Sample records for carbothermal reduction method

  1. Nonisothermal Carbothermal Reduction Kinetics of Titanium-Bearing Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Hu, Mengjun; Wei, Ruirui; Hu, Meilong; Wen, Liangying; Ying, Fangqing

    2018-05-01

    The kinetics of carbothermal reduction of titanium-bearing blast furnace (BF) slag has been studied by thermogravimetric analysis and quadrupole mass spectrometry. The kinetic parameters (activation energy, preexponential factor, and reaction model function) were determined using the Flynn-Wall-Ozawa and Šatava-Šesták methods. The results indicated that reduction of titanium-bearing BF slag can be divided into two stages, namely reduction of phases containing iron and gasification of carbon (< 1095°C), followed by reduction of phases containing titanium (> 1095°C). CO2 was the main off-gas in the temperature range of 530-700°C, whereas CO became the main off-gas when the temperature was greater than 900°C. The activation energy calculated using the Flynn-Wall-Ozawa method was 221.2 kJ/mol. D4 is the mechanism function for carbothermal reduction of titanium-bearing BF slag. Meanwhile, a nonisothermal reduction model is proposed based on the obtained kinetic parameters.

  2. Production of oxygen from lunar ilmenite

    NASA Technical Reports Server (NTRS)

    Zhao, Y.; Shadman, F.

    1990-01-01

    The following subjects are addressed: (1) the mechanism and kinetics of carbothermal reduction of simulated lunar ilmenite using carbon and, particularly, CO as reducing agents; (2) the determination of the rate-limiting steps; (3) the investigation of the effect of impurities, particularly magnesium; (4) the search for catalysts suitable for enhancement of the rate-limiting step; (5) the comparison of the kinetics of carbothermal reduction with those of hydrogen reduction; (6) the study of the combined use of CO and hydrogen as products of gasification of carbonaceous solids; (7) the development of reduction methods based on the use of waste carbonaceous compounds for the process; (8) the development of a carbothermal reaction path that utilizes gasification of carbonaceous solids to reducing gaseous species (hydrocarbons and carbon monoxide) to facilitate the reduction reaction kinetics and make the process more flexible in using various forms of carbonaceous feeds; (9) the development of advanced gas separation techniques, including the use of high-temperature ceramic membranes; (10) the development of an optimum process flow sheet for carbothermal reduction, and comparison of this process with the hydrogen reduction scheme, as well as a general comparison with other leading oxygen production schemes; and (11) the use of new and advanced material processing and separation techniques.

  3. Method And Reactor For Production Of Aluminum By Carbothermic Reduction Of Alumina

    DOEpatents

    Aune, Jan Arthur; Johansen, Kai

    2004-10-19

    A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.

  4. The 2010 Field Demonstration of the Solar Carbothermal Reduction of Regolith to Produce Oxygen

    NASA Technical Reports Server (NTRS)

    Gustafson, R. J.; White, B. C.; Fidler, M. J.; Muscatello, Anthony C.

    2010-01-01

    The Moon and other space exploration destinations are comprised of a variety of oxygen-bearing minerals, providing a virtually unlimited quantity of raw material which can be processed to produce oxygen. One attractive method to extract oxygen from the regolith is the carbothermal reduction process, which is not sensitive to variations in the mineral composition of the regolith. It also creates other valuable resources within the processed regolith, such as iron and silicon metals. Using funding from NASA, ORBITEC recently built and tested the Carbothermal Regolith Reduction Module to process lunar regolith simulants using concentrated solar energy. This paper summarizes the experimental test results obtained during a demonstration of the system at a lunar analog test site on the Mauna Kea volcano on Hawaii in February 2010.

  5. Carbothermal reduction of Ti-modified IRMOF-3: an adaptable synthetic method to support catalytic nanoparticles on carbon.

    PubMed

    Kim, Jongsik; McNamara, Nicholas D; Her, Theresa H; Hicks, Jason C

    2013-11-13

    This work describes a novel method for the preparation of titanium oxide nanoparticles supported on amorphous carbon with nanoporosity (Ti/NC) via the post-synthetic modification of a Zn-based MOF with an amine functionality, IRMOF-3, with titanium isopropoxide followed by its carbothermal pyrolysis. This material exhibited high purity, high surface area (>1000 m(2)/g), and a high dispersion of metal oxide nanoparticles while maintaining a small particle size (~4 nm). The material was shown to be a promising catalyst for oxidative desulfurization of diesel using dibenzothiophene as a model compound as it exhibited enhanced catalytic activity as compared with titanium oxide supported on activated carbon via the conventional incipient wetness impregnation method. The formation mechanism of Ti/NC was also proposed based on results obtained when the carbothermal reduction temperature was varied.

  6. The 2010 Field Demonstration of the Solar Carbothermal Reduction of Regolith to Produce Oxygen

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony; Gustafson, Robert (Bob)

    2010-01-01

    This slide presentation reviews a demonstration of the use of solar carbothermal reduction processing of regolith to produce oxygen and silicon from silica. A contractor developed the Carbothermal Regolith Reduction Module to demonstrate the extraction of oxygen from lunar regolith simulant using concentrated solar energy at a site that has similar terrain to the moon and Mars.

  7. A modified carbothermal reduction method for preparation of high-performance nano-scale core/shell Cu 6Sn 5 alloy anodes in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Cui, Wangjun; Wang, Fei; Wang, Jie; Liu, Haijing; Wang, Congxiao; Xia, Yongyao

    Core-shell structured, carbon-coated, nano-scale Cu 6Sn 5 has been prepared by a modified carbothermal reduction method using polymer coated mixed oxides of CuO and SnO 2 as precursors. On heat treatment, the mixture oxides were converted into Cu 6Sn 5 alloy by carbothermal reduction. Simultaneously, the remnants carbon was coated on the surface of the Cu 6Sn 5 particles to form a core-shell structure. Transmission electron microscope (TEM) images demonstrate that the well-coated carbon layer effectively prevents the encapsulated, low melting point alloy from out flowing in a high-temperature treatment process. Core-shell structured, carbon coated Cu 6Sn 5 delivers a reversible capacity of 420 mAh g -1 with capacity retention of 80% after 50 cycles. The improvement in the cycling ability can be attributed to the fact that the carbon-shell prevents aggregation and pulverization of nano-sized tin-based alloy particles during charge/discharge cycling.

  8. Carbothermic reduction with parallel heat sources

    DOEpatents

    Troup, Robert L.; Stevenson, David T.

    1984-12-04

    Disclosed are apparatus and method of carbothermic direct reduction for producing an aluminum alloy from a raw material mix including aluminum oxide, silicon oxide, and carbon wherein parallel heat sources are provided by a combustion heat source and by an electrical heat source at essentially the same position in the reactor, e.g., such as at the same horizontal level in the path of a gravity-fed moving bed in a vertical reactor. The present invention includes providing at least 79% of the heat energy required in the process by the electrical heat source.

  9. Synthesis and characterization of TiC nanopowders via sol-gel and subsequent carbothermal reduction process

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Fan, Jinglian; Lu, Qiong

    2018-06-01

    TiC nanocrystalline powders were synthesized by in-situ carbothermic reduction of Ti-O-C precursor under vacuum atmosphere. And the Ti-O-C precursor was formed by sol-gel method from titanium butyrate (TBOT) and sucrose. To obtain stable sol, TBOT was directly added into mixed solution which contains water, sucrose, acetic acid (AcOH) and acetylacetone (ACAC). This procedure is more convenient and economical because it avoids the use of alcohol which is used as solvent in most reports of alkoxide hydrolysis sol-gel method. TG-DSC, XRD, FTIR and SEM/TEM were employed to analyze and characterize the product during the entire process. The phase composition and crystalline structure parameters of powders with different C/Ti molar ratio were investigated by Rietveld refinement method, and elemental quantitative analysis of the samples were performed. Furthermore, the optimal parameters of carbothermal reduction were obtained and the grain growth mechanism was demonstrated. The results show that TiC nanocrystalline powders (C/Ti molar ratio is 3.5 in the precursor) were synthesized at 1300 °C for 2 h, which have near standard lattice parameter, well crystallinity and fine average grain size ( 37.4 nm).

  10. Oxygen Extraction from Minerals

    NASA Technical Reports Server (NTRS)

    Muscatello, Tony

    2017-01-01

    Oxygen, whether used as part of rocket bipropellant or for astronaut life support, is a key consumable for space exploration and commercialization. In Situ Resource Utilization (ISRU) has been proposed many times as a method for making space exploration more cost effective and sustainable. On planetary and asteroid surfaces the presence of minerals in the regolith that contain oxygen is very common, making them a potential oxygen resource. The majority of research and development for oxygen extraction from minerals has been for lunar regolith although this work would generally be applicable to regolith at other locations in space. This presentation will briefly survey the major methods investigated for oxygen extraction from regolith with a focus on the current status of those methods and possible future development pathways. The major oxygen production methods are (1) extraction from lunar ilmenite (FeTiO3) with either hydrogen or carbon monoxide, (2) carbothermal reduction of iron oxides and silicates with methane, and (3) molten regolith electrolysis (MRE) of silicates. Methods (1) and (2) have also been investigated in a two-step process using CO reduction and carbon deposition followed by carbothermal reduction. All three processes have byproducts that could also be used as resources. Hydrogen or carbon monoxide reduction produce iron metal in small amounts that could potentially be used as construction material. Carbothermal reduction also makes iron metal along with silicon metal and a glass with possible applications. MRE produces iron, silicon, aluminum, titanium, and glass, with higher silicon yields than carbothermal reduction. On Mars and possibly on some moons and asteroids, water is present in the form of mineral hydrates, hydroxyl (-OH) groups on minerals, andor water adsorbed on mineral surfaces. Heating of the minerals can liberate the water which can be electrolyzed to provide a source of oxygen as well. The chemistry of these processes, some key development and demonstration projects, the challenges remaining to be overcome, and possible future directions will be discussed with a goal of increased understanding of these important ISRU technologies and their potential applications to space exploration and settlement.

  11. Recovery TiO2 by leaching process of carbothermic reduced Kalimantan ilmenite

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Sari, P. P.; Ramelan, A. H.

    2018-05-01

    Ilmenite naturally occurred in iron titanate (FeTiO3) minerals. The separation of natural ilmenite into TiO2 and Fe2O3 need to be explored to gain the high purity separation product. A new combination method named of carbothermic reduction, acidic-leaching and complexation by EDTA were proposed for separation TiO2 from Ilmenite. Roasting of ilmenite was carried out at 950 °C for 1 h by the addition of activated carbon with mass ratio of ilmenite : activated carbon =4:3. The carbothermic reduction was carried out to yield a high separation of initial content of ilmenite that will be easily to dissolve within hydrochloric acid solution in leaching process. The composition of ilmenite observed by X-Ray Fluoresences (XRF) changed after the carbothermic reduction process and the dominant content is TiO2 (57.56%). X-Ray Diffraction (XRD) of roasted ilmenite composed of decomposed product of ilmenite i.e. hematite (Fe2O3), TiO2 anatase, TiO2 rutile, and inorganic salt. The leaching of the roasted ilmenite has been done by sulphuric acid solution (6 M) to gain the titanyl sulphate solution. Separation of iron impurities of TiO2 gel from titanyl sulphate (TiOSO4) solution was conducted by complexation method using EDTA as a complexation agent. The characteristic of TiO2 obtained using XRD showed that TiO2 is anatase type and the percentage of TiO2 using XRF showed that TiO2 content of 86,03%.

  12. Method for reprocessing and separating spent nuclear fuels. [Patent application

    DOEpatents

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.

    1982-01-19

    Spent nuclear fuels, including actinide fuels, volatile and nonvolatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

  13. Synthesis of zirconium carbide whiskers by a combination of microwave hydrothermal and carbothermal reduction

    NASA Astrophysics Data System (ADS)

    Li, Kezhi; Zhou, Xuan; Zhao, Zhigang; Chen, Chunyu; Wang, Changcong; Ren, Biyun; Zhang, Leilei

    2018-02-01

    Zirconium carbide (ZrC) whiskers were successfully synthesized by a combination of microwave hydrothermal (MH) and carbothermal reduction. The precursors of ZrC whiskers were produced by MH, subsequently carbothermally reduced to ZrC whiskers at 1100-1600 °C in an Ar atmosphere. Effects of the reduction temperature and precursors with various carbon/zirconium (C/Zr) molar ratios on the synthesis of ZrC whiskers were investigated. The results showed that the carbothermal reduction occurred at 1100 °C, and terminated at a relatively low temperature (1400 °C). When the reduction temperature was 1500 °C and the C/Zr molar ratio was 5:1, the ZrC whiskers with the largest aspect ratio and the most uniform distribution were produced. The whiskers exhibited the diameters of 0.1-2 μm and the lengths of 5-30 μm. The synthesized ZrC whiskers with a single crystalline phase displayed cylindrical and pagoda-like morphologies. The growth of ZrC whiskers was considered to be governed by the Ostwald ripening and S-L-S mechanism.

  14. Tunnel-structured K xTiO 2 nanorods by in situ carbothermal reduction as a long cycle and high rate anode for sodium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qing; Wei, Yaqing; Yang, Haotian

    Here, the low electronic conductivity and the sluggish sodium-ion diffusion in the compact crystal structure of Ti-based anodes seriously restrict their development in sodium-ion batteries. In this study, a new hollandite K xTiO 2 with large (2 × 2) tunnels is synthesized by a facile carbothermal reduction method, and its sodium storage performance is investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses illustrate the formation mechanism of the hollandite K xTiO 2 upon the carbothermal reduction process. Compared to the traditional layered or small (1 × 1) tunnel-type Ti-based materials, the hollandite K xTiO 2 with large (2more » × 2) tunnels may accommodate more sodium ions and facilitate the Na + diffusion in the structure; thus, it is expected to get a large capacity and realize high rate capability. The synthesized K xTiO 2 with large (2 × 2) tunnels shows a stable reversible capacity of 131 mAh g –1 (nearly 3 times of (1 × 1) tunnel-structured Na 2Ti 6O 13) and superior cycling stability with no obvious capacity decay even after 1000 cycles, which is significantly better than the traditional layered Na 2Ti 3O 7 (only 40% of capacity retention in 20 cycles). Moreover, the carbothermal process can naturally introduce oxygen vacancy and low-valent titanium as well as the surface carbon coating layer to the structure, which would greatly enhance the electronic conductivity of K xTiO 2 and thus endow this material high rate capability. With a good rate capability and long cyclability, this hollandite K xTiO 2 can serve as a new promising anode material for room-temperature long-life sodium-ion batteries for large-scale energy storage systems, and the carbothermal reduction method is believed to be an effective and facile way to develop novel Ti-based anodes with simultaneous carbon coating and Ti(III) self-doping.« less

  15. Tunnel-structured K xTiO 2 nanorods by in situ carbothermal reduction as a long cycle and high rate anode for sodium-ion batteries

    DOE PAGES

    Zhang, Qing; Wei, Yaqing; Yang, Haotian; ...

    2017-02-03

    Here, the low electronic conductivity and the sluggish sodium-ion diffusion in the compact crystal structure of Ti-based anodes seriously restrict their development in sodium-ion batteries. In this study, a new hollandite K xTiO 2 with large (2 × 2) tunnels is synthesized by a facile carbothermal reduction method, and its sodium storage performance is investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses illustrate the formation mechanism of the hollandite K xTiO 2 upon the carbothermal reduction process. Compared to the traditional layered or small (1 × 1) tunnel-type Ti-based materials, the hollandite K xTiO 2 with large (2more » × 2) tunnels may accommodate more sodium ions and facilitate the Na + diffusion in the structure; thus, it is expected to get a large capacity and realize high rate capability. The synthesized K xTiO 2 with large (2 × 2) tunnels shows a stable reversible capacity of 131 mAh g –1 (nearly 3 times of (1 × 1) tunnel-structured Na 2Ti 6O 13) and superior cycling stability with no obvious capacity decay even after 1000 cycles, which is significantly better than the traditional layered Na 2Ti 3O 7 (only 40% of capacity retention in 20 cycles). Moreover, the carbothermal process can naturally introduce oxygen vacancy and low-valent titanium as well as the surface carbon coating layer to the structure, which would greatly enhance the electronic conductivity of K xTiO 2 and thus endow this material high rate capability. With a good rate capability and long cyclability, this hollandite K xTiO 2 can serve as a new promising anode material for room-temperature long-life sodium-ion batteries for large-scale energy storage systems, and the carbothermal reduction method is believed to be an effective and facile way to develop novel Ti-based anodes with simultaneous carbon coating and Ti(III) self-doping.« less

  16. Tunnel-Structured KxTiO2 Nanorods by in Situ Carbothermal Reduction as a Long Cycle and High Rate Anode for Sodium-Ion Batteries.

    PubMed

    Zhang, Qing; Wei, Yaqing; Yang, Haotian; Su, Dong; Ma, Ying; Li, Huiqiao; Zhai, Tianyou

    2017-03-01

    The low electronic conductivity and the sluggish sodium-ion diffusion in the compact crystal structure of Ti-based anodes seriously restrict their development in sodium-ion batteries. In this study, a new hollandite K x TiO 2 with large (2 × 2) tunnels is synthesized by a facile carbothermal reduction method, and its sodium storage performance is investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses illustrate the formation mechanism of the hollandite K x TiO 2 upon the carbothermal reduction process. Compared to the traditional layered or small (1 × 1) tunnel-type Ti-based materials, the hollandite K x TiO 2 with large (2 × 2) tunnels may accommodate more sodium ions and facilitate the Na + diffusion in the structure; thus, it is expected to get a large capacity and realize high rate capability. The synthesized K x TiO 2 with large (2 × 2) tunnels shows a stable reversible capacity of 131 mAh g -1 (nearly 3 times of (1 × 1) tunnel-structured Na 2 Ti 6 O 13 ) and superior cycling stability with no obvious capacity decay even after 1000 cycles, which is significantly better than the traditional layered Na 2 Ti 3 O 7 (only 40% of capacity retention in 20 cycles). Moreover, the carbothermal process can naturally introduce oxygen vacancy and low-valent titanium as well as the surface carbon coating layer to the structure, which would greatly enhance the electronic conductivity of K x TiO 2 and thus endow this material high rate capability. With a good rate capability and long cyclability, this hollandite K x TiO 2 can serve as a new promising anode material for room-temperature long-life sodium-ion batteries for large-scale energy storage systems, and the carbothermal reduction method is believed to be an effective and facile way to develop novel Ti-based anodes with simultaneous carbon coating and Ti(III) self-doping.

  17. Carbothermic reduction of uranium oxides into solvent metallic baths

    NASA Astrophysics Data System (ADS)

    Guisard Restivo, Thomaz A.; Capocchi, José D. T.

    2004-09-01

    The carbothermic reduction of UO 2 and U 3O 8 is studied employing tin and silicon solvent metallic baths in thermal analysis equipment, under Ar inert and N 2 reactive atmospheres. The metallic solvents are expected to lower the U activity by several orders of magnitude owing to strong interactions among the metals. The reduction products are composed of the solvent metal matrix and intermetallic U compounds. Silicon is more effective in driving the reduction since there is no residual UO 2 after the reaction. The gaseous product detected by mass spectrometer (MS) during the reduction is CO. A kinetic study for the Si case was accomplished by the stepwise isothermal analysis (SAI) method, leading to the identification of the controlling mechanisms as chemical reaction at the surface and nucleation, for UO 2 and U 3O 8 charges, respectively. One example for another system containing Al 2O 3 is also shown.

  18. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, David T.; Troup, Robert L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  19. Method using selected carbons to react with Al2O and Al vapors in the carbothermic production of aluminum

    DOEpatents

    Fruehan, Richard J.; Li, Yun; Carkin, Gerald

    2005-02-01

    In a method for recovering Al from an off-gas (3,4) produced during carbothermic reduction of aluminum utilizing at least one smelter (1,2), the off-gas (3,4) is directed to an enclosed reactor (5) which is fed a supply of wood charcoal (7) having a porosity of from about 50 vol. % to 85 vol. % and an average pore diameter of from about 0.05 .mu.m to about 2.00 .mu.m, where the wood charcoal (7) contacts the off-gas (3,4) to produce at least Al.sub.4 C.sub.3 (6), which is passed back to the smelter (1,2).

  20. Hydrogen Plasma Processing of Iron Ore

    NASA Astrophysics Data System (ADS)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-06-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  1. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, D.T.; Troup, R.L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  2. Magsonic™ Carbothermal Technology Compared with the Electrolytic and Pidgeon Processes

    NASA Astrophysics Data System (ADS)

    Prentice, Leon H.; Haque, Nawshad

    A broad technology comparison of carbothermal magnesium production with present technologies has not been previously presented. In this paper a comparative analysis of CSIRO's MagSonic™ process is made with the electrolytic and Pidgeon processes. The comparison covers energy intensity (GJ/tonne Mg), labor intensity (person-hours/tonne Mg), capital intensity (USD/tonne annual Mg installed capacity), and Global Warming Potential (GWP, tonnes CO2-equivalent/tonne Mg). Carbothermal technology is advantageous on all measures except capital intensity (where it is roughly twice the capital cost of a similarly-sized Pidgeon plant). Carbothermal and electrolytic production can have comparatively low environmental impacts, with typical emissions one-sixth those of the Pidgeon process. Despite recent progress, the Pidgeon process depends upon abundant energy and labor combined with few environmental constraints. Pressure is expected to increase on environmental constraints and labor and energy costs over the coming decade. Carbothermal reduction technology appears to be competitive for future production.

  3. Method for producing silicon nitride/silicon carbide composite

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-07-23

    Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.

  4. Study of Pellets and Lumps as Raw Materials in Silicon Production from Quartz and Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Dal Martello, E.; Tranell, G.; Gaal, S.; Raaness, O. S.; Tang, K.; Arnberg, L.

    2011-10-01

    The use of high-purity carbon and quartz raw materials reduces the need for comprehensive refining steps after the silicon has been produced carbothermically in the electric reduction furnace. The current work aims at comparing the reaction mechanisms and kinetics occurring in the inner part of the reduction furnace when pellets or lumpy charge is used, as well as the effect of the raw material mix. Laboratory-scale carbothermic reduction experiments have been carried out in an induction furnace. High-purity silicon carbide and two different high-purity hydrothermal quartzes were charged as raw materials at different molar ratios. The charge was in the form of lumps (size, 2-5 mm) or as powder (size, 10-20 μm), mixed and agglomerated as pellets (size, 1-3 mm) and reacted at 2273 K (2000 °C). The thermal properties of the quartzes were measured also by heating a small piece of quartz in CO atmosphere. The investigated quartzes have different reactivity in reducing atmosphere. The carbothermal reduction experiments show differences in the reacted charge between pellets and lumps as charge material. Solid-gas reactions take place from the inside of the pellets porosity, whereas reactions in lumps occur topochemically. Silicon in pellets is produced mainly in the rim zone. Larger volumes of silicon have been found when using lumpy charge. More SiO is produced when using pellets than for lumpy SiO2 for the same molar ratio and heating conditions. The two SiC polytypes used in the carbothermal reduction experiments as carbon reductants presented different reactivity.

  5. Synthesis and electrochemical properties of olivine LiFePO 4 prepared by a carbothermal reduction method

    NASA Astrophysics Data System (ADS)

    Liu, Hui-ping; Wang, Zhi-xing; Li, Xin-hai; Guo, Hua-jun; Peng, Wen-jie; Zhang, Yun-he; Hu, Qi-yang

    LiFePO 4/C composite cathode material was prepared by carbothermal reduction method, which uses NH 4H 2PO 4, Li 2CO 3 and cheap Fe 2O 3 as starting materials, acetylene black and glucose as carbon sources. The precursor of LiFePO 4/C was characterized by differential thermal analysis and thermogravimetry. X-ray diffraction (XRD), scanning electron microscopy (SEM) micrographs showed that the LiFePO 4/C is olivine-type phase, and the addition of the carbon reduced the LiFePO 4 grain size. The carbon is dispersed between the grains, ensuring a good electronic contact. The products sintered at 700 °C for 8 h with glucose as carbon source possessed excellent electrochemical performance. The synthesized LiFePO 4 composites showed a high electrochemical capacity of 159.3 mAh g -1 at 0.1 C rate, and the capacity fading is only 2.2% after 30 cycles.

  6. Kinetic study of the carbothermic synthesis of uranium monocarbide microspheres

    NASA Astrophysics Data System (ADS)

    Mukerjee, S. K.; Dehadraya, J. V.; Vaidya, V. N.; Sood, D. D.

    1990-06-01

    Uranium monocarbide microspheres were synthesized by carbothermic reduction of porous uranium oxide microspheres with uniformly dispersed carbon black. Kinetics of the reduction was studied under vacuum and flowing inert gas from 1250 to 1550° C. The carbon monoxide gas concentration in the effluent stream during reduction was used to determine the rate of carbide formation. Under vacuum, reduction was found to be controlled by reaction at the reactant-product interface whereas under flowing gas conditions, the diffusion of carbon monoxide gas through the carbide layer was the rate controlling process. The activation energy was 335.1 ± 8.6 and 363.7 ± 7.6 kJ/mol for reduction under vacuum and flowing gas, respectively.

  7. Phase formation during the carbothermic reduction of eudialyte concentrate

    NASA Astrophysics Data System (ADS)

    Krasikov, S. A.; Upolovnikova, A. G.; Sitnikova, O. A.; Ponomarenko, A. A.; Agafonov, S. N.; Zhidovinova, S. V.; Maiorov, D. V.

    2013-07-01

    The phase transformations of eudialyte concentrate during the carbothermic reduction in the temperature range 25-2000°C are studied by thermodynamic simulation, differential thermal analysis, and X-ray diffraction. As the temperature increases to 1500°C, the following phases are found to form sequentially: iron and manganese carbides, free iron, niobium carbide, iron silicides, silicon and titanium carbides, and free silicon. Strontium, yttrium, and uranium in the temperature range under study are not reduced and are retained in an oxide form, and insignificant reduction of zirconium oxides with the formation of carbide ZrC is possible only at temperatures above 1500°C.

  8. Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 2: Reduction Studies

    NASA Astrophysics Data System (ADS)

    Elliott, R.; Coley, K.; Mostaghel, S.; Barati, M.

    2018-02-01

    Production of ultrahigh-manganese steels is expected to result in significant increase in demand for low-carbon (LC) ferromanganese (FeMn) and silicomanganese (SiMn). Current manganese processing techniques are energy intensive and typically yield a high-carbon product. The present work therefore reviews available literature regarding carbothermic reduction of Mn oxides and ores, with the objective of identifying opportunities for future process development to mitigate the cost of LC FeMn and SiMn. In general, there is consensus that carbothermic reduction of Mn oxides and ores is limited by gasification of carbon. Conditions which enhance or bypass this step (e.g., by application of CH4) show higher rates of reduction at lower temperatures. This phenomenon has potential application in solid-state reduction of Mn ore. Other avenues for process development include optimization of the prereduction step in conventional FeMn production and metallothermic reduction as a secondary reduction step.

  9. The Microwave-Assisted Green Synthesis of TiC Powders.

    PubMed

    Wang, Hui; Zhu, Wencheng; Liu, Yanchun; Zeng, Lingke; Sun, Luyi

    2016-11-08

    Titanium carbide (TiC) is an important engineering material and has found widespread applications. Currently, TiC is typically synthesized through carbothermal reduction, requiring a high temperature (ca. 1700-2300 °C) and long reaction time (ca. 10-20 h), which is not eco-friendly. During a conventional reaction path, anatase TiO₂ (A-TiO₂) was first converted to rutile TiO₂ (R-TiO₂), which was subsequently reduced to TiC. Herein, we explored the synthesis of TiC powders with the assistance of microwave heating. In particular, we achieved the conversion of A-TiO₂, which was more reactive than R-TiO₂ for the carbothermal reduction, to TiC, which was directly due to quick microwave heating. As such, the carbothermal reduction started at a much lower temperature of ca. 1200 °C and finished within 30 min when reacting at 1400 °C, leading to significant energy saving. This study shows that microwave-assisted synthesis can be an effective and green process for preparing TiC powders, which is promising for future large-scale production. The influence of the reaction temperature, the reaction duration, and the carbon content on the synthesis of TiC powders was investigated.

  10. Component and System Sensitivity Considerations for Design of a Lunar ISRU Oxygen Production Plant

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Gokoglu, Suleyman; Hegde, Uday G.; Balasubramaniam, Ramaswamy; Santiago-Maldonado, Edgardo

    2009-01-01

    Component and system sensitivities of some design parameters of ISRU system components are analyzed. The differences between terrestrial and lunar excavation are discussed, and a qualitative comparison of large and small excavators is started. The effect of excavator size on the size of the ISRU plant's regolith hoppers is presented. Optimum operating conditions of both hydrogen and carbothermal reduction reactors are explored using recently developed analytical models. Design parameters such as batch size, conversion fraction, and maximum particle size are considered for a hydrogen reduction reactor while batch size, conversion fraction, number of melt zones, and methane flow rate are considered for a carbothermal reduction reactor. For both reactor types the effect of reactor operation on system energy and regolith delivery requirements is presented.

  11. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  12. Developing uranium dicarbide-graphite porous materials for the SPES project

    NASA Astrophysics Data System (ADS)

    Biasetto, L.; Zanonato, P.; Carturan, S.; Di Bernardo, P.; Colombo, P.; Andrighetto, A.; Prete, G.

    2010-09-01

    Uranium carbide dispersed in graphite was produced under vacuum by means of carbothermic reduction of different uranium oxides (UO 2, U 3O 8 and UO 3), using graphite as the source of carbon. The thermal process was monitored by mass spectrometry and the gas evolution confirmed the reduction of the U 3O 8 and UO 3 oxides to UO 2 before the carbothermic reaction, that started to occur at T > 1000 °C. XRD analysis confirmed the formation of α-UC 2 and of a minor amount of UC. The morphology of the produced uranium carbide was not affected by the oxides employed as the source of uranium.

  13. Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors.

    PubMed

    Lam, Do Van; Jo, Kyungmin; Kim, Chang-Hyun; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2016-12-27

    Carbothermic reduction in the chemistry of metal extraction (MO(s) + C(s) → M(s) + CO(g)) using carbon as a sacrificial agent has been used to smelt metals from diverse oxide ores since ancient times. Here, we paid attention to another aspect of the carbothermic reduction to prepare an activated carbon textile for high-rate-performance supercapacitors. On the basis of thermodynamic reducibility of metal oxides reported by Ellingham, we employed not carbon, but metal oxide as a sacrificial agent in order to prepare an activated carbon textile. We conformally coated ZnO on a bare cotton textile using atomic layer deposition, followed by pyrolysis at high temperature (C(s) + ZnO(s) → C'(s) + Zn(g) + CO(g)). We figured out that it leads to concurrent carbonization and activation in a chemical as well as mechanical way. Particularly, the combined effects of mechanical buckling and fracture that occurred between ZnO and cotton turned out to play an important role in carbonizing and activating the cotton textile, thereby significantly increasing surface area (nearly 10 times) compared with the cotton textile prepared without ZnO. The carbon textiles prepared by carbothermic reduction showed impressive combination properties of high power and energy densities (over 20-fold increase) together with high cyclic stability.

  14. Carbothermal Processing of Lunar Regolith Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2009-01-01

    The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. Among various candidate processes, the modeling of oxygen production by hydrogen reduction, molten salt electrolysis, and carbothermal processing are presently being pursued. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source such as a laser beam or a concentrated solar heat flux, so that a small zone of molten regolith is established. The molten zone is surrounded by solid regolith particles that are poor conductors of heat. A continuous flow of methane is maintained over the molten regolith zone. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. Oxygen is produced subsequently by (catalytically) processing the carbon monoxide downstream. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide.

  15. Carbothermal Processing of Lunar Regolith Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2008-01-01

    The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. Among various candidate processes, the modeling of oxygen production by hydrogen reduction, molten salt electrolysis, and carbothermal processing are presently being pursued. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source such as a laser beam or a concentrated solar heat flux, so that a small zone of molten regolith is established. The molten zone is surrounded by solid regolith particles that are poor conductors of heat. A continuous flow of methane is maintained over the molten regolith zone. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. Oxygen is produced subsequently by (catalytically) processing the carbon monoxide downstream. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide.

  16. Carbothermal Reduction of Quartz and Carbon Pellets at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Li, Fei; Tangstad, Merete; Ringdalen, Eli

    2018-06-01

    In this study, the carbothermal reduction of pellets composed of quartz and carbon at temperatures between 1898 K and 1948 K (1625 °C and 1675 °C) are investigated. The main product from this reaction is silicon carbide (SiC). The reduction of quartz with carbon black, charcoal, coke, coal, and pre-heated coal in the pellet were compared to investigate the different carbon resources used in silicon production. Charcoal and coke have high SiO reactivity, while carbon black and coal (pre-heated coal) have low SiO reactivity. Charcoal and carbon black show better matching between quartz/carbon reactivity and SiO reactivity, and will lose less SiO gas than coke and pre-heated coal. Coal has a high volatile content and is thus not recommended as a raw material for the pellets.

  17. Dielectric properties and carbothermic reduction of zinc oxide and zinc ferrite by microwave heating

    PubMed Central

    Fabritius, Timo; Heikkinen, Eetu-Pekka; Chen, Guo

    2017-01-01

    This paper aims to study the dielectric properties and carbothermic reduction of zinc oxide (zincite, ZnO) and zinc ferrite (franklinite, ZnFe2O4) by microwave heating. To achieve this aim, the dielectric properties were measured with an open-ended coaxial method to understand the behaviour of the samples under microwave irradiation. The effects of microwave power, duration time and sample mass on the heating rate, and the effects of the stoichiometric amount of graphite on the reduction of ZnO and decomposition of ZnFe2O4 were investigated. The results show that ZnFe2O4 has significantly higher dielectric properties compared to ZnO. Generally, for both samples, the dielectric values at room temperature were quite low, indicating that both ZnO and ZnFe2O4 are poor microwave absorbers. It was found that the temperatures have a more significant effect on the imaginary permittivities than on the real permittivities. The heating rate showed that the sample temperature increased with increase in microwave power and sample mass. Using 700 W of microwave power and two times the stoichiometric amount of graphite, almost complete reduction of ZnO was achieved in 12 min, while ZnFe2O4 completely decomposed to zincite and wustite in 3 min. PMID:28989772

  18. Changes in Effective Thermal Conductivity During the Carbothermic Reduction of Magnetite Using Graphite

    NASA Astrophysics Data System (ADS)

    Kiamehr, Saeed; Ahmed, Hesham; Viswanathan, Nurni; Seetharaman, Seshadri

    2017-06-01

    Knowledge of the effective thermal diffusivity changes of systems undergoing reactions where heat transfer plays an important role in the reaction kinetics is essential for process understanding and control. Carbothermic reduction process of magnetite containing composites is a typical example of such systems. The reduction process in this case is highly endothermic and hence, the overall rate of the reaction is greatly influenced by the heat transfer through composite compact. Using Laser-Flash method, the change of effective thermal diffusivity of magnetite-graphite composite pellet was monitored in the dynamic mode over a pre-defined thermal cycle (heating at the rate of 7 K/min to 1423 K (1150 °C), holding the sample for 270 minutes at this temperature and then cooling it down to the room temperature at the same rate as heating). These measurements were supplemented by Thermogravimetric Analysis under comparable experimental conditions as well as quenching tests of the samples in order to combine the impact of various factors such as sample dilatations and changes in apparent density on the progress of the reaction. The present results show that monitoring thermal diffusivity changes during the course of reduction would be a very useful tool in a total understanding of the underlying physicochemical phenomena. At the end, effort is made to estimate the apparent thermal conductivity values based on the measured thermal diffusivity and dilatations.

  19. The Reduction of Lunar Regolith by Carbothermal Processing Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2010-01-01

    The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans Currently being developed by NASA. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source so that a small zone of molten regolith is established. A continuous flow of methane is maintained over the molten regolith zone. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. It is further processed downstream to ultimately produce oxygen.

  20. The Reduction of Lunar Regolith by Carbothermal Processing Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Gokoglu, S. A.; Hegde, U.

    2010-01-01

    The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source so that a small zone of molten regolith is established. A continuous flow of methane is maintained over the molten regolith zone. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. It is further processed downstream to ultimately produce oxygen.

  1. Sustainable carbothermal reduction and nitridation of Malaysian ilmenite by polyethylene terephthalate and coal

    NASA Astrophysics Data System (ADS)

    Ahmadi, Eltefat; Hamid, Sheikh Abdul Rezan Sheikh Abdul; Hussin, Hashim; Baharun, Norlia; Ariffin, Kamar Shah; Ramakrishnan, Sivakumar; Fauzi, M. N. Ahmad; Ismail, Hanafi

    2017-07-01

    In this paper, the carbothermal reduction and nitridation (CTRN) of Malaysian ilmenite has been studied as a part of crucial steps involved in reduction and subsequent chlorination processes for synthesizing titanium tetrachloride (TiCl4) from nitrided Malaysian ilmenite concentrates. In CTRN, waste plastics such as polyethylene terephthalate (PET) could be utilized as an alternative source of carbon reductant. In this study, titanium oxycarbonitride (TiOxCyNz) separated from iron (Fe) phase was synthesized by non-isothermal CTRN of Malaysian ilmenite under H2-N2 atmosphere by utilizing a mixture of Sarawak Mukah-Balingan coal and PET as reducing agents in a horizontal tube furnace. Experiments have been carried out in the temperature range of 1150-1250°C for 3 hours with various ratios of PET to coal (25 wt.% PET, 50 wt.% PET, and 75 wt.% PET). X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) methods of analysis were conducted to assess the microstructures and chemical compositions of the unreduced and reduced samples. The results indicated that utilizing PET had a significant effect on iron separation from titanium oxycarbonitride (TiO0.02C0.13N0.85) at 1250°C with a mixture of 75 wt.% PET. Furthermore, XRD and SEM studies demonstrated that with increasing PET weight ratio in the mixtures, the rate of conversion increased and a low-carbon TiOxCyNz with minimal intermediate titanium sub-oxides was synthesized. The method of applying PET as potential reductant for CTRN of ilmenite has beneficial side effects in sustainable recycling of waste PET.

  2. Silsesquioxane-derived ceramic fibres

    NASA Technical Reports Server (NTRS)

    Hurwitz, F. I.; Farmer, S. C.; Terepka, F. M.; Leonhardt, T. A.

    1991-01-01

    Fibers formed from blends of silsesquioxane polymers were characterized to study the pyrolytic conversion of these precursors to ceramics. The morphology of fibers pyrolyzed to 1400 C revealed primarily amorphous glasses whose conversion to beta-SiC is a function of both blend composition and pyrolysis conditions. Formation of beta-SiC crystallites within the glassy phase is favored by higher than stoichiometric C/Si ratios, while carbothermal reduction of Si-O bonds to form SiC with loss of SiO and CO occurs at higher methyl/phenylpropyl silsesquioxane (lower C/Si) ratios. As the carbothermal reduction is assumed to be diffusion controlled, the fibers can serve as model systems to gain understanding of the silsesquioxane pyrolysis behavior, and therefore are useful in the development of polysilsesquioxane-derived ceramic matrices and coatings as well.

  3. Low-Cost Carbothermal Reduction Preparation of Monodisperse Fe3O4/C Core-Shell Nanosheets for Improved Microwave Absorption.

    PubMed

    Liu, Yun; Fu, Yiwei; Liu, Lin; Li, Wei; Guan, Jianguo; Tong, Guoxiu

    2018-05-16

    This paper demonstrates a facile and low-cost carbothermal reduction preparation of monodisperse Fe 3 O 4 /C core-shell nanosheets (NSs) for greatly improved microwave absorption. In this protocol, the redox reaction between sheet-like hematite (α-Fe 2 O 3 ) precursors and acetone under inert atmosphere and elevated temperature generates Fe 3 O 4 /C core-shell NSs with the morphology inheriting from α-Fe 2 O 3 . Thus, Fe 3 O 4 /C core-shell NSs of different sizes ( a) and Fe 3 O 4 /C core-shell nanopolyhedrons are obtained by using different precursors. Benefited from the high crystallinity of the Fe 3 O 4 core and the thin carbon layer, the resultant NSs exhibit high specific saturation magnetization larger than 82.51 emu·g -1 . Simultaneously, the coercivity enhances with the increase of a, suggesting a strong shape anisotropy effect. Furthermore, because of the anisotropy structure and the complementary behavior between Fe 3 O 4 and C, the as-obtained Fe 3 O 4 /C core-shell NSs exhibit strong natural magnetic resonance at a high frequency, enhanced interfacial polarization, and improved impedance matching, ensuring the enhancement of the microwave absorption. The 250 nm NSs-paraffin composites exhibit reflection loss (RL) lower than -20 dB (corresponding to 99% absorption) in a large frequency ( f) range of 2.08-16.40 GHz with a minimum RL of -43.95 dB at f = 3.92 GHz when the thickness is tuned from 7.0 to 1.4 mm, indicating that the Fe 3 O 4 /C core-shell NSs are a good candidate to manufacture high-performance microwave absorbers. Moreover, the as-developed carbothermal reduction method could be applied for the fabrication of other composites based on ferrites and carbon.

  4. Use of Industrial Waste (Al-Dross, Red Mud, Mill Scale) as Fluxing Agents in the Sulfurization of Fe-Ni-Cu-Co Alloy by Carbothermic Reduction of Calcium Sulfate

    NASA Astrophysics Data System (ADS)

    Heo, Jung Ho; Jeong, Eui Hyuk; Nam, Chul Woo; Park, Kyung Ho; Park, Joo Hyun

    2018-06-01

    The use of industrial waste [mill scale (MS), red mud (RM), Al-dross (AD)] as fluxing agents in the sulfurization of Fe-Ni-Cu-Co alloy to matte (Fe-Ni-Cu-Co-S) by carbothermic reduction of CaSO4 was investigated at 1673 K (1400 °C). The sulfurization efficiency (SE) was 76 (± 2) pct at RM or AD single fluxing. However, SE drastically increased to approximately 89 pct at a `5AD + 5MS' combination, which was equivalent to reagent-grade chemical `5Al2O3 + 5Fe2O3' fluxing (SE = 88 pct). The present results can be used to improve the cost-effective recovery of rare metals (Ni and Co) from deep sea manganese nodules.

  5. Use of Industrial Waste (Al-Dross, Red Mud, Mill Scale) as Fluxing Agents in the Sulfurization of Fe-Ni-Cu-Co Alloy by Carbothermic Reduction of Calcium Sulfate

    NASA Astrophysics Data System (ADS)

    Heo, Jung Ho; Jeong, Eui Hyuk; Nam, Chul Woo; Park, Kyung Ho; Park, Joo Hyun

    2018-03-01

    The use of industrial waste [mill scale (MS), red mud (RM), Al-dross (AD)] as fluxing agents in the sulfurization of Fe-Ni-Cu-Co alloy to matte (Fe-Ni-Cu-Co-S) by carbothermic reduction of CaSO4 was investigated at 1673 K (1400 °C). The sulfurization efficiency (SE) was 76 (± 2) pct at RM or AD single fluxing. However, SE drastically increased to approximately 89 pct at a `5AD + 5MS' combination, which was equivalent to reagent-grade chemical `5Al2O3 + 5Fe2O3' fluxing (SE = 88 pct). The present results can be used to improve the cost-effective recovery of rare metals (Ni and Co) from deep sea manganese nodules.

  6. Carbon Textile Decorated with Pseudocapacitive VC/Vx Oy for High-Performance Flexible Supercapacitors.

    PubMed

    Van Lam, Do; Shim, Hyung Cheoul; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2017-11-01

    It is demonstrated that, via V 2 O 5 coating by low temperature atomic layer deposition and subsequent pyrolysis, ubiquitous cotton textile can readily turn into high-surface-area carbon textile fully decorated with pseudocapacitive V x O y /VC widely usable as electrodes of high-performance supercapacitor. It is found that carbothermic reduction of V 2 O 5 (C + V 2 O 5 → C' + VC + CO/CO 2 (g)) leads to chemical/mechanical activation of carbon textile, thereby producing high-surface-area conductive carbon textile. In addition, sequential phase transformation and carbide formation (V 2 O 5 → V x O y → VC) occurred by carbothermic reduction trigger decoration of the carbon textile with redox-active V x O y /VC. Thanks to the synergistic effect of electrical double layer and pseudocapacitance, the supercapacitors made of the hybrid carbon textile exhibit far better energy density (over 30-fold increase) with excellent cycling stability than the carbon textile simply undergone pyrolysis. The method can open up a promising and facile way to synthesize hybrid electrode materials for electrochemical energy storages possessing advantages of both electrical double layer and pseudocapacitive material. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fe-, Co-, and Ni-Loaded Porous Activated Carbon Balls as Lightweight Microwave Absorbents.

    PubMed

    Li, Guomin; Wang, Liancheng; Li, Wanxi; Xu, Yao

    2015-11-16

    Porous activated carbon ball (PACB) composites impregnated with iron, cobalt, nickel and/or their oxides were synthesized through a wet chemistry method involving PACBs as the carrier to load Fe(3+), Co(2+), and Ni(2+) ions and a subsequent carbothermal reduction at different annealing temperatures. The results show that the pyrolysis products of nitrates and/or the products from the carbothermal reduction are embedded in the pores of the PACBs, with different distributions, resulting in different crystalline phases. The as-prepared PACB composites possessed high specific surface areas of 791.2-901.5 m(2)  g(-1) and low densities of 1.1-1.3 g cm(-3). Minimum reflection loss (RL) values of -50.1, -20.6, and -20.4 dB were achieved for Fe-PACB (annealed at 500 °C), Co-PACB (annealed at 800 °C), and Ni-PACB (annealed at 800 °C) composites, respectively. Moreover, the influence of the amount of the magnetic components in the PACB composites on the microwave-absorbing performances was investigated, further confirming that the dielectric loss was the primary contributor to microwave absorption. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The onsite manufacture of propellant oxygen from lunar resources

    NASA Technical Reports Server (NTRS)

    Rosenberg, Sanders D.; Beegle, Robert L., Jr.; Guter, Gerald A.; Miller, Frederick E.; Rothenberg, Michael

    1992-01-01

    The Aerojet carbothermal process for the manufacture of oxygen from lunar materials has three essential steps: the reduction of silicate with methane to form carbon monoxide and hydrogen; the reduction of carbon monoxide with hydrogen to form methane and water; and the electrolysis of water to form hydrogen and oxygen. The reactions and the overall process are shown. It is shown with laboratory experimentation that the carbothermal process is feasible. Natural silicates can be reduced with carbon or methane. The important products are carbon monoxide, metal, and slag. The carbon monoxide can be completely reduced to form methane and water. The water can be electrolyzed to produce hydrogen and oxygen. A preliminary engineering study shows that the operation of plants using this process for the manufacture of propellant oxygen has a large economic advantage when the cost of the plant and its operation is compared to the cost of delivering oxygen from Earth.

  9. Preparation of SiC/SiO2 core-shell nanowires via molten salt mediated carbothermal reduction route

    NASA Astrophysics Data System (ADS)

    Zhang, Ju; Yan, Shuai; Jia, Quanli; Huang, Juntong; Lin, Liangxu; Zhang, Shaowei

    2016-06-01

    The growth of silicon carbide (SiC) crystal generally requires a high temperature, especially when low quality industrial wastes are used as the starting raw materials. In this work, SiC/SiO2 core-shell nanowires (NWs) were synthesized from low cost silica fume and sucrose via a molten salt mediated carbothermal reduction (CR) route. The molten salt was found to be effective in promoting the SiC growth and lowering the synthesis temperature. The resultant NWs exhibited a heterostructure composed of a 3C-SiC core of 100 nm in diameter and a 5-10 nm thick amorphous SiO2 shell layer. The photoluminescence spectrum of the achieved SiC NWs displayed a significant blue shift (a dominant luminescence at round 422 nm), which suggested that they were high quality and could be a promising candidate material for future optoelectronic applications.

  10. Preparation of Si3N4 Form Diatomite via a Carbothermal Reduction-Nitridation Process

    NASA Astrophysics Data System (ADS)

    Ma, Bin; Huang, Zhaohui; Mei, Lefu; Fang, Minghao; Liu, Yangai; Wu, Xiaowen; Hu, Xiaozhi

    2016-05-01

    Si3N4 was produced using diatomite and sucrose as silicon and carbon sources, respectively. The effect of the C/SiO2 molar ratio, heating temperature and soaking time on the morphology and phase compositions of the final products was investigated by scanning electron microscopy, x-ray diffraction analysis and energy dispersive spectroscopy. The phase equilibrium relationships of the system at different heating temperatures were also investigated based on the thermodynamic analysis. The results indicate that the phase compositions depended on the C/SiO2 molar ratio, heating temperature and soaking time. Fabrication of Si3N4 from the precursor via carbothermal reduction nitridation was achieved at 1550°C for 1-8 h using a C/SiO2 molar ratio of 3.0. The as-prepared Si3N4 contained a low amount of Fe3Si (<1 wt.%).

  11. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    NASA Astrophysics Data System (ADS)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu

    2016-09-01

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiCf/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  12. Aluminum Carbothermic Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stagesmore » 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major accomplishments for the program include definition of the system thermo-chemistry, demonstration of reactor stage 1, development of reactor stage 2 critical components in a 500 kW module, experimental determination of the vapor recovery reactor fundamentals, detailed design and installation of an advanced stage 1/vapor recovery reactor, feasibility of efficient separation of Al-C metal alloy product, updated capital and operating cost estimates, and development of computer models for all steps of the Advanced Reactor Process.« less

  13. Comparison of Direct Solar Energy to Resistance Heating for Carbothermal Reduction of Regolith

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Gustafson, Robert J.

    2011-01-01

    A comparison of two methods of delivering thermal energy to regolith for the carbo thermal reduction process has been performed. The comparison concludes that electrical resistance heating is superior to direct solar energy via solar concentrators for the following reasons: (1) the resistance heating method can process approximately 12 times as much regolith using the same amount of thermal energy as the direct solar energy method because of superior thermal insulation; (2) the resistance heating method is more adaptable to nearer-term robotic exploration precursor missions because it does not require a solar concentrator system; (3) crucible-based methods are more easily adapted to separation of iron metal and glass by-products than direct solar energy because the melt can be poured directly after processing instead of being remelted; and (4) even with projected improvements in the mass of solar concentrators, projected photovoltaic system masses are expected to be even lower.

  14. Carbon and Mo transformations during the synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Liu, Shida; Liu, Bing; Montes, Vicente; Hill, Josephine M.; Smith, Kevin J.

    2018-02-01

    The synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction is reported. Petroleum coke (petcoke) was activated with KOH at 800 °C to obtain high surface area microporous activated petcoke (APC; 2000 m2/g). The APC was wet impregnated with ammonium heptamolybdate (AHM: 10 wt% Mo), dried and reduced in H2 at temperatures from 400 to 800 °C, to yield Mo2C/APC catalysts. Increased reduction temperature increased the Mo2C yield and the mesoporous volume of the Mo2C/APC. At a reduction temperature of 750 °C the mesopore volume of the catalyst doubled compared to the APC support and accounted for 37% of the total pore volume. Maintaining the final CHR temperature for 90 min further increased the Mo2C yield and mesoporosity of the catalyst. The role of Mo2C in the catalytic hydrogenation of the APC and mesopore generation is demonstrated. The activity of the Mo2C/carbon catalysts in the hydrodeoxygenation of 4-methyl phenol increased with increased CHR temperature and catalyst mesoporosity.

  15. Electrocatalysis using transition metal carbide and oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel molybdate showing the highest OER activities.

  16. Fabrication of thorium bearing carbide fuels

    DOEpatents

    Gutierrez, Rueben L.; Herbst, Richard J.; Johnson, Karl W. R.

    1981-01-01

    Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750.degree. C. and 2000.degree. C. were used during the reduction cycle. Sintering temperatures of 1800.degree. C. and 2000.degree. C. were used to prepare fuel pellet densities of 87% and >94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproducibility of chemicals and phase composition. Methods employing liquid techniques that form carbide microspheres or alloying-techniques which form alloys of thorium-uranium or thorium-plutonium suffer from limitation on the quantities processed of because of criticality concerns and lack of precise control of process conditions, respectively.

  17. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon.

    PubMed

    Nohira, Toshiyuki; Yasuda, Kouji; Ito, Yasuhiko

    2003-06-01

    Silicon dioxide (SiO(2)) is conventionally reduced to silicon by carbothermal reduction, in which the oxygen is removed by a heterogeneous-homogeneous reaction sequence at approximately 1,700 degrees C. Here we report pinpoint and bulk electrochemical methods for removing oxygen from solid SiO(2) in a molten CaCl(2) electrolyte at 850 degrees C. This approach involves a 'contacting electrode', in which a metal wire supplies electrons to a selected region of the insulating SiO(2). Bulk reduction of SiO(2) is possible by increasing the number of contacting points. The same method was also demonstrated with molten LiCl-KCl-CaCl(2) at 500 degrees C. The novelty and relative simplicity of this method might lead to new processes in silicon semiconductor technology, as well as in high-purity silicon production. The methodology may be applicable to electrochemical processing of a wide variety of insulating materials, provided that the electrolyte dissolves the appropriate constituent ion(s) of the material.

  18. Investigations in the mechanism of carbothermal reduction of yttria stabilized zirconia for ultra-high temperature ceramics application and its influence on yttria contained in it

    NASA Astrophysics Data System (ADS)

    Sondhi, Anchal

    Zirconium carbide (ZrC) is a high modulus ceramic with an ultra-high melting temperature and, consequently, is capable of withstanding extreme environments. Carbon-carbon composites (CCCs) are important structural materials in current commercial and future hypersonic aircraft; however, these materials may be susceptible to degradation when exposed to elevated temperatures during extreme velocities. At speeds of exceeding Mach 5, intense heating of leading edges of the aircraft triggers rapid oxidation of carbon in CCCs resulting in degradation of the structure and probable failure. Environmental/thermal barrier coatings (EBC/TBC) are employed to protect airfoil structures from extreme conditions. Yttria stabilized zirconia (YSZ) is a well-known EBC/TBC material currently used to protect metallic turbine blades and other aerospace structures. In this work, 3 mol% YSZ has been studied as a potential EBC/TBC on CCCs. However, YSZ is an oxygen conductor and may not sufficiently slow the oxidation of the underlying CCC. Under appropriate conditions, ZrC can form at the interface between CCC and YSZ. Because ZrC is a poor oxygen ion conductor in addition to its stability at high temperatures, it can reduce the oxygen transport to the CCC and thus increase the service lifetime of the structure. This dissertation investigates the thermodynamics and kinetics of the YSZ/ZrC/CCC system and the resulting structural changes across multiple size scales. A series of experiments were conducted to understand the mechanisms and species involved in the carbothermal reduction of ZrO2 to form ZrC. 3 mol% YSZ and graphite powders were uniaxially pressed into pellets and reacted in a graphite (C) furnace. Rietveld x-ray diffraction phase quantification determined that greater fractions of ZrC were formed when carbon was the majority mobile species. These results were validated by modeling the process thermochemically and were confirmed with additional experiments. Measurements were conducted to examine the effect of carbothermal reduction on the bond lengths in YSZ and ZrC. Subsequent extended x-ray absorption fine structure (EXAFS) measurements and calculations showed Zr-O, Zr-C and Zr-Zr bond lengths to be unchanged after carbothermal reduction. Energy dispersive spectroscopy (EDS) line scan and mapping were carried out on carbothermaly reduced 3 mol% YSZ and 10 mol% YSZ powders. Results revealed Y2O3 stabilizer forming agglomerates with a very low solubility in ZrC.

  19. Mathematical model of silicon smelting process basing on pelletized charge from technogenic raw materials

    NASA Astrophysics Data System (ADS)

    Nemchinova, N. V.; Tyutrin, A. A.; Salov, V. M.

    2018-03-01

    The silicon production process in the electric arc reduction furnaces (EAF) is studied using pelletized charge as an additive to the standard on the basis of the generated mathematical model. The results obtained due to the model will contribute to the analysis of the charge components behavior during melting with the achievement of optimum final parameters of the silicon production process. The authors proposed using technogenic waste as a raw material for the silicon production in a pelletized form using liquid glass and aluminum production dust from the electrostatic precipitators as a binder. The method of mathematical modeling with the help of the ‘Selector’ software package was used as a basis for the theoretical study. A model was simulated with the imitation of four furnace temperature zones and a crystalline silicon phase (25 °C). The main advantage of the created model is the ability to analyze the behavior of all burden materials (including pelletized charge) in the carbothermic process. The behavior analysis is based on the thermodynamic probability data of the burden materials interactions in the carbothermic process. The model accounts for 17 elements entering the furnace with raw materials, electrodes and air. The silicon melt, obtained by the modeling, contained 91.73 % wt. of the target product. The simulation results showed that in the use of the proposed combined charge, the recovery of silicon reached 69.248 %, which is in good agreement with practical data. The results of the crystalline silicon chemical composition modeling are compared with the real silicon samples of chemical analysis data, which showed the results of convergence. The efficiency of the mathematical modeling methods in the studying of the carbothermal silicon obtaining process with complex interphase transformations and the formation of numerous intermediate compounds using a pelletized charge as an additive to the traditional one is shown.

  20. Theoretical and Experimental Investigations on the Mechanism of Carbothermal Reduction of Zirconia (Preprint)

    DTIC Science & Technology

    2012-08-01

    Properties. Abyss Books, Washington, D.C., 2002. 2. G. Montel, A. Lebugle and H. Pastor. "Manufacture of Materials Containing Refractory Borides ...and ZrO2," International Journal of Refractory Metals and Hard Materials, 17, 235-43 (1999). 10. A.W. Weimer, Carbide, nitride and boride

  1. A metallurgical route to solar-grade silicon

    NASA Technical Reports Server (NTRS)

    Schei, A.

    1986-01-01

    The aim of the process is to produce silicon for crystallization into ingots that can be sliced to wafers for processing into photovoltaic cells. If the potential purity can be realized, the silicon will also be applicable for ribbon pulling techniques where the purification during crystallization is negligible. The process consists of several steps: selection and purification of raw materials, carbothermic reduction of silica, ladle treatment, casting, crushing, leaching, and melting. The leaching step is crucial for high purity, and the obtainable purity is determined by the solidification before leaching. The most difficult specifications to fulfill are the low contents of boron, phosphorus, and carbon. Boron and phosphorus can be excluded from the raw materials, but the carbothermic reduction will unavoidably saturate the silicon with carbon at high temperature. During cooling carbon will precipitate as silicon carbide crystals, which will be harmful in solar cells. The cost of this solar silicon will depend strongly on the scale of production. It is as yet premature to give exact figures, but with a scale of some thousand tons per year, the cost will only be a few times the cost of ordinary metallurgical silicon.

  2. NASA Space Engineering Research Center for Utilization of Local Planetary Resources

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Lewis, John S.

    1989-01-01

    Progress toward the goal of exploiting extraterrestrial resources for space missions is documented. Some areas of research included are as follows: Propellant and propulsion optimization; Automation of propellant processing with quantitative simulation; Ore reduction through chlorination and free radical production; Characterization of lunar ilmenite and its simulants; Carbothermal reduction of ilmenite with special reference to microgravity chemical reactor design; Gaseous carbonyl extraction and purification of ferrous metals; Overall energy management; and Information management for space processing.

  3. Fabrication of thorium bearing carbide fuels

    DOEpatents

    Gutierrez, R.L.; Herbst, R.J.; Johnson, K.W.R.

    Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750/sup 0/C and 2000/sup 0/C were used during the reduction cycle. Sintering temperatures of 1800/sup 0/C and 2000/sup 0/C were used to prepare fuel pellet densities of 87% and > 94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproductibility of chemical and phase composition.

  4. Carbothermic reduction behaviors of Ti-Nb-bearing Fe concentrate from Bayan Obo ore in China

    NASA Astrophysics Data System (ADS)

    Wang, Guang; Du, Ya-xing; Wang, Jing-song; Xue, Qing-guo

    2018-01-01

    To support the development of technology to utilize low-grade Ti-Nb-bearing Fe concentrate, the reduction of the concentrate by coal was systematically investigated in the present paper. A liquid phase formed when the Ti-Nb-bearing Fe concentrate/coal composite pellet was reduced at temperatures greater than 1100°C. The addition of CaCO3 improved the reduction rate when the slag basicity was less than 1.0 and inhibited the formation of the liquid phase. Mechanical milling obviously increased the metallization degree compared with that of the standard pellet when reduced under the same conditions. Evolution of the mineral phase composition and microstructure of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet at 1100°C were analyzed by X-ray diffraction and scanning electron microscopy-energy-dispersive spectroscopy. The volume shrinkage value of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet with a basicity of 1.0 was approximately 35.2% when the pellet was reduced at 1100°C for 20 min, which enhanced the external heat transfer to the lower layers when reduced in a practical rotary hearth furnace. The present work provides key parameters and mechanism understanding for the development of carbothermic reduction technology of a Ti-Nb-bearing Fe concentrate incorporated in a pyrometallurgical utilization flow sheet.

  5. Carbothermic Reduction Reactions at the Metal-Slag Interface in Ti-Bearing Slag from a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Wang, Yao-Zu; Zhang, Jian-Liang; Liu, Zheng-Jian; Du, Cheng-Bo

    2017-11-01

    Carbothermic reduction reactions at the metal-slag interface and the mechanisms of iron loss during the smelting of vanadium-bearing titanomagnetite in a blast furnace are still not clear as a result of the limited ability to observe the high-temperature zone of a blast furnace. The chemical composition of a Ti-bearing slag was determined by x-ray fluorescence and x-ray diffraction. The interfaces were characterized by scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy. The interfacial chemical reactions were deduced based on the characterization results and on the thermodynamic calculations performed using Factsage 6.4. The results indicated that the forms of iron in the slag were iron droplets wetted by Ti(C x , N1- x ), mechanically separated by iron and iron oxide. The different forms possessed unique characteristics and were formed by different mechanisms. Iron droplets wetted by Ti(C x , N1- x ) were generated through a series of interfacial reactions between TiO2 in the slag and [C] and [N] in the metal. Iron droplets without attached Ti(C x , N1- x ) were mainly located on the edges of pores and were attributed to the reduction of Fe x O in the slag. Insufficient reduction of iron-bearing minerals made it difficult for iron droplets to aggregate and separate from the slag, which created an Fe x O-enriched zone.

  6. Synthesis of titanium oxycarbonitride by carbothermal reduction and nitridation of ilmenite with recycling of polyethylene terephthalate (PET)

    NASA Astrophysics Data System (ADS)

    Ahmadi, Eltefat; Fauzi, Ahmad; Hussin, Hashim; Baharun, Norlia; Ariffin, Kamar Shah; Rezan, Sheikh Abdul

    2017-04-01

    An innovative and sustainable carbothermal reduction and nitridation (CTRN) process of ilmenite (FeTiO3) using a mixture of polyethylene terephthalate (PET) and coal as the primary reductant under an H2-N2 atmosphere was proposed. The use of PET as an alternative source of carbon not only enhances the porosity of the pellets but also results in the separation of Fe from titanium oxycarbonitride (TiO x C y N z ) particles because of the differences in surface tension. The experiments were carried out at 1250°C for 3 h using four different PET contents ranging from 25wt% to 100wt% in the reductant. X-ray diffraction (XRD), scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDX), and LECO elemental analysis were used to study the phases and microstructures of the reduced samples. In the case of 75wt% PET, iron distinctly separated from the synthesized TiO x C y N z phase. With increasing PET content in the sample, the reduction and nitridation rates substantially increased. The synthesis of an oxycarbonitride with stoichiometry of TiO0.02C0.13N0.85 with minimal intermediate titanium sub-oxides was achieved. The results also showed that the iron particles formed from CTRN of FeTiO3 exhibited a spherical morphology, which is conducive for Fe removal via the Becher process.

  7. Non-oxidic nanoscale composites: single-crystalline titanium carbide nanocubes in hierarchical porous carbon monoliths.

    PubMed

    Sonnenburg, Kirstin; Smarsly, Bernd M; Brezesinski, Torsten

    2009-05-07

    We report the preparation of nanoscale carbon-titanium carbide composites with carbide contents of up to 80 wt%. The synthesis yields single-crystalline TiC nanocubes 20-30 nm in diameter embedded in a hierarchical porous carbon matrix. These composites were generated in the form of cylindrical monoliths but can be produced in various shapes using modern sol-gel and nanocasting methods in conjunction with carbothermal reduction. The monolithic material is characterized by a combination of microscopy, diffraction and physisorption. Overall, the results presented in this work represent a concrete design template for the synthesis of non-oxidic nanoscale composites with high surface areas.

  8. Synthesis of Al4SiC4 powders from kaolin grog, aluminum and carbon black by carbothermal reaction

    NASA Astrophysics Data System (ADS)

    Yuan, Wenjie; Yu, Chao; Deng, Chengji; Zhu, Hongxi

    2013-12-01

    In this paper, the synthesis of Al4SiC4 used as natural oxide materials by carbothermal reduction was investigated in order to explore the synthesis route with low costs. The samples were calcined by using kaolin grog, aluminum and carbon black as raw materials with the selected proportion at the temperature from 1500 to 1800 ° C for 2 hours under flow argon atmosphere. The phase composition of reaction products were determined by X-ray diffraction. The microstructure and elemental composition of different phases were observed and identified by scanning electron microscopy and energy dispersive spectroscopy. The mechanism of reaction processing was discussed. The results show that Al4SiC4 powders composed of hexagonal plate-like particulates with various sizes and the thickness of less than 20 μm are obtained when the temperature reaches 1800 °C.

  9. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  10. Monodisperse porous LiFePO4/C microspheres derived by microwave-assisted hydrothermal process combined with carbothermal reduction for high power lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Rongrong; Wu, Yixiong; Kong, Xiang Yang

    2014-07-01

    A microwave-assisted hydrothermal approach combined with carbothermal reduction has been developed to synthesize monodisperse porous LiFePO4/C microspheres, which possess the diameter range of 1.0-1.5 μm, high tap density of ∼1.3 g cm-3, and mesoporous characteristic with Brunauer-Emmett-Teller (BET) surface area of 30.6 m2 g-1. The obtained microspheres show meatball-like morphology aggregated by the carbon-coated LiFePO4 nanoparticles. The electrochemical impedance spectra (EIS) results indicate that carbon coating can effectively enhance both of the electronic and ionic conductivities for LiFePO4/C microspheres. The Li-ion diffusion coefficient of the LiFePO4/C microspheres calculated from the cyclic voltammetry (CV) curves is ∼6.25 × 10-9 cm2 s-1. The electrochemical performance can achieve about 100 and 90 mAh g-1 at 5C and 10C charge/discharge rates, respectively. As cathode material, the as-prepared LiFePO4/C microspheres show excellent rate capability and cycle stability, promising for high power lithium-ion batteries.

  11. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay

    2015-05-01

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).

  12. Carbothermic Reduction Kinetics of Phosphorous Vaporization from Tri-calcium Phosphate (TCP) Under Microwave Rapid Heating With/Without the Presence of Fe3O4

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Noboru; Sunako, Manami; Kawahira, Keita; Suzuki, Koki; Miyamoto, Kazunori; Taniguchi, Shoji

    2018-06-01

    The kinetics of vapor phase dephosphorization from tri-calcium phosphate (TCP) by carbothermic reduction was studied with and without the presence of Fe3O4. Microwave heating was utilized to obtain large variations in the heating rate (HR). In the reduction of TCP alone, the phosphorous removal fraction (RF; equal to ΔP2O5/P2O 5 0 , where ΔP2O5 is the weight change and P2O 5 0 is the P2O5 weight before heating) decreased as the HR increased. In other words, a shorter residence time at a high temperature resulted in a smaller reduction fraction of TCP. An apparently third-order reaction was postulated to account for the kinetics using a fitting simulation based on the additive law of the reaction progress. On the other hand, the phosphorous removal (dephosphorization) rate (RR; equal to ΔP2O3/ t MW, where tMW is the microwave heating time period) increased as the HR increased above 1200 °C. The reduction ratio of Fe3O4 above 1100 °C is higher than 97 pct regardless of the heating rate. The reduction of TCP in the presence of Fe3O4 showed that RF increased slightly with increasing HR despite a shorter residence time at a high temperature. The RR also increased with the HR even though RF decreased to half of the values observed in the cases without Fe3O4 for temperatures above 1200 °C. The practicality and optimal operation conditions of phosphorus vapor removal were discussed.

  13. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOEpatents

    Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

    1997-07-01

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Örnek, Ahmet, E-mail: ahmetornek@kafkas.edu.tr; Can, Mustafa; Yeşildağ, Ali

    Nanostructured LiCo{sub 1−x}Mn{sub x}PO{sub 4}/C (x = 0 and 0.05) materials were successfully produced as superior quality cathodes by combined sol-gel and carbothermal reduction methods. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP), cyclic voltammetry (CV) and galvanostatic measurements were applied to determine the phase purity, morphology and electrochemical qualifications. HR-TEM analysis reveals that the thickness of the surface carbon layer of 5 to 10 nm range with the uniform distribution. LiCo{sub 0·95}Mn{sub 0·05}PO{sub 4}/C particles were betweenmore » 40 and 80 nm and the same material exhibits a higher and stable reversible capacity (140 mA h g{sup −1}) with the long voltage plateau (4.76 V). Substitution of Co{sup 2+} with Mn{sup 2+} in LiCoPO{sub 4}/C has an influence on the initial discharge capacity and excellent cycling behaviour. The obtained results have attributed that production dynamics in nano-synthesis, the coating process with proper carbon source and an effective doping represent three parameters to prepare favorable cathode materials. - Highlights: • Structural, morphological and electrochemical effects of Mn doped LiCo{sub 1−x}Mn{sub x}PO{sub 4}–C electrodes are investigated. • Cheap, effective and simple sol-gel assisted carbothermal reduction approach is used. • After 60th cycle, capacity retention is almost 92% for LiCo{sub 0·95}Mn{sub 0.05}PO{sub 4}–C electrode. • Mn-doped sample exhibits distinctive oxidation (4.76 V and 4.12 V) peaks.« less

  15. Impact of Alternative Processes for Aluminum Production on Energy Requirements

    NASA Astrophysics Data System (ADS)

    Grjotheim, Kai; Welch, Barry

    1981-09-01

    Increasing prices and the shortage of large blocks of electrical energy have given greater impetus to the search for viable alternative processes for aluminum production. These include electrolysis of aluminum chloride, sulfide, and nitride; carbothermal reduction of either the ore or alumina; and disproportioning reactions of either aluminum sulfide or the monochloride route. Common to all these processes are the starting material—an ore containing aluminum oxide—and the final product—the metal. Thus, the thermodynamic cycle will invariably dictate similar theoretical energy requirements for the three processes. In practice, however, the achievable efficiencies and, more noticeably, the proportion of electrical to carbothermal energy required for the various stages of operation can vary. The present status of these alternative processes indicates that while alternative routes, such as the Alcoa-AlCl3-Smelting Process, show distinct potential for reducing electrical energy requirements, they offer little chance of reducing overall energy requirements. Furthermore, because of more stringent purity requirements, any gains made may be at the expense of production costs.

  16. Mineral sulphide-lime reactions and effect of CaO/C mole ratio during carbothermic reduction of complex mineral sulphides

    NASA Astrophysics Data System (ADS)

    Hara, Yotamu Stephen Rainford

    2014-01-01

    Mineral sulphide (MS)-lime (CaO) ion exchange reactions (MS + CaO = MO + CaS) and the effect of CaO/C mole ratio during carbothermic reduction (MS + CaO + C = M + CaS + CO(g)) were investigated for complex froth flotation mineral sulphide concentrates. Phases in the partially and fully reacted samples were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The primary phases during mineral sulphide-lime ion exchange reactions are Fe3O4, CaSO4 Cu2S, and CaS. A complex liquid phase of Ca2CuFeO3S forms during mineral sulphide-lime exchange reactions above 1173 K. The formation mechanisms of Ca2CuFeO3S liquid phase are determined by characterising the partially reacted samples. The reduction rate and extent of mineral sulphides in the presence of CaO and C increase with the increase in CaO/C ratio. The metallic phases are surrounded by the CaS rich phase at CaO/C > 1, but the metallic phases and CaS are found as separate phases at CaO/C < 1. Experimental results show that the stoichiometric ratio of carbon should be slightly higher than that of CaO. The reactions between CaO and gangue minerals (SiO2 and Al2O3) are only observed at CaO/C > 1 and the reacted samples are excessively sintered.

  17. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com

    2015-05-15

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications asmore » well boron neutron capture therapy (BNCT)« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gschneidner, Jr., Karl A.; Schmidt, Frederick A.

    A carbothermic reduction method is provided for reducing a La-, Ce-, MM-, and/or Y-containing oxide in the presence of carbon and a source of a reactant element comprising Si, Ge, Sn, Pb, As, Sb, Bi, and/or P to form an intermediate alloy material including a majority of La, Ce, MM, and/or Y and a minor amount of the reactant element. The intermediate material is useful as a master alloy for in making negative electrode materials for a metal hydride battery, as hydrogen storage alloys, as master alloy additive for addition to a melt of commercial Mg and Al alloys, steels,more » cast irons, and superalloys; or in reducing Sm.sub.2O.sub.3 to Sm metal for use in Sm--Co permanent magnets.« less

  19. One-step route to a hybrid TiO2/Ti x W1-x N nanocomposite by in situ selective carbothermal nitridation.

    PubMed

    Schnepp, Zoë; Hollamby, Martin J; Tanaka, Masahiko; Matsushita, Yoshitaka; Katsuya, Yoshio; Sakka, Yoshio

    2012-06-01

    Metal oxide/nitride nanocomposites have many existing and potential applications, e.g. in energy conversion or ammonia synthesis. Here, a hybrid oxide/nitride nanocomposite (anatase/Ti x W 1- x N) was synthesized by an ammonia-free sol-gel route. Synchrotron x-ray diffraction, complemented with electron microscopy and thermogravimetric analysis, was used to study the structure, composition and mechanism of formation of the nanocomposite. The nanocomposite contained nanoparticles (<5 nm diameter) of two highly intermixed phases. This was found to arise from controlled nucleation and growth of a single oxide intermediate from the gel precursor, followed by phase separation and in situ selective carbothermal nitridation. Depending on the preparation conditions, the composition varied from anatase/Ti x W 1- x N at low W content to an isostructural mixture of Ti-rich and W-rich Ti x W 1- x N at high W content. In situ selective carbothermal nitridation offers a facile route to the synthesis of nitride-oxide nanocomposites. This conceptually new approach is a significant advance from previous methods, which generally require ammonolysis of a pre-synthesized oxide.

  20. Effect of Temperature and Graphite Immersion Method on Carbothermic Reduction of Fayalite Slag

    NASA Astrophysics Data System (ADS)

    Mitrašinović, Aleksandar

    2017-09-01

    In this work, graphite flakes were used to reduce fayalite slag originated from the pyrometallurgical copper extraction process. Experiments were conducted with a significantly different contact area between graphite and slag at two temperatures, 1300°C and 1400°C. The process was continuously monitored via the concentration change of CO and CO2 in off-gas. Reduction rate values in experiments where 150-micron-diameter graphite flakes were submerged into the slag and left to float slowly to the top are about four times higher compared with when graphite flakes were dispersed at the top surface of liquid slag. The activation energy for instigating reduction was 302.61 kJ mol-1 and 306.67 kJ mol-1 in the case where graphite flakes were submerged into the slag and dispersed at the surface, respectively. The reduction process is characterized by two distinctive periods: an initial steep increase in the concentration of CO and CO2 controlled by the Boudouard reaction and a subsequent slow decrease of CO and CO2 concentrations in the off-gas controlled by mass transfer of reducible oxides from bulk to the gas-slag interface.

  1. Decarbonization process for carbothermically produced aluminum

    DOEpatents

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  2. Control of carbon balance in a silicon smelting furnace

    DOEpatents

    Dosaj, Vishu D.; Haines, Cathryn M.; May, James B.; Oleson, John D.

    1992-12-29

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  3. Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials.

    PubMed

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Huang, Kevin

    2014-01-18

    The recently developed solid oxide metal-air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron-air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.

  4. Encapsulation of Mo₂C in MoS₂ inorganic fullerene-like nanoparticles and nanotubes.

    PubMed

    Wiesel, Inna; Popovitz-Biro, Ronit; Tenne, Reshef

    2013-02-21

    Mo(2)C nanoparticles encapsulated within MoS(2) inorganic fullerene-like nanoparticles and nanotubes were produced by carbothermal reaction at 1200-1300 °C inside a vertical induction furnace. The particles were analyzed using various electron microscopy techniques and complementary methods.

  5. Solar Energy Systems for Lunar Oxygen Generation

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  6. Effects of MgO on the Reduction of Vanadium Titanomagnetite Concentrates with Char

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Sun, TiChang; Wang, XiaoPing; Hu, TianYang

    2017-10-01

    The effects of MgO on the carbothermic reduction behavior of vanadium titanomagnetite concentrates (VTC) from Chengde, China, were investigated via temperature-programmed heating under nitrogen atmosphere in a sealed furnace. Gaseous product content was measured by using an infrared gas analyzer, and it was found that the addition of MgO to VTC with char decreased the reduction rate and reduction degree, and the utilization of CO in VTC reduction was also reduced. X-ray diffraction results showed that magnesium titanate (Mg2TiO4) was formed but FeTi2O5 was not observed in the VTC reduction process by adding 6 wt.% MgO, which can be explained by thermodynamic analysis. Scanning electron microscopy revealed that the enrichment of Mg in the unreacted core was the main reason that the further reduction of VTC was restricted. However, comparatively pure particles of Mg2TiO4 were generated, and the titanium and iron were separated well due to the combination of magnesium and titanium.

  7. Solar Concentrator Demonstrator for Lunar Regolith Processing

    NASA Technical Reports Server (NTRS)

    Fikes, John C.; Howell, Joe T.; Gerrish, Harold P.; Patrick, Stephen L.

    2008-01-01

    NASA at the Marshall Space Flight Center (MSFC) is building a portable inflatable solar concentrator ground demonstrator for use in testing in-situ resource utilization (ISRU) lunar regolith processing methods. Of primary interest is the production of oxygen as a propellant oxidizer and for life support. There are various processes being proposed for the in-situ reduction of the lunar regolith, the leading processes are hydrogen reduction, carbothermal reduction and vapor phase pyrolysis. The concentrator system being built at MSFC could support demonstrations of all of these processes. The system consists of a light inflatable concentrator that will capture sunlight and focus it onto a receiver inside a vacuum chamber. Inflatable concentrators are good for space based applications due to their low weight and dense packaging at launch. The hexapod design allows the spot size to be increased to reduce the power density if needed for the process being demonstrated. In addition to the hardware development, a comprehensive simulation model is being developed and will be verified and validated using the system hardware. The model will allow for the evaluation of different lunar locations and operational scenarios for the lunar regolith processing with a high confidence in the predicted results.

  8. Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO3.

    PubMed

    Dong, Yifan; Slade, Tyler; Stolt, Matthew J; Li, Linsen; Girard, Steven N; Mai, Liqiang; Jin, Song

    2017-11-13

    Silicon is an extremely important technological material, but its current industrial production by the carbothermic reduction of SiO 2 is energy intensive and generates CO 2 emissions. Herein, we developed a more sustainable method to produce silicon nanowires (Si NWs) in bulk quantities through the direct electrochemical reduction of CaSiO 3 , an abundant and inexpensive Si source soluble in molten salts, at a low temperature of 650 °C by using low-melting-point ternary molten salts CaCl 2 -MgCl 2 -NaCl, which still retains high CaSiO 3 solubility, and a supporting electrolyte of CaO, which facilitates the transport of O 2- anions, drastically improves the reaction kinetics, and enables the electrolysis at low temperatures. The Si nanowire product can be used as high-capacity Li-ion battery anode materials with excellent cycling performance. This environmentally friendly strategy for the practical production of Si at lower temperatures can be applied to other molten salt systems and is also promising for waste glass and coal ash recycling. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Encapsulation of Mo2C in MoS2 inorganic fullerene-like nanoparticles and nanotubes

    NASA Astrophysics Data System (ADS)

    Wiesel, Inna; Popovitz-Biro, Ronit; Tenne, Reshef

    2013-01-01

    Mo2C nanoparticles encapsulated within MoS2 inorganic fullerene-like nanoparticles and nanotubes were produced by carbothermal reaction at 1200-1300 °C inside a vertical induction furnace. The particles were analyzed using various electron microscopy techniques and complementary methods.

  10. Reduction of iron-bearing lunar minerals for the production of oxygen

    NASA Technical Reports Server (NTRS)

    Massieon, Charles; Cutler, Andrew; Shadman, Farhang

    1992-01-01

    The kinetics and mechanism of the reduction of simulants of the iron-bearing lunar minerals olivine ((Fe,Mg)2SiO4), pyroxene ((Fe,Mg,Ca)SiO3), and ilmenite (FeTiO3) are investigated, extending previous work with ilmenite. Fayalite is reduced by H2 at 1070 K to 1480 K. A layer of mixed silica glass and iron forms around an unreacted core. Reaction kinetics are influenced by permeation of hydrogen through this layer and a reaction step involving dissociated hydrogen. Reaction mechanisms are independent of Mg content. Augite, hypersthene, and hedenbergite are reduced in H2 at the same temperatures. The products are iron metal and lower iron silicates mixed throughout the mineral. Activation energy rises with calcium content. Ilmenite and fayalite are reduced with carbon deposited on partially reduced minerals via the CO disproportionation reaction. Reduction with carbon is rapid, showing the carbothermal reduction of lunar minerals is possible.

  11. Carbothermic Synthesis of 820 m UN Kernels: Literature Review, Thermodynamics, Analysis, and Related Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemer, Terrence; Voit, Stewart L; Silva, Chinthaka M

    2014-01-01

    The U.S. Department of Energy is considering a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with large, dense uranium nitride (UN) kernels. This effort explores many factors involved in using gel-derived uranium oxide-carbon microspheres to make large UN kernels. Analysis of recent studies with sufficient experimental details is provided. Extensive thermodynamic calculations are used to predict carbon monoxide and other pressures for several different reactions that may be involved in conversion of uranium oxides and carbides to UN. Experimentally, the method for making themore » gel-derived microspheres is described. These were used in a microbalance with an attached mass spectrometer to determine details of carbothermic conversion in argon, nitrogen, or vacuum. A quantitative model is derived from experiments for vacuum conversion to an uranium oxide-carbide kernel.« less

  12. Magnetic iron oxides in the cementation technology of the boron-containing radioactive waste

    NASA Astrophysics Data System (ADS)

    Fedotov, M. A.; Gorbunova, O. A.; Fedorova, O. V.; Folmanis, G. E.; Kovalenko, L. V.

    2015-04-01

    Two ways of synthesis of non-detachable dispersed particles of magnetic materials useful for the boron-containing waste cementation process regulation were developed. Powder XRD showed that the method of carbothermic recovery of nanoscale iron hydroxide allows obtaining a mixture of iron oxides with content of the magnetic phase up to 70%. Method of low-temperature hydrogen reduction of the raw materials allows obtaining various compositions of a-iron and iron oxides with the possibility to change the size of the final particles in a wide range. The possibility of using composites of magnetic iron oxides and metal oxide compositions instead of ferromagnetic rods with VEP of boron-containing liquid radioactive waste in the fluidized field was studied. It was shown that the use of fine and nano particles of the iron oxides in the pre-treatment of the boron-containing LRW increases the strength of the final compounds and accelerates the cement setting compounds from 13 to 5-9 days.

  13. Pneumatic Regolith Transfer Systems for In-Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Townsend, Ivan I., III; Mantovani, James G.

    2010-01-01

    One aspect of In-Situ Resource Utilization (lSRU) in a lunar environment is to extract oxygen and other elements from the minerals that make up the lunar regolith. Typical ISRU oxygen production processes include but are not limited to hydrogen reduction, carbothermal and molten oxide electrolysis. All of these processes require the transfer of regolith from a supply hopper into a reactor for chemical reaction processing, and the subsequent extraction of the reacted regolith from the reactor. This paper will discuss recent activities in the NASA ISRU project involved with developing pneumatic conveying methods to achieve lunar regolith simulant transfer under I-g and 1/6-g gravitational environments. Examples will be given of hardware that has been developed and tested by NASA on reduced gravity flights. Lessons learned and details of pneumatic regolith transfer systems will be examined as well as the relative performance in a 1/6th G environment

  14. Chemical processing of lunar materials

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.

    1979-01-01

    The paper highlights recent work on the general problem of processing lunar materials. The discussion covers lunar source materials, refined products, motivations for using lunar materials, and general considerations for a lunar or space processing plant. Attention is given to chemical processing through various techniques, including electrolysis of molten silicates, carbothermic/silicothermic reduction, carbo-chlorination process, NaOH basic-leach process, and HF acid-leach process. Several options for chemical processing of lunar materials are well within the state of the art of applied chemistry and chemical engineering to begin development based on the extensive knowledge of lunar materials.

  15. Carbothermic Reduction of Nickeliferous Laterite Ores for Nickel Pig Iron Production in China: A Review

    NASA Astrophysics Data System (ADS)

    Rao, Mingjun; Li, Guanghui; Jiang, Tao; Luo, Jun; Zhang, Yuanbo; Fan, Xiaohui

    2013-11-01

    Both the consumption and production of crude stainless steel in China rank first in the world. In 2011, the nickel production in China amounted to 446 kilotons, with the proportion of electrolytic nickel and nickel pig iron (NPI) registering 41.5% and 56.5%, respectively. NPI is a low-cost feedstock for stainless steel production when used as a substitute for electrolytic nickel. The existing commercial NPI production processes such as blast furnace smelting, rotary kiln-electric furnace smelting, and Krupp-Renn (Nipon Yakin Oheyama) processes are discussed. As low-temperature (below 1300°C) reduction of nickeliferous laterite ores followed by magnetic separation could provide an alternative avenue without smelting at high temperature (~1500°C) for producing ferronickel with low cost, the fundamentals and recent developments of the low-temperature reduction of nickeliferous laterite ores are reviewed.

  16. Carbothermal Reduction of Quartz with Carbon from Natural Gas

    NASA Astrophysics Data System (ADS)

    Li, Fei; Tangstad, Merete

    2017-04-01

    Carbothermal reaction between quartz and two different carbons originating from natural gas were investigated in this paper. One of two carbons is the commercial carbon black produced from natural gas in a medium thermal production process. The other carbon is obtained from natural gas cracking at 1273 K (1000 °C) deposited directly on the quartz pellet. At the 1923 K (1650 °C) and CO atmosphere, the impact of carbon content, pellet structure, gas transfer, and heating rate are investigated in a thermo-gravimetric furnace. The reaction process can be divided into two steps: an initial SiC-producing step followed by a SiO-producing step. Higher carbon content and increased gas transfer improves the reaction rate of SiC-producing step, while the thicker carbon coating in carbon-deposited pellet hinders reaction rate. Better gas transfer of sample holder improves reaction rate but causes more SiO loss. Heating rate has almost no influence on reaction. Mass balance analysis shows that mole ratios between SiO2, free carbon, and SiC in the SiC-producing step and SiO-producing step in CO and Ar fit the reaction SiO2(s) + 3 C(s) = SiC(s) + 2 CO(g). SiC-particle and SiC-coating formation process in mixed pellet and carbon-deposited pellet are proposed. SiC whiskers formed in the voids of these two types of pellets.

  17. Solar silicon via the Dow Corning process

    NASA Technical Reports Server (NTRS)

    Hunt, L. P.; Dosaj, V. D.

    1979-01-01

    Technical feasibility for high volume production of solar cell-grade silicon is investigated. The process consists of producing silicon from pure raw materials via the carbothermic reduction of quartz. This silicon was then purified to solar grade by impurity segregation during Czochralski crystal growth. Commercially available raw materials were used to produce 100 kg quantities of silicon during 60 hour periods in a direct arc reactor. This silicon produced single crystalline ingot, during a second Czochralski pull, that was fabricated into solar cells having efficiencies ranging from 8.2 percent to greater than 14 percent. An energy analysis of the entire process indicated a 5 month payback time.

  18. Recycling of lead solder dross, Generated from PCB manufacturing

    NASA Astrophysics Data System (ADS)

    Lucheva, Biserka; Tsonev, Tsonio; Iliev, Peter

    2011-08-01

    The main purpose of this work is to analyze lead solder dross, a waste product from manufacturing of printed circuit boards by wave soldering, and to develop an effective and environmentally sound technology for its recycling. A methodology for determination of the content and chemical composition of the metal and oxide phases of the dross is developed. Two methods for recycling of lead solder dross were examined—carbothermal reduction and recycling using boron-containing substances. The influence of various factors on the metal yield was studied and the optimal parameters of the recycling process are defined. The comparison between them under the same parameters-temperature and retention time, showed that recycling of dross with a mixture of borax and boric acid in a 1:2 ratio provides higher metal yield (93%). The recycling of this hazardous waste under developed technology gets glassy slag and solder, which after correction of the chemical composition can be used again for production of PCB.

  19. Metamorphic Formation of Extraterrestrial Portlandite in the Sutter's Mill Meteorite (SM3)

    NASA Astrophysics Data System (ADS)

    Haberle, C. W.; Garvie, L. A.; Domanik, K. J.; Christensen, P. R.

    2013-12-01

    The Sutter's Mill meteorite fell on April 22nd, 2012. Only three small stones (totaling 14.6 g) were collected before heavy rains fell over the fall site, one of which (SM3, 5.0 g) was obtained by Arizona State University's Center for Meteorite Studies. Bulk powder X-ray diffraction (XRD) investigation of seven stones shows that SM3, 6, 8 and 9 are olivine-rich and SM38, 41 and 65 are clay-rich [Garvie 2013]. The olivine-rich stones are largely anhydrous, with mass losses of ~3 wt%, as measured by thermogravimetric analysis (TGA). SM3 also contains Fe-sulfides, magnetite, oldhamite, and minor enstatite. Reflected-light observations show a heterogeneous distribution of clasts, chondrules, sulfides and bluish-white grains embedded in a dark, fine-grained matrix. Three visually prominent bluish-white mineral grains were identified for study: Grain 1, 100 um surrounded by matrix; Grain 2, 200 x 100 um with a rim of ferrous olivine; and Grain 3, 350 x 150 um surrounded by a thick rim of microcrystalline Fe-Ni sulfides. Wavelength dispersive spectrometry (WDS) data of these grains are dominated by Ca and O exhibiting a 1:2 Ca:O ratio, with minor Cl and S. Secondary ion mass spectroscopy (SIMS) reveals abundant H. Compositional maps show an even distribution of Ca across the grains, with enrichments of S at the rims. The chemical data of these grains is consistent with portlandite, Ca(OH)2. This is the first indigenous report of meteoritic portlandite. Portlandite can form through the thermal decomposition of CaCO3 or via the carbothermic reduction of CaSO4 to CaO. CaCO3 decomposes to CO2 and CaO at temperatures >840° C. Carbothermic reduction of CaSO4 to CaO can occur at temperatures >700° C. Both reactions produce CaO which can then easily hydrate to Ca(OH)2, with a likely source of H from dehydroxylation of pre-existing serpentines. Dehydroxylation of serpentine occurs between 550° and 800° C with complete dehydration to olivine >800° C [Ivanova 2010, Gualtieri 2012]. Given the anhydrous nature of SM3, generation of Ca(OH)2 through the thermal decomposition of CaCO3 is unlikely as the dehydroxylation of serpentine would be complete and a source of H would be absent. A more likely mechanism for the formation of Ca(OH)2 in SM3 is the carbothermic reduction of precursor CaSO4 using CO and CO2 evolved from carbon, which is present within C-type chondrites. These data suggest that SM3 experienced temperatures as high as 700° C. Understanding the formation of Ca(OH)2 provides new insights into thermal processing of carbonaceous chondrites.

  20. On-site manufacture of propellant oxygen from lunar resources

    NASA Technical Reports Server (NTRS)

    Rosenberg, Sanders D.

    1992-01-01

    The Aerojet Carbothermal Process for the manufacture of oxygen from lunar resources has three essential steps: the reduction of silicate with methane to form carbon monoxide and hydrogen; the reduction of carbon monoxide with hydrogen to form methane and water; and the electrolysis of water to form oxygen and hydrogen. This cyclic process does not depend upon the presence of water or water precursors in the lunar materials; it will produce oxygen from silicates regardless of their precise composition and fine structure. Research on the first step of the process was initiated by determining some of the operating conditions required to reduce igneous rock with carbon and silicon carbide. The initial phase of research on the second step is completed; quantitative conversion of carbon monoxide and hydrogen to methane and water was achieved with a nickel-on-kieselguhr catalyst. The equipment used in and the results obtained from these process studies are reported in detail.

  1. Kinetics of the reduction of bushveld complex chromite ore at 1416 °C

    NASA Astrophysics Data System (ADS)

    Soykan, O.; Eric, R. H.; King, R. P.

    1991-12-01

    The kinetics of the reduction of chromite ore from the LG-6 layer of the Bushveld Complex of the Transvaal in South Africa were studied at 1416 °C by the thermogravimetric analysis (TGA) technique. Spectroscopic graphite powder was employed as the reductant. The aim of this article is to present a kinetic model that satisfactorily describes the solid-state carbothermic reduction of chromite. A generalized rate model based on an ionic diffusion mechanism was developed. The model included the contribution of the interfacial area between partially reduced and unreduced zones in chromite particles and diffusion. The kinetic model described the process for degrees of reduction from 10 to 75 pet satisfactorily. It was observed that at a given particle size, the rate of reduction was controlled mainly by interfacial area up to about 40 pet reduction, after which the rate was dominated by diffusion. On the other hand, for a given degree of reduction, the contribution of the interfacial area to the rate increased, while that of diffusion decreased, with a decrease in the particle size. The value of the diffusion coefficient for the Fe2+ species at 1416 °C was calculated to be 2.63 x 10-2 cm2/s.

  2. Elaboration and characterization of metallurgical silicon for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Barbouche, M.; Hajji, M.; Krout, F.; Ezzaouia, H.

    2015-04-01

    There is a small quantity of participants in the global market of silicon, mainly from the developed countries. It should be noticed also that production of metallurgical silicon Mg-Si is among the most important steps to produce solar grade silicon and photovoltaic panels. Therefore, in this paper we focused on the growth of Mg-Si by carbothermal reduction of silica. An investigation was made using FT-IR characterization to study the effect of process conditions (temperature, atmosphere, duration) in Mg-Si production. Raman spectroscopy was used to investigate the produced Mg-Si. Based on these results, we established a pilot line production of metallurgical silicon at the "CRTEn" in Tunisia.

  3. Nanoparticles of wurtzite aluminum nitride from the nut shells

    NASA Astrophysics Data System (ADS)

    Qadri, S. B.; Gorzkowski, E. P.; Rath, B. B.; Feng, C. R.; Amarasinghe, R.

    2016-11-01

    Nanoparticles of aluminum nitride were produced from a thermal treatment of a mixture of aluminum oxide (Al2O3) and shells of almond, cashew, coconuts, pistachio, and walnuts in a nitrogen atmosphere at temperatures in excess of 1450 °C. By selecting the appropriate ratios of each nut powder to Al2O3, it is shown that stoichiometric aluminum nitride can be produced by carbo-thermal reduction in nitrogen atmosphere. Using x-ray diffraction analysis, Raman scattering and Fourier Transform Infrared spectroscopy, it is demonstrated that aluminum nitride consists of pure wurtzite phase. Transmission electron microscopy showed the formation of nanoparticles and in some cases nanotubes of AlN.

  4. Carbothermal transformation of a graphitic carbon nanofiber/silica aerogel composite to a SiC/silica nanocomposite.

    PubMed

    Lu, Weijie; Steigerwalt, Eve S; Moore, Joshua T; Sullivan, Lisa M; Collins, W Eugene; Lukehart, C M

    2004-09-01

    Carbon nanofiber/silica aerogel composites are prepared by sol-gel processing of surface-enhanced herringbone graphitic carbon nanofibers (GCNF) and Si(OMe)4, followed by supercritical CO2 drying. Heating the resulting GCNF/silica aerogel composites to 1650 degrees C under a partial pressure of Ar gas initiates carbothermal reaction between the silica aerogel matrix and the carbon nanofiber component to form SiC/silica nanocomposites. The SiC phase is present as nearly spherical nanoparticles, having an average diameter of ca. 8 nm. Formation of SiC is confirmed by powder XRD and by Raman spectroscopy.

  5. Fundamentals of several reactions for the carbothermic reduction of alumina

    NASA Astrophysics Data System (ADS)

    Walker, Matthew S.

    The current process used for primary aluminum production, the Hall-Heroult process, is reliable, but it also is expensive, consumes large amounts of energy, and generates significant quantities of greenhouse gas emissions. One possible alternative process is the carbothermic reduction of alumina, wherein aluminum is formed by reducing alumina with carbon at high temperatures. This process, if successful, has the potential for substantial reductions in energy consumption, capital costs, and greenhouse gas emissions. One critical component to making this process successful involves obtaining a better understanding of the thermodynamics. Specifically, the key thermodynamic data are the free energies of the reactions and the thermodynamic activities of the metal (Al-C) and slag systems (Al2O3-Al4C3). These are critical for evaluating and controlling the carbothermic process, but experimental data is extremely limited and much of it was measured many years ago when the experimental techniques available may not have been adequate. The overall objective for this research was to assess the validity of the thermodynamic data for this process, as well as its suitability for predicting the behavior of the process. This was done through experimental investigations into both the slag (carbide) making reaction and the binary Al2O 3-Al4C3 phase diagram. The comparison of these results, to those expected based on the current understanding for the process thermodynamics (using FactSage along with the ALCO database), assesses the validity of the thermodynamic data. In this document, the experimental results for investigating the reactions of Al2O3 with carbon are presented. This work involved measuring the operating line for the first step of the carbothermic aluminum process, slag making. This was done using two experimental methods. One involved measuring the evolution of CO from the reactions using a mass spectrometer. The other involved using a vacuum thermobalance (TGA) to measure the weight loss from the reactions. Additionally, two separate reactors were used for the CO evolution measurements. One was carefully designed to minimize the concentration of nitrogen, from air, near the reactants (Reactor B). The other allowed for a significant concentration of nitrogen (Reactor A). The use of these two reactors allowed the influence of nitrogen on this slag making operating line to be determined. Also, experiments were performed making measurements for the binary Al2O3-Al4C3 phase diagram. These included measuring the Al2O3-Al 4O4C eutectic as well as the Al2O3 liquidus line. In general the measured operating line is close to the predicted line, with the exception being at Al2O3 saturation, where there a significant difference. The measured slag making operating line appears to support the predicted values (temperature and slag composition) through both the single phase liquid and at Al4C3 saturation. The data also supports the temperature for the operating line at Al2 O3 saturation (1948°C), but the slag composition here is measured to be much lower than predicted (5.2 mole % Al4C 3 vs. 7.6 mole % Al4C3). No clear explanation is provided for these lower than expected carbon concentration. The effect of nitrogen on this slag making operating line is minimal. No discernible difference was observed through both the single phase liquid and at Al4C3 saturation. At Al2O3 saturation, the temperatures were found to be the same, while the composition of the slag was found to be slightly less concentrated with carbon when nitrogen was present. The eutectic point for the Al2O3-Al4C 3 phase diagram was measured in two separate ways, slag solidification during cooling and slag melting during heating. Both revealed the same temperature (1885-1886°C), which is lower than the predicted value (1908°C). The measured eutectic compositions were slightly different (9.24 mole % Al 4C3 and 10.7 mole % Al4C3), but neither was significantly different than the predicted value (10.1 mole % Al 4C3). These measurements, along with the slag compositions at Al2O3 saturation from the operating line measurements appear to support the idea of a steeper alumina liquidus line. This has implications for the Al2O3-Al4C3 system and thermodynamic models that appear to be unrealistic. (Abstract shortened by UMI.)

  6. Study on Reduction Kinetics of Briquettes of Hematite Fines with Boiler Grade Coal and Coke Dust in Two Different Forms: Intermixing and Multilayered

    NASA Astrophysics Data System (ADS)

    Roy, Gopal Ghosh; Sarkar, Bitan Kumar; Chaudhuri, Mahua Ghosh; Mitra, Manoj Kumar; Dey, Rajib

    2017-10-01

    An attempt has been made to utilise hematite ore fines in the form of briquettes with two different form of mixing i.e. intermixing and multilayered by means of carbothermal reduction along with boiler grade coal and coke dust. The influence of reduction temperature (1323, 1373 and 1423 K) and reduction time (10, 20, 30, 45 and 60 min) has been investigated in detail and the reduced briquettes are characterised by XRD, SEM analyses. The reducibility of intermixing briquettes is found to be higher for multilayered briquettes. In addition, isothermal kinetic study has also been carried out for both intermixing and multilayered briquettes. The activation energy for intermixing briquettes are evaluated to be 125.88 kJ/mol for the initial stage of reaction (CG3 controlled mechanism) and 113.11 kJ/mol for the later part of reaction (D3 controlled mechanism), respectively. In case of multilayered briquettes, the corresponding activation energy is found to be 235.59 kJ/mol for reaction (CG3 controlled mechanism). These results corroborate the observed better reducibility of the intermixing briquettes over multilayered briquettes.

  7. Silsesquioxanes as precursors to ceramic composites

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Hyatt, Lizbeth H.; Gorecki, Joy; Damore, Lisa

    1987-01-01

    Silsesquioxanes having the general structure RSiO sub 1.5, where R = methyl, propyl, or phenyl, melt flow at 70 to 100 C. Above 100 C, free -OH groups condense. At 225 C further crosslinking occurs, and the materials form thermosets. Pyrolysis, with accompanying loss of volatiles, takes place at nominally 525 C. At higher temperatures, the R group serves as an internal carbon soruce for carbo-thermal reduction to SiC accompanied by the evolution of CO. By blending silsesquioxanes with varying R groups, both the melt rheology and composition of the fired ceramic can be controlled. Fibers can be spun from the melt which are stable in argon in 1400 C. The silsesquioxanes also were used as matrix precursors for Nicalon and alpha-SiC platelet reinforced composites.

  8. Synthesis of ultrafine ZrB2 powders by sol-gel process

    NASA Astrophysics Data System (ADS)

    Yang, Li-Juan; Zhu, Shi-Zhen; Xu, Qiang; Yan, Zhen-Yu; Liu, Ling

    2010-09-01

    Ultrafine zirconium diboride (ZrB2) powders have been synthesized by sol-gel process using zirconium oxychloride (ZrOCl2·8H2O), boric acid (H3BO3) and phenolic resin as sources of zirconia, boron oxide and carbon, respectively. The effects of the reaction temperature, B/Zr ratio, holding time, and EtOH/H2O ratio on properties of the synthesized ZrB2 powders were investigated. It was revealed that ultrafine (average crystallite size between 100 and 400 nm) ZrB2 powders can be synthesized with the optimum processing parameters as follows: (i) the ratio of B/Zr is 4; (ii) the solvent is pure ethanol; (iii) the condition of carbothermal reduction heat treatment is at 1550°C for 20 min.

  9. Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method

    PubMed Central

    Kuriakose, Sini; Avasthi, D K

    2015-01-01

    Summary ZnO–CuO nanocomposite thin films were prepared by carbothermal evaporation of ZnO and Cu, combined with annealing. The effects of 90 MeV Ni7+ ion irradiation on the structural and optical properties of ZnO–CuO nanocomposites were studied by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV–visible absorption spectroscopy and Raman spectroscopy. XRD studies showed the presence of ZnO and CuO nanostructures in the nanocomposites. FESEM images revealed the presence of nanosheets and nanorods in the nanocomposites. The photocatalytic activity of ZnO–CuO nanocomposites was evaluated on the basis of degradation of methylene blue (MB) and methyl orange (MO) dyes under sun light irradiation and it was observed that swift heavy ion irradiation results in significant enhancement in the photocatalytic efficiency of ZnO–CuO nanocomposites towards degradation of MB and MO dyes. The possible mechanism for the enhanced photocatalytic activity of ZnO–CuO nanocomposites is proposed. We attribute the observed enhanced photocatalytic activity of ZnO–CuO nanocomposites to the combined effects of improved sun light utilization and suppression of the recombination of photogenerated charge carriers in ZnO–CuO nanocomposites. PMID:25977864

  10. Carbothermal shock synthesis of high-entropy-alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei; Zachariah, Michael R.; Wang, Chao; Shahbazian-Yassar, Reza; Li, Ju; Hu, Liangbing

    2018-03-01

    The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.

  11. Scalable and Tunable Carbide-Phosphide Composite Catalyst System for the Thermochemical Conversion of Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regmi, Yagya; Rogers, Bridget; Labbe, Nicole

    We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method comprised of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon increasing the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates usingmore » pyrolysis gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the product slate. Our results demonstrate that targeted vapor product composition can be obtained, which can potentially be utilized to tune the composition of the bio-oil downstream.« less

  12. Scalable and Tunable Carbide-Phosphide Composite Catalyst System for the Thermochemical Conversion of Biomass

    DOE PAGES

    Regmi, Yagya; Rogers, Bridget; Labbe, Nicole; ...

    2017-07-13

    We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method comprised of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon increasing the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates usingmore » pyrolysis gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the product slate. Our results demonstrate that targeted vapor product composition can be obtained, which can potentially be utilized to tune the composition of the bio-oil downstream.« less

  13. Characterization and Recovery of Valuables from Waste Copper Smelting Slag

    NASA Astrophysics Data System (ADS)

    Prince, Sarfo; Young, Jamie; Ma, Guojun; Young, Courtney

    Silicate slags produced from smelting copper concentrates contains valuables such as Cu and Fe as well as heavy metals such as Pb and As which are considered hazardous. In this paper, various slags were characterized with several techniques: SEM-MLA, XRD, TG-DTA and ICP-MS. A recovery process was developed to separate the valuables from the silicates thereby producing value-added products and simultaneously reducing environmental concerns. Results show that the major phases in air-cooled slag are fayalite and magnetite whereas the water-cooled slag is amorphous. Thermodynamic calculations and carbothermal reduction experiments indicate that most of Cu and Fe can be recovered from both types using minor amounts of lime and alumina and treating at 1350°C (1623K) or higher for 30 min. The secondary slag can be recycled to the glass and/or ceramic industries.

  14. Kinetic modelling of chlorination of nitrided ilmenite using MATLAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Sivakumar, E-mail: srsivakumar@usm.my; Kwok, Teong Chen, E-mail: ctck@live.com; Hamid, Sheikh Abdul Rezan Sheikh Abdul, E-mail: rezanshk@gmail.com

    In the present study, chlorination of nitride ilmenite using 2{sup k} factorial design was investigated. The reduction experiments were carried out in a temperature range of 400°C to 500°C, chlorination duration from 1 hour to 3 hours and using different type of carbon reactant. Phases of raw materials and reduced samples were analyzed by X-ray diffraction (XRD). Ilmenite was reduced to TiO{sub x}C{sub y}N{sub z} through carbothermal and nitridation for further chlorination into titanium tetrachloride. The Design of Experiment analysis suggested that the types of carbon reactant contribute most influence to the extent of chlorination of nitride ilmenite. The extentmore » of chlorination was highest at 500°C with 3 hours chlorination time and carbon nanotube as carbon reactant.« less

  15. A study of the effects of synthesis conditions on Li5FeO4/carbon nanotube composites

    PubMed Central

    Lee, Suk-Woo; Kim, Hyun-Kyung; Kim, Myeong-Seong; Roh, Kwang Chul; Kim, Kwang-Bum

    2017-01-01

    Li5FeO4/carbon nanotube (LFO/CNT) composites composed of sub-micron sized LFO and a nanocarbon with high electrical conductivity were successfully synthesized for the use as lithium ion predoping source in lithium ion cells. The phase of LFO in the composite was found to be very sensitive to the synthesis conditions, such as the heat treatment temperature, type of lithium salt, and physical state of the precursors (powder or pellet), due to the carbothermic reduction of Fe3O4 by CNTs during high temperature solid state reaction. Under optimized synthesis conditions, LFO/CNT composites could be synthesized without the formation of impurities. To the best of our knowledge, this is the first report on the synthesis and characterization of a sub-micron sized LFO/CNT composites. PMID:28422146

  16. A study of the effects of synthesis conditions on Li5FeO4/carbon nanotube composites.

    PubMed

    Lee, Suk-Woo; Kim, Hyun-Kyung; Kim, Myeong-Seong; Roh, Kwang Chul; Kim, Kwang-Bum

    2017-04-19

    Li 5 FeO 4 /carbon nanotube (LFO/CNT) composites composed of sub-micron sized LFO and a nanocarbon with high electrical conductivity were successfully synthesized for the use as lithium ion predoping source in lithium ion cells. The phase of LFO in the composite was found to be very sensitive to the synthesis conditions, such as the heat treatment temperature, type of lithium salt, and physical state of the precursors (powder or pellet), due to the carbothermic reduction of Fe 3 O 4 by CNTs during high temperature solid state reaction. Under optimized synthesis conditions, LFO/CNT composites could be synthesized without the formation of impurities. To the best of our knowledge, this is the first report on the synthesis and characterization of a sub-micron sized LFO/CNT composites.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaques, Brian; Butt, Darryl P.; Marx, Brian M.

    A carbothermic reduction of the metal oxides in a hydrogen/nitrogen mixed gas stream prior to nitriding in a nitrogen gas stream was used to synthesize uranium nitride at 1500 deg. C, cerium nitride at 1400 deg. C, and dysprosium nitride at 1500 deg. C. Cerium nitride and dysprosium nitride were also synthesized via hydriding and nitriding the metal shavings at 900 deg. C and 1500 deg. C, respectively. Also, a novel ball-milling synthesis route was used to produce cerium nitride and dysprosium nitride from the metal shavings at room temperature. Dysprosium nitride was also produced by reacting the metal shavingsmore » in a high purity nitrogen gas stream at 1300 deg. C. All materials were characterized by phase analysis via X-ray diffraction. Only the high purity materials were further analyzed via chemical analysis to characterize the trace oxygen concentration. (authors)« less

  18. Cryochemical and CVD processing of shperical carbide fuels for propulsion reactors

    NASA Astrophysics Data System (ADS)

    Blair, H. Thomas; Carroll, David W.; Matthews, R. Bruce

    1991-01-01

    Many of the nuclear propulsion reactor concepts proposed for a manned mission to Mars use a coated spherical particle fuel form similar to that used in the Rover and NERVA propulsion reactors. The formation of uranium dicarbide microspheres using a cryochemical process and the coating of the UC2 spheres with zirconium carbide using chemical vapor deposition are being developed at Los Alamos National Laboratory. The cryochemical process is described with a discussion of the variables affecting the sphere formation and carbothermic reduction to produce UC2 spheres from UO2. Emphasis is placed on minimizing the wastes produced by the process. The ability to coat particles with ZrC was recaptured, and improvements in the process and equipment were developed. Volatile organometallic precursors were investigated as alternatives to the original ZrCl4 precursor.

  19. Highly flexible, nonflammable and free-standing SiC nanowire paper

    NASA Astrophysics Data System (ADS)

    Chen, Jianjun; Liao, Xin; Wang, Mingming; Liu, Zhaoxiang; Zhang, Judong; Ding, Lijuan; Gao, Li; Li, Ye

    2015-03-01

    Flexible paper-like semiconductor nanowire materials are expected to meet the criteria for some emerging applications, such as components of flexible solar cells, electrical batteries, supercapacitors, nanocomposites, bendable or wearable electronic or optoelectronic components, and so on. As a new generation of wide-bandgap semiconductors and reinforcements in composites, SiC nanowires have advantages in power electronic applications and nanofiber reinforced ceramic composites. Herein, free-standing SiC nanowire paper consisting of ultralong single-crystalline SiC nanowires was prepared through a facile vacuum filtration approach. The ultralong SiC nanowires were synthesized by a sol-gel and carbothermal reduction method. The flexible paper composed of SiC nanowires is ~100 nm in width and up to several hundreds of micrometers in length. The nanowires are intertwisted with each other to form a three-dimensional network-like structure. SiC nanowire paper exhibits high flexibility and strong mechanical stability. The refractory performance and thermal stability of SiC nanowire paper were also investigated. The paper not only exhibits excellent nonflammability in fire, but also remains well preserved without visible damage when it is heated in an electric oven at a high temperature (1000 °C) for 3 h. With its high flexibility, excellent nonflammability, and high thermal stability, the free-standing SiC nanowire paper may have the potential to improve the ablation resistance of high temperature ceramic composites.Flexible paper-like semiconductor nanowire materials are expected to meet the criteria for some emerging applications, such as components of flexible solar cells, electrical batteries, supercapacitors, nanocomposites, bendable or wearable electronic or optoelectronic components, and so on. As a new generation of wide-bandgap semiconductors and reinforcements in composites, SiC nanowires have advantages in power electronic applications and nanofiber reinforced ceramic composites. Herein, free-standing SiC nanowire paper consisting of ultralong single-crystalline SiC nanowires was prepared through a facile vacuum filtration approach. The ultralong SiC nanowires were synthesized by a sol-gel and carbothermal reduction method. The flexible paper composed of SiC nanowires is ~100 nm in width and up to several hundreds of micrometers in length. The nanowires are intertwisted with each other to form a three-dimensional network-like structure. SiC nanowire paper exhibits high flexibility and strong mechanical stability. The refractory performance and thermal stability of SiC nanowire paper were also investigated. The paper not only exhibits excellent nonflammability in fire, but also remains well preserved without visible damage when it is heated in an electric oven at a high temperature (1000 °C) for 3 h. With its high flexibility, excellent nonflammability, and high thermal stability, the free-standing SiC nanowire paper may have the potential to improve the ablation resistance of high temperature ceramic composites. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00776c

  20. WxC-β-SiC Nanocomposite Catalysts Used in Aqueous Phase Hydrogenation of Furfural.

    PubMed

    Rogowski, Jacek; Andrzejczuk, Mariusz; Berlowska, Joanna; Binczarski, Michal; Kregiel, Dorota; Kubiak, Andrzej; Modelska, Magdalena; Szubiakiewicz, Elzbieta; Stanishevsky, Andrei; Tomaszewska, Jolanta; Witonska, Izabela Alina

    2017-11-22

    This study investigates the effects of the addition of tungsten on the structure, phase composition, textural properties and activities of β-SiC-based catalysts in the aqueous phase hydrogenation of furfural. Carbothermal reduction of SiO₂ in the presence of WO₃ at 1550 °C in argon resulted in the formation of W x C-β-SiC nanocomposite powders with significant variations in particle morphology and content of W x C-tipped β-SiC nano-whiskers, as revealed by TEM and SEM-EDS. The specific surface area (SSA) of the nanocomposite strongly depended on the amount of tungsten and had a notable impact on its catalytic properties for the production of furfuryl alcohol (FA) and tetrahydrofurfuryl alcohol (THFA). Nanocomposite W x C-β-SiC catalysts with 10 wt % W in the starting mixture had the highest SSA and the smallest W x C crystallites. Some 10 wt % W nanocomposite catalysts demonstrated up to 90% yield of THFA, in particular in the reduction of furfural derived from biomass, although the reproducible performance of such catalysts has yet to be achieved.

  1. Production method for making rare earth compounds

    DOEpatents

    McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.

  2. Production method for making rare earth compounds

    DOEpatents

    McCallum, R. William; Ellis, Timothy W.; Dennis, Kevin W.; Hofer, Robert J.; Branagan, Daniel J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

  3. Microscopic Study of Carbon Surfaces Interacting with High Carbon Ferromanganese Slag

    NASA Astrophysics Data System (ADS)

    Safarian, Jafar; Kolbeinsen, Leiv

    2015-02-01

    The interaction of carbon materials with molten slags occurs in many pyro-metallurgical processes. In the production of high carbon ferromanganese in submerged arc furnace, the carbothermic reduction of MnO-containing silicate slags yields the metal product. In order to study the interaction of carbon with MnO-containing slags, sessile drop wettability technique is employed in this study to reduce MnO from a molten slag drop by carbon substrates. The interfacial area on the carbon substrate before and after reaction with slag is studied by scanning electron microscope. It is indicated that no Mn metal particles are found at the interface through the reduction of the MnO slag. Moreover, the reduction of MnO occurs through the contribution of Boudouard reaction and it causes carbon consumption in particular active sites at the interface, which generate carbon degradation and open pore growth at the interface. It is shown that the slag is fragmented to many micro-droplets at the reaction interface, potentially due to the effect on the interfacial energies of a provisional liquid Mn thin film. The rapid reduction of these slag micro-droplets affects the carbon surface with making deep micro-pores. A mechanism for the formation of slag micro-droplets is proposed, which is based on the formation of provisional micro thin films of liquid Mn at the interface.

  4. Production of Low Enriched Uranium Nitride Kernels for TRISO Particle Irradiation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurray, J. W.; Silva, C. M.; Helmreich, G. W.

    2016-06-01

    A large batch of UN microspheres to be used as kernels for TRISO particle fuel was produced using carbothermic reduction and nitriding of a sol-gel feedstock bearing tailored amounts of low-enriched uranium (LEU) oxide and carbon. The process parameters, established in a previous study, produced phasepure NaCl structure UN with dissolved C on the N sublattice. The composition, calculated by refinement of the lattice parameter from X-ray diffraction, was determined to be UC 0.27N 0.73. The final accepted product weighed 197.4 g. The microspheres had an average diameter of 797±1.35 μm and a composite mean theoretical density of 89.9±0.5% formore » a solid solution of UC and UN with the same atomic ratio; both values are reported with their corresponding calculated standard error.« less

  5. Morphological and functional effects of graphene on the synthesis of uranium carbide for isotopes production targets.

    PubMed

    Biasetto, L; Corradetti, S; Carturan, S; Eloirdi, R; Amador-Celdran, P; Staicu, D; Blanco, O Dieste; Andrighetto, A

    2018-05-29

    The development of tailored targets for the production of radioactive isotopes represents an active field in nuclear research. Radioactive beams find applications in nuclear medicine, in astrophysics, matter physics and materials science. In this work, we study the use of graphene both as carbon source for UO 2 carbothermal reduction to produce UC x targets, and also as functional properties booster. At fixed composition, the UC x target grain size, porosity and thermal conductivity represent the three main points that affect the target production efficiency. UC x was synthesized using both graphite and graphene as the source of carbon and the target properties in terms of composition, grain size, porosity, thermal diffusivity and thermal conductivity were studied. The main output of this work is related to the remarkable enhancement achieved in thermal conductivity, which can profitably improve thermal dissipation during operational stages of UC x targets.

  6. Processing of Lunar Soil Simulant for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Sen, Subhayu; Ray, Chandra S.; Reddy, Ramana

    2005-01-01

    NASA's long-term vision for space exploration includes developing human habitats and conducting scientific investigations on planetary bodies, especially on Moon and Mars. To reduce the level of up-mass processing and utilization of planetary in-situ resources is recognized as an important element of this vision. Within this scope and context, we have undertaken a general effort aimed primarily at extracting and refining metals, developing glass, glass-ceramic, or traditional ceramic type materials using lunar soil simulants. In this paper we will present preliminary results on our effort on carbothermal reduction of oxides for elemental extraction and zone refining for obtaining high purity metals. In additions we will demonstrate the possibility of developing glasses from lunar soil simulant for fixing nuclear waste from potential nuclear power generators on planetary bodies. Compositional analysis, x-ray diffraction patterns and differential thermal analysis of processed samples will be presented.

  7. GaN nanophosphors for white-light applications

    NASA Astrophysics Data System (ADS)

    Kumar, Mirgender; Singh, V. P.; Dubey, Sarvesh; Suh, Youngsuk; Park, Si-Hyun

    2018-01-01

    GaN nanoparticles (NPs) were synthesized by carbothermal reduction combined with nitridation, using Ga2O3 powder and graphitic carbon nitride (g-C3N4) as precursors. Characterization of the NPs was performed by X-ray diffraction, scanning electron microscopy, and room-temperature photoluminescence measurements. X-ray photoelectron spectroscopy was also performed to detect the chemical states of the different species. A universal yellow luminescence (YL) band was observed from complexes of Ga vacancies with O anti-sites and of O anti-sites with C. Further increments in the C content were observed with continued growth and induced an additional blue luminescence (BL) band. Tuning of the YL and BL bands resulted in white-light emission under certain experimental conditions, thus offering a new way of employing GaN nanophosphors for solid-state white lighting. Calculations of the correlated color temperature and color-quality scale parameters confirmed the utility of the experimental process for different applications.

  8. Effect of Steam Activation on Development of Light Weight Biomorphic Porous SiC from Pine Wood Precursor

    NASA Astrophysics Data System (ADS)

    Manocha, Satish M.; Patel, Hemang; Manocha, L. M.

    2013-02-01

    Biomorphic SiC materials with tailor-made microstructure and properties similar to ceramic materials manufactured by conventional method are a new class of materials derived from natural biopolymeric cellulose templates (wood). Porous silicon carbide (SiC) ceramics with wood-like microstructure have been prepared by carbothermal reduction of charcoal/silica composites at 1300-1600 °C in inert Ar atmosphere. The C/SiO2 composites were fabricated by infiltrating silica sol into porous activated biocarbon template. Silica in the charcoal/silica composite, preferentially in the cellular pores, was found to get transformed in forms of fibers and rods due to shrinkage during drying. The changes in the morphology of resulting porous SiC ceramics after heat treatment to 1600 °C, as well as the conversion mechanism of wood to activated carbon and then to porous SiC ceramic have been investigated using scanning electron microscope, x-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. Activation of carbon prior to silica infiltration has been found to enhance conversion of charcoal to SiC. The pore structure is found to be uniform in these materials than in those made from as-such charcoal/silica composites. This provides a low-cost and eco-friendly route to advanced ceramic materials, with near-net shape potential.

  9. Conversion of Biowaste Asian Hard Clam (Meretrix lusoria) Shells into White-Emitting Phosphors for Use in Neutral White LEDs.

    PubMed

    Chang, Tsung-Yuan; Wang, Chih-Min; Lin, Tai-Yuan; Lin, Hsiu-Mei

    2016-12-02

    The increasing volume and complexity of waste associated with the modern economy poses a serious risk to ecosystems and human health. However, the remanufacturing and recycling of waste into usable products can lead to substantial resource savings. In the present study, clam shell waste was first transformed into pure and well-crystallized single-phase white light-emitting phosphor Ca₉Gd(PO₄)₇:Eu 2+ ,Mn 2+ materials. The phosphor Ca₉Gd(PO₄)₇:Eu 2+ ,Mn 2+ materials were synthesized by the solid-state reaction method and the carbothermic reduction process, and then characterized and analyzed by means of X-ray diffraction (XRD) and photoluminescence (PL) measurements. The structural and luminescent properties of the phosphors were investigated as well. The PL and quantum efficiency measurements showed that the luminescence properties of clam shell-based phosphors were comparable to that of the chemically derived phosphors. Moreover, white light-emitting diodes were fabricated through the integration of 380 nm chips and single-phase white light-emitting phosphors (Ca 0.979 Eu 0.006 Mn 0.015 )₉Gd(PO₄)₇ into a single package of a white light emitting diode (WLED) emitting a neutral white light of 5298 K with color coordinates of (0.337, 0.344).

  10. Conversion of Biowaste Asian Hard Clam (Meretrix lusoria) Shells into White-Emitting Phosphors for Use in Neutral White LEDs

    PubMed Central

    Chang, Tsung-Yuan; Wang, Chih-Min; Lin, Tai-Yuan; Lin, Hsiu-Mei

    2016-01-01

    The increasing volume and complexity of waste associated with the modern economy poses a serious risk to ecosystems and human health. However, the remanufacturing and recycling of waste into usable products can lead to substantial resource savings. In the present study, clam shell waste was first transformed into pure and well-crystallized single-phase white light-emitting phosphor Ca9Gd(PO4)7:Eu2+,Mn2+ materials. The phosphor Ca9Gd(PO4)7:Eu2+,Mn2+ materials were synthesized by the solid-state reaction method and the carbothermic reduction process, and then characterized and analyzed by means of X-ray diffraction (XRD) and photoluminescence (PL) measurements. The structural and luminescent properties of the phosphors were investigated as well. The PL and quantum efficiency measurements showed that the luminescence properties of clam shell-based phosphors were comparable to that of the chemically derived phosphors. Moreover, white light-emitting diodes were fabricated through the integration of 380 nm chips and single-phase white light-emitting phosphors (Ca0.979Eu0.006Mn0.015)9Gd(PO4)7 into a single package of a white light emitting diode (WLED) emitting a neutral white light of 5298 K with color coordinates of (0.337, 0.344). PMID:28774101

  11. Compact-Nanobox Engineering of Transition Metal Oxides with Enhanced Initial Coulombic Efficiency for Lithium-Ion Battery Anodes.

    PubMed

    Zhu, Yanfei; Hu, Aiping; Tang, Qunli; Zhang, Shiying; Deng, Weina; Li, Yanhua; Liu, Zheng; Fan, Binbin; Xiao, Kuikui; Liu, Jilei; Chen, Xiaohua

    2018-03-14

    A novel strategy is proposed to construct a compact-nanobox (CNB) structure composed of irregular nanograins (average diameter ≈ 10 nm), aiming to confine the electrode-electrolyte contact area and enhance initial Coulombic efficiency (ICE) of transition metal oxide (TMO) anodes. To demonstrate the validity of this attempt, CoO-CNB is taken as an example which is synthesized via a carbothermic reduction method. Benefiting from the compact configuration, electrolyte can only contact the outer surface of the nanobox, keeping the inner CoO nanograins untouched. Therefore, the solid electrolyte interphase (SEI) formation is reduced. Furthermore, the internal cavity leaves enough room for volume variation upon lithiation and delithiation, resulting in superior mechanical stability of the CNB structure and less generation of fresh SEI. Consequently, the SEI remains stable and spatially confined without degradation, and hence, the CoO-CNB electrode delivers an enhanced ICE of 82.2%, which is among the highest values reported for TMO-based anodes in lithium-ion batteries. In addition, the CoO-CNB electrode also demonstrates excellent cyclability with a reversible capacity of 811.6 mA h g -1 (90.4% capacity retention after 100 cycles). These findings open up a new way to design high-ICE electrodes and boost the practical application of TMO anodes.

  12. Synthesis of Nano-Size AlN Powders by Carbothermal Reduction from Plasma-Assisted Ball Milling Precursor

    NASA Astrophysics Data System (ADS)

    Liu, Zhijie; Wang, Wenchun; Yang, Dezheng; Wang, Sen; Dai, Leyang

    2016-07-01

    Nano-size aluminum nitride (AlN) powders have been successfully synthesized with a high efficiency method through annealing from milling assisted by discharge plasma (p-milling) alumina (Al2O3) precursors. The characterization of the p-milling Al2O3 powders and the synthesized AlN are investigated. Compared to conventional ball milling (c-milling), it can be found that the precursors by p-milling have a finer grain size with a higher specific surface area, which lead to a faster reaction efficiency and higher conversion to AlN at lower temperatures. The activation energy of p-milling Al2O3 is found to be 371.5 kJ/mol, a value that is much less than the reported value of the unmilled and the conventional milled Al2O3. Meanwhile, the synthesized AlN powders have unique features, such as an irregular lamp-like morphology with uniform particle distribution and fine average particle size. The results are attributed to the unique synergistic effect of p-milling, which is the effect of deformation, fracture, and cold welding of Al2O3 powders resulting from ball milling, that will be enhanced due to the introduction of discharge plasma. supported by National Natural Science Foundation of China (No. 51177008)

  13. Synthesis of TiC Nanoparticles Anchored on Hollow Carbon Nanospheres for Enhanced Polysulfide Adsorption in Li-S Batteries.

    PubMed

    Cao, Bokai; Chen, Yong; Li, De; Yin, Lihong; Mo, Yan

    2016-12-08

    A novel spatial confinement strategy based on a carbon/TiO 2 /carbon sandwich structure is proposed to synthesize TiC nanoparticles anchored on hollow carbon nanospheres (TiC@C) through a carbothermal reduction reaction. During the synthesis process, two carbon layers not only serve as reductant to convert TiO 2 into TiC nanoparticles, but also create a spatial confinement to suppress the aggregation of TiO 2 , resulting in the formation of well-dispersed TiC nanoparticles. This unique TiC@C structure shows an outstanding long-term cycling stability at high rates owing to the strong physical and chemical adsorption of lithium polysulfides (i.e., a high capacity of 732.6 mA h g -1 at 1600 mA g -1 ) and it retains a capacity of 443.2 mA h g -1 after 1000 cycles, corresponding to a decay rate of only 0.0395 % per cycle. Therefore, this unique TiC@C composite could be considered as an important candidate for the cathode material in Li-S batteries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Carbothermal Production of Magnesium: Csiro's Magsonic™ Process

    NASA Astrophysics Data System (ADS)

    Prentice, Leon H.; Nagle, Michael W.; Barton, Timothy R. D.; Tassios, Steven; Kuan, Benny T.; Witt, Peter J.; Constanti-Carey, Keri K.

    Carbothermal production has been recognized as conceptually the simplest and cleanest route to magnesium metal, but has suffered from technical challenges of development and scale-up. Work by CSIRO has now successfully demonstrated the technology using supersonic quenching of magnesium vapor (the MagSonic™ Process). Key barriers to process development have been overcome: the experimental program has achieved sustained operation, no nozzle blockage, minimal reversion, and safe handling of pyrophoric powders. The laboratory equipment has been operated at industrially relevant magnesium vapor concentrations (>25% Mg) for multiple runs with no blockage. Novel computational fluid dynamics (CFD) modeling of the shock quenching and metal vapor condensation has informed nozzle design and is supported by experimental data. Reversion below 10% has been demonstrated, and magnesium successfully purified (>99.9%) from the collected powder. Safe operating procedures have been developed and demonstrated, minimizing the risk of powder explosion. The MagSonic™ Process is now ready to progress to significantly larger scale and continuous operation.

  15. Ultrafast Flame Annealing of TiO2 Paste for Fabricating Dye-Sensitized and Perovskite Solar Cells with Enhanced Efficiency.

    PubMed

    Kim, Jung Kyu; Chai, Sung Uk; Cho, Yoonjun; Cai, Lili; Kim, Sung June; Park, Sangwook; Park, Jong Hyeok; Zheng, Xiaolin

    2017-11-01

    Mesoporous TiO 2 nanoparticle (NP) films are broadly used as electrodes in photoelectrochemical cells, dye-sensitized solar cells (DSSCs), and perovskite solar cells (PSCs). State-of-the-art mesoporous TiO 2 NP films for these solar cells are fabricated by annealing TiO 2 paste-coated fluorine-doped tin oxide glass in a box furnace at 500 °C for ≈30 min. Here, the use of a nontraditional reactor, i.e., flame, is reported for the high throughput and ultrafast annealing of TiO 2 paste (≈1 min). This flame-annealing method, compared to conventional furnace annealing, exhibits three distinct benefits. First, flame removes polymeric binders in the initial TiO 2 paste more completely because of its high temperature (≈1000 °C). Second, flame induces strong interconnections between TiO 2 nanoparticles without affecting the underlying transparent conducting oxide substrate. Third, the flame-induced carbothermic reduction on the TiO 2 surface facilitates charge injection from the dye/perovskite to TiO 2 . Consequently, when the flame-annealed mesoporous TiO 2 film is used to fabricate DSSCs and PSCs, both exhibit enhanced charge transport and higher power conversion efficiencies than those fabricated using furnace-annealed TiO 2 films. Finally, when the ultrafast flame-annealing method is combined with a fast dye-coating method to fabricate DSSC devices, its total fabrication time is reduced from over 3 h to ≈10 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. On the genesis of molybdenum carbide phases during reduction-carburization reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guil-Lopez, R., E-mail: rut.guil@icp.csic.es; Nieto, E.; Departamento de Tecnologia Quimica y Energetica, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933-Mostoles

    2012-06-15

    Molybdenum carbide has been prepared according to the carbothermal reduction method. Carbon black substrate was used as C-source whereas a H{sub 2}-flow was the reducing agent. Two different H{sub 2} consumption steps were identified during the carburization treatment. The low temperature step is related to the reduction of Mo{sup 6+}-to-Mo{sup 4+}, the higher temperature process accounts for the deep reduction of Mo{sup 4+}-to-metal Mo{sup 0} and its subsequent reaction with C to form the Mo-carbide. The influences of the maximum carburization temperature, carburization time, gas hourly space velocity regarding Mo-loading, heating rate and temperature of Ar pre-treatment were analyzed. Allmore » these conditions are interrelated to each other. Thus, the carburization process ends at 700 Degree-Sign C when Mo-loading is 10 wt%, however Mo-loading higher than 10 wt% requires higher temperatures. Carburization temperatures up to 800 Degree-Sign C are needed to fulfill Mo-carbide formation with samples containing 50 wt% Mo. Nevertheless, Ar pre-treatment at 550 Degree-Sign C and slow heating rates favor the carburization, thus requiring lower carburization temperatures to reach the same carburization level. - Graphical Abstract: H{sub 2}-consumption profile (TPR) during the molybdenum carburization process, XRD patterns of the reduced Mo-samples after carburization and TEM-micrographs with two different enlargement of the samples with 5, 20 and 50 wt% Mo. Highlights: Black-Right-Pointing-Pointer Control of carburization variables: tailor the reduced/carbide Mo-phases (single/mixture). Black-Right-Pointing-Pointer Mo carburization in two stages: (1) Mo{sup 6+}-Mo{sup 4+}; (2) Mo{sup 4+}-Mo{sup 0} and, at once, MoC. Black-Right-Pointing-Pointer The carburization process is faster than Mo{sup 4+} reduction. Black-Right-Pointing-Pointer XPS probed: reduced Mo particles show core-shell structure. Black-Right-Pointing-Pointer Core: reduced Mo (Mo{sub 2}C, MoO{sub 2} and/or Mo{sup 0}); Shell: 2-3 nm of MoO{sub 3}.« less

  17. Kinetics of the solid-state carbothermic reduction of wessel manganese ores

    NASA Astrophysics Data System (ADS)

    Akdogan, Guven; Eric, R. Hurman

    1995-02-01

    Reduction of manganese ores from the Wessel mine of South Africa has been investigated in the temperature range 1100 °C to 1350 °C with pure graphite as the reductant under argon atmosphere. The rate and degree of reduction were found to increase with increasing temperature and decreasing particle sizes of both the ore and the graphite. The reduction was found to occur in two stages: (1) The first stage includes the rapid reduction of higher oxides of manganese and iron to MnO and FeO. The rate control appears to be mixed, both inward diffusion of CO and outward diffusion of CO2 across the porous product layer, and the reaction of carbon monoxide on the pore walls of the oxide phase play important roles. The values of effective CO-CO2 diffusivities generated by the mathematical model are in the range from 2.15 x 10-5 to 6.17 X 10-5 cm2.s-1 for different ores at 1300 °C. Apparent activation energies range from 81. 3 to 94.6 kJ/kg/mol. (2) The second stage is slower during which MnO and FeO are reduced to mixed carbide of iron and manganese. The chemical reaction between the manganous oxide and carbon dissolved in the metal phase or metal carbide seems to be the rate-controlling process The rate constant of chemical reaction between MnO and carbide on the surface of the impervious core was found to lie in the range from 1.53 x 10-8 to 1.32 x 10-7 mol . s-1 . cm-2. Apparent activation energies calculated are in the range from 102.1 to 141.7 kJ/kg/mol.

  18. Kinetic Modeling of the Reaction Rate for Quartz and Carbon Black Pellet

    NASA Astrophysics Data System (ADS)

    Li, Fei; Tangstad, Merete

    2018-06-01

    The kinetic modeling for the carbothermal reduction reaction rate in quartz and carbon black pellets is studied at different temperatures, under varying CO partial pressures in ambient atmosphere, varying carbon contents, different quartz particle sizes, and different crucible opening areas. Carbon black is produced by the cracking of natural gas. The activation energy of the SiC-producing step was determined to be 594 kJ/mol. The averaged pre-exponential factor A obtained from 1898 K, 1923 K, and 1948 K (1625 °C, 1650 °C, and 1675 °C) is 2.62E+16 min-1. The reaction rate of the gas-solid interface factor, fix-C content ( X fix-C), temperature ( T), and CO partial pressure ( X CO) can be expressed as follows: {{d/pct}}{{{d}t}} = (1 - 0.40 × X_{{{fix} - C}}^{ - 0.86} × {pct}) × 2.62 × 10^{16} × \\exp ( { - 594000/RT} ) × (2.6 - 0.015 × X_{co} ).

  19. Synthesizing and characterization of titanium diboride for composite bipolar plates in PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Duddukuri, Ramesh

    This research deals with the synthesis and characterization of titanium diboride (TiB2) from novel carbon coated precursors. This work provides information on using different boron sources and their effect on the resulting powders of TiB2. The process has two steps in which the oxide powders were first coated with carbon by cracking of a hydrocarbon gas, propylene (C3H6) and then, mixed with boron carbide and boric acid powders in a stoichiometric ratio. These precursors were treated at temperatures in the range of 1200--1400° C for 2 h in flowing Argon atmosphere to synthesize TiB2. The process utilizes a carbothermic reduction reaction of novel carbon coated precursor that has potential of producing high-quality powders (sub-micrometer and high purity). Single phase TiB2 powders produced, were compared with commercially available titanium diboride using X-ray diffraction and Transmission electron microscopy obtained from boron carbide and boric acid containing carbon coated precursor.

  20. Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites.

    PubMed

    Wang, Xue-Bin; Weng, Qunhong; Wang, Xi; Li, Xia; Zhang, Jun; Liu, Fei; Jiang, Xiang-Fen; Guo, Hongxuan; Xu, Ningsheng; Golberg, Dmitri; Bando, Yoshio

    2014-09-23

    Electrically insulating boron nitride (BN) nanosheets possess thermal conductivity similar to and thermal and chemical stabilities superior to those of electrically conductive graphenes. Currently the production and application of BN nanosheets are rather limited due to the complexity of the BN binary compound growth, as opposed to massive graphene production. Here we have developed the original strategy "biomass-directed on-site synthesis" toward mass production of high-crystal-quality BN nanosheets. The strikingly effective, reliable, and high-throughput (dozens of grams) synthesis is directed by diverse biomass sources through the carbothermal reduction of gaseous boron oxide species. The produced BN nanosheets are single crystalline, laterally large, and atomically thin. Additionally, they assemble themselves into the same macroscopic shapes peculiar to original biomasses. The nanosheets are further utilized for making thermoconductive and electrically insulating epoxy/BN composites with a 14-fold increase in thermal conductivity, which are envisaged to be particularly valuable for future high-performance electronic packaging materials.

  1. Controlling the Morphology and Oxidation Resistance of Boron Carbide Synthesized Via Carbothermic Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Ahmed, Yasser M. Z.; El-Sheikh, Said M.; Ewais, Emad M. M.; Abd-Allah, Asmaa A.; Sayed, Said A.

    2017-03-01

    Boron carbide powder was synthesized from boric acid and lactose mixtures via easy procedure. Boric acid and lactose solution mixtures were roasted in stainless steel pot at 280 °C for 24 h. Boron carbide was obtained by heating the roasted samples under flowing of industrial argon gas at 1500 °C for 3 h. The amount of borate ester compound in the roasted samples was highly influenced by the boron/carbon ratio in the starting mixtures and plays a versatile role in the produced boron carbide. The high-purity boron carbide powder was produced with a sample composed of lowest boron/carbon ratio of 1:1 without calcination step. Particle morphology was changed from nano-needles like structure of 8-10 nm size with highest carbon ratio mixture to spherical shape of >150 nm size with lowest one. The oxidation resistance performance of boron carbide is highly dependent on the morphology and grain size of the synthesized powder.

  2. Catalytic Fast Pyrolysis of Cellulose by Integrating Dispersed Nickel Catalyst with HZSM-5 Zeolite

    NASA Astrophysics Data System (ADS)

    Lei, Xiaojuan; Bi, Yadong; Zhou, Wei; Chen, Hui; Hu, Jianli

    2018-01-01

    The effect of integrating dispersed nickel catalyst with HZSM-5 zeolite on upgrading of vapors produced from pyrolysis of lignocellulosic biomass was investigated. The active component nickel nitrate was introduced onto the cellulose substrate by impregnation technique. Based on TGA experimental results, we discovered that nickel nitrate first released crystallization water, and then successively decomposed into nickel oxide which was reduced in-situ to metallic nickel through carbothermal reduction reaction. In-situ generated nickel nanoparticles were found highly dispersed over carbon substrate, which were responsible for catalyzing reforming and cracking of tars. In catalytic fast pyrolysis of cellulose, the addition of nickel nitrate caused more char formation at the expense of the yield of the condensable liquid products. In addition, the selectivity of linear oxygenates was increased whereas the yield of laevoglucose was reduced. Oxygen-containing compounds in pyrolysis vapors were deoxygenated into aromatics using HZSM-5. Moreover, the amount of condensable liquid products was decreased with the addition of HZSM-5.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, J.C.C.; Emmerich, F.G.; Bonagamba, T.J.

    The occurrence of silicon in two kinds of biomass (rice hulls and endocarp of babassu coconut) and the thermal transformations taking place in these materials under heat treatments are studied here. The authors report also the production, characterization, and study of carbonaceous materials with high SiC content through the carbothermal reduction of silica, using these natural precursors. X-ray diffraction, scanning electron microscopy, and {sup 13}C and {sup 29}Si room temperature high-resolution solid-state NMR measurements are used in the characterization and study of the materials as well as the process of SiC formation. Important conclusions about the nature of silicon inmore » these types of biomass and the effects of heat treatments on the structure of silicon-containing species are derived from the results presented. It is shown that silicon in these materials occurs in two distinct forms: amorphous hydrated silica and organically bound silicon species. The influence of spin-lattice relaxation dynamics on the NMR spectra is discussed, evidencing the role played by the paramagnetic defects produced in the materials through pyrolysis.« less

  4. Ablation characteristics and reaction mechanism of insulation materials under slag deposition condition

    NASA Astrophysics Data System (ADS)

    Guan, Yiwen; Li, Jiang; Liu, Yang

    2017-07-01

    Current understanding of the physical and chemical processes involved in the ablation of insulation materials by highly aluminized solid propellants is limited. The study on the heat transfer and ablation principle of ethylene propylene diene monomer (EPDM) materials under slag deposition condition is essential for future design or modification of large solid rocket motors (SRMs) for launch application. In this paper, the alumina liquid flow pattern and the deposition principle in full-scale SRM engines are discussed. The interaction mechanism between the alumina droplets and the wall are analyzed. Then, an experimental method was developed to simulate the insulation material ablation under slag deposition condition. Experimental study was conducted based on a laboratory-scale device. Meanwhile, from the analysis of the cross-sectional morphology and chemical composition of the charring layer after ablation, the reaction mechanism of the charring layer under deposition condition was discussed, and the main reaction equation was derived. The numerical simulation and experimental results show the following. (i) The alumina droplet flow in the deposition section of the laboratory-scale device is similar to that of a full-scale SRM. (ii) The charring layer of the EPDM insulator displays a porous tight/loose structure under high-temperature slag deposition condition. (iii) A seven-step carbothermal reduction in the alumina is derived and established under high-pressure and high-temperature environment in the SRM combustion chamber. (iv) The analysis using thermodynamic software indicates that the reaction of the alumina and charring layer initially forms Al4C3 during the operation. Then, Al element and Al2OC compound are subsequently produced with the reduction in the release of gas CO as well with continuous environmental heating.

  5. Eu(2+)-Activated Phase-Pure Oxonitridosilicate Phosphor in a Ba-Si-O-N System via Facile Silicate-Assisted Routes Designed by First-Principles Thermodynamic Simulation.

    PubMed

    Yun, Young Jun; Kim, Jin Kyu; Ju, Ji Young; Choi, Seul Ki; Park, Woon Ik; Jung, Ha-Kyun; Kim, Yongseon; Choi, Sungho

    2016-09-06

    Eu(2+)-activated single phase Ba(2+)-oxonitridosilicate phosphors were prepared under a mild synthetic condition via silicate precursors, and their luminescent properties were investigated. Both the preferred oxonitridosilicate formation as for the available host compounds and thermodynamic stability within the Ba-Si-O-N system were elucidated in detail by the theoretical simulation based on the first-principles density functional theory. Those results can visualize the optimum synthetic conditions for Eu(2+)-activated highly luminescent Ba(2+)-oxonitridosilicates, especially Ba3Si6O12N2, as promising conversion phosphors for white LEDs, including Ba3Si6O9N4 and BaSi2O2N2 phases. To prove the simulated design rule, we synthesized the Ba3Si6O12N2:Eu(2+) phosphor using various silicate precursors, Ba2Si4O10, Ba2Si3O8, and BaSiO3, in a carbothermal reduction ambient and finally succeeded in obtaining a phase of pure highly luminescent oxonitridosilicate phosphor without using any solid-state nitride addition and/or high pressure synthetic procedures. Our study provides useful guidelines for robust synthetic procedures for developing thermally stable rare-earth-ion activated oxonitridosilicate phosphors and an established simulation method that can be effectively applied to other multigas systems.

  6. Study of the presence of fluorine in the recycled fractions during carbothermal treatment of EAF dust.

    PubMed

    Menad, N; Ayala, J N; Garcia-Carcedo, Fernando; Ruiz-Ayúcar, E; Hernández, A

    2003-01-01

    Carbothermal treatment tests of electric arc furnace dusts (EAFD) using the Waelz kiln process were carried out in pilot-scale for the production of zinc oxide. The association of halides in the EAFD, and the recycled products, such as zinc oxide fumes and high-grade iron contents fractions were examined by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. XRD reveals the presence of chlorine and fluorine in the dusts in the form of KCl, NaCl and CaF2. An ultra-pure fraction of zinc was obtained after the Double Leaching Waelz Oxide (DLWO) process was performed on the zinc oxide fumes. The halide contents were reduced to approximately 100 ppm Cl and 700 ppm F. The rest of these elements are in the form of CaF2. About 65% F is volatilised as lead and zinc fluorides, 15% is expected in the magnetic fractions and 20% in non-magnetic fractions as CaF2 and MnF2, respectively.

  7. Carbothermic synthesis of 820 μm uranium nitride kernels: Literature review, thermodynamics, analysis, and related experiments

    NASA Astrophysics Data System (ADS)

    Lindemer, T. B.; Voit, S. L.; Silva, C. M.; Besmann, T. M.; Hunt, R. D.

    2014-05-01

    The US Department of Energy is developing a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with uranium nitride (UN) kernels with diameters near 825 μm. This effort explores factors involved in the conversion of uranium oxide-carbon microspheres into UN kernels. An analysis of previous studies with sufficient experimental details is provided. Thermodynamic calculations were made to predict pressures of carbon monoxide and other relevant gases for several reactions that can be involved in the conversion of uranium oxides and carbides into UN. Uranium oxide-carbon microspheres were heated in a microbalance with an attached mass spectrometer to determine details of calcining and carbothermic conversion in argon, nitrogen, and vacuum. A model was derived from experiments on the vacuum conversion to uranium oxide-carbide kernels. UN-containing kernels were fabricated using this vacuum conversion as part of the overall process. Carbonitride kernels of ∼89% of theoretical density were produced along with several observations concerning the different stages of the process.

  8. Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ma, Ming; You, Shijie; Gong, Xiaobo; Dai, Ying; Zou, Jinlong; Fu, Honggang

    2015-06-01

    Biofilms from anode heterotrophic bacteria are inevitably formed over cathodic catalytic sites, limiting the performances of single-chamber microbial fuel cells (MFCs). Graphitic carbon (GC) - based nano silver/iron oxide (AgNPs/Fe3O4/GC) composites are prepared from waste pomelo skin and used as antibacterial oxygen reduction catalysts for MFCs. AgNPs and Fe3O4 are introduced in situ into the composites by one-step carbothermal reduction, enhancing their conductivity and catalytic activity. To investigate the effects of Fe species on the antibacterial and catalytic properties, AgNPs/Fe3O4/GC is washed with sulfuric acid (1 mol L-1) for 0.5 h, 1 h, and 5 h and marked as AgNPs/Fe3O4/GC-x (x = 0.5 h, 1 h and 5 h, respectively). A maximum power density of 1712 ± 35 mW m-2 is obtained by AgNPs/Fe3O4/GC-1 h, which declines by 4.12% after 17 cycles. Under catalysis of all AgNP-containing catalysts, oxygen reduction reaction (ORR) proceeds via the 4e- pathway, and no toxic effects to anode microorganisms result from inhibiting the cathodic biofilm overgrowth. With the exception of AgNPs/Fe3O4/GC-5 h, the AgNPs-containing composites exhibit remarkable power output and coulombic efficiency through lowering proton transfer resistance and air-cathode biofouling. This study provides a perspective for the practical application of MFCs using these efficient antibacterial ORR catalysts.

  9. DC Electric Arc Furnace Application for Production of Nickel-Boron Master Alloys

    NASA Astrophysics Data System (ADS)

    Alkan, Murat; Tasyürek, Kerem Can; Bugdayci, Mehmet; Turan, Ahmet; Yücel, Onuralp

    2017-09-01

    In this study, nickel-boron (Ni-B) alloys were produced via a carbothermic reduction starting from boric acid (H3BO3) with high-purity nickel oxide (NiO), charcoal, and wood chips in a direct current arc furnace. In electric arc furnace experiments, different starting mixtures were used, and their effects on the chemical compositions of the final Ni-B alloys were investigated. After the reduction and melting stages, Ni-B alloys were obtained by tapping from the bottom of the furnace. The samples from the designated areas were also taken and analyzed. The chemical composition of the final alloys and selected samples were measured with wet chemical analysis. The Ni-B alloys had a composition of up to 14.82 mass% B. The phase contents of the final alloys and selected samples were measured using x-ray diffraction (XRD). The XRD data helped predict possible reactions and reaction mechanisms. The material and energy balance calculations were made via the XRD Rietveld and chemical compositions. Nickel boride phases started to form 600 mm below the surface. The targeted NiB phase was detected at the tapping zone of the crucible (850-900 mm depth). The energy consumption was 1.84-4.29 kWh/kg, and the electrode consumption was 10-12 g/kg of raw material charged.

  10. Synthesis and characterization of nanostructured titanium carbide for fuel cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Paviter; Singh, Harwinder; Singh, Bikramjeet

    2016-04-13

    Titanium carbide (TiC) nanoparticles have been successfully synthesized by carbo-thermic reaction of titanium and acetone at 800 °C. This method is relatively low temperature synthesis route. It can be used for large scale production of TiC. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA) techniques. XRD analysis confirmed the formation of single phase TiC. XRD analysis confirmed that the particles are spherical in shape with an average particle size of 13 nm. DTA analysis shows that the phase is stable upto 900 °C and the material can be used formore » high temperature applications.« less

  11. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Gage, Mark L.

    1990-01-01

    Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

  12. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires

    NASA Astrophysics Data System (ADS)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-04-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy ({V}{{O}}) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of {V}{{O}} defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  13. Microstructures and Properties of the C/Zr-O-Si-C Composites Fabricated by Polymer Infiltration and Pyrolysis

    NASA Astrophysics Data System (ADS)

    Ma, Yan; Chen, Zhaohui

    2013-09-01

    A way to improve the ablation properties of the C/SiC composites in an oxyacetylene torch environment was investigated by the precursor infiltration and pyrolysis route using three organic precursors (zirconium butoxide, polycarbosilane, and divinylbenzene). The ceramic matrix derived from the precursors at 1200 °C was mainly a mixture of SiC, ZrO2, and C. After annealing at 1600 °C for 1 h, ZrO2 partly transformed to ZrC because of the carbothermic reductions and completely transformed to ZrC at 1800 °C in 1 h. The mechanical properties of the composites decreased with increasing temperature, while the ablation resistance increased due to the increasing content of ZrC. Compared with C/SiC composites, the ablation resistance of the C/Zr-O-Si-C composites overwhelms because of the oxide films which formed on the ablation surfaces. And, the films were composed of two layers: the porous surface layer (the mixture of ZrO2 and SiO2) and the dense underlayer (SiO2).

  14. Solid solution cermet: (Ti,Nb)(CN)-Ni cermet.

    PubMed

    Kwon, Hanjung; Jung, Sun-A

    2014-11-01

    Solid solution powders without W, (Ti,Nb)(CN) powders with a B1 structure (NaCl like), were synthesized by high energy milling and carbothermal reduction in nitrogen. The range of molar ratios of Ti/Nb for forming complete (Ti,Nb)(CN) phase was broader than that of Ti/W for the (Ti,W)(CN) phase because carbide or carbonitride of Nb had a B1 crystal structure identical to Ti(CN) while WC had a hexagonal crystal structure. The results revealed that the hardness of (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,W)(CN)-Ni cermets. The lower density of the (Ti,Nb)(CN) powder contributed to the higher hardness compared to (Ti,W)(CN) because the volumetric ratio of (Ti,Nb)(CN) in the (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,Nb)(CN) in the (Ti,W)(CN)-Ni cermets at the same weight ratio of Ni. Additionally, it was assumed that intrinsic the properties of (Ti,Nb)(CN) could also be the cause for the high hardness of the (Ti,Nb)(CN)-Ni cermets.

  15. Evolution of Regolith Feed Systems for Lunar ISRU 02 Production Plants

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Townsend, Ivan I., III; Mantovani, James G.; Metzger, Philip T.

    2010-01-01

    The In-Situ Resource Utilization (ISRU) project of the NASA Constellation Program, Exploration Technology Development Program (ETDP) has been engaged in the design and testing of various Lunar ISRU O2 production plant prototypes that can extract chemically bound oxygen from the minerals in the lunar regolith. This work demands that lunar regolith (or simulants) shall be introduced into the O2 production plant from a holding bin or hopper and subsequently expelled from the ISRU O2 production plant for disposal. This sub-system is called the Regolith Feed System (RFS) which exists in a variety of configurations depending on the O2 production plant oxygen being used (e.g. Hydrogen Reduction, Carbothermal, Molten Oxide Electrolysis). Each configuration may use a different technology and in addition it is desirable to have heat recuperation from the spent hot regolith as an integral part of the RFS. This paper addresses the various RFS and heat recuperation technologies and system configurations that have been developed under the NASA ISRU project since 2007. In addition current design solutions and lessons learned from reduced gravity flight testing will be discussed.

  16. Mechanochemical route to the synthesis of nanostructured Aluminium nitride

    PubMed Central

    Rounaghi, S. A.; Eshghi, H.; Scudino, S.; Vyalikh, A.; Vanpoucke, D. E. P.; Gruner, W.; Oswald, S.; Kiani Rashid, A. R.; Samadi Khoshkhoo, M.; Scheler, U.; Eckert, J.

    2016-01-01

    Hexagonal Aluminium nitride (h-AlN) is an important wide-bandgap semiconductor material which is conventionally fabricated by high temperature carbothermal reduction of alumina under toxic ammonia atmosphere. Here we report a simple, low cost and potentially scalable mechanochemical procedure for the green synthesis of nanostructured h-AlN from a powder mixture of Aluminium and melamine precursors. A combination of experimental and theoretical techniques has been employed to provide comprehensive mechanistic insights on the reactivity of melamine, solid state metal-organic interactions and the structural transformation of Al to h-AlN under non-equilibrium ball milling conditions. The results reveal that melamine is adsorbed through the amine groups on the Aluminium surface due to the long-range van der Waals forces. The high energy provided by milling leads to the deammoniation of melamine at the initial stages followed by the polymerization and formation of a carbon nitride network, by the decomposition of the amine groups and, finally, by the subsequent diffusion of nitrogen into the Aluminium structure to form h-AlN. PMID:27650956

  17. The mechanism of Li2S activation in lithium-sulfur batteries: Can we avoid the polysulfide formation?

    NASA Astrophysics Data System (ADS)

    Vizintin, Alen; Chabanne, Laurent; Tchernychova, Elena; Arčon, Iztok; Stievano, Lorenzo; Aquilanti, Giuliana; Antonietti, Markus; Fellinger, Tim-Patrick; Dominko, Robert

    2017-03-01

    Electrochemical reactions in the Lisbnd S batteries are considered as a multistep reaction process with at least 2-3 equilibrium states. Here we report a possibility of having a conversion of Li2S into sulfur without detectible formation of polysulfides. That was confirmed by using a novel material system consisting of carbon coated Li2S particles prepared by carbothermal reduction of Li2SO4. Two independent in operando measurements showed direct oxidation of Li2S into sulfur for this system, with almost negligible formation of polysulfides at potentials above 2.5 V vs. Li/Li+. Our results link the diversity of first charge profiles in the literature to the Li2S oxidation mechanism and show the importance of ionic wiring within the material. Furthermore, we demonstrate that the Li2S oxidation mechanism depends on the relative amount of soluble sulfur in the electrolyte. By controlling the type and the amount of electrolyte within the encapsulating carbon shell, it is thereby possible to control the reaction mechanism of Li2S activation.

  18. Water-vapor-enhanced growth of Ge GeOx core shell nanowires and Si1-xGexOy nanowires

    NASA Astrophysics Data System (ADS)

    Hsu, Ting-Jui; Ko, Chih-Yuan; Lin, Wen-Tai

    2007-09-01

    The effects of moist Ar on the growth of Ge-GeOx core-shell nanowires (Ge-GeOx NWs) and Si1-xGexOy nanowires (SiGeONWs) on Si substrates without adding a metal catalyst via the carbothermal reduction of GeO2 powders at 1100 °C were studied. No significant nanowires were grown in dry Ar at a flow rate of 100-300 sccm until a bit of water in the range of 0.5-2 ml was loaded into the furnace. More water suppressed the growth of nanowires because of the exhaustion of more graphite powder. The growth of Ge-GeOx NWs and SiGeONWs follows the vapor-solid and vapor-liquid-solid processes, respectively. The present study showed that the water vapor serves as an oxidizer as well as a reducer at 1100 °C in enhancing the growth of SiGeONWs and Ge-GeOx NWs, respectively. The growth mechanisms of Ge-GeOx NWs and SiGeONWs are also discussed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongfen, E-mail: wanghongfen11@163.com; Wang, Zhiqi; Chen, Shougang

    Molybdenum carbides with surfactants as carbon sources were prepared using the carbothermal reduction of the appropriate precursors (molybdenum oxides deposited on surfactant micelles) at 1023 K under hydrogen gas. The carburized products were characterized using scanning electron microscopy (SEM), X-ray diffraction and BET surface area measurements. From the SEM images, hollow microspherical and rod-like molybdenum carbides were observed. X-ray diffraction patterns showed that the annealing time of carburization had a large effect on the conversion of molybdenum oxides to molybdenum carbides. And BET surface area measurements indicated that the difference of carbon sources brought a big difference in specific surfacemore » areas of molybdenum carbides. - Graphical abstract: Molybdenum carbides having hollow microspherical and hollow rod-like morphologies that are different from the conventional monodipersed platelet-like morphologies. Highlights: Black-Right-Pointing-Pointer Molybdenum carbides were prepared using surfactants as carbon sources. Black-Right-Pointing-Pointer The kinds of surfactants affected the morphologies of molybdenum carbides. Black-Right-Pointing-Pointer The time of heat preservation at 1023 K affected the carburization process. Black-Right-Pointing-Pointer Molybdenum carbides with hollow structures had larger specific surface areas.« less

  20. In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures.

    PubMed

    Fu, Wei; Du, Fei-Hu; Su, Juan; Li, Xin-Hao; Wei, Xiao; Ye, Tian-Nan; Wang, Kai-Xue; Chen, Jie-Sheng

    2014-04-14

    Stacking various two-dimensional atomic crystals on top of each other is a feasible approach to create unique multilayered heterostructures with desired properties. Herein for the first time, we present a controlled preparation of large-area graphene/MoS2 heterostructures via a simple heating procedure on Mo-oleate complex coated sodium sulfate under N2 atmosphere. Through a direct in situ catalytic reaction, graphene layer has been uniformly grown on the MoS2 film formed by the reaction of Mo species with Species, which is from the carbothermal reduction of sodium sulfate. Due to the excellent graphene "painting" on MoS2 atomic layers, the significantly shortened lithium ion diffusion distance and the markedly enhanced electronic conductivity, these multilayered graphene/MoS2 heterostructures exhibit high specific capacity, unprecedented rate performance and outstanding cycling stability, especially at a high current density, when used as an anode material for lithium batteries. This work provides a simple but efficient route for the controlled fabrication of large-area multilayered graphene/metal sulfide heterostructures with promising applications in battery manufacture, electronics or catalysis.

  1. In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures

    PubMed Central

    Fu, Wei; Du, Fei-Hu; Su, Juan; Li, Xin-Hao; Wei, Xiao; Ye, Tian-Nan; Wang, Kai-Xue; Chen, Jie-Sheng

    2014-01-01

    Stacking various two-dimensional atomic crystals on top of each other is a feasible approach to create unique multilayered heterostructures with desired properties. Herein for the first time, we present a controlled preparation of large-area graphene/MoS2 heterostructures via a simple heating procedure on Mo-oleate complex coated sodium sulfate under N2 atmosphere. Through a direct in situ catalytic reaction, graphene layer has been uniformly grown on the MoS2 film formed by the reaction of Mo species with S pecies, which is from the carbothermal reduction of sodium sulfate. Due to the excellent graphene “painting” on MoS2 atomic layers, the significantly shortened lithium ion diffusion distance and the markedly enhanced electronic conductivity, these multilayered graphene/MoS2 heterostructures exhibit high specific capacity, unprecedented rate performance and outstanding cycling stability, especially at a high current density, when used as an anode material for lithium batteries. This work provides a simple but efficient route for the controlled fabrication of large-area multilayered graphene/metal sulfide heterostructures with promising applications in battery manufacture, electronics or catalysis. PMID:24728289

  2. In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Du, Fei-Hu; Su, Juan; Li, Xin-Hao; Wei, Xiao; Ye, Tian-Nan; Wang, Kai-Xue; Chen, Jie-Sheng

    2014-04-01

    Stacking various two-dimensional atomic crystals on top of each other is a feasible approach to create unique multilayered heterostructures with desired properties. Herein for the first time, we present a controlled preparation of large-area graphene/MoS2 heterostructures via a simple heating procedure on Mo-oleate complex coated sodium sulfate under N2 atmosphere. Through a direct in situ catalytic reaction, graphene layer has been uniformly grown on the MoS2 film formed by the reaction of Mo species with S pecies, which is from the carbothermal reduction of sodium sulfate. Due to the excellent graphene ``painting'' on MoS2 atomic layers, the significantly shortened lithium ion diffusion distance and the markedly enhanced electronic conductivity, these multilayered graphene/MoS2 heterostructures exhibit high specific capacity, unprecedented rate performance and outstanding cycling stability, especially at a high current density, when used as an anode material for lithium batteries. This work provides a simple but efficient route for the controlled fabrication of large-area multilayered graphene/metal sulfide heterostructures with promising applications in battery manufacture, electronics or catalysis.

  3. Determination of Chemical Kinetic Rate Constants of a Model for Carbothermal Processing of Lunar Regolith Simulant Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R; Gokoglu, S.; Hegde, U.

    2009-01-01

    We have previously developed a chemical conversion model of the carbothermal processing of lunar regolith using methane to predict the rate of production of carbon monoxide. In this carbothermal process, gaseous methane is pyrolyzed as it flows over the hot surface of a molten zone of lunar regolith and is converted to carbon and hydrogen. Hydrogen is carried away by the exiting stream of gases and carbon is deposited on the melt surface. The deposited carbon mixes with the melt and reacts with the metal oxides in it to produce carbon monoxide that bubbles out of the melt. In our model, we assume that the flux of carbon deposited is equal to the product of the surface reaction rate constant gamma and the concentration of methane adjacent to the melt surface. Similarly, the rate of consumption of carbon per unit volume in the melt is equal to the product of the melt reaction rate constant k and the concentrations of carbon and metal oxide in the melt. In this paper, we describe our effort to determine gamma and k by comparison of the predictions from our model with test data obtained by ORBITEC (Orbital Technologies Corporation). The concentration of methane adjacent to the melt surface is a necessary input to the model. It is inferred from the test data by a mass balance of methane, adopting the usual assumptions of the continuously-stirred-tank-reactor model, whereby the average concentration of a given gaseous species equals its exit concentration. The reaction rates gamma and k have been determined by a non-linear least-squares fit to the test data for the production of carbon monoxide and the fraction of the incoming methane that is converted. The comparison of test data with our model predictions using the determined chemical kinetic rate constants provides a consistent interpretation of the process over the full range of temperatures, pressures, and methane flow rates used in the tests, thereby increasing our confidence to use the model for scale-up purposes.

  4. Corrosion-Resistant Container for Molten-Material Processing

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination of materials, and other combinations of materials have not proven to be survivable to the corrosiveness of this environment. High-temperature processing of materials with similar constituencies as lunar regolith is fairly common. The carbo-thermal process is commonly used to make metallurgical-grade silicon for the semiconductor and solar-cell industries.

  5. Fabrication of Ti substrate grain dependent C/TiO2 composites through carbothermal treatment of anodic TiO2.

    PubMed

    Rüdiger, Celine; Favaro, Marco; Valero-Vidal, Carlos; Calvillo, Laura; Bozzolo, Nathalie; Jacomet, Suzanne; Hejny, Clivia; Gregoratti, Luca; Amati, Matteo; Agnoli, Stefano; Granozzi, Gaetano; Kunze-Liebhäuser, Julia

    2016-04-07

    Composite materials of titania and graphitic carbon, and their optimized synthesis are highly interesting for application in sustainable energy conversion and storage. We report on planar C/TiO2 composite films that are prepared on a polycrystalline titanium substrate by carbothermal treatment of compact anodic TiO2 with acetylene. This thin film material allows for the study of functional properties of C/TiO2 as a function of chemical composition and structure. The chemical and structural properties of the composite on top of individual Ti substrate grains are examined by scanning photoelectron microscopy and micro-Raman spectroscopy. Through comparison of these data with electron backscatter diffraction, it is found that the amount of generated carbon and the grade of anodic film crystallinity correlate with the crystallographic orientation of the Ti substrate grains. On top of Ti grains with ∼(0001) orientations the anodic TiO2 exhibits the highest grade of crystallinity, and the composite contains the highest fraction of graphitic carbon compared to Ti grains with other orientations. This indirect effect of the Ti substrate grain orientation yields new insights into the activity of TiO2 towards the decomposition of carbon precursors.

  6. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In 2 O 3 nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor–liquid–solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy (VO) defects as confirmed using Raman spectroscopy. A combination of highmore » resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of VO defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.« less

  7. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires.

    PubMed

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P; Schaller, Richard D; Gosztola, David J; Stroscio, Michael A; Dutta, Mitra

    2018-04-27

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In 2 O 3 ) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In 2 O 3 nanostructure based device characteristics for potential optoelectronic applications. In 2 O 3 nanowires with cubic crystal structure (c-In 2 O 3 ) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy [Formula: see text] defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of [Formula: see text] defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  8. In-situ synthesis of monodisperse micro-nanospherical LiFePO4/carbon cathode composites for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Xue, Hairong; Wang, Tao; He, Jianping

    2016-06-01

    The LiFePO4 is recognized as the promising cathode material, due to its high specific capacity, excellent, structural stability and environmental benignity. However, it is blamed for the low tap density and poor rate performance when served as the cathode materials for a long time. Here, the microspheric LiFePO4/C composites are successfully synthesized through a one-step in-situ solvothermal method combined with carbothermic reduction. These LiFePO4/C microspheres are assembled by LiFePO4 nanoparticles (∼100 nm) and uniformly coated by the carbon, which show a narrow diameter distribution of 4 μm. As a cathode material for lithium ion batteries, the LiFePO4/C composites can deliver an initiate charge capacity of 155 mAh g-1 and retain 90% of initial capacity after 200 cycles at 0.1 C. When cycled at high current densities up to 20 C, it shows a discharge capacity of ∼60 mAh g-1, exhibiting superior rate performance. The significantly improved electrochemical performance of LiFePO4/C composites material can be attributed to its special micro-nano hierarchical structure. Microspheric LiFePO4/C composites exhibit a high tap density about 1.3 g cm-3. What's more, the well-coated carbon insures the high electrical conductivity and the nano-sized LiFePO4/C particles shorten lithium ion transport, thus exhibiting the high specific capacity, high cycling stability and good rate performance.

  9. Carbon-Coated, Diatomite-Derived Nanosilicon as a High Rate Capable Li-ion Battery Anode.

    PubMed

    Campbell, Brennan; Ionescu, Robert; Tolchin, Maxwell; Ahmed, Kazi; Favors, Zachary; Bozhilov, Krassimir N; Ozkan, Cengiz S; Ozkan, Mihrimah

    2016-10-07

    Silicon is produced in a variety of ways as an ultra-high capacity lithium-ion battery (LIB) anode material. The traditional carbothermic reduction process required is expensive and energy-intensive; in this work, we use an efficient magnesiothermic reduction to convert the silica-based frustules within diatomaceous earth (diatomite, DE) to nanosilicon (nanoSi) for use as LIB anodes. Polyacrylic acid (PAA) was used as a binder for the DE-based nanoSi anodes for the first time, being attributed for the high silicon utilization under high current densities (up to 4C). The resulting nanoSi exhibited a high BET specific surface area of 162.6 cm 2 g -1 , compared to a value of 7.3 cm 2 g -1 for the original DE. DE contains SiO 2 architectures that make ideal bio-derived templates for nanoscaled silicon. The DE-based nanoSi anodes exhibit good cyclability, with a specific discharge capacity of 1102.1 mAh g -1 after 50 cycles at a C-rate of C/5 (0.7 A g Si -1 ) and high areal loading (2 mg cm -2 ). This work also demonstrates the fist rate capability testing for a DE-based Si anode; C-rates of C/30 - 4C were tested. At 4C (14.3 A g Si -1 ), the anode maintained a specific capacity of 654.3 mAh g -1 - nearly 2x higher than graphite's theoretical value (372 mAh g -1 ).

  10. Preparation and Wear Resistance of Aluminum Composites Reinforced with In Situ Formed TiO/Al2O3

    NASA Astrophysics Data System (ADS)

    Qin, Q. D.; Huang, B. W.; Li, W.; Zeng, Z. Y.

    2016-05-01

    An in situ TiO/Al2O3-reinforced Al composite is successfully prepared using a powder metallurgy route by the reaction of Ti2CO and Al powder. The Ti2CO powder is produced by carrying out a carbothermic reduction of titanium dioxide at 1000 °C. XRD results show that the final product is composed of Al, TiO, Al2O3, and Al3Ti. Morphology examination of the composite reveals the presence of bigger blocks of TiO and fine particles of Al2O3 and the volume fraction of reinforcement is found to range between 18 and 55%. As the volume fraction of the reinforced materials approaches 50%, the particles start to agglomerate. Dry sliding wear tests conducted using a conventional pin-on-disk testing machine show that the wear resistance of the composite is higher than that of the pure aluminum ingot. The wear rate of the composite increases almost linearly with the increase in the wear distance. The sliding wear test shows that as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear mechanism is also discussed.

  11. Escaping the Tyranny of Carbothermal Reduction: Fumed Silica from Sustainable, Green Sources without First Having to Make SiCl4.

    PubMed

    Yi, Eongyu; Hyde, Clare E; Sun, Kai; Laine, Richard M

    2016-02-12

    Fumed silica is produced in 1000 tons per year quantities by combusting SiCl4 in H2 /O2 flames. Given that both SiCl4 and combustion byproduct HCl are corrosive, toxic and polluting, this route to fumed silica requires extensive safeguards that may be obviated if an alternate route were found. Silica, including rice hull ash (RHA) can be directly depolymerized using hindered diols to generate distillable spirocyclic alkoxysilanes or Si(OEt)4 . We report here the use of liquid-feed flame spray pyrolysis (LF-FSP) to combust the aforementioned precursors to produce fumed silica very similar to SiCl4 -derived products. The resulting powders are amorphous, necked, <50 nm average particle sizes, with specific surface areas (SSAs) of 140-230 m(2)  g(-1) . The LF-FSP approach does not require the containment constraints of the SiCl4 process and given that the RHA silica source is produced in million ton per year quantities worldwide, the reported approach represents a sustainable, green and potentially lower-cost alternative. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC.

    PubMed

    Yuan, Jie; Xiao, Jin; Li, Fachuang; Wang, Bingjie; Yao, Zhen; Yu, Bailie; Zhang, Liuyun

    2018-03-01

    Spent cathode carbon (SCC) from aluminum electrolysis has been treated in ultrasonic-assisted caustic leaching and acid leaching process, and purified SCC used as carbon source to synthesize silicon carbide (SiC) was investigated. Chemical and mineralogical properties have been characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and thermogravimetry and differential scanning calorimetry (TGA-DSC). Various experimental factors temperature, time, liquid-solid ratio, ultrasonic power, and initial concentration of alkali or acid affecting on SCC leaching result were studied. After co-treatment with ultrasonic-assisted caustic leaching and acid leaching, carbon content of leaching residue was 97.53%. SiC power was synthesized by carbothermal reduction at 1600 °C, as a result of yield of 76.43%, and specific surface area of 4378 cm 2 /g. This is the first report of using purified SCC and gangue to prepare SiC. The two industrial wastes have been used newly as secondary sources. Furthermore, ultrasonic showed significant effect in SCC leaching process. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Composite uranium carbide targets at TRIUMF: Development and characterization with SEM, XRD, XRF and L-edge densitometry

    NASA Astrophysics Data System (ADS)

    Kunz, Peter; Bricault, Pierre; Dombsky, Marik; Erdmann, Nicole; Hanemaayer, Vicky; Wong, John; Lützenkirchen, Klaus

    2013-09-01

    The production of radioactive ion beams (RIB) from spallation targets by irradiation with a continuous 500 MeV proton beam, has been routine at TRIUMF for several years. Based on the experience with composite refractory carbide targets a procedure for the fabrication of UC2/C targets was developed. It includes the preparation of UC2 by carbothermal reduction of UO2, the slip-casting of fine-grained UC2/C slurry on graphite foil under inert gas atmosphere and the cutting of composite target discs which are stacked up to a lamellar structure. The thermal properties of such an arrangement are adequate to withstand the high power deposition of an intense, continuous proton beam and also beneficial for the fast release of short-lived radioactive isotopes. Molecular structure, particle size and the impact of sintering of the target discs were investigated via XRD and SEM. Thickness and mass distribution were measured with position-sensitive LIII-edge densitometry. The results confirm that the properties of the UC2/C target material are well suited for RIB production at TRIUMF while there is still room for improvement with regard to uniformity of mass distribution in target disc thickness.

  14. Phase I. Lanthanum-based Start Materials for Hydride Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gschneidner, K. A.; Schmidt, F. A.; Frerichs, A. E.

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La 1-xR x)(Ni 1-yM y)(Si z), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  15. Electrospinning of ceramic nanofibers

    NASA Astrophysics Data System (ADS)

    Eick, Benjamin M.

    Silicon Carbide (SiC) nanofibers of diameters as low as 20 nm are fabricated. The fibers were produced through the electrostatic spinning of the preceramic poly(carbomethylsilane) with pyrolysis to ceramic. A new technique was used where the preceramic was blended with polystyrene (PS) and, subsequent to electrospinning, was exposed to UV to crosslink the PS and prevent fibers flowing during pyrolysis. Electrospun SiC fibers were characterized by FTIR, TGA-DTA, SEM, TEM, XRD, and SAED. Fibers were shown to be polycrystalline and nanograined with alpha-SiC 15R polytype being dominant, where commercial fiber production methods form beta-SiC 3C. Pyrolysis of the bulk polymer blend to SiC produced alpha-SiC 15R as the dominant polytype with larger grains showing that electrospinning nanofibers affects resultant crystallinity. Fibers produced were shown to have a core-shell structure of an oxide scale that was variable by pyrolysis conditions. Metal oxide powders (chromium oxide, cobalt oxide, iron oxide, silicon oxide, tantalum oxide, titanium oxide, tungsten oxide, vanadium oxide, and zirconium oxide), were converted to metal carbide powders and metal nitride powders by the process of carbothermal reduction (CTR). Synthetic pitch was explored as an alternative to graphite which is a common carbon source for CTR. It was shown via characterization with XRD that pitch performs as well and in some cases better than graphite and is therefore a viable alternative in CTR. Conversion of metal oxide powders with pitch led to conversion of sol-gel based metal oxide nanofibers produced by electrospinning. Pitch was soluble in the solutions xv that were electrospun allowing for intimate contact between the sol-gel and the carbon source for CTR. This method became a two step processing method to produce metal carbide and nitride nanofibers: first electrospin sol-gel based metal oxide nanofibers and subsequently pyrolize them in the manner of CTR to transform them. Results indicate that this method was capable of transforming hafnium, niobium, tantalum, titanium, vanadium, and zirconium sol-gel nanofibers to metal carbides and nitrides.

  16. Etude de la nitruration carbothermique du dioxyde de hafnium par diffraction X à haute température

    NASA Astrophysics Data System (ADS)

    Pialoux, A.

    1993-03-01

    The carbothermal reduction of hafnium dioxide under atmospheric level nitrogen pressure has been investigated using a graphite resistance high temperature X-ray diffractometer up to around 2300 K. A carbon transfer reaction through the gaseous phase (N 2, CO/CO 2) is shown to precede, then to compete the direct reduction of the hafnium oxide by the graphite in pure nitrogen. A complex mechanism has been found that accounts for the formation of hafnium dioxynitride and possibly of three other hafnium oxynitrides, then of hafnium mononitride and hafnium monocarbonitride, along two different steps between 1613 and 1923 K. An evaluation has been made concerning the composition of these γ 1- HfO 2-xN x/2□ x/2 (CaF 2-type structure), γ 2- Hf 7O 11N 2, γ 3- Hf 7O 8N 4 (rhombohedral), γ 4- Hf 2ON 2 (Mn 2O 3-type structure), HfN and HfN 1-zC z (NaCl-type structure) phases, considering the variations of their lattice parameters and the available data in the literature, especially on the isomorphous compounds of zirconium. It must be emphasized the new γ 1- HfO 2-xN x/2 phase, the dilatation of which is linear ( overlineα = 12×10 -6K -1), shows a constant composition from 2158 down to 1473 K (x ≈ 0,2). But under 1473 K, inevitably, the hafnium dioxynitride disappears, and poorly crystallized monoclinic αHfO 2 and rhombohedral γ 2- Hf 7O 11N 2 are formed.

  17. Carbon-Coated, Diatomite-Derived Nanosilicon as a High Rate Capable Li-ion Battery Anode

    PubMed Central

    Campbell, Brennan; Ionescu, Robert; Tolchin, Maxwell; Ahmed, Kazi; Favors, Zachary; Bozhilov, Krassimir N.; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2016-01-01

    Silicon is produced in a variety of ways as an ultra-high capacity lithium-ion battery (LIB) anode material. The traditional carbothermic reduction process required is expensive and energy-intensive; in this work, we use an efficient magnesiothermic reduction to convert the silica-based frustules within diatomaceous earth (diatomite, DE) to nanosilicon (nanoSi) for use as LIB anodes. Polyacrylic acid (PAA) was used as a binder for the DE-based nanoSi anodes for the first time, being attributed for the high silicon utilization under high current densities (up to 4C). The resulting nanoSi exhibited a high BET specific surface area of 162.6 cm2 g−1, compared to a value of 7.3 cm2 g−1 for the original DE. DE contains SiO2 architectures that make ideal bio-derived templates for nanoscaled silicon. The DE-based nanoSi anodes exhibit good cyclability, with a specific discharge capacity of 1102.1 mAh g−1 after 50 cycles at a C-rate of C/5 (0.7 A gSi−1) and high areal loading (2 mg cm−2). This work also demonstrates the fist rate capability testing for a DE-based Si anode; C-rates of C/30 - 4C were tested. At 4C (14.3 A gSi−1), the anode maintained a specific capacity of 654.3 mAh g−1 – nearly 2x higher than graphite’s theoretical value (372 mAh g−1). PMID:27713474

  18. Carbon-Coated, Diatomite-Derived Nanosilicon as a High Rate Capable Li-ion Battery Anode

    NASA Astrophysics Data System (ADS)

    Campbell, Brennan; Ionescu, Robert; Tolchin, Maxwell; Ahmed, Kazi; Favors, Zachary; Bozhilov, Krassimir N.; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2016-10-01

    Silicon is produced in a variety of ways as an ultra-high capacity lithium-ion battery (LIB) anode material. The traditional carbothermic reduction process required is expensive and energy-intensive; in this work, we use an efficient magnesiothermic reduction to convert the silica-based frustules within diatomaceous earth (diatomite, DE) to nanosilicon (nanoSi) for use as LIB anodes. Polyacrylic acid (PAA) was used as a binder for the DE-based nanoSi anodes for the first time, being attributed for the high silicon utilization under high current densities (up to 4C). The resulting nanoSi exhibited a high BET specific surface area of 162.6 cm2 g-1, compared to a value of 7.3 cm2 g-1 for the original DE. DE contains SiO2 architectures that make ideal bio-derived templates for nanoscaled silicon. The DE-based nanoSi anodes exhibit good cyclability, with a specific discharge capacity of 1102.1 mAh g-1 after 50 cycles at a C-rate of C/5 (0.7 A gSi-1) and high areal loading (2 mg cm-2). This work also demonstrates the fist rate capability testing for a DE-based Si anode; C-rates of C/30 - 4C were tested. At 4C (14.3 A gSi-1), the anode maintained a specific capacity of 654.3 mAh g-1 - nearly 2x higher than graphite’s theoretical value (372 mAh g-1).

  19. Modeling of Melt Growth During Carbothermal Processing of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Gokoglu S.; Hegde, U.

    2012-01-01

    The carbothermal processing of lunar regolith has been proposed as a means to produce carbon monoxide and ultimately oxygen to support human exploration of the moon. In this process, gaseous methane is pyrolyzed as it flows over the hot surface of a molten zone of lunar regolith and is converted to carbon and hydrogen. Carbon gets deposited on the surface of the melt, and mixes and reacts with the metal oxides in it to produce carbon monoxide that bubbles out of the melt. Carbon monoxide is further processed in other reactors downstream to ultimately produce oxygen. The amount of oxygen produced crucially depends on the amount of regolith that is molten. In this paper we develop a model of the heat transfer in carbothermal processing. Regolith in a suitable container is heated by a heat flux at its surface such as by continuously shining a beam of solar energy or a laser on it. The regolith on the surface absorbs the energy and its temperature rises until it attains the melting point. The energy from the heat flux is then used for the latent heat necessary to change phase from solid to liquid, after which the temperature continues to rise. Thus a small melt pool appears under the heated zone shortly after the heat flux is turned on. As time progresses, the pool absorbs more heat and supplies the energy required to melt more of the regolith, and the size of the molten zone increases. Ultimately, a steady-state is achieved when the heat flux absorbed by the melt is balanced by radiative losses from the surface. In this paper, we model the melting and the growth of the melt zone with time in a bed of regolith when a portion of its surface is subjected to a constant heat flux. The heat flux is assumed to impinge on a circular area. Our model is based on an axisymmetric three-dimensional variation of the temperature field in the domain. Heat transfer occurs only by conduction, and effects of convective heat transport are assumed negligible. Radiative heat loss from the surface of the melt and the regolith to the surroundings is permitted. We perform numerical computations to determine the shape and the mass of the melt at steady state and its time evolution. We first neglect the volume change upon melting, and subsequently perform calculations including it. Predictions from our model are compared to test data to determine the effective thermal conductivities of the regolith and the melt that are compatible with the data

  20. Light and Strong Hierarchical Porous SiC Foam for Efficient Electromagnetic Interference Shielding and Thermal Insulation at Elevated Temperatures.

    PubMed

    Liang, Caiyun; Wang, Zhenfeng; Wu, Lina; Zhang, Xiaochen; Wang, Huan; Wang, Zhijiang

    2017-09-06

    A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm 3 ·g -1 at a frequency of 11 GHz at 25-600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m -1 ·K -1 , which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications.

  1. Recycling of hazardous solid waste material using high-temperature solar process heat. 2. Reactor design and experimentation.

    PubMed

    Schaffner, Beatrice; Meier, Anton; Wuillemin, Daniel; Hoffelner, Wolfgang; Steinfeld, Aldo

    2003-01-01

    A novel high-temperature solar chemical reactor is proposed for the thermal recycling of hazardous solid waste material using concentrated solar power. It features two cavities in series, with the inner one functioning as the solar absorber and the outer one functioning as the reaction chamber. The solar reactor can handle thermochemical processes at temperatures above 1,300 K involving multiphases and controlled atmospheres. It further allows for batch or continuous mode of operation and for easy adjustment of the residence time of the reactants to match the kinetics of the reaction. A 10-kW solar reactor prototype was designed and tested for the carbothermic reduction of electric arc furnace dusts (EAFD). The reactor was subjected to mean solar flux intensities of 2,000 kW m(-2) and operated in both batch and continuous mode within the temperature range of 1,120-1,400 K. Extraction of over 90% of the toxic compounds originally contained in the EAFD was achieved while the condensable products of the off-gas contained mainly Zn, Pb, and Cl. The use of concentrated solar energy as the source of process heat offers the possibility of converting hazardous solid waste material into valuable commodities for processes in closed and sustainable material cycles.

  2. Extraction of titanium from low-iron nitrided Malaysian ilmenite by chlorination

    NASA Astrophysics Data System (ADS)

    Ibrahim, Najwa; Ahmadi, Eltefat; Rahman, Shaik Abdul; Fauzi, M. N. Ahmad; Rezan, Sheikh Abdul

    2017-01-01

    In this paper, production of TiCl4 from low-iron nitrided ilmenite samples at relatively low temperature using chlorine gas generated from the reaction between KMnO4 and HCl has been investigated. The effects of chlorination soaking time, potassium permanganate (KMnO4) to hydrochloric acid (HCl) molar ratio and aluminium powder catalyst in chlorine gas generation on titanium extraction from nitrided Malaysian ilmenite were examined. The low-iron nitrided Malaysian ilmenite contained titanium oxycarbonitride (TiOxCyNz) after carbothermal reduction and nitridation with subsequent leaching. Chlorination process was performed at 500°C for 30 - 60 minutes. Statistical analysis of the data was done by Design of Experiment (DOE) to identify the significant variables and their interactions. The results achieved in this study showed that the highest extent of chlorination was about 98.34% at 500°C for 60 minutes. The lowest extent of chlorination was about 68.51% obtained in KMnO4 to HCl molar ratio of 2.0 and 0.35 g of aluminium powder. The chlorinated titanium oxycarbonitride powders and TiCl4 solutions were analyzed by X-ray diffraction (XRD) and inductively coupled plasma-optical emission spectroscopy (ICP-OES), respectively. The purpose of this study was to explore the relationship between the processing parameters on extracting titanium via pyrometallurgical technique.

  3. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review

    PubMed Central

    Arafat, M. M.; Dinan, B.; Akbar, Sheikh A.; Haseeb, A. S. M. A.

    2012-01-01

    Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO2, TiO2, In2O3, WOx, AgVO3, CdO, MoO3, CuO, TeO2 and Fe2O3. Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research. PMID:22969344

  4. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications

    PubMed Central

    Esfahani, Hamid; Ramakrishna, Seeram

    2017-01-01

    Ceramic nanofibers (NFs) have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk) counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined. PMID:29077074

  5. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications.

    PubMed

    Esfahani, Hamid; Jose, Rajan; Ramakrishna, Seeram

    2017-10-27

    Ceramic nanofibers (NFs) have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk) counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined.

  6. Oxygen production System Models for Lunar ISRU

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo

    2007-01-01

    In-Situ Resource Utilization (ISRU) seeks to make human space exploration feasible; by using available resources from a planet or the moon to produce consumables, parts, and structures that otherwise would be brought from Earth. Producing these in situ reduces the mass of such that must be launched and doing so allows more payload mass' for each mission. The production of oxygen from lunar regolith, for life support and propellant, is one of the tasks being studied under ISRU. NASA is currently funding three processes that have shown technical merit for the production of oxygen from regolith: Molten Salt Electrolysis, Hydrogen Reduction of Ilmenite, and Carbothermal Reduction. The ISRU program is currently developing system models of, the , abovementioned processes to: (1) help NASA in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the oxygen production process, (4) provide estimates on energy and power requirements, mass and volume.of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters, and (5) integrate into the overall end-to-end ISRU system model, which could be integrated with mission architecture models. The oxygen production system model is divided into modules that represent unit operations (e.g., reactor, water electrolyzer, heat exchanger). Each module is modeled theoretically using Excel and Visual Basic for Applications (VBA), and will be validated using experimental data from on-going laboratory work. This modularity (plug-n-play) feature of each unit operation allows the use of the same model on different oxygen production systems simulations resulting in comparable results. In this presentation, preliminary results for mass, power, volume will be presented along with brief description of the oxygen production system model.

  7. ISRU System Model Tool: From Excavation to Oxygen Production

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo; Linne, Diane L.

    2007-01-01

    In the late 80's, conceptual designs for an in situ oxygen production plant were documented in a study by Eagle Engineering [1]. In the "Summary of Findings" of this study, it is clearly pointed out that: "reported process mass and power estimates lack a consistent basis to allow comparison." The study goes on to say: "A study to produce a set of process mass, power, and volume requirements on a consistent basis is recommended." Today, approximately twenty years later, as humans plan to return to the moon and venture beyond, the need for flexible up-to-date models of the oxygen extraction production process has become even more clear. Multiple processes for the production of oxygen from lunar regolith are being investigated by NASA, academia, and industry. Three processes that have shown technical merit are molten regolith electrolysis, hydrogen reduction, and carbothermal reduction. These processes have been selected by NASA as the basis for the development of the ISRU System Model Tool (ISMT). In working to develop up-to-date system models for these processes NASA hopes to accomplish the following: (1) help in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the excavation and oxygen production processes, and (4) provide estimates on energy and power requirements, mass and volume of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters. Also, as confidence and high fidelity is achieved with each component's model, new techniques and processes can be introduced and analyzed at a fraction of the cost of traditional hardware development and test approaches. A first generation ISRU System Model Tool has been used to provide inputs to the Lunar Architecture Team studies.

  8. Recovery of metal values from copper slag and reuse of residual secondary slag.

    PubMed

    Sarfo, Prince; Das, Avimanyu; Wyss, Gary; Young, Courtney

    2017-12-01

    Resource and environmental factors have become major forces in mining and metallurgy sectors driving research for sustainability purposes. The concept of zero-waste processing has been gaining ground readily. The scant availability of high quality raw materials has forced the researchers to shift their focus to recycling while the exceedingly stringent environmental regulations have forced researchers to explore new frontiers of minimizing/eliminating waste generation. The present work is aimed at addressing both aspects by employing recycling to generate wealth from copper slag and producing utilizable materials at the same time thus restoring the ecosystem. Copper slag was characterized and processed. The pyro-metallurgical processing prospects to generate utilizable materials were arrived at through rigorous thermodynamic analysis. Carbothermal reduction at elevated temperature (near 1440°C) helped recover a majority of the metal values (e.g., Fe, Cu and Mo) into the iron-rich alloy product which can be a feed material for steel making. On the other hand, the non-metallic residue, the secondary slag, can be used in the glass and ceramic industries. Reduction time and temperature and carbon content were shown to be the most important process variables for the reaction which were optimized to identify the most favored operating regime that maximizes the metal recovery and simultaneously maximizes the hardness of the secondary slag and minimizes its density, the two major criteria for the secondary slag product to be utilizable. The flux addition level was shown to have relatively less impact on the process performance if these are maintained at an adequate level. The work established that the copper slag, a waste material, can be successfully processed to generate reusable products through pyrometallurgical processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Carbothermal synthesis of coatings on silicon carbide fibers

    NASA Astrophysics Data System (ADS)

    Chen, Linlin

    Four kinds of protective coatings---carbide derived carbon (CDC), boron nitride (BN), Al-O-N and BN doped Al-O-N (BAN) have been successfully synthesized on the surface of SiC fibers on the target to enhance the mechanical properties and oxidation resistance of the coated SiC fibers for the application as the reinforcements in the Ceramic Matrix Composites (CMCs) in the high temperatures. First of all, CDC coatings have been uniformly produced on Tyranno ZMI SiC fibers with good thickness control within nanometer accuracy by the chlorination in the temperature range of 550--700°C at atmospheric pressure. Kinetics of the carbon coating growth on the fibers has been systematically studied and thus a good foundation was set up for the further coating synthesis. BN coatings have been synthesized on the surface of SiC powders, fibers and fabrics by a novel carbothermal nitridation method. Non-bridging has been achieved in the BN-coated fiber tows by the nitridation in ammonia at atmospheric pressure in a temperature below 1200°C, which is lower compared to the traditional BN synthesis method and does not cause the degradation of the coated-fibers. BN coatings on the carbon nanotubes have also been formed and unlike the common methods, no additional dopant (such as metal catalyst) is introduced into the system during the BN coatings syntheses, thus the contamination of the final product is avoided. A novel Al-O-N coating has been explored with the most impressive point is that a more than 65% improvement in the tensile strength (up to ˜5.1GPa) and a three-time increase in the Weibull modulus compared to the as-received fibers are resulted by the formation of 200nm Al-O-N coating on the SiC fibers. It exceeds the strength of all other small diameter SiC fibers reported in the literature. Furthermore, BAN coating has also been produced on the surface of SiC fibers and about 20% enhancement in mechanical strength is achieved compared to that of the original fibers. Oxidation experiments of the SiC fibers with four kinds of coatings under 1000°C and 1200°C in air have been carried out and better oxidation resistance of the coated fibers are presented compared to the as-received fibers. In summary, exploration of various coatings synthesis for the SiC fibers has been successfully conducted in this work. The coating material suitable for the SiC fibers should be chosen properly according to its specific application in the CFCCs and well thickness-control to meet the corresponding requirements.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besmann, Theodore M; Shin, Dongwon

    TRISO coated particle fuel is envisioned as a next generation replacement for current urania pellet fuel in LWR applications. To obtain adequate fissile loading the kernel of the TRISO particle will need to be UN. In support of the fuel development effort, an assessment of phase regions of interest in the U-C-N system was undertaken as the fuel will be prepared by the carbothermic reduction of the oxide and it will be in equilibrium with carbon within the TRISO particle. The phase equilibria and thermochemistry of the U-C-N system is reviewed, including nitrogen pressure measurements above various phase fields. Selectedmore » measurements were used to fit a first order model of the UC1-xNx phase, represented by the inter-solution of UN and UC. Fit to the data was significantly improved by also adjusting the heat of formation for UN by ~12 kJ/mol and the phase equilbria was best reproduced by also adjusting the heat for U2N3 by +XXX. The determined interaction parameters yielded a slightly positive deviation from ideality, which agrees with lattice parameter measurements which show positive deviation from Vegard s law. The resultant model together with reported values for other phases in the system were used to generate isothermal sections of the U-C-N phase diagram. Nitrogen partial pressures were also computed for regions of interest.« less

  11. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites.

    PubMed

    Du, Yunchen; Liu, Wenwen; Qiang, Rong; Wang, Ying; Han, Xijiang; Ma, Jun; Xu, Ping

    2014-08-13

    Core-shell composites, Fe3O4@C, with 500 nm Fe3O4 microspheres as cores have been successfully prepared through in situ polymerization of phenolic resin on the Fe3O4 surface and subsequent high-temperature carbonization. The thickness of carbon shell, from 20 to 70 nm, can be well controlled by modulating the weight ratio of resorcinol and Fe3O4 microspheres. Carbothermic reduction has not been triggered at present conditions, thus the crystalline phase and magnetic property of Fe3O4 micropsheres can be well preserved during the carbonization process. Although carbon shells display amorphous nature, Raman spectra reveal that the presence of Fe3O4 micropsheres can promote their graphitization degree to a certain extent. Coating Fe3O4 microspheres with carbon shells will not only increase the complex permittivity but also improve characteristic impedance, leading to multiple relaxation processes in these composites, thus the microwave absorption properties of these composites are greatly enhanced. Very interestingly, a critical thickness of carbon shells leads to an unusual dielectric behavior of the core-shell structure, which endows these composites with strong reflection loss, especially in the high frequency range. By considering good chemical homogeneity and microwave absorption, we believe the as-fabricated Fe3O4@C composites can be promising candidates as highly effective microwave absorbers.

  12. Uranium nitride as LWR TRISO fuel: Thermodynamic modeling of U-C-N

    NASA Astrophysics Data System (ADS)

    Besmann, Theodore M.; Shin, Dongwon; Lindemer, Terrence B.

    2012-08-01

    TRISO coated particle fuel is envisioned as a next generation replacement for current urania pellet fuel in LWR applications. To obtain adequate fissile loading the kernel of the TRISO particle will likely need to be UN instead of UO2. In support of the necessary development effort for this new fuel system, an assessment of phase regions of interest in the U-C-N system was undertaken as the fuel will be prepared by the carbothermic reduction of the oxide followed by nitriding, will be in equilibrium with carbon within the TRISO particle, and will react with minor actinides and fission products. The phase equilibria and thermochemistry of the U-C-N system is reviewed, including nitrogen pressure measurements above various phase fields. Measurements were used to confirm an ideal solution model of UN and UC adequately represents the UC1-xNx phase. Agreement with the data was significantly improved by effectively adjusting the Gibbs free energy of UN by +12 kJ/mol. This also required adjustment of the value for the sesquinitride by +17 kJ/mol to obtain agreement with phase equilibria. The resultant model together with reported values for other phases in the system was used to generate isothermal sections of the U-C-N phase diagram. Nitrogen partial pressures were also computed for regions of interest.

  13. Manufacturing of Dysprosium-Iron Alloys by Electrolysis in Fluoride-Based Electrolytes: Oxide Solubility Determinations

    NASA Astrophysics Data System (ADS)

    Martinez, Ana Maria; Støre, Anne; Osen, Karen Sende

    2018-04-01

    Electrolytic production of light rare earth elements and alloys takes place in a fluoride-based electrolyte using rare earth oxides as raw material. The optimization of this method, mainly in terms of the energy efficiency and environmental impact control, is rather challenging. Anode effects, evolution of fluorine-containing compounds, and side cathode reactions could largely be minimized by a good control of the amount of rare earth oxide species dissolved in the fluoride-based electrolyte and their dissolution rate. The oxide content of the fluoride melts REF3-LiF (RE = Nd, Dy) at different compositions and temperatures were experimentally determined by carbothermal analysis of melt samples. The highest solubility values of oxide species, added as Dy2O3 and Dy2(CO3)3, were obtained to be of ca. 3 wt pct (expressed as Dy2O3) in the case of the equimolar DyF3-LiF melt at 1323 K (1050 °C). The oxide saturation values increased with the amount of REF3 present in the molten bath and the working temperature.

  14. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    PubMed

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Production and separation of (186g)Re from proton bombardment of (186)WC.

    PubMed

    Richards, Vernal N; Rath, Nigam; Lapi, Suzanne E

    2015-06-01

    A proof of concept study was undertaken where non-carrier added (186 g)Re was produced from the cyclotron bombardment of (186)WC. (186)WC was carbo-thermally generated from a novel precursor synthesized from (186)WO3, aqueous ammonia and hexamethyltetramine. The inherent high electrical and thermal conductivity of this material, coupled with its high melting point, made it an ideal candidate for proton bombardment for production of (186)Re. An18 μA irradiation for 3h and processing via thermo-chromatography, (186)WC yielded 0.93 mCi of (186 g)Re which corresponds to 89% of the calculated theoretical yields. The radiochemical purity of the desired (186 g)Re species was found to be between 95 and 97% with small contaminants of (186)ReO2. The radiochemistry utility of the product was investigated using S-benzoyl-MAG3, and 100% complexation was achieved with stability being maintained for 96 h. The re-oxidation of (186)WC back to(186)WO3 by oxygen in the thermo-chromatography method of processing ensured that the starting material was regenerated and recovered from the process in 94-98% yield. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Experimental study of UC polycrystals in the prospect of improving the as-fabricated sample purity

    NASA Astrophysics Data System (ADS)

    Raveu, Gaëlle; Martin, Guillaume; Fiquet, Olivier; Garcia, Philippe; Carlot, Gaëlle; Palancher, Hervé; Bonnin, Anne; Khodja, Hicham; Raepsaet, Caroline; Sauvage, Thierry; Barthe, Marie-France

    2014-12-01

    Uranium and plutonium carbides are candidate fuels for Generation IV nuclear reactors. This study is focused on the characterization of uranium monocarbide samples. The successive fabrication steps were carried out under atmospheres containing low oxygen and moisture concentrations (typically less than 100 ppm) but sample transfers occurred in air. Six samples were sliced from four pellets elaborated by carbothermic reaction under vacuum. Little presence of UC2 is expected in these samples. The α-UC2 phase was indeed detected within one of these UC samples during an XRD experiment performed with synchrotron radiation. Moreover, oxygen content at the surface of these samples was depth profiled using a recently developed nuclear reaction analysis method. Large oxygen concentrations were measured in the first micron below the sample surface and particularly in the first 100-150 nm. UC2 inclusions were found to be more oxidized than the surrounding matrix. This work points out to the fact that more care must be given at each step of UC fabrication since the material readily reacts with oxygen and moisture. A new glovebox facility using a highly purified atmosphere is currently being built in order to obtain single phase UC samples of better purity.

  17. Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

    NASA Astrophysics Data System (ADS)

    Rinaldo, Steven G.

    This thesis is divided into two parts. In Part I, we examine the properties of thin sheets of carbon and boron nitride. We begin with an introduction to the theory of elastic sheets, where the stretching and bending modes are considered in detail. The coupling between stretching and bending modes is thought to play a crucial role in the thermodynamic stability of atomically-thin 2D sheets such as graphene. In Chapter 2, we begin by looking at the fabrication of suspended, atomically thin sheets of graphene. We then study their mechanical resonances which are read via an optical transduction technique. The frequency of the resonators was found to depend on their temperature, as was their quality factor. We conclude by offering some interpretations of the data in terms of the stretching and bending modes of graphene. In Chapter 3, we look briefly at the fabrication of thin sheets of carbon and boron nitride nanotubes. We examine the structure of the sheets using transmission and scanning electron microscopy (TEM and SEM, respectively). We then show a technique by which one can make sheets suspended over a trench with adjustable supports. Finally, DC measurements of the resistivity of the sheets in the temperature range 600 -- 1400 C are presented. In Chapter 4, we study the folding of few-layer graphene oxide, graphene and boron nitride into 3D aerogel monoliths. The properties of graphene oxide are first considered, after which the structure of graphene and boron nitride aerogels is examined using TEM and SEM. Some models for their structure are proposed. In Part II, we look at synthesis techniques for boron nitride (BN). In Chapter 5, we study the conversion of carbon structures of boron nitride via the application of carbothermal reduction of boron oxide followed by nitridation. We apply the conversion to a wide variety of morphologies, including aerogels, carbon fibers and nanotubes, and highly oriented pyrolytic graphite. In the latter chapters, we look at the formation of boron nitride nanotubes (BNNTs). In Chapter 6, we look at various methods of producing BNNTs from boron droplets, and introduce a new method involving injection of boron powder into an induction furnace. In Chapter 7 we consider another useful process, where ammonia is reacted with boron vapor generated in situ, either through the reaction of boron with metal oxides or through the decomposition of metal borides.

  18. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries

    PubMed Central

    Waser, Oliver; Büchel, Robert; Hintennach, Andreas; Novák, Petr; Pratsinis, Sotiris E.

    2013-01-01

    Core-shell, nanosized LiFePO4-carbon particles were made in one step by scalable flame aerosol technology at 7 g/h. Core LiFePO4 particles were made in an enclosed flame spray pyrolysis (FSP) unit and were coated in-situ downstream by auto thermal carbonization (pyrolysis) of swirl-fed C2H2 in an O2-controlled atmosphere. The formation of acetylene carbon black (ACB) shell was investigated as a function of the process fuel-oxidant equivalence ratio (EQR). The core-shell morphology was obtained at slightly fuel-rich conditions (1.0 < EQR < 1.07) whereas segregated ACB and LiFePO4 particles were formed at fuel-lean conditions (0.8 < EQR < 1). Post-annealing of core-shell particles in reducing environment (5 vol% H2 in argon) at 700 °C for up to 4 hours established phase pure, monocrystalline LiFePO4 with a crystal size of 65 nm and 30 wt% ACB content. Uncoated LiFePO4 or segregated LiFePO4-ACB grew to 250 nm at these conditions. Annealing at 800 °C induced carbothermal reduction of LiFePO4 to Fe2P by ACB shell consumption that resulted in cavities between carbon shell and core LiFePO4 and even slight LiFePO4 crystal growth but better electrochemical performance. The present carbon-coated LiFePO4 showed superior cycle stability and higher rate capability than the benchmark, commercially available LiFePO4. PMID:23407817

  19. Ten-gram scale SiC@SiO2 nanowires: high-yield synthesis towards industrialization, in situ growth mechanism and their peculiar photoluminescence and electromagnetic wave absorption properties.

    PubMed

    Li, Z J; Yu, H Y; Song, G Y; Zhao, J; Zhang, H; Zhang, M; Meng, A L; Li, Q D

    2017-02-01

    SiC@SiO 2 nanowires, as a functional nanocomposite, have attracted widespread attention due to their fascinating performance and broad application prospect. However, the low-cost, high yield preparation of large-scale SiC@SiO 2 nanowires is still a bottleneck, which hinders their industrial application. Herein, a carbothermal reduction strategy has been developed to synthesize SiC@SiO 2 nanowires, which breaks through the handicap of the traditional growth pattern that uses the aid of a substrate. Systematic characterization results illustrate that the yield of the as-obtained products greatly depends on the heating rate, and ten-gram scale SiC@SiO 2 nanowires (∼27.2 g) composed of a cubic β-SiC core and homogeneous amorphous SiO 2 coating are achieved under the optimum process parameters. The in situ mechanisms of expansion-insertion-growth and inhibition of expansion-package-obstruction are proposed to rationally interpret the growth process of SiC@SiO 2 nanowires and the effect of various heating rates, respectively. Furthermore, the SiC@SiO 2 nanowires display violet-blue photoluminescence and electromagnetic wave absorption properties. This study not only provides some beneficial suggestions for the commercial production of SiC@SiO 2 nanowires, but also reveals promising applications of SiC@SiO 2 nanowires in the optical and electromagnetic shielding fields. Moreover, the developed novel in situ growth mechanism enriches the growth theory of one-dimension nanomaterials and offers inspiration for their industrial-scale production.

  20. Construction of reduced graphene oxide supported molybdenum carbides composite electrode as high-performance anode materials for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Minghua; Zhang, Jiawei; Chen, Qingguo, E-mail: qgchen@263.net

    Highlights: • Reduced graphene oxide supported molybdenum carbides are prepared by two-step strategy. • A unique sheet-on-sheet integrated nanostructure is favorable for fast ion/electron transfer. • The integrated electrode shows excellent Li ion storage performance. - Abstract: Metal carbides are emerging as promising anodes for advanced lithium ion batteries (LIBs). Herein we report reduced graphene oxide (RGO) supported molybdenum carbides (Mo{sub 2}C) integrated electrode by the combination of solution and carbothermal methods. In the designed integrated electrode, Mo{sub 2}C nanoparticles are uniformly dispersed among graphene nanosheets, forming a unique sheet-on-sheet integrated nanostructure. As anode of LIBs, the as-prepared Mo{sub 2}C-RGOmore » integrated electrode exhibits noticeable electrochemical performances with a high reversible capacity of 850 mAh g{sup −1} at 100 mA g{sup −1}, and 456 mAh g{sup −1} at 1000 mA g{sup −1}, respectively. Moreover, the Mo{sub 2}C-RGO integrated electrode shows excellent cycling life with a capacity of ∼98.6 % at 1000 mA g{sup −1} after 400 cycles. Our research may pave the way for construction of high-performance metal carbides anodes of LIBs.« less

  1. Study of effective utilization of iron ore sinter through arc plasma

    NASA Astrophysics Data System (ADS)

    Swain, Biswajit; Samal, S. K.; Mohanty, M. K.; Behera, A.; Mishra, S. C.

    2018-03-01

    Generation of fines is common in mining, sizing, and beneficiation and also in high-temperature metallurgical processes as the disintegration of agglomerate/compact occurs. Extraction of metallic iron from ore fines is one of the challenging aspects of iron making industries as the liberation of fines blocks, the charge burden porosity and hence hinders the reduction rate. Along with size factor, mineral composition plays a vital role in the extraction process; particularly silica. As silica has the very high tendency towards iron oxide, at comparatively low temperature, the activity of silica should be suppressed to prevent silicate phases. Adjustment of such conditions is controlled by addition of lime, but sometimes excessive slag generation increases the cost of production. In the present work, carbothermic reduction of partially reduced iron bearing pellets has been melted through 20 KW DC arc plasma furnace, and a comparative study has been made for considering different slag chemistry approaches. Pellets as aforementioned are made available from Patnaik Steel and Alloys Ltd, Odisha, having high silica content ore fines (of about 8.6%) as obtained from the chemical analysis. X-Ray analysis and optical image analyzer result of sinter thus obtained reveal that fayalite phase has major fractional value. Smelting works were done for sinter with/without adjustment of slag chemistry, where argon and nitrogen were used as plasma forming gases. A range of recovery rates (between 87-94%) is achieved by charge composition, ionizing gases, and smelting duration. It is observed that use of nitrogen as plasma forming gas increases the recovery rate than that of using only argon plasma; due to high energy flux of nitrogen which increases the enthalpy due to its diatomicity. A maximum recovery rate of about 94% is achieved for process duration of 13minutes utilizing nitrogen plasma. Smelting of charge with the addition of hydrated lime targeting melilite as final slag resulted in the formation of metallic iron as confirmed from XRD and XRF analyses. In the other hand, ferrosilicon is liberated in the metallic parts where smelting of charge was done without adjustment of slag chemistry. Both metal and slag thus obtained are characterized by XRD, XRF, microhardness and wet chemical analysis suitably.

  2. A Novel Bimetallic NiMo Carbide Nanowire Array for Efficient Hydrogen Evolution.

    PubMed

    Guo, Lixia; Wang, Jianying; Teng, Xue; Liu, Yangyang; He, Xiaoming; Chen, Zuofeng

    2018-06-12

    Design and fabrication of noble metal-free hydrogen evolution electrocatalysts with high activity is significant to future renewable energy systems. In this work, self-supported NiMo carbide nanowires have been developed on carbon cloth (Ni3Mo3C@NPC NWs/CC; NPC is N,P-doped carbon) through an electropolymerization-assisted procedure. During the synthesis process, NiMoO4 nanowires were first grown on CC through a hydrothermal reaction which is free of any polymer binder like Nafion. The as-prepared NiMoO4 NWs/CC was then coated by a layer of polypyrole (PPy) by electropolymerization that serves as carbon source for the subsequent conversion to Ni3Mo3C@NPC NWs/CC by carbothermal reduction. The experimental results indicate that the judicious choices of the amount of coated PPy and the pyrolysis temperature are essential for obtaining pure phase and nanowire array structure of Ni3Mo3C@NPC NWs/CC. Benefitting from the pure phase of bimetallic carbide, the unique architecture of nanowire array and the self-supported merit, the optimized Ni3Mo3C@NPC NWs/CC electrode exhibits excellent HER performance in both acidic and alkaline media. It requires low overpotentials of 161 mV and 215 mV to afford a high current density of 100 mA cm-2 toward the HER in acidic and alkaline media, respectively, and the catalytic activity is maintained for at least 48 h, which makes it among the best HER electrocatalysts based on metallic carbides yet reported. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Waste conversion into high-value ceramics: Carbothermal nitridation synthesis of titanium nitride nanoparticles using automotive shredder waste.

    PubMed

    Mayyas, Mohannad; Pahlevani, Farshid; Maroufi, Samane; Liu, Zhao; Sahajwalla, Veena

    2017-03-01

    Environmental concern about automotive shredder residue (ASR) has increased in recent years due to its harmful content of heavy metals. Although several approaches of ASR management have been suggested, these approaches remain commercially unproven. This study presents an alternative approach for ASR management where advanced materials can be generated as a by-product. In this approach, titanium nitride (TiN) has been thermally synthesized by nitriding pressed mixture of automotive shredder residue (ASR) and titanium oxide (TiO 2 ). Interactions between TiO 2 and ASR at non-isothermal conditions were primarily investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry. Results indicated that TiO 2 influences and catalyses degradation reactions of ASR, and the temperature, at which reduction starts, was determined around 980 °C. The interaction between TiO 2 and ASR at isothermal conditions in the temperature range between 1200 and 1550 °C was also studied. The pressed mixture of both materials resulted in titanium nitride (TiN) ceramic at all given temperatures. Formation kinetics were extracted using several models for product layer diffusion-controlled solid-solid and solid-fluid reactions. The effect of reactants ratio and temperature on the degree of conversion and morphology was investigated. The effect of reactants ratio was found to have considerable effect on the morphology of the resulting material, while temperature had a lesser impact. Several unique structures of TiN (porous nanostructured, polycrystalline, micro-spherical and nano-sized structures) were obtained by simply tuning the ratio of TiO 2 to ASR, and a product with appreciable TiN content of around 85% was achieved after only one hour nitridation at 1550 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Enrichment of Sc2O3 and TiO2 from bauxite ore residues.

    PubMed

    Deng, Bona; Li, Guanghui; Luo, Jun; Ye, Qing; Liu, Mingxia; Peng, Zhiwei; Jiang, Tao

    2017-06-05

    As a major byproduct generated in the alumina industry, bauxite ore residue is an important reserve of scandium and titanium. In this study, the feasibility and mechanism of enriching Sc 2 O 3 and TiO 2 from a non-magnetic material, which was obtained from carbothermal reductive roasting and magnetic separation of bauxite ore residue, were investigated based on a two-step (acidic and alkali) leaching process. It was revealed that approximately 78% SiO 2 and 30-40% of CaO, FeO and Al 2 O 3 were removed from a non-magnetic material with 0.0134wt.% Sc 2 O 3 and 7.64wt.% TiO 2 by phosphoric acidic leaching, while about 95% Al 2 O 3 and P 2 O 5 were further leached by subsequent sodium hydroxide leaching of the upper-stream leach residue. A Sc 2 O 3 -, TiO 2 - rich material containing 0.044wt.% Sc 2 O 3 and 25.5wt.% TiO 2 was obtained, the recovery and the enrichment factor of Sc 2 O 3 and TiO 2 were about 85% and 5, respectively. The enrichment of Sc 2 O 3 was attributed to higher pH (>3.3) of phosphoric acid solution than its dissolution pH 0 , and the enrichment of TiO 2 was mainly associated with the insoluble perovskite (CaTiO 3 ) in the acidic solution at ambient temperature. As Sc 2 O 3 and TiO 2 cannot be dissolved in the alkali solution, they were further enriched in the leach residue. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Field Testing of a Pneumatic Regolith Feed System During a 2010 ISRU Field Campaign on Mauna Kea, Hawaii

    NASA Technical Reports Server (NTRS)

    Craft, Jack; Zacny, Kris; Chu, Philip; Wilson, Jack; Santoro, Chris; Carlson, Lee; Maksymuk, Michael; Townsend, Ivan I.; Mueller, Robert P.; Mantovani, James G.

    2010-01-01

    Lunar In Situ Resource Utilization (ISRU) consists of a number of tasks starting with mining of lunar regolith, followed by the transfer of regolith to an oxygen extraction reactor and finally processing the regolith and storing of extracted oxygen. The transfer of regolith from the regolith hopper at the ground level to an oxygen extraction reactor many feet above the surface could be accomplished in different ways, including using a mechanical auger, bucket ladder system or a pneumatic system. The latter system is commonly used on earth when moving granular materials since it offers high reliability and simplicity of operation. In this paper, we describe a pneumatic regolith feed system, delivering feedstock to a Carbothermal reactor and lessons learned from deploying the system during the 2010 ISRU field campaign on the Mauna Kea, Hawaii.

  6. The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; Mills, Gerald D.; Romero-Romero, Elisa; Stracener, Daniel W.

    2015-10-01

    We present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al2O3 targets. However, Al2O3 is not an ideal source material because it does not form a prolific beam of Al- required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al2O3), aluminum nitride (AlN), mixed Al2O3-AlN as well as aluminum fluoride (AlF3) were tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al2O3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al2O3 with graphite powder at 1600 °C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. The potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.

  7. NASA Space Engineering Research Center for utilization of local planetary resources

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Lewis, John S.

    1991-01-01

    Because of a change in the NASA funding cycle, the present reporting period covers only the six months from March to September 1991. Nevertheless, remarkable progress was made in a number of areas, some of the most noteworthy of which are: (1) Engineering operation of a breadboard CO2 yields O2 demonstration plant that produced over 10 grams of oxygen per day during several runs of over 100 hours each with a single electrolytic cell. Complete automation of controls, monitoring of various inputs/outputs and critical internal variables, diagnostics, and emergency shutdown in an orderly manner were also included. Moreover, 4-cell and 16-cell units, capable of much higher rates of production, were assembled and tested. (2) Demonstration of a 200 percent increase in the carbothermal reduction of ilmenite through vapor deposition of carbon layers on particles of that material. (3) Demonstration of the deposition of strong iron films from carbonyl chemical vapor deposition, establishing the crucial role of additive gases in governing the process. (4) Discovery of an apparent 800 percent increase in the conversion rates of a modified ilmenite simulant in a plasma-augmented reactor, including direct enhancement by solar radiation absorption. (5) Proof that test specimens of lunar soil with small amounts of metallic additives, recrystallized at moderate temperatures, exhibit an improvement of several orders of magnitude in ductility/tensile strength. (6) Experiments establishing the feasibility of producing silicon-based polymers from indigenous lunar materials. (7) Application of CCD technology to the production of maps of TiO2 abundance, defining primary ilmenite deposits, on the disk of the full moon. (8) Attainment of a discovery rate of approximately 3 new near-Earth asteroids per month by Spacewatch, more than doubling the previous global rate. (9) Coordination of industry and university magma electrolysis investigations in a workshop designed to define remaining problem areas and propose critical experiments.

  8. The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams

    DOE PAGES

    Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; ...

    2015-06-29

    In this paper, we present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al 2O 3 targets. However, Al 2O 3 is not an ideal source material because it does not form a prolific beam of Al - required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al 2O 3), aluminum nitride (AlN), mixed Al 2O 3–AlN as well as aluminum fluoride (AlF 3) weremore » tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al 2O 3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al 2O 3 with graphite powder at 1600°C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. In conclusion, the potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.« less

  9. Mashing up metals with carbothermal shock

    NASA Astrophysics Data System (ADS)

    Skrabalak, Sara E.

    2018-03-01

    Different materials and the capabilities they enabled have marked the ages of civilization. For example, the malleable copper alloys of the Bronze Age provided harder and more durable tools. Most exploration of new alloys has focused on random alloys, in which the alloying metal sites have no metal preference. In binary and ternary metal systems, dissimilar elements do not mix readily at high concentrations, which has limited alloying studies to intermetallics (ordered multimetallic phases) and random alloys, in which minor components are added to a principal element. In 2004, crystalline metal alloys consisting of five or more principal elements in equal or nearly equal amounts (1, 2) were reported that were stabilized by their high configurational entropy. Unlike most random alloys, the “high-entropy” alloys (3, 4) reside in the centers of their multidimensional phase diagrams (see the figure, right). On page 1489 of this issue, Yao et al. (5) present an innovative and general route to high-entropy alloys that can mix up to eight elements into single-phase, size-controlled nanoparticles (NPs).

  10. Evaluation of phases in Pu-C-O and (U, Pu)-C-O systems by X-ray diffractometry and chemical analysis

    NASA Astrophysics Data System (ADS)

    Jain, G. C.; Ganguly, C.

    1993-12-01

    Preparation and characterisation of the carbides of uranium, plutonium and mixed uranium and plutonium form a part of advanced fuel development programs for fast breeder reactors. In the present study, the compositions of the phases of Pu-C-O and (U.Pu)-C-O systems have been determined by chemical analysis and lattice parameter measurement. The carbide samples have been prepared by vacuum carbothermic synthesis of tabletted oxide-graphite powder mixture. Dependence of stoichiometry of Pu 2C 3 phase on the oxygen content of Pu(C,O) phase in Pu(C,O) + Pu 2C 3 phase mixture has been evaluated. Stoichiometry and oxygen solubility of (U 0.3Pu 0.7)(C,O) phase in multiple phase mixture have been determined. Segregation of plutonium in (U,Pu) 2C 3 phase of (U,Pu)(C,O) + (U,Pu) 2C 3 phase mixture and its dependence on the oxygen content of (U,Pu)(C,O) phase have also been determined from the measurement of the lattice parameter of (U,Pu) 2C 3 phase.

  11. Recent advances in reduction methods for nonlinear problems. [in structural mechanics

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1981-01-01

    Status and some recent developments in the application of reduction methods to nonlinear structural mechanics problems are summarized. The aspects of reduction methods discussed herein include: (1) selection of basis vectors in nonlinear static and dynamic problems, (2) application of reduction methods in nonlinear static analysis of structures subjected to prescribed edge displacements, and (3) use of reduction methods in conjunction with mixed finite element models. Numerical examples are presented to demonstrate the effectiveness of reduction methods in nonlinear problems. Also, a number of research areas which have high potential for application of reduction methods are identified.

  12. Comparison of four different reduction methods for anterior dislocation of the shoulder.

    PubMed

    Guler, Olcay; Ekinci, Safak; Akyildiz, Faruk; Tirmik, Uzeyir; Cakmak, Selami; Ugras, Akin; Piskin, Ahmet; Mahirogullari, Mahir

    2015-05-28

    Shoulder dislocations account for almost 50% of all major joint dislocations and are mainly anterior. The aim is a comparative retrospective study of different reduction maneuvers without anesthesia to reduce the dislocated shoulder. Patients were treated with different reduction maneuvers, including various forms of traction and external rotation, in the emergency departments of four training hospitals between 2009 and 2012. Each of the four hospitals had different treatment protocols for reduction and applying one of four maneuvers: Spaso, Chair, Kocher, and Matsen methods. Thirty-nine patients were treated by the Spaso method, 47 by the Chair reduction method, 40 by the Kocher method, and 27 patients by Matsen's traction-countertraction method. All patients' demographic data were recorded. Dislocation number, reduction time, time interval between dislocation and reduction, and associated complications, pre- and post-reduction period, were recorded prospectively. No anesthetic method was used for the reduction. All of the methods used included traction and some external rotation. The Chair method had the shortest reduction time. All surgeons involved in the study agreed that the Kocher and Matsen methods needed more force for the reduction. Patients could contract their muscles because of the pain in these two methods. The Spaso method includes flexion of the shoulder and blocks muscle contraction somewhat. The Chair method was found to be the easiest because the patients could not contract their muscles while sitting on a chair with the affected arm at their side. We suggest that the Chair method is an effective and fast reduction maneuver that may be an alternative for the treatment of anterior shoulder dislocations. Further prospective studies with larger sample size are needed to compare safety of different reduction techniques.

  13. Model reduction methods for control design

    NASA Technical Reports Server (NTRS)

    Dunipace, K. R.

    1988-01-01

    Several different model reduction methods are developed and detailed implementation information is provided for those methods. Command files to implement the model reduction methods in a proprietary control law analysis and design package are presented. A comparison and discussion of the various reduction techniques is included.

  14. Screw-Wire Osteo-Traction: An Adjunctive or Alternative Method of Anatomical Reduction of Multisegment Midfacial Fractures? A Description of Technique and Prospective Study of 40 Patients

    PubMed Central

    O'Regan, Barry; Devine, Maria; Bhopal, Sats

    2013-01-01

    Stable anatomical fracture reduction and segment control before miniplate fixation can be difficult to achieve in comminuted midfacial fractures. Fracture mobilization and reduction methods include Gillies elevation, malar hook, and Dingman elevators. No single method is used universally. Disadvantages include imprecise segment alignment and poor segment stability/control. We have employed screw-wire osteo-traction (SWOT) to address this problem. A literature review revealed two published reports. The aims were to evaluate the SWOT technique effectiveness as a fracture reduction method and to examine rates of revision fixation and plate removal. We recruited 40 consecutive patients requiring open reduction and internal fixation of multisegment midfacial fractures (2009–2012) and employed miniplate osteosynthesis in all patients. SWOT was used as a default reduction method in all patients. The rates of successful fracture reduction achieved by SWOT alone or in combination and of revision fixation and plate removal, were used as outcome indices of the reduction method effectiveness. The SWOT technique achieved satisfactory anatomical reduction in 27/40 patients when used alone. Other reduction methods were also used in 13/40 patients. No patient required revision fixation and three patients required late plate removal. SWOT can be used across the midface fracture pattern in conjunction with other methods or as a sole reduction method before miniplate fixation. PMID:24436763

  15. van Manen's method and reduction in a phenomenological hermeneutic study.

    PubMed

    Heinonen, Kristiina

    2015-03-01

    To describe van Manen's method and concept of reduction in a study that used a phenomenological hermeneutic approach. Nurse researchers have used van Manen's method in different ways. Participants' lifeworlds are described in depth, but descriptions of reduction have been brief. The literature and knowledge review and manual search of research articles. Databases Web Science, PubMed, CINAHL and PsycINFO, without applying a time period, to identify uses of van Manen's method. This paper shows how van Manen's method has been used in nursing research and gives some examples of van Manen's reduction. Reduction enables us to conduct in-depth phenomenological hermeneutic research and understand people's lifeworlds. As there are many variations in adapting reduction, it is complex and confusing. This paper contributes to the discussion of phenomenology, hermeneutic study and reduction. It opens up reduction as a method for researchers to exploit.

  16. Reductive capacity measurement of waste forms for secondary radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Yang, Jung-Seok; Serne, R. Jeffrey

    2015-12-01

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper boundmore » for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.« less

  17. Carbothermic Synthesis of ~820- m UN Kernels. Investigation of Process Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemer, Terrence; Silva, Chinthaka M; Henry, Jr, John James

    2015-06-01

    This report details the continued investigation of process variables involved in converting sol-gel-derived, urainia-carbon microspheres to ~820-μm-dia. UN fuel kernels in flow-through, vertical refractory-metal crucibles at temperatures up to 2123 K. Experiments included calcining of air-dried UO 3-H 2O-C microspheres in Ar and H 2-containing gases, conversion of the resulting UO 2-C kernels to dense UO 2:2UC in the same gases and vacuum, and its conversion in N 2 to in UC 1-xN x. The thermodynamics of the relevant reactions were applied extensively to interpret and control the process variables. Producing the precursor UO 2:2UC kernel of ~96% theoretical densitymore » was required, but its subsequent conversion to UC 1-xN x at 2123 K was not accompanied by sintering and resulted in ~83-86% of theoretical density. Decreasing the UC 1-xN x kernel carbide component via HCN evolution was shown to be quantitatively consistent with present and past experiments and the only useful application of H2 in the entire process.« less

  18. Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): Role of catalyst reduction method

    NASA Astrophysics Data System (ADS)

    Hu, Shuo; Yang, Guangxin; Jiang, Hong; Liu, Yefei; Chen, Rizhi

    2018-03-01

    Selective phenol hydrogenation is a green and sustainable technology to produce cyclohexanone. The work focused on investigating the role of catalyst reduction method in the liquid-phase phenol hydrogenation to cyclohexanone over Pd@CN (N-doped porous carbon). A series of reduction methods including flowing hydrogen reduction, in-situ reaction reduction and liquid-phase reduction were designed and performed. The results highlighted that the reduction method significantly affected the catalytic performance of Pd@CN in the liquid-phase hydrogenation of phenol to cyclohexanone, and the liquid-phase reduction with the addition of appropriate amount of phenol was highly efficient to improve the catalytic activity of Pd@CN. The influence mechanism was explored by a series of characterizations. The results of TEM, XPS and CO chemisorption confirmed that the reduction method mainly affected the size, surface composition and dispersion of Pd in the CN material. The addition of phenol during the liquid-phase reduction could inhibit the aggregation of Pd NPs and promote the reduction of Pd (2+), and then improved the catalytic activity of Pd@CN. The work would aid the development of high-performance Pd@CN catalysts for selective phenol hydrogenation.

  19. Robust Derivation of Risk Reduction Strategies

    NASA Technical Reports Server (NTRS)

    Richardson, Julian; Port, Daniel; Feather, Martin

    2007-01-01

    Effective risk reduction strategies can be derived mechanically given sufficient characterization of the risks present in the system and the effectiveness of available risk reduction techniques. In this paper, we address an important question: can we reliably expect mechanically derived risk reduction strategies to be better than fixed or hand-selected risk reduction strategies, given that the quantitative assessment of risks and risk reduction techniques upon which mechanical derivation is based is difficult and likely to be inaccurate? We consider this question relative to two methods for deriving effective risk reduction strategies: the strategic method defined by Kazman, Port et al [Port et al, 2005], and the Defect Detection and Prevention (DDP) tool [Feather & Cornford, 2003]. We performed a number of sensitivity experiments to evaluate how inaccurate knowledge of risk and risk reduction techniques affect the performance of the strategies computed by the Strategic Method compared to a variety of alternative strategies. The experimental results indicate that strategies computed by the Strategic Method were significantly more effective than the alternative risk reduction strategies, even when knowledge of risk and risk reduction techniques was very inaccurate. The robustness of the Strategic Method suggests that its use should be considered in a wide range of projects.

  20. Development and evaluation of thermal model reduction algorithms for spacecraft

    NASA Astrophysics Data System (ADS)

    Deiml, Michael; Suderland, Martin; Reiss, Philipp; Czupalla, Markus

    2015-05-01

    This paper is concerned with the topic of the reduction of thermal models of spacecraft. The work presented here has been conducted in cooperation with the company OHB AG, formerly Kayser-Threde GmbH, and the Institute of Astronautics at Technische Universität München with the goal to shorten and automatize the time-consuming and manual process of thermal model reduction. The reduction of thermal models can be divided into the simplification of the geometry model for calculation of external heat flows and radiative couplings and into the reduction of the underlying mathematical model. For simplification a method has been developed which approximates the reduced geometry model with the help of an optimization algorithm. Different linear and nonlinear model reduction techniques have been evaluated for their applicability in reduction of the mathematical model. Thereby the compatibility with the thermal analysis tool ESATAN-TMS is of major concern, which restricts the useful application of these methods. Additional model reduction methods have been developed, which account to these constraints. The Matrix Reduction method allows the approximation of the differential equation to reference values exactly expect for numerical errors. The summation method enables a useful, applicable reduction of thermal models that can be used in industry. In this work a framework for model reduction of thermal models has been created, which can be used together with a newly developed graphical user interface for the reduction of thermal models in industry.

  1. Systems and methods to reduce reductant consumption in exhaust aftertreament systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Aniket; Cunningham, Michael J.

    Systems, apparatus and methods are provided for reducing reductant consumption in an exhaust aftertreatment system that includes a first SCR device and a downstream second SCR device, a first reductant injector upstream of the first SCR device, and a second reductant injector between the first and second SCR devices. NOx conversion occurs with reductant injection by the first reductant injector to the first SCR device in a first temperature range and with reductant injection by the second reductant injector to the second SCR device when the temperature of the first SCR device is above a reductant oxidation conversion threshold.

  2. Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction

    NASA Astrophysics Data System (ADS)

    Wang, Zhijuan; Wu, Shixin; Zhang, Juan; Chen, Peng; Yang, Guocheng; Zhou, Xiaozhu; Zhang, Qichun; Yan, Qingyu; Zhang, Hua

    2012-02-01

    The comparison between two kinds of single-layer reduced graphene oxide (rGO) sheets, obtained by reduction of graphene oxide (GO) with the electrochemical method and hydrazine vapor reduction, referred to as E-rGO and C-rGO, respectively, is systematically studied. Although there is no morphology difference between the E-rGO and C-rGO films adsorbed on solid substrates observed by AFM, the reduction process to obtain the E-rGO and C-rGO films is quite different. In the hydrazine vapor reduction, the nitrogen element is incorporated into the obtained C-rGO film, while no additional element is introduced to the E-rGO film during the electrochemical reduction. Moreover, Raman spectra show that the electrochemical method is more effective than the hydrazine vapor reduction method to reduce the GO films. In addition, E-rGO shows better electrocatalysis towards dopamine than does C-rGO. This study is helpful for researchers to understand these two different reduction methods and choose a suitable one to reduce GO based on their experimental requirements.

  3. Carbon nanotube-ceramic nanocomposites: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Clark, Michael David

    Ceramic materials are widely used in modern society for a variety of applications including fuel cell electrolytes, bio-medical implants, and jet turbines. However, ceramics are inherently brittle making them excellent candidates for mechanical reinforcement. In this work, the feasibility of dispersing multi-walled carbon nanotubes into a silicon carbide matrix for mechanical property enhancement is explored. Prior to dispersing, nanotubes were purified using an optimized, three step methodology that incorporates oxidative treatment, acid sonication, and thermal annealing rendering near-superhydrophobic behavior in synthesized thin films. Alkyl functionalized nanotube dispersability was characterized in various solvents. Dispersability was contingent on fostering polar interactions between the functionalized nanotubes and solvent despite the purely dispersive nature of the aliphatic chains. Interpretation of these results yielded values of 45.6 +/- 1.2, 0.78 +/- 0.04, and 2 4 +/- 0.9 mJ/m2 for the Lifshitz-van der Waals, electron acceptor and electron donor surface energy components respectively. Aqueous nanotube dispersions were prepared using a number of surfactants to examine surfactant concentration and pH effects on nanotube dispersability. Increasing surfactant concentrations resulted in a solubility plateau, which was independent of the surfactant's critical micelle concentration. Deviations from neutral pH demonstrated negligible influence on non-ionic surfactant adsorption while, ionic surfactants showed substantial pH dependent behavior. These results were explained in the context of nanotube surface ionization and Debye length variation. Successful MWNT dispersion into a silicon carbide based matrix is reported by in-situ ceramic formation using two routes; sol-gel chemistry and pre-ceramic polymeric precursor workup. For the former, nanotube dispersion was assisted by PluronicRTM surfactants. Pyrolytic treatment and consolidation of formed powders yielded ceramic silicon oxycarbide glasses (SiO1.1 C0.6) attributed to incomplete carbothermal reduction. Microhardness and dynamic moduli measurements were consistent with silicon oxycarbide glasses and unaffected by nanotube loading up to 0.11 wt. %. Pyrolysis and densification of poly(methylsilyne) yielded a high density ceramic material (2.45-2.63 g/cm 3). Nanotube introduction was achieved using two separate alkylation techniques; alkyllithium replacement and organic peroxide workup. Bulk mechanical testing was deemed unreliable as powder consolidation introduced chemical inhomogeneity with pellet edges being largely composed of polycrystalline silicon and silicon carbide, while the center contained substantial oxygen contamination.

  4. Coalescence induced dislocation reduction in selectively grown lattice-mismatched heteroepitaxy: Theoretical prediction and experimental verification

    NASA Astrophysics Data System (ADS)

    Yako, Motoki; Ishikawa, Yasuhiko; Wada, Kazumi

    2018-05-01

    A method for reduction of threading dislocation density (TDD) in lattice-mismatched heteroepitaxy is proposed, and the reduction is experimentally verified for Ge on Si. Flat-top epitaxial layers are formed through coalescences of non-planar selectively grown epitaxial layers, and enable the TDD reduction in terms of image force. Numerical calculations and experiments for Ge on Si verify the TDD reduction by this method. The method should be applicable to not only Ge on Si but also other lattice-mismatched heteroepitaxy such as III-V on Si.

  5. Low-temperature solvothermal approach to the synthesis of La4Ni3O8 by topotactic oxygen deintercalation.

    PubMed

    Blakely, Colin K; Bruno, Shaun R; Poltavets, Viktor V

    2011-07-18

    A chimie douce solvothermal reduction method is proposed for topotactic oxygen deintercalation of complex metal oxides. Four different reduction techniques were employed to qualitatively identify the relative reduction activity of each including reduction with H(2) and NaH, solution-based reduction using metal hydrides at ambient pressure, and reduction under solvothermal conditions. The reduction of the Ruddlesden-Popper nickelate La(4)Ni(3)O(10) was used as a test case to prove the validity of the method. The completely reduced phase La(4)Ni(3)O(8) was produced via the solvothermal technique at 150 °C--a lower temperature than by other more conventional solid state oxygen deintercalation methods.

  6. Li2S/Carbon Nanocomposite Strips from a Low-Temperature Conversion of Li2SO4 as High-Performance Lithium-Sulfur Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Fangmin; Noh, Hyungjun; Lee, Jin Hong

    2018-03-12

    Carbothermal conversion of Li2SO4 provides a cost-effective strategy to fabricate high-capacity Li2S cathodes, however, Li2S cathodes derived from Li2SO4 at high temperatures (> 800 oC), having high crystallinity and large crystal size, result in a low utilization of Li2S. Here, we report a Li2SO4/poly(vinyl alcohol)-derived Li2S/Carbon nanocomposite (Li2S@C) strips at a record low temperature of 635 oC. These Li2S@C nanocomposite strips as a cathode shows a low initial activation potential (2.63 V), a high initial discharge capacity (805 mAh g-1 Li2S) and a high cycling stability (0.2 C and 1 C). These improvedresults could be ascribed to the nano-sized Li2Smore » particles as well as their low crystallinity due to the PVA-induced carbon network and the low conversion temperature, respectively. An XPS analysis reveals that the C=C and C=O bonds derived from the carbonization of PVA can promote the conversion of Li2SO4 at the low temperature.« less

  7. Quantification of process variables for carbothermic synthesis of UC 1-xN x fuel microspheres

    DOE PAGES

    Lindemer, Terrance B.; Silva, Chinthaka M.; Henry, Jr, John James; ...

    2016-11-05

    This report details the continued investigation of process variables involved in converting sol-gel-derived, urania-carbon microspheres to ~820-μm-dia. UC 1-xN x fuel kernels in flow-through, vertical Mo and W crucibles at temperatures up to 2123 K. Experiments included calcining of air-dried UO 3-H 2O-C microspheres in Ar and H 2-containing gases, conversion of the resulting UO 2-C kernels to dense UO2:2UC in the same gases and vacuum, and its conversion in N 2 to UC 1-xN x (x = ~0.85). The thermodynamics of the relevant reactions were applied extensively to interpret and control the process variables. Producing the precursor UO 2:2UCmore » kernel of ~96% theoretical density was required, but its subsequent conversion to UC 1-xN x at 2123 K was not accompanied by sintering and resulted in ~83-86% of theoretical density. Increasing the UC 1-xN x kernel nitride component to ~0.98 in flowing N 2-H 2 mixtures to evolve HCN was shown to be quantitatively consistent with present and past experiments and the only useful application of H 2 in the entire process.« less

  8. Quantification of process variables for carbothermic synthesis of UC1-xNx fuel microspheres

    NASA Astrophysics Data System (ADS)

    Lindemer, T. B.; Silva, C. M.; Henry, J. J.; McMurray, J. W.; Voit, S. L.; Collins, J. L.; Hunt, R. D.

    2017-01-01

    This report details the continued investigation of process variables involved in converting sol-gel-derived, urania-carbon microspheres to ∼820-μm-dia. UC1-xNx fuel kernels in flow-through, vertical Mo and W crucibles at temperatures up to 2123 K. Experiments included calcining of air-dried UO3-H2O-C microspheres in Ar and H2-containing gases, conversion of the resulting UO2-C kernels to dense UO2:2UC in the same gases and vacuum, and its conversion in N2 to UC1-xNx (x = ∼0.85). The thermodynamics of the relevant reactions were applied extensively to interpret and control the process variables. Producing the precursor UO2:2UC kernel of ∼96% theoretical density was required, but its subsequent conversion to UC1-xNx at 2123 K was not accompanied by sintering and resulted in ∼83-86% of theoretical density. Increasing the UC1-xNx kernel nitride component to ∼0.98 in flowing N2-H2 mixtures to evolve HCN was shown to be quantitatively consistent with present and past experiments and the only useful application of H2 in the entire process.

  9. Horizontal decomposition of data table for finding one reduct

    NASA Astrophysics Data System (ADS)

    Hońko, Piotr

    2018-04-01

    Attribute reduction, being one of the most essential tasks in rough set theory, is a challenge for data that does not fit in the available memory. This paper proposes new definitions of attribute reduction using horizontal data decomposition. Algorithms for computing superreduct and subsequently exact reducts of a data table are developed and experimentally verified. In the proposed approach, the size of subtables obtained during the decomposition can be arbitrarily small. Reducts of the subtables are computed independently from one another using any heuristic method for finding one reduct. Compared with standard attribute reduction methods, the proposed approach can produce superreducts that usually inconsiderably differ from an exact reduct. The approach needs comparable time and much less memory to reduce the attribute set. The method proposed for removing unnecessary attributes from superreducts executes relatively fast for bigger databases.

  10. Microbial Activity in Aquatic Environments Measured by Dimethyl Sulfoxide Reduction and Intercomparison with Commonly Used Methods

    PubMed Central

    Griebler, Christian; Slezak, Doris

    2001-01-01

    A new method to determine microbial (bacterial and fungal) activity in various freshwater habitats is described. Based on microbial reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), our DMSO reduction method allows measurement of the respiratory activity in interstitial water, as well as in the water column. DMSO is added to water samples at a concentration (0.75% [vol/vol] or 106 mM) high enough to compete with other naturally occurring electron acceptors, as determined with oxygen and nitrate, without stimulating or inhibiting microbial activity. Addition of NaN3, KCN, and formaldehyde, as well as autoclaving, inhibited the production of DMS, which proves that the reduction of DMSO is a biotic process. DMSO reduction is readily detectable via the formation of DMS even at low microbial activities. All water samples showed significant DMSO reduction over several hours. Microbially reduced DMSO is recovered in the form of DMS from water samples by a purge and trap system and is quantified by gas chromatography and detection with a flame photometric detector. The DMSO reduction method was compared with other methods commonly used for assessment of microbial activity. DMSO reduction activity correlated well with bacterial production in predator-free batch cultures. Cell-production-specific DMSO reduction rates did not differ significantly in batch cultures with different nutrient regimes but were different in different growth phases. Overall, a cell-production-specific DMSO reduction rate of 1.26 × 10−17 ± 0.12 × 10−17 mol of DMS per produced cell (mean ± standard error; R2 = 0.78) was calculated. We suggest that the relationship of DMSO reduction rates to thymidine and leucine incorporation is linear (the R2 values ranged from 0.783 to 0.944), whereas there is an exponential relationship between DMSO reduction rates and glucose uptake, as well as incorporation (the R2 values ranged from 0.821 to 0.931). Based on our results, we conclude that the DMSO reduction method is a nonradioactive alternative to other methods commonly used to assess microbial activity. PMID:11133433

  11. Microbial activity in aquatic environments measured by dimethyl sulfoxide reduction and intercomparison with commonly used methods.

    PubMed

    Griebler, C; Slezak, D

    2001-01-01

    A new method to determine microbial (bacterial and fungal) activity in various freshwater habitats is described. Based on microbial reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), our DMSO reduction method allows measurement of the respiratory activity in interstitial water, as well as in the water column. DMSO is added to water samples at a concentration (0.75% [vol/vol] or 106 mM) high enough to compete with other naturally occurring electron acceptors, as determined with oxygen and nitrate, without stimulating or inhibiting microbial activity. Addition of NaN(3), KCN, and formaldehyde, as well as autoclaving, inhibited the production of DMS, which proves that the reduction of DMSO is a biotic process. DMSO reduction is readily detectable via the formation of DMS even at low microbial activities. All water samples showed significant DMSO reduction over several hours. Microbially reduced DMSO is recovered in the form of DMS from water samples by a purge and trap system and is quantified by gas chromatography and detection with a flame photometric detector. The DMSO reduction method was compared with other methods commonly used for assessment of microbial activity. DMSO reduction activity correlated well with bacterial production in predator-free batch cultures. Cell-production-specific DMSO reduction rates did not differ significantly in batch cultures with different nutrient regimes but were different in different growth phases. Overall, a cell-production-specific DMSO reduction rate of 1.26 x 10(-17) +/- 0. 12 x 10(-17) mol of DMS per produced cell (mean +/- standard error; R(2) = 0.78) was calculated. We suggest that the relationship of DMSO reduction rates to thymidine and leucine incorporation is linear (the R(2) values ranged from 0.783 to 0.944), whereas there is an exponential relationship between DMSO reduction rates and glucose uptake, as well as incorporation (the R(2) values ranged from 0.821 to 0.931). Based on our results, we conclude that the DMSO reduction method is a nonradioactive alternative to other methods commonly used to assess microbial activity.

  12. SWT voting-based color reduction for text detection in natural scene images

    NASA Astrophysics Data System (ADS)

    Ikica, Andrej; Peer, Peter

    2013-12-01

    In this article, we propose a novel stroke width transform (SWT) voting-based color reduction method for detecting text in natural scene images. Unlike other text detection approaches that mostly rely on either text structure or color, the proposed method combines both by supervising text-oriented color reduction process with additional SWT information. SWT pixels mapped to color space vote in favor of the color they correspond to. Colors receiving high SWT vote most likely belong to text areas and are blocked from being mean-shifted away. Literature does not explicitly address SWT search direction issue; thus, we propose an adaptive sub-block method for determining correct SWT direction. Both SWT voting-based color reduction and SWT direction determination methods are evaluated on binary (text/non-text) images obtained from a challenging Computer Vision Lab optical character recognition database. SWT voting-based color reduction method outperforms the state-of-the-art text-oriented color reduction approach.

  13. Vertical Patellar Dislocation: Reduction by the Push Up and Rotate Method, A Case Report and Literature Review.

    PubMed

    Ahmad Khan, Hayat; Bashir Shah, Adil; Kamal, Younis

    2016-11-01

    Patellar dislocation is an emergency. Vertical patellar dislocation is rare, often seen in adolescents and mostly due to sports injuries or high-velocity trauma. Few cases have been reported in the literature. Closed or open reduction under general anesthesia is often needed. We report a case of vertical locked patellar dislocation in a 26-year-old male, which was reduced by a simple closed method under spinal anaesthesia. A literature review regarding the various methods of treatment is also discussed. A 26-year-old male experienced a trivial accident while descending stairs, sustaining patellar dislocation. The closed method of reduction was attempted, using a simple technique. Reduction was confirmed and postoperative rehabilitation was started. Follow-up was uneventful. Vertical patellar dislocations are encountered rarely in the emergency department. Adolescents are not the only victims, and high-velocity trauma is not the essential cause. Unnecessary manipulation should be avoided. The closed reduction method is simple, but the surgeon should be prepared for open reduction.

  14. Skin friction drag reduction in turbulent flow using spanwise traveling surface waves

    NASA Astrophysics Data System (ADS)

    Musgrave, Patrick F.; Tarazaga, Pablo A.

    2017-04-01

    A major technological driver in current aircraft and other vehicles is the improvement of fuel efficiency. One way to increase the efficiency is to reduce the skin friction drag on these vehicles. This experimental study presents an active drag reduction technique which decreases the skin friction using spanwise traveling waves. A novel method is introduced for generating traveling waves which is low-profile, non-intrusive, and operates under various flow conditions. This wave generation method is discussed and the resulting traveling waves are presented. These waves are then tested in a low-speed wind tunnel to determine their drag reduction potential. To calculate the drag reduction, the momentum integral method is applied to turbulent boundary layer data collected using a pitot tube and traversing system. The skin friction coefficients are then calculated and the drag reduction determined. Preliminary results yielded a drag reduction of ≍ 5% for 244Hz traveling waves. Thus, this novel wave generation method possesses the potential to yield an easily implementable, non-invasive drag reduction technology.

  15. Solution of the symmetric eigenproblem AX=lambda BX by delayed division

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.; Bains, N. J. C.

    1986-01-01

    Delayed division is an iterative method for solving the linear eigenvalue problem AX = lambda BX for a limited number of small eigenvalues and their corresponding eigenvectors. The distinctive feature of the method is the reduction of the problem to an approximate triangular form by systematically dropping quadratic terms in the eigenvalue lambda. The report describes the pivoting strategy in the reduction and the method for preserving symmetry in submatrices at each reduction step. Along with the approximate triangular reduction, the report extends some techniques used in the method of inverse subspace iteration. Examples are included for problems of varying complexity.

  16. Iodine retention during evaporative volume reduction

    DOEpatents

    Godbee, H.W.; Cathers, G.I.; Blanco, R.E.

    1975-11-18

    An improved method for retaining radioactive iodine in aqueous waste solutions during volume reduction is disclosed. The method applies to evaporative volume reduction processes whereby the decontaminated (evaporated) water can be returned safely to the environment. The method generally comprises isotopically diluting the waste solution with a nonradioactive iodide and maintaining the solution at a high pH during evaporation.

  17. Electrochemical and photoelectrochemical reduction of furfurals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kyoung-Shin; Roylance, John James; Kubota, Stephen R.

    Electrochemical cells and photoelectrochemical cells for the reduction of furfurals are provided. Also provided are methods of using the cells to carry out the reduction reactions. Using the cells and methods, furfurals can be converted into furan alcohols or linear ketones.

  18. A decentralized linear quadratic control design method for flexible structures

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1990-01-01

    A decentralized suboptimal linear quadratic control design procedure which combines substructural synthesis, model reduction, decentralized control design, subcontroller synthesis, and controller reduction is proposed for the design of reduced-order controllers for flexible structures. The procedure starts with a definition of the continuum structure to be controlled. An evaluation model of finite dimension is obtained by the finite element method. Then, the finite element model is decomposed into several substructures by using a natural decomposition called substructuring decomposition. Each substructure, at this point, still has too large a dimension and must be reduced to a size that is Riccati-solvable. Model reduction of each substructure can be performed by using any existing model reduction method, e.g., modal truncation, balanced reduction, Krylov model reduction, or mixed-mode method. Then, based on the reduced substructure model, a subcontroller is designed by an LQ optimal control method for each substructure independently. After all subcontrollers are designed, a controller synthesis method called substructural controller synthesis is employed to synthesize all subcontrollers into a global controller. The assembling scheme used is the same as that employed for the structure matrices. Finally, a controller reduction scheme, called the equivalent impulse response energy controller (EIREC) reduction algorithm, is used to reduce the global controller to a reasonable size for implementation. The EIREC reduced controller preserves the impulse response energy of the full-order controller and has the property of matching low-frequency moments and low-frequency power moments. An advantage of the substructural controller synthesis method is that it relieves the computational burden associated with dimensionality. Besides that, the SCS design scheme is also a highly adaptable controller synthesis method for structures with varying configuration, or varying mass and stiffness properties.

  19. Veiling glare reduction methods compared for ophthalmic applications

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1981-01-01

    Veiling glare in ocular viewing was simulated by viewing the retina of an eye model through a sheet of light-scattering material lit from the front. Four methods of glare reduction were compared, namely, optical scanning, polarized light, viewing and illumination paths either coaxial or intersecting at the object, and closed circuit TV. Photographs show the effect of these methods on visibility. Polarized light was required to eliminate light specularly reflected from the instrument optics. The greatest glare reduction was obtained when the first three methods were utilized together. Glare reduction using TV was limited by nonuniform distribution of scattered light over the image.

  20. Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Youngsoo; Carlberg, Kevin Thomas

    Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over allmore » space and time in a weighted ℓ 2-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.« less

  1. Cluster Correspondence Analysis.

    PubMed

    van de Velden, M; D'Enza, A Iodice; Palumbo, F

    2017-03-01

    A method is proposed that combines dimension reduction and cluster analysis for categorical data by simultaneously assigning individuals to clusters and optimal scaling values to categories in such a way that a single between variance maximization objective is achieved. In a unified framework, a brief review of alternative methods is provided and we show that the proposed method is equivalent to GROUPALS applied to categorical data. Performance of the methods is appraised by means of a simulation study. The results of the joint dimension reduction and clustering methods are compared with the so-called tandem approach, a sequential analysis of dimension reduction followed by cluster analysis. The tandem approach is conjectured to perform worse when variables are added that are unrelated to the cluster structure. Our simulation study confirms this conjecture. Moreover, the results of the simulation study indicate that the proposed method also consistently outperforms alternative joint dimension reduction and clustering methods.

  2. Apparatus and method to inject a reductant into an exhaust gas feedstream

    DOEpatents

    Viola, Michael B [Macomb Township, MI

    2009-09-22

    An exhaust aftertreatment system for an internal combustion engine is provided including an apparatus and method to inject a reductant into the exhaust gas feedstream. Included is a fuel metering device adapted to inject reductant into the exhaust gas feedstream and a controllable pressure regulating device. A control module is operatively connected to the reductant metering device and the controllable pressure regulating device, and, adapted to effect flow of reductant into the exhaust gas feedstream over a controllable flow range.

  3. Real-time speckle reduction in optical coherence tomography using the dual window method.

    PubMed

    Zhao, Yang; Chu, Kengyeh K; Eldridge, Will J; Jelly, Evan T; Crose, Michael; Wax, Adam

    2018-02-01

    Speckle is an intrinsic noise of interferometric signals which reduces contrast and degrades the quality of optical coherence tomography (OCT) images. Here, we present a frequency compounding speckle reduction technique using the dual window (DW) method. Using the DW method, speckle noise is reduced without the need to acquire multiple frames. A ~25% improvement in the contrast-to-noise ratio (CNR) was achieved using the DW speckle reduction method with only minimal loss (~17%) in axial resolution. We also demonstrate that real-time speckle reduction can be achieved at a B-scan rate of ~21 frames per second using a graphic processing unit (GPU). The DW speckle reduction technique can work on any existing OCT instrument without further system modification or extra components. This makes it applicable both in real-time imaging systems and during post-processing.

  4. Voltage-induced reduction of graphene oxide

    NASA Astrophysics Data System (ADS)

    Faucett, Austin C.

    Graphene Oxide (GO) is being widely researched as a precursor for the mass production of graphene, and as a versatile material in its own right for flexible electronics, chemical sensors, and energy harvesting applications. Reduction of GO, an electrically insulating material, into reduced graphene oxide (rGO) restores electrical conductivity via removal of oxygen-containing functional groups. Here, a reduction method using an applied electrical bias, known as voltage-induced reduction, is explored. Voltage-induced reduction can be performed under ambient conditions and avoids the use of hazardous chemicals or high temperatures common with standard methods, but little is known about the reduction mechanisms and the quality of rGO produced with this method. This work performs extensive structural and electrical characterization of voltage-reduced GO (V-rGO) and shows that it is competitive with standard methods. Beyond its potential use as a facile and eco-friendly processing approach, V-rGO reduction also offers record high-resolution patterning capabilities. In this work, the spatial resolution limits of voltage-induced reduction, performed using a conductive atomic force microscope probe, are explored. It is shown that arbitrary V-rGO conductive features can be patterned into insulating GO with nanoscale resolution. The localization of voltage-induced reduction to length scales < 10 nm allows studies of reduction reaction kinetics, using electrical current obtained in-situ, with statistical robustness. Methods for patterning V-rGO nanoribbons are then developed. After presenting sub-10nm patterning of V-rGO nanoribbons in GO single sheets and films, the performance of V-rGO nanoribbon field effect transistors (FETs) are demonstrated. Preliminary measurements show an increase in electrical current on/off ratios as compared to large-area rGO FETs, indicating transport gap modulation that is possibly due to quantum confinement effects.

  5. METHOD FOR OBTAINING PLUTONIUM METAL FROM ITS TRICHLORIDE

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Maraman, W.J.

    1962-08-14

    A method was developed for obtaining plutonium metal by direct reduction of plutonium chloride, without the use of a booster, using calcium and lanthamum as a reductant, the said reduction being carried out at temperature in the range of 700 to 850 deg C and at about atmospheric pressure. (AEC)

  6. Valuing Drinking Water Risk Reductions Using the Contingent Valuation Method: A Methodological Study of Risks from THM and Giardia (1986)

    EPA Pesticide Factsheets

    This study develops contingent valuation methods for measuring the benefits of mortality and morbidity drinking water risk reductions. The major effort was devoted to developing and testing a survey instrument to value low-level risk reductions.

  7. Effective dimension reduction for sparse functional data

    PubMed Central

    YAO, F.; LEI, E.; WU, Y.

    2015-01-01

    Summary We propose a method of effective dimension reduction for functional data, emphasizing the sparse design where one observes only a few noisy and irregular measurements for some or all of the subjects. The proposed method borrows strength across the entire sample and provides a way to characterize the effective dimension reduction space, via functional cumulative slicing. Our theoretical study reveals a bias-variance trade-off associated with the regularizing truncation and decaying structures of the predictor process and the effective dimension reduction space. A simulation study and an application illustrate the superior finite-sample performance of the method. PMID:26566293

  8. Real-time speckle reduction in optical coherence tomography using the dual window method

    PubMed Central

    Zhao, Yang; Chu, Kengyeh K.; Eldridge, Will J.; Jelly, Evan T.; Crose, Michael; Wax, Adam

    2018-01-01

    Speckle is an intrinsic noise of interferometric signals which reduces contrast and degrades the quality of optical coherence tomography (OCT) images. Here, we present a frequency compounding speckle reduction technique using the dual window (DW) method. Using the DW method, speckle noise is reduced without the need to acquire multiple frames. A ~25% improvement in the contrast-to-noise ratio (CNR) was achieved using the DW speckle reduction method with only minimal loss (~17%) in axial resolution. We also demonstrate that real-time speckle reduction can be achieved at a B-scan rate of ~21 frames per second using a graphic processing unit (GPU). The DW speckle reduction technique can work on any existing OCT instrument without further system modification or extra components. This makes it applicable both in real-time imaging systems and during post-processing. PMID:29552398

  9. Linking sensory biology and fisheries bycatch reduction in elasmobranch fishes: a review with new directions for research

    PubMed Central

    Jordan, Laura K.; Mandelman, John W.; McComb, D. Michelle; Fordham, Sonja V.; Carlson, John K.; Werner, Timothy B.

    2013-01-01

    Incidental capture, or bycatch, in fisheries represents a substantial threat to the sustainability of elasmobranch populations worldwide. Consequently, researchers are increasingly investigating elasmobranch bycatch reduction methods, including some focused on these species' sensory capabilities, particularly their electrosensory systems. To guide this research, we review current knowledge of elasmobranch sensory biology and feeding ecology with respect to fishing gear interactions and include examples of bycatch reduction methods used for elasmobranchs as well as other taxonomic groups. We discuss potential elasmobranch bycatch reduction strategies for various fishing gear types based on the morphological, physiological, and behavioural characteristics of species within this diverse group. In select examples, we indicate how an understanding of the physiology and sensory biology of vulnerable, bycatch-prone, non-target elasmobranch species can help in the identification of promising options for bycatch reduction. We encourage collaboration among researchers studying bycatch reduction across taxa to provide better understanding of the broad effects of bycatch reduction methods. PMID:27293586

  10. Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications

    DOEpatents

    Viola, Michael B [Macomb Township, MI; Schmieg, Steven J [Troy, MI; Sloane, Thompson M [Oxford, MI; Hilden, David L [Shelby Township, MI; Mulawa, Patricia A [Clinton Township, MI; Lee, Jong H [Rochester Hills, MI; Cheng, Shi-Wai S [Troy, MI

    2012-05-29

    A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.

  11. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage

    PubMed Central

    Ren, Long; Hui, K. N.; Hui, K. S.; Liu, Yundan; Qi, Xiang; Zhong, Jianxin; Du, Yi; Yang, Jianping

    2015-01-01

    New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a high reversible specific capacity of 1100 mAh/g at a current density of 0.1 A/g, outstanding cycling stability and excellent rate performance. Even at a large current density of 20 A/g, the reversible capacity was retained at 300 mAh/g, which is larger than that of most porous carbon-based anodes reported, suggesting it to be a promising candidate for energy storage. The proposed 3D HPGA is expected to provide an important platform that can promote the development of 3D topological porous systems in a range of energy storage and generation fields. PMID:26382852

  12. Hierarchical Porous Li2Mg(NH)2@C Nanowires with Long Cycle Life Towards Stable Hydrogen Storage

    PubMed Central

    Xia, Guanglin; Tan, Yingbin; Li, Dan; Guo, Zaiping; Liu, Huakun; Liu, Zongwen; Yu, Xuebin

    2014-01-01

    The hierarchical porous Li2Mg(NH)2@C nanowires full of micropores, mesopores, and macropores are successfully fabricated via a single-nozzle electrospinning technique combined with in-situ reaction between the precursors, i.e., MgCl2 and LiN3, under physical restriction upon thermal annealing. The explosive decomposition of LiN3 well dispersed in the electrospun nanowires during carbothermal treatment induces a highly porous structure, which provides a favourable way for H2 delivering in and out of Li2Mg(NH)2 nanoparticles simultaneously realized by the space-confinement of the porous carbon coating. As a result, the thus-fabricated Li2Mg(NH)2@C nanowires present significantly enhanced thermodynamics and kinetics towards hydrogen storage performance, e.g., a complete cycle of H2 uptake and release with a capacity close to the theoretical value at a temperature as low as 105°C. This is, to the best of our knowledge, the lowest cycling temperature reported to date. More interestingly, induced by the nanosize effects and space-confinement function of porous carbon coating, a excellently stable regeneration without apparent degradation after 20 de-/re-hydrogenation cycles at a temperature as low as 130°C was achieved for the as-prepared Li2Mg(NH)2@C nanowires. PMID:25307874

  13. Application of the radioisotope excited X-ray fluorescence technique in charge optimization during thermite smelting of Fe-Ni, Fe-cr, and Fe-Ti alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, I.G.; Joseph, D.; Lal, M.

    1995-10-01

    A wide range of ferroalloys are used to facilitate the addition of different alloying elements to molten steel. High-carbon ferroalloys are produced on a tonnage basis by carbothermic smelting in an electric furnace, and an aluminothermic route is generally adopted for small scale production of low-carbon varieties. The physicochemical principles of carbothermy and aluminothermy have been well documented in the literature. However, limited technical data are reported on the production of individual ferroalloys of low-carbon varieties from their selected resources. The authors demonstrate her the application of an energy dispersive X-ray fluorescence (EDXRF) technique in meeting the analytical requirements ofmore » a thermite smelting campaign, carried out with the aim of preparing low-carbon-low-nitrogen Fe-Ni, Fe-Cr, and Fe-Ti alloys from indigenously available nickel bearing spent catalyst, mineral chromite, and ilmenite/rutile, respectively. They have chosen the EDXRF technique to meet the analytical requirements because of its capability to analyze samples of ore, minerals, a metal, and alloys in different forms, such as powder, sponge, as-smelted, or as-cast, to obtain rapid multielement analyses with ease. Rapid analyses of thermite feed and product by this technique have aided in the appropriate alterations of the charge constitutents to obtain optimum charge consumption.« less

  14. A Method for Scheduling Air Traffic with Uncertain En Route Capacity Constraints

    NASA Technical Reports Server (NTRS)

    Arneson, Heather; Bloem, Michael

    2009-01-01

    A method for scheduling ground delay and airborne holding for flights scheduled to fly through airspace with uncertain capacity constraints is presented. The method iteratively solves linear programs for departure rates and airborne holding as new probabilistic information about future airspace constraints becomes available. The objective function is the expected value of the weighted sum of ground and airborne delay. In order to limit operationally costly changes to departure rates, they are updated only when such an update would lead to a significant cost reduction. Simulation results show a 13% cost reduction over a rough approximation of current practices. Comparison between the proposed as needed replanning method and a similar method that uses fixed frequency replanning shows a typical cost reduction of 1% to 2%, and even up to a 20% cost reduction in some cases.

  15. Nox Emission Reduction in Commercial Jets Through Water Injection

    NASA Technical Reports Server (NTRS)

    Balepin, Vladimir; Ossello, Chris; Snyder, Chris

    2002-01-01

    This paper discusses a method of the nitrogen oxides (NOx) emission reduction through the injection of water in commercial turbofan engines during the takeoff and climbout cycles. In addition to emission reduction, this method can significantly reduce turbine temperature during the most demanding operational modes (takeoff and climbout) and increase engine reliability and life.

  16. Forest fuel reduction: Current methods and future possibilities

    Treesearch

    Chad Bolding; Bobby Lanford; Loren Kellogg

    2003-01-01

    Due to recent catastrophic wildfires, forest fuel reduction has become one of the most discussed topics in forest engineering research. Considerable money and resources are being spent in an attempt to seek answers for tough questions. Lack of information, especially concerning mechanical fuel reduction methods, has stemmed several studies. This paper compiles the...

  17. The Optimum Dataset method - examples of the application

    NASA Astrophysics Data System (ADS)

    Błaszczak-Bąk, Wioleta; Sobieraj-Żłobińska, Anna; Wieczorek, Beata

    2018-01-01

    Data reduction is a procedure to decrease the dataset in order to make their analysis more effective and easier. Reduction of the dataset is an issue that requires proper planning, so after reduction it meets all the user's expectations. Evidently, it is better if the result is an optimal solution in terms of adopted criteria. Within reduction methods, which provide the optimal solution there is the Optimum Dataset method (OptD) proposed by Błaszczak-Bąk (2016). The paper presents the application of this method for different datasets from LiDAR and the possibility of using the method for various purposes of the study. The following reduced datasets were presented: (a) measurement of Sielska street in Olsztyn (Airbrone Laser Scanning data - ALS data), (b) measurement of the bas-relief that is on the building in Gdańsk (Terrestrial Laser Scanning data - TLS data), (c) dataset from Biebrza river measurment (TLS data).

  18. Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell.

    PubMed

    Wu, Xiayuan; Zhu, Xujun; Song, Tianshun; Zhang, Lixiong; Jia, Honghua; Wei, Ping

    2015-03-01

    A simple acclimatization method for the reduction of hexavalent chromium (Cr(VI)) at a biocathode by first enriching an exoelectrogenic biofilm on a microbial fuel cell (MFC) anode, followed by direct inversion of the anode to function as the biocathode, has been established. This novel method significantly enhanced the Cr(VI) reduction efficiency of the MFC, which was mainly attributed to the higher microbial density and less resistive Cr(III) precipitates on the cathode when compared with a common biocathode acclimatization method (control). The biocathode acclimatization period was shortened by 19days and the Cr(VI) reduction rate was increased by a factor of 2.9. Microbial community analyses of biocathodes acclimatized using different methods further verified the feasibility of this electrode inversion method, indicating similar dominant bacteria species in biofilms, which mainly consist of Gamma-proteobacteria and Bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Nonlinear Model Reduction in Power Systems by Balancing of Empirical Controllability and Observability Covariances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Junjian; Wang, Jianhui; Liu, Hui

    Abstract: In this paper, nonlinear model reduction for power systems is performed by the balancing of empirical controllability and observability covariances that are calculated around the operating region. Unlike existing model reduction methods, the external system does not need to be linearized but is directly dealt with as a nonlinear system. A transformation is found to balance the controllability and observability covariances in order to determine which states have the greatest contribution to the input-output behavior. The original system model is then reduced by Galerkin projection based on this transformation. The proposed method is tested and validated on a systemmore » comprised of a 16-machine 68-bus system and an IEEE 50-machine 145-bus system. The results show that by using the proposed model reduction the calculation efficiency can be greatly improved; at the same time, the obtained state trajectories are close to those for directly simulating the whole system or partitioning the system while not performing reduction. Compared with the balanced truncation method based on a linearized model, the proposed nonlinear model reduction method can guarantee higher accuracy and similar calculation efficiency. It is shown that the proposed method is not sensitive to the choice of the matrices for calculating the empirical covariances.« less

  20. Levels of reduction in van Manen's phenomenological hermeneutic method: an empirical example.

    PubMed

    Heinonen, Kristiina

    2015-05-01

    To describe reduction as a method using van Manen's phenomenological hermeneutic research approach. Reduction involves several levels that can be distinguished for their methodological usefulness. Researchers can use reduction in different ways and dimensions for their methodological needs. A study of Finnish multiple-birth families in which open interviews (n=38) were conducted with public health nurses, family care workers and parents of twins. A systematic literature and knowledge review showed there were no articles on multiple-birth families that used van Manen's method. Discussion The phenomena of the 'lifeworlds' of multiple-birth families consist of three core essential themes as told by parents: 'a state of constant vigilance', 'ensuring that they can continue to cope' and 'opportunities to share with other people'. Reduction provides the opportunity to carry out in-depth phenomenological hermeneutic research and understand people's lives. It helps to keep research stages separate but also enables a consolidated view. Social care and healthcare professionals have to hear parents' voices better to comprehensively understand their situation; they need further tools and training to be able to empower parents of twins. This paper adds an empirical example to the discussion of phenomenology, hermeneutic study and reduction as a method. It opens up reduction for researchers to exploit.

  1. Corn leaf nitrate reductase - A nontoxic alternative to cadmium for photometric nitrate determinations in water samples by air-segmented continuous-flow analysis

    USGS Publications Warehouse

    Patton, C.J.; Fischer, A.E.; Campbell, W.H.; Campbell, E.R.

    2002-01-01

    Development, characterization, and operational details of an enzymatic, air-segmented continuous-flow analytical method for colorimetric determination of nitrate + nitrite in natural-water samples is described. This method is similar to U.S. Environmental Protection Agency method 353.2 and U.S. Geological Survey method 1-2545-90 except that nitrate is reduced to nitrite by soluble nitrate reductase (NaR, EC 1.6.6.1) purified from corn leaves rather than a packed-bed cadmium reactor. A three-channel, air-segmented continuous-flow analyzer-configured for simultaneous determination of nitrite (0.020-1.000 mg-N/L) and nitrate + nitrite (0.05-5.00 mg-N/L) by the nitrate reductase and cadmium reduction methods-was used to characterize analytical performance of the enzymatic reduction method. At a sampling rate of 90 h-1, sample interaction was less than 1% for all three methods. Method detection limits were 0.001 mg of NO2- -N/L for nitrite, 0.003 mg of NO3-+ NO2- -N/L for nitrate + nitrite by the cadmium-reduction method, and 0.006 mg of NO3- + NO2- -N/L for nitrate + nitrite by the enzymatic-reduction method. Reduction of nitrate to nitrite by both methods was greater than 95% complete over the entire calibration range. The difference between the means of nitrate + nitrite concentrations in 124 natural-water samples determined simultaneously by the two methods was not significantly different from zero at the p = 0.05 level.

  2. Methodological and hermeneutic reduction - a study of Finnish multiple-birth families.

    PubMed

    Heinonen, Kristiina

    2015-07-01

    To describe reduction as a method in methodological and hermeneutic reduction and the hermeneutic circle using van Manen's principles, with the empirical example of the lifeworlds of multiple-birth families in Finland. Reduction involves several levels that can be distinguished for their methodological usefulness. Researchers can use reduction in different ways and dimensions for their methodological needs. Open interviews with public health nurses, family care workers and parents of twins. The systematic literature and knowledge review shows there were no articles on multiple-birth families that used van Manen's method. This paper presents reduction as a method that uses the hermeneutic circle. The lifeworlds of multiple-birth families consist of three core themes: 'A state of constant vigilance'; 'Ensuring that they can continue to cope'; and 'Opportunities to share with other people'. Reduction allows us to perform deep phenomenological-hermeneutic research and understand people's lifeworlds. It helps to keep research stages separate but also enables a consolidated view. Social care and healthcare professionals have to hear parents' voices better to comprehensively understand their situation; they also need further tools and training to be able to empower parents of twins. The many variations in adapting reduction mean its use can be very complex and confusing. This paper adds to the discussion of phenomenology, hermeneutic study and reduction.

  3. Nox control for high nitric oxide concentration flows through combustion-driven reduction

    DOEpatents

    Yeh, James T.; Ekmann, James M.; Pennline, Henry W.; Drummond, Charles J.

    1989-01-01

    An improved method for removing nitrogen oxides from concentrated waste gas streams, in which nitrogen oxides are ignited with a carbonaceous material in the presence of substoichiometric quantities of a primary oxidant, such as air. Additionally, reductants may be ignited along with the nitrogen oxides, carbonaceous material and primary oxidant to achieve greater reduction of nitrogen oxides. A scrubber and regeneration system may also be included to generate a concentrated stream of nitrogen oxides from flue gases for reduction using this method.

  4. Simulation of multivariate stationary stochastic processes using dimension-reduction representation methods

    NASA Astrophysics Data System (ADS)

    Liu, Zhangjun; Liu, Zenghui; Peng, Yongbo

    2018-03-01

    In view of the Fourier-Stieltjes integral formula of multivariate stationary stochastic processes, a unified formulation accommodating spectral representation method (SRM) and proper orthogonal decomposition (POD) is deduced. By introducing random functions as constraints correlating the orthogonal random variables involved in the unified formulation, the dimension-reduction spectral representation method (DR-SRM) and the dimension-reduction proper orthogonal decomposition (DR-POD) are addressed. The proposed schemes are capable of representing the multivariate stationary stochastic process with a few elementary random variables, bypassing the challenges of high-dimensional random variables inherent in the conventional Monte Carlo methods. In order to accelerate the numerical simulation, the technique of Fast Fourier Transform (FFT) is integrated with the proposed schemes. For illustrative purposes, the simulation of horizontal wind velocity field along the deck of a large-span bridge is proceeded using the proposed methods containing 2 and 3 elementary random variables. Numerical simulation reveals the usefulness of the dimension-reduction representation methods.

  5. Large Scale Reduction of Graphite Oxide Project

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Mackey, Paul; Falker, John; Zeitlin, Nancy

    2015-01-01

    This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction methods are expensive, time-consuming or restricted to small, limited formats. Graphene has potential uses in ultracapacitors, energy storage, solar cells, flexible and light-weight circuits, touch screens, and chemical sensors. In addition, graphite oxide is a sustainable material that can be produced from any form of carbon, making this method environmentally friendly and adaptable for in-situ reduction.

  6. SU-E-T-329: Dosimetric Impact of Implementing Metal Artifact Reduction Methods and Metal Energy Deposition Kernels for Photon Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J; Followill, D; Howell, R

    2015-06-15

    Purpose: To investigate two strategies for reducing dose calculation errors near metal implants: use of CT metal artifact reduction methods and implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) method. Methods: Radiochromic film was used to measure the dose upstream and downstream of titanium and Cerrobend implants. To assess the dosimetric impact of metal artifact reduction methods, dose calculations were performed using baseline, uncorrected images and metal artifact reduction Methods: Philips O-MAR, GE’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI imaging with metal artifact reduction software applied (MARs).To assess the impact of metal kernels, titaniummore » and silver kernels were implemented into a commercial collapsed cone C/S algorithm. Results: The CT artifact reduction methods were more successful for titanium than Cerrobend. Interestingly, for beams traversing the metal implant, we found that errors in the dimensions of the metal in the CT images were more important for dose calculation accuracy than reduction of imaging artifacts. The MARs algorithm caused a distortion in the shape of the titanium implant that substantially worsened the calculation accuracy. In comparison to water kernel dose calculations, metal kernels resulted in better modeling of the increased backscatter dose at the upstream interface but decreased accuracy directly downstream of the metal. We also found that the success of metal kernels was dependent on dose grid size, with smaller calculation voxels giving better accuracy. Conclusion: Our study yielded mixed results, with neither the metal artifact reduction methods nor the metal kernels being globally effective at improving dose calculation accuracy. However, some successes were observed. The MARs algorithm decreased errors downstream of Cerrobend by a factor of two, and metal kernels resulted in more accurate backscatter dose upstream of metals. Thus, these two strategies do have the potential to improve accuracy for patients with metal implants in certain scenarios. This work was supported by Public Health Service grants CA 180803 and CA 10953 awarded by the National Cancer Institute, United States of Health and Human Services, and in part by Mobius Medical Systems.« less

  7. On the connection between multigrid and cyclic reduction

    NASA Technical Reports Server (NTRS)

    Merriam, M. L.

    1984-01-01

    A technique is shown whereby it is possible to relate a particular multigrid process to cyclic reduction using purely mathematical arguments. This technique suggest methods for solving Poisson's equation in 1-, 2-, or 3-dimensions with Dirichlet or Neumann boundary conditions. In one dimension the method is exact and, in fact, reduces to cyclic reduction. This provides a valuable reference point for understanding multigrid techniques. The particular multigrid process analyzed is referred to here as Approximate Cyclic Reduction (ACR) and is one of a class known as Multigrid Reduction methods in the literature. It involves one approximation with a known error term. It is possible to relate the error term in this approximation with certain eigenvector components of the error. These are sharply reduced in amplitude by classical relaxation techniques. The approximation can thus be made a very good one.

  8. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    PubMed Central

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-01-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures. PMID:25757800

  9. Synthesis of Silicon Nitride and Silicon Carbide Nanocomposites through High Energy Milling of Waste Silica Fume for Structural Applications

    NASA Astrophysics Data System (ADS)

    Suri, Jyothi

    Nanocomposites have been widely used in a multitude of applications in electronics and structural components because of their improved mechanical, electrical, and magnetic properties. Silicon nitride/Silicon carbide (Si 3N4/SiC) nanocomposites have been studied intensively for low and high temperature structural applications, such as turbine and automobile engine components, ball bearings, turbochargers, as well as energy applications due to their superior wear resistance, high temperature strength, high oxidation resistance and good creep resistance. Silica fume is the waste material produced during the manufacture of silicon and ferro-silicon alloys, and contains 94 to 97 wt.% SiO2. In the present dissertation, the feasibility of using waste silica fume as the raw material was investigated to synthesize (I) advanced nanocomposites of Si3N4/SiC, and (2) porous silicon carbide (SiC) for membrane applications. The processing approach used to convert the waste material to advanced ceramic materials was based on a novel process called, integrated mechanical and thermal activation process (IMTA) process. In the first part of the dissertation, the effect of parameters such as carbothermic nitridation and reduction temperature and the graphite concentration in the starting silica fume plus graphite mixture, were explored to synthesize nanocomposite powders with tailored amounts of Si3N4 and SiC phases. An effective way to synthesize carbon-free Si3N 4/SiC composite powders was studied to provide a clear pathway and fundamental understanding of the reaction mechanisms. Si3N4/SiC nanocomposite powders were then sintered using two different approaches, based on liquid phase sintering and spark plasma sintering processes, with Al 2O3 and Y2O3 as the sintering aids. The nanocomposites were investigated for their densification behavior, microstructure, and mechanical properties. Si3N4/SiC nanocomposites thus obtained were found to possess superior mechanical properties at much lower costs. The second part of the work has comprised of the successful fabrication of bilayered SiC membranes with a graded porosity, consisting of porous nano-SiC layer on the surface of a porous coarse-grained SiC support layer. The effect of different particle sizes of SiC in the support layers was systematically studied. Also, the effects of sintering temperature were investigated to control the pore size, particle size and overall density of the bi-layered SiC membrane.

  10. System and method for regeneration and recirculation of a reducing agent using highly exothermic reactions induced by mixed industrial slags

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, Jinichiro; Bennett, James P.; Nakano, Anna

    Embodiments relate to systems and methods for regenerating and recirculating a CO, H.sub.2 or combinations thereof utilized for metal oxide reduction in a reduction furnace. The reduction furnace receives the reducing agent, reduces the metal oxide, and generates an exhaust of the oxidized product. The oxidized product is transferred to a mixing vessel, where the oxidized product, a calcium oxide, and a vanadium oxide interact to regenerate the reducing agent from the oxidized product. The regenerated reducing agent is transferred back to the reduction furnace for continued metal oxide reductions.

  11. Analysis of Drag Reduction Methods and Mechanisms of Turbulent.

    PubMed

    Yunqing, Gu; Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou

    2017-01-01

    Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected.

  12. Analysis of Drag Reduction Methods and Mechanisms of Turbulent

    PubMed Central

    Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou

    2017-01-01

    Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected. PMID:29104425

  13. Assessment of methods for methyl iodide emission reduction and pest control using a simulation model

    USDA-ARS?s Scientific Manuscript database

    Various methods have been developed to reduce atmospheric emissions from the agricultural use of highly volatile pesticides and mitigate their adverse environmental effects. The effectiveness of various methods on emissions reduction and pest control was assessed using simulation model in this study...

  14. Image color reduction method for color-defective observers using a color palette composed of 20 particular colors

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takashi

    2015-01-01

    This study describes a color enhancement method that uses a color palette especially designed for protan and deutan defects, commonly known as red-green color blindness. The proposed color reduction method is based on a simple color mapping. Complicated computation and image processing are not required by using the proposed method, and the method can replace protan and deutan confusion (p/d-confusion) colors with protan and deutan safe (p/d-safe) colors. Color palettes for protan and deutan defects proposed by previous studies are composed of few p/d-safe colors. Thus, the colors contained in these palettes are insufficient for replacing colors in photographs. Recently, Ito et al. proposed a p/dsafe color palette composed of 20 particular colors. The author demonstrated that their p/d-safe color palette could be applied to image color reduction in photographs as a means to replace p/d-confusion colors. This study describes the results of the proposed color reduction in photographs that include typical p/d-confusion colors, which can be replaced. After the reduction process is completed, color-defective observers can distinguish these confusion colors.

  15. The staircase method: integrals for periodic reductions of integrable lattice equations

    NASA Astrophysics Data System (ADS)

    van der Kamp, Peter H.; Quispel, G. R. W.

    2010-11-01

    We show, in full generality, that the staircase method (Papageorgiou et al 1990 Phys. Lett. A 147 106-14, Quispel et al 1991 Physica A 173 243-66) provides integrals for mappings, and correspondences, obtained as traveling wave reductions of (systems of) integrable partial difference equations. We apply the staircase method to a variety of equations, including the Korteweg-De Vries equation, the five-point Bruschi-Calogero-Droghei equation, the quotient-difference (QD)-algorithm and the Boussinesq system. We show that, in all these cases, if the staircase method provides r integrals for an n-dimensional mapping, with 2r, then one can introduce q <= 2r variables, which reduce the dimension of the mapping from n to q. These dimension-reducing variables are obtained as joint invariants of k-symmetries of the mappings. Our results support the idea that often the staircase method provides sufficiently many integrals for the periodic reductions of integrable lattice equations to be completely integrable. We also study reductions on other quad-graphs than the regular {\\ Z}^2 lattice, and we prove linear growth of the multi-valuedness of iterates of high-dimensional correspondences obtained as reductions of the QD-algorithm.

  16. Reduction of the radar cross section of arbitrarily shaped cavity structures

    NASA Technical Reports Server (NTRS)

    Chou, R.; Ling, H.; Lee, S. W.

    1987-01-01

    The problem of the reduction of the radar cross section (RCS) of open-ended cavities was studied. The issues investigated were reduction through lossy coating materials on the inner cavity wall and reduction through shaping of the cavity. A method was presented to calculate the RCS of any arbitrarily shaped structure in order to study the shaping problem. The limitations of this method were also addressed. The modal attenuation was studied in a multilayered coated waveguide. It was shown that by employing two layers of coating, it was possible to achieve an increase in both the magnitude of attenuation and the frequency band of effectiveness. The numerical method used in finding the roots of the characteristic equation breaks down when the coating thickness is very lossy and large in terms of wavelength. A new method of computing the RCS of an arbitrary cavity was applied to study the effects of longitudinal bending on RCS reduction. The ray and modal descriptions for the fields in a parallel plate waveguide were compared. To extend the range of validity of the Shooting and Bouncing Ray (SBR) method, the simple ray picture must be modified to account for the beam blurring.

  17. Continuous Adaptive Population Reduction (CAPR) for Differential Evolution Optimization.

    PubMed

    Wong, Ieong; Liu, Wenjia; Ho, Chih-Ming; Ding, Xianting

    2017-06-01

    Differential evolution (DE) has been applied extensively in drug combination optimization studies in the past decade. It allows for identification of desired drug combinations with minimal experimental effort. This article proposes an adaptive population-sizing method for the DE algorithm. Our new method presents improvements in terms of efficiency and convergence over the original DE algorithm and constant stepwise population reduction-based DE algorithm, which would lead to a reduced number of cells and animals required to identify an optimal drug combination. The method continuously adjusts the reduction of the population size in accordance with the stage of the optimization process. Our adaptive scheme limits the population reduction to occur only at the exploitation stage. We believe that continuously adjusting for a more effective population size during the evolutionary process is the major reason for the significant improvement in the convergence speed of the DE algorithm. The performance of the method is evaluated through a set of unimodal and multimodal benchmark functions. In combining with self-adaptive schemes for mutation and crossover constants, this adaptive population reduction method can help shed light on the future direction of a completely parameter tune-free self-adaptive DE algorithm.

  18. Method of reduction of nitroaromatics by enzymatic reaction with redox enzymes

    DOEpatents

    Shah, Manish M.

    2000-01-01

    A method for the controlled reduction of nitroaromatic compounds such as nitrobenzene and 2,4,6-trinitrotoluene by enzymatic reaction with redox enzymes, such as Oxyrase (Trademark of Oxyrase, Inc., Mansfield, Ohio).

  19. Effects of Synthesis Method on Electrical Properties of Graphene

    NASA Astrophysics Data System (ADS)

    Fuad, M. F. I. Ahmad; Jarni, H. H.; Shariffudin, W. N.; Othman, N. H.; Rahim, A. N. Che Abdul

    2018-05-01

    The aim of this study is to achieve the highest reduction capability and complete reductions of oxygen from graphene oxide (GO) by using different type of chemical methods. The modification of Hummer’s method has been proposed to produce GO, and hydrazine hydrate has been utilized in the GO’s reduction process into graphene. There are two types of chemical method are used to synthesize graphene; 1) Sina’s method and 2) Sasha’s method. Both GO and graphene were then characterized using X-Ray Powder Diffraction (XRD) and Fourier Transform Infrared Spectrometry (FT-IR). The graph patterns obtained from XRD showed that the values of graphene and GO are within their reliable ranges, FT-IR identified the comparison functional group between GO and graphene. Graphene was verified to experience the reduction process due to absent of functional group consist of oxygen has detected. Electrochemical impedance spectrometry (EIS) was then conducted to test the ability of conducting electricity of two batches (each weighted 1.6g) of graphene synthesized using different methods (Sina’s method and Sasha’s method). Sasha’s method was proven to have lower conductivity value compare to Sina’s method, with value of 6.2E+02 S/m and 8.1E+02 S/m respectively. These values show that both methods produced good graphene; however, by using Sina’s method, the graphene produced has better electrical properties.

  20. Fast Reduction Method in Dominance-Based Information Systems

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhou, Qinghua; Wen, Yongchuan

    2018-01-01

    In real world applications, there are often some data with continuous values or preference-ordered values. Rough sets based on dominance relations can effectively deal with these kinds of data. Attribute reduction can be done in the framework of dominance-relation based approach to better extract decision rules. However, the computational cost of the dominance classes greatly affects the efficiency of attribute reduction and rule extraction. This paper presents an efficient method of computing dominance classes, and further compares it with traditional method with increasing attributes and samples. Experiments on UCI data sets show that the proposed algorithm obviously improves the efficiency of the traditional method, especially for large-scale data.

  1. Model and controller reduction of large-scale structures based on projection methods

    NASA Astrophysics Data System (ADS)

    Gildin, Eduardo

    The design of low-order controllers for high-order plants is a challenging problem theoretically as well as from a computational point of view. Frequently, robust controller design techniques result in high-order controllers. It is then interesting to achieve reduced-order models and controllers while maintaining robustness properties. Controller designed for large structures based on models obtained by finite element techniques yield large state-space dimensions. In this case, problems related to storage, accuracy and computational speed may arise. Thus, model reduction methods capable of addressing controller reduction problems are of primary importance to allow the practical applicability of advanced controller design methods for high-order systems. A challenging large-scale control problem that has emerged recently is the protection of civil structures, such as high-rise buildings and long-span bridges, from dynamic loadings such as earthquakes, high wind, heavy traffic, and deliberate attacks. Even though significant effort has been spent in the application of control theory to the design of civil structures in order increase their safety and reliability, several challenging issues are open problems for real-time implementation. This dissertation addresses with the development of methodologies for controller reduction for real-time implementation in seismic protection of civil structures using projection methods. Three classes of schemes are analyzed for model and controller reduction: nodal truncation, singular value decomposition methods and Krylov-based methods. A family of benchmark problems for structural control are used as a framework for a comparative study of model and controller reduction techniques. It is shown that classical model and controller reduction techniques, such as balanced truncation, modal truncation and moment matching by Krylov techniques, yield reduced-order controllers that do not guarantee stability of the closed-loop system, that is, the reduced-order controller implemented with the full-order plant. A controller reduction approach is proposed such that to guarantee closed-loop stability. It is based on the concept of dissipativity (or positivity) of linear dynamical systems. Utilizing passivity preserving model reduction together with dissipative-LQG controllers, effective low-order optimal controllers are obtained. Results are shown through simulations.

  2. Stability analysis of Caisson Cofferdam Based on Strength Reduction Method

    NASA Astrophysics Data System (ADS)

    Xu, B. B.; Zhang, N. S.

    2018-05-01

    The working mechanism of the caisson cofferdam depends on the self-weight of the structure and internal filling to ensure its skid resistance and overturn resistance stability. Using the strength reduction method, the safety factor of the caisson cofferdam can be obtained. The potential slide surface can be searched automatically without constraining the range of the arc center. According to the results, the slippage surface goes through the bottom of the caisson. Based on the judgement criterion of the strength reduction method, the final safety factor is about 1.65.

  3. Analytical properties of some commercially available nitrate reductase enzymes evaluated as replacements for cadmium in automated, semiautomated, and manual colorimetric methods for determination of nitrate plus nitrite in water

    USGS Publications Warehouse

    Patton, Charles J.; Kryskalla, Jennifer R.

    2013-01-01

    A multiyear research effort at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) evaluated several commercially available nitrate reductase (NaR) enzymes as replacements for toxic cadmium in longstanding automated colorimetric air-segmented continuous-flow analyzer (CFA) methods for determining nitrate plus nitrite (NOx) in water. This research culminated in USGS approved standard- and low-level enzymatic reduction, colorimetric automated discrete analyzer NOx methods that have been in routine operation at the NWQL since October 2011. The enzyme used in these methods (AtNaR2) is a product of recombinant expression of NaR from Arabidopsis thaliana (L.) Heynh. (mouseear cress) in the yeast Pichia pastoris. Because the scope of the validation report for these new automated discrete analyzer methods, published as U.S. Geological Survey Techniques and Methods 5–B8, was limited to performance benchmarks and operational details, extensive foundational research with different enzymes—primarily YNaR1, a product of recombinant expression of NaR from Pichia angusta in the yeast Pichia pastoris—remained unpublished until now. This report documents research and development at the NWQL that was foundational to development and validation of the discrete analyzer methods. It includes: (1) details of instrumentation used to acquire kinetics data for several NaR enzymes in the presence and absence of known or suspected inhibitors in relation to reaction temperature and reaction pH; and (2) validation results—method detection limits, precision and bias estimates, spike recoveries, and interference studies—for standard- and low-level automated colorimetric CFA-YNaR1 reduction NOx methods in relation to corresponding USGS approved CFA cadmium-reduction (CdR) NOx methods. The cornerstone of this validation is paired sample statistical and graphical analysis of NOx concentrations from more than 3,800 geographically and seasonally diverse surface-water and groundwater samples that were analyzed in parallel by CFA-CdR and CFA enzyme-reduction methods. Finally, (3) demonstration of a semiautomated batch procedure in which 2-milliliter analyzer cups or disposable spectrophotometer cuvettes serve as reaction vessels for enzymatic reduction of nitrate to nitrite prior to analytical determinations. After the reduction step, analyzer cups are loaded onto CFA, flow injection, or discrete analyzers for simple, rapid, automatic nitrite determinations. In the case of manual determinations, analysts dispense colorimetric reagents into cuvettes containing post-reduction samples, allow time for color to develop, insert cuvettes individually into a spectrophotometer, and record percent transmittance or absorbance in relation to a reagent blank. Data presented here demonstrate equivalent analytical performance of enzymatic reduction NOx methods in these various formats to that of benchmark CFA-CdR NOx methods.

  4. Cost-effectiveness analysis of risk-reduction measures to reach water safety targets.

    PubMed

    Lindhe, Andreas; Rosén, Lars; Norberg, Tommy; Bergstedt, Olof; Pettersson, Thomas J R

    2011-01-01

    Identifying the most suitable risk-reduction measures in drinking water systems requires a thorough analysis of possible alternatives. In addition to the effects on the risk level, also the economic aspects of the risk-reduction alternatives are commonly considered important. Drinking water supplies are complex systems and to avoid sub-optimisation of risk-reduction measures, the entire system from source to tap needs to be considered. There is a lack of methods for quantification of water supply risk reduction in an economic context for entire drinking water systems. The aim of this paper is to present a novel approach for risk assessment in combination with economic analysis to evaluate risk-reduction measures based on a source-to-tap approach. The approach combines a probabilistic and dynamic fault tree method with cost-effectiveness analysis (CEA). The developed approach comprises the following main parts: (1) quantification of risk reduction of alternatives using a probabilistic fault tree model of the entire system; (2) combination of the modelling results with CEA; and (3) evaluation of the alternatives with respect to the risk reduction, the probability of not reaching water safety targets and the cost-effectiveness. The fault tree method and CEA enable comparison of risk-reduction measures in the same quantitative unit and consider costs and uncertainties. The approach provides a structured and thorough analysis of risk-reduction measures that facilitates transparency and long-term planning of drinking water systems in order to avoid sub-optimisation of available resources for risk reduction. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Automatic variance reduction for Monte Carlo simulations via the local importance function transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, S.A.

    1996-02-01

    The author derives a transformed transport problem that can be solved theoretically by analog Monte Carlo with zero variance. However, the Monte Carlo simulation of this transformed problem cannot be implemented in practice, so he develops a method for approximating it. The approximation to the zero variance method consists of replacing the continuous adjoint transport solution in the transformed transport problem by a piecewise continuous approximation containing local biasing parameters obtained from a deterministic calculation. He uses the transport and collision processes of the transformed problem to bias distance-to-collision and selection of post-collision energy groups and trajectories in a traditionalmore » Monte Carlo simulation of ``real`` particles. He refers to the resulting variance reduction method as the Local Importance Function Transform (LIFI) method. He demonstrates the efficiency of the LIFT method for several 3-D, linearly anisotropic scattering, one-group, and multigroup problems. In these problems the LIFT method is shown to be more efficient than the AVATAR scheme, which is one of the best variance reduction techniques currently available in a state-of-the-art Monte Carlo code. For most of the problems considered, the LIFT method produces higher figures of merit than AVATAR, even when the LIFT method is used as a ``black box``. There are some problems that cause trouble for most variance reduction techniques, and the LIFT method is no exception. For example, the author demonstrates that problems with voids, or low density regions, can cause a reduction in the efficiency of the LIFT method. However, the LIFT method still performs better than survival biasing and AVATAR in these difficult cases.« less

  6. Optimization of Quenching Parameters for the Reduction of Titaniferous Magnetite Ore by Lean Grade Coal Using the Taguchi Method and Its Isothermal Kinetic Study

    NASA Astrophysics Data System (ADS)

    Sarkar, Bitan Kumar; Kumar, Nikhil; Dey, Rajib; Das, Gopes Chandra

    2018-06-01

    In the present study, a unique method is adopted to achieve higher reducibility of titaniferous magnetite lump ore (TMO). In this method, TMO is initially heated followed by water quenching. The quenching process generates cracks due to thermal shock in the dense TMO lumps, which, in turn, increases the extent of reduction (EOR) using the lean grade coal as a reductant. The optimum combination of parameters found by using Taguchi's L27 orthogonal array (OA) (five factors, three levels) is - 8 + 4 mm of particle size (PS1), 1423 K of quenching temperature (Qtemp2), 15 minutes of quenching time (Qtime3), 3 times the number of quenching {(No. of Q)3}, and 120 minutes of reduction time (Rtime3) at fixed reduction temperature of 1473 K. At optimized levels of the parameters, 92.39 pct reduction is achieved. Isothermal reduction kinetics of the quenched TMO lumps at the optimized condition reveals mixed controlled mechanisms [initially contracting geometry (CG3) followed by diffusion (D3)]. Activation energies calculated are 69.895 KJ/mole for CG3 and 39.084 KJ/mole for D3.

  7. Method of controlled reduction of nitroaromatics by enzymatic reaction with oxygen sensitive nitroreductase enzymes

    DOEpatents

    Shah, Manish M.; Campbell, James A.

    1998-01-01

    A method for the controlled reduction of nitroaromatic compounds such as nitrobenzene and 2,4,6-trinitrotoluene by enzymatic reaction with oxygen sensitive nitroreductase enzymes, such as ferredoxin NADP oxidoreductase.

  8. 50 CFR 600.1011 - Reduction methods and other conditions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., require such title restriction or scrapping of reduction vessels unless the business plan voluntarily... reduction fishery. (e) Reduction vessels disposition. Where a business plan requires the withdrawal from... (b) of this section unless the business plan volunteers to do otherwise; and (3) Any subsidized...

  9. Assessing Regional Emissions Reductions from Travel Efficiency: Applying the Travel Efficiency Assessment Method

    EPA Pesticide Factsheets

    This presentation from the 2016 TRB Summer Conference on Transportation Planning and Air Quality summarizes the application of the Travel Efficiency Assessment Method (TEAM) which analyzed selected transportation emission reduction strategies in three case

  10. Comparative Evaluation of Cutting Methods of Activated Concrete from Nuclear Power Plant Decommissioning - 13548

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, HakSoo; Chung, SungHwan; Maeng, SungJun

    2013-07-01

    The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactivemore » waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)« less

  11. Classification of molecular structure images by using ANN, RF, LBP, HOG, and size reduction methods for early stomach cancer detection

    NASA Astrophysics Data System (ADS)

    Aytaç Korkmaz, Sevcan; Binol, Hamidullah

    2018-03-01

    Patients who die from stomach cancer are still present. Early diagnosis is crucial in reducing the mortality rate of cancer patients. Therefore, computer aided methods have been developed for early detection in this article. Stomach cancer images were obtained from Fırat University Medical Faculty Pathology Department. The Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG) features of these images are calculated. At the same time, Sammon mapping, Stochastic Neighbor Embedding (SNE), Isomap, Classical multidimensional scaling (MDS), Local Linear Embedding (LLE), Linear Discriminant Analysis (LDA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Laplacian Eigenmaps methods are used for dimensional the reduction of the features. The high dimension of these features has been reduced to lower dimensions using dimensional reduction methods. Artificial neural networks (ANN) and Random Forest (RF) classifiers were used to classify stomach cancer images with these new lower feature sizes. New medical systems have developed to measure the effects of these dimensions by obtaining features in different dimensional with dimensional reduction methods. When all the methods developed are compared, it has been found that the best accuracy results are obtained with LBP_MDS_ANN and LBP_LLE_ANN methods.

  12. A rapid and high-throughput microplate spectrophotometric method for field measurement of nitrate in seawater and freshwater.

    PubMed

    Wu, Jiapeng; Hong, Yiguo; Guan, Fengjie; Wang, Yan; Tan, Yehui; Yue, Weizhong; Wu, Meilin; Bin, Liying; Wang, Jiaping; Wen, Jiali

    2016-02-01

    The well-known zinc-cadmium reduction method is frequently used for determination of nitrate. However, this method is seldom to be applied on field research of nitrate due to the long time consuming and large sample volume demand. Here, we reported a modified zinc-cadmium reduction method (MZCRM) for measurement of nitrate at natural-abundance level in both seawater and freshwater. The main improvements of MZCRM include using small volume disposable tubes for reaction, a vortex apparatus for shaking to increase reduction rate, and a microplate reader for high-throughput spectrophotometric measurements. Considering salt effect, two salinity sections (5~10 psu and 20~35 psu) were set up for more accurate determination of nitrate in low and high salinity condition respectively. Under optimized experimental conditions, the reduction rates were stabilized on 72% and 63% on the salinity of 5 and 20 psu respectively. The lowest detection limit for nitrate was 0.5 μM and was linear up to 100 μM (RSDs was 4.8%). Environmental samples assay demonstrated that MZCRM was well consistent with conventional zinc-cadmium reduction method. In total, this modified method improved accuracy and efficiency of operations greatly, and would be realized a rapid and high-throughput determination of nitrate in field analysis of nitrate with low cost.

  13. SULFATE REDUCTION IN GROUNDWATER: CHARACTERIZATION AND APPLICATIONS FOR REMEDIATION

    PubMed Central

    Miao, Z.; Brusseau, M. L.; Carroll, K. C.; Carreón-Diazconti, C.; Johnson, B.

    2013-01-01

    Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, along with a brief discussion of characterization methods and applications for addressing acid mine drainage. We then focus on two innovative, in-situ methods for remediating sulfate-contaminated groundwater, the use of zero-valent iron (ZVI) and the addition of electron-donor substrates. The advantages and limitations associated with the methods are discussed, with examples of prior applications. PMID:21947714

  14. An adaptive band selection method for dimension reduction of hyper-spectral remote sensing image

    NASA Astrophysics Data System (ADS)

    Yu, Zhijie; Yu, Hui; Wang, Chen-sheng

    2014-11-01

    Hyper-spectral remote sensing data can be acquired by imaging the same area with multiple wavelengths, and it normally consists of hundreds of band-images. Hyper-spectral images can not only provide spatial information but also high resolution spectral information, and it has been widely used in environment monitoring, mineral investigation and military reconnaissance. However, because of the corresponding large data volume, it is very difficult to transmit and store Hyper-spectral images. Hyper-spectral image dimensional reduction technique is desired to resolve this problem. Because of the High relation and high redundancy of the hyper-spectral bands, it is very feasible that applying the dimensional reduction method to compress the data volume. This paper proposed a novel band selection-based dimension reduction method which can adaptively select the bands which contain more information and details. The proposed method is based on the principal component analysis (PCA), and then computes the index corresponding to every band. The indexes obtained are then ranked in order of magnitude from large to small. Based on the threshold, system can adaptively and reasonably select the bands. The proposed method can overcome the shortcomings induced by transform-based dimension reduction method and prevent the original spectral information from being lost. The performance of the proposed method has been validated by implementing several experiments. The experimental results show that the proposed algorithm can reduce the dimensions of hyper-spectral image with little information loss by adaptively selecting the band images.

  15. How much reduction of virus is needed for recycled water: A continuous changing need for assessment?

    PubMed

    Gerba, Charles P; Betancourt, Walter Q; Kitajima, Masaaki

    2017-01-01

    To ensure the safety of wastewater reuse for irrigation of food crops and drinking water pathogenic viruses must be reduced to levels that pose no significant risk. To achieve this goal minimum reduction of viruses by treatment trains have been suggested. For use of edible crops a 6-log reduction and for production of potable drinking water a 12-log reduction has been suggested. These reductions were based on assuming infective virus concentrations of 10 5 to 10 6 per liter. Recent application of molecular methods suggests that some pathogenic viruses may be occurring in concentrations of 10 7 to 10 9 per liter. Factors influencing these levels include the development of molecular methods for virus detection, emergence of newly recognized viruses, decrease in per capita water use due to conservation measures, and outbreaks. Since neither cell culture nor molecular methods can assess all the potentially infectious virus in wastewater conservative estimates should be used to assess the virus load in untreated wastewater. This review indicates that an additional 2- to 3-log reduction of viruses above current recommendations may be needed to ensure the safety of recycled water. Information is needed on peak loading of viruses. In addition, more virus groups need to be quantified using better methods of virus quantification, including more accurate methods for measuring viral infectivity in order to better quantify risks from viruses in recycled water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Phyto-reduction of graphene oxide using the aqueous extract of Eichhornia crassipes (Mart.) Solms

    NASA Astrophysics Data System (ADS)

    Firdhouse, M. Jannathul; Lalitha, P.

    2014-10-01

    The aqueous extract of Eichhornia crassipes was used as reductant to produce graphene from graphene oxide by refluxing method. The complete reduction of graphene oxide was monitored using UV-Vis spectrophotometer. Characterization of graphene was made through FTIR, XRD, and Raman spectroscopy analysis. The stability of graphene was studied by thermal gravimetric analysis and zeta potential measurements. The nature and surface morphology of the synthesized graphene was analyzed by transmission electron microscopy. The production of graphene using phytoextract as reductant emphasizes on the facile method of synthesis and greener nanotechnology.

  17. Method for Synthesizing Metal Nanowires in Anodic Alumina Membranes Using Solid State Reduction

    NASA Technical Reports Server (NTRS)

    Martinez-Inesta, Maria M (Inventor); Feliciano, Jennie (Inventor); Quinones-Fontalvo, Leonel (Inventor)

    2016-01-01

    The invention proposes a novel method for the fabrication of regular arrays of MNWs using solid-state reduction (SSR). Using this method copper (Cu), silver (Ag), and palladium (Pd) nanowire (NWs) arrays were synthesized using anodic alumina membranes (AAMs) as templates. Depending on the metal loading used the NWs reached different diameters.

  18. APPLICATION OF RADON REDUCTION METHODS

    EPA Science Inventory

    The document is intended to aid homeowners and contractors in diagnosing and solving indoor radon problems. It will also be useful to State and Federal regulatory officials and many other persons who provide advice on the selection, design and operation of radon reduction methods...

  19. Method of controlled reduction of nitroaromatics by enzymatic reaction with oxygen sensitive nitroreductase enzymes

    DOEpatents

    Shah, M.M.; Campbell, J.A.

    1998-07-07

    A method is described for the controlled reduction of nitroaromatic compounds such as nitrobenzene and 2,4,6-trinitrotoluene by enzymatic reaction with oxygen sensitive nitroreductase enzymes, such as ferredoxin NADP oxidoreductase. 6 figs.

  20. Method and apparatus for reducing mixed waste

    DOEpatents

    Elliott, Michael L.; Perez, Jr., Joseph M.; Chapman, Chris C.; Peters, Richard D.

    1995-01-01

    The present invention is a method and apparatus for in-can waste reduction. The method is mixing waste with combustible material prior to placing the waste into a waste reduction vessel. The combustible portion is ignited, thereby reducing combustible material to ash and non-combustible material to a slag. Further combustion or heating may be used to sinter or melt the ash. The apparatus is a waste reduction vessel having receiving canister connection means on a first end, and a waste/combustible mixture inlet on a second end. An oxygen supply is provided to support combustion of the combustible mixture.

  1. Method and apparatus to selectively reduce NO.sub.x in an exhaust gas feedstream

    DOEpatents

    Schmieg, Steven J [Troy, MI; Blint, Richard J [Shelby Township, MI; Den, Ling [Sterling Heights, MI; Viola, Michael B [Macomb Township, MI; Lee, Jong-Hwan [Rochester Hills, MI

    2011-08-30

    A method and apparatus are described to selectively reduce NO.sub.x emissions of an internal combustion engine. An exhaust aftertreatment system includes an injection device operative to dispense a hydrocarbon reductant upstream of a silver-alumina catalytic reactor device. A control system determines a NO.sub.x concentration and hydrocarbon/NOx ratio based upon selected parameters of the exhaust gas feedstream and dispenses hydrocarbon reductant during lean engine operation. Included is a method to control elements of the feedstream during lean operation. The hydrocarbon reductant may include engine fuel.

  2. Facile synthesis of Au-ZnO plasmonic nanohybrids for highly efficient photocatalytic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Kuriakose, Sini; Sahu, Kavita; Khan, Saif A.; Tripathi, A.; Avasthi, D. K.; Mohapatra, Satyabrata

    2017-02-01

    Au-ZnO plasmonic nanohybrids were synthesized by a facile two step process. In the first step, nanostructured ZnO thin films were prepared by carbothermal evaporation followed by thermal annealing in oxygen atmosphere. Deposition of ultrathin Au films onto the nanostructured ZnO thin films by sputtering combined with thermal annealing resulted in the formation of Au-ZnO plasmonic nanohybrid thin films. The structural, optical, plasmonic and photocatalytic properties of the Au-ZnO nanohybrid thin films were studied. XRD studies on the Au-ZnO hybrid thin films revealed the presence of Au and ZnO nanostructures. UV-visible absorption studies showed two peaks corresponding to the excitonic absorption of ZnO nanostructures in the UV region and the surface plasmon resonance (SPR) absorption of Au nanoparticles in the visible region. The Au-ZnO nanohybrid thin films annealed at 400 °C showed enhanced photocatalytic activity as compared to nanostructrured ZnO thin films towards sun light driven photocatalytic degradation of methylene blue (MB) dye in water. The observed enhanced photocatalytic activity of Au-ZnO plasmonic nanohybrids is attributed to the efficient suppression of the recombination of photogenerated charge carriers in ZnO due to the strong electron scavenging action of Au nanoparticles combined with the improved sun light utilization capability of Au-ZnO nanohybrids coming from the plasmonic response of Au nanoparticles decorating ZnO nanostructures.

  3. A novel hybrid scattering order-dependent variance reduction method for Monte Carlo simulations of radiative transfer in cloudy atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Cui, Shengcheng; Yang, Jun; Gao, Haiyang; Liu, Chao; Zhang, Zhibo

    2017-03-01

    We present a novel hybrid scattering order-dependent variance reduction method to accelerate the convergence rate in both forward and backward Monte Carlo radiative transfer simulations involving highly forward-peaked scattering phase function. This method is built upon a newly developed theoretical framework that not only unifies both forward and backward radiative transfer in scattering-order-dependent integral equation, but also generalizes the variance reduction formalism in a wide range of simulation scenarios. In previous studies, variance reduction is achieved either by using the scattering phase function forward truncation technique or the target directional importance sampling technique. Our method combines both of them. A novel feature of our method is that all the tuning parameters used for phase function truncation and importance sampling techniques at each order of scattering are automatically optimized by the scattering order-dependent numerical evaluation experiments. To make such experiments feasible, we present a new scattering order sampling algorithm by remodeling integral radiative transfer kernel for the phase function truncation method. The presented method has been implemented in our Multiple-Scaling-based Cloudy Atmospheric Radiative Transfer (MSCART) model for validation and evaluation. The main advantage of the method is that it greatly improves the trade-off between numerical efficiency and accuracy order by order.

  4. Stripping ethanol from ethanol-blended fuels for use in NO.sub.x SCR

    DOEpatents

    Kass, Michael Delos [Oak Ridge, TN; Graves, Ronald Lee [Knoxville, TN; Storey, John Morse Elliot [Oak Ridge, TN; Lewis, Sr., Samuel Arthur; Sluder, Charles Scott [Knoxville, TN; Thomas, John Foster [Powell, TN

    2007-08-21

    A method to use diesel fuel alchohol micro emulsions (E-diesel) to provide a source of reductant to lower NO.sub.x emissions using selective catalytic reduction. Ethanol is stripped from the micro emulsion and entered into the exhaust gasses upstream of the reducing catalyst. The method allows diesel (and other lean-burn) engines to meet new, lower emission standards without having to carry separate fuel and reductant tanks.

  5. 42 CFR 430.45 - Reduction of Federal Medicaid payments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Reduction of Federal Medicaid payments. 430.45 Section 430.45 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... Federal Medicaid Payments § 430.45 Reduction of Federal Medicaid payments. (a) Methods of reduction. CMS...

  6. A New Feature-Enhanced Speckle Reduction Method Based on Multiscale Analysis for Ultrasound B-Mode Imaging.

    PubMed

    Kang, Jinbum; Lee, Jae Young; Yoo, Yangmo

    2016-06-01

    Effective speckle reduction in ultrasound B-mode imaging is important for enhancing the image quality and improving the accuracy in image analysis and interpretation. In this paper, a new feature-enhanced speckle reduction (FESR) method based on multiscale analysis and feature enhancement filtering is proposed for ultrasound B-mode imaging. In FESR, clinical features (e.g., boundaries and borders of lesions) are selectively emphasized by edge, coherence, and contrast enhancement filtering from fine to coarse scales while simultaneously suppressing speckle development via robust diffusion filtering. In the simulation study, the proposed FESR method showed statistically significant improvements in edge preservation, mean structure similarity, speckle signal-to-noise ratio, and contrast-to-noise ratio (CNR) compared with other speckle reduction methods, e.g., oriented speckle reducing anisotropic diffusion (OSRAD), nonlinear multiscale wavelet diffusion (NMWD), the Laplacian pyramid-based nonlinear diffusion and shock filter (LPNDSF), and the Bayesian nonlocal means filter (OBNLM). Similarly, the FESR method outperformed the OSRAD, NMWD, LPNDSF, and OBNLM methods in terms of CNR, i.e., 10.70 ± 0.06 versus 9.00 ± 0.06, 9.78 ± 0.06, 8.67 ± 0.04, and 9.22 ± 0.06 in the phantom study, respectively. Reconstructed B-mode images that were developed using the five speckle reduction methods were reviewed by three radiologists for evaluation based on each radiologist's diagnostic preferences. All three radiologists showed a significant preference for the abdominal liver images obtained using the FESR methods in terms of conspicuity, margin sharpness, artificiality, and contrast, p<0.0001. For the kidney and thyroid images, the FESR method showed similar improvement over other methods. However, the FESR method did not show statistically significant improvement compared with the OBNLM method in margin sharpness for the kidney and thyroid images. These results demonstrate that the proposed FESR method can improve the image quality of ultrasound B-mode imaging by enhancing the visualization of lesion features while effectively suppressing speckle noise.

  7. Initial treatment of sigmoid volvulous by colonoscopy.

    PubMed Central

    Starling, J R

    1979-01-01

    The initial management of acute, nonstrangulated sigmoid volvulous is to attempt proctosigmoidoscopic, rectal tube, or barium enema reduction and evacuation. If unsuccessful emergency surgery is necessary. The flexible colonoscope offers an additional therapeutic modality to effectuate preoperative reduction of the twisted sigmoid colon if attempts with conventional methods fail. Three cases of acute sigmoid volvulous are presented which illustrate for the first time successful reduction of acute sigmoid volvulous by colonoscopy after failure of the usual methods of treatment. Instead of emergency surgery all of these patients had elective resection with primary colocolostomy. Patients with acute sigmoid volvulous refractile to reduction by conventional modalities should have an attempt at flexible colonoscopic reduction. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:464675

  8. Simultaneous reduction and nitrogen functionalization of graphene oxide using lemon for metal-free oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Begum, Halima; Ahmed, Mohammad Shamsuddin; Cho, Sung; Jeon, Seungwon

    2017-12-01

    Inspire by the vision of finding a simple and green method for simultaneous reduction and nitrogen (N)-functionalization of graphene oxide (GO), a N-rich reduced graphene oxide (rGO) has been synthesized through a facile and ecofriendly hydrothermal strategy while most of the existing methods are involving with multiple steps and highly toxic reducing agents that are harmful to human health and environment. In this paper, the simultaneous reduction and N-functionalization of GO using as available lemon juice (denoted as Lem-rGO) for metal-free electrocatalysis towards oxygen reduction reaction (ORR) is described. The proposed method is based on the reduction of GO using of the reducing and the N-precursor capability of ascorbic acid and citric acid as well as the nitrogenous compounds, respectively, that containing in lemon juice. The resultant Lem-rGO has higher reduction degree, higher specific surface area and better crystalline nature with N-incorporation than that of well investigated ascorbic acid and citric acid treated rGO. As a result, it shows better ORR electrocatalytic activity in respect to the improved onset potential, electron transfer rate and kinetics than those typical rGO catalysts. Moreover, it shows a significant tolerance to the anodic fuels and durability than the Pt/C during ORR.

  9. Evaluation of the stepwise collimation method for the reduction of the patient dose in full spine radiography

    NASA Astrophysics Data System (ADS)

    Lee, Boram; Lee, Sunyoung; Yang, Injeong; Yoon, Myeonggeun

    2014-05-01

    The purpose of this study is to evaluate the dose reduction when using the stepwise collimation method for scoliosis patients undergoing full spine radiography. A Monte Carlo simulation was carried out to acquire dose vs. volume data for organs at risk (OAR) in the human body. While the effective doses in full spine radiography were reduced by 8, 15, 27 and 44% by using four different sizes of the collimation, the doses to the skin were reduced by 31, 44, 55 and 66%, indicating that the reduction of the dose to the skin is higher than that to organs inside the body. Although the reduction rates were low for the gonad, being 9, 14, 18 and 23%, there was more than a 30% reduction in the dose to the heart, suggesting that the dose reduction depends significantly on the location of the OARs in the human body. The reduction rate of the secondary cancer risk based on the excess absolute risk (EAR) varied from 0.6 to 3.4 per 10,000 persons, depending on the size of the collimation. Our results suggest that the stepwise collimation method in full spine radiography can effectively reduce the patient dose and the radiation-induced secondary cancer risk.

  10. Introduction of a computer-based method for automated planning of reduction paths under consideration of simulated muscular forces.

    PubMed

    Buschbaum, Jan; Fremd, Rainer; Pohlemann, Tim; Kristen, Alexander

    2017-08-01

    Reduction is a crucial step in the surgical treatment of bone fractures. Finding an optimal path for restoring anatomical alignment is considered technically demanding because collisions as well as high forces caused by surrounding soft tissues can avoid desired reduction movements. The repetition of reduction movements leads to a trial-and-error process which causes a prolonged duration of surgery. By planning an appropriate reduction path-an optimal sequence of target-directed movements-these problems should be overcome. For this purpose, a computer-based method has been developed. Using the example of simple femoral shaft fractures, 3D models are generated out of CT images. A reposition algorithm aligns both fragments by reconstructing their broken edges. According to the criteria of a deduced planning strategy, a modified A*-algorithm searches collision-free route of minimal force from the dislocated into the computed target position. Muscular forces are considered using a musculoskeletal reduction model (OpenSim model), and bone collisions are detected by an appropriate method. Five femoral SYNBONE models were broken into different fracture classification types and were automatically reduced from ten randomly selected displaced positions. Highest mean translational and rotational error for achieving target alignment is [Formula: see text] and [Formula: see text]. Mean value and standard deviation of occurring forces are [Formula: see text] for M. tensor fasciae latae and [Formula: see text] for M. semitendinosus over all trials. These pathways are precise, collision-free, required forces are minimized, and thus regarded as optimal paths. A novel method for planning reduction paths under consideration of collisions and muscular forces is introduced. The results deliver additional knowledge for an appropriate tactical reduction procedure and can provide a basis for further navigated or robotic-assisted developments.

  11. Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Wen, Chen-Yu; Zhang, David Wei; Wu, Dong-Ping; Zhang, Zhi-Bin; Zhang, Shi-Li

    2014-12-01

    In this paper, two microwave irradiation methods: (i) liquid-phase microwave irradiation (MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and (ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis, and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygen-containing functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.

  12. A novel differential electrochemical mass spectrometry method to determine the product distribution from parasitic Methanol oxidation reaction on oxygen reduction reaction catalysts

    NASA Astrophysics Data System (ADS)

    Jurzinsky, Tilman; Kurzhals, Philipp; Cremers, Carsten

    2018-06-01

    The oxygen reduction reaction is in research focus since several decades due to its importance for the overall fuel cell performance. In direct methanol fuel cells, the crossover of methanol and its subsequent parasitic oxidation are main issues when it comes to preventing fuel cell performance losses. In this work, we present a novel differential electrochemical mass spectrometry method to evaluate oxygen reduction reaction catalysts on their tolerance to methanol being present at the cathode. Besides this, the setup allows to measure under more realistic fuel cell conditions than typical rotating disc electrode measurements, because the oxygen reduction reaction is evaluated in gaseous phase and a gas diffusion electrode is used as working electrode. Due to the new method, it was possible to investigate the oxygen reduction reaction on two commonly used catalysts (Pt/C and Pt3Co/C) in absence and presence of methanol. It was found, that Pt3Co/C is less prone to parasitic current losses due to methanol oxidation reaction. By connecting a mass spectrometer to the electrochemical cell, the new method allows to determine the products formed on the catalysts due to parasitic methanol electrooxidation.

  13. Wavelet median denoising of ultrasound images

    NASA Astrophysics Data System (ADS)

    Macey, Katherine E.; Page, Wyatt H.

    2002-05-01

    Ultrasound images are contaminated with both additive and multiplicative noise, which is modeled by Gaussian and speckle noise respectively. Distinguishing small features such as fallopian tubes in the female genital tract in the noisy environment is problematic. A new method for noise reduction, Wavelet Median Denoising, is presented. Wavelet Median Denoising consists of performing a standard noise reduction technique, median filtering, in the wavelet domain. The new method is tested on 126 images, comprised of 9 original images each with 14 levels of Gaussian or speckle noise. Results for both separable and non-separable wavelets are evaluated, relative to soft-thresholding in the wavelet domain, using the signal-to-noise ratio and subjective assessment. The performance of Wavelet Median Denoising is comparable to that of soft-thresholding. Both methods are more successful in removing Gaussian noise than speckle noise. Wavelet Median Denoising outperforms soft-thresholding for a larger number of cases of speckle noise reduction than of Gaussian noise reduction. Noise reduction is more successful using non-separable wavelets than separable wavelets. When both methods are applied to ultrasound images obtained from a phantom of the female genital tract a small improvement is seen; however, a substantial improvement is required prior to clinical use.

  14. An Analysis of Prospective Chemistry Teachers' Cognitive Structures through Flow Map Method: The Subject of Oxidation and Reduction

    ERIC Educational Resources Information Center

    Temel, Senar

    2016-01-01

    This study aims to analyse prospective chemistry teachers' cognitive structures related to the subject of oxidation and reduction through a flow map method. Purposeful sampling method was employed in this study, and 8 prospective chemistry teachers from a group of students who had taken general chemistry and analytical chemistry courses were…

  15. Mixed models and reduction method for dynamic analysis of anisotropic shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Peters, J. M.

    1985-01-01

    A time-domain computational procedure is presented for predicting the dynamic response of laminated anisotropic shells. The two key elements of the procedure are: (1) use of mixed finite element models having independent interpolation (shape) functions for stress resultants and generalized displacements for the spatial discretization of the shell, with the stress resultants allowed to be discontinuous at interelement boundaries; and (2) use of a dynamic reduction method, with the global approximation vectors consisting of the static solution and an orthogonal set of Lanczos vectors. The dynamic reduction is accomplished by means of successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate the global approximation vectors. Then the Rayleigh-Ritz technique is used to generate a reduced system of ordinary differential equations in the amplitudes of these modes. The temporal integration of the reduced differential equations is performed by using an explicit half-station central difference scheme (Leap-frog method). The effectiveness of the proposed procedure is demonstrated by means of a numerical example and its advantages over reduction methods used with the displacement formulation are discussed.

  16. Compensation for the signal processing characteristics of ultrasound B-mode scanners in adaptive speckle reduction.

    PubMed

    Crawford, D C; Bell, D S; Bamber, J C

    1993-01-01

    A systematic method to compensate for nonlinear amplification of individual ultrasound B-scanners has been investigated in order to optimise performance of an adaptive speckle reduction (ASR) filter for a wide range of clinical ultrasonic imaging equipment. Three potential methods have been investigated: (1) a method involving an appropriate selection of the speckle recognition feature was successful when the scanner signal processing executes simple logarithmic compressions; (2) an inverse transform (decompression) of the B-mode image was effective in correcting for the measured characteristics of image data compression when the algorithm was implemented in full floating point arithmetic; (3) characterising the behaviour of the statistical speckle recognition feature under conditions of speckle noise was found to be the method of choice for implementation of the adaptive speckle reduction algorithm in limited precision integer arithmetic. In this example, the statistical features of variance and mean were investigated. The third method may be implemented on commercially available fast image processing hardware and is also better suited for transfer into dedicated hardware to facilitate real-time adaptive speckle reduction. A systematic method is described for obtaining ASR calibration data from B-mode images of a speckle producing phantom.

  17. A systematic way for the cost reduction of density fitting methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kállay, Mihály, E-mail: kallay@mail.bme.hu

    2014-12-28

    We present a simple approach for the reduction of the size of auxiliary basis sets used in methods exploiting the density fitting (resolution of identity) approximation for electron repulsion integrals. Starting out of the singular value decomposition of three-center two-electron integrals, new auxiliary functions are constructed as linear combinations of the original fitting functions. The new functions, which we term natural auxiliary functions (NAFs), are analogous to the natural orbitals widely used for the cost reduction of correlation methods. The use of the NAF basis enables the systematic truncation of the fitting basis, and thereby potentially the reduction of themore » computational expenses of the methods, though the scaling with the system size is not altered. The performance of the new approach has been tested for several quantum chemical methods. It is demonstrated that the most pronounced gain in computational efficiency can be expected for iterative models which scale quadratically with the size of the fitting basis set, such as the direct random phase approximation. The approach also has the promise of accelerating local correlation methods, for which the processing of three-center Coulomb integrals is a bottleneck.« less

  18. A New Method for the Reduction of Methemoglobin and Methemoglobin Derivatives

    DTIC Science & Technology

    1991-09-03

    preliminary report, Kajita et al. [11] published a method to regenerate oxyhemoglobin using phenazine methosulfate as the catalyst and NADH as the... phenazine methosulfate as a catalyst in the reduction of methemoglobin. We found the latter two to be quite inferior to FMN. The results obtained with... phenazine methosulfate as a catalyst for the reduction of Page 11 oxygen as well as methemoglobin are shown in Fig. 3. In the absence of light the

  19. Adaptive EMG noise reduction in ECG signals using noise level approximation

    NASA Astrophysics Data System (ADS)

    Marouf, Mohamed; Saranovac, Lazar

    2017-12-01

    In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.

  20. Simulation and evaluation of pollution load reduction scenarios for water environmental management: a case study of inflow river of Taihu Lake, China.

    PubMed

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-09-09

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  1. Minimization of Residual Stress in an Al-Cu Alloy Forged Plate by Different Heat Treatments

    NASA Astrophysics Data System (ADS)

    Dong, Ya-Bo; Shao, Wen-Zhu; Jiang, Jian-Tang; Zhang, Bao-You; Zhen, Liang

    2015-06-01

    In order to improve the balance of mechanical properties and residual stress, various quenching and aging treatments were applied to Al-Cu alloy forged plate. Residual stresses determined by the x-ray diffraction method and slitting method were compared. The surface residual stress measured by x-ray diffraction method was consistent with that measured by slitting method. The residual stress distribution of samples quenched in water with different temperatures (20, 60, 80, and 100 °C) was measured, and the results showed that the boiling water quenching results in a 91.4% reduction in residual stress magnitudes compared with cold water quenching (20 °C), but the tensile properties of samples quenched in boiling water were unacceptably low. Quenching in 80 °C water results in 75% reduction of residual stress, and the reduction of yield strength is 12.7%. The residual stress and yield strength level are considerable for the dimensional stability of aluminum alloy. Quenching samples into 30% polyalkylene glycol quenchants produced 52.2% reduction in the maximum compressive residual stress, and the reduction in yield strength is 19.7%. Moreover, the effects of uphill quenching and thermal-cold cycling on the residual stress were also investigated. Uphill quenching and thermal-cold cycling produced approximately 25-40% reduction in residual stress, while the effect on tensile properties is quite slight.

  2. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    PubMed Central

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-01-01

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives. PMID:25207492

  3. MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction?

    PubMed

    Deledalle, Charles-Alban; Denis, Loic; Tabti, Sonia; Tupin, Florence

    2017-09-01

    Speckle reduction is a longstanding topic in synthetic aperture radar (SAR) imaging. Since most current and planned SAR imaging satellites operate in polarimetric, interferometric, or tomographic modes, SAR images are multi-channel and speckle reduction techniques must jointly process all channels to recover polarimetric and interferometric information. The distinctive nature of SAR signal (complex-valued, corrupted by multiplicative fluctuations) calls for the development of specialized methods for speckle reduction. Image denoising is a very active topic in image processing with a wide variety of approaches and many denoising algorithms available, almost always designed for additive Gaussian noise suppression. This paper proposes a general scheme, called MuLoG (MUlti-channel LOgarithm with Gaussian denoising), to include such Gaussian denoisers within a multi-channel SAR speckle reduction technique. A new family of speckle reduction algorithms can thus be obtained, benefiting from the ongoing progress in Gaussian denoising, and offering several speckle reduction results often displaying method-specific artifacts that can be dismissed by comparison between results.

  4. Method and system for the combination of non-thermal plasma and metal/metal oxide doped .gamma.-alumina catalysts for diesel engine exhaust aftertreatment system

    DOEpatents

    Aardahl, Christopher L [Richland, WA; Balmer-Miller, Mari Lou [West Richland, WA; Chanda, Ashok [Peoria, IL; Habeger, Craig F [West Richland, WA; Koshkarian, Kent A [Peoria, IL; Park, Paul W [Peoria, IL

    2006-07-25

    The present disclosure pertains to a system and method for treatment of oxygen rich exhaust and more specifically to a method and system that combines non-thermal plasma with a metal doped .gamma.-alumina catalyst. Current catalyst systems for the treatment of oxygen rich exhaust are capable of achieving only approximately 7 to 12% NO.sub.x reduction as a passive system and only 25 40% reduction when a supplemental hydrocarbon reductant is injected into the exhaust stream. It has been found that treatment of an oxygen rich exhaust initially with a non-thermal plasma and followed by subsequent treatment with a metal doped .gamma.-alumina prepared by the sol gel method is capable of increasing the NO.sub.x reduction to a level of approximately 90% in the absence of SO.sub.2 and 80% in the presence of 20 ppm of SO.sub.2. Especially useful metals have been found to be indium, gallium, and tin.

  5. A LATIN-based model reduction approach for the simulation of cycling damage

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Mainak; Fau, Amelie; Nackenhorst, Udo; Néron, David; Ladevèze, Pierre

    2017-11-01

    The objective of this article is to introduce a new method including model order reduction for the life prediction of structures subjected to cycling damage. Contrary to classical incremental schemes for damage computation, a non-incremental technique, the LATIN method, is used herein as a solution framework. This approach allows to introduce a PGD model reduction technique which leads to a drastic reduction of the computational cost. The proposed framework is exemplified for structures subjected to cyclic loading, where damage is considered to be isotropic and micro-defect closure effects are taken into account. A difficulty herein for the use of the LATIN method comes from the state laws which can not be transformed into linear relations through an internal variable transformation. A specific treatment of this issue is introduced in this work.

  6. Double stellate tongue reduction: a new method of treatment for macroglossia in patients with Beckwith-wiedemann syndrome.

    PubMed

    Hettinger, Patrick C; Denny, Arlen D

    2011-09-01

    Although multiple methods of tongue reduction have been described, recent literature suggests that the central reductions may be more favorable in patients with Beckwith-Wiedemann syndrome (BWS). In this case series, we review our experience with macroglossia associated with BWS, and we offer a new technique of central tongue reduction. Between 1993 and 2007, a retrospective chart review was conducted to include all patients with a diagnosis of BWS who have undergone stellate or double stellate tongue reduction at the Children's Hospital of Wisconsin. A total of 7 patients met all inclusion criteria. All patients had good tongue mobility at 1-year follow-up. One patient required speech therapy for persistent articulation errors postoperatively. A total of 2 patients required secondary procedures for recurrent macroglossia. There were no complaints of abnormal taste or sensation. The stellate and double stellate tongue reductions provide effective treatment in macroglossia associated with BWS.

  7. A model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal-Codina, F., E-mail: fvidal@mit.edu; Nguyen, N.C., E-mail: cuongng@mit.edu; Giles, M.B., E-mail: mike.giles@maths.ox.ac.uk

    We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basismore » approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method.« less

  8. Selective reduction of condensed N-heterocycles using water as a solvent and a hydrogen source.

    PubMed

    Cho, Hyejin; Török, Fanni; Török, Béla

    2013-02-21

    The reduction of unprotected indoles and quinolines is described using water as a hydrogen source. The method is based on the application of a RANEY® type Ni-Al alloy in an aqueous medium. During the reaction the Al content of the alloy, used as reductants, reacts with water in situ providing hydrogen and a RANEY® Ni catalyst, thus the alloy serves as a hydrogen generator as well as a hydrogenation catalyst. The simplicity and efficacy of the method are illustrated by the selective reduction of a variety of substituted indoles and quinolines to indolines and tetrahydroquinolines, respectively.

  9. Research on Attribute Reduction in Hoisting Motor State Recognition of Quayside Container Crane

    NASA Astrophysics Data System (ADS)

    Li, F.; Tang, G.; Hu, X.

    2017-07-01

    In view of too many attributes in hoisting motor state recognition of quayside container crane. Attribute reduction method based on discernibility matrix is introduced to attribute reduction of lifting motor state information table. A method of attribute reduction based on the combination of rough set and genetic algorithm is proposed to deal with the hoisting motor state decision table. Under the condition that the information system's decision-making ability is unchanged, the redundant attribute is deleted. Which reduces the complexity and computation of the recognition process of the hoisting motor. It is possible to realize the fast state recognition.

  10. Influences of synthesis methods and modifier addition on the properties of Ni-based catalysts supported on reticulated ceramic foams

    NASA Astrophysics Data System (ADS)

    Nikolić, Vesna; Kamberović, Željko; Anđić, Zoran; Korać, Marija; Sokić, Miroslav; Maksimović, Vesna

    2014-08-01

    A method of synthesizing Ni-based catalysts supported on α-Al2O3-based foams was developed. The foams were impregnated with aqueous solutions of metal chlorides under an air atmosphere using an aerosol route. Separate procedures involved calcination to form oxides and drying to obtain chlorides on the foam surface. The synthesized samples were subsequently reduced with hydrogen. With respect to the Ni/Al2O3 catalysts, the chloride reduction route enabled the formation of a Ni coating without agglomerates or cracks. Further research included catalyst modification by the addition of Pd, Cu, and Fe. The influences of the additives on the degree of reduction and on the low-temperature reduction effectiveness (533 and 633 K) were examined and compared for the catalysts obtained from oxides and chlorides. Greater degrees of reduction were achieved with chlorides, whereas Pd was the most effective modifier among those investigated. The reduction process was nearly complete at 533 K in the sample that contained 0.1wt% Pd. A lower reduction temperature was utilized, and the calcination step was avoided, which may enhance the economical and technological aspects of the developed catalyst production method.

  11. Determining Level of Service for Multilane Median Opening Zone

    NASA Astrophysics Data System (ADS)

    Ali, Paydar; Johnnie, Ben-Edigbe

    2017-08-01

    The road system is a capital-intensive investment, requiring thorough schematic framework and funding. Roads are built to provide an intrinsic quality of service which satisfies the road users. Roads that provide good services are expected to deliver operational performance that is consistent with their design specifications. Level of service and cumulative percentile speed distribution methods have been used in previous studies to estimate the quality of multilane highway service. Whilst the level of service approach relies on speed/flow curve, the cumulative percentile speed distribution is based solely speed. These estimation methods were used in studies carried out in Johor Malaysia. The aim of the studies is to ascertain the extent of speed reduction caused by midblock U-turn facilities as well as verify which estimation method is more reliable. At selected sites, road segments for both directional flows were divided into free-flow and midblock zones. Traffic volume, speed and vehicle type data for each zone were collected continuously for six weeks. Both estimation methods confirmed that speed reduction would be caused by midblock u-turn facilities. However level of service methods suggested that the quality of service would improve from level F to E or D at midblock zone in spite of speed reduction. Level of service was responding to traffic volume reduction at midblock u-turn facility not travel speed reduction. The studies concluded that since level of service was more responsive to traffic volume reduction than travel speed, it cannot be solely relied upon when assessing the quality of multilane highway service.

  12. Technologies for Turbofan Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis

    2005-01-01

    An overview presentation of NASA's engine noise research since 1992 is given for subsonic commercial aircraft applications. Highlights are included from the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project with emphasis on engine source noise reduction. Noise reduction goals for 10 EPNdB by 207 and 20 EPNdB by 2022 are reviewed. Fan and jet noise technologies are highlighted from the AST program including higher bypass ratio propulsion, scarf inlets, forward-swept fans, swept/leaned stators, chevron nozzles, noise prediction methods, and active noise control for fans. Source diagnostic tests for fans and jets that have been completed over the past few years are presented showing how new flow measurement methods such as Particle Image Velocimetry (PIV) have played a key role in understanding turbulence, the noise generation process, and how to improve noise prediction methods. Tests focused on source decomposition have helped identify which engine components need further noise reduction. The role of Computational AeroAcoustics (CAA) for fan noise prediction is presented. Advanced noise reduction methods such as Hershel-Quincke tubes and trailing edge blowing for fan noise that are currently being pursued n the QAT program are also presented. Highlights are shown form engine validation and flight demonstrations that were done in the late 1990's with Pratt & Whitney on their PW4098 engine and Honeywell on their TFE-731-60 engine. Finally, future propulsion configurations currently being studied that show promise towards meeting NASA's long term goal of 20 dB noise reduction are shown including a Dual Fan Engine concept on a Blended Wing Body aircraft.

  13. Vibration of carbon nanotubes with defects: order reduction methods

    NASA Astrophysics Data System (ADS)

    Hudson, Robert B.; Sinha, Alok

    2018-03-01

    Order reduction methods are widely used to reduce computational effort when calculating the impact of defects on the vibrational properties of nearly periodic structures in engineering applications, such as a gas-turbine bladed disc. However, despite obvious similarities these techniques have not yet been adapted for use in analysing atomic structures with inevitable defects. Two order reduction techniques, modal domain analysis and modified modal domain analysis, are successfully used in this paper to examine the changes in vibrational frequencies, mode shapes and mode localization caused by defects in carbon nanotubes. The defects considered are isotope defects and Stone-Wales defects, though the methods described can be extended to other defects.

  14. The JCMT Gould Belt Survey: a quantitative comparison between SCUBA-2 data reduction methods

    NASA Astrophysics Data System (ADS)

    Mairs, S.; Johnstone, D.; Kirk, H.; Graves, S.; Buckle, J.; Beaulieu, S. F.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Hatchell, J.; Jenness, T.; Mottram, J. C.; Nutter, D.; Pattle, K.; Pineda, J. E.; Salji, C.; di Francesco, J.; Hogerheijde, M. R.; Ward-Thompson, D.; JCMT Gould Belt survey Team

    2015-12-01

    Performing ground-based submillimetre observations is a difficult task as the measurements are subject to absorption and emission from water vapour in the Earth's atmosphere and time variation in weather and instrument stability. Removing these features and other artefacts from the data is a vital process which affects the characteristics of the recovered astronomical structure we seek to study. In this paper, we explore two data reduction methods for data taken with the Submillimetre Common-User Bolometer Array-2 (SCUBA-2) at the James Clerk Maxwell Telescope (JCMT). The JCMT Legacy Reduction 1 (JCMT LR1) and The Gould Belt Legacy Survey Legacy Release 1 (GBS LR1) reduction both use the same software (STARLINK) but differ in their choice of data reduction parameters. We find that the JCMT LR1 reduction is suitable for determining whether or not compact emission is present in a given region and the GBS LR1 reduction is tuned in a robust way to uncover more extended emission, which better serves more in-depth physical analyses of star-forming regions. Using the GBS LR1 method, we find that compact sources are recovered well, even at a peak brightness of only three times the noise, whereas the reconstruction of larger objects requires much care when drawing boundaries around the expected astronomical signal in the data reduction process. Incorrect boundaries can lead to false structure identification or it can cause structure to be missed. In the JCMT LR1 reduction, the extent of the true structure of objects larger than a point source is never fully recovered.

  15. Reduction of variable-truncation artifacts from beam occlusion during in situ x-ray tomography

    NASA Astrophysics Data System (ADS)

    Borg, Leise; Jørgensen, Jakob S.; Frikel, Jürgen; Sporring, Jon

    2017-12-01

    Many in situ x-ray tomography studies require experimental rigs which may partially occlude the beam and cause parts of the projection data to be missing. In a study of fluid flow in porous chalk using a percolation cell with four metal bars drastic streak artifacts arise in the filtered backprojection (FBP) reconstruction at certain orientations. Projections with non-trivial variable truncation caused by the metal bars are the source of these variable-truncation artifacts. To understand the artifacts a mathematical model of variable-truncation data as a function of metal bar radius and distance to sample is derived and verified numerically and with experimental data. The model accurately describes the arising variable-truncation artifacts across simulated variations of the experimental setup. Three variable-truncation artifact-reduction methods are proposed, all aimed at addressing sinogram discontinuities that are shown to be the source of the streaks. The ‘reduction to limited angle’ (RLA) method simply keeps only non-truncated projections; the ‘detector-directed smoothing’ (DDS) method smooths the discontinuities; while the ‘reflexive boundary condition’ (RBC) method enforces a zero derivative at the discontinuities. Experimental results using both simulated and real data show that the proposed methods effectively reduce variable-truncation artifacts. The RBC method is found to provide the best artifact reduction and preservation of image features using both visual and quantitative assessment. The analysis and artifact-reduction methods are designed in context of FBP reconstruction motivated by computational efficiency practical for large, real synchrotron data. While a specific variable-truncation case is considered, the proposed methods can be applied to general data cut-offs arising in different in situ x-ray tomography experiments.

  16. Abel's Theorem Simplifies Reduction of Order

    ERIC Educational Resources Information Center

    Green, William R.

    2011-01-01

    We give an alternative to the standard method of reduction or order, in which one uses one solution of a homogeneous, linear, second order differential equation to find a second, linearly independent solution. Our method, based on Abel's Theorem, is shorter, less complex and extends to higher order equations.

  17. Methods for SBS Threshold Reduction

    DTIC Science & Technology

    1994-01-30

    We have investigated methods for reducing the threshold for stimulated Brillouin scattering (SBS) using a frequency-narrowed Cr,Tm,Ho:YAG laser...operating at 2.12 micrometers. The SBS medium was carbon disulfide. Single-focus SBS and threshold reduction by using two foci, a loop, and a ring have

  18. A Fourier Method for Sidelobe Reduction in Equally Spaced Linear Arrays

    NASA Astrophysics Data System (ADS)

    Safaai-Jazi, Ahmad; Stutzman, Warren L.

    2018-04-01

    Uniformly excited, equally spaced linear arrays have a sidelobe level larger than -13.3 dB, which is too high for many applications. This limitation can be remedied by nonuniform excitation of array elements. We present an efficient method for sidelobe reduction in equally spaced linear arrays with low penalty on the directivity. The method involves the following steps: construction of a periodic function containing only the sidelobes of the uniformly excited array, calculation of the Fourier series of this periodic function, subtracting the series from the array factor of the original uniformly excited array after it is truncated, and finally mitigating the truncation effects which yields significant increase in sidelobe level reduction. A sidelobe reduction factor is incorporated into element currents that makes much larger sidelobe reductions possible and also allows varying the sidelobe level incrementally. It is shown that such newly formed arrays can provide sidelobe levels that are at least 22.7 dB below those of the uniformly excited arrays with the same size and number of elements. Analytical expressions for element currents are presented. Radiation characteristics of the sidelobe-reduced arrays introduced here are examined, and numerical results for directivity, sidelobe level, and half-power beam width are presented for example cases. Performance improvements over popular conventional array synthesis methods, such as Chebyshev and linear current tapered arrays, are obtained with the new method.

  19. Methods of Constructing a Blended Performance Function Suitable for Formation Flight

    NASA Technical Reports Server (NTRS)

    Ryan, Jack

    2017-01-01

    Two methods for constructing performance functions for formation fight-for-drag-reduction suitable for use with an extreme-seeking control system are presented. The first method approximates an a prior measured or estimated drag-reduction performance function by combining real-time measurements of readily available parameters. The parameters are combined with weightings determined from a minimum squares optimization to form a blended performance function.

  20. 40 CFR Table 19 to Subpart Uuu of... - Initial Compliance With Organic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compounds (TOC) or nonmethane TOC from your process vent by 98 percent by weight using a control device or... stringent The mass emission reduction of nonmethane TOC measured by Method 25 over the period of the... mass emission reduction of TOC measured by Method 25A (or nonmethane TOC measured by Methods 25A and 18...

  1. Incorporating energy conservation techniques in the operation of existing LeRC R and D facilities. [energy policy/NASA programs

    NASA Technical Reports Server (NTRS)

    Nieberding, W. C.

    1975-01-01

    A general discussion of various methods which can be used to reduce energy consumption is presented. A very brief description of Lewis Research Center facilities is given and the energy reduction methods are discussed relative to them. Some specific examples (ie; automated equipment and data systems) of the implementation of the energy reduction methods are included.

  2. Research on numerical method for multiple pollution source discharge and optimal reduction program

    NASA Astrophysics Data System (ADS)

    Li, Mingchang; Dai, Mingxin; Zhou, Bin; Zou, Bin

    2018-03-01

    In this paper, the optimal method for reduction program is proposed by the nonlinear optimal algorithms named that genetic algorithm. The four main rivers in Jiangsu province, China are selected for reducing the environmental pollution in nearshore district. Dissolved inorganic nitrogen (DIN) is studied as the only pollutant. The environmental status and standard in the nearshore district is used to reduce the discharge of multiple river pollutant. The research results of reduction program are the basis of marine environmental management.

  3. NO[sub x] reduction by sulfur tolerant coronal-catalytic apparatus and method

    DOEpatents

    Mathur, V.K.; Breault, R.W.; McLarnon, C.R.; Medros, F.G.

    1992-09-15

    This invention presents an NO[sub x] environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO[sub x] reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO[sub x] bearing gas stream at a minimum of at least about 75 watts/cubic meter. 7 figs.

  4. NO.sub.x reduction by sulfur tolerant coronal-catalytic apparatus and method

    DOEpatents

    Mathur, Virendra K.; Breault, Ronald W.; McLarnon, Christopher R.; Medros, Frank G.

    1993-01-01

    This invention presents an NO.sub.x environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO.sub.x reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO.sub.x bearing gas stream at a minimum of at least about 75 watts/cubic meter.

  5. NO.sub.x reduction by sulfur tolerant coronal-catalytic apparatus and method

    DOEpatents

    Mathur, Virendra K.; Breault, Ronald W.; McLarnon, Christopher R.; Medros, Frank G.

    1992-01-01

    This invention presents an NO.sub.x environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO.sub.x reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO.sub.x bearing gas stream at a minimum of at least about 75 watts/cubic meter.

  6. NOx reduction by sulfur tolerant coronal-catalytic apparatus and method

    DOEpatents

    Mathur, V.K.; Breault, R.W.; McLarnon, C.R.; Medros, F.G.

    1993-08-31

    This invention presents an NO[sub x] environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO[sub x] reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO[sub x] bearing gas stream at a minimum of at least about 75 watts/cubic meter.

  7. Viscous drag reduction in boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  8. Methods of Model Reduction for Large-Scale Biological Systems: A Survey of Current Methods and Trends.

    PubMed

    Snowden, Thomas J; van der Graaf, Piet H; Tindall, Marcus J

    2017-07-01

    Complex models of biochemical reaction systems have become increasingly common in the systems biology literature. The complexity of such models can present a number of obstacles for their practical use, often making problems difficult to intuit or computationally intractable. Methods of model reduction can be employed to alleviate the issue of complexity by seeking to eliminate those portions of a reaction network that have little or no effect upon the outcomes of interest, hence yielding simplified systems that retain an accurate predictive capacity. This review paper seeks to provide a brief overview of a range of such methods and their application in the context of biochemical reaction network models. To achieve this, we provide a brief mathematical account of the main methods including timescale exploitation approaches, reduction via sensitivity analysis, optimisation methods, lumping, and singular value decomposition-based approaches. Methods are reviewed in the context of large-scale systems biology type models, and future areas of research are briefly discussed.

  9. A Method to Exchange Air Nitrogen Emission Reductions for Watershed Nitrogen Load Reductions

    EPA Science Inventory

    Presentation of the method developed for the Chesapeake Bay Program to estimate changes in nitrogen loading to Chesapeake due to changes in Bay State state-level nitrogen oxide emissions to support air-water trading by the Bay States. Type for SticsUnder AMAD Application QAPP, QA...

  10. Rotorcraft noise

    NASA Technical Reports Server (NTRS)

    Huston, R. J. (Compiler)

    1982-01-01

    The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.

  11. REDUCTION OF NITRATE THROUGH THE USE OF NITRATE REDUCTASE FOR THE SMARTCHEM AUTOANALYZER

    EPA Science Inventory

    The standard method for the determination of nitrate in drinking water, USEPA Method 353.2 “Determination of Nitrate-Nitrite by Automated Colorimetry,” employs cadmium as the reductant for the conversion of nitrate to nitrite. The nitrite is then analyzed colorimetrically by way ...

  12. Reduction of chemical reaction models

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  13. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.

    PubMed

    Pullamsetty, Ashok; Sundara, Ramaprabhu

    2016-10-01

    Boron doped graphene was prepared by a facile method and platinum (Pt) decoration over boron doped graphene was done in various chemical reduction methods such as sodium borohydride (NaBH4), polyol and modified polyol. X-ray diffraction analysis indicates that the synthesized catalyst particles are present in a nanocrystalline structure and transmission and scanning electron microscopy were employed to investigate the morphology and particle distribution. The electrochemical properties were investigated with the help of the rotating disk electrode (RDE) technique and cyclic voltammetry. The results show that the oxygen reduction reaction (ORR) takes place by a four-electron process. The kinetics of the ORR was evaluated using K-L and Tafel plots. The electrocatalyst obtained in modified polyol reduction method has shown the better catalytic activity compared to other two electrocatalysts. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Volumetric determination of uranium titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, J.S.; Skinner, D.L.; Rader, L.F.

    1957-01-01

    Need for a more rapid volumetric method for the routine determination of uranium in uranium-rich materials has led to the development of a method that uses titanous sulfate as a reductant before oxidimetric titration. Separation of the hydrogen sulfide group is not necessary. Interfering elements precipitated by cupferron are removed by automatic filtrations made simultaneously rather than by the longer chloroform extraction method. Uranium is reduced from VI to IV by addition of an excess of titanous sulfate solution, cupric ion serving as an indicator by forming red metallic copper when reduction is complete. The copper is reoxidized by addition of mercuric perchlorate. The reduced uranium is then determined by addition of excess ferric sulfate and titration with ceric sulfate. The method has proved to be rapid, accurate, and economical.

  15. Enema reduction of intussusception: the success rate of hydrostatic and pneumatic reduction.

    PubMed

    Khorana, Jiraporn; Singhavejsakul, Jesda; Ukarapol, Nuthapong; Laohapensang, Mongkol; Wakhanrittee, Junsujee; Patumanond, Jayanton

    2015-01-01

    Intussusception is a common surgical emergency in infants and children. The incidence of intussusception is from one to four per 2,000 infants and children. If there is no peritonitis, perforation sign on abdominal radiographic studies, and nonresponsive shock, nonoperative reduction by pneumatic or hydrostatic enema can be performed. The purpose of this study was to compare the success rates of both the methods. Two institutional retrospective cohort studies were performed. All intussusception patients (ICD-10 code K56.1) who had visited Chiang Mai University Hospital and Siriraj Hospital from January 2006 to December 2012 were included in the study. The data were obtained by chart reviews and electronic databases, which included demographic data, symptoms, signs, and investigations. The patients were grouped according to the method of reduction followed into pneumatic reduction and hydrostatic reduction groups with the outcome being the success of the reduction technique. One hundred and seventy episodes of intussusception occurring in the patients of Chiang Mai University Hospital and Siriraj Hospital were included in this study. The success rate of pneumatic reduction was 61% and that of hydrostatic reduction was 44% (P=0.036). Multivariable analysis and adjusting of the factors by propensity scores were performed; the success rate of pneumatic reduction was 1.48 times more than that of hydrostatic reduction (P=0.036, 95% confidence interval [CI] =1.03-2.13). Both pneumatic and hydrostatic reduction can be performed safely according to the experience of the radiologist or pediatric surgeon and hospital setting. This study showed that pneumatic reduction had a higher success rate than hydrostatic reduction.

  16. Iterative methods used in overlap astrometric reduction techniques do not always converge

    NASA Astrophysics Data System (ADS)

    Rapaport, M.; Ducourant, C.; Colin, J.; Le Campion, J. F.

    1993-04-01

    In this paper we prove that the classical Gauss-Seidel type iterative methods used for the solution of the reduced normal equations occurring in overlapping reduction methods of astrometry do not always converge. We exhibit examples of divergence. We then analyze an alternative algorithm proposed by Wang (1985). We prove the consistency of this algorithm and verify that it can be convergent while the Gauss-Seidel method is divergent. We conjecture the convergence of Wang method for the solution of astrometric problems using overlap techniques.

  17. FPGA-based architecture for real-time data reduction of ultrasound signals.

    PubMed

    Soto-Cajiga, J A; Pedraza-Ortega, J C; Rubio-Gonzalez, C; Bandala-Sanchez, M; Romero-Troncoso, R de J

    2012-02-01

    This paper describes a novel method for on-line real-time data reduction of radiofrequency (RF) ultrasound signals. The approach is based on a field programmable gate array (FPGA) system intended mainly for steel thickness measurements. Ultrasound data reduction is desirable when: (1) direct measurements performed by an operator are not accessible; (2) it is required to store a considerable amount of data; (3) the application requires measuring at very high speeds; and (4) the physical space for the embedded hardware is limited. All the aforementioned scenarios can be present in applications such as pipeline inspection where data reduction is traditionally performed on-line using pipeline inspection gauges (PIG). The method proposed in this work consists of identifying and storing in real-time only the time of occurrence (TOO) and the maximum amplitude of each echo present in a given RF ultrasound signal. The method is tested with a dedicated immersion system where a significant data reduction with an average of 96.5% is achieved. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Improved synthesis of 3 alpha, 7 alpha, 12 alpha, 24 = xi-tetrahydroxy-5 beta-cholestan-26-oic acid.

    PubMed

    Batta, A K; Tint, G S; Dayal, B; Shefer, S; Salen, G

    1982-06-01

    This paper describes three simple and short methods for the conversion of cholic acid into cholylaldehyde with protected hydroxyl groups. The first method involves lithium aluminum hydride reduction of the tetrahydropyranyl ether of methyl cholate and oxidation of the resulting primary alcohol with pyridinium chlorochromate. The second method employs diborane for the reduction of the -COOH group to the -CH2OH group, while the third method involves the reduction of 3 alpha, 7 alpha, 12 alpha-triformyloxy-5 beta-cholan-24-oic acid (as the acid chloride) directly into 3 alpha, 7 alpha, 12 alpha-triformyloxy-5 beta-cholan-24-al with TMA-ferride (tetramethylammonium hydridoirontetracarbonyl). The aldehyde obtained by any of the above methods underwent smooth Reformatsky reaction with ethyl alpha-bromopropionate to yield 3 alpha, 7 alpha, 12 alpha, 24 xi-tetrahydroxy-5 beta-cholestan-26-oic acid.

  19. Analysis of de-noising methods to improve the precision of the ILSF BPM electronic readout system

    NASA Astrophysics Data System (ADS)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2016-12-01

    In order to have optimum operation and precise control system at particle accelerators, it is required to measure the beam position with the precision of sub-μm. We developed a BPM electronic readout system at Iranian Light Source Facility and it has been experimentally tested at ALBA accelerator facility. The results show the precision of 0.54 μm in beam position measurements. To improve the precision of this beam position monitoring system to sub-μm level, we have studied different de-noising methods such as principal component analysis, wavelet transforms, filtering by FIR, and direct averaging method. An evaluation of the noise reduction was given to testify the ability of these methods. The results show that the noise reduction based on Daubechies wavelet transform is better than other algorithms, and the method is suitable for signal noise reduction in beam position monitoring system.

  20. Pixel-based speckle adjustment for noise reduction in Fourier-domain OCT images.

    PubMed

    Zhang, Anqi; Xi, Jiefeng; Sun, Jitao; Li, Xingde

    2017-03-01

    Speckle resides in OCT signals and inevitably effects OCT image quality. In this work, we present a novel method for speckle noise reduction in Fourier-domain OCT images, which utilizes the phase information of complex OCT data. In this method, speckle area is pre-delineated pixelwise based on a phase-domain processing method and then adjusted by the results of wavelet shrinkage of the original image. Coefficient shrinkage method such as wavelet or contourlet is applied afterwards for further suppressing the speckle noise. Compared with conventional methods without speckle adjustment, the proposed method demonstrates significant improvement of image quality.

  1. Use of an automated chromium reduction system for hydrogen isotope ratio analysis of physiological fluids applied to doubly labeled water analysis.

    PubMed

    Schoeller, D A; Colligan, A S; Shriver, T; Avak, H; Bartok-Olson, C

    2000-09-01

    The doubly labeled water method is commonly used to measure total energy expenditure in free-living subjects. The method, however, requires accurate and precise deuterium abundance determinations, which can be laborious. The aim of this study was to evaluate a fully automated, high-throughput, chromium reduction technique for the measurement of deuterium abundances in physiological fluids. The chromium technique was compared with an off-line zinc bomb reduction technique and also subjected to test-retest analysis. Analysis of international water standards demonstrated that the chromium technique was accurate and had a within-day precision of <1 per thousand. Addition of organic matter to water samples demonstrated that the technique was sensitive to interference at levels between 2 and 5 g l(-1). Physiological samples could be analyzed without this interference, plasma by 10000 Da exclusion filtration, saliva by sedimentation and urine by decolorizing with carbon black. Chromium reduction of urine specimens from doubly labeled water studies indicated no bias relative to zinc reduction with a mean difference in calculated energy expenditure of -0.2 +/- 3.9%. Blinded reanalysis of urine specimens from a second doubly labeled water study demonstrated a test-retest coefficient of variation of 4%. The chromium reduction method was found to be a rapid, accurate and precise method for the analysis of urine specimens from doubly labeled water. Copyright 2000 John Wiley & Sons, Ltd.

  2. Reduction of CO2 Emissions Due to Wind Energy - Methods and Issues in Estimating Operational Emission Reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holttinen, Hannele; Kiviluoma, Juha; McCann, John

    2015-10-05

    This paper presents ways of estimating CO2 reductions of wind power using different methodologies. Estimates based on historical data have more pitfalls in methodology than estimates based on dispatch simulations. Taking into account exchange of electricity with neighboring regions is challenging for all methods. Results for CO2 emission reductions are shown from several countries. Wind power will reduce emissions for about 0.3-0.4 MtCO2/MWh when replacing mainly gas and up to 0.7 MtCO2/MWh when replacing mainly coal powered generation. The paper focuses on CO2 emissions from power system operation phase, but long term impacts are shortly discussed.

  3. A general soft label based linear discriminant analysis for semi-supervised dimensionality reduction.

    PubMed

    Zhao, Mingbo; Zhang, Zhao; Chow, Tommy W S; Li, Bing

    2014-07-01

    Dealing with high-dimensional data has always been a major problem in research of pattern recognition and machine learning, and Linear Discriminant Analysis (LDA) is one of the most popular methods for dimension reduction. However, it only uses labeled samples while neglecting unlabeled samples, which are abundant and can be easily obtained in the real world. In this paper, we propose a new dimension reduction method, called "SL-LDA", by using unlabeled samples to enhance the performance of LDA. The new method first propagates label information from the labeled set to the unlabeled set via a label propagation process, where the predicted labels of unlabeled samples, called "soft labels", can be obtained. It then incorporates the soft labels into the construction of scatter matrixes to find a transformed matrix for dimension reduction. In this way, the proposed method can preserve more discriminative information, which is preferable when solving the classification problem. We further propose an efficient approach for solving SL-LDA under a least squares framework, and a flexible method of SL-LDA (FSL-LDA) to better cope with datasets sampled from a nonlinear manifold. Extensive simulations are carried out on several datasets, and the results show the effectiveness of the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Resist process optimization for further defect reduction

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Iseki, Tomohiro; Marumoto, Hiroshi; Takayanagi, Koji; Yoshida, Yuichi; Uemura, Ryouichi; Yoshihara, Kosuke

    2012-03-01

    Defect reduction has become one of the most important technical challenges in device mass-production. Knowing that resist processing on a clean track strongly impacts defect formation in many cases, we have been trying to improve the track process to enhance customer yield. For example, residual type defect and pattern collapse are strongly related to process parameters in developer, and we have reported new develop and rinse methods in the previous papers. Also, we have reported the optimization method of filtration condition to reduce bridge type defects, which are mainly caused by foreign substances such as gels in resist. Even though we have contributed resist caused defect reduction in past studies, defect reduction requirements continue to be very important. In this paper, we will introduce further process improvements in terms of resist defect reduction, including the latest experimental data.

  5. Optical microtopographic inspection of the surface of tooth subjected to stripping reduction

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F.; Pereira, Pedro B.

    2011-05-01

    In orthodontics, the decreasing of tooth-size by reducing interproximal enamel surfaces (stripping) of teeth is a common procedure which allows dental alignment with minimal changes in the facial profile and no arch expansion. In order to achieve smooth surfaces, clinicians have been testing various methods and progressively improved this therapeutic technique. In order to evaluate the surface roughness of teeth subject to interproximal reduction through the five most commonly used methods, teeth were inspected by scanning electron microscopy and microtopographically measured using the optical active triangulation based microtopographer MICROTOP.06.MFC. The metrological procedure will be presented as well as the comparative results concluding on the most suitable tooth interproximal reduction method.

  6. Effect of sampling rate and record length on the determination of stability and control derivatives

    NASA Technical Reports Server (NTRS)

    Brenner, M. J.; Iliff, K. W.; Whitman, R. K.

    1978-01-01

    Flight data from five aircraft were used to assess the effects of sampling rate and record length reductions on estimates of stability and control derivatives produced by a maximum likelihood estimation method. Derivatives could be extracted from flight data with the maximum likelihood estimation method even if there were considerable reductions in sampling rate and/or record length. Small amplitude pulse maneuvers showed greater degradation of the derivative maneuvers than large amplitude pulse maneuvers when these reductions were made. Reducing the sampling rate was found to be more desirable than reducing the record length as a method of lessening the total computation time required without greatly degrading the quantity of the estimates.

  7. Laser modification of graphene oxide layers

    NASA Astrophysics Data System (ADS)

    Malinský, Petr; Macková, Anna; Cutroneo, Mariapompea; Siegel, Jakub; Bohačová, Marie; Klímova, Kateřina; Švorčík, Václav; Sofer, Zdenĕk

    2018-01-01

    The effect of linearly polarized laser irradiation with various energy densities was successfully used for reduction of graphene oxide (GO). The ion beam analytical methods (RBS, ERDA) were used to follow the elemental composition which is expected as the consequence of GO reduction. The chemical composition analysis was accompanied by structural study showing changed functionalities in the irradiated GO foils using spectroscopy techniques including XPS, FTIR and Raman spectroscopy. The AFM was employed to identify the surface morphology and electric properties evolution were subsequently studied using standard two point method measurement. The used analytical methods report on reduction of irradiated graphene oxide on the surface and the decrease of surface resistivity as a growing function of the laser beam energy density.

  8. Plasma in-liquid method for reduction of zinc oxide in zinc nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Amaliyah, Novriany; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi; Kitamae, Tomohide

    2015-02-01

    Metal air-batteries with high-energy density are expected to be increasingly applied in electric vehicles. This will require a method of recycling air batteries, and reduction of metal oxide by generating plasma in liquid has been proposed as a possible method. Microwave-induced plasma is generated in ethanol as a reducing agent in which zinc oxide is dispersed. Analysis by energy-dispersive x-ray spectrometry (EDS) and x-ray diffraction (XRD) reveals the reduction of zinc oxide. According to images by transmission electron microscopy (TEM), cubic and hexagonal metallic zinc particles are formed in sizes of 30 to 200 nm. Additionally, spherical fiber flocculates approximately 180 nm in diameter are present.

  9. An indigenous method for closed reduction of pediatric mandibular parasymphysis fracture.

    PubMed

    Kumar, Naresh; Singh, Akhilesh Kumar; Pandey, Arun; Verma, Vishal

    2015-01-01

    Mandibular fractures in children are very rare as compared to adults due to protected anatomic features of child and less exposure to road traffic accidents. Management becomes complicated due to inherent dynamic nature, instability of mixed dentition and fear of surgery. Conservative management can be done with the help of acrylic cap splints along with circum-mandibular wiring, intermaxillary fixation with eyelet wires, arch wires or open reduction and internal fixation with bio-resorbable plates. Different methods have various pros and cons. The choice of anesthesia is also very crucial sometimes. This case report describes a new method of closed reduction with 18 gauge needle simulated as an arch bar performed under local anaesthesia.

  10. An indigenous method for closed reduction of pediatric mandibular parasymphysis fracture

    PubMed Central

    Kumar, Naresh; Singh, Akhilesh Kumar; Pandey, Arun; Verma, Vishal

    2015-01-01

    Mandibular fractures in children are very rare as compared to adults due to protected anatomic features of child and less exposure to road traffic accidents. Management becomes complicated due to inherent dynamic nature, instability of mixed dentition and fear of surgery. Conservative management can be done with the help of acrylic cap splints along with circum-mandibular wiring, intermaxillary fixation with eyelet wires, arch wires or open reduction and internal fixation with bio-resorbable plates. Different methods have various pros and cons. The choice of anesthesia is also very crucial sometimes. This case report describes a new method of closed reduction with 18 gauge needle simulated as an arch bar performed under local anaesthesia. PMID:27390498

  11. Recycling of high purity selenium from CIGS solar cell waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafsson, Anna M.K., E-mail: anna.gustafsson@chalmers.se; Foreman, Mark R.StJ.; Ekberg, Christian

    Highlights: • A new method for recycling of selenium from CIGS solar cell materials is presented. • Separation of selenium as selenium dioxide after heating in oxygen atmosphere. • Complete selenium separation after oxidation of <63 μm particles at 800 °C for 1 h. • After reduction of selenium dioxide the selenium purity was higher than 99.999 wt%. - Abstract: Copper indium gallium diselenide (CIGS) is a promising material in thin film solar cell production. To make CIGS solar cells more competitive, both economically and environmentally, in comparison to other energy sources, methods for recycling are needed. In addition tomore » the generally high price of the material, significant amounts of the metals are lost in the manufacturing process. The feasibility of recycling selenium from CIGS through oxidation at elevated temperatures was therefore examined. During oxidation gaseous selenium dioxide was formed and could be separated from the other elements, which remained in solid state. Upon cooling, the selenium dioxide sublimes and can be collected as crystals. After oxidation for 1 h at 800 °C all of the selenium was separated from the CIGS material. Two different reduction methods for reduction of the selenium dioxide to selenium were tested. In the first reduction method an organic molecule was used as the reducing agent in a Riley reaction. In the second reduction method sulphur dioxide gas was used. Both methods resulted in high purity selenium. This proves that the studied selenium separation method could be the first step in a recycling process aimed at the complete separation and recovery of high purity elements from CIGS.« less

  12. A study of the x-ray image quality improvement in the examination of the respiratory system based on the new image processing technique

    NASA Astrophysics Data System (ADS)

    Nagai, Yuichi; Kitagawa, Mayumi; Torii, Jun; Iwase, Takumi; Aso, Tomohiko; Ihara, Kanyu; Fujikawa, Mari; Takeuchi, Yumiko; Suzuki, Katsumi; Ishiguro, Takashi; Hara, Akio

    2014-03-01

    Recently, the double contrast technique in a gastrointestinal examination and the transbronchial lung biopsy in an examination for the respiratory system [1-3] have made a remarkable progress. Especially in the transbronchial lung biopsy, better quality of x-ray fluoroscopic images is requested because this examination is performed under a guidance of x-ray fluoroscopic images. On the other hand, various image processing methods [4] for x-ray fluoroscopic images have been developed as an x-ray system with a flat panel detector [5-7] is widely used. A recursive filtering is an effective method to reduce a random noise in x-ray fluoroscopic images. However it has a limitation for its effectiveness of a noise reduction in case of a moving object exists in x-ray fluoroscopic images because the recursive filtering is a noise reduction method by adding last few images. After recursive filtering a residual signal was produced if a moving object existed in x-ray images, and this residual signal disturbed a smooth procedure of the examinations. To improve this situation, new noise reduction method has been developed. The Adaptive Noise Reduction [ANR] is the brand-new noise reduction technique which can be reduced only a noise regardless of the moving object in x-ray fluoroscopic images. Therefore the ANR is a very suitable noise reduction method for the transbronchial lung biopsy under a guidance of x-ray fluoroscopic images because the residual signal caused of the moving object in x-ray fluoroscopic images is never produced after the ANR. In this paper, we will explain an advantage of the ANR by comparing of a performance between the ANR images and the conventional recursive filtering images.

  13. Developmental dysplasia of the hip: A computational biomechanical model of the path of least energy for closed reduction.

    PubMed

    Zwawi, Mohammed A; Moslehy, Faissal A; Rose, Christopher; Huayamave, Victor; Kassab, Alain J; Divo, Eduardo; Jones, Brendan J; Price, Charles T

    2017-08-01

    This study utilized a computational biomechanical model and applied the least energy path principle to investigate two pathways for closed reduction of high grade infantile hip dislocation. The principle of least energy when applied to moving the femoral head from an initial to a final position considers all possible paths that connect them and identifies the path of least resistance. Clinical reports of severe hip dysplasia have concluded that reduction of the femoral head into the acetabulum may occur by a direct pathway over the posterior rim of the acetabulum when using the Pavlik harness, or by an indirect pathway with reduction through the acetabular notch when using the modified Hoffman-Daimler method. This computational study also compared the energy requirements for both pathways. The anatomical and muscular aspects of the model were derived using a combination of MRI and OpenSim data. Results of this study indicate that the path of least energy closely approximates the indirect pathway of the modified Hoffman-Daimler method. The direct pathway over the posterior rim of the acetabulum required more energy for reduction. This biomechanical analysis confirms the clinical observations of the two pathways for closed reduction of severe hip dysplasia. The path of least energy closely approximated the modified Hoffman-Daimler method. Further study of the modified Hoffman-Daimler method for reduction of severe hip dysplasia may be warranted based on this computational biomechanical analysis. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1799-1805, 2017. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.

  14. Ultrasound guided reduction of an ileocolic intussusception by a hydrostatic method by using normal saline enema in paediatric patients: a study of 30 cases.

    PubMed

    Digant, Shastri Mona; Rucha, Seth; Eke, Dessai

    2012-12-01

    The conventional hydrostatic reduction of an intussusception with barium enema or the pneumatic reduction of an intussusception is associated with considerable ionizing radiations and a risk of perforation; while the hydrostatic reduction of an intussusception under ultrasound guidance is a very safe method because the whole procedure is visualized with real time ultrasound. Also, being a non-invasive method with a high success rate, this procedure has emerged as a useful alternative to a surgical intervention. The aim of this study was to evaluate the role of ultrasound and colour Doppler studies for the guidance of the hydrostatic reduction of a childhood intussusception by using normal saline. Among 41 children who were evaluated with ultrasonography for the confirmation of the presence of intussusceptions, hydrostatic reduction of intussusception were performed under a sonographic guidance in 30 patients, whereas 11 patients were excluded due to clinical contraindications. This disease was observed mostly at the ages of 6 months to 24 months. In 80% of the patients, there was a recent history of gastroenteritis and 40 % had a history of common cold. The most common site of the intussusception was the transverse colon near the hepatic flexor of the colon (90%), with a mean duration of 22.1±17.3 hours. The overall rate of a successful reduction was 87% and the mean reduction time was 14 minutes. None of the cases showed recurrence within 24 hrs. No complications were observed. We conclude that ultrasound with colour Doppler study is very useful for the diagnosis of intussusceptions, as well as for guided hydrostatic reductions by using normal saline enema. This is an optimal, simple, and a safe procedure for the treatment of intussusceptions in paediatric patients.

  15. A Fourier dimensionality reduction model for big data interferometric imaging

    NASA Astrophysics Data System (ADS)

    Vijay Kartik, S.; Carrillo, Rafael E.; Thiran, Jean-Philippe; Wiaux, Yves

    2017-06-01

    Data dimensionality reduction in radio interferometry can provide savings of computational resources for image reconstruction through reduced memory footprints and lighter computations per iteration, which is important for the scalability of imaging methods to the big data setting of the next-generation telescopes. This article sheds new light on dimensionality reduction from the perspective of the compressed sensing theory and studies its interplay with imaging algorithms designed in the context of convex optimization. We propose a post-gridding linear data embedding to the space spanned by the left singular vectors of the measurement operator, providing a dimensionality reduction below image size. This embedding preserves the null space of the measurement operator and hence its sampling properties are also preserved in light of the compressed sensing theory. We show that this can be approximated by first computing the dirty image and then applying a weighted subsampled discrete Fourier transform to obtain the final reduced data vector. This Fourier dimensionality reduction model ensures a fast implementation of the full measurement operator, essential for any iterative image reconstruction method. The proposed reduction also preserves the independent and identically distributed Gaussian properties of the original measurement noise. For convex optimization-based imaging algorithms, this is key to justify the use of the standard ℓ2-norm as the data fidelity term. Our simulations confirm that this dimensionality reduction approach can be leveraged by convex optimization algorithms with no loss in imaging quality relative to reconstructing the image from the complete visibility data set. Reconstruction results in simulation settings with no direction dependent effects or calibration errors show promising performance of the proposed dimensionality reduction. Further tests on real data are planned as an extension of the current work. matlab code implementing the proposed reduction method is available on GitHub.

  16. Solid-State Kinetic Investigations of Nonisothermal Reduction of Iron Species Supported on SBA-15

    PubMed Central

    2017-01-01

    Iron oxide catalysts supported on nanostructured silica SBA-15 were synthesized with various iron loadings using two different precursors. Structural characterization of the as-prepared FexOy/SBA-15 samples was performed by nitrogen physisorption, X-ray diffraction, DR-UV-Vis spectroscopy, and Mössbauer spectroscopy. An increasing size of the resulting iron species correlated with an increasing iron loading. Significantly smaller iron species were obtained from (Fe(III), NH4)-citrate precursors compared to Fe(III)-nitrate precursors. Moreover, smaller iron species resulted in a smoother surface of the support material. Temperature-programmed reduction (TPR) of the FexOy/SBA-15 samples with H2 revealed better reducibility of the samples originating from Fe(III)-nitrate precursors. Varying the iron loading led to a change in reduction mechanism. TPR traces were analyzed by model-independent Kissinger method, Ozawa, Flynn, and Wall (OFW) method, and model-dependent Coats-Redfern method. JMAK kinetic analysis afforded a one-dimensional reduction process for the FexOy/SBA-15 samples. The Kissinger method yielded the lowest apparent activation energy for the lowest loaded citrate sample (Ea ≈ 39 kJ/mol). Conversely, the lowest loaded nitrate sample possessed the highest apparent activation energy (Ea ≈ 88 kJ/mol). For samples obtained from Fe(III)-nitrate precursors, Ea decreased with increasing iron loading. Apparent activation energies from model-independent analysis methods agreed well with those from model-dependent methods. Nucleation as rate-determining step in the reduction of the iron oxide species was consistent with the Mampel solid-state reaction model. PMID:29230346

  17. [Advances in microbial genome reduction and modification].

    PubMed

    Wang, Jianli; Wang, Xiaoyuan

    2013-08-01

    Microbial genome reduction and modification are important strategies for constructing cellular chassis used for synthetic biology. This article summarized the essential genes and the methods to identify them in microorganisms, compared various strategies for microbial genome reduction, and analyzed the characteristics of some microorganisms with the minimized genome. This review shows the important role of genome reduction in constructing cellular chassis.

  18. Complexity reduction of biochemical rate expressions.

    PubMed

    Schmidt, Henning; Madsen, Mads F; Danø, Sune; Cedersund, Gunnar

    2008-03-15

    The current trend in dynamical modelling of biochemical systems is to construct more and more mechanistically detailed and thus complex models. The complexity is reflected in the number of dynamic state variables and parameters, as well as in the complexity of the kinetic rate expressions. However, a greater level of complexity, or level of detail, does not necessarily imply better models, or a better understanding of the underlying processes. Data often does not contain enough information to discriminate between different model hypotheses, and such overparameterization makes it hard to establish the validity of the various parts of the model. Consequently, there is an increasing demand for model reduction methods. We present a new reduction method that reduces complex rational rate expressions, such as those often used to describe enzymatic reactions. The method is a novel term-based identifiability analysis, which is easy to use and allows for user-specified reductions of individual rate expressions in complete models. The method is one of the first methods to meet the classical engineering objective of improved parameter identifiability without losing the systems biology demand of preserved biochemical interpretation. The method has been implemented in the Systems Biology Toolbox 2 for MATLAB, which is freely available from http://www.sbtoolbox2.org. The Supplementary Material contains scripts that show how to use it by applying the method to the example models, discussed in this article.

  19. Measuring Reduction Methods for VR Sickness in Virtual Environments

    ERIC Educational Resources Information Center

    Magaki, Takurou; Vallance, Michael

    2017-01-01

    Recently, virtual reality (VR) technologies have developed remarkably. However, some users have negative symptoms during VR experiences or post-experiences. Consequently, alleviating VR sickness is a major challenge, but an effective reduction method has not yet been discovered. The purpose of this article is to compare and evaluate VR sickness in…

  20. FOLLOW-UP DURABILITY MEASUREMENTS AND MITIGATION PERFORMANCE IMPROVEMENT TESTS IN 38 EASTERN PENNSYL- VANIA HOUSES HAVING INDOOR REDUCTION SYSTEMS

    EPA Science Inventory

    The report gives results of follow-up tests in 38 difficult- to-mitigate Pennsylvania houses where indoor radon reduction systems had been installed 2 to 4 years earlier. bjectives were to assess system durability, methods for improving performance, and methods for reducing insta...

  1. Proceedings of Workshop on Methodology for Evaluating the Effectiveness of Transit Crime Reduction Measures in Automated Guideway Transit Systems

    DOT National Transportation Integrated Search

    1977-07-01

    The workshop focused on current methods of assessing the effectiveness of crime and vandalism reduction methods that are used in conventional urban mass transit systems, and on how they might be applied to new AGT systems. Conventional as well as nov...

  2. Application of Fast Multipole Methods to the NASA Fast Scattering Code

    NASA Technical Reports Server (NTRS)

    Dunn, Mark H.; Tinetti, Ana F.

    2008-01-01

    The NASA Fast Scattering Code (FSC) is a versatile noise prediction program designed to conduct aeroacoustic noise reduction studies. The equivalent source method is used to solve an exterior Helmholtz boundary value problem with an impedance type boundary condition. The solution process in FSC v2.0 requires direct manipulation of a large, dense system of linear equations, limiting the applicability of the code to small scales and/or moderate excitation frequencies. Recent advances in the use of Fast Multipole Methods (FMM) for solving scattering problems, coupled with sparse linear algebra techniques, suggest that a substantial reduction in computer resource utilization over conventional solution approaches can be obtained. Implementation of the single level FMM (SLFMM) and a variant of the Conjugate Gradient Method (CGM) into the FSC is discussed in this paper. The culmination of this effort, FSC v3.0, was used to generate solutions for three configurations of interest. Benchmarking against previously obtained simulations indicate that a twenty-fold reduction in computational memory and up to a four-fold reduction in computer time have been achieved on a single processor.

  3. A component modes projection and assembly model reduction methodology for articulated, multi-flexible body structures

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Tsuha, Walter S.

    1993-01-01

    A two-stage model reduction methodology, combining the classical Component Mode Synthesis (CMS) method and the newly developed Enhanced Projection and Assembly (EP&A) method, is proposed in this research. The first stage of this methodology, called the COmponent Modes Projection and Assembly model REduction (COMPARE) method, involves the generation of CMS mode sets, such as the MacNeal-Rubin mode sets. These mode sets are then used to reduce the order of each component model in the Rayleigh-Ritz sense. The resultant component models are then combined to generate reduced-order system models at various system configurations. A composite mode set which retains important system modes at all system configurations is then selected from these reduced-order system models. In the second stage, the EP&A model reduction method is employed to reduce further the order of the system model generated in the first stage. The effectiveness of the COMPARE methodology has been successfully demonstrated on a high-order, finite-element model of the cruise-configured Galileo spacecraft.

  4. Coupled dimensionality reduction and classification for supervised and semi-supervised multilabel learning

    PubMed Central

    Gönen, Mehmet

    2014-01-01

    Coupled training of dimensionality reduction and classification is proposed previously to improve the prediction performance for single-label problems. Following this line of research, in this paper, we first introduce a novel Bayesian method that combines linear dimensionality reduction with linear binary classification for supervised multilabel learning and present a deterministic variational approximation algorithm to learn the proposed probabilistic model. We then extend the proposed method to find intrinsic dimensionality of the projected subspace using automatic relevance determination and to handle semi-supervised learning using a low-density assumption. We perform supervised learning experiments on four benchmark multilabel learning data sets by comparing our method with baseline linear dimensionality reduction algorithms. These experiments show that the proposed approach achieves good performance values in terms of hamming loss, average AUC, macro F1, and micro F1 on held-out test data. The low-dimensional embeddings obtained by our method are also very useful for exploratory data analysis. We also show the effectiveness of our approach in finding intrinsic subspace dimensionality and semi-supervised learning tasks. PMID:24532862

  5. Coupled dimensionality reduction and classification for supervised and semi-supervised multilabel learning.

    PubMed

    Gönen, Mehmet

    2014-03-01

    Coupled training of dimensionality reduction and classification is proposed previously to improve the prediction performance for single-label problems. Following this line of research, in this paper, we first introduce a novel Bayesian method that combines linear dimensionality reduction with linear binary classification for supervised multilabel learning and present a deterministic variational approximation algorithm to learn the proposed probabilistic model. We then extend the proposed method to find intrinsic dimensionality of the projected subspace using automatic relevance determination and to handle semi-supervised learning using a low-density assumption. We perform supervised learning experiments on four benchmark multilabel learning data sets by comparing our method with baseline linear dimensionality reduction algorithms. These experiments show that the proposed approach achieves good performance values in terms of hamming loss, average AUC, macro F 1 , and micro F 1 on held-out test data. The low-dimensional embeddings obtained by our method are also very useful for exploratory data analysis. We also show the effectiveness of our approach in finding intrinsic subspace dimensionality and semi-supervised learning tasks.

  6. Reduction of Large Dynamical Systems by Minimization of Evolution Rate

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1999-01-01

    Reduction of a large system of equations to a lower-dimensional system of similar dynamics is investigated. For dynamical systems with disparate timescales, a criterion for determining redundant dimensions and a general reduction method based on the minimization of evolution rate are proposed.

  7. Polypyrrole-MWCNT-Ag composites for electromagnetic shielding: Comparison between chemical deposition and UV-reduction approaches

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Izadyar; Gashti, Mazeyar Parvinzadeh

    2018-07-01

    In this study, we focused on the synthesis of polypyrrole-MWCNT-Ag composites and we evaluated their electrical properties to determine the electromagnetic interference shielding performance. We reduced silver nanoparticles in composites using two different in situ methods: UV-reduction and chemical deposition. Composites were characterized using spectroscopic and microscopic tools for evaluation of the chemical, morphological, electrical conductivity and electromagnetic shielding effectiveness. Results from Fourier transform infrared spectroscopy and dispersive Raman microscope showed chemical interactions between silver and the polypyrrole-MWCNT composite due to the charge-transfer within the structure. X-ray diffraction confirmed appearance of two new peaks for silver nanoparticles embedded in polypyrrole-MWCNT independent to reduction method. According to microscopy images, silver nanoparticles were homogenously distributed at the PPy-MWCNTs interfaces by UV reduction, while, chemical reduction resulted to deposition of silver within the PPy matrix. Finally, our results revealed that the polypyrrole-MWCNT-Ag composite produced via UV-reduction has higher electrical conductivity and shielding effectiveness in comparison to chemically reduced one.

  8. Monitoring environmental burden reduction from household waste prevention.

    PubMed

    Matsuda, Takeshi; Hirai, Yasuhiro; Asari, Misuzu; Yano, Junya; Miura, Takahiro; Ii, Ryota; Sakai, Shin-Ichi

    2018-01-01

    In this study, the amount of prevented household waste in Kyoto city was quantified using three methods. Subsequently, the greenhouse gas (GHG) emission reduction by waste prevention was calculated in order to monitor the impact of waste prevention. The methods of quantification were "relative change from baseline year (a)," "absolute change from potential waste generation (b)," and "absolute amount of activities (c)." Method (a) was popular for measuring waste prevention, but method (b) was the original approach to determine the absolute amount of waste prevention by estimating the potential waste generation. Method (c) also provided the absolute value utilizing the information of activities. Methods (b) and (c) enable the evaluation of the waste prevention activities with a similar baseline for recycling. Methods (b) and (c) gave significantly higher GHG reductions than method (a) because of the difference in baseline between them. Therefore, setting a baseline is very important for evaluating waste prevention. In practice, when focusing on the monitoring of a specific policy or campaign, method (a) is an appropriate option. On the other hand, when comparing the total impact of waste prevention to that of recycling, methods (b) and (c) should be applied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Model reduction of dynamical systems by proper orthogonal decomposition: Error bounds and comparison of methods using snapshots from the solution and the time derivatives [Proper orthogonal decomposition model reduction of dynamical systems: error bounds and comparison of methods using snapshots from the solution and the time derivatives

    DOE PAGES

    Kostova-Vassilevska, Tanya; Oxberry, Geoffrey M.

    2017-09-17

    In this study, we consider two proper orthogonal decomposition (POD) methods for dimension reduction of dynamical systems. The first method (M1) uses only time snapshots of the solution, while the second method (M2) augments the snapshot set with time-derivative snapshots. The goal of the paper is to analyze and compare the approximation errors resulting from the two methods by using error bounds. We derive several new bounds of the error from POD model reduction by each of the two methods. The new error bounds involve a multiplicative factor depending on the time steps between the snapshots. For method M1 themore » factor depends on the second power of the time step, while for method 2 the dependence is on the fourth power of the time step, suggesting that method M2 can be more accurate for small between-snapshot intervals. However, three other factors also affect the size of the error bounds. These include (i) the norm of the second (for M1) and fourth derivatives (M2); (ii) the first neglected singular value and (iii) the spectral properties of the projection of the system’s Jacobian in the reduced space. Because of the interplay of these factors neither method is more accurate than the other in all cases. Finally, we present numerical examples demonstrating that when the number of collected snapshots is small and the first neglected singular value has a value of zero, method M2 results in a better approximation.« less

  10. Model reduction of dynamical systems by proper orthogonal decomposition: Error bounds and comparison of methods using snapshots from the solution and the time derivatives [Proper orthogonal decomposition model reduction of dynamical systems: error bounds and comparison of methods using snapshots from the solution and the time derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostova-Vassilevska, Tanya; Oxberry, Geoffrey M.

    In this study, we consider two proper orthogonal decomposition (POD) methods for dimension reduction of dynamical systems. The first method (M1) uses only time snapshots of the solution, while the second method (M2) augments the snapshot set with time-derivative snapshots. The goal of the paper is to analyze and compare the approximation errors resulting from the two methods by using error bounds. We derive several new bounds of the error from POD model reduction by each of the two methods. The new error bounds involve a multiplicative factor depending on the time steps between the snapshots. For method M1 themore » factor depends on the second power of the time step, while for method 2 the dependence is on the fourth power of the time step, suggesting that method M2 can be more accurate for small between-snapshot intervals. However, three other factors also affect the size of the error bounds. These include (i) the norm of the second (for M1) and fourth derivatives (M2); (ii) the first neglected singular value and (iii) the spectral properties of the projection of the system’s Jacobian in the reduced space. Because of the interplay of these factors neither method is more accurate than the other in all cases. Finally, we present numerical examples demonstrating that when the number of collected snapshots is small and the first neglected singular value has a value of zero, method M2 results in a better approximation.« less

  11. A comparison of reduced-order modelling techniques for application in hyperthermia control and estimation.

    PubMed

    Bailey, E A; Dutton, A W; Mattingly, M; Devasia, S; Roemer, R B

    1998-01-01

    Reduced-order modelling techniques can make important contributions in the control and state estimation of large systems. In hyperthermia, reduced-order modelling can provide a useful tool by which a large thermal model can be reduced to the most significant subset of its full-order modes, making real-time control and estimation possible. Two such reduction methods, one based on modal decomposition and the other on balanced realization, are compared in the context of simulated hyperthermia heat transfer problems. The results show that the modal decomposition reduction method has three significant advantages over that of balanced realization. First, modal decomposition reduced models result in less error, when compared to the full-order model, than balanced realization reduced models of similar order in problems with low or moderate advective heat transfer. Second, because the balanced realization based methods require a priori knowledge of the sensor and actuator placements, the reduced-order model is not robust to changes in sensor or actuator locations, a limitation not present in modal decomposition. Third, the modal decomposition transformation is less demanding computationally. On the other hand, in thermal problems dominated by advective heat transfer, numerical instabilities make modal decomposition based reduction problematic. Modal decomposition methods are therefore recommended for reduction of models in which advection is not dominant and research continues into methods to render balanced realization based reduction more suitable for real-time clinical hyperthermia control and estimation.

  12. Dimension reduction method for SPH equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Scheibe, Timothy D.

    2011-08-26

    Smoothed Particle Hydrodynamics model of a complex multiscale processe often results in a system of ODEs with an enormous number of unknowns. Furthermore, a time integration of the SPH equations usually requires time steps that are smaller than the observation time by many orders of magnitude. A direct solution of these ODEs can be extremely expensive. Here we propose a novel dimension reduction method that gives an approximate solution of the SPH ODEs and provides an accurate prediction of the average behavior of the modeled system. The method consists of two main elements. First, effective equationss for evolution of averagemore » variables (e.g. average velocity, concentration and mass of a mineral precipitate) are obtained by averaging the SPH ODEs over the entire computational domain. These effective ODEs contain non-local terms in the form of volume integrals of functions of the SPH variables. Second, a computational closure is used to close the system of the effective equations. The computational closure is achieved via short bursts of the SPH model. The dimension reduction model is used to simulate flow and transport with mixing controlled reactions and mineral precipitation. An SPH model is used model transport at the porescale. Good agreement between direct solutions of the SPH equations and solutions obtained with the dimension reduction method for different boundary conditions confirms the accuracy and computational efficiency of the dimension reduction model. The method significantly accelerates SPH simulations, while providing accurate approximation of the solution and accurate prediction of the average behavior of the system.« less

  13. A review on the multivariate statistical methods for dimensional reduction studies

    NASA Astrophysics Data System (ADS)

    Aik, Lim Eng; Kiang, Lam Chee; Mohamed, Zulkifley Bin; Hong, Tan Wei

    2017-05-01

    In this research study we have discussed multivariate statistical methods for dimensional reduction, which has been done by various researchers. The reduction of dimensionality is valuable to accelerate algorithm progression, as well as really may offer assistance with the last grouping/clustering precision. A lot of boisterous or even flawed info information regularly prompts a not exactly alluring algorithm progression. Expelling un-useful or dis-instructive information segments may for sure help the algorithm discover more broad grouping locales and principles and generally speaking accomplish better exhibitions on new data set.

  14. Internal performance characteristics of short convergent-divergent exhaust nozzles designed by the method of characteristics

    NASA Technical Reports Server (NTRS)

    Krull, H George; Beale, William T

    1956-01-01

    Internal performance data on a short exhaust nozzle designed by the method of characteristics were obtained over a range of pressure ratios from 1.5 to 22. The peak thrust coefficient was not affected by a shortened divergent section, but it occurred at lower pressure ratios due to reduction in expansion ratio. This nozzle contour based on characteristics solution gave higher thrust coefficients than a conical convergent-divergent nozzle of equivalent length. Abrupt-inlet sections permitted a reduction in nozzle length without a thrust-coefficient reduction.

  15. An error bound for a discrete reduced order model of a linear multivariable system

    NASA Technical Reports Server (NTRS)

    Al-Saggaf, Ubaid M.; Franklin, Gene F.

    1987-01-01

    The design of feasible controllers for high dimension multivariable systems can be greatly aided by a method of model reduction. In order for the design based on the order reduction to include a guarantee of stability, it is sufficient to have a bound on the model error. Previous work has provided such a bound for continuous-time systems for algorithms based on balancing. In this note an L-infinity bound is derived for model error for a method of order reduction of discrete linear multivariable systems based on balancing.

  16. Voting strategy for artifact reduction in digital breast tomosynthesis.

    PubMed

    Wu, Tao; Moore, Richard H; Kopans, Daniel B

    2006-07-01

    Artifacts are observed in digital breast tomosynthesis (DBT) reconstructions due to the small number of projections and the narrow angular range that are typically employed in tomosynthesis imaging. In this work, we investigate the reconstruction artifacts that are caused by high-attenuation features in breast and develop several artifact reduction methods based on a "voting strategy." The voting strategy identifies the projection(s) that would introduce artifacts to a voxel and rejects the projection(s) when reconstructing the voxel. Four approaches to the voting strategy were compared, including projection segmentation, maximum contribution deduction, one-step classification, and iterative classification. The projection segmentation method, based on segmentation of high-attenuation features from the projections, effectively reduces artifacts caused by metal and large calcifications that can be reliably detected and segmented from projections. The other three methods are based on the observation that contributions from artifact-inducing projections have higher value than those from normal projections. These methods attempt to identify the projection(s) that would cause artifacts by comparing contributions from different projections. Among the three methods, the iterative classification method provides the best artifact reduction; however, it can generate many false positive classifications that degrade the image quality. The maximum contribution deduction method and one-step classification method both reduce artifacts well from small calcifications, although the performance of artifact reduction is slightly better with the one-step classification. The combination of one-step classification and projection segmentation removes artifacts from both large and small calcifications.

  17. Dynamic condensation of non-classically damped structures using the method of Maclaurin expansion of the frequency response function in Laplace domain

    NASA Astrophysics Data System (ADS)

    Esmaeilzad, Armin; Khanlari, Karen

    2018-07-01

    As the number of degrees of freedom (DOFs) in structural dynamic problems becomes larger, the analyzing complexity and CPU usage of computers increase drastically. Condensation (or reduction) method is an efficient technique to reduce the size of the full model or the dimension of the structural matrices by eliminating the unimportant DOFs. After the first presentation of condensation method by Guyan in 1965 for undamped structures, which ignores the dynamic effects of the mass term, various forms of dynamic condensation methods were presented to overcome this issue. Moreover, researchers have tried to expand the dynamic condensation method to non-classically damped structures. Dynamic reduction of such systems is far more complicated than undamped systems. The proposed non-iterative method in this paper is introduced as 'Maclaurin Expansion of the frequency response function in Laplace Domain' (MELD) applied for dynamic reduction of non-classically damped structures. The present approach is implemented in four numerical examples of 2D bending-shear-axial frames with various numbers of stories and spans and also a floating raft isolation system. The results of natural frequencies and dynamic responses of models are compared with each other before and after the dynamic reduction. It is shown that the result accuracy has acceptable convergence in both cases. In addition, it is indicated that the result of the proposed method is more accurate than the results of some other existing condensation methods.

  18. Identification of fracture zones and its application in automatic bone fracture reduction.

    PubMed

    Paulano-Godino, Félix; Jiménez-Delgado, Juan J

    2017-04-01

    The preoperative planning of bone fractures using information from CT scans increases the probability of obtaining satisfactory results, since specialists are provided with additional information before surgery. The reduction of complex bone fractures requires solving a 3D puzzle in order to place each fragment into its correct position. Computer-assisted solutions may aid in this process by identifying the number of fragments and their location, by calculating the fracture zones or even by computing the correct position of each fragment. The main goal of this paper is the development of an automatic method to calculate contact zones between fragments and thus to ease the computation of bone fracture reduction. In this paper, an automatic method to calculate the contact zone between two bone fragments is presented. In a previous step, bone fragments are segmented and labelled from CT images and a point cloud is generated for each bone fragment. The calculated contact zones enable the automatic reduction of complex fractures. To that end, an automatic method to match bone fragments in complex fractures is also presented. The proposed method has been successfully applied in the calculation of the contact zone of 4 different bones from the ankle area. The calculated fracture zones enabled the reduction of all the tested cases using the presented matching algorithm. The performed tests show that the reduction of these fractures using the proposed methods leaded to a small overlapping between fragments. The presented method makes the application of puzzle-solving strategies easier, since it does not obtain the entire fracture zone but the contact area between each pair of fragments. Therefore, it is not necessary to find correspondences between fracture zones and fragments may be aligned two by two. The developed algorithms have been successfully applied in different fracture cases in the ankle area. The small overlapping error obtained in the performed tests demonstrates the absence of visual overlapping in the figures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Ultimate pier and contraction scour prediction in cohesive soils at selected bridges in Illinois

    USGS Publications Warehouse

    Straub, Timothy D.; Over, Thomas M.; Domanski, Marian M.

    2013-01-01

    The Scour Rate In COhesive Soils-Erosion Function Apparatus (SRICOS-EFA) method includes an ultimate scour prediction that is the equilibrium maximum pier and contraction scour of cohesive soils over time. The purpose of this report is to present the results of testing the ultimate pier and contraction scour methods for cohesive soils on 30 bridge sites in Illinois. Comparison of the ultimate cohesive and noncohesive methods, along with the Illinois Department of Transportation (IDOT) cohesive soil reduction-factor method and measured scour are presented. Also, results of the comparison of historic IDOT laboratory and field values of unconfined compressive strength of soils (Qu) are presented. The unconfined compressive strength is used in both ultimate cohesive and reduction-factor methods, and knowing how the values from field methods compare to the laboratory methods is critical to the informed application of the methods. On average, the non-cohesive method results predict the highest amount of scour, followed by the reduction-factor method results; and the ultimate cohesive method results predict the lowest amount of scour. The 100-year scour predicted for the ultimate cohesive, noncohesive, and reduction-factor methods for each bridge site and soil are always larger than observed scour in this study, except 12% of predicted values that are all within 0.4 ft of the observed scour. The ultimate cohesive scour prediction is smaller than the non-cohesive scour prediction method for 78% of bridge sites and soils. Seventy-six percent of the ultimate cohesive predictions show a 45% or greater reduction from the non-cohesive predictions that are over 10 ft. Comparing the ultimate cohesive and reduction-factor 100-year scour predictions methods for each bridge site and soil, the scour predicted by the ultimate cohesive scour prediction method is less than the reduction-factor 100-year scour prediction method for 51% of bridge sites and soils. Critical shear stress remains a needed parameter in the ultimate scour prediction for cohesive soils. The unconfined soil compressive strength measured by IDOT in the laboratory was found to provide a good prediction of critical shear stress, as measured by using the erosion function apparatus in a previous study. Because laboratory Qu analyses are time-consuming and expensive, the ability of field-measured Rimac data to estimate unconfined soil strength in the critical shear–soil strength relation was tested. A regression analysis was completed using a historic IDOT dataset containing 366 data pairs of laboratory Qu and field Rimac measurements from common sites with cohesive soils. The resulting equations provide a point prediction of Qu, given any Rimac value with the 90% confidence interval. The prediction equations are not significantly different from the identity Qu = Rimac. The alternative predictions of ultimate cohesive scour presented in this study assume Qu will be estimated using Rimac measurements that include computed uncertainty. In particular, the ultimate cohesive predicted scour is greater than observed scour for the entire 90% confidence interval range for predicting Qu at the bridges and soils used in this study, with the exception of the six predicted values that are all within 0.6 ft of the observed scour.

  20. Management of acute anterior shoulder dislocation.

    PubMed

    Dala-Ali, Benan; Penna, Marta; McConnell, Jamie; Vanhegan, Ivor; Cobiella, Carlos

    2014-08-01

    Shoulder dislocation is the most common large joint dislocation in the body. Recent advances in radiological imaging and shoulder surgery have shown the potential dangers of traditional reduction techniques such as the Kocher's and the Hippocratic methods, which are still advocated by many textbooks. Many non-specialists continue to use these techniques, unaware of their potential risks. This article reviews the clinical and radiographic presentation of dislocation; some common reduction techniques; their risks and success rate; analgesia methods to facilitate the reduction; and postreduction management. Many textbooks advocate methods that have been superceded by safer alternatives. Trainees should learn better and safer relocation methods backed up by the current evidence available. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Pathogen Reduction in Human Plasma Using an Ultrashort Pulsed Laser

    PubMed Central

    Tsen, Shaw-Wei D.; Kingsley, David H.; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M.; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel

    2014-01-01

    Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma. PMID:25372037

  2. Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting.

    PubMed

    Cho, In Sun; Logar, Manca; Lee, Chi Hwan; Cai, Lili; Prinz, Fritz B; Zheng, Xiaolin

    2014-01-08

    We report a new flame reduction method to generate controllable amount of oxygen vacancies in TiO2 nanowires that leads to nearly three times improvement in the photoelectrochemical (PEC) water-splitting performance. The flame reduction method has unique advantages of a high temperature (>1000 °C), ultrafast heating rate, tunable reduction environment, and open-atmosphere operation, so it enables rapid formation of oxygen vacancies (less than one minute) without damaging the nanowire morphology and crystallinity and is even applicable to various metal oxides. Significantly, we show that flame reduction greatly improves the saturation photocurrent densities of TiO2 nanowires (2.7 times higher), α-Fe2O3 nanowires (9.4 times higher), ZnO nanowires (2.0 times higher), and BiVO4 thin film (4.3 times higher) in comparison to untreated control samples for PEC water-splitting applications.

  3. Method of preparing copper-dendritic composite alloys for mechanical reduction

    DOEpatents

    Verhoeven, John D.; Gibson, Edwin D.; Schmidt, Frederick A.; Spitzig, William A.

    1988-01-01

    Copper-dendritic composite alloys are prepared for mechanical reduction to increase tensile strength by dispersing molten droplets of the composite alloy into an inert gas; solidifying the droplets in the form of minute spheres or platelets; and compacting a mass of the spheres or platelets into an integrated body. The spheres preferably have diameters of from 50 to 2000 .mu.m, and the platelets thicknesses of 100 to 2000 .mu.m. The resulting spheres or platelets will contain ultra-fine dendrites which produce higher strengths on mechanical reduction of the bodies formed therefrom, or comparable strengths at lower reduction values. The method is applicable to alloys of copper with vanadium, niobium, tantalum, chromium, molybdenum, tungsten, iron and cobalt.

  4. Method of preparing copper-dendritic composite alloys for mechanical reduction

    DOEpatents

    Verhoeven, J.D.; Gibson, E.D.; Schmidt, F.A.; Spitzig, W.A.

    1988-09-13

    Copper-dendritic composite alloys are prepared for mechanical reduction to increase tensile strength by dispersing molten droplets of the composite alloy into an inert gas; solidifying the droplets in the form of minute spheres or platelets; and compacting a mass of the spheres or platelets into an integrated body. The spheres preferably have diameters of from 50 to 2,000 [mu]m, and the platelets thicknesses of 100 to 2,000 [mu]m. The resulting spheres or platelets will contain ultra-fine dendrites which produce higher strengths on mechanical reduction of the bodies formed therefrom, or comparable strengths at lower reduction values. The method is applicable to alloys of copper with vanadium, niobium, tantalum, chromium, molybdenum, tungsten, iron and cobalt. 3 figs.

  5. Pixel-based speckle adjustment for noise reduction in Fourier-domain OCT images

    PubMed Central

    Zhang, Anqi; Xi, Jiefeng; Sun, Jitao; Li, Xingde

    2017-01-01

    Speckle resides in OCT signals and inevitably effects OCT image quality. In this work, we present a novel method for speckle noise reduction in Fourier-domain OCT images, which utilizes the phase information of complex OCT data. In this method, speckle area is pre-delineated pixelwise based on a phase-domain processing method and then adjusted by the results of wavelet shrinkage of the original image. Coefficient shrinkage method such as wavelet or contourlet is applied afterwards for further suppressing the speckle noise. Compared with conventional methods without speckle adjustment, the proposed method demonstrates significant improvement of image quality. PMID:28663860

  6. An interprovincial cooperative game model for air pollution control in China.

    PubMed

    Xue, Jian; Zhao, Laijun; Fan, Longzhen; Qian, Ying

    2015-07-01

    The noncooperative air pollution reduction model (NCRM) that is currently adopted in China to manage air pollution reduction of each individual province has inherent drawbacks. In this paper, we propose a cooperative air pollution reduction game model (CRM) that consists of two parts: (1) an optimization model that calculates the optimal pollution reduction quantity for each participating province to meet the joint pollution reduction goal; and (2) a model that distribute the economic benefit of the cooperation (i.e., pollution reduction cost saving) among the provinces in the cooperation based on the Shapley value method. We applied the CRM to the case of SO2 reduction in the Beijing-Tianjin-Hebei region in China. The results, based on the data from 2003-2009, show that cooperation helps lower the overall SO2 pollution reduction cost from 4.58% to 11.29%. Distributed across the participating provinces, such a cost saving from interprovincial cooperation brings significant benefits to each local government and stimulates them for further cooperation in pollution reduction. Finally, sensitivity analysis is performed using the year 2009 data to test the parameters' effects on the pollution reduction cost savings. China is increasingly facing unprecedented pressure for immediate air pollution control. The current air pollution reduction policy does not allow cooperation and is less efficient. In this paper we developed a cooperative air pollution reduction game model that consists of two parts: (1) an optimization model that calculates the optimal pollution reduction quantity for each participating province to meet the joint pollution reduction goal; and (2) a model that distributes the cooperation gains (i.e., cost reduction) among the provinces in the cooperation based on the Shapley value method. The empirical case shows that such a model can help improve efficiency in air pollution reduction. The result of the model can serve as a reference for Chinese government pollution reduction policy design.

  7. Visualizing phylogenetic tree landscapes.

    PubMed

    Wilgenbusch, James C; Huang, Wen; Gallivan, Kyle A

    2017-02-02

    Genomic-scale sequence alignments are increasingly used to infer phylogenies in order to better understand the processes and patterns of evolution. Different partitions within these new alignments (e.g., genes, codon positions, and structural features) often favor hundreds if not thousands of competing phylogenies. Summarizing and comparing phylogenies obtained from multi-source data sets using current consensus tree methods discards valuable information and can disguise potential methodological problems. Discovery of efficient and accurate dimensionality reduction methods used to display at once in 2- or 3- dimensions the relationship among these competing phylogenies will help practitioners diagnose the limits of current evolutionary models and potential problems with phylogenetic reconstruction methods when analyzing large multi-source data sets. We introduce several dimensionality reduction methods to visualize in 2- and 3-dimensions the relationship among competing phylogenies obtained from gene partitions found in three mid- to large-size mitochondrial genome alignments. We test the performance of these dimensionality reduction methods by applying several goodness-of-fit measures. The intrinsic dimensionality of each data set is also estimated to determine whether projections in 2- and 3-dimensions can be expected to reveal meaningful relationships among trees from different data partitions. Several new approaches to aid in the comparison of different phylogenetic landscapes are presented. Curvilinear Components Analysis (CCA) and a stochastic gradient decent (SGD) optimization method give the best representation of the original tree-to-tree distance matrix for each of the three- mitochondrial genome alignments and greatly outperformed the method currently used to visualize tree landscapes. The CCA + SGD method converged at least as fast as previously applied methods for visualizing tree landscapes. We demonstrate for all three mtDNA alignments that 3D projections significantly increase the fit between the tree-to-tree distances and can facilitate the interpretation of the relationship among phylogenetic trees. We demonstrate that the choice of dimensionality reduction method can significantly influence the spatial relationship among a large set of competing phylogenetic trees. We highlight the importance of selecting a dimensionality reduction method to visualize large multi-locus phylogenetic landscapes and demonstrate that 3D projections of mitochondrial tree landscapes better capture the relationship among the trees being compared.

  8. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOEpatents

    Morrell,; Jonathan S. , Ripley; Edward, B [Knoxville, TN

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  9. TREATMENT OF HEXAVALENT CHROMIUM IN CHROMITE ORE PROCESSING SOLID WASTE USING A MIXED REDUCTANT SOLUTION OF FERROUS SULFATE AND SODIUM DITHIONITE

    EPA Science Inventory

    We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...

  10. Restricted Boltzmann machines based oversampling and semi-supervised learning for false positive reduction in breast CAD.

    PubMed

    Cao, Peng; Liu, Xiaoli; Bao, Hang; Yang, Jinzhu; Zhao, Dazhe

    2015-01-01

    The false-positive reduction (FPR) is a crucial step in the computer aided detection system for the breast. The issues of imbalanced data distribution and the limitation of labeled samples complicate the classification procedure. To overcome these challenges, we propose oversampling and semi-supervised learning methods based on the restricted Boltzmann machines (RBMs) to solve the classification of imbalanced data with a few labeled samples. To evaluate the proposed method, we conducted a comprehensive performance study and compared its results with the commonly used techniques. Experiments on benchmark dataset of DDSM demonstrate the effectiveness of the RBMs based oversampling and semi-supervised learning method in terms of geometric mean (G-mean) for false positive reduction in Breast CAD.

  11. Cryolipolysis for fat reduction and body contouring: safety and efficacy of current treatment paradigms.

    PubMed

    Ingargiola, Michael J; Motakef, Saba; Chung, Michael T; Vasconez, Henry C; Sasaki, Gordon H

    2015-06-01

    Cryolipolysis is a nonsurgical technique for localized fat reduction. With the increased risk of complications from more invasive methods such as liposuction, cryolipolysis presents a promising method for nonsurgical body contouring. This study presents a systematic review of the available clinical data, with an emphasis on the efficacy, methods, safety, and complications of cryolipolysis. To identify clinical studies that assessed outcomes of cryolipolysis, a systematic review of the MEDLINE and Cochrane databases was performed with the search algorithm cryolipolysis OR cool sculpting OR fat freezing OR lipocryolysis. The primary literature search returned 319 articles. After inclusion criteria were applied and additional articles were idenfied via manual review of article references, 19 studies were selected for review. Average reduction in caliper measurement ranged from 14.67 percent to 28.5 percent. Average reduction by ultrasound ranged from 10.3 percent to 25.5 percent. No significant impact on lipid levels or liver function tests after cryolipolysis treatments was noted in any study. Only mild, short-term side effects, such as erythema, swelling, and pain, were noted. Paradoxical adipose hyperplasia was described in one patient. Cryolipolysis is a promising procedure for nonsurgical fat reduction and body contouring and presents a compelling alternative to liposuction and other, more invasive methods. This procedure appears to be safe in the short term, with a limited side effect profile, and results in significant fat reduction when used for localized adiposities. It remains unclear whether posttreatment manual massage and multiple treatments in the same anatomic area enhance the efficacy of cryolipolysis.

  12. Dual-tree complex wavelet transform and SVD based acoustic noise reduction and its application in leak detection for natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Yu, Xuchao; Liang, Wei; Zhang, Laibin; Jin, Hao; Qiu, Jingwei

    2016-05-01

    During the last decades, leak detection for natural gas pipeline has become one of the paramount concerns of pipeline operators and researchers across the globe. However, acoustic wave method has been proved to be an effective way to identify and localize leakage for gas pipeline. Considering the fact that noises inevitably exist in the acoustic signals collected, noise reduction should be enforced on the signals for subsequent data mining and analysis. Thus, an integrated acoustic noise reduction method based on DTCWT and SVD is proposed in this study. The method is put forward based on the idea that noise reduction strategy should match the characteristics of the noisy signal. According to previous studies, it is known that the energy of acoustic signals collected under leaking condition is mainly concentrated in low-frequency portion (0-100 Hz). And ultralow-frequency component (0-5 Hz), which is taken as the characteristic frequency band in this study, can propagate a relatively longer distance and be captured by sensors. Therefore, in order to filter the noises and to reserve the characteristic frequency band, DTCWT is taken as the core to conduct multilevel decomposition and refining for acoustic signals and SVD is employed to eliminate noises in non-characteristic bands. Both simulation and field experiments show that DTCWT-SVD is an excellent method for acoustic noise reduction. At the end of this study, application in leakage localization shows that it becomes much easier and a little more accurate to estimate the location of leak hole after noise reduction by DTCWT-SVD.

  13. Data-Driven Model Reduction and Transfer Operator Approximation

    NASA Astrophysics Data System (ADS)

    Klus, Stefan; Nüske, Feliks; Koltai, Péter; Wu, Hao; Kevrekidis, Ioannis; Schütte, Christof; Noé, Frank

    2018-06-01

    In this review paper, we will present different data-driven dimension reduction techniques for dynamical systems that are based on transfer operator theory as well as methods to approximate transfer operators and their eigenvalues, eigenfunctions, and eigenmodes. The goal is to point out similarities and differences between methods developed independently by the dynamical systems, fluid dynamics, and molecular dynamics communities such as time-lagged independent component analysis, dynamic mode decomposition, and their respective generalizations. As a result, extensions and best practices developed for one particular method can be carried over to other related methods.

  14. 77 FR 58380 - General Services Administration Acquisition Regulation; Submission for OMB Review; Price...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ...] General Services Administration Acquisition Regulation; Submission for OMB Review; Price Reductions Clause... requirement regarding the GSAR Price Reductions Clause. A notice was published in the Federal Register at 76... identified by Information Collection 3090- 0235, Price Reduction Clause, by any of the following methods...

  15. Invasive and native plant responses to shrubland fuel reduction: comparing prescribed fire, mastication, and treatment season

    Treesearch

    Jennifer B. Potts; Scott L. Stephens

    2009-01-01

    Fuel reduction in the wildland–urban interface is a widely used international strategy for assisting human communities regarding wildfire threats, but very little research has examined whether certain fuel reduction methods and their seasonal timing promote nonnative invasion. To...

  16. An Optimization Method for the Reduction of Propeller Unsteady Forces.

    DTIC Science & Technology

    1988-02-01

    unsteady forces and the determination of skew distribulee has been developed. The current method provides an efficient propeller design tool capable...62633N HM35 SF33321 DN305 123 11. TITLE (ft .WC*i=iW) An Optimization Method for the Reduction of Propeller Unsteady Forces 12. PERSONAL AUTHOR(S) T.S...of determining a variety of cubic or quadratic skew distributioms, subject to constraints, which minimize the unsteady forces produced by the various

  17. Symmetry reduction and exact solutions of two higher-dimensional nonlinear evolution equations.

    PubMed

    Gu, Yongyi; Qi, Jianming

    2017-01-01

    In this paper, symmetries and symmetry reduction of two higher-dimensional nonlinear evolution equations (NLEEs) are obtained by Lie group method. These NLEEs play an important role in nonlinear sciences. We derive exact solutions to these NLEEs via the [Formula: see text]-expansion method and complex method. Five types of explicit function solutions are constructed, which are rational, exponential, trigonometric, hyperbolic and elliptic function solutions of the variables in the considered equations.

  18. An expandable crosstalk reduction method for inline fiber Fabry-Pérot sensor array based on fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ma, Lina; Hu, Zhengliang; Hu, Yongming

    2016-07-01

    The inline time division multiplexing (TDM) fiber Fabry-Pérot (FFP) sensor array based on fiber Bragg gratings (FBGs) is attractive for many applications. But the intrinsic multi-reflection (MR) induced crosstalk limits applications especially those needing high resolution. In this paper we proposed an expandable method for MR-induced crosstalk reduction. The method is based on complexing-exponent synthesis using the phase-generated carrier (PGC) scheme and the special common character of the impulse responses. The method could promote demodulation stability simultaneously with the reduction of MR-induced crosstalk. A polarization-maintaining 3-TDM experimental system with an FBG reflectivity of about 5 % was set up to validate the method. The experimental results showed that crosstalk reduction of 13 dB and 15 dB was achieved for sensor 2 and sensor 3 respectively when a signal was applied to the first sensor and crosstalk reduction of 8 dB was achieved for sensor 3 when a signal was applied to sensor 2. The demodulation stability of the applied signal was promoted as well. The standard deviations of the amplitude distributions of the demodulated signals were reduced from 0.0046 to 0.0021 for sensor 2 and from 0.0114 to 0.0044 for sensor 3. Because of the convenience of the linear operation of the complexing-exponent and according to the common character of the impulse response we found, the method can be effectively extended to the array with more TDM channels if the impulse response of the inline FFP sensor array with more TDM channels is derived. It offers potential to develop a low-crosstalk inline FFP sensor array using the PGC interrogation technique with relatively high reflectivity FBGs which can guarantee enough light power received by the photo-detector.

  19. Multiphase flows of N immiscible incompressible fluids: A reduction-consistent and thermodynamically-consistent formulation and associated algorithm

    NASA Astrophysics Data System (ADS)

    Dong, S.

    2018-05-01

    We present a reduction-consistent and thermodynamically consistent formulation and an associated numerical algorithm for simulating the dynamics of an isothermal mixture consisting of N (N ⩾ 2) immiscible incompressible fluids with different physical properties (densities, viscosities, and pair-wise surface tensions). By reduction consistency we refer to the property that if only a set of M (1 ⩽ M ⩽ N - 1) fluids are present in the system then the N-phase governing equations and boundary conditions will exactly reduce to those for the corresponding M-phase system. By thermodynamic consistency we refer to the property that the formulation honors the thermodynamic principles. Our N-phase formulation is developed based on a more general method that allows for the systematic construction of reduction-consistent formulations, and the method suggests the existence of many possible forms of reduction-consistent and thermodynamically consistent N-phase formulations. Extensive numerical experiments have been presented for flow problems involving multiple fluid components and large density ratios and large viscosity ratios, and the simulation results are compared with the physical theories or the available physical solutions. The comparisons demonstrate that our method produces physically accurate results for this class of problems.

  20. Nonlinear dimensionality reduction methods for synthetic biology biobricks' visualization.

    PubMed

    Yang, Jiaoyun; Wang, Haipeng; Ding, Huitong; An, Ning; Alterovitz, Gil

    2017-01-19

    Visualizing data by dimensionality reduction is an important strategy in Bioinformatics, which could help to discover hidden data properties and detect data quality issues, e.g. data noise, inappropriately labeled data, etc. As crowdsourcing-based synthetic biology databases face similar data quality issues, we propose to visualize biobricks to tackle them. However, existing dimensionality reduction methods could not be directly applied on biobricks datasets. Hereby, we use normalized edit distance to enhance dimensionality reduction methods, including Isomap and Laplacian Eigenmaps. By extracting biobricks from synthetic biology database Registry of Standard Biological Parts, six combinations of various types of biobricks are tested. The visualization graphs illustrate discriminated biobricks and inappropriately labeled biobricks. Clustering algorithm K-means is adopted to quantify the reduction results. The average clustering accuracy for Isomap and Laplacian Eigenmaps are 0.857 and 0.844, respectively. Besides, Laplacian Eigenmaps is 5 times faster than Isomap, and its visualization graph is more concentrated to discriminate biobricks. By combining normalized edit distance with Isomap and Laplacian Eigenmaps, synthetic biology biobircks are successfully visualized in two dimensional space. Various types of biobricks could be discriminated and inappropriately labeled biobricks could be determined, which could help to assess crowdsourcing-based synthetic biology databases' quality, and make biobricks selection.

  1. Speckle reduction methods in laser-based picture projectors

    NASA Astrophysics Data System (ADS)

    Akram, M. Nadeem; Chen, Xuyuan

    2016-02-01

    Laser sources have been promised for many years to be better light sources as compared to traditional lamps or light-emitting diodes (LEDs) for projectors, which enable projectors having wide colour gamut for vivid image, super brightness and high contrast for the best picture quality, long lifetime for maintain free operation, mercury free, and low power consumption for green environment. A major technology obstacle in using lasers for projection has been the speckle noise caused by to the coherent nature of the lasers. For speckle reduction, current state of the art solutions apply moving parts with large physical space demand. Solutions beyond the state of the art need to be developed such as integrated optical components, hybrid MOEMS devices, and active phase modulators for compact speckle reduction. In this article, major methods reported in the literature for the speckle reduction in laser projectors are presented and explained. With the advancement in semiconductor lasers with largely reduced cost for the red, green and the blue primary colours, and the developed methods for their speckle reduction, it is hoped that the lasers will be widely utilized in different projector applications in the near future.

  2. Measurement of Blood Flow in Arteriovenous Malformations before and after Embolization Using Arterial Spin Labeling

    PubMed Central

    Suazo, L.; Foerster, B.; Fermin, R.; Speckter, H.; Vilchez, C.; Oviedo, J.; Stoeter, P.

    2012-01-01

    Summary The assessment of shunt reduction after an embolization of an arteriovenous malformation (AVM) or fistula (AVF) from conventional angiography is often difficult and may be subjective. Here we present a completely non-invasive method using magnetic resonance imaging (MRI) to measure shunt reduction. Using pulsed arterial spin labeling (PASL), we determined the relative amount of signal attributed to the shunt over 1.75 s and 6 different slices covering the lesion. This amount of signal from the shunt was related to the total signal from all slices and measured before and after embolization. The method showed a fair agreement between the PASL results and the judgement from conventional angiography. In the case of a total or subtotal shunt occlusion, PASL showed a shunt reduction between 69% and 92%, whereas in minimal shunt reduction as judged by conventional angiography, the ASL result was –6% (indicating slightly increased flow) to 35% in a partially occluded vein of Galen aneurysm. The PASL method proved to be fairly reproducible (up to 2% deviation between three measurements without interventions). On conclusion, PASL is able to reliably measure the amount of shunt reduction achieved by embolization of AVMs and AVFs PMID:22440600

  3. Using risk elasticity to prioritize risk reduction strategies for geographical areas and industry sectors.

    PubMed

    Li, Pei-Chiun; Ma, Hwong-Wen

    2016-01-25

    The total quantity of chemical emissions does not take into account their chemical toxicity, and fails to be an accurate indicator of the potential impact on human health. The sources of released contaminants, and therefore, the potential risk, also differ based on geography. Because of the complexity of the risk, there is no integrated method to evaluate the effectiveness of risk reduction. Therefore, this study developed a method to incorporate the spatial variability of emissions into human health risk assessment to evaluate how to effectively reduce risk using risk elasticity analysis. Risk elasticity analysis, the percentage change in risk in response to the percentage change in emissions, was adopted in this study to evaluate the effectiveness and efficiency of risk reduction. The results show that the main industry sectors are different in each area, and that high emission in an area does not correspond to high risk. Decreasing the high emissions of certain sectors in an area does not result in efficient risk reduction in this area. This method can provide more holistic information for risk management, prevent the development of increased risk, and prioritize the risk reduction strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nonlinear model-order reduction for compressible flow solvers using the Discrete Empirical Interpolation Method

    NASA Astrophysics Data System (ADS)

    Fosas de Pando, Miguel; Schmid, Peter J.; Sipp, Denis

    2016-11-01

    Nonlinear model reduction for large-scale flows is an essential component in many fluid applications such as flow control, optimization, parameter space exploration and statistical analysis. In this article, we generalize the POD-DEIM method, introduced by Chaturantabut & Sorensen [1], to address nonlocal nonlinearities in the equations without loss of performance or efficiency. The nonlinear terms are represented by nested DEIM-approximations using multiple expansion bases based on the Proper Orthogonal Decomposition. These extensions are imperative, for example, for applications of the POD-DEIM method to large-scale compressible flows. The efficient implementation of the presented model-reduction technique follows our earlier work [2] on linearized and adjoint analyses and takes advantage of the modular structure of our compressible flow solver. The efficacy of the nonlinear model-reduction technique is demonstrated to the flow around an airfoil and its acoustic footprint. We could obtain an accurate and robust low-dimensional model that captures the main features of the full flow.

  5. An efficient iterative model reduction method for aeroviscoelastic panel flutter analysis in the supersonic regime

    NASA Astrophysics Data System (ADS)

    Cunha-Filho, A. G.; Briend, Y. P. J.; de Lima, A. M. G.; Donadon, M. V.

    2018-05-01

    The flutter boundary prediction of complex aeroelastic systems is not an easy task. In some cases, these analyses may become prohibitive due to the high computational cost and time associated with the large number of degrees of freedom of the aeroelastic models, particularly when the aeroelastic model incorporates a control strategy with the aim of suppressing the flutter phenomenon, such as the use of viscoelastic treatments. In this situation, the use of a model reduction method is essential. However, the construction of a modal reduction basis for aeroviscoelastic systems is still a challenge, owing to the inherent frequency- and temperature-dependent behavior of the viscoelastic materials. Thus, the main contribution intended for the present study is to propose an efficient and accurate iterative enriched Ritz basis to deal with aeroviscoelastic systems. The main features and capabilities of the proposed model reduction method are illustrated in the prediction of flutter boundary for a thin three-layer sandwich flat panel and a typical aeronautical stiffened panel, both under supersonic flow.

  6. Microbial reduction of graphene oxide by Escherichia coli: a green chemistry approach.

    PubMed

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Kim, Jin-Hoi

    2013-02-01

    Graphene and graphene related materials are an important area of research in recent years due to their unique properties. The extensive industrial application of graphene and related compounds has led researchers to devise novel and simple methods for the synthesis of high quality graphene. In this paper, we developed an environment friendly, cost effective, simple method and green approaches for the reduction of graphene oxide (GO) using Escherichia coli biomass. In biological method, we can avoid use of toxic and environmentally harmful reducing agents commonly used in the chemical reduction of GO to obtain graphene. The biomass of E. coli reduces exfoliated GO to graphene at 37°C in an aqueous medium. The E. coli reduced graphene oxide (ERGO) was characterized with UV-visible absorption spectroscopy, particle analyzer, high resolution X-ray diffractometer, scanning electron microscopy and Raman spectroscopy. Besides the reduction potential, the biomass could also play an important role as stabilizing agent, in which synthesized graphene exhibited good stability in water. This method can open up the new avenue for preparing graphene in cost effective and large scale production. Our findings suggest that GO can be reduced by simple eco-friendly method by using E. coli biomass to produce water dispersible graphene. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Prediction of Reduction Potentials of Copper Proteins with Continuum Electrostatics and Density Functional Theory

    PubMed Central

    Fowler, Nicholas J.; Blanford, Christopher F.

    2017-01-01

    Abstract Blue copper proteins, such as azurin, show dramatic changes in Cu2+/Cu+ reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high‐level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long‐range electrostatic changes and hence can be modeled accurately with continuum electrostatics. PMID:28815759

  8. Automated variance reduction for MCNP using deterministic methods.

    PubMed

    Sweezy, J; Brown, F; Booth, T; Chiaramonte, J; Preeg, B

    2005-01-01

    In order to reduce the user's time and the computer time needed to solve deep penetration problems, an automated variance reduction capability has been developed for the MCNP Monte Carlo transport code. This new variance reduction capability developed for MCNP5 employs the PARTISN multigroup discrete ordinates code to generate mesh-based weight windows. The technique of using deterministic methods to generate importance maps has been widely used to increase the efficiency of deep penetration Monte Carlo calculations. The application of this method in MCNP uses the existing mesh-based weight window feature to translate the MCNP geometry into geometry suitable for PARTISN. The adjoint flux, which is calculated with PARTISN, is used to generate mesh-based weight windows for MCNP. Additionally, the MCNP source energy spectrum can be biased based on the adjoint energy spectrum at the source location. This method can also use angle-dependent weight windows.

  9. Research progress in photolectric materials of CuFeS2

    NASA Astrophysics Data System (ADS)

    Jing, Mingxing; Li, Jing; Liu, Kegao

    2018-03-01

    CuFeS2 as a photoelectric material, there are many advantages, such as high optical absorption coefficient, direct gap semiconductor, thermal stability, no photo-recession effect and so on. Because of its low price, abundant reserves and non-toxic, CuFeS2 has attracted extensive attention of scientists.Preparation method of thin film solar cells are included that Electrodeposition, sputtering, thermal evaporation, thermal spraying method, co-reduction method.In this paper, the development of CuFeS2 thin films prepared by co-reduction method and co-reduction method is introduced.In this paper, the structure and development of solar cells, advantages of CuFeS2 as solar cell material, the structure and photoelectric properties and magnetic properties of CuFeS2, preparation process analysis of CuFeS2 thin film, research and development of CuFeS2 in solar cells is included herein. Finally, the development trend of CuFeS2 optoelectronic materials is analyzed and further research directions are proposed.

  10. Characteristics of Reduction Gear in Electric Agricultural Vehicle

    NASA Astrophysics Data System (ADS)

    Choi, W. S.; Pratama, P. S.; Supeno, D.; Jeong, S. W.; Byun, J. Y.; Woo, J. H.; Lee, E. S.; Park, C. S.

    2018-03-01

    In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.

  11. Influence of model order reduction methods on dynamical-optical simulations

    NASA Astrophysics Data System (ADS)

    Störkle, Johannes; Eberhard, Peter

    2017-04-01

    In this work, the influence of model order reduction (MOR) methods on optical aberrations is analyzed within a dynamical-optical simulation of a high precision optomechanical system. Therefore, an integrated modeling process and new methods have to be introduced for the computation and investigation of the overall dynamical-optical behavior. For instance, this optical system can be a telescope optic or a lithographic objective. In order to derive a simplified mechanical model for transient time simulations with low computational cost, the method of elastic multibody systems in combination with MOR methods can be used. For this, software tools and interfaces are defined and created. Furthermore, mechanical and optical simulation models are derived and implemented. With these, on the one hand, the mechanical sensitivity can be investigated for arbitrary external excitations and on the other hand, the related optical behavior can be predicted. In order to clarify these methods, academic examples are chosen and the influences of the MOR methods and simulation strategies are analyzed. Finally, the systems are investigated with respect to the mechanical-optical frequency responses, and in conclusion, some recommendations for the application of reduction methods are given.

  12. Metal artifact reduction for CT-based luggage screening.

    PubMed

    Karimi, Seemeen; Martz, Harry; Cosman, Pamela

    2015-01-01

    In aviation security, checked luggage is screened by computed tomography scanning. Metal objects in the bags create artifacts that degrade image quality. Though there exist metal artifact reduction (MAR) methods mainly in medical imaging literature, they require knowledge of the materials in the scan, or are outlier rejection methods. To improve and evaluate a MAR method we previously introduced, that does not require knowledge of the materials in the scan, and gives good results on data with large quantities and different kinds of metal. We describe in detail an optimization which de-emphasizes metal projections and has a constraint for beam hardening and scatter. This method isolates and reduces artifacts in an intermediate image, which is then fed to a previously published sinogram replacement method. We evaluate the algorithm for luggage data containing multiple and large metal objects. We define measures of artifact reduction, and compare this method against others in MAR literature. Metal artifacts were reduced in our test images, even for multiple and large metal objects, without much loss of structure or resolution. Our MAR method outperforms the methods with which we compared it. Our approach does not make assumptions about image content, nor does it discard metal projections.

  13. Electrochemical reduction of carbon fluorine bond in 4-fluorobenzonitrile Mechanistic analysis employing Marcus Hush quadratic activation-driving force relation

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, A.; Sangaranarayanan, M. V.

    2007-10-01

    The reduction of carbon-fluorine bond in 4-fluorobenzonitrile in acetonitrile as the solvent, is analyzed using convolution potential sweep voltammetry and the dependence of the transfer coefficient on potential is investigated within the framework of Marcus-Hush quadratic activation-driving force theory. The validity of stepwise mechanism is inferred from solvent reorganization energy estimates as well as bond length calculations using B3LYP/6-31g(d) method. A novel method of estimating the standard reduction potential of the 4-fluorobenzonitrile in acetonitrile is proposed.

  14. Adaptation of the Levee Erosional Equivalence Method for the Hurricane Storm Damage Risk Reduction System (HSDRRS)

    DTIC Science & Technology

    2011-05-01

    ER D C/ CH L TR -1 1- 3 Flood and Coastal Storm Damage Reduction R& D Program Adaptation of the Levee Erosional Equivalence Method for the...of vertical wall [-] γw Specific weight of water [kN/m3] γβ Reduction factor for influence of angle of wave attack [-] θ Landward-side levee ...stress multiplied by the flow velocity. Thus, from Equation (4) stream power has the form ERDC/CHL TR-11-3 9 S o D D dW P τ u ρ f u u ρ f u dt

  15. Reduction in the write error rate of voltage-induced dynamic magnetization switching using the reverse bias method

    NASA Astrophysics Data System (ADS)

    Ikeura, Takuro; Nozaki, Takayuki; Shiota, Yoichi; Yamamoto, Tatsuya; Imamura, Hiroshi; Kubota, Hitoshi; Fukushima, Akio; Suzuki, Yoshishige; Yuasa, Shinji

    2018-04-01

    Using macro-spin modeling, we studied the reduction in the write error rate (WER) of voltage-induced dynamic magnetization switching by enhancing the effective thermal stability of the free layer using a voltage-controlled magnetic anisotropy change. Marked reductions in WER can be achieved by introducing reverse bias voltage pulses both before and after the write pulse. This procedure suppresses the thermal fluctuations of magnetization in the initial and final states. The proposed reverse bias method can offer a new way of improving the writing stability of voltage-driven spintronic devices.

  16. A systematic comparison of the closed shoulder reduction techniques.

    PubMed

    Alkaduhimi, H; van der Linde, J A; Willigenburg, N W; van Deurzen, D F P; van den Bekerom, M P J

    2017-05-01

    To identify the optimal technique for closed reduction for shoulder instability, based on success rates, reduction time, complication risks, and pain level. A PubMed and EMBASE query was performed, screening all relevant literature of closed reduction techniques mentioning the success rate written in English, Dutch, German, and Arabic. Studies with a fracture dislocation or lacking information on success rates for closed reduction techniques were excluded. We used the modified Coleman Methodology Score (CMS) to assess the quality of included studies and excluded studies with a poor methodological quality (CMS < 50). Finally, a meta-analysis was performed on the data from all studies combined. 2099 studies were screened for their title and abstract, of which 217 studies were screened full-text and finally 13 studies were included. These studies included 9 randomized controlled trials, 2 retrospective comparative studies, and 2 prospective non-randomized comparative studies. A combined analysis revealed that the scapular manipulation is the most successful (97%), fastest (1.75 min), and least painful reduction technique (VAS 1,47); the "Fast, Reliable, and Safe" (FARES) method also scores high in terms of successful reduction (92%), reduction time (2.24 min), and intra-reduction pain (VAS 1.59); the traction-countertraction technique is highly successful (95%), but slower (6.05 min) and more painful (VAS 4.75). For closed reduction of anterior shoulder dislocations, the combined data from the selected studies indicate that scapular manipulation is the most successful and fastest technique, with the shortest mean hospital stay and least pain during reduction. The FARES method seems the best alternative.

  17. 75 FR 53908 - Method 16C for the Determination of Total Reduced Sulfur Emissions From Stationary Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ...: Regulatory Planning and Review B. Paperwork Reduction Act C. Regulatory Flexibility Act D. Unfunded Mandates... disulfide. As described in Method 16A, the sample is collected from the source through a heated probe and..., October 4, 1993) and is therefore not subject to review under the EO. B. Paperwork Reduction Act This...

  18. Method of preparing silicon from sodium fluosilicate

    DOEpatents

    Schmidt, Frederick A.; Rehbein, David; Chiotti, Premo

    1984-01-01

    A process for preparing high purity silicon metal from Na.sub.2 SiF.sub.6 (sodium fluosilicate). The sodium fluosilicate is heated to decomposition temperature to form NaF, which retains most of the impurities, and gaseous SiF.sub.4. The SiF.sub.4 is then reduced by the bomb reduction method using a reductant having a low packing density.

  19. Efficient Synthesis of γ-Lactams by a Tandem Reductive Amination/Lactamization Sequence

    PubMed Central

    Nöth, Julica; Frankowski, Kevin J.; Neuenswander, Benjamin; Aubé, Jeffrey; Reiser, Oliver

    2009-01-01

    A three-component method for synthesizing highly-substituted γ-lactams from readily available maleimides, aldehydes and amines is described. A new reductive amination/intramolecular lactamization sequence provides a straightforward route to the lactam products in a single manipulation. The general utility of this method is demonstrated by the parallel synthesis of a γ-lactam library. PMID:18338857

  20. Efficient synthesis of gamma-lactams by a tandem reductive amination/lactamization sequence.

    PubMed

    Nöth, Julica; Frankowski, Kevin J; Neuenswander, Benjamin; Aubé, Jeffrey; Reiser, Oliver

    2008-01-01

    A three-component method for the synthesis of highly substituted gamma-lactams from readily available maleimides, aldehydes, and amines is described. A new reductive amination/intramolecular lactamization sequence provides a straightforward route to the lactam products in a single manipulation. The general utility of this method is demonstrated by the parallel synthesis of a gamma-lactam library.

  1. Reduction of patulin in apple cider by UV radiation.

    PubMed

    Dong, Qingfang; Manns, David C; Feng, Guoping; Yue, Tianli; Churey, John J; Worobo, Randy W

    2010-01-01

    The presence of the mycotoxin patulin in processed apple juice and cider presents a continual challenge to the food industry as both consumer health and product quality issues. Although several methods for control and/or elimination of patulin have been proposed, no unifying method has been commercially successful for reducing patulin burdens while maintaining product quality. In the present study, exposure to germicidal UV radiation was evaluated as a possible commercially viable alternative for the reduction and possible elimination of the patulin mycotoxin in fresh apple cider. UV exposure of 14.2 to 99.4 mJ/cm(2) resulted in a significant and nearly linear decrease in patulin levels while producing no quantifiable changes in the chemical composition (i.e., pH, Brix, and total acids) or organoleptic properties of the cider. For the range of UV doses tested, patulin levels decreased by 9.4 to 43.4%; the greatest reduction was achieved after less than 15 s of UV exposure. The method of UV radiation (the CiderSure 3500 system) is an easily implemented, high-throughput, and cost-effective method that offers simultaneous UV pasteurization of cider and juice products and reduction and/or elimination of patulin without unwanted alterations in the final product.

  2. Development of a Questionnaire to Assess University Students' Intentions to Use Behavioral Alcohol-Reduction Strategies

    ERIC Educational Resources Information Center

    Bonar, Erin E.; Hoffmann, Erica; Rosenberg, Harold; Kryszak, Elizabeth; Young, Kathleen M.; Ashrafioun, Lisham; Kraus, Shane W.; Bannon, Erin E.

    2012-01-01

    Objective: To evaluate the psychometric properties of a new self-report questionnaire designed to assess college students' intentions to employ 31 specific alcohol-reduction strategies. Method: Students attending a large public university were recruited to complete alcohol-reduction, drinking history, and personality questionnaires online.…

  3. Modifiable Prostate Cancer Risk Reduction and Early Detection Behaviors in Black Men

    ERIC Educational Resources Information Center

    Odedina, Folakemi T.; Scrivens, John J., Jr.; Larose-Pierre, Margareth; Emanuel, Frank; Adams, Angela Denise; Dagne, Getachew A.; Pressey, Shannon Alexis; Odedina, Oladapo

    2011-01-01

    Objective: To explore the personal factors related to modifiable prostate cancer risk-reduction and detection behaviors among black men. Methods: Three thousand four hundred thirty (3430) black men were surveyed and structural equation modeling employed to test study hypotheses. Results: Modifiable prostate cancer risk-reduction behavior was found…

  4. A Technique for Reduction of Edentulous Fractures Using Dentures and SMARTLock Hybrid Fixation System

    PubMed Central

    Carlson, Anna Rose; Shammas, Ronnie Labib; Allori, Alexander Christopher

    2017-01-01

    Summary: Establishing anatomic reduction of an edentulous mandible fracture is a frequently acknowledged challenge in craniomaxillofacial trauma surgery. In this study, we report a novel method for the reduction of the edentulous mandible fracture, via fabrication of modified Gunning splints using existing dentures and SMARTLock hybrid arch bars. This technique dramatically simplifies the application of an arch bar to dentures, obviates the need for the fabrication of impressions and custom splints, and eliminates the lag time associated with the creation of splints. Furthermore, this method may be used with or without adjunctive rigid internal fixation. The technique described herein of creating Gunning splints with SMARTLock hybrid arch bars provides surgeons with a simple, rapid, single-stage solution for reduction of mandibular fractures in the edentulous patient. PMID:29062645

  5. Harm reduction and women in the Canadian national prison system: policy or practice?

    PubMed

    Rehman, Laurene; Gahagan, Jacqueline; DiCenso, Anne Marie; Dias, Giselle

    2004-01-01

    Applying the principles of harm reduction within the context of incarcerated populations raises a number of challenges. Although some access to harm reduction strategies has been promoted in general society, a divide between what is available and what is advocated continues to exist within the prison system. This paper explores the perceptions and lived experiences of a sample of nationally incarcerated women in Canada regarding their perceptions and experiences in accessing HIV and Hepatitis C prevention, care, treatment and support. In-depth interviews were conducted with 156 women in Canadian national prisons. Q.S.R. Nudist was used to assist with data management. A constant comparison method was used to derive categories, patterns, and themes. Emergent themes highlighted a gap between access to harm reduction in policy and in practice. Despite the implementation of some harm reduction techniques, women in Canadian prisons reported variable access to both education and methods of reducing HIV/HCV transmission. Concerns were also raised about pre-and post-test counseling for HIV/HCV testing. Best practices are suggested for implementing harm reduction strategies within prisons for women in Canada.

  6. Preoperative breast marking in reduction mammaplasty.

    PubMed

    Gasperoni, C; Salgarello, M

    1987-10-01

    A simple method of preoperative marking for reduction mammaplasty is described. This method may be used in macromastias when the technique chosen implies a postoperative scar with the shape of an inverted T. The marking sequence follows standard steps, but the drawing is always different because it is a consequence of the shape of the breast. This marking method reduces the chance of making mistakes due to excessive personal evaluations or to the use of standard drawing patterns that may be not suitable for all breast shapes.

  7. Robust Measurements of Phase Response Curves Realized via Multicycle Weighted Spike-Triggered Averages

    NASA Astrophysics Data System (ADS)

    Imai, Takashi; Ota, Kaiichiro; Aoyagi, Toshio

    2017-02-01

    Phase reduction has been extensively used to study rhythmic phenomena. As a result of phase reduction, the rhythm dynamics of a given system can be described using the phase response curve. Measuring this characteristic curve is an important step toward understanding a system's behavior. Recently, a basic idea for a new measurement method (called the multicycle weighted spike-triggered average method) was proposed. This paper confirms the validity of this method by providing an analytical proof and demonstrates its effectiveness in actual experimental systems by applying the method to an oscillating electric circuit. Some practical tips to use the method are also presented.

  8. A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides

    USGS Publications Warehouse

    Ulrich, G.A.; Krumholz, L.R.; Suflita, J.M.

    1997-01-01

    A simplified passive extraction procedure for quantifying reduced inorganic sulfur compounds from sediments and water is presented. This method may also be used for the estimation of sulfate reduction rates. Efficient extraction of FeS, FeS(inf2), and S(sup2-) was obtained with this procedure; however, the efficiency for S(sup0) depended on the form that was tested. Passive extraction can be used with samples containing up to 20 mg of reduced sulfur. We demonstrated the utility of this technique in a determination of both sulfate reduction rates and reduced inorganic sulfur pools in marine and freshwater sediments. A side-by-side comparison of the passive extraction method with the established single-step distillation technique yielded comparable results with a fraction of the effort.

  9. Enhanced amperometric detection of metronidazole in drug formulations and urine samples based on chitosan protected tetrasulfonated copper phthalocyanine thin-film modified glassy carbon electrode.

    PubMed

    Meenakshi, S; Pandian, K; Jayakumari, L S; Inbasekaran, S

    2016-02-01

    An enhanced electrocatalytic reduction of metronidazole antibiotic drug molecule using chitosan protected tetrasulfonated copper phthalocyanine (Chit/CuTsPc) thin-film modified glassy carbon electrode (GCE) has been developed. An irreversible reduction occurs at -0.47V (vs. Ag/AgCl) using Chit/CuTsPc modified GCE. A maximum peak current value is obtained at pH1 and the electrochemical reduction reaction is a diffusion controlled one. The detection limit is found to be 0.41nM from differential pulse voltammetry (DPV) method. This present investigation method is adopted for electrochemical detection of metronidazole in drug formulation and urine samples by using DPV method. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Method to reduce CO.sub.2 to CO using plasmon-enhanced photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, George W.; Upadhye, Aniruddha A.; Kim, Hyung Ju

    Described is a method of reducing CO.sub.2 to CO using visible radiation and plasmonic photocatalysts. The method includes contacting CO.sub.2 with a catalyst, in the presence of H.sub.2, wherein the catalyst has plasmonic photocatalytic reductive activity when exposed to radiation having a wavelength between 380 nm and 780 nm. The catalyst, CO.sub.2, and H.sub.2 are exposed to non-coherent radiation having a wavelength between 380 nm and 780 nm such that the catalyst undergoes surface plasmon resonance. The surface plasmon resonance increases the rate of CO.sub.2 reduction to CO as compared to the rate of CO.sub.2 reduction to CO without surfacemore » plasmon resonance in the catalyst.« less

  11. Method for growth of crystals by pressure reduction of supercritical or subcritical solution

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J. (Inventor)

    1985-01-01

    Crystals of high morphological quality are grown by dissolution of a substance to be grown into the crystal in a suitable solvent under high pressure, and by subsequent slow, time-controlled reduction of the pressure of the resulting solution. During the reduction of the pressure interchange of heat between the solution and the environment is minimized by performing the pressure reduction either under isothermal or adiabatic conditions.

  12. Iterative methods for dose reduction and image enhancement in tomography

    DOEpatents

    Miao, Jianwei; Fahimian, Benjamin Pooya

    2012-09-18

    A system and method for creating a three dimensional cross sectional image of an object by the reconstruction of its projections that have been iteratively refined through modification in object space and Fourier space is disclosed. The invention provides systems and methods for use with any tomographic imaging system that reconstructs an object from its projections. In one embodiment, the invention presents a method to eliminate interpolations present in conventional tomography. The method has been experimentally shown to provide higher resolution and improved image quality parameters over existing approaches. A primary benefit of the method is radiation dose reduction since the invention can produce an image of a desired quality with a fewer number projections than seen with conventional methods.

  13. Approaches to reducing photon dose calculation errors near metal implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jessie Y.; Followill, David S.; Howell, Reb

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well asmore » two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact reduction methods investigated, the authors found that O-MAR was the most consistent method, resulting in either improved dose calculation accuracy (dental case) or little impact on calculation accuracy (spine case). GSI was unsuccessful at reducing the severe artifacts caused by dental fillings and had very little impact on calculation accuracy. GSI with MARS on the other hand gave mixed results, sometimes introducing metal distortion and increasing calculation errors (titanium rectangular implant and titanium spinal hardware) but other times very successfully reducing artifacts (Cerrobend rectangular implant and dental fillings). Conclusions: Though successful at improving dose calculation accuracy upstream of metal implants, metal kernels were not found to substantially improve accuracy for clinical cases. Of the commercial artifact reduction methods investigated, O-MAR was found to be the most consistent candidate for all-purpose CT simulation imaging. The MARS algorithm for GSI should be used with caution for titanium implants, larger implants, and implants located near heterogeneities as it can distort the size and shape of implants and increase calculation errors.« less

  14. Contactless Abdominal Fat Reduction With Selective RF™ Evaluated by Magnetic Resonance Imaging (MRI): Case Study.

    PubMed

    Downie, Jeanine; Kaspar, Miroslav

    2016-04-01

    Noninvasive body shaping methods seem to be an ascending part of the aesthetics market. As a result, the pressure to develop reliable methods for the collection and presentation of their results has also increased. The most used techniques currently include ultrasound measurements of fat thickness in the treated area, caliper measurements, bioimpedance-based scale measurements or circumferential tape measurements. Although these are the most used techniques, almost all of them have some limitations in reproducibility and/or accuracy. This study shows Magnetic Resonance Imaging (MRI) as the new method for the presentation of results in the body shaping industry. Six subjects were treated by a contactless selective radiofrequency device (BTL Vanquish ME, BTL Industries Inc., Boston, MA). The MRI fat thickness was measured at the baseline and at 4-weeks following the treatment. In addition to MRI images and measurements, digital photographs and anthropometric evaluations such as weight, abdominal circumference, and caliper fat thickness measurements were recorded. Abdominal fat thickness measurements from the MRI were performed from the same slices determined by the same tissue artefacts. The MRI fat thickness difference between the baseline measurement and follow up visit showed an average reduction of 5.36 mm as calculated from the data of 5 subjects. One subject dropped out of study due to non-study related issues. The results were statistically significant based on the Student's T-test evaluation. Magnetic resonance imaging abdominal fat thickness measurements seems to be the best method for the evaluation of fat thickness reduction after non-invasive body shaping treatments. In this study, this method shows average fat thickness reduction of 5.36 mm while the weight of the subjects didn't change significantly. A large spot size measuring 1317 cm(2) (204 square inches) covers the abdomen flank to flank. The average thickness of 5.36 mm of the fat layer reduced under the applicator translates into significant cumulative circumferential reduction. The reduction was not related with dieting.

  15. Computation of partially invariant solutions for the Einstein Walker manifolds' identifying equations

    NASA Astrophysics Data System (ADS)

    Nadjafikhah, Mehdi; Jafari, Mehdi

    2013-12-01

    In this paper, partially invariant solutions (PISs) method is applied in order to obtain new four-dimensional Einstein Walker manifolds. This method is based on subgroup classification for the symmetry group of partial differential equations (PDEs) and can be regarded as the generalization of the similarity reduction method. For this purpose, those cases of PISs which have the defect structure δ=1 and are resulted from two-dimensional subalgebras are considered in the present paper. Also it is shown that the obtained PISs are distinct from the invariant solutions that obtained by similarity reduction method.

  16. Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn; Lin, Guang, E-mail: guanglin@purdue.edu

    2016-07-15

    In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.

  17. Nakagami-based total variation method for speckle reduction in thyroid ultrasound images.

    PubMed

    Koundal, Deepika; Gupta, Savita; Singh, Sukhwinder

    2016-02-01

    A good statistical model is necessary for the reduction in speckle noise. The Nakagami model is more general than the Rayleigh distribution for statistical modeling of speckle in ultrasound images. In this article, the Nakagami-based noise removal method is presented to enhance thyroid ultrasound images and to improve clinical diagnosis. The statistics of log-compressed image are derived from the Nakagami distribution following a maximum a posteriori estimation framework. The minimization problem is solved by optimizing an augmented Lagrange and Chambolle's projection method. The proposed method is evaluated on both artificial speckle-simulated and real ultrasound images. The experimental findings reveal the superiority of the proposed method both quantitatively and qualitatively in comparison with other speckle reduction methods reported in the literature. The proposed method yields an average signal-to-noise ratio gain of more than 2.16 dB over the non-convex regularizer-based speckle noise removal method, 3.83 dB over the Aubert-Aujol model, 1.71 dB over the Shi-Osher model and 3.21 dB over the Rudin-Lions-Osher model on speckle-simulated synthetic images. Furthermore, visual evaluation of the despeckled images shows that the proposed method suppresses speckle noise well while preserving the textures and fine details. © IMechE 2015.

  18. Pathogen reduction of blood components.

    PubMed

    Solheim, Bjarte G

    2008-08-01

    Thanks to many blood safety interventions introduced in developed countries the risk of transfusion transmitted infections has become exceedingly small in these countries. However, emerging pathogens still represent a serious challenge, as demonstrated by West Nile virus in the US and more recently by Chikungunya virus in the Indian Ocean. In addition bacterial contamination, particularly in platelets, and protozoa transmitted by blood components still represent sizeable risks in developed countries. In developing countries the risk of all transfusion transmitted infections is still high due to insufficient funding and organisation of the health service. Pathogen reduction of pooled plasma products has virtually eliminated the risk of transfusion transmitted infections, without compromising the quality of the products significantly. Pathogen reduction of blood components has been much more challenging. Solvent detergent treatment which has been so successfully applied for plasma products dissolves cell membranes, and can, therefore, only be applied for plasma and not for cellular blood components. Targeting of nucleic acids has been another method for pathogen inactivation of plasma and the only approach possible for cellular blood products. As documented in more than 15 year's track record, solvent detergent treatment of pooled plasma can yield high quality plasma. The increased risk for contamination by unknown viruses due to pooling is out weighed by elimination of TRALI, significant reduction in allergic reactions and standardisation of the product. Recently, a promising method for solvent detergent treatment of single donor plasma units has been published. Methylene blue light treatment of single donor plasma units has a similar long track record as pooled solvent detergent treated plasma; but the method is less well documented and affects coagulation factor activity more. Psoralen light treated plasma has only recently been introduced (CE marked in Europe, but not licensed by the FDA), while the method of Riboflavin light treatment of plasma still is under development. In addition to pathogen reduction the methods, however, result in some reduction of coagulation factor activity. For platelets only Psoralen and Riboflavin light treatment have been implemented. Both are CE marked products in Europe but only approved for clinical trials in the USA. The methods affect platelet activity, but result in clinically acceptable platelets with only slightly reduced CCI and increased demand for platelet transfusions. Pathogen reduction of red blood cells with FRALE (S-303) or INACTINE (PEN110) has so far resulted in the formation of antibodies against neo-epitopes on red blood cells. A promising method for Riboflavin treatment of red blood cells is under development. This manuscript reviews the current experience and discusses future trends.

  19. A method to assess the potential effects of air pollution mitigation on healthcare costs.

    PubMed

    Sætterstrøm, Bjørn; Kruse, Marie; Brønnum-Hansen, Henrik; Bønløkke, Jakob Hjort; Flachs, Esben Meulengracht; Sørensen, Jan

    2012-01-01

    The aim of this study was to develop a method to assess the potential effects of air pollution mitigation on healthcare costs and to apply this method to assess the potential savings related to a reduction in fine particle matter in Denmark. The effects of air pollution on health were used to identify "exposed" individuals (i.e., cases). Coronary heart disease, stroke, chronic obstructive pulmonary disease, and lung cancer were considered to be associated with air pollution. We used propensity score matching, two-part estimation, and Lin's method to estimate healthcare costs. Subsequently, we multiplied the number of saved cases due to mitigation with the healthcare costs to arrive to an expression for healthcare cost savings. The potential cost saving in the healthcare system arising from a modelled reduction in air pollution was estimated at €0.1-2.6 million per 100,000 inhabitants for the four diseases. We have illustrated an application of a method to assess the potential changes in healthcare costs due to a reduction in air pollution. The method relies on a large volume of administrative data and combines a number of established methods for epidemiological analysis.

  20. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  1. Statistical CT noise reduction with multiscale decomposition and penalized weighted least squares in the projection domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Shaojie; Tang Xiangyang; School of Automation, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121

    2012-09-15

    Purposes: The suppression of noise in x-ray computed tomography (CT) imaging is of clinical relevance for diagnostic image quality and the potential for radiation dose saving. Toward this purpose, statistical noise reduction methods in either the image or projection domain have been proposed, which employ a multiscale decomposition to enhance the performance of noise suppression while maintaining image sharpness. Recognizing the advantages of noise suppression in the projection domain, the authors propose a projection domain multiscale penalized weighted least squares (PWLS) method, in which the angular sampling rate is explicitly taken into consideration to account for the possible variation ofmore » interview sampling rate in advanced clinical or preclinical applications. Methods: The projection domain multiscale PWLS method is derived by converting an isotropic diffusion partial differential equation in the image domain into the projection domain, wherein a multiscale decomposition is carried out. With adoption of the Markov random field or soft thresholding objective function, the projection domain multiscale PWLS method deals with noise at each scale. To compensate for the degradation in image sharpness caused by the projection domain multiscale PWLS method, an edge enhancement is carried out following the noise reduction. The performance of the proposed method is experimentally evaluated and verified using the projection data simulated by computer and acquired by a CT scanner. Results: The preliminary results show that the proposed projection domain multiscale PWLS method outperforms the projection domain single-scale PWLS method and the image domain multiscale anisotropic diffusion method in noise reduction. In addition, the proposed method can preserve image sharpness very well while the occurrence of 'salt-and-pepper' noise and mosaic artifacts can be avoided. Conclusions: Since the interview sampling rate is taken into account in the projection domain multiscale decomposition, the proposed method is anticipated to be useful in advanced clinical and preclinical applications where the interview sampling rate varies.« less

  2. Method of migrating seismic records

    DOEpatents

    Ober, Curtis C.; Romero, Louis A.; Ghiglia, Dennis C.

    2000-01-01

    The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.

  3. A rapid and efficient one-pot method for the reduction of N-protected α-amino acids to chiral α-amino aldehydes using CDI/DIBAL-H.

    PubMed

    Ivkovic, Jakov; Lembacher-Fadum, Christian; Breinbauer, Rolf

    2015-11-14

    N-Protected amino acids can be easily converted into chiral α-amino aldehydes in a one-pot reaction by activation with CDI followed by reduction with DIBAL-H. This method delivers Boc-, Cbz- and Fmoc-protected amino aldehydes from proteinogenic amino acids in very good isolated yields and complete stereointegrity.

  4. Current Concepts in the Mandibular Condyle Fracture Management Part II: Open Reduction Versus Closed Reduction

    PubMed Central

    Yang, Jung-Dug; Chung, Ho-Yun; Cho, Byung-Chae

    2012-01-01

    In the treatment of mandibular condyle fracture, conservative treatment using closed reduction or surgical treatment using open reduction can be used. Management of mandibular condylar fractures remains a source of ongoing controversy in oral and maxillofacial trauma. For each type of condylar fracture,the treatment method must be chosen taking into consideration the presence of teeth, fracture height, patient'sadaptation, patient's masticatory system, disturbance of occlusal function, and deviation of the mandible. In the past, closed reduction with concomitant active physical therapy conducted after intermaxillary fixation during the recovery period had been mainly used, but in recent years, open treatment of condylar fractures with rigid internal fixation has become more common. The objective of this review was to evaluate the main variables that determine the choice of an open or closed method for treatment of condylar fractures, identifying their indications, advantages, and disadvantages, and to appraise the current evidence regarding the effectiveness of interventions that are used in the management of fractures of the mandibular condyle. PMID:22872831

  5. Research and Development Project Summaries, October 1991

    DTIC Science & Technology

    1991-10-01

    delivery methods, training cost reduction, demonstration of technology’ effectiveness, and the reduction of acquisition risk . The majority of the work...demonstrations, risk reduction developments, and cost-effectiveness investigations in simulator and training technologzv. This advanced development program is a...systems. The program is organized around specific demonstration tasks that target critical technical risks that confront future weapons system

  6. Prediction of Reduction Potentials of Copper Proteins with Continuum Electrostatics and Density Functional Theory.

    PubMed

    Fowler, Nicholas J; Blanford, Christopher F; Warwicker, Jim; de Visser, Sam P

    2017-11-02

    Blue copper proteins, such as azurin, show dramatic changes in Cu 2+ /Cu + reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high-level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long-range electrostatic changes and hence can be modeled accurately with continuum electrostatics. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Model Reduction via Principe Component Analysis and Markov Chain Monte Carlo (MCMC) Methods

    NASA Astrophysics Data System (ADS)

    Gong, R.; Chen, J.; Hoversten, M. G.; Luo, J.

    2011-12-01

    Geophysical and hydrogeological inverse problems often include a large number of unknown parameters, ranging from hundreds to millions, depending on parameterization and problems undertaking. This makes inverse estimation and uncertainty quantification very challenging, especially for those problems in two- or three-dimensional spatial domains. Model reduction technique has the potential of mitigating the curse of dimensionality by reducing total numbers of unknowns while describing the complex subsurface systems adequately. In this study, we explore the use of principal component analysis (PCA) and Markov chain Monte Carlo (MCMC) sampling methods for model reduction through the use of synthetic datasets. We compare the performances of three different but closely related model reduction approaches: (1) PCA methods with geometric sampling (referred to as 'Method 1'), (2) PCA methods with MCMC sampling (referred to as 'Method 2'), and (3) PCA methods with MCMC sampling and inclusion of random effects (referred to as 'Method 3'). We consider a simple convolution model with five unknown parameters as our goal is to understand and visualize the advantages and disadvantages of each method by comparing their inversion results with the corresponding analytical solutions. We generated synthetic data with noise added and invert them under two different situations: (1) the noised data and the covariance matrix for PCA analysis are consistent (referred to as the unbiased case), and (2) the noise data and the covariance matrix are inconsistent (referred to as biased case). In the unbiased case, comparison between the analytical solutions and the inversion results show that all three methods provide good estimates of the true values and Method 1 is computationally more efficient. In terms of uncertainty quantification, Method 1 performs poorly because of relatively small number of samples obtained, Method 2 performs best, and Method 3 overestimates uncertainty due to inclusion of random effects. However, in the biased case, only Method 3 correctly estimates all the unknown parameters, and both Methods 1 and 2 provide wrong values for the biased parameters. The synthetic case study demonstrates that if the covariance matrix for PCA analysis is inconsistent with true models, the PCA methods with geometric or MCMC sampling will provide incorrect estimates.

  8. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods

    NASA Astrophysics Data System (ADS)

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml-1 concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol, methanol or DMSO. Consequently, obtained results show that the method of selection is extremely important and will influence the results. Thus, broth microdilution and reduction percentage methods can be recommended as reliable and useful screening methods for determination of antimicrobial activity of PLGA nanoparticle formulations used particularly in drug delivery systems compared to both agar well and disk diffusion methods.

  9. Reductive methods for isotopic labeling of antibiotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Champney, W.S.

    1989-08-15

    Methods for the reductive methylation of the amino groups of eight different antibiotics using {sup 3}HCOH or H{sup 14}COH are presented. The reductive labeling of an additional seven antibiotics by NaB{sub 3}H{sub 4} is also described. The specific activity of the methyl-labeled drugs was determined by a phosphocellulose paper binding assay. Two quantitative assays for these compounds based on the reactivity of the antibiotic amino groups with fluorescamine and of the aldehyde and ketone groups with 2,4-dinitrophenylhydrazine are also presented. Data on the cellular uptake and ribosome binding of these labeled compounds are also presented.

  10. Complex eigenvalue extraction in NASTRAN by the tridiagonal reduction (FEER) method

    NASA Technical Reports Server (NTRS)

    Newman, M.; Mann, F. I.

    1977-01-01

    An extension of the Tridiagonal Reduction (FEER) method to complex eigenvalue analysis in NASTRAN is described. As in the case of real eigenvalue analysis, the eigensolutions closest to a selected point in the eigenspectrum are extracted from a reduced, symmetric, tridiagonal eigenmatrix whose order is much lower than that of the full size problem. The reduction process is effected automatically, and thus avoids the arbitrary lumping of masses and other physical quantities at selected grid points. The statement of the algebraic eigenvalue problem admits mass, damping and stiffness matrices which are unrestricted in character, i.e., they may be real, complex, symmetric or unsymmetric, singular or non-singular.

  11. Automating OSIRIS Data Reduction for the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Holt, J.; Tran, H. D.; Goodrich, R.; Berriman, G. B.; Gelino, C. R.; KOA Team

    2014-05-01

    By the end of 2013, the Keck Observatory Archive (KOA) will serve data from all active instruments on the Keck Telescopes. OSIRIS (OH-Suppressing Infra-Red Imaging Spectrograph), the last active instrument to be archived in KOA, has been in use behind the (AO) system at Keck since February 2005. It uses an array of tiny lenslets to simultaneously produce spectra at up to 4096 locations. Due to the complicated nature of the OSIRIS raw data, the OSIRIS team developed a comprehensive data reduction program. This data reduction system has an online mode for quick real-time reductions, which are used primarily for basic data visualization and quality assessment done at the telescope while observing. The offline version of the data reduction system includes an expanded reduction method list, does more iterations for a better construction of the data cubes, and is used to produce publication-quality products. It can also use reconstruction matrices that are developed after the observations were taken, and are more refined. The KOA team is currently utilizing the standard offline reduction mode to produce quick-look browse products for the raw data. Users of the offline data reduction system generally use a graphical user interface to manually setup the reduction parameters. However, in order to reduce and serve the 200,000 science files on disk, all of the reduction parameters and steps need to be fully automated. This pipeline will also be used to automatically produce quick-look browse products for future OSIRIS data after each night's observations. Here we discuss the complexities of OSIRIS data, the reduction system in place, methods for automating the system, performance using virtualization, and progress made to date in generating the KOA products.

  12. Automating OSIRIS Data Reduction for the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Tran, Hien D.; Holt, J.; Goodrich, R. W.; Lyke, J. E.; Gelino, C. R.; Berriman, G. B.; KOA Team

    2014-01-01

    Since the end of 2013, the Keck Observatory Archive (KOA) has served data from all active instruments on the Keck Telescopes. OSIRIS (OH-Suppressing Infra-Red Imaging Spectrograph), the last active instrument to be archived in KOA, has been in use behind the adaptive optics (AO) system at Keck since February 2005. It uses an array of tiny lenslets to simultaneously produce spectra at up to 4096 locations. Due to the complicated nature of the OSIRIS raw data, the OSIRIS team developed a comprehensive data reduction program. This data reduction system has an online mode for quick real-time reductions which are used primarily for basic data visualization and quality assessment done at the telescope while observing. The offline version of the data reduction system includes an expanded reduction method list, does more iterations for a better construction of the data cubes, and is used to produce publication-quality products. It can also use reconstruction matrices that are developed after the observations were taken, and are more refined. The KOA team is currently utilizing the standard offline reduction mode to produce quick-look browse products for the raw data. Users of the offline data reduction system generally use a graphical user interface to manually setup the reduction parameters. However, in order to reduce and serve the ~200,000 science files on disk, all of the reduction parameters and steps need to be fully automated. This pipeline will also be used to automatically produce quick-look browse products for future OSIRIS data after each night's observations. Here we discuss the complexities of OSIRIS data, the reduction system in place, methods for automating the system, performance using virtualization, and progress made to date in generating the KOA products.

  13. Characterizing Long-term Contaminant Mass Discharge and the Relationship Between Reductions in Discharge and Reductions in Mass for DNAPL Source Areas

    PubMed Central

    Matthieu, D.E.; Carroll, K.C.; Mainhagu, J.; Morrison, C.; McMillan, A.; Russo, A.; Plaschke, M.

    2013-01-01

    The objective of this study was to characterize the temporal behavior of contaminant mass discharge, and the relationship between reductions in contaminant mass discharge and reductions in contaminant mass, for a very heterogeneous, highly contaminated source-zone field site. Trichloroethene is the primary contaminant of concern, and several lines of evidence indicate the presence of organic liquid in the subsurface. The site is undergoing groundwater extraction for source control, and contaminant mass discharge has been monitored since system startup. The results show a significant reduction in contaminant mass discharge with time, decreasing from approximately 1 to 0.15 kg/d. Two methods were used to estimate the mass of contaminant present in the source area at the initiation of the remediation project. One was based on a comparison of two sets of core data, collected 3.5 years apart, which suggests that a significant (~80%) reduction in aggregate sediment-phase TCE concentrations occurred between sampling events. The second method was based on fitting the temporal contaminant mass discharge data with a simple exponential source-depletion function. Relatively similar estimates, 784 and 993 kg, respectively, were obtained with the two methods. These data were used to characterize the relationship between reductions in contaminant mass discharge (CMDR) and reductions in contaminant mass (MR). The observed curvilinear relationship exhibits a reduction in contaminant mass discharge essentially immediately upon initiation of mass reduction. This behavior is consistent with a system wherein significant quantities of mass are present in hydraulically poorly accessible domains for which mass removal is influenced by rate-limited mass transfer. The results obtained from the present study are compared to those obtained from other field studies to evaluate the impact of system properties and conditions on mass-discharge and mass-removal behavior. The results indicated that factors such as domain scale, hydraulic-gradient status (induced or natural), and flushing-solution composition had insignificant impact on the CMDR-MR profiles and thus on underlying mass-removal behavior. Conversely, source-zone age, through its impact on contaminant distribution and accessibility, was implicated as a critical factor influencing the nature of the CMDR-MR relationship. PMID:23528743

  14. Importance Sampling Variance Reduction in GRESS ATMOSIM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakeford, Daniel Tyler

    This document is intended to introduce the importance sampling method of variance reduction to a Geant4 user for application to neutral particle Monte Carlo transport through the atmosphere, as implemented in GRESS ATMOSIM.

  15. American Society for Laser Medicine and Surgery

    MedlinePlus

    ... Sep 26, 2017 Promising Results for Noninvasive Facial Fat Reduction JOURNAL | POSTED: Oct 16, 2017 November Issue ... of Acne Scaring Promising Results for Noninvasive Facial Fat Reduction New Method Tested for Diagnosing and Assessing ...

  16. Reduction of astrometric plates

    NASA Technical Reports Server (NTRS)

    Stock, J.

    1984-01-01

    A rapid and accurate method for the reduction of comet or asteroid plates is described. Projection equations, scale length correction, rotation of coordinates, linearization, the search for additional reference stars, and the final solution are examined.

  17. DECHLORINATION OF TRICHLOROETHYLENE USING ELECTROCHEMICAL METHODS

    EPA Science Inventory

    Electrochemical degradation (ECD) is used to decontaminate organic and inorganic contaminants through oxidative or reductive processes. The ECD of Trichloroethylene (TCE) dechlorinates TCE through electric reduction. TCE dechlorination presented in the literature utilized electro...

  18. Symmetry Reductions, Integrability and Solitary Wave Solutions to High-Order Modified Boussinesq Equations with Damping Term

    NASA Astrophysics Data System (ADS)

    Yan, Zhen-Ya; Xie, Fu-Ding; Zhang, Hong-Qing

    2001-07-01

    Both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou are extended to reduce the high-order modified Boussinesq equation with the damping term (HMBEDT) arising in the general Fermi-Pasta-Ulam model. As a result, several types of similarity reductions are obtained. It is easy to show that the nonlinear wave equation is not integrable under the sense of Ablowitz's conjecture from the reduction results obtained. In addition, kink-shaped solitary wave solutions, which are of important physical significance, are found for HMBEDT based on the obtained reduction equation. The project supported by National Natural Science Foundation of China under Grant No. 19572022, the National Key Basic Research Development Project Program of China under Grant No. G1998030600 and Doctoral Foundation of China under Grant No. 98014119

  19. Special raster scanning for reduction of charging effects in scanning electron microscopy.

    PubMed

    Suzuki, Kazuhiko; Oho, Eisaku

    2014-01-01

    A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.

  20. Stress as a seizure precipitant: Identification, associated factors, and treatment options.

    PubMed

    McKee, Heather R; Privitera, Michael D

    2017-01-01

    Stress is a common and important seizure precipitant reported by epilepsy patients. Studies to date have used different methodologies to identify relationships between epilepsy and stress. Several studies have identified anxiety, depression, and childhood trauma as being more common in patients with epilepsy who report stress as a seizure precipitant compared to patients with epilepsy who did not identify stress as a seizure precipitant. In one survey study it was found that a majority of patients with stress-triggered seizures had used some type of stress reduction method on their own and, of those who tried this, an even larger majority felt that these methods improved their seizures. Additionally, small to moderate sized prospective trials, including randomized clinical trials, using general stress reduction methods have shown promise in improving outcomes in patients with epilepsy, but results on seizure frequency have been inconsistent. Based on these studies, we recommend that when clinicians encounter patients who report stress as a seizure precipitant, these patients should be screened for a treatable mood disorder. Furthermore, although seizure reduction with stress reduction methods has not been proven in a randomized controlled trial, other important endpoints like quality of life were improved. Therefore, recommending stress reduction methods to patients with epilepsy appears to be a reasonable low risk adjunctive to standard treatments. The current review highlights the need for future research to help further clarify biological mechanisms of the stress-seizure relationship and emphasizes the need for larger randomized controlled trials to help develop evidence based treatment recommendations for our epilepsy patients. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  1. A diffusion-based truncated projection artifact reduction method for iterative digital breast tomosynthesis reconstruction

    PubMed Central

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir M

    2014-01-01

    Digital breast tomosynthesis (DBT) has strong promise to improve sensitivity for detecting breast cancer. DBT reconstruction estimates the breast tissue attenuation using projection views (PVs) acquired in a limited angular range. Because of the limited field of view (FOV) of the detector, the PVs may not completely cover the breast in the x-ray source motion direction at large projection angles. The voxels in the imaged volume cannot be updated when they are outside the FOV, thus causing a discontinuity in intensity across the FOV boundaries in the reconstructed slices, which we refer to as the truncated projection artifact (TPA). Most existing TPA reduction methods were developed for the filtered backprojection method in the context of computed tomography. In this study, we developed a new diffusion-based method to reduce TPAs during DBT reconstruction using the simultaneous algebraic reconstruction technique (SART). Our TPA reduction method compensates for the discontinuity in background intensity outside the FOV of the current PV after each PV updating in SART. The difference in voxel values across the FOV boundary is smoothly diffused to the region beyond the FOV of the current PV. Diffusion-based background intensity estimation is performed iteratively to avoid structured artifacts. The method is applicable to TPA in both the forward and backward directions of the PVs and for any number of iterations during reconstruction. The effectiveness of the new method was evaluated by comparing the visual quality of the reconstructed slices and the measured discontinuities across the TPA with and without artifact correction at various iterations. The results demonstrated that the diffusion-based intensity compensation method reduced the TPA while preserving the detailed tissue structures. The visibility of breast lesions obscured by the TPA was improved after artifact reduction. PMID:23318346

  2. Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape

    PubMed Central

    Sheets, H David; Covino, Kristen M; Panasiewicz, Joanna M; Morris, Sara R

    2006-01-01

    Background Geometric morphometric methods of capturing information about curves or outlines of organismal structures may be used in conjunction with canonical variates analysis (CVA) to assign specimens to groups or populations based on their shapes. This methodological paper examines approaches to optimizing the classification of specimens based on their outlines. This study examines the performance of four approaches to the mathematical representation of outlines and two different approaches to curve measurement as applied to a collection of feather outlines. A new approach to the dimension reduction necessary to carry out a CVA on this type of outline data with modest sample sizes is also presented, and its performance is compared to two other approaches to dimension reduction. Results Two semi-landmark-based methods, bending energy alignment and perpendicular projection, are shown to produce roughly equal rates of classification, as do elliptical Fourier methods and the extended eigenshape method of outline measurement. Rates of classification were not highly dependent on the number of points used to represent a curve or the manner in which those points were acquired. The new approach to dimensionality reduction, which utilizes a variable number of principal component (PC) axes, produced higher cross-validation assignment rates than either the standard approach of using a fixed number of PC axes or a partial least squares method. Conclusion Classification of specimens based on feather shape was not highly dependent of the details of the method used to capture shape information. The choice of dimensionality reduction approach was more of a factor, and the cross validation rate of assignment may be optimized using the variable number of PC axes method presented herein. PMID:16978414

  3. [Efficiency of industrial energy conservation and carbon emission reduction in Liaoning Pro-vince based on data envelopment analysis (DEA)method.

    PubMed

    Wang, Li; Xi, Feng Ming; Li, Jin Xin; Liu, Li Li

    2016-09-01

    Taking 39 industries as independent decision-making units in Liaoning Province from 2003 to 2012 and considering the benefits of energy, economy and environment, we combined direction distance function and radial DEA method to estimate and decompose the energy conservation and carbon emissions reduction efficiency of the industries. Carbon emission of each industry was calculated and defined as an undesirable output into the model of energy saving and carbon emission reduction efficiency. The results showed that energy saving and carbon emission reduction efficiency of industries had obvious heterogeneity in Liaoning Province. The whole energy conservation and carbon emissions reduction efficiency in each industry of Liaoning Province was not high, but it presented a rising trend. Improvements of pure technical efficiency and scale efficiency were the main measures to enhance energy saving and carbon emission reduction efficiency, especially scale efficiency improvement. In order to improve the energy saving and carbon emission reduction efficiency of each industry in Liaoning Province, we put forward that Liaoning Province should adjust industry structure, encourage the development of low carbon high benefit industries, improve scientific and technological level and adjust the industry scale reasonably, meanwhile, optimize energy structure, and develop renewable and clean energy.

  4. Dereverberation and denoising based on generalized spectral subtraction by multi-channel LMS algorithm using a small-scale microphone array

    NASA Astrophysics Data System (ADS)

    Wang, Longbiao; Odani, Kyohei; Kai, Atsuhiko

    2012-12-01

    A blind dereverberation method based on power spectral subtraction (SS) using a multi-channel least mean squares algorithm was previously proposed to suppress the reverberant speech without additive noise. The results of isolated word speech recognition experiments showed that this method achieved significant improvements over conventional cepstral mean normalization (CMN) in a reverberant environment. In this paper, we propose a blind dereverberation method based on generalized spectral subtraction (GSS), which has been shown to be effective for noise reduction, instead of power SS. Furthermore, we extend the missing feature theory (MFT), which was initially proposed to enhance the robustness of additive noise, to dereverberation. A one-stage dereverberation and denoising method based on GSS is presented to simultaneously suppress both the additive noise and nonstationary multiplicative noise (reverberation). The proposed dereverberation method based on GSS with MFT is evaluated on a large vocabulary continuous speech recognition task. When the additive noise was absent, the dereverberation method based on GSS with MFT using only 2 microphones achieves a relative word error reduction rate of 11.4 and 32.6% compared to the dereverberation method based on power SS and the conventional CMN, respectively. For the reverberant and noisy speech, the dereverberation and denoising method based on GSS achieves a relative word error reduction rate of 12.8% compared to the conventional CMN with GSS-based additive noise reduction method. We also analyze the effective factors of the compensation parameter estimation for the dereverberation method based on SS, such as the number of channels (the number of microphones), the length of reverberation to be suppressed, and the length of the utterance used for parameter estimation. The experimental results showed that the SS-based method is robust in a variety of reverberant environments for both isolated and continuous speech recognition and under various parameter estimation conditions.

  5. Slepton pair production at the LHC in NLO+NLL with resummation-improved parton densities

    NASA Astrophysics Data System (ADS)

    Fiaschi, Juri; Klasen, Michael

    2018-03-01

    Novel PDFs taking into account resummation-improved matrix elements, albeit only in the fit of a reduced data set, allow for consistent NLO+NLL calculations of slepton pair production at the LHC. We apply a factorisation method to this process that minimises the effect of the data set reduction, avoids the problem of outlier replicas in the NNPDF method for PDF uncertainties and preserves the reduction of the scale uncertainty. For Run II of the LHC, left-handed selectron/smuon, right-handed and maximally mixed stau production, we confirm that the consistent use of threshold-improved PDFs partially compensates the resummation contributions in the matrix elements. Together with the reduction of the scale uncertainty at NLO+NLL, the described method further increases the reliability of slepton pair production cross sections at the LHC.

  6. Food Reduction in Avicenna's View and Related Principles in Classical Medicine.

    PubMed

    Nozad, Aisan; Naseri, Mohsen; Safari, Mir Bahram; Abd Al Ahadi, Azam; Ghaffari, Farzaneh

    2016-06-01

    Traditional Iranian medicine (TIM) is a rich and valuable school of thought that believes medications are not the only effective approach for the treatment of diseases but that nutrition is also important. Our study includes two parts; the first is a book review of the Canon of Medicine by Avicenna (10th and 11th centuries), in which we focus on finding and understanding Avicenna's point of view. In the second part, we searched for "food reduction" as a key word from 2000 to 2015 in databases such as Google Scholar, PubMed, Copernicus, DOAJ, EBSCO-CINAHL, and the Iranian search database Iranmedex for principles of food reduction in classical medicine. The main methods of treatment in traditional medicine include changes in lifestyle, especially diet, the use of medications, and the use of manipulation methods. For diet, the individual may be prohibited from eating or food amounts may be decreased or increased. Centuries ago, Avicenna was making use of methods of food reduction as an important therapeutic approach in the treatment of diseases. According to him, food reduction, to the extent that it does not cause energy loss helps to cure disease. Avicenna has proposed food reduction as an aid to treating a variety of ailments such as headaches and reflux. Today, a variety of basic and clinical research has shown that food reduction or calorie restriction to a standard level can effectively prevent and treat a variety of diseases such as neoplasms, diabetes, and kidney disease. Practical principles explained by traditional Iranian medicine, in particular Avicenna, could open important and quite uncomplicated strategies for the prevention and treatment of diseases.

  7. Correlation Between Residual Displacement and Osteonecrosis of the Femoral Head Following Cannulated Screw Fixation of Femoral Neck Fractures.

    PubMed

    Wang, Chen; Xu, Gui-Jun; Han, Zhe; Jiang, Xuan; Zhang, Cheng-Bao; Dong, Qiang; Ma, Jian-Xiong; Ma, Xin-Long

    2015-11-01

    The aim of the study was to introduce a new method for measuring the residual displacement of the femoral head after internal fixation and explore the relationship between residual displacement and osteonecrosis with femoral head, and to evaluate the risk factors associated with osteonecrosis of the femoral head in patients with femoral neck fractures treated by closed reduction and percutaneous cannulated screw fixation.One hundred and fifty patients who sustained intracapsular femoral neck fractures between January 2011 and April 2013 were enrolled in the study. All were treated with closed reduction and percutaneous cannulated screw internal fixation. The residual displacement of the femoral head after surgery was measured by 3-dimensional reconstruction that evaluated the quality of the reduction. Other data that might affect prognosis were also obtained from outpatient follow-up, telephone calls, or case reviews. Multivariate logistic regression analysis was applied to assess the intrinsic relationship between the risk factors and the osteonecrosis of the femoral head.Osteonecrosis of the femoral head occurred in 27 patients (18%). Significant differences were observed regarding the residual displacement of the femoral head and the preoperative Garden classification. Moreover, we found more or less residual displacement of femoral head in all patients with high quality of reduction based on x-ray by the new technique. There was a close relationship between residual displacement and ONFH.There exists limitation to evaluate the quality of reduction by x-ray. Three-dimensional reconstruction and digital measurement, as a new method, is a more accurate method to assess the quality of reduction. Residual displacement of the femoral head and the preoperative Garden classification were risk factors for osteonecrosis of the femoral head. High-quality reduction was necessary to avoid complications.

  8. In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storm, Mie Møller, E-mail: mmst@dtu.dk; Johnsen, Rune E.; Norby, Poul

    2016-08-15

    Graphene oxide (GO) and reduced graphene oxide (rGO) are important materials in a wide range of fields. The modified Hummers methods, for synthesizing GO, and subsequent thermal reduction to rGO, are often employed for production of rGO. However, the mechanism behinds these syntheses methods are still unclear. We present an in situ X-ray diffraction study of the synthesis of GO and thermal reduction of GO. The X-ray diffraction revealed that the Hummers method includes an intercalation state and finally formation of additional crystalline material. The formation of GO is observed during both the intercalation and the crystallization stage. During thermalmore » reduction of GO three stages were observed: GO, a disordered stage, and the rGO stage. The appearance of these stages depends on the heating ramp. The aim of this study is to provide deeper insight into the chemical and physical processes during the syntheses. - Graphical abstract: In situ X-ray diffraction results for of the modified Hummers synthesis and the thermal reduction of graphene oxide, revealing three stages for both syntheses as well as new GO diffraction peaks and unidentified crystalline material for the Hummers synthesis and a disordered stage for the thermal reduction of graphene oxide. Display Omitted - Highlights: • Hummers synthesis consists of three stages: dissolution, intercalation and crystal. • GO is produced early on during the synthesis and display new diffraction peaks. • An unidentified triclinic phase is observed for the Hummers synthesis. • Thermal reduction of GO display three stages: GO, a disordered stage and rGO. • In situ XRD indicate reformation of rGO even for fast heated thermal reduction.« less

  9. Noise reduction methods for nucleic acid and macromolecule sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuller, Ivan K.; Di Ventra, Massimiliano; Balatsky, Alexander

    Methods, systems, and devices are disclosed for processing macromolecule sequencing data with substantial noise reduction. In one aspect, a method for reducing noise in a sequential measurement of a macromolecule comprising serial subunits includes cross-correlating multiple measured signals of a physical property of subunits of interest of the macromolecule, the multiple measured signals including the time data associated with the measurement of the signal, to remove or at least reduce signal noise that is not in the same frequency and in phase with the systematic signal contribution of the measured signals.

  10. Diagram reduction in problem of critical dynamics of ferromagnets: 4-loop approximation

    NASA Astrophysics Data System (ADS)

    Adzhemyan, L. Ts; Ivanova, E. V.; Kompaniets, M. V.; Vorobyeva, S. Ye

    2018-04-01

    Within the framework of the renormalization group approach to the models of critical dynamics, we propose a method for a considerable reduction of the number of integrals needed to calculate the critical exponents. With this method we perform a calculation of the critical exponent z of model A at 4-loop level, where our method allows one to reduce the number of integrals from 66 to 17. The way of constructing the integrand in a Feynman representation of such diagrams is discussed. Integrals were estimated numerically with a sector decomposition technique.

  11. Inductive System for Reliable Magnesium Level Detection in a Titanium Reduction Reactor

    NASA Astrophysics Data System (ADS)

    Krauter, Nico; Eckert, Sven; Gundrum, Thomas; Stefani, Frank; Wondrak, Thomas; Frick, Peter; Khalilov, Ruslan; Teimurazov, Andrei

    2018-05-01

    The determination of the Magnesium level in a Titanium reduction retort by inductive methods is often hampered by the formation of Titanium sponge rings which disturb the propagation of electromagnetic signals between excitation and receiver coils. We present a new method for the reliable identification of the Magnesium level which explicitly takes into account the presence of sponge rings with unknown geometry and conductivity. The inverse problem is solved by a look-up-table method, based on the solution of the inductive forward problems for several tens of thousands parameter combinations.

  12. METHOD OF ROLLING URANIUM

    DOEpatents

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  13. Flow processes in overexpanded chemical rocket nozzles. Part 3: Methods for the aimed flow separation and side load reduction

    NASA Technical Reports Server (NTRS)

    Schmucker, R. H.

    1983-01-01

    Methods aimed at reduction of overexpansion and side load resulting from asymmetric flow separation for rocket nozzles with a high opening ratio are described. The methods employ additional measures for nozzles with a fixed opening ratio. The flow separation can be controlled by several types of nozzle inserts, the properties of which are discussed. Side loads and overexpansion can be reduced by adapting the shape of the nozzle and taking other additional measures for controlled separation of the boundary layer, such as trip wires.

  14. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitrios

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A totalmore » of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.« less

  15. Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teramoto, Atsushi, E-mail: teramoto@fujita-hu.ac.jp; Fujita, Hiroshi; Yamamuro, Osamu

    Purpose: Automated detection of solitary pulmonary nodules using positron emission tomography (PET) and computed tomography (CT) images shows good sensitivity; however, it is difficult to detect nodules in contact with normal organs, and additional efforts are needed so that the number of false positives (FPs) can be further reduced. In this paper, the authors propose an improved FP-reduction method for the detection of pulmonary nodules in PET/CT images by means of convolutional neural networks (CNNs). Methods: The overall scheme detects pulmonary nodules using both CT and PET images. In the CT images, a massive region is first detected using anmore » active contour filter, which is a type of contrast enhancement filter that has a deformable kernel shape. Subsequently, high-uptake regions detected by the PET images are merged with the regions detected by the CT images. FP candidates are eliminated using an ensemble method; it consists of two feature extractions, one by shape/metabolic feature analysis and the other by a CNN, followed by a two-step classifier, one step being rule based and the other being based on support vector machines. Results: The authors evaluated the detection performance using 104 PET/CT images collected by a cancer-screening program. The sensitivity in detecting candidates at an initial stage was 97.2%, with 72.8 FPs/case. After performing the proposed FP-reduction method, the sensitivity of detection was 90.1%, with 4.9 FPs/case; the proposed method eliminated approximately half the FPs existing in the previous study. Conclusions: An improved FP-reduction scheme using CNN technique has been developed for the detection of pulmonary nodules in PET/CT images. The authors’ ensemble FP-reduction method eliminated 93% of the FPs; their proposed method using CNN technique eliminates approximately half the FPs existing in the previous study. These results indicate that their method may be useful in the computer-aided detection of pulmonary nodules using PET/CT images.« less

  16. Comparison of blood flow models and acquisitions for quantitative myocardial perfusion estimation from dynamic CT

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-04-01

    Myocardial blood flow (MBF) can be estimated from dynamic contrast enhanced (DCE) cardiac CT acquisitions, leading to quantitative assessment of regional perfusion. The need for low radiation dose and the lack of consensus on MBF estimation methods motivates this study to refine the selection of acquisition protocols and models for CT-derived MBF. DCE cardiac CT acquisitions were simulated for a range of flow states (MBF = 0.5, 1, 2, 3 ml (min g)-1, cardiac output = 3, 5, 8 L min-1). Patient kinetics were generated by a mathematical model of iodine exchange incorporating numerous physiological features including heterogenenous microvascular flow, permeability and capillary contrast gradients. CT acquisitions were simulated for multiple realizations of realistic x-ray flux levels. CT acquisitions that reduce radiation exposure were implemented by varying both temporal sampling (1, 2, and 3 s sampling intervals) and tube currents (140, 70, and 25 mAs). For all acquisitions, we compared three quantitative MBF estimation methods (two-compartment model, an axially-distributed model, and the adiabatic approximation to the tissue homogeneous model) and a qualitative slope-based method. In total, over 11 000 time attenuation curves were used to evaluate MBF estimation in multiple patient and imaging scenarios. After iodine-based beam hardening correction, the slope method consistently underestimated flow by on average 47.5% and the quantitative models provided estimates with less than 6.5% average bias and increasing variance with increasing dose reductions. The three quantitative models performed equally well, offering estimates with essentially identical root mean squared error (RMSE) for matched acquisitions. MBF estimates using the qualitative slope method were inferior in terms of bias and RMSE compared to the quantitative methods. MBF estimate error was equal at matched dose reductions for all quantitative methods and range of techniques evaluated. This suggests that there is no particular advantage between quantitative estimation methods nor to performing dose reduction via tube current reduction compared to temporal sampling reduction. These data are important for optimizing implementation of cardiac dynamic CT in clinical practice and in prospective CT MBF trials.

  17. How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation.

    PubMed

    Scholkmann, F; Spichtig, S; Muehlemann, T; Wolf, M

    2010-05-01

    Near-infrared imaging (NIRI) is a neuroimaging technique which enables us to non-invasively measure hemodynamic changes in the human brain. Since the technique is very sensitive, the movement of a subject can cause movement artifacts (MAs), which affect the signal quality and results to a high degree. No general method is yet available to reduce these MAs effectively. The aim was to develop a new MA reduction method. A method based on moving standard deviation and spline interpolation was developed. It enables the semi-automatic detection and reduction of MAs in the data. It was validated using simulated and real NIRI signals. The results show that a significant reduction of MAs and an increase in signal quality are achieved. The effectiveness and usability of the method is demonstrated by the improved detection of evoked hemodynamic responses. The present method can not only be used in the postprocessing of NIRI signals but also for other kinds of data containing artifacts, for example ECG or EEG signals.

  18. Drag reduction in channel flow using nonlinear control

    NASA Technical Reports Server (NTRS)

    Keefe, Laurence R.

    1993-01-01

    Two nonlinear control schemes have been applied to the problem of drag reduction in channel flow. Both schemes have been tested using numerical simulations at a mass flux Reynolds numbers of 4408, utilizing 2D nonlinear neutral modes for goal dynamics. The OGY-method, which requires feedback, reduces drag to 60-80 percent of the turbulent value at the same Reynolds number, and employs forcing only within a thin region near the wall. The H-method, or model-based control, fails to achieve any drag reduction when starting from a fully turbulent initial condition, but shows potential for suppressing or retarding laminar-to-turbulent transition by imposing instead a transition to a low drag, nonlinear traveling wave solution to the Navier-Stokes equation. The drag in this state corresponds to that achieved by the OGY-method. Model-based control requires no feedback, but in experiments to date has required the forcing be imposed within a thicker layer than the OGY-method. Control energy expenditures in both methods are small, representing less than 0.1 percent of the uncontrolled flow's energy.

  19. Multi-point estimation of total energy expenditure: a comparison between zinc-reduction and platinum-equilibration methodologies.

    PubMed

    Sonko, Bakary J; Miller, Leland V; Jones, Richard H; Donnelly, Joseph E; Jacobsen, Dennis J; Hill, James O; Fennessey, Paul V

    2003-12-15

    Reducing water to hydrogen gas by zinc or uranium metal for determining D/H ratio is both tedious and time consuming. This has forced most energy metabolism investigators to use the "two-point" technique instead of the "Multi-point" technique for estimating total energy expenditure (TEE). Recently, we purchased a new platinum (Pt)-equilibration system that significantly reduces both time and labor required for D/H ratio determination. In this study, we compared TEE obtained from nine overweight but healthy subjects, estimated using the traditional Zn-reduction method to that obtained from the new Pt-equilibration system. Rate constants, pool spaces, and CO2 production rates obtained from use of the two methodologies were not significantly different. Correlation analysis demonstrated that TEEs estimated using the two methods were significantly correlated (r=0.925, p=0.0001). Sample equilibration time was reduced by 66% compared to those of similar methods. The data demonstrated that the Zn-reduction method could be replaced by the Pt-equilibration method when TEE was estimated using the "Multi-Point" technique. Furthermore, D equilibration time was significantly reduced.

  20. Dendrimer encapsulated Silver nanoparticles as novel catalysts for reduction of aromatic nitro compounds

    NASA Astrophysics Data System (ADS)

    Asharani, I. V.; Thirumalai, D.; Sivakumar, A.

    2017-11-01

    Polyethylene glycol (PEG) core dendrimer encapsulated silver nanoparticles (AgNPs) were synthesized through normal chemical reduction method, where dendrimer acts as reducing and stabilizing agent. The encapsulated AgNPs were well characterized using TEM, DLS and XPS techniques. The synthesized AgNPs showed excellent catalytic activity towards the reduction of aromatic nitro compounds with sodium borohydride as reducing agent and the results substantiate that dendrimer encapsulated AgNPs can be an effective catalyst for the substituted nitro aromatic reduction reactions. Also the kinetics of different nitro compounds reductions was studied and presented.

Top