Sample records for carboxylic acid ester

  1. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl ester...

  2. Preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters

    DOEpatents

    Gogate, Makarand Ratnakar; Spivey, James Jerry; Zoeller, Joseph Robert

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  3. Preparation of {alpha},{beta}-unsaturated carboxylic acids and esters

    DOEpatents

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.

    1998-09-15

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  4. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  5. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 2. Major structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    Polycarboxylic acid structures that account for the strong-acid characteristics (pKa1 near 2.0) were examined for fulvic acid from the Suwannee River. Studies of model compounds demonstrated that pKa values near 2.0 occur only if the ??-ether or ??-ester groups were in cyclic structures with two to three additional electronegative functional groups (carboxyl, ester, ketone, aromatic groups) at adjacent positions on the ring. Ester linkage removal by alkaline hydrolysis and destruction of ether linkages through cleavage and reduction with hydriodic acid confirmed that the strong carboxyl acidity in fulvic acid was associated with polycarboxylic ??-ether and ??-ester structures. Studies of hypothetical structural models of fulvic acid indicated possible relation of these polycarboxylic structures with the amphiphilic and metal-binding properties of fulvic acid.

  6. Microbial Transformation of Esters of Chlorinated Carboxylic Acids

    PubMed Central

    Paris, D. F.; Wolfe, N. L.; Steen, W. C.

    1984-01-01

    Two groups of compounds were selected for microbial transformation studies. In the first group were carboxylic acid esters having a fixed aromatic moiety and an increasing length of the alkyl component. Ethyl esters of chlorine-substituted carboxylic acids were in the second group. Microorganisms from environmental waters and a pure culture of Pseudomonas putida U were used. The bacterial populations were monitored by plate counts, and disappearance of the parent compound was followed by gas-liquid chromatography as a function of time. The products of microbial hydrolysis were the respective carboxylic acids. Octanol-water partition coefficients (Kow) for the compounds were measured. These values spanned three orders of magnitude, whereas microbial transformation rate constants (kb) varied only 50-fold. The microbial rate constants of the carboxylic acid esters with a fixed aromatic moiety increased with an increasing length of alkyl substituents. The regression coefficient for the linear relationships between log kb and log Kow was high for group 1 compounds, indicating that these parameters correlated well. The regression coefficient for the linear relationships for group 2 compounds, however, was low, indicating that these parameters correlated poorly. PMID:16346459

  7. In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst

    NASA Astrophysics Data System (ADS)

    Baek, Heeyoel; Minakawa, Maki; Yamada, Yoichi M. A.; Han, Jin Wook; Uozumi, Yasuhiro

    2016-05-01

    A porous phenolsulphonic acid—formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catalysts. The transesterification of alcohols and esters was also investigated by using PAFR, giving the corresponding esters. PAFR was applied to the batch-wise and continuous-flow production of biodiesel fuel FAME. The PAFR-packed flow reactor that was developed for the synthesis of carboxylic acids and FAME worked for four days without loss of its catalytic activity.

  8. Improved Preparation of Halopropyl Bridged Carboxylic Ortho Esters

    USDA-ARS?s Scientific Manuscript database

    Protection of a carboxylic acid function as a bridged ortho ester derivative enables the use of strongly basic conditions in the synthetic strategy because the protons, alpha to the previous carbonyl carbon, are less acidic. Protected 3-halopropionic acid can behave like an alkyl halide making them...

  9. Direct esterification of ammonium salts of carboxylic acids

    DOEpatents

    Halpern, Yuval [Skokie, IL

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  10. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  11. In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst

    PubMed Central

    Baek, Heeyoel; Minakawa, Maki; Yamada, Yoichi M. A.; Han, Jin Wook; Uozumi, Yasuhiro

    2016-01-01

    A porous phenolsulphonic acid—formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catalysts. The transesterification of alcohols and esters was also investigated by using PAFR, giving the corresponding esters. PAFR was applied to the batch-wise and continuous-flow production of biodiesel fuel FAME. The PAFR-packed flow reactor that was developed for the synthesis of carboxylic acids and FAME worked for four days without loss of its catalytic activity. PMID:27189631

  12. Sinterable Ceramic Powders from Laser-Heated Gases.

    DTIC Science & Technology

    1988-02-01

    ether . carboxylic acid. and aldehyde clases: water is also included.Acrigto William and Goodman.’ a single crystalline sili- The single-crstalline...represent commonly available organic families, Including aliphatic and aromatic hydrocarbons, chlorides, ethers , ketones , esters, alcohols, aldehydes...Hydrocarbons Ketone Amine Chlorides Low-alcohols 8f . Ether Ester - _Aldehyde Ether Ketones High-alcohols 04 Carboxylic Ester I acid Ether o . Nitrile

  13. Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst.

    PubMed

    Korstanje, Ties J; van der Vlugt, Jarl Ivar; Elsevier, Cornelis J; de Bruin, Bas

    2015-10-16

    The reduction of esters and carboxylic acids to alcohols is a highly relevant conversion for the pharmaceutical and fine-chemical industries and for biomass conversion. It is commonly performed using stoichiometric reagents, and the catalytic hydrogenation of the acids previously required precious metals. Here we report the homogeneously catalyzed hydrogenation of carboxylic acids to alcohols using earth-abundant cobalt. This system, which pairs Co(BF4)2·6H2O with a tridentate phosphine ligand, can reduce a wide range of esters and carboxylic acids under relatively mild conditions (100°C, 80 bar H2) and reaches turnover numbers of up to 8000. Copyright © 2015, American Association for the Advancement of Science.

  14. Production of alpha-hydroxy carboxylic acids and esters from higher sugars using tandem catalyst systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orazov, Marat; Davis, Mark E.

    The present disclosure is directed to methods and composition used in the preparation of alpha-hydroxy carboxylic acids and esters from higher sugars using a tandem catalyst system comprising retro-aldol catalysts and Lewis acid catalysts. In some embodiments, these alpha-hydroxy carboxylic acids may be prepared from pentoses and hexoses. The retro-aldol and Lewis catalysts may be characterized by their respective ability to catalyze a 1,2-carbon shift reaction and a 1,2-hydride shift reaction on an aldose or ketose substrate.

  15. Process for the generation of .alpha., .beta.-unsaturated carboxylic acids and esters using niobium catalyst

    DOEpatents

    Gogate, Makarand Ratnakav; Spivey, James Jerome; Zoeller, Joseph Robert

    1999-01-01

    A process using a niobium catalyst includes the step of reacting an ester or carboxylic acid with oxygen and an alcohol in the presence a niobium catalyst to respectively produce an .alpha.,.beta.-unsaturated ester or carboxylic acid. Methanol may be used as the alcohol, and the ester or carboxylic acid may be passed over the niobium catalyst in a vapor stream containing oxygen and methanol. Alternatively, the process using a niobium catalyst may involve the step of reacting an ester and oxygen in the presence the niobium catalyst to produce an .alpha.,.beta.-unsaturated carboxylic acid. In this case the ester may be a methyl ester. In either case, niobium oxide may be used as the niobium catalyst with the niobium oxide being present on a support. The support may be an oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide and mixtures thereof. The catalyst may be formed by reacting niobium fluoride with the oxide serving as the support. The niobium catalyst may contain elemental niobium within the range of 1 wt % to 70 wt %, and more preferably within the range of 10 wt % to 30 wt %. The process may be operated at a temperature from 150 to 450.degree. C. and preferably from 250 to 350.degree. C. The process may be operated at a pressure from 0.1 to 15 atm. absolute and preferably from 0.5-5 atm. absolute. The flow rate of reactants may be from 10 to 10,000 L/kg.sub.(cat) /h, and preferably from 100 to 1,000 L/kg.sub.(cat) /h.

  16. Synthesis of carboxylic acids, esters, alcohols and ethers containing a tetrahydropyran ring derived from 6-methyl-5-hepten-2-one.

    PubMed

    Hanzawa, Yohko; Hashimoto, Kahoko; Kasashima, Yoshio; Takahashi, Yoshiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu

    2012-01-01

    3-hydroxy acids, 3-hydroxy-3,7-dimethyloct-6-enoic acid (1) and 3-hydroxy-2,2,3,7-tetramethyloct-6-enoic acid (2), were prepared from 6-methyl-5-hepten-2-one, and they were subsequently used to prepare (2,6,6-trimethyltetrahydropyran-2-yl)acetic acid (3) and 2-methyl-2-(2,6,6-trimethyltetrahydropyran-2-yl)propanoic acid (4), respectively, via cyclization with an acidic catalyst such as boron trifluoride diethyl etherate or iodine. The reaction of carboxylic acids 3 and 4 with alcohols, including methanol, ethanol, and 1-propanol, produced the corresponding methyl, ethyl, and propyl esters, which all contained a tetrahydropyran ring. Reduction of carboxylic acids 3 and 4 afforded the corresponding alcohols. Subsequent reactions of these alcohols with several acyl chlorides produced novel esters. The alcohols also reacted with methyl iodide and sodium hydride to provide novel ethers. A one-pot cyclization-esterification of 1 to produce esters containing a tetrahydropyran ring, using iodine as a catalyst, was also investigated.

  17. Biodegradation tests of mercaptocarboxylic acids, their esters, related divalent sulfur compounds and mercaptans.

    PubMed

    Rücker, Christoph; Mahmoud, Waleed M M; Schwartz, Dirk; Kümmerer, Klaus

    2018-04-17

    Mercaptocarboxylic acids and their esters, a class of difunctional compounds bearing both a mercapto and a carboxylic acid or ester functional group, are industrial chemicals of potential environmental concern. Biodegradation of such compounds was systematically investigated here, both by literature search and by experiments (Closed Bottle Test OECD 301D and Manometric Respirometry Test OECD 301F). These compounds were found either readily biodegradable or at least biodegradable to a significant extent. Some related compounds of divalent sulfur were tested for comparison (mercaptans, sulfides, disulfides). For the two relevant monofunctional compound classes, carboxylic acids/esters and mercaptans, literature data were compiled, and by comparison with structurally similar compounds without these functional groups, the influence of COOH/COOR' and SH groups on biodegradability was evaluated. Thereby, an existing rule of thumb for biodegradation of carboxylic acids/esters was supported by experimental data, and a rule of thumb could be formulated for mercaptans. Concurrent to biodegradation, abiotic processes were observed in the experiments, rapid oxidative formation of disulfides (dimerisation of monomercaptans and cyclisation of dimercaptans) and hydrolysis of esters. Some problems that compromise the reproducibility of biodegradation test results were discussed.

  18. Synthesis and characterization of bifunctional surfaces with tunable functional group pairs

    NASA Astrophysics Data System (ADS)

    Galloway, John M.; Kung, Mayfair; Kung, Harold H.

    2016-06-01

    Grafting of pairs of functional groups onto a silica surface was demonstrated by tethering both terminals of an organochlorosilane precursor molecule, Cl2(CH3)Si(CH2)4(CO)(OSi(i-Pr)2)(CH2)2Si(CH3)Cl2, that possess a cleavable silyl ester bond, onto a silica surface. Hydrolytic cleavage of the silyl ester bond of the grafted molecule resulted in the generation of organized pairs of carboxylic acid and organosilanol groups. This organosilanol moiety was easily transformed into other functional groups through condensation reactions to form, together with the neighboring acid group, pairs such as carboxylic acid/secondary amine, carboxylic acid/pyridine, and carboxylic acid/phosphine. In the case of carboxylic acid/amine pairing, there was evidence of the formation of amide. A sample grafted with amine-carboxylic acid pairs was three times more active (per free amine) than a sample without such pairs for the nitroaldol condensation of 4-nitrobenzaldehyde and nitromethane.

  19. Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.; WHEELER,DAVID R.

    2000-07-14

    Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety ofmore » applications such as scavenging of heavy metals.« less

  20. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents.

    PubMed

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-01-19

    Based on the structure of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which exhibits selective cytotoxicity against a tumorigenic cell line, (2,4-dimethoxyphenyl)-(4-hydroxy-3-methyl-6-phenylbenzofuran-2-yl)-methanone (18m) was designed and synthesized as a biologically stable derivative containing no ester group. Although the potency of 18m was almost the same as our initial hit compound 1, 18m is expected to last longer in the human body as an anticancer agent.

  1. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid.

    PubMed

    Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David

    2018-04-11

    Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.

  2. [Chloroquine analogues from benzofuro- and benzothieno[3,2-b]-4-pyridone-2-carboxylic acid esters].

    PubMed

    Gölitzer, K; Meyer, H; Jomaa, H; Wiesner, J

    2004-08-01

    The amides 7 were synthesized from the annulated methyl 4-pyridone-2-carboxylates 4 via the carboxylic acids 5 and their acid chlorides by reacting with the novaldiamine base 6. The alcohol 8b, obtained from DIBAH reduction of the ester 4b, was transformed to the chloromethyl derivative 9 which reacted with 6 and 18-crown-6 leading to the 2-novaldiaminomethyl-4-pyridone 10. Compound 10 was obtained with higher yield from DIBAH reduction of the amide 7b. The substances 7 and 10 were inactive when tested against the chloroquine resistant Plasmodium falciparum strain Dd2.

  3. Conformational Behaviour of Azasugars Based on Mannuronic Acid.

    PubMed

    van Rijssel, Erwin R; Janssen, Antonius P A; Males, Alexandra; Davies, Gideon J; van der Marel, Gijsbert A; Overkleeft, Herman S; Codée, Jeroen D C

    2017-07-04

    A set of mannuronic-acid-based iminosugars, consisting of the C-5-carboxylic acid, methyl ester and amide analogues of 1deoxymannorjirimicin (DMJ), was synthesised and their pH-dependent conformational behaviour was studied. Under acidic conditions the methyl ester and the carboxylic acid adopted an "inverted" 1 C 4 chair conformation as opposed to the "normal" 4 C 1 chair at basic pH. This conformational change is explained in terms of the stereoelectronic effects of the ring substituents and it parallels the behaviour of the mannuronic acid ester oxocarbenium ion. Because of this solution-phase behaviour, the mannuronic acid ester azasugar was examined as an inhibitor for a Caulobacter GH47 mannosidase that hydrolyses its substrates by way of a reaction itinerary that proceeds through a 3 H 4 transition state. No binding was observed for the mannuronic acid ester azasugar, but sub-atomic resolution data were obtained for the DMJ⋅CkGH47 complex, showing two conformations- 3 S 1 and 1 C 4 -for the DMJ inhibitor. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Synthesis, Aqueous Reactivity, and Biological Evaluation of Carboxylic Acid Ester-Functionalized Platinum–Acridine Hybrid Anticancer Agents

    PubMed Central

    Graham, Leigh A.; Suryadi, Jimmy; West, Tiffany K.; Kucera, Gregory L.; Bierbach, Ulrich

    2012-01-01

    The synthesis of platinum–acridine hybrid agents containing carboxylic acid ester groups is described. The most active derivatives and the unmodified parent compounds showed up to 6-fold higher activity in ovarian cancer (OVCAR-3) and breast cancer (MCF-7, MDA-MB-23) cell lines than cisplatin. Inhibition of cell proliferation at nanomolar concentrations was observed in pancreatic (PANC-1) and non-small cell lung cancer cells (NSCLC, NCI-H460) of 80- and 150-fold, respectively. Introduction of the ester groups did not affect the cytotoxic properties of the hybrids, which form the same monofunctional–intercalative DNA adducts as the parent compounds, as demonstrated in a plasmid unwinding assay. In-line high-performance liquid chromatography and electrospray mass spectrometry (LC-ESMS) shows that the ester moieties undergo platinum-mediated hydrolysis in a chloride concentration-dependent manner to form carboxylate chelates. Potential applications of the chloride-sensitive ester hydrolysis as a self-immolative release mechanism for tumor-selective delivery of platinum–acridines are discussed. PMID:22871158

  5. An enhanced procedure for measuring organic acids and methyl esters in PM2.5

    NASA Astrophysics Data System (ADS)

    Liu, F.; Duan, F. K.; He, K. B.; Ma, Y. L.; Rahn, K. A.; Zhang, Q.

    2015-11-01

    A solid-phase extraction (SPE) pretreatment procedure allowing organic acids to be separated from methyl esters in fine aerosol has been developed. The procedure first separates the organic acids from fatty acid methyl esters (FAMEs) and other nonacid organic compounds by aminopropyl-based SPE cartridge and then quantifies them by gas chromatography/mass spectrometry. The procedure prevents the fatty acids and dimethyl phthalate from being overestimated, and so allows us to accurately quantify the C4-C11 dicarboxylic acids (DCAs) and the C8-C30 monocarboxylic acids (MCAs). Results for the extraction of DCAs, MCAs, and AMAs in eluate and FAMEs in effluate by SAX and NH2 SPE cartridges exhibited that the NH2 SPE cartridge gave higher extraction efficiency than the SAX cartridge. The recoveries of analytes ranged from 67.5 to 111.3 %, and the RSD ranged from 0.7 to 10.9 %. The resulting correlations between the aliphatic acids and FAMEs suggest that the FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. Through extraction and cleanup using this procedure, 17 aromatic acids in eluate were identified and quantified by gas chromatography/tandem mass spectrometry, including five polycyclic aromatic hydrocarbon (PAH): acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH acids and the dicarboxylic and aromatic acids suggested that the first three acids and 1,8-naphthalic anhydride were secondary atmospheric photochemistry products and the last two mainly primary.

  6. Saponification of esters of chiral alpha-amino acids anchored through their amine function on solid support.

    PubMed

    Cantel, Sonia; Desgranges, Stéphane; Martinez, Jean; Fehrentz, Jean-Alain

    2004-06-01

    Anchoring an alpha-amino acid residue by its amine function onto a solid support is an alternative to develop chemistry on its carboxylic function. This strategy can involve the use of amino-acid esters as precursors of the carboxylic function. A complete study on the Wang-resin was performed to determine the non racemizing saponification conditions of anchored alpha-amino esters. The use of LiOH, NaOH, NaOSi(Me)3, various solvents and temperatures were tested for this reaction. After saponification and cleavage from the support, samples were examined through their Marfey's derivatives by reversed phase HPLC to evaluate the percentage of racemization.

  7. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, Gerald Charles; Dickson, Todd Jay

    1998-01-01

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0.degree. and 80.degree. C. in the substantial absence of a hydrogenation or carbonylation catalyst.

  8. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, G.C.; Dickson, T.J.

    1998-04-28

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0 and 80 C in the substantial absence of a hydrogenation or carbonylation catalyst.

  9. Dimer esters in α-pinene secondary organic aerosol: effect of hydroxyl radical, ozone, relative humidity and aerosol acidity

    NASA Astrophysics Data System (ADS)

    Kristensen, K.; Cui, T.; Zhang, H.; Gold, A.; Glasius, M.; Surratt, J. D.

    2013-12-01

    The formation of secondary organic aerosol (SOA) from both ozonolysis and hydroxyl radical (OH)-initiated oxidation of α-pinene under conditions of high nitric oxide (NO) concentrations with varying relative humidity (RH) and aerosol acidity was investigated in the University of North Carolina dual outdoor smog chamber facility. SOA formation from ozonolysis of α-pinene was enhanced relative to that from OH-initiated oxidation in the presence of initially high NO conditions. However, no effect of RH on SOA mass was evident. Ozone (O3)-initiated oxidation of α-pinene in the presence of ammonium sulfate (AS) seed coated with organic aerosol from OH-initiated oxidation of α-pinene showed reduced nucleation compared to ozonolysis in the presence of pure AS seed aerosol. The chemical composition of α-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), with a focus on the formation of carboxylic acids and high-molecular weight dimer esters. A total of eight carboxylic acids and four dimer esters were identified, constituting between 8 and 12% of the total α-pinene SOA mass. OH-initiated oxidation of α-pinene in the presence of nitrogen oxides (NOx) resulted in the formation of highly oxidized carboxylic acids, such as 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). The formation of dimer esters was observed only in SOA produced from the ozonolysis of α-pinene in the absence of NOx, with increased concentrations by a~factor of two at higher RH (50-90%) relative to lower RH (30-50%). The increased formation of dimer esters correlates with an observed increase in new particle formation at higher RH due to nucleation. Increased aerosol acidity was found to have a negligible effect on the formation of the dimer esters. SOA mass yield did not influence the chemical composition of SOA formed from α-pinene ozonolysis with respect to carboxylic acids and dimer esters. The results support the formation of the high-molecular weight dimer esters through gas-phase reactions of the stabilized Criegee Intermediate (sCI) formed from the ozonolysis of α-pinene. The high molecular weight and polar nature of dimer esters formed in the gas-phase may explain increased particle number concentration as a~result of homogenous nucleation. Since three of these dimer esters (i.e., pinyl-diaterpenyl ester (MW 358), pinyl-diaterebyl ester (MW 344) and pinonyl-pinyl ester (MW 368)) have been observed in both laboratory-generated and ambient fine organic aerosol samples, we conclude that the dimer esters observed in this study can be used as tracers for the O3-initiated oxidation of α-pinene, and are therefore indicative of enhanced anthropogenic activities, and that the high molecular weight and low volatility esters result in homogenous nucleation under laboratory conditions, increasing the particle number concentration.

  10. Contribution to the analysis of the essential oil of Helichrysum italicum (Roth) G. Don. Determination of ester bonded acids and phenols.

    PubMed

    Mastelić, Josip; Politeo, Olivera; Jerković, Igor

    2008-04-07

    The essential oil of Helichrysum italicum (Roth) G. Don (everlasting or Immortelle essential oil) was isolated by hydrodistillation and analysed by GC and GCMS. Forty four compounds were identified. The main components were alpha-pinene(12.8%), 2-methyl-cyclohexyl pentanoate (11.1 %), neryl acetate (10.4%), 1,7-di-epi-alpha-cedrene (6.8%) and other compounds. The oil was fractionated and ester-containing fraction was hydrolysed with KOH/H(2)SO(4). The liberated volatiles were analysed by GC and GC-MS: three phenols and twenty seven volatile carboxylic acids were identified[70% low fatty acids (C(2)-C(5)), 15% C(10)-C(12) acids and 15% other acids]. The main acids were acetic acid (24.3%) propanoic acid (17.2%), 2-methylpropanoic acid (11.4%),dodecanoic acid (8.7%), 2-methylbutanoic acid (8.3%), (Z)-2-methylbutenoic acid(5.1%) and decanoic acid (4.6%). With respect to the identified bonded carboxylic acids,the minimal number of esters in the oil was twenty seven, but their overall quantity was probably larger due to different possible combinations of alcohols with acids to form esters. On the other hand, only six main esters were identified in the oil before fractionation and hydrolysis.

  11. Optimized diazo scaffold for protein esterification.

    PubMed

    Mix, Kalie A; Raines, Ronald T

    2015-05-15

    The O-alkylation of carboxylic acids with diazo compounds provides a means to esterify carboxylic acids in aqueous solution. A Hammett analysis of the reactivity of diazo compounds derived from phenylglycinamide revealed that the (p-methylphenyl)glycinamide scaffold has an especially high reaction rate and ester/alcohol product ratio and esterifies protein carboxyl groups more efficiently than any known reagent.

  12. A library synthesis of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as anti-tumor agents.

    PubMed

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-09-06

    As a result of a hit-to-lead program using a technique of solution-phase parallel synthesis, a highly potent (2,4-dimethoxyphenyl)-[6-(3-fluorophenyl)-4-hydroxy-3-methylbenzofuran-2-yl]methanone (15b) was synthesized as an optimized derivative of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which was discovered as a screening hit from small-molecule libraries and exhibited selective cytotoxicity against a tumorigenic cell line.

  13. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... chloride copolymer articles complying with § 177.1980 of this chapter that contact food of Types I, II, IV... 1,050 to 1,700. The esters are produced by the reaction of either ethylene glycol or glycerol with... chain alpha-olefins, the unreacted carboxylic acids in the formation of the glycerol esters being...

  14. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... chloride copolymer articles complying with § 177.1980 of this chapter that contact food of Types I, II, IV... 1,050 to 1,700. The esters are produced by the reaction of either ethylene glycol or glycerol with... chain alpha-olefins, the unreacted carboxylic acids in the formation of the glycerol esters being...

  15. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... chloride copolymer articles complying with § 177.1980 of this chapter that contact food of Types I, II, IV... 1,050 to 1,700. The esters are produced by the reaction of either ethylene glycol or glycerol with... chain alpha-olefins, the unreacted carboxylic acids in the formation of the glycerol esters being...

  16. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... chloride copolymer articles complying with § 177.1980 of this chapter that contact food of Types I, II, IV... 1,050 to 1,700. The esters are produced by the reaction of either ethylene glycol or glycerol with... chain alpha-olefins, the unreacted carboxylic acids in the formation of the glycerol esters being...

  17. Rh(III)-Catalyzed Decarboxylative Coupling of Acrylic Acids with Unsaturated Oxime Esters: Carboxylic Acids Serve as Traceless Activators

    PubMed Central

    2015-01-01

    α,β-Unsaturated carboxylic acids undergo Rh(III)-catalyzed decarboxylative coupling with α,β-unsaturated O-pivaloyl oximes to provide substituted pyridines in good yield. The carboxylic acid, which is removed by decarboxylation, serves as a traceless activating group, giving 5-substituted pyridines with very high levels of regioselectivity. Mechanistic studies rule out a picolinic acid intermediate, and an isolable rhodium complex sheds further light on the reaction mechanism. PMID:24512241

  18. Optimized Diazo Scaffold for Protein Esterification

    PubMed Central

    Mix, Kalie A.

    2015-01-01

    The O-alkylation of carboxylic acids with diazo compounds provides a means to esterify carboxylic acids in aqueous solution. A Hammett analysis of the reactivity of diazo compounds derived from phenylglycinamide revealed that the p-methylphenylglycinamide scaffold has an especially high reaction rate and ester:alcohol product ratio, and esterifies protein carboxyl groups more efficiently than does any known reagent. PMID:25938936

  19. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, B.F.; Robison, T.W.; Gohdes, J.W.

    1999-04-06

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  20. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    2002-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  1. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    1999-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  2. Proton-Ionizable Crown Ethers. A Short Review

    DTIC Science & Technology

    1989-05-30

    acid methyl ester using sodium hydride as the base in tetrahydrofuran. The m3thyl ester group was hydrolyzed to the carboxylic acid as shown in Procedure...prepared via the appropriate hydroxydibenzo-crown ether and allyl bromide RýIý R2 or ethyl acrylate as shown in Procedure N. 5 2 . 5 6 Disulfonic acid ...similar to Procedure p. 7 4 Once the precursor binrephtho-crown was obtained, it was coupled with bromoacetic acid methyl ester and R, , - R

  3. Selective reduction of carboxylic acids to aldehydes with hydrosilane via photoredox catalysis.

    PubMed

    Zhang, Muliang; Li, Nan; Tao, Xingyu; Ruzi, Rehanguli; Yu, Shouyun; Zhu, Chengjian

    2017-09-12

    The direct reduction of carboxylic acids to aldehydes with hydrosilane was achieved through visible light photoredox catalysis. The combination of both single electron transfer and hydrogen atom transfer steps offers a novel and convenient approach to selective reduction of carboxylic acids to aldehydes. The method also features mild conditions, high yields, broad substrate scope, and good functional group tolerance, such as alkyne, ester, ketone, amide and amine groups.

  4. Diazo compounds for the bioreversible esterification of proteins† †Electronic supplementary information (ESI) available: Experimental procedures, analytical data, and spectral data for novel compounds. See DOI: 10.1039/c4sc01768d Click here for additional data file.

    PubMed Central

    McGrath, Nicholas A.; Andersen, Kristen A.; Davis, Amy K. F.; Lomax, Jo E.

    2015-01-01

    A diazo compound is shown to convert carboxylic acids to esters efficiently in an aqueous environment. The basicity of the diazo compound is critical: low basicity does not lead to a reaction but high basicity leads to hydrolysis. This reactivity extends to carboxylic acid groups in a protein. The ensuing esters are hydrolyzed by human cellular esterases to regenerate protein carboxyl groups. This new mode of chemical modification could enable the key advantages of prodrugs to be translated from small-molecules to proteins. PMID:25544883

  5. Gas chromatographic determination of carboxylic acid chlorides and residual carboxylic acid precursors used in the production of some penicillins.

    PubMed

    Lauback, R G; Balitz, D F; Mays, D L

    1976-05-01

    An improved gas chromatographic method is described for the simultaneous determination of carboxylic acid chlorides and related carboxylic acids used in the production of some commercial semisynthetic penicillins. The acid chloride reacts with diethylamine to form the corresponding diethylamide. Carboxylic acid impurities are converted to trimethylsilyl esters. The two derivatives are separated and quantitated in the same chromatographic run. This method, an extension of the earlier procedure of Hishta and Bomstein (1), has been applied to the acid chlorides used to make oxacillin, cloxacillin, dicloxacillin, and methicillin (Figure 1); it shows promise of application to other acid chlorides. The determination is more selective than the usual titration methods, which do not differentiate among acids with similar pK's. Relative standard deviations of the acid chloride determination are 1.0-2.5%. Residual carboxylic acid can be repetitively determined within a range of 0.6% absolute.

  6. Halogenated solvent remediation

    DOEpatents

    Sorenson, Jr., Kent S.

    2008-11-11

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. An illustrative method includes adding an electron donor for microbe-mediated anaerobic reductive dehalogenation of the halogenated solvents, which electron donor enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative electron donors include C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof, of which lactic acid, salts of lactic acid--such as sodium lactate, lactate esters, and mixtures thereof are particularly illustrative. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the electron donor.

  7. High Molecular Weight Dimer Esters in α-Pinene Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Cui, Tianqu; Zhang, Haofei; Gold, Avram; Glasius, Marianne; Surratt, Jason D.

    2014-05-01

    Monoterpenes, such as α-pinene, constitute an important group of biogenic volatile organic compounds (BVOC). Once emitted into the atmosphere α-pinene is removed by oxidization by the hydroxyl radical (OH), reactions with ozone (O3), and with nitrate radicals (NO3) resulting in the formation of first-generation oxidation products, such as semi-volatile carboxylic acids. In addition, higher molecular weight dimer esters originating from the oxidation of α-pinene have been observed in both laboratory-generated and ambient secondary organic aerosols (SOA). While recent studies suggest that the dimers are formed through esterification between carboxylic acids in the particle phase, the formation mechanism of the dimer esters is still ambiguous. In this work, we present the results of a series of smog chamber experiments to assess the formation of dimer esters formed from the oxidation of α-pinene. Experiments were conducted in the University of North Carolina (UNC) dual outdoor smog chamber facility to investigate the effect of oxidant species (OH versus O3), relative humidity (RH), and seed aerosol acidity in order to obtain a better understanding of the conditions leading to the formation of the dimer esters and how these parameters may affect the formation and chemical composition of SOA. The chemical composition of α-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), and a total of eight carboxylic acids and four dimer esters were identified, constituting between 8 and 12 % of the total α-pinene SOA mass.

  8. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 177.1980 of this chapter that contact food of Types I, II, IV-B, VI-B, VII-B, and VIII identified in... produced by the reaction of either ethylene glycol or glycerol with long chain monobasic acids containing... carboxylic acids in the formation of the glycerol esters being neutralized with calcium hydroxide to produce...

  9. Molecular Structures and Sorption Mechanisms of Biochars as Heterogeneous Carbon Materials

    NASA Astrophysics Data System (ADS)

    Chen, Baoliang; Chen, Zaiming; Xiao, Xin; Fang, Qile

    2015-04-01

    Surface functional groups such as carboxyl play a vital role in the environmental applications of biochar as a soil amendment. However, the quantification of oxygen-containing groups on a biochar surface still lacks systematical investigation. An integrated method combining chemical and spectroscopic techniques was established to quantitatively identify the chemical states, dissociation constants (pKa), and contents of oxygen-containing groups on dairy manure-derived biochars prepared at 100-700 °C. The dissociation pH of carboxyl groups on the biochar surface covered a wide range of pH values (pH 2-11), due to the varied structural micro-environments and chemical states. For low temperature biochars (≤350 °C), carboxyl existed not only as hydrogen-bonded carboxyl and unbonded carboxyl groups but also formed esters at the surface of biochars. The esters consumed OH‒ via saponification in the alkaline pH region and enhanced the dissolution of organic matter from biochars. For high temperature biochars (≥500 °C), esters came from carboxyl were almost eliminated via carbonization (ester pyrolysis), while lactones were developed. The surface density of carboxyl groups on biochars decreased sharply with the increase of the biochar-producing temperature, but the total contents of the surface carboxyls for different biochars were comparable (with a difference < 3-fold) as a result of the expanded surface area at high pyrolytic temperatures. Understanding the wide pKa ranges and the abundant contents of carboxyl groups on biochars is a prerequisite to recognition of the multi-functional applications and biogeochemical cycling of biochars. A schematic diagram for the dissociation of acid/base groups on biochar surfaces and their related functions was depicted. The protonated biochars favor inorganic anion adsorption and ionizable organic chemical sorption, while the deprotonated biochars favor cationic nutrient retention, heavy metal immobilization, and the release of dissolved materials. For low temperature biochars (i.e., DM100, DM250 and DM350), the acid/base group dissociation directly controls the pH buffering properties of biochars. The resulting surface charges regulate biochars in nutrient retention, sorption/immobilization of hazardous pollutants and biochar particle dispersing properties. Meanwhile, dissociation of acid/base groups affects carbon and silica biogeochemical cycling by regulating the release of organic matter from the cleavage of esters and dissolution of the Si-containing minerals. For high temperature biochars (i.e., DM500 and DM700), the effect of acid/base dissociation on organic matter dissolution is eliminated, but other functions are similar. CGs are the major acid/base groups on biochar surfaces. In field applications, such abundant CGs are worthy of concern in terms of multiple functions of biochars, such as soil pH adjustment, soil nutrient retention, and toxic metals immobilization.

  10. Scope and Mechanistic Investigations on the Solvent-Controlled Regio- and Stereoselective Formation of Enol Esters from the Ruthenium-Catalyzed Coupling Reaction of Terminal Alkynes and Carboxylic Acids

    PubMed Central

    Yi, Chae S.; Gao, Ruili

    2009-01-01

    The ruthenium-hydride complex (PCy3)2(CO)RuHCl was found to be a highly effective catalyst for the alkyne-to-carboxylic acid coupling reaction to give synthetically useful enol ester products. Strong solvent effect was observed for the ruthenium catalyst in modulating the activity and selectivity; the coupling reaction in CH2Cl2 led to the regioselective formation of gem-enol ester products, while the stereoselective formation of (Z)-enol esters was obtained in THF. The coupling reaction was found to be strongly inhibited by PCy3. The coupling reaction of both PhCO2H/PhC≡CD and PhCO2D/PhC≡CH led to the extensive deuterium incorporation on the vinyl positions of the enol ester products. An opposite Hammett value was observed when the correlation of a series of para-substituted p-X-C6H4CO2H (X = OMe, CH3, H, CF3, CN) with phenylacetylene was examined in CDCl3 (ρ = +0.30) and THF (ρ = −0.68). Catalytically relevant Ru-carboxylate and –vinylidene-carboxylate complexes, (PCy3)2(CO)(Cl)Ru(κ2-O2CC6H4-p-OMe) and (PCy3)2(CO)(Cl)RuC(=CHPh)O2CC6H4-p-OMe, were isolated, and the structure of both complexes was completely established by X-ray crystallography. A detailed mechanism of the coupling reaction involving a rate-limiting C-O bond formation step was proposed on the basis of these kinetic and structural studies. The regioselective formation of the gem-enol ester products in CH2Cl2 was rationalized by a direct migratory insertion of the terminal alkyne via a Ru-carboxylate species, whereas the stereoselective formation of (Z)-enol ester products in THF was explained by invoking a Ru-vinylidene species. PMID:20161379

  11. A new irreversible enzyme-aided esterification method in organic solvents.

    PubMed

    Jeromin, Günter E; Zoor, Annegreth

    2008-05-01

    A new irreversible esterification method for carboxylic acids catalyzed by a lipase from Candida antarctica (Novozyme 435) in organic solvents has been developed. The water produced during the process is chemically destroyed by a corresponding ester of acetoacetate, which acts as a sacrificial substrate in this reaction. The flavour esters isobutyl acetate, methyl butyrate, ethyl butyrate and benzyl butyrate were synthesized either in small scale (0.05 mol) or large scale (1 mol). The yields range from 82 to 92% within 24 h at 52 degrees C. Optimal molar ratios of reactants were 1:1:1 (carboxylic acid:alcohol:acetoacetate).

  12. Mixed anhydrides (phosphoric-carboxyl) are also formed in the esterification of 5'-amp with n-acetylaminoacyl imidazolides - Implications regarding the origin of protein synthesis

    NASA Technical Reports Server (NTRS)

    Wickramasinghe, Nalinie S. M. D.; Lacey, James C., Jr.

    1992-01-01

    Procedure for the formation of aminoacyl esters of monoribonucleotides with aminoacyl imidazolides were first reported by Gottikh et al. (1970) and summarized in 1970. This reaction has been widely used by us and numbers of other workers as a convenient means of preparing aminoacyl esters of nucleotides. We have previously reported that, under conditions of excess imidazolide, large amounts of bis 2', 3' esters are formed in addition to the monoesters. However, to our knowledge, no one has reported that in addition to the esters, relatively large amounts of the mixed anhydride, with the amino acid carboxyl attached to the phosphate, are also formed at short reaction times. We report here on the relative amounts of anhydride and esters formed in this reaction of racemic mixtures of eleven N-acetyl amino acid imidazolides with 5'-AMP and discuss the relevance of the findings to the origin of protein synthesis.

  13. Pathway diversity leads to 2D-nanostructure in photo-triggered supramolecular assembly.

    PubMed

    Ghosh, Suhrit; Pal, Deep Sankar

    2018-03-31

    This communication reports photo-triggered supramolecular assembly of a naphthalene-diimide (NDI) derivative, appended with a photo-labile ortho-nitrobenzyl (ONB)-ester protected carboxylic acid. Photo-irradiation produces the free COOH group which facilitates H-bonding driven face-to-face stacking of the NDI chromophores producing an ultra-thin (height < 2.0 nm) two-dimensional (2D) nano-sheet. In contrast, spontaneous supramolecular assembly of the same active monomer exhibits entirely different features such as uncontrolled growth, J-aggregation and fibrillar morphology. A completely different pathway for photo-triggered assembly is attributed to the dual function of the photo-caged pro-monomer in (i) producing the carboxylic acid in controlled manner and (ii) simultaneously inhibiting the spontaneous J-aggregation of the photo-generated monomers by ester-carboxylic acid H-bonding and in turn directing a distinct growth mechanism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cobalt-catalyzed hydrogenation of esters to alcohols: unexpected reactivity trend indicates ester enolate intermediacy.

    PubMed

    Srimani, Dipankar; Mukherjee, Arup; Goldberg, Alexander F G; Leitus, Gregory; Diskin-Posner, Yael; Shimon, Linda J W; Ben David, Yehoshoa; Milstein, David

    2015-10-12

    The atom-efficient and environmentally benign catalytic hydrogenation of carboxylic acid esters to alcohols has been accomplished in recent years mainly with precious-metal-based catalysts, with few exceptions. Presented here is the first cobalt-catalyzed hydrogenation of esters to the corresponding alcohols. Unexpectedly, the evidence indicates the unprecedented involvement of ester enolate intermediates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Halogenated solvent remediation

    DOEpatents

    Sorenson, Kent S.

    2004-08-31

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.

  16. 16 CFR 303.7 - Generic names and definitions for manufactured fibers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... least 85% by weight of lactic acid ester units derived from naturally occurring sugars. (Sec. 6, 72 Stat... composed of at least 85% by weight of an ester of a substituted aromatic carboxylic acid, including but not... description of the fiber. (d) Rayon.A manufactured fiber composed of regenerated cellulose, as well as...

  17. 16 CFR 303.7 - Generic names and definitions for manufactured fibers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... least 85% by weight of lactic acid ester units derived from naturally occurring sugars. (Sec. 6, 72 Stat... composed of at least 85% by weight of an ester of a substituted aromatic carboxylic acid, including but not... description of the fiber. (d) Rayon.A manufactured fiber composed of regenerated cellulose, as well as...

  18. 16 CFR 303.7 - Generic names and definitions for manufactured fibers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... least 85% by weight of lactic acid ester units derived from naturally occurring sugars. (Sec. 6, 72 Stat... composed of at least 85% by weight of an ester of a substituted aromatic carboxylic acid, including but not... description of the fiber. (d) Rayon.A manufactured fiber composed of regenerated cellulose, as well as...

  19. 16 CFR 303.7 - Generic names and definitions for manufactured fibers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... least 85% by weight of lactic acid ester units derived from naturally occurring sugars. (Sec. 6, 72 Stat... composed of at least 85% by weight of an ester of a substituted aromatic carboxylic acid, including but not... description of the fiber. (d) Rayon—A manufactured fiber composed of regenerated cellulose, as well as...

  20. 16 CFR 303.7 - Generic names and definitions for manufactured fibers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... least 85% by weight of lactic acid ester units derived from naturally occurring sugars. (Sec. 6, 72 Stat... composed of at least 85% by weight of an ester of a substituted aromatic carboxylic acid, including but not... description of the fiber. (d) Rayon.A manufactured fiber composed of regenerated cellulose, as well as...

  1. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 1. Minor structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    An investigation of the strong-acid characteristics (pKa 3.0 or less) of fulvic acid from the Suwannee River, Georgia, was conducted. Quantitative determinations were made for amino acid and sulfur-containing acid structures, oxalate half-ester structures, malonic acid structures, keto acid structures, and aromatic carboxyl-group structures. These determinations were made by using a variety of spectrometric (13C-nuclear magnetic resonance, infrared, and ultraviolet spectrometry) and titrimetric characterizations on fulvic acid or fulvic acid samples that were chemically derivatized to indicate certain functional groups. Only keto acid and aromatic carboxyl-group structures contributed significantly to the strong-acid characteristics of the fulvic acid; these structures accounted for 43% of the strong-acid acidity. The remaining 57% of the strong acids are aliphatic carboxyl groups in unusual and/or complex configurations for which limited model compound data are available.

  2. Boron-based dual imaging probes, compositions and methods for rapid aqueous F-18 labeling, and imaging methods using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zibo; Gabbai, Francois P.; Conti, Peter S.

    A composition useful as a PET and/or fluorescence imaging probe a compound a compound of Formula I, including salts, hydrates and solvates thereof: ##STR00001## wherein R.sub.1-R.sub.7 may be independently selected from hydrogen, halogen, hydroxy, alkoxy, nitro, substituted and unsubstituted amino, cycloalkyl, carboxy, carboxylic acids and esters thereof, cyano, haloalkyl, aryl, X is selected from the group consisting of C and N; and A is selected of hydrogen, halogen, hydroxy, alkoxy, nitro, substituted and unsubstituted amino, alkyl, cycloalkyl, carboxy, carboxylic acids and esters thereof, cyano, haloalkyl, aryl, including phenyl and aminophenyl, and heteroaryl.

  3. Studies of the acidic components of the Colorado Green River formation oil shale-Mass spectrometric identification of the methyl esters of extractable acids.

    NASA Technical Reports Server (NTRS)

    Haug, P.; Schnoes, H. K.; Burlingame, A. L.

    1971-01-01

    Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.

  4. The effect of sub-zero temperature on the formation and composition of secondary organic aerosol from ozonolysis of alpha-pinene.

    PubMed

    Kristensen, K; Jensen, L N; Glasius, M; Bilde, M

    2017-10-18

    This study presents a newly constructed temperature controlled cold-room smog chamber at Aarhus University, Denmark. The chamber is herein utilized to study the effect of sub-zero temperature on the formation and chemical composition of secondary organic aerosol (SOA) from ozone initiated oxidation of α-pinene. The chemical composition of α-pinene SOA formed from dark ozonolysis of α-pinene at 293 K and 258 K was investigated using High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS) and Ultra-High Performance Liquid Chromatography/Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry (UHPLC/ESI-qToF-MS). For comparison, an OH-initiated oxidation experiment was performed at 293 K. In ozonolysis experiments it was found that oxygen-to-carbon (O : C) ratios were higher in the particles formed at 293 K compared to 258 K. A total of 16 different organic acids and 30 dimers esters were quantified in the collected particles composing up to 34% of the total α-pinene SOA mass with increased mass fraction of carboxylic acids in particles from α-pinene ozonolysis at 258 K compared to 293 K. In contrast, dimer esters showed suppressed formation at the sub-zero reaction temperature, thus contributing 3% to SOA mass at 258 K while contributing 9% at 293 K. SOA formed in the OH-initiated oxidation of α-pinene at 293 K resulted in low concentrations of dimer esters supporting Criegee intermediates as a possible pathway to dimer ester formation. Vapour pressure estimates of the identified carboxylic acids and dimer esters are presented and show how otherwise semi-volatile carboxylic acids at sufficiently low temperatures may classify as low or even extremely low volatile organic compounds (ELVOC), thus may add to an enhanced particle formation observed at the sub-zero temperature through gas-to-particle conversion. The change in chemical composition of the SOA particles with temperature is ascribed to a combination of effects: the decreased vapour pressures and hence increased condensation of carboxylic acids from the gas phase to the particle phase along with suppressed formation of the high molecular weight dimer esters and different gas and particle phase chemistry results in particles of different chemical composition as a consequence of low reaction temperatures.

  5. Additional Nucleophile-Free FeCl3-Catalyzed Green Deprotection of 2,4-Dimethoxyphenylmethyl-Protected Alcohols and Carboxylic Acids.

    PubMed

    Sawama, Yoshinari; Masuda, Masahiro; Honda, Akie; Yokoyama, Hiroki; Park, Kwihwan; Yasukawa, Naoki; Monguchi, Yasunari; Sajiki, Hironao

    2016-01-01

    The deprotection of the methoxyphenylmethyl (MPM) ether and ester derivatives can be generally achieved by the combinatorial use of a catalytic Lewis acid and stoichiometric nucleophile. The deprotections of 2,4-dimethoxyphenylmethyl (DMPM)-protected alcohols and carboxylic acids were found to be effectively catalyzed by iron(III) chloride without any additional nucleophile to form the deprotected mother alcohols and carboxylic acids in excellent yields. Since the present deprotection proceeds via the self-assembling mechanism of the 2,4-DMPM protective group itself to give the hardly-soluble resorcinarene derivative as a precipitate, the rigorous purification process by silica-gel column chromatography was unnecessary and the sufficiently-pure alcohols and carboxylic acids were easily obtained in satisfactory yields after simple filtration.

  6. Protonation of carboxyl groups in EuDOTA-tetraamide complexes results in catalytic prototropic exchange and quenching of the CEST signal

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Evbuomwan, Osasere M.; Tieu, Michael; Zhao, Piyu; Martins, Andre F.; Sherry, A. Dean

    2017-10-01

    The CEST properties of EuDOTA-tetraamide complexes bearing pendant carboxylate and carboxyl ethyl esters were measured as a function of pH. The CEST signal from the Eu3+-bound water molecule decreased in intensity between pH 8.5 and 4.5 while the proton exchange rates (kex) increased over this same pH range. In comparison, the CEST signal in the corresponding carboxyl ester derivatives was nearly constant. Both observations are consistent with stepwise protonation of the four carboxylic acid groups over this same pH range. This indicates that negative charges on the carboxyl groups above pH 6 facilitate the formation of a strong hydrogen-bonding network in the coordination second sphere above the single Eu3+-bound water molecule, thereby decreasing prototropic exchange of protons on the bound water molecule with bulk water protons. The percentage of square antiprismatic versus twisted square antiprism coordination isomers also decreased as the appended carboxylic acid groups were positioned further away from the amide. The net effect of lowering the pH was an overall increase in kex and a quenching of the CEST signal. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  7. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry.

    PubMed

    Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF3/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L(-1). Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  8. Process and catalyst for carbonylating olefins

    DOEpatents

    Zoeller, Joseph Robert

    1998-06-02

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  9. Asymmetric Catalysis with Organic Azides and Diazo Compounds Initiated by Photoinduced Electron Transfer.

    PubMed

    Huang, Xiaoqiang; Webster, Richard D; Harms, Klaus; Meggers, Eric

    2016-09-28

    Electron-acceptor-substituted aryl azides and α-diazo carboxylic esters are used as substrates for visible-light-activated asymmetric α-amination and α-alkylation, respectively, of 2-acyl imidazoles catalyzed by a chiral-at-metal rhodium-based Lewis acid in combination with a photoredox sensitizer. This novel proton- and redox-neutral method provides yields of up to 99% and excellent enantioselectivities of up to >99% ee with broad functional group compatibility. Mechanistic investigations suggest that an intermediate rhodium enolate complex acts as a reductive quencher to initiate a radical process with the aryl azides and α-diazo carboxylic esters serving as precursors for nitrogen and carbon-centered radicals, respectively. This is the first report on using aryl azides and α-diazo carboxylic esters as substrates for asymmetric catalysis under photoredox conditions. These reagents have the advantage that molecular nitrogen is the leaving group and sole byproduct in this reaction.

  10. Highly Selective Deoxydehydration of Tartaric Acid over Supported and Unsupported Rhenium Catalysts with Modified Acidities.

    PubMed

    Li, Xiukai; Zhang, Yugen

    2016-10-06

    The deoxydehydration (DODH) of sugar acids to industrially important carboxylic acids is a very attractive topic. Oxorhenium complexes are the most-often employed DODH catalysts. Because of the acidity of the rhenium catalysts, the DODH products of sugar acids were usually in the form of mixture of free carboxylic acids and esters. Herein, we demonstrate strategies for the selective DODH of sugar acids to free carboxylic acids by tuning the Lewis acidity or the Brønsted acidity of the rhenium-based catalysts. Starting from tartaric acid, up to 97 % yield of free maleic acid was achieved. Based on our strategies, functional polymer immobilized heterogeneous rhenium catalysts were also developed for the selective DODH conversion of sugar acids. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. New coumarin carboxylates having trifluoromethyl, diethylamino and morpholino terminal groups: Synthesis and mesomorphic characterisations

    NASA Astrophysics Data System (ADS)

    Srinivasa, Hosapalya Thimmaiah; Harishkumar, Hosanagara Narayana; Palakshamurthy, Bandrehalli Siddagangappa

    2017-03-01

    New set of trifluromethyl, diethylamino and morpholino derived coumarin compounds were prepared by reacting various coumarin 3-carboxylic acids with various phenyl esters with peripheral alkyl, ester and polar cyano moieties in the presence of EDC.HCl/DMAP as esterification agent. The chemical structures of new coumarin derivatives were confirmed by standard spectroscopic techniques and mesomorphic behaviours were established by polarised optical microscopy (POM) and differential scanning calorimetry (DSC). Trifluoromethane and morpholino derivatives show SmA/Nematic phase, while diethylamino derivatives did not show liquid crystalline property.

  12. Water-enhanced solvation of organic solutes in ketone and ester solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; Brunt, V. van; King, C.J.

    1994-05-01

    Previous research has shown that the solubilities of dicarboxylic acids in certain electron-donor solvents are substantially increased in the presence of water. Information on solubilities, liquid-liquid equilibria and maximum-boiling ternary azeotropes was screened so as to identify other systems where codissolved water appears to enhance solvation of organic solutes in solvents. Several carboxylic acids, an alcohol, diols, and phenols were selected for examination as solutes in ketone and ester solvents. Effects of water upon solute solubilities and volatilities were measured. Results showed that water-enhanced solvation is greatest for carboxylic acids. Solute activity coefficients decreased by factors of 2--3, 6--8, andmore » 7--10 due to the presence of water for mono-, di and tricarboxylic acids, respectively. Activity coefficients decreased by a factor of about 1.5 for ethanol and 1,2-propanediol as solutes. Water-enhanced solvation of phenols is small, when existent.« less

  13. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    PubMed

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  14. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase

    PubMed Central

    Broussard, Tyler C.; Pakhomova, Svetlana; Neau, David B.; Bonnot, Ross; Waldrop, Grover L.

    2015-01-01

    Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1′-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1′-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO2 from the carboxyphosphate intermediate to biotin. PMID:26020841

  15. Dinuclear Zinc-Prophenol-Catalyzed Enantioselective α-Hydroxyacetate Aldol Reaction with Activated Ester Equivalents

    PubMed Central

    Trost, Barry M.; Michaelis, David J.; Truica, Mihai I.

    2013-01-01

    An enantioselective α-hydroxyacetate aldol reaction that employs N-acetyl pyrroles as activated ester equivalents and generates syn 1,2-diols in good yield and diastereoselectivity is reported. This dinuclear zinc Prophenol-catalyzed transformation proceeds with high enantioselectivity with a wide variety of substrates including aryl, alyl, and alkenyl aldehydes. The resulting α,β-dihydroxy activated esters are versatile intermediates for the synthesis of a variety of carboxylic acid derivatives including amides, esters, and unsymmetrical ketones. PMID:23947595

  16. NSAID-derived γ-secretase modulation requires an acidic moiety on the carbazole scaffold.

    PubMed

    Zall, Andrea; Kieser, Daniel; Höttecke, Nicole; Naumann, Eva C; Thomaszewski, Binia; Schneider, Katrin; Steinbacher, Dirk T; Schubenel, Robert; Masur, Stefan; Baumann, Karlheinz; Schmidt, Boris

    2011-08-15

    Modulation of γ-secretase activity holds potential for the treatment of Alzheimer's disease. Most NSAID-derived γ-secretase modulators feature a carboxylic acid, which may impair blood-brain barrier permeation. The structure activity relationship of 33 carbazoles featuring diverse carboxylic acid isosteres or metabolic precursors thereof was established in a cellular amyloid secretion assay. The modulatory activity was observed for acidic moieties and metabolically labile esters only, which supports our hypothesis of an acid-lysine interaction to be relevant for this type of γ-secretase modulators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Intramolecular Tsuji-Trost-type Allylation of Carboxylic Acids: Asymmetric Synthesis of Highly π-Allyl Donative Lactones.

    PubMed

    Suzuki, Yusuke; Seki, Tomoaki; Tanaka, Shinji; Kitamura, Masato

    2015-08-05

    Tsuji-Trost-type asymmetric allylation of carboxylic acids has been realized by using a cationic CpRu complex with an axially chiral picolinic acid-type ligand (Cl-Naph-PyCOOH: naph = naphthyl, py = pyridine). The carboxylic acid and allylic alcohol intramolecularly condense by the liberation of water without stoichiometric activation of either nucleophile or electrophile part, thereby attaining high atom- and step-economy, and low E factor. This success can be ascribed to the higher reactivity of allylic alcohols as compared with the allyl ester products in soft Ru/hard Brønstead acid combined catalysis, which can function under slightly acidic conditions unlike the traditional Pd-catalyzed system. Detailed analysis of the stereochemical outcome of the reaction using an enantiomerically enriched D-labeled substrate provides an intriguing view of enantioselection.

  18. A new esterase for the cleavage of pivalic acid-containing prodrug esters of cephalosporins.

    PubMed

    Sauber, K; Aretz, W; Meiwes, J; Wollmann, T

    1996-07-01

    An extracellular esterase from the actinomycetes Amycolatopsis orientalis was found by screening. It is capable of splitting the isomeric mixture (K/J) of (I, Scheme 1) into 7-amino-3-methoxymethyl-3-cephem-4-carboxylic acid, pivalic acid, and acetaldehyde with a high yield. The purified enzyme of 55.4 Kd by SDS-PAGE shows an N-terminal sequence of VRTCADLVRTYDLPGAVTH. The isoelectric point is 8.9 +/- 0.1. It can be immobilized with good yield to VA-Epoxy Biosynth. Besides the above-mentioned reaction, the esterase cleaves many other esters such as methyl-2-chloropropionic acid.

  19. Metabolic Profile of Synthetic Cannabinoids 5F-PB-22, PB-22, XLR-11 and UR-144 by Cunninghamella elegans.

    PubMed

    Watanabe, Shimpei; Kuzhiumparambil, Unnikrishnan; Nguyen, My Ann; Cameron, Jane; Fu, Shanlin

    2017-07-01

    The knowledge of metabolic profile of synthetic cannabinoids is important for the detection of drugs in urinalysis due to the typical absence or low abundance of parent cannabinoids in human urine. The fungus Cunninghamella elegans has been reported to be a useful tool for metabolism study and thus applicability to synthetic cannabinoid metabolism was examined. In this study, 8-quinolinyl 1-(5-fluoropentyl)-1H-indole-3-carboxylate (5F-PB-22), 8-quinolinyl 1-pentyl-1H-indole-3-carboxylate (PB-22), [1-(5-fluoropentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone (XLR-11) and (1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone (UR-144) were incubated with C. elegans and the metabolites were identified using liquid chromatography-quadrupole time-of-flight mass spectrometry. The obtained metabolites were compared with reported human metabolites to assess the suitability of the fungus to extrapolate human metabolism. 5F-PB-22 underwent dihydroxylation, dihydrodiol formation, oxidative defluorination, oxidative defluorination to carboxylic acid, ester hydrolysis and glucosidation, alone and/or in combination. The metabolites of PB-22 were generated by hydroxylation, dihydroxylation, trihydroxylation, dihydrodiol formation, ketone formation, carboxylation, ester hydrolysis and glucosidation, alone and/or in combination. XLR-11 was transformed through hydroxylation, dihydroxylation, aldehyde formation, carboxylation, oxidative defluorination, oxidative defluorination to carboxylic acid and glucosidation, alone and/or in combination. UR-144 was metabolised by hydroxylation, dihydroxylation, trihydroxylation, aldehyde formation, ketone formation, carboxylation, N-dealkylation and combinations. These findings were consistent with previously reported human metabolism except for the small extent of ester hydrolysis observed and the absence of glucuronidation. Despite the limitations, C. elegans demonstrated the capacity to produce a wide variety of metabolites including some major human metabolites of XLR-11 and UR-144 at high abundance, showing the potential for metabolism of newly emerging synthetic cannabinoids.

  20. The gas–liquid chromatography of carboxylic acid esters of the urinary 11-deoxy-17-oxo steroids

    PubMed Central

    Sadler, Patricia A.; Kellie, A. E.

    1967-01-01

    1. The gas–liquid-chromatographic separations of the acetate, propionate, n-butyrate, isobutyrate and n-valerate esters of androsterone, aetiocholanolone and dehydroepiandrosterone were studied on a 1% neopentyl glycol sebacate column. The n-butyrate, isobutyrate and n-valerate esters were well resolved. 2. The three steroids derived from hydrolysed urinary 17-oxo steroid conjugate extracts were analysed by gas–liquid chromatography after conversion into their n-butyrate esters. The results were compared with independent determinations involving chromatography on alumina. PMID:4227802

  1. The gas-liquid chromatography of carboxylic acid esters of the urinary 11-deoxy-17-oxo steroids. Determination as n-butyrates.

    PubMed

    Sadler, P A; Kellie, A E

    1967-06-01

    1. The gas-liquid-chromatographic separations of the acetate, propionate, n-butyrate, isobutyrate and n-valerate esters of androsterone, aetiocholanolone and dehydroepiandrosterone were studied on a 1% neopentyl glycol sebacate column. The n-butyrate, isobutyrate and n-valerate esters were well resolved. 2. The three steroids derived from hydrolysed urinary 17-oxo steroid conjugate extracts were analysed by gas-liquid chromatography after conversion into their n-butyrate esters. The results were compared with independent determinations involving chromatography on alumina.

  2. Endophytic fungi producing of esterases: Evaluation in vitro of the enzymatic activity using pH indicator

    PubMed Central

    Lisboa, Helen Cristina Fávero; Biasetto, Carolina Rabal; de Medeiros, João Batista; Araújo, Ângela Regina; Silva, Dulce Helena Siqueira; Teles, Helder Lopes; Trevisan, Henrique Celso

    2013-01-01

    A sensitive and efficient colorimetric method was optimized for detection of esterase enzymes produced by endophytic fungi for development of High-Throughput Screening (HTS). The fungi were isolated and obtained previously from plant species of Cerrado and Atlantic Forest located in areas of environmental preservation in the State of Sao Paulo / Brazil, as part of the project “Chemical and biological prospecting endophytic fungi associated to plant species of Cerrado and Atlantic Forest”. The compounds ethyl butyrate, ethyl acetate and methyl propionate were used as standards esters which were hydrolyzed by extracellular enzyme from endophytic fungi (EC. 3.1.1.1 - carboxyl-esterases) for production of carboxylic acids. Thus, the reduction of the pH increases the protonated indicator concentration (bromothymol blue), changing the color of the reaction medium (from blue to yellow), that can be observed and measured by spectrophotometry at 616 nm. The methodology with acid-base indicator was performed on 13 microorganisms, aiming Periconia atropurpurea as a potential source of esterase for biotransformation of short chain esters. The results also evidenced that this methodology showed to be efficient, fast, cheap, having low consumption of reagents and easy development, and can be applied to screen carboxylic-ester hydrolases in a large number of microorganisms. PMID:24516461

  3. Photometric microdetermination of malathion

    USGS Publications Warehouse

    Kallman, B.J.

    1962-01-01

    Carboxylic esters and lactones react with alkaline hydroxylamine to yield hydroxamates; these in acidic solution form colored iron(III) complexes. A photometric determination of such esters and lactones is thus permitted and has been extensively applied ( I-6). Hestrin ( 3) utilized this method for the microdetermination of acetylcholine and his procedure is much used for the in vitro study of cholinesterase activity and inhibition (4-6).

  4. Spectroscopic Properties of Some Simple Esters: A Practical Application of Synthesis and Spectroscopy in the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Brown, David P.; Durutlic, Haris; Juste, Didier

    2004-01-01

    Experiments are conducted for spectroscopic analysis of the allyl esters of some aromatic carboxylic acids. It is understood that these experiments allow the students to monitor the effect of hydrogen bonding on the IR stretching frequencies for the hydroxyl and carbonyl groups and also provide them with an excellent opportunity to examine the…

  5. High Throughput Synthesis and Screening for Agents Inhibiting Androgen Receptor Mediated Gene Transcription

    DTIC Science & Technology

    2005-02-01

    hydrochloride salt and methyl ester hydrolysis of 244 (LiOH, THF-MeOH) provided the lithium carboxylate Pyrrolidine based system (2a and b). Several hydro...strategy detailed above, the lithium salt 26 was used to provide trimer 28 (Scheme 4). However, coupling of the carboxylic acid derived from 28 with 3...M. A. Chem. Ind. 1996, 68, 325. 1. (a) Dervan, P. B. Bioorg. Med. Chem. 2001, 9, 2215. (b) 13. The lithium salt 26 was used instead of the carboxylic

  6. Synthesis of TMP-ester biolubricant basestock from palm stearin fatty acids

    NASA Astrophysics Data System (ADS)

    Fadzel, Fatimatuzzahraa Mohd; Salimon, Jumat; Derawi, Darfizzi

    2018-04-01

    A potential biolubricant; TMP-ester was produced via esterification of fatty acids (FA) from palm stearin (PS) with trimethylolpropane (TMP). The synthesis was conducted at four conditions; temperature, time, molar ratio of FA:TMP and H2SO4 as catalyst (by percent based on the weight of FA and TMP) that are 150 °C, 2 hours, 4:1 and 1% of H2SO4 respectively. The composition of ester produced was determined using gas chromatography (GC-FID). The presence of ester group was confirmed by the means of FTIR by the existence of strong carboxyl band of ester, v(C=O) at 1746cm-1 and 1H and 13C NMR spectroscopy shows the chemical shift, δ of ester, C=O at 2.27-2.31 ppm and 173.45 ppm accordingly. From the esterification reaction, 95% product of TMP-ester was formed. The thermal and oxidative stability of TMP-ester is 200°C.

  7. Evaluation of certain food additives.

    PubMed

    2009-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, including flavouring agents, with a view to recommending acceptable daily intakes (ADIs) and to preparing specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation and assessment of intake of food additives (in particular, flavouring agents). A summary follows of the Committee's evaluations of technical, toxicological and intake data for certain food additives (asparaginase from Aspergillus niger expressed in A. niger, calcium lignosulfonate (40-65), ethyl lauroyl arginate, paprika extract, phospholipase C expressed in Pichia pastoris, phytosterols, phytostanols and their esters, polydimethylsiloxane, steviol glycosides and sulfites [assessment of dietary exposure]) and 10 groups of related flavouring agents (aliphatic branched-chain saturated and unsaturated alcohols, aldehydes, acids and related esters; aliphatic linear alpha,beta-unsaturated aldehydes, acids and related alcohols, acetals and esters; aliphatic secondary alcohols, ketones and related esters; alkoxy-substituted allylbenzenes present in foods and essential oils and used as flavouring agents; esters of aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids; furan-substituted aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers; miscellaneous nitrogen-containing substances; monocyclic and bicyclic secondary alcohols, ketones and related esters; hydroxy- and alkoxy-substituted benzyl derivatives; and substances structurally related to menthol). Specifications for the following food additives were revised: canthaxanthin; carob bean gum and carob bean gum (clarified); chlorophyllin copper complexes, sodium and potassium salts; Fast Green FCF; guar gum and guar gum (clarified); iron oxides; isomalt; monomagnesium phosphate; Patent Blue V; Sunset Yellow FCF; and trisodium diphosphate. Re-evaluation of flavouring agents for which estimated intake was based on anticipated poundage data was carried out for 2-isopropyl- N,2,3-trimethylbutyramide (No. 1595) and L-monomenthyl glutarate (No. 1414). Annexed to the report are tables summarizing the Committee's recommendations for intakes and toxicological evaluations of the food additives considered.

  8. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  9. Improved synthetic route to methyl 1-fluoroindan-1-carboxylate (FICA Me ester) and 4-methyl derivatives.

    PubMed

    Koyanagi, Jyunichi; Kamei, Tomoyo; Ishizaki, Miyuki; Nakamura, Hiroshi; Takahashi, Tamiko

    2014-01-01

    An improved synthetic route has been developed for the preparation of methyl 1-fluoroindan-1-carboxylate (FICA Me ester) from 1-indanone. Methyl 4-methyl-1-fluoroindan-1-carboxylate (4-Me-FICA Me ester) was also prepared following the same procedure.

  10. Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin.

    PubMed

    Gill, Iqbal; Patel, Ramesh

    2006-02-01

    An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%.

  11. Merging domino and redox chemistry: stereoselective access to di- and trisubstituted β,γ-unsaturated acids and esters.

    PubMed

    Tejedor, David; Méndez-Abt, Gabriela; Cotos, Leandro; García-Tellado, Fernando

    2012-03-19

    Merging is the game! The coupling of a domino reaction and an internal neutral redox reaction constitutes an excellent manifold for the stereoselective synthesis of di- and trisubstituted olefins featuring a malonate unit, an ester, or a free carboxylic acid as substituents at the allylic position (see scheme; MW=microwave). The reaction utilizes simple starting materials (propargyl vinyl ethers), methanol or water as solvents, and a very simple and bench-friendly protocol. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ethylene glycol-linked amino acid diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability and pharmacokinetics.

    PubMed

    Cao, Feng; Jia, Jinghao; Yin, Zhi; Gao, Yahan; Sha, Lei; Lai, Yisheng; Ping, Qineng; Zhang, Yihua

    2012-08-06

    The purposes of this study were to expand the structure of parent drugs selected for peptide transporter 1 (PepT1)-targeted ester prodrug design and to improve oral bioavailability of oleanolic acid (OA), a Biopharmaceutics Classification System (BCS) class IV drug. Through an ethoxy linker the carboxylic acid group of OA was conjugated with the carboxylic acid group of different amino acid promoieties to form six diester prodrugs. The effective permeability (P(eff)) of prodrugs was screened by in situ rat single-pass intestinal perfusion (SPIP) model in two buffers with different pH (6.0 and 7.4) as PepT1 employs a proton-gradient as the driving force. Compared to OA, 2.5-fold, 2.3-fold, 2.2-fold, 2.1-fold, and 1.9-fold enhancement of P(eff) in buffer with pH 6.0 was observed for L-Phe ester (5c), L-Val ester (5a), L-Lys ester (5e), D-Phe ester (5d), and D-Val ester (5b), respectively. Furthermore, P(eff) of 5a, 5c, 5d and 5e in pH 6.0 was significantly higher than that in pH 7.4 (p < 0.01), respectively. These results showed that the H(+) concentration of perfusion solution had great effect on the transport of the prodrugs across intestinal membrane. For the further evaluation of affinity to PepT1, inhibition studies were performed by coperfusing 0.1 mM prodrug with 50 mM glycyl-sarcosine (Gly-Sar, a typical substrate of PepT1). It turned out that the P(eff) of 5a, 5b, 5c and L-Tyr ester (6f) significantly reduced in the presence of Gly-Sar (1.7-fold, 2.2-fold, 1.9-fold, and 1.4-fold, respectively). We supposed that it may be attributed to PepT1 mediated transport of these prodrugs. 5a and 6f were selected as the optimal target prodrugs for oral absorption in vivo. Following intragastric administration of 300 mg/kg (calculated as OA) 5a, 6f and OA in three groups of rats, compared with group OA, Cmax for the group of 5a and 6f was enhanced by 1.56-fold and 1.54-fold, respectively. Fapp of group 5a and 6f was 2.21- and 2.04-fold increased, respectively, indicating that 5a and 6f had better oral absorption than OA. The combined results also suggest that diester prodrugs which conjugated two carboxylic acid groups of proper amino acid promoieties and parent drug through a linker can be used for PepT1-targeted prodrug design. With this strategy, oral bioavailability of OA in rats could be improved significantly.

  13. Cage-like bifunctional chelators, copper-64 radiopharmaceuticals and PET imaging using the same

    DOEpatents

    Conti, Peter S.; Cai, Hancheng; Li, Zibo; Liu, Shuanglong

    2016-08-02

    Disclosed is a class of versatile Sarcophagine based bifunctional chelators (BFCs) containing a hexa-aza cage for labeling with metals having either imaging, therapeutic or contrast applications radiolabeling and one or more linkers (A) and (B). The compounds have the general formula ##STR00001## where A is a functional group selected from group consisting of an amine, a carboxylic acid, an ester, a carbonyl, a thiol, an azide and an alkene, and B is a functional group selected from the group consisting of hydrogen, an amine, a carboxylic acid, and ester, a carbonyl, a thiol, an azide and an alkene. Also disclosed are conjugate of the BFC and a targeting moiety, which may be a peptide or antibody. Also disclosed are metal complexes of the BFC/targeting moiety conjugates that are useful as radiopharmaceuticals, imaging agents or contrast agents.

  14. In vitro digestion of citric acid esters of mono- and diglycerides (CITREM) and CITREM-containing infant formula/emulsions.

    PubMed

    Amara, Sawsan; Patin, Amaury; Giuffrida, Francesca; Wooster, Tim J; Thakkar, Sagar K; Bénarouche, Anaïs; Poncin, Isabelle; Robert, Sylvie; Point, Vanessa; Molinari, Sacha; Gaussier, Hélène; Diomande, Sadia; Destaillats, Frédéric; Cruz-Hernandez, Cristina; Carrière, Frédéric

    2014-07-25

    CITREM is an emulsifier used in the food industry and contains citric acid esters of mono- and diglycerides (GCFE). It is generally recognized as safe but no publication on its digestibility under gastrointestinal conditions and impact on fat digestion was available. It was shown here that fatty acids are released from CITREM by gastric lipase, pancreatic lipase, pancreatic-lipase-related protein 2 and carboxyl ester hydrolase. A two-step in vitro digestion model mimicking lipolysis in the stomach and upper small intestine of term and preterm infants was then used to evaluate the digestibility of CITREM alone, CITREM-containing infant formula and fat emulsions, and isolated GCFE fractions. Overall, it was shown that fat digestion is not significantly changed by the presence of CITREM, and fatty acids contained in CITREM compounds are released to a large extent by lipases. Nevertheless, undigestible water-soluble compounds containing glycerol and citric acid units were identified, indicating that the ester bond between citric acid and glycerol is not fully hydrolyzed throughout the proposed digestion.

  15. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  16. Hydrogenation of carbonyl compounds of relevance to hydrogen storage in alcohols

    NASA Astrophysics Data System (ADS)

    Suárez, Andrés

    2018-02-01

    Alcohols are a promising source for the sustainable production of hydrogen that may also serve as rechargeable liquid organic hydrogen carriers (LOHCs). Metal-catalyzed acceptorless dehydrogenation of alcohols produces carbonyl derivatives as H2-depleted by-products, which by means of a hydrogenation reaction can be reconverted to the initial alcohols. Hence, reversible H2-storage systems based on pairs of secondary alcohols/ketones and primary alcohols/carboxylic acid derivatives may be envisaged. In this contribution, the hydrogenation of carbonyl derivatives, including ketones, esters, amides and carboxylic acids, is reviewed from the perspective of the hydrogen storage in alcohols.

  17. Cations in component reactions of `malic' enzyme catalysis

    PubMed Central

    Tsai, C. S.; Tsai, Y. H.; Samad, R. A.

    1971-01-01

    The `malic' enzyme (EC 1.1.1.40) has been purified (300-fold) from wheat germ and its abilities to catalyse the decarboxylation and the hydrogenation of oxaloacetic acid and oxaloacetate esters was studied. The free 1-carboxyl group is essential for the interaction of oxaloacetates and substituted oxaloacetates with the enzyme via cations. The free 4-carboxyl group is required for the decarboxylation but is not indispensable for the hydrogenation. At high concentrations, cations inhibit the enzymic hydrogenation of oxaloacetic acid but not that of 4-ethyl oxaloacetate. A plausible inhibitory mechanism is proposed. PMID:4399519

  18. Gas-Phase Amidation of Carboxylic Acids with Woodward’s Reagent K Ions

    PubMed Central

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-01-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward’s reagent K (wrk) in both positive and negative mode. Woodward’s reagent K, N-ethyl-3-phenylisoxazolium-3′-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide. PMID:26122523

  19. 40 CFR 721.10679 - Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10679... (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance... § 721.63 (a)(1) and (a)(4), engineering control measures (e.g., enclosure or confinement of the...

  20. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity.

    PubMed

    Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning

    2018-01-01

    In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Complex formation equilibria of binary and ternary complexes involving 3,3-bis(1-methylimidazol-2yl)propionic acid and bio-relevant ligands as 1-aminocyclopropane carboxylic acid with reference to plant hormone

    NASA Astrophysics Data System (ADS)

    Shoukry, Mohamed M.; Hassan, Safaa S.

    2014-01-01

    The formation equilibria for the binary complexes of Cu(II) with 1-aminocyclopropane carboxylic acid (ACC) and 3,3-bis(1-methylimidazol-2-yl)propionic acid (BIMP) were investigated. ACC and BIMP form the complexes 1 1 0, 1 2 0 and 1 1 -1. The ternary complexes of Cu(II) with BIMP and biorelevant ligands as some selected amino acids, peptides and DNA constituents are formed in a stepwise mechanism. The stability constants of the complexes formed were determined and their distribution diagrams were evaluated. The kinetics of hydrolysis of glycine methyl ester in presence of [Cu(BIMP)]+ was investigated by pH-stat technique and the mechanism was discussed.

  2. Ambient Temperature Synthesis of High Enantiopurity N-Protected Peptidyl Ketones by Peptidyl Thiol Ester–Boronic Acid Cross-Coupling

    PubMed Central

    Yang, Hao; Li, Hao; Wittenberg, Rüdiger; Egi, Masahiro; Huang, Wenwei; Liebeskind, Lanny S.

    2009-01-01

    α-Amino acid thiol esters derived from N-protected mono-, di-, and tripeptides couple with aryl, π-electron-rich heteroaryl, or alkenyl boronic acids in the presence of stoichiometric Cu(I) thiophene-2-carboxylate (CuTC) and catalytic Pd2(dba)3/triethylphosphite to generate the corresponding N-protected peptidyl ketones in good to excellent yields and in high enantiopurity. Triethylphosphite plays a key role as a supporting ligand by mitigating an undesired palladium-catalyzed decarbonylation-β-elimination of the α-amino thiol esters. The peptidyl ketone synthesis proceeds at room temperature under non-basic conditions and demonstrates a high tolerance to functionality. PMID:17263394

  3. Impact of Macroporosity on Catalytic Upgrading of Fast Pyrolysis Bio-Oil by Esterification over Silica Sulfonic Acids.

    PubMed

    Manayil, Jinesh C; Osatiashtiani, Amin; Mendoza, Alvaro; Parlett, Christopher M A; Isaacs, Mark A; Durndell, Lee J; Michailof, Chrysoula; Heracleous, Eleni; Lappas, Angelos; Lee, Adam F; Wilson, Karen

    2017-09-11

    Fast pyrolysis bio-oils possess unfavorable physicochemical properties and poor stability, in large part, owing to the presence of carboxylic acids, which hinders their use as biofuels. Catalytic esterification offers an atom- and energy-efficient route to upgrade pyrolysis bio-oils. Propyl sulfonic acid (PrSO 3 H) silicas are active for carboxylic acid esterification but suffer mass-transport limitations for bulky substrates. The incorporation of macropores (200 nm) enhances the activity of mesoporous SBA-15 architectures (post-functionalized by hydrothermal saline-promoted grafting) for the esterification of linear carboxylic acids, with the magnitude of the turnover frequency (TOF) enhancement increasing with carboxylic acid chain length from 5 % (C 3 ) to 110 % (C 12 ). Macroporous-mesoporous PrSO 3 H/SBA-15 also provides a two-fold TOF enhancement over its mesoporous analogue for the esterification of a real, thermal fast-pyrolysis bio-oil derived from woodchips. The total acid number was reduced by 57 %, as determined by GC×GC-time-of-flight mass spectrometry (GC×GC-ToFMS), which indicated ester and ether formation accompanying the loss of acid, phenolic, aldehyde, and ketone components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Anaerobic biodegradation of methyl esters by Acetobacterium woodii and Eubacterium limosum

    USGS Publications Warehouse

    Liu, Shi; Suflita, Joseph M.

    1994-01-01

    The ability ofAcetobacterium woodii andEubacterium limosum to degrade methyl esters of acetate, propionate, butyrate, and isobutyrate was examined under growing and resting-cell conditions. Both bacteria hydrolyzed the esters to the corresponding carboxylates and methanol under either condition. Methanol was further oxidized to formate under growing but not resting conditions. Unlike the metabolism of phenylmethylethers, no H2 requirement was evident for ester biotransformation. The hydrolysis of methyl carboxylates is thermodynamically favorable under standard conditions and the mixotrophic metabolism of ester/CO2 allowed for bacterial growth. These results suggest that the degradation of methyl carboxylates may be a heretofore unrecognized nutritional option for acetogenic bacteria.

  5. Synthesis and biological evaluation of amino acid methyl ester conjugates of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid against the production of nitric oxide (NO).

    PubMed

    Onyango, Evans O; Fu, Liangfeng; Cao, Martine; Liby, Karen T; Sporn, Michael B; Gribble, Gordon W

    2014-01-15

    2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO, 2) was condensed with various amino acid methyl esters at the C-28 carboxylic acid. The new amide conjugates were evaluated for their inhibition of nitric oxide (NO) production in RAW264.7 cells stimulated with interferon-γ (IFNγ). Of these new compounds, CDDO conjugates with alanine, valine, and serine are nearly equipotent to CDDO-ethyl amide (4), a triterpenoid with promising biological activity in numerous disease models. Some of these conjugates also induce the in vitro expression of heme oxygenase-1, and inhibit the proliferation of Panc-1343 pancreatic cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The Path of Carbon in Photosynthesis V. Paper Chromatography and Radioautography of the Products

    DOE R&D Accomplishments Database

    Benson, A. A.; Bassham, J. A.; Calvin, M.; Goodale, T. C.; Haas, V. A.; Stepka, W.

    1949-06-13

    Detailed procedure and results for the separation and identification of labeled carboxylic acids and phosphate esters, formed during photosynthesis in C{sup 14}O{sub 2}; the first observed product of CO{sub 2} assimilation during photosynthesis was isolated and shown to be phosphoglyceric acid; tracer use of P{sup 32} and C{sup 14}.

  7. Two Dimensional Polyamides Prepared From Unsaturated Carboxylic Acids And Amines.

    DOEpatents

    McDonald, William F.; Huang, Zhi Heng; Wright, Stacy C.; Danzig, Morris; Taylor, Andrew C.

    2002-07-17

    A polyamide and a process for preparing the polyamide are disclosed. The process comprises reacting in a reaction mixture a monomer selected from unsaturated carboxylic acids, esters of unsaturated carboxylic acids, anhydrides of unsaturated carboxylic acids, and mixtures thereof, and a first amine to form an intermediate reaction product in the reaction mixture, wherein the first amine is selected from RR.sub.1 NH, RNH.sub.2, RR.sub.1 NH.sub.2.sup.+, RNH.sub.3.sup.+ and mixtures thereof, wherein R and R.sub.1 can be the same or different and each contain between about 1 and 50 carbon atoms and are optionally substituted with heteroatoms oxygen, nitrogen, sulfur, and phosphorus and combinations thereof, and reacting the intermediate reaction product and a second amine to form a polyamide, wherein the second amine is selected from R.sub.2 R.sub.3 NH, R.sub.2 NH.sub.2, R.sub.2 R.sub.3 NH.sub.2.sup.+, R.sub.2 NH.sub.3.sup.+ and mixtures thereof wherein R.sub.2 and R.sub.3 can be the same or different and each contain between about 1 and 50 carbon atoms and are optionally substituted with heteroatoms oxygen, nitrogen, sulfur, and phosphorus and combinations thereof, wherein multiple of the R, R.sub.1, R.sub.2, and R.sub.3 are in vertically aligned spaced relationship along a backbone formed by the polyamide. In one version of the invention, the monomer is selected from maleic anhydride, maleic acid esters, and mixtures thereof. In another version of the invention, the first amine is an alkylamine, such as tetradecylamine, and the second amine is a polyalkylene polyamine, such as pentaethylenehexamine. In yet another version of the invention, the first amine and the second amine are olefinic or acetylenic amines, such as the reaction products of an alkyldiamine and an acetylenic carboxylic acid. The first amine and the second amine may be the same or different depending on the desired polyamide polymer structure.

  8. Effects of different carboxylic ester spacers on chemical stability, release characteristics, and anticancer activity of mono-PEGylated curcumin conjugates.

    PubMed

    Wichitnithad, Wisut; Nimmannit, Ubonthip; Callery, Patrick S; Rojsitthisak, Pornchai

    2011-12-01

    We investigated the effects of different carboxylic ester spacers of mono-PEGylated curcumin conjugates on chemical stability, release characteristics, and anticancer activity. Three novel conjugates were synthesized with succinic acid, glutaric acid, and methylcarboxylic acid as the respective spacers between curcumin and monomethoxy polyethylene glycol of molecular weight 2000 (mPEG(2000) ): mPEG(2000) -succinyl-curcumin (PSC), mPEG(2000) -glutaryl-curcumin (PGC), and mPEG(2000) -methylcarboxyl-curcumin (PMC), respectively. Hydrolysis of all conjugates in buffer and human plasma followed pseudo first-order kinetics. In phosphate buffer, the overall degradation rate constant and half-life values indicated an order of stability of PGC > PSC > PMC > curcumin. In human plasma, more than 90% of curcumin was released from the esters after incubation for 0.25, 1.5, and 2 h, respectively. All conjugates exhibited cytotoxicity against four human cancer cell lines: Caco-2 (colon), KB (oral cavity), MCF7 (breast), and NCI-H187 (lung) with half maximal inhibitory concentration (IC(50) ) values in the range of 1-6 µM, similar to that observed for curcumin itself. Our results suggest that mono-PEGylation of curcumin produces prodrugs that are stable in buffer at physiological pH, release curcumin readily in human plasma, and show anticancer activity. Copyright © 2011 Wiley-Liss, Inc.

  9. The use of fatty acid esters to enhance free acid sophorolipid synthesis.

    PubMed

    Ashby, Richard D; Solaiman, Daniel K Y; Foglia, Thomas A

    2006-02-01

    Fatty acid esters were prepared by transesterification of soy oil with methanol (methyl-soyate, Me-Soy), ethanol (ethyl-soyate, Et-Soy) and propanol (propyl-soyate, Pro-Soy) and used with glycerol as fermentation substrates to enhance production of free-acid sophorolipids (SLs). Fed-batch fermentations of Candida bombicola resulted in SL yields of 46 +/- 4 g/l, 42 +/- 7 g/l and 18 +/- 6 g/l from Me-Soy, Et-Soy, and Pro-Soy, respectively. Liquid chromatography with atmospheric pressure ionization mass spectrometry (LC/API-MS) showed that Me-Soy resulted in 71% open-chain SLs with 59% of those molecules remaining esterified at the carboxyl end of the fatty acids. Et-Soy and Pro-Soy resulted in 43% and 80% open-chain free-acid SLs, respectively (containing linoleic acid and oleic acid as the principal fatty acid species linked to the sophorose sugar at the omega-1 position), with no evidence of residual esterification.

  10. Microwave-Assisted Esterification: A Discovery-Based Microscale Laboratory Experiment

    ERIC Educational Resources Information Center

    Reilly, Maureen K.; King, Ryan P.; Wagner, Alexander J.; King, Susan M.

    2014-01-01

    An undergraduate organic chemistry laboratory experiment has been developed that features a discovery-based microscale Fischer esterification utilizing a microwave reactor. Students individually synthesize a unique ester from known sets of alcohols and carboxylic acids. Each student identifies the best reaction conditions given their particular…

  11. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ashish P.; Pacheco, Carlos; Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H- 13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO 2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The vibrational spectroscopy results also suggest that much of the "Type I" signal observed in the HMBC spectrum is due to carboxylic acid esters and possibly α-substituted alicyclic acids.

  12. Biomimetic L-aspartic acid-derived functional poly(ester amide)s for vascular tissue engineering.

    PubMed

    Knight, Darryl K; Gillies, Elizabeth R; Mequanint, Kibret

    2014-08-01

    Functionalization of polymeric biomaterials permits the conjugation of cell signaling molecules capable of directing cell function. In this study, l-phenylalanine and l-aspartic acid were used to synthesize poly(ester amide)s (PEAs) with pendant carboxylic acid groups through an interfacial polycondensation approach. Human coronary artery smooth muscle cell (HCASMC) attachment, spreading and proliferation was observed on all PEA films. Vinculin expression at the cell periphery suggested that HCASMCs formed focal adhesions on the functional PEAs, while the absence of smooth muscle α-actin (SMαA) expression implied the cells adopted a proliferative phenotype. The PEAs were also electrospun to yield nanoscale three-dimensional (3-D) scaffolds with average fiber diameters ranging from 130 to 294nm. Immunoblotting studies suggested a potential increase in SMαA and calponin expression from HCASMCs cultured on 3-D fibrous scaffolds when compared to 2-D films. X-ray photoelectron spectroscopy and immunofluorescence demonstrated the conjugation of transforming growth factor-β1 to the surface of the functional PEA through the pendant carboxylic acid groups. Taken together, this study demonstrates that PEAs containing aspartic acid are viable biomaterials for further investigation in vascular tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Ethylene-enhanced catabolism of ( sup 14 C)indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues. [Citrus sinensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagee, O.; Riov, J.; Goren, J.

    Exogenous ({sup 14}C)indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of ({sup 14}C)IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGlu). Increased formation of ICGlu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGlu were identified by combined gas chromatography-mass spectrometry. Formation of ICGlu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of themore » mechanisms by which ethylene endogenous IAA levels.« less

  14. Molecular water oxidation catalyst

    DOEpatents

    Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.

    1993-01-01

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  15. New fluoroprostaglandin F(2alpha) derivatives with prostanoid FP-receptor agonistic activity as potent ocular-hypotensive agents.

    PubMed

    Nakajima, Tadashi; Matsugi, Takeshi; Goto, Wakana; Kageyama, Masaaki; Mori, Nobuaki; Matsumura, Yasushi; Hara, Hideaki

    2003-12-01

    To find new prostanoid FP-receptor agonists possessing potent ocular-hypotensive effects with minimal side effects, we evaluated the agonistic activities of newly synthesized prostaglandin F(2alpha) derivatives for the prostanoid FP-receptor both in vitro and in vivo. The iris constrictions induced by the derivatives and their effects on melanin content were examined using cat isolated iris sphincters and cultured B16 melanoma cells, respectively. The effects of derivative ester forms on miosis and intraocular pressure (IOP) were evaluated in cats and cynomolgus monkeys, respectively. Of these derivatives, 6 out of 12 compounds were more potent iris constrictors, with EC(50) values of 0.6 to 9.4 nM, than a carboxylic acid of latanoprost (EC(50)=13.6 nM). A carboxylic acid of latanoprost (100 microM) significantly increased the melanin content of cultured B16 melanoma cells, but some 15,15-difluoro derivatives, such as AFP-157 and AFP-172, did not. Topically applied AFP-168, AFP-169 and AFP-175 (isopropyl ester, methyl ester and ethyl ester forms, respectively, of AFP-172) induced miosis in cats more potently than latanoprost. AFP-168 (0.0005%) reduced IOP to the same extent as 0.005% latanoprost (for at least 8 h). These findings indicate that 15,15-difluoroprostaglandin F(2alpha) derivatives, especially AFP-168, have more potent prostanoid FP-receptor agonistic activities than latanoprost. Hence, AFP-168 may be worthy of further evaluation as an ocular-hypotensive agent.

  16. Pyrazole amino acids: hydrogen bonding directed conformations of 3-amino-1H-pyrazole-5-carboxylic acid residue.

    PubMed

    Kusakiewicz-Dawid, Anna; Porada, Monika; Ochędzan-Siodłak, Wioletta; Broda, Małgorzata A; Bujak, Maciej; Siodłak, Dawid

    2017-09-01

    A series of model compounds containing 3-amino-1H-pyrazole-5-carboxylic acid residue with N-terminal amide/urethane and C-terminal amide/hydrazide/ester groups were investigated by using NMR, Fourier transform infrared, and single-crystal X-ray diffraction methods, additionally supported by theoretical calculations. The studies demonstrate that the most preferred is the extended conformation with torsion angles ϕ and ψ close to ±180°. The studied 1H-pyrazole with N-terminal amide/urethane and C-terminal amide/hydrazide groups solely adopts this energetically favored conformation confirming rigidity of that structural motif. However, when the C-terminal ester group is present, the second conformation with torsion angles ϕ and ψ close to ±180° and 0°, respectively, is accessible. The conformational equilibrium is observed in NMR and Fourier transform infrared studies in solution in polar environment as well as in the crystal structures of other related compounds. The observed conformational preferences are clearly related to the presence of intramolecular interactions formed within the studied residue. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  17. Electron beam-induced graft polymerization of acrylic acid and immobilization of arginine-glycine-aspartic acid-containing peptide onto nanopatterned polycaprolactone.

    PubMed

    Sun, Hui; Wirsén, Anders; Albertsson, Ann-Christine

    2004-01-01

    Electron beam- (EB-) induced graft polymerization of acrylic acid and the subsequent immobilization of arginine-glycine-aspartic acid (RGD) peptide onto nanopatterned polycaprolactone with parallel grooves is reported. A high concentration of carboxylic groups was introduced onto the polymer substrate by EB-induced polymerization of acrylic acid. In the coupling of the RGD peptide to the carboxylated polymer surface, a three-step peptide immobilization process was used. This process included the activation of surface carboxylic acid into an active ester intermediate by use of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), the introduction of disulfide groups by use of 2-(2-pyridinyldithio)ethanamine hydrochloride (PDEA), and final immobilization of the peptide via a thiol-disulfide exchange reaction. The extent of coupling was measured by UV spectroscopy. A preliminary study of the in vitro behavior of keratinocytes (NCTC 2544) cultured on the acrylic acid-grafted and RGD peptide-coupled surface showed that most cells grown on the coupled samples had a spread-rounded appearance, while the majority of cells tended to be elongated along the grooves on uncoupled substrates.

  18. Novel double prodrugs of the iron chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED): Synthesis, characterization, and investigation of activation by chemical hydrolysis and oxidation.

    PubMed

    Thiele, Nikki A; Abboud, Khalil A; Sloan, Kenneth B

    2016-08-08

    The development of iron chelators suitable for the chronic treatment of diseases where iron accumulation and subsequent oxidative stress are implicated in disease pathogenesis is an active area of research. The clinical use of the strong chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) and its alkyl ester prodrugs has been hindered by poor oral bioavailability and lack of conversion to the parent chelator, respectively. Here, we present novel double prodrugs of HBED that have the carboxylate and phenolate donors of HBED masked with carboxylate esters and boronic acids/esters, respectively. These double prodrugs were successfully synthesized as free bases (7a-f) or as dimesylate salts (8a-c,e), and were characterized by (1)H, (13)C, and (11)B NMR; MP; MS; and elemental analysis. The crystal structure of 8a was solved. Three of the double prodrugs (8a-c) were selected for further investigation into their abilities to convert to HBED by stepwise hydrolysis and H2O2 oxidation. The serial hydrolysis of the pinacol and methyl esters of N,N'-bis(2-boronic acid pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl ester dimesylate (8a) was verified by LC-MS. The macro half-lives for the hydrolyses of 8a-c, measured by UV, ranged from 3.8 to 26.3 h at 37 °C in pH 7.5 phosphate buffer containing 50% MeOH. 9, the product of hydrolysis of 8a-c and the intermediate in the conversion pathway, showed little-to-no affinity for iron or copper in UV competition experiments. 9 underwent a serial oxidative deboronation by H2O2 in N-methylmorpholine buffer to generate HBED (k = 10.3 M(-1) min(-1)). The requirement of this second step, oxidation, before conversion to the active chelator is complete may confer site specificity when only localized iron chelation is needed. Overall, these results provide proof of principle for the activation of the double prodrugs by chemical hydrolysis and H2O2 oxidation, and merit further investigation into the protective capabilities of the prodrugs against H2O2-induced cell death. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyls play an important role in the chemistry of natural organic molecules (NOM) in the environment, and their behavior is dependent on local structural environment within the macromolecule. We studied the structural environments of carboxyl groups in dissolved NOM from the Pine Barrens (New Jersey, USA), and IHSS NOM isolates from soils and river waters using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. It is well established that the energies of the asymmetric stretching vibrations of the carboxylate anion (COO -) are sensitive to the structural environment of the carboxyl group. These energies were compiled from previous infrared studies on small organic acids for a wide variety of carboxyl structural environments and compared with the carboxyl spectral features of the NOM samples. We found that the asymmetric stretching peaks for all NOM samples occur within a narrow range centered at 1578 cm -1, suggesting that all NOM samples examined primarily contain very similar carboxyl structures, independent of sample source and isolation techniques employed. The small aliphatic acids containing hydroxyl (e.g., D-lactate, gluconate), ether/ester (methoxyacetate, acetoxyacetate), and carboxylate (malonate) substitutions on the α-carbon, and the aromatic acids salicylate ( ortho-OH) and furancarboxylate ( O-heterocycle), exhibit strong overlap with the NOM range, indicating that similar structures may be common in NOM. The width of the asymmetric peak suggests that the structural heterogeneity among the predominant carboxyl configurations in NOM is small. Changes in peak area with pH at energies distant from the peak at 1578 cm -1, however, may be indicative of a small fraction of other aromatic carboxyls and aliphatic structures lacking α-substitution. This information is important in understanding NOM-metal and mineral-surface complexation, and in building appropriate structural and mechanistic models of humic materials.

  20. Dihydronaphthalenone Carboxylates - Spectral Characteristics and Structure

    NASA Astrophysics Data System (ADS)

    Bakalova, Sn.; Georgieva, A.; Nikolov, P.; Stanoeva, E.

    1997-05-01

    The absorption and luminescence characteristics of a group of newly synthesized methyl esters of 2-alkyl (p-substituted-aryl) -aminomethylene-3,4-dihydro-1(2 H)-naphthalenone-4-carboxylic acids have been investigated. The studied compounds may exist in three tautomeric forms. On the basis of comparison of their electronic spectra to those of similar substances, the observed substituent effect on the position of the UV-VIS absorption bands, the IR spectra and the results of PPP-SCF-CI quantum-chemical calculations it is concluded that the keto tautomer predominates in solution.

  1. 6-Substituted 3,4-dihydro-naphthalene-2-carboxylic acids: synthesis and structure-activity studies in a novel class of human 5alpha reductase inhibitors.

    PubMed

    Baston, Eckhard; Salem, Ola I A; Hartmann, Rolf W

    2002-10-01

    Novel 3,4-dihydro-naphthalene-2-carboxylic acids were synthesized and evaluated for 5alpha reductase inhibitory activity. This enzyme exists in two isoforms and is a pharmacological target for the treatment of benign prostatic hyperplasia, male pattern baldness and acne. In the present study non-steroidal compounds capable of mimicking the transition state of the steroidal substrates were prepared. The synthetic strategy for the preparation of compounds 1-6 consisted of triflation followed by subsequent Heck-type carboxylation or methoxy carbonylation for 6-phenyl-3,4-dihydronaphthalen-2(1H)-one 1c. A Negishi-type coupling reaction between 6-(trifluoro-methanesulfonyloxy)-3,4-dihydro-naphthalene-2-carboxylic acid methyl ester 7b and various aryl bromides led, after further transformations, to 6-substituted 3,4-dihydro-naphthalene-2-carboxylic acids 7-15. In a similar way the corresponding naphthalene-2-carboxylic acids 16 and 17 were obtained. The DU 145 cell line and prostate homogenates served as enzyme sources for the human type 1 and type 2 isozymes, whereas ventral prostate was employed to evaluate rat isozyme inhibitory potency. The most active inhibitors identified in this study were 6-[4-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (3) (IC50 = 0.09 microM, rat type 1), 6-[3-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (13) (IC50 = 0.75 microM, human type 2; IC50 = 0.81 microM, human type 1) and 6-[4-(N,N-diisopropylamino-carbonyl)phenyl]naphthalene-2-carboxylic acid (16) (IC50 = 0.2 microM, human type 2). The latter compound was shown to deactivate the enzyme in an uncompetitive manner (Ki = 90 nM; Km, Testosterone = 0.8-1.0 microM) similar to the steroidal inhibitor Epristeride. Select inhibitors (13 and 16) were tested in vivo using testosterone propionate-treated, juvenile, orchiectomized SD-rats. None of the compounds was active at a dose of 25 mg/kg. This result might in part be ascribed to the relatively poor in vitro rat isozyme inhibitory potency.

  2. Isolation of Chromanone and Isobenzofuran Derivatives from a Fungicolous Isolate of Epiccocum purpurascens

    USDA-ARS?s Scientific Manuscript database

    Chemical studies of an organic extract of Epicoccum purpurascens NRRL 37031, isolated from a wood decay fungus in Florida, led to the isolation of two new metabolites, 7-methoxy-4-oxo-chroman-5-carboxylic acid methyl ester (1) and 1,3-dihydro-5-methoxy-7-methylisobenzofuran (2). Two known isobenzof...

  3. Experimental and theoretical studies of the molecular structure of 7-Methyl-3-[(3-methyl-3-mesityl-cyclobutyl]-5-phenyl-5H-thiazolo[3,2-α]pyrimidine-6-carboxylic acid ethyl ester

    NASA Astrophysics Data System (ADS)

    Acar, Betül; Yilmaz, Ibrahim; Çalışkan, Nezihe; Cukurovali, Alaaddin

    2017-07-01

    In this work, the title molecule, 7-Methyl-3-[(3-methyl-3-mesityl-cyclobutyl]-5-phenyl-5H-thiazolo[3,2-α]pyrimidine-6-carboxylic acid ethyl ester (C30H34N2O2S1), was synthesized and characterized by FT-IR spectroscopy and single crystal X-ray diffraction. The compound crystallizes in the triclinic space group P21/c. with Z = 4, a = 14.1988(6), b = 19.0893(5), c = 10.1325(4) Å, V = 2674.56(17) A3. The optimized structure parameters of the studied molecule was determined theoretically using HF/6-31G(d) and B3LYP/6-31G(d) methods for ground state, and compared with previously reported experimental findings. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental frequencies obtained by FT-IR spectra. The electronic properties, such as HOMO and LUMO energies, and molecular electrostatic potential (MEP) are also performed.

  4. Crystal structures of hibiscus acid and hibiscus acid dimethyl ester isolated from Hibiscus sabdariffa (Malvaceae).

    PubMed

    Zheoat, Ahmed M; Gray, Alexander I; Igoli, John O; Kennedy, Alan R; Ferro, Valerie A

    2017-09-01

    The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carb-oxy-lic acid dimethyl sulfoxide monosolvate], C 6 H 6 O 7 ·C 2 H 6 OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carboxyl-ate], C 8 H 10 O 7 , (II). Compound (I) forms a layered structure with alternating layers of lactone and solvent mol-ecules, that include a two-dimensional hydrogen-bonding construct. Compound (II) has two crystallographically independent and conformationally similar mol-ecules per asymmetric unit and forms a one-dimensional hydrogen-bonding construct. The known absolute configuration for both compounds has been confirmed.

  5. Adsorption of acetanilide herbicides on soil and its components. II. Adsorption and catalytic hydrolysis of diethatyl-ethyl on saturated Na(+)-, K(+)-, Ca(2+)-, and Mg(2+)-montmorillonite.

    PubMed

    Liu, W P; Fang, Z; Liu, H J; Yang, W C

    2001-04-01

    Adsorption and catalytic hydrolysis of the herbicide diethatyl-ethyl [N-chloroacetyl-N-(2,6-diethylphenyl)glycine ethyl ester] on homoionic Na(+)-, K(+)-, Ca(2+)-, and Mg(2+)-montmorillonite clays were investigated in water solution. The Freundlich adsorption coefficient, Ki, got from isotherms on clay followed the order of Na+ approximately K+ > Mg2+ approximately Ca2+. Analysis of FT-IR spectra of diethatyl-ethyl adsorbed on clay suggests probable bonding at the carboxyl and amide carbonyl groups of the herbicide. The rate of herbicide hydrolysis in homoionic clay suspensions followed the same order as that for adsorption, indicating that adsorption may have preceded and thus caused hydrolysis. Preliminary product identification showed that hydrolysis occurred via nucleophilic substitution at the carboxyl carbon, causing the cleavage of the ester bond and formation of diethatyl and its dechlorinated derivative, and at the amide carbon, yielding an ethyl ester derivative and its acid. These pathways also suggest that hydrolysis of diethatyl-ethyl was catalyzed by adsorption on the clay surface.

  6. Asymmetric 1,2-perfluoroalkyl migration: easy access to enantioenriched α-hydroxy-α-perfluoroalkyl esters.

    PubMed

    Wang, Pan; Feng, Liang-Wen; Wang, Lijia; Li, Jun-Fang; Liao, Saihu; Tang, Yong

    2015-04-15

    This study has led to the development of a novel, highly efficient, 1,2-perfluoro-alkyl/-aryl migration process in reactions of hydrate of 1-perfluoro-alkyl/-aryl-1,2-diketones with alcohols, which are promoted by a Zn(II)/bisoxazoline and form α-perfluoro-alkyl/-aryl-substituted α-hydroxy esters. With (-)-8-phenylmenthol as the alcohol, the corresponding menthol esters are generated in high yields with excellent levels of diastereoselectivity. The mechanistic studies show that the benzilic ester-type rearrangement reaction takes place via an unusual 1,2-migration of electron-deficient trifluoromethyl group rather than the phenyl group. The overall process serves as a novel, efficient, and simple approach for the synthesis of highly enantioenriched, biologically relevant α-hydroxy-α-perfluoroalkyl carboxylic acid derivatives.

  7. Determination of organo-zinc based fungicides in timber treatments employing gas chromatographic analysis with mass selective detection and/or inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Rimmer, D A; Johnson, P D; Bradley, S D

    2001-09-14

    A method for the determination of zinc octoate (zinc 2-ethylhexanoate) and acypetacs zinc in occupational hygiene samples and wood treatments formulations is described. The zinc carboxylates are liquid-liquid partitioned between toluene and 1 M HCl, with the liberated acids being extracted into the toluene and zinc (chloride) into the acid. The carboxylic acids are then methylated using trimethylsilyldiazomethane-methanol and the resultant methyl esters are selectively and sensitively analysed by gas chromatography with mass selective detection (GC-MS). Alternatively, the zinc content of the acid extract can be analysed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). GC-MS is the preferred method of analysis for zinc octoate, where a single analyte (methyl-2-ethylhexanoate) is produced for analysis. Because acypetacs zinc contains a complex mixture of carboxylates, quantitative GC-MS analysis of the methyl esters produced is impractical and ICP-AES is the preferred method for quantitation. In this case, GC-MS can be used to confirm the identity of the product used. The analysis of occupational hygiene samples (cotton pads, gloves and socks as well as Tenax tubes and GF/A filters) spiked with metal carboxylates is demonstrated. Recoveries around 70-90% and reproducibilities of 5-23% (n=6-8) were typically achieved for the determination of tin octoate (a surrogate for zinc octoate) at spiking levels ranging from 4 to 190 microg per sampling device. Recoveries around 102-106% and reproducibilities of 10-12% (n=5-6) were typically achieved for acypetacs zinc at spiking levels ranging from 100 mg per sampling device. Reaction yields for the octoate methylation reaction were in the region of 85-87%. The method was used to monitor for occupational exposure to zinc octoate and acypetacs zinc during the application of wood treatments to fences.

  8. In Vitro and Ex Vivo Evaluation of Novel Curcumin-Loaded Excipient for Buccal Delivery.

    PubMed

    Laffleur, Flavia; Schmelzle, Franziska; Ganner, Ariane; Vanicek, Stefan

    2017-08-01

    This study aimed to develop a mucoadhesive polymeric excipient comprising curcumin for buccal delivery. Curcumin encompasses broad range of benefits such as antioxidant, anti-inflammatory, and chemotherapeutic activity. Hyaluronic acid (HA) as polymeric excipient was modified by immobilization of thiol bearing ligands. L-Cysteine (SH) ethyl ester was covalently attached via amide bond formation between cysteine and the carboxylic moiety of hyaluronic acid. Succeeded synthesis was proved by H-NMR and IR spectra. The obtained thiolated polymer hyaluronic acid ethyl ester (HA-SH) was evaluated in terms of stability, safety, mucoadhesiveness, drug release, and permeation-enhancing properties. HA-SH showed 2.75-fold higher swelling capacity over time in comparison to unmodified polymer. Furthermore, mucoadhesion increased 3.4-fold in case of HA-SH and drug release was increased 1.6-fold versus HA control, respectively. Curcumin-loaded HA-SH exhibits a 4.4-fold higher permeation compared with respective HA. Taking these outcomes in consideration, novel curcumin-loaded excipient, namely thiolated hyaluronic acid ethyl ester appears as promising tool for pharyngeal diseases.

  9. Enantioselective synthesis of allylic esters via asymmetric allylic substitution with metal carboxylates using planar-chiral cyclopentadienyl ruthenium catalysts.

    PubMed

    Kanbayashi, Naoya; Onitsuka, Kiyotaka

    2010-02-03

    An asymmetric allylic substitution with sodium carboxylate using a planar-chiral cyclopentadienyl ruthenium complex has been developed. Optically active allylic esters were prepared in good yields with high regio- and enantioselectivities.

  10. Synthesis of benzil-o-carboxylate derivatives and isocoumarins through neighboring ester-participating bromocyclizations of o-alkynylbenzoates.

    PubMed

    Yuan, Si-Tian; Zhou, Hongwei; Zhang, Lianpeng; Liu, Jin-Biao; Qiu, Guanyinsheng

    2017-06-07

    Bromide mediated neighboring ester-participating bromocyclizations of o-alkynylbenzoates are described here for the synthesis of benzil-o-carboxylates. 4-bromoisocoumarins are also synthesized when phenyl o-alkynylbenzoate is used as the substrate. Mechanistic studies suggest that the whole process is composed of an electrophilic bromocyclization and a dibromohydration-based ring-opening, and the neighboring ester group participates in the bromocyclization. Interestingly, the two oxygen atoms of the keto carbonyls in benzil-o-carboxylates are both derived from water. The electrophilic bromo source is in situ generated from the oxidation of bromide.

  11. NRL/NAVSEA Research and Related

    DTIC Science & Technology

    2009-03-30

    leading to production of monomeric hydroxyl carboxylic acids which in turn can be metabolized by bacteria (3). The hydrolytic degradation proceeds either...in most instances higher than that exhibited by poly(ethylene terephthalate) ( PET ). A search for new biodegradable aliphatic esters with more...Boltorn• polyols) attracted our attention as potentially very interesting candidates for the aforementioned applications because of their degradable

  12. 21 CFR 74.2705 - FD&C Yellow No. 5.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false FD&C Yellow No. 5. 74.2705 Section 74.2705 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... ethyl ester, or a salt of this carboxylic acid. The resulting dye is purified and isolated as the sodium...

  13. 21 CFR 74.2705 - FD&C Yellow No. 5.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false FD&C Yellow No. 5. 74.2705 Section 74.2705 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... ethyl ester, or a salt of this carboxylic acid. The resulting dye is purified and isolated as the sodium...

  14. 21 CFR 74.2705 - FD&C Yellow No. 5.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false FD&C Yellow No. 5. 74.2705 Section 74.2705 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... ethyl ester, or a salt of this carboxylic acid. The resulting dye is purified and isolated as the sodium...

  15. 21 CFR 74.2705 - FD&C Yellow No. 5.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false FD&C Yellow No. 5. 74.2705 Section 74.2705 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... ethyl ester, or a salt of this carboxylic acid. The resulting dye is purified and isolated as the sodium...

  16. Purification and biological evaluation of the metabolites produced by Streptomyces sp. TK-VL_333.

    PubMed

    Kavitha, Alapati; Prabhakar, Peddikotla; Vijayalakshmi, Muvva; Venkateswarlu, Yenamandra

    2010-06-01

    An Actinobacterium strain isolated from laterite soils of the Guntur region was identified as Streptomyces sp. TK-VL_333 by 16S rRNA analysis. Cultural, morphological and physiological characteristics of the strain were recorded. The secondary metabolites produced by the strain cultured on galactose-tyrosine broth were extracted and concentrated followed by defatting of the crude extract with cyclohexane to afford polar and non-polar residues. Purification of the two residues by column chromatography led to isolation of five polar and one non-polar fraction. Bioactivity- guided fractions were rechromatographed on a silica gel column to obtain four compounds, namely 1H-indole-3-carboxylic acid, 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one and acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester from three active polar fractions and 8-methyl decanoic acid from one non-polar fraction. The structure of the compounds was elucidated on the basis of FT-IR, mass and NMR spectroscopy. The antimicrobial activity of the bioactive compounds produced by the strain was tested against the bacteria and fungi and expressed in terms of minimum inhibitory concentration. Antifungal activity of indole-3-carboxylic acid was further evaluated under in vitro and in vivo conditions. This is the first report of 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one, acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester and 8-methyl decanoic acid from the genus Streptomyces. 2010 Elsevier Masson SAS. All rights reserved.

  17. Conformational restriction through C alpha i <--> C alpha i cyclization: Ac12c, the largest cycloaliphatic C alpha,alpha- disubstituted glycine known.

    PubMed

    Saviano, M; Iacovino, R; Menchise, V; Benedetti, E; Bonora, G M; Gatos, M; Graci, L; Formaggio, F; Crisma, M; Toniolo, C

    2000-02-01

    Two complete series of N-protected, monodispersed oligopeptide esters to the pentamer level from 1-aminocyclododecane-1-carboxylic acid (Ac(12)c), an alpha-amino acid conformationally constrained through C(alpha)(i) <--> C(alpha)(i) cyclization, and either L-Ala or Aib residues, along with the N-protected Ac(12)c homopeptide alkylamide series from monomer to trimer, have been synthesized by solution methods and fully characterized. The solution-preferred conformations of these peptides have been assessed by Fourier transform ir absorption and (1)H-nmr techniques. Moreover, the molecular structures of one derivative (Z-Ac(12)c-OH) and three peptides [the tripeptide ester Z-L-Ala-Ac(12)c-L-Ala-OMe, the tripeptide alkylamide Z-(Ac(12)c)(3)-NHiPr, and the tetrapeptide ester Z-(Aib)(2)-Ac(12)c-Aib-OtBu (Aib, alpha-aminoisobutyric acid)] have been determined in the crystal state by x-ray diffraction. The results obtained point to the conclusion that beta-bends and 3(10)-helices are preferentially adopted by peptides based on Ac(12)c, the largest cycloaliphatic C-disubstituted glycine known. A comparison with the structural tendencies extracted from published works on peptides from Aib, the prototype of C-disubstituted glycines, and the other extensively studied members of the class of 1-aminocycloalkane-1-carboxylic acids (Ac(n) c, with n = 3-9), is made and the implications for the use of the Ac(12)c residue in the Ac(n) c scan approach of conformationally restricted analogues of bioactive peptides are briefly discussed. Copyright 2000 John Wiley & Sons, Inc.

  18. Isolation and structure of whiskey polyphenols produced by oxidation of oak wood ellagitannins.

    PubMed

    Fujieda, Miho; Tanaka, Takashi; Suwa, Yoshihide; Koshimizu, Seiichi; Kouno, Isao

    2008-08-27

    Three new phenolic compounds named whiskey tannins A and B and carboxyl ellagic acid were isolated from commercial Japanese whiskey, along with gallic acid, ellagic acid, brevifolin carboxylic acid, three galloyl glucoses, a galloyl ester of phenolic glucoside, 2,3-(S)-hexahydroxydiphenoylglucose, and castacrenin B. Whiskey tannins A and B were oxidation products of a major oak wood ellagitannin, castalagin, in which the pyrogallol ring at the glucose C-1 position of castalagin was oxidized to a cyclopentenone moiety. These tannins originated from ellagitannins contained in the oak wood used for barrel production; however, the original oak wood ellagitannins were not detected in the whiskey. To examine whether the whiskey tannins were produced during the charring process of barrel production, pyrolysis products of castalagin were investigated. Dehydrocastalagin and a new phenolcarboxylic acid trislactone having an isocoumarin structure were isolated, along with castacrenin F and ellagic acid. However, whiskey tannins were not detected in the products.

  19. Efficient synthesis of anacardic acid analogues and their antibacterial activities.

    PubMed

    Mamidyala, Sreeman K; Ramu, Soumya; Huang, Johnny X; Robertson, Avril A B; Cooper, Matthew A

    2013-03-15

    Anacardic acid derivatives exhibit a broad range of biological activities. In this report, an efficient method for the synthesis of anacardic acid derivatives was explored, and a small set of salicylic acid variants synthesised retaining a constant hydrophobic element (a naphthyl tail). The naphthyl side chain was introduced via Wittig reaction and the aldehyde installed using directed ortho-metalation reaction of the substituted o-anisic acids. The failure of ortho-metalation using unprotected carboxylic acid group compelled us to use directed ortho-metalation in which a tertiary amide was used as a strong ortho-directing group. In the initial route, tertiary amide cleavage during final step was challenging, but cleaving the tertiary amide before Wittig reaction was beneficial. The Wittig reaction with protected carboxylic group (methyl ester) resulted in side-products whereas using sodium salt resulted in higher yields. The novel compounds were screened for antibacterial activity and cytotoxicity. Although substitution on the salicylic head group enhanced antibacterial activities they also enhanced cytotoxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Single-stage separation and esterification of cation salt carboxylates using electrodeionization

    DOEpatents

    Lin, YuPo J.; Henry, Michael; Hestekin, Jamie; Snyder, Seth W.; St. Martin, Edward J.

    2006-11-28

    A method of and apparatus for continuously making an organic ester from a lower alcohol and an organic acid is disclosed. An organic acid or salt is introduced or produced in an electrode ionization (EDI) stack with a plurality of reaction chambers each formed from a porous solid ion exchange resin wafer interleaved between anion exchange membranes or an anion exchange membrane and a cation exchange membrane or an anion exchange membrane and a bipolar exchange membranes. At least some reaction chambers are esterification chambers and/or bioreactor chambers and/or chambers containing an organic acid or salt. A lower alcohol in the esterification chamber reacts with an anion to form an organic ester and water with at least some of the water splitting with the ions leaving the chamber to drive the reaction.

  1. Application of headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry to determine esters of carboxylic acids and other volatile compounds in Dermestes maculatus and Dermestes ater lipids.

    PubMed

    Cerkowniak, Magdalena; Boguś, Mieczysława I; Włóka, Emilia; Stepnowski, Piotr; Gołębiowski, Marek

    2018-02-01

    A constant problem in veterinary medicine, human healthcare, agriculture, forestry and horticulture is the large number of pests, and the lack of effective methods to combat them which cause no harm to the rest of the environment. It is recommended and desired to reduce the use of chemicals and increase the use of agents based on knowledge acquired in the fields of biology, chemistry and agrochemicals. To learn the defense mechanisms of insects we should consider not only the site of their physiological ability to protect against external factors (cuticle), but also the possibility of chemical protection, formed by all compounds on the surface and in the body of insects. In this study, a procedure was developed to determine the esters of carboxylic acids in insect lipids. Headspace solid-phase microextraction was followed by gas chromatography coupled with gas spectrometry. First, the best conditions were selected for the analysis to obtain the best chromatographic separation. An RTx-5 column was used for this purpose. Polydimethylsiloxane/divinylbenzene (PDMS/DVB) and polyacrylate fibers were used to isolate acid esters. PDMS/DVB fiber achieved the best conditions for the extraction; the extraction time was 50 min, the extraction temperature was 105°C and the desorption time was 10 min at 230°C. These solid-phase microextraction conditions were used to analyze volatile compounds extracted from insects belonging to the Dermestidae family. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules.

    PubMed

    Guo, Lin; Rueping, Magnus

    2018-05-15

    The utilization of carboxylic acid esters as electrophiles in metal-catalyzed cross-coupling reactions is increasingly popular, as environmentally friendly and readily available ester derivatives can be powerful alternatives to the commonly used organohalides. However, key challenges associated with the use of these chemicals remain to be addressed, including the stability of ester substrates and the high energy barrier associated with their oxidative addition to low-valent metal species. Due to recent developments in nickel catalysis that make it easier to perform oxidative additions, chemists have become interested in applying less reactive electrophiles as coupling counterparts in nickel-catalyzed transformations. Hence, our group and others have independently investigated various ester group substitutions and functionalizations enabled by nickel catalysis. Such methods are of great interest as they enable the exchange of ester groups, which can be used as directing groups in metal-catalyzed C-H functionalizations prior to their replacement. Here, we summarize our recent efforts toward the development of nickel-catalyzed decarbonylative cross-coupling reactions of carboxylic esters. Achievements accomplished by other groups in this area are also included. To this day, a number of new transformations have been successfully developed, including decarbonylative arylations, alkylations, cyanations, silylations, borylations, aminations, thioetherifications, stannylations, and hydrogenolysis reactions. These transformations proceed via a nickel-catalyzed decarbonylative pathway and have shown a high degree of reactivity and chemoselectivity, as well as several other unique advantages in terms of substrate availability, due to the use of esters as coupling partners. Although the mechanisms of these reactions have not yet been fully understood, chemists have already provided some important insights. For example, Yamamoto explored the stoichiometric nickel-mediated decarbonylation process of esters and proposed a reaction mechanism involving a C(acyl)-O bond cleavage and a CO extrusion. Key nickel intermediates were isolated and characterized by Shi and co-workers, supporting the assumption of a nickel/ N-heterocyclic carbene-promoted C(acyl)-O bond activation and functionalization. Our combined experimental and computational study of a ligand-controlled chemoselective nickel-catalyzed cross-coupling of aromatic esters with alkylboron reagents provided further insight into the reaction mechanism. We demonstrated that nickel complexes with bidentate ligands favor the C(aryl)-C bond cleavage in the oxidative addition step, resulting in decarbonylative alkylations, while nickel complexes with monodentate phosphorus ligands promote the activation of the C(acyl)-O bond, leading to the production of ketone products. Although more detailed mechanistic investigations need to be undertaken, the successful development of decarbonylative cross-coupling reactions can serve as a solid foundation for future studies. We believe that this type of decarbonylative cross-coupling reactions will be of significant value, in particularly in combination with the retrosynthetic analysis and synthesis of natural products and biologically active molecules. Thus, the presented ester substitution methods will pave the way for successful applications in the construction of complex frameworks by late-stage modification and functionalization of carboxylic acid derivatives.

  3. Omega-3 carboxylic acids (Epanova): a review of its use in patients with severe hypertriglyceridemia.

    PubMed

    Blair, Hannah A; Dhillon, Sohita

    2014-10-01

    Omega-3 carboxylic acids (Epanova) [OM3-CA] is the first free fatty acid form of long-chain marine omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid being the most abundant) to be approved by the US FDA as an adjunct to diet to lower triglyceride levels in patients with severe hypertriglyceridemia (≥ 500 mg/dL). Oral OM3-CA has greater bioavailability than ethyl ester forms of omega-3 and, unlike omega-3 acid ethyl esters, does not require co-ingestion of a high-fat meal, as it does not need pancreatic enzyme activity for absorption. In the 12-week EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE) trial, OM3-CA 2 or 4 g/day significantly reduced serum triglyceride levels relative to placebo. Other lipid parameters, including non-high-density lipoprotein cholesterol (non-HDL-C), total cholesterol, and very low-density lipoprotein cholesterol (VLDL-C) levels, were also reduced significantly with OM3-CA relative to placebo. Low-density lipoprotein cholesterol levels were increased significantly with OM3-CA relative to placebo; however, these increases were not accompanied by increases in the circulating concentrations of non-HDL-C, VLDL-C, or apolipoprotein B. OM3-CA was generally well tolerated in this study, with most adverse events being of mild or moderate severity. Although additional comparative data are needed to position OM3-CA with respect to other formulations of omega-3 fatty acids, current evidence suggests that OM3-CA is a useful addition to the treatment options available for patients with severe hypertriglyceridemia.

  4. Regioselective and stereospecific cleavage of a terminal oxirane system: a novel synthetic approach to lipid mediator congeners--1,2(2,3)-diacyl-3(1)-halo-sn-glycerols.

    PubMed

    Stamatov, Stephan D; Stawinski, Jacek

    2006-07-01

    Glycidyl esters upon treatment with a mixture of carboxylic acid anhydride (CAA) and trimethylsilyl halide (TMSX) in the presence of tetra-n-butylammonium halide (Bu(4)NX, X=Cl, Br or I) undergo stereospecific and regioselective opening of the oxirane ring to afford mixed-(or mono)-acid 1,2(2,3)-diacyl-3(1)-halo-sn-glycerols in high yields.

  5. An ESR study of the anchoring of spin-labeled stearic acid in lecithin multilayers.

    PubMed

    Sanson, A; Ptak, M; Rigaud, J L; Gary-Bobo, C M

    1976-11-01

    In egg lecithin-water lamellar phases, spin-labeled stearic acid gives two superimposed ESR spectra which are only well resolved when the temperature is greater than 30 degrees C. These two spectral components are attributed to the dissociated and non-dissociated forms of the fatty acid carboxylic group, anchored at two different positions in the polar interface constituted by the hydrated lipid polar heads. Results on such interactions of other functional groups (spin-labeled fatty ester and fatty alcohol) are also presented.

  6. Isotope-Encoded Carboxyl Group Footprinting for Mass Spectrometry-Based Protein Conformational Studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Haijun; Blankenship, Robert E.; Gross, Michael L.

    2016-01-01

    We report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded "heavy" and "light" GEE are used to label separately the two states of the orange carotenoid protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the "heavy" and "light" peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting.

  7. Isotope-encoded Carboxyl Group Footprinting for Mass Spectrometry-based Protein Conformational Studies

    PubMed Central

    Zhang, Hao; Liu, Haijun; Blankenship, Robert E.; Gross, Michael L.

    2015-01-01

    We report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded “heavy” and “light” GEE are used to label separately the two states of the Orange Carotenoid Protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the “heavy” and “light” peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting. PMID:26384685

  8. Isotope-Encoded Carboxyl Group Footprinting for Mass Spectrometry-Based Protein Conformational Studies

    DOE PAGES

    Zhang, Hao; Liu, Haijun; Blankenship, Robert E.; ...

    2015-09-18

    Here, we report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded “heavy” and “light” GEE are used to label separately the two states of the orange carotenoid protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the “heavy”more » and “light” peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting.« less

  9. The defensive secretion of Carabus lefebvrei Dejean 1826 pupa (Coleoptera, Carabidae): gland ultrastructure and chemical identification.

    PubMed

    Giglio, Anita; Brandmayr, Pietro; Dalpozzo, Renato; Sindona, Giovanni; Tagarelli, Antonio; Talarico, Federica; Brandmayr, Tullia Zetto; Ferrero, Enrico A

    2009-05-01

    This study documents the defensive function of flavored humor secreted by the abdominal glands of Carabus lefebvrei pupae. The morphology and the ultrastructure of these glands were described and the volatile compounds of glands secretion were identified by gas chromatography/mass spectrometry. The ultrastructure analysis shows an acinose complex formed by about 50 clusters. Each cluster has 20 glandular units and the unit-composed of one secretory and one canal cell lying along a duct-belongs to the class 3 cell type of Quennedey (1998). In the cytoplasm, the secretory cell contains abundant rough endoplasmatic reticula, glycogen granules, numerous mitochondria, and many well-developed Golgi complexes producing electron-dense secretory granules. Mitochondria are large, elongated, and often adjoining electronlucent vesicles. The kind and the origin of secretory granules varying in size and density were discussed. The chemical analysis of the gland secretion revealed the presence of a mixture of low molecular weight terpenes, ketones, aldehydes, alcohols, esters, and carboxylic acids. Monoterpenes, especially linalool, were the major products. We supposed that ketones, aldehydes, alcohols, esters, and carboxylic acids have a deterrent function against the predators and monoterpenes provide a prophylaxis function against pathogens. (c) 2008 Wiley-Liss, Inc.

  10. Plant pressure sensitive adhesives: similar chemical properties in distantly related plant lineages.

    PubMed

    Frenzke, Lena; Lederer, Albena; Malanin, Mikhail; Eichhorn, Klaus-Jochen; Neinhuis, Christoph; Voigt, Dagmar

    2016-07-01

    A mixture of resins based on aliphatic esters and carboxylic acids occurs in distantly related genera Peperomia and Roridula , serving different functions as adhesion in seed dispersal and prey capture. According to mechanical characteristics, adhesive secretions on both leaves of the carnivorous flypaper Roridula gorgonias and epizoochorous fruits of Peperomia polystachya were expected to be similar. The chemical analysis of these adhesives turned out to be challenging because of the limited available mass for analysis. Size exclusion chromatography and Fourier transform infrared spectroscopy were suitable methods for the identification of a mixture of compounds, most appropriately containing natural resins based on aliphatic esters and carboxylic acids. The IR spectra of the Peperomia and Roridula adhesive resemble each other; they correspond to that of a synthetic ethylene-vinyl acetate copolymer, but slightly differ from that of natural tree resins. Thus, the pressure sensitive adhesive properties of the plant adhesives are chemically proved. Such adhesives seem to appear independently in distantly related plant lineages, habitats, life forms, as well as plant organs, and serve different functions such as prey capture in Roridula and fruit dispersal in Peperomia. However, more detailed chemical analyses still remain challenging because of the small available volume of plant adhesive.

  11. Antimicrobial activity and chemical analysis of Microlicia hatschbachii Wurdack (Melastomataceae) extract.

    PubMed

    Cassiano, Dayse S A; Pacheco, Alessandra G M; da Costa, Mateus M; Almeida, Jackson R G S; Vieira, Ivo J C; Branco, Alexsandro

    2014-01-01

    Aerial parts of Microlicia hatschbachii were extracted with hexane, and the extract was evaluated for antimicrobial activity by a broth dilution method. After phytochemical procedures: GC-MS identified aliphatic alkanes, carboxylic acids and methyl esters of long-chain fatty acids; and two diterpenoids [labd-8(17)-en-15-oic acid and labd-8(17),13-dien-15-oic acid] were identified by (1)H and (13)C NMR. The antimicrobial activity of the hexane extract could be attributed to the presence of labdanes. This identification is the first reported occurrence of labdane diterpenes in the Melastomataceae family.

  12. [Inhibiting properties of stable nitroxyl radicals in reactions of linoleic acid and linoleyl alcohol oxidation catalyzed by 5-lipoxygenase].

    PubMed

    Kharchenko, O V; Kharitonenko, A I; Vovk, A I; Kukhar', V P; Babiĭ, L V; Khil'chevskiĭ, A N; Mel'nik, A K

    2005-01-01

    The inhibiting effects of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its 4-substituted derivatives in reactions of linoleyl acid or linoleyl alcohol oxidation catalyzed by potato tuber 5-lipoxygenase were investigated. Inhibiting properties of stable nitroxyl radicals in presence of lubrol and SDS were reduced at the transition from TEMPO to 4-hydroxy-TEMPO or 4-amino-TEMPO and increased at use of adamantane-1-carboxylic or 3-methyladamantane-1-carboxylic acid 1-oxyl-2,2,6,6-tetramethylpiperidine-4-yl esters. Enzyme activity at saturating concentrations of inhibitor was not suppressed completely, and decreased up to the certain level determined by the substrate nature. The dependence of partial inhibition efficiency on rotational correlation time of stable nitroxides in model micellar systems were analysed. It was supposed that 5-lipoxygenase inhibition includes the interaction of hydrophobic nitroxide with radical intermediate formed in enzymatic process.

  13. Alkaloids from the leaves of Uncaria rhynchophylla and their inhibitory activity on NO production in lipopolysaccharide-activated microglia.

    PubMed

    Yuan, Dan; Ma, Bin; Wu, Chunfu; Yang, Jingyu; Zhang, Lijia; Liu, Suiku; Wu, Lijun; Kano, Yoshihiro

    2008-07-01

    Two new isomeric alkaloids, 18,19-dehydrocorynoxinic acid B (1) and 18,19-dehydrocorynoxinic acid (2), were isolated from the CHCl3 extract of the leaves of Uncaria rhynchophylla, together with four known rhynchophylline-type alkaloids, corynoxeine (3), isocorynoxeine (4), rhynchophylline (5), and isorhynchophylline (6), and an indole alkaloid glucoside, vincoside lactam (7). The structures of compounds 1 and 2 were elucidated by spectroscopic methods including UV, IR, HREIMS, 1D and 2D NMR, and CD experiments. The activity assay showed that compounds 3-6, with a C-16 carboxylic ester group, and 7 exhibited inhibitory activity on lipopolysaccharide (LPS)-induced NO release in primary cultured rat cortical microglia (IC 50: 13.7-19.0 microM). However, only weak inhibitory activity was observed for compounds 1 and 2, with a C-16 carboxylic acid group (IC 50: >100 microM).

  14. Chlorzoxazone esters of some non-steroidal anti-inflammatory (NSAI) carboxylic acids as mutual prodrugs: design, synthesis, pharmacological investigations and docking studies.

    PubMed

    Abdel-Azeem, Ahmed Z; Abdel-Hafez, Atef A; El-Karamany, Gamal S; Farag, Hassan H

    2009-05-15

    The discovery of the inducible isoform of cyclooxygenase enzyme (COX-2) spurred the search for anti-inflammatory agents devoid of the undesirable effects associated with classical NSAIDs. New chlorzoxazone ester prodrugs (6-8) of some acidic NSAIDs (1-3) were designed, synthesized and evaluated as mutual prodrugs with the aim of improving the therapeutic potency and retard the adverse effects of gastrointestinal origin. The structure of the synthesized mutual ester prodrugs (6-8) were confirmed by IR, (1)H NMR, mass spectroscopy (MS) and their purity was ascertained by TLC and elemental analyses. In vitro chemical stability revealed that the synthesized ester prodrugs (6-8) are chemically stable in hydrochloric acid buffer pH 1.2 as a non-enzymatic simulated gastric fluid (SGF) and in phosphate buffer pH 7.4 as non-enzymatic simulated intestinal fluid (SIF). In 80% human plasma, the mutual prodrugs were found to be susceptible to enzymatic hydrolysis at relatively faster rate (t(1/2) approximately 37 and 34 min for prodrugs 6 and 7, respectively). Mutual ester prodrugs (6-8) were evaluated for their anti-inflammatory and muscle relaxation activities. Scanning electromicrographs of the stomach showed that the ester prodrugs induced very little irritancy in the gastric mucosa of rats after oral administration for 4days. In addition, docking of the mutual ester prodrugs (6-8) into COX-2 active site was conducted in order to predict the affinity and orientation of these prodrugs at the enzyme active site.

  15. Gd(OTf)3-catalyzed synthesis of geranyl esters for the intramolecular radical cyclization of their epoxides mediated by titanocene(III).

    PubMed

    García Santos, William H; Puerto Galvis, Carlos E; Kouznetsov, Vladimir V

    2015-02-07

    A selective and mild method for the esterification of a variety of carboxylic acids with geraniol is developed. We demonstrated that the use of triphenylphosphine, I2, 2-methylimidazole or imidazole and a catalytic amount of Gd(OTf)3 resulted to be more active than the previous protocols, providing a 16-membered library of geranyl esters in higher yields and in shorter reaction times. The use of essential oil of palmarosa (Cymbopogon martinii), enriched with geraniol, as a raw material for the synthesis of the target compounds complemented and proved how sustainable and eco-friendly this protocol is. Finally, the selective 6,7-epoxidation of the obtained geranyl esters led us to study their regio-controlled radical cyclization mediated by titanocene(III) for the synthesis of novel (8-hydroxy-9,9-dimethyl-5-methylene cyclohexyl)methyl esters in moderate yields and with excellent stereoselectivities.

  16. Direct hydrogenation of biomass-derived butyric acid to n-butanol over a ruthenium-tin bimetallic catalyst.

    PubMed

    Lee, Jong-Min; Upare, Pravin P; Chang, Jong-San; Hwang, Young Kyu; Lee, Jeong Ho; Hwang, Dong Won; Hong, Do-Young; Lee, Seung Hwan; Jeong, Myung-Geun; Kim, Young Dok; Kwon, Young-Uk

    2014-11-01

    Catalytic hydrogenation of organic carboxylic acids and their esters, for example, cellulosic ethanol from fermentation of acetic acid and hydrogenation of ethyl acetate is a promising possibility for future biorefinery concepts. A hybrid conversion process based on selective hydrogenation of butyric acid combined with fermentation of glucose has been developed for producing biobutanol. ZnO-supported Ru-Sn bimetallic catalysts exhibits unprecedentedly superior performance in the vapor-phase hydrogenation of biomass-derived butyric acid to n-butanol (>98% yield) for 3500 h without deactivation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. In silico prediction of acyl glucuronide reactivity

    NASA Astrophysics Data System (ADS)

    Potter, Tim; Lewis, Richard; Luker, Tim; Bonnert, Roger; Bernstein, Michael A.; Birkinshaw, Timothy N.; Thom, Stephen; Wenlock, Mark; Paine, Stuart

    2011-11-01

    Drugs and drug candidates containing a carboxylic acid moiety, including many widely used non-steroidal anti-inflammatory drugs (NSAIDs) are often metabolized to form acyl glucuronides (AGs). NSAIDs such as Ibuprofen are amongst the most widely used drugs on the market, whereas similar carboxylic acid drugs such as Suprofen have been withdrawn due to adverse events. Although the link between these AG metabolites and toxicity is not proven, there is circumstantial literature evidence to suggest that more reactive acyl glucuronides may, in some cases, present a greater risk of exhibiting toxic effects. We wished therefore to rank the reactivity of potential new carboxylate-containing drug candidates, and performed kinetic studies on synthetic acyl glucuronides to benchmark our key compounds. Driven by the desire to quickly rank the reactivity of compounds without the need for lengthy synthesis of the acyl glucuronide, a correlation was established between the degradation half-life of the acyl glucuronide and the half life for the hydrolysis of the more readily available methyl ester derivative. This finding enabled a considerable broadening of chemical property space to be investigated. The need for kinetic measurements was subsequently eliminated altogether by correlating the methyl ester hydrolysis half-life with the predicted 13C NMR chemical shift of the carbonyl carbon together with readily available steric descriptors in a PLS model. This completely in silico prediction of acyl glucuronide reactivity is applicable within the earliest stages of drug design with low cost and acceptable accuracy to guide intelligent molecular design. This reactivity data will be useful alongside the more complex additional pharmacokinetic exposure and distribution data that is generated later in the drug discovery process for assessing the overall toxicological risk of acidic drugs.

  18. Chemistry of anti-AIDS and anticancer compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, S.

    1992-01-01

    Several types of prodrugs of 2[prime], 3[prime]-dideoxynucleosides were designed and synthesized for evaluation as anti-AIDS drugs. These prodrugs include 5[prime]-O-acyl-2[prime], 3[prime]-dideoxynucleosides, in which the acyl groups are derived from both aromatic and aliphatic acids, [alpha]-amino acids, diacylglycerol carbonic acids, and diacylglycerol carbamic acids. By applying the pyridium-dihydropyridine redox delivery system to deliver 2[prime], 3[prime]-dideoxynucleosides to the central nervous system, 1,4-dihydropyridine-2[prime], 3[prime]-dideoxy-inosine and -adenosine compounds were synthesized. 5[prime]-Esters of 2[prime], 3[prime]-dideoxyinosine and 2[prime], 3[prime]-dideoxyadenosine were evaluated for their activity against the HIV-1 virus and for delivery to the central nervous system (CNS). The isomerization, hydrolysis, and oxidation of alkyl 1,4-dihydro-N-methylpyridine-3-carboxylates weremore » studied by [sup 1]H and [sup 13]C NMR spectroscopy. Three intermediates, 1,4-dihydro-N-methylpyridine-3-carboxylic acid, alkyl (methyl or isopropyl) 1,6-dihydro-N-methylpyridine-3-carboxylate, and 1,6-dihydro-N-methylpyridine-3-carboxylic acid, were observed by [sup 1]H and [sup 13]C NMR spectroscopy, and their percentages in solution were determined. The structures of the 1,6-dihydropyridine intermediates were confirmed by comparison of the NMR spectra with those of an authentic model compound, methyl N-(4-chlorobenzyl)-1,6-dihydropyridine-3-carboxylate. The rate of hydrolysis of alkyl 1,4-dihydro-N-methylpyridine-3-carboxylates depends on the steric bulk of the O-alkyl group. A new type of 1,4-dihydropyridine drug delivery system with a three-carbon spacer group, 9-[2,3-di-O-acetyl-5-O-[3-(1,4-dihydro-N-methylpyridine-3-carboxamido)propionyl]-[beta]-D-arabinofuranosyl]adenine was designed, synthesized, and evaluated to deliver ara-ADA to the CNS for treatment of herpes encephalitis.« less

  19. Gas Phase Reactivity of Carboxylates with N-Hydroxysuccinimide Esters

    PubMed Central

    Peng, Zhou; McGee, William M.; Bu, Jiexun; Barefoot, Nathan Z.; McLuckey, Scott A.

    2015-01-01

    N-hydroxysuccinimide (NHS) esters have been used for gas phase conjugation reactions with peptides at nucleophilic sites, such as primary amines (N-terminus, ε-amine of lysine) or guanidines, by forming amide bonds through a nucleophilic attack on the carbonyl carbon. The carboxylate has recently been found to also be a reactive nucleophile capable of initiating a similar nucleophilic attack to form a labile anhydride bond. The fragile bond is easily cleaved, resulting in an oxygen transfer from the carboxylate-containing species to the reagent, nominally observed as a water transfer. This reactivity is shown for both peptides and non-peptidic species. Reagents isotopically labeled with O18 were used to confirm reactivity. This constitutes an example of distinct differences in reactivity of carboxylates between the gas-phase, where they are shown to be reactive, and the solution-phase, where they are not regarded as reactive with NHS esters. PMID:25338221

  20. Purifying contaminated water

    DOEpatents

    Daughton, Christian G.

    1983-01-01

    Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  1. Biomolecular Chemistry of Isopropyl Fibrates

    PubMed Central

    Rath, Niharika; Kotheimer, Amenda; Miller, Chad; Zeller, Matthias; Rath, Nigam P.

    2012-01-01

    Isopropyl 2-[4-(4-chlorobenzoyl)-phenoxy]-2-methylpropanoic acid and isopropyl 2-(4-chlorophenoxy)-2-methylpropanoate, also known as fenofibrate and isopropyl clofibrate, are hypolipidemic agents of the fibrate family. In a previously reported triclinic structure of fenofibrate (polymorph I) the methyl groups of the isopropyl moiety (iPr) are located symmetrically about the carboxylate group. We report a new monoclinic form (polymorph II) of fenofibrate and a first structural description of isopropyl clofibrate, and in these the methyl groups are placed asymmetrically about the carboxylate group. In particular the dihedral (torsion) angle between the hydrogen atom on the secondary C and the C atom of the carboxyl group makes a 2.74° angle about the ester O-C bond in the symmetric fenofibrate structure of polymorph I, whereas the same dihedral angle is 45.94° in polymorph II and -30.9° in the crystal structure of isopropyl clofibrate. Gas phase DFT geometry minimizations of fenofibrate and isopropyl clofibrate result in lowest energy conformations for both molecules with a value of about ± 30° for this same angle between the O=C-O-C plane and the C-H bond of the iPr group. A survey of crystal structures containing an iPr ester group reveals that the asymmetric conformation is predominant. Although the hydrogen atom on the secondary C atom of the isopropyl group is located at a comparable distance from the carbonyl oxygen in the symmetric and asymmetric fenofibrate (2.52 and 2.28 Å) and the isopropyl clofibrate (2.36 Å) structures, this hydrogen atom participates in a puckered five membered ring arrangement in the latter two that is unlike the planar arrangement found in symmetric fenofibrate (polymorph I). Polar molecular surface area (PSA) values indicate fenofibrate and isopropyl clofibrate are less able to act as acceptors of hydrogen bonds than their corresponding acid derivatives. Surface area calculations show dynamic polar molecular surface area (PSAd) values of the iPr esters of the fibrates are lower than those of their acids, implying that the fibrates have better membrane permeability and a higher absorbability and hence are better prodrugs when these agents need to be orally administered. PMID:22246648

  2. 4-((R)-2-{[6-((S)-3-Methoxypyrrolidin-1-yl)-2-phenylpyrimidine-4-carbonyl]amino}-3-phosphonopropionyl)piperazine-1-carboxylic Acid Butyl Ester (ACT-246475) and Its Prodrug (ACT-281959), a Novel P2Y12 Receptor Antagonist with a Wider Therapeutic Window in the Rat Than Clopidogrel.

    PubMed

    Caroff, Eva; Hubler, Francis; Meyer, Emmanuel; Renneberg, Dorte; Gnerre, Carmela; Treiber, Alexander; Rey, Markus; Hess, Patrick; Steiner, Beat; Hilpert, Kurt; Riederer, Markus A

    2015-12-10

    Recent post hoc analyses of several clinical trials with P2Y12 antagonists showed the need for new molecules being fully efficacious as antiplatelet agents and having a reduced propensity to cause major bleeding. We have previously reported the discovery of the 2-phenylpyrimidine-4-carboxamide analogs as P2Y12 antagonists with nanomolar potency in the disease-relevant platelet aggregation assay in human plasma. Herein we present the optimization steps that led to the discovery of clinical candidate ACT-246475 (30d). The key step was the replacement of the carboxylic acid functionality by a phosphonic acid group which delivered the most potent molecules of the program. In addition, low in vivo clearance in rat and dog was achieved for the first time. Since the bioavailability of 30d was low in rat and dog, we developed the bis((isopropoxycarbonyl)oxy)methyl ester prodrug (ACT-281959, 45). Compound 30d showed efficacy in the rat ferric chloride thrombosis model when administered intravenously as parent or orally as its prodrug 45. Moreover, 30d displays a wider therapeutic window as compared to clopidogrel in the rat surgical blood loss model.

  3. Phenolic derivatives from soy flour ethanol extract are potent in vitro quinone reductase (QR) inducing agents.

    PubMed

    Bolling, Bradley W; Parkin, Kirk L

    2008-11-26

    The fractionation of soy flour directed by a cellular bioassay for induction of phase 2 detoxification enzymes was used to identify quinone reductase (QR) inducing agents. A phospholipid-depleted, 80% methanol-partitioned isolate from a crude ethanol extract of soy flour was resolved using normal phase medium-pressure liquid chromatography (MPLC). Early eluting fractions were found to be the most potent QR inducing agents among the separated fractions. Fraction 2 was the most potent, doubling QR at <2 mug/mL. Further fractionation of this isolate led to the identification of several constituents. Fatty acids and sn-1 and sn-2 monoacylglycerols were identified, but were not highly potent QR inducers. Benzofuran-3-carbaldehyde, 4-hydroxybenzaldeyde, 4-ethoxybenzoic acid, 4-ethoxycinnamic acid, benzofuran-2-carboxylic ethyl ester, and ferulic acid ethyl ester (FAEE) were also identified as QR inducing constituents of this fraction. FAEE was the most potent of the identified constituents, doubling QR specific activity at 3.2 muM in the cellular bioassay.

  4. Mono- and tri-ester hydrogenolysis using tandem catalysis. Scope and mechanism.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohr, Tracy L.; Li, Zhi; Assary, Rajeev S.

    The scope and mechanism of thermodynamically leveraged ester RC(O)O-R' bond hydrogenolysis by tandem metal triflate + supported Pd catalysts are investigated both experimentally and theoretically by DFT and energy span analysis. This catalytic system has a broad scope, with relative cleavage rates scaling as, tertiary 4 secondary 4 primary ester at 1 bar H-2, yielding alkanes and carboxylic acids with high conversion and selectivity. Benzylic and allylic esters display the highest activity. The rate law is nu = k[M(OTf )(n)](1)[ester](0)[H-2](0) with an H/D kinetic isotope effect = 6.5 +/- 0.5, implying turnover-limiting C-H scission following C-O cleavage, in agreement withmore » theory. Intermediate alkene products are then rapidly hydrogenated. Applying this approach with the very active Hf(OTf)(4) catalyst to bio-derived triglycerides affords near-quantitative yields of C-3 hydrocarbons rather than glycerol. From model substrates, it is found that RC(O)O-R' cleavage rates are very sensitive to steric congestion and metal triflate identity. For triglycerides, primary/external glyceryl CH2-O cleavage predominates over secondary/internal CH-O cleavage, with the latter favored by less acidic or smaller ionic radius metal triflates, raising the diester selectivity to as high as 48% with Ce(OTf)(3).« less

  5. Hydrodehalogenation of alkyl iodides with base-mediated hydrogenation and catalytic transfer hydrogenation: application to the asymmetric synthesis of N-protected α-methylamines.

    PubMed

    Mandal, Pijus K; Birtwistle, J Sanderson; McMurray, John S

    2014-09-05

    We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine.

  6. Hydrodehalogenation of Alkyl Iodides with Base-Mediated Hydrogenation and Catalytic Transfer Hydrogenation: Application to the Asymmetric Synthesis of N-Protected α-Methylamines

    PubMed Central

    2015-01-01

    We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine. PMID:25116734

  7. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications.

    PubMed

    Mathew, Sindhu; Abraham, T Emilia

    2004-01-01

    Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and maize bran with 3.1% (w/w) ferulic acid is one of the most promising sources of this antioxidant. The dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength. Feruloyl esterases are a subclass of the carboxylic acid esterases that hydrolyze the ester bond between hydroxycinnamic acids and sugars present in plant cell walls and they have been isolated from a wide range of microorganisms, when grown on complex substrates such as cereal brans, sugar beet pulp, pectin and xylan. These enzymes perform a function similar to alkali in the deesterification of plant cell wall and differ in their specificities towards the methyl esters of cinnamic acids and ferulolylated oligosaccharides. They act synergistically with xylanases and pectinases and facilitate the access of hydrolases to the backbone of cell wall polymers. The applications of ferulic acid and feruloyl esterase enzymes are many and varied. Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost.

  8. Perfluoroalkyl acids: recent research highlights | Science ...

    EPA Pesticide Factsheets

    Perfluorinated compounds are organic chemicals in which all hydrogen molecules of the carbon-chain are substituted by fluorine molecules. Generally, there are two types of perfluorinated compounds, the perfluoroalkanes that are primarily used clinically for oxygenation and respiratory ventilation, and the perfluoroalkyl acids (PFAAs). Environmentally relevant PFAAs are a family of about 30 chemicals that consist of a carbon backbone typically 4-14 molecules in length and a charged functional group composed of either sulfonates, carboxylates or phosphonates (and to a lesser extent, phosphinates). While many (>100) derivatives ofPFAAs (such as alcohols, amides, esters and acids) are used for industrial and consumer applications, they can be degraded or metabolized to PFAAs as end-stage products. Thus, PFAAs, rather than their intermediates or derivatives, have drawn the most public attention and research interest. The most widely known PFAAs are the eight-carbon (C8) sulfonate (perfluorooctane sulfonate, PFOS) and carboxylate (perfluorooctanoic acid, PFOA), although the C4 (perfluorobutane) and C6 (perfluorohexane) sulfonates, as well as the C4, C6 and C9 (perfluorononanoic) carboxylates have also been used in commerce. The perfluoroalkyl phosphonates (PFPAs) are fairly new entities for this class ofchemicals. They are typically used as leveling and wetting agents, and defoaming additives in the production of pesticides. They were considered biologically inert by

  9. Lipid oxidation. Part. 1. Effect of free carboxyl group on the decomposition of lipid hydroperoxide.

    PubMed

    Pokorný, J; Rzepa, J; Janícek, G

    1976-01-01

    Hydroperoxido butyl oleate was decomposed by heating in excess palmitic acid at 60-120 degrees C. The decomposition followed the kinetics of a first order reaction with formation of both monomeric and oligomeric secondary products. The proportions of oligomers slightly increased with increasing reaction temperature and decreased with increasing concentration of hydroperoxide. The activation energy was 70.4 kJ/mol +/- 4.7 kJ/mol. The decomposition of hydroperoxides proceeded partially by monomolecular cleavage, partially by formation of esters with palmitic acid.

  10. Photodynamic Molecular Beacons: An Image-Guided Therapeutic Approach to Breast Cancer Vertebral Metastases

    DTIC Science & Technology

    2011-03-01

    pyropheophorbide carboxylic acid succinimidyl ester (Pyro- NHS) was prepared according to a published procedure (18). Other chemicals were obtained from Aldrich...2) a polycation and a polyanion attached to each end of the linker, forming a “zipper” structure via electrostatic attraction, (3) pyropheophorbide as...is achievable by simply switching D to a fluorescent photosensitizer, such as pyropheophorbide . The ZMBs will then possess novel targeting

  11. Purifying contaminated water. [DOE patent application

    DOEpatents

    Daughton, C.G.

    1981-10-27

    Process is presented for removing biorefactory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  12. A comparative study of aroma-active compounds between dark and milk chocolate: relationship to sensory perception.

    PubMed

    Liu, Jianbin; Liu, Mengya; He, Congcong; Song, Huanlu; Guo, Jia; Wang, Ye; Yang, Haiying; Su, Xiaoxia

    2015-04-01

    The most important aroma-active compounds of two types of chocolate and cocoa liquor used for their production were analysed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and aroma extract dilution analysis (AEDA). Furthermore, the relationship between odorants and sensory perception of chocolate was measured by quantitative analysis, sensory evaluation and correlation analysis. In addition, some chemicals were added to the original dark or milk chocolate to validate their roles in the aroma property of chocolate. A total of 32 major aroma-active compounds were identified in the chocolate with the flavour dilution factors of 27-729 by AEDA, including seven aldehydes, six pyrazines, three pyrroles, four carboxylic acids, four lactones, two alcohols, two ketones, one ester, one pyrone, one furan and one sulfur-containing compound. Further quantitative analysis showed that dark chocolate had higher contents of pyrazine, pyrrole, carboxylic acids, alcohols and Strecker aldehydes, whereas the concentration of lactones, esters, long chain aldehydes and ketones were higher in the milk type. Differences in volatile composition and descriptive flavour attributes between the dark and milk chocolate were observed. The relationship between aroma-active compounds and sensory perception in the chocolate was verified. © 2014 Society of Chemical Industry.

  13. The Use of Electrospray Mass Spectrometry to Determine Speciation in a Dynamic Combinatorial Library for Anion Recognition

    PubMed Central

    Phillips, Hazel I A; Chernikov, Aleksey V; Fletcher, Nicholas C; Ashcroft, Alison E; Ault, James R; Filby, Maria H; Wilson, Andrew J

    2012-01-01

    The composition of a dynamic mixture of similar 2,2′-bipyridine complexes of iron(II) bearing either an amide (5-benzylamido-2,2′-bipyridine and 5-(2-methoxyethane)amido-2,2′-bipyridine) or an ester (2,2′-bipyridine-5-carboxylic acid benzylester and 2,2′-bipyridine-5-carboxylic acid 2-methoxyethane ester) side chain have been evaluated by electrospray mass spectroscopy in acetonitrile. The time taken for the complexes to come to equilibrium appears to be dependent on the counteranion, with chloride causing a rapid redistribution of two preformed heteroleptic complexes (of the order of 1 hour), whereas the time it takes in the presence of tetrafluoroborate salts is in excess of 24 h. Similarly the final distribution of products is dependent on the anion present, with the presence of chloride, and to a lesser extent bromide, preferring three amide-functionalized ligands, and a slight preference for an appended benzyl over a methoxyethyl group. Furthermore, for the first time, this study shows that the distribution of a dynamic library of metal complexes monitored by ESI-MS can adapt following the introduction of a different anion, in this case tetrabutylammonium chloride to give the most favoured heteroleptic complex despite the increasing ionic strength of the solution. PMID:22996943

  14. Conservative Secondary Shell Substitution In Cyclooxygenase-2 Reduces Inhibition by Indomethacin Amides and Esters via Altered Enzyme Dynamics

    PubMed Central

    2015-01-01

    The cyclooxygenase enzymes (COX-1 and COX-2) are the therapeutic targets of nonsteroidal anti-inflammatory drugs (NSAIDs). Neutralization of the carboxylic acid moiety of the NSAID indomethacin to an ester or amide functionality confers COX-2 selectivity, but the molecular basis for this selectivity has not been completely revealed through mutagenesis studies and/or X-ray crystallographic attempts. We expressed and assayed a number of divergent secondary shell COX-2 active site mutants and found that a COX-2 to COX-1 change at position 472 (Leu in COX-2, Met in COX-1) reduced the potency of enzyme inhibition by a series of COX-2-selective indomethacin amides and esters. In contrast, the potencies of indomethacin, arylacetic acid, propionic acid, and COX-2-selective diarylheterocycle inhibitors were either unaffected or only mildly affected by this mutation. Molecular dynamics simulations revealed identical equilibrium enzyme structures around residue 472; however, calculations indicated that the L472M mutation impacted local low-frequency dynamical COX constriction site motions by stabilizing the active site entrance and slowing constriction site dynamics. Kinetic analysis of inhibitor binding is consistent with the computational findings. PMID:26704937

  15. Neutral and anionic duality of 1,2,4-triazole α-amino acid scaffold in 1D coordination polymers

    NASA Astrophysics Data System (ADS)

    Naik, Anil D.; Dîrtu, Marinela M.; Garcia, Yann

    2012-03-01

    A tiny supramolecular synthon, 4H-1,2,4-triazol-4-yl acetic acid (HGlytrz) which is bifunctional by design having an electronic asymmetry and conformational flexibility has been introduced to synthesize iron(II) complexes. Having 1,2,4-triazole or carboxylic extremities on the same framework HGlytrz could display dual functionality by acting as a neutral as well as anionic ligand based on the possibility of deprotonation of carboxylic group. Four new iron(II) HGlytrz complexes with ClO4- ( 1), NO3- ( 2), BF4- ( 3) and CF3SO3- ( 4) anions were prepared. Formulation of their composition which is complicated due to ligand deprotonation is discussed. Unlike its ester protected counterpart ethyl-4H-1,2,4-triazol-4-yl-acetate ( αGlytrz) which show hysteretic room temperature spin crossover, 1- 4 remain in the high-spin state as revealed by 57Mössbauer spectroscopy. Prospects of such 1D coordination polymers with dangling unbounded carboxylic entities in the realm of self-assembled monolayer (SAM) are discussed.

  16. Identification of ortho-Substituted Benzoic Acid/Ester Derivatives via the Gas-Phase Neighboring Group Participation Effect in (+)-ESI High Resolution Mass Spectrometry.

    PubMed

    Blincoe, William D; Rodriguez-Granillo, Agustina; Saurí, Josep; Pierson, Nicholas A; Joyce, Leo A; Mangion, Ian; Sheng, Huaming

    2018-04-01

    Benzoic acid/ester/amide derivatives are common moieties in pharmaceutical compounds and present a challenge in positional isomer identification by traditional tandem mass spectrometric analysis. A method is presented for exploiting the gas-phase neighboring group participation (NGP) effect to differentiate ortho-substituted benzoic acid/ester derivatives with high resolution mass spectrometry (HRMS 1 ). Significant water/alcohol loss (>30% abundance in MS 1 spectra) was observed for ortho-substituted nucleophilic groups; these fragment peaks are not observable for the corresponding para and meta-substituted analogs. Experiments were also extended to the analysis of two intermediates in the synthesis of suvorexant (Belsomra) with additional analysis conducted with nuclear magnetic resonance (NMR), density functional theory (DFT), and ion mobility spectrometry-mass spectrometry (IMS-MS) studies. Significant water/alcohol loss was also observed for 1-substituted 1, 2, 3-triazoles but not for the isomeric 2-substituted 1, 2, 3-triazole analogs. IMS-MS, NMR, and DFT studies were conducted to show that the preferred orientation of the 2-substituted triazole rotamer was away from the electrophilic center of the reaction, whereas the 1-subtituted triazole was oriented in close proximity to the center. Abundance of NGP product was determined to be a product of three factors: (1) proton affinity of the nucleophilic group; (2) steric impact of the nucleophile; and (3) proximity of the nucleophile to carboxylic acid/ester functional groups. Graphical Abstract ᅟ.

  17. Identification of ortho-Substituted Benzoic Acid/Ester Derivatives via the Gas-Phase Neighboring Group Participation Effect in (+)-ESI High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Blincoe, William D.; Rodriguez-Granillo, Agustina; Saurí, Josep; Pierson, Nicholas A.; Joyce, Leo A.; Mangion, Ian; Sheng, Huaming

    2018-02-01

    Benzoic acid/ester/amide derivatives are common moieties in pharmaceutical compounds and present a challenge in positional isomer identification by traditional tandem mass spectrometric analysis. A method is presented for exploiting the gas-phase neighboring group participation (NGP) effect to differentiate ortho-substituted benzoic acid/ester derivatives with high resolution mass spectrometry (HRMS1). Significant water/alcohol loss (>30% abundance in MS1 spectra) was observed for ortho-substituted nucleophilic groups; these fragment peaks are not observable for the corresponding para and meta-substituted analogs. Experiments were also extended to the analysis of two intermediates in the synthesis of suvorexant (Belsomra) with additional analysis conducted with nuclear magnetic resonance (NMR), density functional theory (DFT), and ion mobility spectrometry-mass spectrometry (IMS-MS) studies. Significant water/alcohol loss was also observed for 1-substituted 1, 2, 3-triazoles but not for the isomeric 2-substituted 1, 2, 3-triazole analogs. IMS-MS, NMR, and DFT studies were conducted to show that the preferred orientation of the 2-substituted triazole rotamer was away from the electrophilic center of the reaction, whereas the 1-subtituted triazole was oriented in close proximity to the center. Abundance of NGP product was determined to be a product of three factors: (1) proton affinity of the nucleophilic group; (2) steric impact of the nucleophile; and (3) proximity of the nucleophile to carboxylic acid/ester functional groups. [Figure not available: see fulltext.

  18. Elongated and substituted triazine-based tricarboxylic acid linkers for MOFs.

    PubMed

    Klinkebiel, Arne; Beyer, Ole; Malawko, Barbara; Lüning, Ulrich

    2016-01-01

    New triazine-based tricarboxylic acid linkers were prepared as elongated relatives of triazinetribenzoic acid (TATB). Additionally, functional groups (NO 2 , NH 2 , OMe, OH) were introduced for potential post-synthetic modification (PSM) of MOFs. Functionalized tris(4-bromoaryl)triazine "cores" ( 3a , 3b ) were obtained by unsymmetric trimerization mixing one equivalent of an acid chloride (OMe or NO 2 substituted) with two equivalents of an unsubstituted nitrile. Triple Suzuki coupling of the cores 3 with suitable phenyl- and biphenylboronic acid derivatives provided elongated tricarboxylic acid linkers as carboxylic acids 17 and 20 or their esters 16 and 19 . Reduction of the nitro group and cleavage of the methoxy group gave the respective amino and hydroxy-substituted triazine linkers.

  19. Elongated and substituted triazine-based tricarboxylic acid linkers for MOFs

    PubMed Central

    Klinkebiel, Arne; Beyer, Ole; Malawko, Barbara

    2016-01-01

    New triazine-based tricarboxylic acid linkers were prepared as elongated relatives of triazinetribenzoic acid (TATB). Additionally, functional groups (NO2, NH2, OMe, OH) were introduced for potential post-synthetic modification (PSM) of MOFs. Functionalized tris(4-bromoaryl)triazine “cores” (3a,3b) were obtained by unsymmetric trimerization mixing one equivalent of an acid chloride (OMe or NO2 substituted) with two equivalents of an unsubstituted nitrile. Triple Suzuki coupling of the cores 3 with suitable phenyl- and biphenylboronic acid derivatives provided elongated tricarboxylic acid linkers as carboxylic acids 17 and 20 or their esters 16 and 19. Reduction of the nitro group and cleavage of the methoxy group gave the respective amino and hydroxy-substituted triazine linkers. PMID:28144293

  20. The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia.

    PubMed

    Backes, James; Anzalone, Deborah; Hilleman, Daniel; Catini, Julia

    2016-07-22

    Hypertriglyceridemia (triglycerides > 150 mg/dL) affects ~25 % of the United States (US) population and is associated with increased cardiovascular risk. Severe hypertriglyceridemia (≥ 500 mg/dL) is also a risk factor for pancreatitis. Three omega-3 fatty acid (OM3FA) prescription formulations are approved in the US for the treatment of adults with severe hypertriglyceridemia: (1) OM3FA ethyl esters (OM3EE), a mixture of OM3FA ethyl esters, primarily eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Lovaza®, Omtryg™, and generics); (2) icosapent ethyl (IPE), EPA ethyl esters (Vascepa®); and (3) omega-3 carboxylic acids (OM3CA), a mixture of OM3FAs in free fatty acid form, primarily EPA, DHA, and docosapentaenoic acid (Epanova®). At approved doses, all formulations substantially reduce triglyceride and very-low-density lipoprotein levels. DHA-containing formulations may also increase low-density lipoprotein cholesterol. However, this is not accompanied by increased non-high-density lipoprotein cholesterol, which is thought to provide a better indication of cardiovascular risk in this patient population. Proposed mechanisms of action of OM3FAs include inhibition of diacylglycerol acyltransferase, increased plasma lipoprotein lipase activity, decreased hepatic lipogenesis, and increased hepatic β-oxidation. OM3CA bioavailability (area under the plasma concentration-time curve from zero to the last measurable concentration) is up to 4-fold greater than that of OM3FA ethyl esters, and unlike ethyl esters, the absorption of OM3CA is not dependent on pancreatic lipase hydrolysis. All three formulations are well tolerated (the most common adverse events are gastrointestinal) and demonstrate a lack of drug-drug interactions with other lipid-lowering drugs, such as statins and fibrates. OM3FAs appear to be an effective treatment option for patients with severe hypertriglyceridemia.

  1. Effects of Terminal Sterilization on PEG-Based Bioresorbable Polymers Used in Biomedical Applications.

    PubMed

    Bhatnagar, Divya; Dube, Koustubh; Damodaran, Vinod B; Subramanian, Ganesan; Aston, Kenneth; Halperin, Frederick; Mao, Meiyu; Pricer, Kurt; Murthy, N Sanjeeva; Kohn, Joachim

    2016-10-01

    The effects of ethylene oxide (EO), vaporized hydrogen peroxide (VHP), gamma (γ) radiation, and electron-beam (E-beam) on the physiochemical and morphological properties of medical device polymers are investigated. Polymers with ether, carbonate, carboxylic acid, amide and ester functionalities are selected from a family of poly(ethylene glycol) (PEG) containing tyrosine-derived polycarbonates (TyrPCs) to include slow, medium, fast, and ultrafast degrading polymers. Poly(lactic acid) (PLA) is used for comparison. Molecular weight ( M w ) of all tested polymers decreases upon gamma and E-beam, and this effect becomes more pronounced at higher PEG content. Gamma sterilization increases the glass transition temperature of polymers with high PEG content. EO esterifies the carboxylic acid groups in desaminotyrosol-tyrosine (DT) and causes significant degradation. VHP causes hydroxylation of the phenyl ring, and hydrolytic degradation. This study signifies the importance of the chemical composition when selecting a sterilization method, and provides suggested conditions for each of the sterilization methods.

  2. Application of 2-chlorotrityl resin in solid phase synthesis of (Leu15)-gastrin I and unsulfated cholecystokinin octapeptide. Selective O-deprotection of tyrosine.

    PubMed

    Barlos, K; Gatos, D; Kapolos, S; Poulos, C; Schäfer, W; Yao, W Q

    1991-12-01

    The carboxyl terminal dipeptide amide, Fmoc-Asp-Phe-NH2, of gastrin and cholecystokinin (CCK) has been attached in high yield through its free side chain carboxyl group to the acid labile 2-chlorotrityl resin. The obtained peptide resin ester has been applied in the solid phase synthesis of partially protected (Leu15)-gastrin I utilising Fmoc-amino acids. Quantitative cleavage of this peptide from resin, with the t-butyl type side chain protection intact is achieved using mixtures of acetic acid/trifluoroethanol/dichloromethane. Under the same conditions complete detritylation of the tyrosine phenoxy function occurs simultaneously. Thus, the solid-phase synthesis of peptides selectively deprotected at the side chain of tyrosine is rendered possible by the use of 2-chlorotrityl resin and Fmoc-Tyr(Trt)-OH. The efficiency of this approach has been proved by the subsequent high-yield synthesis of three model peptides and the CCK-octapeptide.

  3. Mechanisms for radiation damage in DNA. Progress report, January 1, 1980-December 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevilla, M D

    1980-09-01

    In this project several mechanisms are proposed for radiation damage to DNA constituents and DNA, and a series of experiments detailed utilizing electron spin resonance spectrometry to test the proposed mechanisms. Under current investigation are irradiated systems of DNA constituents which may shed light on indirect effects. In addition, studies of radiation effects on lipids have been undertaken which will shed light on the only other proposed site for cell kill, the membrane. Studies completed during the past year are: (1) ..pi.. cations produced in DNA bases by attack of oxidizing radicals; (2) INDO studies of radicals produced in peptidesmore » and carboxylic acid model compounds; (3) electron reactions with carboxylic acids, ketones and aldehydes; and (4) ..gamma..-irradiation of esters and triglycerides. Progress has been made this year in a study of radicals generated in model compounds for the sugar-phosphate backbone.« less

  4. Influence of Functional Groups on the Viscosity of Organic Aerosol.

    PubMed

    Rothfuss, Nicholas E; Petters, Markus D

    2017-01-03

    Organic aerosols can exist in highly viscous or glassy phase states. A viscosity database for organic compounds with atmospherically relevant functional groups is compiled and analyzed to quantify the influence of number and location of functional groups on viscosity. For weakly functionalized compounds the trend in viscosity sensitivity to functional group addition is carboxylic acid (COOH) ≈ hydroxyl (OH) > nitrate (ONO 2 ) > carbonyl (CO) ≈ ester (COO) > methylene (CH 2 ). Sensitivities to group addition increase with greater levels of prior functionalization and decreasing temperature. For carboxylic acids a sharp increase in sensitivity is likely present already at the second addition at room temperature. Ring structures increase viscosity relative to linear structures. Sensitivities are correlated with analogously derived sensitivities of vapor pressure reduction. This may be exploited in the future to predict viscosity in numerical models by piggybacking on schemes that track the evolution of organic aerosol volatility with age.

  5. Post-polymerization modification of poly(L-glutamic acid) with D-(+)-glucosamine.

    PubMed

    Perdih, Peter; Cebašek, Sašo; Možir, Alenka; Zagar, Ema

    2014-11-27

    Carboxyl functional groups of poly(L-glutamic acid) (PGlu) were modified with a D-(+)-glucosamine (GlcN) by amidation using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling reagent. The coupling reaction was performed in aqueous medium without protection of hydroxyl functional groups of D-(+)-glucosamine. Poly(L-glutamic acid) and GlcN functionalized polyglutamates (P(Glu-GlcN)) were thoroughly characterized by 1D and 2D NMR spectroscopy and SEC-MALS to gain detailed information on their structure, composition and molar mass characteristics. The results reveal successful functionalization with GlcN through the amide bond and also to a minor extent through ester bond formation in position 1 of GlcN. In addition, a ratio between the α- and β-form of glucosamine substituent coupled to polyglutamate repeating units as well as the content of residual dimethoxy triazinyl active ester moiety in the samples were evaluated.

  6. Collection and analysis of organic gases from natural ecosystems - Application to poultry manure

    NASA Technical Reports Server (NTRS)

    Smith, M. S.; Francis, A. J.; Duxbury, J. M.

    1977-01-01

    Combined gas chromatography-mass spectrometry was used to identify volatile compounds generated from chicken manure and collected in Poropak QS-Carbosieve B traps. Various alcohols, ketones, esters, and carboxylic acids together with dimethyl sulfide and dimethyl disulfide were detected when the wastes were incubated in an argon atmosphere. Significant amounts of dimethyl sulfide and dimethyl disulfide but few other compounds were found when the manure was incubated in air

  7. Floral benzenoid carboxyl methyltransferases: From in vitro to in planta function

    PubMed Central

    Effmert, Uta; Saschenbrecker, Sandra; Ross, Jeannine; Negre, Florence; Fraser, Chris M.; Noel, Joseph P.; Dudareva, Natalia; Piechulla, Birgit

    2010-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT’s three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in planta depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses might represent the ancestor for the presently existing floral genes which during evolution gained different expression profiles and encoded enzymes with the ability to accept structurally similar substrates. PMID:15946712

  8. Pentavalent Bismuth-Mediated Glycosylation Methods to Activate Sialic and Uronic Acids and the Incorporation of Sialic Acids Into Insulin

    NASA Astrophysics Data System (ADS)

    Kabotso, Daniel Elorm Kwame

    The negative charge at physiological pH of carboxylic acid-containing monosaccharides modulate the properties of many natural biomolecules such as oligosaccharides and glycoconjugates. Unfortunately, these altered electronic properties also make the incorporation of such acidic sugars more challenging as compared to the more commonly studied neutral sugars. Herein are reported the first demonstration of glycosylation reactions mediated by triphenylbis(1,1,1-trifluoromethanesulfonato)-bismuth with thioglycosides containing carboxylic acid substituents protected as esters. Unlike with many neutral sugar substrates, the addition of 1-propanethiol to the reactions proved critical to obtaining good yields of the desired glycosylation products using sialic acid, galacturonic acid, and glucuronic acid. The protocol was demonstrated to be amenable to automation using a liquid-handling platform. The consequences of artificially incorporating carboxylic-acid-containing sugars into proteins were tested by the design of a linker containing 1 to 4 sialic acids--a sugar found in many human proteins and brain tissues--that was attached via reductive amination of trityl thiopropylaldehyde at the phenyl alanine terminal end of the protein insulin produced through solid-phase peptide synthesis. Removal of the trityl group with neat trifluoroacetic acid furnished the thiol-free modified insulin that was ligated via a disulfide bond to the peptide scaffold bearing acetyl protected sialic acids. A 14-15% ammonium hydroxide solution was found to be effective in deprotecting the acetyl groups without degradation of the disulfide bond. In addition to maintaining the potency and bioactivity of insulin, the sialic acid-containing linker rendered insulin more resistant to aggregation due to heat and mechanical agitation compared to the unmodified protein.

  9. Microbial transformation of 8:2 fluorotelomer acrylate and methacrylate in aerobic soils.

    PubMed

    Royer, Laurel A; Lee, Linda S; Russell, Mark H; Nies, Loring F; Turco, Ronald F

    2015-06-01

    Biotransformation of fluorotelomer (FT) compounds, such as 8:2 FT alcohol (FTOH) is now recognized to be a source of perfluorooctanoic acid (PFOA) as well as other perfluoroalkyl acids. In this study, microbially mediated hydrolysis of FT industrial intermediates 8:2 FT acrylate (8:2 FTAC) and 8:2 FT methacrylate (8:2 FTMAC) was evaluated in aerobic soils for up to 105d. At designated times, triplicate microcosms were sacrificed by sampling the headspace for volatile FTOHs followed by sequential extraction of soil for the parent monomers as well as transient and terminal degradation products. Both FTAC and FTMAC were hydrolyzed at the ester linkage as evidenced by 8:2 FTOH production. 8:2 FTAC and FTMAC degraded rapidly with half-lives ⩽5d and 15d, respectively. Maximum 8:2 FTOH levels were 6-13mol% within 3-6d. Consistent with the known biotransformation pathway of 8:2 FTOH, FT carboxylic acids and perfluoroalkyl carboxylic acids were subsequently generated including up to 10.3mol% of PFOA (105d). A total mass balance (parent plus metabolites) of 50-75mol% was observed on the last sampling day. 7:2 sFTOH, a direct precursor to PFOA, unexpectedly increased throughout the incubation period. The likely, but unconfirmed, concomitant production of acrylic acids was proposed as altering expected degradation patterns. Biotransformation of 8:2 FTAC, 8:2 FTMAC, and previously reported 8:2 FT-stearate for the same soils revealed the effect of the non-fluorinated terminus group linked to the FT chain on the electronic differences that affect microbially-mediated ester cleavage rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Protein kinase C activation decreases cell surface expression of the GLT-1 subtype of glutamate transporter. Requirement of a carboxyl-terminal domain and partial dependence on serine 486.

    PubMed

    Kalandadze, Avtandil; Wu, Ying; Robinson, Michael B

    2002-11-29

    Na(+)-dependent glutamate transporters are required for the clearance of extracellular glutamate and influence both physiological and pathological effects of this excitatory amino acid. In the present study, the effects of a protein kinase C (PKC) activator on the cell surface expression and activity of the GLT-1 subtype of glutamate transporter were examined in two model systems, primary co-cultures of neurons and astrocytes that endogenously express GLT-1 and C6 glioma cells transfected with GLT-1. In both systems, activation of PKC with phorbol ester caused a decrease in GLT-1 cell surface expression. This effect is opposite to the one observed for the EAAC1 subtype of glutamate transporter (Davis, K. E., Straff, D. J., Weinstein, E. A., Bannerman, P. G., Correale, D. M., Rothstein, J. D., and Robinson, M. B. (1998) J. Neurosci. 18, 2475-2485). Several recombinant chimeric proteins between GLT-1 and EAAC1 transporter subtypes were generated to identify domains required for the subtype-specific redistribution of GLT-1. We identified a carboxyl-terminal domain consisting of 43 amino acids (amino acids 475-517) that is required for PKC-induced GLT-1 redistribution. Mutation of a non-conserved serine residue at position 486 partially attenuated but did not completely abolish the PKC-dependent redistribution of GLT-1. Although we observed a phorbol ester-dependent incorporation of (32)P into immunoprecipitable GLT-1, mutation of serine 486 did not reduce this signal. We also found that chimeras containing the first 446 amino acids of GLT-1 were not functional unless amino acids 475-517 of GLT-1 were also present. These non-functional transporters were not as efficiently expressed on the cell surface and migrated to a smaller molecular weight, suggesting that a subtype-specific interaction is required for the formation of functional transporters. These studies demonstrate a novel effect of PKC on GLT-1 activity and define a unique carboxyl-terminal domain as an important determinant in cellular localization and regulation of GLT-1.

  11. Soft Ultraviolet (UV) Photopatterning and Metallization of Self-Assembled Monolayers (SAMs) Formed from the Lipoic Acid Ester of α-Hydroxy-1-acetylpyrene: The Generality of Acid-Catalyzed Removal of Thiol-on-Gold SAMs using Soft UV Light.

    PubMed

    Pukenas, Laurynas; Prompinit, Panida; Nishitha, Boda; Tate, Daniel J; Singh, N D Pradeep; Wälti, Christoph; Evans, Stephen D; Bushby, Richard J

    2017-05-31

    Under a layer of 0.1 M HCl in isopropanol, soft ultraviolet (UV) (365 nm) photolysis of the thiol-on-gold self-assembled monolayer (SAM) derived from the lipoic acid ester of α-hydroxy-1-acetylpyrene results in the expected removal of the acetylpyrene protecting group. When photolyzing through a mask, this can be used to produce a patterned surface and, at a controlled electrochemical potential, it is then possible to selectively and reversibly electrodeposit copper on the photolyzed regions. Rather surprisingly, under these photolysis conditions, there is not only the expected photodeprotection of the ester but also partial removal of the lipoic acid layer which has been formed. In further studies, it is shown that this type of acid-catalyzed photoremoval of SAM layers by soft UV is a rather general phenomenon and results in the partial removal of the thiol-on-gold SAM layers derived from other ω-thiolated carboxylic acids. However, this phenomenon is chain-length dependent. Under conditions in which there is a ∼60% reduction in the thickness of the SAM derived from dithiobutyric acid, the SAM derived from mercaptoundecanoic acid is almost unaffected. The process by which the shorter-chain SAM layers are partially removed is not fully understood because these compounds do not absorb significantly in the 365 nm region of the spectrum! Significantly, this study shows that acid catalysis photolysis of thiol-on-gold SAMs needs to be used with caution.

  12. Nanoconfinement Effects in Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Harold H.

    In this investigation, the unique properties that stem from the constrained environment and enforced proximity of functional groups at the active site were demonstrated for a number of systems. The first system is a nanocage structure with silicon-based, atom-thick shells and molecular-size cavities. The shell imparts the expected size exclusion for access to the interior cavity, and the confined space together with the hydrophobic shell strongly influences the stability of charged groups. One consequence is that the interior amine groups in a siloxane nanocage exhibit a shift in their protonation ability that is equivalent to about 4 pH units. Inmore » another nanocage structure designed to possess a core-shell structure in which the core periphery is decorated with carboxylic acid groups and the shell interior is populated with silanol groups, the restricted motion of the core results in limiting the stoichiometry of reaction between carboxylic acid and a Co 2CO 8 complex, which leads to formation and stabilization of Co(I) ions in the nanocage. The second designed catalytic structure is a supported, isolated, Lewis acid Sn-oxide unit derived from a (POSS)-Sn-(POSS) molecular complex (POSS = incompletely condensed silsesquioxane). The Sn center in the (POSS)-Sn-(POSS) complex is present in a tetrahedral coordination, as confirmed by single crystal x-ray crystallography and Sn NMR, and its Lewis acid character is demonstrated with its binding to amines. The retention of the tetrahedral coordination of Sn after heterogenization and mild oxidative treatment is confirmed by characterization using EXAFS, NMR, UV-vis, and DRIFT, and its Lewis acid character is confirmed by stoichiometric binding with pyridine. This Sn-catalyst is active in hydride transfer reactions as a typical solid Lewis acid. In addition, the Sn centers can also create Brønsted acidity with alcohol by binding the alcohol strongly as alkoxide and transferring the hydroxyl H to the neighboring Sn-O-Si bond. The resulting acidic silanol is active in epoxide ring opening and acetalization reactions. The open structure of the Sn center makes it accessible to larger molecules, including cellobiose which can be converted to 5-(hydroxymethyl)-furfural. The third structure is a support planted with functional group pairing of a known separation distance. Using a precursor molecule that contains a hydrolysable silyl ester bond, and making use of known chemistry to convert silanol groups into amino/pyridyl and phosphinyl groups, silica surfaces with carboxylic acid/silanol, carboxylic acid/amine, carboxylic acid/pyridine, and carboxylic acid/phosphine pairs can be constructed. The amino groups paired with carboxylic acid on such a surface is more active in the Henry reaction of 4-nitobenzaldehyde with nitromethane.« less

  13. Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes

    PubMed Central

    2015-01-01

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  14. Synthesis of 1-indanones with a broad range of biological activity

    PubMed Central

    Turek, Marika; Szczęsna, Dorota; Koprowski, Marek

    2017-01-01

    This comprehensive review describes methods for the preparation of 1-indanones published in original and patent literature from 1926 to 2017. More than 100 synthetic methods utilizing carboxylic acids, esters, diesters, acid chlorides, ketones, alkynes, alcohols etc. as starting materials, have been performed. This review also covers the most important studies on the biological activity of 1-indanones and their derivatives which are potent antiviral, anti-inflammatory, analgesic, antimalarial, antibacterial and anticancer compounds. Moreover, they can be used in the treatment of neurodegenerative diseases and as effective insecticides, fungicides and herbicides. PMID:28382183

  15. Enhancement effect on the chemiluminescence of acridinium esters under neutral conditions.

    PubMed

    Nakazono, Manabu; Nanbu, Shinkoh

    2018-03-01

    Enhancement effect on the chemiluminescence of acridinium ester derivatives under neutral conditions was investigated. Additions of phenols did not enhance the chemiluminescence intensities of acridinium ester derivatives in the presence of horseradish peroxidase and hydrogen peroxide. Additions of cetyltrimethylammonium bromide apparently enhanced the chemiluminescence intensities of phenyl 10-methyl-10λ 4 -acridine-9-carboxylate derivatives with electron-withdrawing groups at the 4-position of the phenyl group. In particular, the chemiluminescence intensity of 4-(trifluoromethyl)phenyl 10-methyl-10λ 4 -acridine-9-carboxylate trifluoromethanesulfonate salt was 5.5 times stronger in the presence of cetyltrimethylammonium bromide than in its absence at pH 7. The chemiluminescence intensity of 3,4-dicyano-phenyl 10-methyl-10λ 4 -acridine-9-carboxylate trifluoromethanesulfonate salt was 46 times stronger in the presence of cetyltrimethylammonium bromide at pH 7 than in its absence at pH 10. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Exploring Indirect Sources of Human Exposure to Perfluoroalkyl Carboxylates (PFCAs): Evaluating Uptake, Elimination, and Biotransformation of Polyfluoroalkyl Phosphate Esters (PAPs) in the Rat

    PubMed Central

    D’eon, Jessica C.; Mabury, Scott A.

    2011-01-01

    Background Perfluorinated carboxylic acids (PFCAs) are ubiquitous in human sera worldwide. Biotransformation of the polyfluoroalkyl phosphate esters (PAPs) is a possible source of PFCA exposure, because PAPs are used in food-contact paper packaging and have been observed in human sera. Objectives We determined pharmacokinetic parameters for the PAP monoesters (monoPAPs) and PAP diesters (diPAPs), as well as biotransformation yields to the PFCAs, using a rat model. Methods The animals were dosed intravenously or by oral gavage with a mixture of 4:2, 6:2, 8:2, and 10:2 monoPAP or diPAP chain lengths. Concentrations of the PAPs and PFCAs, as well as metabolic intermediates and phase II metabolites, were monitored over time in blood, urine, and feces. Results The diPAPs were bioavailable, with bioavailability decreasing as the chain length increased from 4 to 10 perfluorinated carbons. The monoPAPs were not absorbed from the gut; however, we found evidence to suggest phosphate-ester cleavage within the gut contents. We observed biotransformation to the PFCAs for both monoPAP and diPAP congeners. Conclusions Using experimentally derived biotransformation yields, perfluorooctanoic acid (PFOA) sera concentrations were predicted from the biotransformation of 8:2 diPAP at concentrations observed in human serum. Because of the long human serum half-life of PFOA, biotransformation of diPAP even with low-level exposure could over time result in significant exposure to PFOA. Although humans are exposed directly to PFCAs in food and dust, the pharmacokinetic parameters determined here suggest that PAP exposure should be considered a significant indirect source of human PFCA contamination. PMID:21059488

  17. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 Gene Encodes an Aldehyde Dehydrogenase Involved in Ferulic Acid and Sinapic Acid Biosynthesis

    PubMed Central

    Nair, Ramesh B.; Bastress, Kristen L.; Ruegger, Max O.; Denault, Jeff W.; Chapple, Clint

    2004-01-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP+-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall–esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes. PMID:14729911

  18. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis.

    PubMed

    Nair, Ramesh B; Bastress, Kristen L; Ruegger, Max O; Denault, Jeff W; Chapple, Clint

    2004-02-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP(+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall-esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes.

  19. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    PubMed

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.

  20. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization[S

    PubMed Central

    Ran-Ressler, Rinat R.; Lawrence, Peter; Brenna, J. Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223–229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C3H7), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME. PMID:22021637

  1. Synthesis of 5- and 6-Carboxy-X-rhodamines

    PubMed Central

    2008-01-01

    An efficient route is reported to 5- and 6-carboxy-X-rhodamines (compounds 1 and 2) that contain multiple n-propylene or γ,γ-dimethylpropylene groups bridging terminal nitrogen atoms and the central xanthene core. Gram quantities of these dyes are synthesized from inexpensive starting materials. The isolated products are activated by selective transformation of the carboxylic acid group into N-hydroxysuccinimidyl esters in situ and then conjugated with an amino group of a molecule of interest. PMID:18837556

  2. Mode of action of pectin lyase A of Aspergillus niger on differently C(6)-substituted oligogalacturonides.

    PubMed

    van Alebeek, Gert-Jan W M; Christensen, Tove M I E; Schols, Henk A; Mikkelsen, Jørn D; Voragen, Alphons G J

    2002-07-19

    A thorough investigation of the mode of action of Aspergillus niger (4M-147) pectin lyase A (PLA) on differently C(6)-substituted oligogalacturonides is described. PLA appeared to be very specific for fully methyl-esterified oligogalacturonides: removal of the methyl-ester or changing the type of ester (ethyl esterification) or transamidation resulted in (almost) complete loss of conversion. The PLA activity increased with increasing length of the substrate up to a degree of polymerization (DP) of 8 indicating the presence of at least eight subsites on the enzyme. Product analysis demonstrated the formation of several Delta 4,5 unsaturated products and their saturated counterparts. The Delta 4,5 unsaturated trimer was the main product up to DP 8. For DP 9 and 10 Delta 4,5 unsaturated tetramer was the major product. Based upon the bond cleavage frequencies, a provisional subsite map was calculated, which supports the presence of eight subsites. By limited alkaline de-esterification of fully methyl-esterified pentamer and hexamer two sets of partially methyl-esterified pentamers (x and y methyl groups) and hexamers (a and b methyl groups) were prepared. Matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS) analysis demonstrated that the methyl-ester distribution was fully random. Using these partially methyl-esterified oligogalacturonides as substrates for PLA a 10-fold decrease in reaction rate was recorded compared with the fully methyl-esterified counterparts. Analysis of the methyl-ester distribution of the products showed that PLA tolerates carboxyl groups in the substrate binding cleft. At either subsite +2, +4, or -1 to -4 a free carboxyl group could be tolerated, whereas methyl-esters were obligatory at subsite +1 and +3. So PLA is capable to cleave the bond between a methyl-esterified and a non-esterified galacturonic acid residue, where the newly formed Delta 4,5 unsaturated non-reducing end residue always contains a methyl-ester.

  3. The cholesteryl octanoate breath test: a new procedure for detection of pancreatic insufficiency in the rat.

    PubMed

    Mundlos, S; Rhodes, J B; Hofmann, A F

    1987-09-01

    A breath test for the detection of pancreatic insufficiency was developed and tested in rats. The test features the hydrophobic molecule cholesteryl-1-14C-octanoate, which liberates 14C-octanoic acid when hydrolyzed by carboxyl ester lipase (cholesterol esterase). The 14C-octanoate is absorbed passively and rapidly metabolized to 14CO2, which is excreted in expired air. The compound was administered as an emulsion of cholesteryl octanoate, triglyceride, and lecithin to rats with mild pancreatic insufficiency induced by injecting the pancreatic duct with zein. The animals had exocrine pancreatic hypofunction based on the enzyme content of pancreas at autopsy. Amylase was reduced by 97.1 +/- 1.4%, whereas chymotrypsin was reduced by 73 +/- 14%. The p-aminobenzoic acid test was abnormal at 1 wk (21.68 +/- 8.4%), but become normal at 3 months (72.08 +/- 5.8%) after zein injection. Despite this, the animals gained weight and absorbed fat normally. The 14CO2 excretion rate in the 110-min interval after feeding was significantly reduced to 60% of sham-operated animals. Peak 14CO2 collections 20 min after feeding were reduced by 75 +/- 11%. 14CO2 output was completely normalized by administration of pancreatin prior to the test meal. The results suggest that a sensitive, noninvasive method for detecting deficiency of pancreatic carboxyl ester lipase (cholesterol esterase) secretion in the rat has been developed.

  4. Crystal Structures and Phase Relationships of 2 Polymorphs of 1,4-Diazabicyclo[3.2.2]nonane-4-Carboxylic Acid 4-Bromophenyl Ester Fumarate, A Selective α-7 Nicotinic Receptor Partial Agonist.

    PubMed

    Robert, Benoît; Perrin, Marc-Antoine; Barrio, Maria; Tamarit, Josep-Lluis; Coquerel, Gérard; Ceolin, René; Rietveld, Ivo B

    2016-01-01

    Two polymorphs of the 1:1 fumarate salt of 1,4-diazabicyclo[3.2.2]nonane-4-carboxylic acid 4-bromophenyl ester, developed for the treatment of cognitive symptoms of schizophrenia and Alzheimer disease, have been characterized. The 2 crystal structures have been solved, and their phase relationships have been established. The space group of form I is P2₁/c with a unit-cell volume of 1811.6 (5) Å(3) with Z = 4. The crystals of form I were 2-component nonmerohedral twins. The space group of form II is P2₁/n with a unit-cell volume of 1818.6 (3) Å(3) with Z = 4. Relative stabilities have been inferred from experimental and topological P-T diagrams exhibiting an overall enantiotropic relationship between forms I and II although the solid-solid transition has never been observed. The slope of the I-II equilibrium in the P-T diagram is negative, form II is the stable phase below the solid-solid transition temperature of 371 K, and form I exhibits a stable melting equilibrium. The I-II transition temperature has been obtained from the intersection of the sublimation curves of the 2 solid forms. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Galloylglucoses of low molecular weight as mordant in electron microscopy. II. The moiety and functional groups possibly involved in the mordanting effect

    PubMed Central

    1976-01-01

    Synthetic pentamonogalloylglucose applied to fixed tissues acts as a mordant, inducing high and diversified contrast similar to that obtained with natural gallotannins of low molecular weight (LMGG). By the separate use of each of the two moieties of the galloylglucose molecule, it was found that gallic acid is the mordanting agent. Glucose may contribute, however, to the effect by increasing the solubility and cross-linking potential of the compound, since the mordanting induced by gallic acid alone is weaker than that produced by its hexose esters. As suggested by results obtained with various phenolics and benzoic acid derivatives, the functional groups required for the mordanting effect of such agents are the carboxyl group, and at least one hydroxyl group concomitantly present on the benzene ring. In the case of galloylglucoses, it is assumed that the effect is due to hydrolysis products (gallic, digallic, or trigallic acids) or to the multiple hydroxyl groups of the intact molecule. Esters of gallic acid (propyl- and methylgallate), as well as pyrogallol, produce a "reversed staining" of all membranes, except for those of communicating (gap) junctions. PMID:783173

  6. Role of HCA₂ (GPR109A) in nicotinic acid and fumaric acid ester-induced effects on the skin.

    PubMed

    Hanson, Julien; Gille, Andreas; Offermanns, Stefan

    2012-10-01

    Nicotinic acid (NA) and fumaric acid esters (FAE) such as monomethyl fumarate or dimethyl fumarate are drugs that elicit a cutaneous reaction called flushing as a side effect. NA is used to reduce progression of atherosclerosis through its anti-dyslipidemic activity and lipid-independent mechanisms involving immune cells, whereas FAE are used to treat psoriasis via largely unknown mechanisms. Both, NA and FAE, induce flushing by the activation of the G-protein-coupled receptor (GPCR) Hydroxy-carboxylic acid receptor 2 (HCA₂, GPR109A) in cells of the epidermis. While the wanted effects of NA are at least in part also mediated by HCA₂, it is currently not clear whether this receptor is also involved in the anti-psoriatic effects of FAE. The HCA₂-mediated flushing response to these drugs involves the formation of prostaglandins D₂ and E₂ by Langerhans cells and keratinocytes via COX-1 in Langerhans cells and COX-2 in keratinocytes. This review summarizes recent progress in the understanding of the mechanisms underlying HCA₂-mediated flushing, describes strategies to mitigate it and discusses the potential link between flushing, HCA₂ and the anti-psoriatic effects of FAE. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. HS-SPME determination of volatile carbonyl and carboxylic compounds in different matrices.

    PubMed

    Stashenko, Elena E; Mora, Amanda L; Cervantes, Martha E; Martínez, Jairo R

    2006-07-01

    Specific chromatographic methodologies are developed for the analysis of carboxylic acids (C(2)-C(6), benzoic) and aldehydes (C(2)-C(10)) of low molecular weight in diverse matrices, such as air, automotive exhaust gases, human breath, and aqueous matrices. For carboxylic acids, the method is based on their reaction with pentafluorobenzyl bromide in aqueous solution, followed by the separation and identification of the resultant pentafluorobenzyl esters by means of headspace (HS)-solid-phase microextraction (SPME) combined with gas chromatography (GC) and electron capture detection (ECD). Detection limits in the microg/m(3) range are reached, with relative standard deviation (RSD) less than 10% and linear response (R(2) > 0.99) over two orders of magnitude. The analytical methodology for aldehydes is based on SPME with simultaneous derivatization of the analytes on the fiber, by reaction with pentafluorophenylhydrazine. The derivatization reagent is previously deposited on the SPME fiber, which is then exposed to the gaseous matrix or the HS of the sample solution. The pentafluorophenyl hydrazones formed on the fiber are analyzed selectively by means of GC-ECD, with detection limits in the ng/m(3) range, RSD less than 10%, and linear response (R(2) > 0.99) over two orders of magnitude.

  8. REACTIONS OF MERCAPTANS. I. FORMATION OF 2-METHYL-2-THIAZOLINE-4- CARBOXYLIC ACID FROM N-ACETYLCYSTEINE. II. A SPECTROPHOTOMETRIC METHOD FOR STUDY OF THE REACTION OF RADIATION-PROTECTIVE MERCAPTANS WITH ARYL DISULFIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, H.A. Jr.

    1962-08-01

    I. Methyl 2-methyl-2-thiazoline-4-carboxylate was synthesized and converted to the corresponding acid. The behavior of the carboxythiazoline in various concentrations of mineral acids was studied spectrophotometrically. The cyclization of N-acetylcysteine to form a thiazoline-ring compound in concentrated mineral acids was also studied by this means. N-Acetylcysteine in concentrated mineral acid solutions yielded 2-methyl-2-thiazoline-4-carboxylic acid, which also was obtained by controlied hydrolysis of the corresponding methyl ester. Hydrolysis of methyl 2-methyl2-thiazoline-4-carboxylate, pK 3.05, in 0.1M sodium hydroxide yielded the corresponding carboxythiazoline in solution, pK 2.20 and 4.95. The carboxythiazoline was hydrolyzed very slowly in 7M hydrochloric acid, but the velocity of reactionmore » increased with decreasing acid concentration to a maximum at about pH 1.7; the products were N- and Sacetylcysteine, as well as cysteine and acetic acid. At acid concentrations below 0.2M, the last two products were formed slowly, and a pseudo-equilibrium could be established between thiazolinium ion, N-, and S-acetylcysteine. Equilibrium constants were determined. II. 4,4'-Dithiobis (benzenesulfonic acid) (I) and 4,4'-dithiobis(1-naphthalenesulfonic acid) (II) were synthesized from sulfanilic and naphthionic acids, respectively. The absorption spectra of I and II and of the corresponding mercaptans were determined. The thiol-disuifide interchange reactions were studied by spectrophotometric means for the reactions of cysteine with I and with II, and the equilibrium constants were determined. The systems had spectra very similar to those of the respective mixed disuifides with cysteine, and it was not possible to determine the concentrations from absorbancy measurements. On the other hand, the mercaptide ions had spectra different from the other species, with maxima at 285 and 348 m mu , respectively, and the concentrations of the corresponding mercaptans could be calculated from the absorbancies at these wavelengths. By appropriate choice of the initial concentrations and of pH, the equilibrium concentrations could be made negligible, and the equilibrium constants determined.« less

  9. Identification of Organic Sulfate Esters in d-Limonene Ozonolysis SOA Under Acidic Condition

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Mueller, C.; Boege, O.; Herrmann, H.

    2006-12-01

    Secondary organic aerosol (SOA) components from gas phase ozonolysis of d-limonene were investigated in a series of indoor chamber experiments. The compounds smaller than 300 Da were quantified using capillary electrophoresis coupled to electrospray ionisation ion trap mass spectrometry (CE/ESI-ITMS). HPLC coupled to an ESI-TOFMS and an ESI-ITMS was used for structural study of dimmers and oligomers. Only 10% of the produced SOA could be attributed to low molecular weight carboxylic acids (Mw<300). The oxidation products which have molecular weights over 300 were detected regardless of the seed particle acidity but the concentrations of these compounds were much higher for acidic seed particle experiments. Strong signals of the compounds with mass to charge ratios (m/z) 281, 465 and 481 were detected when sulphuric acid was used in the seed particles. These compounds showed a strong fragment of m/z 97 in MS2 or MS3 spectra indicating the presence of sulfate in the structures. HPLC/ESI-TOFMS analysis suggests the elemental compositions of C10H17O7S-, C20H33O10S- and C20H33O11S- for m/z 281, 465 and 481, respectively. Based on MS^{n} and TOFMS results, they are most likely organic sulfate esters, possibly formed by a heterogeneous acid catalyzed reaction of a limonene oxidation product and sulfuric acid in the particle phase. The concentrations of the organic sulfate ester were as high as 3.7 μgm-3 for m/z 281.

  10. Heterobimetallic dinuclear lanthanide alkoxide complexes as acid-base difunctional catalysts for transesterification.

    PubMed

    Zeng, Ruijie; Sheng, Hongting; Zhang, Yongcang; Feng, Yan; Chen, Zhi; Wang, Junfeng; Chen, Man; Zhu, Manzhou; Guo, Qingxiang

    2014-10-03

    A practical lanthanide(III)-catalyzed transesterification of carboxylic esters, weakly reactive carbonates, and much less-reactive ethyl silicate with primary and secondary alcohols was developed. Heterobimetallic dinuclear lanthanide alkoxide complexes [Ln2Na8{(OCH2CH2NMe2)}12(OH)2] (Ln = Nd (I), Sm (II), and Yb (III)) were used as highly active catalysts for this reaction. The mild reaction conditions enabled the transesterification of various substrates to proceed in good to high yield. Efficient activation of transesterification may be endowed by the above complexes as cooperative acid-base difunctional catalysts, which is proposed to be responsible for the higher reactivity in comparison with simple acid/base catalysts.

  11. Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors.

    PubMed Central

    Guidotti, A; Forchetti, C M; Corda, M G; Konkel, D; Bennett, C D; Costa, E

    1983-01-01

    A brain polypeptide termed diazepam-binding inhibitor (DBI) and thought to be chemically and functionally related to the endogenous effector of the benzodiazepine recognition site was purified to homogeneity. This peptide gives a single band of protein on NaDodSO4 and acidic urea gel electrophoresis. A single UV-absorbing peak was obtained by HPLC using three different columns and solvent systems. DBI has a molecular mass of approximately equal to 11,000 daltons. Carboxyl-terminus analysis shows that tyrosine is the only residue while the amino-terminus was blocked. Cyanogen bromide treatment of DBI yields three polypeptide fragments, and the sequences of two of them have been determined for a total of 45 amino acids. DBI is a competitive inhibitor for the binding of [3H]diazepam, [3H]flunitrazepam, beta-[3H]carboline propyl esters, and 3H-labeled Ro 15-1788. The Ki for [3H]-diazepam and beta-[3H]carboline binding were 4 and 1 microM, respectively. Doses of DBI that inhibited [3H]diazepam binding by greater than 50% fail to change [3H]etorphine, gamma-amino[3H]butyric acid, [3H]-quinuclidinyl benzilate, [3H]dihydroalprenolol, [3H]adenosine, and [3H]imipramine binding tested at their respective Kd values. DBI injected intraventricularly at doses of 5-10 nmol completely reversed the anticonflict action of diazepam on unpunished drinking and, similar to the anxiety-inducing beta-carboline derivative FG 7142 (beta-carboline-3-carboxylic acid methyl ester), facilitated the shock-induced suppression of drinking by lowering the threshold for this response. Images PMID:6304714

  12. Japan Flavour and Fragrance Materials Association's (JFFMA) safety assessment of food-flavouring substances uniquely used in Japan that belong to the class of aliphatic primary alcohols, aldehydes, carboxylic acids, acetals and esters containing additional oxygenated functional groups.

    PubMed

    Saito, Kenji; Hasegawa-Baba, Yasuko; Sekiya, Fumiko; Hayashi, Shim-Mo; Mirokuji, Yoshiharu; Okamura, Hiroyuki; Maruyama, Shinpei; Ono, Atsushi; Nakajima, Madoka; Degawa, Masakuni; Ozawa, Shogo; Shibutani, Makoto; Maitani, Tamio

    2017-09-01

    We performed a safety evaluation using the procedure devised by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) of the following four flavouring substances that belong to the class of 'aliphatic primary alcohols, aldehydes, carboxylic acids, acetals, and esters containing additional oxygenated functional groups' and are uniquely used in Japan: butyl butyrylacetate, ethyl 2-hydroxy-4-methylpentanoate, 3-hydroxyhexanoic acid and methyl hydroxyacetate. Although no genotoxicity study data were found in the published literature, none of the four substances had chemical structural alerts predicting genotoxicity. All four substances were categorised as class I by using Cramer's classification. The estimated daily intake of each of the four substances was determined to be 0.007-2.9 μg/person/day by using the maximised survey-derived intake method and based on the annual production data in Japan in 2001, 2005 and 2010, and was determined to be 0.250-600.0 μg/person/day by using the single-portion exposure technique and based on average-use levels in standard portion sizes of flavoured foods. Both of these estimated daily intake ranges were below the threshold of toxicological concern for class I substances, which is 1800 μg/person/day. Although no information from in vitro and in vivo toxicity studies for the four substances was available, these substances were judged to raise no safety concerns at the current levels of intake.

  13. Body odour of monozygotic human twins: a common pattern of odorant carboxylic acids released by a bacterial aminoacylase from axilla secretions contributing to an inherited body odour type.

    PubMed

    Kuhn, Fabian; Natsch, Andreas

    2009-04-06

    It is currently not fully established whether human individuals have a genetically determined, individual-specific body odour. Volatile carboxylic acids are a key class of known human body odorants. They are released from glutamine conjugates secreted in axillary skin by a specific Nalpha-acyl-glutamine-aminoacylase present in skin bacteria. Here, we report a quantitative investigation of these odorant acids in 12 pairs of monozygotic twins. Axilla secretions were sampled twice and treated with the Nalpha-acyl-glutamine-aminoacylase. The released acids were analysed as their methyl esters with comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry detection. The pattern of the analytes was compared with distance analysis. The distance was lowest between samples of the right and the left axilla taken on the same day from the same individual. It was clearly greater if the same subject was sampled on different days, but this intra-individual distance between samples was only slightly lower than the distance between samples taken from two monozygotic twins. A much greater distance was observed when comparing unrelated individuals. By applying cluster and principal component analyses, a clear clustering of samples taken from one pair of monozygotic twins was also confirmed. In conclusion, the specific pattern of precursors for volatile carboxylic acids is subject to a day-to-day variation, but there is a strong genetic contribution. Therefore, humans have a genetically determined body odour type that is at least partly composed of these odorant acids.

  14. Induction of Fetal Hemoglobin by Propionic and Butyric Acid Derivatives: Correlations between Chemical Structure and Potency of Hb F Induction1

    PubMed Central

    Liakopoulou, Effie; Li, Qiliang; Stamatoyannopoulos, George

    2010-01-01

    Short-chain fatty acids (C2-C9) induce fetal hemoglobin synthesis in primary cell cultures, primates, and patients. We carried out experiments to test whether relationships exist between chemical structure and the Hb F-inducing potential of several short-chain fatty acid derivatives. BFUe cultures were performed in the presence of propionic and butyric congeners, covering the full spectrum of substitutions of these molecules, including polar and non-polar groups, esters, and double bonds. We found that the fetal hemoglobin inducibility is related to the chemical structure of the inducing compound. This structure–activity relation depends on the length of carbon chain, the nature of the substitutions, and the position of more potent substitutions on the carbon chain. It appears that substitutions enhancing the inducibility of these compounds are (with decreasing potency): methyl > phenyl > hydroxy ≫ amino groups. Placement of these substitutions at a position distal to the carboxyl group enhances γ-globin inducibility. Presence of the carboxyl group is prerequisite for γ-globin inducibility. PMID:12482403

  15. p Ka determinations of xanthene derivates in aqueous solutions by multivariate analysis applied to UV-Vis spectrophotometric data

    NASA Astrophysics Data System (ADS)

    Batistela, Vagner Roberto; Pellosi, Diogo Silva; de Souza, Franciane Dutra; da Costa, Willian Ferreira; de Oliveira Santin, Silvana Maria; de Souza, Vagner Roberto; Caetano, Wilker; de Oliveira, Hueder Paulo Moisés; Scarminio, Ieda Spacino; Hioka, Noboru

    2011-09-01

    Xanthenes form to an important class of dyes which are widely used. Most of them present three acid-base groups: two phenolic sites and one carboxylic site. Therefore, the p Ka determination and the attribution of each group to the corresponding p Ka value is a very important feature. Attempts to obtain reliable p Ka through the potentiometry titration and the electronic absorption spectrophotometry using the first and second orders derivative failed. Due to the close p Ka values allied to strong UV-Vis spectral overlap, multivariate analysis, a powerful chemometric method, is applied in this work. The determination was performed for eosin Y, erythrosin B, and bengal rose B, and also for other synthesized derivatives such as 2-(3,6-dihydroxy-9-acridinyl) benzoic acid, 2,4,5,7-tetranitrofluorescein, eosin methyl ester, and erythrosin methyl ester in water. These last two compounds (esters) permitted to attribute the p Ka of the phenolic group, which is not easily recognizable for some investigated dyes. Besides the p Ka determination, the chemometry allowed for estimating the electronic spectrum of some prevalent protolytic species and the substituents effects evaluation.

  16. Fluorescence dye tagging scheme for mercury quantification and speciation

    DOEpatents

    Jiao, Hong; Catterall, Hannah

    2015-09-22

    A fluorescent dye or fluorophore capable of forming complexes with mercury comprises 6,8-difluoro-7-hydroxy-2-oxo-2H-chromene-3-carboxylate amide, wherein the amide is formed by reacting the succinimidyl ester (Pacific Blue.TM.) with an amino acid containing a thiol group, such as cysteine or glutathione. Mercury complexes of the fluorophore fluoresce when excited by a UV or violet laser diode, and the detected intensity can be calibrated to quantify the concentration of mercury in a sample reacted with the fluorophore.

  17. Rigid Dipeptide Mimics: Synthesis of Enantiopure 5- and 7-Benzyl and 5,7-Dibenzyl Indolizidinone Amino Acids via Enolization and Alkylation of delta-Oxo alpha,omega-Di-[N-(9-(9-phenylfluorenyl))amino]azelate Esters.

    PubMed

    Polyak, Felix; Lubell, William D.

    1998-08-21

    Azabicyclo[X.Y.0]alkane amino acids are tools for constructing mimics of peptide structure and templates for generating combinatorial libraries for drug discovery. Our methodology for synthesizing these conformationally rigid dipeptides has been elaborated such that alkyl groups can be appended onto the heterocycle to generate mimics of peptide backbone and side-chain structure. Inexpensive glutamic acid was employed as chiral educt in a Claisen condensation/ketone alkylation/reductive amination/lactam cyclization sequence that furnished alkyl-branched azabicyclo[4.3.0]alkane amino acid. Enantiopure 5-benzyl-, 7-benzyl-, and 5,7-dibenzylindolizidinone amino acids 2-4 were stereoselectively synthesized via efficient reaction sequences featuring the alkylation of di-tert-butyl alpha,omega-di-[N-(PhF)amino]azelate delta-ketone 5. A variety of alkyl halides were readily added to the enolate of ketone 5 to provide mono- and dialkylated ketones 6 and 7. Hydride additions to 6 and 7, methanesulfonations, and intramolecular S(N)2 displacements by the PhF amine gave 5-alkylprolines that were converted by lactam cyclizations into 7- and 5-benzyl-, as well as 5,7-dibenzyl-2-oxo-3-N-(BOC)amino-1-azabicyclo[4.3.0]nonane-9-carboxylate methyl esters 10, 11, and 14. Epimerization of the alkyl-branched stereocenter via an iminium-enaminium equilibrium proved effective for controlling diastereoselectivity in reductive aminations with 6 and 7 in order to furnish 5-alkylprolines that were similarly converted to 7- benzyl- and 5,7-dibenzylindolizidinone N-(BOC)amino esters 10 and 14. Ester hydrolysis with hydroxide ion and potassium trimethylsilanolate then gave enantiopure indolizidinone amino acids 2-4. Epimerization at C-9 of benzylindolizidinone amino esters was also used to provide alternative diastereomers of 10, 11, and 14. This practical methodology for introducing side-chain groups onto the heterocycle with regioselective and diastereoselective control is designed to enhance the use of alkyl-branched azabicycloalkane amino acids for the exploration of conformation-activity relationships of various biologically active peptides.

  18. CO2 Conversion into Esters by Fluoride-Mediated Carboxylation of Organosilanes and Halide Derivatives.

    PubMed

    Frogneux, Xavier; von Wolff, Niklas; Thuéry, Pierre; Lefèvre, Guillaume; Cantat, Thibault

    2016-02-24

    A one-step conversion of CO2 into heteroaromatic esters is presented under metal-free conditions. Using fluoride anions as promoters for the C-Si bond activation, pyridyl, furanyl, and thienyl organosilanes are successfully carboxylated with CO2 in the presence of an electrophile. The mechanism of this unprecedented reaction has been elucidated based on experimental and computational results, which show a unique catalytic influence of CO2 in the C-Si bond activation of pyridylsilanes. The methodology is applied to 18 different esters, and it has enabled the incorporation of CO2 into a polyester material for the first time. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. n-Octyl gallate as inhibitor of pyruvate carboxylation and lactate gluconeogenesis.

    PubMed

    Eler, Gabrielle Jacklin; Santos, Israel Souza; de Moraes, Amarilis Giaretta; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2015-04-01

    The alkyl gallates are found in several natural and industrial products. In the latter products, these compounds are added mainly for preventing oxidation. In the present work, the potencies of methyl gallate, n-propyl gallate, n-pentyl gallate, and n-octyl gallate as inhibitors of pyruvate carboxylation and lactate gluconeogenesis were evaluated. Experiments were done with isolated mitochondria and the isolated perfused rat liver. The potency of the gallic acid esters as inhibitors of pyruvate carboxylation in isolated mitochondria obeyed the following decreasing sequence: n-octyl gallate > n-pentyl gallate > n-propyl gallate > methyl gallate. A similar sequence of decreasing potency for lactate gluconeogenesis inhibition in the perfused liver was found in terms of the portal venous concentration. Both actions correlate with the lipophilicity of the compounds. The effects are harmful at high concentrations. At appropriate concentrations, however, octyl gallate should act therapeutically because its inhibitory action on gluconeogenesis will contribute further to its proposed antihyperglycemic effects. © 2014 Wiley Periodicals, Inc.

  20. Asymmetric Synthesis of Hydrocarbazoles Catalyzed by an Octahedral Chiral-at-Rhodium Lewis Acid.

    PubMed

    Huang, Yong; Song, Liangliang; Gong, Lei; Meggers, Eric

    2015-12-01

    A bis-cyclometalated chiral-at-metal rhodium complex catalyzes the Diels-Alder reaction between N-Boc-protected 3-vinylindoles (Boc = tert-butyloxycarbonyl) and β-carboxylic ester-substituted α,β-unsaturated 2-acyl imidazoles with good-to-excellent regioselectivity (up to 99:1) and excellent diastereoselectivity (>50:1 d.r.) as well as enantioselectivity (92-99% ee) under optimized conditions. The rhodium catalyst serves as a chiral Lewis acid to activate the 2-acyl imidazole dienophile by two-point binding and overrules the preferred regioselectivity of the uncatalyzed reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cloning and Characterization of a Novel β-Transaminase from Mesorhizobium sp. Strain LUK: a New Biocatalyst for the Synthesis of Enantiomerically Pure β-Amino Acids▿

    PubMed Central

    Kim, Juhan; Kyung, Dohyun; Yun, Hyungdon; Cho, Byung-Kwan; Seo, Joo-Hyun; Cha, Minho; Kim, Byung-Gee

    2007-01-01

    A novel β-transaminase gene was cloned from Mesorhizobium sp. strain LUK. By using N-terminal sequence and an internal protein sequence, a digoxigenin-labeled probe was made for nonradioactive hybridization, and a 2.5-kb gene fragment was obtained by colony hybridization of a cosmid library. Through Southern blotting and sequence analysis of the selected cosmid clone, the structural gene of the enzyme (1,335 bp) was identified, which encodes a protein of 47,244 Da with a theoretical pI of 6.2. The deduced amino acid sequence of the β-transaminase showed the highest sequence similarity with glutamate-1-semialdehyde aminomutase of transaminase subgroup II. The β-transaminase showed higher activities toward d-β-aminocarboxylic acids such as 3-aminobutyric acid, 3-amino-5-methylhexanoic acid, and 3-amino-3-phenylpropionic acid. The β-transaminase has an unusually broad specificity for amino acceptors such as pyruvate and α-ketoglutarate/oxaloacetate. The enantioselectivity of the enzyme suggested that the recognition mode of β-aminocarboxylic acids in the active site is reversed relative to that of α-amino acids. After comparison of its primary structure with transaminase subgroup II enzymes, it was proposed that R43 interacts with the carboxylate group of the β-aminocarboxylic acids and the carboxylate group on the side chain of dicarboxylic α-keto acids such as α-ketoglutarate and oxaloacetate. R404 is another conserved residue, which interacts with the α-carboxylate group of the α-amino acids and α-keto acids. The β-transaminase was used for the asymmetric synthesis of enantiomerically pure β-aminocarboxylic acids. (3S)-Amino-3-phenylpropionic acid was produced from the ketocarboxylic acid ester substrate by coupled reaction with a lipase using 3-aminobutyric acid as amino donor. PMID:17259358

  2. Chemical aspects of silicon-containing bilayer resists

    NASA Astrophysics Data System (ADS)

    Boardman, Larry D.; Kessel, Carl R.; Rhyner, Steven J.

    1999-06-01

    We have prepare several novel silicon-containing polymers containing both low Ea and high Ea protecting groups, and we have evaluated these materials at both 193 nm. Low Ea acetal-containing polymers were prepared by reacting poly(4-vinylphenol) with novel silyl enol ethers. The ease of protecting group cleavage in these materials is manifested in the immediate formation of a strong latent image after exposure. High Ea polymers were prepared by introducing tertiary esters which contain the tris(trimethylsilyl)silyl group, and both methacrylate copolymers and norbornene-maleic anhydride copolymers containing this group have been synthesized. Both of these materials show good oxygen plasma etch resistance, with the latter demonstrating superior adhesion to poly(4- vinylphenol) planarizing layers. The tris(trimethylsilyl)silyl group imparts a high degree of hydrophobicity to coatings of many of these materials. Acid- catalyzed deprotection of these tertiary esters affords the corresponding carboxylic acids and 1-silyl-3-methylbutenes, and the liberation of these olefins is significantly faster than the loss of isobutylene from the tert-butyl analogs.

  3. Effects of Food on the Pharmacokinetics of Omega-3-Carboxylic Acids in Healthy Japanese Male Subjects: A Phase I, Randomized, Open-label, Three-period, Crossover Trial.

    PubMed

    Shimada, Hitoshi; Nilsson, Catarina; Noda, Yoshinori; Kim, Hyosung; Lundström, Torbjörn; Yajima, Toshitaka

    2017-09-01

    Omega-3-carboxylic acids (OM3-CA) contain omega-3 free fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as carboxylic acids. Food intake is known to affect the bioavailability of ethyl ester fatty acid formulations. We conducted a phase I study to investigate the effects of the timing of OM3-CA administration relative to food intake on the pharmacokinetics of EPA and DHA. In this randomized, open-label, three-period crossover study, Japanese healthy male subjects were administered 4×1 g OM3-CA capsules with continued fasting, before a meal, or after a meal. All subjects fasted for ≥10 h prior to drug/meal administration. The primary objective was to examine the effect of meal timing on the pharmacokinetics of EPA and DHA after OM3-CA administration. The secondary objectives were to examine the safety and tolerability of OM3-CA. A total of 42 Japanese subjects was enrolled in the study. The baseline-adjusted maximum concentration and area under the concentration-time curve from 0 to 72 h for EPA, DHA, and EPA +DHA were lower in the fasting and before meal conditions than in the after meal condition. The maximum total EPA, total DHA, and total EPA+DHA concentrations were reached later when administered in fasting conditions than in fed conditions, indicating slower absorption in fasting conditions. Diarrhea was reported by five, six, and no subjects in the fasting, before meal, and after meal conditions, respectively. The timing of OM3-CA administration relative to food intake influences the systemic bioavailability of EPA and DHA in healthy Japanese male subjects. NCT02372344.

  4. Synthesis of furan-3-carboxylic and 4-methylene-4,5-dihydrofuran-3-carboxylic esters by direct palladium iodide catalyzed oxidative carbonylation of 3-yne-1,2-diol derivatives.

    PubMed

    Gabriele, Bartolo; Mancuso, Raffaella; Maltese, Vito; Veltri, Lucia; Salerno, Giuseppe

    2012-10-05

    A variety of 3-yne-1,2-diol derivatives 1, bearing a primary or secondary alcoholic group at C-1, have been efficiently converted into high value added furan-3-carboxylic esters 2 in one step by PdI(2)/KI-catalyzed direct oxidative carbonylation, carried out in alcoholic media under relatively mild conditions (100 °C under 40 atm of a 4/1 mixture of CO and air). Carbonylated furans 2 were obtained in fair to excellent isolated yields (56-93%) through a sequential 5-endo-dig heterocyclization-alkoxycarbonylation-dehydration process, using only oxygen as the external oxidant. Under similar conditions, 2-methyl-3-yne-1,2-diols 3, bearing a tertiary alcoholic group, afforded 4-methylene-4,5-dihydrofuran-3-carboxylates 4 in satisfactory yields (58-70%).

  5. Evaluation of substituted ebselen derivatives as potential trypanocidal agents.

    PubMed

    Gordhan, Heeren M; Patrick, Stephen L; Swasy, Maria I; Hackler, Amber L; Anayee, Mark; Golden, Jennifer E; Morris, James C; Whitehead, Daniel C

    2017-02-01

    Human African trypanosomiasis is a disease of sub-Saharan Africa, where millions are at risk for the illness. The disease, commonly referred to as African sleeping sickness, is caused by an infection by the eukaryotic pathogen, Trypanosoma brucei. Previously, a target-based high throughput screen revealed ebselen (EbSe), and its sulfur analog, EbS, to be potent in vitro inhibitors of the T. brucei hexokinase 1 (TbHK1). These molecules also exhibited potent trypanocidal activity in vivo. In this manuscript, we synthesized a series of sixteen EbSe and EbS derivatives bearing electron-withdrawing carboxylic acid and methyl ester functional groups, and evaluated the influence of these substituents on the biological efficacy of the parent scaffold. With the exception of one methyl ester derivative, these modifications ablated or blunted the potent TbHK1 inhibition of the parent scaffold. Nonetheless, a few of the methyl ester derivatives still exhibited trypanocidal effects with single-digit micromolar or high nanomolar EC 50 values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Structural and Epimeric Isomers of HPPH [3-Devinyl 3-{1-(1-hexyloxy) ethyl}pyropheophorbide-a]: Effects on Uptake and Photodynamic Therapy of Cancer.

    PubMed

    Saenz, Courtney; Cheruku, Ravindra R; Ohulchanskyy, Tymish Y; Joshi, Penny; Tabaczynski, Walter A; Missert, Joseph R; Chen, Yihui; Pera, Paula; Tracy, Erin; Marko, Aimee; Rohrbach, Daniel; Sunar, Ulas; Baumann, Heinz; Pandey, Ravindra K

    2017-04-21

    The tetrapyrrole structure of porphyrins used as photosentizing agents is thought to determine uptake and retention by malignant epithelial cancer cells. To assess the contribution of the oxidized state of individual rings to these cellular processes, bacteriochlorophyll a was converted into the ring "D" reduced 3-devinyl-3-[1-(1-hexyloxy)ethyl]pyropheophorbide-a (HPPH) and the corresponding ring "B" reduced isomer (iso-HPPH). The carboxylic acid analogs of both ring "B" and ring "D" reduced isomers showed several-fold higher accumulation into the mitochondria and endoplasmic reticulum by primary culture of human lung and head and neck cancer cells than the corresponding methyl ester analogs that localize primarily to granular vesicles and to a lesser extent to mitochondria. However, long-term cellular retention of these compounds exhibited an inverse relationship with tumor cells generally retaining better the methyl-ester derivatives. In vivo distribution and tumor uptake was evaluated in the isogenic model of BALB/c mice bearing Colon26 tumors using the respective 14 C-labeled analogs. Both carboxylic acid derivatives demonstrated similar intracellular localization and long-term tumor cure with no significant skin phototoxicity. PDT-mediated tumor action involved vascular damage, which was confirmed by a reduction in blood flow and immunohistochemical assessment of damage to the vascular endothelium. The HPPH stereoisomers (epimers) showed identical uptake (in vitro & in vivo), intracellular retention and photoreaction.

  7. Synthesis, X-ray structure and cytotoxic effect of nickel(II) complexes with pyrazole ligands.

    PubMed

    Sobiesiak, Marta; Lorenz, Ingo-Peter; Mayer, Peter; Woźniczka, Magdalena; Kufelnicki, Aleksander; Krajewska, Urszula; Rozalski, Marek; Budzisz, Elzbieta

    2011-12-01

    Here we present the synthesis of the new Ni(II) complexes with chelating ligands 1-benzothiazol-2-yl-3,5-dimethyl-1H-pyrazole (a), 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridylo)-1H-pyrazole-4-carboxylic acid methyl ester (b) and 1-benzothiazol-2-yl-5-(2-hydroxyphenyl)-3-methyl-1H-pyrazole-4-carboxylic acid methyl ester (c). These ligands a-c create solid complexes with Ni(II). The crystal and molecular structures of two complexes were determined by X-ray diffraction method. Thermal stability of two complexes with ligand c by TG/DTG and DSC methods were also shown. Cytotoxic activity of all the complexes against three tumour cell lines and to normal endothelial cells (HUVEC) was also estimated. Complexes with ligand c exhibited relatively high cytotoxic activity towards HL-60 and NALM-6 leukaemia cells and WM-115 melanoma cells. Cytotoxic effectiveness of one of these complexes against melanoma WM-115 cells was two times higher than that of cisplatin. The protonation constant log K=9.63 of ligand b corresponding to the phenol 2-hydroxy group has been determined in 10% (v/v) DMSO/water solution (25°C). The coordination modes (formation of two monomeric species: NiL and NiL(2)) in the complexes with Ni(II) are discussed for b on the basis of the potentiometric and UV/Vis data. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  8. Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core-shell magnetite nanoparticles.

    PubMed

    Tóth, Ildikó Y; Szekeres, Márta; Turcu, Rodica; Sáringer, Szilárd; Illés, Erzsébet; Nesztor, Dániel; Tombácz, Etelka

    2014-12-30

    Magnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments, and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-vis (UV-visible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection), and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering, and FTIR-ATR results revealed that, prior to polymerization, the GA monomers became oxidized to poly(carboxylic acid)s due to ring opening while Fe(3+) ions reduced to Fe(2+). Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property, and biomedical applicability of the particles will be published.

  9. New biobased high functionality polyols and their use in polyurethane coatings.

    PubMed

    Pan, Xiao; Webster, Dean C

    2012-02-13

    High-functionality polyols for application in polyurethanes (PUs) were prepared by epoxide ring-opening reactions from epoxidized sucrose esters of soybean oil-epoxidized sucrose soyates-in which secondary hydroxyl groups were generated from epoxides on fatty acid chains. Ester polyols were prepared by using a base-catalyzed acid-epoxy reaction with carboxylic acids (e.g., acetic acid); ether polyols were prepared by using an acid-catalyzed alcohol-epoxy reaction with monoalcohols (e.g., methanol). The polyols were characterized by using gel permeation chromatography, FTIR spectroscopy, (1)H NMR spectroscopy, differential scanning calorimetry (DSC), and viscosity measurements. PU thermosets were prepared by using aliphatic polyisocyanates based on isophorone diisocyanate and hexamethylene diisocyanate. The properties of the PUs were studied by performing tensile testing, dynamic mechanical analysis, DSC, and thermogravimetric analysis. The properties of PU coatings on steel substrates were evaluated by using ASTM methods to determine coating hardness, adhesion, solvent resistance, and ductility. Compared to a soy triglyceride polyol, sucrose soyate polyols provide greater hardness and range of cross-link density to PU thermosets because of the unique structure of these macromolecules: well-defined compact structures with a rigid sucrose core coupled with high hydroxyl group functionality. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Amino acid-based surfactants – do they deserve more attention?

    PubMed

    Bordes, Romain; Holmberg, Krister

    2015-08-01

    The 20 standard amino acids (together with a few more that are not used in the biosynthesis of proteins) constitute a versatile tool box for synthesis of surfactants. Anionic, cationic and zwitterionic amphiphiles can be prepared and surfactants with several functional groups can be obtained by the proper choice of starting amino acid. This review gives examples of procedures used for preparation and discusses important physicochemical properties of the amphiphiles and how these can be taken advantage of for various applications. Micelles with a chiral surface can be obtained by self-assembly of enantiomerically pure surfactants and such supramolecular chirality can be utilized for asymmetric organic synthesis and for preparation of mesoporous materials with chiral pores. Surfactants based on amino acids with two carboxyl groups are effective chelating agents and can be used as collectors in mineral ore flotation. A surfactant based on cysteine readily oxidizes into the corresponding cystine compound, which can be regarded as a gemini surfactant. The facile and reversible cysteine-cystine transformation has been taken advantage of in the design of a switchable surfactant. A very attractive aspect of surfactants based on amino acids is that the polar head-group is entirely natural and that the linkage to the hydrophobic tail, which is often an ester or an amide bond, is easily cleaved. The rate of degradation can be tailored by the structure of the amphiphile. The ester linkage in betaine ester surfactants is particularly susceptible to alkaline hydrolysis and this surfactant type can be used as a biocide with short-lived action. This paper is not intended as a full review on the topic. Instead it highlights concepts that are unique to amino acid-based surfactants and that we believe can have practical implications. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Coupling in the absence of tertiary amines.

    PubMed

    Bodanszky, M; Bednarek, M A; Bodanszky, A

    1982-10-01

    In order to avoid base catalyzed side reactions during coupling, attempts were made to render superfluous the addition of tertiary amines to the reaction mixture. Weak acids were applied for the removal of acid labile protecting groups. Acetic acid and other carboxylic acids were considered unsuitable for this purpose coupling step. Pentachlorophenol and 2,4-dinitrophenol cleaved the Bpoc, Nps and Trt groups but more practical rates were reached with solutions of 1-hydroxybenzotriazole (HOBt) in trifluoroethanol, in acetic acid, or in a mixture of phenol and p-cresol. In addition to acidolysis, HOBt salts of amino components could also be obtained through hydrogenolysis of the Z group or thiolysis of the Nps group in the presence of HOBt, or by the displacement of acetic acid from acetate salts with HOBt. Acylation of HOBt salts of amino components with symmetrical or mixed anhydrides or with active esters did not require the addition of tertiary amine.

  12. Production of chemicals and fuels from biomass

    DOEpatents

    Qiao, Ming; Woods, Elizabeth; Myren, Paul; Cortright, Randy; Kania, John

    2018-01-23

    Methods, reactor systems, and catalysts are provided for converting in a continuous process biomass to fuels and chemicals, including methods of converting the water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  13. Synthesis of non-cytotoxic poly(ester-amine) dendrimers as potential solubility enhancers for drugs: methotrexate as a case study.

    PubMed

    Soto-Castro, Delia; Cruz-Morales, Jorge A; Ramírez Apan, María Teresa; Guadarrama, Patricia

    2010-11-09

    This study describes the synthesis of two new families of dendrimers based on the esterification of N-alkylated 3-amine-1-propanol with two different cores, adipic acid (1st and 2nd generations) and ethylenediamine (generation 1.5), both with carboxylic acid end groups, offering a wide variety of further modifications at the periphery. According to the cytotoxic evaluation of the dendrimers and their possible degradation products within cell lines, these materials could be considered as innocuous. In preliminary studies, the synthesized dendrimers proved to be potential enhancers of solubility of highly hydrophobic drugs, like methotrexate, widely used in chemotherapy.

  14. Metabolism of captopril carboxyl ester derivatives for percutaneous absorption.

    PubMed

    Gullick, Darren R; Ingram, Matthew J; Pugh, W John; Cox, Paul A; Gard, Paul; Smart, John D; Moss, Gary P

    2009-02-01

    To determine the metabolism of captopril n-carboxyl derivatives and how this may impact on their use as transdermal prodrugs. The pharmacological activity of the ester derivatives was also characterised in order to compare the angiotensin converting enzyme inhibitory potency of the derivatives compared with the parent drug, captopril. The metabolism rates of the ester derivatives were determined in vitro (using porcine liver esterase and porcine ear skin) and in silico (using molecular modelling to investigate the potential to predict metabolism). Relatively slow pseudo first-order metabolism of the prodrugs was observed, with the ethyl ester displaying the highest rate of metabolism. A strong relationship was established between in-vitro methods, while in-silico methods support the use of in-vitro methods and highlight the potential of in-silico techniques to predict metabolism. All the prodrugs behaved as angiotensin converting enzyme inhibitors, with the methyl ester displaying optimum inhibition. In-vitro porcine liver esterase metabolism rates inform in-vitro skin rates well, and in-silico interaction energies relate well to both. Thus, in-silico methods may be developed that include interaction energies to predict metabolism rates.

  15. Progress on Zeolite-membrane-aided Organic Acid Esterification

    NASA Astrophysics Data System (ADS)

    Makertiharta, I. G. B. N.; Dharmawijaya, P. T.

    2017-07-01

    Esterification is a common route to produce carboxylic acid esters as important intermediates in chemical and pharmaceutical industries. However, the reaction is equilibrium limited and needs to be driven forward by selective removal one of the products. There have been some efforts to selectively remove water from reaction mixture via several separation processes (such as pervaporation and reactive distillation). Integrated pervaporation and esterification has gained increasing attention towards. Inorganic zeolite is the most popular material for pervaporation due to its high chemical resistant and separation performance towards water. Zeolite also has proven to be an effective material in removing water from organic compound. Zeolite can act not only as selective layer but also simultaneously act as a catalyst on promoting the reaction. Hence, there are many configurations in integrating zeolite membrane for esterification reaction. As a selective layer to remove water from reaction mixture, high Si/Al zeolite is preferred to enhance its hydrophilicity. However, low Si/Al zeolite is unstable in acid condition due to dealumination thus eliminate its advantages. As a catalyst, acid zeolites (e.g. H-ZSM-5) provide protons for autoprotolysis of the carboxylic acid similar to other catalyst for esterification (e.g. inorganic acid, and ion exchange resins). There are many studies related to zeolite membrane aided esterification. This paper will give brief information related to zeolite membrane role in esterification and also research trend towards it.

  16. Can two-dimensional gas chromatography/mass spectrometric identification of bicyclic aromatic acids in petroleum fractions help to reveal further details of aromatic hydrocarbon biotransformation pathways?

    PubMed

    West, Charles E; Pureveen, Jos; Scarlett, Alan G; Lengger, Sabine K; Wilde, Michael J; Korndorffer, Frans; Tegelaar, Erik W; Rowland, Steven J

    2014-05-15

    The identification of key acid metabolites ('signature' metabolites) has allowed significant improvements to be made in our understanding of the biodegradation of petroleum hydrocarbons, in reservoir and in contaminated natural systems, such as aquifers and seawater. On this basis, anaerobic oxidation is now more widely accepted as one viable mechanism, for instance. However, identification of metabolites in the complex acid mixtures from petroleum degradation is challenging and would benefit from use of more highly resolving analytical methods. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GCxGC/TOFMS) with both nominal mass and accurate mass measurement was used to study the complex mixtures of aromatic acids (as methyl esters) in petroleum fractions. Numerous mono- and di-aromatic acid isomers were identified in a commercial naphthenic acids fraction from petroleum and in an acids fraction from a biodegraded petroleum. In many instances, compounds were identified by comparison of mass spectral and retention time data with those of authentic compounds. The identification of a variety of alkyl naphthalene carboxylic and alkanoic and alkyl tetralin carboxylic and alkanoic acids, plus identifications of a range of alkyl indane acids, provides further evidence for 'signature' metabolites of biodegradation of aromatic petroleum hydrocarbons. Identifications such as these now offer the prospect of better differentiation of metabolites of bacterial processes (e.g. aerobic, methanogenic, sulphate-reducing) in polar petroleum fractions. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Influence of Humic Acids Extracted from Peat by Different Methods on Functional Activity of Macrophages in Vitro.

    PubMed

    Trofimova, E S; Zykova, M V; Ligacheva, A A; Sherstoboev, E Y; Zhdanov, V V; Belousov, M V; Yusubov, M S; Krivoshchekov, S V; Danilets, M G; Dygai, A M

    2017-04-01

    We studied activation of macrophages with humic acids extracted from peat of large deposits in the Tomsk region by two extraction methods: by hydroxide or sodium pyrophosphate. Humic acid of lowland peat types containing large amounts of aromatic carbon, phenolic and alcohol groups, carbohydrate residues and ethers, irrespectively of the extraction methods contained LPS admixture that probably determines their activating properties. Humic acid of upland peat types characterized by high content of carbonyl, carboxyl, and ester groups enhance NO production and reduce arginase expression, but these effects were minimized when sodium hydroxide was used as an extraction solvent. Pyrophosphate samples of the upland peat types were characterized by aromaticity and diversity of functional groups and have a significant advantage because of they induce specific endotoxin-independent stimulating action on antigen presenting cells.

  18. Parallel solid-phase synthesis and high-throughput 1H NMR evaluation of a 96-member 1,2,4-trisubstituted-pyrimidin-6-one-5-carboxylic acid library.

    PubMed

    Hamper, Bruce C; Kesselring, Allen S; Chott, Robert C; Yang, Shengtian

    2009-01-01

    A solid-phase organic synthesis method has been developed for the preparation of trisubstituted pyrimidin-6-one carboxylic acids 12, which allows elaboration to a 3-dimensional combinatorial library. Three substituents are introduced by initial Knoevenagel condensation of an aldehyde and malonate ester resin 7 to give resin bound 1. Cyclization of 1 with an N-substituted amidine 10, oxidation, and cleavage afforded pyrimidinone 12. The initial solid-phase reaction sequence was followed by gel-phase (19)FNMR and direct-cleavage (1)H NMR of intermediate resins to determine the optimal conditions. The scope of the method for library production was determined by investigation of a 3 x 4 pilot library of twelve compounds. Cyclocondensation of N-methylamidines and 7 followed by CAN oxidation gave mixtures of the resin bound pyrimidin-6-one 11 and the regioisomeric pyrimidin-4-one 15, which after cleavage from the resin afforded a nearly 1:1 mixture of pyrimidin-6-one and pyrimidin-4-one carboxylic acids 12 and 16, respectively. The regiochemical assignment was confirmed by ROESY1D and gHMBC NMR experiments. A library was prepared using 8 aldehydes, 3 nitriles, and 4 amines to give a full combinatorial set of 96 pyrimidinones 12. Confirmation of structural identity and purity was carried out by LCMS using coupled ELS detection and by high-throughput flow (1)H NMR.

  19. Synthesis and characterization of hydrogel films of carboxymethyl tamarind gum using citric acid.

    PubMed

    Mali, Kailas K; Dhawale, Shashikant C; Dias, Remeth J

    2017-12-01

    The objective of this study was to synthesize and characterize citric acid crosslinked carboxymethyl tamarind gum (CMTG) hydrogels films. The hydrogel films were characterized by Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, solid state 13 C-nuclear magnetic resonance ( 13 C NMR) spectroscopy and differential scanning calorimeter (DSC). The prepared hydrogel films were evaluated for the carboxyl content and swelling ratio. The model drug moxifloxacin hydrochloride was loaded into hydrogels films and drug release was studied at pH 7.4. The hemolysis assay was used to study the biocompatibility of hydrogel films. The results of ATR-FTIR, solid state 13 C NMR and DSC confirmed the formation of ester crosslinks between citric acid and CMTG. The total carboxyl content of hydrogel film was found to be decreased when amount of CMTG was increased. The swelling of hydrogel film was found to be decreased with increase in curing temperature and time. CMTG hydrogel films showed high drug loading with non-Fickian release mechanism suggesting controlled release of drug. The hydrogel films were found to be biocompatible. It can be concluded that the citric acid can be used for the preparation of CMTG hydrogel films. Further, CMTG hydrogel film can be used potentially for controlled release of drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [BMIM][PF(6)] promotes the synthesis of halohydrin esters from diols using potassium halides.

    PubMed

    Oromí-Farrús, Mireia; Eras, Jordi; Villorbina, Gemma; Torres, Mercè; Llopis-Mestre, Veronica; Welton, Tom; Canela, Ramon

    2008-10-01

    Haloesterification of diverse diols with various carboxylic acids was achieved using potassium halides (KX) as the only halide source in ionic liquids. The best yield was obtained in [BMIM][PF(6)] when 1,2-octanediol, palmitic acid and KBr were used. This yield was 85% and the regioisomer with the bromine in primary position was present in a 75:25 ratio. The regioisomeric ratio could be improved using either KCl or some phenylcarboxylic acids. [BMIM][PF(6)] acts as both reaction media and catalyst of the reaction. To the best of our knowledge, this type of combined reaction using an ionic liquid is unprecedented. The other solvents tested did not lead either to the same yield or to the same regioisomeric ratio.

  1. World-Wide Indoor Exposure to Polyfluoroalkyl Phosphate Esters (PAPs) and other PFASs in Household Dust.

    PubMed

    Eriksson, Ulrika; Kärrman, Anna

    2015-12-15

    Human exposure to perfluorooctanoic acid (PFOA) and other per- and polyfluoroalkyl substances (PFASs) is ongoing and in some cases increasing, despite efforts made to reduce emissions. The role of precursor compounds such as polyfluorinated phosphate esters (PAPs) has received increasing attention, but there are knowledge gaps regarding their occurrence and impact on human exposure. In this study, mono-, di-, and triPAPs, perfluorinated alkyl acids (PFAAs), saturated, and unsaturated fluorotelomer carboxylic acids (FTCA/FTUCAs), perfluoroalkane sulfonamides, and sulfonamidethanols (FOSA/FOSEs), and one fluorotelomer sulfonic acid (FTSA)) were compared in household dust samples from Canada, the Faroe Islands, Sweden, Greece, Spain, Nepal, Japan, and Australia. Mono-, di-, and triPAPs, including several diPAP homologues, were frequently detected in dust from all countries, revealing an ubiquitous spread in private households from diverse geographic areas, with significant differences between countries. The median levels of monoPAPs and diPAPs ranged from 3.7 ng/g to 1 023 ng/g and 3.6 ng/g to 692 ng/g, respectively, with the lowest levels found in Nepal and the highest in Japan. The levels of PAPs exceeded those of the other PFAS classes. These findings reveal the importance of PAPs as a source of PFAS exposure worldwide.

  2. Carboxymethyl- and carboxyl-catechins from ripe Pu-er tea.

    PubMed

    Tian, Li-Wen; Tao, Mu-Ke; Xu, Min; Hu, Jing; Zhu, Hong-Tao; Xiong, Wen-Yong; Wang, Dong; Yang, Chong-Ren; Zhang, Ying-Jun

    2014-12-17

    Ripe Pu-er tea, a special microbial postfermented tea originated from Yunnan Province, China, since ancient times, is made from green Pu-er tea prepared from the leaves of Camellia sinensis var. assamica (Theaceae). Chemical investigation on thearubigin (n-BuOH-soluble) fraction of the commercial ripe Pu-er tea, led to the identification of four new flavan-3-ol derivatives, 8-carboxymethyl-(+)-catechin (1), 8-carboxymethyl-(+)-catechin methyl ester (2), 6-carboxymethyl-(+)-catechin (3), and 6-carboxyl-(-)-gallocatechin (4), together with 18 known compounds, including other three flavan-3-ol derivatives (5-7), 10 flavonoid glycosides (8-17), two hydrolyzable tannins (18 and 19), two quinic acid derivatives (20-21), and a purine alkaloid (22). Flavonoid glycosides 8-11 are reported from tea plants for the first time. The thearubigin fraction of ripe Pu-er tea was qualitatively analyzed by HPLC, and gallic acid was found to be the major component. Compounds 4, 6-17, 21 and 22 were tested for their acute activities on insulin sensitivity in differentiated 3T3-L1 adipocytes, but none of them showed significant bioactivity at a concentration of 10 μM.

  3. Saponin Biosynthesis in Saponaria vaccaria. cDNAs Encoding β-Amyrin Synthase and a Triterpene Carboxylic Acid Glucosyltransferase1[OA

    PubMed Central

    Meesapyodsuk, Dauenpen; Balsevich, John; Reed, Darwin W.; Covello, Patrick S.

    2007-01-01

    Saponaria vaccaria (Caryophyllaceae), a soapwort, known in western Canada as cowcockle, contains bioactive oleanane-type saponins similar to those found in soapbark tree (Quillaja saponaria; Rosaceae). To improve our understanding of the biosynthesis of these saponins, a combined polymerase chain reaction and expressed sequence tag approach was taken to identify the genes involved. A cDNA encoding a β-amyrin synthase (SvBS) was isolated by reverse transcription-polymerase chain reaction and characterized by expression in yeast (Saccharomyces cerevisiae). The SvBS gene is predominantly expressed in leaves. A S. vaccaria developing seed expressed sequence tag collection was developed and used for the isolation of a full-length cDNA bearing sequence similarity to ester-forming glycosyltransferases. The gene product of the cDNA, classified as UGT74M1, was expressed in Escherichia coli, purified, and identified as a triterpene carboxylic acid glucosyltransferase. UGT74M1 is expressed in roots and leaves and appears to be involved in monodesmoside biosynthesis in S. vaccaria. PMID:17172290

  4. Effect of chirality on cellular uptake, imaging and photodynamic therapy of photosensitizers derived from chlorophyll-a.

    PubMed

    Srivatsan, Avinash; Pera, Paula; Joshi, Penny; Wang, Yanfang; Missert, Joseph R; Tracy, Erin C; Tabaczynski, Walter A; Yao, Rutao; Sajjad, Munawwar; Baumann, Heinz; Pandey, Ravindra K

    2015-07-01

    We have previously shown that the (124)I-analog of methyl 3-(1'-m-iodobenzyloxy) ethyl-3-devinyl-pyropheophorbide-a derived as racemic mixture from chlorophyll-a can be used for PET (positron emission tomography)-imaging in animal tumor models. On the other hand, as a non-radioactive analog, it showed excellent fluorescence and photodynamic therapy (PDT) efficacy. Thus, a single agent in a mixture of radioactive ((124)I-) and non-radioactive ((127)I) material can be used for both dual-imaging and PDT of cancer. Before advancing to Phase I human clinical trials, we evaluated the activity of the individual isomers as well as the impact of a chiral center at position-3(1) in directing in vitro/in vivo cellular uptake, intracellular localization, epithelial tumor cell-specific retention, fluorescence/PET imaging, and photosensitizing ability. The results indicate that both isomers (racemates), either as methyl ester or carboxylic acid, were equally effective. However, the methyl ester analogs, due to subcellular deposition into vesicular structures, were preferentially retained. All derivatives containing carboxylic acid at the position-17(2) were noted to be substrate for the ABCG2 (a member of the ATP binding cassette transporters) protein explaining their low retention in lung tumor cells expressing this transporter. The compounds in which the chirality at position-3 has been substituted by a non-chiral functionality showed reduced cellular uptake, retention and lower PDT efficacy in mice bearing murine Colon26 tumors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. An ab initio density functional study of the optical functions of 9-Methyl-3-Thiophen-2-YI-Thieno [3,2e] [1,2,4] Thriazolo [4,3c] Pyrimidine-8-Carboxylic Acid Ethyl Ester crystals.

    PubMed

    Reshak, Ali H; Kityk, I V; Khenata, R; Al-Douri, Y; Auluck, S

    2012-09-01

    An ab initio investigation of the optical constants of 9-Methyl-3-Thiophen-2-YI-Thieno [3,2e] [1,2,4] Thriazolo [4,3c] Pyrimidine-8-Carboxylic Acid Ethyl Ester crystal is performed within a framework of local density approximation (LDA), and the Engel-Vosko generalized gradient approximation (EV-GGA) exchange correlation potentials. It is established that there are two independent molecules (A and B) exhibiting different intra-molecular interactions: C-H⋯O (A) and C-H⋯N (B). These intra-molecular interactions favor stabilization of the crystal structure for molecules A and B. It should be emphasized that there exist remarkable π-π interactions between the pyrimidine rings of the two neighbors B molecules giving extra strengths and stabilizations to the superamolecular structure. These different intra-molecular interactions C-H⋯O (A) and C-H⋯N (B) and the π-π interaction between the pyrimidine rings of the two neighbors B molecules give principal contribution to dispersion of optical properties. With a view to seek deeper insight into the electronic structure, the optical properties were investigated. Our calculations show that the optical constants are very anisotropic. The EVGGA calculation shows a blue spectral shift of around 0.024 eV with significant changes in the spectra compared to the LDA calculation. The observed spectral shifts are in agreement with the calculated band structure and corresponding electron density of states. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A sensitive high-pressure liquid chromatography/particle beam/mass spectrometry assay for the determination of all-trans-retinoic acid and 13-cis-retinoic acid in human plasma.

    PubMed

    Lehman, P A; Franz, T J

    1996-03-01

    A highly sensitive assay for the measurement of all-trans-retinoic acid (tretinoin) and 13-cis-retinoic acid (isotretinoin) has been developed. Collected plasma samples were protein precipitated with 2-propanol followed by solid phase extraction. The retinoic acids were subsequently derivatized to their pentafluorobenzyl esters followed by separation and isolation by reverse phase high-pressure liquid chromatography. The HPLC eluate was directed to a mass spectrometer via a particle beam interface. Selected ion monitoring (299 m/z) for the retinoic acid's carboxylate anion produced by negative chemical ionization using methane reagent gas achieved minimum detection limits of 25 pg injected. Endogenous blood levels in 19 male and 9 female subjects were measured. It was found that females have significantly more all-trans-retinoic acid than males and that both sexes demonstrate significantly more all-trans-retinoic acid then 13-cis-retinoic acid.

  7. Evaluation of certain food additives.

    PubMed

    2012-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, including flavouring agents, with a view to concluding as to safety concerns and to preparing specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation of and assessment of dietary exposure to food additives, including flavouring agents. A summary follows of the Committee's evaluations of technical, toxicological and dietary exposure data for five food additives (magnesium dihydrogen diphosphate; mineral oil (medium and low viscosity) classes II and III; 3-phytase from Aspergillus niger expressed in Aspergillus niger; serine protease (chymotrypsin) from Nocardiopsis prasina expressed in Bacillus licheniformis; and serine protease (trypsin) from Fusarium oxysporum expressed in Fusarium venenatum) and 16 groups of flavouring agents (aliphatic and aromatic amines and amides; aliphatic and aromatic ethers; aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers containing furan substitution; aliphatic linear alpha,beta-unsaturated aldehydes, acids and related alcohols, acetals and esters; amino acids and related substances; epoxides; furfuryl alcohol and related substances; linear and branched-chain aliphatic, unsaturated, unconjugated alcohols, aldehydes, acids and related esters; miscellaneous nitrogen-containing substances; phenol and phenol derivatives; pyrazine derivatives; pyridine, pyrrole and quinoline derivatives; saturated aliphatic acyclic branched-chain primary alcohols, aldehydes and acids; simple aliphatic and aromatic sulfides and thiols; sulfur-containing heterocyclic compounds; and sulfur-substituted furan derivatives). Specifications for the following food additives were revised: ethyl cellulose, mineral oil (medium viscosity), modified starches and titanium dioxide. Annexed to the report are tables summarizing the Committee's recommendations for dietary exposures to and toxicological evaluations of the food additives and flavouring agents considered.

  8. Inhibition of palm oil oxidation by zeolite nanocrystals.

    PubMed

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  9. Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances?

    PubMed

    Trigo, C; Ball, A S

    1994-11-01

    Three actinomycetes (Streptomyces sp. EC22, Streptomyces viridosporus T7A and Thermomonospora fusca BD25) were assessed for their ability to degrade ball-milled wheat straw. All gave maximum levels of solubilized lignocellulose products (APPL) at the beginning of the stationary phase of growth (72-96 h). Low-molecular-mass aromatic compounds extracted from the APPL were analysed by reverse-phase and gas chromatography. Although the number of chromatographic peaks detected made identification of the products difficult, p-coumaric acid (4-hydroxycinnamic acid), protocatechuic acid (3,4-dihydroxybenzoic acid), gallic acid (3,4,5-trihydroxybenzoic acid), gallic acid methyl ester (methyl-3,4,5-trihydroxybenzoate) and 4-methoxyphenol were recognized. The infrared spectra of the three strains were similar to the spectra of humic acids, with all APPL extracts showing carbonyl, amino, carboxyl, aliphatic and aromatic group vibrations. Also detected were peptide linkages of proteins. The results suggest a role for actinomycetes in the formation of humic substances in soils and composts.

  10. Amide and Ester-Functionalized Humic Acid for Fuel Combustion Enhancement

    NASA Astrophysics Data System (ADS)

    Riggs, Mark

    Humic acid is a class of naturally occurring molecules composed of large sheet-like regions of cyclic aromatic hydrocarbon networks with surface and edge functional groups including phenols, carboxylic acids, and epoxides. These naturally occurring molecules are found in brown coal deposits near lignite formations. Humic acid has gained attention from the scientific community as a precursor for graphene. Graphene is a 2-dimensional honeycomb structure of fully unsaturated carbon atoms that has exceptional material properties and inherent aromaticity. Graphene's incredible properties are matched by the difficulty associated with reproducibly manufacturing it on a large scale. This issue has limited the use of graphene for commercial applications. The polar functional groups of humic acid contribute to the hydrophilic nature of the molecule, limiting its miscibility in any alkyl-based solvent. Surfactants containing long alkyl chains can affect the miscibility of the molecule in an organic solvent. Surfactants are often difficult to remove from the system. It is theorized that alkylation of the functional sites of humic acid can affect the hydrophilic nature of the molecule, and effectively enable its dispersion into organic solvents without simultaneous incorporation of surfactants. This dissertation investigated the amidation and esterification of humic acid molecules extracted from leonardite. The resulting change in the modified humic acid dispersibility in organic solvents and its potential usage as a fuel additive were evaluated. Butyl, hexyl, octyl, and decyl amide-modified and ester-modified humic acids were synthesized. These products were characterized to confirm successful chemical reaction through thermogravimetric analysis, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The decyl-modified humic acids remained suspended in kerosene mixtures for longer than 1 week. Other organo-humic acids showed varying degrees of flocculation. The modified humic acid samples were diluted with kerosene to identify the influence on combustion properties. Butyl-modified humic acid samples decreased the molar enthalpy of combustion. Hexyl, octyl, and decyl-modified humic acids improved the combustion values. Decyl amide-modified humic acid showed the largest improvement of these mixtures with a 0.9% increase from the expected molar enthalpy of combustion with a loading percentage of 0.36% in kerosene. Octyl amide-modified and octyl ester-modified humic acid mixtures were prepared in 0.05, 0.1, and 1% loading percentage dilutions to study the effect of modified humic acid loading percent on combustion properties. The 0.1% dilution showed the largest increase of the expected molar enthalpy of combustion by 1.14% and 0.4% for amide-modified HA and ester-modified HA, respectively.

  11. Efficient inverted bulk-heterojunction polymer solar cells with self-assembled monolayer modified zinc oxide.

    PubMed

    Kim, Wook Hyun; Lyu, Hong-Kun; Han, Yoon Soo; Woo, Sungho

    2013-10-01

    The performance of poly(3-hexylthiophen) (P3HT) and [6, 6]phenyl C61 butyric acid methyl ester ([60]PCBM)-based inverted bulk-heterojunction (BHJ) polymer solar cells (PSCs) is enhanced by the modification of zinc oxide (ZnO)/BHJ interface with carboxylic-acid-functionalized self-assembled monolayers (SAMs). Under simulated solar illumination of AM 1.5 (100 mW/cm2), the inverted devices fabricated with SAM-modified ZnO achieved an enhanced power conversion efficiency (PCE) of 3.34% due to the increased fill factor and photocurrent density as compared to unmodified cells with PCE of 2.60%. This result provides an efficient method for interface engineering in inverted BHJ PSCs.

  12. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    PubMed

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Production of chemicals and fuels from biomass

    DOEpatents

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  14. Combination of Lewis Basic Selenium Catalysis and Redox Selenium Chemistry: Synthesis of Trifluoromethylthiolated Tertiary Alcohols with Alkenes.

    PubMed

    Zhu, Zechen; Luo, Jie; Zhao, Xiaodan

    2017-09-15

    A new and efficient method for diaryl selenide catalyzed vicinal CF 3 S hydroxylation of 1,1-multisubstitued alkenes has been developed. Various trifluoromethylthiolated tertiary alcohols could be readily synthesized under mild conditions. This method is also effective for the intramolecular cyclization of alkenes tethered by carboxylic acid, hydroxy, sulfamide, or ester groups and is associated with the introduction of a CF 3 S group. Mechanistic studies have revealed that the pathway involves a redox cycle between Se(II) and Se(IV) and Lewis basic selenium catalysis.

  15. γ-Sultam-cored N,N-ligands in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation of aryl ketones.

    PubMed

    Rast, Slavko; Modec, Barbara; Stephan, Michel; Mohar, Barbara

    2016-02-14

    The synthesis of new enantiopure syn- and anti-3-(α-aminobenzyl)-benzo-γ-sultam ligands 6 and their application in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation (ATH) of ketones using formic acid/triethylamine is described. In particular, benzo-fused cyclic ketones afforded excellent enantioselectivities in reasonable time employing a low loading of the syn ligand-containing catalyst. A never-before-seen dynamic kinetic resolution (DKR) during reduction of a γ-keto carboxylic ester (S7) derivative of 1-indanone is realized leading as well to excellent induction.

  16. Thermally stable surfactants and compositions and methods of use thereof

    DOEpatents

    Chaiko, David J [Woodridge, IL

    2008-09-02

    There are provided novel thermally stable surfactants for use with fillers in the preparation of polymer composites and nanocomposites. Typically, surfactants of the invention are urethanes, ureas or esters of thiocarbamic acid having a hydrocarbyl group of from 10 to 50 carbons and optionally including an ionizable or charged group (e.g., carboxyl group or quaternary amine). Thus, there are provided surfactants having Formula I: ##STR00001## wherein the variables are as defined herein. Further provided are methods of making thermally stable surfactants and compositions, including composites and nanocomposites, using fillers coated with the surfactants.

  17. Activated α2-macroglobulin binding to human prostate cancer cells triggers insulin-like responses.

    PubMed

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2015-04-10

    Ligation of cell surface GRP78 by activated α2-macroglobulin (α2M*) promotes cell proliferation and suppresses apoptosis. α2M*-treated human prostate cancer cells exhibit a 2-3-fold increase in glucose uptake and lactate secretion, an effect similar to insulin treatment. In both α2M* and insulin-treated cells, the mRNA levels of SREBP1-c, SREBP2, fatty-acid synthase, acetyl-CoA carboxylase, ATP citrate lyase, and Glut-1 were significantly increased together with their protein levels, except for SREBP2. Pretreatment of cells with α2M* antagonist antibody directed against the carboxyl-terminal domain of GRP78 blocks these α2M*-mediated effects, and silencing GRP78 expression by RNAi inhibits up-regulation of ATP citrate lyase and fatty-acid synthase. α2M* induces a 2-3-fold increase in lipogenesis as determined by 6-[(14)C]glucose or 1-[(14)C]acetate incorporation into free cholesterol, cholesterol esters, triglycerides, free fatty acids, and phosphatidylcholine, which is blocked by inhibitors of fatty-acid synthase, PI 3-kinase, mTORC, or an antibody against the carboxyl-terminal domain of GRP78. We also assessed the incorporation of [(14)CH3]choline into phosphatidylcholine and observed similar effects. Lipogenesis is significantly affected by pretreatment of prostate cancer cells with fatostatin A, which blocks sterol regulatory element-binding protein proteolytic cleavage and activation. This study demonstrates that α2M* functions as a growth factor, leading to proliferation of prostate cancer cells by promoting insulin-like responses. An antibody against the carboxyl-terminal domain of GRP78 may have important applications in prostate cancer therapy. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Activated α2-Macroglobulin Binding to Human Prostate Cancer Cells Triggers Insulin-like Responses

    PubMed Central

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2015-01-01

    Ligation of cell surface GRP78 by activated α2-macroglobulin (α2M*) promotes cell proliferation and suppresses apoptosis. α2M*-treated human prostate cancer cells exhibit a 2–3-fold increase in glucose uptake and lactate secretion, an effect similar to insulin treatment. In both α2M* and insulin-treated cells, the mRNA levels of SREBP1-c, SREBP2, fatty-acid synthase, acetyl-CoA carboxylase, ATP citrate lyase, and Glut-1 were significantly increased together with their protein levels, except for SREBP2. Pretreatment of cells with α2M* antagonist antibody directed against the carboxyl-terminal domain of GRP78 blocks these α2M*-mediated effects, and silencing GRP78 expression by RNAi inhibits up-regulation of ATP citrate lyase and fatty-acid synthase. α2M* induces a 2–3-fold increase in lipogenesis as determined by 6-[14C]glucose or 1-[14C]acetate incorporation into free cholesterol, cholesterol esters, triglycerides, free fatty acids, and phosphatidylcholine, which is blocked by inhibitors of fatty-acid synthase, PI 3-kinase, mTORC, or an antibody against the carboxyl-terminal domain of GRP78. We also assessed the incorporation of [14CH3]choline into phosphatidylcholine and observed similar effects. Lipogenesis is significantly affected by pretreatment of prostate cancer cells with fatostatin A, which blocks sterol regulatory element-binding protein proteolytic cleavage and activation. This study demonstrates that α2M* functions as a growth factor, leading to proliferation of prostate cancer cells by promoting insulin-like responses. An antibody against the carboxyl-terminal domain of GRP78 may have important applications in prostate cancer therapy. PMID:25720493

  19. ESR study of electron reactions with esters and triglycerides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevilla, M.D.; Morehouse, K.M.; Swarts, S.

    1981-04-02

    Reactions which occurred after electron attachment at 77K to a number of small carboxylic acid esters and triglycerides in an aqueous glass are reported. Most ester anions are found to decay on warming to form alkyl radicals by ..beta.. scission: RC(O/sup -/)OR' ..-->.. RCO/sub 2//sup -/ + R'.. The alkyl radical (R'.) produced by annealing is found to abstract hydrogen from the parent ester at an ..cap alpha..-carbon site, R'.+ R''CH/sub 2/CO/sub 2/R' ..-->.. R''CHCO/sub 2/R', or in the case of ethyl formate from the formate hydrogen, CH/sub 3/CH/sub 2/.+ HCO/sub 2/C/sub 2/H/sub 5/ ..-->.. C/sub 2/H/sub 6/ +.CO/sub 2/C/submore » 2/H/sub 5/. Results found for the methyl formate anion suggest hydrogen abstraction by the anion itself may compete with alkyl radical formation. The anion of the triglyceride triacetin is found to undergo an analogous mechanism to the ester anions producing the propane diol diester radical, .CH/sub 2/CH(Ac)CH/sub 2/(Ac), Ac = acetate. This species subsequently abstracts hydrogen from the parent compound to produce the ..cap alpha..-carbon radical, .CH/sub 2/CO/sub 2/R. Results found after annealing the tripropionin radical anion give evidence for abstraction from the ..cap alpha.. carbon in the propionate side groups producing CH/sub 3/CHCO/sub 2/R. Studies of a ..gamma..-irradiated ester (ethyl myristate) and two triglycerides (tripalmitin and tristearin) yield results which suggest that the mechanism of ester anion decay found in aqueous glasses applies to ..gamma..-irradiated neat long-chain esters and triglycerides. Results found in this work are compared to the results of product analysis.« less

  20. Chemical Modification of Polysaccharides

    PubMed Central

    Cumpstey, Ian

    2013-01-01

    This review covers methods for modifying the structures of polysaccharides. The introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures can alter the properties of materials based on these substances. The development of chemical methods to achieve this aim is an ongoing area of research that is expected to become more important as the emphasis on using renewable starting materials and sustainable processes increases in the future. The methods covered in this review include ester and ether formation using saccharide oxygen nucleophiles, including enzymatic reactions and aspects of regioselectivity; the introduction of heteroatomic nucleophiles into polysaccharide chains; the oxidation of polysaccharides, including oxidative glycol cleavage, chemical oxidation of primary alcohols to carboxylic acids, and enzymatic oxidation of primary alcohols to aldehydes; reactions of uronic-acid-based polysaccharides; nucleophilic reactions of the amines of chitosan; and the formation of unsaturated polysaccharide derivatives. PMID:24151557

  1. Identification of the Phenol Functionality in Deprotonated Monomeric and Dimeric Lignin Degradation Products via Tandem Mass Spectrometry Based on Ion-Molecule Reactions with Diethylmethoxyborane

    NASA Astrophysics Data System (ADS)

    Zhu, Hanyu; Max, Joann P.; Marcum, Christopher L.; Luo, Hao; Abu-Omar, Mahdi M.; Kenttämaa, Hilkka I.

    2016-11-01

    Conversion of lignin into smaller molecules provides a promising alternate and sustainable source for the valuable chemicals currently derived from crude oil. Better understanding of the chemical composition of the resulting product mixtures is essential for the optimization of such conversion processes. However, these mixtures are complex and contain isomeric molecules with a wide variety of functionalities, which makes their characterization challenging. Tandem mass spectrometry based on ion-molecule reactions has proven to be a powerful tool in functional group identification and isomer differentiation for previously unknown compounds. This study demonstrates that the identification of the phenol functionality, the most commonly observed functionality in lignin degradation products, can be achieved via ion-molecule reactions between diethylmethoxyborane (DEMB) and the deprotonated analyte in the absence of strongly electron-withdrawing substituents in the ortho- and para-positions. Either a stable DEMB adduct or an adduct that has lost a methanol molecule (DEMB adduct-MeOH) is formed for these ions. Deprotonated phenols with an adjacent phenol or hydroxymethyl functionality or a conjugated carboxylic acid functionality can be identified based on the formation of DEMB adduct-MeOH. Deprotonated compounds not containing the phenol functionality and phenols containing an electron-withdrawing ortho- or para-substituent were found to be unreactive toward diethylmethoxyborane. Hence, certain deprotonated isomeric compounds with phenol and carboxylic acid, aldehyde, carboxylic acid ester, or nitro functionalities can be differentiated via these reactions. The above mass spectrometry method was successfully coupled with high-performance liquid chromatography for the analysis of a complex biomass degradation mixture.

  2. Simultaneous determination of trace concentrations of aldehydes and carboxylic acids in particulate matter.

    PubMed

    Rousová, Jana; Chintapalli, Manikyala R; Lindahl, Anastasia; Casey, Jana; Kubátová, Alena

    2018-04-06

    Carboxylic acids and aldehydes are present in ambient air particulate matter (PM) originating from both primary emission and secondary production in air and may, due to their polarity have, an impact on formation of cloud condensation nuclei. Their simultaneous determination may provide improved understanding of atmospheric processes. We developed a new analytical method allowing for a single step determination of majority of carboxylic acids and aldehydes (+95 compounds). This sample preparation employed O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA·HCl) in methanol to yield oximes (for aldehydes) and methyl esters (for majority of acids); with the limits of detection of 0.02-1 ng per injection, corresponding to approximately 0.4-20 μg/g PM . Subsequent trimethylsilylation with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) was employed only for aromatic acids, which were not completely esterified, and for hydroxyl groups. Our method, in contrast to previous primarily qualitative studies, based on derivatization with an aqueous PFBHA followed by BSTFA derivatization, is less labor-intesive and reduces sample losses caused by an evaporation. The method was tested with a broad range of functionalized compounds (95), including monocarboxylic, dicarboxylic and aromatic acids, ketoacids, hydroxyacids and aldehydes. The developed protocol was applied to wood smoke (WS) and urban air standard reference material 1648b (UA) PM. The observed concentrations of aldehydes were 10-3000 μg/g PM in WS PM and 10-900 μg/g PM in UA PM, while those of acids were 20-1800 μg/g PM in WS PM and 15-1200 μg/g PM in UA PM. The most prominent aldehydes were syringaldehyde and vanillin in WS PM and glyoxal in UA PM. The most abundant acids in both PM samples were short-chain dicarboxylic acids (≤C 10 ). WS PM had a high abundance of hydroxyacids (vanillic and malic acids) as well as ketoacids (glutaric and oxalacetic) while UA PM also featured a high abundance of long-chain monocarboxylic acids (≥C 16 ). Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Functionalized Fullerenes for Highly Efficient Lithium Ion Storage: Structure-Property-Performance Correlation with Energy Implications

    DOE PAGES

    Shan, Changsheng; Yen, Hung -Ju; Wu, Kaifeng; ...

    2017-08-19

    Here, we report that spherical C 60 derivatives with well-defined molecular structures hold great promise to be advanced anode materials for lithium-ion batteries (LIBs). We studied four C 60 molecules with various functional groups, including pristine C 60, carboxyl C 60, ester C 60, and piperazine C 60. The comparison of these C 60s elucidated a strong correlation between functional group, overall packing (crystallinity), and the performance of C 60-based LIBs. Specifically, carboxyl C 60 and neutral ester C 60 showed higher charge capacities than pristine C 60, whereas positively-charged piperazine C 60 exhibited lower capacity. The highest charge capacitymore » was achieved on the carboxyl C 600 (861 mAh g -1 at 100th cycle), which is five times higher than that of pristine C 60 (170 mAh g -1), more than double the theoretical capacity of commercial graphite (372 mAh g -1), and even higher than the theoretical capacity of graphene (744 mAh g -1). Carboxyl C 60 also showed a high capacity at a fast discharge-charge rate (370 mAh g -1 at 5 C). The exceptional performance of carboxyl C 60 can be attributed to multiple key factors. They include the complex formation between lithium ions and oxygen atoms on the carboxyl group, the improved lithium-binding capability of C 60 cage due to electron donating from carboxylate groups, the electrostatic attraction between carboxylate groups and lithium ions, and the large lattice void space and high specific area due to carboxyl functionalization. In conclusion, this study indicates that, while maintaining the basic C 60 electronic properties, functionalization with desired groups can achieve remarkably enhanced capacity and rate performance for lithium storage, thus holding great promise for future LIBs.« less

  4. Functionalized Fullerenes for Highly Efficient Lithium Ion Storage: Structure-Property-Performance Correlation with Energy Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Changsheng; Yen, Hung -Ju; Wu, Kaifeng

    Here, we report that spherical C 60 derivatives with well-defined molecular structures hold great promise to be advanced anode materials for lithium-ion batteries (LIBs). We studied four C 60 molecules with various functional groups, including pristine C 60, carboxyl C 60, ester C 60, and piperazine C 60. The comparison of these C 60s elucidated a strong correlation between functional group, overall packing (crystallinity), and the performance of C 60-based LIBs. Specifically, carboxyl C 60 and neutral ester C 60 showed higher charge capacities than pristine C 60, whereas positively-charged piperazine C 60 exhibited lower capacity. The highest charge capacitymore » was achieved on the carboxyl C 600 (861 mAh g -1 at 100th cycle), which is five times higher than that of pristine C 60 (170 mAh g -1), more than double the theoretical capacity of commercial graphite (372 mAh g -1), and even higher than the theoretical capacity of graphene (744 mAh g -1). Carboxyl C 60 also showed a high capacity at a fast discharge-charge rate (370 mAh g -1 at 5 C). The exceptional performance of carboxyl C 60 can be attributed to multiple key factors. They include the complex formation between lithium ions and oxygen atoms on the carboxyl group, the improved lithium-binding capability of C 60 cage due to electron donating from carboxylate groups, the electrostatic attraction between carboxylate groups and lithium ions, and the large lattice void space and high specific area due to carboxyl functionalization. In conclusion, this study indicates that, while maintaining the basic C 60 electronic properties, functionalization with desired groups can achieve remarkably enhanced capacity and rate performance for lithium storage, thus holding great promise for future LIBs.« less

  5. Synthesis and optical properties of azo -dye-attached novel second-order NLO polymers with high thermal stability

    NASA Astrophysics Data System (ADS)

    Ushiwata, Takami; Okamoto, Etsuya; Komatsu, Kyoji; Kaino, Toshikuni

    2001-06-01

    Novel second order nonlinear optical (NLO) polymethacrylate or polyacrylate polymers with high glass transition temperatures containing an azo dye attached as side-chain have been prepared using a new approach from polymethacrylic acid or polyacrylic acid as starting materials. Glass transition temperatures of 150 approximately 170 degree Celsius were obtained for Disperse red 1 dye attached polymethacrylic acid. These are attributed to the hydrogen bonding between the residual carboxyl groups in the starting polymers. Poled films by corona poling exhibited large NLO susceptibilities, (chi) (2)33 up to 53 pm/V at a wavelength of 1.3 micrometer. Due to the high glass transition temperatures of the polymers, long-term stability of the optical nonlinearity at 100 degrees Celsius was observed for 200 hrs or more. However residual carboxyl groups caused absorbance decrease mainly by hydrolysis of the ester bonds of the polymers investigated by UV-Vis absorption measurement. The stability of induced polar order of the NLO polymer was enhanced by using aminoalkyl chromophore and imidizing it thermally to introduce imide structure into the polymer main-chain. This imidized polymer exhibited (chi) (2)33 of 45 pm/V at a wavelength of 1.3 micrometer and maintained about 90% of the initial value after 230 hrs or more at 100 degrees Celsius.

  6. Photosynthetic carbon assimilation in the coccolithophorid Emiliania huxleyi (Haptophyta): Evidence for the predominant operation of the c3 cycle and the contribution of {beta}-carboxylases to the active anaplerotic reaction.

    PubMed

    Tsuji, Yoshinori; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2009-02-01

    The coccolithophorid Emiliania huxleyi (Haptophyta) is a representative and unique marine phytoplankton species that fixes inorganic carbon by photosynthesis and calci-fication. We examined the initial process of photosynthetic carbon assimilation by analyses of metabolites, enzymes and genes. When the cells were incubated with a radioactive substrate (2.3 mM NaH(14)CO(3)) for 10 s under illumination, 70% of the (14)C was incorporated into the 80% methanol-soluble fraction. Eighty-five and 15% of (14)C in the soluble fraction was incorporated into phosphate esters (P-esters), including the C(3) cycle intermediates and a C(4) compound, aspartate, respectively. A pulse-chase experiment showed that (14)C in P-esters was mainly transferred into lipids, while [(14)C]aspartate, [(14)C]alanine and [(14)C]glutamate levels remained almost constant. These results indicate that the C(3) cycle functions as the initial pathway of carbon assimilation and that beta-carboxylation contributes to the production of amino acids in subsequent metabolism. Transcriptional analysis of beta-carboxylases such as pyruvate carboxylase (PYC), phosphoenolpyruvate carboxylase (PEPC) and phosphoenolpyruvate carboxykinase (PEPCK) revealed that PYC and PEPC transcripts were greatly increased under illumination, whereas the PEPCK transcript decreased remarkably. PEPC activity was higher in light-grown cells than in dark-adapted cells. PYC activity was detected in isolated chloroplasts of light-grown cells. According to analysis of their deduced N-terminal sequence, PYC and PEPC are predicted to be located in the chloroplasts and mitochondria, respectively. These results suggest that E. huxleyi possesses unique carbon assimila-tion mechanisms in which beta-carboxylation by both PYC and PEPC plays important roles in different organelles.

  7. Electron-rich triphenylamine-based sensors for picric acid detection.

    PubMed

    Chowdhury, Aniket; Mukherjee, Partha Sarathi

    2015-04-17

    This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes π-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.

  8. Occurrence of an Unusual Hopanoid-containing Lipid A Among Lipopolysaccharides from Bradyrhizobium Species*

    PubMed Central

    Komaniecka, Iwona; Choma, Adam; Mazur, Andrzej; Duda, Katarzyna A.; Lindner, Buko; Schwudke, Dominik; Holst, Otto

    2014-01-01

    The chemical structures of the unusual hopanoid-containing lipid A samples of the lipopolysaccharides (LPS) from three strains of Bradyrhizobium (slow-growing rhizobia) have been established. They differed considerably from other Gram-negative bacteria in regards to the backbone structure, the number of ester-linked long chain hydroxylated fatty acids, as well as the presence of a tertiary residue that consisted of at least one molecule of carboxyl-bacteriohopanediol or its 2-methyl derivative. The structural details of this type of lipid A were established using one- and two-dimensional NMR spectroscopy, chemical composition analyses, and mass spectrometry techniques (electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry and MALDI-TOF-MS). In these lipid A samples the glucosamine disaccharide characteristic for enterobacterial lipid A was replaced by a 2,3-diamino-2,3-dideoxy-d-glucopyranosyl-(GlcpN3N) disaccharide, deprived of phosphate residues, and substituted by an α-d-Manp-(1→6)-α-d-Manp disaccharide substituting C-4′ of the non-reducing (distal) GlcpN3N, and one residue of galacturonic acid (d-GalpA) α-(1→1)-linked to the reducing (proximal) amino sugar residue. Amide-linked 12:0(3-OH) and 14:0(3-OH) were identified. Some hydroxy groups of these fatty acids were further esterified by long (ω-1)-hydroxylated fatty acids comprising 26–34 carbon atoms. As confirmed by mass spectrometry techniques, these long chain fatty acids could form two or three acyloxyacyl residues. The triterpenoid derivatives were identified as 34-carboxyl-bacteriohopane-32,33-diol and 34-carboxyl-2β-methyl-bacteriohopane-32,33-diol and were covalently linked to the (ω-1)-hydroxy group of very long chain fatty acid in bradyrhizobial lipid A. Bradyrhizobium japonicum possessed lipid A species with two hopanoid residues. PMID:25371196

  9. Pancreatic lipase-related protein 2 digests fats in human milk and formula in concert with gastric lipase and carboxyl ester lipase

    PubMed Central

    Johnson, Karin; Ross, Leah; Miller, Rita; Xiao, Xunjun; Lowe, Mark E.

    2013-01-01

    INTRODUCTION Dietary fats must be digested into fatty acids and monoacylglycerols prior to absorption. In adults, colipase-dependent pancreatic triglyceride lipase (PTL) contributes significantly to fat digestion. In newborn rodents and humans, the pancreas expresses low levels of PTL. In rodents, a homologue of PTL, pancreatic lipase related protein 2 (PLRP2) and carboxyl ester lipase (CEL) compensate for the lack of PTL. In human newborns, the role for PLRP2 in dietary fat digestion is unclear. To clarify the potential of human PLRP2 to influence dietary fat digestion in newborns, we determined PLRP2 activity against human milk and infant formula. METHODS The activity of purified recombinant PLRP2, gastric lipase and CEL against fats in human milk and formula was measured with each lipase alone and in combination with a standard pH-stat assay. RESULTS Colipase added to human milk stimulated fat digestion. PLRP2 and CEL had activity against human milk and formula. Pre-digestion with gastric lipase increased PLRP2 activity against both substrates. Together, CEL and PLRP2 activity was additive with formula and synergistic with human milk. CONCLUSIONS PLRP2 can digest fats in human milk and formula. PLRP2 acts in concert with CEL and gastric lipase to digest fats in human milk in vitro. PMID:23732775

  10. Structural Characterization and Function Determination of a Nonspecific Carboxylate Esterase from the Amidohydrolase Superfamily with a Promiscuous Ability To Hydrolyze Methylphosphonate Esters

    PubMed Central

    2015-01-01

    The uncharacterized protein Rsp3690 from Rhodobacter sphaeroides is a member of the amidohydrolase superfamily of enzymes. In this investigation the gene for Rsp3690 was expressed in Escherichia coli and purified to homogeneity, and the three-dimensional structure was determined to a resolution of 1.8 Å. The protein folds as a distorted (β/α)8-barrel, and the subunits associate as a homotetramer. The active site is localized to the C-terminal end of the β-barrel and is highlighted by the formation of a binuclear metal center with two manganese ions that are bridged by Glu-175 and hydroxide. The remaining ligands to the metal center include His-32, His-34, His-207, His-236, and Asp-302. Rsp3690 was shown to catalyze the hydrolysis of a wide variety of carboxylate esters, in addition to organophosphate and organophosphonate esters. The best carboxylate ester substrates identified for Rsp3690 included 2-naphthyl acetate (kcat/Km = 1.0 × 105 M–1 s–1), 2-naphthyl propionate (kcat/Km = 1.5 × 105 M–1 s–1), 1-naphthyl acetate (kcat/Km = 7.5 × 103 M–1 s–1), 4-methylumbelliferyl acetate (kcat/Km = 2.7 × 103 M–1 s–1), 4-nitrophenyl acetate (kcat/Km = 2.3 × 105 M–1 s–1), and 4-nitrophenyl butyrate (kcat/Km = 8.8 × 105 M–1 s–1). The best organophosphonate ester substrates included ethyl 4-nitrophenyl methylphosphonate (kcat/Km = 3.8 × 105 M–1 s–1) and isobutyl 4-nitrophenyl methylphosphonate (kcat/Km = 1.1 × 104 M–1 s–1). The (SP)-enantiomer of isobutyl 4-nitrophenyl methylphosphonate was hydrolyzed 10 times faster than the less toxic (RP)-enantiomer. The high inherent catalytic activity of Rsp3690 for the hydrolysis of the toxic enantiomer of methylphosphonate esters make this enzyme an attractive target for directed evolution investigations. PMID:24832101

  11. Omega-3 Fatty Acid Formulations in Cardiovascular Disease: Dietary Supplements are Not Substitutes for Prescription Products.

    PubMed

    Fialkow, Jonathan

    2016-08-01

    Omega-3 fatty acid products are available as prescription formulations (icosapent ethyl, omega-3-acid ethyl esters, omega-3-acid ethyl esters A, omega-3-carboxylic acids) and dietary supplements (predominantly fish oils). Most dietary supplements and all but one prescription formulation contain mixtures of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Products containing both EPA and DHA may raise low-density lipoprotein cholesterol (LDL-C). In clinical trials, the EPA-only prescription product, icosapent ethyl, did not raise LDL-C compared with placebo. To correct a common misconception, it is important to note that omega-3 fatty acid dietary supplements are not US FDA-approved over-the-counter drugs and are not required to demonstrate safety and efficacy prior to marketing. Conversely, prescription products are supported by extensive clinical safety and efficacy investigations required for FDA approval and have active and ongoing safety monitoring programs. While omega-3 fatty acid dietary supplements may have a place in the supplementation of diet, they generally contain lower levels of EPA and DHA than prescription products and are not approved or intended to treat disease. Perhaps due to the lack of regulation of dietary supplements, EPA and DHA levels may vary widely within and between brands, and products may also contain unwanted cholesterol or fats or potentially harmful components, including toxins and oxidized fatty acids. Accordingly, omega-3 fatty acid dietary supplements should not be substituted for prescription products. Similarly, prescription products containing DHA and EPA should not be substituted for the EPA-only prescription product, as DHA may raise LDL-C and thereby complicate the management of patients with dyslipidemia.

  12. Effect of Ion Binding in Palmitoyl-Oleoyl Phosphatidylserine Monolayers

    NASA Astrophysics Data System (ADS)

    Eckler, Matthew; Matysiak, Silvina

    2013-03-01

    Molecular dynamics simulations of palmitoyl-oleoyl phosphatidylserine (POPS) monolayers at the air-water interface were performed with different ionic strengths with the aim of determining the specific organization and dynamics of counterion binding events. Na + ions penetrated the monolayers into both the ester carbonyl and carboxylate regions of the phospholipids. The binding events increase with the addition of salt. Differences in lipid order parameter, headgroup orientation, and prevalence of inter- and intramolecular hydrogen bonding events between the amine group of the lipid and oxygen groups are observed depending on whether the Na + is binding near the carboxylate or ester region of the lipid. The observed changes are explained in terms of the salting-out effect.

  13. Mechanism study of humic acid functional groups for Cr(VI) retention: Two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis.

    PubMed

    Zhang, Jia; Chen, Linpeng; Yin, Huilin; Jin, Song; Liu, Fei; Chen, Honghan

    2017-06-01

    Undissolved humic acid (HA) is known to substantially effect the migration and transformation of hexavalent chromium [Cr(VI)] in soils. The mechanisms of Cr(VI) retention in soils by undissolved HA have been reported; however, past studies are inconclusive about the types of HA functional groups that are involved in Cr(VI) retention and the retention mechanisms. Utilizing a two-dimensional correlation spectroscopy (2DCOS) analysis for FTIR and 13 C CP/MAS NMR, this study investigated the variations of HA function groups and molecular structures after reactions with aqueous Cr(VI) under different pH conditions. Based on the changing sequence of functional groups interpreted from the 2DCOS results, a four-step mechanism for Cr(VI) retention was determined as follows: (1) electrostatic adsorption of Cr(VI) to HA surface, (2) complexation of adsorbed Cr(VI) by carboxyl and ester, (3) reduction of complexed Cr(VI) to Cr(III) by phenol and polysaccharide, and (4) complexation of reduced Cr(III) by carboxylic groups. These functional groups that are involved in Cr(VI) retention were determined to occur in aromatic domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biocatalytic Asymmetric Synthesis of (1R, 2S)-N-Boc-vinyl-ACCA Ethyl Ester with a Newly Isolated Sphingomonas aquatilis.

    PubMed

    Zhu, Shaozhou; Shi, Ying; Zhang, Xinyu; Zheng, Guojun

    2018-02-01

    1-amino cyclopropane-1-carboxylic acid (ACCA) and its derivatives are essential pharmacophoric unit that widely used in drug research and development. Specifically, (1R, 2S)-N-Boc-vinyl-ACCA ethyl ester (vinyl-ACCA) is a key chiral intermediate in the synthesis of highly potent hepatitis C virus (HCV) NS3/4A protease inhibitors such as asunaprevir and simeprevir. Developing strategies for the asymmetric synthesis of vinyl-ACCA is thus extremely high demand. In this study, 378 bacterial strains were isolated from soil samples using N-Boc-vinyl-ACCA ethyl ester as the sole carbon source and were screened for esterase activity. Fourteen of which worked effectively for the asymmetric synthesis of (1R, 2S)-N-Boc-1-vinyl ACCA ethyl ester. The strain CY-2, identified as Sphingomonas aquatilis, which showed the highest stability and enantioselectivity was selected as whole cell biocatalyst for further study. A systematic study of all factors influencing the enzymatic hydrolysis was performed. Under optimized conditions, resolution of rac-vinyl-ACCA to (1R, 2S)-N-Boc-1-vinyl ACCA ethyl ester with 88.2% ee and 62.4% conversion (E = 9) was achieved. Besides, S. aquatilis was also used to transform other 10 different substrates. Notably, it was found that 7 of them could be stereoselectively hydrolyzed, especially for (1R,2S)-1-amino-vinyl-ACCA ethyl ester hydrochloride (99.6% ee, E>200). Our investigations provide a new efficient whole cell biocatalyst for resolution of ACCA and might be developed for industry application.

  15. Chemical constituents of the femoral gland secretions of male tegu lizards (Tupinambis merianae) (Family teiidae).

    PubMed

    Martín, José; Chamut, Silvia; Manes, Mario E; López, Pilar

    2011-01-01

    In spite of the importance of chemical signals (pheromones) in the reproductive behaviour of lizards, the chemical compounds secreted by their femoral glands, which may be used as sexual signals, are only known for a few lizard species. Based on mass spectra, obtained by GC-MS, we found 49 lipophilic compounds in femoral gland secretions of male tegu lizards (Tupinambis merianae) (fam. Teiidae), including a very high proportion of carboxylic acids and their esters ranging between n-C8 and n-C20 (mainly octadecanoic and 9,12-octadecadienoic acids), with much less proportions of steroids, tocopherol, aldehydes, and squalene. We discuss the potential function of these compounds in secretions, and compare the compounds found here with those documented for other lizard species.

  16. Study on small molecular organic compounds pyrolysed from rubber seed oil and its sodium soap.

    PubMed

    Fernando, T L D; Prashantha, M A B; Amarasinghe, A D U S

    2016-01-01

    Rubber seed oil (RSO) and its sodium soap were pyrolysed in a batch reactor to obtain low molar mass organic substances. The pyrolitic oil of RSO was redistilled and the distillates were characterized by GC-MS and FTIR. Density, acid value, saponification value and ester values were also measured according to the ASTM standard methods. A similar analysis was done for samples taken out at different time intervals from the reaction mixture. Industrially important low molar mass alkanes, alkenes, aromatics, cyclic compounds and carboxylic acids were identified in the pyrolysis process of rubber seed oil. However, pyrolysis of the sodium soap of rubber seed oil gave a mixture of hydrocarbons in the range of C14-C17 and hence it has more applications as a fuel.

  17. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, K.; Okuwaki, A.; Verheyen, T.

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid.more » Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.« less

  18. Structure–activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charton, Julie; Gauriot, Marion; Totobenazara, Jane

    Insulin degrading enzyme (IDE) is a zinc metalloprotease that degrades small amyloid peptides such as amyloid-â and insulin. So far the dearth of IDE-specific pharmacological inhibitors impacts the understanding of its role in the physiopathology of Alzheimer's disease, amyloid-â clearance, and its validation as a potential therapeutic target. Hit 1 was previously discovered by high-throughput screening. Here we describe the structure-activity study, that required the synthesis of 48 analogues. We found that while the carboxylic acid, the imidazole and the tertiary amine were critical for activity, the methyl ester was successfully optimized to an amide or a 1,2,4-oxadiazole. Along withmore » improving their activity, compounds were optimized for solubility, lipophilicity and stability in plasma and microsomes. The docking or co-crystallization of some compounds at the exosite or the catalytic site of IDE provided the structural basis for IDE inhibition. The pharmacokinetic properties of best compounds 44 and 46 were measured in vivo. As a result, 44 (BDM43079) and its methyl ester precursor 48 (BDM43124) are useful chemical probes for the exploration of IDE's role.« less

  19. Structure-activity relationships of Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human Insulin-Degrading Enzyme

    PubMed Central

    Charton, Julie; Gauriot, Marion; Totobenazara, Jane; Hennuyer, Nathalie; Dumont, Julie; Bosc, Damien; Marechal, Xavier; Elbakali, Jamal; Herledan, Adrien; Wen, Xiaoan; Ronco, Cyril; Gras-Masse, Helene; Heninot, Antoine; Pottiez, Virginie; Landry, Valerie; Staels, Bart; Liang, Wenguang G.; Leroux, Florence; Tang, Wei-Jen; Deprez, Benoit; Deprez-Poulain, Rebecca

    2015-01-01

    Insulin degrading enzyme (IDE) is a zinc metalloprotease that degrades small amyloid peptides such as amyloid-β and insulin. So far the dearth of IDE-specific pharmacological inhibitors impacts the understanding of its role in the physiopathology of Alzheimer’s disease, amyloid-β clearance, and its validation as a potential therapeutic target. Hit 1 was previously discovered by high-throughput screening. Here we describe the structure-activity study, that required the synthesis of 48 analogues. We found that while the carboxylic acid, the imidazole and the tertiary amine were critical for activity, the methyl ester was successfully optimized to an amide or a 1,2,4-oxadiazole. Along with improving their activity, compounds were optimized for solubility, lipophilicity and stability in plasma and microsomes. The docking or co-crystallization of some compounds at the exosite or the catalytic site of IDE provided the structural basis for IDE inhibition. The pharmacokinetic properties of best compounds 44 and 46 were measured in vivo. As a result, 44 (BDM43079) and its methyl ester precursor 48 (BDM43124) are useful chemical probes for the exploration of IDE’s role. PMID:25489670

  20. An efficient synthesis of the constrained peptidomimetic 2-oxo-3-(N-9-fluorenyloxycarbonylamino)-1-azabicyclo[4.3.0]nonane-9-carboxylic acid from pyroglutamic acid.

    PubMed

    Mandal, Pijus Kumar; Kaluarachchi, Kumar K; Ogrin, Douglas; Bott, Simon G; McMurray, John S

    2005-11-25

    [reaction: see text] Azabicyclo[X.Y.0]alkane amino acids are rigid dipeptide mimetics that are useful tools for structure-activity studies in peptide-based drug discovery. Herein, we report an efficient synthesis of three diastereomers of 9-tert-butoxycarbonyl-2-oxo-3-(N-tert-butoxycarbonylamino)-1-azabicyclo[4.3.0]nonane (3S,6S,9S, 3S,6R,9R, and 3S,6R,9S). Methyl N-Boc-pyroglutamate is cleaved with vinylmagnesium bromide to produce an acyclic gamma-vinyl ketone. Michael addition of N-diphenylmethyleneglycine tert-butyl ester produces the N-Boc-delta-oxo-alpha,omega-diaminoazelate intermediate, which, on hydrogenloysis, gives the fused ring system. Acidolytic deprotection followed by Fmoc-protection provided building blocks suitable for solid-phase synthesis.

  1. Mineral induction by immobilized phosphoproteins

    NASA Technical Reports Server (NTRS)

    Saito, T.; Arsenault, A. L.; Yamauchi, M.; Kuboki, Y.; Crenshaw, M. A.

    1997-01-01

    Dentin phosphoproteins are thought to have a primary role in the deposition of mineral on the collagen of dentin. In this study we determined the type of binding between collagen and phosphoproteins necessary for mineral formation onto collagen fibrils and whether the phosphate esters are required. Bovine dentin phosphophoryn or phosvitin from egg yolk were immobilized on reconstituted skin type I collagen fibrils by adsorption or by covalent cross-linking. In some samples the ester phosphate was removed from the covalently cross-linked phosphoproteins by treatment with acid phosphatase. All samples were incubated at 37 degrees C in metastable solutions that do not spontaneously precipitate. Reconstituted collagen fibrils alone did not induce mineral formation. The phosphoproteins adsorbed to the collagen fibrils desorbed when the mineralization medium was added, and mineral was not induced. The mineral induced by the cross-linked phosphoproteins was apatite, and the crystals were confined to the surface of the collagen fibrils. With decreasing medium saturation the time required for mineral induction increased. The interfacial tensions calculated for apatite formation by either phosphoprotein cross-linked to collagen were about the same as that for phosphatidic acid liposomes and hydroxyapatite. This similarity in values indicates that the nucleation potential of these highly phosphorylated surfaces is about the same. It is concluded that phosphoproteins must be irreversibly bound to collagen fibrils for the mineralization of the collagen network in solutions that do not spontaneously precipitate. The phosphate esters of phosphoproteins are required for mineral induction, and the carboxylate groups are not sufficient.

  2. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  3. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp.

    PubMed

    Wang, Xin; Sheng, Lili; Yang, Xiaoyi

    2017-04-01

    Microalgal components were isolated gradually to get lipid-rich, protein-rich and carbohydrate-rich components. The aim of this work was to study pyrolysis mechanism of microalgae by real isolated real algae components. Thermogrametric analysis (DTG) curve of microalgae was fitted by single pyrolysis curves of protein, lipid and carbohydrate except special zones, which likely affected by cell disruption and hydrolysis mass loss. Experimental microalgae liquefaction without water index N was 0.6776, 0.3861 and 0.2856 for isolated lipid, protein and carbohydrate. Pyrolysis pathways of lipid are decarboxylation, decarbonylation, fragmentation of glycerin moieties and steroid to form hydrocarbons, carboxylic acids and esters. Pyrolysis pathways of protein are decarboxylation, deamination, hydrocarbon residue fragmentation, dimerization and fragmentation of peptide bonds to form amide/amines/nitriles, esters, hydrocarbons and N-heterocyclic compounds, especially diketopiperazines (DKPs). Pyrolysis pathways of carbohydrate are dehydrated reactions and further fragmentation to form ketones and aldehyde, decomposition of lignin to form phenols, and fragmentation of lipopolysaccharides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Switching catalysis from hydrolysis to perhydrolysis in P. fluorescens esterase

    PubMed Central

    Yin, De Lu (Tyler); Bernhardt, Peter; Morley, Krista L.; Jiang, Yun; Cheeseman, Jeremy D.; Purpero, Vincent; Schrag, Joseph D.; Kazlauskas, Romas J.

    2010-01-01

    Many serine hydrolases catalyze perhydrolysis – the reversible formation of per-acids from carboxylic acids and hydrogen peroxide. Recently we showed that a single amino acid substitution in the alcohol binding pocket - L29P - in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. Angew. Chem. Intl. Ed. 2005, 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two x-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active-site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of ε-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction – hydrolysis of peracetic acid to acetic acid and hydrogen peroxide – occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed two fold higher kcat, but Km also increased so the specificity constant, kcat/Km, remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate), but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of ε-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the active site blocks access for larger alcohol moieties, but binds ε-caprolactone more tightly. These results are consistent with the natural function of perhydrolases being either hydrolysis of peroxycarboxylic acids or hydrolysis of lactones. PMID:20112920

  5. Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi.

    PubMed

    Mori, Narumi; Nishiuma, Kenta; Sugiyama, Takuya; Hayashi, Hideo; Akiyama, Kohki

    2016-10-01

    Hyphal branching in the vicinity of host roots is a host recognition response of arbuscular mycorrhizal fungi. This morphological event is elicited by strigolactones. Strigolactones are carotenoid-derived terpenoids that are synthesized from carlactone and its oxidized derivatives. To test the possibility that carlactone and its oxidized derivatives might act as host-derived precolonization signals in arbuscular mycorrhizal symbiosis, carlactone, carlactonoic acid, and methyl carlactonoate as well as monohydroxycarlactones, 4-, 18-, and 19-hydroxycarlactones, were synthesized chemically and evaluated for hyphal branching-inducing activity in germinating spores of the arbuscular mycorrhizal fungus Gigaspora margarita. Hyphal branching activity was found to correlate with the degree of oxidation at C-19 methyl. Carlactone was only weakly active (100 ng/disc), whereas carlactonoic acid showed comparable activity to the natural canonical strigolactones such as strigol and sorgomol (100 pg/disc). Hydroxylation at either C-4 or C-18 did not significantly affect the activity. A series of carlactone analogues, named AD ester and AA'D diester, was synthesized by reacting formyl Meldrum's acid with benzyl, cyclohexylmethyl, and cyclogeranyl alcohols (the A-ring part), followed by coupling of the potassium enolates of the resulting formylacetic esters with the D-ring butenolide. AD ester analogues exhibited moderate activity (1 ng-100 pg/disc), while AA'D diester analogues having cyclohexylmethyl and cyclogeranyl groups were highly active on the AM fungus (10 pg/disc). These results indicate that the oxidation of methyl to carboxyl at C-19 in carlactone is a prerequisite but BC-ring formation is not essential to show hyphal branching activity comparable to that of canonical strigolactones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Purification Or Organic Acids Using Anion Exchange Chromatography.

    DOEpatents

    Ponnampalam; Elankovan

    2001-09-04

    Disclosed is a cost-effective method for purifying and acidifying carboxylic acids, including organic acids and amino acids. The method involves removing impurities by allowing the anionic form of the carboxylic acid to bind to an anion exchange column and washing the column. The carboxylic anion is displaced as carboxylic acid by washing the resin with a strong inorganic anion. This method is effective in removing organic carboxylic acids and amino acids from a variety of industrial sources, including fermentation broths, hydrolysates, and waste streams.

  7. Scopadulciol, an inhibitor of gastric H+, K(+)-ATPase from Scoparia dulcis, and its structure-activity relationships.

    PubMed

    Hayashi, T; Asano, S; Mizutani, M; Takeguchi, N; Kojima, T; Okamura, K; Morita, N

    1991-01-01

    A new tetracyclic diterpenoid, scopadulciol [3], together with 6-methoxybenzoxazolinone, glutinol, and acacetin, was isolated from the 70% EtOH extract of Scoparia dulcis collected in Taiwan. Its structure was elucidated to be 6 beta-benzoyl-12-methyl-13-oxo-9(12)a,9(12)b-dihomo-18-podocarpanol on the basis of spectral data. It mildly inhibited hog gastric H+, K(+)-ATPase. Examination of the inhibitory activities of derivatives of scopadulcic acid B [2], including 3, revealed that methylation of the carboxyl group and introduction of an acetyl group or oxime at C-13 or C-18 markedly enhanced the inhibitory activity, while debenzoylation reduced the activity. Among the 30 compounds tested, compound 12, a methyl ester of scopadulcic acid B [2], showed the most potent activity.

  8. Characterization and diagenesis of strong-acid carboxyl groups in humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.

    2003-01-01

    A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

  9. Novel Three-Component Phenazine-1-Carboxylic Acid 1,2-Dioxygenase in Sphingomonas wittichii DP58

    PubMed Central

    Zhao, Qiang; Wang, Wei; Huang, Xian-Qing; Zhang, Xue-Hong

    2017-01-01

    ABSTRACT Phenazine-1-carboxylic acid, the main component of shenqinmycin, is widely used in southern China for the prevention of rice sheath blight. However, the fate of phenazine-1-carboxylic acid in soil remains uncertain. Sphingomonas wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources for growth. In this study, dioxygenase-encoding genes, pcaA1A2, were found using transcriptome analysis to be highly upregulated upon phenazine-1-carboxylic acid biodegradation. PcaA1 shares 68% amino acid sequence identity with the large oxygenase subunit of anthranilate 1,2-dioxygenase from Rhodococcus maanshanensis DSM 44675. The dioxygenase was coexpressed in Escherichia coli with its adjacent reductase-encoding gene, pcaA3, and ferredoxin-encoding gene, pcaA4, and showed phenazine-1-carboxylic acid consumption. The dioxygenase-, ferredoxin-, and reductase-encoding genes were expressed in Pseudomonas putida KT2440 or E. coli BL21, and the three recombinant proteins were purified. A phenazine-1-carboxylic acid conversion capability occurred in vitro only when all three components were present. However, P. putida KT2440 transformed with pcaA1A2 obtained phenazine-1-carboxylic acid degradation ability, suggesting that phenazine-1-carboxylic acid 1,2-dioxygenase has low specificities for its ferredoxin and reductase. This was verified by replacing PcaA3 with RedA2 in the in vitro enzyme assay. High-performance liquid chromatography–mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) analysis showed that phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation, indicating that PcaA1A2A3A4 constitutes the initial phenazine-1-carboxylic acid 1,2-dioxygenase. This study fills a gap in our understanding of the biodegradation of phenazine-1-carboxylic acid and illustrates a new dioxygenase for decarboxylation. IMPORTANCE Phenazine-1-carboxylic acid is widely used in southern China as a key fungicide to prevent rice sheath blight. However, the degradation characteristics of phenazine-1-carboxylic acid and the environmental consequences of the long-term application are not clear. S. wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources. In this study, a three-component dioxygenase, PcaA1A2A3A4, was determined to be the initial dioxygenase for phenazine-1-carboxylic acid degradation in S. wittichii DP58. Phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation. This finding may help us discover the pathway for phenazine-1-carboxylic acid degradation. PMID:28188209

  10. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells.

    PubMed

    Aluri, Rajendra; Jayakannan, Manickam

    2017-01-09

    New classes of enzymatic-biodegradable amphiphilic poly(ester-urethane)s were designed and developed from l-tyrosine amino acid resources and their self-assembled nanoparticles were employed as multiple drug delivery vehicles in cancer therapy. The amine and carboxylic acid functional groups in l-tyrosine were converted into dual functional ester-urethane monomers and they were subjected to solvent free melt polycondensation with hydrophilic polyethylene glycols to produce comb-type poly(ester-urethane)s. The phenolic unit in the l-tyrosine was anchored with hydrophobic alkyl side chain to bring appropriate amphiphilicity in the polymer geometry to self-assemble them as stable nanoscaffolds in aqueous medium. The topology of the polymer was found to play a major role on the glass transition, crystallinity, and viscoelastic rheological properties of l-tyrosine poly(ester-urethane)s. The amphiphilic polymers were self-assembled as 200 ± 10 nm nanoparticles and they exhibited excellent encapsulation capabilities for anticancer drugs such as doxorubicin (DOX) and camptothecin (CPT). In vitro drug release studies revealed that the drug-loaded l-tyrosine nanoparticles were stable at extracellular conditions and they underwent enzymatic-biodegradation exclusively at the intracellular level to release the drugs. Cytotoxicity studies in the cervical cancer (HeLa) and normal WT-MEFs cell lines revealed that the nascent l-tyrosine nanoparticles were nontoxic, whereas the CPT and DOX drug-loaded polymer nanoparticles exhibited excellent cell killing in cancer cells. Confocal microscopic imaging confirmed the cellular internalization of drug-loaded nanoparticles. The drugs were taken up by the cells much higher quantity while delivering them from l-tyrosine nanoparticle platform compared to their free state. Flow cytometry analysis showed that the DOX-loaded polymer nanoscaffolds internalized the drugs 8-10× higher compared to free DOX. Both the synthesis of new classes of poly(ester-urethane)s via melt polycondensation approach and the enzyme-responsive drug delivery concept were accomplished for the first time. Thus, the present investigation is expected to open up new opportunities for l-tyrosine polymeric materials in biomaterial and thermoplastic applications.

  11. Determination of Odor Release in Hydrocolloid Model Systems Containing Original or Carboxylated Cellulose at Different pH Values Using Static Headspace Gas Chromatographic (SHS-GC) Analysis

    PubMed Central

    Lee, Sang Mi; Shin, Gil-Ok; Park, Kyung Min; Chang, Pahn-Shick; Kim, Young-Suk

    2013-01-01

    Static headspace gas chromatographic (SHS-GC) analysis was performed to determine the release of 13 odorants in hydrocolloid model systems containing original or regio-selectively carboxylated cellulose at different pH values. The release of most odor compounds was decreased in the hydrocolloid solutions compared to control, with the amounts of 2-propanol, 3-methyl-1-butanol, and 2,3-butanedione released into the headspace being less than those of any other odor compound in the hydrocolloid model systems. However, there was no considerable difference between original cellulose-containing and carboxylated-cellulose containing systems in the release of most compounds, except for relatively long-chain esters such as ethyl caprylate and ethyl nonanoate. The release from the original and carboxylated cellulose solutions controlled to pH 10 was significantly higher than that from solutions adjusted to pH 4 and 7 in the case of some esters (ethyl acetate, methyl propionate, ethyl propionate, ethyl butyrate, butyl propionate, ethyl caproate) and alcohols (2-propanol, 3-methyl-1-butanol), in particular, ethyl butyrate and 3-methyl-1-butanol. In contrast, the release of 2,3-butanedione from both the original and carboxylated cellulose solutions was increased at pH 4 and 7 compared to that at pH 10 by about 70% and 130%, respectively. Our study demonstrated that the release of some odorants could be changed significantly by addition of both original and carboxylated cellulose in hydrocolloid model systems, but only minor effect was observed in pH of the solution. PMID:23447013

  12. Regeneration of carboxylic acid-laden basic sorbents by leaching with a volatile base in an organic solvent

    DOEpatents

    King, C. Judson; Husson, Scott M.

    1999-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with an organic solution of alkylamine thus forming an alkylamine/carboxylic acid complex which is decomposed with improved efficiency to the desired carboxylic acid and the alkylamine. Carbon dioxide addition can be used to improve the adsorption or the carboxylic acids by the solid phase sorbent.

  13. Alkali-catalyzed low temperature wet crosslinking of plant proteins using carboxylic acids.

    PubMed

    Reddy, Narendra; Li, Ying; Yang, Yiqi

    2009-01-01

    We report the development of a new method of alkali-catalyzed low temperature wet crosslinking of plant proteins to improve their breaking tenacity without using high temperatures or phosphorus-containing catalysts used in conventional poly(carboxylic acid) crosslinking of cellulose and proteins. Carboxylic acids are preferred over aldehyde-containing crosslinkers for crosslinking proteins and cellulose because of their low toxicity and cost and ability to improve the desired properties of the materials. However, current knowledge in carboxylic acid crosslinking of proteins and cellulose requires the use of carboxylic acids with at least three carboxylic groups, toxic phosphorous-containing catalysts and curing at high temperatures (150-185 degrees C). The use of high temperatures and low pH in conventional carboxylic acid crosslinking has been reported to cause substantial strength loss and/or undesired changes in the properties of the crosslinked materials. In this research, gliadin, soy protein, and zein fibers have been crosslinked with malic acid, citric acid, and butanetetracarboxylic acid to improve the tenacity of the fibers without using high temperatures and phosphorus-containing catalysts. The new method of wet crosslinking using carboxylic acids containing two or more carboxylic groups will be useful to crosslink proteins for various industrial applications.

  14. Characterization and origin of polar dissolved organic matter from the Great Salt Lake

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Rostad, C.E.; Davisson, M.L.

    2004-01-01

    Polar dissolved organic matter (DOM) was isolated from a surface-water sample from the Great Salt Lake by separating it from colloidal organic matter by membrane dialysis, from less-polar DOM fractions by resin sorbents, and from inorganic salts by a combination of sodium cation exchange followed by precipitation of sodium salts by acetic acid during evaporative concentration. Polar DOM was the most abundant DOM fraction, accounting for 56% of the isolated DOM. Colloidal organic matter was 14C-age dated to be about 100% modern carbon and all of the DOM fractions were 14C-age dated to be between 94 and 95% modern carbon. Average structural models of each DOM fraction were derived that incorporated quantitative elemental and infrared, 13C-NMR, and electrospray/mass spectrometric data. The polar DOM model consisted of open-chain N-acetyl hydroxy carboxylic acids likely derived from N-acetyl heteropolysaccharides that constituted the colloidal organic matter. The less polar DOM fraction models consisted of aliphatic alicyclic ring structures substituted with carboxyl, hydroxyl, ether, ester, and methyl groups. These ring structures had characteristics similar to terpenoid precursors. All DOM fractions in the Great Salt Lake are derived from algae and bacteria that dominate DOM inputs in this lake.

  15. Chemical Modification of Cellulose Esters for Oral Drug Delivery

    NASA Astrophysics Data System (ADS)

    Meng, Xiangtao

    Polymer functional groups have critical impacts upon physical, chemical and mechanical properties, and thus affect the specific applications of the polymer. Functionalization of cellulose esters and ethers has been under extensive investigation for applications including drug delivery, cosmetics, food ingredients, and automobile coating. In oral delivery of poorly water-soluble drugs, amorphous solid dispersion (ASD) formulations have been used, prepared by forming miscible blends of polymers and drugs to inhibit crystallization and enhance bioavailability of the drug. The Edgar and Taylor groups have revealed that some cellulose o-carboxyalkanoates were highly effective as ASD polymers, with the pendant carboxylic acid groups providing both specific polymer-drug interactions and pHtriggered release through swelling of the ionized polymer matrix. While a variety of functional groups such as hydroxyl and amide groups are also of interest, cellulose functionalization has relied heavily on classical methods such as esterification and etherification for appending functional groups. These methods, although they have been very useful, are limited in two respects. First, they typically employ harsh reaction conditions. Secondly, each synthetic pathway is only applicable for one or a narrow group of functionalities due to restrictions imposed by the required reaction conditions. To this end, there is a great impetus to identify novel reactions in cellulose modification that are mild, efficient and ideally modular. In the initial effort to design and synthesize cellulose esters for oral drug delivery, we developed several new methods in cellulose functionalization, which can overcome drawbacks of conventional synthetic pathways, provide novel cellulose derivatives that are otherwise inaccessible, and present a platform for structure-property relationship study. Cellulose o-hydroxyalkanoates were previously difficult to access as the hydroxyl groups, if not protected, react with carboxylic acid/carbonyl during a typical esterification reaction or ring opening of lactones, producing cellulose-g-polyester and homopolyester. We demonstrated the viability of chemoselective olefin hydroboration-oxidation in the synthesis of cellulose o-hydroxyesters in the presence of ester groups. Cellulose esters with terminally olefinic side chains were transformed to the target products by two-step, one-pot hydroborationoxidation reactions, using 9-borabicyclo[3.3.1]nonane (9-BBN) as hydroboration agent, followed by oxidizing the organoborane intermediate to a primary alcohol using mildly alkaline H2O2. The use of 9-BBN as hydroboration agent and sodium acetate as base catalyst in oxidation successfully avoided cleavage of ester linkages by borane reduction and base catalyzed hydrolysis. With the impetus of modular and efficient synthesis, we introduced olefin crossmetathesis (CM) in polysaccharide functionalization. Using Grubbs type catalyst, cellulose esters with terminally olefinic side chains were reacted with various CM partners including acrylic acid, acrylates and acrylamides to afford families of functionalized cellulose esters. Molar excesses of CM partners were used in order to suppress potential crosslinking caused by self-metathesis between terminally olefinic side chains. Amide CM partners can chelate with the ruthenium catalyst and cause low conversions in conventional solvents such as THF. While the inherent reactivity toward CM and tendency of acrylamides to chelate Ru is influenced by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides. We observed that the CM products are prone to crosslinking during storage, and found that the crosslinking is likely caused by free radical abstraction of gamma-hydrogen of the alpha,beta-unsaturation and subsequent recombination. We further demonstrated successful hydrogenation of these alpha,beta-unsaturated acids, esters, and amides, thereby eliminating the potential for radical-induced crosslinking during storage. The alpha,beta-unsaturation on CM products can cause crosslinking due to gamma-H abstraction and recombination if not reduced immediately after reaction. Instead of eliminating the double bond by hydrogenation, we described a method to make use of these reactive conjugated olefins by post-CM thiol-Michael addition. Under amine catalysis, different CM products and thiols were combined and reacted. Using proper thiols and catalyst, complete conversion can be achieved under mild reaction conditions. The combination of the two modular reactions creates versatile access to multi-functionalized cellulose derivatives. Compared with conventional reactions, these reactions enable click or click-like conjugation of functional groups onto cellulose backbone. The modular profile of the reactions enables clean and informative structure-property relationship studies for ASD. These approaches also provide opportunities for the synthesis of chemically and architecturally diverse cellulosic polymers that are otherwise difficult to access, opening doors for many other applications such as antimicrobial, antifouling, in vivo drug delivery, and bioconjugation. We believe that the cellulose functionalization approaches we pioneered can be expanded to the modification of other polysaccharides and polymers, and that these reactions will become useful tools in the toolbox of polymer/polysaccharide chemists.

  16. Phenyl 3,5-di-tert-butyl-2-hy­droxy­benzoate

    PubMed Central

    Carreño, Alexander; Preite, Marcelo; Manriquez, Juan Manuel; Vega, Andrés; Chavez, Ivonne

    2010-01-01

    The title mol­ecule, C21H26O3, has a six-membered planar carbon ring as the central core, substituted at position 1 with phen­oxy­carbonyl, at position 2 with hy­droxy and at positions 3 and 5 with tert-butyl groups. The structure shows two independent but very similar mol­ecules within the asymmetric unit. For both independent mol­ecules, the ester carboxyl­ate group is coplanar with the central core, as reflected by the small C—C—O—C torsion angles [179.95 (17) and 173.70 (17)°]. In contrast, the phenyl substituent is almost perpendicular to the carboxyl­ate –CO2 fragment, as reflected by C—O—C—C torsion angles, ranging from 74 to 80°. The coplanarity between the central aromatic ring and the ester carboxyl­ate –CO2– group allows the formation of an intra­molecular hydrogen bond, with O⋯O distances of 2.563 (2) and 2.604 (2) Å. PMID:21589569

  17. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C. Judson; Poole, Loree J.

    1995-01-01

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.

  18. Structure Property Relationships of Carboxylic Acid Isosteres.

    PubMed

    Lassalas, Pierrik; Gay, Bryant; Lasfargeas, Caroline; James, Michael J; Tran, Van; Vijayendran, Krishna G; Brunden, Kurt R; Kozlowski, Marisa C; Thomas, Craig J; Smith, Amos B; Huryn, Donna M; Ballatore, Carlo

    2016-04-14

    The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure-property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group.

  19. Direct Production of Propene from the Thermolysis of Poly(β-hydroxybutyrate) (PHB). An Experimental and DFT Investigation.

    PubMed

    Clark, Jared M; Pilath, Heidi M; Mittal, Ashutosh; Michener, William E; Robichaud, David J; Johnson, David K

    2016-01-28

    We demonstrate a synthetic route toward the production of propene directly from poly(β-hydroxybutyrate) (PHB), the most common of a wide range of high-molecular-mass microbial polyhydroxyalkanoates. Propene, a major commercial hydrocarbon, was obtained from the depolymerization of PHB and subsequent decarboxylation of the crotonic acid monomer in good yields (up to 75 mol %). The energetics of PHB depolymerization and the gas-phase decarboxylation of crotonic acid were also studied using density functional theory (DFT). The average activation energy for the cleavage of the R'C(O)O-R linkage is calculated to be 163.9 ± 7.0 kJ mol(-1). Intramolecular, autoacceleration effects regarding the depolymerization of PHB, as suggested in some literature accounts, arising from the formation of crotonyl and carboxyl functional groups in the products could not be confirmed by the results of DFT and microkinetic modeling. DFT results, however, suggest that intermolecular catalysis involving terminal carboxyl groups may accelerate PHB depolymerization. Activation energies for this process were estimated to be about 20 kJ mol(-1) lower than that for the noncatalyzed ester cleavage, 144.3 ± 6.4 kJ mol(-1). DFT calculations predict the decarboxylation of crotonic acid to follow second-order kinetics with an activation energy of 147.5 ± 6.3 kJ mol(-1), consistent with that measured experimentally, 146.9 kJ mol(-1). Microkinetic modeling of the PHB to propene overall reaction predicts decarboxylation of crotonic acid to be the rate-limiting step, consistent with experimental observations. The results also indicate that improvements made to enhance the isomerization of crotonic acid to vinylacetic acid will improve the direct conversion of PHB to propene.

  20. Mode of oxygen and carbon dioxide action on strawberry ester biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, D.; Zhou, L.; Kader, A.A.

    1994-09-01

    Chandler strawberries (Fragaria ananassa Duck.) were kept in air, 0.25% O[sub 2], 21% O[sub 2] + 50% CO[sub 2], or 0.25 O[sub 2] + 50% CO[sub 2] (balance N[sub 2]) at 5 C for 1 to 7 days to study the effects of controlled atmospheres (CAs) on volatiles and fermentation enzymes. Concentrations of acetaldehyde, ethanol, ethyl acetate, and ethyl butyrate were greatly increased, while concentrations of isopropyl acetate, propyl acetate, and butyl acetate were reduced by the three CA treatments compared to those of air-control fruit. The CA treatments enhanced activities of pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) butmore » slightly decreased activity of alcohol acetyltransferase (AAT). The results indicate that the enhanced PDC and ADH activities by CA treatments cause ethanol accumulation, which in turn drives the biosynthesis of ethyl esters. The increased ethanol concentration also competes with other alcohols for carboxyl groups for esterification reactions. The reduced AAT activity and limited availability of carboxyl groups due to ethanol competition decrease production of other acetate esters.« less

  1. Estimation of hydrolysis rate constants for carbamates ...

    EPA Pesticide Factsheets

    Cheminformatics based tools, such as the Chemical Transformation Simulator under development in EPA’s Office of Research and Development, are being increasingly used to evaluate chemicals for their potential to degrade in the environment or be transformed through metabolism. Hydrolysis represents a major environmental degradation pathway; unfortunately, only a small fraction of hydrolysis rates for about 85,000 chemicals on the Toxic Substances Control Act (TSCA) inventory are in public domain, making it critical to develop in silico approaches to estimate hydrolysis rate constants. In this presentation, we compare three complementary approaches to estimate hydrolysis rates for carbamates, an important chemical class widely used in agriculture as pesticides, herbicides and fungicides. Fragment-based Quantitative Structure Activity Relationships (QSARs) using Hammett-Taft sigma constants are widely published and implemented for relatively simple functional groups such as carboxylic acid esters, phthalate esters, and organophosphate esters, and we extend these to carbamates. We also develop a pKa based model and a quantitative structure property relationship (QSPR) model, and evaluate them against measured rate constants using R square and root mean square (RMS) error. Our work shows that for our relatively small sample size of carbamates, a Hammett-Taft based fragment model performs best, followed by a pKa and a QSPR model. This presentation compares three comp

  2. Specific lysine labeling by 18OH- during alkaline cleavage of the alpha-1-antitrypsin-trypsin complex.

    PubMed Central

    Cohen, A B; Gruenke, L D; Craig, J C; Geczy, D

    1977-01-01

    alpha-1-Antitrypsin is a serum protein that inhibits many proteolytic enzymes. Recently, it was suggested that the alpha-1-antitrypsin-trypsin complex is an acyl ester analogous to the acyl intermediate that forms between trypsin and its substrates. In previous work we showed that the alpha-1-antitrypsin-trypsin complex can be split at high pH, releasing a component of alpha-1-antitrypsin. This component had a new carboxyl-terminal lysine, and it had lost a peptide of about 4000 daltons. In order to determine whether the alpha-1-antitrypsin is bound to trypsin through the new carboxy-terminal lysine, as would be expected if the above hypothesis is correct, we split the complex in the presence of 18OH-. When the new carboxy-terminal lysine was cleaved with carboxypeptidase B, singly labeled, doubly labeled, and unlabeled lysine were recovered. These data support the hypothesis that the alpha-1-antitrypsin-trypsin complex is an acyl ester or a tetrahedral precursor that is transformed into the acyl ester form at high pH. If other enzymes are bound by a similar mechanism, the methods used may be useful in determining which amino acids on alpha-1-antitrypsin bind covalently to each enzyme. PMID:303770

  3. Approaches for the Analysis of Chlorinated Lipids

    PubMed Central

    Wang, Wen-yi; Albert, Carolyn J.; Ford, David A.

    2013-01-01

    Leukocytes are key cellular mediators of human diseases through their role in inflammation. Identifying unique molecules produced by leukocytes may provide new biomarkers and mechanistic insights into the role of leukocytes in disease. Chlorinated lipids are generated as a result of myeloperoxidase-containing leukocyte-derived hypochlorous acid targeting the vinyl ether bond of plasmalogens. The initial product of this reaction is α-chlorofatty aldehyde. α -Chlorofatty aldehyde is both oxidized to α-chlorofatty acid and reduced to α-chlorofatty alcohol by cellular metabolism. This review focuses on the separation techniques and quantitative analysis for these chlorinated lipids. For α-chlorofatty acid the negative charge of carboxylic acids is exploited to detect the chlorinated lipid species of these acids by electrospray ionization mass spectrometry in the negative ion mode. In contrast, α-chlorofatty aldehyde and α-chlorofatty alcohol are converted to pentafluorobenzyl oxime and pentafluorobenzoyl ester derivatives, which are detected by negative ion-chemical ionization mass spectrometry. These two detection methods coupled with the use of stable isotope internal standards and either liquid chromatography or gas chromatography provide highly sensitive analytical approaches to measure these novel lipids. PMID:24056259

  4. Synthesis and application of a triazene-ferrocene modifier for immobilization and characterization of oligonucleotides at electrodes.

    PubMed

    Hansen, Majken N; Farjami, Elaheh; Kristiansen, Martin; Clima, Lilia; Pedersen, Steen Uttrup; Daasbjerg, Kim; Ferapontova, Elena E; Gothelf, Kurt V

    2010-04-16

    A new DNA modifier containing triazene, ferrocene, and activated ester functionalities was synthesized and applied for electrochemical grafting and characterization of DNA at glassy carbon (GC) and gold electrodes. The modifier was synthesized from ferrocenecarboxylic acid by attaching a phenyltriazene derivative to one of the ferrocene Cp rings, while the other Cp ring containing the carboxylic acid was converted to an activated ester. The modifier was conjugated to an amine-modified DNA sequence. For immobilization of the conjugate at Au or GC electrodes, the triazene was activated by dimethyl sulfate for release of the diazonium salt. The salt was reductively converted to the aryl radical which was readily immobilized at the surface. DNA grafted onto electrodes exhibited remarkable hybridization properties, as detected through a reversible shift in the redox potential of the Fc redox label upon repeated hybridization/denaturation procedures with a complementary target DNA sequence. By using a methylene blue (MB) labeled target DNA sequence the hybridization could also be followed through the MB redox potential. Electrochemical studies demonstrated that grafting through the triazene modifier can successfully compete with existing protocols for DNA immobilization through the commonly used alkanethiol linkers and diazonium salts. Furthermore, the triazene modifier provides a practical one-step immobilization procedure.

  5. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glyceryl-lacto esters of fatty acids. 172.852... HUMAN CONSUMPTION Multipurpose Additives § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid esters of mono- and diglycerides) may be safely used in food in...

  6. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  7. Production of carboxylic acid and salt co-products

    DOEpatents

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  8. Acid-base-controlled stereoselective metalation of overhanging carboxylic acid porphyrins: consequences for the formation of heterobimetallic complexes.

    PubMed

    Le Gac, Stéphane; Najjari, Btissam; Dorcet, Vincent; Roisnel, Thierry; Fusaro, Luca; Luhmer, Michel; Furet, Eric; Halet, Jean-François; Boitrel, Bernard

    2013-08-12

    Overhanging carboxylic acid porphyrins have revealed promising ditopic ligands offering a new entry in the field of supramolecular coordination chemistry of porphyrinoids. Notably, the adjunction of a so-called hanging-atop (HAT) Pb(II) cation to regular Pb(II) porphyrin complexes allowed a stereoselective incorporation of the N-core bound cation, and an allosterically controlled Newton's cradle-like motion of the two Pb(II) ions also emerged from such bimetallic complexes. In this contribution, we have extended this work to other ligands and metal ions, aiming at understanding the parameters that control the HAT Pb(II) coordination. The nature of the N-core bound metal ion (Zn(II), Cd(II)), the influence of the deprotonation state of the overhanging COOH group and the presence of a neutral ligand on the opposite side (exogenous or intramolecular), have been examined through (1)H NMR spectroscopic experiments with the help of radiocrystallographic structures and DFT calculations. Single and bis-strap ligands have been considered. They all incorporate a COOH group hung over the N-core on one side. For the bis-strap ligands, either an ester or an amide group has been introduced on the other side. In the presence of a base, the mononuclear Zn(II) or Cd(II) complexes incorporate the carbonyl of the overhanging carboxylate as apical ligand, decreasing its availability for the binding of a HAT Pb(II). An allosteric effector (e.g., 4-dimethylaminopyridine (DMAP), in the case of a single-strap ligand) or an intramolecular ligand (e.g., an amide group), strong enough to compete with the carbonyl of the hung COO(-), is required to switch the N-core bound cation to the opposite side with concomitant release of the COO(-), thereby allowing HAT Pb(II) complexation. In the absence of a base, Zn(II) or Cd(II) binds preferentially the carbonyl of the intramolecular ester or amide groups in apical position rather than that of the COOH. This better preorganization, with the overhanging COOH fully available, is responsible for a stronger binding of the HAT Pb(II). Thus, either allosteric or acid-base control is achieved through stereoselective metalation of Zn(II) or Cd(II). In the latter case, according to the deprotonation state of the COOH group, the best electron-donating ligand is located on one or the other side of the porphyrin (COO(-)>CONHR>COOR>COOH): the lower affinity of COOH for Zn(II) and Cd(II), the higher for a HAT Pb(II). These insights provide new opportunities for the elaboration of innovative bimetallic molecular switches. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyglycerol esters of fatty acids. 172.854... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including the decaglycerol esters, may be safely used in food in...

  10. Cytochrome P-450 isoforms involved in carboxylic acid ester cleavage of Hantzsch pyridine ester of pranidipine.

    PubMed

    Kudo, S; Okumura, H; Miyamoto, G; Ishizaki, T

    1999-02-01

    Cytochrome P-450 (CYP) isoforms responsible for the cleavage of Hantzsch pyridine ester at the 3-position of pranidipine were studied in vitro using cDNA-expressed human CYP enzymes. CYP1A1, 1A2, 2D6, and 3A4 cleaved the ester with a catalytic activity of 5.5, 0. 93, 13.1, and 22.4 nmol/30 min/nmol P-450, respectively. CYP2A6, 2B6, 2C8, 2C9, 2C19, and 2E1 were not involved in the de-esterification. The Km and Vmax values for the de-esterification were 11.8 microM and 0.47 nmol/min/nmol P-450 in the CYP2D6-catalyzed reaction and 8. 7 microM and 0.84 nmol/min/nmol P-450 in the CYP3A4-catalyzed reaction. The intrinsic clearance (Vmax/Km) of the de-esterification by CYP3A4 was 2-fold greater than that by CYP2D6. Quinidine almost completely inhibited the CYP2D6-mediated de-esterification at the concentration of 1 x 10(-6) M. Ketoconazole and troleandomycin inhibited the CYP3A4-mediated reaction in a dose-related manner. The results indicate that although the multiple CYP isoforms can catalyze the de-esterification, CYP3A4 and 2D6 are the major isoforms.

  11. Preclinical studies of steroid-linked nitrosoureas in murine pancreatic adenocarcinoma PANO2.

    PubMed

    Papageorgiou, A; Lialiaris, Th; Stergiou, E; Stergiou, I; Tsigris, C; Kourti, A; Geromichalos, G; Stravoravdi, P; Trafalis, D; Athanassiou, A E; Pitsas, A; Camoutsis, Ch

    2008-01-01

    In earlier studies, this laboratory carried out research on the synthesis and anticancer evaluation of hybrid compounds, which combine two molecules in one such as homo-aza-steroidal esters (HASE) of carboxylic derivatives of N, N-bis (2-chloroethyl) aniline. In this combination, steroidal hormones are employed as carriers for transporting the alkylating agents to specific targeted tissues. Aiming to continue our research, we used alkylating agents, as nitrosoureas, instead of nitrogen mustards. In this work the N-[N- (2-chloroethyl)-N-nitroso-carbomoyl]-L-alanine (CNC-ala) has been used and was bound to 7 newly synthesized modified steroidal esters (carrier molecule) of nitrosourea and the hybrid molecules were tested for antitumor activity against PANO2 murine pancreatic adenocarcinoma. PANO2 adenocarcinoma was used in this study. C57Bl mice were used for chemotherapy evaluation. The activity was assessed from the inhibition of tumor growth and the oncostatic parameter T/C %. The antitumor activity displayed by 7 hybrid steroidal esters of nitrosourea was quite interesting. It was able to discern 4 of 7 compounds that exhibited considerable antitumor activity, increasing the lifespan of the tumor-bearing mice by inhibiting the tumor growth. The comparative study of 7 newly synthesized hybrid steroidal esters of nitrosourea shows that the antitumor effects of compound 7, which has an enlarged (7 carbon atoms) A-lactamic ring and nitrosourea esterified at the position 17, which seems to be the most appropriate for the connection of a DNA cross-linking amino acid derivative is superior.

  12. Hybrid nanocomposites of CdSe nanocrystals distributed in complexing thiophene-based copolymers.

    PubMed

    Aldakov, Dmitry; Jiu, Tonggang; Zagorska, Malgorzata; de Bettignies, Rémi; Jouneau, Pierre-Henri; Pron, Adam; Chandezon, Frédéric

    2010-07-21

    Two types of conjugated polymers were prepared with the goal to blend them with rod-like CdSe nanocrystals. The polymers of the first type were synthesized through copolymerization of 3-octylthiophene and 3-methylene-ethylcarboxylate-thiophene to give polythiophene with solubilizing alkyl groups and methylene ester functional groups (PE series). Post-polymerization hydrolysis of the ester type polymers yielded acid-type ones (PA series). Photoluminescence (PL) quenching in these polymers induced by their titration with nanocrystals solution was chosen as a measure of the polymer-nanocrystal interactions. PL of polyacids turned out to be more efficiently quenched as compared to the case of polymers with ester groups which was interpreted as an indication of better electronic communication between the hybrid components. Infrared (IR) spectroscopy confirmed efficient coordination of the carboxylic groups to CdSe. Voltammetric studies combined with UV-vis spectroelectrochemistry enabled the determination of energy levels alignment of the molecular composite components which turned out to be of staggered type-appropriate for photovoltaic applications. The obtained blends of polyacids with CdSe nanocrystals, when studied by transmission electron microscopy (TEM), revealed the presence of an interpenetrating network in which nanorods were homogeneously distributed within the polymer matrix without any indication of agglomerates formation both on the film surface and in the cross-section. Blends with polymers containing ester groups were less homogeneous which could be explained by weaker polymer-nanocrystals interactions. Photovoltaic cells based on these hybrid materials are also discussed.

  13. Localized conformational interrogation of antibody and antibody-drug conjugates by site-specific carboxyl group footprinting.

    PubMed

    Pan, Lucy Yan; Salas-Solano, Oscar; Valliere-Douglass, John F

    Establishing and maintaining conformational integrity of monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) during development and manufacturing is critical for ensuring their clinical efficacy. As presented here, we applied site-specific carboxyl group footprinting (CGF) for localized conformational interrogation of mAbs. The approach relies on covalent labeling that introduces glycine ethyl ester tags onto solvent-accessible side chains of protein carboxylates. Peptide mapping is used to monitor the labeling kinetics of carboxyl residues and the labeling kinetics reflects the conformation or solvent-accessibility of side chains. Our results for two case studies are shown here. The first study was aimed at defining the conformational changes of mAbs induced by deglycosylation. We found that two residues in C H 2 domain (D268 and E297) show significantly enhanced side chain accessibility upon deglycosylation. This site-specific result highlighted the advantage of monitoring the labeling kinetics at the amino acid level as opposed to the peptide level, which would result in averaging out of highly localized conformational differences. The second study was designed to assess conformational effects brought on by conjugation of mAbs with drug-linkers. All 59 monitored carboxyl residues displayed similar solvent-accessibility between the ADC and mAb under native conditions, which suggests the ADC and mAb share similar side chain conformation. The findings are well correlated and complementary with results from other assays. This work illustrated that site-specific CGF is capable of pinpointing local conformational changes in mAbs or ADCs that might arise during development and manufacturing. The methodology can be readily implemented within the industry to provide comprehensive conformational assessment of these molecules.

  14. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions

    NASA Astrophysics Data System (ADS)

    Odio, Oscar F.; Lartundo-Rojas, Luis; Palacios, Elia Guadalupe; Martínez, Ricardo; Reguera, Edilso

    2016-11-01

    We report a novel strategy for the synthesis of magnetic nano-platforms containing free thiol groups. It first involves the synthesis of a poly(acrylic acid) copolymer containing disulfide bridges between the linear chains through di-ester linkages, followed by the anchoring of this new ligand to magnetite nanoparticles using a ligand exchange reaction. Finally, free sbnd SH groups are obtained by treating the resulting disulfide-functionalized magnetic nano-system with tributyl phosphine as reducing agent. The characterization of the resulting 17 nm nanoparticles (Fe3O4@PAA-HEDred) by FTIR and TGA confirms the attachment of the copolymer through iron carboxylates. XRD, TEM and magnetic measurements indicate an increase in the inorganic core diameter and the occurrence of strong magnetic inter-particle interactions during the exchange reaction, although coercitivity and remanence drop to near zero at room temperature. Afterwards, Fe3O4@PAA-HEDred nanoparticles were tested as sorbent for Pb2+ and Cd2+ cations in aqueous media. XPS measurements were performed in order to unravel the role of both carboxyl and thiol functions in the adsorption process. For the sake of comparison, the same study was performed using bare Fe3O4 nanoparticles and a nanosystem with disulfide groups (Fe3O4@DMSA). The joint analysis of the Pb 4f, Cd 3d, Fe 2p and S 2p high resolution spectra for the nanostructured materials indicates that metal-sulfur interactions are dominant if free sbnd SH groups are present, but if not, the main adsorption route entails metal-carboxyl interactions. Even in presence of unbound thiol moieties, carboxyl groups participate due to favoured steric availability.

  15. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyglycerol esters of fatty acids. 172.854 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including the decaglycerol esters, may be safely used in food in...

  16. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction...

  17. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction...

  18. Heterofibrins: inhibitors of lipid droplet formation from a deep-water southern Australian marine sponge, Spongia (Heterofibria) sp.

    PubMed

    Salim, Angela A; Rae, James; Fontaine, Frank; Conte, Melissa M; Khalil, Zeinab; Martin, Sally; Parton, Robert G; Capon, Robert J

    2010-07-21

    A bioassay-guided search for inhibitors of lipid droplet formation in a deep-water southern Australian marine sponge, Spongia (Heterofibria) sp., yielded six new compounds, fatty acids heterofibrins A1 (1) and B1 (4), along with related monolactyl and dilactyl esters, heterofibrins A2 (2), B2 (5), A3 (3) and B3 (6). Heterofibrin structures were assigned on the basis of detailed spectroscopic analysis, with comparison to chiral synthetic model compounds. All heterofibrins possess a diyne-ene moiety, while the monolactyl and dilactyl moiety featured in selected heterofibrins is unprecedented in the natural products literature. SAR by co-metabolite studies on the heterofibrins confirmed them to be non-cytotoxic, with the carboxylic acids 1 and 4 inhibiting lipid droplet formation in A431 fibroblast cell lines. Such inhibitors have potential application in the management of obesity, diabetes and atherosclerosis

  19. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylic esters of fatty acids. 172.848 Section 172... CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids... prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid...

  20. Volatile compounds and sensory properties of Montasio cheese made from the milk of Simmental cows grazing on alpine pastures.

    PubMed

    Bovolenta, S; Romanzin, A; Corazzin, M; Spanghero, M; Aprea, E; Gasperi, F; Piasentier, E

    2014-12-01

    The aim of this study was to analyze the volatile compounds, physicochemical characteristics, and sensory properties of Montasio, a semicooked pressed cheese, produced from the milk of the dual-purpose Italian Simmental cows grazing on alpine pastures. A total of 72 cows grazing on 2 pastures, which differed in botanical composition (nutrient-rich pasture vs. nutrient-poor pasture), received 2 different levels of supplementation (3.0 vs 1.5 kg/head per day). The experimental cheeses were produced from whole, raw milk and ripened for 60 d. Sixty-one volatile compounds, including alcohols (11), aldehydes (6), ketones (10), lactones (2), esters (6), hydrocarbons (3), carboxylic acids (6), phenolic compounds (4), monoterpenes (7), sesquiterpenes (1), sulfur compounds (4), and amines (1), were detected. The main families in terms of relative weight appeared to be carboxylic acids, esters, and alcohols. A panel of trained assessors described the experimental cheeses as having an intense color; small and evenly distributed eyes; an intense odor and flavor of milk-sour, milk, and cow; and a tender and creamy texture. The pasture type affected the volatile fraction, particularly ketones, phenolic compounds, and terpenes, which are overall higher in nutrient-poor pastures. A slight effect on the sensory analyses, in particular the effect of the cow attribute on odor and flavor, was perceived by the panelists. The cheeses produced on nutrient-rich pasture had higher b* (yellowness) index. These results were consistent with the color evaluation of the sensory panel. In addition, the pasture affected some textural attributes (adhesivity, creaminess, and granules) as perceived by the panelists. Concentrate supplementation, which is required to meet the feeding requirements of grazing cows, had no clear effect on either the volatile compounds or the sensory properties of the cheeses. Thus, at least within levels of integration adopted, it is expected not to alter the organoleptic characteristics of this product. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Polyfluoroalkyl phosphate esters and perfluoroalkyl carboxylic acids in target food samples and packaging--method development and screening.

    PubMed

    Gebbink, Wouter A; Ullah, Shahid; Sandblom, Oskar; Berger, Urs

    2013-11-01

    Polyfluoroalkyl phosphate mono-, di-, and tri-esters (mono-, di-, and triPAPs) are used to water- and grease-proof food packaging materials, and these chemicals are known precursors to perfluoroalkyl carboxylic acids (PFCAs). Existing analytical methods for PAPs lack sample clean-up steps in the sample preparation. In the present study, a method based on ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC/MS/MS) was developed and optimized for the analysis of mono-, di-, and triPAPs, including a clean-up step for the raw extracts. The method was applied to food samples and their PAP-containing packaging materials. The optimized UPLC/MS/MS method enabled the separation and identification of a total of 4 monoPAPs, 16 diPAPs, and 7 triPAPs in the technical mixture Zonyl®-RP. For sample clean-up, weak anion exchange solid phase extraction columns were tested. PAPs standard solutions spiked onto the columns were separated into a fraction containing neutral compounds (triPAPs) and a fraction with ionic compounds (mono- and diPAPs) with recoveries between 72-110%. Method limits of quantification for food samples were in the sub to low picogram per gram range. For quantitative analysis of PAPs, compound-specific labeled internal standards showed to be essential as sorption and matrix effects were observed. Mono-, di-, and/or triPAPs were detected in all food packaging materials obtained from the Swedish market. Up to nine diPAPs were detected in the food samples, with the 6:2/6:2 and 6:2/8:2 diPAPs as the dominant compounds. DiPAP concentrations in the food samples ranged from 0.9 to 36 pg/g, which was comparable to individual PFCA concentrations in the same samples. Consumption of food packed in PAP-containing materials could be an indirect source of human exposure to PFCAs.

  2. Molecular resolution and fragmentation of fulvic acid by electrospray ionization/multistage tandem mass spectrometry

    USGS Publications Warehouse

    Leenheer, J.A.; Rostad, C.E.; Gates, Paul M.; Furlong, E.T.; Ferrer, I.

    2001-01-01

    Molecular weight distributions of fulvic acid from the Suwannee River, Georgia, were investigated by electrospray ionization/quadrupole mass spectrometry (ESI/QMS), and fragmentation pathways of specific fulvic acid masses were investigated by electrospray ionization/ion trap multistage tandem mass spectrometry (ESI/MST/MS). ESI/QMS studies of the free acid form of low molecular weight poly(carboxylic acid) standards in 75% methanol/25% water mobile phase found that negative ion detection gave the optimum generation of parent ions that can be used for molecular weight determinations. However, experiments with poly(acrylic acid) mixtures and specific high molecular weight standards found multiply charged negative ions that gave a low bias to molecular mass distributions. The number of negative charges on a molecule is dependent on the distance between charges. ESI/MST/MS of model compounds found characteristic water loss from alcohol dehydration and anhydride formation, as well as CO2 loss from decarboxylation, and CO loss from ester structures. Application of these fragmentation pathways to specific masses of fulvic acid isolated and fragmented by ESI/MST/MS is indicative of specific structures that can serve as a basis for future structural confirmation after these hypothesized structures are synthesized.

  3. Structural Modifications to Tetrahydropyridine-3-Carboxylate Esters en route to the Discovery of M5-Preferring Muscarinic Receptor Orthosteric Antagonists

    PubMed Central

    Zheng, Guangrong; Smith, Andrew M.; Huang, Xiaoqin; Subramanian, Karunai L.; Siripurapu, Kiran B.; Deaciuc, Agripina; Zhan, Chang-Guo; Dwoskin, Linda P.

    2013-01-01

    The M5 muscarinic acetylcholine receptor is suggested to be a potential pharmacotherapeutic target for the treatment of drug abuse. We describe herein the discovery of a series of M5-preferring orthosteric antagonists based on the scaffold of 1,2,5,6-tetrahydropyridine-3-carboxylic acid. Compound 56, the most selective compound in this series, possesses an 11-fold selectivity for the M5 over M1 receptor, and shows little activity at M2–M4. This compound, although exhibiting modest affinity (Ki = 2.24 μM) for the [3H]N-methylscopolamine binding site on the M5 receptor, is potent (IC50 = 0.45 nM) in inhibiting oxotremorine-evoked [3H]DA release from rat striatal slices. Further, a homology model of human M5 receptor based on the crystal structure of the rat M3 receptor was constructed, and docking studies of compounds 28 and 56 were performed in an attempt to understand the possible binding mode of these novel analogues to the receptor. PMID:23379472

  4. Synthesis and structural and conformational study of some esters derived from 8-β-hydroxy-3-phenethyl-3- azabicyclico [3.2.11] octan-8-α-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Diez, M.; Izquierdo, M. L.; Arias, M. S.; Galvez, E.; Matesanz, E.; Martinez-Ripoll, M.

    1991-09-01

    A series of 8-β-hydroxy-8-α-alkoxycarbonyl- N-phenethyl-3-azabicyclo [3.2.1.]octane derivatives have been synthesized and studied by IR, 1H and 13C NMR spectroscopy, and the crystal structure of ethyl-8-β-hydroxy-3-phenethyl-3-azabicyclo [3.2.1] octan-8-α-carboxylate ( Va) has been determined by X-ray diffraction. In deuterochloroform and deuterobenzene the cyclopentane and piperidine rings of the title compounds show an envelope conformation flattened at C8 and a distorted chair conformation puckered at C8 and flattened at N3, respectively, with the N-substituent in an equatorial position. These results are in close agreement with that found for compound Va in the crystalline state. By comparing the NMR and X-ray parameters of the title compounds with those of the corresponding 8-α-hydroxy-8β-alkoxycarbonyl- N-phenethyl-3- azabicyclo [3.2.1] octane epimers and 3-phenethyl-3-azabicyclo [3.2.1] octan-8-α-(andβ)ol, several stereoelectronic effects have been deduced.

  5. 40 CFR 721.10550 - Rare earth salt of a carboxylic acid (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Rare earth salt of a carboxylic acid... Specific Chemical Substances § 721.10550 Rare earth salt of a carboxylic acid (generic). (a) Chemical... as rare earth salt of a carboxylic acid (PMN P-05-324) is subject to reporting under this section for...

  6. 40 CFR 721.10550 - Rare earth salt of a carboxylic acid (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Rare earth salt of a carboxylic acid... Specific Chemical Substances § 721.10550 Rare earth salt of a carboxylic acid (generic). (a) Chemical... as rare earth salt of a carboxylic acid (PMN P-05-324) is subject to reporting under this section for...

  7. Functional Chemical Groups that May Likely Become a Source for the Synthesis of Novel Central Nervous System (CNS) Acting Drugs.

    PubMed

    Saganuwan, Saganuwan A

    2017-01-01

    Central Nervous System (CNS) disorders are on increase perhaps due to genetic, enviromental, social and dietetic factors. Unfortunately, a large number of CNS drugs have adverse effects such as addiction, tolerance, psychological and physical dependence. In view of this, literature search was carried out with a view to identify functional chemical groups that may serve as lead molecules for synthesis of compounds that may have CNS activity. The search revealed that heterocycles that have heteroatoms such as nitrogen (N), sulphur (S) and oxygen (O) form the largest class of organic compounds. They replace carbon in a benzene ring to form pyridine. Compounds with furan, thiophene, pyrrole, pyridine, azole, imidazole, indole, purine, pyrimidine, esters, carboxylic acid, aldehyde, pyrylium, pyrone, pyrodine, barbituric acid, barbiturate, quinoline, quinolone, isoquinolone, coumarin, alkylpyridine, picoline, piperidine, diazine, carboxamide, flavonoid glycoside, oxindole, aminophenol, benzimidazole, benzoxazole, benzothiazole, and chromone chemical groups among others may have CNS effects ranging from depression passing through euphoria to convulsion. Examples of the compounds with the functional groups include but not limited to coal tar, pyridostigmine, pralidoxime, quinine, mefloquine, pyrilamine, pyronaridine, ciprofloxacin and piroxicam. A number of them can undergo keto-enol tautomerism. Chiral amines may be used for derivation of chiral carboxylic acids which are components of tautomers. Some tautomers may cause parkinsonism and Stevens Johnson syndrome. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles

    PubMed Central

    Russell, Lynn M.; Bahadur, Ranjit; Ziemann, Paul J.

    2011-01-01

    Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA. PMID:21317360

  9. FT-IR quantification of the carbonyl functional group in aqueous-phase secondary organic aerosol from phenols

    NASA Astrophysics Data System (ADS)

    George, Kathryn M.; Ruthenburg, Travis C.; Smith, Jeremy; Yu, Lu; Zhang, Qi; Anastasio, Cort; Dillner, Ann M.

    2015-01-01

    Recent findings suggest that secondary organic aerosols (SOA) formed from aqueous-phase reactions of some organic species, including phenols, contribute significantly to particulate mass in the atmosphere. In this study, we employ a Fourier transform infrared (FT-IR) spectroscopic technique to identify and quantify the functional group makeup of phenolic SOA. Solutions containing an oxidant (hydroxyl radical or 3,4-dimethoxybenzaldehyde) and either one phenol (phenol, guaiacol, or syringol) or a mixture of phenols mimicking softwood or hardwood emissions were illuminated to make SOA, atomized, and collected on a filter. We produced laboratory standards of relevant organic compounds in order to develop calibrations for four functional groups: carbonyls (Cdbnd O), saturated C-H, unsaturated C-H and O-H. We analyzed the SOA samples with transmission FT-IR to identify and determine the amounts of the four functional groups. The carbonyl functional group accounts for 3-12% of the SOA sample mass in single phenolic SOA samples and 9-14% of the SOA sample mass in mixture samples. No carbonyl functional groups are present in the initial reactants. Varying amounts of each of the other functional groups are observed. Comparing carbonyls measured by FT-IR (which could include aldehydes, ketones, esters, and carboxylic acids) with eight small carboxylic acids measured by ion chromatography indicates that the acids only account for an average of 20% of the total carbonyl reported by FT-IR.

  10. Determination of carboxyl groups in wood fibers by headspace gas chromatography

    Treesearch

    X.-S. Chai; Q.X. Hou; J.Y. Zhu; S.-L. Chen; S.F. Wang; L. Lucia

    2003-01-01

    The phase reaction conversion (PRC) headspace gas chromatographic (HSGC) technique was employed to develop a method for the determination of the content of carboxyl groups in wood fibers. Acid treatment of the wood fibers using hydrochloric was applied to convert carboxyl groups to carboxyl acids. Bicarbonate solution is then used to react with carboxyl acids on the...

  11. Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study.

    PubMed

    Sárosi, Menyhárt-Botond

    2018-06-05

    Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.

  12. Formation and reactions of negative ions relevant to chemical ionization mass spectrometry. I. Cl mass spectra of organic compounds produced by F− reactions

    PubMed Central

    Tiernan, T. O.; Chang, C.; Cheng, C. C.

    1980-01-01

    A systematic study of the negative-ion chemical ionization mass spectra produced by the reaction of F− with a wide variety of organic compounds has been accomplished. A time-of-flight mass spectrometer fitted with a modified high pressure ion source was employed for these experiments. The F− reagent ion was generated from CF3H or NF3, typically at an ion source pressure of 100 μm. In pure NF3, F− is the major ion formed and constitutes more than 90% of the total ion intensity. While F− is also the major primary ion formed in pure CF3H, it undergoes rapid ion-molecule reactions at elevated source pressures, yielding (HF)nF− (n = 1−3) ions, which makes CF3H less suitable as a chemical ionization reagent gas. Among the organic compounds investigated were carboxylic acids, ketones, aldehydes, esters, alcohols, phenols, halides, nitriles, nitrobenzene, ethers, amines and hydrocarbons. An intense (M − 1)− ion was observed in the F− chemical ionization mass spectra of carboxylic acids, ketones, aldehydes and phenols. Alcohols yield only (M + F)− ions upon reaction with F−. A weaker (M + F)− ion was also detected in the F− chemical ionization spectra of carboxylic acids, aldehydes, ketones and nitriles. The F− chemical ionization mass spectra of esters, halides, nitriles, nitrobenzene and ethers are characterized primarily by the ions, RCOO−, X−, CN−, NO2−, and OR−, respectively. In addition, esters show a very weak (M − 1)− ion (except formates). In the F− chemical ionization spectra of some aliphatic alkanes and o-xylene, a very weak (M + F)− ion was observed. Amines and aliphatic alkenes exhibit only insignificant fragment ions under similar conditions, while aromatic hydrocarbons, such as benzene and toluene are not reactive at all with the F− ion. The mechanisms of the various reactions mentioned are discussed, and several experimental complications are noted. In still other studies, the effects of varying several experimental parameters, including source pressure, relative proportions of the reagent and analyte, and other ion source parameters, on the observed chemical ionization mass spectra were also investigated. In a mixture of NF3 and n-butanol, for example, the ratio of the intensities of the ions characteristic of the alcohol to that of the (HF)nF− ion was found to decrease with increasing sample pressure, with increasing NF3 pressure, and with increasing electron energy. No significant effects on the spectra were observed to result from variation of the source repeller field or the source temperature. The addition of argon to the source as a potential moderator did not alter the F− chemical ionization spectrum significantly, but the use of oxygen appears to inhibit formation of the (HF)nF− cluster ion. The advantages of using F− as a chemical ionization reagent are discussed, and comparisons are made with other reagent ions. PMID:7428746

  13. A novel fluorescence sensor based on covalent immobilization of 3-amino-9-ethylcarbazole by using silver nanoparticles as bridges and carriers.

    PubMed

    Tan, Shu-Zhen; Hu, Yan-Jun; Gong, Fu-Chun; Cao, Zhong; Xia, Jiao-Yun; Zhang, Ling

    2009-03-23

    A novel technique of covalent immobilization of indicator dyes in the preparation of fluorescence sensors is developed. Silver nanoparticles are used as bridges and carriers for anchoring indicator dyes. 3-amino-9-ethylcarbazole (AEC) was employed as an example of indicator dyes with terminal amino groups and covalently immobilized onto the outmost surface of a quartz glass slide. First, the glass slide was functionalized by (3-mercaptopropyl) trimethoxysilane (MPS) to form a thiol-terminated self-assembled monolayer, where silver nanoparticles were strongly bound to the surface through covalent bonding. Then, 16-mercaptohexadecanoic acid (MHDA) was self-assembled to bring carboxylic groups onto the surface of silver nanoparticles. A further activation by using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) converted the carboxylic groups into succinimide esters. Finally, the active succinimide esters on the surface of silver nanoparticles were reacted with AEC. Thus, AEC was covalently bound to the glass slide and an AEC-immobilized sensor was obtained. The sensor exhibited very satisfactory reproducibility and reversibility, rapid response and no dye-leaching. Rutin can quench the fluorescence intensity of the sensor and be measured by using the sensor. The linear response of the sensor to rutin covers the range from 2.0 x 10(-6) to 1.5 x 10(-4) molL(-1) with a detection limit of 8.0 x 10(-7) molL(-1). The proposed technique may be feasible to the covalent immobilization of other dyes with primary amino groups.

  14. A new class of mealybug pheromones: a hemiterpene ester in the sex pheromone of Crisicoccus matsumotoi

    NASA Astrophysics Data System (ADS)

    Tabata, Jun; Narai, Yutaka; Sawamura, Nobuo; Hiradate, Syuntaro; Sugie, Hajime

    2012-07-01

    Mealybugs, which include several agricultural pests, are small sap feeders covered with a powdery wax. They exhibit clear sexual dimorphism; males are winged but fragile and short lived, whereas females are windless and less mobile. Thus, sex pheromones emitted by females facilitate copulation and reproduction by serving as a key navigation tool for males. Although the structures of the hitherto known mealybug pheromones vary among species, they have a common structural motif; they are carboxylic esters of monoterpene alcohols with irregular non-head-to-tail linkages. However, in the present study, we isolated from the Matsumoto mealybug, Crisicoccus matsumotoi (Siraiwa), a pheromone with a completely different structure. Using gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy, we identified the pheromone as 3-methyl-3-butenyl 5-methylhexanoate. Its attractiveness to males was confirmed in a series of field trapping experiments involving comparison between the isolated natural product and a synthetic sample. This is the first report of a hemiterpene mealybug pheromone. In addition, the acid moiety (5-methylhexanoate) appears to be rare in insect pheromones.

  15. PPV-Based Conjugated Polymer Nanoparticles as a Versatile Bioimaging Probe: A Closer Look at the Inherent Optical Properties and Nanoparticle-Cell Interactions.

    PubMed

    Peters, Martijn; Zaquen, Neomy; D'Olieslaeger, Lien; Bové, Hannelore; Vanderzande, Dirk; Hellings, Niels; Junkers, Thomas; Ethirajan, Anitha

    2016-08-08

    Conjugated polymers have attracted significant interest in the bioimaging field due to their excellent optical properties and biocompatibility. Tailor-made poly(p-phenylenevinylene) (PPV) conjugated polymer nanoparticles (NPs) are in here described. Two different nanoparticle systems using poly[2-methoxy-5-(3',7'-dimethoxyoctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and a functional statistical copolymer 2-(5'-methoxycarbonylpentyloxy)-5-methoxy-1,4-phenylenevinylene (CPM-MDMO-PPV), containing ester groups on the alkoxy side chains, were synthesized by combining miniemulsion and solvent evaporation processes. The hydrolysis of ester groups into carboxylic acid groups on the CPM-MDMO-PPV NPs surface allows for biomolecule conjugation. The NPs exhibited excellent optical properties with a high fluorescent brightness and photostability. The NPs were in vitro tested as potential fluorescent nanoprobes for studying cell populations within the central nervous system. The cell studies demonstrated biocompatibility and surface charge dependent cellular uptake of the NPs. This study highlights that PPV-derivative based particles are a promising bioimaging probe and can cater potential applications in the field of nanomedicine.

  16. Parallel synthesis: a new approach for developing analytical internal standards. Application to the analysis of patulin by gas chromatography-mass spectrometry.

    PubMed

    Llovera, Montserrat; Balcells, Mercè; Torres, Mercè; Canela, Ramon

    2005-08-24

    The polymer-assisted reaction of 4-(hydroxymethyl)furan-2(5H)-one (4HM2F) with 21 carboxylic acids using polystyrene-carbodiimide (PS-carbodiimide) yielded an ester library. Four of the esters, (5-oxo-2,5-dihydrofuran-3-yl)methyl acetate (IS-1), (5-oxo-2,5-dihydrofuran-3-yl)methyl butyrate (IS-2), (5-oxo-2,5-dihydrofuran-3-yl)methyl 2-methylpropanoate (IS-3), and (5-oxo-2,5-dihydrofuran-3-yl)methyl chloroacetate (IS-4), were tested as internal standards for the quantification of patulin in apple juice by gas chromatography-mass spectrometry in the selected ion monitoring mode (GC-MS-SIM). The developed method combines an AOAC official extractive step and a GC-MS-SIM analysis. Using a chromatographic column containing trifluoropropylmethylpolysiloxane as the stationary phase and IS-1 as the internal standard, it was possible to perform an accurate and precise quantification of underivatizated patulin in apple juice at concentrations down to 6 microg/L. A detection limit of 1 microg/L was established.

  17. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel.

    PubMed

    Teo, Wei Suong; Ling, Hua; Yu, Ai-Qun; Chang, Matthew Wook

    2015-01-01

    Biodiesel is a mixture of fatty acid short-chain alkyl esters of different fatty acid carbon chain lengths. However, while fatty acid methyl or ethyl esters are useful biodiesel produced commercially, fatty acid esters with branched-chain alcohol moieties have superior fuel properties. Crucially, this includes improved cold flow characteristics, as one of the major problems associated with biodiesel use is poor low-temperature flow properties. Hence, microbial production as a renewable, nontoxic and scalable method to produce fatty acid esters with branched-chain alcohol moieties from biomass is critical. We engineered Saccharomyces cerevisiae to produce fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters using endogenously synthesized fatty acids and alcohols. Two wax ester synthase genes (ws2 and Maqu_0168 from Marinobacter sp.) were cloned and expressed. Both enzymes were found to catalyze the formation of fatty acid esters, with different alcohol preferences. To boost the ability of S. cerevisiae to produce the aforementioned esters, negative regulators of the INO1 gene in phospholipid metabolism, Rpd3 and Opi1, were deleted to increase flux towards fatty acyl-CoAs. In addition, five isobutanol pathway enzymes (Ilv2, Ilv5, Ilv3, Aro10, and Adh7) targeted into the mitochondria were overexpressed to enhance production of alcohol precursors. By combining these engineering strategies with high-cell-density fermentation, over 230 mg/L fatty acid short- and branched-chain alkyl esters were produced, which is the highest titer reported in yeast to date. In this work, we engineered the metabolism of S. cerevisiae to produce biodiesels in the form of fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters. To our knowledge, this is the first report of the production of fatty acid isobutyl and active amyl esters in S. cerevisiae. Our findings will be useful for engineering S. cerevisiae strains toward high-level and sustainable biodiesel production.

  18. Potential early intermediates in anaerobic benzoate degradation by Rhodopseudomonas palustris.

    PubMed Central

    Gibson, K J; Gibson, J

    1992-01-01

    Alkali-treated extracts of Rhodopseudomonas palustris growing photosynthetically on benzoate were examined by gas chromatography/mass spectrometry for partially reduced benzoate derivatives. Two cyclic dienes, cyclohexa-2,5-diene-1-carboxylate and cyclohexa-1,4-diene-1-carboxylate, were detected. Either compound supported cell growth as effectively as benzoate. These results suggest that these cyclohexadienecarboxylates, probably as their coenzyme A esters, are the initial reduction products formed during anaerobic benzoate metabolism by R. palustris. PMID:1610191

  19. Formal [4+2] cycloaddition of di-tert-butyl 2-ethoxycyclobutane-1,1-dicarboxylate with ketones or aldehydes and tandem lactonization.

    PubMed

    Okado, Ryohei; Nowaki, Aya; Matsuo, Jun-Ichi; Ishibashi, Hiroyuki

    2012-01-01

    A catalytic amount of tin(IV) chloride catalyzed formal [4+2] cycloaddition reaction of di-tert-butyl 2-ethoxycyclobutane-1,1-carboxylate with ketones or aldehydes to give diethyl 6-ethoxydihydro-2H-pyran-3,3(4H)-dicarboxylates, whereas two equivalents of trimethylsilyl triflate promoted tandem [4+2] cycloaddition and lactonization to afford 3-oxo-2,6-dioxabicyclo[2.2.2]octane-4-carboxylate esters.

  20. Molecular and Enantiomeric Analysis of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2003-01-01

    Carbonaceous meteorites are relatively enriched in carbon. Much of this carbon is in the form of soluble organic compounds. The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry. Their content of organic compounds has led to an initial understanding of early solar system organic chemistry as well as what compounds may have played a role in the origin of life (Cronin and Chang, 1993). Reported compounds include: amino acids, amides, carboxylic acids, sulfonic acids, and polyols. This talk will focus on the molecular and enantiomeric analysis of individual meteoritic compounds: polyol acids; and a newly identified class of meteorite compounds, keto acids, i.e., acetoacetic acid, levulinic acid, etc. Keto acids (including pyruvic) are critically important in all contemporary organisms. They are key intermediates in metabolism and processes such as the citric acid cycle. Using gas chromatography-mass spectrometry we identified individual meteoritic keto acids after derivatization to one or more of the following forms: isopropyl ester (ISP), trimethyIsiIy1 (TMS), tert-butyldimethylsilyl (BDMS). Ongoing analyses will determine if, in addition to certain amino acids from Murchison (Cronin and Pizzarello, 1997), other potentially important prebiotic compounds also contain enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life.

  1. A novel bifunctional metabolizable linker for the conjugation of antibodies with radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arano, Y.; Matsushima, H.; Tagawa, M.

    1991-03-01

    A novel heterogeneous bifunctional reagent containing an ester bond, N-((4-(2-maleimidoethoxy)-succinyl)oxy)succinimide (MESS), was designed and synthesized for the conjugation of antibodies with the gallium-67 (67Ga) chelate of succinyldeferoxamine (SDF) via the ester bond. MESS was synthesized by the acylation of N-(2-hydroxyethyl)maleimide with succinic anhydride, followed by the activation of the resulting carboxylic acid to a succinimido ester. MESS possesses a maleimide group for protein conjugation and an active ester group for deferoxamine (DFO) coupling, and the two functional groups are linked via ester bonding. Conjugation of 67Ga-SDF with nonspecific human IgG was performed by reacting freshly thiolated IgG with the reactionmore » product of MESS and DFO, followed by 67Ga labeling of the resulting conjugate using GaCl3 (67Ga-DFO-MESS-IgG). For comparison, 67Ga-DFO conjugated nonspecific human IgG with a nonmetabolizable linkage was synthesized under the same conjugation conditions as those for 67Ga-DFO-MESS-IgG, using a nonmetabolizable heterogenous bifunctional reagent (N-((6-maleimidocaproyl)oxy)succinimide, EMCS) instead of MESS (67Ga-DFO-EMCS-IgG). HPLC size-exclusion chromatography of both preparations showed a single radioactivity and UV peak corresponding to the intact IgG. Generation of 67Ga-SDF from the 67Ga-DFO-MESS-IgG was demonstrated by reverse-phase HPLC analysis and cellulose acetate electrophoresis after the incubation of 67Ga-DFO-MESS-IgG in a buffered solution containing carboxyesterase. After injection of 67Ga-DFO-MESS-IgG into mice, faster radioactivity clearance from the blood and less radioactivity accumulation in the liver, kidney, and spleen was noted than when 67Ga-DFO-EMCS-IgG was injected.« less

  2. Methods of making organic compounds by metathesis

    DOEpatents

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  3. Sorption of carboxylic acid from carboxylic salt solutions at pHs close to or above the pK[sub a] of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C.J.; Tung, L.A.

    1992-07-21

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.

  4. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyglycerol esters of fatty acids. 172.854... § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including..., safflower oil, sesame oil, soybean oil, and tallow and the fatty acids derived from these substances...

  5. Trace organic compounds in wet atmospheric deposition: an overview

    USGS Publications Warehouse

    Steinheimer, T.R.; Johnson, S.M.

    1987-01-01

    An overview of the occurrence of organic compounds in wet atmospheric deposition is given. Multiplicity of sources and problems associated with source identification are discussed. Available literature is reviewed by using citations from Chemical Abstracts and Water Resources Abstracts through June 1985 and includes reports published through December 1984 that summarize current knowledge. Approaches to the chemical determination of organic compounds in precipitation are examined in addition to aspects of sampling protocols. Best methods for sample collection and preparation for instrumental analysis continue to be discussed among various investigators. Automatic wet-deposition-only devices for collection and extraction are preferred. Classes of organic compounds that have been identified in precipitation include a spectrum of compounds with differing properties of acidity or basicity, polarity, and water solubility. Those compounds that have been reported in rainfall, snowfall, and ice include hydrocarbons (both aromatic and nonaromatic), chlorinated derivatives of these hydrocarbons, carbonyl compounds (both acidic and nonacidic), and carboxylic acids and esters. Formic and acetic are the most abundant organic acids present. Cloudwater, fogwater, and mist also have been collected and analyzed for organic composition.

  6. Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Carboxylic Acids in CD-1 Mice

    PubMed Central

    Can Güven, Selçuk; Laska, Matthias

    2012-01-01

    Using a conditioning paradigm, the olfactory sensitivity of CD-1 mice for a homologous series of aliphatic n-carboxylic acids (ethanoic acid to n-octanoic acid) and several of their isomeric forms was investigated. With all 14 odorants, the animals significantly discriminated concentrations as low as 0.03 ppm (parts per million) from the solvent, and with four odorants the best-scoring animals even detected concentrations as low as 3 ppt (parts per trillion). Analysis of odor structure-activity relationships showed that the correlation between olfactory detection thresholds of the mice for the unbranched carboxylic acids and carbon chain length can best be described as a U-shaped function with the lowest threshold values at n-butanoic acid. A significant positive correlation between olfactory detection thresholds and carbon chain length of the carboxylic acids with their branching next to the functional carboxyl group was found. In contrast, no such correlation was found for carboxylic acids with their branching at the distal end of the carbon chain relative to the functional carboxyl group. Finally, a significant correlation was found between olfactory detection thresholds and the position of the branching of the carboxylic acids. Across-species comparisons suggest that mice are more sensitive for short-chained (C2 to C4) aliphatic n-carboxylic acids than other mammalian species, but not for longer-chained ones (C5 to C8). Further comparisons suggest that odor structure-activity relationships are both substance class- and species-specific. PMID:22479594

  7. Improvement in wettability of porous Si by carboxylate termination

    NASA Astrophysics Data System (ADS)

    Sakakibara, Masanori; Matsumoto, Kimihisa; Kamiya, Kazuhide; Kawabata, Shigeki; Inada, Mitsuru; Suzuki, Shinya

    2018-02-01

    The effects of the surface terminations of carboxylic acid and carboxylate on the hydrophilicity of porous Si were studied to observe the changes in the photoluminescence (PL) intensity of water-dispersed porous Si powder over time. Porous Si terminated by carboxylate was produced from carboxylic acid-terminated porous Si by a neutralization reaction with an alkali metal. After the neutralization of porous Si terminated by carboxylic acid, the formation of carboxylate-terminated porous Si was confirmed by observing the absorption peaks corresponding to Si-C and COO- from Fourier transform infrared (FT-IR) spectra. On the basis of changes in the PL intensity of porous Si over time, the hydrophilicity of porous Si terminated by carboxylate was determined to be higher than that of porous Si terminated by carboxylic acid. On the other hand, nonradiative recombination centers on the surface of carboxylate-terminated porous Si were formed during the neutralization process, which reduced the PL intensity. The PL from porous Si terminated by carboxylic acid and carboxylate was caused by the quantum size effect regardless of the termination molecules, which was confirmed by the wavelength dependence of the PL lifetime. Porous Si terminated by undecylenate is an effective material for applications such as bio-labels owing to its hydrophilicity and high PL stability.

  8. Thermochemical Concrete Pavement Scaling Mechanism: Navy F/A-18 Jet Aircraft Parking Apron Problem

    DTIC Science & Technology

    1998-06-01

    boiling and recondensation) in hot, concentrated potassium hydroxide (E): Eqn 11 Alkaline Hydrolysis of Esters with Potassium Hydroxide KOH...RC02R’ -> KC02R + R’OH potassium alkyl ester (B) potassium ethanol(L) hydroxide (E) carboxylate (F) The overall reaction appears to make sense...carbonate (H) water 2. The parallel between calcium hydroxide and potassium hydroxide is not very accurate. Potassium hydroxide is a much stronger alkali

  9. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid... conditions: (a) They are manufactured from glycerin, lactic acid, and fatty acids conforming with § 172.860...

  10. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells

    PubMed Central

    Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S.; Song, Jia-Sheng; Zheng, Jing

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer. PMID:23851185

  11. Double Reformatsky reaction: divergent synthesis of δ-hydroxy-β-ketoesters.

    PubMed

    Mineno, Masahiro; Sawai, Yasuhiro; Kanno, Kazuaki; Sawada, Naotaka; Mizufune, Hideya

    2013-06-21

    The double Reformatsky reaction, tandem addition of two molecules of zinc alkanoate to a carbonyl compound, and its synthetic application to a series of δ-hydroxy-β-ketoesters has been developed. The key to accelerate the double Reformatsky reaction is considered to be a complex-induced proximity effect of the in situ generated zinc alkoxide coordinated with the pyridyl group of the substrate or bidentate amines. A noteworthy feature of the reaction system is its high tolerance of functional groups due to the moderate nucleophilicity of organozinc reagents and the mild reaction conditions. Moreover, spectroscopic and crystallographic analyses of the zinc complex of the double Reformatsky product support the proposed mechanism of reaction site discrimination for ketones, aldehydes, nitriles, carboxylic acid anhydrides, and esters.

  12. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

  13. Method of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  14. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  15. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  16. Characterizing monoclonal antibody structure by carboxyl group footprinting

    PubMed Central

    Kaur, Parminder; Tomechko, Sara E; Kiselar, Janna; Shi, Wuxian; Deperalta, Galahad; Wecksler, Aaron T; Gokulrangan, Giridharan; Ling, Victor; Chance, Mark R

    2015-01-01

    Structural characterization of proteins and their antigen complexes is essential to the development of new biologic-based medicines. Amino acid-specific covalent labeling (CL) is well suited to probe such structures, especially for cases that are difficult to examine by alternative means due to size, complexity, or instability. We present here a detailed account of carboxyl group labeling (with glycine ethyl ester (GEE) tagging) applied to a glycosylated monoclonal antibody therapeutic (mAb). The experiments were optimized to preserve the structural integrity of the mAb, and experimental conditions were varied and replicated to establish the reproducibility of the technique. Homology-based models were generated and used to compare the solvent accessibility of the labeled residues, which include aspartic acid (D), glutamic acid (E), and the C-terminus (i.e., the target probes), with the experimental data in order to understand the accuracy of the approach. Data from the mAb were compared to reactivity measures of several model peptides to explain observed variations in reactivity. Attenuation of reactivity in otherwise solvent accessible probes is documented as arising from the effects of positive charge or bond formation between adjacent amine and carboxyl groups, the latter accompanied by observed water loss. A comparison of results with previously published data by Deperalta et al using hydroxyl radical footprinting showed that 55% (32/58) of target residues were GEE labeled in this study whereas the previous study reported 21% of the targets were labeled. Although the number of target residues in GEE labeling is fewer, the two approaches provide complementary information. The results highlight advantages of this approach, such as the ease of use at the bench top, the linearity of the dose response plots at high levels of labeling, reproducibility of replicate experiments (<2% variation in modification extent), the similar reactivity of the three target probes, and significant correlation of reactivity and solvent accessible surface area. PMID:25933350

  17. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Partial phosphoric acid esters of polyester resins... of polyester resins. Partial phosphoric acid esters of polyester resins identified in this section... prescribed conditions: (a) For the purpose of this section, partial phosphoric acid esters of polyester...

  18. 40 CFR 721.10685 - Phosphoric acid, mixed esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, mixed esters (generic... Specific Chemical Substances § 721.10685 Phosphoric acid, mixed esters (generic). (a) Chemical substance... phosphoric acid, mixed esters (PMN P-13-170) is subject to reporting under this section for the significant...

  19. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this section...

  20. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this section...

  1. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this section...

  2. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this section...

  3. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this section...

  4. 40 CFR 721.1732 - Nitrobenzoic acid octyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nitrobenzoic acid octyl ester. 721... Substances § 721.1732 Nitrobenzoic acid octyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as nitrobenzoic acid octyl ester (PMN P-93-343...

  5. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.

  6. Enzymatic Synthesis of Glyserol-Coconut Oil Fatty Acid and Glycerol-Decanoic Acis Ester as Emulsifier and Antimicrobial Agents Using Candida rugosa Lipase EC 3.1.1.3

    NASA Astrophysics Data System (ADS)

    Handayani, Sri; Putri, Ayu Tanissa Tamara; Setiasih, Siswati; Hudiyono, Sumi

    2018-01-01

    In this research, enzymatic esterification was carried out between glycerol and fatty acid from coconut oil and decanoic acid using n-hexane as solvent. In this reaction Candida rugosa lipase was used as biocatalyst. Optimization esterification reaction was carried out for parameter of the substrate ratio. The mmol ratio between fatty acid and glycerol were used are 1:1, 1:2, 1:3, and 1: 4. The highest conversion percentage obtained at the mole ratio of 1: 4 with the value of 78.5% for the glycerol-decanoic acid ester and 55.4% for the glycerol coconut oil fatty acid ester. Esterification products were characterized by FT-IR. The FT-IR spectrum showed that the ester bond was formed as indicated by the wave number 1750-1739 cm-1. The esterification products were then examined by simple emulsion test and was proved to be an emulsifier. The glycerol-coconut oil fatty acid ester produced higher stability emulsion compare with glycerol decanoic ester. The antimicrobial activity assay using disc diffusion method showed that both glycerol-coconut oil fatty acid ester and glycerol-decanoic ester had the ability inhibiting the growth of Propionibacterium acnes and Staphylococcus epidermidis. Glycerol-decanoic ester shows higher antimicrobial activity than glycerol-coconut oil fatty acid ester.

  7. [Pollution characteristics of organic acids in atmospheric particles during haze periods in autumn in Guangzhou].

    PubMed

    Tan, Ji-hua; Zhao, Jing-ping; Duan, Jing-chun; Ma, Yong-liang; He, Ke-bin; Yang, Fu-mo

    2013-05-01

    Total suspended particles (TSP), collected during a typical haze period in Guangzhou, were analyzed for the fatty acids (C12-C30) and low molecular weight dicarboxylic acids (C3-C9) using gas chromatography/mass spectrometry (GC/MS). The results showed that the concentration of total fatty and carboxylic acids was pretty high during the haze episode. The ratios of fatty acids and carboxylic acids in haze to those in normal days were 1.9 and 2.5, respectively. During the episode of the increasing pollution, the fatty acids and carboxylic acids at night (653 ng x m(-3)) was higher than that (487 ng x m(-3)) in days. After that, the level of fatty acids and carboxylic acids in days (412 ng x m(-3)) was higher than that (336 ng x m(-3)) at night. In general, the time-series of fatty acids and carboxylic acids was similar to that of the air particle and carbonaceous species, however, the trend of the ratio of fatty acids and carboxylic acids to organic carbon was opposite to that of air particle and carbonaceous species. This ratio decreased with the increase of the concentration of air particle and after the night of 27th, the ratio increased with the decrease in the concentration of air particle. The results showed that haze pollution had a significant inhibitory effect on the enrichment of fatty and carboxylic acids. Based on the ratio of malonate to succinate (C3/C4), it could be found that primary sources contribute more to the atmospheric fatty and carboxylic acids during the autumn haze pollution periods in Guangzhou.

  8. Producing biofuels using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  9. 21 CFR 172.850 - Lactylated fatty acid esters of glycerol and propylene glycol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylated fatty acid esters of glycerol and... DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.850 Lactylated fatty acid esters of glycerol and propylene glycol. The food additive lactylated fatty acid esters of glycerol and...

  10. 75 FR 70254 - Typographical Error in Summary Notice of Filing in Docket for Polymerized Fatty Acid Esters With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Notice of Filing in Docket for Polymerized Fatty Acid Esters With Aminoalcohol Alkoxylates; Correction... (NOF) for Pesticide Petition (PP) 0E7699 for polymerized fatty acid esters with aminoalcohol... Pesticide Petition (PP) 0E7699 for polymerized fatty acid esters with aminoalcohol alkoxylates submitted by...

  11. 21 CFR 172.850 - Lactylated fatty acid esters of glycerol and propylene glycol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Lactylated fatty acid esters of glycerol and... DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.850 Lactylated fatty acid esters of glycerol and propylene glycol. The food additive lactylated fatty acid esters of glycerol and...

  12. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Lactylic esters of fatty acids. 172.848 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids may be safely used in food in accordance with the following prescribed conditions: (a) They...

  13. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John

    2016-05-26

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  14. In vivo cleavage rate of a dextran-bound magnetic resonance imaging contrast agent: preparation and intravascular pharmacokinetic characteristics in the rabbit.

    PubMed

    Hals, Petter Arnt; Sontum, Per Christian; Holtz, Eckart; Klaveness, Jo; Rongved, Pål

    2013-02-01

    Earlier described dextran-based contrast agents for magnetic resonance imaging (MRI) comprising the gadolinium chelate diethylenetriamine pentaacetic acid (GdDTPA, 1) have shown significantly shorter in vivo contrast duration in rat than what would be expected from the initial average molecular weight (Mw) of the dextran fraction (71.4 kD). To investigate this further, four dextran fractions with given initial average molecular weight (Mw) of 10.4, 41.0, 71.4 and 580 kD were used as starting material to prepare products 2-5 where one of the carboxylic acid functionalities in GdDTPA was used as a direct covalent ester linker to hydroxyl groups in dextrans. A fifth derivative (6) was an amide-ester bound β-alanine-DTPAGd conjugate with dextran having Mw 71.4 kD. The reference compound GdDTPA (1) and gadoliniumlabelled dextran derivatives 2-6 were injected intravenously in rabbits. Pharmacokinetic parameters showed that when GdDTPA is ester-bound directly to dextran hydroxyls, the cleavage rates of 2-5 were only moderately dependent on the molecular weights of the dextrans, having blood pool half-lives comparable to the low-molecular reference compound (t 1/2,β 0.3 - 0.5 hrs.). Presence of a β-alanine spacer in 6 prolonged the plasma half-life t 1/2,β to 6.9 hours, rendering a blood residence time suitable for blood pool slow release of GdDTPA. Biological cleavage regenerates the clinically acceptable carrier dextran and the β-alanine derivative of GdDTPA, pointing at a clinically acceptable product class for blood-pool contrast in MRI.

  15. Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments.

    PubMed

    Balazs, D J; Triandafillu, K; Wood, P; Chevolot, Y; van Delden, C; Harms, H; Hollenstein, C; Mathieu, H J

    2004-05-01

    Medical-grade poly(vinyl chloride) (PVC) was chemically modified to study how the incorporation of monovalent silver influences Pseudomonas aeruginosa adhesion and colonization. The modification investigated consisted of a radio frequency-oxygen (RF-O(2)) glow discharge pre-functionalization, followed by a two-step wet-treatment in sodium hydroxide and silver nitrate solutions. X-ray photoelectron spectroscopy (XPS) analysis and contact angle measurements were used to investigate the chemical nature and surface wettability of the films following each step of the modification. XPS analysis proved that the RF-O(2) plasma pre-functionalization of native PVC reproducibly increased the amount of functional groups representative of PVC additives, including ether/alcohol, esters and carboxyl groups. More specifically, we demonstrated that the O-C=O groups representative of the phthalic ester and zinc carboxylate additives identified for native PVC increased by two-fold following the RF-O(2) plasma pre-functionalization step. Although RF-O(2) pre-functionalization did not have an effect on the silver content of the NaOH/AgNO(3) treated substrates, such a modification was necessary for biomaterial products that did not have reproducible surfaces amongst production lots. XPS analysis also demonstrated that saponification with sodium hydroxide (NaOH) of esters, like those of the phthalic ester additives of PVC is a simple, irreversible method of hydrolysis, which produced sodium carboxylate and sodium phthalate salts. Exposure of native PVC to NaOH resulted in an increased surface hydrophilicity (from ca 90 degrees to ca 60 degrees ) due to dechlorination. XPS analysis following further incubation in silver nitrate demonstrated that silver ions can be trapped when the sodium of sodium carboxylate is replaced by silver after performing a second treatment with a monovalent silver-containing solution. The creation of silver salt on native PVC resulted in an ultra-hydrophobic (>120 degrees ) surface. The chemical modifications using NaOH and AgNO(3) wet treatments completely inhibited bacterial adhesion of four strains of P. aeruginosa to both native and oxygen-pre-functionalized PVC, and efficiently prevented colonization over longer periods (72 h). Our results suggest that surface modifications that incorporate silver ions would be extremely effective at reducing bacterial colonization to medical devices.

  16. 40 CFR 180.426 - 2-[4,5-Dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid; tolerance for residues. 180.426 Section 180...-Dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid; tolerance for...)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid, in or on the raw agricultural commodity soybean...

  17. Trichloroacetimidates as Alkylating Reagents and Their Application in the Synthesis of Pyrroloindoline Natural Products and Synthesis of Small Molecule Inhibitors of Src Homology 2 Domain-Containing Inositol Phosphatase (SHIP)

    NASA Astrophysics Data System (ADS)

    Adhikari, Arijit A.

    Trichloroacetimidates are known to be excellent alkylating agents when activated by a catalytic amount of a Bronsted or Lewis acid. Work described herein involved taking advantage of the favorable reactivity of trichloroacetimidates to establish several different synthetic protocols, including the application of these reagents in the synthesis of pyrroloindoline based natural products, 3,3'-disubstituted indolenines and benzylic trichloroacetamides. Initial investigations on the utilization of the reactivity of trichloroacetimidates found that diphenylmethyl trichloroacetimidate, which is a precursor to a highly stabilized carbocation, undergoes facile displacement with carboxylic acids providing the ester product without the need of any exogenous catalyst. Both hindered and unhindered carboxylic acids were esterified with high yields, with no preference for aromatic or aliphatic carboxylic acids. Carboxylic acids with unprotected hydroxyl groups or beta-lactam rings were esterified efficiently. Substrates that are highly prone to elimination or retro-aldol were also esterified in high yields. Carboxylic acids with highly enolizable alpha-stereocenters were esterified without any racemization. Mechanistic studies indicate that the carboxylic acid substrate itself is acidic enough to be effective at promoting the esterification reaction. During our studies on esterification with imidates it was found that these imidates also showed a tendency to undergo rearrangement to the corresponding trichloroacetamides. Two different sets of conditions, thermal and Lewis acid catalyzed, were established which provided these rearranged products with high yields. Various benzylic trichloroacetimidates were shown to undergo these transformations under the established conditions. Based on the observations discussed in this work a cationic mechanism is proposed. After the preliminary studies on alkylation of benzylic trichloroacetimidate with different nucleophiles, this chemistry was applied towards the synthesis of natural products and their analogs. The pyrroloindoline ring system is found in many alkaloids and cyclic peptides which mainly differ in the substitution at the C3a position. To provide rapid access to these natural products a diversity-oriented strategy was established via displacement of C3a-trichloroacetimidate pyrroloindoline. Carbon, oxygen, sulfur and nitrogen nucleophiles were all shown to undergo substitution reactions with these trichloroacetimidates in the presence of a Lewis acid catalyst. In order to demonstrate the utility of this new method it was applied towards the synthesis of arundinine and a formal synthesis of psychotriasine. Current investigations involve the application of this method towards the synthesis of a complex pyrroloindoline natural product kapakahine C and the progress made therein has been discussed. The reactivity of trichloroacetimidates was also investigated for the selective C3-alkylation of 2,3-disubstituted indoles to provide indolenines. Indolenines serve as useful intermediates in the synthesis of many complex alkaloids. Different benzylic and allylic trichloroacetimidates were shown to provide 3,3'-disubstituted indolenines with high yields in the presence of catalytic amounts of Lewis acids. Various substituted indoles were evaluated under these reaction conditions. This methodology was also applied towards the synthesis of the core tetracyclic ring system found in communesin natural products. In addition to the above work, synthesis of small molecule inhibitors of Src Homology 2 Domain-Containing Inositol Phosphatase (SHIP) has also been described. Aberrations in the phosphoinositide 3-kinase (PI3K) cellular signaling pathway can lead to diseased cellular states like cancer. Herein we have reported stereoselective synthesis of two quinoline based small molecule SHIP inhibitors. The lead compounds and their analogs were tested for their activities against SHIP by Malachite green assay and the discoveries made therein are discussed. In addition to this synthesis of a tryptamine based SHIP inhibitor has also been reported.

  18. 40 CFR 721.10369 - Carbonic acid, diphenyl ester, polymer with diphenyl P-methylphosphonate and 4,4′-(1...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Carbonic acid, diphenyl ester, polymer... Carbonic acid, diphenyl ester, polymer with diphenyl P-methylphosphonate and 4,4′-(1-methylethylidene) bis... identified as carbonic acid, diphenyl ester, polymer with diphenyl P-methylphosphonate and 4,4′-(1...

  19. 40 CFR 721.10412 - Phosphonic acid ester (generic) (P-07-706).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid ester (generic) (P-07... Specific Chemical Substances § 721.10412 Phosphonic acid ester (generic) (P-07-706). (a) Chemical substance... phosphonic acid ester (PMN P-07-706) is subject to reporting under this section for the significant new uses...

  20. 40 CFR 721.10412 - Phosphonic acid ester (generic) (P-07-706).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid ester (generic) (P-07... Specific Chemical Substances § 721.10412 Phosphonic acid ester (generic) (P-07-706). (a) Chemical substance... phosphonic acid ester (PMN P-07-706) is subject to reporting under this section for the significant new uses...

  1. 40 CFR 721.10412 - Phosphonic acid ester (generic) (P-07-706).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonic acid ester (generic) (P-07... Specific Chemical Substances § 721.10412 Phosphonic acid ester (generic) (P-07-706). (a) Chemical substance... phosphonic acid ester (PMN P-07-706) is subject to reporting under this section for the significant new uses...

  2. Recovery of Scandium from Leachate of Sulfation-Roasted Bayer Red Mud by Liquid-Liquid Extraction

    NASA Astrophysics Data System (ADS)

    Liu, Zhaobo; Li, Hongxu; Jing, Qiankun; Zhang, Mingming

    2017-11-01

    The leachate obtained from sulfation-roasted Bayer red mud is suitable for extraction of scandium by liquid-liquid solvent extraction because it contains trace amounts of Fe3+ and Si4+. In this study, a completely new metallurgical process for selective recovery of scandium from Bayer red mud was proposed. The extraction performances of Sc3+, Fe3+, Al3+, Si4+, Ca2+, and Na+ from synthetic leachate of sulfation-roasted red mud were first investigated using organophosphorus extractants (di-2-ethylhexyl phosphoric acid P204 and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester P507) and carboxylic acid extractant (Versatic acid 10). It shows that P204 has an excellent extraction ability and that it can be applied to the scandium recovery. P507 and Versatic acid 10 are much poorer in performance for selective extraction of scandium. In the leachate of sulfation-roasted red mud, approximately 97% scandium can be recovered using a P204/sulfonated kerosene (1% v/v) extraction system under the condition of an organic-to-aqueous phase ratio of 10:1 and with an extraction temperature of 15°C.

  3. Antioxidant effect of mono- and dihydroxyphenols in sunflower oil with different levels of naturally present tocopherols

    PubMed Central

    Hrádková, Iveta; Merkl, Roman; Šmidrkal, Jan; Kyselka, Jan; Filip, Vladimír

    2013-01-01

    Antioxidant properties of mono- and dihydroxyphenolic acids and their alkyl esters were examined, with emphasis on the relationship between their molecular structure and antioxidant activity. Test media with different tocopherol level were used for determining the oxidative stability: original refined sunflower oil (total tocopherols 149.0 mg/kg), partially tocopherol-stripped sunflower oil (total tocopherols 8.7 mg/kg) and distilled fatty acid methyl esters (FAME) as a tocopherol-free medium. The chemical reaction of tocopherols with diazomethane tested for the purpose to eliminate their antioxidant activity failed due to the negligible degree of methylation of hydroxyl group in the tocopherol molecule. Caffeic acid and protocatechuic acid (3,4-dihydroxyphenolic acids) and their alkyl esters were found to be more active antioxidants than monohydroxyphenolic acid (p-hydroxybenzoic acid), 2,5-dihydroxyphenolic acid (gentisic acid), 3-methoxy-4-hydroxyphenolic acids (vanillic and ferulic acids) and their corresponding alkyl esters. Naturally present tocopherols in refined sunflower oil proved to have a synergistic effect on gentisic acid but not on its alkyl esters. In contrast, tocopherols showed an antagonistic effect on alkyl esters of caffeic acid, because their protection factors decreased with increasing level of tocopherols in the test medium. Moreover, the antioxidant activity of these alkyl esters decreased with increasing length of their alkyl chain in conformity with the polar paradox hypothesis. Practical applications: Tocopherols as naturally present antioxidants influence considerably the antioxidant activity of other antioxidants added to plant oils used as a test medium. Distilled fatty acid methyl esters prepared from refined sunflower oil may serve as an optimal tocopherol-free test medium. Some alkyl esters of phenolic acids were evaluated to be applicable as natural more lipophilic antioxidants in comparison with phenolic acids. PMID:23997655

  4. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... esters of fatty acids (the lactic acid esters of mono- and diglycerides) may be safely used in food in accordance with the following prescribed conditions: (a) They are manufactured from glycerin, lactic acid...

  5. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... esters of fatty acids (the lactic acid esters of mono- and diglycerides) may be safely used in food in accordance with the following prescribed conditions: (a) They are manufactured from glycerin, lactic acid...

  6. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... esters of fatty acids (the lactic acid esters of mono- and diglycerides) may be safely used in food in accordance with the following prescribed conditions: (a) They are manufactured from glycerin, lactic acid...

  7. Structure and thermotropic phase behavior of sodium and potassium carboxylate ionomers

    NASA Astrophysics Data System (ADS)

    Mantsch, H. H.; Weng, S. F.; Yang, P. W.; Eysel, H. H.

    1994-07-01

    A molecular complex is formed between long-chain carboxylic acids and their alkali salts in a 1 : 1 mixture. These so-called "acid soaps" or carboxylate ionomers have multilamellar bilayer-type structures in solid state, which are retained in the presence of excess water, resembling the dispersions (gels) formed by typical two-chain amphiphiles, e.g. lipids. The special arrangement of hydrogen-bonded pairs of carboxylic acid and carboxylate groups into a unique "head-group" is supported by frequency shifts and partial or total disappearance of the characteristic vibrations of carboxylic acid dimers and of carboxylate groups. The existence of well-ordered hydrocarbon chains is demonstrated by the existence and polarization properties of the methylene rocking and wagging propagation modes. The gel to liquid-crystal phase transition of the hydrated acid soaps shows practically no cation dependence, unlike the corresponding phase transition in neutral soaps which varies considerably with the nature of the counterion. There is spectroscopic evidence to suggest a cooperative process that involves "melting" of the alkyl chains and disintegration of the hydrogen-bonded carboxylate—carboxylic acid complex, followed by a cation-dependent equilibrium that favors the formation of acid dimers at elevated temperatures and some form of hydrogen-bonded ion pair aggregates at intermediate temperatures.

  8. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis.

    PubMed

    Ventre, Sandrine; Petronijevic, Filip R; MacMillan, David W C

    2015-05-06

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F(•) transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol.

  9. Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pK.sub.a of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C. Judson; Tung, Lisa A.

    1992-01-01

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH.sub.a into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. the acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carobxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia.

  10. Isolation and Characterization of Esters of Indole-3-Acetic Acid from the Liquid Endosperm of the Horse Chestnut (Aesculus species) 1

    PubMed Central

    Domagalski, Wojciech; Schulze, Aga; Bandurski, Robert S.

    1987-01-01

    Esters of indole-3-acetic acid were extracted and purified from the liquid endosperm of immature fruits of various species of the horse chestnut (Aesculus parviflora, A. baumanni, A.pavia rubra, and A. pavia humulis). The liquid endosperm contained, at least 12 chromatographically distinct esters. One of these compounds was purified and characterized as an ester of indole-3-acetic acid and myo-inositol. A second compound was found to be an ester of indole-3-acetic acid and the disaccharide rutinose (glucosyl-rhamnose). A third compound was partially characterized as an ester of indole-3-acetic acid and a desoxyaminohexose. PMID:11539676

  11. Isolation and characterization of esters of indole-3-acetic acid from the liquid endosperm of the horse chestnut (Aesculus species)

    NASA Technical Reports Server (NTRS)

    Domagalski, W.; Schulze, A.; Bandurski, R. S.

    1987-01-01

    Esters of indole-3-acetic acid were extracted and purified from the liquid endosperm of immature fruits of various species of the horse chestnut (Aesculus parviflora, A. baumanni, A. pavia rubra, and A. pavia humulis). The liquid endosperm contained, at least 12 chromatographically distinct esters. One of these compounds was purified and characterized as an ester of indole-3-acetic acid and myo-inositol. A second compound was found to be an ester of indole-3-acetic acid and the disaccharide rutinose (glucosyl-rhamnose). A third compound was partially characterized as an ester of indole-3-acetic acid and a desoxyaminohexose.

  12. Aerobic biotransformation of polyfluoroalkyl phosphate esters (PAPs) in soil.

    PubMed

    Liu, Chen; Liu, Jinxia

    2016-05-01

    Microbial transformation of polyfluoroalkyl phosphate esters (PAPs) into perfluorocarboxylic acids (PFCAs) has recently been confirmed to occur in activated sludge and soil. However, there lacks quantitative information about the half-lives of the PAPs and their significance as the precursors to PFCAs. In the present study, the biotransformation of 6:2 and 8:2 diPAP in aerobic soil was investigated in semi-dynamics reactors using improved sample preparation methods. To develop an efficient extraction method for PAPs, six different extraction solvents were compared, and the phenomenon of solvent-enhanced hydrolysis was investigated. It was found that adding acetic acid could enhance the recoveries of the diPAPs and inhibit undesirable hydrolysis during solvent extraction of soil. However 6:2 and 8:2 monoPAPs, which are the first breakdown products from diPAPs, were found to be unstable in the six solvents tested and quickly hydrolyzed to form fluorotelomer alcohols. Therefore reliable measurement of the monoPAPs from a live soil was not achievable. The apparent DT50 values of 6:2 diPAP and 8:2 diPAP biotransformation were estimated to be 12 and > 1000 days, respectively, using a double first-order in parallel model. At the end of incubation of day 112, the major degradation products of 6:2 diPAP were 5:3 fluorotelomer carboxylic acid (5:3 acid, 9.3% by mole), perfluoropentanoic acid (PFPeA, 6.4%) and perfluorohexanoic acid (PFHxA, 6.0%). The primary product of 8:2 diPAP was perfluorooctanoic acid (PFOA, 2.1%). The approximately linear relationship between the half-lives of eleven polyfluoroalkyl and perfluoroalkyl substances (PFASs, including 6:2 and 8:2 diPAPs) that biotransform in aerobic soils and their molecular weights suggested that the molecular weight is a good indicator of the general stability of low-molecular-weight PFAS-based compounds in aerobic soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Simultaneous analysis of free phytosterols/phytostanols and intact phytosteryl/phytostanyl fatty acid and phenolic acid esters in cereals.

    PubMed

    Esche, Rebecca; Barnsteiner, Andreas; Scholz, Birgit; Engel, Karl-Heinz

    2012-05-30

    An approach based on solid-phase extraction for the effective separation of free phytosterols/phytostanols and phytosteryl/phytostanyl fatty acid and phenolic acid esters from cereal lipids was developed. The ester conjugates were analyzed in their intact form by means of capillary gas chromatography. Besides free sterols and stanols, up to 33 different fatty acid and phenolic acid esters were identified in four different cereal grains via gas chromatography-mass spectrometry. The majority (52-57%) of the sterols and stanols were present as fatty acid esters. The highest levels of all three sterol and stanol classes based on dry matter of ground kernels were determined in corn, whereas the oil extract of rye was 1.7 and 1.6 times richer in fatty acid esters and free sterols/stanols than the corn oil. The results showed that there are considerable differences in the sterols/stanols and their ester profiles and contents obtained from corn compared to rye, wheat, and spelt. The proposed method is useful for the quantification of a wide range of free phytosterols/phytostanols and intact phytosteryl/phytostanyl esters to characterize different types of grain.

  14. Origin of estradiol fatty acid esters in human ovarian follicular fluid.

    PubMed

    Pahuja, S L; Kim, A H; Lee, G; Hochberg, R B

    1995-03-01

    The estradiol fatty acid esters are the most potent of the naturally occurring steroidal estrogens. These esters are present predominantly in fat, where they are sequestered until they are hydrolyzed by esterases. Thus they act as a preformed reservoir of estradiol. We have previously shown that ovarian follicular fluid from patients undergoing gonadotropin stimulation contains very high amounts of estradiol fatty acid esters (approximately 10(-7) M). The source of these esters is unknown. They can be formed by esterification of estradiol in the follicular fluid by lecithin:cholesterol acyltransferase (LCAT), or in the ovary by an acyl coenzyme A:acyltransferase. In order to determine which of these enzymatic processes is the source of the estradiol esters in the follicular fluid, we incubated [3H]estradiol with follicular fluid and cells isolated from human ovarian follicular fluid and characterized the fatty acid composition of the [3H]estradiol esters biosynthesized in each. In addition, we characterized the endogenous estradiol fatty acid esters in the follicular fluid and compared them to the biosynthetic esters. The fatty acid composition of the endogenous esters was different than those synthesized by the cellular acyl coenzyme A:acyltransferase, and the same as the esters synthesized by LCAT, demonstrating that the esters are produced in situ in the follicular fluid. Although the role of these estradiol esters in the ovary is not known, given their remarkable estrogenic potency it is highly probable that they have an important physiological role.

  15. Acid sorption regeneration process using carbon dioxide

    DOEpatents

    King, C. Judson; Husson, Scott M.

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  16. FG7142, yohimbine, and βCCE produce anxiogenic-like effects in the elevated plus-maze but do not affect brainstem activated hippocampal theta.

    PubMed

    Yeung, Michelle; Lu, Lily; Hughes, Adam M; Treit, Dallas; Dickson, Clayton T

    2013-12-01

    The neurobiological underpinnings of anxiety are of paramount importance to selective and efficacious pharmaceutical intervention. Hippocampal theta frequency in urethane anaesthetized rats is suppressed by all known (and some previously unknown) anti-anxiety (anxiolytic) drugs. Although these findings support the predictive validity of this assay, its construct validity (i.e., whether theta frequency actually indexes anxiety per se) has not been a subject of systematic investigation. We reasoned that if anxiolytic drugs suppress hippocampal theta frequency, then drugs that increase anxiety (i.e., anxiogenic agents) should increase theta frequency, thus providing evidence of construct validity. We used three proven anxiogenic drugs--two benzodiazepine receptor inverse agonists, N-methyl-β-carboline-3-carboxamide (FG7142) and β-carboline-3-carboxylate ethyl ester (βCCE), and one α2 noradrenergic receptor antagonist, 17α-hydroxy-yohimban-16α-carboxylic acid methyl ester (yohimbine) as pharmacological probes to assess the construct validity of the theta model. Although all three anxiogenic drugs significantly increased behavioural measures of anxiety in the elevated plus-maze, none of the three increased the frequency of hippocampal theta oscillations in the neurophysiological model. As a positive control, we demonstrated that diazepam, a proven anxiolytic drug, decreased the frequency of hippocampal theta, as in all other studies using this model. Given this discrepancy between the significant effects of anxiogenic drugs in the behavioural model and the null effects of these drugs in the neurophysiological model, we conclude that the construct validity of the hippocampal theta model of anxiety is questionable. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products...

  18. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products...

  19. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    ERIC Educational Resources Information Center

    Nicholson, John W.; Wilson, Alan D.

    2004-01-01

    The conversion of carboxylic acids to ketones is a useful chemical transformation with a long history. Several chemists have claimed that they discovered the conversion of carboxylic acids to ketones yet in fact the reaction is actually known for centuries.

  20. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  1. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  2. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    PubMed

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  3. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids

    PubMed Central

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)]+) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru–H]+, which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  4. Carboxylate modified porous graphitic carbon: a new class of hydrophilic interaction liquid chromatography phases.

    PubMed

    Wahab, M Farooq; Ibrahim, Mohammed E A; Lucy, Charles A

    2013-06-18

    Stationary phases for hydrophilic interaction liquid chromatography (HILIC) are predominantly based on silica and polymer supports. We present porous graphitic carbon particles with covalently attached carboxylic acid groups (carboxylate-PGC) as a new HILIC stationary phase. PGC particles were modified by adsorbing the diazonium salt of 4-aminobenzoic acid onto the PGC, followed by reduction of the adsorbed salt with sodium borohydride. The newly developed carboxylate-PGC phase exhibits different selectivity than that of 35 HPLC columns, including bare silica, zwitterionic, amine, reversed, and unmodified PGC phases. Carboxylate-PGC is stable from pH 2.0 to 12.6, yielding reproducible retention even at pH 12.6. Characterization of the new phase is presented by X-ray photoelectron spectroscopy, thermogravimetry, zeta potentials, and elemental analysis. The chromatographic performance of carboxylate-PGC as a HILIC phase is illustrated by separations of carboxylic acids, nucleotides, phenols, and amino acids.

  5. Formation and High-order Carboxylic Acids (RCOOH) in Interstellar Analogous Ices of Carbon Dioxide (CO2) and Methane(CH4)

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2018-01-01

    This laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar analogous ices of carbon dioxide (CO2) and methane (CH4) at 10 K upon exposure to energetic electrons. The chemical processing of the ices and the subsequent warm-up phase were monitored online and in situ, exploiting Fourier Transform Infrared Spectrometry and quadrupole mass spectrometry. Characteristic absorptions of functional groups of carboxylic acids (RCOOH) were observed in the infrared spectra of the irradiated ice. Two proposed reaction mechanisms replicated the kinetic profiles of the carboxylic acids along with the decay profile of the precursors during the irradiation via hydrocarbon formation, followed by carboxylation and/or through acetic acid along with mass growth processes of the alkyl chain. Mass spectra recorded during the warm-up phase demonstrated that these acids are distributed from acetic acid (CH3COOH) up to decanoic acid (C9H19COOH). High-dose irradiation studies (91 ± 14 eV) converted low-molecular-weight acids such as acetic acid (CH3COOH) and propionic acid (C2H5COOH) to higher-molecular-weight carboxylic acids, compared to low-dose irradiation studies (18 ± 3 eV). The traces of the {{{H}}}2{{C}}= {{C}}({OH}{)}2+ (m/z = 60) fragment—a link to linear carboxylic acids—implied that higher-order acids (C n H2n+1COOH, n ≥ 5) are likely branched, which correlates with the recent analysis of the structures of the monocarboxylic acids in the Murchison meteorite.

  6. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  7. From molecular salt to pseudo CAB cocrystal: Expanding solid-state landscape of carboxylic acids based on charge-assisted COOH⋯COO- hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Lou, Benyong; Perumalla, Sathyanarayana Reddy; Sun, Changquan Calvin

    2015-11-01

    Using three carboxylic acids, we show that the COOH⋯COO- synthon is robust for directing the cocrystallization between a carboxylic acid and a carboxylate of either the same or a chemically different molecule to form a CAB or pseudo CAB cocrystal, respectively. For a given carboxylic acid and a counterion, only one salt could be prepared. However, additional one CAB cocrystals and two pseudo CAB cocrystals could be prepared based on the COOH⋯COO- synthon. The same synthon has the potential to enable the preparation of additional molecular pseudo CAB cocrystals using other chemically distinct carboxylic acids. This significantly increased number of solid forms highlights the values of charge-assisted synthons, such as COOH⋯COO-, in crystal engineering for expanding the range of material properties of a given molecule for optimum performance in product design.

  8. SYNTHETIC LUBRICANTS

    DTIC Science & Technology

    azelaic , and sebacic acids are the most readily available dibasic acids suitable for ester lubricant production, while the petroleum derived Oxo alcohols...of synthetic lubricants for use at low and high temperatures. The diesters of straight-chain dibasic acids lead the field of esters mutable as...dibasic acid esters in all the characteristics studied so far, and this type of ester therefore represents a promising source of synthetic oil. Mono

  9. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    PubMed

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  10. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  11. Activity of Aristolochia bracteolata against Moraxella catarrhalis

    PubMed Central

    Khedr, Amgad I. M.; Abd AlGadir, Haidar; Takeshita, Satoshi; Shah, Mohammad Monir; Ichinose, Yoshio; Maki, Toshihide

    2014-01-01

    A bioassay-guided fractionation of methanol extract of Aristolochia bracteolata whole plant was carried out in order to evaluate its antimicrobial activity and to identify the active compounds in this extract. Antibacterial and antifungal activities of methanol extract against gram-positive, gram-negative, and fungal strains were investigated by the agar disk diffusion method. Among the strains tested, Moraxella catarrhalis and sea urchin-derived Bacillus sp. showed the highest sensitivity towards the methanol extract and hence they are used as test organisms for the bioassay-guided fractionation. From this extract, aristolochic acid 1 (AA-1) has been isolated and has showed the greatest antibacterial activity against both standard strain and clinical isolates of Moraxella catarrhalis with equal minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 25 and 50 μg/mL. Modification of the AA-1 to AA-1 methyl ester completely abolished the antibacterial activity of the compound and the piperonylic acid moiety of AA-1 which suggested that the coexistence of phenanthrene ring and free carboxylic acid is essential for AA-1 antibacterial activity. PMID:26904734

  12. The profile of volatile compounds in the outer and inner parts of broiled pork neck is strongly influenced by the acetic-acid marination conditions.

    PubMed

    Biller, Elżbieta; Boselli, Emanuele; Obiedziński, Mieczysław; Karpiński, Piotr; Waszkiewicz-Robak, Bożena

    2016-11-01

    Raw pork neck cutlets were marinated in an aqueous solution of acetic acid (pH4, 24h, 4°C) without (M) or with 1% (w/w) of glucose. The control (K) was formed by non-treated raw pork neck. The cutlets were then broiled (185°C, 30min). In all K cutlets, significant higher amounts of volatile compounds (VCs) were developed after broiling than the other samples. Significant more aldehydes and alcohols were present in the inner parts than in the surface. The correlation between surface and internal layers was high only for aldehydes. Marinating decreased the differences among VCs and led to the standardization of the processed meat. The addition of glucose to the marinade led to more volatile aldehydes, carboxylic acids, esters, furan, pyran, pyrazine, pyrrol and pyridine derivatives than in M samples. Several (53) specific VCs explained the differences among the surface samples related to the marinating process. However, only 16 VCs explained the variance among the inner parts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Analysis of the Properties of the Esters of Neopentyl Glycol,

    DTIC Science & Technology

    The esters of neopentyl glycol and monocarboxylic acids of normal and isomeric structure were synthesized. The esters are characterized by higher...indices of viscosity and solidification temperatures than the esters of the acids of isomeric structure. The esters of neopentyl glycol and industrial

  14. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells.

    PubMed

    Wang, Kai; Li, Yan; Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S; Song, Jia-Sheng; Zheng, Jing

    2013-10-28

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Development of PEGylated carboxylic acid-modified polyamidoamine dendrimers as bone-targeting carriers for the treatment of bone diseases.

    PubMed

    Yamashita, Shugo; Katsumi, Hidemasa; Hibino, Nozomi; Isobe, Yugo; Yagi, Yumiko; Kusamori, Kosuke; Sakane, Toshiyasu; Yamamoto, Akira

    2017-09-28

    In this study, we aimed to develop a polyethylene glycol (PEG)-conjugated third generation polyamidoamine (PAMAM) dendrimer with multiple carboxylic acids as a bone-targeting carrier for the treatment of bone diseases. We conjugated PAMAM backbones to various carboxylic acids [aspartic acid (Asp), glutamic acid (Glu), succinic acid (Suc), or aconitic acid (Aco)] to obtain four different types of carboxylic acid-modified PAMAMs. PEG was covalently bound to carboxylic acid-modified PAMAMs to obtain PEGylated carboxylic acid-modified PAMAMs. In a tissue distribution study, the amount of 111 In-labeled unmodified PAMAM taken up by the bone after intravenous injection in mice was 11.3%. In contrast, the dose of 111 In-labeled PEG(5)-Asp-PAMAM, PEG(5)-Glu-PAMAM, PEG(5)-Suc-PAMAM, or PEG(5)-Aco-PAMAM that accumulated in the bone after injection was approximately 46.0, 15.6, 22.6, and 24.5%, respectively. The bone clearance rates of 111 In-labeled PEGylated carboxylic acid-modified PAMAMs were proportional to their affinities to hydroxyapatite and Ca 2+ . An intra-bone distribution study showed that fluorescein isothiocyanate-labeled PEG(5)-Asp-PAMAM predominantly accumulated on eroded and quiescent surfaces, a pattern associated with the pathogenesis of bone diseases, such as rheumatoid arthritis and osteoporosis. Our findings indicate that PEG(5)-Asp-PAMAM is a promising drug carrier for efficient drug targeting to the bones. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. High-level production of C-11-carboxyl-labeled amino acids. [For use in tumor and pancreatic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washburn, L. C.; Sun, T. T.; Byrd, B. L.

    Carbon-11-labeled amino acids have significant potential as agents for positron tomographic functional imaging. We have developed a rapid, high-temperature, high-pressure modification of the Buecherer--Strecker amino acid synthesis and found it to be quite general for the production of C-11-carboxyl-labeled neutral amino acids. Production of C-11-carboxyl-labeled DL-tryptophan requires certain modifications in the procedure. Twelve different amino acids have been produced to date by this technique. Synthesis and chromatographic purification require approximately 40 min, and C-11-carboxyl-labeled amino acids have been produced in yields of up to 425 mCi. Two C-11-carboxyl-labeled amino acids are being investigated clinically for tumor scanning and two othersmore » for pancreatic imaging. Over 120 batches of the various agents have been produced for clinical use over a three-year period.« less

  17. UFLC/MS-IT-TOF guided isolation of anti-HBV active chlorogenic acid analogues from Artemisia capillaris as a traditional Chinese herb for the treatment of hepatitis.

    PubMed

    Zhao, Yong; Geng, Chang-An; Ma, Yun-Bao; Huang, Xiao-Yan; Chen, Hao; Cao, Tuan-Wu; He, Kang; Wang, Hao; Zhang, Xue-Mei; Chen, Ji-Jun

    2014-10-28

    Hepatitis B induced by HBV is a serious health problem. Artemisia capillaris (Yin-Chen) has long been used to treat hepatitis in traditional Chinese medicine. Coumarins, flavonoids and organic acids were revealed as its hepatoprotective and choleretic components, but its anti-HBV active components remain unknown. This current study focused on its anti-HBV active constituents by various chromatographic methods. LC/MS and bioassay-guided fractionation on the active extract of Artemisia capillaris led to the isolation of nine chlorogenic acid analogues. Structures of the isolates were elucidated by MS/MS and NMR techniques. Anti-HBV assay was performed on HepG 2.2.15 cell line in vitro: reduction of HBsAg and HBeAg secretions was measured by an ELISA method; inhibition of HBV DNA replication was monitored by real-time quantitative PCR and cellular toxicity was assessed by a MTT method. The 90% ethanol extract of Artemisia capillaris (Fr. AC) showed significantly inhibitory activity on HBV DNA replication with an IC₅₀ value of 76.1 ± 3.9 μg/mL and low cytotoxic effects (SI>20.1). To clarify its active constituents, the extract was further separated into 3 sub-fractions (AC-1, AC-2 and AC-3), of which Fr. AC-2 was the most active fraction against HBeAg secretion and HBV DNA replication with IC50 values of 44.2 ± 2.8 and 23.2 ± 1.9 μg/mL. Nine chlorogenic acid analogues were detected from the active part (Fr. AC-2) by a LC/MS technique and further separated by a HPLC method. The isolates were determined as chlorogenic acid (1), cryptochlorogenic acid (2), neochlorogenic acid (3), 3,5-dicaffeoylquinic acid (4), 4,5-dicaffeoylquinic acid (5), 3,4-dicaffeoylquinic acid (6), chlorogenic acid methyl ester (7), cryptochlorogenic acid methyl ester (8), neochlorogenic acid methyl ester (9). Compounds 1-6 possessed potent activity against HBV DNA replication with IC50 values in the range of 5.5 ± 0.9-13.7 ± 1.3 μM. Di-caffeoyl analogues (4-6) also exhibited activity against the secretions of HBsAg and HBeAg. Esterified analogues (7-9) showed dramatically decreased anti-HBV activity, indicating that carboxyl group is closely associated to the anti-HBV activity. This investigation was focused on the active fractions of Artemisia capillaris and their active compositions, which showed that Fr. AC-2 was the main active section of Artemisia capillaris and chlorogenic acid analogues were the main constituents contributing to its anti-HBV activity. These results support the ethnopharmacological use of Artemisia capillaris as anti-HBV agents. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. New trends and applications in carboxylation for isotope chemistry.

    PubMed

    Bragg, Ryan A; Sardana, Malvika; Artelsmair, Markus; Elmore, Charles S

    2018-05-08

    Carboxylations are an important method for the incorporation of isotopically labeled 14 CO 2 into molecules. This manuscript will review labeled carboxylations since 2010 and will present a perspective on the potential of recent unlabeled methodology for labeled carboxylations. The perspective portion of the manuscript is broken into 3 major sections based on product type, arylcarboxylic acids, benzylcarboxylic acids, and alkyl carboxylic acids, and each of those sections is further subdivided by substrate. © 2018 AstraZeneca. Journal of Labelled Compounds and Radiopharmaceuticals Published by John Wiley & Sons, Ltd.

  19. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis

    PubMed Central

    Ventre, Sandrine; Petronijevic, Filip R.; MacMillan, David W. C.

    2016-01-01

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F• transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol. PMID:25881929

  20. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    PubMed

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  1. Tailored Gallium(III) chelator NOPO: synthesis, characterization, bioconjugation, and application in preclinical Ga-68-PET imaging.

    PubMed

    Simeček, Jakub; Zemek, Ondřej; Hermann, Petr; Notni, Johannes; Wester, Hans-Jürgen

    2014-11-03

    The bifunctional chelator NOPO (1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)phosphinic acid]) shows remarkably high Ga(III) complexation efficiency and comprises one carboxylic acid moiety which is not involved into metal ion coordination. An improved synthetic protocol affords NOPO with 45% overall yield. Stepwise protonation constants (log Ka), determined by potentiometry, are 11.96, 5.22, 3.77, and 1.54; the stability constant of the Ga(III) complex is log KGaL = 25.0. Within 5 min, (68)Ga(III) incorporation by NOPO is virtually quantitative at room temperature between pH 3 and 4, and at 95 °C at pH ranging from 0.5 to 7, at NOPO concentrations of 30 μM and 10 μM, respectively. During amide bond formation at the distant carboxylate using the HATU coupling reagent, an intramolecular phosphinic acid ester (phosphilactone) is formed, which is cleaved during (68)Ga complexation or in acidic media, such as trifluoroacetic acid (TFA). Phosphilactone formation can also be suppressed by complexation of Zn(2+) prior to conjugation, the resulting zinc-containing conjugates nevertheless being suitable for direct (68)Ga-labeling. In AR42J (rat pancreatic carcinoma) xenografted CD-1 nude mice, (68)Ga-labeled NOPO-NaI(3)-octreotide conjugate ((68)Ga-NOPO-NOC) showed high and fully blockable tumor uptake (13.9 ± 5% ID/g, 120 min p.i., compared to 0.9 ± 0.4% ID/g with 5 mg/kg of nonlabeled peptide). Uptake in other tissues was generally below 3% ID/g, except appearance of excretion-related activity accumulation in kidneys. NOPO-functionalized compounds tend to be more hydrophilic than the corresponding DOTA- and NODAGA-conjugates, thus promoting fast and extensive renal excretion of (68)Ga-NOPO-radiopharmaceuticals. NOPO-functionalized peptides provide suitable pharmacokinetics in vivo and meet all requirements for efficient (68)Ga-labeling even at room temperature in a kit-like manner.

  2. 21 CFR 178.3450 - Esters of stearic and palmitic acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Esters of stearic and palmitic acids. 178.3450 Section 178.3450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... SANITIZERS Certain Adjuvants and Production Aids § 178.3450 Esters of stearic and palmitic acids. The ester...

  3. 21 CFR 178.3450 - Esters of stearic and palmitic acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Esters of stearic and palmitic acids. 178.3450 Section 178.3450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... SANITIZERS Certain Adjuvants and Production Aids § 178.3450 Esters of stearic and palmitic acids. The ester...

  4. 40 CFR 721.1577 - 1,4-Benzenedicarboxylic acid, bis [4-(ethenyloxy) butyl] ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-(ethenyloxy) butyl] ester. 721.1577 Section 721.1577 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1577 1,4-Benzenedicarboxylic acid, bis [4-(ethenyloxy) butyl] ester. (a... 1,4-benzenedicarboxylic acid, bis[4-(ethenyloxy) butyl] ester (PMN P-98-1163; CAS No. 117397-31-6...

  5. 40 CFR 721.1577 - 1,4-Benzenedicarboxylic acid, bis [4-(ethenyloxy) butyl] ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-(ethenyloxy) butyl] ester. 721.1577 Section 721.1577 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1577 1,4-Benzenedicarboxylic acid, bis [4-(ethenyloxy) butyl] ester. (a... 1,4-benzenedicarboxylic acid, bis[4-(ethenyloxy) butyl] ester (PMN P-98-1163; CAS No. 117397-31-6...

  6. Rheological and Thermal Properties of Bio-based Hyperbranched Polyesters

    NASA Astrophysics Data System (ADS)

    Bubeck, Robert; Dumitrascu, Adina; Zhang, Tracy; Smith, Patrick

    Hyperbranched poly(ester)s (HBPEs) of designed molecular structures and targeted molecular weight can be prepared from a variety of multi-functional acids and alcohols. These polymers find application in the areas of coatings and rheology modifiers for coatings. These functional polymers can be synthesized in variety of architectures, possessing either hydroxyl or carboxyl reactive end-groups suitable for the attachment of active entities. The rheological characteristics as related to variation in molecular structure were determined using cone and plate or couette geometries. Viscosities of the HBPEs were found to be near Newtonian. HB polymers permit the control of Tg that is not as readily attained with linear polymers. Accordingly, Tg and viscosity are affected little as a function of Mw but vary dramatically with the nature of the end-groups, are highly dependent on hydrogen bonding of the hydroxyl end groups, and decrease dramatically with the incorporation of aliphatic end-caps. The thermal properties and the degradation characteristics of the HBPEs were determined. Thermal degradation of the hydroxyl-terminal HBPEs is initiated by dehydrative ether formation (crosslinking) while decarboxylation is the initial decomposition event for the carboxyl-terminal polymers. Midland, MI Campus.

  7. Mechanistic Design of Chemically Diverse Polymers with Applications in Oral Drug Delivery.

    PubMed

    Mosquera-Giraldo, Laura I; Borca, Carlos H; Meng, Xiangtao; Edgar, Kevin J; Slipchenko, Lyudmila V; Taylor, Lynne S

    2016-11-14

    Polymers play a key role in stabilizing amorphous drug formulations, a recent strategy employed to improve solubility and bioavailability of drugs delivered orally. However, the molecular mechanism of stabilization is unclear, therefore, the rational design of new crystallization-inhibiting excipients remains a substantial challenge. This article presents a combined experimental and computational approach to elucidate the molecular features that improve the effectiveness of cellulose polymers as solution crystallization inhibitors, a crucial first step toward their rational design. Polymers with chemically diverse substituents including carboxylic acids, esters, ethers, alcohols, amides, amines, and sulfides were synthesized. Measurements of nucleation induction times of the model drug, telaprevir, show that the only effective polymers contained carboxylate groups in combination with an optimal hydrocarbon chain length. Computational results indicate that polymer conformation as well as solvation free energy are important determinants of effectiveness at inhibiting crystallization and show that simulations are a promising predictive tool in the screening of polymers. This study suggests that polymers need to have an adequate hydrophilicity to promote solvation in an aqueous environment, and sufficient hydrophobic regions to drive interactions with the drug. Particularly, the right balance between key substituent groups and lengths of hydrocarbon side chains is needed to create effective materials.

  8. Carbodithioic acid esters of fluoxetine, a novel class of dual-function spermicides.

    PubMed

    Kiran Kumar, S T V S; Kumar, Lalit; Sharma, Vishnu L; Jain, Ashish; Jain, Rajeev K; Maikhuri, Jagdamba P; Kumar, Manish; Shukla, Praveen K; Gupta, Gopal

    2008-10-01

    Carbodithioic acid esters of fluoxetine have been prepared by replacing the methylamino function in aminopropane chain with carbodithioic acid ester group and by adding various S-2-hydroxypropyl ester of dialkyl carbodithioic acid at 3-methylamino group. Some of these compounds showed spermicidal, antifungal and anti-Trichomonas activities. The study revealed that incorporation of carbodithioic acid residue directly into fluoxetine structure leads to compounds with better antifungal and anti-Trichomonas activities, and N-methyl-[3-phenyl-3-(4-trifluoromethyl-phenoxy)-propyl]carbodithioic acid S-(2-pyrrolidino-ethyl) ester (14) has shown better profile than both fluoxetine and nonoxynol-9. Further lead optimization may yield a potent dual-function spermicide.

  9. Synthesis and evaluation of odour-active methionyl esters of fatty acids via esterification and transesterification of butter oil.

    PubMed

    Li, Cheng; Sun, Jingcan; Fu, Caili; Yu, Bin; Liu, Shao Quan; Li, Tianhu; Huang, Dejian

    2014-02-15

    Methionol-derived fatty acid esters were synthesised by both chemical and lipase catalysed esterification between fatty acids and methionol. Beneficial effects of both methods were compared qualitatively and quantitatively by GC-MS/GC-FID results. And the high acid and heat stability of our designed methionyl esters meet the requirement of the food industry. Most importantly, the sensory test showed that fatty acid carbon-chain length had an important effect on the flavour attributes of methionyl esters. Moreover, through Lipozyme TL IM-mediated transesterification, valuable methionol-derived esters were synthesised from the readily available natural material butter oil as the fatty acid source. The conversion of methionol and yield of each methionyl ester were also elucidated by GC-MS-FID. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Application of ethyl esters and d3-methyl esters as internal standards for the gas chromatographic quantification of transesterified fatty acid methyl esters in food.

    PubMed

    Thurnhofer, Saskia; Vetter, Walter

    2006-05-03

    Ethyl esters (FAEE) and trideuterium-labeled methyl esters (d3-FAME) of fatty acids were prepared and investigated regarding their suitability as internal standards (IS) for the determination of fatty acids as methyl esters (FAME). On CP-Sil 88, ethyl esters of odd-numbered fatty acids eluted approximately 0.5 min after the respective FAME, and only coelutions with minor FAME were observed. Depending on the problem, one or even many FAEE can be added as IS for the quantification of FAME by both GC-FID and GC-MS. By contrast, d3-FAME coeluted with FAME on the polar GC column, and the use of the former as IS requires application of GC-MS. In the SIM mode, m/z 77 and 90 are suggested for d3-methyl esters of saturated fatty acids, whereas m/z 88 and 101 are recommended for ethyl esters of saturated fatty acids. These m/z values give either no or very low response for FAME and can thus be used for the analysis of FAME in food by GC-MS in the SIM mode. Fatty acids in sunflower oil and mozzarella cheese were quantified using five saturated FAEE as IS. Gravimetric studies showed that the transesterification procedure could be carried out without of loss of fatty acids. GC-EI/MS full scan analysis was suitable for the quantitative determination of all unsaturated fatty acids in both food samples, whereas GC-EI/MS in the SIM mode was particularly valuable for quantifying minor fatty acids. The novel GC-EI/MS/SIM method using fatty acid ethyl esters as internal standards can be used to quantify individual fatty acids only, that is, without determination of all fatty acids (the common 100% method), although this is present. This was demonstrated by the exclusive quantification of selected fatty acids including methyl-branched fatty acids, erucic acid (18:1n-9trans), and polyunsaturated fatty acids in cod liver oil and goat's milk fat.

  11. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this...

  12. One-pot synthesis of pyrrole-2-carboxylates and -carboxamides via an electrocyclization/oxidation sequence.

    PubMed

    Imbri, Dennis; Netz, Natalie; Kucukdisli, Murat; Kammer, Lisa Marie; Jung, Philipp; Kretzschmann, Annika; Opatz, Till

    2014-12-05

    An electrocyclic ring closure is the key step of an efficient one-pot method for the synthesis of pyrrole-2-carboxylates and -carboxamides from chalcones and glycine esters or amides. The 3,4-dihydro-2H-pyrrole intermediates generated in situ are oxidized to the corresponding pyrroles by stoichiometric oxidants or by catalytic copper(II) and air in moderate to high yields. A wide range of functional groups are tolerated, and further combination with an in situ bromination gives access to polyfunctional pyrrole scaffolds.

  13. Heteroaromatic-based electrolytes for lithium and lithium-ion batteries

    DOEpatents

    Cheng, Gang; Abraham, Daniel P.

    2017-04-18

    The present invention provides an electrolyte for lithium and/or lithium-ion batteries comprising a lithium salt in a liquid carrier comprising heteroaromatic compound including a five-membered or six-membered heteroaromatic ring moiety selected from the group consisting of a furan, a pyrazine, a triazine, a pyrrole, and a thiophene, the heteroaromatic ring moiety bearing least one carboxylic ester or carboxylic anhydride substituent bound to at least one carbon atom of the heteroaromatic ring. Preferred heteroaromatic ring moieties include pyridine compounds, pyrazine compounds, pyrrole compounds, furan compounds, and thiophene compounds.

  14. Polythermal investigation of viscosity of solution of metal carboxylates in VIK-grade mixed carboxylic acids: Yttrium and gadolinium carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezhov, E.A.; Samatov, A.V.; Troyanovskii, L.V.

    Kinematic viscosities have been measured for solutions of yttrium and gadolinium carboxylates in grade VIK mixed carboxylic acids (MCA). It has been established that the optimal fluidity of these metal carboxylate solutions for application to articles is reached at 333 K. A regression model has been developed to describe the concentration and temperature dependences of the viscosity of yttrium- and gadolinium-containing MCA solutions. 2 refs., 3 tabs.

  15. ToF-SIMS PCA analysis of Myrtus communis L.

    NASA Astrophysics Data System (ADS)

    Piras, F. M.; Dettori, M. F.; Magnani, A.

    2009-06-01

    Nowadays there is a growing interest of researchers for the application of sophisticated analytical techniques in conjunction with statistical data analysis methods to the characterization of natural products to assure their authenticity and quality, and for the possibility of direct analysis of food to obtain maximum information. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) in conjunction with principal components analysis (PCA) are applied to study the chemical composition and variability of Sardinian myrtle ( Myrtus communis L.) through the analysis of both berries alcoholic extracts and berries epicarp. ToF-SIMS spectra of berries epicarp show that the epicuticular waxes consist mainly of carboxylic acids with chain length ranging from C20 to C30, or identical species formed from fragmentation of long-chain esters. PCA of ToF-SIMS data from myrtle berries epicarp distinguishes two groups characterized by a different surface concentration of triacontanoic acid. Variability in antocyanins, flavonols, α-tocopherol, and myrtucommulone contents is showed by ToF-SIMS PCA analysis of myrtle berries alcoholic extracts.

  16. Sources markers in aerosols, oceanic particles and sediments

    NASA Astrophysics Data System (ADS)

    Saliot, A.

    2009-02-01

    This review presents some diagnostic criteria used for identifying and quantifying terrestrial organic matter inputs to the ocean. Coupled to the isotopic composition of total organic carbon, the analysis of stable biomarkers permits to trace higher plant contributions in aerosols, dusts, sedimenting particles and dissolved phase in the water column and ultimately in recent and ancient sediments and soils. Some applications are presented, based on the analysis of n-alkyl compounds by a combination of gas chromatography and mass spectrometry (n-alkanes, n-alkanols, n-alkanoic acids and wax esters). Another approach has been developed using the analysis of macromolecular compounds present in higher plants. Abundances of the phenolic compounds from lignin, benzene carboxylic acids obtained during cupric oxide oxidation, Curie pyrolysis are used to characterise terrestrial organic matter sources and inputs. Finally due to the importance of biomass burning in continent-ocean transfers, biomarkers are presented in the polycyclic aromatic hydrocarbon class and for monosaccharide derivatives from the breakdown of cellulose.

  17. Chemical composition of the leaf and stem essential oil of Adenophorae Radix

    NASA Astrophysics Data System (ADS)

    Lan, Weijie; Lin, Shang; Li, Xindan; Zhang, Qing; Qin, Wen

    2017-03-01

    The chemical composition of the essential oil extracted from leaves and stems of Adenophorae Radix was determined for the first time in this study. Twenty-six compounds were identified by gas chromatography coupled to mass spectrometry (GC-MS). n-Hexadecanoic acid (29.14%), 9,12-octadecadienoic acid (Z,Z)- (17.22%), hexadecanoic acid, methyl ester(8.98%), 9-octadecenoic acid, methyl ester, (E)- (7.03%), 9,12-octadecadienoic acid (Z,Z)-, methyl ester (5.93%), phytol (5.50%), and estradiol (4.43%) were measured as the major compounds in stem oil. The leaf essential oil was dominated by n-hexadecanoic acid (50.78%), 9-octadecenoic acid, methyl ester, (E)- (9.04%), phytol (8.47%), d-mannitol (5.81%), 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z)- (4.31%), hexadecanoic acid, methyl ester (2.19%) and 9,12-octadecadienoic acid (Z,Z)-(1.7%). The leaves yield was 0.12% (v/w) and the stems yield showed only 0.073% (v/w). The results might provide reference basis for further exploration of its application value.

  18. Identification of keto- and hydroxy-dicarboxylic acids in remote marine aerosols from the western North Pacific: GC and GC/TOF-MS measurements

    NASA Astrophysics Data System (ADS)

    Vani, D.; Kawamura, K.; Tachibana, E.; Boreddy, S. K. R.

    2015-12-01

    Dicarboxylic acids (diacids) are dominant components of organic aerosols in the atmosphere. They contribute significantly to the total aerosol mass and have a serious impacts on global climate changes. However, studies on keto- and hydroxy-diacids in marine aerosols are limited. Compare to diacids, keto- and hydroxy-diacids are more hygroscopic due to the additional polar groups (OH and CO) and, hence, acts as cloud condensation nuclei (CCN). Molecular characterization of these compounds provides insight into organic aerosols sources and transformation pathways. We collected marine aerosols from remote Chichijima Island in the western North Pacific from December 2010 to November 2011 and studied for water-soluble keto- and hydroxy-diacids. Carboxyl groups were derivatized to dibutyl esters with 14% boron trifluoride/n-butanol, whereas hydroxyl groups were derivatized to trimethylsilyl ethers using N,O-Bis (trimethylsilyl) trifluoroacetamide (BSTFA). After two-step derivatization, samples were injected to GC, GC/MS and GC/TOF-MS. In the GC chromatogram, we detected several new peaks after BSTFA derivatization of dibutyl ester fraction. Based on mass spectral interpretation, we found these peaks as homologues series of hydroxy-diacids and keto-diacids. Some of these hydroxy-diacids have been individually reported in literature in the laboratory photo-oxidation experiments and forest environments samples. But, there are no evidences to prove their sources and formation mechanism in the atmosphere. Here, we report for the first time homologous series of hydroxy-diacids (hC3di-hC6di) and keto-diacid (oxaloacetic acid, enol and keto forms) in remote marine atmosphere. Molecular distributions of hydroxy-diacids generally showed the predominance of malic acid followed by tartronic acid. Both hydroxy- and keto-diacids show significant positive correlation with oxalic acid and SO42-, suggesting that they are generated in the atmosphere and play an important role in the formation of smaller diacids through aqueous phase photo-oxidation.

  19. Year-round records of gas and particulate carboxylic acids (formate and acetate) in the boundary layer at Dumont d'Urville (coastal Antarctica): Production of carboxylic acids from biogenic NMHC emissions from the Antarctic ocean

    NASA Astrophysics Data System (ADS)

    Legrand, M.; Preunkert, S.; Jourdain, B.

    2003-04-01

    Multiple year-round concentrations of acetic and formic acids were measured both in gas and aerosol phases at Dumont d'Urville (DDU, a coastal Antarctic site: 66^o40'S, 140^o01'E) by using mist chamber and aerosol filter sampling. Aerosol levels of the 2 carboxylates range from less than one ng m-3 in winter to 5--10 ng m-3 in summer. Comparison with gas phase concentrations shows that almost 99% of the 2 carboxylic acids are present in the gas phase. Concentrations of formic acid in the gas phase are minima in June--July (70 ng m-3) and increase regularly towards summer months when levels reach ˜400 ng m-3. Concentrations of acetic acid in the gas phase exhibit a more well-marked seasonal cycle with values remaining close to 50 ng m-3 from April to October and strongly increase during summer months (mean value of 800 ng m-3). Such a strong seasonal cycle of carboxylic acids in the high southern latitude marine boundary layer displays with observations made at numerous continental sites where a more weak seasonality is generally observed. It is suggested that carboxylic acids present at DDU mainly originate from biogenic emissions from the Antarctic ocean which are expected to closely follow annual cycle of the sea ice extent and solar radiation, affecting in particular photochemical production of alkenes from dissolved organic carbon released from phytoplancton. Summer levels of carboxylic acids are discussed in terms of air-sea fluxes of NMHCs and photochemical production of carboxylic acids from ozone-alkene reactions and HO_2 reaction with peroxyacetal radical in these poor NOx environments.

  20. Phosphoric and carboxylic methacrylate esters as bonding agents in self-adhesive resin cements

    PubMed Central

    Liu, Wenshu; Meng, Hongmei; Sun, Zhiguang; Jiang, Riwen; Dong, Chang-An; Zhang, Congxiao

    2018-01-01

    The aim of the present study was to investigate the effect of pH and phosphoric ester structure (phosphonate or phosphate) on the bond strength of different dental restorative materials. The following three self-adhesive resin cements were used in the present study: RelyX™ Unicem, Maxcem and Multilink Sprint The pH of each cement was measured using a pH meter. The cements were used to attach a variety of restorative materials to human dentin and the bond strength was measured by assessing shear strength using a universal testing machine. The pH values of RelyX Unicem, Maxcem and Multilink Sprint were 3.78, 1.78 and 3.42, respectively. Maxcem, a phosphate-based self-adhesive cement, was demonstrated to form the weakest bonds. No significant difference in bond strength was observed between RelyX Unicem and Multilink Sprint, which are phosphonate-based cements. The results of the present study suggest that the chemical structure of the functional monomer influences the performance of an adhesive material. Furthermore, the pH of acidic functional monomers containing phosphonate or phosphate groups has an effect on the strength of bonds formed between dentin and restorative materials. PMID:29731837

  1. Supramolecular architectures in two 1:1 cocrystals of 5-fluorouracil with 5-bromothiophene-2-carboxylic acid and thiophene-2-carboxylic acid.

    PubMed

    Mohana, Marimuthu; Thomas Muthiah, Packianathan; McMillen, Colin D

    2017-06-01

    In solid-state engineering, cocrystallization is a strategy actively pursued for pharmaceuticals. Two 1:1 cocrystals of 5-fluorouracil (5FU; systematic name: 5-fluoro-1,3-dihydropyrimidine-2,4-dione), namely 5-fluorouracil-5-bromothiophene-2-carboxylic acid (1/1), C 5 H 3 BrO 2 S·C 4 H 3 FN 2 O 2 , (I), and 5-fluorouracil-thiophene-2-carboxylic acid (1/1), C 4 H 3 FN 2 O 2 ·C 5 H 4 O 2 S, (II), have been synthesized and characterized by single-crystal X-ray diffraction studies. In both cocrystals, carboxylic acid molecules are linked through an acid-acid R 2 2 (8) homosynthon (O-H...O) to form a carboxylic acid dimer and 5FU molecules are connected through two types of base pairs [homosynthon, R 2 2 (8) motif] via a pair of N-H...O hydrogen bonds. The crystal structures are further stabilized by C-H...O interactions in (II) and C-Br...O interactions in (I). In both crystal structures, π-π stacking and C-F...π interactions are also observed.

  2. Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds.

    PubMed

    Radivojevic, Jelena; Skaro, Sanja; Senerovic, Lidija; Vasiljevic, Branka; Guzik, Maciej; Kenny, Shane T; Maslak, Veselin; Nikodinovic-Runic, Jasmina; O'Connor, Kevin E

    2016-01-01

    A library of 18 different compounds was synthesized starting from (R)-3-hydroxyoctanoic acid which is derived from the bacterial polymer polyhydroxyalkanoate (PHA). Ten derivatives, including halo and unsaturated methyl and benzyl esters, were synthesized and characterized for the first time. Given that (R)-3-hydroxyalkanoic acids are known to have biological activity, the new compounds were evaluated for antimicrobial activity and in vitro antiproliferative effect with mammalian cell lines. The presence of the carboxylic group was essential for the antimicrobial activity, with minimal inhibitory concentrations against a panel of bacteria (Gram-positive and Gram-negative) and fungi (Candida albicans and Microsporum gypseum) in the range 2.8-7.0 mM and 0.1-6.3 mM, respectively. 3-Halogenated octanoic acids exhibited the ability to inhibit C. albicans hyphae formation. In addition, (R)-3-hydroxyoctanoic and (E)-oct-2-enoic acids inhibited quorum sensing-regulated pyocyanin production in the opportunistic pathogen Pseudomonas aeruginosa PAO1. Generally, derivatives did not inhibit mammalian cell proliferation even at 3-mM concentrations, while only (E)-oct-2-enoic and 3-oxooctanoic acid had IC50 values of 1.7 and 1.6 mM with the human lung fibroblast cell line.

  3. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria

    PubMed Central

    Furukawa, Soichi; Akiyoshi, Yuko; O’Toole, George A.; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-01-01

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001%(w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the Staphylococcus aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01%(w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1%(w/w)) of the sugar fatty acid esters. PMID:20089325

  4. Synthesis, characterization and application of lipase-conjugated citric acid-coated magnetic nanoparticles for ester synthesis using waste frying oil.

    PubMed

    Patel, Unisha; Chauhan, Kishor; Gupte, Shilpa

    2018-04-01

    In the present work, magnetic nanoparticles (MNPs) were prepared by chemical precipitation of trivalent and divalent iron ions which were functionalized using citric acid. The bacterial isolate Staphylococcus epidermidis KX781317 was isolated from oil-contaminated site. The isolate produced lipase, which was purified and immobilized on magnetic nanoparticles (MNPs) for ester synthesis from waste frying oil (WFO). The characterization of MNPs employed conventional TEM, XRD and FTIR techniques. TEM analysis of MNPs showed the particle size in the range of 20-50 nm. FTIR spectra revealed the binding of citric acid to Fe 3 O 4 and lipase on citric acid-coated MNPs. The citric acid-coated MNPs and lipase-conjugated citric acid-coated MNPs had similar XRD patterns which indicate MNPs could preserve their magnetic properties. The maximum immobilization efficiency 98.21% of lipase-containing citric acid-coated MNPs was observed at ratio 10:1 of Cit-MNPs:lipase. The pH and temperature optima for lipase conjugated with Cit-MNPs were 7 and 35 °C, respectively. Isobutanol was found to be an effective solvent for ester synthesis and 1:2 ratio of oil:alcohol observed significant for ester formation. The ester formation was determined using TLC and the % yield of ester conversion was calculated. The rate of ester formation is directly proportional to the enzyme load. Formed esters were identified as isobutyl laurate ester and isobutyl myristate ester through GC-MS analysis.

  5. Aryliminopropadienone-C-Amidoketenimine- Amidinoketene-2-Aminoquinolone Cascades and the Ynamine-Isocyanate Reaction.

    PubMed

    Wentrup, Curt; Rao, V. V. Ramana; Frank, Wilhelm; Fulloon, Belinda E.; Moloney, Daniel W. J.; Mosandl, Thomas

    1999-05-14

    Imidoylketenes 11 and oxoketenimines 12 are generated by flash vacuum thermolysis of Meldrum's acid derivatives 9, pyrrolediones 17 and 18, and triazole 19 and are observed by IR spectroscopy. Ketenimine-3-carboxylic acid esters 12a are isolable at room temperature. Ketenes 11 and ketenimines 12 undergo rapid interconversion in the gas phase, and the ketenes cyclize to 4-quinolones 13. When using an amine leaving group in Meldrum's acid derivatives 9c, the major reaction products are aryliminopropadienones, ArN=C=C=C=O (15). The latter react with 1 equiv of nucleophile to produce ketenimines 12 and with 2 equiv to afford malonic acid imide derivatives 16. N-Arylketenimine-C-carboxamides 12c cyclize to quinolones 13c via the transient amidinoketenes 11c at temperatures of 25-40 degrees C. This implies rapid interconversion of ketenes and ketenimines by a 1,3-shift of the dimethylamino group, even at room temperature. This interconversion explains previously poorly understood outcomes of the ynamine-isocyanate reaction. The solvent dependence of the tautomerism of 4-quinolones/4-quinolinols is discussed. Rotational barriers of NMe(2) groups in amidoketenimines 12c and malonioc amides and amidines 16 (24) are reported.

  6. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid (H3BO3), mixed esters with... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

  7. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid (H3BO3), mixed esters with... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

  8. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid (H3BO3), mixed esters with... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

  9. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid (H3BO3), mixed esters with... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

  10. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid (H3BO3), mixed esters with... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

  11. Environmental and Chemical Aging of Fatty-Acid-Based Vinyl Ester Composites

    DTIC Science & Technology

    2011-04-01

    Environmental and Chemical Aging of Fatty- Acid -Based Vinyl Ester Composites by Steven E. Boyd and John J. La Scala ARL-TR-5523 April...2011 Environmental and Chemical Aging of Fatty- Acid -Based Vinyl Ester Composites Steven E. Boyd and John J. La Scala Weapons and Materials...COVERED (From - To) October 2009–September 2010 4. TITLE AND SUBTITLE Environmental and Chemical Aging of Fatty- Acid -Based Vinyl Ester Composites

  12. Keto-acids in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, G.; Chang, P. M.; Dugas, A.; Byrd, A.; Chang, P. M.; Washington, N.

    2005-01-01

    The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry and are generally used as references for organic compounds in extraterrestrial material. Among the classes of organic compounds found in these meteorites are amino acids, carboxylic acids, hydroxy acids, purines, and pyrimidines. Such compounds, important in contemporary biochemistry, are thought to have been delivered to the early Earth in asteroids and comets and may have played a role in early life and/or the origin of life. Absent among (today's) critically important biological compounds reported in carbonaceous meteorites are keto acids, i.e., pyruvic acid, acetoacetic acid, and higher homologs. These compounds are key intermediates in such critical processes as glycolysis and the citric acid cycle. In this study several individual meteoritic keto acids were identified by gas chromatography-mass spectrometry (GC-MS) (see figure below). All compounds were identified as their trimethylsilyl (TMS), isopropyl ester (ISP), and tert-butyldimethylsilyl (tBDMS) derivatives. In general, the compounds follow the abiotic synthesis pattern of other known meteorite classes of organic compounds [1,2]: a general decrease in abundance with increasing carbon number within a class of compounds and many, if not all, possible isomers present at a given carbon number. The majority of the shown compounds was positively identified by comparison of their mass spectra to commercially available standards or synthesized standards.

  13. Electron mobility enhancement in ZnO thin films via surface modification by carboxylic acids

    NASA Astrophysics Data System (ADS)

    Spalenka, Josef W.; Gopalan, Padma; Katz, Howard E.; Evans, Paul G.

    2013-01-01

    Modifying the surface of polycrystalline ZnO films using a monolayer of organic molecules with carboxylic acid attachment groups increases the field-effect electron mobility and zero-bias conductivity, resulting in improved transistors and transparent conductors. The improvement is consistent with the passivation of defects via covalent bonding of the carboxylic acid and is reversible by exposure to a UV-ozone lamp. The properties of the solvent used for the attachment are crucial because solvents with high acid dissociation constants (Ka) for carboxylic acids lead to high proton activities and etching of the nanometers-thick ZnO films, masking the electronic effect.

  14. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... approved emulsifiers in dry, whipped topping base. The fatty acids used in the production of the... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyglycerol esters of fatty acids. 172.854... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol...

  15. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... approved emulsifiers in dry, whipped topping base. The fatty acids used in the production of the... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyglycerol esters of fatty acids. 172.854... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol...

  16. Recent developments in the metal-catalyzed reactions of metallocarbenoids from propargylic esters.

    PubMed

    Marco-Contelles, José; Soriano, Elena

    2007-01-01

    The transition-metal-catalyzed intramolecular cycloisomerization of propargylic carboxylates provides functionalized bicyclo[n.1.0]enol esters in a very diastereoselective manner and, depending on the structure, with partial or complete transfer of chirality from enantiomerically pure precursors. The subsequent methanolysis gives bicyclo[n.1.0] ketones, hence resulting in a very efficient two-step protocol for the syntheses of alpha,beta-unsaturated cyclopropyl ketones, key intermediates for the preparation of natural products. The results from mechanistic computational studies suggest that they probably proceed through cyclopropyl metallocarbenoids, formed by endo-cyclopropanation, that undergo a 1,2-acyl migration. Finally, the potential of the intermolecular reaction and the related pentannulation of propargylic esters bearing pendant aromatic rings are also discussed.

  17. Method for separating mono- and di-octylphenyl phosphoric acid esters

    DOEpatents

    Arnold, Jr., Wesley D.

    1977-01-01

    A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters.

  18. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  19. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  20. Nonsteroidal anti-inflammatory drug flufenamic acid is a potent activator of AMP-activated protein kinase.

    PubMed

    Chi, Yuan; Li, Kai; Yan, Qiaojing; Koizumi, Schuichi; Shi, Liye; Takahashi, Shuhei; Zhu, Ying; Matsue, Hiroyuki; Takeda, Masayuki; Kitamura, Masanori; Yao, Jian

    2011-10-01

    Flufenamic acid (FFA) is a nonsteroidal anti-inflammatory drug (NSAID). It has anti-inflammatory and antipyretic properties. In addition, it modulates multiple channel activities. The mechanisms underlying the pharmacological actions of FFA are presently unclear. Given that AMP-activated protein kinase (AMPK) has both anti-inflammatory and channel-regulating functions, we examined whether FFA induces AMPK activation. 1) Exposure of several different types of cells to FFA resulted in an elevation of AMPKα phosphorylation at Thr172. This effect of FFA was reproduced by functionally and structurally similar mefenamic acid, tolfenamic acid, niflumic acid, and meclofenamic acid. 2) FFA-induced activation of AMPK was largely abolished by the treatment of cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (an intracellular Ca(2+) chelator) or depletion of extracellular Ca(2+), whereas it was mimicked by stimulation of cells with the Ca(2+) ionophore 5-(methylamino)-2-({(2R,3R,6S,8S,9R,11R)-3,9,11-trimethyl-8-[(1S)-1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl]-1,7-dioxaspiro[5.5]undec-2-yl}methyl)-1,3-benzoxazole-4-carboxylic acid (A23187) or ionomycin. 3) FFA triggered a rise in intracellular Ca(2+), which was abolished by cyclosporine, a blocker of mitochondrial permeability transition pore. Cyclosporine also abolished FFA-induced activation of AMPK. 4) Inhibition of Ca(2+)/calmodulin-dependent kinase kinase β (CaMKKβ) with 7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid acetate (STO-609) or down-regulation of CaMKKβ with short interfering RNA largely abrogated FFA-induced activation of AMPK. 5) FFA significantly suppressed nuclear factor-κB activity and inducible nitric-oxide synthase expression triggered by interleukin-1β and tumor necrosis factor α. This suppression was also largely abrogated by STO-609. Taken together, we conclude that FFA induces AMPK activation through the Ca(2+)-CaMKKβ pathway. Activation of AMPK is a presently unrecognized important mechanism underlying the pharmacological effects of FFA.

  1. Boron-containing amino carboxylic acid compounds and uses thereof

    DOEpatents

    Kabalka, George W.; Srivastava, Rajiv R.

    2000-03-14

    Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed.

  2. Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir

    PubMed Central

    Walsh, Aaron M.; Crispie, Fiona; Kilcawley, Kieran; O’Sullivan, Orla; O’Sullivan, Maurice G.; Claesson, Marcus J.

    2016-01-01

    ABSTRACT Kefir is a putatively health-promoting dairy beverage that is produced when a kefir grain, consisting of a consortium of microorganisms, is added to milk to initiate a natural fermentation. Here, a detailed analysis was carried out to determine how the microbial population, gene content, and flavor of three kefirs from distinct geographic locations change over the course of 24-h fermentations. Metagenomic sequencing revealed that Lactobacillus kefiranofaciens was the dominant bacterial species in kefir during early stages of fermentations but that Leuconostoc mesenteroides became more prevalent in later stages. This pattern is consistent with an observation that genes involved in aromatic amino acid biosynthesis were absent from L. kefiranofaciens but were present in L. mesenteroides. Additionally, these shifts in the microbial community structure, and associated pathways, corresponded to changes in the levels of volatile compounds. Specifically, Acetobacter spp. correlated with acetic acid; Lactobacillus spp. correlated with carboxylic acids, esters and ketones; Leuconostoc spp. correlated with acetic acid and 2,3-butanedione; and Saccharomyces spp. correlated with esters. The correlation data suggest a causal relationship between microbial taxa and flavor that is supported by observations that addition of L. kefiranofaciens NCFB 2797 increased the levels of esters and ketones whereas addition of L. mesenteroides 213M0 increased the levels of acetic acid and 2,3-butanedione. Finally, we detected genes associated with probiotic functionalities in the kefir microbiome. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein and can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. IMPORTANCE Traditional fermented foods represent relatively low-complexity microbial environments that can be used as model microbial communities to understand how microbes interact in natural environments. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein. In the process, the link between individual species, and associated pathways, with flavor compounds is revealed and several genes that could be responsible for the purported gut health-associated benefits of consuming kefir are identified. Ultimately, in addition to providing an important fundamental insight into microbial interactions, this information can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. Author Video: An author video summary of this article is available. PMID:27822552

  3. Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir.

    PubMed

    Walsh, Aaron M; Crispie, Fiona; Kilcawley, Kieran; O'Sullivan, Orla; O'Sullivan, Maurice G; Claesson, Marcus J; Cotter, Paul D

    2016-01-01

    Kefir is a putatively health-promoting dairy beverage that is produced when a kefir grain, consisting of a consortium of microorganisms, is added to milk to initiate a natural fermentation. Here, a detailed analysis was carried out to determine how the microbial population, gene content, and flavor of three kefirs from distinct geographic locations change over the course of 24-h fermentations. Metagenomic sequencing revealed that Lactobacillus kefiranofaciens was the dominant bacterial species in kefir during early stages of fermentations but that Leuconostoc mesenteroides became more prevalent in later stages. This pattern is consistent with an observation that genes involved in aromatic amino acid biosynthesis were absent from L. kefiranofaciens but were present in L. mesenteroides . Additionally, these shifts in the microbial community structure, and associated pathways, corresponded to changes in the levels of volatile compounds. Specifically, Acetobacter spp. correlated with acetic acid; Lactobacillus spp. correlated with carboxylic acids, esters and ketones; Leuconostoc spp. correlated with acetic acid and 2,3-butanedione; and Saccharomyces spp. correlated with esters. The correlation data suggest a causal relationship between microbial taxa and flavor that is supported by observations that addition of L. kefiranofaciens NCFB 2797 increased the levels of esters and ketones whereas addition of L. mesenteroides 213M0 increased the levels of acetic acid and 2,3-butanedione. Finally, we detected genes associated with probiotic functionalities in the kefir microbiome. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein and can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. IMPORTANCE Traditional fermented foods represent relatively low-complexity microbial environments that can be used as model microbial communities to understand how microbes interact in natural environments. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein. In the process, the link between individual species, and associated pathways, with flavor compounds is revealed and several genes that could be responsible for the purported gut health-associated benefits of consuming kefir are identified. Ultimately, in addition to providing an important fundamental insight into microbial interactions, this information can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods.

  4. 40 CFR 180.910 - Inert ingredients used pre- and post-harvest; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., carrier Lactic acid Solvent Lactic acid, 2-ethylhexyl ester (CAS Reg. No. 6283-86-9) Solvent Lactic acid, 2-ethylhexyl ester, (2S)- (CAS Reg. No. 186817-80-1) Solvent Lactic acid, n-propyl ester, (S); (CAS... agent Thiosulfuric acid, disodium salt, pentahydrate. (CAS Reg. No. 10102-17-7) Do. d-Alpha tocopherol...

  5. 40 CFR 180.910 - Inert ingredients used pre- and post-harvest; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., carrier Lactic acid Solvent Lactic acid, 2-ethylhexyl ester (CAS Reg. No. 6283-86-9) Solvent Lactic acid, 2-ethylhexyl ester, (2S)- (CAS Reg. No. 186817-80-1) Solvent Lactic acid, n-propyl ester, (S); (CAS... coating agent Petroleum wax, conforming to 21 CFR 172.886(d) Coating agent Phosphoric acid Buffer...

  6. Separation of certain carboxylic acids utilizing cation exchange membranes

    DOEpatents

    Chum, H.L.; Sopher, D.W.

    1983-05-09

    A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100/sup 0/C and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

  7. Separation of certain carboxylic acids utilizing cation exchange membranes

    DOEpatents

    Chum, Helena L.; Sopher, David W.

    1984-01-01

    A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100.degree. C. and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

  8. Comparison of Three Solid Phase Materials for the Extraction of Carboxylic Acids from River Water Followed by 2D GC × GC-TOFMS Determination

    PubMed Central

    Bosire, G. O.; Ngila, J. C.; Parshotam, H.

    2016-01-01

    The extraction and determination of aliphatic and aromatic carboxylic acids as well as their influence on the aromaticity and molecularity relationship of natural organic matter (NOM) in water are reported in this study. Three solid phase extraction (SPE) sorbents were used and their extraction efficiencies evaluated after chromatographic determinations (using gas chromatography with a time of flight mass spectrometer (GC × GC-TOFMS) and liquid chromatography with organic carbon detector (LC-OCD)). More than 42 carboxylic acids were identified in raw water from the Vaal River, which feeds the Lethabo Power Generation Station, South Africa, with cooling water. The aromatic carboxylic acid efficiency (28%) was achieved by using Strata™ X SPE while the highest aliphatic carboxylic acid efficiency (92.08%) was achieved by silica SPE. The hydrophobic nature of NOM in water depends on the nature of organic compounds in water, whether aromatic or aliphatic. The LC-OCD was used to assess the hydrophobicity levels of NOM as a function of these carboxylic acids in cooling water. The LC-OCD results showed that the aromatic nature of NOM in SPE filtered water followed the order Silica>Strata X>C-18. From the results, the hydrophobicity degree of the samples depended on the type and number of carboxylic acids that were removed by the SPE cartridges. PMID:27274730

  9. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    PubMed

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. 40 CFR 721.1730 - Poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1730 Section 721.1730 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric...

  11. 40 CFR 721.1730 - Poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1730 Section 721.1730 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric...

  12. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  13. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  14. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  15. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  16. 40 CFR 721.1730 - Poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1730 Section 721.1730 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric...

  17. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  18. Characterization of a feruloyl esterase from Aspergillus terreus facilitates the division of fungal enzymes from Carbohydrate Esterase family 1 of the carbohydrate-active enzymes (CAZy) database.

    PubMed

    Mäkelä, Miia R; Dilokpimol, Adiphol; Koskela, Salla M; Kuuskeri, Jaana; de Vries, Ronald P; Hildén, Kristiina

    2018-04-26

    Feruloyl esterases (FAEs) are accessory enzymes for plant biomass degradation, which catalyse hydrolysis of carboxylic ester linkages between hydroxycinnamic acids and plant cell-wall carbohydrates. They are a diverse group of enzymes evolved from, e.g. acetyl xylan esterases (AXEs), lipases and tannases, thus complicating their classification and prediction of function by sequence similarity. Recently, an increasing number of fungal FAEs have been biochemically characterized, owing to their potential in various biotechnological applications and multitude of candidate FAEs in fungal genomes. However, only part of the fungal FAEs are included in Carbohydrate Esterase family 1 (CE1) of the carbohydrate-active enzymes (CAZy) database. In this work, we performed a phylogenetic analysis that divided the fungal members of CE1 into five subfamilies of which three contained characterized enzymes with conserved activities. Conservation within one of the subfamilies was confirmed by characterization of an additional CE1 enzyme from Aspergillus terreus. Recombinant A. terreus FaeD (AtFaeD) showed broad specificity towards synthetic methyl and ethyl esters, and released ferulic acid from plant biomass substrates, demonstrating its true FAE activity and interesting features as potential biocatalyst. The subfamily division of the fungal CE1 members enables more efficient selection of candidate enzymes for biotechnological processes. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. A 13C NMR study of the structure of four cinnamic acids and their methyl esters

    NASA Astrophysics Data System (ADS)

    Silva, A. M. S.; Alkorta, I.; Elguero, J.; Silva, V. L. M.

    2001-09-01

    The 13C NMR spectra, both in DMSO solution and in the solid state of four cinnamic acids (p-methoxy, p-hydroxy, p-methyl, p-chloro) and their corresponding methyl esters have been recorded. The two main results in the solid state are: (i) the only significant difference between acids and esters chemical shifts concerns the Cdbnd O group which, on average, appears at 173 ppm in the acids and 168 ppm in the esters; (ii) the signals of the ortho and meta carbons both in the acids and the esters are splitted. The two 'anomalies' disappear in DMSO solution. These observations can be rationalized using simple GIAO/B3LYP/6-31G∗ calculations.

  20. Characterization of acid functional groups of carbon dots by nonlinear regression data fitting of potentiometric titration curves

    NASA Astrophysics Data System (ADS)

    Alves, Larissa A.; de Castro, Arthur H.; de Mendonça, Fernanda G.; de Mesquita, João P.

    2016-05-01

    The oxygenated functional groups present on the surface of carbon dots with an average size of 2.7 ± 0.5 nm were characterized by a variety of techniques. In particular, we discussed the fit data of potentiometric titration curves using a nonlinear regression method based on the Levenberg-Marquardt algorithm. The results obtained by statistical treatment of the titration curve data showed that the best fit was obtained considering the presence of five Brønsted-Lowry acids on the surface of the carbon dots with constant ionization characteristics of carboxylic acids, cyclic ester, phenolic and pyrone-like groups. The total number of oxygenated acid groups obtained was 5 mmol g-1, with approximately 65% (∼2.9 mmol g-1) originating from groups with pKa < 6. The methodology showed good reproducibility and stability with standard deviations below 5%. The nature of the groups was independent of small variations in experimental conditions, i.e. the mass of carbon dots titrated and initial concentration of HCl solution. Finally, we believe that the methodology used here, together with other characterization techniques, is a simple, fast and powerful tool to characterize the complex acid-base properties of these so interesting and intriguing nanoparticles.

  1. High-throughput and sensitive analysis of 3-monochloropropane-1,2-diol fatty acid esters in edible oils by supercritical fluid chromatography/tandem mass spectrometry.

    PubMed

    Hori, Katsuhito; Matsubara, Atsuki; Uchikata, Takato; Tsumura, Kazunobu; Fukusaki, Eiichiro; Bamba, Takeshi

    2012-08-10

    We have established a high-throughput and sensitive analytical method based on supercritical fluid chromatography (SFC) coupled with triple quadrupole mass spectrometry (QqQ MS) for 3-monochloropropane-1,2-diol (3-MCPD) fatty acid esters in edible oils. All analytes were successfully separated within 9 min without sample purification. The system was precise and sensitive, with a limit of detection less than 0.063 mg/kg. The recovery rate of 3-MCPD fatty acid esters spiked into oil samples was in the range of 62.68-115.23%. Furthermore, several edible oils were tested for analyzing 3-MCPD fatty acid ester profiles. This is the first report on the analysis of 3-MCPD fatty acid esters by SFC/QqQ MS. The developed method will be a powerful tool for investigating 3-MCPD fatty acid esters in edible oils. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Speciation of aqueous Ni(II)-carboxylate and Ni(II)-fulvic acid solutions: Combined ATR-FTIR and XAFS analysis

    NASA Astrophysics Data System (ADS)

    Strathmann, Timothy J.; Myneni, Satish C. B.

    2004-09-01

    Aqueous solutions containing Ni(II) and a series of structurally related carboxylic acids were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Ni K-edge X-ray absorption fine structure spectroscopy (XAFS). XAFS spectra were also collected for solutions containing Ni 2+ and chelating ligands (ethylenediaminetetraacetic acid, nitrilotriacetic acid (NTA)) as well as soil fulvic acid. Limited spectral changes are observed for aqueous Ni(II) complexes with monocarboxylates (formate, acetate) and long-chain polycarboxylates (succinate, tricarballylate), where individual donor groups are separated by multiple bridging methylene groups. These spectral changes indicate weak interactions between Ni(II) and carboxylates, and the trends are similar to some earlier reports for crystalline Ni(II)-acetate solids, for which X-ray crystallography studies have indicated monodentate Ni(II)-carboxylate coordination. Nonetheless, electrostatic or outer-sphere coordination cannot be ruled out for these complexes. However, spectral changes observed for short-chain dicarboxylates (oxalate, malonate) and carboxylates that contain an alcohol donor group adjacent to one of the carboxylate groups (lactate, malate, citrate) demonstrate inner-sphere metal coordination by multiple donor groups. XAFS spectral fits of Ni(II) solutions containing soil fulvic acid are consistent with inner-sphere Ni(II) coordination by one or more carboxylate groups, but spectra are noisy and outer-sphere modes of coordination cannot be ruled out. These molecular studies refine our understanding of the interactions between carboxylates and weakly complexing divalent transition metals, such as Ni(II).

  3. Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases.

    PubMed

    De Roo, Jonathan; Van den Broeck, Freya; De Keukeleere, Katrien; Martins, José C; Van Driessche, Isabel; Hens, Zeger

    2014-07-09

    We synthesized HfO2 nanocrystals from HfCl4 using a surfactant-free solvothermal process in benzyl alcohol and found that the resulting nanocrystals could be transferred to nonpolar media using a mixture of carboxylic acids and amines. Using solution (1)H NMR, FTIR, and elemental analysis, we studied the details of the transfer reaction and the surface chemistry of the resulting sterically stabilized nanocrystals. As-synthesized nanocrystals are charge-stabilized by protons, with chloride acting as the counterion. Treatment with only carboxylic acids does not lead to any binding of ligands to the HfO2 surface. On the other hand, we find that the addition of amines provides the basic environment in which carboxylic acids can dissociate and replace chloride. This results in stable, aggregate-free dispersions of HfO2 nanocrystals, sterically stabilized by carboxylate ligands. Moreover, titrations with deuterated carboxylic acid show that the charge on the carboxylate ligands is balanced by coadsorbed protons. Hence, opposite from the X-type/nonstoichiometric nanocrystals picture prevailing in literature, one should look at HfO2/carboxylate nanocrystals as systems where carboxylic acids are dissociatively adsorbed to bind to the nanocrystals. Similar results were obtained with ZrO2 NCs. Since proton accommodation on the surface is most likely due to the high Brønsted basicity of oxygen, our model could be a more general picture for the surface chemistry of metal oxide nanocrystals with important consequences on the chemistry of ligand exchange reactions.

  4. 21 CFR 582.4101 - Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or...

  5. 21 CFR 582.4101 - Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or...

  6. 21 CFR 582.4101 - Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or...

  7. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    PubMed

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Methods for the synthesis of olefins and derivatives

    DOEpatents

    Burk, Mark J; Pharkya, Priti; Van Dien, Stephen J; Burgard, Anthony P; Schilling, Christophe H

    2013-06-04

    The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

  9. Methods for the synthesis of olefins and derivatives

    DOEpatents

    Burk, Mark J [San Diego, CA; Pharkya, Priti [San Diego, CA; Van Dien, Stephen J [Encinitas, CA; Burgard, Anthony P [Bellefonte, PA; Schilling, Christophe H [San Diego, CA

    2011-09-27

    The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

  10. Methods for synthesis of olefins and derivatives

    DOEpatents

    Burk, Mark J.; Pharkya, Priti; Van Dien, Stephen J.; Burgard, Anthony P.; Schilling, Christophe H.

    2016-06-14

    The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

  11. Precomplexation and Activation of Carboxylate and Phosphate Esters

    DTIC Science & Technology

    1992-03-02

    SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP 07 03 19 ABSTRACT (Continue on reverse if...necessary and identify by block number) This is the final report for contract N00014-88-K-0309. It summarizes our previously submitted Technical Reports #1

  12. 40 CFR 721.10457 - 1,2-Benzenedicarboxylic acid, mixed esters with benzyl alc., cyclohexanol, 2-ethyl-1-hexanol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1,2-Benzenedicarboxylic acid, mixed... Substances § 721.10457 1,2-Benzenedicarboxylic acid, mixed esters with benzyl alc., cyclohexanol, 2-ethyl-1... reporting. (1) The chemical substance identified as 1,2-benzenedicarboxylic acid, mixed esters with benzyl...

  13. 40 CFR 721.10457 - 1,2-Benzenedicarboxylic acid, mixed esters with benzyl alc., cyclohexanol, 2-ethyl-1-hexanol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 1,2-Benzenedicarboxylic acid, mixed... Substances § 721.10457 1,2-Benzenedicarboxylic acid, mixed esters with benzyl alc., cyclohexanol, 2-ethyl-1... reporting. (1) The chemical substance identified as 1,2-benzenedicarboxylic acid, mixed esters with benzyl...

  14. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  15. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  16. Optimization of esterification of oleic acid and trimethylolpropane (TMP) and pentaerythritol (PE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmud, Hamizah Ammarah; Salimon, Jumat

    Vegetable oil (VO) is the most potential alternative to replace mineral oil for lubricant due to better lubricating properties and great physicochemical properties. Chemical modification has to be done to overcome low temperature performance and low oxidation instability due to the presence of β-hydrogen atoms of glycerol molecule. The optimization of esterification of oleic acid and polyhydric alcohol with sulfuric acid catalyst was carried out to find the optimum conditions with the highest yield. Reeaction variables such as; molar ratio, temperature, duration and catalyst concentration. Two types of polyhydric alcohol have been used; TMP and PE. The optimum results showedmore » oleic acid successfully converted 91.2% ester TMP and 92.7% ester PE at duration: 5 hours (Ester TMP), 6 hours (Ester PE); temperature: 150°C (ester TMP), 180°C (Ester PE); catalyst concentration: 1.5% (w/w); and mol ratio: 3.9:1 (ester TMP), 4.9:1 (ester PE). From the data obtained, mole ratio showed most influenced factors to the increasing yields of ester conversions.. The TMP/PE ester was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR)« less

  17. Nickel-catalyzed hydrocarboxylation of ynamides with CO2 and H2O: observation of unexpected regioselectivity.

    PubMed

    Doi, Ryohei; Abdullah, Iman; Taniguchi, Takahisa; Saito, Nozomi; Sato, Yoshihiro

    2017-07-06

    We describe the nickel-catalyzed hydrocarboxylation of ynamides with CO 2 and H 2 O to afford a variety of α-amino-α,β-unsaturated esters with high regioselectivities. The selective α-carboxylation of ynamides with this catalytic protocol is unexpected in view of the electronic bias of ynamides and is in sharp contrast to our previous study in which a stoichiometric amount of Ni(0) was used to form a β-carboxylated product exclusively. We revealed that this unexpected C-C bond formation was induced by the combination of Zn and MgBr 2 .

  18. Stereoselective Formation of Trisubstituted Vinyl Boronate Esters by the Acid-Mediated Elimination of α-Hydroxyboronate Esters

    PubMed Central

    2015-01-01

    The copper-catalyzed diboration of ketones followed by an acid-catalyzed elimination leads to the formation of 1,1-disubstituted and trisubstituted vinyl boronate esters with moderate to good yields and selectivity. Addition of tosic acid to the crude diboration products provides the corresponding vinyl boronate esters upon elimination. The trisubstituted vinyl boronate esters are formed as the (Z)-olefin isomer, which was established by subjecting the products to a Suzuki–Miyaura coupling reaction to obtain alkenes of known geometry. PMID:24915498

  19. Chemical Conversions of Biomass-Derived Platform Chemicals over Copper-Silica Nanocomposite Catalysts.

    PubMed

    Upare, Pravin P; Hwang, Young Kyu; Lee, Jong-Min; Hwang, Dong Won; Chang, Jong-San

    2015-07-20

    Biomass and biomass-derived carbohydrates have a high extent of functionality, unlike petroleum, which has limited functionality. In biorefinery applications, the development of methods to control the extent of functionality in final products intended for use as fuels and chemicals is a challenge. In the chemical industry, heterogeneous catalysis is an important tool for the defunctionalization of functionalized feedstocks and biomass-derived platform chemicals to produce value-added chemicals. Herein, we review the recent progress in this field, mainly of vapor phase chemical conversion of biomass-derived C4 -C6 carboxylic acids and esters using copper-silica nanocomposite catalysts. We also demonstrate that these nanocomposite catalysts very efficiently convert biomass-derived platform chemicals into cyclic compounds, such as lactones and hydrofurans, with high selectivities and yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Carboxylesterases: General detoxifying enzymes

    PubMed Central

    Hatfield, M. Jason; Umans, Robyn A.; Hyatt, Janice L.; Edwards, Carol C; Wierdl, Monika; Tsurkan, Lyudmila; Taylor, Michael R.; Potter, Philip M.

    2016-01-01

    Carboxylesterases (CE) are members of the esterase family of enzymes, and as their name suggests, they are responsible for the hydrolysis of carboxylesters into the corresponding alcohol and carboxylic acid. To date, no endogenous CE substrates have been identified and as such, these proteins are thought to act as a mechanism to detoxify ester-containing xenobiotics. As a consequence, they are expressed in tissues that might be exposed to such agents (lung and gut epithelia, liver, kidney, etc.). CEs demonstrate very broad substrate specificities and can hydrolyze compounds as diverse as cocaine, oseltamivir (Tamiflu), permethrin and irinotecan. In addition, these enzymes are irreversibly inhibited by organophosphates such as Sarin and Tabun. In this overview, we will compare and contrast the two human enzymes that have been characterized, and evaluate the biology of the interaction of these proteins with organophosphates (principally nerve agents). PMID:26892220

Top