Madziva, Michael T; Mkhize, Nonhlanhla N; Flanagan, Colleen A; Katz, Arieh A
2015-08-15
The type II GnRH receptor (GnRH-R2) in contrast to mammalian type I GnRH receptor (GnRH-R1) has a cytosolic carboxy-terminal tail. We investigated the role of β-arrestin 1 in GnRH-R2-mediated signalling and mapped the regions in GnRH-R2 required for recruitment of β-arrestin, employing internalization assays. We show that GnRH-R2 activation of ERK is dependent on β-arrestin and protein kinase C. Appending the tail of GnRH-R2 to GnRH-R1 enabled GRK- and β-arrestin-dependent internalization of the chimaeric receptor. Surprisingly, carboxy-terminally truncated GnRH-R2 retained β-arrestin and GRK-dependent internalization, suggesting that β-arrestin interacts with additional elements of GnRH-R2. Mutating serine and threonine or basic residues of intracellular loop 3 did not abolish β-arrestin 1-dependent internalization but a receptor lacking these basic residues and the carboxy-terminus showed no β-arrestin 1-dependent internalization. Our results suggest that basic residues at the amino-terminal end of intracellular loop 3 or the carboxy-terminal tail are required for β-arrestin dependent internalization. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granell, Meritxell; Namura, Mikiyoshi; Alvira, Sara
2014-06-19
The crystallization of three C-terminal fragments of the bacteriophage T4 protein gp34 is reported. Diffraction data have been obtained for three native crystal forms and two selenomethionine derivatives, one of which contained high-quality anomalous signal.
Tort, Olivia; Tanco, Sebastián; Rocha, Cecilia; Bièche, Ivan; Seixas, Cecilia; Bosc, Christophe; Andrieux, Annie; Moutin, Marie-Jo; Avilés, Francesc Xavier; Lorenzo, Julia; Janke, Carsten
2014-01-01
The posttranslational modification of carboxy-terminal tails of tubulin plays an important role in the regulation of the microtubule cytoskeleton. Enzymes responsible for deglutamylating tubulin have been discovered within a novel family of mammalian cytosolic carboxypeptidases. The discovery of these enzymes also revealed the existence of a range of other substrates that are enzymatically deglutamylated. Only four of six mammalian cytosolic carboxypeptidases had been enzymatically characterized. Here we complete the functional characterization of this protein family by demonstrating that CCP2 and CCP3 are deglutamylases, with CCP3 being able to hydrolyze aspartic acids with similar efficiency. Deaspartylation is a novel posttranslational modification that could, in conjunction with deglutamylation, broaden the range of potential substrates that undergo carboxy-terminal processing. In addition, we show that CCP2 and CCP3 are highly regulated proteins confined to ciliated tissues. The characterization of two novel enzymes for carboxy-terminal protein modification provides novel insights into the broadness of this barely studied process. PMID:25103237
Karanasios, Eleftherios; Barbosa, Antonio Daniel; Sembongi, Hiroshi; Mari, Muriel; Han, Gil-Soo; Reggiori, Fulvio; Carman, George M.; Siniossoglou, Symeon
2013-01-01
Lipins are evolutionarily conserved phosphatidate phosphatases that perform key functions in phospholipid, triglyceride, and membrane biogenesis. Translocation of lipins on membranes requires their dephosphorylation by the Nem1p-Spo7p transmembrane phosphatase complex through a poorly understood mechanism. Here we identify the carboxy-terminal acidic tail of the yeast lipin Pah1p as an important regulator of this step. Deletion or mutations of the tail disrupt binding of Pah1p to the Nem1p-Spo7p complex and Pah1p membrane translocation. Overexpression of Nem1p-Spo7p drives the recruitment of Pah1p in the vicinity of lipid droplets in an acidic tail–dependent manner and induces lipid droplet biogenesis. Genetic analysis shows that the acidic tail is essential for the Nem1p-Spo7p–dependent activation of Pah1p but not for the function of Pah1p itself once it is dephosphorylated. Loss of the tail disrupts nuclear structure, INO1 gene expression, and triglyceride synthesis. Similar acidic sequences are present in the carboxy-terminal ends of all yeast lipin orthologues. We propose that acidic tail–dependent binding and dephosphorylation of Pah1p by the Nem1p-Spo7p complex is an important determinant of its function in lipid and membrane biogenesis. PMID:23657815
Regulation of microtubule dynamic instability by the carboxy-terminal tail of β-tubulin
Fees, Colby P; Moore, Jeffrey K
2018-01-01
Dynamic instability is an intrinsic property of microtubules; however, we do not understand what domains of αβ-tubulins regulate this activity or how these regulate microtubule networks in cells. Here, we define a role for the negatively charged carboxy-terminal tail (CTT) domain of β-tubulin in regulating dynamic instability. By combining in vitro studies with purified mammalian tubulin and in vivo studies with tubulin mutants in budding yeast, we demonstrate that β-tubulin CTT inhibits microtubule stability and regulates the structure and stability of microtubule plus ends. Tubulin that lacks β-tubulin CTT polymerizes faster and depolymerizes slower in vitro and forms microtubules that are more prone to catastrophe. The ends of these microtubules exhibit a more blunted morphology and rapidly switch to disassembly after tubulin depletion. In addition, we show that β-tubulin CTT is required for magnesium cations to promote depolymerization. We propose that β-tubulin CTT regulates the assembly of stable microtubule ends and provides a tunable mechanism to coordinate dynamic instability with ionic strength in the cell.
Andera, L; Geiduschek, E P
1994-03-01
The role of the carboxy-terminal amino acids of the bacteriophage SPO1-encoded type II DNA-binding protein, TF1, in DNA binding was analyzed. Chain-terminating mutations truncating the normally 99-amino-acid TF1 at amino acids 96, 97, and 98 were constructed, as were missense mutations substituting cysteine, arginine, and serine for phenylalanine at amino acid 97 and tryptophan for lysine at amino acid 99. The binding of the resulting proteins to a synthetic 44-bp binding site in 5-(hydroxymethyl)uracil DNA, to binding sites in larger SPO1 [5-(hydroxymethyl)uracil-containing] DNA fragments, and to thymine-containing homologous DNA was analyzed by gel retardation and also by DNase I and hydroxy radical footprinting. We conclude that the C tail up to and including phenylalanine at amino acid 97 is essential for DNA binding and that the two C-terminal amino acids, 98 and 99, are involved in protein-protein interactions between TF1 dimers bound to DNA.
Kowal, Anthony S; Chisholm, Rex L
2011-05-01
Previous work from our laboratory showed that the Dictyostelium discoideum SadA protein plays a central role in cell-substrate adhesion. SadA null cells exhibit a loss of adhesion, a disrupted actin cytoskeleton, and a cytokinesis defect. How SadA mediates these phenotypes is unknown. This work addresses the mechanism of SadA function, demonstrating an important role for the C-terminal cytoplasmic tail in SadA function. We found that a SadA tailless mutant was unable to rescue the sadA adhesion deficiency, and overexpression of the SadA tail domain reduced adhesion in wild-type cells. We also show that SadA is closely associated with the actin cytoskeleton. Mutagenesis studies suggested that four serine residues in the tail, S924/S925 and S940/S941, may regulate association of SadA with the actin cytoskeleton. Glutathione S-transferase pull-down assays identified at least one likely interaction partner of the SadA tail, cortexillin I, a known actin bundling protein. Thus, our data demonstrate an important role for the carboxy-terminal cytoplasmic tail in SadA function and strongly suggest that a phosphorylation event in this tail regulates an interaction with cortexillin I. Based on our data, we propose a model for the function of SadA.
Benleulmi, Mohamed S; Matysiak, Julien; Robert, Xavier; Miskey, Csaba; Mauro, Eric; Lapaillerie, Delphine; Lesbats, Paul; Chaignepain, Stéphane; Henriquez, Daniel R; Calmels, Christina; Oladosu, Oyindamola; Thierry, Eloïse; Leon, Oscar; Lavigne, Marc; Andreola, Marie-Line; Delelis, Olivier; Ivics, Zoltán; Ruff, Marc; Gouet, Patrice; Parissi, Vincent
2017-11-28
Stable insertion of the retroviral DNA genome into host chromatin requires the functional association between the intasome (integrase·viral DNA complex) and the nucleosome. The data from the literature suggest that direct protein-protein contacts between integrase and histones may be involved in anchoring the intasome to the nucleosome. Since histone tails are candidates for interactions with the incoming intasomes we have investigated whether they could participate in modulating the nucleosomal integration process. We show here that histone tails are required for an optimal association between HIV-1 integrase (IN) and the nucleosome for efficient integration. We also demonstrate direct interactions between IN and the amino-terminal tail of human histone H4 in vitro. Structure/function studies enabled us to identify amino acids in the carboxy-terminal domain of IN that are important for this interaction. Analysis of the nucleosome-binding properties of catalytically active mutated INs confirmed that their ability to engage the nucleosome for integration in vitro was affected. Pseudovirus particles bearing mutations that affect the IN/H4 association also showed impaired replication capacity due to altered integration and re-targeting of their insertion sites toward dynamic regions of the chromatin with lower nucleosome occupancy. Collectively, our data support a functional association between HIV-1 IN and histone tails that promotes anchoring of the intasome to nucleosomes and optimal integration into chromatin.
Gamalinda, Michael; Woolford, John L
2014-11-01
Numerous ribosomal proteins have a striking bipartite architecture: a globular body positioned on the ribosomal exterior and an internal loop buried deep into the rRNA core. In eukaryotes, a significant number of conserved r-proteins have evolved extra amino- or carboxy-terminal tail sequences, which thread across the solvent-exposed surface. The biological importance of these extended domains remains to be established. In this study, we have investigated the universally conserved internal loop and the eukaryote-specific extensions of yeast L4. We show that in contrast to findings with bacterial L4, deleting the internal loop of yeast L4 causes severely impaired growth and reduced levels of large ribosomal subunits. We further report that while depleting the entire L4 protein blocks early assembly steps in yeast, deletion of only its extended internal loop affects later steps in assembly, revealing a second role for L4 during ribosome biogenesis. Surprisingly, deletion of the entire eukaryote-specific carboxy-terminal tail of L4 has no effect on viability, production of 60S subunits, or translation. These unexpected observations provide impetus to further investigate the functions of ribosomal protein extensions, especially eukaryote-specific examples, in ribosome assembly and function. © 2014 Gamalinda and Woolford; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides
Kostova, Kamena K.; Hickey, Kelsey L.; Osuna, Beatriz A.; Hussmann, Jeffrey A.; Frost, Adam; Weinberg, David E.; Weissman, Jonathan S.
2017-01-01
Ribosome stalling leads to recruitment of the Ribosome Quality control Complex (RQC), which targets the partially synthesized polypeptide for proteasomal degradation through the action of the ubiquitin ligase Ltn1p. A second core RQC component, Rqc2p, modifies the nascent polypeptide by adding a Carboxy-terminal Alanine and Threonine (CAT) tail through a non-canonical elongation reaction. Here we explore the role of CATtailing in nascent-chain degradation in budding yeast. We show that Ltn1p can efficiently access only nascent chain lysines immediately proximal to the ribosome exit tunnel. For substrates without Ltn1p-accessible lysines, CAT-tailing enables degradation by exposing lysines sequestered in the ribosome exit tunnel. Thus, CAT-tails do not serve as a degron, but rather provide a fail-safe mechanism that expands the range of RQC-degradable substrates. PMID:28751611
Kowal, Anthony S.; Chisholm, Rex L.
2011-01-01
Previous work from our laboratory showed that the Dictyostelium discoideum SadA protein plays a central role in cell-substrate adhesion. SadA null cells exhibit a loss of adhesion, a disrupted actin cytoskeleton, and a cytokinesis defect. How SadA mediates these phenotypes is unknown. This work addresses the mechanism of SadA function, demonstrating an important role for the C-terminal cytoplasmic tail in SadA function. We found that a SadA tailless mutant was unable to rescue the sadA adhesion deficiency, and overexpression of the SadA tail domain reduced adhesion in wild-type cells. We also show that SadA is closely associated with the actin cytoskeleton. Mutagenesis studies suggested that four serine residues in the tail, S924/S925 and S940/S941, may regulate association of SadA with the actin cytoskeleton. Glutathione S-transferase pull-down assays identified at least one likely interaction partner of the SadA tail, cortexillin I, a known actin bundling protein. Thus, our data demonstrate an important role for the carboxy-terminal cytoplasmic tail in SadA function and strongly suggest that a phosphorylation event in this tail regulates an interaction with cortexillin I. Based on our data, we propose a model for the function of SadA. PMID:21441344
Inhibited solid propellant composition containing beryllium hydride
NASA Technical Reports Server (NTRS)
Thompson, W. W. (Inventor)
1978-01-01
An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.
Tamori, Yoshikazu; Tateya, Sanshiro; Ijuin, Takeshi; Nishimoto, Yuki; Nakajima, Shinsuke; Ogawa, Wataru
2016-03-01
FSP27 has an important role in large lipid droplet (LD) formation because it exchanges lipids at the contact site between LDs. In the present study, we clarify that the amino-terminal domain of FSP27 (amino acids 1-130) is dispensable for LD enlargement, although it accelerates LD growth. LD expansion depends on the carboxy-terminal domain of FSP27 (amino acids 131-239). Especially, the negative charge of the acidic residues (D215, E218, E219 and E220) in the polar carboxy-terminal region (amino acids 202-239) is essential for the enlargement of LD. We propose that the carboxy-terminal domain of FSP27 has a crucial role in LD expansion, whereas the amino-terminal domain only has a supportive role. © 2016 Federation of European Biochemical Societies.
In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing
Osuna, Beatriz A; Howard, Conor J; KC, Subheksha; Frost, Adam; Weinberg, David E
2017-01-01
Ribosomes can stall during translation due to defects in the mRNA template or translation machinery, leading to the production of incomplete proteins. The Ribosome-associated Quality control Complex (RQC) engages stalled ribosomes and targets nascent polypeptides for proteasomal degradation. However, how each RQC component contributes to this process remains unclear. Here we demonstrate that key RQC activities—Ltn1p-dependent ubiquitination and Rqc2p-mediated Carboxy-terminal Alanine and Threonine (CAT) tail elongation—can be recapitulated in vitro with a yeast cell-free system. Using this approach, we determined that CAT tailing is mechanistically distinct from canonical translation, that Ltn1p-mediated ubiquitination depends on the poorly characterized RQC component Rqc1p, and that the process of CAT tailing enables robust ubiquitination of the nascent polypeptide. These findings establish a novel system to study the RQC and provide a framework for understanding how RQC factors coordinate their activities to facilitate clearance of incompletely synthesized proteins. DOI: http://dx.doi.org/10.7554/eLife.27949.001 PMID:28718767
Mun, Hye-Seong; Norose, Kazumi; Aosai, Fumie; Chen, Mei
2000-01-01
We investigated the role of recombinant Toxoplasma gondii heat shock protein (rT.g.HSP) 70-full length, rT.g.HSP70-NH2-terminal region, or rT.g.HSP70-carboxy-terminal region in prophylactic immunity in C57BL/6 mice perorally infected with Fukaya cysts of T. gondii. At 3, 4, 5, and 6 weeks after infection, the number of T. gondii in the brain tissue of each mouse was measured by quantitative competitive-polymerase chain reaction (QC-PCR) targeting the surface antigen (SAG) 1 gene. Immunization with rT.g.HSP70-full length or rT.g.HSP70-carboxy-terminal region increased the number of T.gondii in the brain tissue after T. gondii infection, whereas immunization with rT.g.HSP70-NH2-terminal region did not. These results suggest that T.g.HSP70-carboxy-terminal region as well as T.g.HSP70-full length may induce deleterious effects on the protective immunity of mice infected with a cyst-forming T. gondii strain, Fukaya. PMID:10905074
Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains
Garcia-Olivares, Jennie; Alekov, Alexi; Boroumand, Mohammad Reza; Begemann, Birgit; Hidalgo, Patricia; Fahlke, Christoph
2008-01-01
Eukaryotic ClC channels are dimeric proteins with each subunit forming an individual protopore. Single protopores are gated by a fast gate, whereas the slow gate is assumed to control both protopores through a cooperative movement of the two carboxy-terminal domains. We here study the role of the carboxy-terminal domain in modulating fast and slow gating of human ClC-2 channels, a ubiquitously expressed ClC-type chloride channel involved in transepithelial solute transport and in neuronal chloride homeostasis. Partial truncation of the carboxy-terminus abolishes function of ClC-2 by locking the channel in a closed position. However, unlike other isoforms, its complete removal preserves function of ClC-2. ClC-2 channels without the carboxy-terminus exhibit fast and slow gates that activate and deactivate significantly faster than in WT channels. In contrast to the prevalent view, a single carboxy-terminus suffices for normal slow gating, whereas both domains regulate fast gating of individual protopores. Our findings demonstrate that the carboxy-terminus is not strictly required for slow gating and that the cooperative gating resides in other regions of the channel protein. ClC-2 is expressed in neurons and believed to open at negative potentials and increased internal chloride concentrations after intense synaptic activity. We propose that the function of the ClC-2 carboxy-terminus is to slow down the time course of channel activation in order to stabilize neuronal excitability PMID:18801843
Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.
Garcia-Olivares, Jennie; Alekov, Alexi; Boroumand, Mohammad Reza; Begemann, Birgit; Hidalgo, Patricia; Fahlke, Christoph
2008-11-15
Eukaryotic ClC channels are dimeric proteins with each subunit forming an individual protopore. Single protopores are gated by a fast gate, whereas the slow gate is assumed to control both protopores through a cooperative movement of the two carboxy-terminal domains. We here study the role of the carboxy-terminal domain in modulating fast and slow gating of human ClC-2 channels, a ubiquitously expressed ClC-type chloride channel involved in transepithelial solute transport and in neuronal chloride homeostasis. Partial truncation of the carboxy-terminus abolishes function of ClC-2 by locking the channel in a closed position. However, unlike other isoforms, its complete removal preserves function of ClC-2. ClC-2 channels without the carboxy-terminus exhibit fast and slow gates that activate and deactivate significantly faster than in WT channels. In contrast to the prevalent view, a single carboxy-terminus suffices for normal slow gating, whereas both domains regulate fast gating of individual protopores. Our findings demonstrate that the carboxy-terminus is not strictly required for slow gating and that the cooperative gating resides in other regions of the channel protein. ClC-2 is expressed in neurons and believed to open at negative potentials and increased internal chloride concentrations after intense synaptic activity. We propose that the function of the ClC-2 carboxy-terminus is to slow down the time course of channel activation in order to stabilize neuronal excitability.
Uchida, Akira; Murugesapillai, Divakaran; Kastner, Markus; Wang, Yao; Lodeiro, Maria F; Prabhakar, Shaan; Oliver, Guinevere V; Arnold, Jamie J; Maher, L James; Williams, Mark C; Cameron, Craig E
2017-01-01
Human mtDNA contains three promoters, suggesting a need for differential expression of the mitochondrial genome. Studies of mitochondrial transcription have used a reductionist approach, perhaps masking differential regulation. Here we evaluate transcription from light-strand (LSP) and heavy-strand (HSP1) promoters using templates that mimic their natural context. These studies reveal sequences upstream, hypervariable in the human population (HVR3), and downstream of the HSP1 transcription start site required for maximal yield. The carboxy-terminal tail of TFAM is essential for activation of HSP1 but not LSP. Images of the template obtained by atomic force microscopy show that TFAM creates loops in a discrete region, the formation of which correlates with activation of HSP1; looping is lost in tail-deleted TFAM. Identification of HVR3 as a transcriptional regulatory element may contribute to between-individual variability in mitochondrial gene expression. The unique requirement of HSP1 for the TFAM tail may enable its regulation by post-translational modifications. DOI: http://dx.doi.org/10.7554/eLife.27283.001 PMID:28745586
A Functional Nuclear Localization Sequence in the C. elegans TRPV Channel OCR-2
Ezak, Meredith J.; Ferkey, Denise M.
2011-01-01
The ability to modulate gene expression in response to sensory experience is critical to the normal development and function of the nervous system. Calcium is a key activator of the signal transduction cascades that mediate the process of translating a cellular stimulus into transcriptional changes. With the recent discovery that the mammalian Cav1.2 calcium channel can be cleaved, enter the nucleus and act as a transcription factor to control neuronal gene expression, a more direct role for the calcium channels themselves in regulating transcription has begun to be appreciated. Here we report the identification of a nuclear localization sequence (NLS) in the C. elegans transient receptor potential vanilloid (TRPV) cation channel OCR-2. TRPV channels have previously been implicated in transcriptional regulation of neuronal genes in the nematode, although the precise mechanism remains unclear. We show that the NLS in OCR-2 is functional, being able to direct nuclear accumulation of a synthetic cargo protein as well as the carboxy-terminal cytosolic tail of OCR-2 where it is endogenously found. Furthermore, we discovered that a carboxy-terminal portion of the full-length channel can localize to the nucleus of neuronal cells. These results suggest that the OCR-2 TRPV cation channel may have a direct nuclear function in neuronal cells that was not previously appreciated. PMID:21957475
Interaction of tachykinins with phospholipid membranes: A neutron diffraction study
NASA Astrophysics Data System (ADS)
Darkes, Malcolm J. M.; Davies, Sarah M. A.; Bradshaw, Jeremy P.
Tachykinins are a group of peptides which bind to G-protein-coupled receptors. Receptor affinity appears to depend on different secondary structures of tachykinin which share the same hydrophobic carboxy-terminal sequence, FXGLM. Receptor activation is thought to be due to the carboxy-terminal submerging into the bilayer and the amino-terminal binding on the surface. Binding of tachykinins to phospholipid bilayers may take place both on the aqueous membrane surface and in the hydrophobic region. The two-state equilibrium appears to depend on the surface charge of the membrane. Deuterating substance P and neurokinin A at their carboxy-terminals, our results show two populations of label for each peptide. One is very close to the water-hydrocarbon interface, the other some 13 Å deeper. We report that the bilayer location of the two tachykinins is remarkably similar, thereby inferring that receptor specifity must be controlled by finer levels of structure.
Loya, Travis J; O'Rourke, Thomas W; Reines, Daniel
2012-08-01
The yeast IMD2 gene encodes an enzyme involved in GTP synthesis. Its expression is controlled by guanine nucleotides through a set of alternate start sites and an intervening transcriptional terminator. In the off state, transcription results in a short non-coding RNA that starts upstream of the gene. Transcription terminates via the Nrd1-Nab3-Sen1 complex and is degraded by the nuclear exosome. Using a sensitive terminator read-through assay, we identified trans-acting Terminator Override (TOV) genes that operate this terminator. Four genes were identified: the RNA polymerase II phosphatase SSU72, the RNA polymerase II binding protein PCF11, the TRAMP subunit TRF4 and the hnRNP-like, NAB3. The TOV phenotype can be explained by the loss of function of these gene products as described in models in which termination and RNA degradation are coupled to the phosphorylation state of RNA polymerase II's repeat domain. The most interesting mutations were those found in NAB3, which led to the finding that the removal of merely three carboxy-terminal amino acids compromised Nab3's function. This region of previously unknown function is distant from the protein's well-known RNA binding and Nrd1 binding domains. Structural homology modeling suggests this Nab3 'tail' forms an α-helical multimerization domain that helps assemble it onto an RNA substrate.
Tschöpe, C; Jost, N; Unger, T; Culman, J
1995-08-28
The central cardiovascular and behavioral effects of carboxy- (SP 5-11, SP 6-11, SP 7-11, SP 8-11) and amino- (SP 1-7, SP 1-9) terminal substance P (SP) fragments were compared with those of SP 1-11 in conscious rats. In addition, the ability of these SP-fragments to induce desensitization of the central NK1 receptor was investigated. SP 1-11 (50 pmol) injected i.c.v. induced an increase in mean arterial blood pressure (MAP), heart rate (HR) and a typical behavioral response consisting of face washing (FW), hindquarter grooming (HQG) and wet-dog shakes (WDS). The cardiovascular and behavioral responses to equimolar doses of SP 5-11 and SP 6-11 were similar to those of SP 1-11, however, only SP 5-11 induced exactly the same behavioral pattern as SP 1-11. SP 6-11 was more potent in inducing FW and WDS than SP 1-11 or SP 5-11. The carboxy-terminal SP-fragments, SP 7-11 and SP 8-11, and the amino-terminal SP-fragments, SP 1-7, SP 1-9, did not elicit any significant cardiovascular or behavioral responses. Pretreatment with SP 1-11 reduced the cardiovascular and behavioral responses to subsequent injections of SP 1-11. Of all SP-fragments tested, only SP 5-11 was able to attenuate the cardiovascular and behavioral responses to SP 1-11. Our results demonstrate that SP 6-11 represents the shortest carboxy-terminal amino acid sequence, that after i.c.v. injection, elicits the same cardiovascular response as SP 1-11, but fails to desensitize the NK1 receptor. The carboxy-terminal fragment, SP 5-11, is the shortest amino acid sequence which produces the same pattern of central cardiovascular and behavioral responses as SP 1-11 and also retains the ability to desensitize the NK1 receptor like SP 1-11.
Dimerization of the docking/adaptor protein HEF1 via a carboxy-terminal helix-loop-helix domain.
Law, S F; Zhang, Y Z; Fashena, S J; Toby, G; Estojak, J; Golemis, E A
1999-10-10
HEF1, p130(Cas), and Efs define a family of multidomain docking proteins which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion. HEF1 function has been specifically implicated in signaling pathways important for cell adhesion and differentiation in lymphoid and epithelial cells. While the SH3 domains and SH2-binding site domains (substrate domains) of HEF1 family proteins are well characterized and binding partners known, to date the highly conserved carboxy-terminal domains of the three proteins have lacked functional definition. In this study, we have determined that the carboxy-terminal domain of HEF1 contains a divergent helix-loop-helix (HLH) motif. This motif mediates HEF1 homodimerization and HEF1 heterodimerization with a recognition specificity similar to that of the transcriptional regulatory HLH proteins Id2, E12, and E47. We had previously demonstrated that the HEF1 carboxy-terminus expressed as a separate domain in yeast reprograms cell division patterns, inducing constitutive pseudohyphal growth. Here we show that pseudohyphal induction by HEF1 requires an intact HLH, further supporting the idea that this motif has an effector activity for HEF1, and implying that HEF1 pseudohyphal activity derives in part from interactions with yeast helix-loop-helix proteins. These combined results provide initial insight into the mode of function of the HEF1 carboxy-terminal domain and suggest that the HEF1 protein may interact with cellular proteins which control differentiation. Copyright 1999 Academic Press.
Synthesis and Characterization of High Energy Polymers.
1981-03-31
have been poly(cis-l ,4-butadiene), CTBN , and HTPB I=1s of nitrated and DD I JA 7 1473 EDITION OF I NOV 45 1& OBSOLETE SE1CURITY CLAIISIFI1 TIN Of...cis- butadiene), PB, carboxy-tenninated poly(butadiene-co-acrylonitrile), CTBN and hydroxy-terminated poly(butadiene), HTPB. For the nitration of...evaluation. Progress Report I. Nitration of Diene Polymers and Cgolymers A. Nitromercuration of Carboxy-terminated Butadiene Acrylonitrile Copolymer ( CTBN
Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme.
Cho, Uhn Soo; Xu, Wenqing
2007-01-04
Protein phosphatase 2A (PP2A) is a principal Ser/Thr phosphatase, the deregulation of which is associated with multiple human cancers, Alzheimer's disease and increased susceptibility to pathogen infections. How PP2A is structurally organized and functionally regulated remains unclear. Here we report the crystal structure of an AB'C heterotrimeric PP2A holoenzyme. The structure reveals that the HEAT repeats of the scaffold A subunit form a horseshoe-shaped fold, holding the catalytic C and regulatory B' subunits together on the same side. The regulatory B' subunit forms pseudo-HEAT repeats and interacts with the C subunit near the active site, thereby defining substrate specificity. The methylated carboxy-terminal tail of the C subunit interacts with a highly negatively charged region at the interface between A and B' subunits, suggesting that the C-terminal carboxyl methylation of the C subunit promotes B' subunit recruitment by neutralizing charge repulsion. Together, our structural results establish a crucial foundation for understanding PP2A assembly, substrate recruitment and regulation.
Baladi, S; Tsvetkov, P O; Petrova, T V; Takagi, T; Sakamoto, H; Lobachov, V M; Makarov, A A; Cox, J A
2001-04-01
Muscle of amphioxus contains large amounts of a four EF-hand Ca2+-binding protein, CaVP, and its target, CaVPT. To study the domain structure of CaVP and assess the structurally important determinants for its interaction with CaVPT, we expressed CaVP and its amino (N-CaVP) and carboxy-terminal halves (C-CaVP). The interactive properties of recombinant and wild-type CaVP are very similar, despite three post-translational modifications in the wild-type protein. N-CaVP does not bind Ca2+, shows a well-formed hydrophobic core, and melts at 44 degrees C. C-CaVP binds two Ca2+ with intrinsic dissociation constants of 0.22 and 140 microM (i.e., very similar to the entire CaVP). The metal-free domain in CaVP and C-CaVP shows no distinct melting transition, whereas its 1Ca2+ and 2Ca2+) forms melt in the 111 degrees -123 degrees C range, suggesting that C-CaVP and the carboxy- domain of CaVP are natively unfolded in the metal-free state and progressively gain structure upon binding of 1Ca2+ and 2Ca2+. Thermal denaturation studies provide evidence for interdomain interaction: the apo, 1Ca2+ and 2Ca2+ states of the carboxy-domain destabilize to different degrees the amino-domain. Only C-CaVP forms a Ca2+-dependent 1:1 complex with CaVPT. Our results suggest that the carboxy-terminal domain of CaVP interacts with CaVPT and that the amino-terminal lobe modulates this interaction.
Baladi, Sibyl; Tsvetkov, Philipp O.; Petrova, Tatiana V.; Takagi, Takashi; Sakamoto, Hiroshi; Lobachov, Vladimir M.; Makarov, Alexander A.; Cox, Jos A.
2001-01-01
Muscle of amphioxus contains large amounts of a four EF-hand Ca2+-binding protein, CaVP, and its target, CaVPT. To study the domain structure of CaVP and assess the structurally important determinants for its interaction with CaVPT, we expressed CaVP and its amino (N-CaVP) and carboxy-terminal halves (C-CaVP). The interactive properties of recombinant and wild-type CaVP are very similar, despite three post-translational modifications in the wild-type protein. N-CaVP does not bind Ca2+, shows a well-formed hydrophobic core, and melts at 44°C. C-CaVP binds two Ca2+ with intrinsic dissociation constants of 0.22 and 140 μM (i.e., very similar to the entire CaVP). The metal-free domain in CaVP and C-CaVP shows no distinct melting transition, whereas its 1Ca2+ and 2Ca2+ forms melt in the 111°–123°C range, suggesting that C-CaVP and the carboxy- domain of CaVP are natively unfolded in the metal-free state and progressively gain structure upon binding of 1Ca2+ and 2Ca2+. Thermal denaturation studies provide evidence for interdomain interaction: the apo, 1Ca2+ and 2Ca2+ states of the carboxy-domain destabilize to different degrees the amino-domain. Only C-CaVP forms a Ca2+-dependent 1:1 complex with CaVPT. Our results suggest that the carboxy-terminal domain of CaVP interacts with CaVPT and that the amino-terminal lobe modulates this interaction. PMID:11274468
A two-step mechanism for epigenetic specification of centromere identity and function
Fachinetti, Daniele; Folco, H. Diego; Nechemia-Arbely, Yael; Valente, Luis P.; Nguyen, Kristen; Wong, Alex J.; Zhu, Quan; Holland, Andrew J.; Desai, Arshad; Jansen, Lars E.T.; Cleveland, Don W.
2015-01-01
Summary The basic determinant of chromosome inheritance, the centromere, is specified in many eukaryotes by an epigenetic mark. Using gene targeting in human cells and fission yeast, chromatin containing the centromere-specific histone H3 variant CENP-A is demonstrated to be the epigenetic mark that acts through a two-step mechanism to identify, maintain and propagate centromere function indefinitely. Initially, centromere position is replicated and maintained by chromatin assembled with the centromere-targeting domain (CATD) of CENP-A substituted into H3. Subsequently, nucleation of kinetochore assembly onto CATD-containing chromatin is shown to require either CENP-A’s amino- or carboxy-terminal tails for recruitment of inner kinetochore proteins, including stabilizing CENP-B binding to human centromeres or direct recruitment of CENP-C, respectively. PMID:23873148
A two-step mechanism for epigenetic specification of centromere identity and function.
Fachinetti, Daniele; Folco, H Diego; Nechemia-Arbely, Yael; Valente, Luis P; Nguyen, Kristen; Wong, Alex J; Zhu, Quan; Holland, Andrew J; Desai, Arshad; Jansen, Lars E T; Cleveland, Don W
2013-09-01
The basic determinant of chromosome inheritance, the centromere, is specified in many eukaryotes by an epigenetic mark. Using gene targeting in human cells and fission yeast, chromatin containing the centromere-specific histone H3 variant CENP-A is demonstrated to be the epigenetic mark that acts through a two-step mechanism to identify, maintain and propagate centromere function indefinitely. Initially, centromere position is replicated and maintained by chromatin assembled with the centromere-targeting domain (CATD) of CENP-A substituted into H3. Subsequently, nucleation of kinetochore assembly onto CATD-containing chromatin is shown to require either the amino- or carboxy-terminal tail of CENP-A for recruitment of inner kinetochore proteins, including stabilizing CENP-B binding to human centromeres or direct recruitment of CENP-C, respectively.
Structural evidence for the role of polar core residue Arg175 in arrestin activation
Granzin, Joachim; Stadler, Andreas; Cousin, Anneliese; Schlesinger, Ramona; Batra-Safferling, Renu
2015-01-01
Binding mechanism of arrestin requires photoactivation and phosphorylation of the receptor protein rhodopsin, where the receptor bound phosphate groups cause displacement of the long C-tail ‘activating’ arrestin. Mutation of arginine 175 to glutamic acid (R175E), a central residue in the polar core and previously predicted as the ‘phosphosensor’ leads to a pre-active arrestin that is able to terminate phototransduction by binding to non-phosphorylated, light-activated rhodopsin. Here, we report the first crystal structure of a R175E mutant arrestin at 2.7 Å resolution that reveals significant differences compared to the basal state reported in full-length arrestin structures. These differences comprise disruption of hydrogen bond network in the polar core, and three-element interaction including disordering of several residues in the receptor-binding finger loop and the C-terminus (residues 361–404). Additionally, R175E structure shows a 7.5° rotation of the amino and carboxy-terminal domains relative to each other. Consistent to the biochemical data, our structure suggests an important role of R29 in the initial activation step of C-tail release. Comparison of the crystal structures of basal arrestin and R175E mutant provide insights into the mechanism of arrestin activation, where binding of the receptor likely induces structural changes mimicked as in R175E. PMID:26510463
Structural evidence for the role of polar core residue Arg175 in arrestin activation.
Granzin, Joachim; Stadler, Andreas; Cousin, Anneliese; Schlesinger, Ramona; Batra-Safferling, Renu
2015-10-29
Binding mechanism of arrestin requires photoactivation and phosphorylation of the receptor protein rhodopsin, where the receptor bound phosphate groups cause displacement of the long C-tail 'activating' arrestin. Mutation of arginine 175 to glutamic acid (R175E), a central residue in the polar core and previously predicted as the 'phosphosensor' leads to a pre-active arrestin that is able to terminate phototransduction by binding to non-phosphorylated, light-activated rhodopsin. Here, we report the first crystal structure of a R175E mutant arrestin at 2.7 Å resolution that reveals significant differences compared to the basal state reported in full-length arrestin structures. These differences comprise disruption of hydrogen bond network in the polar core, and three-element interaction including disordering of several residues in the receptor-binding finger loop and the C-terminus (residues 361-404). Additionally, R175E structure shows a 7.5° rotation of the amino and carboxy-terminal domains relative to each other. Consistent to the biochemical data, our structure suggests an important role of R29 in the initial activation step of C-tail release. Comparison of the crystal structures of basal arrestin and R175E mutant provide insights into the mechanism of arrestin activation, where binding of the receptor likely induces structural changes mimicked as in R175E.
Takenaka, Shinji; Miyatake, Ayaka; Tanaka, Kosei; Kuntiya, Ampin; Techapun, Charin; Leksawasdi, Noppol; Seesuriyachan, Phisit; Chaiyaso, Thanongsak; Watanabe, Masanori; Yoshida, Ken-ichi
2015-06-01
Two amylases, amylase I and amylase II from Bacillus subtilis strain FP-133, were purified to homogeneity and characterized. Their stabilities toward temperature, pH, and organic solvents, and their substrate specificities toward polysaccharides and oligosaccharides were similar. Under moderately high salt conditions, both amylases were more stable than commercial B. licheniformis amylase, and amylase I retained higher amylase activity than amylase II. The N-terminal amino acid sequence, genomic southern blot analysis, and MALDI-TOFF-MS analysis indicated that the halotolerant amylase I was produced by limited carboxy-terminal truncation of the amylase II peptide. The deduced amino acid sequence of amylase II was >95% identical to that of previously reported B. subtilis α-amylases, but their carboxy-terminal truncation points differed. Three recombinant amylases--full-length amylase corresponding to amylase II, an artificially truncated amylase corresponding to amylase I, and an amylase with a larger artificial C-terminal truncation--were expressed in B. subtilis. The artificially truncated recombinant amylases had the same high amylase activity as amylase I under moderately high salt conditions. Sequence comparisons indicated that an increased ratio of Asp/Glu residues in the enzyme may be one factor responsible for increasing halotolerance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pettersson, John R; Lanni, Frederick; Rule, Gordon S
2017-08-08
Single-molecule fluorescence techniques were used to characterize the binding of products and inhibitors to human glutathione S-transferase A1-1 (hGSTA1-1). The identification of at least two different bound states for the wild-type enzyme suggests that there are at least two conformations of the protein, consistent with the model that ligand binding promotes closure of the carboxy-terminal helix over the active site. Ligand induced changes in ensemble fluorescence energy transfer support this proposed structural change. The more predominant state in the ensemble of single molecules shows a significantly faster off-rate, suggesting that the carboxy-terminal helix is delocalized in this state, permitting faster exit of the bound ligand. A point mutation (I219A), which is known to interfere with the association of the carboxy-terminal helix with the enzyme, shows increased rates of interconversion between the open and closed state. Kinematic traces of fluorescence from single molecules show that a single molecule readily samples a number of different conformations, each with a characteristic off-rate.
Lysines in the RNA Polymerase II C-Terminal Domain Contribute to TAF15 Fibril Recruitment.
Janke, Abigail M; Seo, Da Hee; Rahmanian, Vahid; Conicella, Alexander E; Mathews, Kaylee L; Burke, Kathleen A; Mittal, Jeetain; Fawzi, Nicolas L
2018-05-01
Many cancer-causing chromosomal translocations result in transactivating protein products encoding FET family (FUS, EWSR1, TAF15) low-complexity (LC) domains fused to a DNA binding domain from one of several transcription factors. Recent work demonstrates that higher-order assemblies of FET LC domains bind the carboxy-terminal domain of the large subunit of RNA polymerase II (RNA pol II CTD), suggesting FET oncoproteins may mediate aberrant transcriptional activation by recruiting RNA polymerase II to promoters of target genes. Here we use nuclear magnetic resonance (NMR) spectroscopy and hydrogel fluorescence microscopy localization and fluorescence recovery after photobleaching to visualize atomic details of a model of this process, interactions of RNA pol II CTD with high-molecular weight TAF15 LC assemblies. We report NMR resonance assignments of the intact degenerate repeat half of human RNA pol II CTD alone and verify its predominant intrinsic disorder by molecular simulation. By measuring NMR spin relaxation and dark-state exchange saturation transfer, we characterize the interaction of RNA pol II CTD with amyloid-like hydrogel fibrils of TAF15 and hnRNP A2 LC domains and observe that heptads far from the acidic C-terminal tail of RNA pol II CTD bind TAF15 fibrils most avidly. Mutation of CTD lysines in heptad position 7 to consensus serines reduced the overall level of TAF15 fibril binding, suggesting that electrostatic interactions contribute to complex formation. Conversely, mutations of position 7 asparagine residues and truncation of the acidic tail had little effect. Thus, weak, multivalent interactions between TAF15 fibrils and heptads throughout RNA pol II CTD collectively mediate complex formation.
Dahlberg, Caroline Lund; Nguyen, Elizabeth Z.; Goodlett, David; Kimelman, David
2009-01-01
Background Members of the Casein Kinase I (CKI) family of serine/threonine kinases regulate diverse biological pathways. The seven mammalian CKI isoforms contain a highly conserved kinase domain and divergent amino- and carboxy-termini. Although they share a preferred target recognition sequence and have overlapping expression patterns, individual isoforms often have specific substrates. In an effort to determine how substrates recognize differences between CKI isoforms, we have examined the interaction between CKIε and two substrates from different signaling pathways. Methodology/Principal Findings CKIε, but not CKIα, binds to and phosphorylates two proteins: Period, a transcriptional regulator of the circadian rhythms pathway, and Disheveled, an activator of the planar cell polarity pathway. We use GST-pull-down assays data to show that two key residues in CKIα's kinase domain prevent Disheveled and Period from binding. We also show that the unique C-terminus of CKIε does not determine Dishevelled's and Period's preference for CKIε nor is it essential for binding, but instead plays an auxillary role in stabilizing the interactions of CKIε with its substrates. We demonstrate that autophosphorylation of CKIε's C-terminal tail prevents substrate binding, and use mass spectrometry and chemical crosslinking to reveal how a phosphorylation-dependent interaction between the C-terminal tail and the kinase domain prevents substrate phosphorylation and binding. Conclusions/Significance The biochemical interactions between CKIε and Disheveled, Period, and its own C-terminus lead to models that explain CKIε's specificity and regulation. PMID:19274088
Millard, Christopher J; Varma, Niranjan; Saleh, Almutasem; Morris, Kyle; Watson, Peter J; Bottrill, Andrew R; Fairall, Louise; Smith, Corinne J; Schwabe, John WR
2016-01-01
The NuRD complex is a multi-protein transcriptional corepressor that couples histone deacetylase and ATP-dependent chromatin remodelling activities. The complex regulates the higher-order structure of chromatin, and has important roles in the regulation of gene expression, DNA damage repair and cell differentiation. HDACs 1 and 2 are recruited by the MTA1 corepressor to form the catalytic core of the complex. The histone chaperone protein RBBP4, has previously been shown to bind to the carboxy-terminal tail of MTA1. We show that MTA1 recruits a second copy of RBBP4. The crystal structure reveals an extensive interface between MTA1 and RBBP4. An EM structure, supported by SAXS and crosslinking, reveals the architecture of the dimeric HDAC1:MTA1:RBBP4 assembly which forms the core of the NuRD complex. We find evidence that in this complex RBBP4 mediates interaction with histone H3 tails, but not histone H4, suggesting a mechanism for recruitment of the NuRD complex to chromatin. DOI: http://dx.doi.org/10.7554/eLife.13941.001 PMID:27098840
New dye-labeled terminators for improved DNA sequencing patterns.
Rosenblum, B B; Lee, L G; Spurgeon, S L; Khan, S H; Menchen, S M; Heiner, C R; Chen, S M
1997-01-01
We have used two new dye sets for automated dye-labeled terminator DNA sequencing. One set consists of four, 4,7-dichlororhodamine dyes (d-rhodamines). The second set consists of energy-transfer dyes that use the 5-carboxy-d-rhodamine dyes as acceptor dyes and the 5- or 6-carboxy isomers of 4'-aminomethylfluorescein as the donor dye. Both dye sets utilize a new linker between the dye and the nucleotide, and both provide more even peak heights in terminator sequencing than the dye-terminators consisting of unsubstituted rhodamine dyes. The unsubstituted rhodamine terminators produced electropherograms in which weak G peaks are observed after A peaks and occasionally C peaks. The number of weak G peaks has been reduced or eliminated with the new dye terminators. The general improvement in peak evenness improves accuracy for the automated base-calling software. The improved signal-to-noise ratio of the energy-transfer dye-labeled terminators combined with more even peak heights results in successful sequencing of high molecular weight DNA templates such as bacterial artificial chromosome DNA. PMID:9358158
Active Ebola Virus Replication and Heterogeneous Evolutionary Rates in EVD Survivors.
Whitmer, Shannon L M; Ladner, Jason T; Wiley, Michael R; Patel, Ketan; Dudas, Gytis; Rambaut, Andrew; Sahr, Foday; Prieto, Karla; Shepard, Samuel S; Carmody, Ellie; Knust, Barbara; Naidoo, Dhamari; Deen, Gibrilla; Formenty, Pierre; Nichol, Stuart T; Palacios, Gustavo; Ströher, Ute
2018-01-30
Following cessation of continuous Ebola virus (EBOV) transmission within Western Africa, sporadic EBOV disease (EVD) cases continued to re-emerge beyond the viral incubation period. Epidemiological and genomic evidence strongly suggests that this represented transmission from EVD survivors. To investigate whether persistent infections are characterized by ongoing viral replication, we sequenced EBOV from the semen of nine EVD survivors and a subset of corresponding acute specimens. EBOV evolutionary rates during persistence were either similar to or reduced relative to acute infection rates. Active EBOV replication/transcription continued during convalescence, but decreased over time, consistent with viral persistence rather than viral latency. Patterns of genetic divergence suggest a moderate relaxation of selective constraints within the sGP carboxy-terminal tail during persistent infections, but do not support widespread diversifying selection. Altogether, our data illustrate that EBOV persistence in semen, urine, and aqueous humor is not a quiescent or latent infection. Published by Elsevier Inc.
Wanas, E; Efler, S; Ghosh, K; Ghosh, H P
1999-12-01
Glycoprotein gB is the most highly conserved glycoprotein in the herpesvirus family and plays a critical role in virus entry and fusion. Glycoprotein gB of herpes simplex virus type 1 contains a hydrophobic stretch of 69 aa near the carboxy terminus that is essential for its biological activity. To determine the role(s) of specific amino acids in the carboxy-terminal hydrophobic region, a number of amino acids were mutagenized that are highly conserved in this region within the gB homologues of the family HERPESVIRIDAE: Three conserved residues in the membrane anchor domain, namely A786, A790 and A791, as well as amino acids G743, G746, G766, G770 and P774, that are non-variant in Herpesviridae, were mutagenized. The ability of the mutant proteins to rescue the infectivity of the gB-null virus, K082, in trans was measured by a complementation assay. All of the mutant proteins formed dimers and were incorporated in virion particles produced in the complementation assay. Mutants G746N, G766N, F770S and P774L showed negligible complementation of K082, whereas mutant G743R showed a reduced activity. Virion particles containing these four mutant glycoproteins also showed a markedly reduced rate of entry compared to the wild-type. The results suggest that non-variant residues in the carboxy-terminal hydrophobic region of the gB protein may be important in virus infectivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdul Halim, Mohd Farid; Pfeiffer, Friedhelm; Zou, James
2013-05-28
Cell surfaces are decorated by a variety of proteins that facilitate interactions with their environments and support cell stability.These secreted proteins are anchored to the cell by mechanisms that are diverse, and, in archaea, poorly understood. Recently published in silico data suggest that in some species a subset of secreted euryarchaeal proteins, which includes the S-layer glycoprotein, is processed and covalently linked tot he cell membrane by enzymes referred to as archaeosortases. In silico work led to the proposal that an independent, sortase-like system for proteolysis-coupled carboxy-terminal lipid modification exists in bacteria (exosortase) and archaea (archaeosortase). Here, we provide themore » first in vivo characterization of an archaeosortase in the haloarchaeal model organism Haloferax volcanii. Deletion of the artA gene (HVO_0915) resulted in multiple biological phenotypes: (a) poor growth, especially under low-salt conditions, (b) alterations in cell shape and the S-layer, (c) impaired motility, suppressors of which still exhibit poor growth, and (d) impaired conjugation. We studied one of the ArtA substrates, the S-layer glycoprotein, using detailed proteomic analysis. While the carboxy-terminal region of S-layer glycoproteins, consisting of a threonine-rich O-glycosylated region followed by a hydrophobic transmembrane helix, has been notoriously resistant to any proteomic peptide identification, we were able to identify two overlapping peptides from the transmembrane domain present in the ΔartA strain but not in the wild-type strain. This clearly shows that ArtA is involved in carboxy-terminal posttranslational processing of the S-layer glycoprotein. As it is known from previous studies that a lipid is covalently attached to the carboxy-terminal region of the S-layer glycoprotein, our data strongly support the conclusion that archaeosortase functions analogously to sortase, mediating proteolysis-coupled, covalent cell surface attachment.« less
Liu, Qian; Chen, Haoqian; Ojode, Teresa; Gao, Xiangxi; Anaya-O'Brien, Sandra; Turner, Nicholas A.; Ulrick, Jean; DeCastro, Rosamma; Kelly, Corin; Cardones, Adela R.; Gold, Stuart H.; Hwang, Eugene I.; Wechsler, Daniel S.; Malech, Harry L.; Murphy, Philip M.
2012-01-01
WHIM syndrome is a rare, autosomal dominant, immunodeficiency disorder so-named because it is characterized by warts, hypogammaglobulinemia, infections, and myelokathexis (defective neutrophil egress from the BM). Gain-of-function mutations that truncate the C-terminus of the chemokine receptor CXCR4 by 10-19 amino acids cause WHIM syndrome. We have identified a family with autosomal dominant inheritance of WHIM syndrome that is caused by a missense mutation in CXCR4, E343K (1027G → A). This mutation is also located in the C-terminal domain, a region responsible for negative regulation of the receptor. Accordingly, like CXCR4R334X, the most common truncation mutation in WHIM syndrome, CXCR4E343K mediated approximately 2-fold increased signaling in calcium flux and chemotaxis assays relative to wild-type CXCR4; however, CXCR4E343K had a reduced effect on blocking normal receptor down-regulation from the cell surface. Therefore, in addition to truncating mutations in the C-terminal domain of CXCR4, WHIM syndrome may be caused by a single charge-changing amino acid substitution in this domain, E343K, that results in increased receptor signaling. PMID:22596258
Erv1p from Saccharomyces cerevisiae is a FAD-linked sulfhydryl oxidase.
Lee, J; Hofhaus, G; Lisowsky, T
2000-07-14
The yeast ERV1 gene encodes a small polypeptide of 189 amino acids that is essential for mitochondrial function and for the viability of the cell. In this study we report the enzymatic activity of this protein as a flavin-linked sulfhydryl oxidase catalyzing the formation of disulfide bridges. Deletion of the amino-terminal part of Erv1p shows that the enzyme activity is located in the 15 kDa carboxy-terminal domain of the protein. This fragment of Erv1p still binds FAD and catalyzes the formation of disulfide bonds but is no longer able to form dimers like the complete protein. The carboxy-terminal fragment contains a conserved CXXC motif that is present in all homologous proteins from yeast to human. Thus Erv1p represents the first FAD-linked sulfhydryl oxidase from yeast and the first of these enzymes that is involved in mitochondrial biogenesis.
Endosomal sorting of GLUT4 and Gap1 is conserved between yeast and insulin-sensitive cells
Shewan, Annette M.; McCann, Rebecca K.; Lamb, Christopher A.; Stirrat, Laura; Kioumourtzoglou, Dimitrios; Adamson, Iain S.; Verma, Suzie; James, David E.; Bryant, Nia J.
2013-01-01
Summary The insulin-regulated trafficking of the facilitative glucose transporter GLUT4 in human fat and muscle cells and the nitrogen-regulated trafficking of the general amino acid permease Gap1 in the yeast Saccharomyces cerevisiae share several common features: Both Gap1 and GLUT4 are nutrient transporters that are mobilised to the cell surface from an intracellular store in response to an environmental cue; both are polytopic membrane proteins harbouring amino acid targeting motifs in their C-terminal tails that are required for their regulated trafficking; ubiquitylation of both Gap1 and GLUT4 plays an important role in their regulated trafficking, as do the ubiquitin-binding GGA (Golgi-localised, γ-ear-containing, ARF-binding) adaptor proteins. Here, we find that when expressed heterologously in yeast, human GLUT4 is subject to nitrogen-regulated trafficking in an ubiquitin-dependent manner similar to Gap1. In addition, by expressing a GLUT4/Gap1 chimeric protein in adipocytes we show that the carboxy-tail of Gap1 directs intracellular sequestration and insulin-regulated trafficking in adipocytes. These findings demonstrate that the trafficking signals and their cognate molecular regulatory machinery that mediate regulated exocytosis of membrane proteins are conserved across evolution. PMID:23424197
1992-01-01
To elucidate the structural basis for membrane attachment of the alpha subunit of the stimulatory G protein (Gs alpha), mutant Gs alpha cDNAs with deletions of amino acid residues in the amino and/or carboxy termini were transiently expressed in COS-7 cells. The particulate and soluble fractions prepared from these cells were analyzed by immunoblot using peptide specific antibodies to monitor distribution of the expressed proteins. Transfection of mutant forms of Gs alpha with either 26 amino terminal residues deleted (delta 3-28) or with 59 amino terminal residues deleted (delta 1-59) resulted in immunoreactive proteins which localized primarily to the particulate fraction. Similarly, mutants with 10 (delta 385-394), 32 (delta 353-384), or 42 (delta 353-394) amino acid residues deleted from the carboxy terminus also localized to the particulate fraction, as did a mutant form of Gs alpha lacking amino acid residues at both the amino and carboxy termini (delta 3-28)/(delta 353-384). Mutant and wild type forms of Gs alpha demonstrated a similar degree of tightness in their binding to membranes as demonstrated by treatment with 2.5 M NaCl or 6 M urea, but some mutant forms were relatively resistant compared with wild type Gs alpha to solubilization by 15 mM NaOH or 1% sodium cholate. We conclude that: (a) deletion of significant portions of the amino and/or carboxyl terminus of Gs alpha is still compatible with protein expression; (b) deletion of these regions is insufficient to cause cytosolic localization of the expressed protein. The basis of Gs alpha membrane targeting remains to be elucidated. PMID:1400589
Synthesis of 5- and 6-Carboxy-X-rhodamines
2008-01-01
An efficient route is reported to 5- and 6-carboxy-X-rhodamines (compounds 1 and 2) that contain multiple n-propylene or γ,γ-dimethylpropylene groups bridging terminal nitrogen atoms and the central xanthene core. Gram quantities of these dyes are synthesized from inexpensive starting materials. The isolated products are activated by selective transformation of the carboxylic acid group into N-hydroxysuccinimidyl esters in situ and then conjugated with an amino group of a molecule of interest. PMID:18837556
Nibert, M L; Fields, B N
1992-01-01
Penetration of a cell membrane as an early event in infection of cells by mammalian reoviruses appears to require a particular type of viral particle, the infectious subvirion particle (ISVP), which is generated from an intact virion by proteolytic cleavage of the outer capsid proteins sigma 3 and mu 1/mu 1C. Characterizations of the structural components and properties of ISVPs are thus relevant to attempts to understand the mechanism of penetration by reoviruses. In this study, a novel, approximately 13-kDa carboxy-terminal fragment (given the name phi) was found to be generated from protein mu 1/mu 1C during in vitro treatments of virions with trypsin or chymotrypsin to yield ISVPs. With trypsin treatment, both the carboxy-terminal fragment phi and the amino-terminal fragment mu 1 delta/delta were shown to be generated and to remain attached to ISVPs in stoichiometric quantities. Sites of protease cleavage were identified in the deduced amino acid sequence of mu 1 by determining the amino-terminal sequences of phi proteins: trypsin cleaves between arginine 584 and isoleucine 585, and chymotrypsin cleaves between tyrosine 581 and glycine 582. Findings in this study indicate that sequences in the phi portion of mu 1/mu 1C may participate in the unique functions attributed to ISVPs. Notably, the delta-phi cleavage junction was predicted to be flanked by a pair of long amphipathic alpha-helices. These amphipathic alpha-helices, together with the myristoyl group at the extreme amino terminus of mu 1/mu 1N, are proposed to interact directly with the lipid bilayer of a cell membrane during penetration by mammalian reoviruses. Images PMID:1328674
A pH-Regulated Quality Control Cycle for Surveillance of Secretory Protein Assembly
Vavassori, Stefano; Cortini, Margherita; Masui, Shoji; Sannino, Sara; Anelli, Tiziana; Caserta, Imma R.; Fagioli, Claudio; Mossuto, Maria F.; Fornili, Arianna; van Anken, Eelco; Degano, Massimo; Inaba, Kenji; Sitia, Roberto
2013-01-01
Summary To warrant the quality of the secretory proteome, stringent control systems operate at the endoplasmic reticulum (ER)-Golgi interface, preventing the release of nonnative products. Incompletely assembled oligomeric proteins that are deemed correctly folded must rely on additional quality control mechanisms dedicated to proper assembly. Here we unveil how ERp44 cycles between cisGolgi and ER in a pH-regulated manner, patrolling assembly of disulfide-linked oligomers such as IgM and adiponectin. At neutral, ER-equivalent pH, the ERp44 carboxy-terminal tail occludes the substrate-binding site. At the lower pH of the cisGolgi, conformational rearrangements of this peptide, likely involving protonation of ERp44’s active cysteine, simultaneously unmask the substrate binding site and −RDEL motif, allowing capture of orphan secretory protein subunits and ER retrieval via KDEL receptors. The ERp44 assembly control cycle couples secretion fidelity and efficiency downstream of the calnexin/calreticulin and BiP-dependent quality control cycles. PMID:23685074
Architecture of the RNA polymerase II-Mediator core initiation complex.
Plaschka, C; Larivière, L; Wenzeck, L; Seizl, M; Hemann, M; Tegunov, D; Petrotchenko, E V; Borchers, C H; Baumeister, W; Herzog, F; Villa, E; Cramer, P
2015-02-19
The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 Å resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.
Mena binds α5 integrin directly and modulates α5β1 function.
Gupton, Stephanie L; Riquelme, Daisy; Hughes-Alford, Shannon K; Tadros, Jenny; Rudina, Shireen S; Hynes, Richard O; Lauffenburger, Douglas; Gertler, Frank B
2012-08-20
Mena is an Ena/VASP family actin regulator with roles in cell migration, chemotaxis, cell-cell adhesion, tumor cell invasion, and metastasis. Although enriched in focal adhesions, Mena has no established function within these structures. We find that Mena forms an adhesion-regulated complex with α5β1 integrin, a fibronectin receptor involved in cell adhesion, motility, fibronectin fibrillogenesis, signaling, and growth factor receptor trafficking. Mena bound directly to the carboxy-terminal portion of the α5 cytoplasmic tail via a 91-residue region containing 13 five-residue "LERER" repeats. In fibroblasts, the Mena-α5 complex was required for "outside-in" α5β1 functions, including normal phosphorylation of FAK and paxillin and formation of fibrillar adhesions. It also supported fibrillogenesis and cell spreading and controlled cell migration speed. Thus, fibroblasts require Mena for multiple α5β1-dependent processes involving bidirectional interactions between the extracellular matrix and cytoplasmic focal adhesion proteins.
Mena binds α5 integrin directly and modulates α5β1 function
Riquelme, Daisy; Hughes-Alford, Shannon K.; Tadros, Jenny; Rudina, Shireen S.; O.Hynes, Richard; Lauffenburger, Douglas
2012-01-01
Mena is an Ena/VASP family actin regulator with roles in cell migration, chemotaxis, cell–cell adhesion, tumor cell invasion, and metastasis. Although enriched in focal adhesions, Mena has no established function within these structures. We find that Mena forms an adhesion-regulated complex with α5β1 integrin, a fibronectin receptor involved in cell adhesion, motility, fibronectin fibrillogenesis, signaling, and growth factor receptor trafficking. Mena bound directly to the carboxy-terminal portion of the α5 cytoplasmic tail via a 91-residue region containing 13 five-residue “LERER” repeats. In fibroblasts, the Mena–α5 complex was required for “outside-in” α5β1 functions, including normal phosphorylation of FAK and paxillin and formation of fibrillar adhesions. It also supported fibrillogenesis and cell spreading and controlled cell migration speed. Thus, fibroblasts require Mena for multiple α5β1-dependent processes involving bidirectional interactions between the extracellular matrix and cytoplasmic focal adhesion proteins. PMID:22908313
Demand, Jens; Lüders, Jens; Höhfeld, Jörg
1998-01-01
The modulation of the chaperone activity of the heat shock cognate Hsc70 protein in mammalian cells involves cooperation with chaperone cofactors, such as Hsp40; BAG-1; the Hsc70-interacting protein, Hip; and the Hsc70-Hsp90-organizing protein, Hop. By employing the yeast two-hybrid system and in vitro interaction assays, we have provided insight into the structural basis that underlies Hsc70’s cooperation with different cofactors. The carboxy-terminal domain of Hsc70, previously shown to form a lid over the peptide binding pocket of the chaperone protein, mediates the interaction of Hsc70 with Hsp40 and Hop. Remarkably, the two cofactors bind to the carboxy terminus of Hsc70 in a noncompetitive manner, revealing the existence of distinct binding sites for Hsp40 and Hop within this domain. In contrast, Hip interacts exclusively with the amino-terminal ATPase domain of Hsc70. Hence, Hsc70 possesses separate nonoverlapping binding sites for Hsp40, Hip, and Hop. This appears to enable the chaperone protein to cooperate simultaneously with multiple cofactors. On the other hand, BAG-1 and Hip have recently been shown to compete in binding to the ATPase domain. Our data thus establish the existence of a network of cooperating and competing cofactors regulating the chaperone activity of Hsc70 in the mammalian cell. PMID:9528774
Rudrabhatla, Parvathi; Grant, Philip; Jaffe, Howard; Strong, Michael J; Pant, Harish C
2010-11-01
Aberrant hyperphosphorylation of neuronal cytoskeletal proteins is one of the major pathological hallmarks of neurodegenerative disorders such as Alzheimer disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Human NF-M/H display a large number of multiple KSP repeats in the carboxy-terminal tail domain, which are phosphorylation sites of proline-directed serine/threonine (pSer/Thr-Pro, KS/T-P) kinases. The phosphorylation sites of NF-M/H have not been characterized in AD brain. Here, we use quantitative phosphoproteomic methodology, isobaric tag for relative and absolute quantitation (iTRAQ), for the characterization of NF-M/H phosphorylation sites in AD brain. We identified 13 hyperphosphorylated sites of NF-M; 9 Lys-Ser-Pro (KSP) sites; 2 variant motifs, Glu-Ser-Pro (ESP) Ser-736 and Leu-Ser-Pro (LSP) Ser-837; and 2 non-S/T-P motifs, Ser-783 and Ser-788. All the Ser/Thr residues are phosphorylated at significantly greater abundance in AD brain compared with control brain. Ten hyperphosphorylated KSP sites have been identified on the C-terminal tail domain of NF-H, with greater abundance of phosphorylation in AD brain compared with control brain. Our data provide the direct evidence that NF-M/H are hyperphosphorylated in AD compared with control brain and suggest the role of both proline-directed and non-proline-directed protein kinases in AD. This study represents the first comprehensive iTRAQ analyses and quantification of phosphorylation sites of human NF-M and NF-H from AD brain and suggests that aberrant hyperphosphorylation of neuronal intermediate filament proteins is involved in AD.
Freimuth, P; Anderson, C W
1993-03-01
The sequence of a 1158-base pair fragment of the human adenovirus serotype 12 (Ad12) genome was determined. This segment encodes the precursors for virion components Mu and VI. Both Ad12 precursors contain two sequences that conform to a consensus sequence motif for cleavage by the endoproteinase of adenovirus 2 (Ad2). Analysis of the amino terminus of VI and of the peptide fragments found in Ad12 virions demonstrated that these sites are cleaved during Ad12 maturation. This observation suggests that the recognition motif for adenovirus endoproteinases is highly conserved among human serotypes. The adenovirus 2 endoproteinase polypeptide requires additional co-factors for activity (C. W. Anderson, Protein Expression Purif., 1993, 4, 8-15). Synthetic Ad12 or Ad2 pVI carboxy-terminal peptides each permitted efficient cleavage of an artificial endoproteinase substrate by recombinant Ad2 endoproteinase polypeptide.
USDA-ARS?s Scientific Manuscript database
Plant class IV chitinases are composed of a carboxy-terminal chitinase domain that is attached, through a linker sequence, to a small amino-terminal domain that can be thought of as a structured peptide. While both the peptide-like domain and the chitinase domain share sequence homology throughout m...
Structural Relationships Between Minor and Major Proteins of Hepatitis B Surface Antigen
Stibbe, Werner; Gerlich, Wolfram H.
1983-01-01
The minor glycoproteins from hepatitis B surface antigen, GP33 and GP36, contain at their carboxy-terminal part the sequence of the major protein P24. They have 55 additional amino acids at the amino-terminal part which are coded by the pre-S region of the viral DNA. Images PMID:6842680
Liljeqvist, Jan-Ake; Trybala, Edward; Hoebeke, Johan; Svennerholm, Bo; Bergström, Tomas
2002-01-01
Glycoprotein G-2 (gG-2) of herpes simplex virus type 2 (HSV-2) is cleaved to a secreted amino-terminal portion (sgG-2) and to a cell-associated carboxy-terminal portion which is further O-glycosylated to constitute the mature gG-2 (mgG-2). In contrast to mgG-2, which is known to elicit a type-specific antibody response in the human host, information on the immunogenic properties of sgG-2 is lacking. Here the sgG-2 protein was purified on a heparin column and used for production of monoclonal antibodies (mAbs). Four anti-sgG-2 mAbs were mapped using a Pepscan technique and identified linear epitopes which localized to the carboxy-terminal part of the protein. One additional anti-sgG-2 mAb, recognizing a non-linear epitope, was reactive to three discrete peptide stretches where the most carboxy-terminally located stretch was constituted by the amino acids (320)RRAL(323). Although sgG-2 is rapidly secreted into the cell-culture medium after infection, the anti-sgG-2 mAbs identified substantial amounts of sgG-2 in the cytoplasm of HSV-2-infected cells. All of the anti-sgG-2 mAbs were HSV-2 specific showing no cross-reactivity to HSV-1 antigen or to HSV-1-infected cells. Similarly, sera from 50 HSV-2 isolation positive patients were all reactive to sgG-2 in an enzyme immunoassay whilst no reactivity was seen in 25 sera from HSV-1 isolation positive patients or in 25 serum samples from HSV-negative patients suggesting that sgG-2 is a novel antigen potentially suitable for type-discriminating serodiagnosis.
An Early Nodulin-Like Protein Accumulates in the Sieve Element Plasma Membrane of Arabidopsis1[OA
Khan, Junaid A.; Wang, Qi; Sjölund, Richard D.; Schulz, Alexander; Thompson, Gary A.
2007-01-01
Membrane proteins within the sieve element-companion cell complex have essential roles in the physiological functioning of the phloem. The monoclonal antibody line RS6, selected from hybridomas raised against sieve elements isolated from California shield leaf (Streptanthus tortuosus; Brassicaceae) tissue cultures, recognizes an antigen in the Arabidopsis (Arabidopsis thaliana) ecotype Columbia that is associated specifically with the plasma membrane of sieve elements, but not companion cells, and accumulates at the earliest stages of sieve element differentiation. The identity of the RS6 antigen was revealed by reverse transcription-PCR of Arabidopsis leaf RNA using degenerate primers to be an early nodulin (ENOD)-like protein that is encoded by the expressed gene At3g20570. Arabidopsis ENOD-like proteins are encoded by a multigene family composed of several types of structurally related phytocyanins that have a similar overall domain structure of an amino-terminal signal peptide, plastocyanin-like copper-binding domain, proline/serine-rich domain, and carboxy-terminal hydrophobic domain. The amino- and carboxy-terminal domains of the 21.5-kD sieve element-specific ENOD are posttranslationally cleaved from the precursor protein, resulting in a mature peptide of approximately 15 kD that is attached to the sieve element plasma membrane via a carboxy-terminal glycosylphosphatidylinositol membrane anchor. Many of the Arabidopsis ENOD-like proteins accumulate in gametophytic tissues, whereas in both floral and vegetative tissues, the sieve element-specific ENOD is expressed only within the phloem. Members of the ENOD subfamily of the cupredoxin superfamily do not appear to bind copper and have unknown functions. Phenotypic analysis of homozygous T-DNA insertion mutants for the gene At3g20570 shows minimal alteration in vegetative growth but a significant reduction in the overall reproductive potential. PMID:17293437
An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis.
Khan, Junaid A; Wang, Qi; Sjölund, Richard D; Schulz, Alexander; Thompson, Gary A
2007-04-01
Membrane proteins within the sieve element-companion cell complex have essential roles in the physiological functioning of the phloem. The monoclonal antibody line RS6, selected from hybridomas raised against sieve elements isolated from California shield leaf (Streptanthus tortuosus; Brassicaceae) tissue cultures, recognizes an antigen in the Arabidopsis (Arabidopsis thaliana) ecotype Columbia that is associated specifically with the plasma membrane of sieve elements, but not companion cells, and accumulates at the earliest stages of sieve element differentiation. The identity of the RS6 antigen was revealed by reverse transcription-PCR of Arabidopsis leaf RNA using degenerate primers to be an early nodulin (ENOD)-like protein that is encoded by the expressed gene At3g20570. Arabidopsis ENOD-like proteins are encoded by a multigene family composed of several types of structurally related phytocyanins that have a similar overall domain structure of an amino-terminal signal peptide, plastocyanin-like copper-binding domain, proline/serine-rich domain, and carboxy-terminal hydrophobic domain. The amino- and carboxy-terminal domains of the 21.5-kD sieve element-specific ENOD are posttranslationally cleaved from the precursor protein, resulting in a mature peptide of approximately 15 kD that is attached to the sieve element plasma membrane via a carboxy-terminal glycosylphosphatidylinositol membrane anchor. Many of the Arabidopsis ENOD-like proteins accumulate in gametophytic tissues, whereas in both floral and vegetative tissues, the sieve element-specific ENOD is expressed only within the phloem. Members of the ENOD subfamily of the cupredoxin superfamily do not appear to bind copper and have unknown functions. Phenotypic analysis of homozygous T-DNA insertion mutants for the gene At3g20570 shows minimal alteration in vegetative growth but a significant reduction in the overall reproductive potential.
Paredes, Roberto; Schneider, Marion; Stevens, Adam; White, Daniel J; Williamson, Andrew Jk; Muter, Joanne; Pearson, Stella; Kelly, James R; Connors, Kathleen; Wiseman, Daniel H; Chadwick, John A; Löffler, Harald; Teng, Hsiang Ying; Lovell, Simon; Unwin, Richard; van de Vrugt, Henri J; Smith, Helen; Kustikova, Olga; Schambach, Axel; Somervaille, Tim C P; Pierce, Andrew; Whetton, Anthony D; Meyer, Stefan
2018-06-25
The transcriptional regulator EVI1 has an essential role in early hematopoiesis and development. However, aberrantly high expression of EVI1 has potent oncogenic properties and confers poor prognosis and chemo-resistance in leukemia and solid tumors. To investigate to what extent EVI1 function might be regulated by post-translational modifications we carried out mass spectrometry- and antibody-based analyses and uncovered an ATM-mediated double phosphorylation of EVI1 at the carboxy-terminal S858/S860 SQS motif. In the presence of genotoxic stress EVI1-WT (SQS), but not site mutated EVI1-AQA was able to maintain transcriptional patterns and transformation potency, while under standard conditions carboxy-terminal mutation had no effect. Maintenance of hematopoietic progenitor cell clonogenic potential was profoundly impaired with EVI1-AQA compared with EVI1-WT, in particular in the presence of genotoxic stress. Exploring mechanistic events underlying these observations, we showed that after genotoxic stress EVI1-WT, but not EVI1-AQA increased its level of association with its functionally essential interaction partner CtBP1, implying a role for ATM in regulating EVI1 protein interactions via phosphorylation. This aspect of EVI1 regulation is therapeutically relevant, as chemotherapy-induced genotoxicity might detrimentally sustain EVI1 function via stress response mediated phosphorylation, and ATM-inhibition might be of specific targeted benefit in EVI1-overexpressing malignancies.
Tse, R; Wu, Y J; Vavougios, G; Hou, Y; Hinek, A; Mahuran, D J
1996-08-20
There are three human beta-hexosaminidase isozymes which are composed of all possible dimeric combinations of an alpha and/or a beta subunit; A (alpha beta), and B (beta beta), and S (alpha alpha). The amino acid sequences of the two subunits are 60% identical. The homology between the two chains varies with the middle > the carboxy-terminal > > the amino-terminal portions. Although dimerization is required for activity, each subunit contains its own active site and differs in its substrate specificity and thermal stability. The presence of the beta subunit in hexosaminidase A also influences the substrate specificity of the alpha subunit; e.g., in vivo only the A heterodimer can hydrolyze GM2 ganglioside. In this report, we localize functional regions in the two subunits by cellular expression of alpha/beta fusion proteins joined at adjacently aligned residues. First, a chimeric alpha/beta chain was made by replacing the least well-conserved amino-terminal section of the beta chain with the corresponding alpha section. The biochemical characteristics of this protein were nearly identical to hexosaminidase B. Therefore, the most dissimilar regions in the subunits are not responsible for their dissimilar biochemical properties. A second fusion protein was made that also included the more homologous middle section of the alpha chain. This protein expressed the substrate specificity unique to isozymes containing an alpha subunit (A and S). We conclude that the region responsible for the ability of the alpha subunit to bind negatively charged substrates is located within residues alpha 132-283. Interestingly, the remaining carboxy-terminal section from the beta chain, beta 316-556, was sufficient to allow this chimera to hydrolyze GM2 ganglioside with 10% the specific activity of heterodimeric hexosaminidase A. Thus, the carboxy-terminal section of each subunit is likely involved in subunit-subunit interactions.
Merrick, David; Chapin, Hannah; Baggs, Julie E.; Yu, Zhiheng; Somlo, Stefan; Sun, Zhaoxia; Hogenesch, John B.; Caplan, Michael
2011-01-01
Summary Mutations in Pkd1, encoding polycystin-1 (PC1), cause Autosomal Dominant Polycystic Kidney Disease (ADPKD). We show that the carboxy-terminal tail (CTT) of PC1 is released by γ-secretase-mediated cleavage and regulates the Wnt and CHOP pathways by binding the transcription factors TCF and CHOP, disrupting their interaction with the common transcriptional co-activator p300. Loss of PC1 causes increased proliferation and apoptosis, while reintroducing PC1-CTT into cultured Pkd1 null cells reestablishes normal growth rate, suppresses apoptosis, and prevents cyst formation. Inhibition of γ-secretase activity impairs the ability of PC1 to suppress growth and apoptosis, and leads to cyst formation in cultured renal epithelial cells. Expression of the PC1-CTT is sufficient to rescue the dorsal body curvature phenotype in zebrafish embryos resulting from either γ-secretase inhibition or suppression of Pkd1 expression. Thus, γ-secretase-dependent release of the PC1-CTT creates a protein fragment whose expression is sufficient to suppress ADPKD-related phenotypes in vitro and in vivo. PMID:22178500
Human cyclophilin has a significantly higher affinity for HIV-1 recombinant p55 than p24.
Bristow, R; Byrne, J; Squirell, J; Trencher, H; Carter, T; Rodgers, B; Saman, E; Duncan, J
1999-04-01
The ability of cyclophilin to bind a panel of recombinant HIV-gag proteins was assessed using sensitive, quantitative, sandwich enzyme-linked immunosorbant assays (ELISAs). Significantly higher binding to cyclophilin was observed when recombinants contained at least 12 carboxy-terminal amino acids of p17 in addition to p24 sequences. These results indicate that the carboxy-terminus of p17 is important for optimal binding of cyclophilin to p24 and support the theory that cyclophilin acts on the uncleaved HIV-1 gag (p17-p24) precursor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetrangolo, Giovanni Paolo, E-mail: giovanni.cetrangolo@unimol.it; Arcaro, Alessia, E-mail: alessia.arcaro@unimol.it; Lepore, Alessio, E-mail: alessiolepore@alice.it
Highlights: • A carboxy-terminal fragment (residues 2515–2750) was isolated from a low-iodine bTg. • Post-translational status of 8 tyrosines in bTg region 2515–2750 was assessed by MS. • Tyr2522 of bovine Tg is an interspecifically conserved hormonogenic donor site. • Propensities of Tyr residues to mono or diiodination optimize T3 yield from Tyr2748. - Abstract: A tryptic fragment (b5{sub TR,NR}), encompassing residues 2515–2750, was isolated from a low-iodine (0.26% by mass) bovine thyroglobulin, by limited proteolysis with trypsin and preparative, continuous-elution SDS–PAGE. The fragment was digested with Asp-N endoproteinase and analyzed by reverse-phase HPLC electrospray ionization quadrupole time-of-flight mass spectrometry,more » revealing the formation of: 3-monoiodotyrosine and dehydroalanine from Tyr2522; 3-monoiodotyrosine from Tyr2555 and Tyr2569; 3-monoiodotyrosine and 3,5-diiodotyrosine from Tyr2748. The data presented document, by direct mass spectrometric identifications, efficient iodophenoxyl ring transfer from monoiodinated hormonogenic donor Tyr2522 and efficient mono- and diiodination of hormonogenic acceptor Tyr2748, under conditions which permitted only limited iodination of Tyr2555 and Tyr2569, in low-iodine bovine thyroglobulin. The present study thereby provides: (1) a rationale for the preferential synthesis of T3 at the carboxy-terminal end of thyroglobulin, at low iodination level; (2) confirmation for the presence of an interspecifically conserved hormonogenic donor site in the carboxy-terminal domain of thyroglobulin; (3) solution for a previous uncertainty, concerning the precise location of such donor site in bovine thyroglobulin.« less
Segado-Arenas, Antonio; Infante-Garcia, Carmen; Benavente-Fernandez, Isabel; Sanchez-Sotano, Daniel; Ramos-Rodriguez, Juan Jose; Alonso-Ojembarrena, Almudena; Lubian-Lopez, Simon; Garcia-Alloza, Monica
2018-06-01
Germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH) remains a serious complication in the preterm newborn. The significant increase of survival rates in extremelye preterm newborns has also contributed to increase the absolute number of patients developing GMH-IVH. However, there are relatively few available animal models to understand the underlying mechanisms and peripheral markers or prognostic tools. In order to further characterize central complications and evolution of GMH-IVH, we injected collagenase intraventricularly to P7 CD1 mice and assessed them in the short (P14) and the long term (P70). Early complications at P14 included ventricle enlargement, increased bleeding, and inflammation. These alterations were maintained at P70, when increased tau phosphorylation and decreased neurogenesis were also observed, resulting in impaired learning and memory in these early adult mice. We additionally analyzed peripheral blood biomarkers in both our mouse model and preterm newborns with GMH-IVH. While MMP9 levels were not significantly altered in mice or newborns, reduced gelsolin levels and increased ubiquitin carboxy-terminal hydrolase L1 and tau levels were detected in GMH-IVH patients at birth. A similar profile was observed in our mouse model after hemorrhage. Interestingly, early changes in gelsolin and carboxy-terminal hydrolase L1 levels significantly correlated with the hemorrhage grade in newborns. Altogether, our data support the utility of this animal model to reproduce the central complications and peripheral changes observed in the clinic, and support the consideration of gelsolin, carboxy-terminal hydrolase L1, and tau as feasible biomarkers to predict the development of GMH-IVH.
Takahara, Michiyo; Sakaue, Haruka; Onishi, Yukiko; Yamagishi, Marifu; Kida, Yuichiro; Sakaguchi, Masao
2013-01-11
Nascent chain release from membrane-bound ribosomes by the termination codon was investigated using a cell-free translation system from rabbit supplemented with rough microsomal membrane vesicles. Chain release was extremely slow when mRNA ended with only the termination codon. Tail extension after the termination codon enhanced the release of the nascent chain. Release reached plateau levels with tail extension of 10 bases. This requirement was observed with all termination codons: TAA, TGA and TAG. Rapid release was also achieved by puromycin even in the absence of the extension. Efficient translation termination cannot be achieved in the presence of only a termination codon on the mRNA. Tail extension might be required for correct positioning of the termination codon in the ribosome and/or efficient recognition by release factors. Copyright © 2012. Published by Elsevier Inc.
Inoue, A; Nakata, Y; Yajima, H; Segawa, T
1984-10-01
In the present study, we demonstrated the existence of an active uptake system for substance P carboxy-terminal heptapeptide, (5-11)SP. When a fraction from rabbit brain enriched in glial cells was incubated with [3H] (5-11)SP, an uptake of [3H](5-11)SP was observed. The uptake system has the properties of an active transport mechanism. Kinetic analysis indicated two components of [3H](5-11)SP uptake, one representing a high and the other a low affinity transport system. After unilateral ablation of the striatum, approximately 30% of the high affinity [3H](5-11)SP uptake capacity of substantia nigra slices disappeared. The subcellular distribution of the high affinity uptake indicated that [3H] 5-hydroxytryptamine was taken up mostly into the P2B fraction (synaptosomal fraction), whereas [3H](5-11)SP was taken up into the P2A fraction (myelin fraction) to the same extent as into the P2B fraction. These results suggest that when SP is released from nerve terminals, it is hydrolysed into (5-11)SP, which is in turn accumulated into glial cells as well as nerve terminals and that this high affinity uptake mechanism may play an important role in terminating the synaptic action of SP.
van de Locht, A; Lamba, D; Bauer, M; Huber, R; Friedrich, T; Kröger, B; Höffken, W; Bode, W
1995-11-01
Rhodniin is a highly specific inhibitor of thrombin isolated from the assassin bug Rhodnius prolixus. The 2.6 Angstrum crystal structure of the non-covalent complex between recombinant rhodniin and bovine alpha-thrombin reveals that the two Kazal-type domains of rhodniin bind to different sites of thrombin. The amino-terminal domain binds in a substrate-like manner to the narrow active-site cleft of thrombin; the imidazole group of the P1 His residue extends into the S1 pocket to form favourable hydrogen/ionic bonds with Asp189 at its bottom, and additionally with Glu192 at its entrance. The carboxy-terminal domain, whose distorted reactive-site loop cannot adopt the canonical conformation, docks to the fibrinogen recognition exosite via extensive electrostatic interactions. The rather acidic polypeptide linking the two domains is displaced from the thrombin surface, with none of its residues involved in direct salt bridges with thrombin. The tight (Ki = 2 x 10(-13) M) binding of rhodniin to thrombin is the result of the sum of steric and charge complementarity of the amino-terminal domain towards the active-site cleft, and of the electrostatic interactions between the carboxy-terminal domain and the exosite.
Diverse C-Terminal Sequences Involved in Flavobacterium johnsoniae Protein Secretion
Kulkarni, Surashree S.; Zhu, Yongtao; Brendel, Colton J.
2017-01-01
ABSTRACT Flavobacterium johnsoniae and many related bacteria secrete proteins across the outer membrane using the type IX secretion system (T9SS). Proteins secreted by T9SSs have amino-terminal signal peptides for export across the cytoplasmic membrane by the Sec system and carboxy-terminal domains (CTDs) targeting them for secretion across the outer membrane by the T9SS. Most but not all T9SS CTDs belong to the family TIGR04183 (type A CTDs). We functionally characterized diverse CTDs for secretion by the F. johnsoniae T9SS. Attachment of the CTDs from F. johnsoniae RemA, AmyB, and ChiA to the foreign superfolder green fluorescent protein (sfGFP) that had a signal peptide at the amino terminus resulted in secretion across the outer membrane. In each case, approximately 80 to 100 amino acids from the extreme carboxy termini were needed for efficient secretion. Several type A CTDs from distantly related members of the phylum Bacteroidetes functioned in F. johnsoniae, supporting the secretion of sfGFP by the F. johnsoniae T9SS. F. johnsoniae SprB requires the T9SS for secretion but lacks a type A CTD. It has a conserved C-terminal domain belonging to the family TIGR04131, which we refer to as a type B CTD. The CTD of SprB was required for its secretion, but attachment of C-terminal regions of SprB of up to 1,182 amino acids to sfGFP failed to result in secretion. Additional features outside the C-terminal region of SprB may be required for its secretion. IMPORTANCE Type IX protein secretion systems (T9SSs) are common in but limited to members of the phylum Bacteroidetes. Most proteins that are secreted by T9SSs have conserved carboxy-terminal domains that belong to the protein domain family TIGR04183 (type A CTDs) or TIGR04131 (type B CTDs). Here, we identify features of T9SS CTDs of F. johnsoniae that are required for protein secretion and demonstrate that type A CTDs from distantly related members of the phylum function with the F. johnsoniae T9SS to secrete the foreign protein sfGFP. In contrast, type B CTDs failed to target sfGFP for secretion, suggesting a more complex association with the T9SS. PMID:28396348
Gasek, Nathan S; Nyland, Lori R; Vigoreaux, Jim O
2016-04-27
Flightin is a myosin binding protein present in Pancrustacea. In Drosophila, flightin is expressed in the indirect flight muscles (IFM), where it is required for the flexural rigidity, structural integrity, and length determination of thick filaments. Comparison of flightin sequences from multiple Drosophila species revealed a tripartite organization indicative of three functional domains subject to different evolutionary constraints. We use atomic force microscopy to investigate the functional roles of the N-terminal domain and the C-terminal domain that show different patterns of sequence conservation. Thick filaments containing a C-terminal domain truncated flightin (fln(ΔC44)) are significantly shorter (2.68 ± 0.06 μm; p < 0.005) than thick filaments containing a full length flightin (fln⁺; 3.21 ± 0.05 μm) and thick filaments containing an N-terminal domain truncated flightin (fln(ΔN62); 3.21 ± 0.06 μm). Persistence length was significantly reduced in fln(ΔN62) (418 ± 72 μm; p < 0.005) compared to fln⁺ (1386 ± 196μm) and fln(ΔC44)(1128 ± 193 μm). Statistical polymer chain analysis revealed that the C-terminal domain fulfills a secondary role in thick filament bending propensity. Our results indicate that the flightin amino and carboxy terminal domains make distinct contributions to thick filament biomechanics. We propose these distinct roles arise from the interplay between natural selection and sexual selection given IFM's dual role in flight and courtship behaviors.
Gasek, Nathan S.; Nyland, Lori R.; Vigoreaux, Jim O.
2016-01-01
Flightin is a myosin binding protein present in Pancrustacea. In Drosophila, flightin is expressed in the indirect flight muscles (IFM), where it is required for the flexural rigidity, structural integrity, and length determination of thick filaments. Comparison of flightin sequences from multiple Drosophila species revealed a tripartite organization indicative of three functional domains subject to different evolutionary constraints. We use atomic force microscopy to investigate the functional roles of the N-terminal domain and the C-terminal domain that show different patterns of sequence conservation. Thick filaments containing a C-terminal domain truncated flightin (flnΔC44) are significantly shorter (2.68 ± 0.06 μm; p < 0.005) than thick filaments containing a full length flightin (fln+; 3.21 ± 0.05 μm) and thick filaments containing an N-terminal domain truncated flightin (flnΔN62; 3.21 ± 0.06 μm). Persistence length was significantly reduced in flnΔN62 (418 ± 72 μm; p < 0.005) compared to fln+ (1386 ± 196μm) and flnΔC44(1128 ± 193 μm). Statistical polymer chain analysis revealed that the C-terminal domain fulfills a secondary role in thick filament bending propensity. Our results indicate that the flightin amino and carboxy terminal domains make distinct contributions to thick filament biomechanics. We propose these distinct roles arise from the interplay between natural selection and sexual selection given IFM’s dual role in flight and courtship behaviors. PMID:27128952
Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction
NASA Technical Reports Server (NTRS)
Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.
1991-01-01
Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data provide evidence that collagen telopeptide sites play a role in collagen gel lattice contraction.
Silva, Éverton F.; Medeiros, Marco A.; McBride, Alan J. A.; Matsunaga, Jim; Esteves, Gabriela S.; Ramos, João G. R.; Santos, Cleiton S.; Croda, Júlio; Homma, Akira; Dellagostin, Odir A.; Haake, David A.; Reis, Mitermayer G.; Ko, Albert I.
2007-01-01
Subunit vaccines are a potential intervention strategy against leptospirosis, which is a major public health problem in developing countries and a veterinary disease in livestock and companion animals worldwide. Leptospiral immunoglobulin-like (Lig) proteins are a family of surface-exposed determinants that have Ig-like repeat domains found in virulence factors such as intimin and invasin. We expressed fragments of the repeat domain regions of LigA and LigB from Leptospira interrogans serovar Copenhageni. Immunization of Golden Syrian hamsters with Lig fragments in Freund’s adjuvant induced robust antibody responses against recombinant protein and native protein, as detected by ELISA and immunoblot, respectively. A single fragment, LigANI, which corresponds to the six carboxy-terminal Ig-like repeat domains of the LigA molecule, conferred immunoprotection against mortality (67-100%, P <0.05) in hamsters which received a lethal inoculum of L. interrogans serovar Copenhageni. However, immunization with this fragment did not confer sterilizing immunity. These findings indicate that the carboxy-terminal portion of LigA is an immunoprotective domain and may serve as a vaccine candidate for human and veterinary leptospirosis. PMID:17629368
Silva, Everton F; Medeiros, Marco A; McBride, Alan J A; Matsunaga, Jim; Esteves, Gabriela S; Ramos, João G R; Santos, Cleiton S; Croda, Júlio; Homma, Akira; Dellagostin, Odir A; Haake, David A; Reis, Mitermayer G; Ko, Albert I
2007-08-14
Subunit vaccines are a potential intervention strategy against leptospirosis, which is a major public health problem in developing countries and a veterinary disease in livestock and companion animals worldwide. Leptospiral immunoglobulin-like (Lig) proteins are a family of surface-exposed determinants that have Ig-like repeat domains found in virulence factors such as intimin and invasin. We expressed fragments of the repeat domain regions of LigA and LigB from Leptospira interrogans serovar Copenhageni. Immunization of Golden Syrian hamsters with Lig fragments in Freund's adjuvant induced robust antibody responses against recombinant protein and native protein, as detected by ELISA and immunoblot, respectively. A single fragment, LigANI, which corresponds to the six carboxy-terminal Ig-like repeat domains of the LigA molecule, conferred immunoprotection against mortality (67-100%, P<0.05) in hamsters which received a lethal inoculum of L. interrogans serovar Copenhageni. However, immunization with this fragment did not confer sterilizing immunity. These findings indicate that the carboxy-terminal portion of LigA is an immunoprotective domain and may serve as a vaccine candidate for human and veterinary leptospirosis.
Yoon, Jeong-Hwan; Sudo, Katsuko; Kuroda, Masahiko; Kato, Mitsuyasu; Lee, In-Kyu; Han, Jin Soo; Nakae, Susumu; Imamura, Takeshi; Kim, Juryun; Ju, Ji Hyeon; Kim, Dae-Kee; Matsuzaki, Koichi; Weinstein, Michael; Matsumoto, Isao; Sumida, Takayuki; Mamura, Mizuko
2015-01-01
Transforming growth factor-β (TGF-β) and interleukin-6 (IL-6) are the pivotal cytokines to induce IL-17-producing CD4+ T helper cells (TH17); yet their signalling network remains largely unknown. Here we show that the highly homologous TGF-β receptor-regulated Smads (R-Smads): Smad2 and Smad3 oppositely modify STAT3-induced transcription of IL-17A and retinoic acid receptor-related orphan nuclear receptor, RORγt encoded by Rorc, by acting as a co-activator and co-repressor of STAT3, respectively. Smad2 linker phosphorylated by extracellular signal-regulated kinase (ERK) at the serine 255 residue interacts with STAT3 and p300 to transactivate, whereas carboxy-terminal unphosphorylated Smad3 interacts with STAT3 and protein inhibitor of activated STAT3 (PIAS3) to repress the Rorc and Il17a genes. Our work uncovers carboxy-terminal phosphorylation-independent noncanonical R-Smad–STAT3 signalling network in TH17 differentiation. PMID:26194464
Yoon, Jeong-Hwan; Sudo, Katsuko; Kuroda, Masahiko; Kato, Mitsuyasu; Lee, In-Kyu; Han, Jin Soo; Nakae, Susumu; Imamura, Takeshi; Kim, Juryun; Ju, Ji Hyeon; Kim, Dae-Kee; Matsuzaki, Koichi; Weinstein, Michael; Matsumoto, Isao; Sumida, Takayuki; Mamura, Mizuko
2015-07-21
Transforming growth factor-β (TGF-β) and interleukin-6 (IL-6) are the pivotal cytokines to induce IL-17-producing CD4(+) T helper cells (TH17); yet their signalling network remains largely unknown. Here we show that the highly homologous TGF-β receptor-regulated Smads (R-Smads): Smad2 and Smad3 oppositely modify STAT3-induced transcription of IL-17A and retinoic acid receptor-related orphan nuclear receptor, RORγt encoded by Rorc, by acting as a co-activator and co-repressor of STAT3, respectively. Smad2 linker phosphorylated by extracellular signal-regulated kinase (ERK) at the serine 255 residue interacts with STAT3 and p300 to transactivate, whereas carboxy-terminal unphosphorylated Smad3 interacts with STAT3 and protein inhibitor of activated STAT3 (PIAS3) to repress the Rorc and Il17a genes. Our work uncovers carboxy-terminal phosphorylation-independent noncanonical R-Smad-STAT3 signalling network in TH17 differentiation.
Nakata, Y; Kusaka, Y; Yajima, H; Segawa, T
1981-12-01
We previously reported that nerve terminals and glial cells lack an active uptake system capable of terminating transmitter action of substance P (SP). In the present study, we demonstrated the existence of an active uptake system for SP carboxy-terminal heptapeptide, (5-11)SP. When the slices from either rat brain or rabbit spinal cord were incubated with [3H](5-11)SP, the uptake of (5-11)SP into slices was observed. The uptake system has the properties of an active transport mechanism: it is dependent on temperature and sensitive to hypoosmotic treatment and is inhibited by ouabain and dinitrophenol (DNP). In the brain, (5-11)SP was accumulated by means of a high-affinity and a low-affinity uptake system. The Km and the Vmax values for the high-affinity system were 4.20 x 10(-8) M and 7.59 fmol/10 mg wet weight/min, respectively, whereas these values for the low-affinity system were 1.00 x 10(-6) M and 100 fmol/10 mg wet weight/min, respectively. In the spinal cord, there was only one uptake system, with a Km value of 2.16 x 10(-7) M and Vmax value of 26.2 fmol/10 mg wet weight/min. These results suggest that when SP is released from nerve terminals, it is hydrolysed into (5-11)SP before or after acting as a neurotransmitter, which is in turn accumulated into nerve terminals. Therefore, the uptake system may represent a possible mechanism for the inactivation of SP.
PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action.
Otaka, Hironori; Ishikawa, Hirokazu; Morita, Teppei; Aiba, Hiroji
2011-08-09
Major bacterial small RNAs (sRNAs) regulate the translation and stability of target mRNAs through base pairing with the help of the RNA chaperone Hfq. The Hfq-dependent sRNAs consist of three basic elements, mRNA base-pairing region, Hfq-binding site, and rho-independent terminator. Although the base-pairing region and the terminator are well documented in many sRNAs, the Hfq-binding site is less well-defined except that Hfq binds RNA with a preference for AU-rich sequences. Here, we performed mutational and biochemical studies to define the sRNA site required for Hfq action using SgrS as a model sRNA. We found that shortening terminator polyU tail eliminates the ability of SgrS to bind to Hfq and to silence ptsG mRNA. We also demonstrate that the SgrS terminator can be replaced with any foreign rho-independent terminators possessing a polyU tail longer than 8 without losing the ability to silence ptsG mRNA in an Hfq-dependent manner. Moreover, we found that shortening the terminator polyU tail of several other sRNAs also eliminates the ability to bind to Hfq and to regulate target mRNAs. We conclude that the polyU tail of sRNAs is essential for Hfq action in general. The data also indicate that the terminator polyU tail plays a role in Hfq-dependent stabilization of sRNAs.
PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action
Otaka, Hironori; Ishikawa, Hirokazu; Morita, Teppei; Aiba, Hiroji
2011-01-01
Major bacterial small RNAs (sRNAs) regulate the translation and stability of target mRNAs through base pairing with the help of the RNA chaperone Hfq. The Hfq-dependent sRNAs consist of three basic elements, mRNA base-pairing region, Hfq-binding site, and rho-independent terminator. Although the base-pairing region and the terminator are well documented in many sRNAs, the Hfq-binding site is less well-defined except that Hfq binds RNA with a preference for AU-rich sequences. Here, we performed mutational and biochemical studies to define the sRNA site required for Hfq action using SgrS as a model sRNA. We found that shortening terminator polyU tail eliminates the ability of SgrS to bind to Hfq and to silence ptsG mRNA. We also demonstrate that the SgrS terminator can be replaced with any foreign rho-independent terminators possessing a polyU tail longer than 8 without losing the ability to silence ptsG mRNA in an Hfq-dependent manner. Moreover, we found that shortening the terminator polyU tail of several other sRNAs also eliminates the ability to bind to Hfq and to regulate target mRNAs. We conclude that the polyU tail of sRNAs is essential for Hfq action in general. The data also indicate that the terminator polyU tail plays a role in Hfq-dependent stabilization of sRNAs. PMID:21788484
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berbís, M. Álvaro; André, Sabine; Cañada, F. Javier
2014-01-03
Highlights: •Galectin-3 is composed of a carbohydrate recognition domain and an N-terminal tail. •Synthetic peptides derived from the tail are shown to interact with the CRD. •This interaction is modulated by Ser- and Tyr-phosphorylation of the peptides. -- Abstract: Galectin-3 (Gal-3) is a multi-functional effector protein that functions in the cytoplasm and the nucleus, as well as extracellularly following non-classical secretion. Structurally, Gal-3 is unique among galectins with its carbohydrate recognition domain (CRD) attached to a rather long N-terminal tail composed mostly of collagen-like repeats (nine in the human protein) and terminating in a short non-collagenous terminal peptide sequence uniquemore » in this lectin family and not yet fully explored. Although several Ser and Tyr sites within the N-terminal tail can be phosphorylated, the physiological significance of this post-translational modification remains unclear. Here, we used a series of synthetic (phospho)peptides derived from the tail to assess phosphorylation-mediated interactions with {sup 15}N-labeled Gal-3 CRD. HSQC-derived chemical shift perturbations revealed selective interactions at the backface of the CRD that were attenuated by phosphorylation of Tyr 107 and Tyr 118, while phosphorylation of Ser 6 and Ser 12 was essential. Controls with sequence scrambling underscored inherent specificity. Our studies shed light on how phosphorylation of the N-terminal tail may impact on Gal-3 function and prompt further studies using phosphorylated full-length protein.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, Christopher W.; Chaney, Joseph; Korbel, Gregory
2012-07-25
UCHL1 is a 223 amino acid member of the UCH family of deubiquitinating enzymes (DUBs), found abundantly and exclusively expressed in neurons and the testis in normal tissues. Two naturally occurring variants of UCHL1 are directly involved in Parkinson's disease (PD). Not only has UCHL1 been linked to PD, but it has oncogenic properties, having been found abnormally expressed in lung, pancreatic, and colorectal cancers. Although inhibitors of UCHL1 have been described previously the co-crystal structure of the enzyme bound to any inhibitor has not been reported. Herein, we report the X-ray structure of UCHL1 co-crystallized with a peptide-based fluoromethylketonemore » inhibitor, Z-VAE(OMe)-FMK (VAEFMK) at 2.35 {angstrom} resolution. The co-crystal structure reveals that the inhibitor binds in the active-site cleft, irreversibly modifying the active-site cysteine; however, the catalytic histidine is still misaligned as seen in the native structure, suggesting that the inhibitor binds to an inactive form of the enzyme. Our structure also reveals that the inhibitor approaches the active-site cleft from the opposite side of the crossover loop as compared to the direction of approach of ubiquitin's C-terminal tail, thereby occupying the P1{prime} (leaving group) site, a binding site perhaps used by the unknown C-terminal extension of ubiquitin in the actual in vivo substrate(s) of UCHL1. This structure provides a view of molecular contacts at the active-site cleft between the inhibitor and the enzyme as well as furnishing structural information needed to facilitate further design of inhibitors targeted to UCHL1 with high selectivity and potency.« less
Liner Technology Program. Volume 3. Liner Development Methodology Manual
1982-05-01
derivative of trimesic acid, trimenoyl-l- (2-ethyl) aziridine BNO Hydroxyl ethyl ester of carboxy-terminated polybutadiene Catocene Liquid ferrocene ...diisocyanate MAPO rris-l-(2-methyl) aziridinyl phosphine oxide I.’ lNA Methyl nedic anhydride; methyl endo-cis-cicyolo-2,2,1-5- heptene-2,3-dicarboxylic
Chen, Zan; Dempsey, Daniel R.; Thomas, Stefani N.; Hayward, Dawn; Bolduc, David M.; Cole, Philip A.
2016-01-01
PTEN is a tumor suppressor that functions to negatively regulate the PI3K/AKT pathway as the lipid phosphatase for phosphatidylinositol 3,4,5-triphosphate. Phosphorylation of a cluster of Ser/Thr residues (amino acids 380–385) on the C-terminal tail serves to alter the conformational state of PTEN from an open active state to a closed inhibited state, resulting in a reduction of plasma membrane localization and inhibition of enzyme activity. The relative contribution of each phosphorylation site to PTEN autoinhibition and the structural basis for the conformational closure is still unclear. To further the structural understanding of PTEN regulation by C-terminal tail phosphorylation, we used protein semisynthesis to insert stoichiometric and site-specific phospho-Ser/Thr(s) in the C-terminal tail of PTEN. Additionally, we employed photo-cross-linking to map the intramolecular PTEN interactions of the phospho-tail. Systematic evaluation of the PTEN C-tail phospho-cluster showed autoinhibition, and conformational closure was influenced by the aggregate effect of multiple phospho-sites rather than dominated by a single phosphorylation site. Moreover, photo-cross-linking suggested a direct interaction between the PTEN C-tail and a segment in the N-terminal region of the catalytic domain. Mutagenesis experiments provided additional insights into how the PTEN phospho-tail interacts with both the C2 and catalytic domains. PMID:27226612
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pell, L.; Liu, A; Edmonds, L
The tail terminator protein (TrP) plays an essential role in phage tail assembly by capping the rapidly polymerizing tail once it has reached its requisite length and serving as the interaction surface for phage heads. Here, we present the 2.7-A crystal structure of a hexameric ring of gpU, the TrP of phage ?. Using sequence alignment analysis and site-directed mutagenesis, we have shown that this multimeric structure is biologically relevant and we have delineated its functional surfaces. Comparison of the hexameric crystal structure with the solution structure of gpU that we previously solved using NMR spectroscopy shows large structural changesmore » occurring upon multimerization and suggests a mechanism that allows gpU to remain monomeric at high concentrations on its own, yet polymerize readily upon contact with an assembled tail tube. The gpU hexamer displays several flexible loops that play key roles in head and tail binding, implying a role for disorder-to-order transitions in controlling assembly as has been observed with other ? morphogenetic proteins. Finally, we have found that the hexameric structure of gpU is very similar to the structure of a putative TrP from a contractile phage tail even though it displays no detectable sequence similarity. This finding coupled with further bioinformatic investigations has led us to conclude that the TrPs of non-contractile-tailed phages, such as ?, are evolutionarily related to those of contractile-tailed phages, such as P2 and Mu, and that all long-tailed phages may utilize a conserved mechanism for tail termination.« less
Cohen, A B; Gruenke, L D; Craig, J C; Geczy, D
1977-01-01
alpha-1-Antitrypsin is a serum protein that inhibits many proteolytic enzymes. Recently, it was suggested that the alpha-1-antitrypsin-trypsin complex is an acyl ester analogous to the acyl intermediate that forms between trypsin and its substrates. In previous work we showed that the alpha-1-antitrypsin-trypsin complex can be split at high pH, releasing a component of alpha-1-antitrypsin. This component had a new carboxyl-terminal lysine, and it had lost a peptide of about 4000 daltons. In order to determine whether the alpha-1-antitrypsin is bound to trypsin through the new carboxy-terminal lysine, as would be expected if the above hypothesis is correct, we split the complex in the presence of 18OH-. When the new carboxy-terminal lysine was cleaved with carboxypeptidase B, singly labeled, doubly labeled, and unlabeled lysine were recovered. These data support the hypothesis that the alpha-1-antitrypsin-trypsin complex is an acyl ester or a tetrahedral precursor that is transformed into the acyl ester form at high pH. If other enzymes are bound by a similar mechanism, the methods used may be useful in determining which amino acids on alpha-1-antitrypsin bind covalently to each enzyme. PMID:303770
Funke, Jan; Prasse, Carsten; Ternes, Thomas A
2016-07-01
The fate of five antiviral drugs (abacavir, emtricitabine, ganciclovir, lamivudine and zidovudine) was investigated in biological wastewater treatment. Investigations of degradation kinetics were accompanied by the elucidation of formed transformation products (TPs) using activated sludge lab experiments and subsequent LC-HRMS analysis. Degradation rate constants ranged between 0.46 L d(-1) gSS(-1) (zidovudine) and 55.8 L d(-1) gSS(-1) (abacavir). Despite these differences of the degradation kinetics, the same main biotransformation reaction was observed for all five compounds: oxidation of the terminal hydroxyl-moiety to the corresponding carboxylic acid (formation of carboxy-TPs). In addition, the oxidation of thioether moieties to sulfoxides was observed for emtricitabine and lamivudine. Antiviral drugs were detected in influents of municipal wastewater treatment plants (WWTPs) with concentrations up to 980 ng L(-1) (emtricitabine), while in WWTP effluents mainly the TPs were found with concentration levels up to 1320 ng L(-1) (carboxy-abacavir). Except of zidovudine none of the original antiviral drugs were detected in German rivers and streams, whereas the concentrations of the TPs ranged from 16 ng L(-1) for carboxy-lamivudine up to 750 ng L(-1) for carboxy-acyclovir. These concentrations indicate an appreciable portion from WWTP effluents present in rivers and streams, as well as the high environmental persistence of the carboxy-TPs. As a result three of the carboxylic TPs were detected in finished drinking water. Copyright © 2016 Elsevier Ltd. All rights reserved.
Polymeric Additives For Graphite/Epoxy Composites
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Nir, Z.
1990-01-01
Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.
USDA-ARS?s Scientific Manuscript database
Polarized growth of pollen tubes is a critical step for successful reproduction in angiosperms and is controlled by ROP GTPases. Spatiotemporal activation of ROP (Rho GTPases of plants) necessitates a complex and sophisticated regulatory system, in which guanine nucleotide exchange factors (RopGEFs)...
1989-03-01
PVA, CTBN , PBAA, PMMA, etc. As a test of this predictability, we dissolved a vinyl acetate polymer in THF, and then added PMVT, and did succeed in...Polyvinyl acetate CTBN Carboxy terminated butadiene acrylonitrile PBAA Polybutadiene acrylic acid PMMA Polymethyl. methacrylate THF Tetrahydrofuran NMR
Nagamine, Satoshi; Fujiwara, Yuuki; Shimizu, Toshio; Kawata, Akihiro; Wada, Keiji; Isozaki, Eiji; Kabuta, Tomohiro
2015-06-01
Guillain-Barré syndrome (GBS) is an acute immune-mediated polyneuropathy. Although its pathogenic mechanism has been revealed and various therapeutic trials have been performed, a proportion of patients experience the severe sequelae associated with GBS. In this paper, we investigated whether the amount of the neuron-specific protein, ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), in the cerebrospinal fluid of patients with GBS was correlated with the clinical course of the disease. UCH-L1 protein levels were greater in patients with GBS than in controls. The patients with GBS whose UCH-L1 protein levels were higher than those of the controls presented with more severe symptoms at peak. UCH-L1 protein levels tended to become elevated as the total protein levels were increased; however, elevated UCH-L1 without an increase in total protein might be correlated with severe disease course (bedridden or ventilator supported). These results suggest that UCH-L1 could be a biomarker associated with the severity of the disease at the acute phase of GBS.
Ulivieri, Fabio M; Piodi, Luca P; Grossi, Enzo; Rinaudo, Luca; Messina, Carmelo; Tassi, Anna P; Filopanti, Marcello; Tirelli, Anna; Sardanelli, Francesco
2018-01-01
The consolidated way of diagnosing and treating osteoporosis in order to prevent fragility fractures has recently been questioned by some papers, which complained of overdiagnosis and consequent overtreatment of this pathology with underestimating other causes of the fragility fractures, like falls. A new clinical approach is proposed for identifying the subgroup of patients prone to fragility fractures. This retrospective observational study was conducted from January to June 2015 at the Nuclear Medicine-Bone Metabolic Unit of the of the Fondazione IRCCS Ca' Granda, Milan, Italy. An Italian population of 125 consecutive postmenopausal women was investigated for bone quantity and bone quality. Patients with neurological diseases regarding balance and vestibular dysfunction, sarcopenia, past or current history of diseases and use of drugs known to affect bone metabolism were excluded. Dual X-ray absorptiometry was used to assess bone quantity (bone mineral density) and bone quality (trabecular bone score and bone strain). Biochemical markers of bone turnover (type I collagen carboxy-terminal telopeptide, alkaline phosphatase, vitamin D) have been measured. Morphometric fractures have been searched by spine radiography. Balance was evaluated by the Romberg test. The data were evaluated with the neural network analysis using the Auto Contractive Map algorithm. The resulting semantic map shows the Minimal Spanning Tree and the Maximally Regular Graph of the interrelations between bone status parameters, balance conditions and fractures of the studied population. A low fracture risk seems to be related to a low carboxy-terminal cross-linking telopeptide of type I collagen level, whereas a positive Romberg test, together with compromised bone trabecular microarchitecture DXA parameters, appears to be strictly connected with fragility fractures. A simple assessment of the risk of fragility fracture is proposed in order to identify those frail patients at risk for osteoporotic fractures, who may have the best benefit from a pharmacological and physiotherapeutic approach.
USDA-ARS?s Scientific Manuscript database
Maize ChitA chitinase is composed of a small, hevein-like domain attached to a carboxy-terminal chitinase domain. During fungal ear rot, the hevein-like domain is cleaved by secreted fungal proteases to produce truncated forms of ChitA. Here, we report a structural and biochemical characterization o...
Peptide selection by class I molecules of the major histocompatibility complex.
Elliott, T; Smith, M; Driscoll, P; McMichael, A
1993-12-01
Class I molecules of the major histocompatibility complex (MHC) bind peptides derived from cytoplasmic proteins. Comparison of over 100 such peptides reveals the importance of the carboxy-terminal residue in selective binding. Recent evidence implicates the proteases and transporters of the processing pathway in providing peptides with the correct residues at the carboxyl terminus.
Pittaluga, Anna; Feligioni, Marco; Longordo, Fabio; Luccini, Elisa; Raiteri, Maurizio
2006-03-01
Postsynaptic glutamate AMPA receptors (AMPARs) can recycle between plasma membrane and intracellular pools. In contrast, trafficking of presynaptic AMPARs has not been investigated. AMPAR surface expression involves interactions between the GluR2 carboxy tail and various proteins including glutamate receptor-interacting protein (GRIP), AMPA receptor-binding protein (ABP), protein interacting with C kinase 1 (PICK1), N-ethyl-maleimide-sensitive fusion protein (NSF). Here, peptides known to selectively block the above interactions were entrapped into synaptosomes to study the effects on the AMPA-evoked release of [3H]noradrenaline ([3H]NA) and [3H]acetylcholine ([3H]ACh) from rat hippocampal and cortical synaptosomes, respectively. Internalization of pep2-SVKI to prevent GluR2-GRIP/ABP/PICK1 interactions potentiated the AMPA-evoked release of [3H]NA but left unmodified that of [3H]ACh. Similar potentiation was caused by pep2-AVKI, the blocker of GluR2-PICK1 interaction. Conversely, a decrease in the AMPA-evoked release of [3H]NA, but not of [3H]ACh, was caused by pep2m, a selective blocker of the GluR2-NSF interaction. In the presence of pep2-SVKI the presynaptic AMPARs on noradrenergic terminals lost sensitivity to cyclothiazide. AMPARs releasing [3H]ACh, but not those releasing [3H]NA, were sensitive to spermine, suggesting that they are GluR2-lacking AMPARs. To conclude: (i) release-regulating presynaptic AMPARs constitutively cycle in isolated nerve terminals; (ii) the process exhibits neuronal selectivity; (iii) AMPAR trafficking and desensitization may be interrelated.
Characterization of a Nucleus-Encoded Chitinase from the Yeast Kluyveromyces lactis
Colussi, Paul A.; Specht, Charles A.; Taron, Christopher H.
2005-01-01
Endogenous proteins secreted from Kluyveromyces lactis were screened for their ability to bind to or to hydrolyze chitin. This analysis resulted in identification of a nucleus-encoded extracellular chitinase (KlCts1p) with a chitinolytic activity distinct from that of the plasmid-encoded killer toxin α-subunit. Sequence analysis of cloned KlCTS1 indicated that it encodes a 551-amino-acid chitinase having a secretion signal peptide, an amino-terminal family 18 chitinase catalytic domain, a serine-threonine-rich domain, and a carboxy-terminal type 2 chitin-binding domain. The association of purified KlCts1p with chitin is stable in the presence of high salt concentrations and pH 3 to 10 buffers; however, complete dissociation and release of fully active KlCts1p occur in 20 mM NaOH. Similarly, secreted human serum albumin harboring a carboxy-terminal fusion with the chitin-binding domain derived from KlCts1p also dissociates from chitin in 20 mM NaOH, demonstrating the domain's potential utility as an affinity tag for reversible chitin immobilization or purification of alkaliphilic or alkali-tolerant recombinant fusion proteins. Finally, haploid K. lactis cells harboring a cts1 null mutation are viable but exhibit a cell separation defect, suggesting that KlCts1p is required for normal cytokinesis, probably by facilitating the degradation of septum-localized chitin. PMID:15932978
Characterization of a nucleus-encoded chitinase from the yeast Kluyveromyces lactis.
Colussi, Paul A; Specht, Charles A; Taron, Christopher H
2005-06-01
Endogenous proteins secreted from Kluyveromyces lactis were screened for their ability to bind to or to hydrolyze chitin. This analysis resulted in identification of a nucleus-encoded extracellular chitinase (KlCts1p) with a chitinolytic activity distinct from that of the plasmid-encoded killer toxin alpha-subunit. Sequence analysis of cloned KlCTS1 indicated that it encodes a 551-amino-acid chitinase having a secretion signal peptide, an amino-terminal family 18 chitinase catalytic domain, a serine-threonine-rich domain, and a carboxy-terminal type 2 chitin-binding domain. The association of purified KlCts1p with chitin is stable in the presence of high salt concentrations and pH 3 to 10 buffers; however, complete dissociation and release of fully active KlCts1p occur in 20 mM NaOH. Similarly, secreted human serum albumin harboring a carboxy-terminal fusion with the chitin-binding domain derived from KlCts1p also dissociates from chitin in 20 mM NaOH, demonstrating the domain's potential utility as an affinity tag for reversible chitin immobilization or purification of alkaliphilic or alkali-tolerant recombinant fusion proteins. Finally, haploid K. lactis cells harboring a cts1 null mutation are viable but exhibit a cell separation defect, suggesting that KlCts1p is required for normal cytokinesis, probably by facilitating the degradation of septum-localized chitin.
Identification of Novel Transplantable GPCR Recycling Motif for Drug Discovery
Nooh, Mohammed M.; Mancarella, Salvatore; Bahouth, Suleiman W.
2016-01-01
β1-adrenergic receptor (β1-AR) agonists and antagonists are widely used in the treatment of major cardiovascular diseases such as heart failure and hypertension. The β1-AR like other G protein-couple receptors (GPCR) is endocytosed in response to intense agonist activation. Recycling of the agonist-internalized β1-AR is dependent on its carboxy-terminal type-1 PSD-95/DLG/ZO1 (PDZ) and on phospho-serine312 in the third intracellular loop of the β1-AR. Progressive elongation of the β1-AR at its C-tail inactivated the PDZ-biding domain and inhibited the recycling of the β1-AR. However, fusing a twenty amino acid peptide derived from the multiple cloning region of the mammalian expression vector pCDNA3 to the C-tail of the β1-AR (β1-AR[+20]) produced a chimeric β1-AR that recycled rapidly and efficiently. The β1-AR[+20] recycled in a type-1 PDZ and phospho-Ser312-independent manner, indicating that this peptide provided a general GPCR recycling signal. Fusing the enhanced yellow fluorescent protein (EYFP) down-stream of β1-AR[+20] generated a β1-AR-EYFP chimera that was expressed on the membrane and recycled efficiently after agonist-induced internalization. This construct trafficked in a PDZ-SNX27/retromer-independent manner. We also fused EYFP to the N-terminus of the β1-AR to created EYFP-WT β1-AR. This construct recycled in PDZ and SNX27/retromer dependent manner. These β1-AR-EYFP constructs would be useful for high throughput screening (HTS) programs to identify new entities that would interfere with the recycling of agonist internalized GPCR that traffic in PDZ-dependent vs. PDZ-independent roadmaps. PMID:27645110
Liljeqvist, Jan-Åke; Svennerholm, Bo; Bergström, Tomas
1999-01-01
Herpes simplex virus (HSV) codes for several envelope glycoproteins, including glycoprotein G-2 (gG-2) of HSV type 2 (HSV-2), which are dispensable for replication in cell culture. However, clinical isolates which are deficient in such proteins occur rarely. We describe here five clinical HSV-2 isolates which were found to be unreactive to a panel of anti-gG-2 monoclonal antibodies and therefore considered phenotypically gG-2 negative. These isolates were further examined for expression of the secreted amino-terminal and cell-associated carboxy-terminal portions of gG-2 by immunoblotting and radioimmunoprecipitation. The gG-2 gene was completely inactivated in four isolates, with no expression of the two protein products. For one isolate a normally produced secreted portion and a truncated carboxy-terminal portion of gG-2 were detected in virus-infected cell medium. Sequencing of the complete gG-2 gene identified a single insertion or deletion of guanine or cytosine nucleotides in all five strains, resulting in a premature termination codon. The frameshift mutations were localized within runs of five or more guanine or cytosine nucleotides and were dispersed throughout the gene. For the isolate for which a partially inactivated gG-2 gene was detected, the frameshift mutation was localized upstream of but adjacent to the nucleotides coding for the transmembranous region. Thus, this study demonstrates the existence of clinical HSV-2 isolates which do not express an envelope glycoprotein and identifies the underlying molecular mechanism to be a single frameshift mutation. PMID:10559290
The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1.
Rozakis-Adcock, M; Fernley, R; Wade, J; Pawson, T; Bowtell, D
1993-05-06
Many tyrosine kinases, including the receptors for hormones such as epidermal growth factor (EGF), nerve growth factor and insulin, transmit intracellular signals through Ras proteins. Ligand binding to such receptors stimulates Ras guanine-nucleotide-exchange activity and increases the level of GTP-bound Ras, suggesting that these tyrosine kinases may activate a guanine-nucleotide releasing protein (GNRP). In Caenorhabditis elegans and Drosophila, genetic studies have shown that Ras activation by tyrosine kinases requires the protein Sem-5/drk, which contains a single Src-homology (SH) 2 domain and two flanking SH3 domains. Sem-5 is homologous to the mammalian protein Grb2, which binds the autophosphorylated EGF receptor and other phosphotyrosine-containing proteins such as Shc through its SH2 domain. Here we show that in rodent fibroblasts, the SH3 domains of Grb2 are bound to the proline-rich carboxy-terminal tail of mSos1, a protein homologous to Drosophila Sos. Sos is required for Ras signalling and contains a central domain related to known Ras-GNRPs. EGF stimulation induces binding of the Grb2-mSos1 complex to the autophosphorylated EGF receptor, and mSos1 phosphorylation. Grb2 therefore appears to link tyrosine kinases to a Ras-GNRP in mammalian cells.
Niyomtham, Nattisa; Apiratikul, Nuttapon; Suksen, Kanoknetr; Opanasopit, Praneet; Yingyongnarongkul, Boon-Ek
2015-02-01
Twelve spermine-based cationic lipids with four different central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) and three hydrophobic tails (lauric acid, myristic acid and palmitic acid) were synthesized. The liposomes containing lipids and DOPE showed moderate to good in vitro DNA delivery into HeLa cells. GFP expression experiments revealed that liposomes composed of lipids with 3-amino-1,2-dioxypropyl as a central core structure exhibited highest transfection efficiency under serum-free condition. Whereas, lipid with 2-amino-1,3-dioxypropyl core structure showed highest transfection under 10% serum condition. Moreover, the liposomes and lipoplexes composted of these cationic lipids exhibited low cytotoxicity. Copyright © 2015. Published by Elsevier Ltd.
INVESTIGATIONS ON THE ANTIGENICITY OF SNAKE VENOMS
The chemical composition of viperotoxin, the neurotoxic protein isolated from the venom of Vipera palestinae has been determined. Viperotoxin is...carboxy-terminal position of the viperotoxin chain. Vipera palestinae hemorrhagin has been purified and isolated. Further tests have established that...active sites, or selective blocking of a part of one active center having two distinct biological activities. Purified neurotoxin of V. palestinae
Serum markers of bone metabolism show bone loss in hibernating bears
Donahue, S.W.; Vaughan, M.R.; Demers, L.M.; Donahue, H.J.
2003-01-01
Disuse osteopenia was studied in hibernating black bears (Ursus americanus) using serum markers of bone metabolism. Blood samples were collected from male and female, wild black bears during winter denning and active summer periods. Radioimmunoassays were done to determine serum concentrations of cortisol, the carboxy-terminal cross-linked telopeptide, and the carboxy-terminal propeptide of Type I procollagen, which are markers of hone resorption and formation, respectively. The bone resorption marker was significantly higher during winter hibernation than it was in the active summer months, but the bone formation marker was unchanged, suggesting an imbalance in bone remodeling and a net bone loss during disuse. Serum cortisol was significantly correlated with the bone resorption marker, but not with the bone formation marker. The bone formation marker was four- to fivefold higher in an adolescent and a 17-year-old bear early in the remobilization period compared with the later summer months. These findings raise the possibility that hibernating black bears may minimize bone loss during disuse by maintaining osteoblastic function and have a more efficient compensatory mechanism for recovering immobilization-induced bone loss than that of humans or other animals.
The Expression and Significance of Neuronal Iconic Proteins in Podocytes
Sun, Yu; Zhang, Hongxia; Hu, Ruimin; Sun, Jianyong; Mao, Xing; Zhao, Zhonghua; Chen, Qi; Zhang, Zhigang
2014-01-01
Growing evidence suggests that there are many common cell biological features shared by neurons and podocytes; however, the mechanism of podocyte foot process formation remains unclear. Comparing the mechanisms of process formation between two cell types should provide useful guidance from the progress of neuron research. Studies have shown that some mature proteins of podocytes, such as podocin, nephrin, and synaptopodin, were also expressed in neurons. In this study, using cell biological experiments and immunohistochemical techniques, we showed that some neuronal iconic molecules, such as Neuron-specific enolase, nestin and Neuron-specific nuclear protein, were also expressed in podocytes. We further inhibited the expression of Neuron-specific enolase, nestin, synaptopodin and Ubiquitin carboxy terminal hydrolase-1 by Small interfering RNA in cultured mouse podocytes and observed the significant morphological changes in treated podocytes. When podocytes were treated with Adriamycin, the protein expression of Neuron-specific enolase, nestin, synaptopodin and Ubiquitin carboxy terminal hydrolase-1 decreased over time. Meanwhile, the morphological changes in the podocytes were consistent with results of the Small interfering RNA treatment of these proteins. The data demonstrated that neuronal iconic proteins play important roles in maintaining and regulating the formation and function of podocyte processes. PMID:24699703
Mango, S E; Maine, E M; Kimble, J
1991-08-29
The glp-1 and lin-12 genes encode homologous transmembrane proteins that may act as receptors for cell interactions during development. The glp-1 product is required for induction of germ-line proliferation and for embryogenesis. By contrast, lin-12 mediates somatic cell interactions, including those between the precursor cells that form the vulval hypodermis (VPCs). Here we analyse an unusual allele of glp-1, glp-1(q35), which displays a semidominant multivulva phenotype (Muv), as well as the typical recessive, loss-of-function Glp phenotypes (sterility and embryonic lethality). We find that the effects of glp-1(q35) on VPC development mimic those of dominant lin-12 mutations, even in the absence of lin-12 activity. The glp-1(q35) gene bears a nonsense mutation predicted to eliminate the 122 C-terminal amino acids, including a ProGluSerThr (PEST) sequence thought to destabilize proteins. We suggest that the carboxy terminus bears a negative regulatory domain which normally inactivates glp-1 in the VPCs. We propose that inappropriate glp-1(q35) activity can substitute for lin-12 to determine vulval fate, perhaps by driving the VPCs to proliferate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlegel, Elisabeth F.M.; Blaho, John A., E-mail: john.blaho@mssm.ed
2009-05-10
Recombinant virus HSV-1(RF177) was previously generated to examine tegument protein VP22 function by inserting the GFP gene into the gene encoding VP22. During a detailed analysis of this virus, we discovered that RF177 produces a novel fusion protein between the last 15 amino acids of VP22 and GFP, termed GCT-VP22. Thus, the VP22 carboxy-terminal specific antibody 22-3 and two anti-GFP antibodies reacted with an approximately 28 kDa protein from RF177-infected Vero cells. GCT-VP22 was detected at 1 and 3 hpi. Examination of purified virions indicated that GCT-VP22 was incorporated into RF177 virus particles. These observations imply that at least amore » portion of the information required for virion targeting is located in this domain of VP22. Indirect immunofluorescence analyses showed that GCT-VP22 also localized to areas of marginalized chromatin during RF177 infection. These results indicate that the last fifteen amino acids of VP22 participate in virion targeting during HSV-1 infection.« less
Bucks, Michelle A; Murphy, Michael A; O'Regan, Kevin J; Courtney, Richard J
2011-07-20
Herpes simplex virus type 1 (HSV-1) UL37 is a 1123 amino acid tegument protein that self-associates and binds to the tegument protein UL36 (VP1/2). Studies were undertaken to identify regions of UL37 involved in these protein-protein interactions. Coimmunoprecipitation assays showed that residues within the carboxy-terminal half of UL37, amino acids 568-1123, are important for interaction with UL36. Coimmunoprecipitation assays also revealed that amino acids 1-300 and 568-1123 of UL37 are capable of self-association. UL37 appears to self-associate only under conditions when UL36 is not present or is present in low amounts, suggesting UL36 and UL37 may compete for binding. Transfection-infection experiments were performed to identify domains of UL37 that complement the UL37 deletion virus, K∆UL37. The carboxy-terminal region of UL37 (residues 568-1123) partially rescues the K∆UL37 infection. These results suggest the C-terminus of UL37 may contribute to its essential functional role within the virus-infected cell. Copyright © 2011 Elsevier Inc. All rights reserved.
A Cdk9-PP1 switch regulates the elongation-termination transition of RNA polymerase II.
Parua, Pabitra K; Booth, Gregory T; Sansó, Miriam; Benjamin, Bradley; Tanny, Jason C; Lis, John T; Fisher, Robert P
2018-06-13
The end of the RNA polymerase II (Pol II) transcription cycle is strictly regulated to prevent interference between neighbouring genes and to safeguard transcriptome integrity 1 . The accumulation of Pol II downstream of the cleavage and polyadenylation signal can facilitate the recruitment of factors involved in mRNA 3'-end formation and termination 2 , but how this sequence is initiated remains unclear. In a chemical-genetic screen, human protein phosphatase 1 (PP1) isoforms were identified as substrates of positive transcription elongation factor b (P-TEFb), also known as the cyclin-dependent kinase 9 (Cdk9)-cyclin T1 (CycT1) complex 3 . Here we show that Cdk9 and PP1 govern phosphorylation of the conserved elongation factor Spt5 in the fission yeast Schizosaccharomyces pombe. Cdk9 phosphorylates both Spt5 and a negative regulatory site on the PP1 isoform Dis2 4 . Sites targeted by Cdk9 in the Spt5 carboxy-terminal domain can be dephosphorylated by Dis2 in vitro, and dis2 mutations retard Spt5 dephosphorylation after inhibition of Cdk9 in vivo. Chromatin immunoprecipitation and sequencing analysis indicates that Spt5 is dephosphorylated as transcription complexes traverse the cleavage and polyadenylation signal, concomitant with the accumulation of Pol II phosphorylated at residue Ser2 of the carboxy-terminal domain consensus heptad repeat 5 . A conditionally lethal Dis2-inactivating mutation attenuates the drop in Spt5 phosphorylation on chromatin, promotes transcription beyond the normal termination zone (as detected by precision run-on transcription and sequencing 6 ) and is genetically suppressed by the ablation of Cdk9 target sites in Spt5. These results suggest that the transition of Pol II from elongation to termination coincides with a Dis2-dependent reversal of Cdk9 signalling-a switch that is analogous to a Cdk1-PP1 circuit that controls mitotic progression 4 .
The measles virus N(TAIL)-XD complex: an illustrative example of fuzziness.
Longhi, Sonia
2012-01-01
In this chapter, I focus on the biochemical and structural characterization of the complex between the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (N(TAIL)) and the C-terminal X domain (XD) of the viral phosphoprotein (P). I summarize the main experimental data available so far pointing out the prevalently disordered nature of N(TAIL) even after complex formation and the role of the flexible C-terminal appendage in the binding reaction. I finally discuss the possible functional role of these residual disordered regions within the complex in terms of their ability to capture other regulatory, binding partners.
Son, Minky; Bang, Woo Young; Park, Chanin; Lee, Yuno; Kwon, Seul Gi; Kim, Sam Woong; Kim, Chul Wook; Lee, Keun Woo
2014-01-01
Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR) superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C-terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV). Here we identified from kinetic studies that the enzymatic properties for 5α-dihydrotestosterone (5α-DHT) were different between wild-type and C-terminal-deleted PTCRs. Compared to wild-type PTCR, C-terminal-deleted PTCR has much higher reduction rate. To investigate structural difference between wild-type and C-terminal-deleted PTCRs upon 5α-DHT binding, we performed molecular dynamics simulations for two complexes. Using trajectories, molecular interactions including hydrogen bonding patterns, distance between 5α-DHT and catalytic Tyr193, and interaction energies are analyzed and compared. During the MD simulation time, the dynamic behavior of C-terminal tail in wild-type PTCR is also examined using essential dynamics analysis. The results of our simulations reveal that the binding conformation of 5α-DHT in C-terminal-deleted PTCR is more favorable for reduction reaction in PTCR, which shows strong agreement with kinetic data. These structural findings provide valuable information to understand substrate specificity of PTCR and further kinetic properties of enzymes belonging to the SDR superfamily.
Park, Chanin; Lee, Yuno; Kwon, Seul Gi; Kim, Sam Woong; Kim, Chul Wook; Lee, Keun Woo
2014-01-01
Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR) superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C- terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV). Here we identified from kinetic studies that the enzymatic properties for 5α-dihydrotestosterone (5α-DHT) were different between wild-type and C-terminal-deleted PTCRs. Compared to wild-type PTCR, C-terminal-deleted PTCR has much higher reduction rate. To investigate structural difference between wild-type and C-terminal-deleted PTCRs upon 5α-DHT binding, we performed molecular dynamics simulations for two complexes. Using trajectories, molecular interactions including hydrogen bonding patterns, distance between 5α-DHT and catalytic Tyr193, and interaction energies are analyzed and compared. During the MD simulation time, the dynamic behavior of C-terminal tail in wild-type PTCR is also examined using essential dynamics analysis. The results of our simulations reveal that the binding conformation of 5α-DHT in C-terminal-deleted PTCR is more favorable for reduction reaction in PTCR, which shows strong agreement with kinetic data. These structural findings provide valuable information to understand substrate specificity of PTCR and further kinetic properties of enzymes belonging to the SDR superfamily. PMID:24646606
Chen, Lin; Zhang, Ji-Long; Zheng, Qing-Chuan; Chu, Wen-Ting; Xue, Qiao; Zhang, Hong-Xing; Sun, Chia-Chung
2013-06-01
The C-terminus tail (G144-T149) of the hyperthermophile Sulfolobus tokodaii (Sto-RNase HI) plays an important role in this protein's hyperstabilization and may therefore be a good protein stability tag. Detailed understanding of the structural and dynamic effects of C-terminus tail deletion is required for gaining insights into the thermal stability mechanism of Sto-RNase HI. Focused on Sulfolobus tokodaii RNase HI (Sto-RNase HI) and its derivative lacking the C-terminal tail (ΔC6 Sto-RNase HI) (PDB codes: 2EHG and 3ALY), we applied molecular dynamics (MD) simulations at four different temperatures (300, 375, 475, and 500 K) to examine the effect of the C-terminal tail on the hyperstabilization of Sto-RNase HI and to investigate the unfolding process of Sto-RNase HI and ΔC6 Sto-RNase HI. The simulations suggest that the C-terminal tail has significant impact in hyperstabilization of Sto-RNase HI and the unfolding of these two proteins evolves along dissimilar pathways. Essential dynamics analysis indicates that the essential subspaces of the two proteins at different temperatures are non-overlapping within the trajectories and they exhibit different directions of motion. Our work can give important information to understand the three-state folding mechanism of Sto-RNase HI and to offer alternative strategies to improve the protein stability.
Lorain, Stéphanie; Quivy, Jean-Pierre; Monier-Gavelle, Frédérique; Scamps, Christine; Lécluse, Yann; Almouzni, Geneviève; Lipinski, Marc
1998-01-01
The human HIRA gene has been named after Hir1p and Hir2p, two corepressors which together appear to act on chromatin structure to control gene transcription in Saccharomyces cerevisiae. HIRA homologs are expressed in a regulated fashion during mouse and chicken embryogenesis, and the human gene is a major candidate for the DiGeorge syndrome and related developmental disorders caused by a reduction to single dose of a fragment of chromosome 22q. Western blot analysis and double-immunofluorescence experiments using a specific antiserum revealed a primary nuclear localization of HIRA. Similar to Hir1p, HIRA contains seven amino-terminal WD repeats and probably functions as part of a multiprotein complex. HIRA and core histone H2B were found to physically interact in a yeast double-hybrid protein interaction trap, in GST pull-down assays, and in coimmunoprecipitation experiments performed from cellular extracts. In vitro, HIRA also interacted with core histone H4. H2B- and H4-binding domains were overlapping but distinguishable in the carboxy-terminal region of HIRA, and the region for HIRA interaction was mapped to the amino-terminal tail of H2B and the second α helix of H4. HIRIP3 (HIRA-interacting protein 3) is a novel gene product that was identified from its HIRA-binding properties in the yeast protein interaction trap. In vitro, HIRIP3 directly interacted with HIRA but also with core histones H2B and H3, suggesting that a HIRA-HIRIP3-containing complex could function in some aspects of chromatin and histone metabolism. Insufficient production of HIRA, which we report elsewhere interacts with homeodomain-containing DNA-binding factors during mammalian embryogenesis, could perturb the stoichiometric assembly of multimolecular complexes required for normal embryonic development. PMID:9710638
Structural Insight Into Histone Recognition by the ING PHD Fingers
Champagne, Karen S.; Kutateladze, Tatiana G.
2009-01-01
The Inhibitor of Growth (ING) tumor suppressors are implicated in oncogenesis, control of DNA damage repair, cellular senescence and apoptosis. All members of the ING family contain unique amino-terminal regions and a carboxy-terminal plant homeodomain (PHD) finger. While the amino-terminal domains associate with a number of protein effectors including distinct components of histone deacetylase (HDAC) and histone acetyltransferase (HAT) complexes, the PHD finger binds strongly and specifically to histone H3 trimethylated at lysine 4 (H3K4me3). In this review we describe the molecular mechanism of H3K4me3 recognition by the ING1-5 PHD fingers, analyze the determinants of the histone specificity and compare the biological activities and structures within subsets of PHD fingers. The atomic-resolution structures of the ING PHD fingers in complex with a H3K4me3 peptide reveal that the histone tail is bound in a large and deep binding site encompassing nearly one-third of the protein surface. An extensive network of intermolecular hydrogen bonds, hydrophobic and cation-π contacts, and complementary surface interactions coordinate the first six residues of the H3K4me3 peptide. The trimethylated Lys4 occupies an elongated groove, formed by the highly conserved aromatic and hydrophobic residues of the PHD finger, whereas the adjacent groove accommodates Arg2. The two grooves are connected by a narrow channel, the small size of which defines the PHD finger’s specificity, excluding interactions with other modified histone peptides. Binding of the ING PHD fingers to H3K4me3 plays a critical role in regulating chromatin acetylation. The ING proteins function as tethering molecules that physically link the HDAC and HAT enzymatic complexes to chromatin. In this review we also highlight progress recently made in understanding the molecular basis underlying biological and tumorigenic activities of the ING tumor suppressors. PMID:19442115
Blocquel, David; Habchi, Johnny; Costanzo, Stéphanie; Doizy, Anthony; Oglesbee, Michael; Longhi, Sonia
2012-10-01
The intrinsically disordered C-terminal domain (N(TAIL) ) of the measles virus (MeV) nucleoprotein undergoes α-helical folding upon binding to the C-terminal X domain (XD) of the phosphoprotein. The N(TAIL) region involved in binding coupled to folding has been mapped to a conserved region (Box2) encompassing residues 489-506. In the previous studies published in this journal, we obtained experimental evidence supporting a K(D) for the N(TAIL) -XD binding reaction in the nM range and also showed that an additional N(TAIL) region (Box3, aa 517-525) plays a role in binding to XD. In striking contrast with these data, studies published in this journal by Kingston and coworkers pointed out a much less stable complex (K(D) in the μM range) and supported lack of involvement of Box3 in complex formation. The objective of this study was to critically re-evaluate the role of Box3 in N(TAIL) -XD binding. Since our previous studies relied on N(TAIL) -truncated forms possessing an irrelevant Flag sequence appended at their C-terminus, we, herein, generated an N(TAIL) devoid of Box3 and any additional C-terminal residues, as well as a form encompassing only residues 482-525. We then used isothermal titration calorimetry to characterize the binding reactions between XD and these N(TAIL) forms. Results effectively argue for the presence of a single XD-binding site located within Box2, in agreement with the results by Kingston et al., while providing clear experimental support for a high-affinity complex. Altogether, the present data provide mechanistic insights into the replicative machinery of MeV and clarify a hitherto highly debated point. Copyright © 2012 The Protein Society.
Topological disposition of the sequences -QRKIVE- and -KETYY in native (Na sup + + K sup + )-ATPase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayer, R.
1990-03-06
The dispositions with respect to the plane of the membrane of lysine-905 in the internal sequence -EQRKIVE- and of lysine-1012 in the carboxy-terminal sequence -RRPGGWVEKETYY of the {alpha}-polypeptide of sodium and potassium ion activated adenosinetriphosphatase have been determined. These lysines are found in peptides released from the intact {alpha}-polypeptide by the extracellular protease from Staphylococcus aureus strain V8 and by trypsin, respectively. Synthetic peptides containing terminal sequences of these were used to prepare polyclonal antibodies, which were then used to prepare immunoadsorbents directed against the respective peptides. Sealed, right-side-out membrane vesicles containing native (Na{sup +} + K{sup +})-ATPase were labeledmore » with pyridoxal phosphate and sodium ({sup 3}H)borohydride in the absence or presence of saponin. The labeled {alpha}-polypeptide was isolated from these vesicles and digested with appropriate proteases. The incorporation of radioactivity into the peptides binding to the immunoadsorbent directed against the sequence pyrERXIVE increased 3-fold int the presence of saponin as a result of the increased accessibility of this portion of the protein to the reagent when the vesicles were breached by saponin; hence, this sequence is located on the cytoplasmic face of the membrane. It was inferred that the carboxy-terminal sequence -KETYY is on the extracytoplasmic face since the incorporation of radioactivity into peptides binding to the immunoadsorbent directed against the sequence -ETYY did not change when the vesicles were breached with saponin.« less
The Carboxy-Terminal Domain of Erb1 Is a Seven-Bladed ß-Propeller that Binds RNA
Marcin, Wegrecki; Neira, Jose Luis; Bravo, Jeronimo
2015-01-01
Erb1 (Eukaryotic Ribosome Biogenesis 1) protein is essential for the maturation of the ribosomal 60S subunit. Functional studies in yeast and mammalian cells showed that altogether with Nop7 and Ytm1 it forms a stable subcomplex called PeBoW that is crucial for a correct rRNA processing. The exact function of the protein within the process remains unknown. The N-terminal region of the protein includes a well conserved region shown to be involved in PeBoW complex formation whereas the carboxy-terminal half was predicted to contain seven WD40 repeats. This first structural report on Erb1 from yeast describes the architecture of a seven-bladed β-propeller domain that revealed a characteristic extra motif formed by two α-helices and a β-strand that insert within the second WD repeat. We performed analysis of molecular surface and crystal packing, together with multiple sequence alignment and comparison of the structure with other β-propellers, in order to identify areas that are more likely to mediate protein-protein interactions. The abundance of many positively charged residues on the surface of the domain led us to investigate whether the propeller of Erb1 might be involved in RNA binding. Three independent assays confirmed that the protein interacted in vitro with polyuridilic acid (polyU), thus suggesting a possible role of the domain in rRNA rearrangement during ribosome biogenesis. PMID:25880847
Identification of a Signal-Responsive Nuclear Export Sequence in Class II Histone Deacetylases
McKinsey, Timothy A.; Zhang, Chun Li; Olson, Eric N.
2001-01-01
Activation of muscle-specific genes by the MEF2 transcription factor is inhibited by class II histone deacetylases (HDACs) 4 and 5, which contain carboxy-terminal deacetylase domains and amino-terminal extensions required for association with MEF2. The inhibitory action of HDACs is overcome by myogenic signals which disrupt MEF2-HDAC interactions and stimulate nuclear export of these transcriptional repressors. Nucleocytoplasmic trafficking of HDAC5 is mediated by binding of the chaperone protein 14-3-3 to two phosphoserine residues (Ser-259 and Ser-498) in its amino-terminal extension. Here we show that HDAC4 and -5 each contain a signal-responsive nuclear export sequence (NES) at their extreme carboxy termini. The NES is conserved in another class II HDAC, HDAC7, but is absent in class I HDACs and the HDAC-related corepressor, MEF2-interacting transcription repressor. Our results suggest that this conserved NES is inactive in unphosphorylated HDAC5, which is localized to the nucleus, and that calcium-calmodulin-dependent protein kinase (CaMK)-dependent binding of 14-3-3 to phosphoserines 259 and 498 activates the NES, with consequent export of the transcriptional repressor to the cytoplasm. A single amino acid substitution in this NES is sufficient to retain HDAC5 in the nucleus in the face of CaMK signaling. These findings provide molecular insight into the mechanism by which extracellular cues alter chromatin structure to promote muscle differentiation and other MEF2-regulated processes. PMID:11509672
Rubber-Modified Epoxies: Interfacial Tension and Morphology.
1988-02-02
discussed in detail in previous communications. 71 [,1 The carboxy-terminated butadiene-acrylonitrile copolymers ( CTBNs ) used in these stu- vdies...prepared by a process that yields polymers with lower polydispersity compared to the commercially available CTBNs , were provided by B.F. Goodrich...graphic data, calibrated from polystyrene standards, and are given in Table 2. 9e .4. TABLE 1. Properties of CTBNs and Epoxy Material %Acrylonitrile
Bardelli, A; Longati, P; Williams, T A; Benvenuti, S; Comoglio, P M
1999-10-08
Interaction of the hepatocyte growth factor (HGF) with its receptor, the Met tyrosine kinase, results in invasive growth, a genetic program essential to embryonic development and implicated in tumor metastasis. Met-mediated invasive growth requires autophosphorylation of the receptor on tyrosines located in the kinase activation loop (Tyr(1234)-Tyr(1235)) and in the carboxyl-terminal tail (Tyr(1349)-Tyr(1356)). We report that peptides derived from the Met receptor tail, but not from the activation loop, bind the receptor and inhibit the kinase activity in vitro. Cell delivery of the tail receptor peptide impairs HGF-dependent Met phosphorylation and downstream signaling. In normal and transformed epithelial cells, the tail receptor peptide inhibits HGF-mediated invasive growth, as measured by cell migration, invasiveness, and branched morphogenesis. The Met tail peptide inhibits the closely related Ron receptor but does not significantly affect the epidermal growth factor, platelet-derived growth factor, or vascular endothelial growth factor receptor activities. These experiments show that carboxyl-terminal sequences impair the catalytic properties of the Met receptor, thus suggesting that in the resting state the nonphosphorylated tail acts as an intramolecular modulator. Furthermore, they provide a strategy to selectively target the MET proto-oncogene by using small, cell-permeable, peptide derivatives.
Fernández-Fueyo, Elena; Acebes, Sandra; Ruiz-Dueñas, Francisco J.; ...
2014-11-22
The genome ofCeriporiopsis subvermisporaincludes 13 manganese peroxidase (MnP) genes representative of the three subfamilies described in ligninolytic fungi, which share an Mn 2+-oxidation site and have varying lengths of the C-terminal tail. We expressed short, long and extralong MnPs heterologously and biochemically characterized, and the first structure of an extralong MnP was solved. Its C-terminal tail surrounds the haem-propionate access channel, contributing to Mn 2+oxidation by the internal propionate, but prevents the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), which is only oxidized by short MnPs and by shortened-tail variants from site-directed mutagenesis. Furthermore, the tail, which is anchored by numerous contacts, notmore » only affects the catalytic properties of long/extralong MnPs but is also associated with their high acidic stability. Cd 2+binds at the Mn 2+-oxidation site and competitively inhibits oxidation of both Mn 2+and ABTS. Moreover, mutations blocking the haem-propionate channel prevent substrate oxidation. This agrees with molecular simulations that position ABTS at an electron-transfer distance from the haem propionates of anin silicoshortened-tail form, while it cannot reach this position in the extralong MnP crystal structure. Small differences exist between the long and the extralong MnPs, which do not justify their classification as two different subfamilies, but they significantly differ from the short MnPs, with the presence/absence of the C-terminal tail extension being implicated in these differences.« less
High prevalence of morphometric vertebral deformities in patients with inflammatory bowel disease.
Heijckmann, Anna Caroline; Huijberts, Maya S P; Schoon, Erik J; Geusens, Piet; de Vries, Jolanda; Menheere, Paul P C A; van der Veer, Eveline; Wolffenbuttel, Bruce H R; Stockbrugger, Reinhold W; Dumitrescu, Bianca; Nieuwenhuijzen Kruseman, Arie C
2008-08-01
Earlier studies have documented that the prevalence of decreased bone mineral density (BMD) is elevated in patients with inflammatory bowel disease. The objective of this study was to investigate the prevalence of vertebral deformities in inflammatory bowel disease patients and their relation with BMD and bone turnover. One hundred and nine patients with Crohn's disease (CD) and 72 with ulcerative colitis (UC) (age 44.5+/-14.2 years) were studied. BMD of the hip (by dual X-ray absorptiometry) was measured and a lateral single energy densitometry of the spine for assessment of vertebral deformities was performed. Serum markers of bone resorption (carboxy-terminal cross-linked telopeptide of type I collagen) and formation (procollagen type I amino-terminal propeptide) were measured, and determinants of prevalent vertebral deformities were assessed using logistic regression analysis. Vertebral deformities were found in 25% of both CD and UC patients. Comparing patients with and without vertebral deformities, no significant difference was found between Z-scores and T-scores of BMD, or levels of serum carboxy-terminal cross-linked telopeptide of type I collagen and serum procollagen type I amino-terminal propeptide. Using logistic regression analysis the only determinant of any morphometric vertebral deformity was sex. The presence of multiple vertebral deformities was associated with older age and glucocorticoid use. The prevalence of morphometric vertebral deformities is high in CD and UC. Male sex, but neither disease activity, bone turnover markers, clinical risk factors, nor BMD predicted their presence. The determinants for having more than one vertebral deformity were age and glucocorticoid use. This implies that in addition to screening for low BMD, morphometric assessment of vertebral deformities is warranted in CD and UC.
Separate functional properties of NMDARs regulate distinct aspects of spatial cognition.
Sanders, Erin M; Nyarko-Odoom, Akua O; Zhao, Kevin; Nguyen, Michael; Liao, Hong Hong; Keith, Matthew; Pyon, Jane; Kozma, Alyssa; Sanyal, Mohima; McHail, Daniel G; Dumas, Theodore C
2018-06-01
N -methyl-d-aspartate receptors (NMDARs) at excitatory synapses are central to activity-dependent synaptic plasticity and learning and memory. NMDARs act as ionotropic and metabotropic receptors by elevating postsynaptic calcium concentrations and by direct intracellular protein signaling. In the forebrain, these properties are controlled largely by the auxiliary GluN2 subunits, GluN2A and GluN2B. While calcium conductance through NMDAR channels and intracellular protein signaling make separate contributions to synaptic plasticity, it is not known if these properties individually influence learning and memory. To address this issue, we created chimeric GluN2 subunits containing the amino-terminal domain and transmembrane domains from GluN2A or GluN2B fused to the carboxy-terminal domain of GluN2B (termed ABc) or GluN2A ATD (termed BAc), respectively, and expressed these mutated GluN2 subunits in transgenic mice. Expression was confirmed at the mRNA level and protein subunit translation and translocation into dendrites were observed in forebrain neurons. In the spatial version of the Morris water maze, BAc mice displayed signs of a learning deficit. In contrast, ABc animals performed similarly to wild-types during training, but showed a more direct approach to the goal location during a long-term memory test. There was no effect of ABc or BAc expression in a nonspatial water escape task. Since background expression is predominantly GluN2A in mature animals, the results suggest that spatial learning is more sensitive to manipulations of the amino-terminal domain and transmembrane domains (calcium conductance) and long-term memory is regulated more by the carboxy-terminal domain (intracellular protein signaling). © 2018 Sanders et al.; Published by Cold Spring Harbor Laboratory Press.
MUC1 and MUC4: Switching the Emphasis from Large to Small
Carraway, Kermit L.
2011-01-01
Summation The MUC1 and MUC4 membrane mucins are each composed of a large alpha (α) and a small beta (β) subunit. The α subunits are fully exposed at the cell surface and contain variable numbers of repeated amino acid sequences that are heavily glycosylated. In contrast, the β subunits are much smaller and are anchored within the cell membrane, with their amino-terminal portions exposed at the cell surface and their carboxy-terminal tails facing the cytosol. Studies over the last several years are challenging the long-held belief that α subunits play the predominant role in cancer by conferring cellular properties that allow tumor cells to evade immune recognition and destruction. Indeed, the β subunits of MUC1 and MUC4 have emerged as oncogenes, as they engage signaling pathways responsible for tumor initiation and progression. Thus, a switch in the emphasis from the large α to the small β subunits offers attractive possibilities for successful clinical application. Such a focus shift is further supported by the absence of allelic polymorphism and variable glycosylation in the β subunit as well as by the presence of the β subunit in most MUC1 and MUC4 isoforms expressed by tumors. MUC1α, also known as CA15.3, is a Food and Drug Administration-approved serum biomarker for breast cancer, but its use is no longer recommended by the American Society of Clinical Oncology. However, comparison of β subunit expression in normal and malignant breast tissues may offer a novel approach to the exploitation of membrane mucins as biomarkers, as MUC1β-induced gene signatures with prognostic and predictive values in breast cancer have been reported. Preclinical studies with peptides that interfere with MUC1β oncogenic functions also look promising. PMID:21728842
Core Mediator structure at 3.4 Å extends model of transcription initiation complex.
Nozawa, Kayo; Schneider, Thomas R; Cramer, Patrick
2017-05-11
Mediator is a multiprotein co-activator that binds the transcription pre-initiation complex (PIC) and regulates RNA polymerase (Pol) II. The Mediator head and middle modules form the essential core Mediator (cMed), whereas the tail and kinase modules play regulatory roles. The architecture of Mediator and its position on the PIC are known, but atomic details are limited to Mediator subcomplexes. Here we report the crystal structure of the 15-subunit cMed from Schizosaccharomyces pombe at 3.4 Å resolution. The structure shows an unaltered head module, and reveals the intricate middle module, which we show is globally required for transcription. Sites of known Mediator mutations cluster at the interface between the head and middle modules, and in terminal regions of the head subunits Med6 (ref. 16) and Med17 (ref. 17) that tether the middle module. The structure led to a model for Saccharomyces cerevisiae cMed that could be combined with the 3.6 Å cryo-electron microscopy structure of the core PIC (cPIC). The resulting atomic model of the cPIC-cMed complex informs on interactions of the submodules forming the middle module, called beam, knob, plank, connector, and hook. The hook is flexibly linked to Mediator by a conserved hinge and contacts the transcription initiation factor IIH (TFIIH) kinase that phosphorylates the carboxy (C)-terminal domain (CTD) of Pol II and was recently positioned on the PIC. The hook also contains residues that crosslink to the CTD and reside in a previously described cradle. These results provide a framework for understanding Mediator function, including its role in stimulating CTD phosphorylation by TFIIH.
Fukumoto, Yasunori; Takahashi, Kazuaki; Suzuki, Noriyuki; Ogra, Yasumitsu; Nakayama, Yuji; Yamaguchi, Naoto
2018-06-15
An interaction between the Rad17-RFC2-5 and 9-1-1 complexes is essential for ATR-Chk1 signaling, which is one of the major DNA damage checkpoints. Recently, we showed that the polyanionic C-terminal tail of human Rad17 and the embedded conserved sequence iVERGE are important for the interaction with 9-1-1 complex. Here, we show that Rad17-S667 in the C-terminal tail is constitutively phosphorylated in vivo in a casein kinase 2-dependent manner, and the phosphorylation is important for 9-1-1 interaction. The serine phosphorylation of Rad17 could be seen in the absence of exogenous genotoxic stress, and was mostly abolished by S667A substitution. Rad17-S667 was also phosphorylated when the C-terminal tail was fused with EGFP, but the phosphorylation was inhibited by two casein kinase 2 inhibitors. Furthermore, interaction between Rad17 and the 9-1-1 complex was inhibited by the casein kinase 2 inhibitor CX-4945/Silmitasertib, and the effect was dependent on the Rad17-S667 residue, indicating that S667 phosphorylation is the only role of casein kinase 2 in the 9-1-1 interaction. Our data raise the possibility that the C-terminal tail of vertebrate Rad17 regulates ATR-Chk1 signaling through multi-site phosphorylation in the iVERGE. Copyright © 2018 Elsevier Inc. All rights reserved.
Interplay of cis- and trans-regulatory mechanisms in the spliceosomal RNA helicase Brr2.
Absmeier, Eva; Becke, Christian; Wollenhaupt, Jan; Santos, Karine F; Wahl, Markus C
2017-01-02
RNA helicase Brr2 is implicated in multiple phases of pre-mRNA splicing and thus requires tight regulation. Brr2 can be auto-inhibited via a large N-terminal region folding back onto its helicase core and auto-activated by a catalytically inactive C-terminal helicase cassette. Furthermore, it can be regulated in trans by the Jab1 domain of the Prp8 protein, which can inhibit Brr2 by intermittently inserting a C-terminal tail in the enzyme's RNA-binding tunnel or activate the helicase after removal of this tail. Presently it is unclear, whether these regulatory mechanisms functionally interact and to which extent they are evolutionarily conserved. Here, we report crystal structures of Saccharomyces cerevisiae and Chaetomium thermophilum Brr2-Jab1 complexes, demonstrating that Jab1-based inhibition of Brr2 presumably takes effect in all eukaryotes but is implemented via organism-specific molecular contacts. Moreover, the structures show that Brr2 auto-inhibition can act in concert with Jab1-mediated inhibition, and suggest that the N-terminal region influences how the Jab1 C-terminal tail interacts at the RNA-binding tunnel. Systematic RNA binding and unwinding studies revealed that the N-terminal region and the Jab1 C-terminal tail specifically interfere with accommodation of double-stranded and single-stranded regions of an RNA substrate, respectively, mutually reinforcing each other. Additionally, such analyses show that regulation based on the N-terminal region requires the presence of the inactive C-terminal helicase cassette. Together, our results outline an intricate system of regulatory mechanisms, which control Brr2 activities during snRNP assembly and splicing.
The histone H3 N-terminal tail: a computational analysis of the free energy landscape and kinetics.
Zheng, Yuqing; Cui, Qiang
2015-05-28
Histone tails are the short peptide protrusions outside of the nucleosome core particle and they play a critical role in regulating chromatin dynamics and gene activity. A histone H3 N-terminal tail, like other histone tails, can be covalently modified on different residues to activate or repress gene expression. Previous studies have indicated that, despite its intrinsically disordered nature, the histone H3 N-terminal tail has regions of notable secondary structural propensities. To further understand the structure-dynamics-function relationship in this system, we have carried out 75.6 μs long implicit solvent simulations and 29.3 μs long explicit solvent simulations. The extensive samplings allow us to better characterize not only the underlying free energy landscape but also kinetic properties through Markov state models (MSM). Dihedral principal component analysis (dPCA) and locally scaled diffusion map (LSDMap) analysis yield consistent results that indicate an overall flat free energy surface with several shallow basins that correspond to conformations with a high α-helical propensity in two regions of the peptide. Kinetic information extracted from Markov state models reveals rapid transitions between different metastable states with mean first passage times spanning from several hundreds of nanoseconds to hundreds of microseconds. These findings shed light on how the dynamical nature of the histone H3 N-terminal tail is related to its function. The complementary nature of dPCA, LSDMap and MSM for the analysis of biomolecules is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández-Fueyo, Elena; Acebes, Sandra; Ruiz-Dueñas, Francisco J.
2014-12-01
The variable C-terminal tail of manganese peroxidases, a group of enzymes involved in lignin degradation, is implicated in their catalytic and stability properties, as shown by new crystal structures, molecular-simulation and directed-mutagenesis data. Based on this structural–functional evaluation, short and long/extralong manganese peroxidase subfamilies have been accepted; the latter are characterized by exceptional stability, while it is shown for the first time that the former are able to oxidize other substrates at the same site where manganese(II) is oxidized. The genome of Ceriporiopsis subvermispora includes 13 manganese peroxidase (MnP) genes representative of the three subfamilies described in ligninolytic fungi, whichmore » share an Mn{sup 2+}-oxidation site and have varying lengths of the C-terminal tail. Short, long and extralong MnPs were heterologously expressed and biochemically characterized, and the first structure of an extralong MnP was solved. Its C-terminal tail surrounds the haem-propionate access channel, contributing to Mn{sup 2+} oxidation by the internal propionate, but prevents the oxidation of 2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), which is only oxidized by short MnPs and by shortened-tail variants from site-directed mutagenesis. The tail, which is anchored by numerous contacts, not only affects the catalytic properties of long/extralong MnPs but is also associated with their high acidic stability. Cd{sup 2+} binds at the Mn{sup 2+}-oxidation site and competitively inhibits oxidation of both Mn{sup 2+} and ABTS. Moreover, mutations blocking the haem-propionate channel prevent substrate oxidation. This agrees with molecular simulations that position ABTS at an electron-transfer distance from the haem propionates of an in silico shortened-tail form, while it cannot reach this position in the extralong MnP crystal structure. Only small differences exist between the long and the extralong MnPs, which do not justify their classification as two different subfamilies, but they significantly differ from the short MnPs, with the presence/absence of the C-terminal tail extension being implicated in these differences.« less
Toughening reinforced epoxy composites with brominated polymeric additives
NASA Technical Reports Server (NTRS)
Nir, Z. (Inventor); Gilwee, W. J., Jr. (Inventor)
1985-01-01
Cured polyfunctional epoxy resins including tris(hydroxyphenyl)methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy-terminated butadiene-acrylonitrile rubber is optionally present in the pre-cure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon-reinforced composites, of these resins are disclosed and shown to have improved toughness.
Castable and High Modulus Acoustic Dampening Material
2007-02-22
high impact strength and high dampening laminate structures (e.g., fiberglass parts, etc.). It appears that a carboxy-terminated butadiene nitrile ( CTBN ...Sanjana reference also states that the preferred glass transition temperature for the CTBNs is "<-200". The greater the difference from room...temperature (or the temperature of interest) that the glass transition of the CTBN is, the less acoustic or vibrational energy will be absorbed/dampened
Rubber-Modified Epoxy and Glass Laminates for Application to Naval Ship Structures.
1983-09-01
more information. Two generic carboxy terminated butadiene acrylonitrile ( CTBN )-modified epoxy/glass cloth material systems have been characterized...versus Normal Impact Energy of 7781-Z6040/Fl55 .......... .................... 8 4 - Front Surface of CTBN -Modified Epoxy GRP Panel After 60 Impacts at...15 6 - Back Surface of CTBN -Modified Epoxy GRP Panel After 60 Impacts at 206 Foot-Pounds ..... .................. ... 16 7 - Back Surface of
Toughening reinforced epoxy composites with brominated polymeric additives
NASA Technical Reports Server (NTRS)
Nir, Z.; Gilwee, W. J., Jr. (Inventor)
1985-01-01
Cured polyfunctional epoxy resins including tris (hydroxyphenyl) methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy terminated butadiene acrylonitrile rubber is optionally present in the precure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon reinforced composites, of these resins are disclosed and shown to have improved toughness.
Nanotechnology-Enabled Optical Molecular Imaging of Breast Cancer
2010-07-01
Abbreviations Ab antibody AF-Ab Alexa Fluor labeled antibody CCD charge coupled device CTAB cetyltrimethylammonium bromide EDC 1-ethyl-[3-dimethylaminopropyl...mPEG-SH in figure 1. The carboxy-terminal nanorods were conjugated to antibodies using the zero-length crosslinker EDC stabilized by NHS [38]. Standard...multimode fiber coupler /positioner (Newport, model: F-915T) is utilized to mount the objective lens and a fiber chuck (Newport, model: FPH-DJ). With
Unique carbohydrate binding platforms employed by the glucan phosphatases
MEEKINS, David A.; GENTRY, Matthew S.
2016-01-01
Glucan phosphatases are a family of enzymes that are functionally conserved at the enzymatic level in animals and plants. These enzymes bind and dephosphorylate glycogen in animals and starch in plants. While the enzymatic function is conserved, the glucan phosphatases employ distinct mechanisms to bind and dephosphorylate glycogen or starch. The founding member of the family is a bimodular human protein called laforin that is comprised of a carbohydrate binding module 20 (CBM20) followed by a dual specificity phosphatase domain. Plants contain two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a chloroplast targeting peptide, dual specificity phosphatase (DSP) domain, a CBM45, and a carboxy-terminal motif. LSF2 is comprised of simply a chloroplast targeting peptide, DSP domain, and carboxy-terminal motif. SEX4 employs an integrated DSP-CBM glucan-binding platform to engage and dephosphorylate starch. LSF2 lacks a CBM and instead utilizes two surface binding sites to bind and dephosphorylate starch. Laforin is a dimeric protein in solution and it utilizes a tetramodular architecture and cooperativity to bind and dephosphorylate glycogen. This chapter describes the biological role of glucan phosphatases in glycogen and starch metabolism and compares and contrasts their ability to bind and dephosphorylate glucans. PMID:27147465
Dennehey, Briana K.; Noone, Seth; Liu, Wallace H.; Smith, Luke
2013-01-01
The central histone H3/H4 chaperone Asf1 comprises a highly conserved globular core and a divergent C-terminal tail. While the function and structure of the Asf1 core are well known, the function of the tail is less well understood. Here, we have explored the role of the yeast (yAsf1) and human (hAsf1a and hAsf1b) Asf1 tails in Saccharomyces cerevisiae. We show, using a photoreactive, unnatural amino acid, that Asf1 tail residue 210 cross-links to histone H3 in vivo and, further, that loss of C-terminal tail residues 211 to 279 weakens yAsf1-histone binding affinity in vitro nearly 200-fold. Via several yAsf1 C-terminal truncations and yeast-human chimeric proteins, we found that truncations at residue 210 increase transcriptional silencing and that the hAsf1a tail partially substitutes for full-length yAsf1 with respect to silencing but that full-length hAsf1b is a better overall substitute for full-length yAsf1. In addition, we show that the C-terminal tail of Asf1 is phosphorylated at T270 in yeast. Loss of this phosphorylation site does not prevent coimmunoprecipitation of yAsf1 and Rad53 from yeast extracts, whereas amino acid residue substitutions at the Asf1-histone H3/H4 interface do. Finally, we show that residue substitutions in yAsf1 near the CAF-1/HIRA interface also influence yAsf1's function in silencing. PMID:23184661
Escher, Pascal; Passarin, Olga; Munier, Francis L; Tran, Viet H; Vaclavik, Veronika
2018-01-01
To expand the genotype/phenotype correlations in patients with autosomal dominant retinitis pigmentosa (adRP) harboring PRPF8 variants. Two patients, a father and his daughter, harboring a novel p.PRPF8-Glu2331* variant, underwent ophthalmic examination at 3-year-interval, including fundus photography, fundus autofluorescence, optical coherence tomography, and ISCEV standard full field ERGs. All reported disease-causing PRPF8 variants were collected and localized in the PRPF8 and PRPF8/SNRNP200 protein structures. The p.PRPF8-Glu2331* variant results in a truncated PRPF8 protein lacking the last five C-terminal amino acids and caused in the two patients a severe clinical phenotype, with the macula being affected from the second decade on. All but two adRP-linked variants are located in the last exon 43 encoding the C-terminal tail of the C-terminal PRPF8 Jab1 domain. The p.PRPF8-Ser2118Phe and -Asn2280Lys variants encoded by exons 39 and 42, respectively, are located at the basis of the C-terminal tail. Frame-shift mutations and nonconservative amino acid changes in PRPF8 typically cause severe clinical phenotypes. The conservative missense variant p.PRPF8-Arg2310Lys that is not altering the global charge of the C-terminal tail, and variants located at the basis of the C-terminal tail show milder clinical phenotypes, in accordance with functional data on PRPF8/SNRNP200 interactions in yeast.
Jørgensen, Astrid S; Adogamhe, Pontian E; Laufer, Julia M; Legler, Daniel F; Veldkamp, Christopher T; Rosenkilde, Mette M; Hjortø, Gertrud M
2018-05-16
CCL19 is more potent than CCL21 in inducing chemotaxis of human dendritic cells (DC). This difference is attributed to 1) a stronger interaction of the basic C-terminal tail of CCL21 with acidic glycosaminoglycans (GAGs) in the environment and 2) an autoinhibitory function of this C-terminal tail. Moreover, different receptor docking modes and tissue expression patterns of CCL19 and CCL21 contribute to fine-tuned control of CCR7 signaling. Here, we investigate the effect of the tail of CCL21 on chemokine binding to GAGs and on CCR7 activation. We show that transfer of CCL21-tail to CCL19 (CCL19 CCL21-tail ) markedly increases binding of CCL19 to human dendritic cell surfaces, without impairing CCL19-induced intracellular calcium release or DC chemotaxis, although it causes reduced CCR7 internalization. The more potent chemotaxis induced by CCL19 and CCL19 CCL21-tail compared to CCL21 is not transferred to CCL21 by replacing its N-terminus with that of CCL19 (CCL21 CCL19-N-term ). Measurements of cAMP production in CHO cells uncover that CCL21-tail transfer (CCL19 CCL21-tail ) negatively affects CCL19 potency, whereas removal of CCL21-tail (CCL21 tailless ) increases signaling compared to full-length CCL21, indicating that the tail negatively affects signaling via cAMP. Similar to chemokine-driven calcium mobilization and chemotaxis, the potency of CCL21 in cAMP is not improved by transfer of the CCL19 N-terminus to CCL21 (CCL21 CCL19-N-term ). Together these results indicate that ligands containing CCL21 core and C-terminal tail (CCL21 and CCL21 CCL19-N-term ) are most restricted in their cAMP signaling; a phenotype attributed to a stronger GAG binding of CCL21 and defined structural differences between CCL19 and CCL21. ©2018 Society for Leukocyte Biology.
Yomano, L P; Scopes, R K; Ingram, L O
1993-01-01
Phosphoglycerate mutase is an essential glycolytic enzyme for Zymomonas mobilis, catalyzing the reversible interconversion of 3-phosphoglycerate and 2-phosphoglycerate. The pgm gene encoding this enzyme was cloned on a 5.2-kbp DNA fragment and expressed in Escherichia coli. Recombinants were identified by using antibodies directed against purified Z. mobilis phosphoglycerate mutase. The pgm gene contains a canonical ribosome-binding site, a biased pattern of codon usage, a long upstream untranslated region, and four promoters which share sequence homology. Interestingly, adhA and a D-specific 2-hydroxyacid dehydrogenase were found on the same DNA fragment and appear to form a cluster of genes which function in central metabolism. The translated sequence for Z. mobilis pgm was in full agreement with the 40 N-terminal amino acid residues determined by protein sequencing. The primary structure of the translated sequence is highly conserved (52 to 60% identity with other phosphoglycerate mutases) and also shares extensive homology with bisphosphoglycerate mutases (51 to 59% identity). Since Southern blots indicated the presence of only a single copy of pgm in the Z. mobilis chromosome, it is likely that the cloned pgm gene functions to provide both activities. Z. mobilis phosphoglycerate mutase is unusual in that it lacks the flexible tail and lysines at the carboxy terminus which are present in the enzyme isolated from all other organisms examined. Images PMID:8320209
Molecular mechanisms for the regulation of histone mRNA stem-loop–binding protein by phosphorylation
Zhang, Jun; Tan, Dazhi; DeRose, Eugene F.; Perera, Lalith; Dominski, Zbigniew; Marzluff, William F.; Tong, Liang; Hall, Traci M. Tanaka
2014-01-01
Replication-dependent histone mRNAs end with a conserved stem loop that is recognized by stem-loop–binding protein (SLBP). The minimal RNA-processing domain of SLBP is phosphorylated at an internal threonine, and Drosophila SLBP (dSLBP) also is phosphorylated at four serines in its 18-aa C-terminal tail. We show that phosphorylation of dSLBP increases RNA-binding affinity dramatically, and we use structural and biophysical analyses of dSLBP and a crystal structure of human SLBP phosphorylated on the internal threonine to understand the striking improvement in RNA binding. Together these results suggest that, although the C-terminal tail of dSLBP does not contact the RNA, phosphorylation of the tail promotes SLBP conformations competent for RNA binding and thereby appears to reduce the entropic penalty for the association. Increased negative charge in this C-terminal tail balances positively charged residues, allowing a more compact ensemble of structures in the absence of RNA. PMID:25002523
El-Turk, Farah; Cascella, Michele; Ouertatani-Sakouhi, Hajer; Narayanan, Raghavendran Lakshmi; Leng, Lin; Bucala, Richard; Hweckstetter, Markus; Rothlisberger, Ursula; Lashuel, Hilal A.
2013-01-01
Macrophage migration inhibitory factor (MIF) is a multifunctional protein and a major mediator of innate immunity. Although X-ray crystallography revealed that MIF exists as a homotrimer, its oligomerization state in vivo as well as the factors governing its oligomerization and stability remain poorly understood. The C-terminal region of MIF is highly conserved and participates in several intramolecular interactions that suggest a role in modulating the stability and biochemical activity of MIF. To determine the importance of these interactions, point mutations (A48P, L46A), insertions (P107) at the monomer-monomer interfaces, and C-terminal deletion (Δ110-114NSTFA and Δ105–114NVGWNNSTFA) variants were designed and their structural properties, thermodynamic stability, oligomerization state, catalytic activity and receptor binding were characterized using a battery of biophysical methods. The C-terminal deletion mutants ΔC5 huMIF1-109 and ΔC10 huMIF1-104 were enzymatically inactive and thermodynamically less stable than wild type MIF. Analytical ultracentrifugation studies demonstrate that both C-terminal mutants sediment as trimers and exhibit similar binding to CD74 as the wild type protein. Disrupting the conformation of the C-terminal region 105–114 and increasing its conformational flexibility through the insertion of a proline residue at position 107 was sufficient to reproduce the structural, biochemical and thermodynamic properties of the deletion mutants. P107 MIF forms an enzymatically inactive trimer and exhibits reduced thermodynamic stability relative to the wild type protein. To provide a rationale for the changes induced by these mutations at the molecular level, we also performed molecular dynamics simulations on these mutants in comparison to the wild type MIF. Together, our studies demonstrate that inter-subunit interactions involving the C-terminal region 105–114, including a salt-bridge interaction between Arg73 of one monomer and the carboxy terminus of a neighbouring monomer, play critical roles in modulating tertiary structure stabilization, enzymatic activity, and thermodynamic stability of MIF, but not its oligomerization state and receptor binding properties. Our results suggest that targeting the C-terminal region could provide new strategies for allosteric modulation of MIF enzymatic activity and the development of novel inhibitors of MIF tautomerase activity. PMID:18795803
Molecular modelling of protein-protein/protein-solvent interactions
NASA Astrophysics Data System (ADS)
Luchko, Tyler
The inner workings of individual cells are based on intricate networks of protein-protein interactions. However, each of these individual protein interactions requires a complex physical interaction between proteins and their aqueous environment at the atomic scale. In this thesis, molecular dynamics simulations are used in three theoretical studies to gain insight at the atomic scale about protein hydration, protein structure and tubulin-tubulin (protein-protein) interactions, as found in microtubules. Also presented, in a fourth project, is a molecular model of solvation coupled with the Amber molecular modelling package, to facilitate further studies without the need of explicitly modelled water. Basic properties of a minimally solvated protein were calculated through an extended study of myoglobin hydration with explicit solvent, directly investigating water and protein polarization. Results indicate a close correlation between polarization of both water and protein and the onset of protein function. The methodology of explicit solvent molecular dynamics was further used to study tubulin and microtubules. Extensive conformational sampling of the carboxy-terminal tails of 8-tubulin was performed via replica exchange molecular dynamics, allowing the characterisation of the flexibility, secondary structure and binding domains of the C-terminal tails through statistical analysis methods. Mechanical properties of tubulin and microtubules were calculated with adaptive biasing force molecular dynamics. The function of the M-loop in microtubule stability was demonstrated in these simulations. The flexibility of this loop allowed constant contacts between the protofilaments to be maintained during simulations while the smooth deformation provided a spring-like restoring force. Additionally, calculating the free energy profile between the straight and bent tubulin configurations was used to test the proposed conformational change in tubulin, thought to cause microtubule destabilization. No conformational change was observed but a nucleotide dependent 'softening' of the interaction was found instead, suggesting that an entropic force in a microtubule configuration could be the mechanism of microtubule collapse. Finally, to overcome much of the computational costs associated with explicit soIvent calculations, a new combination of molecular dynamics with the 3D-reference interaction site model (3D-RISM) of solvation was integrated into the Amber molecular dynamics package. Our implementation of 3D-RISM shows excellent agreement with explicit solvent free energy calculations. Several optimisation techniques, including a new multiple time step method, provide a nearly 100 fold performance increase, giving similar computational performance to explicit solvent.
Habchi, Johnny; Blangy, Stéphanie; Mamelli, Laurent; Jensen, Malene Ringkjøbing; Blackledge, Martin; Darbon, Hervé; Oglesbee, Michael; Shu, Yaoling; Longhi, Sonia
2011-04-15
The Henipavirus genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that recruits the polymerase complex via the phosphoprotein (P). In a previous study, we reported that in henipaviruses, the N-terminal domain of the phosphoprotein and the C-terminal domain of the nucleoprotein (N(TAIL)) are both intrinsically disordered. Here we show that Henipavirus N(TAIL) domains are also disordered in the context of full-length nucleoproteins. We also report the cloning, purification, and characterization of the C-terminal X domains (P(XD)) of Henipavirus phosphoproteins. Using isothermal titration calorimetry, we show that N(TAIL) and P(XD) form a 1:1 stoichiometric complex that is stable under NaCl concentrations as high as 1 M and has a K(D) in the μM range. Using far-UV circular dichroism and nuclear magnetic resonance, we show that P(XD) triggers an increase in the α-helical content of N(TAIL). Using fluorescence spectroscopy, we show that P(XD) has no impact on the chemical environment of a Trp residue introduced at position 527 of the Henipavirus N(TAIL) domain, thus arguing for the lack of stable contacts between the C termini of N(TAIL) and P(XD). Finally, we present a tentative structural model of the N(TAIL)-P(XD) interaction in which a short, order-prone region of N(TAIL) (α-MoRE; amino acids 473-493) adopts an α-helical conformation and is embedded between helices α2 and α3 of P(XD), leading to a relatively small interface dominated by hydrophobic contacts. The present results provide the first detailed experimental characterization of the N-P interaction in henipaviruses and designate the N(TAIL)-P(XD) interaction as a valuable target for rational antiviral approaches.
Requirement for the E1 Helicase C-Terminal Domain in Papillomavirus DNA Replication In Vivo.
Bergvall, Monika; Gagnon, David; Titolo, Steve; Lehoux, Michaël; D'Abramo, Claudia M; Melendy, Thomas; Archambault, Jacques
2016-01-06
The papillomavirus (PV) E1 helicase contains a conserved C-terminal domain (CTD), located next to its ATP-binding site, whose function in vivo is still poorly understood. The CTD is comprised of an alpha helix followed by an acidic region (AR) and a C-terminal extension termed the C-tail. Recent biochemical studies on bovine papillomavirus 1 (BPV1) E1 showed that the AR and C-tail regulate the oligomerization of the protein into a double hexamer at the origin. In this study, we assessed the importance of the CTD of human papillomavirus 11 (HPV11) E1 in vivo, using a cell-based DNA replication assay. Our results indicate that combined deletion of the AR and C-tail drastically reduces DNA replication, by 85%, and that further truncation into the alpha-helical region compromises the structural integrity of the E1 helicase domain and its interaction with E2. Surprisingly, removal of the C-tail alone or mutation of highly conserved residues within the domain still allows significant levels of DNA replication (55%). This is in contrast to the absolute requirement for the C-tail reported for BPV1 E1 in vitro and confirmed here in vivo. Characterization of chimeric proteins in which the AR and C-tail from HPV11 E1 were replaced by those of BPV1 indicated that while the function of the AR is transferable, that of the C-tail is not. Collectively, these findings define the contribution of the three CTD subdomains to the DNA replication activity of E1 in vivo and suggest that the function of the C-tail has evolved in a PV type-specific manner. While much is known about hexameric DNA helicases from superfamily 3, the papillomavirus E1 helicase contains a unique C-terminal domain (CTD) adjacent to its ATP-binding site. We show here that this CTD is important for the DNA replication activity of HPV11 E1 in vivo and that it can be divided into three functional subdomains that roughly correspond to the three conserved regions of the CTD: an alpha helix, needed for the structural integrity of the helicase domain, followed by an acidic region (AR) and a C-terminal tail (C-tail) that have been shown to regulate the oligomerization of BPV1 E1 in vitro. Characterization of E1 chimeras revealed that, while the function of the AR could be transferred from BPV1 E1 to HPV11 E1, that of the C-tail could not. These results suggest that the E1 CTD performs multiple functions in DNA replication, some of them in a virus type-specific manner. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Requirement for the E1 Helicase C-Terminal Domain in Papillomavirus DNA Replication In Vivo
Bergvall, Monika; Gagnon, David; Titolo, Steve; Lehoux, Michaël; D'Abramo, Claudia M.
2016-01-01
ABSTRACT The papillomavirus (PV) E1 helicase contains a conserved C-terminal domain (CTD), located next to its ATP-binding site, whose function in vivo is still poorly understood. The CTD is comprised of an alpha helix followed by an acidic region (AR) and a C-terminal extension termed the C-tail. Recent biochemical studies on bovine papillomavirus 1 (BPV1) E1 showed that the AR and C-tail regulate the oligomerization of the protein into a double hexamer at the origin. In this study, we assessed the importance of the CTD of human papillomavirus 11 (HPV11) E1 in vivo, using a cell-based DNA replication assay. Our results indicate that combined deletion of the AR and C-tail drastically reduces DNA replication, by 85%, and that further truncation into the alpha-helical region compromises the structural integrity of the E1 helicase domain and its interaction with E2. Surprisingly, removal of the C-tail alone or mutation of highly conserved residues within the domain still allows significant levels of DNA replication (55%). This is in contrast to the absolute requirement for the C-tail reported for BPV1 E1 in vitro and confirmed here in vivo. Characterization of chimeric proteins in which the AR and C-tail from HPV11 E1 were replaced by those of BPV1 indicated that while the function of the AR is transferable, that of the C-tail is not. Collectively, these findings define the contribution of the three CTD subdomains to the DNA replication activity of E1 in vivo and suggest that the function of the C-tail has evolved in a PV type-specific manner. IMPORTANCE While much is known about hexameric DNA helicases from superfamily 3, the papillomavirus E1 helicase contains a unique C-terminal domain (CTD) adjacent to its ATP-binding site. We show here that this CTD is important for the DNA replication activity of HPV11 E1 in vivo and that it can be divided into three functional subdomains that roughly correspond to the three conserved regions of the CTD: an alpha helix, needed for the structural integrity of the helicase domain, followed by an acidic region (AR) and a C-terminal tail (C-tail) that have been shown to regulate the oligomerization of BPV1 E1 in vitro. Characterization of E1 chimeras revealed that, while the function of the AR could be transferred from BPV1 E1 to HPV11 E1, that of the C-tail could not. These results suggest that the E1 CTD performs multiple functions in DNA replication, some of them in a virus type-specific manner. PMID:26739052
Gely, Stéphane; Lowry, David F; Bernard, Cédric; Jensen, Malene R; Blackledge, Martin; Costanzo, Stéphanie; Bourhis, Jean-Marie; Darbon, Hervé; Daughdrill, Gary; Longhi, Sonia
2010-01-01
In this report, the solution structure of the nucleocapsid-binding domain of the measles virus phosphoprotein (XD, aa 459-507) is described. A dynamic description of the interaction between XD and the disordered C-terminal domain of the nucleocapsid protein, (N(TAIL), aa 401-525), is also presented. XD is an all alpha protein consisting of a three-helix bundle with an up-down-up arrangement of the helices. The solution structure of XD is very similar to the crystal structures of both the free and bound form of XD. One exception is the presence of a highly dynamic loop encompassing XD residues 489-491, which is involved in the embedding of the alpha-helical XD-binding region of N(TAIL). Secondary chemical shift values for full-length N(TAIL) were used to define the precise boundaries of a transient helical segment that coincides with the XD-binding domain, thus shedding light on the pre-recognition state of N(TAIL). Titration experiments with unlabeled XD showed that the transient alpha-helical conformation of N(TAIL) is stabilized upon binding. Lineshape analysis of NMR resonances revealed that residues 483-506 of N(TAIL) are in intermediate exchange with XD, while the 475-482 and 507-525 regions are in fast exchange. The N(TAIL) resonance behavior in the titration experiments is consistent with a complex binding model with more than two states.
Cellular abundance of Mps1 and the role of its carboxyl terminal tail in substrate recruitment.
Sun, Tingting; Yang, Xiaomei; Wang, Wei; Zhang, Xiaojuan; Xu, Quanbin; Zhu, Songcheng; Kuchta, Robert; Chen, Guanjun; Liu, Xuedong
2010-12-03
Mps1 is a protein kinase that regulates normal mitotic progression and the spindle checkpoint in response to spindle damage. The levels of Mps1 are relatively low in cells during interphase but elevated in mitosis or upon activation of the spindle checkpoint, although the dynamic range of Mps1 expression and the Mps1 catalytic mechanism have not been carefully characterized. Our recent structural studies of the Mps1 kinase domain revealed that the carboxyl-terminal tail region of Mps1 is unstructured, raising the question of whether this region has any functional role in Mps1 catalysis. Here we first determined the cellular abundance of Mps1 during cell cycle progression and found that Mps1 levels vary between 60,000 per cell in early G(1) and 110,000 per cell during mitosis. We studied phosphorylation of a number of Mps1 substrates in vitro and in culture cells. Unexpectedly, we found that the unstructured carboxyl-terminal region of Mps1 plays an essential role in substrate recruitment. Kinetics studies using the purified recombinant wild type and mutant kinases indicate that the carboxyl-terminal tail is largely dispensable for autophosphorylation of Mps1 but critical for trans-phosphorylation of substrates in vitro and in cultured cells. Mps1 mutant without the unstructured tail region is defective in mediating spindle assembly checkpoint activation. Our results underscore the importance of the unstructured tail region of Mps1 in kinase activation.
Importance of the GluN2B Carboxy-Terminal Domain for Enhancement of Social Memories
ERIC Educational Resources Information Center
Jacobs, Stephanie; Wei, Wei; Wang, Deheng; Tsien, Joe Z.
2015-01-01
The N-methyl-D-aspartate (NMDA) receptor is known to be necessary for many forms of learning and memory, including social recognition memory. Additionally, the GluN2 subunits are known to modulate multiple forms of memory, with a high GluN2A:GluN2B ratio leading to impairments in long-term memory, while a low GluN2A:GluN2B ratio enhances some…
The MTA family proteins as novel histone H3 binding proteins.
Wu, Meng; Wang, Lina; Li, Qian; Li, Jiwen; Qin, Jun; Wong, Jiemin
2013-01-03
The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.
The MTA family proteins as novel histone H3 binding proteins
2013-01-01
Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail. PMID:23286669
Homologous gene replacement in Physarum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burland, T.G.; Pallotta, D.
1995-01-01
The protist Physarum polycephalum is useful for analysis of several aspects of cellular and developmental biology. To expand the opportunities for experimental analysis of this organism, we have developed a method for gene replacement. We transformed Physarum amoebae with plasmid DNA carrying a mutant allele, ardD{Delta}1, of the ardD actin gene; ardD{Delta}1 mutates the critical carboxy-terminal region of the gene product. Because ardD is not expressed in the amoeba, replacement of ardD{sup +} with ardD{Delta}1 should not be lethal for this cell type. Transformants were obtained only when linear plasmid DNA was used. Most transformants carried one copy of ardD{Delta}1more » in addition to ardD{sup +}, but in two (5%), ardD{sup +} was replaced by a single copy of ardD{Delta}1. This is the first example of homologous gene replacement in Physarum. ardD{Delta}1 was stably maintained in the genome through growth, development and meiosis. We found no effect of ardD{Delta}l on viability, growth, or development of any of the various cell types of Physarum. Thus, the carboxy-terminal region of the ardD product appears not to perform a unique essential role in growth or development. Nevertheless, this method for homologous gene replacement can be applied to analyze the function of any cloned gene. 38 refs., 6 figs., 1 tab.« less
Sharifat, Narges; Mohammad Zadeh, Ghorban; Ghaffari, Mohammad-Ali; Dayati, Parisa; Kamato, Danielle; Little, Peter J; Babaahmadi-Rezaei, Hossein
2017-01-01
G protein-coupled receptor (GPCR) agonists through their receptors can transactivate protein tyrosine kinase receptors such as epidermal growth factor receptor and serine/threonine kinase receptors most notably transforming growth factor (TGF)-β receptor (TβRI). This signalling mechanism represents a major expansion in the cellular outcomes attributable to GPCR signalling. This study addressed the role and mechanisms involved in GPCR agonist, endothelin-1 (ET-1)-mediated transactivation of the TβRI in bovine aortic endothelial cells (BAECs). The in-vitro model used BAECs. Signalling intermediate phospho-Smad2 in the carboxy terminal was detected and quantified by Western blotting. ET-1 treatment of BAECs resulted in a time and concentration-dependent increase in pSmad2C. Peak phosphorylation was evident with 100 nm treatment of ET-1 at 4-6 h. TβRI antagonist, SB431542 inhibited ET-1-mediated pSmad2C. In the presence of bosentan, a mixed ET A and ET B receptor antagonist ET-1-mediated pSmad2C levels were inhibited. The ET-mediated pSmad2C was blocked by the protein synthesis inhibitor, cycloheximide. In BAECs, ET-1 via the ETB receptor is involved in transactivation of the TβRI. The transactivation-dependent response is dependent upon de novo protein synthesis. © 2016 Royal Pharmaceutical Society.
Concerted regulation of ISWI by an autoinhibitory domain and the H4 N-terminal tail
Ludwigsen, Johanna; Pfennig, Sabrina; Singh, Ashish K; Schindler, Christina; Harrer, Nadine; Forné, Ignasi; Zacharias, Martin; Mueller-Planitz, Felix
2017-01-01
ISWI-family nucleosome remodeling enzymes need the histone H4 N-terminal tail to mobilize nucleosomes. Here we mapped the H4-tail binding pocket of ISWI. Surprisingly the binding site was adjacent to but not overlapping with the docking site of an auto-regulatory motif, AutoN, in the N-terminal region (NTR) of ISWI, indicating that AutoN does not act as a simple pseudosubstrate as suggested previously. Rather, AutoN cooperated with a hitherto uncharacterized motif, termed AcidicN, to confer H4-tail sensitivity and discriminate between DNA and nucleosomes. A third motif in the NTR, ppHSA, was functionally required in vivo and provided structural stability by clamping the NTR to Lobe 2 of the ATPase domain. This configuration is reminiscent of Chd1 even though Chd1 contains an unrelated NTR. Our results shed light on the intricate structural and functional regulation of ISWI by the NTR and uncover surprising parallels with Chd1. DOI: http://dx.doi.org/10.7554/eLife.21477.001 PMID:28109157
Sokolova, Vladyslava; Li, Frances; Polovin, George; Park, Soyeon
2015-01-01
In the proteasome, the proteolytic 20S core particle (CP) associates with the 19S regulatory particle (RP) to degrade polyubiquitinated proteins. Six ATPases (Rpt1-Rpt6) of the RP form a hexameric Rpt ring and interact with the heptameric α ring (α1–α7) of the CP via the Rpt C-terminal tails individually binding to the α subunits. Importantly, the Rpt6 tail has been suggested to be crucial for RP assembly. Here, we show that the interaction of the CP and Rpt6 tail promotes a CP-Rpt3 tail interaction, and that they jointly mediate proteasome activation via opening the CP gate for substrate entry. The Rpt6 tail forms a novel relationship with the Nas6 chaperone, which binds to Rpt3 and regulates the CP-Rpt3 tail interaction, critically influencing cell growth and turnover of polyubiquitinated proteins. CP-Rpt6 tail binding promotes the release of Nas6 from the proteasome. Based on disulfide crosslinking that detects cognate α3-Rpt6 tail and α2-Rpt3 tail interactions in the proteasome, decreased α3-Rpt6 tail interaction facilitates robust α2-Rpt3 tail interaction that is also strongly ATP-dependent. Together, our data support the reported role of Rpt6 during proteasome assembly, and suggest that its function switches from anchoring for RP assembly into promoting Rpt3-dependent activation of the mature proteasome. PMID:26449534
Rao, Mala V; Yuan, Aidong; Campbell, Jabbar; Kumar, Asok; Nixon, Ralph A
2012-01-01
Newly synthesized neurofilaments or protofilaments are incorporated into a highly stable stationary cytoskeleton network as they are transported along axons. Although the heavily phosphorylated carboxyl-terminal tail domains of the heavy and medium neurofilament (NF) subunits have been proposed to contribute to this process and particularly to stability of this structure, their function is still obscure. Here we show in NF-H/M tail deletion [NF-(H/M)(tailΔ)] mice that the deletion of both of these domains selectively lowers NF levels 3-6 fold along optic axons without altering either rates of subunit synthesis or the rate of slow axonal transport of NF. Pulse labeling studies carried out over 90 days revealed a significantly faster rate of disappearance of NF from the stationary NF network of optic axons in NF-(H/M)(tailΔ) mice. Faster NF disappearance was accompanied by elevated levels of NF-L proteolytic fragments in NF-(H/M)(tailΔ) axons. We conclude that NF-H and NF-M C-terminal domains do not normally regulate NF transport rates as previously proposed, but instead increase the proteolytic resistance of NF, thereby stabilizing the stationary neurofilament cytoskeleton along axons.
Rao, Mala V.; Yuan, Aidong; Campbell, Jabbar; Kumar, Asok; Nixon, Ralph A.
2012-01-01
Newly synthesized neurofilaments or protofilaments are incorporated into a highly stable stationary cytoskeleton network as they are transported along axons. Although the heavily phosphorylated carboxyl-terminal tail domains of the heavy and medium neurofilament (NF) subunits have been proposed to contribute to this process and particularly to stability of this structure, their function is still obscure. Here we show in NF-H/M tail deletion [NF-(H/M)tailΔ] mice that the deletion of both of these domains selectively lowers NF levels 3–6 fold along optic axons without altering either rates of subunit synthesis or the rate of slow axonal transport of NF. Pulse labeling studies carried out over 90 days revealed a significantly faster rate of disappearance of NF from the stationary NF network of optic axons in NF-(H/M)tailΔ mice. Faster NF disappearance was accompanied by elevated levels of NF-L proteolytic fragments in NF-(H/M)tailΔ axons. We conclude that NF-H and NF-M C-terminal domains do not normally regulate NF transport rates as previously proposed, but instead increase the proteolytic resistance of NF, thereby stabilizing the stationary neurofilament cytoskeleton along axons. PMID:23028520
Fanning, T; Singer, M
1987-01-01
Recent work suggests that one or more members of the highly repeated LINE-1 (L1) DNA family found in all mammals may encode one or more proteins. Here we report the sequence of a portion of an L1 cloned from the domestic cat (Felis catus). These data permit comparison of the L1 sequences in four mammalian orders (Carnivore, Lagomorph, Rodent and Primate) and the comparison supports the suggested coding potential. In two separate, noncontiguous regions in the carboxy terminal half of the proteins predicted from the DNA sequences, there are several strongly conserved segments. In one region, these share homology with known or suspected reverse transcriptases, as described by others in rodents and primates. In the second region, closer to the carboxy terminus, the strongly conserved segments are over 90% homologous among the four orders. One of the latter segments is cysteine rich and resembles the putative metal binding domains of nucleic acid binding proteins, including those of TFIIIA and retroviruses. PMID:3562227
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakatsu, Miho; Goto, Shinji, E-mail: sgoto@nagasaki-u.ac.jp; Yoshida, Takako
2011-08-12
Highlights: {yields} Nuclear translocation of GST{pi} is abrogated by the deletion of the last 16 amino acid residues in the carboxy-terminal region, indicating that residues 195-208 of GST{pi} are required for nuclear translocation. {yields} The lack of a contiguous stretch of positively charged amino acid residues within the carboxy-terminal region of GST{pi}, suggests that the nuclear translocation of GST{pi} is mediated by a non-classical nuclear localization signal. {yields} An in vitro transport assay shows that the nuclear translocation of GST{pi} is dependent on cytosolic factors and ATP. -- Abstract: Glutathione S-transferase {pi} (GST{pi}), a member of the GST family ofmore » multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GST{pi} is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GST{pi} appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GST{pi} was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GST{pi}195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GST{pi} depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GST{pi}, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs.« less
Turner, Mark S.; Hafner, Louise M.; Walsh, Terry; Giffard, Philip M.
2004-01-01
Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria. PMID:15184172
Reverse genetics studies on the filamentous morphology of influenza A virus.
Bourmakina, Svetlana V; García-Sastre, Adolfo
2003-03-01
We have investigated the genetic determinants responsible for the filamentous morphology of influenza A viruses, a property characteristic of primary virus isolates. A plasmid-based reverse genetics system was used to transfer the M segment of influenza A/Udorn/72 (H3N2) virus into influenza A/WSN/33 (H1N1) virus. While WSN virions display spherical morphology, recombinant WSN-Mud virus acquired the ability of the parental Udorn strain to form filamentous virus particles. This was determined by immunofluorescence studies in infected MDCK cells and by electron microscopy of purified virus particles. To determine the gene product within the M segment responsible for filamentous virus morphology, we generated four recombinant viruses carrying different sets of M1 and M2 genes from WSN or Udorn strains in a WSN background. These studies revealed that the M1 gene of Udorn, independently of the origin of the M2 gene, conferred filamentous budding properties and filamentous virus morphology to the recombinant viruses. We also constructed two WSN viruses encoding chimeric M1 proteins containing the amino-terminal 1-162 amino acids or the carboxy-terminal 163-252 amino acids of the Udorn M1 protein. Neither of these two viruses acquired filamentous phenotypes, indicating that both amino- and carboxy-terminal domains of the M1 protein contribute to filamentous virus morphology. We next rescued seven mutant WSN-M1ud viruses containing Udorn M1 proteins carrying single amino acid substitutions corresponding to the seven amino acid differences with the M1 protein of WSN virus. Characterization of these recombinant viruses revealed that amino acid residues 95 and 204 are critical in determining filamentous virus particle formation.
Fan, C M; Porter, J A; Chiang, C; Chang, D T; Beachy, P A; Tessier-Lavigne, M
1995-05-05
A long-range signal encoded by the Sonic hedgehog (Shh) gene has been implicated as the ventral patterning influence from the notochord that induces sclerotome and represses dermomyotome in somite differentiation. Long-range effects of hedgehog (hh) signaling have been suggested to result either from local induction of a secondary diffusible signal or from the direct action of the highly diffusible carboxy-terminal product of HH autoproteolytic cleavage. Here we provide evidence that the long-range somite patterning effects of SHH are instead mediated by a direct action of the amino-terminal cleavage product. We also show that pharmacological manipulations to increase the activity of cyclic AMP-dependent protein kinase A can selectively antagonize the effects of the amino-terminal cleavage product. Our results support the operation of a single evolutionarily conserved signaling pathway for both local and direct long-range inductive actions of HH family members.
Ryan, Eathen; Shen, Di; Wang, Xu
2016-04-01
Pleiotrophin (PTN) is a potent glycosaminoglycan-binding cytokine that is important in neural development, angiogenesis and tissue regeneration. Much of its activity is attributed to its interactions with the chondroitin sulfate (CS) proteoglycan, receptor type protein tyrosine phosphatase ζ (PTPRZ). However, there is little high resolution structural information on the interactions between PTN and CS, nor is it clear why the C-terminal tail of PTN is necessary for signaling through PTPRZ, even though it does not contribute to heparin binding. We determined the first structure of PTN and analyzed its interactions with CS. Our structure shows that PTN possesses large basic surfaces on both of its structured domains and also that residues in the hinge segment connecting the domains have significant contacts with the C-terminal domain. Our analysis of PTN-CS interactions showed that the C-terminal tail of PTN is essential for maintaining stable interactions with chondroitin sulfate A, the type of CS commonly found on PTPRZ. These results offer the first possible explanation of why truncated PTN missing the C-terminal tail is unable to signal through PTPRZ. NMR analysis of the interactions of PTN with CS revealed that the C-terminal domain and hinge of PTN make up the major CS-binding site in PTN, and that removal of the C-terminal tail weakened the affinity of the site for CSA but not for other high sulfation density CS. Coordinates of the ensemble of ten PTN structures have been deposited in RCSB under accession number 2n6f. Chemical shifts assignments and structural constraints have been deposited in BMRB under accession number 25762. © 2016 Federation of European Biochemical Societies.
2008-06-03
etiologic agent of glanders in solipeds (horses, mules and donkeys), and incidentally in carnivores and humans. Little is known about the molecular...disintegrated cell envelopes. Furthermore, relative to the wild type, the ctpA mutant displayed slower growth in vitro and less ability to survive in...IgG2a and were partially protected against chal- lenge with wild type B. mallei ATCC 23344. These findings suggest that CtpA regulates in vitro growth
An Adhesive for Field Repair of Composites
1988-06-01
epoxy. Epon 828. toughened with carboxy terminated butadiene nitrile rubber, ( CTBN ). and cured with a cycloaliphatic diamine, diamino dicycohexyl methane...adhesives were made by mixing 80 grams of EPON 828. 18 grams CTBN and between .28 and 3.4 grams of PACM-20. The mixture was heated to 160°C at which time .2...grams of PACM-20 with between 1 and 12 grams of the 828- CTBN mixture. This adduct was allowed to react overniqht at room temperature. A second set of
77 FR 46430 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-03
... PURPA 210(m)(3) filings: Docket Numbers: QM12-5-000. Applicants: Otter Tail Power Company. Description: Application to Terminate Mandatory PURPA Purchase Obligation of Otter Tail Power Company. Filed Date: 7/25/12...
Brophy, Megan Brunjes; Nakashige, Toshiki G.; Gaillard, Aleth; Nolan, Elizabeth M.
2014-01-01
Human calprotectin (CP) is an antimicrobial protein that coordinates Mn(II) with high affinity in a Ca(II)-dependent manner at an unusual histidine-rich site (site 2) formed at the S100A8/S100A9 dimer interface. We present a 16-member CP mutant family where mutations in the S100A9 C-terminal tail (residues 96–114) are employed to evaluate the contributions of this region, which houses three histidines and four acidic residues, to Mn(II) coordination at site 2. The results from analytical size-exclusion chromatography, Mn(II) competition titrations, and electron paramagnetic resonance spectroscopy establish that the C-terminal tail is essential for high-affinity Mn(II) coordination by native CP in solution. The studies indicate that His103 and His105 (HXH motif) of the tail complete the Mn(II) coordination sphere in solution, affording an unprecedented biological His6 site. These solution studies are in agreement with a Mn(II)-CP crystal structure reported recently (PNAS 2013, 110, 3841). Remarkably high-affinity Mn(II) binding is retained when either H103 or H105 are mutated to Ala, when the HXH motif is shifted from positions 103–105 to 104–106, and when the human tail is substituted by the C-terminal tail of murine S100A9. Nevertheless, antibacterial activity assays employing human CP mutants reveal that the native disposition of His residues is important for conferring growth inhibition against Escherichia coli and Staphylococcus aureus. Within the S100 family, the S100A8/S100A9 heterooligomer is essential for providing high-affinity Mn(II) binding; the S100A7ox, S100A9(C3S), S100A12, and S100B homodimers do not exhibit such Mn(II)-binding capacity. PMID:24245608
Deletion and site-specific mutagenesis of nucleolin's carboxy GAR domain.
Pellar, Gregory J; DiMario, Patrick J
2003-04-01
Vertebrate nucleolin is an abundant RNA-binding protein in the dense fibrillar component of active nucleoli. Nucleolin is modular in composition. Its amino-terminal third contains alternating acidic and basic domains, its middle section contains four consensus RNA-binding domains (cRBDs), and its carboxy-terminus contains a distinctive glycine/arginine-rich (GAR) domain with several RGG motifs. The arginines within these motifs are asymmetrically dimethylated. Several laboratories have shown that the GAR domain is necessary but not sufficient for the efficient localization of nucleolin to nucleoli. We examined the distribution of endogenous fibrillarin, Nopp140, and B23 when full-length and DeltaGAR nucleolin were expressed exogenously as enhanced green fluorescent protein (EGFP)-tagged fusions. Only B23 redistributed when DeltaGAR-EGFP was expressed at moderate to high levels, suggesting an in vivo interaction between nucleolin and B23. Next we substituted all ten arginines within the GAR domain of Chinese hamster ovary (CHO) nucleolin with lysines to test the hypothesis that methylation of the carboxy GAR domain is necessary for the nucleolar association of nucleolin. The lysine-substituted mutant was not an in vitro substrate for the yeast protein methyltransferase, Hmt1p/Rmt1. It was, however, able to associate properly with interphase nucleoli and with interphase pre-nucleolar bodies upon recovery from hypotonic shock. We conclude, therefore, that although the GAR domain is necessary for the efficient localization of nucleolin to nucleoli, methylation of this domain is not required for proper nucleolar localization.
Weisrock, Katharina U; Winkelsett, Sarah; Martin-Rosset, William; Forssmann, Wolf-Georg; Parvizi, Nahid; Coenen, Manfred; Vervuert, Ingrid
2011-11-01
Intermittent administration of parathyroid hormone (PTH) is an anabolic therapy for osteoporotic conditions in humans. This study evaluated the effects of equine PTH fragment (ePTH-1-37) administration on bone metabolism in 12 healthy horses. Six horses each were treated once daily for 120days with subcutaneous injections of 0.5μg/kg ePTH-1-37 or placebo. Blood was collected to determine ionized calcium (Ca(++)), total Ca (Ca(T)), inorganic phosphorus, serum equine osteocalcin (eOC), carboxy-terminal telopeptide of type I collagen (ICTP), bone-specific alkaline phosphatase, and carboxy-terminal cross-linked telopeptide of type I collagen. Bone mineral density (BMD) was determined with dual X-ray absorptiometry of the metacarpus and calcaneus. Significantly higher blood Ca(++) and plasma Ca(T) concentrations were measured 5h after ePTH-1-37 administration compared to placebo. Higher serum eOC concentrations were found for ePTH-1-37 treatment at days 90 (P<0.05) and 120 (P=0.05). Significantly higher serum ICTP levels were observed with ePTH-1-37 treatment at days 60 and 90. For both study groups, BMD increased significantly in the calcaneus. Long-term use of ePTH-1-37 seemed to have no negative effects on bone metabolism in healthy horses. The absence of undesirable side effects is the premise to ensure safety for further clinical investigations in horses with increased bone resorption processes. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, Marina E.; Fletcher, Georgina C.; O’Reilly, Nicola
2015-03-01
This study characterizes the interaction between the carboxy-terminal (ERLI) motif of the essential polarity protein Crb and the Pals1/Stardust PDZ-domain protein. Structures of human Pals1 PDZ with and without a Crb peptide are described, explaining the highly conserved nature of the ERLI motif and revealing a sterically blocked peptide-binding groove in the absence of ligand. Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member ofmore » the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein–protein interaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiti, Tushar K.; Permaul, Michelle; Boudreaux, David A.
Ubiquitin carboxy-terminal hydrolase L5 (UCHL5) is a proteasome-associated deubiquitinating enzyme, which, along with RPN11 and USP14, is known to carry out deubiquitination on proteasome. As a member of the ubiquitin carboxy-terminal hydrolase (UCH) family, UCHL5 is unusual because, unlike UCHL1 and UCHL3, it can process polyubiquitin chain. However, it does so only when it is bound to the proteasome; in its free form, it is capable of releasing only relatively small leaving groups from the C-terminus of ubiquitin. Such a behavior might suggest at least two catalytically distinct forms of the enzyme, an apo form incapable of chain processing activity,more » and a proteasome-induced activated form capable of cleaving polyubiquitin chain. Through the crystal structure analysis of two truncated constructs representing the catalytic domain (UCH domain) of this enzyme, we were able to visualize a state of this enzyme that we interpret as its inactive form, because the catalytic cysteine appears to be in an unproductive orientation. While this work was in progress, the structure of a different construct representing the UCH domain was reported; however, in that work the structure reported was that of an inactive mutant [catalytic Cys to Ala; Nishio K et al. (2009) Biochem Biophys Res Commun390, 855-860], which precluded the observation that we are reporting here. Additionally, our structures reveal conformationally dynamic parts of the enzyme that may play a role in the structural transition to the more active form.« less
Angiotensin-I-converting enzyme and its relatives
Riordan, James F
2003-01-01
Angiotensin-I-converting enzyme (ACE) is a monomeric, membrane-bound, zinc- and chloride-dependent peptidyl dipeptidase that catalyzes the conversion of the decapeptide angiotensin I to the octapeptide angiotensin II, by removing a carboxy-terminal dipeptide. ACE has long been known to be a key part of the renin angiotensin system that regulates blood pressure, and ACE inhibitors are important for the treatment of hypertension. There are two forms of the enzyme in humans, the ubiquitous somatic ACE and the sperm-specific germinal ACE, both encoded by the same gene through transcription from alternative promoters. Somatic ACE has two tandem active sites with distinct catalytic properties, whereas germinal ACE, the function of which is largely unknown, has just a single active site. Recently, an ACE homolog, ACE2, has been identified in humans that differs from ACE in being a carboxypeptidase that preferentially removes carboxy-terminal hydrophobic or basic amino acids; it appears to be important in cardiac function. ACE homologs (also known as members of the M2 gluzincin family) have been found in a wide variety of species, even in those that neither have a cardiovascular system nor synthesize angiotensin. X-ray structures of a truncated, deglycosylated form of germinal ACE and a related enzyme from Drosophila have been reported, and these show that the active site is deep within a central cavity. Structure-based drug design targeting the individual active sites of somatic ACE may lead to a new generation of ACE inhibitors, with fewer side-effects than currently available inhibitors. PMID:12914653
Varieties of charge distributions in coat proteins of ssRNA+ viruses
NASA Astrophysics Data System (ADS)
Lošdorfer Božič, Anže; Podgornik, Rudolf
2018-01-01
A major part of the interactions involved in the assembly and stability of icosahedral, positive-sense single-stranded RNA (ssRNA+) viruses is electrostatic in nature, as can be inferred from the strong pH- and salt-dependence of their assembly phase diagrams. Electrostatic interactions do not act only between the capsid coat proteins (CPs), but just as often provide a significant contribution to the interactions of the CPs with the genomic RNA, mediated to a large extent by positively charged, flexible N-terminal tails of the CPs. In this work, we provide two clear and complementary definitions of an N-terminal tail of a protein, and use them to extract the tail sequences of a large number of CPs of ssRNA+ viruses. We examine the pH-dependent interplay of charge on both tails and CPs alike, and show that—in contrast to the charge on the CPs—the net positive charge on the N-tails persists even to very basic pH values. In addition, we note a limit to the length of the wild-type genomes of those viruses which utilize positively charged tails, when compared to viruses without charged tails and similar capsid size. At the same time, we observe no clear connection between the charge on the N-tails and the genome lengths of the viruses included in our study.
Schütze, Tonio; Ulrich, Alexander K.C.; Apelt, Luise; Will, Cindy L.; Bartlick, Natascha; Seeger, Martin; Weber, Gert; Lührmann, Reinhard; Stelzl, Ulrich; Wahl, Markus C.
2016-01-01
Spliceosomal Prp38 proteins contain a conserved amino-terminal domain, but only higher eukaryotic orthologs also harbor a carboxy-terminal RS domain, a hallmark of splicing regulatory SR proteins. We show by crystal structure analysis that the amino-terminal domain of human Prp38 is organized around three pairs of antiparallel α-helices and lacks similarities to RNA-binding domains found in canonical SR proteins. Instead, yeast two-hybrid analyses suggest that the amino-terminal domain is a versatile protein–protein interaction hub that possibly binds 12 other spliceosomal proteins, most of which are recruited at the same stage as Prp38. By quantitative, alanine surface-scanning two-hybrid screens and biochemical analyses we delineated four distinct interfaces on the Prp38 amino-terminal domain. In vitro interaction assays using recombinant proteins showed that Prp38 can bind at least two proteins simultaneously via two different interfaces. Addition of excess Prp38 amino-terminal domain to in vitro splicing assays, but not of an interaction-deficient mutant, stalled splicing at a precatalytic stage. Our results show that human Prp38 is an unusual SR protein, whose amino-terminal domain is a multi-interface protein–protein interaction platform that might organize the relative positioning of other proteins during splicing. PMID:26673105
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Christopher; Matsui, Tsutomu; Karp, Jerome M.
Here, nucleoplasmin (Npm) is a highly conserved histone chaperone responsible for the maternal storage and zygotic release of histones H2A/H2B. Npm contains a pentameric N-terminal core domain and an intrinsically disordered C-terminal tail domain. Though intrinsically disordered regions are common among histone chaperones, their roles in histone binding and chaperoning remain unclear. Using an NMR-based approach, here we demonstrate that the Xenopus laevis Npm tail domain controls the binding of histones at its largest acidic stretch (A2) via direct competition with both the C-terminal basic stretch and basic nuclear localization signal. NMR and small-angle X-ray scattering (SAXS) structural analyses allowedmore » us to construct models of both the tail domain and the pentameric complex. Functional analyses demonstrate that these competitive intramolecular interactions negatively regulate Npm histone chaperone activity in vitro. Together these data establish a potentially generalizable mechanism of histone chaperone regulation via dynamic and specific intramolecular shielding of histone interaction sites.« less
Warren, Christopher; Matsui, Tsutomu; Karp, Jerome M.; ...
2017-12-20
Here, nucleoplasmin (Npm) is a highly conserved histone chaperone responsible for the maternal storage and zygotic release of histones H2A/H2B. Npm contains a pentameric N-terminal core domain and an intrinsically disordered C-terminal tail domain. Though intrinsically disordered regions are common among histone chaperones, their roles in histone binding and chaperoning remain unclear. Using an NMR-based approach, here we demonstrate that the Xenopus laevis Npm tail domain controls the binding of histones at its largest acidic stretch (A2) via direct competition with both the C-terminal basic stretch and basic nuclear localization signal. NMR and small-angle X-ray scattering (SAXS) structural analyses allowedmore » us to construct models of both the tail domain and the pentameric complex. Functional analyses demonstrate that these competitive intramolecular interactions negatively regulate Npm histone chaperone activity in vitro. Together these data establish a potentially generalizable mechanism of histone chaperone regulation via dynamic and specific intramolecular shielding of histone interaction sites.« less
Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors.
Zhou, X Edward; He, Yuanzheng; de Waal, Parker W; Gao, Xiang; Kang, Yanyong; Van Eps, Ned; Yin, Yanting; Pal, Kuntal; Goswami, Devrishi; White, Thomas A; Barty, Anton; Latorraca, Naomi R; Chapman, Henry N; Hubbell, Wayne L; Dror, Ron O; Stevens, Raymond C; Cherezov, Vadim; Gurevich, Vsevolod V; Griffin, Patrick R; Ernst, Oliver P; Melcher, Karsten; Xu, H Eric
2017-07-27
G protein-coupled receptors (GPCRs) mediate diverse signaling in part through interaction with arrestins, whose binding promotes receptor internalization and signaling through G protein-independent pathways. High-affinity arrestin binding requires receptor phosphorylation, often at the receptor's C-terminal tail. Here, we report an X-ray free electron laser (XFEL) crystal structure of the rhodopsin-arrestin complex, in which the phosphorylated C terminus of rhodopsin forms an extended intermolecular β sheet with the N-terminal β strands of arrestin. Phosphorylation was detected at rhodopsin C-terminal tail residues T336 and S338. These two phospho-residues, together with E341, form an extensive network of electrostatic interactions with three positively charged pockets in arrestin in a mode that resembles binding of the phosphorylated vasopressin-2 receptor tail to β-arrestin-1. Based on these observations, we derived and validated a set of phosphorylation codes that serve as a common mechanism for phosphorylation-dependent recruitment of arrestins by GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.
The structure of neuronal calcium sensor-1 in solution revealed by molecular dynamics simulations.
Bellucci, Luca; Corni, Stefano; Di Felice, Rosa; Paci, Emanuele
2013-01-01
Neuronal calcium sensor-1 (NCS-1) is a protein able to trigger signal transduction processes by binding a large number of substrates and re-shaping its structure depending on the environmental conditions. The X-ray crystal structure of the unmyristoilated NCS-1 shows a large solvent-exposed hydrophobic crevice (HC); this HC is partially occupied by the C-terminal tail and thus elusive to the surrounding solvent. We studied the native state of NCS-1 by performing room temperature molecular dynamics (MD) simulations starting from the crystal and the solution structures. We observe relaxation to a state independent of the initial structure, in which the C-terminal tail occupies the HC. We suggest that the C-terminal tail shields the HC binding pocket and modulates the affinity of NCS-1 for its natural targets. By analyzing the topology and nature of the inter-residue potential energy, we provide a compelling description of the interaction network that determines the three-dimensional organization of NCS-1.
Giovannini, Marco; Robanus-Maandag, Els; Niwa-Kawakita, Michiko; van der Valk, Martin; Woodruff, James M.; Goutebroze, Laurence; Mérel, Philippe; Berns, Anton; Thomas, Gilles
1999-01-01
Specific mutations in some tumor suppressor genes such as p53 can act in a dominant fashion. We tested whether this mechanism may also apply for the neurofibromatosis type-2 gene (NF2) which, when mutated, leads to schwannoma development. Transgenic mice were generated that express, in Schwann cells, mutant NF2 proteins prototypic of natural mutants observed in humans. Mice expressing a NF2 protein with an interstitial deletion in the amino-terminal domain showed high prevalence of Schwann cell-derived tumors and Schwann cell hyperplasia, whereas those expressing a carboxy-terminally truncated protein were normal. Our results indicate that a subset of mutant NF2 alleles observed in patients may encode products with dominant properties when overexpressed in specific cell lineages. PMID:10215625
Ets-1 interacts through a similar binding interface with Ku70 and Poly (ADP-Ribose) Polymerase-1.
Choul-Li, Souhaila; Legrand, Arnaud J; Vicogne, Dorothée; Villeret, Vincent; Aumercier, Marc
2018-06-18
The Ets-1 transcription factor plays an important role in various physiological and pathological processes. These diverse roles of Ets-1 are likely to depend on its interaction proteins. We have previously showed that Ets-1 interacted with DNA-dependent protein kinase (DNA-PK) complex including its regulatory subunits, Ku70 and Ku86 and with poly (ADP-ribose) polymerase-1 (PARP-1). In this study, the binding domains for the interaction between Ets-1 and these proteins were reported. We demonstrated that the interaction of Ets-1 with DNA-PK was mediated through the Ku70 subunit and was mapped to the C-terminal region of Ets-1 and the C-terminal part of Ku70 including SAP domain. The interactive domains between Ets-1 and PARP-1 have been mapped to the C-terminal region of Ets-1 and the BRCA1 carboxy-terminal (BRCT) domain of PARP-1. The results presented in this study may advance our understanding of the functional link between Ets-1 and its interaction partners, DNA-PK and PARP-1.
Parvari, R; Shen, J; Hershkovitz, E; Chen, Y T; Moses, S W
1998-04-01
Glycogen storage disease type III (GSD III) is an autosomal recessive disease caused by the deficiency of glycogen debranching enzyme (AGL). We report the finding of two new mutations in a GSD IIIa Ashkenazi Jewish patient. Both mutations are insertion of an adenine into a stretch of 8 adenines towards the 3' end of the coding region, one at position 3904 (3904insA) in exon 30, the second at position 4214 (4214insA) in exon 32. The mutations cause frameshifts and premature terminations of the glycogen debranching enzyme, the first causing a frameshift at amino acid 1304, the second causing a frameshift at amino acid 1408 of the total of 1532. These mutations demonstrate the importance of the 125 amino acids at the carboxy-terminus of the debrancher enzyme for its activity and support the suggestion that the putative glycogen binding domain is located in the carboxy-terminus of the AGL. The mutations cause distinctive single-strand conformation polymorphism (SSCP) patterns enabling easy detection.
Blocquel, David; Habchi, Johnny; Gruet, Antoine; Blangy, Stéphanie; Longhi, Sonia
2012-01-01
Henipaviruses are recently emerged severe human pathogens within the Paramyxoviridae family. Their genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that recruits the polymerase complex via the phosphoprotein (P). We have previously shown that in Henipaviruses the N protein possesses an intrinsically disordered C-terminal domain, N(TAIL), which undergoes α-helical induced folding in the presence of the C-terminal domain (P(XD)) of the P protein. Using computational approaches, we previously identified within N(TAIL) four putative molecular recognition elements (MoREs) with different structural propensities, and proposed a structural model for the N(TAIL)-P(XD) complex where the MoRE encompassing residues 473-493 adopt an α-helical conformation at the P(XD) surface. In this work, for each N(TAIL) protein, we designed four deletion constructs bearing different combinations of the predicted MoREs. Following purification of the N(TAIL) truncated proteins from the soluble fraction of E. coli, we characterized them in terms of their conformational, spectroscopic and binding properties. These studies provided direct experimental evidence for the structural state of the four predicted MoREs, and showed that two of them have clear α-helical propensities, with the one spanning residues 473-493 being strictly required for binding to P(XD). We also showed that Henipavirus N(TAIL) and P(XD) form heterologous complexes, indicating that the P(XD) binding regions are functionally interchangeable between the two viruses. By combining spectroscopic and conformational analyses, we showed that the content in regular secondary structure is not a major determinant of protein compaction.
Mikami, Suzuka; Kanaba, Teppei; Ito, Yutaka; Mishima, Masaki
2013-10-01
The transcriptional corepressor SMRT/HDAC1-associated repressor protein (SHARP) recruits histone deacetylases. Human SHARP protein is thought to function in processes involving steroid hormone responses and the Notch signaling pathway. SHARP consists of RNA recognition motifs (RRMs) in the N-terminal region and the spen paralog and ortholog C-terminal (SPOC) domain in the C-terminal region. It is known that the SPOC domain binds the LSD motif in the C-terminal tail of corepressors silencing mediator for retinoid and thyroid receptor (SMRT)/nuclear receptor corepressor (NcoR). We are interested in delineating the mechanism by which the SPOC domain recognizes the LSD motif of the C-terminal tail of SMRT/NcoR. To this end, we are investigating the tertiary structure of the SPOC/SMRT peptide using NMR. Herein, we report on the (1)H, (13)C and (15)N resonance assignments of the SPOC domain in complex with a SMRT peptide, which contributes towards a structural understanding of the SPOC/SMRT peptide and its molecular recognition.
Nishimori, Keisuke; Kitahata, Shigeru; Nishino, Takashi; Maruyama, Tatsuo
2018-05-10
Controlling the surface properties of solid polymers is important for practical applications. We here succeeded in controlling the surface segregation of polymers to display carboxy groups on an outermost surface, which allowed the covalent immobilization of functional molecules via the carboxy groups on a substrate surface. Random methacrylate-based copolymers containing carboxy groups, in which carboxy groups were protected with perfluoroacyl (Rf) groups, were dip-coated on acrylic substrate surfaces. X-ray photoelectron spectroscopy and contact-angle measurements revealed that the Rf groups were segregated to the outermost surface of the dip-coated substrates. The Rf groups were removed by hydrolysis of the Rf esters in the copolymers, resulting in the display of carboxy groups on the surface. The quantification of carboxy groups on a surface revealed that the carboxy groups were reactive to a water-soluble solute in aqueous solution. The surface segregation was affected by the molecular structure of the copolymer used for dip-coating.
Ubiquitin chain specificities of E6AP E3 ligase and its HECT domain.
Kobayashi, Fuminori; Nishiuchi, Takumi; Takaki, Kento; Konno, Hiroki
2018-02-05
Ubiquitination of target proteins is accomplished by isopeptide bond formation between the carboxy group of the C-terminal glycine (Gly) residue of ubiquitin (Ub) and the ɛ-amino group of lysine (Lys) on the target proteins. The formation of an isopeptide bond between Ubs that gives rise to a poly-Ub chain on the target proteins and the types of poly-Ub chains formed depend on which of the seven Lys residues or N-terminal methionine (Met) residue on Ub is used for chain elongation. To understand the linkage specificity mechanism of Ub chains on E3, the previous study established an assay to monitor the formation of a free diubiquitin chain (Ub 2 chain synthesis assay) by HECT type E3 ligase. In this study, we investigated Ub 2 chain specificity using E6AP HECT domain. We here demonstrate the importance of the N-terminal domain of full length E6AP for Ub 2 chain specificity. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nguyen, Ha; Kang, Sungmin; Tokita, Masatoshi; Watanabe, Junji
2011-07-01
New homologs of bent molecules with a large bent-angle central core of 4,6-dichloro benzene and an alkylthio terminal tail have been synthesized. Although the corresponding alkoxy-tail homologs show only the calamitic phases because of its large bent angles around 160°, the new homologs with an alkylthio tail exhibit the antiferroelectric smectic APA (SmAPA) banana phase that is transformed on cooling from the calamitic smectic A (SmA) phase. The biaxial polar packing of bent molecules in the SmAPA phase is considered to arise from the hindered rotation around the molecular long axis due to the expansion of the mesophase temperatures to a lower temperature region. This study indicates that the bent molecules, even with a large bent angle, have the potential to form a switchable banana phase with a remarkable decrease in its phase temperature range to around 60 °C.
Loya, Travis J.; O’Rourke, Thomas W.; Reines, Daniel
2012-01-01
The yeast IMD2 gene encodes an enzyme involved in GTP synthesis. Its expression is controlled by guanine nucleotides through a set of alternate start sites and an intervening transcriptional terminator. In the off state, transcription results in a short non-coding RNA that starts upstream of the gene. Transcription terminates via the Nrd1-Nab3-Sen1 complex and is degraded by the nuclear exosome. Using a sensitive terminator read-through assay, we identified trans-acting Terminator Override (TOV) genes that operate this terminator. Four genes were identified: the RNA polymerase II phosphatase SSU72, the RNA polymerase II binding protein PCF11, the TRAMP subunit TRF4 and the hnRNP-like, NAB3. The TOV phenotype can be explained by the loss of function of these gene products as described in models in which termination and RNA degradation are coupled to the phosphorylation state of RNA polymerase II's repeat domain. The most interesting mutations were those found in NAB3, which led to the finding that the removal of merely three carboxy-terminal amino acids compromised Nab3's function. This region of previously unknown function is distant from the protein's well-known RNA binding and Nrd1 binding domains. Structural homology modeling suggests this Nab3 ‘tail’ forms an α-helical multimerization domain that helps assemble it onto an RNA substrate. PMID:22564898
Bubis, José; Martínez, Juan Carlos; Calabokis, Maritza; Ferreira, Joilyneth; Sanz-Rodríguez, Carlos E; Navas, Victoria; Escalona, José Leonardo; Guo, Yurong; Taylor, Susan S
2018-03-01
The full gene sequence encoding for the Trypanosoma equiperdum ortholog of the cAMP-dependent protein kinase (PKA) regulatory (R) subunits was cloned. A poly-His tagged construct was generated [TeqR-like(His) 8 ], and the protein was expressed in bacteria and purified to homogeneity. The size of the purified TeqR-like(His) 8 was determined to be ∼57,000 Da by molecular exclusion chromatography indicating that the parasite protein is a monomer. Limited proteolysis with various proteases showed that the T. equiperdum R-like protein possesses a hinge region very susceptible to proteolysis. The recombinant TeqR-like(His) 8 did not bind either [ 3 H] cAMP or [ 3 H] cGMP up to concentrations of 0.40 and 0.65 μM, respectively, and neither the parasite protein nor its proteolytically generated carboxy-terminal large fragments were capable of binding to a cAMP-Sepharose affinity column. Bioinformatics analyses predicted that the carboxy-terminal region of the trypanosomal R-like protein appears to fold similarly to the analogous region of all known PKA R subunits. However, the protein amino-terminal portion seems to be unrelated and shows homology with proteins that contained Leu-rich repeats, a folding motif that is particularly appropriate for protein-protein interactions. In addition, the three-dimensional structure of the T. equiperdum protein was modeled using the crystal structure of the bovine PKA R I α subunit as template. Molecular docking experiments predicted critical changes in the environment of the two putative nucleotide binding clefts of the parasite protein, and the resulting binding energy differences support the lack of cyclic nucleotide binding in the trypanosomal R-like protein. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Kathiravan, P; Goyal, S; Kataria, R S; Mishra, B P; Jayakumar, S; Joshi, B K
2011-01-01
The present study was undertaken to characterize the structure of S100A8 gene and its promoter in water buffalo and yak. Sequence data of 2.067 kb, 2.071 kb, and 2.052 kb with respect to complete S100A8 gene including 5' flanking region was generated in river buffalo, swamp buffalo, and yak, respectively. BLAST analysis of coding DNA sequences (CDS) of S100A8 gene revealed 95% homology of buffalo sequence with cattle, 85% with pig and horse, 83% with dog, 72-73% with murines, and around 79% with primates and humans. Phylogenetic analysis of predicted CDS revealed distinct clustering of murines, primates, and domestic animals with bovines and bubalines forming a subcluster among farm animals. In silico translation of predicted CDS revealed a sequence of 89 amino acids with 7 amino acid changes between cattle and buffalo and 2 changes between cattle and yak. The search for Pfam family revealed the N-terminal calcium binding domain and the noncanonical EF hand domain in the carboxy terminus, with more variations being observed in the N-terminal domain among different species. Two amino acid changes observed in carboxy terminal EF hand domain resulted in altered secondary structure of yak S100A8 protein. Analysis of S100A8 gene promoter revealed 14 putative motifs for transcriptional factor binding sites. Two putative motifs viz. C/EBP and v-Myb were found to be absent in swamp buffalo as compared to river buffalo and cattle. Differences in the structure of S100A8 protein and the transcriptional factor binding sites identified in the present study need to be analyzed further for their functional significance in yak and swamp buffalo respectively. Copyright © Taylor & Francis Group, LLC
Heron-Milhavet, Lisa; Franckhauser, Celine; Fernandez, Anne; Lamb, Ned J.
2013-01-01
The binding of the cdk inhibitor p21cip1 to Akt2 in the nucleus is an essential component in determining the specific role of Akt2 in the cell cycle arrest that precedes myogenic differentiation. Here, through a combination of biochemical and cell biology approaches, we have addressed the molecular basis of this binding. Using amino-terminal truncation of Akt2, we show that p21cip1 binds at the carboxy terminal of Akt2 since deletion of the first 400 amino acids did not affect the interaction between Akt2 and p21cip1. Pull down using carboxy terminal-truncated Akt2 protein revealed the importance of the region between amino acids 400 and 445 for the binding to p21cip1. Since Akt2_400–445 and Akt2_420–445 peptides could both bind p21cip1, this refines the binding domain on Akt2 between amino acids 420 and 445. In order to confirm these data in living cells, we developed a protocol to synchronize myoblasts at the cell cycle exit point when p21cip1 expression is induced by MyoD before myogenic differentiation. When a synthetic Akt2 peptide spanning the region (410–437) was microinjected in p21-expressing myoblasts, p21cip1 no longer localized exclusively in the nucleus, instead being redistributed throughout the cell, thus showing that injected peptide 410–437 acts to compete with the binding of endogenous Akt2 to p21cip1. Taken together, our data suggest that this 27 amino acid sequence on Akt2 is necessary and sufficient to bind p21cip1 both in vitro and in living cells. PMID:24194853
Schütze, Tonio; Ulrich, Alexander K C; Apelt, Luise; Will, Cindy L; Bartlick, Natascha; Seeger, Martin; Weber, Gert; Lührmann, Reinhard; Stelzl, Ulrich; Wahl, Markus C
2016-02-01
Spliceosomal Prp38 proteins contain a conserved amino-terminal domain, but only higher eukaryotic orthologs also harbor a carboxy-terminal RS domain, a hallmark of splicing regulatory SR proteins. We show by crystal structure analysis that the amino-terminal domain of human Prp38 is organized around three pairs of antiparallel α-helices and lacks similarities to RNA-binding domains found in canonical SR proteins. Instead, yeast two-hybrid analyses suggest that the amino-terminal domain is a versatile protein-protein interaction hub that possibly binds 12 other spliceosomal proteins, most of which are recruited at the same stage as Prp38. By quantitative, alanine surface-scanning two-hybrid screens and biochemical analyses we delineated four distinct interfaces on the Prp38 amino-terminal domain. In vitro interaction assays using recombinant proteins showed that Prp38 can bind at least two proteins simultaneously via two different interfaces. Addition of excess Prp38 amino-terminal domain to in vitro splicing assays, but not of an interaction-deficient mutant, stalled splicing at a precatalytic stage. Our results show that human Prp38 is an unusual SR protein, whose amino-terminal domain is a multi-interface protein-protein interaction platform that might organize the relative positioning of other proteins during splicing. © 2016 Schütze et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Whole-body vibration therapy in children with severe motor disabilities.
Kilebrant, Sophie; Braathen, Gunnar; Emilsson, Roger; Glansén, Ulla; Söderpalm, Ann-Charlott; Zetterlund, Bo; Westerberg, Barbro; Magnusson, Per; Swolin-Eide, Diana
2015-03-01
To study the effect of whole-body vibration therapy on bone mass, bone turnover and body composition in severely disabled children. Nineteen non-ambulatory children aged 5.1-16.3 years (6 males, 13 females) with severe motor disabilities participated in an intervention programme with standing exercise on a self-controlled dynamic platform, which included whole-body vibration therapy (vibration, jump and rotation movements). Whole-body vibration therapy was performed at 40-42 Hz, with an oscillation amplitude of 0.2 mm, 5-15 min/treatment, twice/week for 6 months. Bone mass parameters and bone markers were measured at the study start, and after 6 and 12 months. Whole-body vibration therapy was appreciated by the children. Total-body bone mineral density increased during the study period (p < 0.05). Z-scores for total-body bone mineral density ranged from -5.10 to -0.60 at study start and remained unchanged throughout. Approximately 50% of the subjects had increased levels of carboxy-terminal telopeptides of type I collagen and decreased levels of osteocalcin at the start. Body mass index did not change during the intervention period, but had increased by the 12-month follow-up (p < 0.05). Whole-body vibration therapy appeared to be well tolerated by children with severe motor disabilities. Total-body bone mineral density increased after 6 months of whole-body vibration therapy. Higher carboxy-terminal telopeptides of type I collagen and lower osteocalcin values indicated that severely disabled children have a reduced capacity for bone acquisition.
MacRae, T H
2000-06-01
Small heat shock/alpha-crystallin proteins are defined by conserved sequence of approximately 90 amino acid residues, termed the alpha-crystallin domain, which is bounded by variable amino- and carboxy-terminal extensions. These proteins form oligomers, most of uncertain quaternary structure, and oligomerization is prerequisite to their function as molecular chaperones. Sequence modelling and physical analyses show that the secondary structure of small heat shock/alpha-crystallin proteins is predominately beta-pleated sheet. Crystallography, site-directed spin-labelling and yeast two-hybrid selection demonstrate regions of secondary structure within the alpha-crystallin domain that interact during oligomer assembly, a process also dependent on the amino terminus. Oligomers are dynamic, exhibiting subunit exchange and organizational plasticity, perhaps leading to functional diversity. Exposure of hydrophobic residues by structural modification facilitates chaperoning where denaturing proteins in the molten globule state associate with oligomers. The flexible carboxy-terminal extension contributes to chaperone activity by enhancing the solubility of small heat shock/alpha-crystallin proteins. Site-directed mutagenesis has yielded proteins where the effect of the change on structure and function depends upon the residue modified, the organism under study and the analytical techniques used. Most revealing, substitution of a conserved arginine residue within the alpha-crystallin domain has a major impact on quaternary structure and chaperone action probably through realignment of beta-sheets. These mutations are linked to inherited diseases. Oligomer size is regulated by a stress-responsive cascade including MAPKAP kinase 2/3 and p38. Phosphorylation of small heat shock/alpha-crystallin proteins has important consequences within stressed cells, especially for microfilaments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.
Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarilymore » at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.« less
Létoffé, S; Wandersman, C
1992-01-01
Protease B from Erwinia chrysanthemi was shown previously to have a C-terminal secretion signal located downstream of a domain that contains six glycine-rich repeats. This domain is conserved in all known bacterial proteins secreted by the signal peptide-independent pathway. The role of these repeats in the secretion process is controversial. We compared the secretion processes of various heterologous polypeptides fused either directly to the signal or separated from it by the glycine-rich domain. Although the repeats are not involved in the secretion of small truncated protease B carboxy-terminal peptides, they are required for the secretion of higher-molecular-weight fusion proteins. Secretion efficiency was also dependent on the size of the passenger polypeptide. Images PMID:1629152
The HMGA proteins: a myriad of functions (Review).
Cleynen, Isabelle; Van de Ven, Wim J M
2008-02-01
The 'high mobility group' HMGA protein family consists of four members: HMGA1a, HMGA1b and HMGA1c, which result from translation of alternative spliced forms of one gene and HMGA2, which is encoded for by another gene. HMGA proteins are characterized by three DNA-binding domains, called AT-hooks, and an acidic carboxy-terminal tail. HMGA proteins are architectural transcription factors that both positively and negatively regulate the transcription of a variety of genes. They do not display direct transcriptional activation capacity, but regulate gene expression by changing the DNA conformation by binding to AT-rich regions in the DNA and/or direct interaction with several transcription factors. In this way, they influence a diverse array of normal biological processes including cell growth, proliferation, differentiation and death. Both HMGA1 and HMGA2 are hardly detectable in normal adult tissue but are abundantly and ubiquitously expressed during embryonic development. In malignant epithelial tumors as well as in leukemia, however, expression of HMGA1 is again strongly elevated to embryonic levels thus leading to ectopic expression of (fetal) target genes. HMGA2 overexpression also has a causal role in inducing neoplasia. Besides overexpression of full length HMGA proteins in different tumors, the HMGA genes are often involved in chromosomal rearrangements. Such translocations are mostly detected in benign tumors of mesenchymal origin and are believed to be one of the most common chromosomal rearrangements in human neoplasia. To provide clarity in the abundance of articles on this topic, this review gives a general overview of the nuclear functions and regulation of the HMGA genes and corresponding proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; Chakravarty, Bornali; Zheng, Fei
Human fatty acid synthase (hFAS) is a homodimeric multidomain enzyme that catalyzes a series of reactions leading to the de novo biosynthesis of long-chain fatty acids, mainly palmitate. The carboxy-terminal thioesterase (TE) domain determines the length of the fatty acyl chain and its ultimate release by hydrolysis. Because of the upregulation of hFAS in a variety of cancers, it is a target for antiproliferative agent development. Dietary long-chain polyunsaturated fatty acids (PUFAs) have been known to confer beneficial effects on many diseases and health conditions, including cancers, inflammations, diabetes, and heart diseases, but the precise molecular mechanisms involved have notmore » been elucidated. We report the crystal structure of the hFAS TE domain covalently modified and inactivated by methyl {gamma}-linolenylfluorophosphonate. Whereas the structure confirmed the phosphorylation by the phosphonate head group of the active site serine, it also unexpectedly revealed the binding of the 18-carbon polyunsaturated {gamma}-linolenyl tail in a long groove-tunnel site, which itself is formed mainly by the emergence of an {alpha} helix (the 'helix flap'). We then found inhibition of the TE domain activity by the PUFA dihomo-{gamma}-linolenic acid; {gamma}- and {alpha}-linolenic acids, two popular dietary PUFAs, were less effective. Dihomo-{gamma}-linolenic acid also inhibited fatty acid biosynthesis in 3T3-L1 preadipocytes and selective human breast cancer cell lines, including SKBR3 and MDAMB231. In addition to revealing a novel mechanism for the molecular recognition of a polyunsaturated fatty acyl chain, our results offer a new framework for developing potent FAS inhibitors as therapeutics against cancers and other diseases.« less
Polycystin-1 C-terminal Cleavage Is Modulated by Polycystin-2 Expression*
Bertuccio, Claudia A.; Chapin, Hannah C.; Cai, Yiqiang; Mistry, Kavita; Chauvet, Veronique; Somlo, Stefan; Caplan, Michael J.
2009-01-01
Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC-1) and polycystin-2 (PC-2). PC-1 cleavage releases its cytoplasmic C-terminal tail (CTT), which enters the nucleus. To determine whether PC-1 CTT cleavage is influenced by PC-2, a quantitative cleavage assay was utilized, in which the DNA binding and activation domains of Gal4 and VP16, respectively, were appended to PC-1 downstream of its CTT domain (PKDgalvp). Cells cotransfected with the resultant PKDgalvp fusion protein and PC-2 showed an increase in luciferase activity and in CTT expression, indicating that the C-terminal tail of PC-1 is cleaved and enters the nucleus. To assess whether CTT cleavage depends upon Ca2+ signaling, cells transfected with PKDgalvp alone or together with PC-2 were incubated with several agents that alter intracellular Ca2+ concentrations. PC-2 enhancement of luciferase activity was not altered by any of these treatments. Using a series of PC-2 C-terminal truncated mutations, we identified a portion of the PC-2 protein that is required to stimulate PC-1 CTT accumulation. These data demonstrate that release of the CTT from PC-1 is influenced and stabilized by PC-2. This effect is independent of Ca2+ but is regulated by sequences contained within the PC-2 C-terminal tail, suggesting a mechanism through which PC-1 and PC-2 may modulate a novel signaling pathway. PMID:19491093
Regulation of receptor-type protein tyrosine phosphatases by their C-terminal tail domains.
Barnea, Maayan; Olender, Tsviya; Bedford, Mark T; Elson, Ari
2016-10-15
Protein tyrosine phosphatases (PTPs) perform specific functions in vivo, despite being vastly outnumbered by their substrates. Because of this and due to the central roles PTPs play in regulating cellular function, PTP activity is regulated by a large variety of molecular mechanisms. We review evidence that indicates that the divergent C-terminal tail sequences (C-terminal domains, CTDs) of receptor-type PTPs (RPTPs) help regulate RPTP function by controlling intermolecular associations in a way that is itself subject to physiological regulation. We propose that the CTD of each RPTP defines an 'interaction code' that helps determine molecules it will interact with under various physiological conditions, thus helping to regulate and diversify PTP function. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Multiple C-terminal tail Ca2+/CaMs regulate CaV1.2 function but do not mediate channel dimerization
Kim, Eun Young; Rumpf, Christine H; Van Petegem, Filip; Arant, Ryan J; Findeisen, Felix; Cooley, Elizabeth S; Isacoff, Ehud Y; Minor, Daniel L
2010-01-01
Interactions between voltage-gated calcium channels (CaVs) and calmodulin (CaM) modulate CaV function. In this study, we report the structure of a Ca2+/CaM CaV1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca2+/CaMs and two Ca2+/CaM–IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca2+/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes CaV1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca2+/CaMs in the complex have different properties. Ca2+/CaM bound to the PreIQ C-region is labile, whereas Ca2+/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca2+/CaMs can bind the CaV1.2 tail simultaneously and indicate a functional role for Ca2+/CaM at the C-region site. PMID:20953164
Kim, Eun Young; Rumpf, Christine H; Van Petegem, Filip; Arant, Ryan J; Findeisen, Felix; Cooley, Elizabeth S; Isacoff, Ehud Y; Minor, Daniel L
2010-12-01
Interactions between voltage-gated calcium channels (Ca(V)s) and calmodulin (CaM) modulate Ca(V) function. In this study, we report the structure of a Ca(2+)/CaM Ca(V)1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca(2+)/CaMs and two Ca(2+)/CaM-IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca(2+)/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes Ca(V)1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca(2+)/CaMs in the complex have different properties. Ca(2+)/CaM bound to the PreIQ C-region is labile, whereas Ca(2+)/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca(2+)/CaMs can bind the Ca(V)1.2 tail simultaneously and indicate a functional role for Ca(2+)/CaM at the C-region site.
Polyadenylation state microarray (PASTA) analysis.
Beilharz, Traude H; Preiss, Thomas
2011-01-01
Nearly all eukaryotic mRNAs terminate in a poly(A) tail that serves important roles in mRNA utilization. In the cytoplasm, the poly(A) tail promotes both mRNA stability and translation, and these functions are frequently regulated through changes in tail length. To identify the scope of poly(A) tail length control in a transcriptome, we developed the polyadenylation state microarray (PASTA) method. It involves the purification of mRNA based on poly(A) tail length using thermal elution from poly(U) sepharose, followed by microarray analysis of the resulting fractions. In this chapter we detail our PASTA approach and describe some methods for bulk and mRNA-specific poly(A) tail length measurements of use to monitor the procedure and independently verify the microarray data.
Rutsdottir, Gudrun; Härmark, Johan; Weide, Yoran; Hebert, Hans; Rasmussen, Morten I; Wernersson, Sven; Respondek, Michal; Akke, Mikael; Højrup, Peter; Koeck, Philip J B; Söderberg, Christopher A G; Emanuelsson, Cecilia
2017-05-12
Small heat-shock proteins (sHsps) prevent aggregation of thermosensitive client proteins in a first line of defense against cellular stress. The mechanisms by which they perform this function have been hard to define due to limited structural information; currently, there is only one high-resolution structure of a plant sHsp published, that of the cytosolic Hsp16.9. We took interest in Hsp21, a chloroplast-localized sHsp crucial for plant stress resistance, which has even longer N-terminal arms than Hsp16.9, with a functionally important and conserved methionine-rich motif. To provide a framework for investigating structure-function relationships of Hsp21 and understanding these sequence variations, we developed a structural model of Hsp21 based on homology modeling, cryo-EM, cross-linking mass spectrometry, NMR, and small-angle X-ray scattering. Our data suggest a dodecameric arrangement of two trimer-of-dimer discs stabilized by the C-terminal tails, possibly through tail-to-tail interactions between the discs, mediated through extended I X V X I motifs. Our model further suggests that six N-terminal arms are located on the outside of the dodecamer, accessible for interaction with client proteins, and distinct from previous undefined or inwardly facing arms. To test the importance of the I X V X I motif, we created the point mutant V181A, which, as expected, disrupts the Hsp21 dodecamer and decreases chaperone activity. Finally, our data emphasize that sHsp chaperone efficiency depends on oligomerization and that client interactions can occur both with and without oligomer dissociation. These results provide a generalizable workflow to explore sHsps, expand our understanding of sHsp structural motifs, and provide a testable Hsp21 structure model to inform future investigations. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Coupling mRNA processing with transcription in time and space
Bentley, David L.
2015-01-01
Maturation of mRNA precursors often occurs simultaneously with their synthesis by RNA polymerase II (Pol II). The co-transcriptional nature of mRNA processing has permitted the evolution of coupling mechanisms that coordinate transcription with mRNA capping, splicing, editing and 3′ end formation. Recent experiments using sophisticated new methods for analysis of nascent RNA have provided important insights into the relative amount of co-transcriptional and post-transcriptional processing, the relationship between mRNA elongation and processing, and the role of the Pol II carboxy-terminal domain (CTD) in regulating these processes. PMID:24514444
Fire-retardant decorative inks for aircraft interiors
NASA Technical Reports Server (NTRS)
Nir, Z.; Mikroyannidis, J. A.; Kourtides, D. A.
1984-01-01
Commercial and experimental fire retardants were screened for possible use wiith acrylic printing inks on aircraft interior sandwich panels. The fire retardants were selected according to their physical properties and thermostabilities. Thermostabilities were determined by thermogravimetric analysis and differential scanning calorimetry. A criterion was then established for selecting the more stable agent. Results show that some of the bromine-containing fire retardants are more thermostable than the acrylic ink, alone, used as a control. Also, the bromine-containing fire retardants yield even better limiting oxygen index values when tested after adding carboxy-terminated butadiene acrylonitrile (CTBN) rubber.
Progressive quality control of secretory proteins in the early secretory compartment by ERp44
Sannino, Sara; Anelli, Tiziana; Cortini, Margherita; Masui, Shoji; Degano, Massimo; Fagioli, Claudio; Inaba, Kenji; Sitia, Roberto
2014-01-01
ERp44 is a pH-regulated chaperone of the secretory pathway. In the acidic milieu of the Golgi, its C-terminal tail changes conformation, simultaneously exposing the substrate-binding site for cargo capture and the RDEL motif for ER retrieval via interactions with cognate receptors. Protonation of cysteine 29 in the active site allows tail movements in vitro and in vivo. Here we show that also conserved histidines in the C-terminal tail regulate ERp44 in vivo. Mutants lacking these histidines are hyperactive in retaining substrates. Surprisingly, they are also O-glycosylated and partially secreted. Co-expression of client proteins prevents secretion of the histidine mutants, forcing tail opening and RDEL accessibility. Client-induced RDEL exposure allows retrieval of proteins from distinct stations along the secretory pathway, as indicated by the changes in O-glycosylation patterns upon over-expression of different partners. The ensuing gradients may help optimising folding and assembly of different cargoes. Endogenous ERp44 is O-glycosylated and secreted by human primary endometrial cells, suggesting possible pathophysiological roles of these processes. PMID:25097228
Role of the terminator hairpin in the biogenesis of functional Hfq-binding sRNAs
Morita, Teppei; Nishino, Ryo; Aiba, Hiroji
2017-01-01
Rho-independent transcription terminators of the genes encoding bacterial Hfq-binding sRNAs possess a set of seven or more T residues at the 3′ end, as noted in previous studies. Here, we have studied the role of the terminator hairpin in the biogenesis of sRNAs focusing on SgrS and RyhB in Escherichia coli. We constructed variant sRNA genes in which the GC-rich inverted repeat sequences are extended to stabilize the terminator hairpins. We demonstrate that the extension of the hairpin stem leads to generation of heterogeneous transcripts in which the poly(U) tail is shortened. The transcripts with shortened poly(U) tails no longer bind to Hfq and lose the ability to repress the target mRNAs. The shortened transcripts are generated in an in vitro transcription system with purified RNA polymerase, indicating that the generation of shortened transcripts is caused by premature transcription termination. We conclude that the terminator structure of sRNA genes is optimized to generate functional sRNAs. Thus, the Rho-independent terminators of sRNA genes possess two common features: a long T residue stretch that is a prerequisite for generation of functional sRNAs and a moderate strength of hairpin structure that ensures the termination at the seventh or longer position within the consecutive T stretch. The modulation of the termination position at the Rho-independent terminators is critical for biosynthesis of functional sRNAs. PMID:28606943
Parachute-Deployment Flight Termination System on X-48C
2013-02-28
The X-48C Hybrid Wing Body aircraft flew over Rogers Dry Lake on Feb. 28, 2013, from NASA's Dryden Flight Research Center, Edwards, CA. The long boom protruding from between the tails was part of the aircraft's parachute-deployment flight termination system.
Kamarudin, Nor Hafizah Ahmad; Rahman, Raja Noor Zaliha Raja Abd; Ali, Mohd Shukuri Mohamad; Leow, Thean Chor; Basri, Mahiran; Salleh, Abu Bakar
2014-08-01
Terminal moieties of most proteins are long known to be disordered and flexible. To unravel the functional role of these regions on the structural stability and biochemical properties of AT2 lipase, four C-terminal end residues, (Ile-Thr-Arg-Lys) which formed a flexible, short tail-like random-coil segment were targeted for mutation. Swapping of the tail-like region had resulted in an improved crystallizability and anti-aggregation property along with a slight shift of the thermostability profile. The lipolytic activity of mutant (M386) retained by 43 % compared to its wild-type with 18 % of the remaining activity at 45 °C. In silico analysis conducted at 25 and 45 °C was found to be in accordance to the experimental findings in which the RMSD values of M386 were more stable throughout the total trajectory in comparison to its wild-type. Terminal moieties were also observed to exhibit large movement and flexibility as denoted by high RMSF values at both dynamics. Variation in organic solvent stability property was detected in M386 where the lipolytic activity was stimulated in the presence of 25 % (v/v) of DMSO, isopropanol, and diethyl ether. This may be worth due to changes in the surface charge residues at the mutation point which probably involve in protein-solvent interaction.
Crystallographic Insights into the Autocatalytic Assembly Mechanism of a Bacteriophage Tail Spike
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Ye; Leiman, Petr G.; Li, Long
2010-02-03
The tailed bacteriophage phi29 has 12 'appendages' (gene product 12, gp12) attached to its neck region that participate in host cell recognition and entry. In the cell, monomeric gp12 undergoes proteolytic processing that releases the C-terminal domain during assembly into trimers. We report here crystal structures of the protein before and after catalytic processing and show that the C-terminal domain of gp12 is an 'autochaperone' that aids trimerization. We also show that autocleavage of the C-terminal domain is a posttrimerization event that is followed by a unique ATP-dependent release. The posttranslationally modified N-terminal part has three domains that function tomore » attach the appendages to the phage, digest the cell wall teichoic acids, and bind irreversibly to the host, respectively. Structural and sequence comparisons suggest that some eukaryotic and bacterial viruses as well as bacterial adhesins might have a similar maturation mechanism as is performed by phi29 gp12 for Bacillus subtilis.« less
Brogna, S
1999-01-01
From bacteria to mammals, mutations that generate premature termination codons have been shown to result in the reduction in the abundance of the corresponding mRNA. In mammalian cells, more often than not, the reduction happens while the RNA is still associated with the nucleus. Here, it is reported that mutations in the alcohol dehydrogenase gene (Adh) of Drosophila melanogaster that generate premature termination codons lead to reduced levels of cytoplasmic and nuclear mRNA. Unexpectedly, it has been found that the poly(A) tails of Adh mRNAs and pre-mRNAs that carry a premature termination codon are longer than in the wild-type transcript. The more 5' terminal the mutation is, the longer is the poly(A) tail of the transcript. These findings suggest that the integrity of the coding region may be required for accurate mRNA 3' end processing. PMID:10199572
Tikhonova, Irina G.; Ivetic, Aleksandar; Schu, Peter
2017-01-01
L-selectin regulates leukocyte adhesion and rolling along the endothelium. Proteins binding to the cytoplasmic tail of L-selectin regulate L-selectin functions. We used L-selectin cytoplasmic tail peptide pulldown assays combined with high sensitivity liquid chromatography/mass spectrometry to identify novel L-selectin tail-binding proteins. Incubation of the L-selectin tail with cell extracts from phorbol 12-myristate 13-acetate-stimulated Raw 264.7 macrophages resulted in the binding of μ1A of the clathrin-coated vesicle AP-1 complex. Furthermore, full-length GST-μ1A and the GST-μ1A C-terminal domain, but not the GST-μ1A N-terminal domain, bind to L-selectin tail peptide, and the intracellular pool of L-selectin colocalizes with AP-1 at the trans-Golgi network. We identified a novel basic protein motif consisting of a cluster of three dibasic residues (356RR357, 359KK360, and 362KK363) in the membrane-proximal domain of the L-selectin tail as well as a doublet of aspartic acid residues (369DD370) in the membrane-distal end of the L-selectin tail involved in μ1A binding. Stimulation of Raw 264.7 macrophages with PMA augmented the amount of μ1A associated with anti-L-selectin immunoprecipitates. However, full-length GST-μ1A did not bind to the phospho-L-selectin tail or phospho-mimetic S364D L-selectin tail. Accordingly, we propose that phosphorylation of μ1A is required for interaction with the L-selectin tail and that L-selectin tail phosphorylation may regulate this interaction in vivo. Molecular docking of the L-selectin tail to μ1A was used to identify the μ1A surface domain binding the L-selectin tail and to explain how phosphorylation of the L-selectin tail abrogates μ1A interaction. Our findings indicate that L-selectin is transported constitutively by the AP-1 complex, leading to the formation of a trans-Golgi network reserve pool and that phosphorylation of the L-selectin tail blocks AP-1-dependent retrograde transport of L-selectin. PMID:28235798
Dib, Karim; Tikhonova, Irina G; Ivetic, Aleksandar; Schu, Peter
2017-04-21
L-selectin regulates leukocyte adhesion and rolling along the endothelium. Proteins binding to the cytoplasmic tail of L-selectin regulate L-selectin functions. We used L-selectin cytoplasmic tail peptide pulldown assays combined with high sensitivity liquid chromatography/mass spectrometry to identify novel L-selectin tail-binding proteins. Incubation of the L-selectin tail with cell extracts from phorbol 12-myristate 13-acetate-stimulated Raw 264.7 macrophages resulted in the binding of μ1A of the clathrin-coated vesicle AP-1 complex. Furthermore, full-length GST-μ1A and the GST-μ1A C-terminal domain, but not the GST-μ1A N-terminal domain, bind to L-selectin tail peptide, and the intracellular pool of L-selectin colocalizes with AP-1 at the trans -Golgi network. We identified a novel basic protein motif consisting of a cluster of three dibasic residues ( 356 RR 357 , 359 KK 360 , and 362 KK 363 ) in the membrane-proximal domain of the L-selectin tail as well as a doublet of aspartic acid residues ( 369 DD 370 ) in the membrane-distal end of the L-selectin tail involved in μ1A binding. Stimulation of Raw 264.7 macrophages with PMA augmented the amount of μ1A associated with anti-L-selectin immunoprecipitates. However, full-length GST-μ1A did not bind to the phospho-L-selectin tail or phospho-mimetic S364D L-selectin tail. Accordingly, we propose that phosphorylation of μ1A is required for interaction with the L-selectin tail and that L-selectin tail phosphorylation may regulate this interaction in vivo Molecular docking of the L-selectin tail to μ1A was used to identify the μ1A surface domain binding the L-selectin tail and to explain how phosphorylation of the L-selectin tail abrogates μ1A interaction. Our findings indicate that L-selectin is transported constitutively by the AP-1 complex, leading to the formation of a trans -Golgi network reserve pool and that phosphorylation of the L-selectin tail blocks AP-1-dependent retrograde transport of L-selectin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Belle, Valérie; Rouger, Sabrina; Costanzo, Stéphanie; Liquière, Elodie; Strancar, Janez; Guigliarelli, Bruno; Fournel, André; Longhi, Sonia
2008-12-01
Using site-directed spin-labeling EPR spectroscopy, we mapped the region of the intrinsically disordered C-terminal domain of measles virus nucleoprotein (N(TAIL)) that undergoes induced folding. In addition to four spin-labeled N(TAIL) variants (S407C, S488C, L496C, and V517C) (Morin et al. (2006), J Phys Chem 110: 20596-20608), 10 new single-site cysteine variants were designed, purified from E. coli, and spin-labeled. These 14 spin-labeled variants enabled us to map in detail the gain of rigidity of N(TAIL) in the presence of either the secondary structure stabilizer 2,2,2-trifluoroethanol or the C-terminal domain X (XD) of the viral phosphoprotein. Different regions of N(TAIL) were shown to contribute to a different extent to the binding to XD, while the mobility of the spin labels grafted at positions 407 and 460 was unaffected upon addition of XD; that of the spin labels grafted within the 488-502 and the 505-522 regions was severely and moderately reduced, respectively. Furthermore, EPR experiments in the presence of 30% sucrose allowed us to precisely map to residues 488-502, the N(TAIL) region undergoing alpha-helical folding. The mobility of the 488-502 region was found to be restrained even in the absence of the partner, a behavior that could be accounted for by the existence of a transiently populated folded state. Finally, we show that the restrained motion of the 505-522 region upon binding to XD is due to the alpha-helical transition occurring within the 488-502 region and not to a direct interaction with XD.
Nonlinear dynamics of C-terminal tails in cellular microtubules
NASA Astrophysics Data System (ADS)
Sekulic, Dalibor L.; Sataric, Bogdan M.; Zdravkovic, Slobodan; Bugay, Aleksandr N.; Sataric, Miljko V.
2016-07-01
The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano-electrical waves elicited in the rows of very flexible C-terminal tails which decorate the outer surface of each microtubule. The fact that C-terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule-associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink-waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.
Bettencourt, Paulo; Fonseca, Cândida; Franco, Fátima; Andrade, Aurora; Brito, Dulce
2017-12-01
Assessment of serum levels of natriuretic peptides, especially the amino-terminal portion (NT-proBNP) and the carboxy-terminal portion (BNP) of pro-B-type natriuretic peptide, has had a highly significant clinical impact on the diagnosis and prognostic stratification of patients with heart failure (HF). They are now an instrument with recognized value in this context and several studies have demonstrated their value in tailoring therapy for these patients. Following the recent advent of angiotensin receptor-neprilysin inhibitors (ARNIs), there is a need to review how these two biomarkers are interpreted in HF. The use of ARNIs is associated with a reduction in NT-proBNP but an increase in BNP levels. The authors of this concise article review the interpretation of natriuretic peptide levels in the light of the most recent evidence. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.
Akt phosphorylation regulates the tumour-suppressor merlin through ubiquitination and degradation.
Tang, Xiaoling; Jang, Sung-Wuk; Wang, Xuerong; Liu, Zhixue; Bahr, Scott M; Sun, Shi-Yong; Brat, Daniel; Gutmann, David H; Ye, Keqiang
2007-10-01
The neurofibromatosis-2 (NF2) tumour-suppressor gene encodes an intracellular membrane-associated protein, called merlin, whose growth-suppressive function is dependent on its ability to form interactions through its intramolecular amino-terminal domain (NTD) and carboxy-terminal domain (CTD). Merlin phosphorylation plays a critical part in dictating merlin NTD/CTD interactions as well as in controlling binding to its effector proteins. Merlin is partially regulated by phosphorylation of Ser 518, such that hyperphosphorylated merlin is inactive and fails to form productive intramolecular and intermolecular interactions. Here, we show that the protein kinase Akt directly binds to and phosphorylates merlin on residues Thr 230 and Ser 315, which abolishes merlin NTD/CTD interactions and binding to merlin's effector protein PIKE-L and other binding partners. Furthermore, Akt-mediated phosphorylation leads to merlin degradation by ubiquitination. These studies demonstrate that Akt-mediated merlin phosphorylation regulates the function of merlin in the absence of an inactivating mutation.
Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution.
Shen, Huaizong; Zhou, Qiang; Pan, Xiaojing; Li, Zhangqiang; Wu, Jianping; Yan, Nieng
2017-03-03
Voltage-gated sodium (Na v ) channels are responsible for the initiation and propagation of action potentials. They are associated with a variety of channelopathies and are targeted by multiple pharmaceutical drugs and natural toxins. Here, we report the cryogenic electron microscopy structure of a putative Na v channel from American cockroach (designated Na v PaS) at 3.8 angstrom resolution. The voltage-sensing domains (VSDs) of the four repeats exhibit distinct conformations. The entrance to the asymmetric selectivity filter vestibule is guarded by heavily glycosylated and disulfide bond-stabilized extracellular loops. On the cytoplasmic side, a conserved amino-terminal domain is placed below VSD I , and a carboxy-terminal domain binds to the III-IV linker. The structure of Na v PaS establishes an important foundation for understanding function and disease mechanism of Na v and related voltage-gated calcium channels. Copyright © 2017, American Association for the Advancement of Science.
Xu, Weifeng; Santini, Paul A.; Sullivan, John S.; He, Bing; Shan, Meimei; Ball, Susan C.; Dyer, Wayne B.; Ketas, Thomas J.; Chadburn, Amy; Cohen-Gould, Leona; Knowles, Daniel M.; Chiu, April; Sanders, Rogier W.; Chen, Kang; Cerutti, Andrea
2009-01-01
Contact-dependent communication between immune cells generates protection, but also facilitates viral spread. We found that macrophages formed long-range actin-propelled conduits in response to negative factor (Nef), a human immunodeficiency virus type-1 (HIV-1) protein with immunosuppressive functions. Conduits attenuated immunoglobulin G2 (IgG2) and IgA class switching in systemic and intestinal lymphoid follicles by shuttling Nef from infected macrophages to B cells through a guanine exchange factor-dependent pathway involving the amino-terminal anchor, central core and carboxy-terminal flexible loop of Nef. By showing stronger virus-specific IgG2 and IgA responses in patients harboring Nef-deficient virions, our data suggest that HIV-1 exploits intercellular highways as a “Trojan horse” to deliver Nef to B cells and evade humoral immunity systemically and at mucosal sites of entry. PMID:19648924
Smith, Graham; Wermuth, Urs D
2010-12-01
The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with picric acid and 3,5-dinitrosalicylic acid, namely 4-carbamoylpiperidinium 2,4,6-trinitrophenolate, C(6)H(13)N(2)O(+)·C(6)H(2)N(3)O(7)(-), (I), and 4-carbamoylpiperidinium 2-carboxy-4,6-dinitrophenolate [two forms of which were found, the monoclinic α-polymorph, (II), and the triclinic β-polymorph, (III)], C(6)H(13)N(2)O(+)·C(7)H(3)N(2)O(7)(-), have been determined at 200 K. All three compounds form hydrogen-bonded structures, viz. one-dimensional in (II), two-dimensional in (I) and three-dimensional in (III). In (I), the cations form centrosymmetric cyclic head-to-tail hydrogen-bonded homodimers [graph set R(2)(2)(14)] through lateral duplex piperidinium-amide N-H...O interactions. These dimers are extended into a two-dimensional network structure through further interactions with phenolate and nitro O-atom acceptors, including a direct symmetric piperidinium-phenol/nitro N-H...O,O cation-anion association [graph set R(1)(2)(6)]. The monoclinic polymorph, (II), has a similar R(1)(2)(6) cation-anion hydrogen-bonding interaction to (I) but with an additional conjoint symmetrical R(1)(2)(4) interaction as well as head-to-tail piperidinium-amide N-H...O,O hydrogen bonds and amide-carboxyl N-H...O hydrogen bonds, giving a network structure which includes large R(4)(3)(20) rings. The hydrogen bonding in the triclinic polymorph, (III), is markedly different from that of monoclinic (II). The asymmetric unit contains two independent cation-anion pairs which associate through cyclic piperidinium-carboxyl N-H...O,O' interactions [graph set R(1)(2)(4)]. The cations also show the zigzag head-to-tail piperidinium-amide N-H...O hydrogen-bonded chain substructures found in (II), but in addition feature amide-nitro and amide-phenolate N-H...O associations. As well, there is a centrosymmetric double-amide N-H...O(carboxyl) bridged bis(cation-anion) ring system [graph set R(4)(2)(8)] in the three-dimensional framework. The structures reported here demonstrate the utility of the isonipecotamide cation as a synthon with previously unrecognized potential for structure assembly applications. Furthermore, the structures of the two polymorphic 3,5-dinitrosalicylic acid salts show an unusual dissimilarity in hydrogen-bonding characteristics, considering that both were obtained from identical solvent systems.
Wagner, Steven L; Zhang, Can; Cheng, Soan; Nguyen, Phuong; Zhang, Xulun; Rynearson, Kevin D; Wang, Rong; Li, Yueming; Sisodia, Sangram S; Mobley, William C; Tanzi, Rudolph E
2014-02-04
Alzheimer's disease (AD) is characterized pathologically by an abundance of extracellular neuritic plaques composed primarily of the 42-amino acid amyloid β peptide variant (Aβ42). In the majority of familial AD (FAD) cases, e.g., those harboring mutations in presenilin 1 (PS1), there is a relative increase in the levels of Aβ42 compared to the levels of Aβ40. We previously reported the characterization of a series of aminothiazole-bridged aromates termed aryl aminothiazole γ-secretase modulators or AGSMs [Kounnas, M. Z., et al. (2010) Neuron 67, 769-780] and showed their potential for use in the treatment of FAD [Wagner, S. L., et al. (2012) Arch. Neurol. 69, 1255-1258]. Here we describe a series of GSMs with physicochemical properties improved compared to those of AGSMs. Specific heterocycle replacements of the phenyl rings in AGSMs provided potent molecules with improved aqueous solubilities. A number of these soluble γ-secretase modulators (SGSMs) potently lowered Aβ42 levels without inhibiting proteolysis of Notch or causing accumulation of amyloid precursor protein carboxy-terminal fragments, even at concentrations approximately 1000-fold greater than their IC50 values for reducing Aβ42 levels. The effects of one potent SGSM on Aβ peptide production were verified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, showing enhanced production of a number of carboxy-truncated Aβ species. This SGSM also inhibited Aβ42 peptide production in a highly purified reconstituted γ-secretase in vitro assay system and retained the ability to modulate γ-secretase-mediated proteolysis in a stably transfected cell culture model overexpressing a human PS1 mutation validating the potential for use in FAD.
Structure and Regulatory Interactions of the Cytoplasmic Terminal Domains of Serotonin Transporter
2014-01-01
Uptake of neurotransmitters by sodium-coupled monoamine transporters of the NSS family is required for termination of synaptic transmission. Transport is tightly regulated by protein–protein interactions involving the small cytoplasmic segments at the amino- and carboxy-terminal ends of the transporter. Although structures of homologues provide information about the transmembrane regions of these transporters, the structural arrangement of the terminal domains remains largely unknown. Here, we combined molecular modeling, biochemical, and biophysical approaches in an iterative manner to investigate the structure of the 82-residue N-terminal and 30-residue C-terminal domains of human serotonin transporter (SERT). Several secondary structures were predicted in these domains, and structural models were built using the Rosetta fragment-based methodology. One-dimensional 1H nuclear magnetic resonance and circular dichroism spectroscopy supported the presence of helical elements in the isolated SERT N-terminal domain. Moreover, introducing helix-breaking residues within those elements altered the fluorescence resonance energy transfer signal between terminal cyan fluorescent protein and yellow fluorescent protein tags attached to full-length SERT, consistent with the notion that the fold of the terminal domains is relatively well-defined. Full-length models of SERT that are consistent with these and published experimental data were generated. The resultant models predict confined loci for the terminal domains and predict that they move apart during the transport-related conformational cycle, as predicted by structures of homologues and by the “rocking bundle” hypothesis, which is consistent with spectroscopic measurements. The models also suggest the nature of binding to regulatory interaction partners. This study provides a structural context for functional and regulatory mechanisms involving SERT terminal domains. PMID:25093911
Barghaan, Jan; Tozakidou, Magdalini; Ehmke, Heimo; Bähring, Robert
2008-02-15
We examined the relationship between deactivation and inactivation in Kv4.2 channels. In particular, we were interested in the role of a Kv4.2 N-terminal domain and accessory subunits in controlling macroscopic gating kinetics and asked if the effects of N-terminal deletion and accessory subunit coexpression conform to a kinetic coupling of deactivation and inactivation. We expressed Kv4.2 wild-type channels and N-terminal deletion mutants in the absence and presence of Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-like proteins (DPPs) in human embryonic kidney 293 cells. Kv4.2-mediated A-type currents at positive and deactivation tail currents at negative membrane potentials were recorded under whole-cell voltage-clamp and analyzed by multi-exponential fitting. The observed changes in Kv4.2 macroscopic inactivation kinetics caused by N-terminal deletion, accessory subunit coexpression, or a combination of the two maneuvers were compared with respective changes in deactivation kinetics. Extensive correlation analyses indicated that modulatory effects on deactivation closely parallel respective effects on inactivation, including both onset and recovery kinetics. Searching for the structural determinants, which control deactivation and inactivation, we found that in a Kv4.2 Delta 2-10 N-terminal deletion mutant both the initial rapid phase of macroscopic inactivation and tail current deactivation were slowed. On the other hand, the intermediate and slow phase of A-type current decay, recovery from inactivation, and tail current decay kinetics were accelerated in Kv4.2 Delta 2-10 by KChIP2 and DPPX. Thus, a Kv4.2 N-terminal domain, which may control both inactivation and deactivation, is not necessary for active modulation of current kinetics by accessory subunits. Our results further suggest distinct mechanisms for Kv4.2 gating modulation by KChIPs and DPPs.
USDA-ARS?s Scientific Manuscript database
Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins that are defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Nout-Cin orientation. The molecular mechanisms by which TA p...
Hershkovitz, Oren; Bar-Ilan, Ahuva; Guy, Rachel; Felikman, Yana; Moschcovich, Laura; Hwa, Vivian; Rosenfeld, Ron G; Fima, Eyal; Hart, Gili
2016-02-01
MOD-4023 is a novel long-acting version of human growth hormone (hGH), containing the carboxy-terminal peptide (CTP) of human chorionic gonadotropin (hCG). MOD-4023 is being developed as a treatment for adults and children with growth hormone deficiency (GHD), which would require fewer injections than currently available GH formulations and thus reduce patient discomfort and increase compliance. This study characterizes MOD-4023's binding affinities for the growth hormone receptor, as well as the pharmacokinetic and pharmacodynamics, toxicology, and safety profiles of repeated dosing of MOD-4023 in Sprague-Dawley rats and Rhesus monkeys. Although MOD-4023 exhibited reduced in vitro potency and lower affinity to the GH receptor than recombinant hGH (rhGH), administration of MOD-4023 every 5 days in rats and monkeys resulted in exposure comparable to daily rhGH, and the serum half-life of MOD-4023 was significantly longer. Repeated administration of MOD-4023 led to elevated levels of insulin-like growth factor 1 (IGF-1), and twice-weekly injections of MOD-4023 resulted in larger increase in weight gain with fewer injections and a lower accumulative hGH dose. Thus, the increased half-life of MOD-4023 in comparison to hGH may increase the frequency of protein-receptor interactions and compensate for its decreased in vitro potency. MOD-4023 was found to be well-tolerated in rats and monkeys, with minimal adverse events, suggesting an acceptable safety profile. These results provide a basis for the continued clinical development of MOD-4023 as a novel treatment of GHD in children and adults.
Tang, Ze; He, Gan; Xu, Jie; Zhongfu, Li
2017-05-01
Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a pleiotropic protein associated with numerous cell functions, including transcription and differentiation. The role of CITED2 has been investigated in a number of malignancies; however, the roles of this protein in gastric cancers remain unclear. Therefore, we determined the role of CITED2 in gastric cancers. Gastric cancer cell lines (MKN74, MKN28, 7901, and AGS) were used to assess CITED2 transcript levels. Messenger RNA levels were determined using quantitative polymerase chain reaction. Lentiviral vectors containing CITED2 small interfering RNA were used to knockdown CITED2 expression. Cell proliferation was assessed with fluorescent imaging and 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide assays. Apoptosis and cell cycle stages were assessed through flow cytometry, and formation of colonies was determined using a fluorescent microscope. All cell lines tested in this study expressed CITED2. The cell line expressing the highest levels of CITED2 (MKN74) showed significant knockdown of endogenous CITED2 expression on lentiviral infection. Cell proliferation was shown to be lower in CITED2 knockdown MKN74 cells. G1/S-phase cell cycle arrest was observed on silencing of CITED2 in MKN74 cells. A significant increase in apoptosis was observed on CITED2 knock down in MKN74 cells, while colony forming ability was significantly inhibited after knock down of CITED2. CITED2 supports gastric cancer cell colony formation and proliferation while inhibiting apoptosis making it a potential gene therapy target for gastric cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
The equine LH/CGβ subunit combines divergent intracellular traits of the human LHβ and CGβ subunits
Cohen, Limor; Bousfield, George R; Ben-Menahem, David
2017-01-01
The pituitary LHβ and placental CGβ subunits are products of different genes in primates. The major structural difference between the two subunits is in the carboxy-terminal region, where the short carboxyl sequence of hLHβ is replaced by a longer O-glycosylated carboxy-terminal peptide (CTP) in hCGβ. In association with this structural deviation, there are marked differences in the secretion kinetics and polarized routing of the two subunits. In equids, however, the CGβ and LHβ subunits are products of the same gene expressed in the placenta and pituitary (eLH/CGβ), and both contain a CTP. This unusual expression pattern intrigued us and led to our study of eLH/CGβ subunit secretion by transfected CHO and MDCK cells. In continuous labeling and pulse chase experiments, the secretion of the eLH/CGβ subunit from the transfected CHO cells was inefficient (medium recovery of 16–25%) and slow (t1/2 >6.5 hrs). This indicated that, the secretion of the eLH/CGβ subunit resembles that of hLHβ rather than hCGβ. In MDCK cells grown on Transwell filters, the eLH/CGβ subunit was preferentially secreted from the apical side, similar to the hCGβ subunit secretory route (~65% of the total protein secreted). Taken together, these data suggested that secretion of the eLH/CGβ subunit integrates features of both hLHβ and hCGβ subunits. We propose that the evolution of this intracellular behavior may fulfill the physiological demands for biosynthesis of the eLH/CGβ subunit in the pituitary as well as in the placenta. PMID:25796287
Bone turnover marker reference intervals in young females.
Callegari, Emma T; Gorelik, Alexandra; Garland, Suzanne M; Chiang, Cherie Y; Wark, John D
2017-07-01
Background The use of bone turnover markers in clinical practice and research in younger people is limited by the lack of normative data and understanding of common causes of variation in bone turnover marker values in this demographic. To appropriately interpret bone turnover markers, robust reference intervals specific to age, development and sex are necessary. This study aimed to determine reference intervals of bone turnover markers in females aged 16-25 years participating in the Safe-D study. Methods Participants were recruited through social networking site Facebook and were asked to complete an extensive, online questionnaire and attend a site visit. Participants were tested for serum carboxy-terminal cross-linking telopeptide of type 1 collagen and total procollagen type 1 N-propeptide using the Roche Elecsys automated analyser. Reference intervals were determined using the 2.5th to 97.5th percentiles of normalized bone turnover marker values. Results Of 406 participants, 149 were excluded due to medical conditions or medication use (except hormonal contraception) which may affect bone metabolism. In the remaining 257 participants, the reference interval was 230-1000 ng/L for serum carboxy-terminal cross-linking telopeptide of type 1 collagen and 27-131 µg/L for procollagen type 1 N-propeptide. Both marker concentrations were inversely correlated with age and oral contraceptive pill use. Therefore, intervals specific to these variables were calculated. Conclusions We defined robust reference intervals for cross-linking telopeptide of type 1 collagen and procollagen type 1 N-propeptide in young females grouped by age and contraceptive pill use. We examined bone turnover markers' relationship with several lifestyle, clinical and demographic factors. Our normative intervals should aid interpretation of bone turnover markers in young females particularly in those aged 16 to 19 years where reference intervals are currently provisional.
Scoggin, Kirsten E. S.; Ulloa, Aida; Nyborg, Jennifer K.
2001-01-01
Oncogenesis associated with human T-cell leukemia virus (HTLV) infection is directly linked to the virally encoded transcription factor Tax. To activate HTLV-1 transcription Tax interacts with the cellular protein CREB and the pleiotropic coactivators CBP and p300. While extensively studied, the molecular mechanisms of Tax transcription function and coactivator utilization are not fully understood. Previous studies have focused on Tax binding to the KIX domain of CBP, as this was believed to be the key step in recruiting the coactivator to the HTLV-1 promoter. In this study, we identify a carboxy-terminal region of CBP (and p300) that strongly interacts with Tax and mediates Tax transcription function. Through deletion mutagenesis, we identify amino acids 2003 to 2212 of CBP, which we call carboxy-terminal region 2 (CR2), as the minimal region for Tax interaction. Interestingly, this domain corresponds to the steroid receptor coactivator 1 (SRC-1)-interacting domain of CBP. We show that a double point mutant targeted to one of the putative α-helical motifs in this domain significantly compromises the interaction with Tax. We also characterize the region of Tax responsible for interaction with CR2 and show that the previously identified transactivation domain of Tax (amino acids 312 to 319) participates in CR2 binding. This region of Tax corresponds to a consensus amphipathic helix, and single point mutations targeted to amino acids on the face of this helix abolish interaction with CR2 and dramatically reduce Tax transcription function. Finally, we demonstrate that Tax and SRC-1 bind to CR2 in a mutually exclusive fashion. Together, these studies identify a novel Tax-interacting site on CBP/p300 and extend our understanding of the molecular mechanism of Tax transactivation. PMID:11463834
2013-01-01
Background Transformation by the Tax oncoprotein of the human T cell leukemia virus type 1 (HTLV-1) is governed by actions on cellular regulatory signals, including modulation of specific cellular gene expression via activation of signaling pathways, acceleration of cell cycle progression via stimulation of cyclin-dependent kinase activity leading to retinoblastoma protein (pRb) hyperphosphorylation and perturbation of survival signals. These actions control early steps in T cell transformation and development of Adult T cell leukemia (ATL), an aggressive malignancy of HTLV-1 infected T lymphocytes. Post-translational modifications of Tax by phosphorylation, ubiquitination, sumoylation and acetylation have been implicated in Tax-mediated activation of the NF-κB pathway, a key function associated with Tax transforming potential. Results In this study, we demonstrate that acetylation at lysine K346 in the carboxy-terminal domain of Tax is modulated in the Tax nuclear bodies by the acetyltransferase p300 and the deacetylases HDAC5/7 and controls phosphorylation of the tumor suppressor pRb by Tax-cyclin D3-CDK4-p21CIP complexes. This property correlates with the inability of the acetylation deficient K346R mutant, but not the acetylation mimetic K346Q mutant, to promote anchorage-independent growth of Rat-1 fibroblasts. By contrast, acetylation at lysine K346 had no effects on the ability of Tax carboxy-terminal PDZ-binding domain to interact with the tumor suppressor hDLG. Conclusions The identification of the acetyltransferase p300 and the deacetylase HDAC7 as enzymes modulating Tax acetylation points to new therapeutic targets for the treatment of HTLV-1 infected patients at risk of developing ATL. PMID:23880157
Malan, Melissa; Serem, June C; Bester, Megan J; Neitz, Albert W H; Gaspar, Anabella R M
2016-01-01
Antimicrobial peptides are small cationic peptides that possess a large spectrum of bioactivities, including antimicrobial, anti-inflammatory and antioxidant activities. Several antimicrobial peptides are known to inhibit lipopolysaccharide (LPS)-induced inflammation in vitro and to protect animals from sepsis. In this study, the cellular anti-inflammatory and anti-endotoxin activities of Os and Os-C, peptides derived from the carboxy-terminal of a tick defensin, were investigated. Both Os and Os-C were found to bind LPS in vitro, albeit to a lesser extent than polymyxin B and melittin, known endotoxin-binding peptides. Binding to LPS was found to reduce the bactericidal activity of Os and Os-C against Escherichia coli confirming the affinity of both peptides for LPS. At a concentration of 25 µM, the nitric oxide (NO) scavenging activity of Os was higher than glutathione, a known NO scavenger. In contrast, Os-C showed no scavenging activity. Os and Os-C inhibited LPS/IFN-γ induced NO and TNF-α production in RAW 264.7 cells in a concentration-dependent manner, with no cellular toxicity even at a concentration of 100 µM. Although inhibition of NO and TNF-α secretion was more pronounced for melittin and polymyxin B, significant cytotoxicity was observed at concentrations of 1.56 µM and 25 µM for melittin and polymyxin B, respectively. In addition, Os, Os-C and glutathione protected RAW 264.7 cells from oxidative damage at concentrations as low as 25 µM. This study identified that besides previously reported antibacterial activity of Os and Os-C, both peptides have in addition anti-inflammatory and anti-endotoxin properties. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
Wittmann, Torsten; Boleti, Haralabia; Antony, Claude; Karsenti, Eric; Vernos, Isabelle
1998-01-01
Xklp2 is a plus end–directed Xenopus kinesin-like protein localized at spindle poles and required for centrosome separation during spindle assembly in Xenopus egg extracts. A glutathione-S-transferase fusion protein containing the COOH-terminal domain of Xklp2 (GST-Xklp2-Tail) was previously found to localize to spindle poles (Boleti, H., E. Karsenti, and I. Vernos. 1996. Cell. 84:49–59). Now, we have examined the mechanism of localization of GST-Xklp2-Tail. Immunofluorescence and electron microscopy showed that Xklp2 and GST-Xklp2-Tail localize specifically to the minus ends of spindle pole and aster microtubules in mitotic, but not in interphase, Xenopus egg extracts. We found that dimerization and a COOH-terminal leucine zipper are required for this localization: a single point mutation in the leucine zipper prevented targeting. The mechanism of localization is complex and two additional factors in mitotic egg extracts are required for the targeting of GST-Xklp2-Tail to microtubule minus ends: (a) a novel 100-kD microtubule-associated protein that we named TPX2 (Targeting protein for Xklp2) that mediates the binding of GST-Xklp2-Tail to microtubules and (b) the dynein–dynactin complex that is required for the accumulation of GST-Xklp2-Tail at microtubule minus ends. We propose two molecular mechanisms that could account for the localization of Xklp2 to microtubule minus ends. PMID:9813089
Role of the terminator hairpin in the biogenesis of functional Hfq-binding sRNAs.
Morita, Teppei; Nishino, Ryo; Aiba, Hiroji
2017-09-01
Rho-independent transcription terminators of the genes encoding bacterial Hfq-binding sRNAs possess a set of seven or more T residues at the 3' end, as noted in previous studies. Here, we have studied the role of the terminator hairpin in the biogenesis of sRNAs focusing on SgrS and RyhB in Escherichia coli. We constructed variant sRNA genes in which the GC-rich inverted repeat sequences are extended to stabilize the terminator hairpins. We demonstrate that the extension of the hairpin stem leads to generation of heterogeneous transcripts in which the poly(U) tail is shortened. The transcripts with shortened poly(U) tails no longer bind to Hfq and lose the ability to repress the target mRNAs. The shortened transcripts are generated in an in vitro transcription system with purified RNA polymerase, indicating that the generation of shortened transcripts is caused by premature transcription termination. We conclude that the terminator structure of sRNA genes is optimized to generate functional sRNAs. Thus, the Rho-independent terminators of sRNA genes possess two common features: a long T residue stretch that is a prerequisite for generation of functional sRNAs and a moderate strength of hairpin structure that ensures the termination at the seventh or longer position within the consecutive T stretch. The modulation of the termination position at the Rho-independent terminators is critical for biosynthesis of functional sRNAs. © 2017 Morita et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Tao, Y; Strelkov, S V; Mesyanzhinov, V V; Rossmann, M G
1997-06-15
Oligomeric coiled-coil motifs are found in numerous protein structures; among them is fibritin, a structural protein of bacteriophage T4, which belongs to a class of chaperones that catalyze a specific phage-assembly process. Fibritin promotes the assembly of the long tail fibers and their subsequent attachment to the tail baseplate; it is also a sensing device that controls the retraction of the long tail fibers in adverse environments and, thus, prevents infection. The structure of fibritin had been predicted from sequence and biochemical analyses to be mainly a triple-helical coiled coil. The determination of its structure at atomic resolution was expected to give insights into the assembly process and biological function of fibritin, and the properties of modified coiled-coil structures in general. The three-dimensional structure of fibritin E, a deletion mutant of wild-type fibritin, was determined to 2.2 A resolution by X-ray crystallography. Three identical subunits of 119 amino acid residues form a trimeric parallel coiled-coil domain and a small globular C-terminal domain about a crystallographic threefold axis. The coiled-coil domain is divided into three segments that are separated by insertion loops. The C-terminal domain, which consists of 30 residues from each subunit, contains a beta-propeller-like structure with a hydrophobic interior. The residues within the C-terminal domain make extensive hydrophobic and some polar intersubunit interactions. This is consistent with the C-terminal domain being important for the correct assembly of fibritin, as shown earlier by mutational studies. Tight interactions between the C-terminal residues of adjacent subunits counteract the latent instability that is suggested by the structural properties of the coiled-coil segments. Trimerization is likely to begin with the formation of the C-terminal domain which subsequently initiates the assembly of the coiled coil. The interplay between the stabilizing effect of the C-terminal domain and the labile coiled-coil domain may be essential for the fibritin function and for the correct functioning of many other alpha-fibrous proteins.
New SmAPF Mesogens Designed for Analog Electrooptics Applications
Guzman, Edward; Glaser, Matthew A.; Shao, Renfan; Garcia, Edgardo; Shen, Yongqiang; Clark, Noel A.
2017-01-01
We have previously reported the first realization of an orthogonal ferroelectric bent-core SmAPF phase by directed design in mesogens with a single tricarbosilane-terminated alkoxy tail. Given the potentially useful electrooptic properties of this phase, including analog phase-only electrooptic index modulation with optical latching, we have been exploring its “structure space”, searching for novel SmAPF mesogens. Here, we report two classes of these—the first designed to optimize the dynamic range of the index modulation in parallel-aligned cells by lowering the bend angle of the rigid core, and the second expanding the structure space of the phase by replacing the tricarbosilane-terminated alkyl tail with a polyfluorinated polyethylene glycol oligomer. PMID:29120371
Borodulina, O R; Kramerov, D A
2001-10-01
Four tRNA-related SINE families were isolated from the genome of the shrew Sorex araneus (SOR element), mole Mogera robusta (TAL element), and hedgehog Mesechinus dauuricus (ERI-1 and ERI-2 elements). Each of these SINEs families is specific for a single Insectivora family: SOR, for Soricidae (shrews); TAL, for Talpidae (moles and desmans); ERI-1 and ERI-2, for Erinaceidae (hedgehogs). There is a long polypyrimidine region (TC-motif) in TAL, ERI-1, and ERI-2 elements located immediately upstream of an A-rich tail with polyadenylation signals (AATAAA) and an RNA polymerase III terminator (T(4-6)) or TCT(3-4)). Ten out of 14 analyzed mammalian tRNA-related SINE families have an A-rich tail similar to that of TAL, ERI-1, and ERI-2 elements. These elements were assigned to class T+. The other four SINEs including SOR element have no polyadenylation signal and transcription terminator in their A-rich tail and were assigned to class T-. Class T+ SINEs occur only in mammals, and most of them have a long polypyrimidine region. Possible models of retroposition of class T+ and T- SINEs are discussed.
Progressive quality control of secretory proteins in the early secretory compartment by ERp44.
Sannino, Sara; Anelli, Tiziana; Cortini, Margherita; Masui, Shoji; Degano, Massimo; Fagioli, Claudio; Inaba, Kenji; Sitia, Roberto
2014-10-01
ERp44 is a pH-regulated chaperone of the secretory pathway. In the acidic milieu of the Golgi, its C-terminal tail changes conformation, simultaneously exposing the substrate-binding site for cargo capture and the RDEL motif for ER retrieval through interactions with cognate receptors. Protonation of cysteine 29 in the active site allows tail movements in vitro and in vivo. Here, we show that conserved histidine residues in the C-terminal tail also regulate ERp44 in vivo. Mutants lacking these histidine residues retain substrates more efficiently. Surprisingly, they are also O-glycosylated and partially secreted. Co-expression of client proteins prevents secretion of the histidine mutants, forcing tail opening and RDEL accessibility. Client-induced RDEL exposure allows retrieval of proteins from distinct stations along the secretory pathway, as indicated by the changes in O-glycosylation patterns upon overexpression of different partners. The ensuing gradients might help to optimize folding and assembly of different cargoes. Endogenous ERp44 is O-glycosylated and secreted by human primary endometrial cells, suggesting possible pathophysiological roles of these processes. © 2014. Published by The Company of Biologists Ltd.
Stumpff, Jason; Du, Yaqing; English, Chauca A.; Maliga, Zoltan; Wagenbach, Michael; Asbury, Charles L.; Wordeman, Linda; Ohi, Ryoma
2011-01-01
Summary Metaphase chromosome positioning depends on Kif18A, a kinesin-8 that accumulates at and suppresses the dynamics of K-MT plus ends. By engineering Kif18A mutants that suppress MT dynamics but fail to concentrate at K-MT plus-ends, we identify a mechanism that allows Kif18A to accumulate at K-MT plus ends to a level required to suppress chromosome movements. Enrichment of Kif18A at K-MT plus-ends depends on its C-terminal tail domain, while the ability of Kif18A to suppress MT growth is conferred by the N-terminal motor domain. The Kif18A tail contains a second MT-binding domain that diffuses along the MT lattice, suggesting that it tethers the motor to the MT track. Consistently, the tail enhances Kif18A processivity and is crucial for it to accumulate at K-MT plus-ends. The heightened processivity of Kif18A, conferred by its tail domain, thus promotes concentration of Kif18A at K-MT plus-ends, where it suppresses their dynamics to control chromosome movements. PMID:21884977
Multiple-interactions among EMILIN1 and EMILIN2 N- and C-terminal domains.
Bot, Simonetta; Andreuzzi, Eva; Capuano, Alessandra; Schiavinato, Alvise; Colombatti, Alfonso; Doliana, Roberto
2015-01-01
EMILIN1 and EMILIN2 belong to a family of extracellular matrix glycoproteins characterized by the N-terminal cysteine-rich EMI domain, a long segment with high probabilty for coiled-coil structure formation and a C-terminal gC1q domain. To study EMILIN1 and EMILIN2 interaction and assembly we have applied qualitative and quantitative two hybrid systems using constructs corresponding to the gC1q and EMI domains. The identified interactions were further confirmed in yeast extracts of co-transfected cells followed by co-immunoprecipitation. The data indicated that gC1q domains are able to self-interact as well as to interact one each other and with the EMI domains, but no self interactions were detected between the EMI domains. Furthermore EMILINs interactions were studied in 293-EBNA cells co-transfected with full lenght EMILIN1 and EMILIN2 constructs. Specific antibodies were able to co-immunoprecipitate EMILINs, indicating that also full-lenght proteins can give rise to non-covalent homo- and hetero-multimers even if reduced and alkylated before mixing. Immunofluorescence analysis on mouse cell cultures and tissues sections with specific antibodies showed co-distribution of EMILIN1 and EMILIN2. Thus, we can hypothesize that EMILINs multimers are formed by head-to-tail interaction between C-terminal and N-terminal domains of EMILIN1 and/or EMILIN2 but also by tail-to-tail interaction between gC1q domains. These multiple interactions may regulate homo-typic and/or hetero-typic linear and eventually lateral branching assemblies of EMILIN1 and EMILIN2 in tissues. Copyright © 2014. Published by Elsevier B.V.
Mercurio, Flavia A; Costantini, Susan; Di Natale, Concetta; Pirone, Luciano; Guariniello, Stefano; Scognamiglio, Pasqualina L; Marasco, Daniela; Pedone, Emilia M; Leone, Marilisa
2017-09-01
Ephrin A2 receptor (EphA2) plays a key role in cancer, it is up-regulated in several types of tumors and the process of ligand-induced receptor endocytosis, followed by degradation, is considered as a potential path to diminish tumor malignancy. Protein modulators of this mechanism are recruited at the cytosolic Sterile alpha motif (Sam) domain of EphA2 (EphA2-Sam) through heterotypic Sam-Sam associations. These interactions engage the C-terminal helix of EphA2 and close loop regions (the so called End Helix side). In addition, several studies report on destabilizing mutations in EphA2 related to cataract formation and located in/or close to the Sam domain. Herein, we analyzed from a structural point of view, one of these mutants characterized by the insertion of a novel 39 residue long polypeptide at the C-terminus of EphA2-Sam. A 3D structural model was built by computational methods and revealed partial disorder in the acquired C-terminal tail and a few residues participating in an α-helix and two short β-strands. We investigated by CD and NMR studies the conformational properties in solution of two peptides encompassing the whole C-terminal tail and its predicted helical region, respectively. NMR binding experiments demonstrated that these peptides do not interact relevantly with either EphA2-Sam or its interactor Ship2-Sam. Molecular dynamics (MD) simulations further indicated that the EphA2 mutant could be represented only through a conformational ensemble and that the C-terminal tail should not largely wrap the EphA2-Sam End-Helix interface and affect binding to other Sam domains. Copyright © 2017 Elsevier B.V. All rights reserved.
Induction of nuclear factor kappaB by the CD30 receptor is mediated by TRAF1 and TRAF2.
Duckett, C S; Gedrich, R W; Gilfillan, M C; Thompson, C B
1997-01-01
CD30 is a lymphoid cell-specific surface receptor which was originally identified as an antigen expressed on Hodgkin's lymphoma cells. Activation of CD30 induces the nuclear factor kappaB (NF-kappaB) transcription factor. In this study, we define the domains in CD30 which are required for NF-kappaB activation. Two separate elements of the cytoplasmic domain which were capable of inducing NF-kappaB independently of one another were identified. The first domain (domain 1) mapped to a approximately 120-amino-acid sequence in the membrane-proximal region of the CD30 cytoplasmic tail, between residues 410 and 531. A second, more carboxy-terminal region (domain 2) was identified between residues 553 and 595. Domain 2 contains two 5- to 10-amino-acid elements which can mediate the binding of CD30 to members of the tumor necrosis factor receptor-associated factor (TRAF) family of signal transducing proteins. Coexpression of CD30 with TRAF1 or TRAF2 but not TRAF3 augmented NF-kappaB activation through domain 2 but not domain 1. NF-kappaB induction through domain 2 was inhibited by coexpression of either full-length TRAF3 or dominant negative forms of TRAF1 or TRAF2. In contrast, NF-kappaB induction by domain 1 was not affected by alterations in TRAF protein levels. Together, these data support a model in which CD30 can induce NF-kappaB by both TRAF-dependent and -independent mechanisms. TRAF-dependent induction of NF-kappaB appears to be regulated by the relative levels of individual TRAF proteins in the cell. PMID:9032281
Ujike, Makoto; Nakajima, Katsuhisa; Nobusawa, Eri
2004-11-01
The cytoplasmic tail (CT) of hemagglutinin (HA) of influenza B virus (BHA) contains at positions 578 and 581 two highly conserved cysteine residues (Cys578 and Cys581) that are modified with palmitic acid (PA) through a thioester linkage. To investigate the role of PA in the fusion activity of BHA, site-specific mutagenesis was performed with influenza B virus B/Kanagawa/73 HA cDNA. All of the HA mutants were expressed on Cos cells by an expression vector. The membrane fusion ability of the HA mutants at a low pH was quantitatively examined with lipid (octadecyl rhodamine B chloride) and aqueous (calcein) dye transfer assays and with the syncytium formation assay. Two deacylation mutants lacking a CT or carrying serine residues substituting for Cys578 and Cys581 promoted full fusion. However, one of the single-acylation-site mutants, C6, in which Cys581 is replaced with serine, promoted hemifusion but not pore formation. In contrast, four other single-acylation-site mutants that have a sole cysteine residue in the CT at position 575, 577, 579, or 581 promoted full fusion. The impaired pore-forming ability of C6 was improved by amino acid substitution between residues 578 and 582 or by deletion of the carboxy-terminal leucine at position 582. Syncytium-forming ability, however, was not adequately restored by these mutations. These facts indicated that the acylation was not significant in membrane fusion by BHA but that pore formation and pore dilation were appreciably affected by the particular amino acid sequence of the CT and the existence of a single acylation site in CT residue 578.
Yáñez, M J; Belbin, O; Estrada, L D; Leal, N; Contreras, P S; Lleó, A; Burgos, P V; Zanlungo, S; Alvarez, A R
2016-11-01
Niemann-Pick type C (NPC) disease is characterized by lysosomal accumulation of cholesterol. Interestingly, NPC patients' brains also show increased levels of amyloid-β (Aβ) peptide, a key protein in Alzheimer's disease pathogenesis. We previously reported that the c-Abl tyrosine kinase is active in NPC neurons and in AD animal models and that Imatinib, a specific c-Abl inhibitor, decreased the amyloid burden in brains of the AD mouse model. Active c-Abl was shown to interact with the APP cytosolic domain, but the relevance of this interaction to APP processing has yet to be defined. In this work we show that c-Abl inhibition reduces APP amyloidogenic cleavage in NPC cells overexpressing APP. Indeed, we found that levels of the Aβ oligomers and the carboxy-terminal fragment βCTF were decreased when the cells were treated with Imatinib and upon shRNA-mediated c-Abl knockdown. Moreover, Imatinib decreased APP amyloidogenic processing in the brain of an NPC mouse model. In addition, we found decreased levels of βCTF in neuronal cultures from c-Abl null mice. We demonstrate that c-Abl directly interacts with APP, that c-Abl inhibition prevents this interaction, and that Tyr682 in the APP cytoplasmic tail is essential for this interaction. More importantly, we found that c-Abl inhibition by Imatinib significantly inhibits the interaction between APP and BACE1. We conclude that c-Abl activity facilitates the APP-BACE1 interaction, thereby promoting amyloidogenic processing of APP. Thus, inhibition of c-Abl could be a pharmacological target for preventing the injurious effects of increased Aβ levels in NPC disease. Copyright © 2016 Elsevier B.V. All rights reserved.
Feizabadi, Mitra Shojania; Rosario, Brandon; Hernandez, Marcos A V
2017-11-04
Recent studies suggested a link between diversity of beta tubulin isotypes in microtubule structures and the regulatory roles that they play not only on microtubules' intrinsic dynamic, but also on the translocation characteristics of some of the molecular motors along microtubules. Remarkably, unlike porcine brain microtubules, MCF7 microtubules are structured from a different beta tubulin distribution. These types of cancer microtubules show a relatively stable and slow dynamic. In addition, the translocation parameters of some molecular motors are distinctly different along MCF7 as compared to those parameters on brain microtubules. It is known that the diversity of beta tubulin isotypes differ predominantly in the specifications and the electric charge of their carboxy-terminal tails. A key question is to identify whether the negative electrostatic charge of tubulin isotypes and, consequently, microtubules, can potentially be considered as one of the sources of functional differences in MCF7 vs. brain microtubules. We tested this possibility experimentally by monitoring the electro-orientation of these two types of microtubules inside a uniform electric field. Through this evaluation, we quantified and compared the average normalized polarization coefficient of MCF7 vs. Porcine brain microtubules. The higher value obtained for the polarization of MCF7 microtubules, which is associated to the higher negative charge of these types of microtubules, is significant as it can further explain the slow intrinsic dynamic that has been recently reported for single MCF7 microtubules in vitro. Furthermore, it can be potentially considered as a factor that can directly impact the translocation parameters of some molecular motors along MCF7 microtubules, by altering the mutual electrostatic interactions between microtubules and molecular motors. Copyright © 2017 Elsevier Inc. All rights reserved.
Mizrahi, V; Usdin, M T; Harington, A; Dudding, L R
1990-01-01
Substitution of the conserved Asp-443 residue of HIV-1 reverse transcriptase by asparagine specifically suppressed the ribonuclease H activity of the enzyme without affecting the reverse transcriptase activity, suggesting involvement of this ionizable residue at the ribonuclease H active site. An analogous asparagine substitution of the Asp-498 residue yielded an unstable enzyme that was difficult to enzymatically characterize. However, the instability caused by the Asn-498 mutation was relieved by the introduction of a second distal Asn-443 substitution, yielding an enzyme with wild type reverse transcriptase activity, but lacking ribonuclease H activity. Images PMID:1699202
Cloning, expression and functional characterization of Schizosaccharomyces pombe TFIIB.
Tamayo, Evelyn; Maldonado, Edio
2002-09-27
The transcription factor TFIIB has been identified and cloned from the yeast Schizosaccharomyces pombe. The cloned polypeptide is highly homologous to human TFIIB and to Saccharomyces cerevisiae TFIIB. S. pombe TFIIB is a 340-amino-acid-long protein and it possesses a repeated motif of 75 amino acids near the carboxy-terminal region. The purified recombinant protein is able to bind to the TBP-DNA promoter complex in gel retardation experiments. Recombinant S. pombe TFIIB is active in in vitro transcription assays, since it can complement the transcription activity of a S. pombe cell extract in which TFIIB was depleted by using antibodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubouchi, Masatoshi; Hojo, Hidemitsu
The thermal shock resistance of epoxy resin specimens toughened with carboxy-terminated poly(butadiene-acrylonitrile) (CTBN) and poly-glycol were tested using a new notched disk-type specimen. The new thermal shock testing method consists of quenching a notched disk-type specimen and applying a theoretical analysis to the test results to determine crack propagation conditions. For both toughened epoxy resins, this test method evaluated improvements in thermal shock resistance. The thermal shock resistance of epoxy resin toughened with CTBN exhibited a maximum at a 35 parts per hundred resin content of CTBN. The epoxy resin toughened with polyglycol exhibited improved thermal shock resistance with increasingmore » glycol content. 7 refs., 14 figs., 1 tab.« less
The E3 Ligase CHIP: Insights into Its Structure and Regulation
Paul, Indranil; Ghosh, Mrinal K.
2014-01-01
The carboxy-terminus of Hsc70 interacting protein (CHIP) is a cochaperone E3 ligase containing three tandem repeats of tetratricopeptide (TPR) motifs and a C-terminal U-box domain separated by a charged coiled-coil region. CHIP is known to function as a central quality control E3 ligase and regulates several proteins involved in a myriad of physiological and pathological processes. Recent studies have highlighted varied regulatory mechanisms operating on the activity of CHIP which is crucial for cellular homeostasis. In this review article, we give a concise account of our current knowledge on the biochemistry and regulation of CHIP. PMID:24868554
Koch, Claudia; Venegas, Pablo J; Böhme, Wolfgang
2015-06-02
Three new blind snake species of the genus Epictia are described based on material collected in the Peruvian Regions Amazonas, Cajamarca and La Libertad. All three species are well differentiated from all congeners based on characteristics of their morphology and coloration. They share 10 scale rows around the middle of the tail and possess two supralabials with the anterior one in broad contact with the supraocular. Epictia septemlineata sp. nov. has 16 subcaudal scales, 257 mid-dorsal scale rows, a yellowish-white rostral, and a black terminal spine. Epictia vanwallachi sp. nov. exhibits 16 subcaudals, 188 mid-dorsal scale rows, a grayish-brown rostral, and a yellow terminal spine. Epictia antoniogarciai sp. nov. features 14-18 subcaudals, 195-208 mid-dorsal scale rows, a bright yellow or yellowish-white rostral, and the terminal spine and terminal portion of the tail yellow. All three species were collected in the interandean dry forest valleys of the Marañón River and its tributaries. This region is an area of endemism and warrants further attention from systematic and conservation biologists.
Nonlinear dynamics of C–terminal tails in cellular microtubules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekulic, Dalibor L., E-mail: dalsek@uns.ac.rs; Sataric, Bogdan M.; Sataric, Miljko V.
2016-07-15
The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano–electrical waves elicited in the rows of very flexible C–terminal tails which decorate the outer surface of each microtubule. The fact that C–terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule–associated proteins, motivated us to consider their collective dynamics as the source of localizedmore » waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink–waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.« less
Three new Procamallanus (Spirocamallanus) species from freshwater fishes in Mexico.
Moravec, F; Salgado-Maldonado, G; Caspeta-Mandujano, J
2000-02-01
The following 3 new species of Procamallanus (Spirocamallanus) are described from the intestines of freshwater fishes in Mexico, all belonging to the morphological group characterized by the presence of wide caudal alae, 3 pairs of subventral preanal papillae, and unequal spicules in the male: Procamallanus (Spirocamallanus) jaliscensis n. sp. (type host: Agonostomus monticola) and Procamallanus (Spirocamallanus) gobiomori n. sp. (hosts: Gobiomorus maculatus [type host], Gobiomorus polylepis and Eleotris picta) from 2 rivers in Jalisco State, western Mexico, and Procamallanus (Spirocamallanus) mexicanus n. sp. (type host: Cichlasoma geddesi) from Xalapa District, Veracruz State (Gulf of Mexico region), southeastern Mexico. Procamallanus jaliscensis is characterized by the length of the spicules (606-900 microm and 282-354 microm), number (15-16) of spiral ridges in the buccal capsule, and the digit-like protrusion with 1 terminal cuticular spike on the female tail; P. mexicanus by the length of the spicules (456-480 microm and 231-233 microm), number (10-12) of spiral ridges in the capsule, and the shape of the female tail (conical with a suddenly narrowed distal part, without any terminal spikes); and P. gobiomori by the length of spicules (318-348 microm and 156-192 microm), number (8-10) of spiral ridges and by the digit-like protrusion with 2 terminal cuticular spikes on the female tail.
OVERVIEW OF CYANIDE PLANT FOUNDATIONS, ZINC BOXES, TANKS, AND TAILINGS ...
OVERVIEW OF CYANIDE PLANT FOUNDATIONS, ZINC BOXES, TANKS, AND TAILINGS PILES, LOOKING NORTHEAST. THE LOWER TRAM TERMINAL AND MILL SITE IS AT TOP CENTER IN THE DISTANCE. THE DARK SPOT JUST BELOW THE TRAM TERMINAL ARE REMAINS OF THE DEWATERING BUILDING. THE MAIN ACCESS ROAD IS AT UPPER LEFT. THE FOUNDATIONS AT CENTER SUPPORTED SIX 25 FT. OR GREATER DIAMETER SETTLING TANKS WHERE TAILINGS FROM THE MILL SETTLED IN A CYANIDE SOLUTION IN ORDER TO RECLAIM ANY GOLD CONTENT. THE PREGNANT SOLUTION WAS THEN RUN THROUGH THE ZINC BOXES ON THE GROUND AT CENTER RIGHT, WHERE ZINC SHAVINGS WERE INTRODUCED, CAUSING THE GOLD TO PRECIPITATE OUT OF THE CYANIDE SOLUTION, WHICH COULD BE USED AGAIN. THE FLAT AREA IN THE FOREGROUND WITH THE TANK AND TANK HOOPS IS THE FOOTPRINT OF A LARGE BUILDING WHERE THE PRECIPITATION AND FURTHER FILTERING AND FINAL CASTING TOOK PLACE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
Fey, G; Lewis, J B; Grodzicker, T; Bothwell, A
1979-01-01
The adenovirus type 2-simian virus 40 (SV40) hybrid virus Ad2+ND1 dp2 (E. Lukanidin, manuscript in preparation) specified two proteins (molecular weights, 24,000 and 23,000) that are, in part, products of an insertion of SV40 early DNA sequences. This was demonstrated by translation in vitro from viral mRNA that had been selected by hybridization to SV40 DNA. These two phosphorylated, nonvirion proteins were produced late in infection in amounts similar to adenovirus 2 structural proteins and were closely related to each other in tryptic peptide composition. The portion of SV40 DNA (map units 0.17 to 0.22 on the SV40 genome) coding for these proteins was joined to sequences coding for the amino-terminal part of the adenovirus type 2 structural protein IV (fiber). The Ad2+ND1 dp2 23,000- and 24,000-molecular-weight proteins were hybrid polypeptides, with about two-thirds of their tryptic peptides contributed by the fiber protein and the remainder contributed by SV40 T-antigen. They shared with T-antigen (molecular weight, 96,000) a carboxy-terminal proline-rich tryptic peptide. Together, the tryptic peptide composition of these proteins and the known SV40 DNA sequences suggested the reading frame for the translation of T-antigen. The carboxy terminus for T-anigen would then be located on the SV40 genome map next to the TAA terminator triplet at position 0.175, 910 bases away from the cleavage site of the restriction endonuclease EcoRI. Seven host range mutants from Ad2+ND1 dp2 were isolated that had lost the capacity to propagate on monkey cells. They did not induce detectable levels of the hybrid proteins. Three of these mutants had lost the SV40 DNA insertion that codes in part for these proteins. Thus, in analogy to the Ad2+ND1 30,000-molecular-weight protein, the presence of these proteins correlates with the presence of the helper function for adenovirus replication on monkey cells. Images PMID:225516
Vinik, A I; Gonin, J; England, B G; Jackson, T; McLeod, M K; Cho, K
1990-06-01
We examined the role of the potent vasoactive kinin substance-P (SP) in flushing derived from various causes. SP was measured in plasma after acetone/ether extraction using an antiserum directed at the carboxy-terminal 5-11 amino acid region of undecapeptide SP. The antiserum had less than 1% cross-reaction with the other neurokinins, neurokinin-A and neuropeptide-K, that derive from the beta-preprotachykinin gene and share carboxy-terminal residues. Basal and pentagastrin-stimulated SP levels were measured in 22 healthy controls, 11 patients with histologically proven carcinoid tumors, 8 patients with tumors other than carcinoid, and 7 patients with idiopathic flushing (IF). Basal SP levels were less than 10 pg/mL in normal subjects. All patients with midgut carcinoid tumors had SP levels greater than 25 pg/mL, as did 7 of 8 patients with noncarcinoid tumors and 5 of 7 patients with IF. Using 50 pg/mL as the cutoff point, the sensitivity was 63% for detection of a tumor, and 100% of nontumor patients were excluded. Pentagastrin administration uniformly induced flushing and caused a rise in SP levels greater than 150 pg/mL in 5 of 10 patients with carcinoid tumors, 3 of 8 with noncarcinoid tumors, and 0 of 7 with IF, i.e. a SP rise of more than 100 pg/mL suggests a tumor. Administration of somatostatin (150 micrograms) 0.5 h before the pentagastrin abolished flushing in all carcinoid patients and reduced SP levels, but not into the normal range. Long term treatment with SMS significantly reduced flushing and lowered SP levels, but did not restore these to normal. We conclude that 90% of patients with carcinoid/noncarcinoid tumor have raised COOH-terminal SP levels. A basal level above 50 pg/mL or a pentagastrin-stimulated rise of more than 100 pg/mL distinguishes carcinoid from IF. The dissociation between SP concentrations and flushing suggests that SP may not be the only kinin involved in the flushing associated with carcinoid tumors.
Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana.
Ravi, Maruthachalam; Shibata, Fukashi; Ramahi, Joseph S; Nagaki, Kiyotaka; Chen, Changbin; Murata, Minoru; Chan, Simon W L
2011-06-01
Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior.
Meiosis-Specific Loading of the Centromere-Specific Histone CENH3 in Arabidopsis thaliana
Ravi, Maruthachalam; Shibata, Fukashi; Ramahi, Joseph S.; Nagaki, Kiyotaka; Chen, Changbin; Murata, Minoru; Chan, Simon W. L.
2011-01-01
Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior. PMID:21695238
Rapid elimination of Carboxy-THC in a cohort of chronic cannabis users.
Lewis, John; Molnar, Anna; Allsop, David; Copeland, Jan; Fu, Shanlin
2016-01-01
Urinary 11-nor-Δ(9)-tetrahydrocannabinol-9-carboxylic acid (Carboxy-THC) concentrations, normalised to creatinine output, have been demonstrated to be a useful tool in the interpretation of the results of a series of urine tests for cannabis. These tests, often termed historical data, can be used to identify potential chronic cannabis users who may present occupational health and safety risks within the workplace. Conversely, the data can also be used to support employee claims of previous regular, rather than recent, cannabis use. This study aimed at examining the mean elimination of Carboxy-THC in 37 chronic users undergoing voluntary abstinence over a 2-week period. Urine specimens were collected prior to the study and after 1 and 2 weeks of abstinence. Carboxy-THC levels in urine were measured by gas chromatography-mass spectrometry (GC-MS) following alkaline hydrolysis, organic solvent extraction and derivatisation to form its pentafluoropropionic derivative. The creatinine-normalised Carboxy-THC concentrations declined rapidly over the 2 weeks of abstinence period and the majority of chronic cannabis users (73%) reduced their urinary Carboxy-THC levels to below the 15-μg/L confirmatory cutoff within that time. The study further highlights the value of historical urinary Carboxy-THC data as a means of identifying potential occupational health and safety risks among chronic cannabis users.
USDA-ARS?s Scientific Manuscript database
In this communication we report final observations on experimental transmission of chronic wasting disease (CWD) from elk (Cervus elaphus nelsoni) and white tailed deer (Odocoileus virginianus) to fallow deer (Dama dama). The study was terminated 5 years after it was initiated. Thirteen fawns were i...
Phosphorylation and nuclear localization of the varicella-zoster virus gene 63 protein.
Stevenson, D; Xue, M; Hay, J; Ruyechan, W T
1996-01-01
The protein encoded by varicella-zoster virus open reading frame 63 and carboxy-terminal deletions of the same were expressed either as fusion proteins at the carboxy terminus of the maltose-binding protein in Escherichia coli or independently in transfected mammalian cells. The truncations contained amino acids 1 to 142 (63 delta N) or 1 to 210 (63 delta K) of the complete 278-amino-acid primary sequence. Recombinant casein kinase II phosphorylated the 63F and 63 delta KF fusion proteins in vitro but did not phosphorylate the 63 delta NF fusion protein, implying that phosphorylation occurred between amino acids 142 and 210. Immunoprecipitation of 35S- or 32P-labelled extracts of cells transfected with plasmids expressing 63, 63 delta N, or 63 delta K also indicated that in situ phosphorylation most likely occurred between amino acids 142 and 210. These combined results suggest that casein kinase II plays a significant role in the phosphorylation of the varicella-zoster virus 63 protein. Indirect immunofluorescence of transfected cells indicated nuclear localization of the 63 protein and cytoplasmic localization of 63 delta K and 63 delta N, implying a requirement for sequences between amino acids 210 and 278 for efficient nuclear localization. PMID:8523589
Biotransformation of acyclovir by an enriched nitrifying culture.
Xu, Yifeng; Yuan, Zhiguo; Ni, Bing-Jie
2017-03-01
This work evaluates the biodegradation of the antiviral drug acyclovir by an enriched nitrifying culture during ammonia oxidation and without the addition of ammonium. The study on kinetics was accompanied with the structural elucidation of biotransformation products through batch biodegradation experiments at two different initial levels of acyclovir (15 mg L -1 and 15 μg L -1 ). The pseudo first order kinetic studies of acyclovir in the presence of ammonium indicated the higher degradation rates under higher ammonia oxidation rates than those constant degradation rates in the absence of ammonium. The positive correlation was found between acyclovir degradation rate and ammonia oxidation rate, confirming the cometabolism of acyclovir by the enriched nitrifying culture in the presence of ammonium. Formation of the product carboxy-acyclovir (P239) indicated the main biotransformation pathway was aerobic oxidation of the terminal hydroxyl group, which was independent on the metabolic type (i.e. cometabolism or metabolism). This enzyme-linked reaction might be catalyzed by monooxygenase from ammonia oxidizing bacteria or heterotrophs. The formation of carboxy-acyclovir was demonstrated to be irrelevant to the acyclovir concentrations applied, indicating the revealed biotransformation pathway might be the dominant removal pathway of acyclovir in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tolani, Bhairavi; Hoang, Ngoc T.; Acevedo, Luis A.; Leprieur, Etienne Giroux; Li, Hui; He, Biao; Jablons, David M.
2018-01-01
The Sonic Hedgehog (Shh) signaling pathway has been implicated in the development and tumor progression of a number of human cancers. Using synthetic peptide mimics to mount an immune response, we generated a mouse mAb to the carboxy (C)-terminus of the Shh protein and characterized its preclinical antitumor effects. In vitro screening guided selection of the best candidate for mAb scale-up production and therapeutic development. C-term anti-Shh, Ab 1C11-2G4 was selected based on ELISA screens, Western blotting, and flow cytometric analyses. Purified Ab 1C11-2G4 was shown to recognize and bind both Shh peptide mimics and cell surface Shh. Administration of Ab 1C11-2G4 not only reduced cell viability in 7 cancer cell lines but also significantly inhibitted tumor growth in a xenograft model of A549 lung cancer cells. Ex vivo analyses of xenograft tumors revealed a reduction in Shh signal transduction and apoptosis in 2G4-treated mice. Collectively, our results provide early demonstration of the antitumor utility of antibodies specific for the C-terminal region of Shh, and support continued development to evaluate their potential efficacy in cancers in which Shh activity is elevated. PMID:29581846
Lin, Jang-Foung; Sheih, Yung-Lin; Chang, Tsu-Chung; Chang, Ni-Yuan; Chang, Chiung-Wen; Shen, Chia-Pei; Lee, Hwei-Jen
2013-01-01
4-Hydroxylphenylpyruvate dioxygenase (4-HPPD) is an important enzyme for tyrosine catabolism, which catalyzes the conversion of 4-hydroxylphenylpyruvate (4-HPP) to homogentisate. In the present study, human 4-HPPD was cloned and expressed in E. coli. The kinetic parameters for 4-HPP conversion were: k cat=2.2 ± 0.1 s(-1); and K m=0.08 ± 0.02 mM. Sequence alignments show that human 4-HPPD possesses an extended C-terminus compared to other 4-HPPD enzymes. Successive truncation of the disordered tail which follows the final α-helix resulted in no changes in the K m value for 4-HPP substrate but the k cat values were significantly reduced. The results suggest that this disordered C-terminal tail plays an important role in catalysis. For inspection the effect of terminal truncation on protein structure, mutant models were built. These models suggest that the different conformation of E254, R378 and Q375 in the final helix might be the cause of the activity loss. In the structure E254 interacts with R378, the end residue in the final helix; mutation of either one of these residues causes a ca. 95% reductions in k cat values. Q375 provides bifurcate interactions to fix the tail and the final helix in position. The model of the Q375N mutant shows that a solvent accessible channel opens to the putative substrate binding site, suggesting this is responsible for the complete loss of activity. These results highlight the critical role of Q375 in orientating the tail and ensuring the conformation of the terminal α-helix to maintain the integrity of the active site for catalysis.
Barillà, Daniela; Carmelo, Emma; Hayes, Finbarr
2007-01-01
The ParF protein of plasmid TP228 belongs to the ubiquitous superfamily of ParA ATPases that drive DNA segregation in bacteria. ATP-bound ParF polymerizes into multistranded filaments. The partner protein ParG is dimeric, consisting of C-termini that interweave into a ribbon–helix–helix domain contacting the centromeric DNA and unstructured N-termini. ParG stimulates ATP hydrolysis by ParF ≈30-fold. Here, we establish that the mobile tails of ParG are crucial for this enhancement and that arginine R19 within the tail is absolutely required for activation of ParF nucleotide hydrolysis. R19 is part of an arginine finger-like loop in ParG that is predicted to intercalate into the ParF nucleotide-binding pocket thereby promoting ATP hydrolysis. Significantly, mutations of R19 abrogated DNA segregation in vivo, proving that intracellular stimulation of ATP hydrolysis by ParG is a key regulatory process for partitioning. Furthermore, ParG bundles ParF-ATP filaments as well as promoting nucleotide-independent polymerization. The N-terminal flexible tail is required for both activities, because N-terminal ΔParG polypeptides are defective in both functions. Strikingly, the critical arginine finger-like residue R19 is dispensable for ParG-mediated remodeling of ParF polymers, revealing that the ParG N-terminal tail possesses two separable activities in the interplay with ParF: a catalytic function during ATP hydrolysis and a mechanical role in modulation of polymerization. We speculate that activation of nucleotide hydrolysis via an arginine finger loop may be a conserved, regulatory mechanism of ParA family members and their partner proteins, including ParA-ParB and Soj-Spo0J that mediate DNA segregation and MinD-MinE that determine septum localization. PMID:17261809
Barillà, Daniela; Carmelo, Emma; Hayes, Finbarr
2007-02-06
The ParF protein of plasmid TP228 belongs to the ubiquitous superfamily of ParA ATPases that drive DNA segregation in bacteria. ATP-bound ParF polymerizes into multistranded filaments. The partner protein ParG is dimeric, consisting of C-termini that interweave into a ribbon-helix-helix domain contacting the centromeric DNA and unstructured N-termini. ParG stimulates ATP hydrolysis by ParF approximately 30-fold. Here, we establish that the mobile tails of ParG are crucial for this enhancement and that arginine R19 within the tail is absolutely required for activation of ParF nucleotide hydrolysis. R19 is part of an arginine finger-like loop in ParG that is predicted to intercalate into the ParF nucleotide-binding pocket thereby promoting ATP hydrolysis. Significantly, mutations of R19 abrogated DNA segregation in vivo, proving that intracellular stimulation of ATP hydrolysis by ParG is a key regulatory process for partitioning. Furthermore, ParG bundles ParF-ATP filaments as well as promoting nucleotide-independent polymerization. The N-terminal flexible tail is required for both activities, because N-terminal DeltaParG polypeptides are defective in both functions. Strikingly, the critical arginine finger-like residue R19 is dispensable for ParG-mediated remodeling of ParF polymers, revealing that the ParG N-terminal tail possesses two separable activities in the interplay with ParF: a catalytic function during ATP hydrolysis and a mechanical role in modulation of polymerization. We speculate that activation of nucleotide hydrolysis via an arginine finger loop may be a conserved, regulatory mechanism of ParA family members and their partner proteins, including ParA-ParB and Soj-Spo0J that mediate DNA segregation and MinD-MinE that determine septum localization.
Evidence for new C-terminally truncated variants of α- and β-tubulins
Aillaud, Chrystelle; Bosc, Christophe; Saoudi, Yasmina; Denarier, Eric; Peris, Leticia; Sago, Laila; Taulet, Nicolas; Cieren, Adeline; Tort, Olivia; Magiera, Maria M.; Janke, Carsten; Redeker, Virginie; Andrieux, Annie; Moutin, Marie-Jo
2016-01-01
Cellular α-tubulin can bear various carboxy-terminal sequences: full-length tubulin arising from gene neosynthesis is tyrosinated, and two truncated variants, corresponding to detyrosinated and Δ2 α‑tubulin, result from the sequential cleavage of one or two C-terminal residues, respectively. Here, by using a novel antibody named 3EG that is highly specific to the –EEEG C-terminal sequence, we demonstrate the occurrence in neuronal tissues of a new αΔ3‑tubulin variant corresponding to α1A/B‑tubulin deleted of its last three residues (EEY). αΔ3‑tubulin has a specific distribution pattern: its quantity in the brain is similar to that of αΔ2-tubulin around birth but is much lower in adult tissue. This truncated α1A/B-tubulin variant can be generated from αΔ2-tubulin by the deglutamylases CCP1, CCP4, CCP5, and CCP6 but not by CCP2 and CCP3. Moreover, using 3EG antibody, we identify a C‑terminally truncated β-tubulin form with the same –EEEG C-terminal sequence. Using mass spectrometry, we demonstrate that β2A/B-tubulin is modified by truncation of the four C-terminal residues (EDEA). We show that this newly identified βΔ4-tubulin is ubiquitously present in cells and tissues and that its level is constant throughout the cell cycle. These new C-terminally truncated α- and β-tubulin variants, both ending with –EEEG sequence, are expected to regulate microtubule physiology. Of interest, the αΔ3-tubulin seems to be related to dynamic microtubules, resembling tyrosinated-tubulin rather than the other truncated variants, and may have critical function(s) in neuronal development. PMID:26739754
Borodulina, Olga R; Golubchikova, Julia S; Ustyantsev, Ilia G; Kramerov, Dmitri A
2016-02-01
It is generally accepted that only transcripts synthesized by RNA polymerase II (e.g., mRNA) were subject to AAUAAA-dependent polyadenylation. However, we previously showed that RNA transcribed by RNA polymerase III (pol III) from mouse B2 SINE could be polyadenylated in an AAUAAA-dependent manner. Many species of mammalian SINEs end with the pol III transcriptional terminator (TTTTT) and contain hexamers AATAAA in their A-rich tail. Such SINEs were united into Class T(+), whereas SINEs lacking the terminator and AATAAA sequences were classified as T(-). Here we studied the structural features of SINE pol III transcripts that are necessary for their polyadenylation. Eight and six SINE families from classes T(+) and T(-), respectively, were analyzed. The replacement of AATAAA with AACAAA in T(+) SINEs abolished the RNA polyadenylation. Interestingly, insertion of the polyadenylation signal (AATAAA) and pol III transcription terminator in T(-) SINEs did not result in polyadenylation. The detailed analysis of three T(+) SINEs (B2, DIP, and VES) revealed areas important for the polyadenylation of their pol III transcripts: the polyadenylation signal and terminator in A-rich tail, β region positioned immediately downstream of the box B of pol III promoter, and τ region located upstream of the tail. In DIP and VES (but not in B2), the τ region is a polypyrimidine motif which is also characteristic of many other T(+) SINEs. Most likely, SINEs of different mammals acquired these structural features independently as a result of parallel evolution. Copyright © 2015 Elsevier B.V. All rights reserved.
Bashiri, Ghader; Rehan, Aisyah M.; Sreebhavan, Sreevalsan; Baker, Heather M.; Baker, Edward N.; Squire, Christopher J.
2016-01-01
Cofactor F420 is an electron carrier with a major role in the oxidoreductive reactions of Mycobacterium tuberculosis, the causative agent of tuberculosis. A γ-glutamyl ligase catalyzes the final steps of the F420 biosynthesis pathway by successive additions of l-glutamate residues to F420-0, producing a poly-γ-glutamate tail. The enzyme responsible for this reaction in archaea (CofE) comprises a single domain and produces F420-2 as the major species. The homologous M. tuberculosis enzyme, FbiB, is a two-domain protein and produces F420 with predominantly 5–7 l-glutamate residues in the poly-γ-glutamate tail. The N-terminal domain of FbiB is homologous to CofE with an annotated γ-glutamyl ligase activity, whereas the C-terminal domain has sequence similarity to an FMN-dependent family of nitroreductase enzymes. Here we demonstrate that full-length FbiB adds multiple l-glutamate residues to F420-0 in vitro to produce F420-5 after 24 h; communication between the two domains is critical for full γ-glutamyl ligase activity. We also present crystal structures of the C-terminal domain of FbiB in apo-, F420-0-, and FMN-bound states, displaying distinct sites for F420-0 and FMN ligands that partially overlap. Finally, we discuss the features of a full-length structural model produced by small angle x-ray scattering and its implications for the role of N- and C-terminal domains in catalysis. PMID:26861878
Wilfling, F; Weber, A; Potthoff, S; Vögtle, F-N; Meisinger, C; Paschen, S A; Häcker, G
2012-08-01
During mitochondrial apoptosis, pro-apoptotic BH3-only proteins cause the translocation of cytosolic Bcl-2-associated X protein (Bax) to the outer mitochondrial membrane (OMM) where it is activated to release cytochrome c from the mitochondrial intermembrane space, but the mechanism is under dispute. We show that most BH3-only proteins are mitochondrial proteins that are imported into the OMM via a C-terminal tail-anchor domain in isolated yeast mitochondria, independently of binding to anti-apoptotic Bcl-2 proteins. This C-terminal domain acted as a classical mitochondrial targeting signal and was sufficient to direct green fluorescent protein to mitochondria in human cells. When expressed in mouse fibroblasts, these BH3-only proteins localised to mitochondria and were inserted in the OMM. The BH3-only proteins Bcl-2-interacting mediator of cell death (Bim), tBid and p53-upregulated modulator of apoptosis sensitised isolated mitochondria from Bax/Bcl-2 homologous antagonist/killer-deficient fibroblasts to cytochrome c-release by recombinant, extramitochondrial Bax. For Bim, this activity is shown to require the C-terminal-targeting signal and to be independent of binding capacity to and presence of anti-apoptotic Bcl-2 proteins. Bim further enhanced Bax-dependent killing in yeast. A model is proposed where OMM-tail-anchored BH3-only proteins permit passive 'recruitment' and catalysis-like activation of extra-mitochondrial Bax. The recognition of C-terminal membrane-insertion of BH3-only proteins will permit the development of a more detailed concept of the initiation of mitochondrial apoptosis.
A Trojan-Horse Peptide-Carboxymethyl-Cytidine Antibiotic from Bacillus amyloliquefaciens.
Serebryakova, Marina; Tsibulskaya, Darya; Mokina, Olga; Kulikovsky, Alexey; Nautiyal, Manesh; Van Aerschot, Arthur; Severinov, Konstantin; Dubiley, Svetlana
2016-12-07
Microcin C and related antibiotics are Trojan-horse peptide-adenylates. The peptide part is responsible for facilitated transport inside the sensitive cell, where it gets processed to release a toxic warhead-a nonhydrolyzable aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase. Adenylation of peptide precursors is carried out by MccB THIF-type NAD/FAD adenylyltransferases. Here, we describe a novel microcin C-like compound from Bacillus amyloliquefaciens. The B. amyloliquefaciens MccB demonstrates an unprecedented ability to attach a terminal cytidine monophosphate to cognate precursor peptide in cellular and cell free systems. The cytosine moiety undergoes an additional modification-carboxymethylation-that is carried out by the C-terminal domain of MccB and the MccS enzyme that produces carboxy-SAM, which serves as a donor of the carboxymethyl group. We show that microcin C-like compounds carrying terminal cytosines are biologically active and target aspartyl-tRNA synthetase, and that the carboxymethyl group prevents resistance that can occur due to modification of the warhead. The results expand the repertoire of known enzymatic modifications of peptides that can be used to obtain new biological activities while avoiding or limiting bacterial resistance.
1994-01-01
The tumor suppressing capacity of the retinoblastoma protein (p110RB) is dependent on interactions made with cellular proteins through its carboxy-terminal domains. How the p110RB amino-terminal region contributes to this activity is unclear, though evidence now indicates it is important for both growth suppression and regulation of the full- length protein. We have used the yeast two-hybrid system to screen for cellular proteins which bind to the first 300 amino acids of p110RB. The only gene isolated from this screen encodes a novel 84-kD nuclear matrix protein that localizes to subnuclear regions associated with RNA processing. This protein, p84, requires a structurally defined domain in the amino terminus of p110RB for binding. Furthermore, both in vivo and in vitro experiments demonstrate that p84 binds preferentially to the functionally active, hypophosphorylated form of p110RB. Thus, the amino terminus of p110RB may function in part to facilitate the binding of growth promoting factors at subnuclear regions actively involved in RNA metabolism. PMID:7525595
Knowles, D P; Cheevers, W P; McGuire, T C; Brassfield, A L; Harwood, W G; Stem, T A
1991-11-01
To define the structure of the caprine arthritis-encephalitis virus (CAEV) env gene and characterize genetic changes which occur during antigenic variation, we sequenced the env genes of CAEV-63 and CAEV-Co, two antigenic variants of CAEV defined by serum neutralization. The deduced primary translation product of the CAEV env gene consists of a 60- to 80-amino-acid signal peptide followed by an amino-terminal surface protein (SU) and a carboxy-terminal transmembrane protein (TM) separated by an Arg-Lys-Lys-Arg cleavage site. The signal peptide cleavage site was verified by amino-terminal amino acid sequencing of native CAEV-63 SU. In addition, immunoprecipitation of [35S]methionine-labeled CAEV-63 proteins by sera from goats immunized with recombinant vaccinia virus expressing the CAEV-63 env gene confirmed that antibodies induced by env-encoded recombinant proteins react specifically with native virion SU and TM. The env genes of CAEV-63 and CAEV-Co encode 28 conserved cysteines and 25 conserved potential N-linked glycosylation sites. Nucleotide sequence variability results in 62 amino acid changes and one deletion within the SU and 34 amino acid changes within the TM.
Knowles, D P; Cheevers, W P; McGuire, T C; Brassfield, A L; Harwood, W G; Stem, T A
1991-01-01
To define the structure of the caprine arthritis-encephalitis virus (CAEV) env gene and characterize genetic changes which occur during antigenic variation, we sequenced the env genes of CAEV-63 and CAEV-Co, two antigenic variants of CAEV defined by serum neutralization. The deduced primary translation product of the CAEV env gene consists of a 60- to 80-amino-acid signal peptide followed by an amino-terminal surface protein (SU) and a carboxy-terminal transmembrane protein (TM) separated by an Arg-Lys-Lys-Arg cleavage site. The signal peptide cleavage site was verified by amino-terminal amino acid sequencing of native CAEV-63 SU. In addition, immunoprecipitation of [35S]methionine-labeled CAEV-63 proteins by sera from goats immunized with recombinant vaccinia virus expressing the CAEV-63 env gene confirmed that antibodies induced by env-encoded recombinant proteins react specifically with native virion SU and TM. The env genes of CAEV-63 and CAEV-Co encode 28 conserved cysteines and 25 conserved potential N-linked glycosylation sites. Nucleotide sequence variability results in 62 amino acid changes and one deletion within the SU and 34 amino acid changes within the TM. Images PMID:1656067
Unfurling of the band 4.1, ezrin, radixin, moesin (FERM) domain of the merlin tumor suppressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yogesha, S.D.; Sharff, Andrew J.; Giovannini, Marco
The merlin-1 tumor suppressor is encoded by the Neurofibromatosis-2 (Nf2) gene and loss-of-function Nf2 mutations lead to nervous system tumors in man and to several tumor types in mice. Merlin is an ERM (ezrin, radixin, moesin) family cytoskeletal protein that interacts with other ERM proteins and with components of cell-cell adherens junctions (AJs). Merlin stabilizes the links of AJs to the actin cytoskeleton. Thus, its loss destabilizes AJs, promoting cell migration and invasion, which in Nf2{sup +/-} mice leads to highly metastatic tumors. Paradoxically, the 'closed' conformation of merlin-1, where its N-terminal four-point-one, ezrin, radixin, moesin (FERM) domain binds tomore » its C-terminal tail domain, directs its tumor suppressor functions. Here we report the crystal structure of the human merlin-1 head domain when crystallized in the presence of its tail domain. Remarkably, unlike other ERM head-tail interactions, this structure suggests that binding of the tail provokes dimerization and dynamic movement and unfurling of the F2 motif of the FERM domain. We conclude the 'closed' tumor suppressor conformer of merlin-1 is in fact an 'open' dimer whose functions are disabled by Nf2 mutations that disrupt this architecture.« less
Nguyen, Tuan; Ruan, Zheng; Oruganty, Krishnadev; Kannan, Natarajan
2015-01-01
Mitogen activated protein kinases (MAPKs) form a closely related family of kinases that control critical pathways associated with cell growth and survival. Although MAPKs have been extensively characterized at the biochemical, cellular, and structural level, an integrated evolutionary understanding of how MAPKs differ from other closely related protein kinases is currently lacking. Here, we perform statistical sequence comparisons of MAPKs and related protein kinases to identify sequence and structural features associated with MAPK functional divergence. We show, for the first time, that virtually all MAPK-distinguishing sequence features, including an unappreciated short insert segment in the β4-β5 loop, physically couple distal functional sites in the kinase domain to the D-domain peptide docking groove via the C-terminal flanking tail (C-tail). The coupling mediated by MAPK-specific residues confers an allosteric regulatory mechanism unique to MAPKs. In particular, the regulatory αC-helix conformation is controlled by a MAPK-conserved salt bridge interaction between an arginine in the αC-helix and an acidic residue in the C-tail. The salt-bridge interaction is modulated in unique ways in individual sub-families to achieve regulatory specificity. Our study is consistent with a model in which the C-tail co-evolved with the D-domain docking site to allosterically control MAPK activity. Our study provides testable mechanistic hypotheses for biochemical characterization of MAPK-conserved residues and new avenues for the design of allosteric MAPK inhibitors. PMID:25799139
Crystal Structure of a Phosphorylation-coupled Saccharide Transporter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Cao; X Jin; E Levin
Saccharides have a central role in the nutrition of all living organisms. Whereas several saccharide uptake systems are shared between the different phylogenetic kingdoms, the phosphoenolpyruvate-dependent phosphotransferase system exists almost exclusively in bacteria. This multi-component system includes an integral membrane protein EIIC that transports saccharides and assists in their phosphorylation. Here we present the crystal structure of an EIIC from Bacillus cereus that transports diacetylchitobiose. The EIIC is a homodimer, with an expansive interface formed between the amino-terminal halves of the two protomers. The carboxy-terminal half of each protomer has a large binding pocket that contains a diacetylchitobiose, which ismore » occluded from both sides of the membrane with its site of phosphorylation near the conserved His250 and Glu334 residues. The structure shows the architecture of this important class of transporters, identifies the determinants of substrate binding and phosphorylation, and provides a framework for understanding the mechanism of sugar translocation.« less
Cleavage sites in the polypeptide precursors of poliovirus protein P2-X
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selmer, B.L.; Hanecak, R.; Anderson, C.W.
1981-01-01
Partial amino-terminal sequence analysis has been performed on the three major polypeptide products (P2-3b, P2-5b, and P2-X) from the central region (P2) of the poliovirus polyprotein, and this analysis precisely locates the amino termini of these products with respect to the nucleotide sequence of the poliovirus RNA genome. Like most of the products of the replicase region (P3), the amino termini of P2-5b and P2-X are generated by cleavage between glutamine and glycine residues. Thus, P2-5b and P2-X are probably both produced by the action of a singly (virus-encoded.) proteinase. The amino terminus of P2-3b, on the other hand, ismore » produced by a cleavage between the carboxy-terminal tyrosine of VP1 and the glycine encoded by nucleotides 3381-3383. This result may suggest that more than one proteolytic activity is required for the complete processing of the poliovirus polyprotein.« less
Urban, Johannes H; Moosmeier, Markus A; Aumüller, Tobias; Thein, Marcus; Bosma, Tjibbe; Rink, Rick; Groth, Katharina; Zulley, Moritz; Siegers, Katja; Tissot, Kathrin; Moll, Gert N; Prassler, Josef
2017-11-15
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an emerging class of natural products with drug-like properties. To fully exploit the potential of RiPPs as peptide drug candidates, tools for their systematic engineering are required. Here we report the engineering of lanthipeptides, a subclass of RiPPs characterized by multiple thioether cycles that are enzymatically introduced in a regio- and stereospecific manner, by phage display. This was achieved by heterologous co-expression of linear lanthipeptide precursors fused to the widely neglected C-terminus of the bacteriophage M13 minor coat protein pIII, rather than the conventionally used N-terminus, along with the modifying enzymes from distantly related bacteria. We observe that C-terminal precursor peptide fusions to pIII are enzymatically modified in the cytoplasm of the producing cell and subsequently displayed as mature cyclic peptides on the phage surface. Biopanning of large C-terminal display libraries readily identifies artificial lanthipeptide ligands specific to urokinase plasminogen activator (uPA) and streptavidin.
Itoh, Toshimasa; Fairall, Louise; Muskett, Frederick W.; Milano, Charles P.; Watson, Peter J.; Arnaudo, Nadia; Saleh, Almutasem; Millard, Christopher J.; El-Mezgueldi, Mohammed; Martino, Fabrizio; Schwabe, John W.R.
2015-01-01
Recent proteomic studies have identified a novel histone deacetylase complex that is upregulated during mitosis and is associated with cyclin A. This complex is conserved from nematodes to man and contains histone deacetylases 1 and 2, the MIDEAS corepressor protein and a protein called DNTTIP1 whose function was hitherto poorly understood. Here, we report the structures of two domains from DNTTIP1. The amino-terminal region forms a tight dimerization domain with a novel structural fold that interacts with and mediates assembly of the HDAC1:MIDEAS complex. The carboxy-terminal domain of DNTTIP1 has a structure related to the SKI/SNO/DAC domain, despite lacking obvious sequence homology. We show that this domain in DNTTIP1 mediates interaction with both DNA and nucleosomes. Thus, DNTTIP1 acts as a dimeric chromatin binding module in the HDAC1:MIDEAS corepressor complex. PMID:25653165
Shenoy, Siddharth S.; Nanda, Hirsh; Lösche, Mathias
2012-01-01
The phosphatidylinositolphosphate phosphatase PTEN is the second most frequently mutated protein in human tumors. Its membrane association, allosteric activation and membrane dissociation are poorly understood. We recently reported PTEN binding affinities to membranes of different compositions and a preliminary investigation of the protein-membrane complex with neutron reflectometry (NR). Here we use NR to validate molecular dynamics (MD) simulations of the protein and study conformational differences of the protein in solution and on anionic membranes. NR shows that full-length PTEN binds to such membranes roughly in the conformation and orientation suggested by the crystal structure of a truncated PTEN protein, in contrast with a recently presented model which suggested that membrane binding depends critically on the SUMOylation of the CBR3 loop of PTEN’s C2 domain. Our MD simulations confirm that PTEN is peripherally bound to the bilayer surface and show slight differences of the protein structure in solution and in the membrane-bound state, where the protein body flattens against the bilayer surface. PTEN’s C2 domain binds phosphatidylserine (PS) tightly through its CBR3 loop, and its phosphatase domain also forms electrostatic interactions with PS. NR and MD results show consistently that PTEN’s unstructured, anionic C-terminal tail is repelled from the bilayer surface. In contrast, this tail is tightly tugged against the C2 domain in solution, partially obstructing the membrane-binding interface of the protein. Arresting the C-terminal tail in this conformation by phosphorylation may provide a control mechanism for PTEN’s membrane binding and activity. PMID:23073177
Shenoy, Siddharth S; Nanda, Hirsh; Lösche, Mathias
2012-12-01
The phosphatidylinositolphosphate phosphatase PTEN is the second most frequently mutated protein in human tumors. Its membrane association, allosteric activation and membrane dissociation are poorly understood. We recently reported PTEN binding affinities to membranes of different compositions (Shenoy et al., 2012, PLoS ONE 7, e32591) and a preliminary investigation of the protein-membrane complex with neutron reflectometry (NR). Here we use NR to validate molecular dynamics (MD) simulations of the protein and study conformational differences of the protein in solution and on anionic membranes. NR shows that full-length PTEN binds to such membranes roughly in the conformation and orientation suggested by the crystal structure of a truncated PTEN protein, in contrast with a recently presented model which suggested that membrane binding depends critically on the SUMOylation of the CBR3 loop of PTEN's C2 domain. Our MD simulations confirm that PTEN is peripherally bound to the bilayer surface and show slight differences of the protein structure in solution and in the membrane-bound state, where the protein body flattens against the bilayer surface. PTEN's C2 domain binds phosphatidylserine (PS) tightly through its CBR3 loop, and its phosphatase domain also forms electrostatic interactions with PS. NR and MD results show consistently that PTEN's unstructured, anionic C-terminal tail is repelled from the bilayer surface. In contrast, this tail is tightly tugged against the C2 domain in solution, partially obstructing the membrane-binding interface of the protein. Arresting the C-terminal tail in this conformation by phosphorylation may provide a control mechanism for PTEN's membrane binding and activity. Copyright © 2012 Elsevier Inc. All rights reserved.
Structure and Function of the Hypertension Variant A486V of G Protein-coupled Receptor Kinase 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Samantha J.; Parthasarathy, Gopal; Darke, Paul L.
G-protein-coupled receptor (GPCR) kinases (GRKs) bind to and phosphorylate GPCRs, initiating the process of GPCR desensitization and internalization. GRK4 is implicated in the regulation of blood pressure, and three GRK4 polymorphisms (R65L, A142V, and A486V) are associated with hypertension. Here, we describe the 2.6 Å structure of human GRK4α A486V crystallized in the presence of 5'-adenylyl β,γ-imidodiphosphate. The structure of GRK4α is similar to other GRKs, although slight differences exist within the RGS homology (RH) bundle subdomain, substrate-binding site, and kinase C-tail. The RH bundle subdomain and kinase C-terminal lobe form a strikingly acidic surface, whereas the kinase N-terminal lobemore » and RH terminal subdomain surfaces are much more basic. In this respect, GRK4α is more similar to GRK2 than GRK6. A fully ordered kinase C-tail reveals interactions linking the C-tail with important determinants of kinase activity, including the αB helix, αD helix, and the P-loop. Autophosphorylation of wild-type GRK4α is required for full kinase activity, as indicated by a lag in phosphorylation of a peptide from the dopamine D1 receptor without ATP preincubation. In contrast, this lag is not observed in GRK4α A486V. Phosphopeptide mapping by mass spectrometry indicates an increased rate of autophosphorylation of a number of residues in GRK4α A486V relative to wild-type GRK4α, including Ser-485 in the kinase C-tail.« less
Calmodulin overexpression does not alter Cav1.2 function or oligomerization state.
Findeisen, Felix; Tolia, Alexandra; Arant, Ryan; Kim, Eun Young; Isacoff, Ehud; Minor, Daniel L
2011-01-01
Interactions between calmodulin (CaM) and voltage-gated calcium channels (Ca(v)s) are crucial for Ca(v) activity-dependent feedback modulation. We recently reported an X-ray structure that shows two Ca(2+)/CaM molecules bound to the Ca(v)1.2 C terminal tail, one at the PreIQ region and one at the IQ domain. Surprisingly, the asymmetric unit of the crystal showed a dimer in which Ca(2+)/CaM bridged two PreIQ helixes to form a 4:2 Ca(2+)/CaM:Ca(v) C-terminal tail assembly. Contrary to previous proposals based on a similar crystallographic dimer, extensive biochemical analysis together with subunit counting experiments of full-length channels in live cell membranes failed to find evidence for multimers that would be compatible with the 4:2 crossbridged complex. Here, we examine this possibility further. We find that CaM over-expression has no functional effect on Ca(v)1.2 inactivation or on the stoichiometry of full-length Ca(v)1.2. These data provide further support for the monomeric Ca(v)1.2 stoichiometry. Analysis of the electrostatic surfaces of the 2:1 Ca(2+)/CaM:Ca(V) C-terminal tail assembly reveals notable patches of electronegativity. These could influence various forms of channel modulation by interacting with positively charged elements from other intracellular channel domains.
Noor, Sina Ibne; Pouyssegur, Jacques; Deitmer, Joachim W; Becker, Holger M
2017-01-01
Monocarboxylate transporters (MCTs) mediate the proton-coupled transport of high-energy metabolites like lactate and pyruvate and are expressed in nearly every mammalian tissue. We have shown previously that transport activity of MCT4 is enhanced by carbonic anhydrase II (CAII), which has been suggested to function as a 'proton antenna' for the transporter. In the present study, we tested whether creation of an endogenous proton antenna by introduction of a cluster of histidine residues into the C-terminal tail of MCT4 (MCT4-6xHis) could facilitate MCT4 transport activity when heterologously expressed in Xenopus oocytes. Our results show that integration of six histidines into the C-terminal tail does indeed increase transport activity of MCT4 to the same extent as did coexpression of MCT4-WT with CAII. Transport activity of MCT4-6xHis could be further enhanced by coexpression with extracellular CAIV, but not with intracellular CAII. Injection of an antibody against the histidine cluster into MCT4-expressing oocytes decreased transport activity of MCT4-6xHis, while leaving activity of MCT4-WT unaltered. Taken together, these findings suggest that transport activity of the proton-coupled monocarboxylate transporter MCT4 can be facilitated by integration of an endogenous proton antenna into the transporter's C-terminal tail. © 2016 Federation of European Biochemical Societies.
Uncovering the role of the flexible C-terminal tail: A model study with Strep-tagged GFP.
Lassalle, Michael W; Kondou, Shinobu
2016-06-01
Recently, it has been recognized that, much like an electric current in an electric circuit, dynamic disruptions from flexible, unstructured regions distal to the active region are transferred through the contact network to the active site and influence protein stability and/or function. As transmembrane proteins frequently possess the β-barrel structure, studies of proteins with this topology are required. The unstructured lid segments of the β-barrel GFP protein are conserved and could play a role in the backbone stabilization required for chromophore function. A study of the disordered C-terminus and the function within the lid is necessary. In this study, we entirely truncated the flexible C-terminal tail and investigated the N-terminal Strep-tagged GFP by fluorescence spectroscopy, and the temperature- and GdnHCl-induced unfolding by circular dichroism. The introduction of the unstructured Strep-tag itself changed the unfolding pathway. Truncating the entire flexible tail did not decrease the fluorescence intensity to a large extent; however, the protein stability changed dramatically. The temperature for half-denaturation T 1/2 changed significantly from 79 °C for the wild-type to 72.8 °C for the mutant. Unfolding kinetics at different temperatures have been induced by 4 M GdnHCl, and the apparent Arrhenius activation energy decreased by 40% as compared to the wild-type.
NASA Technical Reports Server (NTRS)
Nir, Z.; Gilwee, W. J.; Kourtides, D. A.; Parker, J. A.
1983-01-01
A new, commercially available, trifunctional epoxy resin (tris-(hydroxyphenyl)-methane triglycidyl ether) was modified with synthetic rubber to increase the impact resistance of epoxy/graphite composites. These composites were reinforced with commercially available satin-weave carbon cloth using two formulations of epoxies (brominated and nonbrominated) containing various amounts of carboxy-terminated butadience acrylonitrile (CTBN) rubber that had been prereacted with epoxy resin. The impact resistance was determined by measuring the interlaminar shear strength of the composites after impact. The mechanical properties, such as flexural strength and modulus at room temperature and at 93 C, were also determined. Measurements were taken of the flammability and glass transition temperature (Tg); and a thermal-gravimetric analysis was made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tempel, W.; Wu, H.; Dombrovsky, L.
2010-08-17
A recent survey of protein expression patterns in patients with Alzheimer's disease (AD) has identified ece2 (chromosome: 3; Locations: 3q27.1) as the most significantly downregulated gene within the tested group. ece2 encodes endothelin-converting enzyme ECE2, a metalloprotease with a role in neuropeptide processing. Deficiency in the highly homologous ECE1 has earlier been linked to increased levels of AD-related {beta}-amyloid peptide in mice, consistent with a role for ECE in the degradation of that peptide. Initially, ECE2 was presumed to resemble ECE1, in that it comprises a single transmembrane region of {approx}20 residues flanked by a small amino-terminal cytosolic segment andmore » a carboxy-terminal lumenar peptidase domain. The carboxy-terminal domain has significant sequence similarity to both neutral endopeptidase, for which an X-ray structure has been determined, and Kell blood group protein. After their initial discovery, multiple isoforms of ECE1 and ECE2 were discovered, generated by alternative splicing of multiple exons. The originally described ece2 transcript, RefSeq NM{_}174046, contains the amino-terminal cytosolic portion followed by the transmembrane region and peptidase domain (Fig. 1, isoform B). Another ece2 transcript, available from the Mammalian Gene Collection under MGC2408 (Fig. 1, isoform C), RefSeq accession NM{_}032331, is predicted to be translated into a 255 residue peptide with low but detectable sequence similarity to known S-adenosyl-L-methionine (SAM)-dependent methyltransferases (SAM-MTs), such as the hypothetical protein TT1324 from Thermus thermophilis, PDB code 2GS9, which shares 30% amino acid sequence identity with ECE2 over 138 residues of the sequence. Intriguingly, another 'elongated' ece2 transcript (Fig. 1, isoform A) (RefSeq NM{_}014693) contains an amino-terminal portion of the putative SAM-MT domain, the transmembrane domain, and the protease domain. This suggests the possibility for coexistence of the putative SAM-MT and protease domains in a single polypeptide and their transmembrane interplay. Although sequence conservation across the SAM-MT family is weak, the structural fold is highly conserved. The most conserved part of this fold is the SAM-binding subdomain, which is shared between MGC2408 and hypothetical protein TT1324. Typically, the SAM-binding subdomain is flanked by a variable Nterminal extension and, at the C-terminus, by a substrate- binding subdomain, which varies enormously in size but preserves a conserved topology with three antiparallel b-strands. The 'elongated' transcript of ece2 lacks this substrate-binding subdomain. To test the hypothesis that the 255 residue ece2 gene product MGC2408 represents a complete SAM-MT fold, we have determined a crystal structure of this protein in the presence of SAH.« less
Macromolecules for Inhibition of Corrosion and Wear
1992-12-14
phthalocyanine TCAUPC tetrakis-(N-carboxy-12-aminoundecanoic acid ) phthalocyanine TCACPC tetrakis-(N-carboxy-6- aminocaproic acid ) phthalocyanine Table 2... acid ); (TCACPC] - tetrakis(N- carboxy-6- aminocaproic acid ). •* Containing p-hydroxy pyridine groups in the voids. 9 NAWCADWAR-92112-60 protection...fluids .......... ................................ 10 8 PFPE degradation in the presence of FeF 3 Lewis Acid ..... 11 9 The degradation mechanism for PFPE
Asher, C; Chigaev, A; Garty, H
2001-09-07
Cell surface expression of the epithelial Na(+) channel ENaC is regulated by the ubiquitin ligase Nedd4. Binding of the WW domains of Nedd4 to the PY region in the carboxy tails of beta and gammaENaC, results in channel ubiquitination and degradation. Kinetic analysis of these interactions has been done using surface plasmon resonance. Synthetic peptides corresponding to the PY regions of beta and gammaENaC were immobilized on a sensor chip and "real-time" kinetics of their binding to recombinant WW proteins was determined. Specificity of the interactions was established by competition experiment, as well as by monitoring effects of a point mutation known to impair Nedd4/ENaC binding. These data provides the first determination of association, dissociation and equilibrium constants for the interactions between WW2 and beta or gammaENaC. Copyright 2001 Academic Press.
Sadahiro, Masato; Erickson, Connor; Lin, Wei-Jye; Shin, Andrew C; Razzoli, Maria; Jiang, Cheng; Fargali, Samira; Gurney, Allison; Kelley, Kevin A; Buettner, Christoph; Bartolomucci, Alessandro; Salton, Stephen R
2015-05-01
Targeted deletion of VGF, a secreted neuronal and endocrine peptide precursor, produces lean, hypermetabolic, and infertile mice that are resistant to diet-, lesion-, and genetically-induced obesity and diabetes. Previous studies suggest that VGF controls energy expenditure (EE), fat storage, and lipolysis, whereas VGF C-terminal peptides also regulate reproductive behavior and glucose homeostasis. To assess the functional equivalence of human VGF(1-615) (hVGF) and mouse VGF(1-617) (mVGF), and to elucidate the function of the VGF C-terminal region in the regulation of energy balance and susceptibility to obesity, we generated humanized VGF knockin mouse models expressing full-length hVGF or a C-terminally deleted human VGF(1-524) (hSNP), encoded by a single nucleotide polymorphism (rs35400704). We show that homozygous male and female hVGF and hSNP mice are fertile. hVGF female mice had significantly increased body weight compared with wild-type mice, whereas hSNP mice have reduced adiposity, increased activity- and nonactivity-related EE, and improved glucose tolerance, indicating that VGF C-terminal peptides are not required for reproductive function, but 1 or more specific VGF C-terminal peptides are likely to be critical regulators of EE. Taken together, our results suggest that human and mouse VGF proteins are largely functionally conserved but that species-specific differences in VGF peptide function, perhaps a result of known differences in receptor binding affinity, likely alter the metabolic phenotype of hVGF compared with mVGF mice, and in hSNP mice in which several C-terminal VGF peptides are ablated, result in significantly increased activity- and nonactivity-related EE.
Sadahiro, Masato; Erickson, Connor; Lin, Wei-Jye; Shin, Andrew C.; Razzoli, Maria; Jiang, Cheng; Fargali, Samira; Gurney, Allison; Kelley, Kevin A.; Buettner, Christoph
2015-01-01
Targeted deletion of VGF, a secreted neuronal and endocrine peptide precursor, produces lean, hypermetabolic, and infertile mice that are resistant to diet-, lesion-, and genetically-induced obesity and diabetes. Previous studies suggest that VGF controls energy expenditure (EE), fat storage, and lipolysis, whereas VGF C-terminal peptides also regulate reproductive behavior and glucose homeostasis. To assess the functional equivalence of human VGF1–615 (hVGF) and mouse VGF1–617 (mVGF), and to elucidate the function of the VGF C-terminal region in the regulation of energy balance and susceptibility to obesity, we generated humanized VGF knockin mouse models expressing full-length hVGF or a C-terminally deleted human VGF1–524 (hSNP), encoded by a single nucleotide polymorphism (rs35400704). We show that homozygous male and female hVGF and hSNP mice are fertile. hVGF female mice had significantly increased body weight compared with wild-type mice, whereas hSNP mice have reduced adiposity, increased activity- and nonactivity-related EE, and improved glucose tolerance, indicating that VGF C-terminal peptides are not required for reproductive function, but 1 or more specific VGF C-terminal peptides are likely to be critical regulators of EE. Taken together, our results suggest that human and mouse VGF proteins are largely functionally conserved but that species-specific differences in VGF peptide function, perhaps a result of known differences in receptor binding affinity, likely alter the metabolic phenotype of hVGF compared with mVGF mice, and in hSNP mice in which several C-terminal VGF peptides are ablated, result in significantly increased activity- and nonactivity-related EE. PMID:25675362
Duncan, R; Horne, D; Strong, J E; Leone, G; Pon, R T; Yeung, M C; Lee, P W
1991-06-01
We have been investigating structure-function relationships in the reovirus cell attachment protein sigma 1 using various deletion mutants and protease analysis. In the present study, a series of deletion mutants were constructed which lacked 90, 44, 30, 12, or 4 amino acids from the C-terminus of the 455-amino acid-long reovirus type 3 (T3) sigma 1 protein. The full-length and truncated sigma 1 proteins were expressed in an in vitro transcription/translation system and assayed for L cell binding activity. It was found that the removal of as few as four amino acids from the C-terminus drastically affected the cell binding function of the sigma 1 protein. The C-terminal-truncated proteins were further characterized using trypsin, chymotrypsin, and monoclonal and polyclonal antibodies. Our results indicated that the C-terminal portions of the mutant proteins were misfolded, leading to a loss in cell binding function. The N-terminal fibrous tail of the proteins was unaffected by the deletions as was sigma 1 oligomerization, further illustrating the discrete structural and functional roles of the N- and C-terminal domains of sigma 1. In an attempt to identify smaller, functional peptides, full-length sigma 1 expressed in vitro was digested with trypsin and subsequently with chymotrypsin under various conditions. The results clearly demonstrated the highly stable nature of the C-terminal globular head of sigma 1, even when separated from the N-terminal fibrous tail. We concluded that: (1) the C-terminal globular head of sigma 1 exists as a compact, protease-resistant oligomeric structure; (2) an intact C-terminus is required for proper head folding and generation of the conformationally dependent cell binding domain.
Serre, Marie-Claude; El Arnaout, Toufic; Brooks, Mark A; Durand, Dominique; Lisboa, Johnny; Lazar, Noureddine; Raynal, Bertrand; van Tilbeurgh, Herman; Quevillon-Cheruel, Sophie
2013-01-01
Tyrosine recombinases are conserved in the three kingdoms of life. Here we present the first crystal structure of a full-length archaeal tyrosine recombinase, XerA from Pyrococcus abyssi, at 3.0 Å resolution. In the absence of DNA substrate XerA crystallizes as a dimer where each monomer displays a tertiary structure similar to that of DNA-bound Tyr-recombinases. Active sites are assembled in the absence of dif except for the catalytic Tyr, which is extruded and located equidistant from each active site within the dimer. Using XerA active site mutants we demonstrate that XerA follows the classical cis-cleavage reaction, suggesting rearrangements of the C-terminal domain upon DNA binding. Surprisingly, XerA C-terminal αN helices dock in cis in a groove that, in bacterial tyrosine recombinases, accommodates in trans αN helices of neighbour monomers in the Holliday junction intermediates. Deletion of the XerA C-terminal αN helix does not impair cleavage of suicide substrates but prevents recombination catalysis. We propose that the enzymatic cycle of XerA involves the switch of the αN helix from cis to trans packing, leading to (i) repositioning of the catalytic Tyr in the active site in cis and (ii) dimer stabilisation via αN contacts in trans between monomers.
The N–Terminal Tail of hERG Contains an Amphipathic α–Helix That Regulates Channel Deactivation
Mobli, Mehdi; Ke, Ying; Kuchel, Philip W.; King, Glenn F.; Stock, Daniela; Vandenberg, Jamie I.
2011-01-01
The cytoplasmic N–terminal domain of the human ether–a–go–go related gene (hERG) K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s) by which the N–terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N–terminal 135 residues of hERG contains a previously described Per–Arnt–Sim (PAS) domain (residues 26–135) as well as an amphipathic α–helix (residues 13–23) and an initial unstructured segment (residues 2–9). Deletion of residues 2–25, only the unstructured segment (residues 2–9) or replacement of the α–helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α–helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N–terminal α–helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel. PMID:21249148
The ABCA1 domain responsible for interaction with HIV-1 Nef is conformational and not linear
Jacob, Daria; Hunegnaw, Ruth; Sabyrzyanova, Tatyana A.; Pushkarsky, Tatiana; Chekhov, Vladimir O.; Adzhubei, Alexei A.; Kalebina, Tatyana S.; Bukrinsky, Michael
2014-01-01
HIV-1 Nef is an accessory protein responsible for inactivation of a number of host cell proteins essential for anti-viral immune responses. In most cases, Nef binds to the target protein and directs it to a degradation pathway. Our previous studies demonstrated that Nef impairs activity of the cellular cholesterol transporter, ABCA1, and that Nef interacts with ABCA1. Mutation of the 2226DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 disrupted interaction with Nef. Here, we tested Nef interaction with the ABCA1 C-terminal cytoplasmic fragment using yeast 2-hybrid system assay and co-immunoprecipitation analysis in human cells. Surprisingly, analysis in a yeast 2-hybrid system did not reveal any interaction between Nef and the C-terminal cytoplasmic fragment of ABCA1. Using coimmunoprecipitation from HEK 293T cells expressing these polypeptides, only a very weak interaction could be detected. The 2226DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 found previously to be essential for interaction between ABCA1 and Nef is insufficient to bestow strong binding to Nef. Molecular modeling suggested that interaction with Nef may be mediated by a conformational epitope composed of the sequences within the cytoplasmic loop of ABCA1 and the C-terminal cytoplasmic domain. Studies are now underway to characterize this epitope. PMID:24406162
Miranda, Frederico Faria; Teigen, Knut; Thórólfsson, Matthías; Svebak, Randi M; Knappskog, Per M; Flatmark, Torgeir; Martínez, Aurora
2002-10-25
Phosphorylation of phenylalanine hydroxylase (PAH) at Ser(16) by cyclic AMP-dependent protein kinase is a post-translational modification that increases its basal activity and facilitates its activation by the substrate l-Phe. So far there is no structural information on the flexible N-terminal tail (residues 1-18), including the phosphorylation site. To get further insight into the molecular basis for the effects of phosphorylation on the catalytic efficiency and enzyme stability, molecular modeling was performed using the crystal structure of the recombinant rat enzyme. The most probable conformation and orientation of the N-terminal tail thus obtained indicates that phosphorylation of Ser(16) induces a local conformational change as a result of an electrostatic interaction between the phosphate group and Arg(13) as well as a repulsion by Glu(280) in the loop at the entrance of the active site crevice structure. The modeled reorientation of the N-terminal tail residues (Met(1)-Leu(15)) on phosphorylation is in agreement with the observed conformational change and increased accessibility of the substrate to the active site, as indicated by circular dichroism spectroscopy and the enzyme kinetic data for the full-length phosphorylated and nonphosphorylated human PAH. To further validate the model we have prepared and characterized mutants substituting Ser(16) with a negatively charged residue and found that S16E largely mimics the effects of phosphorylation of human PAH. Both the phosphorylated enzyme and the mutants with acidic side chains instead of Ser(16) revealed an increased resistance toward limited tryptic proteolysis and, as indicated by circular dichroism spectroscopy, an increased content of alpha-helical structure. In agreement with the modeled structure, the formation of an Arg(13) to Ser(16) phosphate salt bridge and the conformational change of the N-terminal tail also explain the higher stability toward limited tryptic proteolysis of the phosphorylated enzyme. The results obtained with the mutant R13A and E381A further support the model proposed for the molecular mechanism for the activation of the enzyme by phosphorylation.
Petitdidier, Elodie; Pagniez, Julie; Papierok, Gérard; Vincendeau, Philippe; Lemesre, Jean-Loup; Bras-Gonçalves, Rachel
2016-01-01
Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES) antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA), from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA) or its carboxy terminal part LaPSA-12S (Cter-rPSA), combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates. PMID:27223609
Petitdidier, Elodie; Pagniez, Julie; Papierok, Gérard; Vincendeau, Philippe; Lemesre, Jean-Loup; Bras-Gonçalves, Rachel
2016-05-01
Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES) antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA), from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA) or its carboxy terminal part LaPSA-12S (Cter-rPSA), combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates.
Zou, Yunzeng; Lin, Li; Ye, Yong; Wei, Jianming; Zhou, Ning; Liang, Yanyan; Gong, Hui; Li, Lei; Wu, Jian; Li, Yunbo; Jia, Zhenhua; Wu, Yiling; Zhou, Jingmin; Ge, Junbo
2012-03-01
Qiliqiangxin (QL), a traditional Chinese medicine, has been used in the treatment of chronic heart failure. However, whether QL can benefit cardiac remodeling in the hypertensive state is unknown. We here examined the effects of QL on the development of cardiac hypertrophy through comparing those of losartan in C57BL/6 mice underlying transverse aorta constriction for 4 weeks. QL and losartan were administrated at 0.6 mg and 13.4 mg·kg·d, respectively. Cardiac hypertrophy, function, and remodeling were evaluated by echocardiography, catheterization, histology, and examination of specific gene expression and ERK phosphorylation. Cardiac apoptosis, autophagy, tumor necrosis factor α/insulin-like growth factor-1, and angiotensin II type 1 receptor expression and especially the proliferation of cardiomyocytes and phosphorylation of ErbB receptors were examined in vivo to elucidate the mechanisms. Transverse aorta constriction for 2 weeks resulted in a significant cardiac hypertrophy, which was significantly suppressed by either QL or losartan treatment. At 4 weeks after transverse aorta constriction, although the development of cardiac dysfunction and remodeling and the increases in apoptosis, autophagy, tumor necrosis factor α/insulin-like growth factor-1, and angiotensin II type 1 receptor expression were abrogated comparably between QL and losartan treatments, QL, but not losartan, enhanced proliferation of cardiomyocytes, which was paralleled with dowregulation of CCAAT/enhancer-binding protein β, upregulation of CBP/p300-interacting transactivator with ED-rich carboxy-terminal domain 4, and increases in ErbB2 and ErbB4 phosphorylation. Furthermore, inhibition of either ErbB2 or CBP/p300-interacting transactivator with ED-rich carboxy-terminal domain 4 abolished the cardiac protective effects of QL. Thus, QL inhibits myocardial inflammation and cardiomyocyte death and promotes cardiomyocyte proliferation, leading to an ameliorated cardiac remodeling and function in a mouse model of pressure overload. The possible mechanisms may involve inhibition of angiotensin II type 1 receptor and activation of ErbB receptors.
Carr, Walter; Yarnell, Angela M.; Ong, Ricardo; Walilko, Timothy; Kamimori, Gary H.; da Silva, Uade; McCarron, Richard M.; LoPresti, Matthew L.
2015-01-01
Repeated exposure to low-level blast is a characteristic of a few select occupations and there is concern that such occupational exposures present risk for traumatic brain injury. These occupations include specialized military and law enforcement units that employ controlled detonation of explosive charges for the purpose of tactical entry into secured structures. The concern for negative effects from blast exposure is based on rates of operator self-reported headache, sleep disturbance, working memory impairment, and other concussion-like symptoms. A challenge in research on this topic has been the need for improved assessment tools to empirically evaluate the risk associated with repeated exposure to blast overpressure levels commonly considered to be too low in magnitude to cause acute injury. Evaluation of serum-based neurotrauma biomarkers provides an objective measure that is logistically feasible for use in field training environments. Among candidate biomarkers, ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) has some empirical support and was evaluated in this study. We used daily blood draws to examine acute change in UCH-L1 among 108 healthy military personnel who were exposed to repeated low-level blast across a 2-week period. These research volunteers also wore pressure sensors to record blast exposures, wrist actigraphs to monitor sleep patterns, and completed daily behavioral assessments of symptomology, postural stability, and neurocognitive function. UCH-L1 levels were elevated as a function of participating in the 2-week training with explosives, but the correlation of UCH-L1 elevation and blast magnitude was weak and inconsistent. Also, UCH-L1 elevations did not correlate with deficits in behavioral measures. These results provide some support for including UCH-L1 as a measure of central nervous system effects from exposure to low-level blast. However, the weak relation observed suggests that additional indicators of blast effect are needed. PMID:25852633
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwasako, Kenji, E-mail: kuwasako@fc.miyazaki-u.ac.jp; Kitamura, Kazuo; Nagata, Sayaka
2010-02-12
Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [{sup 125}I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2more » complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser{sup 449} to Ser{sup 467} were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.« less
Communie, Guillaume; Habchi, Johnny; Yabukarski, Filip; Blocquel, David; Schneider, Robert; Tarbouriech, Nicolas; Papageorgiou, Nicolas; Ruigrok, Rob W H; Jamin, Marc; Jensen, Malene Ringkjøbing; Longhi, Sonia; Blackledge, Martin
2013-01-01
Hendra virus (HeV) is a recently emerged severe human pathogen that belongs to the Henipavirus genus within the Paramyxoviridae family. The HeV genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid. Recruitment of the viral polymerase onto the nucleocapsid template relies on the interaction between the C-terminal domain, N(TAIL), of N and the C-terminal X domain, XD, of the polymerase co-factor phosphoprotein (P). Here, we provide an atomic resolution description of the intrinsically disordered N(TAIL) domain in its isolated state and in intact nucleocapsids using nuclear magnetic resonance (NMR) spectroscopy. Using electron microscopy, we show that HeV nucleocapsids form herringbone-like structures typical of paramyxoviruses. We also report the crystal structure of XD of P that consists of a three-helix bundle. We study the interaction between N(TAIL) and XD using NMR titration experiments and provide a detailed mapping of the reciprocal binding sites. We show that the interaction is accompanied by α-helical folding of the molecular recognition element of N(TAIL) upon binding to a hydrophobic patch on the surface of XD. Finally, using solution NMR, we investigate the interaction between intact nucleocapsids and XD. Our results indicate that monomeric XD binds to N(TAIL) without triggering an additional unwinding of the nucleocapsid template. The present results provide a structural description at the atomic level of the protein-protein interactions required for transcription and replication of HeV, and the first direct observation of the interaction between the X domain of P and intact nucleocapsids in Paramyxoviridae.
Clotting of mammalian fibrinogens by papain: a re-examination.
Doolittle, Russell F
2014-10-28
Papain has long been known to cause the gelation of mammalian fibrinogens. It has also been reported that papain-fibrin is insoluble in dispersing solvents like strong urea or sodium bromide solutions, similar to what is observed with thrombin-generated clots in the presence of factor XIIIa and calcium. In those old studies, both the gelation and subsequent clot stabilization were attributed to papain, although the possibility that the second step might be due to contaminating factor XIII in fibrinogen preparations was considered. I have revisited this problem in light of knowledge acquired over the past half-century about thiol proteases like papain, which mostly cleave peptide bonds, and transglutaminases like factor XIIIa that catalyze the formation of ε-lysyl-γ-glutamyl cross-links. Recombinant fibrinogen, inherently free of factor XIII and other plasma proteins, formed a stable gel when treated with papain alone. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the intermolecular cross-linking in papain-fibrin leads to γ-chain dimers, trimers, and tetramers, just as is the case with thrombin-factor XIIIa-stabilized fibrin. Mass spectrometry of bands excised from gels showed that the cross-linked material is quite different from what occurs with factor XIIIa, however. With papain, the cross-linking occurs between γ chains in neighboring protofibrils becoming covalently linked in a "head-to-tail" fashion by a transpeptidation reaction involving the α-amino group of γ-Tyr1 and a papain cleavage site at γ-Gly403 near the carboxy terminus, rather than by the (reciprocal) "tail-to-tail" manner that occurs with factor XIIIa and that depends on cross-links between γ-Lys406 and γ-Gln398.
The expression of a truncated HMGI-C gene induces gigantism associated with lipomatosis.
Battista, S; Fidanza, V; Fedele, M; Klein-Szanto, A J; Outwater, E; Brunner, H; Santoro, M; Croce, C M; Fusco, A
1999-10-01
Rearrangements of the HMGI-C gene have frequently been detected in human benign tumors of mesenchymal origin, including lipomas. The HMGI-C protein has three AT-hook domains and an acidic COOH-terminal tail. The HMGI-C modifications consist in the loss of the C-tail and the fusion with ectopic sequences. Recent results show that the loss of the COOH-terminal region, rather than the acquisition of new sequences, is sufficient to confer to HMGI-C the ability to transform NIH3T3 cells. Therefore, transgenic mice carrying a HMGI-C construct (HMGI-C/T), containing only the three AT-hook domains, were generated. The HMGI-C/T mice showed a giant phenotype, together with a predominantly abdominal/pelvic lipomatosis, suggesting a pivotal role of the HMGI-C truncation in the generation of human lipomas.
Tan, Peter S; Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I; Hill, Adam P
2012-09-01
Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.
NASA Technical Reports Server (NTRS)
D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.
1996-01-01
The present study was aimed at evaluating quantitatively gamma-aminobutyric acid (GABA) immunoreactivity in the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension. A reduction in the number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-containing terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system of hindlimb-suspended animals, it is suggested that the unloading due to hindlimb suspension alters afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the reduction in immunoreactivity of local circuit GABAergic neurons and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.
Two new species of Chromadoridae (Chromadorida: Nematoda) from the East China Sea.
Huang, Yong; Gao, Qun
2016-07-26
Two new species of Chromadoridae, a family of free-living marine nematodes, are described from intertidal sediments of the East China Sea. Ptycholaimellus pirus sp. nov. is characterized by having a cuticle with six longitudinal rows of double dots and long somatic setae, relatively long cephalic setae, a pear-shaped terminal pharyngeal bulb occupying less than 30% of pharyngeal length, and an elongate conical tail. The new species is distinguished from all related species by the unique character of the cuticle, with six longitudinal rows of horizontal double dots, and the pear-shaped terminal pharyngeal bulb. Hypodontolaimus ventrapophyses sp. nov. is characterized by having a cylindrical body with a slightly expanded anterior end and a conical tail, a homogeneous cuticle with lateral differentiation of two longitudinal rows of larger dots, a well developed pharynx with oval-shaped buccal bulb and terminal bulb, and a large ventral gland. Males have slender, strongly curved spicules and a gubernaculum with a ventral apophysis, and precloacal supplements are absent. The new species differs from all related species in this genus by the structure of the gubernaculum, which has a ventral apophysis.
Ubiquitin recognition by FAAP20 expands the complex interface beyond the canonical UBZ domain
Wojtaszek, Jessica L.; Wang, Su; Kim, Hyungjin; Wu, Qinglin; D'Andrea, Alan D.; Zhou, Pei
2014-01-01
FAAP20 is an integral component of the Fanconi anemia core complex that mediates the repair of DNA interstrand crosslinks. The ubiquitin-binding capacity of the FAAP20 UBZ is required for recruitment of the Fanconi anemia complex to interstrand DNA crosslink sites and for interaction with the translesion synthesis machinery. Although the UBZ–ubiquitin interaction is thought to be exclusively encapsulated within the ββα module of UBZ, we show that the FAAP20–ubiquitin interaction extends beyond such a canonical zinc-finger motif. Instead, ubiquitin binding by FAAP20 is accompanied by transforming a disordered tail C-terminal to the UBZ of FAAP20 into a rigid, extended β-loop that latches onto the complex interface of the FAAP20 UBZ and ubiquitin, with the invariant C-terminal tryptophan emanating toward I44Ub for enhanced binding specificity and affinity. Substitution of the C-terminal tryptophan with alanine in FAAP20 not only abolishes FAAP20–ubiquitin binding in vitro, but also causes profound cellular hypersensitivity to DNA interstrand crosslink lesions in vivo, highlighting the indispensable role of the C-terminal tail of FAAP20, beyond the compact zinc finger module, toward ubiquitin recognition and Fanconi anemia complex-mediated DNA interstrand crosslink repair. PMID:25414354
Kopitz, Jürgen; Vértesy, Sabine; André, Sabine; Fiedler, Sabine; Schnölzer, Martina; Gabius, Hans-Joachim
2014-09-01
Many human proteins have a modular design with receptor and structural domains. Using adhesion/growth-regulatory galectin-3 as model, we describe an interdisciplinary strategy to define the functional significance of its tail established by nine non-triple helical collagen-like repeats (I-IX) and the N-terminal peptide. Genetic engineering with sophisticated mass spectrometric product analysis provided the tools for biotesting, i.e. eight protein variants with different degrees of tail truncation. Evidently,various aspects of galectin-3 activity (cis binding and cell bridging) are affected by tail shortening in a different manner. Thus, this combined approach reveals an unsuspected complexity of structure-function relationship, encouraging further application beyond this chimera-type galectin. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Fire-retardant decorative inks for aircraft interiors
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Nir, Z.; Mikroyannidis, J. A.
1985-01-01
Commercial and experimental fire retardants were screened as potential fire retardants for acrylic printing inks used on aircraft interior sandwich panels. The fire retardants are selected according to their physical properties and their thermostabilities. A criterion for selecting a more stable fire retardant is established. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are used to determine thermostabilities. Results show that the fire retardant formulations are more thermally stable than the acrylic ink control. It is determined that an ink formulation containing a brominated phenol and carboxy-terminated butadiene acrylonitrile which has been modified with a brominated polymeric additive (BPA), yields the highest limiting oxygen index (LOI) of all the compounds tested. All of the fire-retardant formulations have a higher oxygen index than the baseline acrylic ink.
Muscular dystrophy in a dog resembling human becker muscular dystrophy.
Baroncelli, A B; Abellonio, F; Pagano, T B; Esposito, I; Peirone, B; Papparella, S; Paciello, O
2014-05-01
A 3-year-old, male Labrador retriever dog was presented with clinical signs of progressive exercise intolerance, bilateral elbow extension, rigidity of the forelimbs, hindlimb flexion and kyphosis. Microscopical examination of muscle tissue showed marked variability in myofibre size, replacement of muscle with mature adipose tissue and degeneration/regeneration of muscle fibres, consistent with muscular dystrophy. Immunohistochemical examination for dystrophin showed markedly reduced labelling with monoclonal antibodies specific for the rod domain and the carboxy-terminal of dystrophin, while expression of β-sarcoglycan, γ-sarcoglycan and β-dystroglycan was normal. Immunoblotting revealed a truncated dystrophin protein of approximately 135 kDa. These findings supported a diagnosis of congenital canine muscular dystrophy resembling Becker muscular dystrophy in man. Copyright © 2014 Elsevier Ltd. All rights reserved.
Harper, J R; Prince, J T; Healy, P A; Stuart, J K; Nauman, S J; Stallcup, W B
1991-03-01
We have isolated cDNA clones coding for the human homologue of the neuronal cell adhesion molecule L1. The nucleotide sequence of the cDNA clones and the deduced primary amino acid sequence of the carboxy terminal portion of the human L1 are homologous to the corresponding sequences of mouse L1 and rat NILE glycoprotein, with an especially high sequences identity in the cytoplasmic regions of the proteins. There is also protein sequence homology with the cytoplasmic region of the Drosophila cell adhesion molecule, neuroglian. The conservation of the cytoplasmic domain argues for an important functional role for this portion of the molecule.
Nuclear targeting of the maize R protein requires two nuclear localization sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shieh, M.W.; Raikhel, N.V.; Wessler, S.R.
1993-02-01
Previous genetic and structural evidence indicates that the maize R gene encodes a nuclear transcriptional activating factor. In-frame carboxyl- and amino-terminal fusions of the R gene to the reporter gene encoding [beta]-glucuronidase (GUS) were sufficient to direct GUS to the nucleus of the transiently transformed onion (Allium cepa) epidermal cells. Further analysis of chimeric constructs containing regions of the R gene fused to the GUS cDNA revealed three specific nuclear localization sequences (NLSs) that were capable of redirecting the GUS protein to the nucleus. Amino-terminal NLS-A (amino acids 100-109, GDRRAAPARP) contained several arginine residues; a similar localization signal is foundmore » in only a few viral proteins. The medial NLS-M (amino acids 419-428, MSERKRREKL) is a simian virus 40 large T antigen-type NLS, and the carboxyl-terminal NLS-C (amino acids 598-610, MISESLRKAIGKR) is a mating type [alpha]2 type. NLSs M and C are independently sufficient to direct the GUS protein to the nucleus when it is fused at the amino terminus of GUS, whereas NLS-A fused to GUS partitioned between the nucleus and cytoplasm. Similar partitioning was observed when localization signals NLS-A and NLS-C were independently fused to the carboxy-terminal portion of GUS. A sequential deletion of the localization signals indicated that the amino-terminal and carboxyl-terminal fusions of R and GUS were redirected to the nucleus only when both NLS-A and -M, or NLS-C and -M, were present. These results indicate that multiple localization signals are necessary for nuclear targeting of this protein. The conservation of the localization signals within the alleles of R and similar proteins from other organisms is also discussed. 45 refs., 6 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Ye; Morais, Marc C.; Cohen, Daniel N.
2009-08-28
The small bacteriophage {phi}29 must penetrate the {approx}250-{angstrom} thick external peptidoglycan cell wall and cell membrane of the Gram-positive Bacillus subtilis, before ejecting its dsDNA genome through its tail into the bacterial cytoplasm. The tail of bacteriophage {phi}29 is noncontractile and {approx}380 {angstrom} long. A 1.8-{angstrom} resolution crystal structure of gene product 13 (gp13) shows that this tail protein has spatially well separated N- and C-terminal domains, whose structures resemble lysozyme-like enzymes and metallo-endopeptidases, respectively. CryoEM reconstructions of the WT bacteriophage and mutant bacteriophages missing some or most of gp13 shows that this enzyme is located at the distal endmore » of the {phi}29 tail knob. This finding suggests that gp13 functions as a tail-associated, peptidoglycan-degrading enzyme able to cleave both the polysaccharide backbone and peptide cross-links of the peptidoglycan cell wall. Comparisons of the gp13{sup -} mutants with the {phi}29 mature and emptied phage structures suggest the sequence of events that occur during the penetration of the tail through the peptidoglycan layer.« less
Kleifeld, Oded; Doucet, Alain; Prudova, Anna; auf dem Keller, Ulrich; Gioia, Magda; Kizhakkedathu, Jayachandran N; Overall, Christopher M
2011-09-22
Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and non-cleaved proteins by peptide isotope quantification and bioinformatics search criteria.
Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H
2005-01-01
Background A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins. PMID:15777476
NASA Astrophysics Data System (ADS)
Ruiz-Muelle, Ana Belén; Contreras-Cáceres, Rafael; Oña-Burgos, Pascual; Rodríguez-Dieguez, Antonio; López-Romero, Juan Manuel; Fernández, Ignacio
2018-01-01
The synthesis of amino-terminated anthraquinone derivatives and their incorporation onto polymer brushes for the fabrication of silicon-based nanometric functional coatings are described for the first time. The general process involves the covalent grafting of anthraquinone 1 onto two different polymer-brushes by amidation reactions. They are composed by amino- and carboxy-terminated poly(acrylic acid) chains (PAA-NH2- and PAA-COOH, respectively) tethered by one end to an underlying silicon oxide (SiO2) substrate in a polymer brush configuration. A third substrate is fabricated by UV induced hydrosilylation reaction using undecenoic acid as adsorbate on hydrogen-terminated Si(111) surfaces. One- and two-dimensional nuclear magnetic resonance (NMR), FT-IR, MS and X-ray diffraction (XRD) were used to characterize anthraquinone 1. Ellipsometric and X-ray photoelectron spectroscopy (XPS) measurements demonstrated the presence of the polymer brushes on the silicon wafers, and atomic force microscopy (AFM) was used to study its surface morphology. The covalent linkage between anthraquinone and polymer brushes was proven by XPS and confocal fluorescence microscopy. The resulting surfaces were assayed in the heterogenous organocatalytic transformation of (1H)-indole into 3-benzyl indole with moderate yields but with high recyclability.
Characterization of C-terminally engineered laccases.
Liu, Yingli; Cusano, Angela Maria; Wallace, Erin C; Mekmouche, Yasmina; Ullah, Sana; Robert, Viviane; Tron, Thierry
2014-08-01
Extremities of proteins are potent sites for functionalization. Carboxy terminus variants of the Trametes sp. strain C30 LAC3 laccase were generated and produced in Saccharomyces cerevisiae. A variant deleted of the last 13 residues (CΔ) and its 6 His tagged counterpart (CΔ6H) were found active enzymes. The production of CΔ6H resulted in the synthesis of a unusually high proportion of highly glycosylated forms of the enzyme therefore allowing the additional purification of a hyper-glycosylated form of CΔ6H noted CΔ6Hh. Properties of CΔ, CΔ6H and CΔ6Hh were compared. Globally, LAC3 catalytic efficiency was moderately affected by terminal modifications except in CΔ for which the kcat/KM ratio decreased 4 fold (with syringaldazine as substrate) and 10 fold (with ABTS as substrate) respectively. The catalytic parameters kcat and KM of CΔ6H and CΔ6Hh were found to be strictly comparable revealing that over glycosylation does not affect the enzyme catalytic efficiency. To the contrary, in vitro deglycosylation of laccase drastically reduced its activity. So, despite a complex glycosylated pattern observed for some of the variant enzymes, terminal sequences of laccases appear to be appropriate sites for the functionalization/immobilization of laccase. Copyright © 2014 Elsevier B.V. All rights reserved.
Baldino, F; Davis, L G; Wolfson, B
1985-09-09
The purpose of this study was to determine the structural requirements for the activity of neurotensin (NT1-13) on preoptic/anterior hypothalamic (POAH) neurons in vitro. Standard explant culture electrophysiological techniques were employed. NT was administered to POAH cultures through the superfusion fluid, or, to the vicinity of individual neurons by pressure ejection (0.5-10 psi) from micropipettes. Computer-generated, peri-event histograms were used to quantitate neuronal responses. Pressure ejection of NT1-13 (50 pM to 1 microM) consistently produced an excitatory effect on 30 of 42 neurons. The remaining cells were either inhibited or unaffected. Application of the C-terminal hexapeptide, NT8-13, but not the N-terminal octapeptide, NT1-8 (less than or equal to 1 mM), produced an excitatory response in 21 of 30 neurons, but was less potent than NT1-13. Application of an N-acetylated NT8-13 fragment (NTAC8-13) produced a response that was similar to that produced by NT8-13. The excitatory effects of NT1-13 and NT8-13 were maintained in medium which effectively blocked synaptic transmission (0 mM Ca2+/12 mM Mg2+ 1 mM EGTA). These data indicate that the C-terminal hexapeptide, but not the N-terminal octapeptide, produces a dose-related, excitatory effect on single neurons in the POAH in vitro. The persistence of these effects in Ca2+-free medium supports a postsynaptic site of action for these peptides.
CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides.
Kostova, Kamena K; Hickey, Kelsey L; Osuna, Beatriz A; Hussmann, Jeffrey A; Frost, Adam; Weinberg, David E; Weissman, Jonathan S
2017-07-28
Ribosome stalling leads to recruitment of the ribosome quality control complex (RQC), which targets the partially synthesized polypeptide for proteasomal degradation through the action of the ubiquitin ligase Ltn1p. A second core RQC component, Rqc2p, modifies the nascent polypeptide by adding a carboxyl-terminal alanine and threonine (CAT) tail through a noncanonical elongation reaction. Here we examined the role of CAT-tailing in nascent-chain degradation in budding yeast. We found that Ltn1p efficiently accessed only nascent-chain lysines immediately proximal to the ribosome exit tunnel. For substrates without Ltn1p-accessible lysines, CAT-tailing enabled degradation by exposing lysines sequestered in the ribosome exit tunnel. Thus, CAT-tails do not serve as a degron, but rather provide a fail-safe mechanism that expands the range of RQC-degradable substrates. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Yu, Xiumei; Li, Yangxin; Li, Yanmei; Xu, Chaohua; Cui, Yongliang; Xiang, Quanju; Gu, Yunfu; Zhao, Ke; Zhang, Xiaoping; Penttinen, Petri; Chen, Qiang
2017-02-01
Mine tailings contain high concentrations of metal contaminants and only little nutrients, making the tailings barren for decades after the mining has been terminated. Effective phytoremediation of mine tailings calls for deep-rooted, metal accumulating, and soil fertility increasing plants with tolerance against harsh environmental conditions. We assessed the potential of the biofuel leguminous tree Pongamia pinnata inoculated with plant growth promoting rhizobia to remediate iron-vanadium-titanium oxide (V-Ti magnetite) mine tailing soil by pot experiment and in situ remediation test. A metal tolerant rhizobia strain PZHK1 was isolated from the tailing soil and identified as Bradyrhizobium liaoningense by phylogenetic analysis. Inoculation with PZHK1 increased the growth of P. pinnata both in V-Ti magnetite mine tailings and in Ni-contaminated soil. Furthermore, inoculation increased the metal accumulation capacity and superoxide dismutase activity of P. pinnata. The concentrations of Ni accumulated by inoculated plants were higher than the hyperaccumulator threshold. Inoculated P. pinnata accumulated high concentration of Fe, far exceeding the upper limit (1000 mg kg -1 ) of Fe in plant tissue. In summary, P. pinnata-B. liaoningense PZHK1 symbiosis showed potential to be applied as an effective phytoremediation technology for mine tailings and to produce biofuel feedstock on the marginal land.
Natural triple beta-stranded fibrous folds.
Mitraki, Anna; Papanikolopoulou, Katerina; Van Raaij, Mark J
2006-01-01
A distinctive family of beta-structured folds has recently been described for fibrous proteins from viruses. Virus fibers are usually involved in specific host-cell recognition. They are asymmetric homotrimeric proteins consisting of an N-terminal virus-binding tail, a central shaft or stalk domain, and a C-terminal globular receptor-binding domain. Often they are entirely or nearly entirely composed of beta-structure. Apart from their biological relevance and possible gene therapy applications, their shape, stability, and rigidity suggest they may be useful as blueprints for biomechanical design. Folding and unfolding studies suggest their globular C-terminal domain may fold first, followed by a "zipping-up" of the shaft domains. The C-terminal domains appear to be important for registration because peptides corresponding to shaft domains alone aggregate into nonnative fibers and/or amyloid structures. C-terminal domains can be exchanged between different fibers and the resulting chimeric proteins are useful as a way to solve structures of unknown parts of the shaft domains. The following natural triple beta-stranded fibrous folds have been discovered by X-ray crystallography: the triple beta-spiral, triple beta-helix, and T4 short tail fiber fold. All have a central longitudinal hydrophobic core and extensive intermonomer polar and nonpolar interactions. Now that a reasonable body of structural and folding knowledge has been assembled about these fibrous proteins, the next challenge and opportunity is to start using this information in medical and industrial applications such as gene therapy and nanotechnology.
Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S; Overall, Christopher M
2010-05-01
Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses using iTRAQ-TAILS links gelatinases with new mechanisms of action in angiogenesis and reveals unpredicted restrictions in substrate repertoires for these two very similar proteases.
Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S.; Overall, Christopher M.
2010-01-01
Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses using iTRAQ-TAILS links gelatinases with new mechanisms of action in angiogenesis and reveals unpredicted restrictions in substrate repertoires for these two very similar proteases. PMID:20305284
Rao, Mala V.; Campbell, Jabbar; Yuan, Aidong; Kumar, Asok; Gotow, Takahiro; Uchiyama, Yasuo; Nixon, Ralph A.
2003-01-01
The phosphorylated carboxyl-terminal “tail” domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.S. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. 2002. J. Cell Biol. 158:681–693), we investigated possible functions of the NF-M tail domain by constructing NF-M tail–deleted (NF-MtailΔ) mutant mice using an embryonic stem cell–mediated “gene knockin” approach that preserves normal ratios of the three neurofilament subunits. Mutant NF-MtailΔ mice exhibited severely inhibited radial growth of both motor and sensory axons. Caliber reduction was accompanied by reduced spacing between neurofilaments and loss of long cross-bridges with no change in neurofilament protein content. These observations define distinctive functions of the NF-M tail in regulating axon caliber by modulating the organization of the neurofilament network within axons. Surprisingly, the average rate of axonal transport of neurofilaments was unaltered despite these substantial effects on axon morphology. These results demonstrate that NF-M tail–mediated interactions of neurofilaments, independent of NF transport rate, are critical determinants of the size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of NF-M. PMID:14662746
Neumann, S; Ziv, E; Lantner, F; Schechter, I
1993-03-01
Analyses of RNA from different developmental stages of Schistosoma mansoni showed stage-specific expression of heat-shock protein 70 (hsp70), which is regulated by a developmental program and by stress. The developmental program, common to hsp70 and other genes (e.g. paramyosin), refers to constitutive expression in miracidia sporocyst and adult worm but not in cercariae, and to the termination of hsp70 gene transcription during sporocyst/cercaria transformation. Stress induction, specific to hsp70, refers to transient accumulation of high levels of hsp70 mRNA during cercariae/schistosomula transformation and in adult worms after heat shock (42 degrees C). Cercariae/schistosomula transformation can be visualized as a physiological stress involving shifts in temperature (23-37 degrees C) and in salt concentration (from water to isotonic medium), as well as removal of tails from cercariae to yield isolated bodies that transform into schistosomula. It was found that temperature is an important factor, but not sufficient for strong induction of the hsp70 genes of schistosomula. Tail removal is an obligatory step for full induction of the hsp70 genes of schistosomula, in response to a temperature shift from 23-37 degrees C. The hsp70 genes in cercariae and isolated tails do not respond to stimuli (salt and temperature increases) that strongly activate the genes in isolated bodies (i.e., schistosomula). We speculate that the hsp70 genes in intact cercariae are not inducible because the tails can produce inhibitory signals that diffuse to the bodies and suppress their hsp70 genes. This hypothesis is useful to explain the termination of hsp70 gene transcription during sporocyst/cercaria transformation by the inhibitory effect of the growing tail.
NASA Astrophysics Data System (ADS)
Ferron, Laurent; Nieto-Rostro, Manuela; Cassidy, John S.; Dolphin, Annette C.
2014-04-01
Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (CaV) channels. Here we show that the functional expression of neuronal N-type CaV channels (CaV2.2) is regulated by fragile X mental retardation protein (FMRP). We find that FMRP knockdown in dorsal root ganglion neurons increases CaV channel density in somata and in presynaptic terminals. We then show that FMRP controls CaV2.2 surface expression by targeting the channels to the proteasome for degradation. The interaction between FMRP and CaV2.2 occurs between the carboxy-terminal domain of FMRP and domains of CaV2.2 known to interact with the neurotransmitter release machinery. Finally, we show that FMRP controls synaptic exocytosis via CaV2.2 channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss is likely to contribute to synaptic dysfunction in FXS.
Singh, Susheel K; Roeffen, Will; Andersen, Gorm; Bousema, Teun; Christiansen, Michael; Sauerwein, Robert; Theisen, Michael
2015-04-15
The sexual stage Pfs48/45 antigen is a well-established lead candidate for a transmission blocking (TB) vaccine because of its critical role in parasite fertilization. We have recently produced the carboxy-terminal 10C-fragment of Pfs48/45 containing three known epitopes for TB antibodies as a chimera with the N-terminal region of GLURP (R0). The resulting fusion protein elicited high titer TB antibodies in rodents. To increase the relatively low yield of correctly folded Pfs48/45 we have generated a series of novel chimera truncating the 10C-fragments to 6 cysteine residues containing sub-units (6C). All constructs harbor the major epitope I for TB antibodies. One of these sub-units (R0.6Cc), produced high yields of correctly folded conformers, which could be purified by a simple 2-step procedure. Purified R0.6Cc was stable and elicits high titer TB antibodies in rats. The yield, purity and stability of R0.6Cc allows for further clinical development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Khan, Fazal R.; McFadden, Bruce A.
1982-01-01
The cleavage of Ds-isocitrate catalyzed by isocitrate lyase from Linum usitatissimum results in the ordered release of succinate and glyoxylate. The glyoxylate analog 3-bromopyruvate irreversibly inactivates the flax enzyme in a process exhibiting saturation kinetics and protection by glyoxylate or isocitrate or the competitive inhibitor l-tartrate. Succinate provides considerably less protection. Results with 3-bromopyruvate suggest that this reagent modifies plant and prokaryotic isocitrate lyases differently. Treatment of the tetrameric 264,000-dalton flax enzyme with carboxypeptidase A results in a release of one histidine/subunit which is concordant with loss of activity. The only N-terminal residue is methionine. Treatment of flax enzyme with diethylpyrocarbonate at pH 6.5 selectively modifies two histidines per 67,000-dalton subunit. The reaction of one histidine residue is abolished by the binding of l-tartrate and the modification of one is coincident with inactivation. The carboxy-terminal and active-site modifications establish that one histidine residue/monomer is essential in the flax enzyme and considerably extend information heretofore available only for fungal and bacterial isocitrate lyase. PMID:16662648
The C-terminal domain of connexin43 modulates cartilage structure via chondrocyte phenotypic changes
Gago-Fuentes, Raquel; Bechberger, John F.; Varela-Eirin, Marta; Varela-Vazquez, Adrian; Acea, Benigno; Fonseca, Eduardo
2016-01-01
Chondrocytes in cartilage and bone cells population express connexin43 (Cx43) and gap junction intercellular communication (GJIC) is essential to synchronize cells for coordinated electrical, mechanical, metabolic and chemical communication in both tissues. Reduced Cx43 connectivity decreases chondrocyte differentiation and defective Cx43 causes skeletal defects. The carboxy terminal domain (CTD) of Cx43 is located in the cytoplasmic side and is key for protein functions. Here we demonstrated that chondrocytes from the CTD-deficient mice, K258stop/Cx43KO and K258stop/K258stop, have reduced GJIC, increased rates of proliferation and reduced expression of collagen type II and proteoglycans. We observed that CTD-truncated mice were significantly smaller in size. Together these results demonstrated that the deletion of the CTD negatively impacts cartilage structure and normal chondrocyte phenotype. These findings suggest that the proteolytic cleavage of the CTD under pathological conditions, such as under the activation of metalloproteinases during tissue injury or inflammation, may account for the deleterious effects of Cx43 in cartilage and bone disorders such as osteoarthritis. PMID:27682878
Clipping of arginine-methylated histone tails by JMJD5 and JMJD7
Liu, Haolin; Wang, Chao; Lee, Schuyler; Deng, Yu; Wither, Matthew; Oh, Sangphil; Ning, Fangkun; Dege, Carissa; Zhang, Qianqian; Liu, Xinjian; Johnson, Aaron M.; Zang, Jianye; Janknecht, Ralf; Hansen, Kirk; Marrack, Philippa; Li, Chuan-Yuan; Kappler, John W.; Hagman, James; Zhang, Gongyi
2017-01-01
Two of the unsolved, important questions about epigenetics are: do histone arginine demethylases exist, and is the removal of histone tails by proteolysis a major epigenetic modification process? Here, we report that two orphan Jumonji C domain (JmjC)-containing proteins, JMJD5 and JMJD7, have divalent cation-dependent protease activities that preferentially cleave the tails of histones 2, 3, or 4 containing methylated arginines. After the initial specific cleavage, JMJD5 and JMJD7, acting as aminopeptidases, progressively digest the C-terminal products. JMJD5-deficient fibroblasts exhibit dramatically increased levels of methylated arginines and histones. Furthermore, depletion of JMJD7 in breast cancer cells greatly decreases cell proliferation. The protease activities of JMJD5 and JMJD7 represent a mechanism for removal of histone tails bearing methylated arginine residues and define a potential mechanism of transcription regulation. PMID:28847961
Cho, Sunglim; Kim, Bo Young; Ahn, Kwangseog; Jun, Youngsoo
2013-01-01
Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation. PMID:23951315
Cho, Sunglim; Kim, Bo Young; Ahn, Kwangseog; Jun, Youngsoo
2013-01-01
Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation.
Wyatt, Holly R; Liaw, Hungjiun; Green, George R; Lustig, Arthur J
2003-01-01
Telomere position effects on transcription (TPE, or telomeric silencing) are nucleated by association of nonhistone silencing factors with the telomere and propagated in subtelomeric regions through association of silencing factors with the specifically modified histones H3 and H4. However, the function of histone H2A in TPE is unknown. We found that deletion of either the amino or the carboxyltails of H2A substantially reduces TPE. We identified four H2A modification sites necessary for wild-type efficiency of TPE. These "hta1tpe" alleles also act as suppressors of a delta insertion allele of LYS2, suggesting shared elements of chromatin structure at both loci. Interestingly, we observed combinatorial effects of allele pairs, suggesting both interdependent acetylation and deacetylation events in the amino-terminal tail and a regulatory circuit between multiple phosphorylated residues in the carboxyl-terminal tail. Decreases in silencing and viability are observed in most hta1tpe alleles after treatment with low and high concentrations, respectively, of bleomycin, which forms double-strand breaks (DSBs). In the absence of the DSB and telomere-binding protein yKu70, the bleomycin sensitivity of hta1tpe alleles is further enhanced. We also provide data suggesting the presence of a yKu-dependent histone H2A function in TPE. These data indicate that the amino- and carboxyl-terminal tails of H2A are essential for wild-type levels of yKu-mediated TPE and DSB repair. PMID:12750320
Butcher, Adrian J.; Hudson, Brian D.; Shimpukade, Bharat; Alvarez-Curto, Elisa; Prihandoko, Rudi; Ulven, Trond; Milligan, Graeme; Tobin, Andrew B.
2014-01-01
In addition to being nutrients, free fatty acids act as signaling molecules by activating a family of G protein-coupled receptors. Among these is FFA4, previously called GPR120, which responds to medium and long chain fatty acids, including health-promoting ω-3 fatty acids, which have been implicated in the regulation of metabolic and inflammatory responses. Here we show, using mass spectrometry, mutagenesis, and phosphospecific antibodies, that agonist-regulated phosphorylation of the human FFA4 receptor occurred primarily at five residues (Thr347, Thr349, Ser350, Ser357, and Ser360) in the C-terminal tail. Mutation of these residues reduced both the efficacy and potency of ligand-mediated arrestin-3 recruitment as well as affecting recruitment kinetics. Combined mutagenesis of all five of these residues was insufficient to fully abrogate interaction with arrestin-3, but further mutagenesis of negatively charged residues revealed additional structural components for the interaction with arrestin-3 within the C-terminal tail of the receptor. These elements consist of the acidic residues Glu341, Asp348, and Asp355 located close to the phosphorylation sites. Receptor phosphorylation thus operates in concert with structural elements within the C-terminal tail of FFA4 to allow for the recruitment of arrestin-3. Importantly, these mechanisms of arrestin-3 recruitment operate independently from Gq/11 coupling, thereby offering the possibility that ligands showing stimulus bias could be developed that exploit these differential coupling mechanisms. Furthermore, this provides a strategy for the design of biased receptors to probe physiologically relevant signaling. PMID:24817122
2014-01-01
Background The past decade has seen the emergence of several molecular tools that render possible modification of cellular functions through accurate and easy addition, removal, or exchange of genomic DNA sequences. Among these technologies, transcription activator-like effectors (TALE) has turned out to be one of the most versatile and incredibly robust platform for generating targeted molecular tools as demonstrated by fusion to various domains such as transcription activator, repressor and nucleases. Results In this study, we generated a novel nuclease architecture based on the transcription activator-like effector scaffold. In contrast to the existing Tail to Tail (TtT) and head to Head (HtH) nuclease architectures based on the symmetrical association of two TALE DNA binding domains fused to the C-terminal (TtT) or N-terminal (HtH) end of FokI, this novel architecture consists of the asymmetrical association of two different engineered TALE DNA binding domains fused to the N- and C-terminal ends of FokI (TALE::FokI and FokI::TALE scaffolds respectively). The characterization of this novel Tail to Head (TtH) architecture in yeast enabled us to demonstrate its nuclease activity and define its optimal target configuration. We further showed that this architecture was able to promote substantial level of targeted mutagenesis at three endogenous loci present in two different mammalian cell lines. Conclusion Our results demonstrated that this novel functional TtH architecture which requires binding to only one DNA strand of a given endogenous locus has the potential to extend the targeting possibility of FokI-based TALE nucleases. PMID:24997498
Swedberg, Joakim E.; Schroeder, Christina I.; Mitchell, Justin M.; Fairlie, David P.; Edmonds, David J.; Griffith, David A.; Ruggeri, Roger B.; Derksen, David R.; Loria, Paula M.; Price, David A.; Liras, Spiros; Craik, David J.
2016-01-01
Glucagon-like peptide-1 (GLP-1) signaling through the glucagon-like peptide 1 receptor (GLP-1R) is a key regulator of normal glucose metabolism, and exogenous GLP-1R agonist therapy is a promising avenue for the treatment of type 2 diabetes mellitus. To date, the development of therapeutic GLP-1R agonists has focused on producing drugs with an extended serum half-life. This has been achieved by engineering synthetic analogs of GLP-1 or the more stable exogenous GLP-1R agonist exendin-4 (Ex-4). These synthetic peptide hormones share the overall structure of GLP-1 and Ex-4, with a C-terminal helical segment and a flexible N-terminal tail. Although numerous studies have investigated the molecular determinants underpinning GLP-1 and Ex-4 binding and signaling through the GLP-1R, these have primarily focused on the length and composition of the N-terminal tail or on how to modulate the helicity of the full-length peptides. Here, we investigate the effect of C-terminal truncation in GLP-1 and Ex-4 on the cAMP pathway. To ensure helical C-terminal regions in the truncated peptides, we produced a series of chimeric peptides combining the N-terminal portion of GLP-1 or Ex-4 and the C-terminal segment of the helix-promoting peptide α-conotoxin pl14a. The helicity and structures of the chimeric peptides were confirmed using circular dichroism and NMR, respectively. We found no direct correlation between the fractional helicity and potency in signaling via the cAMP pathway. Rather, the most important feature for efficient receptor binding and signaling was the C-terminal helical segment (residues 22–27) directing the binding of Phe22 into a hydrophobic pocket on the GLP-1R. PMID:27226591
Association of 3BP2 with SHP-1 regulates SHP-1-mediated production of TNF-α in RBL-2H3 cells.
Chihara, Kazuyasu; Nakashima, Kenji; Takeuchi, Kenji; Sada, Kiyonao
2011-12-01
Adaptor protein 3BP2, a c-Abl Src homology 3 (SH3) domain-binding protein, is tyrosine phosphorylated and positively regulates mast cell signal transduction after the aggregation of the high affinity IgE receptor (FcεRI). Overexpression of the Src homology 2 (SH2) domain of 3BP2 results in the dramatic suppression of antigen-induced degranulation in rat basophilic leukemia RBL-2H3 cells. Previously, a linker for activation of T cells (LAT) was identified as one of the 3BP2 SH2 domain-binding protein. In this report, to further understand the functions of 3BP2 in FcεRI-mediated activation of mast cell, we explored the protein that associates with the SH2 domain of 3BP2 and found that SH2 domain-containing phosphatase-1 (SHP-1) inducibly interacts with the SH2 domain of 3BP2 after the aggregation of FcεRI. The phosphorylation of Tyr(564) in the carboxy (C)-terminal tail region of SHP-1 is required for the direct interaction of SHP-1 to the SH2 domain of 3BP2. The expression of the mutant form of SHP-1 which was unable to interact with 3BP2 resulted in the significant reduction in SHP-1-mediated tumor necrosis factor-α (TNF-α) production without any effects on the degranulation in antigen-stimulated RBL-2H3 cells. These findings suggest that 3BP2 directly interacts with Tyr(564) -phosphorylated form of SHP-1 and positively regulates the function of SHP-1 in FcεRI-mediated signaling in mast cells. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.
Rebbeck, Robyn T.; Karunasekara, Yamuna; Gallant, Esther M.; Board, Philip G.; Beard, Nicole A.; Casarotto, Marco G.; Dulhunty, Angela F.
2011-01-01
Although it has been suggested that the C-terminal tail of the β1a subunit of the skeletal dihyropyridine receptor (DHPR) may contribute to voltage-activated Ca2+ release in skeletal muscle by interacting with the skeletal ryanodine receptor (RyR1), a direct functional interaction between the two proteins has not been demonstrated previously. Such an interaction is reported here. A peptide with the sequence of the C-terminal 35 residues of β1a bound to RyR1 in affinity chromatography. The full-length β1a subunit and the C-terminal peptide increased [3H]ryanodine binding and RyR1 channel activity with an AC50 of 450–600 pM under optimal conditions. The effect of the peptide was dependent on cytoplasmic Ca2+, ATP, and Mg2+ concentrations. There was no effect of the peptide when channel activity was very low as a result of Mg2+ inhibition or addition of 100 nM Ca2+ (without ATP). Maximum increases were seen with 1–10 μM Ca2+, in the absence of Mg2+ inhibition. A control peptide with the C-terminal 35 residues in a scrambled sequence did not bind to RyR1 or alter [3H]ryanodine binding or channel activity. This high-affinity in vitro functional interaction between the C-terminal 35 residues of the DHPR β1a subunit and RyR1 may support an in vivo function of β1a during voltage-activated Ca2+ release. PMID:21320436
Kelly, Christopher V; Leroueil, Pascale R; Orr, Bradford G; Banaszak Holl, Mark M; Andricioaei, Ioan
2008-08-07
The molecular structures and enthalpy release of poly(amidoamine) (PAMAM) dendrimers binding to 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayers were explored through atomistic molecular dynamics. Three PAMAM dendrimer terminations were examined: protonated primary amine, neutral acetamide, and deprotonated carboxylic acid. Fluid and gel lipid phases were examined to extract the effects of lipid tail mobility on the binding of generation-3 dendrimers, which are directly relevant to the nanoparticle interactions involving lipid rafts, endocytosis, lipid removal, and/or membrane pores. Upon binding to gel phase lipids, dendrimers remained spherical, had a constant radius of gyration, and approximately one-quarter of the terminal groups were in close proximity to the lipids. In contrast, upon binding to fluid phase bilayers, dendrimers flattened out with a large increase in their asphericity and radii of gyration. Although over twice as many dendrimer-lipid contacts were formed on fluid versus gel phase lipids, the dendrimer-lipid interaction energy was only 20% stronger. The greatest enthalpy release upon binding was between the charged dendrimers and the lipid bilayer. However, the stronger binding to fluid versus gel phase lipids was driven by the hydrophobic interactions between the inner dendrimer and lipid tails.
Ye, Fei; Liu, Wei; Shang, Yuan; Zhang, Mingjie
2016-03-01
The vast majority of PDZ domains are known to bind to a few C-terminal tail residues of target proteins with modest binding affinities and specificities. Such promiscuous PDZ/target interactions are not compatible with highly specific physiological functions of PDZ domain proteins and their targets. Here, we report an unexpected PDZ/target binding occurring between the scaffold protein inactivation no afterpotential D (INAD) and transient receptor potential (TRP) channel in Drosophila photoreceptors. The C-terminal 15 residues of TRP are required for the specific interaction with INAD PDZ3. The INAD PDZ3/TRP peptide complex structure reveals that only the extreme C-terminal Leu of TRP binds to the canonical αB/βB groove of INAD PDZ3. The rest of the TRP peptide, by forming a β hairpin structure, binds to a surface away from the αB/βB groove of PDZ3 and contributes to the majority of the binding energy. Thus, the INAD PDZ3/TRP channel interaction is exquisitely specific and represents a new mode of PDZ/target recognitions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lavillette, Dimitri; Boson, Bertrand; Russell, Stephen J.; Cosset, François-Loïc
2001-01-01
Cell entry of retroviruses is initiated by the recognition of cellular receptors and the subsequent membrane fusion between viral and cellular membranes. These two steps are mediated by the surface (SU) and transmembrane (TM) subunits of the retroviral envelope glycoprotein (Env), respectively. Determinants regulating membrane fusion have been described throughout SU and TM, but the processes coupling receptor recognition to fusion are still elusive. Here we establish that a critical interaction is formed between the receptor-binding domain (RBD) and the major disulfide loop of the carboxy-terminal domain (C domain) of the murine leukemia virus SU. Receptor binding causes an alteration of this interaction and, in turn, promotes further events of Env fusion activation. We characterize mutations which, by lowering this interaction and reducing the compatibility between the RBD and C domains of Env glycoprotein chimeras, affect both Env fusogenicity and sensitivity to receptor interference. Additionally, we demonstrate that suboptimal interactions in such mutant Env proteins can be compensated in trans by soluble RBDs in a manner that depends on their compatibility with the C domain. Our results therefore indicate that RBD/C domain interactions may occur in cis, via the proper RBD of the viral Env itself, or in trans, via a distinct RBD expressed by virion-free Env glycoproteins expressed endogenously by the infected cells or provided by neighboring Env trimers. PMID:11264358
Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban.
Fujii, J; Ueno, A; Kitano, K; Tanaka, S; Kadoma, M; Tada, M
1987-01-01
Complementary DNA (cDNA) clones specific for phospholamban of sarcoplasmic reticulum membranes have been isolated from a canine cardiac cDNA library. The amino acid sequence deduced from the cDNA sequence indicates that phospholamban consists of 52 amino acid residues and lacks an amino-terminal signal sequence. The protein has an inferred mol wt 6,080 that is in agreement with its apparent monomeric mol wt 6,000, estimated previously by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phospholamban contains two distinct domains, a hydrophilic region at the amino terminus (domain I) and a hydrophobic region at the carboxy terminus (domain II). We propose that domain I is localized at the cytoplasmic surface and offers phosphorylatable sites whereas domain II is anchored into the sarcoplasmic reticulum membrane. PMID:3793929
Laurila, Minni R L; Salgado, Paula S; Makeyev, Eugene V; Nettelship, Joanne; Stuart, David I; Grimes, Jonathan M; Bamford, Dennis H
2005-01-01
The RNA-dependent RNA polymerase, QDE-1, is a component of the RNA silencing pathway in Neurospora crassa. The enzymatically active carboxy-terminal fragment QDE-1 DeltaN has been expressed in Saccharomyces cerevisiae in the presence and absence of selenomethionine (SeMet). The level of SeMet incorporation was estimated by mass spectrometry to be approximately 98%. Both native and SeMet proteins were crystallized in space group P2(1) with unit cell parameters a=101.2, b=122.5, c=114.4A, beta=108.9 degrees , and 2 molecules per asymmetric unit. The native and SeMet crystals diffract to 2.3 and 3.2A, respectively, the latter are suitable for MAD structure determination.
The role of the N-terminal tail for the oligomerization, folding and stability of human frataxin☆
Faraj, Santiago E.; Venturutti, Leandro; Roman, Ernesto A.; Marino-Buslje, Cristina B.; Mignone, Astor; Tosatto, Silvio C.E.; Delfino, José M.; Santos, Javier
2013-01-01
The N-terminal stretch of human frataxin (hFXN) intermediate (residues 42–80) is not conserved throughout evolution and, under defined experimental conditions, behaves as a random-coil. Overexpression of hFXN56–210 in Escherichia coli yields a multimer, whereas the mature form of hFXN (hFXN81–210) is monomeric. Thus, cumulative experimental evidence points to the N-terminal moiety as an essential element for the assembly of a high molecular weight oligomer. The secondary structure propensity of peptide 56–81, the moiety putatively responsible for promoting protein–protein interactions, was also studied. Depending on the environment (TFE or SDS), this peptide adopts α-helical or β-strand structure. In this context, we explored the conformation and stability of hFXN56–210. The biophysical characterization by fluorescence, CD and SEC-FPLC shows that subunits are well folded, sharing similar stability to hFXN90–210. However, controlled proteolysis indicates that the N-terminal stretch is labile in the context of the multimer, whereas the FXN domain (residues 81–210) remains strongly resistant. In addition, guanidine hydrochloride at low concentration disrupts intermolecular interactions, shifting the ensemble toward the monomeric form. The conformational plasticity of the N-terminal tail might impart on hFXN the ability to act as a recognition signal as well as an oligomerization trigger. Understanding the fine-tuning of these activities and their resulting balance will bear direct relevance for ultimately comprehending hFXN function. PMID:23951553
Dachtler, James; Elliott, Christina; Rodgers, R. John; Baillie, George S.; Clapcote, Steven J.
2016-01-01
Disrupted-in-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and affective disorders. The full-length DISC1 protein consists of an N-terminal ‘head’ domain and a C-terminal tail domain that contains several predicted coiled-coils, structural motifs involved in protein-protein interactions. To probe the in vivo effects of missense mutation of DISC1’s C-terminal tail, we tested mice carrying mutation D453G within a predicted α-helical coiled-coil region. We report that, relative to wild-type littermates, female DISC1D453G mice exhibited novelty-induced hyperlocomotion, an anxiogenic profile in the elevated plus-maze and open field tests, and reduced social exploration of unfamiliar mice. Male DISC1D453G mice displayed a deficit in passive avoidance, while neither males nor females exhibited any impairment in startle reactivity or prepulse inhibition. Whole brain homogenates showed normal levels of DISC1 protein, but decreased binding of DISC1 to GSK3β, decreased phospho-inhibition of GSK3β at serine 9, and decreased levels of β-catenin in DISC1D453G mice of either sex. Interrupted GSK3β signaling may thus be part of the mechanism underlying the behavioral phenotype associated with D453G, in common with the previously described N-terminal domain mutations Q31L and L100P in mice, and the schizophrenia risk-conferring variant R264Q in humans. PMID:26728762
Ghosh, Sharmistha; Marintcheva, Boriana; Takahashi, Masateru; Richardson, Charles C
2009-10-30
Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5'-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations.
Maurer, B; Bannert, H; Darai, G; Flügel, R M
1988-01-01
The nucleotide sequence of the human spumaretrovirus (HSRV) genome was determined. The 5' long terminal repeat region was analyzed by strong stop cDNA synthesis and S1 nuclease mapping. The length of the RU5 region was determined and found to be 346 nucleotides long. The 5' long terminal repeat is 1,123 base pairs long and is bound by an 18-base-pair primer-binding site complementary to the 3' end of mammalian lysine-1,2-specific tRNA. Open reading frames for gag and pol genes were identified. Surprisingly, the HSRV gag protein does not contain the cysteine motif of the nucleic acid-binding proteins found in and typical of all other retroviral gag proteins; instead the HSRV gag gene encodes a strongly basic protein reminiscent of those of hepatitis B virus and retrotransposons. The carboxy-terminal part of the HSRV gag gene products encodes a protease domain. The pol gene overlaps the gag gene and is postulated to be synthesized as a gag/pol precursor via translational frameshifting analogous to that of Rous sarcoma virus, with 7 nucleotides immediately upstream of the termination codons of gag conserved between the two viral genomes. The HSRV pol gene is 2,730 nucleotides long, and its deduced protein sequence is readily subdivided into three well-conserved domains, the reverse transcriptase, the RNase H, and the integrase. Although the degree of homology of the HSRV reverse transcriptase domain is highest to that of murine leukemia virus, the HSRV genomic organization is more similar to that of human and simian immunodeficiency viruses. The data justify classifying the spumaretroviruses as a third subfamily of Retroviridae. Images PMID:2451755
Solution structure of dimeric Mnt repressor (1-76).
Burgering, M J; Boelens, R; Gilbert, D E; Breg, J N; Knight, K L; Sauer, R T; Kaptein, R
1994-12-20
Wild-type Mnt repressor of Salmonella bacteriophage P22 is a tetrameric protein of 82 residues per monomer. A C-terminal deletion mutant of the repressor denoted Mnt (1-76) is a dimer in solution. The structure of this dimer has been determined using NMR. The NMR assignments of the majority of the 1H, 15N, and 13C resonances were obtained using 2D and triple-resonance 3D techniques. Elements of secondary structure were identified on the basis of characteristic sequential and medium range NOEs. For the structure determination more than 1000 NOEs per monomer were obtained, and structures were generated using distance geometry and restrained simulated annealing calculations. The discrimination of intra- vs intermonomer NOEs was based upon the observation of intersubunit NOEs in [15N,13C] double half-filtered NOESY experiments. The N-terminal part of Mnt (residues 1-44), which shows a 40% sequence homology with the Arc repressor, has a similar secondary and tertiary structure. Mnt (1-76) continues with a loop region of irregular structure, a third alpha-helix, and a random coil C-terminal peptide. Analysis of the secondary structure NOEs, the exchange rates, and the backbone chemical shifts suggests that the carboxy-terminal third helix is less stable than the remainder of the protein, but the observation of intersubunit NOEs for this part of the protein enables the positioning of this helix. The rsmd's between the backbone atoms of the N-terminal part of the Mnt repressor (residues 5-43, 5'-43') and the Arc repressor is 1.58 A, and between this region and the corresponding part of the MetJ repressor 1.43 A.
Structure and function of the interacting domains of Spire and Fmn-family formins.
Vizcarra, Christina L; Kreutz, Barry; Rodal, Avital A; Toms, Angela V; Lu, Jun; Zheng, Wei; Quinlan, Margot E; Eck, Michael J
2011-07-19
Evidence for cooperation between actin nucleators is growing. The WH2-containing nucleator Spire and the formin Cappuccino interact directly, and both are essential for assembly of an actin mesh during Drosophila oogenesis. Their interaction requires the kinase noncatalytic C-lobe domain (KIND) domain of Spire and the C-terminal tail of the formin. Here we describe the crystal structure of the KIND domain of human Spir1 alone and in complex with the tail of Fmn2, a mammalian ortholog of Cappuccino. The KIND domain is structurally similar to the C-lobe of protein kinases. The Fmn2 tail is coordinated in an acidic cleft at the base of the domain that appears to have evolved via deletion of a helix from the canonical kinase fold. Our functional analysis of Cappuccino reveals an unexpected requirement for its tail in actin assembly. In addition, we find that the KIND/tail interaction blocks nucleation by Cappuccino and promotes its displacement from filament barbed ends providing insight into possible modes of cooperation between Spire and Cappuccino.
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.
1983-01-01
Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.
Coordinated disintegration reactions mediated by Moloney murine leukemia virus integrase.
Donzella, G A; Jonsson, C B; Roth, M J
1996-01-01
The protein-DNA and protein-protein interactions important for function of the integrase (IN) protein of Moloney murine leukemia virus (M-MuLV) were investigated by using a coordinated-disintegration assay. A panel of M-MuLV IN mutants and substrate alterations highlighted distinctions between the intermolecular and intramolecular reactions of coordinated disintegration. Mispairing of the crossbone single-strand region and altered long terminal repeat (LTR) positioning affected the intermolecular, but not the intramolecular, reactions of coordinated disintegration. Partial components of the crossbone substrate were coordinated by M-MuLV IN, indicating a reliance on both LTR and target DNA determinants for substrate assembly. The intramolecular reaction was dependent on the presence of either the HHCC domain or a crossbone LTR 5' single-stranded tail. An M-MuLV IN mutant without the HHCC domain (Ndelta105) catalyzed reduced levels of double disintegration but not single disintegration. A separately purified HHCC domain protein (Cdelta232) stimulated double disintegration mediated by Ndelta105, suggesting a role of the N-terminal HHCC domain in stable IN-IN and IN-DNA interactions. Significantly, crossbone substrates lacking the LTR 5' tails were not recognized by the fingerless Ndelta105 protein. Collectively, these data suggest similar roles of the HHCC domain and 5' LTR tail in substrate recognition and modulation of IN activity. PMID:8648728
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Manisha; Jamieson, Cara; Lui, Christina
β-catenin is a key mediator of Wnt signaling and its deregulated nuclear accumulation can drive cancer progression. While the central armadillo (Arm) repeats of β-catenin stimulate nuclear entry, the N- and C-terminal “tail” sequences are thought to regulate turnover and transactivation. We show here that the N- and C-tails are also potent transport sequences. The unstructured tails of β-catenin, when individually fused to a GFP-reporter, could enter and exit the nucleus rapidly in live cells. Proximity ligation assays and pull-down assays identified a weak interaction between the tail sequences and the FG-repeats of nucleoporins, consistent with a possible direct translocationmore » of β-catenin through the nuclear pore complex. Extensive alanine mutagenesis of the tail sequences revealed that nuclear translocation of β-catenin was dependent on specific uniformly distributed patches of hydrophobic residues, whereas the mutagenesis of acidic amino acids had no effect. Moreover, the mutation of hydrophobic patches within the N-tail and C-tail of full length β-catenin reduced nuclear transport rate and diminished its ability to activate transcription. We propose that the tail sequences can contribute to β-catenin transport and suggest a possible similar role for hydrophobic unstructured regions in other proteins. - Highlights: • We show that the N- and C-tails of beta-catenin possess nuclear transport activity. • Nuclear transport of the N- or C-tails requires specific hydrophobic amino acids. • Mutagenesis of the N-terminus diminished nuclear entry of full-length beta-catenin. • We propose the N-tail contributes to beta-catenin nuclear entry and transactivation.« less
Duarte, Filipe Silveira; Duzzioni, Marcelo; Leme, Leandro Rinaldi; Smith, Saulo de Paiva; De Lima, Thereza C M
2016-04-15
Substance P (SP) is a neuropeptide widely expressed throughout the fear-processing pathways of the brain. SP is cleaved by several proteolytic enzymes in amino (N-) and carboxy (C-) terminal sequences, which can have biological activities per se. We have previously shown that the anxiogenic-like effects elicited by SP6-11(C-terminal), a specific metabolite of SP, are mediated via NK1 and NK2 receptors. Nevertheless, there are evidences that C-terminal fragments may have a greater affinity for NK3 receptors. The aim of the present study was to further investigate the possible involvement of NK3 receptors in the anxiogenic-like effects induced by SP6-11(C-terminal). Adult male Wistar rats were intracerebroventricularly (i.c.v.) treated with SR142801 (NK3 receptors antagonist) or vehicle one minute to prior SP6-11(C-terminal) or vehicle. Other experimental groups received SP6-11(C-terminal) or vehicle i.c.v. one minute prior to senktide (NK3 receptors agonist) or vehicle. After five minutes, the animals were behaviorally evaluated in the elevated plus-maze test (EPM). SR142801 (100 pmol) or SP6-11(C-terminal) (10 pmol) reduced all the parameters of open-arms exploration and increased the number of protected stretch-attend postures in the EPM, indicating an anxiogenic-like effect. Senktide (10 pmol) promoted an opposite effect on these behavioral parameters, characterizing an anxiolytic-like profile. Pretreatment with SR142801, in an ineffective dose, potentiated the SP6-11-induced anxiety, especially in the unprotected head-dipping and protected stretch-attend postures behaviors. Moreover, the anxiolytic-like effect induced by senktide (1 pmol) was prevented by SP6-11. Our results give support to the involvement of NK3 receptors in the anxiogenic-like actions of SP6-11(C-terminal), where this metabolite seems to behave as an antagonist, in a way similar to SR142801. Copyright © 2016 Elsevier B.V. All rights reserved.
Korolev, Nikolay; Yu, Hang; Lyubartsev, Alexander P; Nordenskiöld, Lars
2014-10-01
The positively charged N-terminal histone tails play a crucial role in chromatin compaction and are important modulators of DNA transcription, recombination, and repair. The detailed mechanism of the interaction of histone tails with DNA remains elusive. To model the unspecific interaction of histone tails with DNA, all-atom molecular dynamics (MD) simulations were carried out for systems of four DNA 22-mers in the presence of 20 or 16 short fragments of the H4 histone tail (variations of the 16-23 a. a. KRHRKVLR sequence, as well as the unmodified fragment a. a.13-20, GGAKRHRK). This setup with high DNA concentration, explicit presence of DNA-DNA contacts, presence of unstructured cationic peptides (histone tails) and K(+) mimics the conditions of eukaryotic chromatin. A detailed account of the DNA interactions with the histone tail fragments, K(+) and water is presented. Furthermore, DNA structure and dynamics and its interplay with the histone tail fragments binding are analysed. The charged side chains of the lysines and arginines play major roles in the tail-mediated DNA-DNA attraction by forming bridges and by coordinating to the phosphate groups and to the electronegative sites in the minor groove. Binding of all species to DNA is dynamic. The structure of the unmodified fully-charged H4 16-23 a.a. fragment KRHRKVLR is dominated by a stretched conformation. The H4 tail a. a. fragment GGAKRHRK as well as the H4 Lys16 acetylated fragment are highly flexible. The present work allows capturing typical features of the histone tail-counterion-DNA structure, interaction and dynamics. © 2014 Wiley Periodicals, Inc.
Functional characterization of Arabidopsis thaliana transthyretin-like protein.
Pessoa, João; Sárkány, Zsuzsa; Ferreira-da-Silva, Frederico; Martins, Sónia; Almeida, Maria R; Li, Jianming; Damas, Ana M
2010-02-18
Arabidopsis thaliana transthyretin-like (TTL) protein is a potential substrate in the brassinosteroid signalling cascade, having a role that moderates plant growth. Moreover, sequence homology revealed two sequence domains similar to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase (N-terminal domain) and 5-hydroxyisourate (5-HIU) hydrolase (C-terminal domain). TTL is a member of the transthyretin-related protein family (TRP), which comprises a number of proteins with sequence homology to transthyretin (TTR) and the characteristic C-terminal sequence motif Tyr-Arg-Gly-Ser. TRPs are single domain proteins that form tetrameric structures with 5-HIU hydrolase activity. Experimental evidence is fundamental for knowing if TTL is a tetrameric protein, formed by the association of the 5-HIU hydrolase domains and, in this case, if the structural arrangement allows for OHCU decarboxylase activity. This work reports about the biochemical and functional characterization of TTL. The TTL gene was cloned and the protein expressed and purified for biochemical and functional characterization. The results show that TTL is composed of four subunits, with a moderately elongated shape. We also found evidence for 5-HIU hydrolase and OHCU decarboxylase activities in vitro, in the full-length protein. The Arabidopsis thaliana transthyretin-like (TTL) protein is a tetrameric bifunctional enzyme, since it has 5-HIU hydrolase and OHCU decarboxylase activities, which were simultaneously observed in vitro.
Pogue, Aileen I; Jones, Brandon M; Bhattacharjee, Surjyadipta; Percy, Maire E; Zhao, Yuhai; Lukiw, Walter J
2012-01-01
Evolution of reactive oxygen species (ROS), generated during the patho-physiological stress of nervous tissue, has been implicated in the etiology of several progressive human neurological disorders including Alzheimer's disease (AD) and amylotrophic lateral sclerosis (ALS). In this brief communication we used mixed isomers of 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate (carboxy-DCFDA; C(25)H(14)C(l2)O(9); MW 529.3), a novel fluorescent indicator, to assess ROS generation within human neuronal-glial (HNG) cells in primary co-culture. We introduced pathological stress using the sulfates of 12 environmentally-, industrially- and agriculturally-relevant divalent and trivalent metals including Al, Cd, Cu, Fe, Hg, Ga, Mg, Mn, Ni, Pb, Sn and Zn. In this experimental test system, of all the metal sulfates analyzed, aluminum sulfate showed by far the greatest ability to induce intracellular ROS. These studies indicate the utility of using isomeric mixtures of carboxy-H(2)DCFDA diacetates as novel and highly sensitive, long-lasting, cell-permeant, fluorescein-based tracers for quantifying ROS generation in intact, metabolizing human brain cells, and in analyzing the potential epigenetic contribution of different metal sulfates to ROS-generation and ROS-mediated neurological dysfunction.
The tail of the Ordovician fish Sacabambaspis.
Pradel, Alan; Sansom, Ivan J; Gagnier, Pierre-Yves; Cespedes, Ricardo; Janvier, Philippe
2007-02-22
The tail of the earliest known articulated fully skeletonized vertebrate, the arandaspid Sacabambaspis from the Ordovician of Bolivia, is redescribed on the basis of further preparation of the only specimen in which it is most extensively preserved. The first, but soon discarded, reconstruction, which assumed the presence of a long horizontal notochordal lobe separating equal sized dorsal and ventral fin webs, appears to have considerable merit. Although the ventral web is significantly smaller than the dorsal one, the presence of a very long notochordal lobe bearing a small terminal web is confirmed. The discrepancy in the size of the ventral and dorsal webs rather suggests that the tail was hypocercal, a condition that would better accord with the caudal morphology of the living agnathans and the other jawless stem gnathostomes.
Born, Yannick; Fieseler, Lars; Marazzi, Janine; Lurz, Rudi; Duffy, Brion; Loessner, Martin J.
2011-01-01
A diverse set of 24 novel phages infecting the fire blight pathogen Erwinia amylovora was isolated from fruit production environments in Switzerland. Based on initial screening, four phages (L1, M7, S6, and Y2) with broad host ranges were selected for detailed characterization and genome sequencing. Phage L1 is a member of the Podoviridae, with a 39.3-kbp genome featuring invariable genome ends with direct terminal repeats. Phage S6, another podovirus, was also found to possess direct terminal repeats but has a larger genome (74.7 kbp), and the virus particle exhibits a complex tail fiber structure. Phages M7 and Y2 both belong to the Myoviridae family and feature long, contractile tails and genomes of 84.7 kbp (M7) and 56.6 kbp (Y2), respectively, with direct terminal repeats. The architecture of all four phage genomes is typical for tailed phages, i.e., organized into function-specific gene clusters. All four phages completely lack genes or functions associated with lysogeny control, which correlates well with their broad host ranges and indicates strictly lytic (virulent) lifestyles without the possibility for host lysogenization. Comparative genomics revealed that M7 is similar to E. amylovora virus ΦEa21-4, whereas L1, S6, and Y2 are unrelated to any other E. amylovora phage. Instead, they feature similarities to enterobacterial viruses T7, N4, and ΦEcoM-GJ1. In a series of laboratory experiments, we provide proof of concept that specific two-phage cocktails offer the potential for biocontrol of the pathogen. PMID:21764969
Butcher, Adrian J; Hudson, Brian D; Shimpukade, Bharat; Alvarez-Curto, Elisa; Prihandoko, Rudi; Ulven, Trond; Milligan, Graeme; Tobin, Andrew B
2014-06-27
In addition to being nutrients, free fatty acids act as signaling molecules by activating a family of G protein-coupled receptors. Among these is FFA4, previously called GPR120, which responds to medium and long chain fatty acids, including health-promoting ω-3 fatty acids, which have been implicated in the regulation of metabolic and inflammatory responses. Here we show, using mass spectrometry, mutagenesis, and phosphospecific antibodies, that agonist-regulated phosphorylation of the human FFA4 receptor occurred primarily at five residues (Thr(347), Thr(349), Ser(350), Ser(357), and Ser(360)) in the C-terminal tail. Mutation of these residues reduced both the efficacy and potency of ligand-mediated arrestin-3 recruitment as well as affecting recruitment kinetics. Combined mutagenesis of all five of these residues was insufficient to fully abrogate interaction with arrestin-3, but further mutagenesis of negatively charged residues revealed additional structural components for the interaction with arrestin-3 within the C-terminal tail of the receptor. These elements consist of the acidic residues Glu(341), Asp(348), and Asp(355) located close to the phosphorylation sites. Receptor phosphorylation thus operates in concert with structural elements within the C-terminal tail of FFA4 to allow for the recruitment of arrestin-3. Importantly, these mechanisms of arrestin-3 recruitment operate independently from Gq/11 coupling, thereby offering the possibility that ligands showing stimulus bias could be developed that exploit these differential coupling mechanisms. Furthermore, this provides a strategy for the design of biased receptors to probe physiologically relevant signaling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Meijles, Daniel N.; Fan, Lampson M.; Howlin, Brendan J.; Li, Jian-Mei
2014-01-01
Phagocyte superoxide production by a multicomponent NADPH oxidase is important in host defense against microbial invasion. However inappropriate NADPH oxidase activation causes inflammation. Endothelial cells express NADPH oxidase and endothelial oxidative stress due to prolonged NADPH oxidase activation predisposes many diseases. Discovering the mechanism of NADPH oxidase activation is essential for developing novel treatment of these diseases. The p47phox is a key regulatory subunit of NADPH oxidase; however, due to the lack of full protein structural information, the mechanistic insight of p47phox phosphorylation in NADPH oxidase activation remains incomplete. Based on crystal structures of three functional domains, we generated a computational structural model of the full p47phox protein. Using a combination of in silico phosphorylation, molecular dynamics simulation and protein/protein docking, we discovered that the C-terminal tail of p47phox is critical for stabilizing its autoinhibited structure. Ser-379 phosphorylation disrupts H-bonds that link the C-terminal tail to the autoinhibitory region (AIR) and the tandem Src homology 3 (SH3) domains, allowing the AIR to undergo phosphorylation to expose the SH3 pocket for p22phox binding. These findings were confirmed by site-directed mutagenesis and gene transfection of p47phox−/− coronary microvascular cells. Compared with wild-type p47phox cDNA transfected cells, the single mutation of S379A completely blocked p47phox membrane translocation, binding to p22phox and endothelial O2⨪ production in response to acute stimulation of PKC. p47phox C-terminal tail plays a key role in stabilizing intramolecular interactions at rest. Ser-379 phosphorylation is a molecular switch which initiates p47phox conformational changes and NADPH oxidase-dependent superoxide production by cells. PMID:24970888
Born, Yannick; Fieseler, Lars; Marazzi, Janine; Lurz, Rudi; Duffy, Brion; Loessner, Martin J
2011-09-01
A diverse set of 24 novel phages infecting the fire blight pathogen Erwinia amylovora was isolated from fruit production environments in Switzerland. Based on initial screening, four phages (L1, M7, S6, and Y2) with broad host ranges were selected for detailed characterization and genome sequencing. Phage L1 is a member of the Podoviridae, with a 39.3-kbp genome featuring invariable genome ends with direct terminal repeats. Phage S6, another podovirus, was also found to possess direct terminal repeats but has a larger genome (74.7 kbp), and the virus particle exhibits a complex tail fiber structure. Phages M7 and Y2 both belong to the Myoviridae family and feature long, contractile tails and genomes of 84.7 kbp (M7) and 56.6 kbp (Y2), respectively, with direct terminal repeats. The architecture of all four phage genomes is typical for tailed phages, i.e., organized into function-specific gene clusters. All four phages completely lack genes or functions associated with lysogeny control, which correlates well with their broad host ranges and indicates strictly lytic (virulent) lifestyles without the possibility for host lysogenization. Comparative genomics revealed that M7 is similar to E. amylovora virus ΦEa21-4, whereas L1, S6, and Y2 are unrelated to any other E. amylovora phage. Instead, they feature similarities to enterobacterial viruses T7, N4, and ΦEcoM-GJ1. In a series of laboratory experiments, we provide proof of concept that specific two-phage cocktails offer the potential for biocontrol of the pathogen.
Elmas, Elif; Doesch, Christina; Fluechter, Stephan; Freundt, Miriam; Weiss, Christel; Lang, Siegfried; Kälsch, Thorsten; Haghi, Dariush; Papassotiriou, Jana; Kunde, Jan; Schoenberg, Stefan O; Borggrefe, Martin; Papavassiliu, Theano
2011-04-01
We aimed to determine the diagnostic performance of biomarkers in predicting myocardial fibrosis assessed by late gadolinium enhancement (LGE) cardiovascular magnetic resonance imaging (CMR) in patients with hypertrophic cardiomyopathy (HCM). LGE CMR was performed in 40 consecutive patients with HCM. Left and right ventricular parameters, as well as the extent of LGE were determined and correlated to the plasma levels of midregional pro-atrial natriuretic peptide (MR-proANP), midregional pro-adrenomedullin (MR-proADM), carboxy-terminal pro-endothelin-1 (CT-proET-1), carboxy-terminal pro-vasopressin (CT-proAVP), matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1) and interleukin-8 (IL-8). Myocardial fibrosis was assumed positive, if CMR indicated LGE. LGE was present in 26 of 40 patients with HCM (65%) with variable extent (mean: 14%, range: 1.3-42%). The extent of LGE was positively associated with MR-proANP (r = 0.4; P = 0.01). No correlations were found between LGE and MR-proADM (r = 0.1; P = 0.5), CT-proET-1 (r = 0.07; P = 0.66), CT-proAVP (r = 0.16; P = 0.3), MMP-9 (r = 0.01; P = 0.9), TIMP-1 (r = 0.02; P = 0.85), and IL-8 (r = 0.02; P = 0.89). After adjustment for confounding factors, MR-proANP was the only independent predictor associated with the presence of LGE (P = 0.007) in multivariate analysis. The area under the ROC curve (AUC) indicated good predictive performance (AUC = 0.882) of MR-proANP with respect to LGE. The odds ratio was 1.268 (95% confidence interval 1.066-1.508). The sensitivity of MR-proANP at a cut-off value of 207 pmol/L was 69%, the specificity 94%, the positive predictive value 90% and the negative predictive value 80%. The results imply that MR-proANP serves as a novel marker of myocardial fibrosis assessed by LGE CMR in patients with HCM.
Bandara, Aloka B; DeShazer, David; Inzana, Thomas J; Sriranganathan, Nammalwar; Schurig, Gerhardt G; Boyle, Stephen M
2008-09-01
Burkholderia mallei is the etiologic agent of glanders in solipeds (horses, mules and donkeys), and incidentally in carnivores and humans. Little is known about the molecular mechanisms of B. mallei pathogenesis. The putative carboxy-terminal processing protease (CtpA) of B. mallei is a member of a novel family of endoproteases involved in the maturation of proteins destined for the cell envelope. All species and isolates of Burkholderia carry a highly conserved copy of ctpA. We studied the involvement of CtpA on growth, cell morphology, persistence, and pathogenicity of B. mallei. A sucrose-resistant strain of B. mallei was constructed by deleting a major portion of the sacB gene of the wild type strain ATCC 23344 by gene replacement, and designated as strain 23344DeltasacB. A portion of the ctpA gene (encoding CtpA) of strain 23344DeltasacB was deleted by gene replacement to generate strain 23344DeltasacBDeltactpA. In contrast to the wild type ATCC 23344 or the sacB mutant 23344DeltasacB, the ctpA mutant 23344DeltasacBDeltactpA displayed altered cell morphologies with partially or fully disintegrated cell envelopes. Furthermore, relative to the wild type, the ctpA mutant displayed slower growth in vitro and less ability to survive in J774.2 murine macrophages. The expression of mRNA of adtA, the gene downstream of ctpA was similar among the three strains suggesting that disruption of ctpA did not induce any polar effects. As with the wild type or the sacB mutant, the ctpA mutant exhibited a dose-dependent lethality when inoculated intraperitoneally into CD1 mice. The CD1 mice inoculated with a non-lethal dose of the ctpA mutant produced specific serum immunoglobulins IgG1 and IgG2a and were partially protected against challenge with wild type B. mallei ATCC 23344. These findings suggest that CtpA regulates in vitro growth, cell morphology and intracellular survival of B. mallei, and a ctpA mutant protects CD1 mice against glanders.
Lee, Augustine S; Finkielman, Javier D; Peikert, Tobias; Hummel, Amber M; Viss, Margaret A; Specks, Ulrich
2005-12-20
Testing for antineutrophil cytoplasmic antibodies (ANCA) reacting with proteinase 3 (PR3) is part of the routine diagnostic evaluation of patients with small vessel vasculitis. For PR3-ANCA detection, capture ELISAs are reported to be superior to direct ELISAs. Standard capture ELISAs, in which PR3 is anchored by anti-PR3 monoclonal antibodies (moAB), have two potential disadvantages. First, the capturing moAB may compete for epitopes recognized by some PR3-ANCA, causing occasional false-negative results. Second, the capture of recombinant PR3 mutant molecules becomes unpredictable as modifications of specific conformational epitopes may not only affect the binding of PR3-ANCA, but also the affinity of the capturing anti-PR3 moAB. Here, we describe a new capture ELISA, and its application for PR3-ANCA detection. This new assay is based on the standardized capture of a variety of different carboxy-terminally c-myc tagged recombinant ANCA target antigens using anti-c-myc coated ELISA plates. Antigen used include c-myc tagged human rPR3 variants (mature and pro-form conformations), mouse mature rPR3 and human recombinant neutrophil elastase. This new anti-c-myc-capture ELISA for PR3-ANCA detection has an intra- and inter-assay coefficient of variation of 3.6% to 7.7%, and 15.8% to 18.4%, respectively. The analytical sensitivity and specificity for PR3-ANCA positive serum samples were 93% and 100%, respectively when rPR3 with mature conformation was used as target antigen, and 83% and 100% when the pro-enzyme conformation was employed. In conclusion, this new anti-c-myc capture ELISA compares favorably to our standard capture ELISA for PR3-ANCA detection, enables the unified capture of different ANCA target antigens through binding to a c-myc tag, and allows capture of rPR3 mutants necessary for PR3-ANCA epitope mapping studies.
TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity.
Gack, Michaela U; Shin, Young C; Joo, Chul-Hyun; Urano, Tomohiko; Liang, Chengyu; Sun, Lijun; Takeuchi, Osamu; Akira, Shizuo; Chen, Zhijian; Inoue, Satoshi; Jung, Jae U
2007-04-19
Retinoic-acid-inducible gene-I (RIG-I; also called DDX58) is a cytosolic viral RNA receptor that interacts with MAVS (also called VISA, IPS-1 or Cardif) to induce type I interferon-mediated host protective innate immunity against viral infection. Furthermore, members of the tripartite motif (TRIM) protein family, which contain a cluster of a RING-finger domain, a B box/coiled-coil domain and a SPRY domain, are involved in various cellular processes, including cell proliferation and antiviral activity. Here we report that the amino-terminal caspase recruitment domains (CARDs) of RIG-I undergo robust ubiquitination induced by TRIM25 in mammalian cells. The carboxy-terminal SPRY domain of TRIM25 interacts with the N-terminal CARDs of RIG-I; this interaction effectively delivers the Lys 63-linked ubiquitin moiety to the N-terminal CARDs of RIG-I, resulting in a marked increase in RIG-I downstream signalling activity. The Lys 172 residue of RIG-I is critical for efficient TRIM25-mediated ubiquitination and for MAVS binding, as well as the ability of RIG-I to induce antiviral signal transduction. Furthermore, gene targeting demonstrates that TRIM25 is essential not only for RIG-I ubiquitination but also for RIG-I-mediated interferon- production and antiviral activity in response to RNA virus infection. Thus, we demonstrate that TRIM25 E3 ubiquitin ligase induces the Lys 63-linked ubiquitination of RIG-I, which is crucial for the cytosolic RIG-I signalling pathway to elicit host antiviral innate immunity.
Escape from R-peptide deletion in a {gamma}-retrovirus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Irene C.; Eckhardt, Manon; Brynza, Julia
2011-09-30
The R peptide in the cytoplasmic tail (C-tail) of {gamma}-retroviral envelope proteins (Env) prevents membrane fusion before budding. To analyse its role in the formation of replication competent, infectious particles, we developed chimeric murine leukaemia viruses (MLV) with unmodified or R-peptide deleted Env proteins of the gibbon ape leukaemia virus (GaLV). While titres of these viruses were unaffected, R-peptide deficiency led to strongly impaired spreading. Most remarkably, we isolated an escape mutant which had restored an open reading frame for a C-terminal extension of the truncated C-tail. A reconstituted virus encoding this escape C-tail replicated in cell culture. In contrastmore » to R-peptide deficient Env, particle incorporation of the escape Env was effective due to an enhanced protein expression and restored intracellular co-localisation with Gag proteins. Our data demonstrate that the R peptide not only regulates membrane fusion but also mediates efficient Env protein particle incorporation in {gamma}-retrovirus infected cells.« less
Structural insights into the histone H1-nucleosome complex
Zhou, Bing-Rui; Feng, Hanqiao; Kato, Hidenori; Dai, Liang; Yang, Yuedong; Zhou, Yaoqi; Bai, Yawen
2013-01-01
Linker H1 histones facilitate formation of higher-order chromatin structures and play important roles in various cell functions. Despite several decades of effort, the structural basis of how H1 interacts with the nucleosome remains elusive. Here, we investigated Drosophila H1 in complex with the nucleosome, using solution nuclear magnetic resonance spectroscopy and other biophysical methods. We found that the globular domain of H1 bridges the nucleosome core and one 10-base pair linker DNA asymmetrically, with its α3 helix facing the nucleosomal DNA near the dyad axis. Two short regions in the C-terminal tail of H1 and the C-terminal tail of one of the two H2A histones are also involved in the formation of the H1–nucleosome complex. Our results lead to a residue-specific structural model for the globular domain of the Drosophila H1 in complex with the nucleosome, which is different from all previous experiment-based models and has implications for chromatin dynamics in vivo. PMID:24218562
Fagone, Paolo; Wright, J Fraser; Nathwani, Amit C; Nienhuis, Arthur W; Davidoff, Andrew M; Gray, John T
2012-02-01
Self-complementary AAV (scAAV) vector genomes contain a covalently closed hairpin derived from a mutated inverted terminal repeat that connects the two monomer single-stranded genomes into a head-to-head or tail-to-tail dimer. We found that during quantitative PCR (qPCR) this structure inhibits the amplification of proximal amplicons and causes the systemic underreporting of copy number by as much as 10-fold. We show that cleavage of scAAV vector genomes with restriction endonuclease to liberate amplicons from the covalently closed terminal hairpin restores quantitative amplification, and we implement this procedure in a simple, modified qPCR titration method for scAAV vectors. In addition, we developed and present an AAV genome titration procedure based on gel electrophoresis that requires minimal sample processing and has low interassay variability, and as such is well suited for the rigorous quality control demands of clinical vector production facilities.
A Phosphosite within the SH2 Domain of Lck Regulates Its Activation by CD45.
Courtney, Adam H; Amacher, Jeanine F; Kadlecek, Theresa A; Mollenauer, Marianne N; Au-Yeung, Byron B; Kuriyan, John; Weiss, Arthur
2017-08-03
The Src Family kinase Lck sets a critical threshold for T cell activation because it phosphorylates the TCR complex and the Zap70 kinase. How a T cell controls the abundance of active Lck molecules remains poorly understood. We have identified an unappreciated role for a phosphosite, Y192, within the Lck SH2 domain that profoundly affects the amount of active Lck in cells. Notably, mutation of Y192 blocks critical TCR-proximal signaling events and impairs thymocyte development in retrogenic mice. We determined that these defects are caused by hyperphosphorylation of the inhibitory C-terminal tail of Lck. Our findings reveal that modification of Y192 inhibits the ability of CD45 to associate with Lck in cells and dephosphorylate the C-terminal tail of Lck, which prevents its adoption of an active open conformation. These results suggest a negative feedback loop that responds to signaling events that tune active Lck amounts and TCR sensitivity. Copyright © 2017 Elsevier Inc. All rights reserved.
Paragnomoxyala gen. nov. (Xyalidae, Monhysterida, Nematoda) from the East China Sea.
Jiang, Weijun; Huang, Yong
2015-11-05
A new genus, Paragnomoxyala gen. nov., and a new species, Paragnomoxyala breviseta sp. nov. are described from the East China Sea. Paragnomoxyala gen. nov. is characterized by having large funnel-shaped buccal cavity with cuticularized walls and extended anteriorly; lips very high; striated cuticle; four cephalic setae, absence of outer labial setae; circular amphidial fovea; straight spicules and absence of gubernaculum; tail conico-cylindrical with three terminal setae; female monodelphic with an anterior outstretched ovary. It differs from similar genera by having a large buccal cavity unique in Xyalidae, straight spicules, lacking gubernaculum, and conico-cylindrical tail with terminal setae. Paragnomoxyala breviseta sp. nov. is characterized by having a large funnel-shaped buccal cavity, with cuticularized walls and extended anteriorly, 1.6-1.8 hd long and 63-79% cbd wide; four cephalic setae 3-4 µm long; circular amphids 6-9 µm in diameter; spicules straight but slightly bent at both ends; absence of gubernaculum and precloacal supplement.
Powis, Katie; Schrul, Bianca; Tienson, Heather; Gostimskaya, Irina; Breker, Michal; High, Stephen; Schuldiner, Maya; Jakob, Ursula; Schwappach, Blanche
2013-01-01
Summary The endomembrane system of yeast contains different tail-anchored proteins that are post-translationally targeted to membranes via their C-terminal transmembrane domain. This hydrophobic segment could be hazardous in the cytosol if membrane insertion fails, resulting in the need for energy-dependent chaperoning and the degradation of aggregated tail-anchored proteins. A cascade of GET proteins cooperates in a conserved pathway to accept newly synthesized tail-anchored proteins from ribosomes and guide them to a receptor at the endoplasmic reticulum, where membrane integration takes place. It is, however, unclear how the GET system reacts to conditions of energy depletion that might prevent membrane insertion and hence lead to the accumulation of hydrophobic proteins in the cytosol. Here we show that the ATPase Get3, which accommodates the hydrophobic tail anchor of clients, has a dual function: promoting tail-anchored protein insertion when glucose is abundant and serving as an ATP-independent holdase chaperone during energy depletion. Like the generic chaperones Hsp42, Ssa2, Sis1 and Hsp104, we found that Get3 moves reversibly to deposition sites for protein aggregates, hence supporting the sequestration of tail-anchored proteins under conditions that prevent tail-anchored protein insertion. Our findings support a ubiquitous role for the cytosolic GET complex as a triaging platform involved in cellular proteostasis. PMID:23203805
Role of the tail in the regulated state of myosin 2
Jung, HyunSuk; Billington, Neil; Thirumurugan, Kavitha; Salzameda, Bridget; Cremo, Christine R.; Chalovich, Joseph M.; Chantler, Peter D.; Knight, Peter J.
2013-01-01
Myosin 2 from vertebrate smooth muscle or non-muscle sources is in equilibrium between compact, inactive monomers and thick filaments under physiological conditions. In the inactive monomer, the two heads pack compactly together and the long tail is folded into three closely-packed segments that are associated chiefly with one of the heads. The molecular basis of the folding of the tail remains unexplained. Using electron microscopy, we show that compact monomers of smooth muscle myosin 2 have the same structure in both the native state and following specific, intramolecular photo-cross-linking between Cys109 of the regulatory light chain (RLC) and segment 3 of the tail. Non-specific cross-linking between lysine residues of the folded monomer by glutaraldehyde also does not perturb the compact conformation, and stabilises it against unfolding at high ionic strength. Sequence comparisons across phyla and myosin 2 isoforms suggest that folding of the tail is stabilised by ionic interactions between the positively-charged N-terminal sequence of the RLC and a negatively-charged region near the start of tail segment 3, and that phosphorylation of the RLC could perturb these interactions. Our results support the view that interactions between the heads and the distal tail perform a critical role in regulating activity of myosin 2 molecules through stabilising the compact monomer conformation. PMID:21419133
Folco, H. Diego; Campbell, Christopher S.; May, Karen M.; Espinoza, Celso A.; Oegema, Karen; Hardwick, Kevin G.; Grewal, Shiv I. S.; Desai, Arshad
2014-01-01
Summary In most eukaryotes, centromeres are defined epigenetically by presence of the histone H3 variant CENP-A [1-3]. CENP-A containing chromatin recruits the constitutive centromere-associated network (CCAN) of proteins, which in turn directs assembly of the outer kinetochore to form microtubule attachments and ensure chromosome segregation fidelity [4-6]. While the mechanisms that load CENP-A at centromeres are being elucidated, the functions of its divergent N-terminal tail remain enigmatic [7-12]. Here, we employ the well-studied fission yeast centromere [13-16] to investigate the function of the CENP-A (Cnp1) N-tail. We show that alteration of the N-tail did not affect Cnp1 loading at centromeres, outer kinetochore formation, or spindle checkpoint signaling, but nevertheless elevated chromosome loss. N-Tail mutants exhibited synthetic lethality with an altered centromeric DNA sequence, with rare survivors harboring chromosomal fusions in which the altered centromere was epigenetically inactivated. Elevated centromere inactivation was also observed for N-tail mutants with unaltered centromeric DNA sequences. N-tail mutants specifically reduced localization of the CCAN proteins Cnp20/CENP-T and Mis6/CENP-I, but not Cnp3/CENP-C. Overexpression of Cnp20/CENP-T suppressed defects in an N-tail mutant, suggesting a link between reduced CENP-T recruitment and the observed centromere inactivation phenotype. Thus, the Cnp1 N-tail promotes epigenetic stability of centromeres in fission yeast, at least in part via recruitment of the CENP-T branch of the CCAN. PMID:25619765
From dinosaurs to birds: a tail of evolution
2014-01-01
A particularly critical event in avian evolution was the transition from long- to short-tailed birds. Primitive bird tails underwent significant alteration, most notably reduction of the number of caudal vertebrae and fusion of the distal caudal vertebrae into an ossified pygostyle. These changes, among others, occurred over a very short evolutionary interval, which brings into focus the underlying mechanisms behind those changes. Despite the wealth of studies delving into avian evolution, virtually nothing is understood about the genetic and developmental events responsible for the emergence of short, fused tails. In this review, we summarize the current understanding of the signaling pathways and morphological events that contribute to tail extension and termination and examine how mutations affecting the genes that control these pathways might influence the evolution of the avian tail. To generate a list of candidate genes that may have been modulated in the transition to short-tailed birds, we analyzed a comprehensive set of mouse mutants. Interestingly, a prevalent pleiotropic effect of mutations that cause fused caudal vertebral bodies (as in the pygostyles of birds) is tail truncation. We identified 23 mutations in this class, and these were primarily restricted to genes involved in axial extension. At least half of the mutations that cause short, fused tails lie in the Notch/Wnt pathway of somite boundary formation or differentiation, leading to changes in somite number or size. Several of the mutations also cause additional bone fusions in the trunk skeleton, reminiscent of those observed in primitive and modern birds. All of our findings were correlated to the fossil record. An open question is whether the relatively sudden appearance of short-tailed birds in the fossil record could be accounted for, at least in part, by the pleiotropic effects generated by a relatively small number of mutational events. PMID:25621146
The structure of the Myo4p globular tail and its function in ASH1 mRNA localization.
Heuck, Alexander; Fetka, Ingrid; Brewer, Daniel N; Hüls, Daniela; Munson, Mary; Jansen, Ralf-Peter; Niessing, Dierk
2010-05-03
Type V myosin (MyoV)-dependent transport of cargo is an essential process in eukaryotes. Studies on yeast and vertebrate MyoV showed that their globular tails mediate binding to the cargo complexes. In Saccharomyces cerevisiae, the MyoV motor Myo4p interacts with She3p to localize asymmetric synthesis of HO 1 (ASH1) mRNA into the bud of dividing cells. A recent study showed that localization of GFP-MS2-tethered ASH1 particles does not require the Myo4p globular tail, challenging the supposed role of this domain. We assessed ASH1 mRNA and Myo4p distribution more directly and found that their localization is impaired in cells expressing globular tail-lacking Myo4p. In vitro studies further show that the globular tail together with a more N-terminal linker region is required for efficient She3p binding. We also determined the x-ray structure of the Myo4p globular tail and identify a conserved surface patch important for She3p binding. The structure shows pronounced similarities to membrane-tethering complexes and indicates that Myo4p may not undergo auto-inhibition of its motor domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwasako, Kenji, E-mail: kuwasako@med.miyazaki-u.ac.jp; Sekiguchi, Toshio; Nagata, Sayaka
2016-02-19
Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM{sub 1} receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM{sub 1} receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM{sub 1} receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific [{sup 125}I]AM binding andmore » AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or β{sub 2}-adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449–453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM{sub 1} receptor and further determined the region of the CLR C-tail responsible for this GRK function. - Highlights: • We discovered a novel function of GRKs in GPCR trafficking using human CLR/RAMP2. • GRKs 4 and 5 markedly inhibited the cell surface expression of human CLR/RAMP2. • Both GRKs exhibited highly significant receptor signaling inhibition. • Five residues of the C-terminal tail of CLR govern this function of GRKs.« less
Lossi, Nadine S.; Manoli, Eleni; Förster, Andreas; Dajani, Rana; Pape, Tillmann; Freemont, Paul; Filloux, Alain
2013-01-01
Protein secretion systems in Gram-negative bacteria evolved into a variety of molecular nanomachines. They are related to cell envelope complexes, which are involved in assembly of surface appendages or transport of solutes. They are classified as types, the most recent addition being the type VI secretion system (T6SS). The T6SS displays similarities to bacteriophage tail, which drives DNA injection into bacteria. The Hcp protein is related to the T4 bacteriophage tail tube protein gp19, whereas VgrG proteins structurally resemble the gp27/gp5 puncturing device of the phage. The tube and spike of the phage are pushed through the bacterial envelope upon contraction of a tail sheath composed of gp18. In Vibrio cholerae it was proposed that VipA and VipB assemble into a tail sheathlike structure. Here we confirm these previous data by showing that HsiB1 and HsiC1 of the Pseudomonas aeruginosa H1-T6SS assemble into tubules resulting from stacking of cogwheel-like structures showing predominantly 12-fold symmetry. The internal diameter of the cogwheels is ∼100 Å, which is large enough to accommodate an Hcp tube whose external diameter has been reported to be 85 Å. The N-terminal 212 residues of HsiC1 are sufficient to form a stable complex with HsiB1, but the C terminus of HsiC1 is essential for the formation of the tubelike structure. Bioinformatics analysis suggests that HsiC1 displays similarities to gp18-like proteins in its C-terminal region. In conclusion, we provide further structural and mechanistic insights into the T6SS and show that a phage sheathlike structure is likely to be a conserved element across all T6SSs. PMID:23341461
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, R.; Pappas, T.; Brace, J.
Many proteobacteria are able to monitor their population densities through the release of pheromones known as N-acylhomoserine lactones. At high population densities, these pheromones elicit diverse responses that include bioluminescence, biofilm formation, production of antimicrobials, DNA exchange, pathogenesis and symbiosis1. Many of these regulatory systems require a pheromone-dependent transcription factor similar to the LuxR protein of Vibrio fischeri. Here we present the structure of a LuxR-type protein. TraR of Agrobacterium tumefaciens was solved at 1.66 A as a complex with the pheromone N-3-oxooctanoyl-l-homoserine lactone (OOHL) and its TraR DNA-binding site. The amino-terminal domain of TraR is an {alpha}/{beta}/{alpha} sandwich thatmore » binds OOHL, whereas the carboxy-terminal domain contains a helix-turn-helix DNA-binding motif. The TraR dimer displays a two-fold symmetry axis in each domain; however, these two axes of symmetry are at an approximately 90 degree angle, resulting in a pronounced overall asymmetry of the complex. The pheromone lies fully embedded within the protein with virtually no solvent contact, and makes numerous hydrophobic contacts with the protein as well as four hydrogen bonds: three direct and one water-mediated.« less
Simmons, Monika; Sun, Peifang; Putnak, Robert
2016-01-01
Dengue virus purified inactivated vaccines (PIV) are highly immunogenic and protective over the short term, but may be poor at inducing cell-mediated immune responses and long-term protection. The dengue nonstructural protein 3 (NS3) is considered the main target for T-cell responses during viral infection. The amino (N)-terminal protease and the carboxy (C)-terminal helicase domains of DENV-2 NS3 were expressed in E. coli and analyzed for their immune-potentiating capacity. Mice were immunized with DENV-2 PIV with and without recombinant NS3 protease or NS3 helicase proteins, and NS3 proteins alone on days 0, 14 and 28. The NS3 helicase but not the NS3 protease was effective in inducing T-cell responses quantified by IFN-γ ELISPOT. In addition, markedly increased total IgG antibody titer against virus antigen was seen in mice immunized with the PIV/NS3 helicase combination in the ELISA, as well as increased neutralizing antibody titer measured by the plaque reduction neutralization test. These results indicate the potential immunogenic properties of the NS3 helicase protein and its use in a dengue vaccine formulation. PMID:27035715
Evidence for new C-terminally truncated variants of α- and β-tubulins.
Aillaud, Chrystelle; Bosc, Christophe; Saoudi, Yasmina; Denarier, Eric; Peris, Leticia; Sago, Laila; Taulet, Nicolas; Cieren, Adeline; Tort, Olivia; Magiera, Maria M; Janke, Carsten; Redeker, Virginie; Andrieux, Annie; Moutin, Marie-Jo
2016-02-15
Cellular α-tubulin can bear various carboxy-terminal sequences: full-length tubulin arising from gene neosynthesis is tyrosinated, and two truncated variants, corresponding to detyrosinated and Δ2 α‑tubulin, result from the sequential cleavage of one or two C-terminal residues, respectively. Here, by using a novel antibody named 3EG that is highly specific to the -EEEG C-terminal sequence, we demonstrate the occurrence in neuronal tissues of a new αΔ3‑tubulin variant corresponding to α1A/B‑tubulin deleted of its last three residues (EEY). αΔ3‑tubulin has a specific distribution pattern: its quantity in the brain is similar to that of αΔ2-tubulin around birth but is much lower in adult tissue. This truncated α1A/B-tubulin variant can be generated from αΔ2-tubulin by the deglutamylases CCP1, CCP4, CCP5, and CCP6 but not by CCP2 and CCP3. Moreover, using 3EG antibody, we identify a C‑terminally truncated β-tubulin form with the same -EEEG C-terminal sequence. Using mass spectrometry, we demonstrate that β2A/B-tubulin is modified by truncation of the four C-terminal residues (EDEA). We show that this newly identified βΔ4-tubulin is ubiquitously present in cells and tissues and that its level is constant throughout the cell cycle. These new C-terminally truncated α- and β-tubulin variants, both ending with -EEEG sequence, are expected to regulate microtubule physiology. Of interest, the αΔ3-tubulin seems to be related to dynamic microtubules, resembling tyrosinated-tubulin rather than the other truncated variants, and may have critical function(s) in neuronal development. © 2016 Aillaud et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
C-terminal interactions mediate the quaternary dynamics of αB-crystallin
Hilton, Gillian R.; Hochberg, Georg K. A.; Laganowsky, Arthur; McGinnigle, Scott I.; Baldwin, Andrew J.; Benesch, Justin L. P.
2013-01-01
αB-crystallin is a highly dynamic, polydisperse small heat-shock protein that can form oligomers ranging in mass from 200 to 800 kDa. Here we use a multifaceted mass spectrometry approach to assess the role of the C-terminal tail in the self-assembly of αB-crystallin. Titration experiments allow us to monitor the binding of peptides representing the C-terminus to the αB-crystallin core domain, and observe individual affinities to both monomeric and dimeric forms. Notably, we find that binding the second peptide equivalent to the core domain dimer is considerably more difficult than the first, suggesting a role of the C-terminus in regulating assembly. This finding motivates us to examine the effect of point mutations in the C-terminus in the full-length protein, by quantifying the changes in oligomeric distribution and corresponding subunit exchange rates. Our results combine to demonstrate that alterations in the C-terminal tail have a significant impact on the thermodynamics and kinetics of αB-crystallin. Remarkably, we find that there is energy compensation between the inter- and intra-dimer interfaces: when one interaction is weakened, the other is strengthened. This allosteric communication between binding sites on αB-crystallin is likely important for its role in binding target proteins. PMID:23530258
NASA Astrophysics Data System (ADS)
Lee, Hwankyu; Malmstadt, Noah
2018-04-01
Lipid bilayers composed of saturated and unsaturated lipids, oxidized lipids, and cholesterol at concentrations of 0–18 mol% oxidized lipid were simulated, showing that the presence of oxidized lipid increases bilayer disorder, curvature, and lateral dynamics at low oxidized-lipid concentrations of 18 mol% or less. The aldehyde terminal of a shortened oxidized-lipid tail tends to interact with water and thus bends toward the bilayer-water interface, in agreement with previous experiments and simulations. In particular, water molecules pass through the oxidized bilayer without pore formation, implying passive permeability. A single nanoparticle, which consists of 300 polystyrene (PS) chains with cationic terminals, added to this bilayer simulation induces negative bilayer curvature and inserts to the bilayer, regardless of the oxidized-lipid concentration. Hydrophobic monomers and cationic terminals of the PS particle interact respectively with lipid tails and headgroups, leading to the wrapping of either lipid monolayer or bilayer along the particle surface. These results indicate that lipid oxidation increases membrane curvature and permeability even at such a low concentration of oxidized lipid, which supports the experimental observations regarding the passive permeability of oxidized bilayer, and also that oxidized lipids of low concentration do not significantly influence the insertion of a cationic PS particle to the bilayer.
Ghosh, Sharmistha; Marintcheva, Boriana; Takahashi, Masateru; Richardson, Charles C.
2009-01-01
Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5′-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations. PMID:19726688
Pogue, Aileen I.; Jones, Brandon M.; Bhattacharjee, Surjyadipta; Percy, Maire E.; Zhao, Yuhai; Lukiw, Walter J.
2012-01-01
Evolution of reactive oxygen species (ROS), generated during the patho-physiological stress of nervous tissue, has been implicated in the etiology of several progressive human neurological disorders including Alzheimer’s disease (AD) and amylotrophic lateral sclerosis (ALS). In this brief communication we used mixed isomers of 5-(and-6)-carboxy-2′,7′-dichlorofluorescein diacetate (carboxy-DCFDA; C25H14Cl2O9; MW 529.3), a novel fluorescent indicator, to assess ROS generation within human neuronal-glial (HNG) cells in primary co-culture. We introduced pathological stress using the sulfates of 12 environmentally-, industrially- and agriculturally-relevant divalent and trivalent metals including Al, Cd, Cu, Fe, Hg, Ga, Mg, Mn, Ni, Pb, Sn and Zn. In this experimental test system, of all the metal sulfates analyzed, aluminum sulfate showed by far the greatest ability to induce intracellular ROS. These studies indicate the utility of using isomeric mixtures of carboxy-H2DCFDA diacetates as novel and highly sensitive, long-lasting, cell-permeant, fluorescein-based tracers for quantifying ROS generation in intact, metabolizing human brain cells, and in analyzing the potential epigenetic contribution of different metal sulfates to ROS-generation and ROS-mediated neurological dysfunction. PMID:22949820
Human autoantibody to topoisomerase II.
Hoffmann, A; Heck, M M; Bordwell, B J; Rothfield, N F; Earnshaw, W C
1989-02-01
The rheumatic diseases are characterized by the production of autoantibodies that are usually directed against components of the cell nucleus. In this communication, we describe autoantibodies that recognize DNA topoisomerase II (anti-topoII) present in the serum of a patient with systemic lupus erythematosus. Several lines of evidence indicate that this antibody recognizes topoisomerase II. First, it binds to the native enzyme in soluble extracts prepared from isolated chromosomes and effectively depletes such extracts of active enzyme. Second, the serum binds to topoisomerase II in immunoblots of mitotic chromosomes and chromosome scaffolds. Finally, the antiserum binds strongly to a fusion protein encoded by a cloned cDNA and expressed in Escherichia coli that (based on immunological evidence) represents the carboxy-terminal portion of chicken topoisomerase II. Autoantibodies such as the one described here may provide useful reagents for the study of human topoisomerase II.
Cdyl: a new transcriptional co-repressor
Caron, Cécile; Pivot-Pajot, Christophe; van Grunsven, Leo A.; Col, Edwige; Lestrat, Cécile; Rousseaux, Sophie; Khochbin, Saadi
2003-01-01
Cdyl (chromodomain-Y-like) is a chromodomain-containing protein that is predominantly expressed during mouse spermiogenesis. In its carboxy-terminal portion, there is a domain with homology to the coenzyme A (CoA) pocket of the enoyl-CoA hydratase/isomerase, which is shown here to be able to bind CoA and histone deacetylases (HDACs). It also efficiently represses transcription. Moreover, the binding of Hdac1 represses the ability of Cdyl to bind CoA, and a Cdyl–CoA interaction only occurs in the absence of HDACs. These data suggest that Cdyl is primarily a transcriptional co-repressor. However, the degradation of cellular Hdac1 and Hdac2, as observed here in the elongating spermatids, may provide an HDAC-free environment in which Cdyl could bind CoA and participate in the global chromatin remodelling that occurs in these cells. PMID:12947414
Liu, Jinxuan; Shekhah, Osama; Stammer, Xia; Arslan, Hasan K.; Liu, Bo; Schüpbach, Björn; Terfort, Andreas; Wöll, Christof
2012-01-01
The liquid phase epitaxy (LPE) of the metal-organic framework (MOF) HKUST-1 has been studied for three different COOH-terminated templating organic surfaces prepared by the adsorption of self-assembled monolayers (SAMs) on gold substrates. Three different SAMs were used, mercaptohexadecanoic acid (MHDA), 4’-carboxyterphenyl-4-methanethiol (TPMTA) and 9-carboxy-10-(mercaptomethyl)triptycene (CMMT). The XRD data demonstrate that highly oriented HKUST-1 SURMOFs with an orientation along the (100) direction was obtained on MHDA-SAMs. In the case of the TPMTA-SAM, the quality of the deposited SURMOF films was found to be substantially inferior. Surprisingly, for the CMMT-SAMs, a different growth direction was obtained; XRD data reveal the deposition of highly oriented HKUST-1 SURMOFs grown along the (111) direction.
Promiscuous partnerships in Ewing's sarcoma.
Sankar, Savita; Lessnick, Stephen L
2011-07-01
Ewing's sarcoma is a highly aggressive bone and soft tissue tumor of children and young adults. At the molecular genetic level Ewing's sarcoma is characterized by a balanced reciprocal translocation, t(11;22)(q24;q12), which encodes an oncogenic fusion protein and transcription factor EWS/FLI. This tumor-specific chimeric fusion retains the amino terminus of EWS, a member of the TET (TLS/EWS/TAF15) family of RNA-binding proteins, and the carboxy terminus of FLI, a member of the ETS family of transcription factors. In addition to EWS/FLI, variant translocation fusions belonging to the TET/ETS family have been identified in Ewing's sarcoma. These studies solidified the importance of TET/ETS fusions in the pathogenesis of Ewing's sarcoma and have since been used as diagnostic markers for the disease. EWS fusions with non-ETS transcription factor family members have been described in sarcomas that are clearly distinct from Ewing's sarcoma. However, in recent years there have been reports of rare fusions in "Ewing's-like tumors" that harbor the amino-terminus of EWS fused to the carboxy-terminal DNA or chromatin-interacting domains contributed by non-ETS proteins. This review aims to summarize the growing list of fusion oncogenes that characterize Ewing's sarcoma and Ewing's-like tumors and highlights important questions that need to be answered to further support the existing concept that Ewing's sarcoma is strictly a "TET/ETS" fusion-driven malignancy. Understanding the molecular mechanisms of action of the various different fusion oncogenes will provide better insights into the biology underlying this rare but important solid tumor. Copyright © 2011 Elsevier Inc. All rights reserved.
Mirrors in the PDB: left-handed alpha-turns guide design with D-amino acids.
Annavarapu, Srinivas; Nanda, Vikas
2009-09-22
Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Propensities for amino acids to occur in contiguous alpha(L) helices correlate with published thermodynamic scales for incorporation of D-amino acids into alpha(R) helices. Two backbone rules for terminating a left-handed helix are found: an alpha(R) conformation is disfavored at the amino terminus, and a beta(R) conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to alpha(L) helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. By examining left-handed alpha-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed alpha-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayata, M.; Hirano, A.; Wong, T.C.
1989-03-01
Biken strain, a nonproductive measles viruslike agent isolated from a subacute sclerosing panencephalitis (SSPE) patient, contains a posttranscriptional defect affecting matrix (M) protein. A putative M protein was translated in vitro with RNA from Biken strain-infected cells. A similar protein was detected in vivo by an antiserum against a peptide synthesized from the cloned M gene of Edmonston strain measles virus. By using a novel method, full-length cDNAs of the Biken M gene were selectively cloned. The cloned Biken M gene contained an open reading frame which encoded 8 extra carboxy-terminal amino acid residues and 20 amino acid substitutions predictedmore » to affect both the hydrophobicity and secondary structure of the gene product. The cloned gene was expressed in vitro and in vivo into a 37,500 M/sub r/ protein electrophoretically and antigenically distinct from the M protein of Edmonston strain but identical to the M protein in Biken strain-infected cells. Chimeric M proteins synthesized in vitro and in vivo showed that the mutations in the carboxy-proximal region altered the local antigenicity and those in the amino region affected the overall protein conformation. The protein expressed from the Biken M gene was unstable in vivo. Instability was attributed to multiple mutations. These results offer insights into the basis of the defect in Biken strain and pose intriguing questions about the evolutionary origins of SSPE viruses in general.« less
Mirrors in the PDB: left-handed α-turns guide design with D-amino acids
Annavarapu, Srinivas; Nanda, Vikas
2009-01-01
Background Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Results Propensities for amino acids to occur in contiguous αL helices correlate with published thermodynamic scales for incorporation of D-amino acids into αR helices. Two backbone rules for terminating a left-handed helix are found: an αR conformation is disfavored at the amino terminus, and a βR conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to αL helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. Conclusion By examining left-handed α-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed α-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds. PMID:19772623
Naeem, Hina; Cheng, Donghang; Zhao, Qingshi; Underhill, Caroline; Tini, Marc; Bedford, Marc T; Torchia, Joseph
2007-01-01
The transcriptional coactivator p/CIP(SRC-3/AIB1/ACTR/RAC3) binds liganded nuclear hormone receptors and facilitates transcription by directly recruiting accessory factors such as acetyltransferase CBP/p300 and the coactivator arginine methyltransferase CARM1. In the present study, we have established that recombinant p/CIP (p300/CBP interacting protein) is robustly methylated by CARM1 in vitro but not by other protein arginine methyltransferase family members. Metabolic labeling of MCF-7 breast cancer cells with S-adenosyl-L-[methyl-(3)H]methionine and immunoblotting using dimethyl arginine-specific antibodies demonstrated that p/CIP is specifically methylated in intact cells. In addition, methylation of full-length p/CIP is not supported by extracts derived from CARM1(-/-) mouse embryo fibroblasts, indicating that CARM1 is required for p/CIP methylation. Using mass spectrometry, we have identified three CARM1-dependent methylation sites located in a glutamine-rich region within the carboxy terminus of p/CIP which are conserved among all steroid receptor coactivator proteins. These results were confirmed by in vitro methylation of p/CIP using carboxy-terminal truncation mutants and synthetic peptides as substrates for CARM1. Analysis of methylation site mutants revealed that arginine methylation causes an increase in full-length p/CIP turnover as a result of enhanced degradation. Additionally, methylation negatively impacts transcription via a second mechanism by impairing the ability of p/CIP to associate with CBP. Collectively, our data highlight coactivator methylation as an important regulatory mechanism in hormonal signaling.
Jung, Marie; Philpott, Martin; Müller, Susanne; Schulze, Jessica; Badock, Volker; Eberspächer, Uwe; Moosmayer, Dieter; Bader, Benjamin; Schmees, Norbert; Fernández-Montalván, Amaury; Haendler, Bernard
2014-01-01
Bromodomain protein 4 (BRD4) is a member of the bromodomain and extra-terminal domain (BET) protein family. It binds to acetylated histone tails via its tandem bromodomains BD1 and BD2 and forms a complex with the positive transcription elongation factor b, which controls phosphorylation of RNA polymerase II, ultimately leading to stimulation of transcription elongation. An essential role of BRD4 in cell proliferation and cancer growth has been reported in several recent studies. We analyzed the binding of BRD4 BD1 and BD2 to different partners and showed that the strongest interactions took place with di- and tetra-acetylated peptides derived from the histone 4 N-terminal tail. We also found that several histone 4 residues neighboring the acetylated lysines significantly influenced binding. We generated 10 different BRD4 BD1 mutants and analyzed their affinities to acetylated histone tails and to the BET inhibitor JQ1 using several complementary biochemical and biophysical methods. The impact of these mutations was confirmed in a cellular environment. Altogether, the results show that Trp-81, Tyr-97, Asn-140, and Met-149 play similarly important roles in the recognition of acetylated histones and JQ1. Pro-82, Leu-94, Asp-145, and Ile-146 have a more differentiated role, suggesting that different kinds of interactions take place and that resistance mutations compatible with BRD4 function are possible. Our study extends the knowledge on the contribution of individual BRD4 amino acids to histone and JQ1 binding and may help in the design of new BET antagonists with improved pharmacological properties. PMID:24497639
Erales, Jenny; Beltrandi, Matilde; Roche, Jennifer; Maté, Maria; Longhi, Sonia
2015-08-01
The Hendra virus is a member of the Henipavirus genus within the Paramyxoviridae family. The nucleoprotein, which consists of a structured core and of a C-terminal intrinsically disordered domain (N(TAIL)), encapsidates the viral genome within a helical nucleocapsid. N(TAIL) partly protrudes from the surface of the nucleocapsid being thus capable of interacting with the C-terminal X domain (XD) of the viral phosphoprotein. Interaction with XD implies a molecular recognition element (MoRE) that is located within N(TAIL) residues 470-490, and that undergoes α-helical folding. The MoRE has been proposed to be embedded in the hydrophobic groove delimited by helices α2 and α3 of XD, although experimental data could not discriminate between a parallel and an antiparallel orientation of the MoRE. Previous studies also showed that if the binding interface is enriched in hydrophobic residues, charged residues located close to the interface might play a role in complex formation. Here, we targeted for site directed mutagenesis two acidic and two basic residues within XD and N(TAIL). ITC studies showed that electrostatics plays a crucial role in complex formation and pointed a parallel orientation of the MoRE as more likely. Further support for a parallel orientation was afforded by SAXS studies that made use of two chimeric constructs in which XD and the MoRE were covalently linked to each other. Altogether, these studies unveiled the multiparametric nature of the interactions established within this complex and contribute to shed light onto the molecular features of protein interfaces involving intrinsically disordered regions. Copyright © 2015 Elsevier B.V. All rights reserved.
X-48C Hybrid - Blended Wing Body Demonstrator
2013-02-28
Earth and sky met as the X-48C Hybrid Wing Body aircraft flew over Edwards Air Force Base on Feb. 28, 2013, from NASA's Dryden Flight Research Center, Edwards, CA. The long boom protruding from between the tails is part of the aircraft's parachute-deployment flight termination system.
Microhydration and the Enhanced Acidity of Free Radicals.
Walton, John C
2018-02-14
Recent theoretical research employing a continuum solvent model predicted that radical centers would enhance the acidity (RED-shift) of certain proton-donor molecules. Microhydration studies employing a DFT method are reported here with the aim of establishing the effect of the solvent micro-structure on the acidity of radicals with and without RED-shifts. Microhydration cluster structures were obtained for carboxyl, carboxy-ethynyl, carboxy-methyl, and hydroperoxyl radicals. The numbers of water molecules needed to induce spontaneous ionization were determined. The hydration clusters formed primarily round the CO₂ units of the carboxylate-containing radicals. Only 4 or 5 water molecules were needed to induce ionization of carboxyl and carboxy-ethynyl radicals, thus corroborating their large RED-shifts.
Kavalenka, Aleh; Urbancic, Iztok; Belle, Valérie; Rouger, Sabrina; Costanzo, Stéphanie; Kure, Sandra; Fournel, André; Longhi, Sonia; Guigliarelli, Bruno; Strancar, Janez
2010-03-17
To characterize the structure of dynamic protein systems, such as partly disordered protein complexes, we propose a novel approach that relies on a combination of site-directed spin-labeled electron paramagnetic resonance spectroscopy and modeling of local rotation conformational spaces. We applied this approach to the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (N(TAIL)) both free and in complex with the X domain (XD, aa 459-507) of the viral phosphoprotein. By comparing measured and modeled temperature-dependent restrictions of the side-chain conformational spaces of 12 SL cysteine-substituted N(TAIL) variants, we showed that the 490-500 region of N(TAIL) is prestructured in the absence of the partner, and were able to quantitatively estimate, for the first time to our knowledge, the extent of the alpha-helical sampling of the free form. In addition, we showed that the 505-525 region of N(TAIL) conserves a significant degree of freedom even in the bound form. The latter two findings provide a mechanistic explanation for the reported rather high affinity of the N(TAIL)-XD binding reaction. Due to the nanosecond timescale of X-band EPR spectroscopy, we were also able to monitor the disordering in the 488-525 region of N(TAIL), in particular the unfolding of the alpha-helical region when the temperature was increased from 281 K to 310 K. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Sillence, D J; Raggers, R J; Neville, D C; Harvey, D J; van Meer, G
2000-08-01
In the present study, 2,2,6,6-tetramethylpiperidinooxy nitroxide (TEMPO) has been applied successfully to discriminate between glucosylceramide in the outer and inner leaflets of closed membrane bilayers. The nitroxyl radicals TEMPO and carboxy-TEMPO, once oxidized to nitrosonium ions, are capable of oxidizing residues that contain primary hydroxyl and amino groups. When applied to radiolabeled glucosylceramide in liposomes, oxidation with TEMPO led to an oxidized product that was easily separated from the original lipid by thin-layer chromatography, and that was identified by mass spectrometric analysis as the corresponding acid glucuronylceramide. To test whether oxidation was confined to the external leaflet, TEMPO was applied to large unilamellar vesicles (LUVs) consisting of egg phosphatidylcholine- egg phosphatidylethanolamine;-cholesterol 55:5:40 (mol/mol). TEMPO oxidized most radiolabeled phosphatidylethanolamine, whereas carboxy-TEMPO oxidized only half. Hydrolysis by phospholipase A(2) confirmed that 50% of the phosphatidylethanolamine was accessible in the external bilayer leaflet, suggesting that TEMPO penetrated the lipid bilayer and carboxy-TEMPO did not. When applied to LUVs containing <1 mol% radiolabeled glucosylceramide or short-chain C(6)-glucosylceramide, carboxy-TEMPO oxidized half the glucosylceramide. However, if surface C(6)-glucosylceramide was first depleted by bovine serum albumin (BSA) (extracting 49 +/- 1%), 94% of the remaining C(6)-glucosylceramide was resistant to oxidation. Carboxy-TEMPO oxidized glucosylceramide on the surface of LUVs without affecting inner leaflet glucosylceramide. At pH 9.5 and at 0 degrees C, the reaction reached completion by 20 min.
NASA Astrophysics Data System (ADS)
Pandey, Vishnudatt; Tiwari, Gargi; Mall, Vijaya Shri; Tiwari, Rakesh Kumar; Ojha, R. P.
2018-05-01
HIV-1 envelope glycoprotein-mediated fusion is managed by the concerted coalescence of the HIV-1 gp41 N- and C- helical regions, which is a product in the formation of 6-helix bundles. These two regions are considered prime targets for peptides and antibodies that inhibit HIV-1 entry. There are so many rational method aimed to attach a rationally designed artificial tail to the C-terminus of HIV-1 fusion inhibitors to increase their antiviral potency. Here M. D. simulation was performed to go insight for study of C-terminal tail of Ile-Asp-Leu (IDL).
Nephrogenic diabetes insipidus in mice caused by deleting COOH-terminal tail of aquaporin-2
Shi, Peijun P.; Cao, Xiao R.; Qu, Jing; Volk, Ken A.; Kirby, Patricia; Williamson, Roger A.; Stokes, John B.; Yang, Baoli
2009-01-01
In mammals, the hormonal regulation of water homeostasis is mediated by the aquaporin-2 water channel (Aqp2) of the collecting duct (CD). Vasopressin induces redistribution of Aqp2 from intracellular vesicles to the apical membrane of CD principal cells, accompanied by increased water permeability. Mutations of AQP2 gene in humans cause both recessive and dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin. In this study, we generated a line of mice with the distal COOH-terminal tail of the Aqp2 deleted (Aqp2Δ230), including the protein kinase A phosphorylation site (S256), but still retaining the putative apical localization signal (221–229) at the COOH-terminal. Mice heterozygous for the truncation appear normal. Homozygotes are viable to adulthood, with reduced urine concentrating capacity, increased urine output, decreased urine osmolality, and increased daily water consumption. Desmopressin increased urine osmolality in wild-type mice but had no effect on Aqp2Δ230/Δ230 mice. Kidneys from affected mice showed CD and pelvis dilatation and papillary atrophy. By immunohistochemical and immunoblot analyses using antibody against the NH2-terminal region of the protein Aqp2 Δ230/Δ230 mice had a markedly reduced protein abundance. Expression of the truncated protein in MDCK cells was consistent with a small amount of functional expression but no stimulation. Thus we have generated a mouse model of NDI that may be useful in studying the physiology and potential therapy of this disease. PMID:17229678
Bolduc, David; Rahdar, Meghdad; Tu-Sekine, Becky; Sivakumaren, Sindhu Carmen; Raben, Daniel; Amzel, L Mario; Devreotes, Peter; Gabelli, Sandra B; Cole, Philip
2013-01-01
The tumor suppressor PIP3 phosphatase PTEN is phosphorylated on four clustered Ser/Thr on its C-terminal tail (aa 380–385) and these phosphorylations are proposed to induce a reduction in PTEN’s plasma membrane recruitment. How these phosphorylations affect the structure and enzymatic function of PTEN is poorly understood. To gain insight into the mechanistic basis of PTEN regulation by phosphorylation, we generated semisynthetic site-specifically tetra-phosphorylated PTEN using expressed protein ligation. By employing a combination of biophysical and enzymatic approaches, we have found that purified tail-phosphorylated PTEN relative to its unphosphorylated counterpart shows reduced catalytic activity and membrane affinity and undergoes conformational compaction likely involving an intramolecular interaction between its C-tail and the C2 domain. Our results suggest that there is a competition between membrane phospholipids and PTEN phospho-tail for binding to the C2 domain. These findings reveal a key aspect of PTEN’s regulation and suggest pharmacologic approaches for direct PTEN activation. DOI: http://dx.doi.org/10.7554/eLife.00691.001 PMID:23853711
Schiefner, André; Gebauer, Michaela; Skerra, Arne
2012-05-18
The type III extra-domain B (ED-B) is specifically spliced into fibronectin (Fn) during embryogenesis and neoangiogenesis, including many cancers. The x-ray structure of the recombinant four-domain fragment Fn(III)7B89 reveals a tightly associated, extended head-to-tail dimer, which is stabilized via pair-wise shape and charge complementarity. A tendency toward ED-B-dependent dimer formation in solution was supported by size exclusion chromatography and analytical ultracentrifugation. When amending the model with the known three-dimensional structure of the Fn(III)10 domain, its RGD loop as well as the adhesion synergy region in Fn(III)9-10 become displayed on the same face of the dimer; this should allow simultaneous binding of at least two integrins and, thus, receptor clustering on the cell surface and intracellular signaling. Insertion of ED-B appears to stabilize overall head-to-tail dimerization of two separate Fn chains, which, together with alternating homodimer formation via disulfide bridges at the C-terminal Fn tail, should lead to the known macromolecular fibril formation.
Synthesis and biological evaluation of 6-carboxy-3,4-methanoprolines, new rigid glutamate analogs.
Marinozzi, M; Natalini, B; Ni, M H; Costantino, G; Pellicciari, R; Thomsen, C
1995-05-01
6-Carboxy-3,4-methanoprolines were prepared by reacting ethyl diazoacetate with the suitable 3,4-didehydroproline derivative in the presence of rhodium(II)acetate dimer as catalyst. The affinities of the title compounds for displacement of receptor binding to ionotropic and metabotropic (mGluR1 alpha) glutamate receptors were also determined.
3' terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing.
Goldfarb, Katherine C; Cech, Thomas R
2013-09-21
Post-transcriptional 3' end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3' RACE coupled with high-throughput sequencing to characterize the 3' terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes. The 3' terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3' terminus of an in vitro transcribed MRP RNA control and the differing 3' terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR). 3' RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3' terminal sequences of noncoding RNAs.
Complete genome sequence of yam chlorotic necrosis virus, a novel macluravirus infecting yam
USDA-ARS?s Scientific Manuscript database
Complete genomic sequence of a novel member of the genus Macluravirus was determined from yam plants with chlorotic and necrotic symptoms in China. The genomic RNA consists of 8,261 nucleotides (nt) excluding the 3’-terminal poly (A) tail, containing one long open reading frame (ORF) encoding a larg...
Histone H3 Lysine Methylation in Cognition and Intellectual Disability Disorders
ERIC Educational Resources Information Center
Parkel, Sven; Lopez-Atalaya, Jose P.; Barco, Angel
2013-01-01
Recent research indicates that epigenetic mechanisms and, in particular, the post-translational modification (PTM) of histones may contribute to memory encoding and storage. Among the dozens of possible histone PTMs, the methylation/demethylation of lysines in the N-terminal tail of histone H3 exhibits particularly strong links with cognitive…
Solution Structure and Membrane Interaction of the Cytoplasmic Tail of HIV-1 gp41 Protein.
Murphy, R Elliot; Samal, Alexandra B; Vlach, Jiri; Saad, Jamil S
2017-11-07
The cytoplasmic tail of gp41 (gp41CT) remains the last HIV-1 domain with an unknown structure. It plays important roles in HIV-1 replication such as mediating envelope (Env) intracellular trafficking and incorporation into assembling virions, mechanisms of which are poorly understood. Here, we present the solution structure of gp41CT in a micellar environment and characterize its interaction with the membrane. We show that the N-terminal 45 residues are unstructured and not associated with the membrane. However, the C-terminal 105 residues form three membrane-bound amphipathic α helices with distinctive structural features such as variable degree of membrane penetration, hydrophobic and basic surfaces, clusters of aromatic residues, and a network of cation-π interactions. This work fills a major gap by providing the structure of the last segment of HIV-1 Env, which will provide insights into the mechanisms of Gag-mediated Env incorporation as well as the overall Env mobility and conformation on the virion surface. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella
Bui, Khanh Huy; Sakakibara, Hitoshi; Movassagh, Tandis; Oiwa, Kazuhiro; Ishikawa, Takashi
2008-01-01
The inner dynein arm regulates axonemal bending motion in eukaryotes. We used cryo-electron tomography to reconstruct the three-dimensional structure of inner dynein arms from Chlamydomonas reinhardtii. All the eight different heavy chains were identified in one 96-nm periodic repeat, as expected from previous biochemical studies. Based on mutants, we identified the positions of the AAA rings and the N-terminal tails of all the eight heavy chains. The dynein f dimer is located close to the surface of the A-microtubule, whereas the other six heavy chain rings are roughly colinear at a larger distance to form three dyads. Each dyad consists of two heavy chains and has a corresponding radial spoke or a similar feature. In each of the six heavy chains (dynein a, b, c, d, e, and g), the N-terminal tail extends from the distal side of the ring. To interact with the B-microtubule through stalks, the inner-arm dyneins must have either different handedness or, more probably, the opposite orientation of the AAA rings compared with the outer-arm dyneins. PMID:19029338
Wheat glutenin: the "tail" of the 1By protein subunits.
Nunes-Miranda, Júlio D; Bancel, Emmanuelle; Viala, Didier; Chambon, Christophe; Capelo, José L; Branlard, Gérard; Ravel, Catherine; Igrejas, Gilberto
2017-10-03
Gluten-forming storage proteins play a major role in the viscoelastic properties of wheat dough through the formation of a continuous proteinaceous network. The high-molecular-weight glutenin subunits represent a functionally important subgroup of gluten proteins by promoting the formation of large glutenin polymers through interchain disulphide bonds between glutenin subunits. Here, we present evidences that y-type glutenin subunits encoded at the Glu-B1 locus are prone to proteolytic processing at the C-terminus tail, leading to the loss of the unique cysteine residue present at the C-terminal domain. Results obtained by intact mass measurement and immunochemistry for each proteoform indicate that the proteolytic cleavage appears to occur at the carboxyl-side of two conserved asparagine residues at the C-terminal domain start. Hence, we hypothesize that the responsible enzymes are a class of cysteine endopeptidases - asparaginyl endopeptidases - described in post-translational processing of other storage proteins in wheat. Biological significance The reported study provides new insights into wheat storage protein maturation. In view of the importance of gluten proteins on dough viscoelastic properties and end-product quality, the reported C-terminal domain cleavage of high-molecular-weight glutenin subunits is of particular interest, since this domain possesses a unique conserved cysteine residue which is assumed to participate in gluten polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.
Structural Requirements For Bone Sialoprotein Binding And Modulation Of Matrix Metalloproteinase-2
Jain, Alka; Karadag, Abdullah; Fisher, Larry W.; Fedarko, Neal S.
2008-01-01
Bone sialoprotein (BSP) has been shown to induce limited gelatinase activity in latent matrix metalloproteinase-2 (MMP-2) without removal of the propeptide and to restore enzymatic activity to MMP-2 previously inhibited by tissue inhibitor of matrix metalloproteinase-2 (TIMP2). The current study identifies structural domains in human BSP and MMP-2 that contribute to these interactions. The 26 amino acid domain encoded by exon 4 of BSP is shown by a series of binding and activity assays to be involved in the displacement of MMP-2′s propeptide from the active site and thereby inducing the protease activity. Binding assays in conjunction with enzyme activity assays demonstrate that both amino- and carboxy-terminal domains of BSP contribute to restoration of activity to TIMP2-inhibited MMP-2, while the MMP-2 hemopexin domain is not required for reactivation. PMID:18729384
Structural requirements for bone sialoprotein binding and modulation of matrix metalloproteinase-2.
Jain, Alka; Karadag, Abdullah; Fisher, Larry W; Fedarko, Neal S
2008-09-23
Bone sialoprotein (BSP) has been shown to induce limited gelatinase activity in latent matrix metalloproteinase-2 (MMP-2) without removal of the propeptide and to restore enzymatic activity to MMP-2 previously inhibited by tissue inhibitor of matrix metalloproteinase-2 (TIMP2). The current study identifies structural domains in human BSP and MMP-2 that contribute to these interactions. The 26 amino acid domain encoded by exon 4 of BSP is shown by a series of binding and activity assays to be involved in the displacement of MMP-2's propeptide from the active site and thereby inducing the protease activity. Binding assays in conjunction with enzyme activity assays demonstrate that both amino- and carboxy-terminal domains of BSP contribute to restoration of activity to TIMP2-inhibited MMP-2, while the MMP-2 hemopexin domain is not required for reactivation.
Rao, M; Matyas, G R; Grieder, F; Anderson, K; Jahrling, P B; Alving, C R
1999-08-06
An eight amino acid sequence (TELRTFSI) present in the carboxy terminal end (aa 577-584) of membrane-anchored GP, the major structural protein of Ebola virus, was identified as an H-2k-specific murine cytotoxic T cell epitope. Cytotoxic T lymphocytes (CTLs) to this epitope were induced by immunizing B10.BR mice intravenously with either irradiated Ebola virus or with irradiated Ebola virus encapsulated in liposomes containing lipid A. The CTL response induced by irradiated Ebola virus could not be sustained after the second round of in vitro stimulation of immune splenocytes with the peptide, unless the irradiated virus was encapsulated in liposomes containing lipid A. The identification of an Ebola GP-specific CTL epitope and the requirement of liposomal lipid A for CTL memory recall responses could prove to be a promising approach for developing a vaccine against Ebola virus infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, K.Y.
1988-01-01
The peptide, HLLVMKGAPER, which contains Lysine 501 of the {alpha} polypeptide can be released from intact sodium and potassium ion activated adenosinetriphosphatase by tryptic digestion. An immunoadsorbent directed against the carboxy-terminal, -GAPER, has been constructed. Sealed, right-side-out vesicles, prepared from canine renal kidneys, were labeled with pyridoxal phosphate and sodium ({sup 3}H)borohydride in the absence or presence of saponin, respectively. Large increases in the incorporation of radioactivity into the peptides bound by the immunoadsorbent were observed in the digest obtained from the vesicles exposed to saponin. From the results of several control experiments examining the labeling reaction it could bemore » concluded that the increase in the extent of modification was due to the cytoplasmic disposition of this segment in the native enzyme.« less
Frizzled 7 and PIP2 binding by syntenin PDZ2 domain supports Frizzled 7 trafficking and signalling
NASA Astrophysics Data System (ADS)
Egea-Jimenez, Antonio Luis; Gallardo, Rodrigo; Garcia-Pino, Abel; Ivarsson, Ylva; Wawrzyniak, Anna Maria; Kashyap, Rudra; Loris, Remy; Schymkowitz, Joost; Rousseau, Frederic; Zimmermann, Pascale
2016-07-01
PDZ domain-containing proteins work as intracellular scaffolds to control spatio-temporal aspects of cell signalling. This function is supported by the ability of their PDZ domains to bind other proteins such as receptors, but also phosphoinositide lipids important for membrane trafficking. Here we report a crystal structure of the syntenin PDZ tandem in complex with the carboxy-terminal fragment of Frizzled 7 and phosphatidylinositol 4,5-bisphosphate (PIP2). The crystal structure reveals a tripartite interaction formed via the second PDZ domain of syntenin. Biophysical and biochemical experiments establish co-operative binding of the tripartite complex and identify residues crucial for membrane PIP2-specific recognition. Experiments with cells support the importance of the syntenin-PIP2 interaction for plasma membrane targeting of Frizzled 7 and c-jun phosphorylation. This study contributes to our understanding of the biology of PDZ proteins as key players in membrane compartmentalization and dynamics.
A conserved Mediator–CDK8 kinase module association regulates Mediator–RNA polymerase II interaction
Tsai, Kuang-Lei; Sato, Shigeo; Tomomori-Sato, Chieri; Conaway, Ronald C.; Conaway, Joan W.; Asturias, Francisco J.
2013-01-01
The CDK8 kinase module (CKM) is a conserved, dissociable Mediator subcomplex whose component subunits were genetically linked to the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and individually recognized as transcriptional repressors before Mediator was identified as a preeminent complex in eukaryotic transcription regulation. We used macromolecular electron microscopy and biochemistry to investigate the subunit organization, structure, and Mediator interaction of the Saccharomyces cerevisiae CKM. We found that interaction of the CKM with Mediator’s Middle module interferes with CTD-dependent RNAPII binding to a previously unknown Middle module CTD-binding site targeted early on in a multi-step holoenzyme formation process. Taken together, our results reveal the basis for CKM repression, clarify the origin of the connection between CKM subunits and the CTD, and suggest that a combination of competitive interactions and conformational changes that facilitate holoenzyme formation underlie the Mediator mechanism. PMID:23563140
Graham, Steven H; Liu, Hao
2017-03-01
The ubiquitin proteasome pathway (UPP) is essential for removing abnormal proteins and preventing accumulation of potentially toxic proteins within the neuron. UPP dysfunction occurs with normal aging and is associated with abnormal accumulation of protein aggregates within neurons in neurodegenerative diseases. Ischemia disrupts UPP function and thus may contribute to UPP dysfunction seen in the aging brain and in neurodegenerative diseases. Ubiquitin carboxy-terminal hydrolase L1 (UCHL1), an important component of the UPP in the neuron, is covalently modified and its activity inhibited by reactive lipids produced after ischemia. As a result, degradation of toxic proteins is impaired which may exacerbate neuronal function and cell death in stroke and neurodegenerative diseases. Preserving or restoring UCHL1 activity may be an effective therapeutic strategy in stroke and neurodegenerative diseases. Published by Elsevier B.V.
Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation.
Yin, Hsien-Sheng; Wen, Xiaolin; Paterson, Reay G; Lamb, Robert A; Jardetzky, Theodore S
2006-01-05
Enveloped viruses have evolved complex glycoprotein machinery that drives the fusion of viral and cellular membranes, permitting entry of the viral genome into the cell. For the paramyxoviruses, the fusion (F) protein catalyses this membrane merger and entry step, and it has been postulated that the F protein undergoes complex refolding during this process. Here we report the crystal structure of the parainfluenza virus 5 F protein in its prefusion conformation, stabilized by the addition of a carboxy-terminal trimerization domain. The structure of the F protein shows that there are profound conformational differences between the pre- and postfusion states, involving transformations in secondary and tertiary structure. The positions and structural transitions of key parts of the fusion machinery, including the hydrophobic fusion peptide and two helical heptad repeat regions, clarify the mechanism of membrane fusion mediated by the F protein.
Favre, B; Begré, N; Borradori, L
2018-06-07
Desmoplakin (DSP) is a cytolinker of the plakin family. It mediates the connection of intermediate filaments (IFs) to desmosomes, intercellular adhesion junctions. The carboxyl (C)-terminal tail of DSP binds to IFs, while its amino-terminal part interacts with the armadillo proteins plakophilins and plakoglobin that in turn associate with the desmosomal cadherin desmogleins and desmocollins 1 . This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Noirclerc-Savoye, Marjolaine; Flayhan, Ali; Pereira, Cindy; Gallet, Benoit; Gans, Pierre; Ebel, Christine; Breyton, Cécile
2015-05-01
Upon binding to its bacterial host receptor, the tail tip of phage T5 perforates, by an unknown mechanism, the heavily armoured cell wall of the host. This allows the injection of phage DNA into the cytoplasm to hijack the cell machinery and enable the production of new virions. In the perspective of a structural study of the phage tail, we have systematically overproduced eight of the eleven T5 tail proteins, with or without a N- or a C-terminal His6-tag. The widely used Hi6-tag is very convenient to purify recombinant proteins using immobilised-metal affinity chromatography. The presence of a tag however is not always innocuous. We combined automated gene cloning and expression tests to rapidly identify the most promising constructs for proteins of phage T5 tail, and performed biochemical and biophysical characterisation and crystallisation screening on available proteins. Automated small-scale purification was adapted for two highly expressed proteins. We obtained structural information for three of the proteins. We showed that the presence of a His6-tag can have drastic effect on protein expression, solubility, oligomerisation propensity and crystal quality. Copyright © 2015 Elsevier Inc. All rights reserved.
Rao, Mala V.; Garcia, Michael L.; Miyazaki, Yukio; Gotow, Takahiro; Yuan, Aidong; Mattina, Salvatore; Ward, Chris M.; Calcutt, Nigel A.; Uchiyama, Yasuo; Nixon, Ralph A.; Cleveland, Don W.
2002-01-01
The COOH-terminal tail of mammalian neurofilament heavy subunit (NF-H), the largest neurofilament subunit, contains 44-51 lysine–serine–proline repeats that are nearly stoichiometrically phosphorylated after assembly into neurofilaments in axons. Phosphorylation of these repeats has been implicated in promotion of radial growth of axons, control of nearest neighbor distances between neurofilaments or from neurofilaments to other structural components in axons, and as a determinant of slow axonal transport. These roles have now been tested through analysis of mice in which the NF-H gene was replaced by one deleted in the NF-H tail. Loss of the NF-H tail and all of its phosphorylation sites does not affect the number of neurofilaments, alter the ratios of the three neurofilament subunits, or affect the number of microtubules in axons. Additionally, it does not reduce interfilament spacing of most neurofilaments, the speed of action potential propagation, or mature cross-sectional areas of large motor or sensory axons, although its absence slows the speed of acquisition of normal diameters. Most surprisingly, at least in optic nerve axons, loss of the NF-H tail does not affect the rate of transport of neurofilament subunits. PMID:12186852
Shu, Yaoling; Habchi, Johnny; Costanzo, Stéphanie; Padilla, André; Brunel, Joanna; Gerlier, Denis; Oglesbee, Michael; Longhi, Sonia
2012-04-06
The measles virus (MeV) phosphoprotein (P) tethers the polymerase to the nucleocapsid template for transcription and genome replication. Binding of P to nucleocapsid is mediated by the X domain of P (XD) and a conserved sequence (Box-2) within the C-terminal domain of the nucleoprotein (N(TAIL)). XD binding induces N(TAIL) α-helical folding, which in turn has been proposed to stabilize the polymerase-nucleocapsid complex, with cycles of binding and release required for transcription and genome replication. The current work directly assessed the relationships among XD-induced N(TAIL) folding, XD-N(TAIL) binding affinity, and polymerase activity. Amino acid substitutions that abolished XD-induced N(TAIL) α-helical folding were created within Box-2 of Edmonston MeV N(TAIL). Polymerase activity in minireplicons was maintained despite a 35-fold decrease in XD-N(TAIL) binding affinity or reduction/loss of XD-induced N(TAIL) alpha-helical folding. Recombinant infectious virus was recovered for all mutants, and transcriptase elongation rates remained within a 1.7-fold range of parent virus. Box-2 mutations did however impose a significant cost to infectivity, reflected in an increase in the amount of input genome required to match the infectivity of parent virus. Diminished infectivity could not be attributed to changes in virion protein composition or production of defective interfering particles, where changes from parent virus were within a 3-fold range. The results indicated that MeV polymerase activity, but not infectivity, tolerates amino acid changes in the XD-binding region of the nucleoprotein. Selectional pressure for conservation of the Box-2 sequence may thus reflect a role in assuring the fidelity of polymerase functions or the assembly of viral particles required for optimal infectivity.
Dubois, A B; Ogilvy, C S
1978-12-01
1. Pressures on the right and left sides of the tails of swimming bluefish were measured and found to have a range of +5.9 to -5.9 cm H2O. The pressures were resolved into their forward and lateral vectorial components of force to allow calculation of forward and lateral force and power at speeds ranging from 0.26 to 0.87 m/s. 2. The peak to peak changes in force of acceleration of the body, measured with a forward accelerometer averaged 209 g or 2.05 N at 0.48 m/s, and were compared with the maximum to minimum excursions of forward tail force averaging 201 g or 1.97 N at the same speed. The mean difference was 8 g, S.D. of the mean difference +/-29, SE. of mean difference +/-10 g. 3. Mean tail thrust was calculated as the time average of tail force in the forward direction. It averaged 65 g , or 0.64 N, at 0.48 m/s. The mean forward power was 0.34 N m/s at 0.48 m/s. The drag of the gauges and wires accounted for 10% of this figure. 4. The mean lateral power of the tail was 1.28 N m/s at a mean speed of 0.48 m/s. 5. The propulsive efficiency of the tail, calculated as the ratio of forward power to forward plus lateral power, was found to be 0.20 S.D.+/-0.04, S.E.+/-0.01 and was not related to speed. This suggests that 80% of the mechanical power of the tail was wasted. Turbulence in the water may have contributed to this large drag and low tail efficiency.
Deletion of the Tail Domain of the Kinesin-5 Cin8 Affects Its Directionality*
Düselder, André; Fridman, Vladimir; Thiede, Christina; Wiesbaum, Alice; Goldstein, Alina; Klopfenstein, Dieter R.; Zaitseva, Olga; Janson, Marcel E.; Gheber, Larisa; Schmidt, Christoph F.
2015-01-01
The bipolar kinesin-5 motors are one of the major players that govern mitotic spindle dynamics. Their bipolar structure enables them to cross-link and slide apart antiparallel microtubules (MTs) emanating from the opposing spindle poles. The budding yeast kinesin-5 Cin8 was shown to switch from fast minus-end- to slow plus-end-directed motility upon binding between antiparallel MTs. This unexpected finding revealed a new dimension of cellular control of transport, the mechanism of which is unknown. Here we have examined the role of the C-terminal tail domain of Cin8 in regulating directionality. We first constructed a stable dimeric Cin8/kinesin-1 chimera (Cin8Kin), consisting of head and neck linker of Cin8 fused to the stalk of kinesin-1. As a single dimeric motor, Cin8Kin switched frequently between plus and minus directionality along single MTs, demonstrating that the Cin8 head domains are inherently bidirectional, but control over directionality was lost. We next examined the activity of a tetrameric Cin8 lacking only the tail domains (Cin8Δtail). In contrast to wild-type Cin8, the motility of single molecules of Cin8Δtail in high ionic strength was slow and bidirectional, with almost no directionality switches. Cin8Δtail showed only a weak ability to cross-link MTs in vitro. In vivo, Cin8Δtail exhibited bias toward the plus-end of the MTs and was unable to support viability of cells as the sole kinesin-5 motor. We conclude that the tail of Cin8 is not necessary for bidirectional processive motion, but is controlling the switch between plus- and minus-end-directed motility. PMID:25991727
Diaby, Nouhou; Dold, Bernhard; Pfeifer, Hans-Rudolf; Holliger, Christof; Johnson, D Barrie; Hallberg, Kevin B
2007-02-01
The distribution and diversity of acidophilic bacteria of a tailings impoundment at the La Andina copper mine, Chile, was examined. The tailings have low sulfide (1.7% pyrite equivalent) and carbonate (1.4% calcite equivalent) contents and are stratified into three distinct zones: a surface (0-70-80 cm) 'oxidation zone' characterized by low-pH (2.5-4), a 'neutralization zone' (70-80 to 300-400 cm) and an unaltered 'primary zone' below 400 cm. A combined cultivation-dependent and biomolecular approach (terminal restriction enzyme fragment length polymorphism and 16S rRNA clone library analysis) was used to characterize the indigenous prokaryotic communities in the mine tailings. Total cell counts showed that the microbial biomass was greatest in the top 125 cm of the tailings. The largest numbers of bacteria (10(9) g(-1) dry weight of tailings) were found at the oxidation front (the junction between the oxidation and neutralization zones), where sulfide minerals and oxygen were both present. The dominant iron-/sulfur-oxidizing bacteria identified at the oxidation front included bacteria of the genus Leptospirillum (detected by molecular methods), and Gram-positive iron-oxidizing acidophiles related to Sulfobacillus (identified both by molecular and cultivation methods). Acidithiobacillus ferrooxidans was also detected, albeit in relatively small numbers. Heterotrophic acidophiles related to Acidobacterium capsulatum were found by molecular methods, while another Acidobacterium-like bacterium and an Acidiphilium sp. were isolated from oxidation zone samples. A conceptual model was developed, based on microbiological and geochemical data derived from the tailings, to account for the biogeochemical evolution of the Piuquenes tailings impoundment.
Štros, Michal; Kučírek, Martin; Sani, Soodabeh Abbasi; Polanská, Eva
2018-03-01
HMGB1 is a chromatin-associated protein that has been implicated in many important biological processes such as transcription, recombination, DNA repair, and genome stability. These functions include the enhancement of binding of a number of transcription factors, including the tumor suppressor protein p53, to their specific DNA-binding sites. HMGB1 is composed of two highly conserved HMG boxes, linked to an intrinsically disordered acidic C-terminal tail. Previous reports have suggested that the ability of HMGB1 to bend DNA may explain the in vitro HMGB1-mediated increase in sequence-specific DNA binding by p53. The aim of this study was to reinvestigate the importance of HMGB1-induced DNA bending in relationship to the ability of the protein to promote the specific binding of p53 to short DNA duplexes in vitro, and to transactivate two major p53-regulated human genes: Mdm2 and p21/WAF1. Using a number of HMGB1 mutants, we report that the HMGB1-mediated increase in sequence-specific p53 binding to DNA duplexes in vitro depends very little on HMGB1-mediated DNA bending. The presence of the acidic C-terminal tail of HMGB1 and/or the oxidation of the protein can reduce the HMGB1-mediated p53 binding. Interestingly, the induction of transactivation of p53-responsive gene promoters by HMGB1 requires both the ability of the protein to bend DNA and the acidic C-terminal tail, and is promoter-specific. We propose that the efficient transactivation of p53-responsive gene promoters by HMGB1 depends on complex events, rather than solely on the promotion of p53 binding to its DNA cognate sites. Copyright © 2018 Elsevier B.V. All rights reserved.
Yamaguchi, Masaya; Yu, Shanshan; Qiao, Renping; ...
2014-12-06
The anaphase-promoting complex/cyclosome (APC/C) is a massive E3 ligase that controls mitosis by catalyzing ubiquitination of key cell cycle regulatory proteins. The APC/C assembly contains two subcomplexes: the “Platform” centers around a cullin-RING-like E3 ligase catalytic core; the “Arc Lamp” is a hub that mediates transient association with regulators and ubiquitination substrates. The Arc Lamp contains the small subunits APC16, CDC26, and APC13, and tetratricopeptide repeat (TPR) proteins (APC7, APC3, APC6, and APC8) that homodimerize and stack with quasi-2-fold symmetry. Within the APC/C complex, APC3 serves as center for regulation. APC3's TPR motifs recruit substrate-binding coactivators, CDC20 and CDH1, viamore » their C-terminal conserved Ile-Arg (IR) tail sequences. Human APC3 also binds APC16 and APC7 and contains a > 200-residue loop that is heavily phosphorylated during mitosis, although the basis for APC3 interactions and whether loop phosphorylation is required for ubiquitination are unclear. Here, we map the basis for human APC3 assembly with APC16 and APC7, report crystal structures of APC3Δloop alone and in complex with the C-terminal domain of APC16, and test roles of APC3's loop and IR tail binding surfaces in APC/C-catalyzed ubiquitination. The structures show how one APC16 binds asymmetrically to the symmetric APC3 dimer and, together with biochemistry and prior data, explain how APC16 recruits APC7 to APC3, show how APC3's C-terminal domain is rearranged in the full APC/C assembly, and visualize residues in the IR tail binding cleft important for coactivator-dependent ubiquitination. Overall, the results provide insights into assembly, regulation, and interactions of TPR proteins and the APC/C.« less
Han, Jun; Chadha, Pooja; Meckes, David G; Baird, Nicholas L; Wills, John W
2011-09-01
The UL11 tegument protein of herpes simplex virus plays a critical role in the secondary envelopment; however, the mechanistic details remain elusive. Here, we report a new function of UL11 in the budding process in which it directs efficient acquisition of glycoprotein E (gE) via a direct interaction. In vitro binding assays showed that the interaction required only the first 28, membrane-proximal residues of the cytoplasmic tail of gE, and the C-terminal 26 residues of UL11. A second, weaker binding site was also found in the N-terminal half of UL11. The significance of the gE-UL11 interaction was subsequently investigated with viral deletion mutants. In the absence of the gE tail, virion packaging of UL11, but not other tegument proteins such as VP22 and VP16, was reduced by at least 80%. Reciprocally, wild-type gE packaging was also drastically reduced by about 87% in the absence of UL11, and this defect could be rescued in trans by expressing U(L)11 at the U(L)35 locus. Surprisingly, a mutant that lacks the C-terminal gE-binding site of UL11 packaged nearly normal amounts of gE despite its strong interaction with the gE tail in vitro, indicating that the interaction with the UL11 N terminus may be important. Mutagenesis studies of the UL11 N terminus revealed that the association of UL11 with membrane was not required for this function. In contrast, the UL11 acidic cluster motif was found to be critical for gE packaging and was not replaceable with foreign acidic clusters. Together, these results highlight an important role of UL11 in the acquisition of glycoprotein-enriched lipid bilayers, and the findings may also have important implications for the role of UL11 in gE-mediated cell-to-cell spread.
Regla-Nava, Jose A.; Nieto-Torres, Jose L.; Jimenez-Guardeño, Jose M.; Fernandez-Delgado, Raul; Fett, Craig; Castaño-Rodríguez, Carlos; Perlman, Stanley; DeDiego, Marta L.
2015-01-01
ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) causes a respiratory disease with a mortality rate of 10%. A mouse-adapted SARS-CoV (SARS-CoV-MA15) lacking the envelope (E) protein (rSARS-CoV-MA15-ΔE) is attenuated in vivo. To identify E protein regions and host responses that contribute to rSARS-CoV-MA15-ΔE attenuation, several mutants (rSARS-CoV-MA15-E*) containing point mutations or deletions in the amino-terminal or the carboxy-terminal regions of the E protein were generated. Amino acid substitutions in the amino terminus, or deletion of regions in the internal carboxy-terminal region of E protein, led to virus attenuation. Attenuated viruses induced minimal lung injury, diminished limited neutrophil influx, and increased CD4+ and CD8+ T cell counts in the lungs of BALB/c mice, compared to mice infected with the wild-type virus. To analyze the host responses leading to rSARS-CoV-MA15-E* attenuation, differences in gene expression elicited by the native and mutant viruses in the lungs of infected mice were determined. Expression levels of a large number of proinflammatory cytokines associated with lung injury were reduced in the lungs of rSARS-CoV-MA15-E*-infected mice, whereas the levels of anti-inflammatory cytokines were increased, both at the mRNA and protein levels. These results suggested that the reduction in lung inflammation together with a more robust antiviral T cell response contributed to rSARS-CoV-MA15-E* attenuation. The attenuated viruses completely protected mice against challenge with the lethal parental virus, indicating that these viruses are promising vaccine candidates. IMPORTANCE Human coronaviruses are important zoonotic pathogens. SARS-CoV caused a worldwide epidemic infecting more than 8,000 people with a mortality of around 10%. Therefore, understanding the virulence mechanisms of this pathogen and developing efficacious vaccines are of high importance to prevent epidemics from this and other human coronaviruses. Previously, we demonstrated that a SARS-CoV lacking the E protein was attenuated in vivo. Here, we show that small deletions and modifications within the E protein led to virus attenuation, manifested by minimal lung injury, limited neutrophil influx to the lungs, reduced expression of proinflammatory cytokines, increased anti-inflammatory cytokine levels, and enhanced CD4+ and CD8+ T cell counts in vivo, suggesting that these phenomena contribute to virus attenuation. The attenuated mutants fully protected mice from challenge with virulent virus. These studies show that mutations in the E protein are not well tolerated and indicate that this protein is an excellent target for vaccine development. PMID:25609816
Promiscuous Partnerships in Ewing’s Sarcoma
Sankar, Savita; Lessnick, Stephen L.
2011-01-01
Ewing’s sarcoma is a highly aggressive bone and soft tissue tumor of children and young adults. At the molecular genetic level Ewing’s sarcoma is characterized by a balanced reciprocal translocation, t(11;22)(q24;q12), which encodes an oncogenic fusion protein and transcription factor EWS/FLI. This tumor-specific chimeric fusion retains the amino terminus of EWS, a member of the TET (TLS/EWS/TAF15) family of RNA-binding proteins, and the carboxy terminus of FLI, a member of the ETS family of transcription factors. In addition to EWS/FLI, variant translocation fusions belonging to the TET/ETS family have been identified in Ewing’s sarcoma. These studies solidified the importance of TET/ETS fusions in the pathogenesis of Ewing’s sarcoma and have since been used as diagnostic markers for the disease. EWS fusions with non-ETS transcription factor family members have been described in sarcomas that are clearly distinct from Ewing’s sarcoma. However, in recent years there have been reports of rare fusions in “Ewing’s-like tumors” that harbor the amino-terminus of EWS fused to the carboxy-terminal DNA or chromatin-interacting domains contributed by non-ETS proteins. This review aims to summarize the growing list of fusion oncogenes that characterize Ewing’s sarcoma and Ewing’s-like tumors and highlights important questions that need to be answered to further support the existing concept that Ewing’s sarcoma is strictly a “TET/ETS” fusion-driven malignancy. Understanding the molecular mechanisms of action of the various different fusion oncogenes will provide better insights into the biology underlying this rare but important solid tumor. PMID:21872822
Analysis of a developmentally regulated nuclear localization signal in Xenopus
1992-01-01
The 289 residue nuclear oncoprotein encoded by the adenovirus 5 Ela gene contains two peptide sequences that behave as nuclear localization signals (NLS). One signal, located at the carboxy terminus, is like many other known NLSs in that it consists of a short stretch of basic residues (KRPRP) and is constitutively active in cells. The second signal resides within an internal 45 residue region of E1a that contains few basic residues or sequences that resemble other known NLSs. Moreover, this internal signal functions in injected Xenopus oocytes, but not in transfected Xenopus A6 cells, suggesting that it could be regulated developmentally (Slavicek et al. 1989. J. Virol. 63:4047). In this study, we show that the activity of this signal is sensitive to ATP depletion in vivo, efficiently directs the import of a 50 kD fusion protein and can compete with the E1a carboxy-terminal NLS for nuclear import. In addition, we have delineated the precise amino acid residues that comprise the second E1a NLS, and have assessed its utilization during Xenopus embryogenesis. Using amino acid deletion and substitution analyses, we show that the signal consists of the sequence FV(X)7-20MXSLXYM(X)4MF. By expressing in Xenopus embryos a truncated E1a protein that contains only the second NLS and by monitoring its cytoplasmic/nuclear distribution during development with indirect immunofluorescence, we find that the second NLS is utilized up to the early neurula stage. In addition, there appears to be a hierarchy among the embryonic germ layers as to when the second NLS becomes nonfunctional. For this reason, we refer to this NLS as the developmentally regulated nuclear localization signal (drNLS). The implications of these findings for early development are discussed. PMID:1387407
Effects of Chemical Structure on Hydrolysis Pathways of Small Peptides in Coastal Seawater
NASA Astrophysics Data System (ADS)
Liu, S.; Reyna, N. E.; Hamdan, L. J.; Liu, Z.
2016-02-01
Deciphering peptide hydrolysis pathways is key to understanding the mechanism of peptide hydrolysis, in particular the types of extracellular enzymes that are active in seawater. From the hydrolyzed fragments of small peptides, one can estimate the role of amino-, carboxy-, and endopeptidases in a quantitative way. In this study, we incubated several small peptides with different amino acid compositions, alanine-valine-phenylalanine-alanine (AVFA), phenylalanine-alanine-serine-tryptophan-glycine-alanine (FASWGA), VFA, SWGA, VVFA, arginine-valine-phenylalanine-alanine (RVFA), SVFA, aspartic acid-valine-phenylalanine-alanine (DVFA), trialanine (AAA), and AVF in two coastal seawaters (ship channel seawater in the western Gulf of Mexico and Sta. C6 seawater in the northern Gulf of Mexico). In both seawaters, aminopeptidases played a more dominant role (22-67%) in hydrolyzing peptides with hydrophobic amino acid at the N-terminus, such as AVFA, VVFA, VFA, and AAA, or with basic amino acid at the N-terminus (RVFA), as compared to those with N-terminal polar amino acid (SVFA, SWGA) or acidic amino acid (DVFA) (0-24%). This result indicates that amino acid composition in a peptide structure affects how the peptide is hydrolyzed. We also found that peptides in the C6 seawater were hydrolyzed dominantly by aminopeptidases (10-59%), while those in the ship channel seawater also by endo- or carboxypeptidases (9-69%). This pattern suggests that peptide hydrolysis pathways depend on specific environment conditions, such as bacterial community structure, that can lead to variations in abundances or activities among amino-, carboxy- and endopeptidases. Overall, the results provide insights into the effects of chemical structure and seawater environment on peptide hydrolysis pathways.
Michaille, J J; Blanchet, S; Kanzler, B; Garnier, J M; Dhouailly, D
1994-12-01
Retinoic acid receptors alpha, beta and gamma (RAR alpha, beta and gamma) are ligand-inductible transcriptional activators which belong to the steroid/thyroid hormone receptor superfamily. At least two major isoforms (1 and 2) of each RAR arise by differential use of two promoters and alternative splicing. In mouse, the three RAR genes are expressed in stage- and tissue-specific patterns during embryonic development. In order to understand the role of the different RARs in chick, RAR gamma 2 cDNAs were isolated from an 8.5-day (stage 35 of Hamburger and Hamilton) chick embryo skin library. The deduced chick RAR gamma 2 amino acid sequence displays uncommon features such as 21 specific amino acid replacements, 12 of them being clustered in the amino-terminal region (domains A2 and B), and a truncated acidic carboxy-terminal region (F domain). However, the pattern of RAR gamma expression in chick embryo resembles that reported in mouse, particularly in skin where RAR gamma expression occurs in both the dermal and epidermal layers at the beginning of feather formation, and is subsequently restricted to the differentiating epidermal cells. Northern blot analysis suggests that different RAR gamma isoforms could be successively required during chick development.
RFamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential
Findeisen, Maria; Rathmann, Daniel; Beck-Sickinger, Annette G.
2011-01-01
Different neuropeptides, all containing a common carboxy-terminal RFamide sequence, have been characterized as ligands of the RFamide peptide receptor family. Currently, five subgroups have been characterized with respect to their N-terminal sequence and hence cover a wide pattern of biological functions, like important neuroendocrine, behavioral, sensory and automatic functions. The RFamide peptide receptor family represents a multiligand/multireceptor system, as many ligands are recognized by several GPCR subtypes within one family. Multireceptor systems are often susceptible to cross-reactions, as their numerous ligands are frequently closely related. In this review we focus on recent results in the field of structure-activity studies as well as mutational exploration of crucial positions within this GPCR system. The review summarizes the reported peptide analogs and recently developed small molecule ligands (agonists and antagonists) to highlight the current understanding of the pharmacophoric elements, required for affinity and activity at the receptor family. Furthermore, we address the biological functions of the ligands and give an overview on their involvement in physiological processes. We provide insights in the knowledge for the design of highly selective ligands for single receptor subtypes to minimize cross-talk and to eliminate effects from interactions within the GPCR system. This will support the drug development of members of the RFamide family.
Structural basis for modulation and agonist specificity of HCN pacemaker channels.
Zagotta, William N; Olivier, Nelson B; Black, Kevin D; Young, Edgar C; Olson, Rich; Gouaux, Eric
2003-09-11
The family of hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels are crucial for a range of electrical signalling, including cardiac and neuronal pacemaker activity, setting resting membrane electrical properties and dendritic integration. These nonselective cation channels, underlying the I(f), I(h) and I(q) currents of heart and nerve cells, are activated by membrane hyperpolarization and modulated by the binding of cyclic nucleotides such as cAMP and cGMP. The cAMP-mediated enhancement of channel activity is largely responsible for the increase in heart rate caused by beta-adrenergic agonists. Here we have investigated the mechanism underlying this modulation by studying a carboxy-terminal fragment of HCN2 containing the cyclic nucleotide-binding domain (CNBD) and the C-linker region that connects the CNBD to the pore. X-ray crystallographic structures of this C-terminal fragment bound to cAMP or cGMP, together with equilibrium sedimentation analysis, identify a tetramerization domain and the mechanism for cyclic nucleotide specificity, and suggest a model for ligand-dependent channel modulation. On the basis of amino acid sequence similarity to HCN channels, the cyclic nucleotide-gated, and eag- and KAT1-related families of channels are probably related to HCN channels in structure and mechanism.
Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems.
Bongiorni, Cristina; Ishikawa, Shu; Stephenson, Sophie; Ogasawara, Naotake; Perego, Marta
2005-07-01
The 11 Rap proteins of Bacillus subtilis comprise a conserved family of tetratricopeptide (TPR)-containing regulatory proteins. Their activity is inhibited by specific Phr pentapeptides produced from the product of phr genes through an export-import maturation process. We found that one of the proteins, namely RapF, is involved in the regulation of competence to DNA transformation. The ComA response regulator and transcription factor for initiation of competence development is the target of RapF. Specific binding of RapF to the carboxy-terminal DNA-binding domain of ComA inhibits the response regulator's ability to bind its target DNA promoters. The PhrF C-terminal pentapeptide, QRGMI, inhibits RapF activity. The activity of RapF and PhrF in regulating competence development is analogous to the previously described activity of RapC and PhrC (L. J. Core and M. Perego, Mol. Microbiol. 49:1509-1522, 2003). In fact, the RapF and PhrF pair of proteins acts synergistically with RapC and PhrC in the overall regulation of the ComA transcription factor. Since the transcription of the RapC- and RapF-encoding genes is positively regulated by their own target ComA, an autoregulatory circuit must exist for the competence transcription factor in order to modulate its activity.
NASA Technical Reports Server (NTRS)
Reddy, A. S.; Czernik, A. J.; An, G.; Poovaiah, B. W.
1992-01-01
We cloned and sequenced a plant cDNA that encodes U1 small nuclear ribonucleoprotein (snRNP) 70K protein. The plant U1 snRNP 70K protein cDNA is not full length and lacks the coding region for 68 amino acids in the amino-terminal region as compared to human U1 snRNP 70K protein. Comparison of the deduced amino acid sequence of the plant U1 snRNP 70K protein with the amino acid sequence of animal and yeast U1 snRNP 70K protein showed a high degree of homology. The plant U1 snRNP 70K protein is more closely related to the human counter part than to the yeast 70K protein. The carboxy-terminal half is less well conserved but, like the vertebrate 70K proteins, is rich in charged amino acids. Northern analysis with the RNA isolated from different parts of the plant indicates that the snRNP 70K gene is expressed in all of the parts tested. Southern blotting of genomic DNA using the cDNA indicates that the U1 snRNP 70K protein is coded by a single gene.
The neuropeptide substance P stimulates the effector functions of platelets.
Damonneville, M; Monté, D; Auriault, C; Capron, A
1990-01-01
Sensory neuropeptides, such as substance P, appear as potent mediators of various immunological reactions, and inhibit or stimulate a wide range of functions of immune inflammatory cells. Platelets were recently shown to participate as effector cells in an IgE or lymphokine-dependent killing of parasites. Substance P and its carboxy-terminal fragment SP (4-11) induce the cytotoxic activity of platelets towards the larvae of Schistosoma mansoni, respectively, by 90% and 40%, whereas the modified C terminal SP, the SP-free acid, exhibits no effect on the platelets. The neuropeptide effects occur at low doses (10(-8) M), are specific as shown by inhibition studies with a substance P antagonist, the D-SP. Binding data obtained after flow cytofluorometry with FITC-SP lead to the conclusion that SP binds specifically to about 20% of the homogenous population of platelets. Moreover, IgE could modulate the SP-dependent functions of platelets since the pre-incubation with myeloma human IgE or with AP2 monoclonal antibodies--known to inhibit the IgE-dependent killing of these cells-leads to a dramatic decrease of the SP dependent cytotoxic activity of platelets towards the larvae. These findings identify a potent mechanism for nervous system regulation of host defence responses. PMID:1696868
Wang, Meijiao; Yu, Tinghe; Hu, Lina; Cheng, Zhi; Li, Min
2016-01-01
Ubiquitin C-terminal hydrolase L3 (UCHL3) belongs to the group of deubiquitinating enzymes and plays a part in apoptosis of germ cells and the differentiation of spermatocytes into spermatids. However, the exact role of UCHL3 in human spermatogenesis and sperm function remains unknown. Here we examined the level and activity of UCHL3 in spermatozoa from men with asthenozoospermia (A), oligoasthenozoospermia (OA) or normozoospermia (N). Immunofluorescence indicated that UCHL3 was mainly localized in the acrosome and throughout the flagella, and western blotting revealed a lower level in A or OA compared with N (p < 0.05). The catalytic activity of UCHL3 was decreased in spermatozoa from A or OA (p < 0.05, p < 0.001, respectively). The level and activity of UCHL3 were positively correlated with sperm count, concentration and motility. The UCHL3 level was positively correlated with the normal fertilization rate (FR) and percentage of embryos suitable for transfer/cryopreservation of in vitro fertilization (IVF). The UCHL3 activity was also positively correlated with FR, the percentage of embryos suitable for transfer/cryopreservation and high-quality embryos rate of IVF. Aforementioned correlations were not manifested in intra-cytoplasmic sperm injection (ICSI). These findings suggest that UCHL3 may play a role in male infertility.
Characterization of a novel eukaryal nick-sealing RNA ligase from Naegleria gruberi
Unciuleac, Mihaela-Carmen; Shuman, Stewart
2015-01-01
The proteome of the amoebo-flagellate protozoan Naegleria gruberi is rich in candidate RNA repair enzymes, including 15 putative RNA ligases, one of which, NgrRnl, is a eukaryal homolog of Deinococcus radiodurans RNA ligase, DraRnl. Here we report that purified recombinant NgrRnl seals nicked 3′-OH/5′-PO4 duplexes in which the 3′-OH strand is RNA. It does so via the “classic” ligase pathway, entailing reaction with ATP to form a covalent NgrRnl–AMP intermediate, transfer of AMP to the nick 5′-PO4, and attack of the RNA 3′-OH on the adenylylated nick to form a 3′–5′ phosphodiester. Unlike members of the four known families of ATP-dependent RNA ligases, NgrRnl lacks a carboxy-terminal appendage to its nucleotidyltransferase domain. Instead, it contains a defining amino-terminal domain that we show is important for 3′-OH/5′-PO4 nick-sealing and ligase adenylylation, but dispensable for phosphodiester synthesis at a preadenylylated nick. We propose that NgrRnl, DraRnl, and their homologs from diverse bacteria, viruses, and unicellular eukarya comprise a new “Rnl5 family” of nick-sealing ligases with a signature domain organization. PMID:25740837
Identification of a polymorphic collagen-like protein in the crustacean bacteria Pasteuria ramosa.
Mouton, Laurence; Traunecker, Emmanuel; McElroy, Kerensa; Du Pasquier, Louis; Ebert, Dieter
2009-12-01
Pasteuria ramosa is a spore-forming bacterium that infects Daphnia species. Previous results demonstrated a high specificity of host clone/parasite genotype interactions. Surface proteins of bacteria often play an important role in attachment to host cells prior to infection. We analyzed surface proteins of P. ramosa spores by two-dimensional gel electrophoresis. For the first time, we prove that two isolates selected for their differences in infectivity reveal few but clear-cut differences in protein patterns. Using internal sequencing and LC/MS/MS, we identified a collagen-like protein named Pcl1a (Pasteuria collagen-like protein 1a). This protein, reconstructed with the help of Pasteuria genome sequences, contains three domains: a 75-amino-acid amino-terminal domain with a potential transmembrane helix domain, a central collagen-like region (CLR) containing Gly-Xaa-Yaa (GXY) repeats, and a 7-amino-acid carboxy-terminal domain. The CLR region is polymorphic among the two isolates with amino-acid substitutions and a variable number of GXY triplets. Collagen-like proteins are rare in prokaryotes, although they have been described in several pathogenic bacteria, including Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis, closely related to Pasteuria species, in which they could be involved in the adherence of bacteria to host cells.
Coumailleau, Franck; Das, Vincent; Alcover, Andres; Raposo, Graça; Vandormael-Pournin, Sandrine; Le Bras, Stéphanie; Baldacci, Patricia; Dautry-Varsat, Alice; Babinet, Charles; Cohen-Tannoudji, Michel
2004-01-01
Endocytosed membrane components are recycled to the cell surface either directly from early/sorting endosomes or after going through the endocytic recycling compartment (ERC). Studying recycling mechanisms is difficult, in part due to the fact that specific tools to inhibit this process are scarce. In this study, we have characterized a novel widely expressed protein, named Rififylin (Rffl) for RING Finger and FYVE-like domain-containing protein, that, when overexpressed in HeLa cells, induced the condensation of transferrin receptor-, Rab5-, and Rab11-positive recycling tubulovesicular membranes in the perinuclear region. Internalized transferrin was able to access these condensed endosomes but its exit from this compartment was delayed. Using deletion mutants, we show that the carboxy-terminal RING finger of Rffl is dispensable for its action. In contrast, the amino-terminal domain of Rffl, which shows similarities with the phosphatidylinositol-3-phosphate–binding FYVE finger, is critical for the recruitment of Rffl to recycling endocytic membranes and for the inhibition of recycling, albeit in a manner that is independent of PtdIns(3)-kinase activity. Rffl overexpression represents a novel means to inhibit recycling that will help to understand the mechanisms involved in recycling from the ERC to the plasma membrane. PMID:15229288
Coumailleau, Franck; Das, Vincent; Alcover, Andres; Raposo, Graça; Vandormael-Pournin, Sandrine; Le Bras, Stéphanie; Baldacci, Patricia; Dautry-Varsat, Alice; Babinet, Charles; Cohen-Tannoudji, Michel
2004-10-01
Endocytosed membrane components are recycled to the cell surface either directly from early/sorting endosomes or after going through the endocytic recycling compartment (ERC). Studying recycling mechanisms is difficult, in part due to the fact that specific tools to inhibit this process are scarce. In this study, we have characterized a novel widely expressed protein, named Rififylin (Rffl) for RING Finger and FYVE-like domain-containing protein, that, when overexpressed in HeLa cells, induced the condensation of transferrin receptor-, Rab5-, and Rab11-positive recycling tubulovesicular membranes in the perinuclear region. Internalized transferrin was able to access these condensed endosomes but its exit from this compartment was delayed. Using deletion mutants, we show that the carboxy-terminal RING finger of Rffl is dispensable for its action. In contrast, the amino-terminal domain of Rffl, which shows similarities with the phosphatidylinositol-3-phosphate-binding FYVE finger, is critical for the recruitment of Rffl to recycling endocytic membranes and for the inhibition of recycling, albeit in a manner that is independent of PtdIns(3)-kinase activity. Rffl overexpression represents a novel means to inhibit recycling that will help to understand the mechanisms involved in recycling from the ERC to the plasma membrane.
Stress-induced rise in serum anti-brain autoantibody levels in the rat.
Andrejević, S; Bukilica, M; Dimitrijević, M; Laban, O; Radulovic, J; Kovacevic-Jovanovic, V; Stanojevic, S; Vasiljevic, T; Marković, B M
1997-02-01
Sera from Wistar rats subjected to different stress procedures were tested by ELISA for the presence of autoantibodies with specificity for neuron-specific enolase (NSE) and S100 protein that are preferentially localized in neurons and glia, respectively. Autoantibodies were present in sera of animals before exposure to stress, and raised with age. Anti-NSE and anti-S100 autoantibody levels were increased one day after termination of restraint (2 hours daily, 10 days) and electric tail shock (80 shocks daily, 19 days), and in fifth and tenth week of overcrowding stress. Differences between stressed and control animals were not present one month following restraint and electric tail shock and in twentieth week of overcrowding.
Rodrigues, Gerard A.; Falasca, Marco; Zhang, Zhongtao; Ong, Siew Hwa; Schlessinger, Joseph
2000-01-01
The Gab1 protein is tyrosine phosphorylated in response to various growth factors and serves as a docking protein that recruits a number of downstream signaling proteins, including phosphatidylinositol 3-kinase (PI-3 kinase). To determine the role of Gab1 in signaling via the epidermal growth factor (EGF) receptor (EGFR) we tested the ability of Gab1 to associate with and modulate signaling by this receptor. We show that Gab1 associates with the EGFR in vivo and in vitro via pTyr sites 1068 and 1086 in the carboxy-terminal tail of the receptor and that overexpression of Gab1 potentiates EGF-induced activation of the mitogen-activated protein kinase and Jun kinase signaling pathways. A mutant of Gab1 unable to bind the p85 subunit of PI-3 kinase is defective in potentiating EGFR signaling, confirming a role for PI-3 kinase as a downstream effector of Gab1. Inhibition of PI-3 kinase by a dominant-interfering mutant of p85 or by Wortmannin treatment similarly impairs Gab1-induced enhancement of signaling via the EGFR. The PH domain of Gab1 was shown to bind specifically to phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3], a product of PI-3 kinase, and is required for activation of Gab1-mediated enhancement of EGFR signaling. Moreover, the PH domain mediates Gab1 translocation to the plasma membrane in response to EGF and is required for efficient tyrosine phosphorylation of Gab1 upon EGF stimulation. In addition, overexpression of Gab1 PH domain blocks Gab1 potentiation of EGFR signaling. Finally, expression of the gene for the lipid phosphatase PTEN, which dephosphorylates PtdIns(3,4,5)P3, inhibits EGF signaling and translocation of Gab1 to the plasma membrane. These results reveal a novel positive feedback loop, modulated by PTEN, in which PI-3 kinase functions as both an upstream regulator and a downstream effector of Gab1 in signaling via the EGFR. PMID:10648629
Complete genome sequence of Paris mosaic necrosis virus, a distinct member of the genus Potyvirus
USDA-ARS?s Scientific Manuscript database
The complete genomic sequence of a novel potyvirus was determined from Paris polyphylla var. yunnanensis. Its genomic RNA consists of 9,660 nucleotides (nt) excluding the 3’-terminal poly (A) tail, containing a single open reading frame (ORF) encoding a large polyprotein. The virus shares 52.1-69.7%...
Vitolo, Joseph M.; Thiriet, Christophe; Hayes, Jeffrey J.
2000-01-01
Reconstitution of a DNA fragment containing a Xenopus borealis somatic type 5S rRNA gene into a nucleosome greatly restricts the binding of transcription factor IIIA (TFIIIA) to its cognate DNA sequence within the internal promoter of the gene. Removal of all core histone tail domains by limited trypsin proteolysis or acetylation of the core histone tails significantly relieves this inhibition and allows TFIIIA to exhibit high-affinity binding to nucleosomal DNA. Since only a single tail or a subset of tails may be primarily responsible for this effect, we determined whether removal of the individual tail domains of the H2A-H2B dimer or the H3-H4 tetramer affects TFIIIA binding to its cognate DNA site within the 5S nucleosome in vitro. The results show that the tail domains of H3 and H4, but not those of H2A and/or H2B, directly modulate the ability of TFIIIA to bind nucleosomal DNA. In vitro transcription assays carried out with nucleosomal templates lacking individual tail domains show that transcription efficiency parallels the binding of TFIIIA. In addition, we show that the stoichiometry of core histones within the 5S DNA-core histone-TFIIIA triple complex is not changed upon TFIIIA association. Thus, TFIIIA binding occurs by displacement of H2A-H2B–DNA contacts but without complete loss of the dimer from the nucleoprotein complex. These data, coupled with previous reports (M. Vettese-Dadey, P. A. Grant, T. R. Hebbes, C. Crane-Robinson, C. D. Allis, and J. L. Workman, EMBO J. 15:2508–2518, 1996; L. Howe, T. A. Ranalli, C. D. Allis, and J. Ausio, J. Biol. Chem. 273:20693–20696, 1998), suggest that the H3/H4 tails are the primary arbiters of transcription factor access to intranucleosomal DNA. PMID:10688663
Aoki, D; Lee, N; Yamaguchi, N; Dubois, C; Fukuda, M N
1992-05-15
Galactosyltransferase (GT; UDPgalactose:beta-D-N-acetylglucosaminide beta-1,4-galactosyltransferase, EC 2.4.1.22) is a type II membrane-anchored protein composed of a short N-terminal cytoplasmic tail, a signal/membrane-anchoring domain, and a stem region followed by a large catalytic domain including the C terminus. To identify the peptide segment and key amino acid residues that are critical for Golgi localization of GT, the expression vector pGT-hCG was designed to encode the entire GT molecule fused to the C-terminal region of human chorionic gonadotropin alpha subunit (hCG alpha) as a reporter. COS-1 cells transfected with pGT-hCG expressed the chimera in the Golgi region, as detected by immunofluorescence microscopy using anti-hCG antibodies. Two deletion mutants, delta tail and delta stem, which are lacking most of the N-terminal cytoplasmic tail or 10 amino acids immediately after the membrane-anchoring domain, were localized in the Golgi. Replacement mutations of the membrane-anchoring domain of GT showed that the second quarter of the transmembrane domain or Cys29-Ala30-Leu31-His32-Leu33 is necessary for GT to be retained in the Golgi. Furthermore, the point mutants Cys29----Ser29 and His32----Leu32 were partially transported to the plasma membrane, whereas an Ala30-Leu31----Phe30-Gly31 mutant was localized in the Golgi. Finally, a double mutant, Cys29/His32----Ser29/Leu32, was found to be transported efficiently to the plasma membrane. The signal-anchoring domain of the transferrin receptor, a type II plasma membrane protein, was then replaced by portions of the GT transmembrane domain. Although the Cys-Xaa-Xaa-His sequence by itself cannot retain the transferrin receptor in the Golgi, the cytoplasmic half of the transmembrane domain of GT was partially capable of retaining the transferrin receptor in the Golgi. These results suggest that the cytoplasmic (or N-terminal) half of the transmembrane domain of GT contributes to the Golgi retention signal and that particularly Cys29 and His32 in this region are critical for GT to be retained in the Golgi.
Aoki, D; Lee, N; Yamaguchi, N; Dubois, C; Fukuda, M N
1992-01-01
Galactosyltransferase (GT; UDPgalactose:beta-D-N-acetylglucosaminide beta-1,4-galactosyltransferase, EC 2.4.1.22) is a type II membrane-anchored protein composed of a short N-terminal cytoplasmic tail, a signal/membrane-anchoring domain, and a stem region followed by a large catalytic domain including the C terminus. To identify the peptide segment and key amino acid residues that are critical for Golgi localization of GT, the expression vector pGT-hCG was designed to encode the entire GT molecule fused to the C-terminal region of human chorionic gonadotropin alpha subunit (hCG alpha) as a reporter. COS-1 cells transfected with pGT-hCG expressed the chimera in the Golgi region, as detected by immunofluorescence microscopy using anti-hCG antibodies. Two deletion mutants, delta tail and delta stem, which are lacking most of the N-terminal cytoplasmic tail or 10 amino acids immediately after the membrane-anchoring domain, were localized in the Golgi. Replacement mutations of the membrane-anchoring domain of GT showed that the second quarter of the transmembrane domain or Cys29-Ala30-Leu31-His32-Leu33 is necessary for GT to be retained in the Golgi. Furthermore, the point mutants Cys29----Ser29 and His32----Leu32 were partially transported to the plasma membrane, whereas an Ala30-Leu31----Phe30-Gly31 mutant was localized in the Golgi. Finally, a double mutant, Cys29/His32----Ser29/Leu32, was found to be transported efficiently to the plasma membrane. The signal-anchoring domain of the transferrin receptor, a type II plasma membrane protein, was then replaced by portions of the GT transmembrane domain. Although the Cys-Xaa-Xaa-His sequence by itself cannot retain the transferrin receptor in the Golgi, the cytoplasmic half of the transmembrane domain of GT was partially capable of retaining the transferrin receptor in the Golgi. These results suggest that the cytoplasmic (or N-terminal) half of the transmembrane domain of GT contributes to the Golgi retention signal and that particularly Cys29 and His32 in this region are critical for GT to be retained in the Golgi. Images PMID:1584766
Wen, Yu-Guan; Liu, Xia; He, Xiu-Ling; Shang, De-Wei; Ni, Xiao-Jia; Zhang, Ming; Wang, Zhan-Zhang; Hu, Jin-Qing; Qiu, Chang
2014-01-01
A simple and rapid analytical method for the simultaneous determination of pirfenidone and its metabolite, 5-carboxy-pirfenidone, in human plasma using liquid chromatography-tandem mass spectrometry has been developed and validated. Aliquots of plasma (0.1 mL) containing pirfenidone and 5-carboxy-pirfenidone, as well as deuterium-labeled internal standards (ISs), were deproteinized using acetonitrile. An Agilent Zorbax Plus C18 column was used for the chromatography, with isocratic elution. The mobile phase was a mixture of acetonitrile and aqueous ammonium formate solution (5 mM) containing 0.1% formic acid (60 : 40, v/v). Using multiple reaction monitoring in positive ionization mode, transitions m/z 186.1 → 65.1, m/z 216.0 → 77.0, m/z 191.1 → 65.1 and m/z 221.0 → 81.0 were chosen to quantify pirfenidone, 5-carboxy-pirfenidone and the two ISs, respectively. The time of analysis was <3 min. The calibration curve was linear over the concentration ranges 0.005-25 μg/mL for pirfenidone, and 0.005-15 μg/mL for 5-carboxy-pirfenidone. The lower limit of quantification for both analytes was 0.005 μg/mL. The intra- and interday precision and relative errors in quality control samples were between -11.7 and 1.3% for pirfenidone and between -5.6 and 2.5% for 5-carboxy-pirfenidone, with mean recoveries ≥90%. The method that has been developed is easy to carry out, sensitive and rapid, and has been successfully used to investigate the pharmacokinetics of pirfenidone in healthy human volunteers. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The TGA codons are present in the open reading frame of selenoprotein P cDNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, K.E.; Lloyd, R.S.; Read, R.
1991-03-11
The TGA codon in DNA has been shown to direct incorporation of selenocysteine into protein. Several proteins from bacteria and animals contain selenocysteine in their primary structures. Each of the cDNA clones of these selenoproteins contains one TGA codon in the open reading frame which corresponds to the selenocysteine in the protein. A cDNA clone for selenoprotein P (SeP), obtained from a {gamma}ZAP rat liver library, was sequenced by the dideoxy termination method. The correct reading frame was determined by comparison of the deduced amino acid sequence with the amino acid sequence of several peptides from SeP. Using SeP labelledmore » with {sup 75}Se in vivo, the selenocysteine content of the peptides was verified by the collection of carboxymethylated {sup 77}Se-selenocysteine as it eluted from the amino acid analyzer and determination of the radioactivity contained in the collected samples. Ten TGA codons are present in the open reading frame of the cDNA. Peptide fragmentation studies and the deduced sequence indicate that selenium-rich regions are located close to the carboxy terminus. Nine of the 10 selenocysteines are located in the terminal 26% of the sequence with four in the terminal 15 amino acids. The deduced sequence codes for a protein of 385 amino acids. Cleavage of the signal peptide gives the mature protein with 366 amino acids and a calculated mol wt of 41,052 Da. Searches of PIR and SWISSPROT protein databases revealed no similarity with glutathione peroxidase or other selenoproteins.« less
Nedd4 is a Specific E3 Ubiquitin Ligase for the NMDA Receptor Subunit GluN2D
Gautam, Vivek; Trinidad, Jonathan C.; Rimerman, Ronald A.; Costa, Blaise M.; Burlingame, Alma L.; Monaghan, Daniel T.
2013-01-01
NMDA receptors are a family of glutamate-gated ion channels that regulate various CNS functions such as synaptic plasticity and learning. However hypo-or hyper-activation of NMDA receptors is critically involved in many neurological and psychiatric conditions such as pain, stroke, epilepsy, neurodegeneration, schizophrenia, and depression. Thus, it is important to identify mechanisms (such as by targeted ubiquitination) that regulate the levels of individual subtypes of NMDA receptors. In this study, we used a series of tagged, carboxy terminal constructs of GluN2D to identify associating proteins from rat brain. Of seven different GluN2D C-terminal fragments used as bait, only the construct containing amino acids 983-1097 associated with an E3 ligase, Nedd4. A direct interaction between GluN2D and Nedd4 was confirmed both in vivo and in vitro. This association is mediated by an interaction between GluN2D's C-terminal PPXY motif and the 2nd and 3rd WW domains of Nedd4. Of the four GluN2 subunits, Nedd4 directly interacted with GluN2D and also weakly with GluN2A. Nedd4 coexpression with GluN2D enhances GluN2D ubiquitination and reduces GluN1/GluN2D NMDA receptor responses. These results identify Nedd4 as a novel binding partner for GluN2D and suggest a mechanism for the regulation of NMDA receptors that contains GluN2D subunit through ubiquitination-dependent downregulation. PMID:23639431
Antigenic and functional characterization of p57 produced by Renibacterium salmoninarum
Weins, G.; Chien, M.S.; Winton, J.R.; Kaatari, S.L.
1999-01-01
Renibacterium salmoninarum, the causative agent of bacterial kidney disease, produces large quantities of a 57-58 kDa protein (p57) during growth in broth culture and during infection of salmonid fish. Biological activities of secreted p57 include agglutination of salrnonid leucocytes and rabbit erythrocytes. We define the location of epitopes on p57 recognized by agglutination-blocking monoclonal antibodies (MAbs) 4Cl1, 4H8 and 4D3, and demonstrate that the majority of secreted p57 is a nlonomer that retains salrnonid leucocyte agglutinat~ng activity. The 3 MAbs bound a recombinant, amino-terminal fragment of p57 (211 aa) but not a carboxy-terminal fragment (315 aa) demonstrating that the neutralizing epitopes are located within the amino-terminal portion of p57. When combinations of the MAbs were used in an antigen capture ELISA. the epitopes recognized by the 3 MAbs were shown to be sterically separate. However, when the same MAb was used as both the coating and detection MAb, binding of the biotinylated detection MAb was not observed. These data indicate that the epitopes recognized by the 3 agglutination-blocking antibodies are functionally available only once per molecule and that native p57 exists as a monomer Similar ELISA results were obtained when kidney tissues from 3 naturally infected chinook salmon were assayed. Finally, a p57 monomer was purified using anion exchange and size exclusion chromatography that retained in vitro agglutinating activity. A model in which p57 is released from R. salmoninarum as a biologically active monomer during infection of salmonid fish is proposed.
Crystallization of the C-terminal head domain of the avian adenovirus CELO long fibre
Guardado Calvo, Pablo; Llamas-Saiz, Antonio L.; Langlois, Patrick; van Raaij, Mark J.
2006-01-01
Avian adenovirus CELO contains two different fibres: fibre 1, the long fibre, and fibre 2, the short fibre. The short fibre is responsible for binding to an unknown avian receptor and is essential for infection of birds. The long fibre is not essential, but is known to bind the coxsackievirus and adenovirus receptor protein. Both trimeric fibres are attached to the same penton base, of which each icosahedral virus contains 12 copies. The short fibre extends straight outwards, while the long fibre emerges at an angle. The carboxy-terminal amino acids 579–793 of the avian adenovirus long fibre have been expressed with an amino-terminal hexahistidine tag and the expressed trimeric protein has been purified by nickel-affinity chromatography and crystallized. Crystals were grown at low pH using PEG 10 000 as precipitant and belonged to space group C2. The crystals diffracted rotating-anode Cu Kα radiation to at least 1.9 Å resolution and a complete data set was collected from a single crystal to 2.2 Å resolution. Unit-cell parameters were a = 216.5, b = 59.2, c = 57.5 Å, β = 101.3°, suggesting one trimer per asymmetric unit and a solvent content of 46%. The long fibre head does not have significant sequence homology to any other protein of known structure and molecular-replacement attempts with known fibre-head structures were unsuccessful. However, a map calculated using SIRAS phasing shows a clear trimer with a shape similar to known adenovirus fibre-head structures. Structure solution is in progress. PMID:16682773
Dandy-Walker Malformation: is the 'tail sign' the key sign?
Bernardo, Silvia; Vinci, Valeria; Saldari, Matteo; Servadei, Francesca; Silvestri, Evelina; Giancotti, Antonella; Aliberti, Camilla; Porpora, Maria Grazia; Triulzi, Fabio; Rizzo, Giuseppe; Catalano, Carlo; Manganaro, Lucia
2015-12-01
The study aims to demonstrate the value of the 'tail sign' in the assessment of Dandy-Walker malformation. A total of 31 fetal magnetic resonance imaging (MRI), performed before 24 weeks of gestation after second-line ultrasound examination between May 2013 and September 2014, were examined retrospectively. All MRI examinations were performed using a 1.5 Tesla magnet without maternal sedation. Magnetic resonance imaging diagnosed 15/31 cases of Dandy-Walker malformation, 6/31 of vermian partial caudal agenesis, 2/31 of vermian hypoplasia, 4/31 of vermian malrotation, 2/31 of Walker-Warburg syndrome, 1/31 of Blake pouch cyst and 1/31 of rhombencephalosynapsis. All data were compared with fetopsy results, fetal MRI after the 30th week or postnatal MRI; the follow-up depended on the maternal decision to terminate or continue pregnancy. In our review study, we found the presence of the 'tail sign'; this sign was visible only in Dandy-Walker malformation and Walker-Warburg syndrome. The 'tail sign' could be helpful in the difficult differential diagnosis between Dandy-Walker, vermian malrotation, vermian hypoplasia and vermian partial agenesis. © 2015 John Wiley & Sons, Ltd.
The interaction of HMGB1 and linker histones occurs through their acidic and basic tails.
Cato, Laura; Stott, Katherine; Watson, Matthew; Thomas, Jean O
2008-12-31
H1 and HMGB1 bind to linker DNA in chromatin, in the vicinity of the nucleosome dyad. They appear to have opposing effects on the nucleosome, H1 stabilising it by "sealing" two turns of DNA around the octamer, and HMGB1 destabilising it, probably by bending the adjacent DNA. Their presence in chromatin might be mutually exclusive. Displacement/replacement of one by the other as a result of their highly dynamic binding in vivo might, in principle, involve interactions between them. Chemical cross-linking and gel-filtration show that a 1:1 linker histone/HMGB1 complex is formed, which persists at physiological ionic strength, and that complex formation requires the acidic tail of HMGB1. NMR spectroscopy shows that the linker histone binds, predominantly through its basic C-terminal domain, to the acidic tail of HMGB1, thereby disrupting the interaction of the tail with the DNA-binding faces of the HMG boxes. A potential consequence of this interaction is enhanced DNA binding by HMGB1, and concomitantly lowered affinity of H1 for DNA. In a chromatin context, this might facilitate displacement of H1 by HMGB1.
Rossi, Valeria; Beffagna, Giorgia; Rampazzo, Alessandra; Bauce, Barbara; Danieli, Gian Antonio
2004-06-23
Isthmins represent a novel family of vertebrate secreted proteins containing one copy of the thrombospondin type 1 repeat (TSR), which in mammals is shared by several proteins with diverse biological functions, including cell adhesion, angiogenesis, and patterning of developing nervous system. We have determined the genomic organization of human TAIL1 (thrombospondin and AMOP containing isthmin-like 1), a novel isthmin-like gene encoding a protein that contains a TSR and a C-terminal AMOP domain (adhesion-associated domain in MUC4 and other proteins), characteristic of extracellular proteins involved in adhesion processes. TAIL1 gene encompasses more than 24.4 kb. Analysis of the DNA sequence surrounding the putative transcriptional start region revealed a TATA-less promoter located in a CpG island. Several consensus binding sites for the transcription factors Sp1 and MZF-1 were identified in this promoter region. In humans, TAIL1 gene is located on chromosome 14q24.3 within ARVD1 (arrhythmogenic right ventricular dysplasia/cardiomyopathy, type 1) critical region; preliminary evidence suggests that it is expressed in several tissues, showing multiple alternative splicing.
Molecular Basis for Association of PIPKIγ-p90 with Clathrin Adaptor AP-2*
Kahlfeldt, Nina; Vahedi-Faridi, Ardeschir; Koo, Seong Joo; Schäfer, Johannes G.; Krainer, Georg; Keller, Sandro; Saenger, Wolfram; Krauss, Michael; Haucke, Volker
2010-01-01
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is an essential determinant in clathrin-mediated endocytosis (CME). In mammals three type I phosphatidylinositol-4-phosphate 5-kinase (PIPK) enzymes are expressed, with the Iγ-p90 isoform being highly expressed in the brain where it regulates synaptic vesicle (SV) exo-/endocytosis at nerve terminals. How precisely PI(4,5)P2 metabolism is controlled spatially and temporally is still uncertain, but recent data indicate that direct interactions between type I PIPK and components of the endocytic machinery, in particular the AP-2 adaptor complex, are involved. Here we demonstrated that PIPKIγ-p90 associates with both the μ and β2 subunits of AP-2 via multiple sites. Crystallographic data show that a peptide derived from the splice insert of the human PIPKIγ-p90 tail binds to a cognate recognition site on the sandwich subdomain of the β2 appendage. Partly overlapping aromatic and hydrophobic residues within the same peptide also can engage the C-terminal sorting signal binding domain of AP-2μ, thereby potentially competing with the sorting of conventional YXXØ motif-containing cargo. Biochemical and structure-based mutagenesis analysis revealed that association of the tail domain of PIPKIγ-p90 with AP-2 involves both of these sites. Accordingly the ability of overexpressed PIPKIγ tail to impair endocytosis of SVs in primary neurons largely depends on its association with AP-2β and AP-2μ. Our data also suggest that interactions between AP-2 and the tail domain of PIPKIγ-p90 may serve to regulate complex formation and enzymatic activity. We postulate a model according to which multiple interactions between PIPKIγ-p90 and AP-2 lead to spatiotemporally controlled PI(4,5)P2 synthesis during clathrin-mediated SV endocytosis. PMID:19903820
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; National Institute of Biological Sciences, Beijing 102206; Xiong, Wei
Although a deficiency in CRY1 or CRY2 correlates with a shorter or longer circadian period, the regulation of CRY proteins in the circadian period has not been well studied. In this study, we found that both CRY1 and CRY2 were able to rescue oscillation in CRY null cells and that they displayed different periods. Furthermore, we demonstrated that protein nuclear import rates, not protein stability, regulate the period-length at the cellular level. Co-transfection of CRY1 and CRY2 in various ratios in the same cells gives rise to the predicted period length in a dose-dependent manner. Given the distinct characteristics ofmore » the C-terminal tails of the CRY1 and CRY2 proteins, our study addresses a long-standing hypothesis that the ratio of these two CRY molecules affects the clock period. - Highlights: • Rhythmic CRY2, like CRY1, in the correct CRY1 phase is sufficient to rescue clock oscillation in CRY null cells. • The short-period mammalian CRY2 protein is more stable than the CRY1 protein. • The N-terminal polypeptide of CRY2 contributes to its stability and Per2 repression, but it does not affect the period. • The C-terminal tails of CRYs regulate their protein stability and nuclear import, but the import rate governs the period. • The ratio, rather than the absolute amounts of CRY1 and CRY2 proteins, determines the period in mammalian cells.« less
Andralojc, P J; Keys, A J; Martindale, W; Dawson, G W; Parry, M A
1996-10-25
[1-14C]Hamamelose (2-hydroxymethyl-D-ribose) was synthesized by reaction of ribulose 5-phosphate with potassium [14C]cyanide, catalytic hydrogenation of the resulting cyanohydrin, and dephosphorylation of the product. Its identity was established by a chromatographic comparison with hamamelose isolated from the bark of witch hazel (Hamamelis virginiana L.). Following vacuum infiltration of the [1-14C]hamamelose into leaf discs from Phaseolus vulgaris L., 14C-labeled 2carboxy-D-arabinitol (CA) and 2-carboxy-D-arabinitol 1-phosphate (CA1P) were formed, in the dark. Conversion of hamamelose to both CA and CA1P in the leaf discs was inhibited by dithiothreitol and sodium fluoride, although at high concentrations of these inhibitors conversion into CA was still evident when conversion into CA1P was totally inhibited. Wheat (Triticum aestivum L.) leaves converted hamamelose into CA without formation of CA1P. Leaves from P. vulgaris contained 68 nmol.g-1 fresh weight of hamamelose in the light and 35 nmol.g-1 fresh weight in the dark. A pathway for the biosynthesis of CA1P from Calvin cycle intermediates is proposed which includes the sequence: hamamelose --> CA --> CA1P.
Study of adsorption mechanism of heavy metals onto waste biomass (wheat bran).
Ogata, Fumihiko; Kangawa, Moe; Tominaga, Hisato; Tanaka, Yuko; Ueda, Ayaka; Iwata, Yuka; Kawasaki, Naohito
2013-01-01
In this study, raw wheat bran (R-WB), a type of waste biomass (WB) was treated with Pectinase PL (P-WB), and the properties (yield percentage, carboxy group surface concentration, the solution pH, and specific surface area) of R-WB and P-WB were investigated. The surface concentration of carboxy groups on R-WB (3.56 mmol/g) was greater than that of P-WB (2.11 mmol/g). In contrast, the specific surface area of P-WB (24.98 m²/g) was greater than that of R-WB (3.25 m²/g). In addition, the adsorption of cadmium and lead ions to WB was evaluated. Adsorption of the heavy-metal ions reached equilibrium within 9 h, and the experimental data was fitted to a pseudo-second-order model. More heavy-metal ions were adsorbed onto R-WB than onto P-WB. The correlation coefficient between the amount of ions adsorbed and the number of carboxy groups or pectin exceeded 0.884 and 0.975, respectively. This study indicated that wheat bran was useful for the removal of cadmium or lead ions from aqueous solutions. The adsorption mechanism of cadmium and lead ions to WB was associated with presence of carboxy group in pectin.
Partner-Mediated Polymorphism of an Intrinsically Disordered Protein.
Bignon, Christophe; Troilo, Francesca; Gianni, Stefano; Longhi, Sonia
2017-11-29
Intrinsically disordered proteins (IDPs) recognize their partners through molecular recognition elements (MoREs). The MoRE of the C-terminal intrinsically disordered domain of the measles virus nucleoprotein (N TAIL ) is partly pre-configured as an α-helix in the free form and undergoes α-helical folding upon binding to the X domain (XD) of the viral phosphoprotein. Beyond XD, N TAIL also binds the major inducible heat shock protein 70 (hsp70). So far, no structural information is available for the N TAIL /hsp70 complex. Using mutational studies combined with a protein complementation assay based on green fluorescent protein reconstitution, we have investigated both N TAIL /XD and N TAIL /hsp70 interactions. Although the same N TAIL region binds the two partners, the binding mechanisms are different. Hsp70 binding is much more tolerant of MoRE substitutions than XD, and the majority of substitutions lead to an increased N TAIL /hsp70 interaction strength. Furthermore, while an increased and a decreased α-helicity of the MoRE lead to enhanced and reduced interaction strength with XD, respectively, the impact on hsp70 binding is negligible, suggesting that the MoRE does not adopt an α-helical conformation once bound to hsp70. Here, by showing that the α-helical conformation sampled by the free form of the MoRE does not systematically commit it to adopt an α-helical conformation in the bound form, we provide an example of partner-mediated polymorphism of an IDP and of the relative insensitiveness of the bound structure to the pre-recognition state. The present results therefore contribute to shed light on the molecular mechanisms by which IDPs recognize different partners. Copyright © 2017 Elsevier Ltd. All rights reserved.
An analysis of the orbital distribution of solid rocket motor slag
NASA Astrophysics Data System (ADS)
Horstman, Matthew F.; Mulrooney, Mark
2009-01-01
The contribution by solid rocket motors (SRMs) to the orbital debris environment is potentially significant and insufficiently studied. Design and combustion processes can lead to the emission of enough by-products to warrant assessment of their contribution to orbital debris. These particles are formed during SRM tail-off, or burn termination, by the rapid solidification of molten Al2O3 slag accumulated during the burn. The propensity of SRMs to generate particles larger than 100μm raises concerns regarding the debris environment. Sizes as large as 1 cm have been witnessed in ground tests, and comparable sizes have been estimated via observations of sub-orbital tail-off events. Utilizing previous research we have developed more sophisticated size distributions and modeled the time evolution of resultant orbital populations using a historical database of SRM launches, propellant, and likely location and time of tail-off. This analysis indicates that SRM ejecta is a significant component of the debris environment.
Structural analysis of the complex between influenza B nucleoprotein and human importin-α.
Labaronne, Alice; Milles, Sigrid; Donchet, Amélie; Jensen, Malene Ringkjøbing; Blackledge, Martin; Bourhis, Jean-Marie; Ruigrok, Rob W H; Crépin, Thibaut
2017-12-07
Influenza viruses are negative strand RNA viruses that replicate in the nucleus of the cell. The viral nucleoprotein (NP) is the major component of the viral ribonucleoprotein. In this paper we show that the NP of influenza B has a long N-terminal tail of 70 residues with intrinsic flexibility. This tail contains the Nuclear Location Signal (NLS). The nuclear trafficking of the viral components mobilizes cellular import factors at different stages, making these host-pathogen interactions promising targets for new therapeutics. NP is imported into the nucleus by the importin-α/β pathway, through a direct interaction with importin-α isoforms. Here we provide a combined nuclear magnetic resonance and small-angle X-ray scattering (NMR/SAXS) analysis to describe the dynamics of the interaction between influenza B NP and the human importin-α. The NP of influenza B does not have a single NLS nor a bipartite NLS but our results suggest that the tail harbors several adjacent NLS sequences, located between residues 30 and 71.
Alternative splicing modulates Kv channel clustering through a molecular ball and chain mechanism
NASA Astrophysics Data System (ADS)
Zandany, Nitzan; Marciano, Shir; Magidovich, Elhanan; Frimerman, Teddy; Yehezkel, Rinat; Shem-Ad, Tzilhav; Lewin, Limor; Abdu, Uri; Orr, Irit; Yifrach, Ofer
2015-03-01
Ion channel clustering at the post-synaptic density serves a fundamental role in action potential generation and transmission. Here, we show that interaction between the Shaker Kv channel and the PSD-95 scaffold protein underlying channel clustering is modulated by the length of the intrinsically disordered C terminal channel tail. We further show that this tail functions as an entropic clock that times PSD-95 binding. We thus propose a ‘ball and chain’ mechanism to explain Kv channel binding to scaffold proteins, analogous to the mechanism describing channel fast inactivation. The physiological relevance of this mechanism is demonstrated in that alternative splicing of the Shaker channel gene to produce variants of distinct tail lengths resulted in differential channel cell surface expression levels and clustering metrics that correlate with differences in affinity of the variants for PSD-95. We suggest that modulating channel clustering by specific spatial-temporal spliced variant targeting serves a fundamental role in nervous system development and tuning.
Molecular basis for multimerization in the activation of the epidermal growth factor receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yongjian; Bharill, Shashank; Karandur, Deepti
The epidermal growth factor receptor (EGFR) is activated by dimerization, but activation also generates higher-order multimers, whose nature and function are poorly understood. We have characterized ligand-induced dimerization and multimerization of EGFR using single-molecule analysis, and show that multimerization can be blocked by mutations in a specific region of Domain IV of the extracellular module. These mutations reduce autophosphorylation of the C-terminal tail of EGFR and attenuate phosphorylation of phosphatidyl inositol 3-kinase, which is recruited by EGFR. The catalytic activity of EGFR is switched on through allosteric activation of one kinase domain by another, and we show that if thismore » is restricted to dimers, then sites in the tail that are proximal to the kinase domain are phosphorylated in only one subunit. We propose a structural model for EGFR multimerization through self-association of ligand-bound dimers, in which the majority of kinase domains are activated cooperatively, thereby boosting tail phosphorylation.« less
Molecular basis for multimerization in the activation of the epidermal growth factor receptor
Huang, Yongjian; Bharill, Shashank; Karandur, Deepti; ...
2016-03-28
The epidermal growth factor receptor (EGFR) is activated by dimerization, but activation also generates higher-order multimers, whose nature and function are poorly understood. We have characterized ligand-induced dimerization and multimerization of EGFR using single-molecule analysis, and show that multimerization can be blocked by mutations in a specific region of Domain IV of the extracellular module. These mutations reduce autophosphorylation of the C-terminal tail of EGFR and attenuate phosphorylation of phosphatidyl inositol 3-kinase, which is recruited by EGFR. The catalytic activity of EGFR is switched on through allosteric activation of one kinase domain by another, and we show that if thismore » is restricted to dimers, then sites in the tail that are proximal to the kinase domain are phosphorylated in only one subunit. We propose a structural model for EGFR multimerization through self-association of ligand-bound dimers, in which the majority of kinase domains are activated cooperatively, thereby boosting tail phosphorylation.« less
Yadin, David A.; Robertson, Ian B.; McNaught-Davis, Joanne; Evans, Paul; Stoddart, David; Handford, Penny A.; Jensen, Sacha A.; Redfield, Christina
2013-01-01
Summary The human extracellular matrix glycoprotein fibrillin-1 is the primary component of the 10- to 12-nm-diameter microfibrils, which perform key structural and regulatory roles in connective tissues. Relatively little is known about the molecular mechanisms of fibrillin assembly into microfibrils. Studies using recombinant fibrillin fragments indicate that an interaction between the N- and C-terminal regions drives head-to-tail assembly. Here, we present the structure of a fibrillin N-terminal fragment comprising the fibrillin unique N-terminal (FUN) and the first three epidermal growth factor (EGF)-like domains (FUN-EGF3). Two rod-like domain pairs are separated by a short, flexible linker between the EGF1 and EGF2 domains. We also show that the binding site for the C-terminal region spans multiple domains and overlaps with a heparin interaction site. These data suggest that heparan sulfate may sequester fibrillin at the cell surface via FUN-EGF3 prior to aggregation of the C terminus, thereby regulating microfibril assembly. PMID:24035709
Pfeiffer, Tanya; Ruppert, Thomas; Schaal, Heiner; Bosch, Valerie
2013-06-20
Employing antibodies against the cytoplasmic tail of the HIV-1 glycoprotein (Env-CT), in addition to gp160/gp41, we have identified several novel small Env proteins (<25kD) in HIV-1 transfected and infected cells. Mass spectrometric and mutational analyses show that two mechanisms contribute to their generation. Thus the protein, designated Tr-Env-CT (for truncated Env-CT), consists of the C-terminal 139 amino acids (aa) of Env (aa 718-856) with the N-terminal Q718 modified to pyroglutamic acid. It is likely derived from full-length Env protein by proteolytic processing. A further heterogeneous set of slightly larger proteins, termed Env-CT* species, are rather derived from spliced mRNAs containing only those Env C-terminal residues (aa 719-856) which overlap with the second tat and rev coding exons. They are N-terminally extended in the same reading frame. It is conceivable that essential Env-CT functions may be fulfilled by these novel species rather than by the full-length glycoprotein itself. Copyright © 2013 Elsevier Inc. All rights reserved.
3′ terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing
2013-01-01
Background Post-transcriptional 3′ end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3′ RACE coupled with high-throughput sequencing to characterize the 3′ terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes. Results The 3′ terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3′ terminus of an in vitro transcribed MRP RNA control and the differing 3′ terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR). Conclusions 3′ RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3′ terminal sequences of noncoding RNAs. PMID:24053768
Zhu, Yun; Su, Shan; Qin, Lili; Wang, Qian; Shi, Lei; Ma, Zhenxuan; Tang, Jianchao; Jiang, Shibo; Lu, Lu; Ye, Sheng; Zhang, Rongguang
2016-09-26
Peptides derived from the C-terminal heptad repeat (CHR) of HIV gp41 have been developed as effective fusion inhibitors against HIV-1, but facing the challenges of enhancing potency and stability. Here, we report a rationally designed novel HIV-1 fusion inhibitor derived from CHR-derived peptide (Trp628~Gln653, named CP), but with an innovative Ile-Asp-Leu tail (IDL) that dramatically increased the inhibitory activity by up to 100 folds. We also determined the crystal structures of artificial fusion peptides N36- and N43-L6-CP-IDL. Although the overall structures of both fusion peptides share the canonical six-helix bundle (6-HB) configuration, their IDL tails adopt two different conformations: a one-turn helix with the N36, and a hook-like structure with the longer N43. Structural comparison showed that the hook-like IDL tail possesses a larger interaction interface with NHR than the helical one. Further molecular dynamics simulations of the two 6-HBs and isolated CP-IDL peptides suggested that hook-like form of IDL tail can be stabilized by its binding to NHR trimer. Therefore, CP-IDL has potential for further development as a new HIV fusion inhibitor, and this strategy could be widely used in developing artificial fusion inhibitors against HIV and other enveloped viruses.
Regulation of Polycystin-1 Function by Calmodulin Binding
Doerr, Nicholas; Wang, Yidi; Kipp, Kevin R.; Liu, Guangyi; Benza, Jesse J.; Pletnev, Vladimir; Pavlov, Tengis S.; Staruschenko, Alexander; Mohieldin, Ashraf M.; Takahashi, Maki; Nauli, Surya M.; Weimbs, Thomas
2016-01-01
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common genetic disease that leads to progressive renal cyst growth and loss of renal function, and is caused by mutations in the genes encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively. The PC1/PC2 complex localizes to primary cilia and can act as a flow-dependent calcium channel in addition to numerous other signaling functions. The exact functions of the polycystins, their regulation and the purpose of the PC1/PC2 channel are still poorly understood. PC1 is an integral membrane protein with a large extracytoplasmic N-terminal domain and a short, ~200 amino acid C-terminal cytoplasmic tail. Most proteins that interact with PC1 have been found to bind via the cytoplasmic tail. Here we report that the PC1 tail has homology to the regulatory domain of myosin heavy chain including a conserved calmodulin-binding motif. This motif binds to CaM in a calcium-dependent manner. Disruption of the CaM-binding motif in PC1 does not affect PC2 binding, cilia targeting, or signaling via heterotrimeric G-proteins or STAT3. However, disruption of CaM binding inhibits the PC1/PC2 calcium channel activity and the flow-dependent calcium response in kidney epithelial cells. Furthermore, expression of CaM-binding mutant PC1 disrupts cellular energy metabolism. These results suggest that critical functions of PC1 are regulated by its ability to sense cytosolic calcium levels via binding to CaM. PMID:27560828
Structure of Atg7 Alone and its Atg8-Bound Forms
NASA Astrophysics Data System (ADS)
Noda, Nobuo
Atg7 is a noncanonical E1 enzyme that activates Atg8 and transfers it to Atg3 (E2 enzyme), thus playing an essential role in conjugating Atg8 with phosphatidylethanolamine and thus in autophagy. Atg7 protomer is comprised of two globular domains, the N-terminal domain (NTD) and the C-terminal domain (CTD), and forms a homodimer through CTD. Atg7-Atg8 complex structures and biochemical analyses revealed that Atg8 is initially recognized by the C-terminal tail of CTD and is then transferred to the adenylation domain in CTD, where Atg8 Gly116 is adenylated and thioester-linked to the catalytic cysteine of Atg7. Atg8 is then transferred to Atg3 bound to the NTD of the opposite protomer within an Atg7 dimer via a trans mechanism.
Meng, Peter S.; Mao, Yuxin; Hu, Fenghua
2011-01-01
Progranulin haplo-insufficiency is a main cause of frontotemporal lobar degeneration (FTLD) with TDP-43 aggregates. Previous studies have shown that sortilin regulates progranulin trafficking and is a main determinant of progranulin level in the brain. In this study, we mapped the binding site between progranulin and sortilin. Progranulin binds to the beta-propeller region of sortilin through its C-terminal tail. The C-terminal progranulin fragment is fully sufficient for sortilin binding and progranulin C-terminal peptide displaces progranulin binding to sortilin. Deletion of the last 3 residues of progranulin (QLL) abolishes its binding to sortilin and also sortilin dependent regulation of progranulin trafficking. Since progranulin haplo-insufficiency results in FTLD, these results may provide important insights into future studies of progranulin trafficking and signaling and progranulin based therapy for FTLD. PMID:21698296
2009-12-01
Protein from the Honeybee Apis mellifera L. J. Biol. Chem. 2004, 279, 4459– 4464. 12. Mead, J. C. New Scientist 2007, November issue. 13. Inscentinel...of explo- sives and other analytes.12,13 The antennal-specific protein-1 (ASP1), an OBP from honeybee, Apis mel- lifera, contains a C-terminal tail
Zheng, L M; Pfaff, D W; Schwanzel-Fukuda, M
1990-05-08
Light and electron microscopic immunocytochemistry were used to examine the structure of LHRH neurons and fibers in the nervus terminalis of the gray short-tailed opossum (Monodelphis domestica). LHRH-immunoreactive neurons and fibers form a loose plexus within the fascicular network of the ganglion terminale on the median surface of the olfactory bulb. There are at least two populations of LHRH-immunoreactive neurons within the network of the ganglion terminale: fusiform and round neurons similar to those described in the forebrain. At the ultrastructural level, axosomatic and axodendritic contacts were seen between LHRH-immunoreactive and nonimmunoreactive elements in the ganglion terminale. These contacts were classified as 1) synaptic input, with asymmetric synapses seen between a nonimmunoreactive axon terminal and a LHRH-immunoreactive cell body or a nonimmunoreactive axon terminal and a LHRH-immunoreactive dendritic process. 2) synaptic output, with symmetric synapses seen between LHRH-immunoreactive and nonimmunoreactive processes. This study is the first systematic examination of the ultrastructure of the LHRH-immunoreactive neurons and their synaptic contacts in the nervus terminalis. The possible integrative roles for this LHRH-immunoreactive system are discussed.
Shin, Hyun Yong; Nijland, Jeroen G.; de Waal, Paul P.
2017-01-01
ABSTRACT Hxt2 is a glucose repressed, high affinity glucose transporter of the yeast Saccharomyces cerevisiae and is subjected to high glucose induced degradation. Hxt11 is a sugar transporter that is stably expressed at the membrane irrespective the sugar concentration. To transfer this property to Hxt2, the N‐terminal tail of Hxt2 was replaced by the corresponding region of Hxt11 yielding a chimeric Hxt11/2 transporter. This resulted in the stable expression of Hxt2 at the membrane and improved the growth on 8% d‐glucose and 4% d‐xylose. Mutation of N361 of Hxt11/2 into threonine reversed the specificity for d‐xylose over d‐glucose with high d‐xylose transport rates. This mutant supported efficient sugar fermentation of both d‐glucose and d‐xylose at industrially relevant sugar concentrations even in the presence of the inhibitor acetic acid which is normally present in lignocellulosic hydrolysates. Biotechnol. Bioeng. 2017;114: 1937–1945. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:28464256
Shin, Hyun Yong; Nijland, Jeroen G; de Waal, Paul P; Driessen, Arnold J M
2017-09-01
Hxt2 is a glucose repressed, high affinity glucose transporter of the yeast Saccharomyces cerevisiae and is subjected to high glucose induced degradation. Hxt11 is a sugar transporter that is stably expressed at the membrane irrespective the sugar concentration. To transfer this property to Hxt2, the N-terminal tail of Hxt2 was replaced by the corresponding region of Hxt11 yielding a chimeric Hxt11/2 transporter. This resulted in the stable expression of Hxt2 at the membrane and improved the growth on 8% d-glucose and 4% d-xylose. Mutation of N361 of Hxt11/2 into threonine reversed the specificity for d-xylose over d-glucose with high d-xylose transport rates. This mutant supported efficient sugar fermentation of both d-glucose and d-xylose at industrially relevant sugar concentrations even in the presence of the inhibitor acetic acid which is normally present in lignocellulosic hydrolysates. Biotechnol. Bioeng. 2017;114: 1937-1945. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Jefferson, Tamara; Auf dem Keller, Ulrich; Bellac, Caroline; Metz, Verena V; Broder, Claudia; Hedrich, Jana; Ohler, Anke; Maier, Wladislaw; Magdolen, Viktor; Sterchi, Erwin; Bond, Judith S; Jayakumar, Arumugam; Traupe, Heiko; Chalaris, Athena; Rose-John, Stefan; Pietrzik, Claus U; Postina, Rolf; Overall, Christopher M; Becker-Pauly, Christoph
2013-01-01
The in vivo roles of meprin metalloproteases in pathophysiological conditions remain elusive. Substrates define protease roles. Therefore, to identify natural substrates for human meprin α and β we employed TAILS (terminal amine isotopic labeling of substrates), a proteomics approach that enriches for N-terminal peptides of proteins and cleavage fragments. Of the 151 new extracellular substrates we identified, it was notable that ADAM10 (a disintegrin and metalloprotease domain-containing protein 10)-the constitutive α-secretase-is activated by meprin β through cleavage of the propeptide. To validate this cleavage event, we expressed recombinant proADAM10 and after preincubation with meprin β, this resulted in significantly elevated ADAM10 activity. Cellular expression in murine primary fibroblasts confirmed activation. Other novel substrates including extracellular matrix proteins, growth factors and inhibitors were validated by western analyses and enzyme activity assays with Edman sequencing confirming the exact cleavage sites identified by TAILS. Cleavages in vivo were confirmed by comparing wild-type and meprin(-/-) mice. Our finding of cystatin C, elafin and fetuin-A as substrates and natural inhibitors for meprins reveal new mechanisms in the regulation of protease activity important for understanding pathophysiological processes.
auf dem Keller, Ulrich; Prudova, Anna; Gioia, Magda; Butler, Georgina S.; Overall, Christopher M.
2010-01-01
Terminal amine isotopic labeling of substrates (TAILS), our recently introduced platform for quantitative N-terminome analysis, enables wide dynamic range identification of original mature protein N-termini and protease cleavage products. Modifying TAILS by use of isobaric tag for relative and absolute quantification (iTRAQ)-like labels for quantification together with a robust statistical classifier derived from experimental protease cleavage data, we report reliable and statistically valid identification of proteolytic events in complex biological systems in MS2 mode. The statistical classifier is supported by a novel parameter evaluating ion intensity-dependent quantification confidences of single peptide quantifications, the quantification confidence factor (QCF). Furthermore, the isoform assignment score (IAS) is introduced, a new scoring system for the evaluation of single peptide-to-protein assignments based on high confidence protein identifications in the same sample prior to negative selection enrichment of N-terminal peptides. By these approaches, we identified and validated, in addition to known substrates, low abundance novel bioactive MMP-2 targets including the plasminogen receptor S100A10 (p11) and the proinflammatory cytokine proEMAP/p43 that were previously undescribed. PMID:20305283
HK022 Nun Requires Arginine-Rich Motif Residues Distinct from λ N
Tawk, Caroline S.; Ghattas, Ingrid R.
2015-01-01
ABSTRACT Bacteriophage λ N protein binds boxB RNA hairpins in the nut (N utilization) sites of immediate early λ transcripts and interacts with host factors to suppress transcriptional termination at downstream terminators. In opposition to λ N, the Nun protein of HK022 binds the boxBs of coinfecting λ transcripts, interacts with a similar or identical set of host factors, and terminates transcription to suppress λ replication. Comparison of N-boxB and Nun-boxB nuclear magnetic resonance (NMR) structural models suggests similar interactions, though limited mutagenesis of Nun is available. Here, libraries of Nun's arginine-rich motif (ARM) were screened for the ability to exclude λ coinfection, and mutants were assayed for Nun termination with a boxB plasmid reporter system. Several Nun ARM residues appear to be immutable: Asp26, Arg28, Arg29, Arg32, Trp33, and Arg36. Asp26 and Trp33 appear to be unable to contact boxB and are not found at equivalent positions in λ N ARM. To understand if the requirement of Asp26, Trp33, and Arg36 indicated differences between HK022 Nun termination and λ N antitermination complexes, the same Nun libraries were fused to the activation domain of λ N and screened for clones able to complement N-deficient λ. Mutants were assayed for N antitermination. Surprisingly, Asp26 and Trp33 were still essential when Nun ARM was fused to N. Docking suggests that Nun ARM contacts a hydrophobic surface of the NusG carboxy-terminal domain containing residues necessary for Nun function. These findings indicate that Nun ARM relies on distinct contacts in its ternary complex and illustrate how protein-RNA recognition can evolve new regulatory functions. IMPORTANCE λ N protein interacts with host factors to allow λ nut-containing transcripts to elongate past termination signals. A competing bacteriophage, HK022, expresses Nun protein, which causes termination of λ nut transcripts. λ N and HK022 Nun use similar arginine-rich motifs (ARMs) to bind the same boxB RNAs in nut transcripts. Screening libraries of Nun ARM mutants, both in HK022 Nun and in a λ N fusion, revealed amino acids essential to Nun that could bind one or more host factors. Docking suggests that NusG, which is present in both Nun termination and N antitermination, is a plausible partner. These findings could help understand how transcription elongation is regulated and illustrate how subtle differences allow ARMs to evolve new regulatory functions. PMID:26350130
HK022 Nun Requires Arginine-Rich Motif Residues Distinct from λ N.
Tawk, Caroline S; Ghattas, Ingrid R; Smith, Colin A
2015-11-01
Bacteriophage λ N protein binds boxB RNA hairpins in the nut (N utilization) sites of immediate early λ transcripts and interacts with host factors to suppress transcriptional termination at downstream terminators. In opposition to λ N, the Nun protein of HK022 binds the boxBs of coinfecting λ transcripts, interacts with a similar or identical set of host factors, and terminates transcription to suppress λ replication. Comparison of N-boxB and Nun-boxB nuclear magnetic resonance (NMR) structural models suggests similar interactions, though limited mutagenesis of Nun is available. Here, libraries of Nun's arginine-rich motif (ARM) were screened for the ability to exclude λ coinfection, and mutants were assayed for Nun termination with a boxB plasmid reporter system. Several Nun ARM residues appear to be immutable: Asp26, Arg28, Arg29, Arg32, Trp33, and Arg36. Asp26 and Trp33 appear to be unable to contact boxB and are not found at equivalent positions in λ N ARM. To understand if the requirement of Asp26, Trp33, and Arg36 indicated differences between HK022 Nun termination and λ N antitermination complexes, the same Nun libraries were fused to the activation domain of λ N and screened for clones able to complement N-deficient λ. Mutants were assayed for N antitermination. Surprisingly, Asp26 and Trp33 were still essential when Nun ARM was fused to N. Docking suggests that Nun ARM contacts a hydrophobic surface of the NusG carboxy-terminal domain containing residues necessary for Nun function. These findings indicate that Nun ARM relies on distinct contacts in its ternary complex and illustrate how protein-RNA recognition can evolve new regulatory functions. λ N protein interacts with host factors to allow λ nut-containing transcripts to elongate past termination signals. A competing bacteriophage, HK022, expresses Nun protein, which causes termination of λ nut transcripts. λ N and HK022 Nun use similar arginine-rich motifs (ARMs) to bind the same boxB RNAs in nut transcripts. Screening libraries of Nun ARM mutants, both in HK022 Nun and in a λ N fusion, revealed amino acids essential to Nun that could bind one or more host factors. Docking suggests that NusG, which is present in both Nun termination and N antitermination, is a plausible partner. These findings could help understand how transcription elongation is regulated and illustrate how subtle differences allow ARMs to evolve new regulatory functions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Homotypic Interaction of Bunyamwera Virus Nucleocapsid Protein
Leonard, Vincent H. J.; Kohl, Alain; Osborne, Jane C.; McLees, Angela; Elliott, Richard M.
2005-01-01
The bunyavirus nucleocapsid protein, N, plays a central role in viral replication in encapsidating the three genomic RNA segments to form functional templates for transcription and replication by the viral RNA-dependent RNA polymerase. Here we report functional mapping of interacting domains of the Bunyamwera orthobunyavirus N protein by yeast and mammalian two-hybrid systems, immunoprecipitation experiments, and chemical cross-linking studies. N forms a range of multimers from dimers to high-molecular-weight structures, independently of the presence of RNA. Deletion of the N- or C-terminal domains resulted in loss of activity in a minireplicon assay and a decreased capacity for N to form higher multimers. Our data suggest a head-to-head and tail-to-tail multimerization model for the orthobunyavirus N protein. PMID:16189017
Metabolism of dimethylphthalate by Micrococcus sp. strain 12B.
Eaton, R W; Ribbons, D W
1982-01-01
During growth of Micrococcus sp. strain 12B with dimethylphthalate, 4-carboxy-2-hydroxymuconate lactone (CHML, X) and 3,4-dihydroxyphthalate-2-methyl ester (XI) were isolated from culture filtrates. CHML is the lactone of intermediate 4-carboxy-2-hydroxymuconate (IX). Accumulation of XI which is not a substrate for 3,4-dihydroxyphthalate-2-decarboxylase in strain 12B afforded an easy access to the preparation of 3,4-dihydroxyphthalate. PMID:7085569
NASA Astrophysics Data System (ADS)
Cui, Yuxiao; Ogasawara, Shin; Tamiaki, Hitoshi
32-Carboxy-pyropheophorbides-a possessing a variety of N-substituted carbamoyl groups at the 172-position were prepared by modifying naturally occurring chlorophyll-a. 32-Methoxycarbonyl-pyropheophorbide-a was obtained via the protection of the 172-carboxy group with an allyl group, and amidated with various primary and secondary amines at the free 17-propionate residue, followed by the acidic hydrolysis of the methyl ester in the 3-substituent to give the desired pyropheophorbide-a secondary and tertiary amides, respectively, bearing the trans-32-COOH. The synthetic pigments potentially usable for dye-sensitized solar cells gave almost the same optical properties in a solution. 32-Carboxy-pyropheophorbide-a N-monosubstituted or N,N-disubstituted amides were prepared from chemical modification of chlorophyll-a, which are potentially promising as available and environmentally friendly pigments for dye-sensitized solar cells.
Sang-aroon, Wichien; Amornkitbamrung, Vittaya; Ruangpornvisuti, Vithaya
2013-12-01
In this work, peptide bond cleavages at carboxy- and amino-sides of the aspartic residue in a peptide model via direct (concerted and step-wise) and cyclic intermediate hydrolysis reaction pathways were explored computationally. The energetics, thermodynamic properties, rate constants, and equilibrium constants of all hydrolysis reactions, as well as their energy profiles were computed at the B3LYP/6-311++G(d,p) level of theory. The result indicated that peptide bond cleavage of the Asp residue occurred most preferentially via the cyclic intermediate hydrolysis pathway. In all reaction pathways, cleavage of the peptide bond at the amino-side occurred less preferentially than at the carboxy-side. The overall reaction rate constants of peptide bond cleavage of the Asp residue at the carboxy-side for the assisted system were, in increasing order: concerted < step-wise < cyclic intermediate.
Novel carboxy functionalized sol-gel precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolter, H.; Storch, W.; Gellermann, C.
1996-12-31
A novel family of inorganic-organic copolymers (ORMOCER`s) derived from urethane- and thioether(meth)acrylate alkoxysilanes has been successfully exploited for a variety of diverse applications. In order to widen the range of applications an additional functionality (carboxy group) has been incorporated int his silane type. Conventional sol-gel processing facilitates the formation of an inorganic Si-O-Si-network via hydrolysis and polycondensation reactions of alkoxysilyl moieties and in addition, the (meth)acrylate groups are available for radically induced polymerization to obtain a complementary organic polymer structure. The presence of a carboxy group would appear to have great potential for a range of diverse areas of application,more » such as an internal catalyst for the sol-gel process, complexation of elements such as Zr and Ti, increasing the adhesion to various substrates and modification of solubility. A number of novel silanes and their syntheses will be described in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, A.; Walker-Kopp, N; Casjens, S
2009-01-01
Bacteriophages of the Podoviridae family use short noncontractile tails to inject their genetic material into Gram-negative bacteria. In phage P22, the tail contains a thin needle, encoded by the phage gene 26, which is essential both for stabilization and for ejection of the packaged viral genome. Bioinformatic analysis of the N-terminal domain of gp26 (residues 1-60) led us to identify a family of genes encoding putative homologues of the tail needle gp26. To validate this idea experimentally and to explore their diversity, we cloned the gp26-like gene from phages HK620, Sf6 and HS1, and characterized these gene products in solution.more » All gp26-like factors contain an elongated {alpha}-helical coiled-coil core consisting of repeating, adjacent trimerization heptads and form trimeric fibers with length ranging between about 240 to 300 {angstrom}. gp26 tail needles display a high level of structural stability in solution, with Tm (temperature of melting) between 85 and 95 C. To determine how the structural stability of these phage fibers correlates with the length of the {alpha}-helical core, we investigated the effect of insertions and deletions in the helical core. In the P22 tail needle, we identified an 85-residue-long helical domain, termed MiCRU (minimal coiled-coil repeat unit), that can be inserted in-frame inside the gp26 helical core, preserving the straight morphology of the fiber. Likewise, we were able to remove three quarters of the helical core of the HS1 tail needle, minimally decreasing the stability of the fiber. We conclude that in the gp26 family of tail needles, structural stability increases nonlinearly with the length of the {alpha}-helical core. Thus, the overall stability of these bacteriophage fibers is not solely dependent on the number of trimerization repeats in the {alpha}-helical core.« less
Prangishvili, David; Vestergaard, Gisle; Häring, Monika; Aramayo, Ricardo; Basta, Tamara; Rachel, Reinhard; Garrett, Roger A
2006-06-23
A novel virus, ATV, of the hyperthermophilic archaeal genus Acidianus has the unique property of undergoing a major morphological development outside of, and independently of, the host cell. Virions are extruded from host cells as lemon-shaped tail-less particles, after which they develop long tails at each pointed end, at temperatures close to that of the natural habitat, 85 degrees C. The extracellularly developed tails constitute tubes, which terminate in an anchor-like structure that is not observed in the tail-less particles. A thin filament is located within the tube, which exhibits a periodic structure. Tail development produces a one half reduction in the volume of the virion, concurrent with a slight expansion of the virion surface. The circular, double-stranded DNA genome contains 62,730 bp and is exceptional for a crenarchaeal virus in that it carries four putative transposable elements as well as genes, which previously have been associated only with archaeal self-transmissable plasmids. In total, it encodes 72 predicted proteins, including 11 structural proteins with molecular masses in the range of 12 to 90 kDa. Several of the larger proteins are rich in coiled coil and/or low complexity sequence domains, which are unusual for archaea. One protein, in particular P800, resembles an intermediate filament protein in its structural properties. It is modified in the two-tailed, but not in the tail-less, virion particles and it may contribute to viral tail development. Exceptionally for a crenarchaeal virus, infection with ATV results either in viral replication and subsequent cell lysis or in conversion of the infected cell to a lysogen. The lysogenic cycle involves integration of the viral genome into the host chromosome, probably facilitated by the virus-encoded integrase and this process can be interrupted by different stress factors.
2012-01-01
Background Haemophilus parasuis, the causative agent of Glässer’s disease, is prevalent in swine herds and clinical signs associated with this disease are meningitis, polyserositis, polyarthritis, and bacterial pneumonia. Six to eight week old pigs in segregated early weaning herds are particularly susceptible to the disease. Insufficient colostral antibody at weaning or the mixing of pigs with heterologous virulent H. parasuis strains from other farm sources in the nursery or grower-finisher stage are considered to be factors for the outbreak of Glässer’s disease. Previously, a Mu-like bacteriophage portal gene was detected in a virulent swine isolate of H. parasuis by nested polymerase chain reaction. Mu-like bacteriophages are related phyologenetically to enterobacteriophage Mu and are thought to carry virulence genes or to induce host expression of virulence genes. This study characterizes the Mu-like bacteriophage, named SuMu, isolated from a virulent H. parasuis isolate. Results Characterization was done by genomic comparison to enterobacteriophage Mu and proteomic identification of various homologs by mass spectrometry. This is the first report of isolation and characterization of this bacteriophage from the Myoviridae family, a double-stranded DNA bacteriophage with a contractile tail, from a virulent field isolate of H. parasuis. The genome size of bacteriophage SuMu was 37,151 bp. DNA sequencing revealed fifty five open reading frames, including twenty five homologs to Mu-like bacteriophage proteins: Nlp, phage transposase-C-terminal, COG2842, Gam-like protein, gp16, Mor, peptidoglycan recognition protein, gp29, gp30, gpG, gp32, gp34, gp36, gp37, gpL, phage tail tube protein, DNA circulation protein, gpP, gp45, gp46, gp47, COG3778, tail fiber protein gp37-C terminal, tail fiber assembly protein, and Com. The last open reading frame was homologous to IS1414. The G + C content of bacteriophage SuMu was 41.87% while its H. parasuis host genome’s G + C content was 39.93%. Twenty protein homologs to bacteriophage proteins, including 15 structural proteins, one lysogeny-related and one lysis-related protein, and three DNA replication proteins were identified by mass spectrometry. One of the tail proteins, gp36, may be a virulence-related protein. Conclusions Bacteriophage SuMu was characterized by genomic and proteomic methods and compared to enterobacteriophage Mu. PMID:22823751
Zehr, Emilie S; Tabatabai, Louisa B; Bayles, Darrell O
2012-07-23
Haemophilus parasuis, the causative agent of Glässer's disease, is prevalent in swine herds and clinical signs associated with this disease are meningitis, polyserositis, polyarthritis, and bacterial pneumonia. Six to eight week old pigs in segregated early weaning herds are particularly susceptible to the disease. Insufficient colostral antibody at weaning or the mixing of pigs with heterologous virulent H. parasuis strains from other farm sources in the nursery or grower-finisher stage are considered to be factors for the outbreak of Glässer's disease. Previously, a Mu-like bacteriophage portal gene was detected in a virulent swine isolate of H. parasuis by nested polymerase chain reaction. Mu-like bacteriophages are related phyologenetically to enterobacteriophage Mu and are thought to carry virulence genes or to induce host expression of virulence genes. This study characterizes the Mu-like bacteriophage, named SuMu, isolated from a virulent H. parasuis isolate. Characterization was done by genomic comparison to enterobacteriophage Mu and proteomic identification of various homologs by mass spectrometry. This is the first report of isolation and characterization of this bacteriophage from the Myoviridae family, a double-stranded DNA bacteriophage with a contractile tail, from a virulent field isolate of H. parasuis. The genome size of bacteriophage SuMu was 37,151 bp. DNA sequencing revealed fifty five open reading frames, including twenty five homologs to Mu-like bacteriophage proteins: Nlp, phage transposase-C-terminal, COG2842, Gam-like protein, gp16, Mor, peptidoglycan recognition protein, gp29, gp30, gpG, gp32, gp34, gp36, gp37, gpL, phage tail tube protein, DNA circulation protein, gpP, gp45, gp46, gp47, COG3778, tail fiber protein gp37-C terminal, tail fiber assembly protein, and Com. The last open reading frame was homologous to IS1414. The G + C content of bacteriophage SuMu was 41.87% while its H. parasuis host genome's G + C content was 39.93%. Twenty protein homologs to bacteriophage proteins, including 15 structural proteins, one lysogeny-related and one lysis-related protein, and three DNA replication proteins were identified by mass spectrometry. One of the tail proteins, gp36, may be a virulence-related protein. Bacteriophage SuMu was characterized by genomic and proteomic methods and compared to enterobacteriophage Mu.
Functional Characterization of CENP-A Post-Translational Modifications in Chromosome Segregation
2015-07-01
for Experimental Biologist) meeting - Mitosis : Spindle Assembly and Function. Moreover I gave talk and did poster presentation in several meetings...Publications, Abstracts, and Presentations: 1. FASEB (Federation of American Societies for Experimental Biologist) meeting - Mitosis : Spindle Assembly and...that the amino terminal tail of CENP-A is sufficient for trimethylation. We also found increase in methylation of centromeric CENP-A towards mitosis
Zhou, Zikai; Liu, An; Xia, Shuting; Leung, Celeste; Qi, Junxia; Meng, Yanghong; Xie, Wei; Park, Pojeong; Collingridge, Graham L; Jia, Zhengping
2018-05-11
In the version of this article initially published, the wrong version of Supplementary Fig. 10 was posted and the city for affiliation 4, the Co-innovation Center of Neuroregeneration, Nantong University, was given as Nanjing instead of Nantong. The errors have been corrected in the HTML and PDF versions of the article.
Naturally Occurring Differences in CENH3 Affect Chromosome Segregation in Zygotic Mitosis of Hybrids
Maheshwari, Shamoni; Tan, Ek Han; West, Allan; Franklin, F. Chris H.; Comai, Luca
2015-01-01
The point of attachment of spindle microtubules to metaphase chromosomes is known as the centromere. Plant and animal centromeres are epigenetically specified by a centromere-specific variant of Histone H3, CENH3 (a.k.a. CENP-A). Unlike canonical histones that are invariant, CENH3 proteins are accumulating substitutions at an accelerated rate. This diversification of CENH3 is a conundrum since its role as the key determinant of centromere identity remains a constant across species. Here, we ask whether naturally occurring divergence in CENH3 has functional consequences. We performed functional complementation assays on cenh3-1, a null mutation in Arabidopsis thaliana, using untagged CENH3s from increasingly distant relatives. Contrary to previous results using GFP-tagged CENH3, we find that the essential functions of CENH3 are conserved across a broad evolutionary landscape. CENH3 from a species as distant as the monocot Zea mays can functionally replace A. thaliana CENH3. Plants expressing variant CENH3s that are fertile when selfed show dramatic segregation errors when crossed to a wild-type individual. The progeny of this cross include hybrid diploids, aneuploids with novel genetic rearrangements and haploids that inherit only the genome of the wild-type parent. Importantly, it is always chromosomes from the plant expressing the divergent CENH3 that missegregate. Using chimeras, we show that it is divergence in the fast-evolving N-terminal tail of CENH3 that is causing segregation errors and genome elimination. Furthermore, we analyzed N-terminal tail sequences from plant CENH3s and discovered a modular pattern of sequence conservation. From this we hypothesize that while the essential functions of CENH3 are largely conserved, the N-terminal tail is evolving to adapt to lineage-specific centromeric constraints. Our results demonstrate that this lineage-specific evolution of CENH3 causes inviability and sterility of progeny in crosses, at the same time producing karyotypic variation. Thus, CENH3 evolution can contribute to postzygotic reproductive barriers. PMID:25622028
Izzi, Stephanie A; Colantuono, Bonnie J; Sullivan, Kelly; Khare, Parul; Meedel, Thomas H
2013-04-15
Ci-MRF is the sole myogenic regulatory factor (MRF) of the ascidian Ciona intestinalis, an invertebrate chordate. In order to investigate its properties we developed a simple in vivo assay based on misexpressing Ci-MRF in the notochord of Ciona embryos. We used this assay to examine the roles of three structural motifs that are conserved among MRFs: an alanine-threonine (Ala-Thr) dipeptide of the basic domain that is known in vertebrates as the myogenic code, a cysteine/histidine-rich (C/H) domain found just N-terminal to the basic domain, and a carboxy-terminal amphipathic α-helix referred to as Helix III. We show that the Ala-Thr dipeptide is necessary for normal Ci-MRF function, and that while eliminating the C/H domain or Helix III individually has no demonstrable effect on Ci-MRF, simultaneous loss of both motifs significantly reduces its activity. Our studies also indicate that direct interaction between CiMRF and an essential E-box of Ciona Troponin I is required for the expression of this muscle-specific gene and that multiple classes of MRF-regulated genes exist in Ciona. These findings are consistent with substantial conservation of MRF-directed myogenesis in chordates and demonstrate for the first time that the Ala/Thr dipeptide of the basic domain of an invertebrate MRF behaves as a myogenic code. Copyright © 2013 Elsevier Inc. All rights reserved.
Fekete, Sona; Simko, Julius; Mzik, Martin; Karesova, Iva; Zivna, Helena; Zivny, Pavel; Pavliková, Ladislava; Palicka, Vladimir
2015-08-15
Our goal was to determine if venlafaxine has a negative effect on bone metabolism. Rats were divided into three groups. The sham-operated control group (SHAM), the control group after orchidectomy (ORX), and the experimental group after orchidectomy received venlafaxine (VEN ORX) in standard laboratory diet (SLD) for 12 weeks. Bone mineral content (BMC) was measured by dual energy X-ray absorptiometry (DXA). Bone marker concentrations of carboxy-terminal cross-linking telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), amino-terminal propeptide of procollagen type I (P1NP), bone alkaline phosphatase (BALP), sclerostin and bone morphogenetic protein 2 (BMP-2) were examined in bone homogenate. The femurs were used for biomechanical testing. Compared to the ORX group we found lower BMD in the diaphysis area of the femur in the VEN ORX group, suggesting a preferential effect on cortical bone. Of the bone metabolism markers, there was significant decrease (ORX control group versus VEN ORX experimental group) in BALP levels and increase in sclerostin and CTX-I levels, suggesting a decrease in osteoid synthesis and increased bone resorption. The results suggest that the prolonged use of venlafaxine may have a negative effect on bone metabolism. Further studies are warranted to establish whether venlafaxine may have a clinically significant adverse effect on bone. Copyright © 2015 Elsevier B.V. All rights reserved.
E-box-independent regulation of transcription and differentiation by MYC.
Uribesalgo, Iris; Buschbeck, Marcus; Gutiérrez, Arantxa; Teichmann, Sophia; Demajo, Santiago; Kuebler, Bernd; Nomdedéu, Josep F; Martín-Caballero, Juan; Roma, Guglielmo; Benitah, Salvador Aznar; Di Croce, Luciano
2011-10-23
MYC proto-oncogene is a key player in cell homeostasis that is commonly deregulated in human carcinogenesis(1). MYC can either activate or repress target genes by forming a complex with MAX (ref. 2). MYC also exerts MAX-independent functions that are not yet fully characterized(3). Cells possess an intrinsic pathway that can abrogate MYC-MAX dimerization and E-box interaction, by inducing phosphorylation of MYC in a PAK2-dependent manner at three residues located in its helix-loop-helix domain(4). Here we show that these carboxy-terminal phosphorylation events switch MYC from an oncogenic to a tumour-suppressive function. In undifferentiated cells, MYC-MAX is targeted to the promoters of retinoic-acid-responsive genes by its direct interaction with the retinoic acid receptor-α (RARα). MYC-MAX cooperates with RARα to repress genes required for differentiation, in an E-box-independent manner. Conversely, on C-terminal phosphorylation of MYC during differentiation, the complex switches from a repressive to an activating function, by releasing MAX and recruiting transcriptional co-activators. Phospho-MYC synergizes with retinoic acid to eliminate circulating leukaemic cells and to decrease the level of tumour invasion. Our results identify an E-box-independent mechanism for transcriptional regulation by MYC that unveils previously unknown functions for MYC in differentiation. These may be exploited to develop alternative targeted therapies.
Hakki, Morgan; Drummond, Coyne; Houser, Benjamin; Marousek, Gail; Chou, Sunwen
2011-01-01
Select mutations in the human cytomegalovirus (HCMV) gene UL27 confer low-grade resistance to the HCMV UL97 kinase inhibitor maribavir (MBV). It has been reported that the 608-amino acid UL27 gene product (pUL27) normally localizes to cell nuclei and nucleoli, whereas its truncation at codon 415, as found in a MBV-resistant mutant, results in cytoplasmic localization. We now show that in the context of full-length pUL27, diverse single amino acid substitutions associated with MBV resistance result in loss of its nucleolar localization when visualized after transient transfection, whereas substitutions representing normal interstrain polymorphism had no such effect. The same differences in localization were observed during a complete infection cycle with recombinant HCMV strains over-expressing full-length fluorescent pUL27 variants. Nested UL27 C-terminal truncation expression plasmids showed that amino acids 596–599 were required for the nucleolar localization of pUL27. These results indicate that the loss of a nucleolar function of pUL27 may contribute to MBV resistance, and that the nucleolar localization of pUL27 during HCMV infection depends not only on a carboxy-terminal domain but also on a property of pUL27 that is affected by MBV-resistant mutations, such as an interaction with component(s) of the nucleolus. PMID:21906628
A periplasmic, pyridoxal-5'-phosphate-dependent amino acid racemase in Pseudomonas taetrolens.
Matsui, Daisuke; Oikawa, Tadao; Arakawa, Noriaki; Osumi, Shintaro; Lausberg, Frank; Stäbler, Norma; Freudl, Roland; Eggeling, Lothar
2009-07-01
The pyridoxal-5'-phosphate (PLP)-dependent amino acid racemases occur in almost every bacterium but may differ considerably with respect to substrate specificity. We here isolated the cloned broad substrate specificity racemase ArgR of Pseudomonas taetrolens from Escherichia coli by classical procedures. The racemase was biochemically characterized and amongst other aspects it was confirmed that it is mostly active with lysine, arginine and ornithine, but merely weakly active with alanine, whereas the alanine racemase of the same organism studied in comparison acts on alanine only. Unexpectedly, sequencing the amino-terminal end of ArgR revealed processing of the protein, with a signal peptide cleaved off. Subsequent localization studies demonstrated that in both P. taetrolens and E. coli ArgR activity was almost exclusively present in the periplasm, a feature so far unknown for any amino acid racemase. An ArgR-derivative carrying a carboxy-terminal His-tag was made and this was demonstrated to localize even in an E. coli mutant devoid of the twin-arginine translocation (Tat) pathway in the periplasm. These data indicate that ArgR is synthesized as a prepeptide and translocated in a Tat-independent manner. We therefore propose that ArgR translocation depends on the Sec system and a post-translocational insertion of PLP occurs. As further experiments showed, ArgR is necessary for the catabolism of D: -arginine and D: -lysine by P. taetrolens.
Synergistic Regulation of Competence Development in Bacillus subtilis by Two Rap-Phr Systems† ‡
Bongiorni, Cristina; Ishikawa, Shu; Stephenson, Sophie; Ogasawara, Naotake; Perego, Marta
2005-01-01
The 11 Rap proteins of Bacillus subtilis comprise a conserved family of tetratricopeptide (TPR)-containing regulatory proteins. Their activity is inhibited by specific Phr pentapeptides produced from the product of phr genes through an export-import maturation process. We found that one of the proteins, namely RapF, is involved in the regulation of competence to DNA transformation. The ComA response regulator and transcription factor for initiation of competence development is the target of RapF. Specific binding of RapF to the carboxy-terminal DNA-binding domain of ComA inhibits the response regulator's ability to bind its target DNA promoters. The PhrF C-terminal pentapeptide, QRGMI, inhibits RapF activity. The activity of RapF and PhrF in regulating competence development is analogous to the previously described activity of RapC and PhrC (L. J. Core and M. Perego, Mol. Microbiol. 49:1509-1522, 2003). In fact, the RapF and PhrF pair of proteins acts synergistically with RapC and PhrC in the overall regulation of the ComA transcription factor. Since the transcription of the RapC- and RapF-encoding genes is positively regulated by their own target ComA, an autoregulatory circuit must exist for the competence transcription factor in order to modulate its activity. PMID:15968044
Analysis of Bovine Leukemia Virus Gag Membrane Targeting and Late Domain Function
Wang, Huating; Norris, Kendra M.; Mansky, Louis M.
2002-01-01
Assembly of retrovirus-like particles only requires the expression of the Gag polyprotein precursor. We have exploited this in the development of a model system for studying the virus particle assembly pathway for bovine leukemia virus (BLV). BLV is closely related to the human T-cell leukemia viruses (HTLVs), and all are members of the Deltaretrovirus genus of the Retroviridae family. Overexpression of a BLV Gag polyprotein containing a carboxy-terminal influenza virus hemagglutinin (HA) epitope tag in mammalian cells led to the robust production of virus-like particles (VLPs). Site-directed mutations were introduced into HA-tagged Gag to test the usefulness of this model system for studying certain aspects of the virus assembly pathway. First, mutations that disrupted the amino-terminal glycine residue that is important for Gag myristylation led to a drastic reduction in VLP production. Predictably, the nature of the VLP production defect was correlated to Gag membrane localization. Second, mutation of the PPPY motif (located in the MA domain) greatly reduced VLP production in the absence of the viral protease. This reduction in VLP production was more severe in the presence of an active viral protease. Examination of particles by electron microscopy revealed an abundance of particles that began to pinch off from the plasma membrane but were not completely released from the cell surface, indicating that the PPPY motif functions as a late domain (L domain). PMID:12134053
Perinatal collagen turnover markers in intrauterine growth restriction.
Gourgiotis, Demetrios; Briana, Despina D; Georgiadis, Anestis; Boutsikou, Maria; Baka, Stavroula; Marmarinos, Antonios; Hassiakos, Demetrios; Malamitsi-Puchner, Ariadne
2012-09-01
To investigate bone and connective tissue collagen turnover in intrauterine growth restricted (IUGR) pregnancies, by determining circulating markers of type I collagen synthesis (carboxy-terminal propeptide of type I procollagen [PICP], representing bone formation) and degradation (cross-linked telopeptide of type I collagen [ICTP], representing bone resorption) as well as type III collagen synthesis (N-terminal propeptide of type-III procollagen [PIIINP], reflecting growth and tissue maturity). Plasma PICP, ICTP and PIIINP concentrations were measured in 40 mothers and their 20 asymmetric IUGR and 20 appropriate for gestational age (AGA) full-term fetuses and neonates on postnatal day 1-(N1) and 4-(N4). Fetal PICP, fetal and N4 ICTP, as well as fetal, N1 and N4 PIIINP concentrations were higher in the IUGR group (p ≤ 0.038, in all cases). In both groups, maternal PICP, ICTP and PIIINP concentrations were lower than fetal, N1 and N4 ones (p<0.001, in each case). Type I collagen turnover is enhanced in IUGR than AGA fetuses/neonates. Similarly, fetal/neonatal PIIINP concentrations are elevated in IUGR, probably due to stress, responsible for induction of tissue maturation, and/or to impaired excretory renal function, leading to reduced protein clearance. Fetal/neonatal PICP, ICTP and PIIINP concentrations are higher than maternal concentrations, possibly reflecting increased skeletal growth and collagen turnover in the former.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntosh, I.; Abbott, M.H.; Francomano, C.A.
1994-09-01
Schmid metaphyseal chondrodysplasia (SMCD, MIM 156500) is an autosomal dominant disorder of the osseous skeleton resulting in short stature, coxa vara and a waddling gait. Type X collagen is an extracellular matrix protein expressed exclusively by hypertrophic chondrocytes. We have previously identified four mutations in the type X collagen gene (COL10A1) in patients with SMCD. Each of these mutations, as well as another three reported by other investigators, are in the carboxy-terminal non-collagenous domain (NC1). Here, we present data for another three mutations each predicted to cause premature termination of translation within the NC1 domain. Two are nonsense mutations, Y628Xmore » and W651X, while the third is a frameshift resulting from the deletion of two nucleotides, 1856delCC. Each of these mutations occurred de novo, resulting in sporadic cases of SMCD. Four frameshift mutations have now been reported to initiate within 10bp of each other in the NC1 domain, namely 1865delC, 1856delCC, 1856del13 and 1866del10. These findings further support the hypothesis that SMCD is the result of the mutant type X collagen molecule being unable to participate in trimerization, although a dominant-negative model of disease pathogenesis has not been formally excluded.« less
Fibronectin is a survival factor for differentiated osteoblasts
NASA Technical Reports Server (NTRS)
Globus, R. K.; Doty, S. B.; Lull, J. C.; Holmuhamedov, E.; Humphries, M. J.; Damsky, C. H.
1998-01-01
The skeletal extracellular matrix produced by osteoblasts contains the glycoprotein fibronectin, which regulates the adhesion, differentiation and function of various adherent cells. Interactions with fibronectin are required for osteoblast differentiation in vitro, since fibronectin antagonists added to cultures of immature fetal calvarial osteoblasts inhibit their progressive differentiation. To determine if fibronectin plays a unique role in fully differentiated osteoblasts, cultures that had already formed mineralized nodules in vitro were treated with fibronectin antagonists. Fibronectin antibodies caused >95% of the cells in the mature cultures to display characteristic features of apoptosis (nuclear condensation, apoptotic body formation, DNA laddering) within 24 hours. Cells appeared to acquire sensitivity to fibronectin antibody-induced apoptosis as a consequence of differentiation, since antibodies failed to kill immature cells and the first cells killed were those associated with mature nodules. Intact plasma fibronectin, as well as fragments corresponding to the amino-terminal, cell-binding, and carboxy-terminal domains of fibronectin, independently induced apoptosis of mature (day-13), but not immature (day-4), osteoblasts. Finally, transforming growth factor-beta1 partially protected cells from the apoptotic effects of fibronectin antagonists. Thus, in the course of maturation cultured osteoblasts switch from depending on fibronectin for differentiation to depending on fibronectin for survival. These data suggest that fibronectin, together with transforming growth factor-beta1, may affect bone formation, in part by regulating the survival of osteoblasts.