reduced through an asynchronous PCET, whereas reduction of a representative lactone occurs through a concerted PCET. In the latter case, concerted PCET is likely a consequence of significantly endergonic initial electron transfer. PMID:27367158

  15. Crystallization and preliminary X-ray crystallographic studies of pig heart carbonyl reductase

    SciTech Connect

    Aoki, Ken-ichi; Tanaka, Nobutada; Ishikura, Shuhei; Araki, Naoko; Imamura, Yorishige; Hara, Akira; Nakamura, Kazuo T.

    2006-10-01

    Pig heart carbonyl reductase has been crystallized in the presence of NADPH. Diffraction data have been collected using synchrotron radiation. Pig heart carbonyl reductase (PHCR), which belongs to the short-chain dehydrogenase/reductase (SDR) family, has been crystallized by the hanging-drop vapour-diffusion method. Two crystal forms (I and II) have been obtained in the presence of NADPH. Form I crystals belong to the tetragonal space group P4{sub 2}, with unit-cell parameters a = b = 109.61, c = 94.31 Å, and diffract to 1.5 Å resolution. Form II crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 120.10, c = 147.00 Å, and diffract to 2.2 Å resolution. Both crystal forms are suitable for X-ray structure analysis at high resolution.

  16. Impact of lipid content and composition on lipid oxidation and protein carbonylation in experimental fermented sausages.

    PubMed

    Fuentes, Verónica; Estévez, Mario; Ventanas, Jesús; Ventanas, Sonia

    2014-03-15

    This study aims to investigate the effect of lipid content (∼4%, ∼10% and ∼15%) and composition (different lipid sources; animal fat and sunflower oil) on the oxidative stability of proteins and lipids in experimental fermented sausages. Increasing the lipid content of sausages enhanced the susceptibility of lipids to oxidation whereas the effect on the formation of specific carbonyls from protein oxidation was not so evident. Sausages manufactured with different lipid sources affected the susceptibility of lipids and proteins to oxidation as a likely result of the modifications in the fatty acid profile, as well as to the presence of antioxidant compounds. While the fatty acid profile had a major effect on the occurrence and extent of lipid oxidation, the presence of compounds with potential antioxidant activity may be more influential on the extent of protein carbonylation.

  17. Chemoselective reduction of the carbonyl functionality through hydrosilylation: integrating click catalysis with hydrosilylation in one pot.

    PubMed

    Roy, Sudipta Raha; Sau, Samaresh Chandra; Mandal, Swadhin K

    2014-10-01

    Herein we report the chemoselective reduction of the carbonyl functionality via hydrosilylation using a copper(I) catalyst bearing the abnormal N-heterocyclic carbene 1 with low (0.25 mol %) catalyst loading at ambient temperature in excellent yield within a very short reaction time. The hydrosilylation reaction of α,β-unsaturated carbonyl compounds takes place selectively toward 1,2-addition (C═O) to yield the corresponding allyl alcohols in good yields. Moreover, when two reducible functional groups such as imine and ketone groups are present in the same molecule, this catalyst selectively reduces the ketone functionality. Further, 1 was used in a consecutive fashion by combining the Huisgen cycloaddition and hydrosilylation reactions in one pot, yielding a range of functionalized triazole substituted alcohols in excellent yields. PMID:25188382

  18. Density functional theory study of electroreductive hydrocoupling of alpha,beta-unsaturated carbonyl compounds.

    PubMed

    Kise, Naoki

    2006-11-24

    [reaction: see text] The electroreductive hydrocoupling of methyl cinnamate, methyl crotonate, cumarin, and benzalacetone was studied by DFT (B3LYP/6-311++ G**) calculations. The computational outcomes for the transition states in the hydrocoupling of anion radicals generated by a one-electron transfer to the alpha,beta-unsaturated carbonyl compounds well agree with the diastereoselectivities in the experimental results previously reported. PMID:17109548

  19. Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry.

    PubMed

    Muftakhov; Vasil'ev; Mazunov

    1999-06-01

    Appearance energies of [M-H](-) ions from carbonyl compounds R-CO-R' (R,R' = H, CH(3), NH(2), OH) have been measured by means of negative ion mass spectrometry in resonant electron capture mode. Values of electron affinity of the corresponding radicals, CH(2)&dbond;C(X)O, NH&dbond;C(X)O and O&dbond;C(X)O, have been determined. Copyright 1999 John Wiley & Sons, Ltd. PMID:10407285

  20. Microfluidic lab-on-a-chip derivatization for gaseous carbonyl analysis.

    PubMed

    Pang, Xiaobing; Lewis, Alastair C; Ródenas-García, Milagros

    2013-06-28

    We present a microfluidic lab-on-a-chip derivatization technique for the analysis of gaseous carbonyl compounds using O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) as the derivatizing reagent. The novel microfluidic lab-on-a-chip derivatization technique has been developed to measure nmol per mole (ppbv) mixing ratios of gaseous carbonyl compounds, which are of particular importance to atmospheric chemistry. The technique utilised a planar glass microreactor comprising three inlets and one outlet, gas and fluid splitting and combining channels, mixing junctions, and a 2.0m long, 620μm internal diameter reaction microchannel. The microreactor integrated three functions, providing: (1) a gas and liquid mixer and reactor, (2) reagent heating, and (3) sample pre-concentration. The concentration of derivatization solution, the volumetric flow rates of the incoming gas sample and PFBHA solution, and the temperature of the microreactor were optimised to achieve a near real-time measurement. The enhanced phase contact area-to-volume ratio and the high heat transfer rate in the microreactor resulted in a fast and high efficiency derivatization reaction, generating an effluent stream which was ready for direct introduction to GC-MS. Good linearity was observed for eight carbonyl compounds over the measurement ranges of 1-500ppbv when they were derivatized under optimal reaction conditions. The method detection limits (MDLs) were below 0.10nmolmol(-1) for most carbonyls in this study, which is below or close to their typical concentrations in clean ambient air. The performance of the technique was assessed by applying the methodology to the quantification of glyoxal (GLY) and methylglyoxal (MGLY) formed during isoprene photo-oxidation in an outdoor photoreactor chamber (EUPHORE). Good agreements between GLY and MGLY measurements were obtained comparing this new technique with Fourier Transform InfraRed (FTIR), which provides support for the potential effectiveness of

  1. Identification of the reactive cysteine residue (Cys227) in human carbonyl reductase.

    PubMed

    Tinguely, J N; Wermuth, B

    1999-02-01

    Carbonyl reductase is highly susceptible to inactivation by organomercurials suggesting the presence of a reactive cysteine residue in, or close to, the active site. This residue is also close to a site which binds glutathione. Structurally, carbonyl reductase belongs to the short-chain dehydrogenase/reductase family and contains five cysteine residues, none of which is conserved within the family. In order to identify the reactive residue and investigate its possible role in glutathione binding, alanine was substituted for each cysteine residue of human carbonyl reductase by site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli and purified to homogeneity. Four of the five mutants (C26A, C122A C150A and C226A) exhibited wild-type-like enzyme activity, although K(m) values of C226A for three structurally different substrates were increased threefold to 10-fold. The fifth mutant, C227A, showed a 10-15-fold decrease in kcat and a threefold to 40-fold increase in K(m), resulting in a 30-500-fold drop in kcat/K(m). NaCl (300 mM) increased the activity of C227A 16-fold, whereas the activity of the wild-type enzyme was only doubled. Substitution of serine rather than alanine for Cys227 similarly affected the kinetic constants with the exception that NaCl did not activate the enzyme. Both C227A and C227S mutants were insensitive to inactivation by 4-hydroxymercuribenzoate. Unlike the parent carbonyl compounds, the glutathione adducts of menadione and prostaglandin A1 were better substrates for the C227A and C227S mutants than the wild-type enzyme. Conversely, the binding of free glutathione to both mutants was reduced. Our findings indicate that Cys227 is the reactive residue and suggest that it is involved in the binding of both substrate and glutathione. PMID:10091578

  2. Interdisciplinary neurotoxicity inhalation studies: Carbon disulfide and carbonyl sulfide research in F344 rats

    SciTech Connect

    Sills, Robert C. . E-mail: sills@niehs.nih.gov; Harry, G. Jean; Valentine, William M.; Morgan, Daniel L.

    2005-09-01

    Inhalation studies were conducted on the hazardous air pollutants, carbon disulfide, which targets the central nervous system (spinal cord) and peripheral nervous system (distal portions of long myelinated axons), and carbonyl sulfide, which targets the central nervous system (brain). The objectives were to investigate the neurotoxicity of these compounds by a comprehensive evaluation of function, structure, and mechanisms of disease. Through interdisciplinary research, the major finding in the carbon disulfide inhalation studies was that carbon disulfide produced intra- and intermolecular protein cross-linking in vivo. The observation of dose-dependent covalent cross-linking in neurofilament proteins prior to the onset of lesions is consistent with this process contributing to the development of the neurofilamentous axonal swellings characteristic of carbon disulfide neurotoxicity. Of significance is that valine-lysine thiourea cross-linking on rat globin and lysine-lysine thiourea cross-linking on erythrocyte spectrin reflect cross-linking events occurring within the axon and could potentially serve as biomarkers of carbon disulfide exposure and effect. In the carbonyl sulfide studies, using magnetic resonance microscopy (MRM), we determined that carbonyl sulfide targets the auditory pathway in the brain. MRM allowed the examination of 200 brain slices and made it possible to identify the most vulnerable sites of neurotoxicity, which would have been missed in our traditional neuropathology evaluations. Electrophysiological studies were focused on the auditory system and demonstrated decreases in auditory brain stem evoked responses. Similarly, mechanistic studies focused on evaluating cytochrome oxidase activity in the posterior colliculus and parietal cortex. A decrease in cytochrome oxidase activity was considered to be a contributing factor to the pathogenesis of carbonyl sulfide neurotoxicity.

  3. Copper-catalyzed 1,2-addition of α-carbonyl iodides to alkynes.

    PubMed

    Xu, Tao; Hu, Xile

    2015-01-19

    β,γ-Unsaturated ketones are an important class of organic molecules. Herein, copper catalysis has been developed for the synthesis of β-γ-unsaturated ketones through 1,2-addition of α-carbonyl iodides to alkynes. The reactions exhibit wide substrate scope and high functional group tolerance. The reaction products are versatile synthetic intermediates to complex small molecules. The method was applied for the formal synthesis of (±)-trichostatin A, a histone deacetylase inhibitor. PMID:25470461

  4. On the satisfaction of backbone-carbonyl lone pairs of electrons in protein structures.

    PubMed

    Bartlett, Gail J; Woolfson, Derek N

    2016-04-01

    Protein structures are stabilized by a variety of noncovalent interactions (NCIs), including the hydrophobic effect, hydrogen bonds, electrostatic forces and van der Waals' interactions. Our knowledge of the contributions of NCIs, and the interplay between them remains incomplete. This has implications for computational modeling of NCIs, and our ability to understand and predict protein structure, stability, and function. One consideration is the satisfaction of the full potential for NCIs made by backbone atoms. Most commonly, backbone-carbonyl oxygen atoms located within α-helices and β-sheets are depicted as making a single hydrogen bond. However, there are two lone pairs of electrons to be satisfied for each of these atoms. To explore this, we used operational geometric definitions to generate an inventory of NCIs for backbone-carbonyl oxygen atoms from a set of high-resolution protein structures and associated molecular-dynamics simulations in water. We included more-recently appreciated, but weaker NCIs in our analysis, such as n→π* interactions, Cα-H bonds and methyl-H bonds. The data demonstrate balanced, dynamic systems for all proteins, with most backbone-carbonyl oxygen atoms being satisfied by two NCIs most of the time. Combinations of NCIs made may correlate with secondary structure type, though in subtly different ways from traditional models of α- and β-structure. In addition, we find examples of under- and over-satisfied carbonyl-oxygen atoms, and we identify both sequence-dependent and sequence-independent secondary-structural motifs in which these reside. Our analysis provides a more-detailed understanding of these contributors to protein structure and stability, which will be of use in protein modeling, engineering and design. PMID:26833776

  5. Absolute rate parameters for the reaction of ground state atomic oxygen with carbonyl sulfide

    NASA Technical Reports Server (NTRS)

    Klemm, R. B.; Stief, L. J.

    1974-01-01

    The rate parameters for the reaction of O(3P) with carbonyl sulfide, O(3P) + OCS yields CO + SO, have been determined directly by monitoring O(3P) using the flash photolysis-resonance fluorescence technique. The value for reaction rate was measured over a temperature range of 263-502 K and the data were fitted to an Arrhenius expression with good linearity. A comparison of the present results with those from previous studies of this reaction is also presented.

  6. Copper-catalyzed 1,2-addition of α-carbonyl iodides to alkynes.

    PubMed

    Xu, Tao; Hu, Xile

    2015-01-19

    β,γ-Unsaturated ketones are an important class of organic molecules. Herein, copper catalysis has been developed for the synthesis of β-γ-unsaturated ketones through 1,2-addition of α-carbonyl iodides to alkynes. The reactions exhibit wide substrate scope and high functional group tolerance. The reaction products are versatile synthetic intermediates to complex small molecules. The method was applied for the formal synthesis of (±)-trichostatin A, a histone deacetylase inhibitor.

  7. Determination of vapor-phase carbonyls by high-pressure liquid chromatography

    SciTech Connect

    Maskarinec, M.P.; Manning, D.L.; Oldham, P.

    1981-01-01

    Methods have been developed for the trapping and quantitative analysis of low molecular weight carbonyls in complex gas phase mixtures. Formaldehyde, acetaldehyde, acrolein, and acetone are separated as the 2-4-dinitrophenylhydrazones with a sensitivity of less than 10 ppB. The separation can be done on a variety of commercial C/sub 18/ reverse-phase columns. 4 figures, 1 table.

  8. Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide.

    PubMed

    Wysocki, Gerard; McCurdy, Matt; So, Stephen; Weidmann, Damien; Roller, Chad; Curl, Robert F; Tittel, Frank K

    2004-11-10

    Simultaneous exhaled carbonyl sulfide (OCS) and carbon dioxide concentration measurements in human breath are demonstrated with a compact pulsed quantum-cascade laser-based gas sensor. We achieved a noise-equivalent sensitivity (1sigma) of 1.2 parts per billion by measuring a well-isolated OCS P(11) absorption line in the v3 band at 2057.6 cm(-1) using an astigmatic Herriott cell of 36-m optical path length and 0.4-s acquisition time.

  9. On the satisfaction of backbone-carbonyl lone pairs of electrons in protein structures.

    PubMed

    Bartlett, Gail J; Woolfson, Derek N

    2016-04-01

    Protein structures are stabilized by a variety of noncovalent interactions (NCIs), including the hydrophobic effect, hydrogen bonds, electrostatic forces and van der Waals' interactions. Our knowledge of the contributions of NCIs, and the interplay between them remains incomplete. This has implications for computational modeling of NCIs, and our ability to understand and predict protein structure, stability, and function. One consideration is the satisfaction of the full potential for NCIs made by backbone atoms. Most commonly, backbone-carbonyl oxygen atoms located within α-helices and β-sheets are depicted as making a single hydrogen bond. However, there are two lone pairs of electrons to be satisfied for each of these atoms. To explore this, we used operational geometric definitions to generate an inventory of NCIs for backbone-carbonyl oxygen atoms from a set of high-resolution protein structures and associated molecular-dynamics simulations in water. We included more-recently appreciated, but weaker NCIs in our analysis, such as n→π* interactions, Cα-H bonds and methyl-H bonds. The data demonstrate balanced, dynamic systems for all proteins, with most backbone-carbonyl oxygen atoms being satisfied by two NCIs most of the time. Combinations of NCIs made may correlate with secondary structure type, though in subtly different ways from traditional models of α- and β-structure. In addition, we find examples of under- and over-satisfied carbonyl-oxygen atoms, and we identify both sequence-dependent and sequence-independent secondary-structural motifs in which these reside. Our analysis provides a more-detailed understanding of these contributors to protein structure and stability, which will be of use in protein modeling, engineering and design.

  10. Polyimides with carbonyl and ether connecting groups between the aromatic rings

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1992-01-01

    New polyimides have been prepared from the reaction of aromatic dianhydrides with novel aromatic diamines containing carbonyl and ether connecting groups between the aromatic rings. Several of these polyimides are shown to be semi-crystalline as evidenced by wide angle x ray diffraction and differential scanning calorimetry. Most of the polyimides form tough solvent resistant films with high tensile properties. Several of these materials can be thermally processed to form solvent and base resistant moldings.

  11. Mitochondrial ascorbate-glutathione cycle and proteomic analysis of carbonylated proteins during tomato (Solanum lycopersicum) fruit ripening.

    PubMed

    López-Vidal, O; Camejo, D; Rivera-Cabrera, F; Konigsberg, M; Villa-Hernández, J M; Mendoza-Espinoza, J A; Pérez-Flores, L J; Sevilla, F; Jiménez, A; Díaz de León-Sánchez, F

    2016-03-01

    In non-photosynthetic tissues, mitochondria are the main source of energy and of reactive oxygen species. Accumulation of high levels of these species in the cell causes damage to macromolecules including several proteins and induces changes in different metabolic processes. Fruit ripening has been characterized as an oxidative phenomenon; therefore, control of reactive oxygen species levels by mitochondrial antioxidants plays a crucial role on this process. In this work, ascorbate-glutathione cycle components, hydrogen peroxide levels and the proteomic profile of carbonylated proteins were analyzed in mitochondria isolated from tomato (Solanum lycopersicum) fruit at two ripening stages. A significant increase on most ascorbate-glutathione cycle components and on carbonylated proteins was observed in mitochondria from breaker to light red stage. Enzymes and proteins involved in diverse cellular and mitochondrial metabolic pathways were identified among the carbonylated proteins. These results suggest that protein carbonylation is a post-translational modification involved in tomato fruit ripening regulation. PMID:26471654

  12. Mitochondrial ascorbate-glutathione cycle and proteomic analysis of carbonylated proteins during tomato (Solanum lycopersicum) fruit ripening.

    PubMed

    López-Vidal, O; Camejo, D; Rivera-Cabrera, F; Konigsberg, M; Villa-Hernández, J M; Mendoza-Espinoza, J A; Pérez-Flores, L J; Sevilla, F; Jiménez, A; Díaz de León-Sánchez, F

    2016-03-01

    In non-photosynthetic tissues, mitochondria are the main source of energy and of reactive oxygen species. Accumulation of high levels of these species in the cell causes damage to macromolecules including several proteins and induces changes in different metabolic processes. Fruit ripening has been characterized as an oxidative phenomenon; therefore, control of reactive oxygen species levels by mitochondrial antioxidants plays a crucial role on this process. In this work, ascorbate-glutathione cycle components, hydrogen peroxide levels and the proteomic profile of carbonylated proteins were analyzed in mitochondria isolated from tomato (Solanum lycopersicum) fruit at two ripening stages. A significant increase on most ascorbate-glutathione cycle components and on carbonylated proteins was observed in mitochondria from breaker to light red stage. Enzymes and proteins involved in diverse cellular and mitochondrial metabolic pathways were identified among the carbonylated proteins. These results suggest that protein carbonylation is a post-translational modification involved in tomato fruit ripening regulation.

  13. Some features of the change in the carbonyl group content of coal in the process of metamorphism

    SciTech Connect

    Kucherenko, V.A.; Kuznetsova, L.V.; Sapunov, V.A.; Osipov, A.M.

    1983-01-01

    Different forms of carbonyl groups were studied in Donbass coals and it was shown that there is a relationship between the variation in quinoidal and ketonic oxygen and the degree of metamorphism. (17 refs.)

  14. Consideration of reactivity to acute fish toxicity of α,β-unsaturated carbonyl ketones and aldehydes.

    PubMed

    Furuhama, A; Aoki, Y; Shiraishi, H

    2012-01-01

    To understand the key factor for fish toxicity of 11 α,β-unsaturated carbonyl aldehydes and ketones, we used quantum chemical calculations to investigate their Michael reactions with methanethiol or glutathione. We used two reaction schemes, with and without an explicit water molecule (Scheme-1wat and Scheme-0wat, respectively), to account for the effects of a catalytic water molecule on the reaction pathway. We determined the energies of the reactants, transition states (TS), and products, as well as the activation energies of the reactions. The acute fish toxicities of nine of the carbonyl compounds were evaluated to correlate with their hydrophobicities; no correlation was observed for acrolein and crotonaldehyde. The most toxic compound, acrolein, had the lowest activation energy. The activation energy of the reaction could be estimated with Scheme-1wat but not with Scheme-0wat. The complexity of the reaction pathways of the compounds was reflected in the difficulty of the TS structure searches when Scheme-1wat was used with the polarizable continuum model. The theoretical estimations of activation energies of α,β-unsaturated carbonyl compounds with catalytic molecules or groups including hydrogen-bond networks may complement traditional tools for predicting the acute aquatic toxicities of compounds that cannot be easily obtained experimentally. PMID:22150015

  15. A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect

    NASA Astrophysics Data System (ADS)

    Regazzoni, Luca; de Courten, Barbora; Garzon, Davide; Altomare, Alessandra; Marinello, Cristina; Jakubova, Michaela; Vallova, Silvia; Krumpolec, Patrik; Carini, Marina; Ukropec, Jozef; Ukropcova, Barbara; Aldini, Giancarlo

    2016-06-01

    Carnosine is a natural dipeptide able to react with reactive carbonyl species, which have been recently associated with the onset and progression of several human diseases. Herein, we report an intervention study in overweight individuals. Carnosine (2 g/day) was orally administered for twelve weeks in order to evaluate its bioavailability and metabolic fate. Two carnosine adducts were detected in the urine samples of all subjects. Such adducts are generated from a reaction with acrolein, which is one of the most toxic and reactive compounds among reactive carbonyl species. However, neither carnosine nor adducts have been detected in plasma. Urinary excretion of adducts and carnosine showed a positive correlation although a high variability of individual response to carnosine supplementation was observed. Interestingly, treated subjects showed a significant decrease in the percentage of excreted adducts in reduced form, accompanied by a significant increase of the urinary excretion of both carnosine and carnosine-acrolein adducts. Altogether, data suggest that acrolein is entrapped in vivo by carnosine although the response to its supplementation is possibly influenced by individual diversities in terms of carnosine dietary intake, metabolism and basal production of reactive carbonyl species.

  16. Brown carbon formation by aqueous-phase carbonyl compound reactions with amines and ammonium sulfate.

    PubMed

    Powelson, Michelle H; Espelien, Brenna M; Hawkins, Lelia N; Galloway, Melissa M; De Haan, David O

    2014-01-21

    Reactions between small water-soluble carbonyl compounds, ammonium sulfate (AS), and/or amines were evaluated for their ability to form light-absorbing species in aqueous aerosol. Aerosol chemistry was simulated with bulk phase reactions at pH 4, 275 K, initial concentrations of 0.05 to 0.25 M, and UV-vis and fluorescence spectroscopy monitoring. Glycolaldehyde-glycine mixtures produced the most intense absorbance. In carbonyl compound reactions with AS, methylamine, or AS/glycine mixtures, product absorbance followed the order methylglyoxal > glyoxal > glycolaldehyde > hydroxyacetone. Absorbance extended into the visible, with a wavelength dependence fit by absorption Ångstrom coefficients (Å(abs)) of 2 to 11, overlapping the Å(abs) range of atmospheric, water-soluble brown carbon. Many reaction products absorbing between 300 and 400 nm were strongly fluorescent. On a per mole basis, amines are much more effective than AS at producing brown carbon. In addition, methylglyoxal and glyoxal produced more light-absorbing products in reactions with a 5:1 AS-glycine mixture than with AS or glycine alone, illustrating the importance of both organic and inorganic nitrogen in brown carbon formation. Through comparison to biomass burning aerosol, we place an upper limit on the contribution of these aqueous carbonyl-AS-amine reactions of ≤ 10% of global light absorption by brown carbon. PMID:24351110

  17. A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect

    PubMed Central

    Regazzoni, Luca; de Courten, Barbora; Garzon, Davide; Altomare, Alessandra; Marinello, Cristina; Jakubova, Michaela; Vallova, Silvia; Krumpolec, Patrik; Carini, Marina; Ukropec, Jozef; Ukropcova, Barbara; Aldini, Giancarlo

    2016-01-01

    Carnosine is a natural dipeptide able to react with reactive carbonyl species, which have been recently associated with the onset and progression of several human diseases. Herein, we report an intervention study in overweight individuals. Carnosine (2 g/day) was orally administered for twelve weeks in order to evaluate its bioavailability and metabolic fate. Two carnosine adducts were detected in the urine samples of all subjects. Such adducts are generated from a reaction with acrolein, which is one of the most toxic and reactive compounds among reactive carbonyl species. However, neither carnosine nor adducts have been detected in plasma. Urinary excretion of adducts and carnosine showed a positive correlation although a high variability of individual response to carnosine supplementation was observed. Interestingly, treated subjects showed a significant decrease in the percentage of excreted adducts in reduced form, accompanied by a significant increase of the urinary excretion of both carnosine and carnosine-acrolein adducts. Altogether, data suggest that acrolein is entrapped in vivo by carnosine although the response to its supplementation is possibly influenced by individual diversities in terms of carnosine dietary intake, metabolism and basal production of reactive carbonyl species. PMID:27265207

  18. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: are both events connected?

    PubMed

    Villaverde, A; Ventanas, J; Estévez, M

    2014-12-01

    The role played by curing agents (nitrite, ascorbate) on protein oxidation and Strecker aldehyde formation is studied. To fulfill this objective, increasing concentrations of nitrite (0, 75 and 150ppm) and ascorbate (0, 250 and 500ppm) were added to sausages subjected to a 54day drying process. The concurrence of intense proteolysis, protein carbonylation and formation of Strecker aldehydes during processing of sausages suggests that α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) may be implicated in the formation of Strecker aldehydes. The fact that nitrite (150ppm, ingoing amount) significantly promoted the formation of protein carbonyls at early stages of processing and the subsequent formation of Strecker aldehydes provides strength to this hypothesis. Ascorbate (125 and 250ppm) controlled the overall extent of protein carbonylation in sausages without declining the formation of Strecker aldehydes. These results may contribute to understanding the chemistry fundamentals of the positive influence of nitrite on the flavor and overall acceptability of cured muscle foods.

  19. Mechanisms on electrical breakdown strength increment of polyethylene by aromatic carbonyl compounds addition: a theoretical study.

    PubMed

    Zhang, Hui; Shang, Yan; Wang, Xuan; Zhao, Hong; Han, Baozhong; Li, Zesheng

    2013-12-01

    A theoretical investigation is accomplished on the mechanisms of electrical breakdown strength increment of polyethylene at the atomic and molecular levels. It is found that the addition of aromatic carbonyl compounds as voltage stabilizers is one of the important factors for increasing electrical breakdown strength of polyethylene, as the additives can trap hot electrons, obtain energy of hot electrons, and transform the aliphatic cation to relatively stable aromatic cation to prevent the degradation of the polyethylene matrix. The HOMO-LUMO energy gaps (E(g)), the ionization potentials (IPs), and electron affinities (EAs) at the ground states of a series of aromatic carbonyl compounds are obtained at the B3LYP/6-311+G(d,p) level. The theoretical results are in good agreement with the available experimental findings, show that 2,4-dioctyloxybenzophenone (Bzo) and 4,4'-didodecyloxybenzil (Bd) molecules can effectively increase the electrical breakdown strength when they are doped into polyethylene because of their much smaller E g values than all the other studied aromatic carbonyl molecules and excellent compatibility with polymers matrix.

  20. Spectroscopic studies on the oxidation of carbonyl compounds by OH radicals in the aqueous solution

    NASA Astrophysics Data System (ADS)

    Schaefer, T.; Herrmann, H.

    2009-04-01

    The atmospheric conversation and degradation of volatile organic compounds (VOCs) is often initiated by radical reactions. One of the most important radical in the atmosphere is the OH-radical. Oxidation reactions of water soluble organic compounds in the atmospheric aqueous phase (cloud droplets, fog, rain, deliquescent particles) can be as fast as in the gas phase, but lead to different reaction products or different product distributions. The objective of this work is to identify and characterize the various transient species formed in the oxidation of carbonyl compounds such as acetone. This characterization is necessary to measure rate constants of elementary reaction steps in the course of the degradation process. The spectroscopic and kinetic information obtained will allow a better understanding of the atmospheric fate of carbonyl compounds. In order to characterize the optical properties of the formed transient compounds (e.g. organic peroxy radicals) a laser photolysis long path absorption apparatus coupled with a CCD-camera / grating combination is used. With this technique time resolved spectra (at different delay times after the excimer laser pulse) of the reactants and products can be recorded. Within this contribution organic peroxy radical spectra of the following parent carbonyl compounds (a) acetone, (b) hydroxyacetone, (c) methylglyoxal and (d) pyruvic acid will be presented, discussed and compared with literature data. OH radicals were generated directly in the reaction cell by the photolysis of hydrogen peroxide (H2O2) at 248 nm. All reactions were studied at T = 298K in the aqueous solution.

  1. Asymmetric Conjugate Alkynylation of Cyclic α,β-Unsaturated Carbonyl Compounds with a Chiral Diene Rhodium Catalyst.

    PubMed

    Dou, Xiaowei; Huang, Yinhua; Hayashi, Tamio

    2016-01-18

    Asymmetric conjugate alkynylation of cyclic α,β-unsaturated carbonyl compounds (ketones, esters, and amides) was realized by use of diphenyl[(triisopropylsilyl)ethynyl]methanol as an alkynylating reagent in the presence of a rhodium catalyst coordinated with a new chiral diene ligand (Fc-bod; bod=bicyclo[2.2.2]octa-2,5-diene, Fc=ferrocenyl) to give high yields of the corresponding β-alkynyl-substituted carbonyl compounds with 95-98% ee. PMID:26636764

  2. Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, alpha,beta-unsaturated chemicals.

    PubMed

    Schultz, T Wayne; Netzeva, Tatiana I; Roberts, David W; Cronin, Mark T D

    2005-02-01

    Toxicity data for 82 aliphatic chemicals with an alpha,beta-unsaturated substructure were compiled. Toxicity was assessed in the 2-day Tetrahymena pyriformis population growth impairment assay. Toxic potency [log(IGC50(-1))] for most of these chemicals was in excess of baseline narcosis as quantified by the 1-octanol/water partition coefficient (log K(ow)). The toxicity of the alpha,beta-unsaturated aldehydes was modeled well by log K(ow) in conjunction with the sum of partial charges on the vinylene carbon atoms (Q(C4) + Q(C3)) and the energy of the lowest unoccupied molecular orbital (E(lumo)). These electronic descriptors were also successful at modeling the toxicity of alpha,beta-unsaturated ketones. The toxicity of a range of acrylates was constant within about 0.2 of a log unit. Conversely, the toxicity of methacrylates and esters containing the vinylene group varied considerably and was explained by their hydrophobicity. The comparison of the quantitative structure-activity relationship (QSAR) for the methacrylates and esters with that for non-polar narcosis showed little significant difference and hence suggested that substitution on the carbon-carbon double bond in the methacrylates and vinylene unsaturated esters does not enhance toxicity over that of baseline. Substitution on the carbon-carbon double bond in the alpha,beta-unsaturated aldehydes resulted in toxicity that was similar to that for saturated derivatives. Although an excellent hydrophobicity-dependent QSAR was developed for the esters containing ethynylene group, these compounds are considered to act as Michael-type acceptors. Attempts to combine different groups of Michael-type acceptors into a single QSAR, based on mechanistically derived descriptors, were unsuccessful. Thus, the modeling of the toxicity of the alpha,beta-unsaturated carbonyl domain is currently limited to models for narrow subdomains. PMID:15720140

  3. The Use of Automatic Relevance Feedback in Boolean Retrieval Systems.

    ERIC Educational Resources Information Center

    Dillon, Martin; Desper, James

    1980-01-01

    Describes a technique for automatic reformulation of Boolean queries which compares favorably with feedback as employed in a SMART system. Using patron relevance judgments, prevalence measures reflecting term distribution in relevant and nonrelevant documents are derived to guide the construction of a Boolean query for a subsequent retrieval.…

  4. Time and dose effects of cigarette smoke and acrolein on protein carbonyl formation in HaCaT keratinocytes.

    PubMed

    Avezov, K; Reznick, A Z; Aizenbud, D

    2015-01-01

    Cigarette smoke (CS) is an important environmental source of human exposure to a highly toxic and chemically active α,β-unsaturated aldehyde: acrolein. It is capable of causing protein carbonylation and dysfunction, especially in oral tissues of smokers, constantly exposed to CS toxic constituents. The foremost damage is considered to be cumulative, but even a short exposure can be potentially harmful. The objectives of the current study were to examine the short time and dose effects of direct CS and acrolein exposure on intracellular protein carbonylation in epithelial cells. HaCaT-keratinocytes were exposed to different doses of acrolein and whole phase CS using a unique smoking simulator apparatus that mimics the exposure in smokers. The rate of intracellular protein carbonyl modification was examined 10-60 min after the exposure by Western blot. In addition, the effect of pre-incubation with a thiol scavenger N-acetylcysteine (NAC) was also assessed. We found that intracellular protein carbonyls increased as fast as 10 min after CS exposure and their concentration doubled after 20 min, with a slight elevation afterwards. Also, carbonyl levels increased gradually as CS and acrolein doses were elevated. Addition of 1 mM NAC neutralized part of the damage. We conclude that CS and acrolein intracellular protein carbonylation is dose- and time- dependent. Even a short time exposure to CS and its aldehydic constituents can be potentially harmful.

  5. Proteomic profile of carbonylated proteins in rat liver: exercise attenuated oxidative stress may be involved in fatty liver improvement.

    PubMed

    Hu, Xiaofei; Duan, Zhigui; Hu, Hui; Li, Guolin; Yan, Siyu; Wu, Jinfeng; Wang, Jun; Yin, Dazhong; Xie, Qingji

    2013-05-01

    To screen target proteins of oxidative stress which mediate the effects of exercise on preventing nonalcoholic fatty liver disease (NAFLD), the methods for selecting carbonylated proteins were modified, and carbonylated proteins were profiled. The results showed that treadmill training reduced oxidative stress and the levels of intrahepatic triglyceride (IHTG). The changes in IHTG showed a significant positive correlation with oxidative stress as indicated by malondialdehyde level. Further results from proteomics illustrated that 17 functional proteins were susceptible to oxidative modification, and exercise protected three proteins from carbonylation. The latter three proteins may serve as both direct target proteins of oxidative stress and mediators contributing to the beneficial effects of exercise. In particular, a long-chain specific acyl-CoA dehydrogenase (ACADL) which was a key enzyme in lipid metabolism was not carbonylated and with higher activities in exercise group. These findings indicate that this modified technique is practical and powerful in selecting carbonylated proteins. Long-term treadmill training is effective in ameliorating oxidative stress and preventing the accumulation of IHTG. Among the 17 target proteins of oxidative modification, three proteins contribute to the beneficial effects of exercise. Preventing ACADL from carbonylation may be involved in the physiological mechanism of exercise-induced NAFLD improvement.

  6. Unexpected high yields of carbonyl and peroxide products of aqueous isoprene ozonolysis and implications

    NASA Astrophysics Data System (ADS)

    Wang, H. L.; Huang, D.; Zhang, X.; Zhao, Y.; Chen, Z. M.

    2012-03-01

    The aqueous phase reaction of volatile organic compounds (VOCs) has not been considered in most analyses of atmospheric chemical processes. However, some experimental evidence has shown that, compared to the corresponding gas phase reaction, the aqueous chemical processes of VOCs in the bulk solutions and surfaces of ambient wet particles (cloud, fog, and wet aerosols) may potentially contribute to the products and formation of secondary organic aerosol (SOA). In the present study, we performed a laboratory experiment of the aqueous ozonolysis of isoprene at different pHs (3-7) and temperatures (4-25 °C). We detected three important kinds of products, including carbonyl compounds, peroxide compounds, and organic acids. Our results showed that the molar yields of these products were nearly independent of the investigated pHs and temperatures. These products included (1) carbonyls: 56.7 ± 6.7% formaldehyde, 42.8 ± 2.5% methacrolein (MAC), and 57.7 ± 3.4% methyl vinyl ketone (MVK); (2) peroxides: 53.4 ± 4.1% hydrogen peroxide (H2O2) and 15.1 ± 3.1% hydroxylmethyl hydroperoxide (HMHP); and (3) organic acids: undetectable (< 1% estimated by the detection limit). Based on the amounts of products formed and the isoprene consumed, the total carbon yield was estimated to be 95 ± 4%. This implied that most of the products in the reaction system were detected. Of note, the combined yields of both MAC + MVK and H2O2 + HMHP in the aqueous isoprene ozonolysis were much higher than those observed in the corresponding gas phase reaction. We suggested that these unexpected high yields of carbonyls and peroxides were related to the greater capability of condensed water, compared to water vapor, to stabilize energy-rich Criegee radicals. This aqueous ozonolysis of isoprene (and possibly other biogenic VOCs) could potentially occur on the surfaces of ambient wet particles and plants. Moreover, the high-yield carbonyl and peroxide products might provide a considerable source of

  7. Letter: α,ω,N,N-Dimethylaminoalkylamines as possible derivatization agents for the analysis of small carbonyl compounds by low energy mass spectrometry.

    PubMed

    Zhilyaev, Dmitry I; Borisov, Roman S; Polovkov, Nikolai Yu; Zaikin, Vladimir G

    2016-01-01

    Reaction with α,ω-N,N-dimethylaminoalkylamines (2-dimethylaminoethylamine, 3- dimethylaminopropylamine, 4-dimethylaminobutylamine) to form Schiff bases followed by quaternization of the N,N-dimethylamino group by alkyl (deuteroalkyl) halides to generate fixed-charge fragments is suggested for the characterization of carbonyl compounds by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. As model objects, some aliphatic aldehydes and alicyclic and steroid ketones were involved in the modification. Using gas chromatography mass spectrometry, the first modification stage proved to be quantitative. Not only the MALDI conditions but also the nanostructurized target provided spectra that revealed peaks for the cationic parts of derivatives. It was shown that the use of deuterated alkyl halides allows one to prepare deuterium-labeled standards for possible quantitative analysis. PMID:27553738

  8. Psychological Relevance and Information Science.

    ERIC Educational Resources Information Center

    Harter, Stephen P.

    1992-01-01

    Explores the theory of psychological relevance and its relationship to information retrieval, and provides an extended example. Topics discussed include information need, the search process, the nature of information, topical relevance, relevance judgments and retrieval testing, information retrieval and bibliometrics, and suggestions for further…

  9. Suppression of carbonyl reductase expression enhances malignant behaviour in uterine cervical squamous cell carcinoma: carbonyl reductase predicts prognosis and lymph node metastasis.

    PubMed

    Murakami, Akihiro; Fukushima, Chikako; Yoshidomi, Keiko; Sueoka, Kotaro; Nawata, Shugo; Yokoyama, Yoshihito; Tsuchida, Shigeki; Ismail, Endom; Al-Mulla, Fahd; Sugino, Norihiro

    2011-12-01

    Carbonyl reductase (CR) is an NADPH-dependent, mostly monomeric, cytosolic enzyme with broad substrate specificity for carbonyl compounds. CR appears to be involved in the regulation of tumour progression. However, molecular mechanisms of CR in tumour progression and clinical significance of CR status remain unclear in human uterine squamous cell carcinoma (SCC). Here, we investigated the clinical significance of CR using immunohistochemical analyses of human uterine cervical SCC tissues and how CR affects cancer cell behaviour in vitro. Paraffin sections from uterine cervical SCC tissues, FIGO stage Ib1-IIb (n = 67) were immunostained with anti-CR antibodies. Overall survival (OS) and progression-free survival (PFS) were analyzed by the Kaplan-Meier method. Sense and antisense CR cDNAs were transfected into a human uterine SCC cell line (SiHa) to investigate the role of CR in cancer cell invasion and metastasis. Immunohistochemical analyses showed that reduced CR expression patterns in primary cancer lesions were closely associated with a high incidence of pelvic lymph node metastasis, poor OS, and poor PFS. In an in vitro experiment, suppression of CR increased cancer cell invasion, secretion of MMP-2, -9 and cyclooxygenase-2 (COX-2) expression and decreased E-cadherin expression. On the other hand, over-expression of CR increased E-cadherin expression and decreased MMP-2, -9 secretion and COX-2 expression. The reduced CR expression pattern, as measured by immunohistochemistry, can be a useful predictor of lymph node metastasis and poor prognosis in patients with uterine SCC. This clinical result is supported by the in vitro data which show that suppression of CR expression promotes cancer cell invasion with decreased E-cadherin expression and increased MMP-2, -9 secretion.

  10. Scope and Mechanistic Analysis for Chemoselective Hydrogenolysis of Carbonyl Compounds Catalyzed by a Cationic Ruthenium Hydride Complex with a Tunable Phenol Ligand.

    PubMed

    Kalutharage, Nishantha; Yi, Chae S

    2015-09-01

    A cationic ruthenium hydride complex, [(C6H6)(PCy3)(CO)RuH](+)BF4(-) (1), with a phenol ligand was found to exhibit high catalytic activity for the hydrogenolysis of carbonyl compounds to yield the corresponding aliphatic products. The catalytic method showed exceptionally high chemoselectivity toward the carbonyl reduction over alkene hydrogenation. Kinetic and spectroscopic studies revealed a strong electronic influence of the phenol ligand on the catalyst activity. The Hammett plot of the hydrogenolysis of 4-methoxyacetophenone displayed two opposite linear slopes for the catalytic system 1/p-X-C6H4OH (ρ = -3.3 for X = OMe, t-Bu, Et, and Me; ρ = +1.5 for X = F, Cl, and CF3). A normal deuterium isotope effect was observed for the hydrogenolysis reaction catalyzed by 1/p-X-C6H4OH with an electron-releasing group (kH/kD = 1.7-2.5; X = OMe, Et), whereas an inverse isotope effect was measured for 1/p-X-C6H4OH with an electron-withdrawing group (kH/kD = 0.6-0.7; X = Cl, CF3). The empirical rate law was determined from the hydrogenolysis of 4-methoxyacetophenone: rate = kobsd[Ru][ketone][H2](-1) for the reaction catalyzed by 1/p-OMe-C6H4OH, and rate = kobsd[Ru][ketone][H2](0) for the reaction catalyzed by 1/p-CF3-C6H4OH. Catalytically relevant dinuclear ruthenium hydride and hydroxo complexes were synthesized, and their structures were established by X-ray crystallography. Two distinct mechanistic pathways are presented for the hydrogenolysis reaction on the basis of these kinetic and spectroscopic data. PMID:26235841

  11. Carbonyl compounds in dining areas, kitchens and exhaust streams in restaurants with varying cooking methods in Kaohsiung, Taiwan.

    PubMed

    Cheng, Jen-Hsuan; Lee, Yi-Shiun; Chen, Kang-Shin

    2016-03-01

    Eighteen carbonyl species in C1-C10 were measured in the dining areas, kitchens and exhaust streams of six different restaurant types in Kaohsiung, southern Taiwan. Measured results in the dining areas show that Japanese barbecue (45.06ppb) had the highest total carbonyl concentrations (sum of 18 compounds), followed by Chinese hotpot (38.21ppb), Chinese stir-frying (8.99ppb), Western fast-food (8.22ppb), Chinese-Western mixed style (7.38ppb), and Chinese buffet (3.08ppb), due to their different arrangements for dining and cooking spaces and different cooking methods. On average, low carbon-containing species (C1-C4), e.g., formaldehyde, acetaldehyde, acetone and butyraldehyde were dominant and contributed 55.01%-94.52% of total carbonyls in the dining areas of all restaurants. Meanwhile, Chinese-Western mixed restaurants (45.48ppb) had high total carbonyl concentrations in kitchens mainly because of its small kitchen and poor ventilation. However, high carbon-containing species (C5-C10) such as hexaldehyde, heptaldehyde and nonanaldehyde (16.62%-77.00% of total carbonyls) contributed comparatively with low carbon-containing compounds (23.01%-83.39% of total carbonyls) in kitchens. Furthermore, Chinese stir-frying (132.10ppb), Japanese barbecue (125.62ppb), Western fast-food (122.67ppb), and Chinese buffet (119.96ppb) were the four restaurant types with the highest total carbonyl concentrations in exhaust streams, indicating that stir-frying and grilling are inclined to produce polluted gases. Health risk assessments indicate that Chinese hotpot and Japanese barbecue exceeded the limits of cancer risk (10(-6)) and hazard index (=1), mainly due to high concentrations of formaldehyde. The other four restaurants were below both limits. PMID:26969068

  12. Synthesis and Evaluation of in Vitro Bioactivity for Vesicular Acetylcholine Transporter Inhibitors Containing Two Carbonyl Groups

    PubMed Central

    Tu, Zhude; Wang, Wei; Cui, Jinquan; Zhang, Xiang; Lu, Xiaoxia; Xu, Jinbin; Parsons, Stanley M.

    2012-01-01

    To identify selective high-affinity ligands for the vesicular acetylcholine transporter (VAChT), we have incorporated a carbonyl group into the structures of trozamicol and prezamicol scaffolds, and also converted the secondary amines of the piperidines of trozamicols and prezamicols into amides. Of 18 new racemic compounds, 4 compounds displayed high affinity for VAChT (Ki = 10 - 20 nM) and greater than 300-fold selectivity for VAChT over σ1 and σ2 receptors, namely (4-(4-fluorobenzoyl)-4'-hydroxy-[1,3'-bipiperidin]-1'-yl)(3-methylthiophen-2-yl)methanone oxalate (9g) (Ki-VAChT = 11.4 nM, VAChT/σ1 = 1063, VAChT/σ2 = 370), (1'-benzoyl-4'-hydroxy-[1,3'-bipiperidin]-4-yl)(4-methoxyphenyl)methanone oxalate (10c) (Ki-VAChT = 15.4 nM, VAChT/σ1 = 374, VAChT/ σ2 = 315), (4'-hydroxy-1'-(thiophene-2-carbonyl)-[1,3'-bipiperidin]-4-yl)(4-methoxyphenyl)methanone oxalate (10e) (Ki-VAChT = 19.0 nM, VAChT/σ1 = 1787, VAChT/ σ2 = 335), and (4'-hydroxy-1'-(3-methylthiophene-2-carbonyl)-[1,3'-bipiperidin]-4-yl)(4-methoxyphenyl)methanone oxalate (10g) (Ki-VAChT = 10.2 nM, VAChT/σ1 = 1500, VAChT/ σ2 = 2030). These 4 compounds can be radiosynthesized with C-11 or F-18 to validate their possibilities of serving as PET probes for quantifying the levels of VAChT in vivo. PMID:22739089

  13. Formation and emissions of carbonyls during and following gas-phase ozonation of indoor materials

    NASA Astrophysics Data System (ADS)

    Poppendieck, D. G.; Hubbard, H. F.; Weschler, C. J.; Corsi, R. L.

    Ozone concentrations that are several orders of magnitude greater than typical urban ambient concentrations are necessary for gas-phase ozonation of buildings, either for deodorization or for disinfection of biological agents. However, there is currently no published literature on the interaction of building materials and ozone under such extreme conditions. It would be useful to understand, for example in the case of building re-occupation planning, what types and amounts of reaction products may form and persist in a building after ozonation. In this study, 24 materials were exposed to ozone at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged from 1 to 20 mg m -2, with most of the carbonyls being of lower molecular weight (C 1-C 4). In contrast, total BOBP mass released from wood-based products ranged from 20 to 100 mg m -2, with a greater fraction of the BOBPs being heavier carbonyls (C 5-C 9). The total BOBP mass released during an ozonation event is a function of both the total surface area of the material and the BOBP emission rate per unit area of material. Ceiling tile, carpet, office partition, and gypsum wallboard with flat latex paint often have large surface areas in commercial buildings and these same materials exhibited relatively high BOBP releases. The greatest overall BOBP mass releases were observed for three materials that building occupants might have significant contact with: paper, office partition, and medium density fiberboard, e.g., often used in office furniture. These materials also exhibited extended BOBP persistence following ozonation; some BOBPs (e.g., nonanal) persist for months or more at emission rates large enough to result in indoor concentrations that exceed their odor

  14. On the satisfaction of backbone‐carbonyl lone pairs of electrons in protein structures

    PubMed Central

    2016-01-01

    Abstract Protein structures are stabilized by a variety of noncovalent interactions (NCIs), including the hydrophobic effect, hydrogen bonds, electrostatic forces and van der Waals’ interactions. Our knowledge of the contributions of NCIs, and the interplay between them remains incomplete. This has implications for computational modeling of NCIs, and our ability to understand and predict protein structure, stability, and function. One consideration is the satisfaction of the full potential for NCIs made by backbone atoms. Most commonly, backbone‐carbonyl oxygen atoms located within α‐helices and β‐sheets are depicted as making a single hydrogen bond. However, there are two lone pairs of electrons to be satisfied for each of these atoms. To explore this, we used operational geometric definitions to generate an inventory of NCIs for backbone‐carbonyl oxygen atoms from a set of high‐resolution protein structures and associated molecular‐dynamics simulations in water. We included more‐recently appreciated, but weaker NCIs in our analysis, such as n→π* interactions, Cα‐H bonds and methyl‐H bonds. The data demonstrate balanced, dynamic systems for all proteins, with most backbone‐carbonyl oxygen atoms being satisfied by two NCIs most of the time. Combinations of NCIs made may correlate with secondary structure type, though in subtly different ways from traditional models of α‐ and β‐structure. In addition, we find examples of under‐ and over‐satisfied carbonyl‐oxygen atoms, and we identify both sequence‐dependent and sequence‐independent secondary‐structural motifs in which these reside. Our analysis provides a more‐detailed understanding of these contributors to protein structure and stability, which will be of use in protein modeling, engineering and design. PMID:26833776

  15. Sol–gel method as a way of carbonyl iron powder surface modification for interaction improvement

    SciTech Connect

    Małecki, P.; Kolman, K.; Pigłowski, J.; Kaleta, J.; Krzak, J.

    2015-03-15

    This article presents a method for modification of carbonyl iron particles’ surface (CIP), (d{sub 50}=4–9 µm) by silica coatings obtained using the sol–gel method. Reaction parameters were determined to obtain dry magnetic powder with homogeneous silica coatings without further processing and without any by-product in the solid or liquid phase. This approach is new among the commonly used methods of silica coating of iron particles. No attempt has been made to cover a carbonyl iron surface by silica in a waste-free method, up to date. In the current work two different silica core/shell structures were made by the sol–gel process, based on different silica precursors: tetraethoxy-silane (TEOS) and tetramethoxy-silane (TMOS). The dependence between the synthesis procedure and thickness of silica shell covering carbonyl iron particles has been described. Surface morphology of the modified magnetic particles and the coating thickness were characterized with the use of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Determination of the physicochemical structure of the obtained materials was performed by the energy-dispersive X-ray spectroscope (EDS), and the infrared technique (IR). The surface composition was analyzed using X-ray photoelectron spectroscopy (XPS). Additionally, distribution of particle size was measured using light microscopy. The new, efficient process of covering micro-size CIP with a nanometric silica layer was shown. Results of a performed analysis confirm the effectiveness of the presented method. - Highlights: • Proper covering CIP by sol–gel silica layer avoids agglomeration. • A new solid waste-free method of CIP coating is proposed. • Examination of the properties of modified CIP in depends on washing process. • Coatings on CIP particles doesn’t change the magnetic properties of particles.

  16. N,N-Dicarboxymethyl hydrazine: an old but neglected reagent for chemoselective derivatization of carbonyl compounds.

    PubMed

    Zhen, Maomin; Peng, Yanqing

    2016-04-01

    N,N-Dicarboxymethyl hydrazine (DCMH) was found to be a chemoselective derivatization reagent of carbonyl compounds and its potential applications in organic synthesis was investigated for the first time. DCMH could be employed as a chemoselective protective reagent of aldehydes and gave the parent aldehydes in satisfactory yields. In proof-of-concept systems, DCMH could play the role of a scavenger to remove aldehydes in the presence of ketones. It was also used as a tagging reagent in the selective isolation of aldehyde from the complex mixture.

  17. Self-assembly of graphene oxide coated soft magnetic carbonyl iron particles and their magnetorheology

    SciTech Connect

    Zhang, W. L.; Choi, H. J.

    2014-05-07

    The surface of carbonyl iron (CI) microspheres was modified with graphene oxide (GO) as a coating material using 4-aminobenzoic acid as the grafting agent. The morphology, elemental composition, and magnetic properties of the GO-coated CI (GO/CI) particles were examined by scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry, respectively, confirming their composite formation. The magnetorheological (MR) performance of the GO/CI particle-based suspension was examined using a rotational rheometer connected to a magnetic field supply. The GO/CI particles suspension exhibited typical MR properties with increasing shear stress and viscosity depending on the applied magnetic field strength.

  18. Controlled Hydrosilylation of Carbonyls and Imines Catalyzed by a Cationic Alkyl Complex

    SciTech Connect

    Koller, Jurgen; Bergman, Robert G.

    2012-04-09

    The synthesis, characterization, and unprecedented catalytic activity of cationic aluminum alkyl complexes toward hydrosilylation are described. X-ray crystallographic analysis of Tp*AlMe₂ (1) and [Tp*AlMe][I₃] (3) revealed the preference of Al for a tetrahedral coordination environment and the versatility of the Tp* ligand in stabilizing Al in bi- and tridentate coordination modes. [Tp*AlMe][MeB(C₆F₅)₃] (2) is highly active toward the hydrosilylation of a wide variety of carbonyls and imines, thus providing an inexpensive and versatile alternative to late transition metal catalysts.

  19. CO-releasing Metal Carbonyl Compounds as Antimicrobial Agents in the Post-antibiotic Era*

    PubMed Central

    Wareham, Lauren K.; Poole, Robert K.; Tinajero-Trejo, Mariana

    2015-01-01

    The possibility of a “post-antibiotic era” in the 21st century, in which common infections may kill, has prompted research into radically new antimicrobials. CO-releasing molecules (CORMs), mostly metal carbonyl compounds, originally developed for therapeutic CO delivery in animals, are potent antimicrobial agents. Certain CORMs inhibit growth and respiration, reduce viability, and release CO to intracellular hemes, as predicted, but their actions are more complex, as revealed by transcriptomic datasets and modeling. Progress is hindered by difficulties in detecting CO release intracellularly, limited understanding of the biological chemistry of CO reactions with non-heme targets, and the cytotoxicity of some CORMs to mammalian cells. PMID:26055702

  20. Palladacycle-Catalyzed Carbonylative Suzuki-Miyaura Coupling with High Turnover Number and Turnover Frequency.

    PubMed

    Gautam, Prashant; Bhanage, Bhalchandra M

    2015-08-01

    This work reports the carbonylative Suzuki-Miyaura coupling of aryl iodides catalyzed by palladacycles. More importantly, the palladacycles have been used to generate high turnover numbers (TON's) and turnover frequencies (TOF's). A range of aryl iodides can be coupled with arylboronic acids, generating TON's in the range of 10(6) to 10(7) and TOF's in the range of 10(5) to 10(6) h(-1). Comparison of the palladacycles with a conventional palladium source shows their superiority in generating high TON's and TOF's. PMID:26166246

  1. Zn-Mediated Reduction of Oxalyl Chloride Forming CO and Its Application in Carbonylation Reactions.

    PubMed

    Markovič, Martin; Lopatka, Pavol; Koóš, Peter; Gracza, Tibor

    2015-11-20

    An efficient protocol for the generation of carbon monoxide by Zn-mediated reduction of oxalyl chloride has been developed. Oxalyl chloride was applied as an extremely effective substitute for toxic gaseous CO in the palladium-catalyzed alkoxy-/amino-/hydrogen-/hydroxycarbonylation processes providing industrially interesting esters, amides, aldehydes, and carboxylic acids in good to excellent yields. This new procedure can be applied to various carbonylation reactions in the presence of a transition metal catalyst under mild conditions and with a stoichiometric amount of CO source. PMID:26555577

  2. Rhodium-Catalyzed Asymmetric Hydrogenation of α,β-Unsaturated Carbonyl Compounds via Thiourea Hydrogen Bonding.

    PubMed

    Wen, Jialin; Jiang, Jun; Zhang, Xumu

    2016-09-16

    The strategy of secondary interaction enables enantioselectivity for homogeneous hydrogenation. By introducing hydrogen bonding of substrates with thiourea from the ligand, α,β-unsaturated carbonyl compounds, such as amides and esters, are hydrogenated with high enantiomeric excess. The substrate scope for this chemical transformation is broad with various substituents at the β-position. Control experiments revealed that each unit of the ligand ZhaoPhos is irreplaceable. No nonlinear effect was observed for this Rh/ZhaoPhos-catalyzed asymmetric hydrogenation. PMID:27574859

  3. Elevated Levels of Carbonyl Compounds in the Atmosphere of Eastern Himalaya in India

    NASA Astrophysics Data System (ADS)

    Sarkar, C.; Chatterjee, A.; Majumdar, D.; Raha, S.; Ghosh, S. K.; Srivastava, A.

    2015-12-01

    A first ever study on atmospheric carbonyl compounds (CC) were made over eastern Himalaya in India. Samples were collected over a high altitude hill station, Darjeeling (27.01°N, 88.15°E, 2200 masl) during 2011-2012. It is well known that CC have toxic and carcinogenic properties as well as they have important effects on regional climate. Therefore their presence in the environment is of great concern especially for the Himalayan region because of the ecological and geographical importance of the area. The average annual concentration of total CCs was 293.3 ± 463.9 μgm-3 with maximum during post monsoon (1104.8 ± 568.0 μgm-3) and minimum during winter season (72.2 ± 42.9 μgm-3). Darjeeling experiences huge emissions of carbonaceous pollutants from massive influx of tourists during premonsoon and postmonsoon seasons. Though the emission strength could be comparable, the loss of carbonyls from the atmosphere could be due to photochemical degradation under high solar insolation during premonsoon. Acetone was most abundant species with an annual average concentration of 200.8±352.9 μgm-3 with 70 % contribution to the total CCs measured. Interestingly, acetone over Darjeeling was found to be much higher than most of the metropolitan cities in the world. The average formaldehyde to acetaldehyde ratio (1.64 ± 1.43) over Darjeeling is a good representation of a typical urban atmosphere at this high altitude over this part of Himalaya. High carbonyl concentration over eastern Himalaya compared to other megacities across the globe could be attributed to uncontrolled activities related to development in tourism, high population density and moreover it's unique orography and land use pattern with narrow roads, unplanned township etc. The unscientific treatment of human and animal and other domestic waste is another major concern which significantly contribute to carbonyl and other carbonaceous pollutants over this part of Himalaya.

  4. Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resin

    NASA Astrophysics Data System (ADS)

    Li, Yong; Chen, Changxin; Pan, Xiaoyan; Ni, Yuwei; Zhang, Song; Huang, Jie; Chen, Da; Zhang, Yafei

    2009-05-01

    Defective multiwalled carbon nanotubes (MWCNTs) were introduced to the carbonyl iron (CI) based composites to improve its microwave absorption by a simple ultrasonic mixing process. The electromagnetic parameters were measured in the 2-18 GHz range. Microwave absorption of CI based composites with 2 mm in thickness was evidently enhanced by adding as little as 1.0 wt% defective MWCNTs with two well separated absorption peaks exceeding -20 dB, as compared with that of pure CI based and defective MWCNTs composites. The enhancement mechanism is thought due to the interaction and better electromagnetic match between defective MWCNTs and ferromagnetic CI particles.

  5. Narrow carbonyl resonances in proton-diluted proteins facilitate NMR assignments in the solid-state.

    PubMed

    Linser, Rasmus; Fink, Uwe; Reif, Bernd

    2010-05-01

    HNCO/HNCACO type correlation experiments are an alternative for assignment of backbone resonances in extensively deuterated proteins in the solid-state, given the fact that line widths on the order of 14-17 Hz are achieved in the carbonyl dimension without the need of high power decoupling. The achieved resolution demonstrates that MAS solid-state NMR on extensively deuterated proteins is able to compete with solution-state NMR spectroscopy if proteins are investigated with correlation times tau(c) that exceed 25 ns. PMID:20232230

  6. Rapid synthesis of radioactive transition-metal carbonyl complexes at ambient conditions.

    PubMed

    Even, Julia; Yakushev, Alexander; Düllmann, Christoph E; Dvorak, Jan; Eichler, Robert; Gothe, Oliver; Hild, Daniel; Jäger, Egon; Khuyagbaatar, Jadambaa; Kratz, Jens V; Krier, Jörg; Niewisch, Lorenz; Nitsche, Heino; Pysmenetska, Inna; Schädel, Matthias; Schausten, Brigitta; Türler, Andreas; Wiehl, Norbert; Wittwer, David

    2012-06-18

    Carbonyl complexes of radioactive transition metals can be easily synthesized with high yields by stopping nuclear fission or fusion products in a gas volume containing CO. Here, we focus on Mo, W, and Os complexes. The reaction takes place at pressures of around 1 bar at room temperature, i.e., at conditions that are easy to accommodate. The formed complexes are highly volatile. They can thus be transported within a gas stream without major losses to setups for their further investigation or direct use. The rapid synthesis holds promise for radiochemical purposes and will be useful for studying, e.g., chemical properties of superheavy elements. PMID:22663355

  7. Aryl-palladium-NHC complex: efficient phosphine-free catalyst precursors for the carbonylation of aryl iodides with amines or alkynes.

    PubMed

    Zhang, Chunyan; Liu, Jianhua; Xia, Chungu

    2014-12-21

    A series of aryl-palladium-NHC compounds was prepared according to the reported methods and their catalytic activity in the carbonylation of aryl iodides to synthesize α-keto amides and alkynones was examined. These practical aryl-palladium-NHC complexes have shown highly efficient catalyzed carbonylation and Sonogashira carbonylation reactions, with high turnover number in synthesis of α-keto amides (TON = 4300) and in synthesis of alkynones (TON = 980).

  8. Synthesis, characterization, electronic structure and catalytic activity of new ruthenium carbonyl complexes of N-[(2-pyridyl)methylidene]-2-aminothiazole

    NASA Astrophysics Data System (ADS)

    Kundu, Subhankar; Sarkar, Deblina; Jana, Mahendra Sekhar; Pramanik, Ajoy Kumar; Jana, Subrata; Mondal, Tapan Kumar

    2013-03-01

    Reaction of ruthenium carbonyls, [Ru(CO)2Cl2]n/[Ru(CO)4I2] with bidentate Schiffs base ligands derived by the condensation of pyridine-2-carboxaldehyde with 2-aminothiazole in a 1:1 mole ratio in acetonitrile led to the formation of complexes having general formula [Ru(CO)2(L)X2] (X = Cl (1) and I (2)) (L = N-[(2-pyridyl)methylidene]-2-aminothiazole). The compounds have been characterized by various analytical and spectroscopic (IR, electronic and 1H NMR) studies. In acetonitrile solution the complexes exhibit a weak broad metal-ligand to ligand charge transfer (MLLCT) band along with ILCT transitions. The compounds are emissive in room temperature upon excitation in the ILCT band. The complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 1.44 V for 1 and 0.94 V for 2. Catalytic activity of these compounds is investigated to the oxidation of PhCH2OH to PhCHO, 2-butanol (C4H9OH) to 2-butanone, 1-phenylethanol (PhC2H4OH) to acetophenone, cyclopentanol (C5H9OH) to cyclopentanone, cyclohexanol to cyclohexanone, cycloheptanol to cycloheptanone and cycloctanol to cycloctanone using N-methylmorpholine-N-oxide (NMO) as oxidant. The catalytic efficiency of 2 is greater than complex 1 and well correlate with the metal oxidation potential of the complexes. DFT, NBO and TDDFT calculations are employed to explain the structural and electronic features and to support the spectroscopic assignments.

  9. Carbonyl emission and toxicity profile of diesel blends with an animal-fat biodiesel and a tire pyrolysis liquid fuel.

    PubMed

    Ballesteros, R; Guillén-Flores, J; Martínez, J D

    2014-02-01

    In this paper, two diesel fuels, an animal-fat biodiesel and two diesel blends with the animal-fat biodiesel (50vol.%) and with a tire pyrolysis liquid (TPL) fuel (5vol.%) have been tested in a 4-cylinder, 4-stroke, turbocharged, intercooled, 2.0L Nissan diesel automotive engine (model M1D) with common-rail injection system and diesel oxidation catalyst (DOC). Carbonyl emissions have been analyzed both before and after DOC and specific reactivity of carbonyl profile has been calculated. Carbonyl sampling was carried out by means of a heated line, trapping the gas in 2,4-DNPH cartridges. The eluted content was then analyzed in an HPLC system, with UV-VIS detection. Results showed, on the one hand, an increase in carbonyl emissions with the biodiesel fraction in the fuel. On the other hand, the addition of TPL to diesel also increased carbonyl emissions. These trends were occasionally different if the emissions were studied after the DOC, as it seems to be selectivity during the oxidation process. The specific reactivity was also studied, finding a decrease with the oxygen content within the fuel molecule, although the equivalent ozone emissions slightly increased with the oxygen content. Finally, the emissions toxicity was also studied, comparing them to different parameters defined by different organizations. Depending on the point of study, emissions were above or below the established limits, although acrolein exceeded them as it has the least permissive values. PMID:24184046

  10. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.

    Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.

  11. Carbonyl emission and toxicity profile of diesel blends with an animal-fat biodiesel and a tire pyrolysis liquid fuel.

    PubMed

    Ballesteros, R; Guillén-Flores, J; Martínez, J D

    2014-02-01

    In this paper, two diesel fuels, an animal-fat biodiesel and two diesel blends with the animal-fat biodiesel (50vol.%) and with a tire pyrolysis liquid (TPL) fuel (5vol.%) have been tested in a 4-cylinder, 4-stroke, turbocharged, intercooled, 2.0L Nissan diesel automotive engine (model M1D) with common-rail injection system and diesel oxidation catalyst (DOC). Carbonyl emissions have been analyzed both before and after DOC and specific reactivity of carbonyl profile has been calculated. Carbonyl sampling was carried out by means of a heated line, trapping the gas in 2,4-DNPH cartridges. The eluted content was then analyzed in an HPLC system, with UV-VIS detection. Results showed, on the one hand, an increase in carbonyl emissions with the biodiesel fraction in the fuel. On the other hand, the addition of TPL to diesel also increased carbonyl emissions. These trends were occasionally different if the emissions were studied after the DOC, as it seems to be selectivity during the oxidation process. The specific reactivity was also studied, finding a decrease with the oxygen content within the fuel molecule, although the equivalent ozone emissions slightly increased with the oxygen content. Finally, the emissions toxicity was also studied, comparing them to different parameters defined by different organizations. Depending on the point of study, emissions were above or below the established limits, although acrolein exceeded them as it has the least permissive values.

  12. The short-term effects of soybean intake on oxidative and carbonyl stress in men and women.

    PubMed

    Celec, Peter; Hodosy, Július; Pálffy, Roland; Gardlík, Roman; Halčák, Lukáč; Ostatníková, Daniela

    2013-01-01

    Beyond other beneficial effects, a soy-rich diet has been shown to reduce the risk of cardiovascular diseases and diabetic complications. Reduction of oxidative and carbonyl stress has been proposed as the underlying mechanism, but the evidence for this is lacking. The aim of our study was to evaluate the effects of short-term increased soy intake on oxidative and carbonyl stress parameters in young volunteers. Young healthy probands (omnivores) of both genders (55 women, 33 men) were given soybeans (2 g/kg bodyweight daily) for one week. Markers of oxidative and carbonyl stress were measured in plasma at the beginning and at the end of one week soybean intake and after another week of a wash-out period. Total antioxidant capacity was increased by soybean intake in both genders. This led to decreased levels of advanced oxidation protein products in women, but not in men. On the contrary, in men, soybean intake increased lipoperoxidation. No effects on carbonyl stress markers (advanced glycation end products-specific fluorescence and fructosamine) were found. Soybean intake has gender-specific effects on oxidative stress in young healthy probands potentially due to divergent action and metabolism of phytoestrogens in men and women. Effects of soybean intake on carbonyl stress should be evaluated in longer studies.

  13. Intercalation of multiple carbon atoms between the carbonyls of alpha-diketones.

    PubMed

    Balskus, E P; Méndez-Andino, J; Arbit, R M; Paquette, L A

    2001-10-01

    The reaction of open-chain or cyclic alpha-diketones with specific omega-alkenyl organometallics leads readily under the proper conditions to 1,2-diols bonded to terminal olefinic chains. With 1-phenyl-1,2-propanedione, biacetyl, and cyclohexane-1,2-dione, allylindation in aqueous THF proceeds readily at both adjacent carbonyls. For cyclododecane-1,2-dione, recourse must be made to allylmagnesium bromide for completing the second-stage condensation. Grignard reagents have also served well as reactants for biacetyl monoadducts. In contrast, monoallylated camphorquinone is reluctant to couple to Grignard reagents and reacts only when Barbier-type alkyllithium reactions are applied. The ring closing metatheses of these products have been examined. Where six-membered ring formation operates, cyclization can be performed directly on diols. When larger rings are involved, the diols will react only if structural preorganization capable of facilitating mutual approach of the two double bonds is at play. For this purpose, the prior conversion to a cyclic carbonate holds considerable utility. In the latter setting, saponification must precede the diol cleavage step which has been performed with lead tetraacetate. The latter reagent also exhibits the very beneficial effect of facilitating removal of ruthenium and phosphorus byproducts generated during the metathesis step. This chemistry conveniently lends itself to the controlled intercalation of multiple methylene groups between the carbonyl carbons of readily available alpha-diketones to deliver linear or cyclic products.

  14. Comparative Proteomic Analysis of Carbonylated Proteins from the Striatum and Cortex of Pesticide-Treated Mice

    PubMed Central

    Coughlan, Christina; Walker, Douglas I.; Lohr, Kelly M.; Richardson, Jason R.; Saba, Laura M.; Caudle, W. Michael; Fritz, Kristofer S.; Roede, James R.

    2015-01-01

    Epidemiological studies indicate exposures to the herbicide paraquat (PQ) and fungicide maneb (MB) are associated with increased risk of Parkinson's disease (PD). Oxidative stress appears to be a premier mechanism that underlies damage to the nigrostriatal dopamine system in PD and pesticide exposure. Enhanced oxidative stress leads to lipid peroxidation and production of reactive aldehydes; therefore, we conducted proteomic analyses to identify carbonylated proteins in the striatum and cortex of pesticide-treated mice in order to elucidate possible mechanisms of toxicity. Male C57BL/6J mice were treated biweekly for 6 weeks with saline, PQ (10 mg/kg), MB (30 mg/kg), or the combination of PQ and MB (PQMB). Treatments resulted in significant behavioral alterations in all treated mice and depleted striatal dopamine in PQMB mice. Distinct differences in 4-hydroxynonenal-modified proteins were observed in the striatum and cortex. Proteomic analyses identified carbonylated proteins and peptides from the cortex and striatum, and pathway analyses revealed significant enrichment in a variety of KEGG pathways. Further analysis showed enrichment in proteins of the actin cytoskeleton in treated samples, but not in saline controls. These data indicate that treatment-related effects on cytoskeletal proteins could alter proper synaptic function, thereby resulting in impaired neuronal function and even neurodegeneration. PMID:26345149

  15. Gas-phase reaction of ( E)-β-farnesene with ozone: Rate coefficient and carbonyl products

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Bejan, Iustinian; Sodeau, John R.; Wenger, John C.

    The gas-phase ozonolysis of ( E)-β-farnesene was investigated in a 3.91 m 3 atmospheric simulation chamber at 296 ± 2 K and relative humidity of around 0.1%. The relative rate method was used to determine the reaction rate coefficient of (4.01 ± 0.17) × 10 -16 cm 3 molecule -1 s -1, where the indicated errors are two least-squares standard deviations and do not include uncertainties in the rate coefficients for the reference compounds (γ-terpinene, cis-cyclooctene and 1,5-cyclooctadiene). Gas phase carbonyl products were collected using a denuder sampling technique and analyzed with GC/MS following derivatization with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA). The reaction products detected were acetone, 4-oxopentanal, methylglyoxal, 4-methylenehex-5-enal, 6-methylhept-5-en-2-one, and ( E)-4-methyl-8-methylenedeca-4,9-dienal. A detailed mechanism for the gas-phase ozonolysis of ( E)-β-farnesene is proposed, which accounts for all of the products observed in this study. The results of this work indicate that the atmospheric reaction of ( E)-β-farnesene with ozone has a lifetime of around 1 h and is another possible source of the ubiquitous carbonyls, acetone, 4-oxopentanal and 6-methylhept-5-en-2-one in the atmosphere.

  16. Reaction mechanism between carbonyl oxide and hydroxyl radical: a theoretical study.

    PubMed

    Mansergas, Alex; Anglada, Josep M

    2006-03-23

    The reaction mechanism of carbonyl oxide with hydroxyl radical was investigated by using CASSCF, B3LYP, QCISD, CASPT2, and CCSD(T) theoretical approaches with the 6-311+G(d,p), 6-311+G(2df, 2p), and aug-cc-pVTZ basis sets. This reaction involves the formation of H2CO + HO2 radical in a process that is computed to be exothermic by 57 kcal/mol. However, the reaction mechanism is very complex and begins with the formation of a pre-reactive hydrogen-bonded complex and follows by the addition of HO radical to the carbon atom of H2COO, forming the intermediate peroxy-radical H2C(OO)OH before producing formaldehyde and hydroperoxy radical. Our calculations predict that both the pre-reactive hydrogen-bonded complex and the transition state of the addition process lie energetically below the enthalpy of the separate reactants (DeltaH(298K) = -6.1 and -2.5 kcal/mol, respectively) and the formation of the H2C(OO)OH adduct is exothermic by about 74 kcal/mol. Beyond this addition process, further reaction mechanisms have also been investigated, which involve the abstraction of a hydrogen of carbonyl oxide by HO radical, but the computed activation barriers suggest that they will not contribute to the gas-phase reaction of H2COO + HO.

  17. A simple method for screening emission sources of carbonyl compounds in indoor air.

    PubMed

    Yamashita, Shohei; Kume, Kazunari; Horiike, Toshiyuki; Honma, Nobuyuki; Fusaya, Masahiro; Ohura, Takeshi; Amagai, Takashi

    2010-06-15

    Volatile organic compounds (VOCs) emitted from building and furnishing materials are frequently observed in high concentrations in indoor air. Nondestructive analytical methods that determine the main parameters influencing concentration of the chemical substances are necessary to screen for sources of VOC emissions. Toward this goal, we have developed a new flux sampler, referred to herein as an emission cell for simultaneous multi-sampling (ECSMS), that is used for screening indoor emission sources of VOCs and for determining the emission rates of these sources. Because the ECSMS is based on passive sampling, it can be easily used on-site at a low cost. Among VOCs, low-molecular-weight carbonyl compounds including formaldehyde are frequently detected at high concentrations in indoor environments. In this study, we determined the reliability of the ECSMS for the collection of formaldehyde and other carbonyl compounds emitted from wood-based composites of medium density fiberboards and particleboards. We then used emission rates determined by the ECSMS to predict airborne concentrations of formaldehyde emitted from a bookshelf in a large chamber, and these data were compared to formaldehyde concentrations that were acquired simultaneously by means of an active sampling method. The values obtained from the two methods were quite similar, suggesting that ECSMS measurement is an effective method for screening primary sources influencing indoor concentrations of formaldehyde. PMID:20149530

  18. Temperature dependence of fast carbonyl backbone dynamics in chicken villin headpiece subdomain.

    PubMed

    Vugmeyster, Liliya; Ostrovsky, Dmitry

    2011-06-01

    Temperature-dependence of protein dynamics can provide information on details of the free energy landscape by probing the characteristics of the potential responsible for the fluctuations. We have investigated the temperature-dependence of picosecond to nanosecond backbone dynamics at carbonyl carbon sites in chicken villin headpiece subdomain protein using a combination of three NMR relaxation rates: (13)C' longitudinal rate, and two cross-correlated rates involving dipolar and chemical shift anisotropy (CSA) relaxation mechanisms, (13)C'/(13)C'-(13)C(α) CSA/dipolar and (13)C'/(13)C'-(15)N CSA/dipolar. Order parameters have been extracted using the Lipari-Szabo model-free approach assuming a separation of the time scales of internal and molecular motions in the 2-16°C temperature range. There is a gradual deviation from this assumption from lower to higher temperatures, such that above 16°C the separation of the time scales is inconsistent with the experimental data and, thus, the Lipari-Szabo formalism can not be applied. While there are variations among the residues, on the average the order parameters indicate a markedly steeper temperature dependence at backbone carbonyl carbons compared to that probed at amide nitrogens in an earlier study. This strongly advocates for probing sites other than amide nitrogen for accurate characterization of the potential and other thermodynamics characteristics of protein backbone.

  19. Millimeter-wave spectroscopy of carbonyl diazide, OC(N3)2

    NASA Astrophysics Data System (ADS)

    Amberger, Brent K.; Esselman, Brian J.; Woods, R. Claude; McMahon, Robert J.

    2014-01-01

    Millimeter-wave absorption spectra for carbonyl diazide (OC(N3)2) are reported in the frequency range of 243-360 GHz, at both 293 K and 213 K. Transitions for two of the three possible conformations, one with both of the azide groups syn to the carbonyl group, or with one syn and the other anti, were observed in the spectra. Theoretical calculations at the CCSD(T)/ANO1 level do an excellent job of predicting the ground state rotational constants and 4th order centrifugal distortion terms for both conformers. Relative line intensities, along with theoretically predicted dipole moments, were used to estimate the energy difference of the two observed forms, yielding a result in good agreement with the ab initio potential energy surface. The spectra of the ν12, ν7, ν9 and 2ν12 excited vibrational states for the more abundant syn-syn conformer have been assigned, and a great many transitions for each of them have been fit using partial 6th and 8th order centrifugal distortion Hamiltonians. Anharmonic vibration-rotation interaction constants from the CCSD(T)/ANO1 calculations are in excellent agreement with the experimentally determined constants in the case of ν7 and ν9, but not for ν12.

  20. Attractive microwave absorption and the impedance match effect in zinc oxide and carbonyl iron composite

    NASA Astrophysics Data System (ADS)

    Ma, Zhi; Zhang, Yi; Cao, ChenTao; Yuan, Jing; Liu, QingFang; Wang, JianBo

    2011-12-01

    The flower-like ZnO and ZnO/carbonyl-iron composite have been prepared by a sonochemical route and ball-milling process, respectively. For ZnO/carbonyl-iron composite, a reflection loss ( RL) exceeding -20 dB was obtained in a broad frequency range of 8.4-17.9 GHz with a thin thickness of 1.2-2.3 mm. An optimal RL of -61 dB was found at 11.7 GHz for an absorber thickness of 1.91 mm. It is demonstrated that the attractive microwave-absorption properties are a consequence of a proper electro-magnetic impedance match and geometrical cancellation at the air-material interface. In addition, an impedance mismatch function was proposed, which provides an effective method to determine the microwave absorbing properties from the intrinsic materials constants. The calculated value of matching frequency and thickness is well consistent with the experimental data. The method also provides a simple theoretical graphic aid for determining the absorption characteristics and the location of the matching conditions in the frequency domain.