Science.gov

Sample records for cardiac adrenergic innervation

  1. Cardiac Innervation and Sudden Cardiac Death

    PubMed Central

    Fukuda, Keiichi; Kanazawa, Hideaki; Aizawa, Yoshiyasu; Ardell, Jeffrey L.; Shivkumar, Kalyanam

    2015-01-01

    Afferent and efferent cardiac neurotransmission via the cardiac nerves intricately modulates nearly all physiological functions of the heart (chronotropy, dromotropy, lusitropy and inotropy). Afferent information from the heart is transmitted to higher levels of the nervous system for processing (intrinsic cardiac nervous system, extracardiac-intrathoracic ganglia, spinal cord, brain stem and higher centers) which ultimately results in efferent cardiomotor neural impulses (via the sympathetic and parasympathetic nerves). This system forms interacting feedback loops that provide physiological stability for maintaining normal rhythm and life-sustaining circulation. This system also ensures that there is fine-tuned regulation of sympathetic-parasympathetic balance in the heart under normal and stressed states in the short (beat to beat), intermediate (minutes-hours) and long term (days-years). This important neurovisceral /autonomic nervous system also plays a major role in the pathophysiology and progression of heart disease, including heart failure and arrhythmias leading to sudden cardiac death (SCD). Transdifferentiation of neurons in heart failure, functional denervation, cardiac and extra-cardiac neural remodeling have also been identified and characterized during the progression of disease. Recent advances in understanding the cellular and molecular processes governing innervation and the functional control of the myocardium in health and disease provides a rational mechanistic basis for development of neuraxial therapies for preventing SCD and other arrhythmias. Advances in cellular, molecular, and bioengineering realms have underscored the emergence of this area as an important avenue of scientific inquiry and therapeutic intervention. PMID:26044253

  2. Autonomic innervation of the urogenital system: adrenergic and cholinergic elements.

    PubMed

    McConnell, J; Benson, G S; Wood, J G

    1982-01-01

    vesicles and numerous mitochondria, were observed in this tissue. Evidence from this study suggests that mammalian UG organs are innervated extensively by adrenergic nerves, and, excepting the bladder, have a limited cholinergic innervation; in the bladder, numerous fibers of each type can be found. In addition, another type of nerve fiber, perhaps peptidergic or purinergic, is found in large numbers in each of the organs studied and thus may represent a significant effector of autonomic regulation.

  3. Multiple innervation of normal and re-innervated parasympathetic neurones in the frog cardiac ganglion.

    PubMed Central

    Dennis, M J; Sargent, P B

    1978-01-01

    1. Multiple innervation of parasympathetic neurones was examined in normal and re-innervated frog cardiac ganglia. The number of synaptic inputs impinging upon individual ganglion cells was determined by recording intracellularly and stimulating the vagosympathetic nerves. 2. In unoperated cardiac ganglia most neurones (93%) received a large, suprathreshold synaptic input. Some ganglion cells received additional, small synaptic inputs. Roughly equal numbers of cells encountered were singly and doubly innervated, and only 8% received more than two inputs. 3. Re-innervation of cardiac ganglion cells began three weeks after bilateral crush of the vagosympathetic nerves. By 7 weeks more than 90% of the ganglion cells were re-innervated. At this stage the pattern of multiple innervation was significantly different than normal: doubly innervated neurones outnumbered singly innervated ones, and 31% of the cells encountered received more than two inputs. This pattern was stable for at least a year. 4. These results indicate that polyneuronal innervation of cardiac ganglion cells is more widespread after re-innervation than it is normally and, furthermore, that synapse elimination does not occur during re-innervation of these cells. Images Plate 1 PMID:212557

  4. Innervation of the rabbit cardiac ventricles.

    PubMed

    Pauziene, Neringa; Alaburda, Paulius; Rysevaite-Kyguoliene, Kristina; Pauza, Audrys G; Inokaitis, Hermanas; Masaityte, Aiste; Rudokaite, Gabriele; Saburkina, Inga; Plisiene, Jurgita; Pauza, Dainius H

    2016-01-01

    approximately eight times denser than the myocardial meshwork. Adrenergic NFs predominate considerably in all layers of the ventricular walls and septum, whereas NFs of other neurochemical phenotypes were in the minority and their amount differed between the epicardium, myocardium and endocardium. The densities of NFs positive for nNOS and ChAT were similar in the epicardium and endocardium, but NFs positive for nNOS in the myocardium were eight times more abundant than NFs positive for ChAT. Potentially sensory NFs positive for both calcitonin gene-related peptide and substance P were sparse in the myocardial layer, but numerous in epicardial nerves and particularly abundant within the endocardium. Electron microscopic observations demonstrate that intrinsic ventricular nerves have a distinctive morphology, which may be attributed to remodelling of the peripheral nerves after their access into the ventricular wall. In conclusion, the rabbit ventricles display complex structural organization of intrinsic ventricular nerves, NFs and ganglionic cells. The results provide a basic anatomical background for further functional analysis of the intrinsic nervous system in the cardiac ventricles.

  5. The cholinergic blocking action of adrenergic blocking agents in the pharmacological analysis of autonomic innervation

    PubMed Central

    Boyd, Helen; Burnstock, G.; Campbell, G.; Jowett, Alison; O'Shea, Judith; Wood, Margaret

    1963-01-01

    The adrenergic blocking agents tolazoline, phentolamine, piperoxan, yohimbine, phenoxybenzamine, bretylium and guanethidine block the excitatory actions both of cholinergic nerves and of added acetylcholine on a variety of vertebrate smooth muscle preparations. These cholinergic blocking actions often occurred with concentrations lower than those required to block the response of the guinea-pig vas deferens to stimulation of the adrenergic hypogastric nerve. The anti-acetylcholine activities of these drugs have been studied in detail, using the guinea-pig rectum and the toad bladder as test organs. In preparations sensitive to eserine, the anticholinesterase actions of the drugs competed with their anti-acetylcholine actions, so that either potentiation or block of responses to acetylcholine and to cholinergic nerve stimulation occurred with different concentrations. The responses of the toad bladder to acetylcholine were not potentiated by eserine. This enabled the antagonism of acetylcholine by the anti-adrenergic drugs to be estimated without interference from their anticholinesterase activity. When blocking activity was assessed on guinea-pig rectum previously treated with dyflos, the results were qualitatively similar to those on the toad bladder. Phenoxybenzamine often completely blocks responses both to added acetylcholine and to cholinergic nerve stimulation in concentrations less than those required to block adrenergic nerves. Guanethidine and piperoxan also show strong cholinergic blocking activity. Bretylium, yohimbine, tolazoline and phentolamine were less potent. However, in concentrations required to block the effect on the vas deferens of hypogastric nerve stimulation, these drugs at least halved the effects of acetylcholine and often of cholinergic nerve stimulation. It is concluded that these adrenergic blocking agents cannot be used to distinguish conclusively between adrenergic and cholinergic nerves. For reliable analysis of autonomic

  6. Ontogeny of cardiac sympathetic innervation and its implications for cardiac disease.

    PubMed

    Vincentz, Joshua W; Rubart, Michael; Firulli, Anthony B

    2012-08-01

    The vertebrate heart is innervated by the sympathetic and parasympathetic components of the peripheral autonomic nervous system, which regulates its contractile rate and force. Understanding the mechanisms that control sympathetic neuronal growth, differentiation, and innervation of the heart may provide insight into the etiology of cardiac arrhythmogenesis. This review provides an overview of the cell signaling pathways and transcriptional effectors that regulate both the noradrenergic gene program during sympathetic neurogenesis and regional nerve density during cardiac innervation. Recent studies exploring transcriptional regulation of the bHLH transcription factor Hand1 in developing sympathetic neurons are explored, and how the Hand1 sympathetic neuron-specific cis-regulatory element may be used further to assess the contribution of altered sympathetic innervation to human cardiac disease is discussed.

  7. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.

    PubMed

    Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N

    2015-03-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547

  8. Adrenergic innervation of the developing chick heart: neural crest ablations to produce sympathetically aneural hearts

    SciTech Connect

    Kirby, M.; Stewart, D.

    1984-11-01

    Ablation of various regions of premigratory trunk neural crest which gives rise to the sympathetic trunks was used to remove sympathetic cardiac innervation. Neuronal uptake of (/sup 3/H)-norepinephrine was used as an index of neuronal development in the chick atrium. Following ablation of neural crest over somites 10-15 or 15-20, uptake was significantly decreased in the atrium at 16 and 17 days of development. Ablation of neural crest over somites 5-10 and 20-25 caused no decrease in (/sup 3/H)-norepinephrine uptake. Removal of neural crest over somites 5-25 or 10-20 caused approximately equal depletions of (/sup 3/H)-norepinephrine uptake in the atrium. Cardiac norepinephrine concentration was significantly depressed following ablation of neural crest over somites 5-25 but not over somites 10-20. Light-microscopic and histofluorescent preparations confirmed the absence of sympathetic trunks in the region of the normal origin of the sympathetic cardiac nerves following neural crest ablation over somites 10-20. The neural tube and dorsal root ganglia were damaged in the area of the neural-crest ablation; however, all of these structures were normal cranial and caudal to the lesioned area. Development of most of the embryos as well as the morphology of all of the hearts was normal following the lesion. These results indicate that it is possible to produce sympathetically aneural hearts by neural-crest ablation; however, sympathetic cardiac nerves account for an insignificant amount of cardiac norepinephrine.

  9. Positron emission tomographic imaging of cardiac sympathetic innervation and function

    SciTech Connect

    Goldstein, D.S.; Chang, P.C.; Eisenhofer, G.; Miletich, R.; Finn, R.; Bacher, J.; Kirk, K.L.; Bacharach, S.; Kopin, I.J. )

    1990-05-01

    Sites of uptake, storage, and metabolism of ({sup 18}F)fluorodopamine and excretion of ({sup 18}F)fluorodopamine and its metabolites were visualized using positron emission tomographic (PET) scanning after intravenous injection of the tracer into anesthetized dogs. Radioactivity was concentrated in the renal pelvis, heart, liver, spleen, salivary glands, and gall bladder. Uptake of 18F by the heart resulted in striking delineation of the left ventricular myocardium. Pretreatment with desipramine markedly decreased cardiac positron emission, consistent with dependence of the heart on neuronal uptake (uptake-1) for removal of circulating catecholamines. In reserpinized animals, cardiac positron emission was absent within 30 minutes after injection of ({sup 18}F)-6-fluorodopamine, demonstrating that the emission in untreated animals was from radioactive labeling of the sympathetic storage vesicles. Decreased positron emission from denervated salivary glands confirmed that the tracer was concentrated in sympathetic neurons. Radioactivity in the gall bladder and urinary system depicted the hepatic and renal excretion of the tracer and its metabolites. Administration of tyramine or nitroprusside increased and ganglionic blockade with trimethaphan decreased the rate of loss of myocardial radioactivity. The results show that PET scanning after administration of ({sup 18}F)fluorodopamine can be used to visualize sites of sympathetic innervation, follow the metabolism and renal and hepatic excretion of catecholamines, and examine cardiac sympathetic function.

  10. Adrenergic and noradrenergic innervation of the midbrain ventral tegmental area and retrorubral field: Prominent inputs from medullary homeostatic centers

    PubMed Central

    Mejías-Aponte, Carlos A; Drouin, Candice; Aston-Jones, Gary

    2009-01-01

    Adrenergic agents modulate the activity of midbrain ventral tegmental area (VTA) neurons. However, the sources of noradrenergic and adrenergic inputs are not well characterized. Immunostaining for dopamine beta-hydroxylase revealed fibers within dopamine (DA) neuron areas, with the highest density in the retrorubral field (A8 cell group), followed by the VTA (A10 cell group), and very few fibers within substantia nigra compacta. A less dense, but similar pattern of fibers was also found for the epinephrine marker, phenylethanolamine N-methyl transferase. Injection of the retrograde tracer wheat germ agglutinin-apo (inactivated) horseradish peroxidase conjugated to colloidal gold, or cholera toxin subunit b, revealed that the noradrenergic innervation of the A10 and A8 regions arise primarily from A1, A2, A5, and locus coeruleus neurons. Selective lesions of the ventral noradrenergic bundle confirmed a prominent innervation from A1 and A2 areas. Retrogradely labeled epinephrine neurons were found mainly in the C1 area. The identification of medullary noradrenergic and adrenergic afferents to DA neuron areas indicates new pathways for visceral-related inputs to reward-related areas in the midbrain. PMID:19295165

  11. Beta(2)-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation.

    PubMed

    Aránguiz-Urroz, Pablo; Canales, Jimena; Copaja, Miguel; Troncoso, Rodrigo; Vicencio, Jose Miguel; Carrillo, Constanza; Lara, Hernán; Lavandero, Sergio; Díaz-Araya, Guillermo

    2011-01-01

    Autophagy is a physiological degradative process key to cell survival during nutrient deprivation, cell differentiation and development. It plays a major role in the turnover of damaged macromolecules and organelles, and it has been involved in the pathogenesis of different cardiovascular diseases. Activation of the adrenergic system is commonly associated with cardiac fibrosis and remodeling, and cardiac fibroblasts are key players in these processes. Whether adrenergic stimulation modulates cardiac fibroblast autophagy remains unexplored. In the present study, we aimed at this question and evaluated the effects of b(2)-adrenergic stimulation upon autophagy. Cultured adult rat cardiac fibroblasts were treated with agonists or antagonists of beta-adrenergic receptors (b-AR), and autophagy was assessed by electron microscopy, GFP-LC3 subcellular distribution, and immunowesternblot of endogenous LC3. The predominant expression of b(2)-ARs was determined and characterized by radioligand binding assays using [(3)H]dihydroalprenolol. Both, isoproterenol and norepinephrine (non-selective b-AR agonists), as well as salbutamol (selective b(2)-AR agonist) increased autophagic flux, and these effects were blocked by propanolol (b-AR antagonist), ICI-118,551 (selective b(2)-AR antagonist), 3-methyladenine but not by atenolol (selective b(1)-AR antagonist). The increase in autophagy was correlated with an enhanced degradation of collagen, and this effect was abrogated by the inhibition of autophagic flux. Overall, our data suggest that b(2)-adrenergic stimulation triggers autophagy in cardiac fibroblasts, and that this response could contribute to reduce the deleterious effects of high adrenergic stimulation upon cardiac fibrosis. PMID:20637865

  12. Radionuclide imaging of cardiac sympathetic innervation in heart failure: unlocking untapped potential.

    PubMed

    Gupta, Shuchita; Amanullah, Aman

    2015-03-01

    Heart failure (HF) is associated with sympathetic overactivity, which contributes to disease progression and arrhythmia development. Cardiac sympathetic innervation imaging can be performed using radiotracers that are taken up in the presynaptic nerve terminal of sympathetic nerves. The commonly used radiotracers are (123)I-metaiodobenzylguanidine ((123)I-mIBG) for planar and single-photon emission computed tomography imaging, and (11)C-hydroxyephedrine for positron emission tomography imaging. Sympathetic innervation imaging has been used in assessing prognosis, response to treatment, risk of ventricular arrhythmias and sudden death and prediction of response to cardiac resynchronization therapy in patients with HF. Other potential applications of these techniques are in patients with chemotherapy-induced cardiomyopathy, predicting myocardial recovery in patients with left ventricular assist devices, and assessing reinnervation following cardiac transplantation. There is a lack of standardization with respect to technique of (123)I-mIBG imaging that needs to be overcome for the imaging modality to gain popularity in clinical practice.

  13. Sulfhydryl group of the canine cardiac beta-adrenergic receptor observed in the absence of hormone

    SciTech Connect

    Strauss, W.L.; Venter, J.C.

    1985-05-06

    Canine cardiac beta-adrenergic receptors contain a free sulfhydryl group in the adrenergic ligand binding site. (/sup 125/I)-Iodohydroxybenzylpindolol ((/sup 125/I)-IHYP) binding to cardiac beta-receptors was inhibitied 80% by treatment with 1 mM p-chloromercuribenzoic acid (pCMB). Occupation of the beta-receptors by an antagonist prior to treatment with pCMB prevented this effect suggesting that a sulfhydryl group is present in or near the ligand binding site of the cardiac beta-receptor. In the presence of agonists, the sensitivity of cardiac beta-receptors to pCMB was increased. Incubation of isoproterenol-occupied cardiac beta-receptors with 0.25 mM pCMB, which had no effect on the unoccupied receptors, resulted in a 57% inhibition of (/sup 125/I)-IHYP binding measured after extensive washing to remove bound agonist. The ability of isoproterenol to increase the reactivity of cardiac beta-adrenergic receptors supports the hypothesis that agonists produce a conformational change upon binding. 13 references, 4 figures, 1 table.

  14. Differential alterations in cardiac adrenergic signaling in chronic hypoxia or norepinephrine infusion.

    PubMed

    León-Velarde, F; Bourin, M C; Germack, R; Mohammadi, K; Crozatier, B; Richalet, J P

    2001-01-01

    Norepinephrine (NE)-induced desensitization of the adrenergic receptor pathway may mimic the effects of hypoxia on cardiac adrenoceptors. The mechanisms involved in this desensitization were evaluated in male Wistar rats kept in a hypobaric chamber (380 Torr) and in rats infused with NE (0.3 mg. kg(-1). h(-1)) for 21 days. Because NE treatment resulted in left ventricular (LV) hypertrophy, whereas hypoxia resulted in right (RV) hypertrophy, the selective hypertrophic response of hypoxia and NE was also evaluated. In hypoxia, alpha(1)-adrenergic receptors (AR) density increased by 35%, only in the LV. In NE, alpha(1)-AR density decreased by 43% in the RV. Both hypoxia and NE decreased beta-AR density. No difference was found in receptor apparent affinity. Stimulated maximal activity of adenylate cyclase decreased in both ventricles with hypoxia (LV, 41%; RV, 36%) but only in LV with NE infusion (42%). The functional activities of G(i) and G(s) proteins in cardiac membranes were assessed by incubation with pertussis toxin (PT) and cholera toxin (CT). PT had an important effect in abolishing the decrease in isoproterenol-induced stimulation of adenylate cyclase in hypoxia; however, pretreatment of the NE ventricle cells with PT failed to restore this stimulation. Although CT attenuates the basal activity of adenylate cyclase in the RV and the isoproterenol-stimulated activity in the LV, pretreatment of NE or hypoxic cardiac membranes with CT has a less clear effect on the adenylate cyclase pathway. The present study has demonstrated that 1) NE does not mimic the effects of hypoxia at the cellular level, i.e., hypoxia has specific effects on cardiac adrenergic signaling, and 2) changes in alpha- and beta-adrenergic pathways are chamber specific and may depend on the type of stimulation (hypoxia or adrenergic).

  15. Chronic sympathetic innervation of islets in transgenic mice results in differential desensitization of alpha-adrenergic inhibition of insulin secretion.

    PubMed

    Grodsky, G M; Ma, Y H; Edwards, R H

    1997-01-01

    The effects of chronic sympathetic hyperinnervation on pancreatic beta-cell insulin secretion were investigated utilizing the in vitro perfused pancreas from transgenic mice. These mice exhibit islet hyperinnervation of sympathetic neurons resulting from overexpression of nerve growth factor in their beta-cells (1). The goal was to determine whether sympathetic hyperinnervation increased classic alpha-adrenergic inhibition of beta-cell insulin secretion or, in contrast, down-regulated beta-cell sensitivity to adrenergic input resulting in enhanced insulin secretion. Both fasting and fed blood sugars and pancreatic insulin content were normal in the transgenics. Response of the transgenic perfused pancreas to low glucose (7 mM) was primarily first phase and normal whereas high glucose (22 mM) caused enhanced, rather than reduced, insulin secretion of both first and second phases. The alpha-antagonist, phentolamine, caused a six-fold increase in glucose-stimulated insulin secretion from the control pancreas, an effect that was blunted for the transgenic pancreas. A similarly blunted response to phentolamine occurred when this agent was superimposed on a combined glucose-forskolin stimulus. (The positive effect on insulin secretion by phentolamine in normal beta-cell preparations has arguably been ascribed to non-specific ionic effects.) Therefore, as a test of possible changes in the ATP regulated K+ channel or the linked Ca++ channels, glyburide was perfused during glucose stimulation. Insulin secretion in response to glyburide was increased two fold in the control pancreas. However, with the transgenic pancreas, in contrast to the enhanced response to glucose, the effect of glyburide was almost completely inhibited. It is concluded that: 1) chronic adrenergic hyperinnervation results in enhanced glucose-stimulated insulin secretion by desensitization of a major alpha-adrenergic inhibitory site(s); and 2) adrenergic hyperinnervation acts directly or indirectly on

  16. Interleukin 1 and Tumor Necrosis Factor Inhibit Cardiac Myocyte β -adrenergic Responsiveness

    NASA Astrophysics Data System (ADS)

    Gulick, Tod; Chung, Mina K.; Pieper, Stephen J.; Lange, Louis G.; Schreiner, George F.

    1989-09-01

    Reversible congestive heart failure can accompany cardiac allograft rejection and inflammatory myocarditis, conditions associated with an immune cell infiltrate of the myocardium. To determine whether immune cell secretory products alter cardiac muscle metabolism without cytotoxicity, we cultured cardiac myocytes in the presence of culture supernatants from activated immune cells. We observed that these culture supernatants inhibit β -adrenergic agonist-mediated increases in cultured cardiac myocyte contractility and intracellular cAMP accumulation. The myocyte contractile response to increased extracellular Ca2+ concentration is unaltered by prior exposure to these culture supernatants, as is the increase in myocyte intracellular cAMP concentration in response to stimulation with forskolin, a direct adenyl cyclase activator. Inhibition occurs in the absence of alteration in β -adrenergic receptor density or ligand binding affinity. Suppressive activity is attributable to the macrophage-derived cytokines interleukin 1 and tumor necrosis factor. Thus, these observations describe a role for defined cytokines in regulating the hormonal responsiveness and function of contractile cells. The effects of interleukin 1 and tumor necrosis factor on intracellular cAMP accumulation may be a model for immune modulation of other cellular functions dependent upon cyclic nucleotide metabolism. The uncoupling of agonist-occupied receptors from adenyl cyclase suggests that β -receptor or guanine nucleotide binding protein function is altered by the direct or indirect action of cytokines on cardiac muscle cells.

  17. Cardiac beta-adrenergic receptors and coronary hemodynamics in the conscious dog during hypoxic hypoxia.

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Stone, H. L.

    1972-01-01

    The mechanisms by which acute hypoxia (10% and 5% oxygen) mediates changes in coronary blood flow and cardiac function were investigated in the conscious dog. When the dogs breathed hypoxic gas mixtures through a tracheostomy, both arterial and coronary sinus oxygen tensions were significantly decreased. With 5% oxygen, there were significant increases in heart rate (25%), maximum left ventricular dP/dt (39%), left circumflex coronary artery blood flow (163%), and left ventricular oxygen consumption (52%), which were attenuated by beta-adrenergic blockage with propranolol. When electrical pacing was used to keep the ventricular rate constant during hypoxia, there was no significant difference in coronary blood flow before and after beta blockade. Beta-adrenergic receptor activity in the myocardium participates in the integrated response to hypoxia although it may not cause active vasodilation of the coronary vessels.

  18. Restoration of β -Adrenergic Signaling in Failing Cardiac Ventricular Myocytes via Adenoviral-Mediated Gene Transfer

    NASA Astrophysics Data System (ADS)

    Akhter, Shahab A.; Skaer, Christine A.; Kypson, Alan P.; McDonald, Patricia H.; Peppel, Karsten C.; Glower, Donald D.; Lefkowitz, Robert J.; Koch, Walter J.

    1997-10-01

    Cardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring β -adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular β -adrenergic signaling defects including down-regulation of myocardial β -adrenergic receptors (β -ARs), functional β -AR uncoupling, and an upregulation of the β -AR kinase (β ARK1). Adenoviral-mediated gene transfer of the human β 2-AR or an inhibitor of β ARK1 to these failing myocytes led to the restoration of β -AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of β ARK1 activity in the heart.

  19. Modeling beta-adrenergic control of cardiac myocyte contractility in silico

    NASA Technical Reports Server (NTRS)

    Saucerman, Jeffrey J.; Brunton, Laurence L.; Michailova, Anushka P.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    The beta-adrenergic signaling pathway regulates cardiac myocyte contractility through a combination of feedforward and feedback mechanisms. We used systems analysis to investigate how the components and topology of this signaling network permit neurohormonal control of excitation-contraction coupling in the rat ventricular myocyte. A kinetic model integrating beta-adrenergic signaling with excitation-contraction coupling was formulated, and each subsystem was validated with independent biochemical and physiological measurements. Model analysis was used to investigate quantitatively the effects of specific molecular perturbations. 3-Fold overexpression of adenylyl cyclase in the model allowed an 85% higher rate of cyclic AMP synthesis than an equivalent overexpression of beta 1-adrenergic receptor, and manipulating the affinity of Gs alpha for adenylyl cyclase was a more potent regulator of cyclic AMP production. The model predicted that less than 40% of adenylyl cyclase molecules may be stimulated under maximal receptor activation, and an experimental protocol is suggested for validating this prediction. The model also predicted that the endogenous heat-stable protein kinase inhibitor may enhance basal cyclic AMP buffering by 68% and increasing the apparent Hill coefficient of protein kinase A activation from 1.0 to 2.0. Finally, phosphorylation of the L-type calcium channel and phospholamban were found sufficient to predict the dominant changes in myocyte contractility, including a 2.6x increase in systolic calcium (inotropy) and a 28% decrease in calcium half-relaxation time (lusitropy). By performing systems analysis, the consequences of molecular perturbations in the beta-adrenergic signaling network may be understood within the context of integrative cellular physiology.

  20. Differences in affinity of cardiac beta-adrenergic receptors for (3H)dihydroalprenolol

    SciTech Connect

    Muntz, K.H.; Calianos, T.A.; Vandermolen, D.T.; Willerson, J.T.; Buja, L.M.

    1986-03-01

    We performed quantitative light microscopic autoradiography of (3H)dihydroalprenolol (DHA) binding to frozen sections of canine myocardium to test the hypothesis that there are differences in the density or affinity of beta-adrenergic receptors on various tissue compartments. In one study, with concentrations of (3H)DHA from 0.34 to 5.1 nM, specific binding to cardiac myocytes was saturable, whereas nonspecific binding was linear with ligand concentration. Arterioles had more specific grain counts than muscle cells (P less than 0.0001), and Scatchard analysis showed that the arterioles had a much higher affinity for (3H)DHA than myocytes. In a second study with lower concentrations of (3H)DHA (0.19-1.98 nM), binding to the arterioles saturated, whereas binding to the cardiac myocytes did not. Specific binding to arterioles was significantly higher (P less than 0.0001) than binding to myocytes at all concentrations of (3H)DHA. The dissociation constants for the subendocardial and subepicardial myocytes were 1.57 and 1.71 nM, respectively, while the dissociation constant for the arterioles was 0.26 nM. The maximum number of binding sites was 911 grains/0.9 X 10(-2) mm2 for subepicardial myocytes, 936 for subendocardial myocytes, and 986 for arterioles. The large nerves accompanying an epicardial artery also demonstrated specific (3H)DHA binding. Thus this study has demonstrated major differences in the distribution and affinity of beta-adrenergic receptors, which may help to explain various physiological responses to beta-adrenergic stimulation.

  1. MIBG scintigraphic assessment of cardiac adrenergic activity in response to altitude hypoxia

    SciTech Connect

    Richalet, J.P.; Merlet, P.; Bourguignon, M.; Le-Trong, J.L.; Keromes, A.; Rathat, C.; Jouve, B.; Hot, M.A.; Castaigne, A.; Syrota, A. )

    1990-01-01

    High altitude hypoxia induces a decrease in the cardiac chronotropic function at maximal exercise or in response to isoproterenol infusion, suggesting an alteration in the cardiac sympathetic activation. Iodine-123 metaiodobenzylguanidine (({sup 123}I)MIBG) was used to map scintigraphically the cardiac sympathetic neuronal function in six male subjects (aged 32 {plus minus} 7 yr) after an exposure to high altitude that created hypoxic conditions. Results obtained just after return to sea level (RSL) were compared with the normal values obtained after 2 or 3 mo of normoxia (N). A static image was created as the sum of the 16-EKG gated images recorded for 10 min in the anterior view of the chest at 20, 60, 120, and 240 min after injection. Regions of interest were located over the heart (H), lungs (L), and mediastinum (M) regions. There was a significant decrease in the H/M and the L/M ratios in RSL compared to N condition. Plasma norepinephrine concentration was elevated during the stay at altitude but not significantly different in RSL compared to N. In conclusion, cardiac ({sup 123}I)MIBG uptake is reduced after an exposure to altitude hypoxia, supporting the hypothesis of an hypoxia-induced reduction of adrenergic neurotransmitter reserve in the myocardium. Furthermore, the observed significant decrease in pulmonary MIBG uptake suggests an alteration of endothelial cell function after exposure to chronic hypoxia.

  2. MiRNA-1/133a Clusters Regulate Adrenergic Control of Cardiac Repolarization

    PubMed Central

    Wystub, Katharina; Bachmann, Angela; Wietelmann, Astrid; Sasse, Philipp; Fleischmann, Bernd K.; Braun, Thomas; Boettger, Thomas

    2014-01-01

    The electrical properties of the heart are primarily determined by the activity of ion channels and the activity of these molecules is permanently modulated and adjusted to the physiological needs by adrenergic signaling. miRNAs are known to control the expression of many proteins and to fulfill distinct functions in the mammalian heart, though the in vivo effects of miRNAs on the electrical activity of the heart are poorly characterized. The miRNAs miR-1 and miR-133a are the most abundant miRNAs of the heart and are expressed from two miR-1/133a genomic clusters. Genetic modulation of miR-1/133a cluster expression without concomitant severe disturbance of general cardiomyocyte physiology revealed that these miRNA clusters govern cardiac muscle repolarization. Reduction of miR-1/133a dosage induced a longQT phenotype in mice especially at low heart rates. Longer action potentials in cardiomyocytes are caused by modulation of the impact of β-adrenergic signaling on the activity of the depolarizing L-type calcium channel. Pharmacological intervention to attenuate β-adrenergic signaling or L-type calcium channel activity in vivo abrogated the longQT phenotype that is caused by modulation of miR-1/133a activity. Thus, we identify the miR-1/133a miRNA clusters to be important to prevent a longQT-phenotype in the mammalian heart. PMID:25415383

  3. Nuclear Compartmentalization of α1-Adrenergic Receptor Signaling in Adult Cardiac Myocytes

    PubMed Central

    Wu, Steven C.

    2015-01-01

    Abstract: Although convention dictates that G protein-coupled receptors localize to and signal at the plasma membrane, accumulating evidence suggests that G protein-coupled receptors localize to and signal at intracellular membranes, most notably the nucleus. In fact, there is now significant evidence indicating that endogenous alpha-1 adrenergic receptors (α1-ARs) localize to and signal at the nuclei in adult cardiac myocytes. Cumulatively, the data suggest that α1-ARs localize to the inner nuclear membrane, activate intranuclear signaling, and regulate physiologic function in adult cardiac myocytes. Although α1-ARs signal through Gαq, unlike other Gq-coupled receptors, α1-ARs mediate important cardioprotective functions including adaptive/physiologic hypertrophy, protection from cell death (survival signaling), positive inotropy, and preconditioning. Also unlike other Gq-coupled receptors, most, if not all, functional α1-ARs localize to the nuclei in adult cardiac myocytes, as opposed to the sarcolemma. Together, α1-AR nuclear localization and cardioprotection might suggest a novel model for compartmentalization of Gq-coupled receptor signaling in which nuclear Gq-coupled receptor signaling is cardioprotective. PMID:25264754

  4. PHD2/3-dependent hydroxylation tunes cardiac response to β-adrenergic stress via phospholamban

    PubMed Central

    Xie, Liang; Pi, Xinchun; Townley-Tilson, W.H. Davin; Li, Na; Wehrens, Xander H.T.; Entman, Mark L.; Taffet, George E.; Mishra, Ashutosh; Peng, Junmin; Schisler, Jonathan C.; Meissner, Gerhard; Patterson, Cam

    2015-01-01

    Ischemic heart disease is the leading cause of heart failure. Both clinical trials and experimental animal studies demonstrate that chronic hypoxia can induce contractile dysfunction even before substantial ventricular damage, implicating a direct role of oxygen in the regulation of cardiac contractile function. Prolyl hydroxylase domain (PHD) proteins are well recognized as oxygen sensors and mediate a wide variety of cellular events by hydroxylating a growing list of protein substrates. Both PHD2 and PHD3 are highly expressed in the heart, yet their functional roles in modulating contractile function remain incompletely understood. Here, we report that combined deletion of Phd2 and Phd3 dramatically decreased expression of phospholamban (PLN), resulted in sustained activation of calcium/calmodulin-activated kinase II (CaMKII), and sensitized mice to chronic β-adrenergic stress–induced myocardial injury. We have provided evidence that thyroid hormone receptor-α (TR-α), a transcriptional regulator of PLN, interacts with PHD2 and PHD3 and is hydroxylated at 2 proline residues. Inhibition of PHDs increased the interaction between TR-α and nuclear receptor corepressor 2 (NCOR2) and suppressed Pln transcription. Together, these observations provide mechanistic insight into how oxygen directly modulates cardiac contractility and suggest that cardiac function could be modulated therapeutically by tuning PHD enzymatic activity. PMID:26075818

  5. Alpha-linolenic acid protects against cardiac injury and remodelling induced by beta-adrenergic overstimulation.

    PubMed

    Folino, A; Sprio, A E; Di Scipio, F; Berta, G N; Rastaldo, R

    2015-07-01

    We investigated the effect of α-linolenic acid (ALA) in protecting the heart from injury caused by β-adrenergic overstimulation. ALA's role either in isoproterenol (ISO)-treated isolated rat cardiomyocytes (H9c2 cells) or in in vivo rat hearts was studied. In isolated cardiomyocytes in vitro, the involvement of kinases (Src and PI3K) in protection was tested using the specific inhibitors (PP2 or LY294002 respectively), while the role of caveolae was assessed by their disruption with methyl-β-cyclodextrin. The rats underwent either a normal chow diet or, alternatively, an ALA-enriched diet before, during and throughout the 60 days after 5 days of isoproterenol administration. Before sacrifice, the hemodynamic changes were measured using echocardiography. In the explanted hearts, histological changes together with molecular markers of cardiac fibrosis and hypertrophy were evaluated. In H9c2 cells, ALA abolished the ISO-induced reduction of viability. This effect was suppressed by both the inhibitor PP2 or LY294002 and the caveolae disrupter methyl-β-cyclodextrin. In the rats, ALA prevented ISO-induced myocardial fibrosis and hypertrophy and kept the cardiac mechanical function as in the control. It also counteracted the increased expressions of transforming growth factor-β (TGF-β) and β-myosin (β-MHC), the decreased expression of tissue inhibitor metalloproteinase-1 (TIMP-1) and the enhanced activity of matrix metalloproteinase-2 (MMP-2). In conclusion, ALA-induced protection requires the integrity of caveolae where β2-adrenergic receptors (β2ARs) are restricted and mediate the activation of the Src-PI3K protective pathway. By preserving this β2AR pro-survival pathway, an ALA-enriched diet protects the heart against ISO-induced fibrosis and hypertrophy. PMID:26068025

  6. Na(+)-K+ pump cycle during beta-adrenergic stimulation of adult rat cardiac myocytes.

    PubMed

    Dobretsov, M; Hastings, S L; Stimers, J R

    1998-03-01

    1. The mechanisms underlying the increase in Na(+)-K+ pump current (Ip) caused by adrenergic stimulation were investigated in cultured adult rat cardiac myocytes using the whole-cell patch-clamp technique at 31-33 degrees C. 2. In myocytes perfused internally with 50 mM Na+ (0 K+i, 20 nM Ca2+, caesium aspartate solution) and externally with 5.4 mM K+o, noradrenaline (NA) and isoprenaline (Iso) (1-50 microM) stimulated Ip by 40-45%. 3. Na(+)-dependent transient Ip measurements with 0 mM K+i and 0 mM K+o revealed no change in the total charge transferred by the Na(+)-K+ pump during the conformational change, suggesting that the pump site density was not changed by adrenergic stimulation (2630 +/- 370 pumps micron-2 in control and 2540 +/- 190 pumps micron-2 in the presence of 10 microM NA). 4. With saturating Na+i or K+o (150 and 15-20 mM, respectively), Ip was still stimulated by NA and Iso. Thus, there was no indication that adrenergic activation of the Na(+)-K+ pump was mediated by accumulation of Na+i and K+o or changes in the Na(+)-K+ pump affinity for Na+i and K+o. 5. Both Ip and its increase under adrenergic stimulation were found to depend on [K+]i. While steady-state Ip decreased from 2.2 +/- 0.1 to 1.2 +/- 0.1 pA pF-1 (P < 0.05), the stimulation of Ip by 10 microM Iso increased from 0.38 +/- 0.04 to 0.67 +/- 0.06 pA pF-1 (P < 0.05) with an increase in [K+]i from 0 to 100 mM. 6. Under conditions that cause the Ip-Vm (membrane potential) relationship to express a positive slope ([Na+]o, 150 mM; [K+]o, 5.4 mM) or a negative slope ([Na+]o, 0; [K+]o, 0.3 mM) Iso stimulated Ip with no change in the shape of Ip-Vm curves. Thus, adrenergic stimulation of the Na(+)-K+ pump was not due to an alteration of voltage-dependent steps of the pump cycle. 7. Simulation of these data with a six-step model of the Na(+)-K+ pump cycle suggested that in rat ventricular myocytes a signal from adrenergic receptors increased the Na(+)-K+ pump rate by modulating the rate of K+ de

  7. Pressor response to intravenous tyramine is a marker of cardiac, but not vascular, adrenergic function

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.; Martin, David S.; D'Aunno, Dominick S.; Waters, Wendy W.

    2003-01-01

    Intravenous injections of the indirect sympathetic amine, tyramine, are used as a test of peripheral adrenergic function. The authors measured the time course of increases in ejection fraction, heart rate, systolic and diastolic pressure, popliteal artery flow, and greater saphenous vein diameter before and after an injection of 4.0 mg/m(2) body surface area of tyramine in normal human subjects. The tyramine caused moderate, significant increases in systolic pressure and significant decreases in total peripheral resistance. The earliest changes were a 30% increase in ejection fraction and a 16% increase in systolic pressure, followed by a 60% increase in popliteal artery flow and a later 11% increase in greater saphenous vein diameter. There were no changes in diastolic pressure or heart rate. These results suggest that pressor responses during tyramine injections are primarily due to an inotropic response that increases cardiac output and pressure and causes a reflex decrease in vascular resistance. Thus, tyramine pressor tests are a measure of cardiac, but not vascular, sympathetic function.

  8. Beta-adrenergic stimulation reverses the I Kr-I Ks dominant pattern during cardiac action potential.

    PubMed

    Banyasz, Tamas; Jian, Zhong; Horvath, Balazs; Khabbaz, Shaden; Izu, Leighton T; Chen-Izu, Ye

    2014-11-01

    β-Adrenergic stimulation differentially modulates different K(+) channels and thus fine-tunes cardiac action potential (AP) repolarization. However, it remains unclear how the proportion of I Ks, I Kr, and I K1 currents in the same cell would be altered by β-adrenergic stimulation, which would change the relative contribution of individual K(+) current to the total repolarization reserve. In this study, we used an innovative AP-clamp sequential dissection technique to directly record the dynamic I Ks, I Kr, and I K1 currents during the AP in guinea pig ventricular myocytes under physiologically relevant conditions. Our data provide quantitative measures of the magnitude and time course of I Ks, I Kr, and I K1 currents in the same cell under its own steady-state AP, in a physiological milieu, and with preserved Ca(2+) homeostasis. We found that isoproterenol treatment significantly enhanced I Ks, moderately increased I K1, but slightly decreased I Kr in a dose-dependent manner. The dominance pattern of the K(+) currents was I Kr > I K1 > I Ks at the control condition, but reversed to I Kr < I K1 < I Ks following β-adrenergic stimulation. We systematically determined the changes in the relative contribution of I Ks, I Kr, and I K1 to cardiac repolarization during AP at different adrenergic states. In conclusion, the β-adrenergic stimulation fine-tunes the cardiac AP morphology by shifting the power of different K(+) currents in a dose-dependent manner. This knowledge is important for designing antiarrhythmic drug strategies to treat hearts exposed to various sympathetic tones.

  9. Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors.

    PubMed

    Vaniotis, George; Glazkova, Irina; Merlen, Clémence; Smith, Carter; Villeneuve, Louis R; Chatenet, David; Therien, Michel; Fournier, Alain; Tadevosyan, Artavazd; Trieu, Phan; Nattel, Stanley; Hébert, Terence E; Allen, Bruce G

    2013-09-01

    At the cell surface, βARs and endothelin receptors can regulate nitric oxide (NO) production. β-adrenergic receptors (βARs) and type B endothelin receptors (ETB) are present in cardiac nuclear membranes and regulate transcription. The present study investigated the role of the NO pathway in the regulation of gene transcription by these nuclear G protein-coupled receptors. Nitric oxide production and transcription initiation were measured in nuclei isolated from the adult rat heart. The cell-permeable fluorescent dye 4,5-diaminofluorescein diacetate (DAF2 DA) was used to provide a direct assessment of nitric oxide release. Both isoproterenol and endothelin increased NO production in isolated nuclei. Furthermore, a β3AR-selective agonist, BRL 37344, increased NO synthesis whereas the β1AR-selective agonist xamoterol did not. Isoproterenol increased, whereas ET-1 reduced, de novo transcription. The NO synthase inhibitor l-NAME prevented isoproterenol from increasing either NO production or de novo transcription. l-NAME also blocked ET-1-induced NO-production but did not alter the suppression of transcription initiation by ET-1. Inhibition of the cGMP-dependent protein kinase (PKG) using KT5823 also blocked the ability of isoproterenol to increase transcription initiation. Furthermore, immunoblotting revealed eNOS, but not nNOS, in isolated nuclei. Finally, caged, cell-permeable isoproterenol and endothelin-1 analogs were used to selectively activate intracellular β-adrenergic and endothelin receptors in intact adult cardiomyocytes. Intracellular release of caged ET-1 or isoproterenol analogs increased NO production in intact adult cardiomyocytes. Hence, activation of the NO synthase/guanylyl cyclase/PKG pathway is necessary for nuclear β3ARs to increase de novo transcription. Furthermore, we have demonstrated the potential utility of caged receptor ligands in selectively modulating signaling via endogenous intracellular G protein-coupled receptors.

  10. Beta-adrenergic modulation of cardiac ion channels. Differential temperature sensitivity of potassium and calcium currents

    PubMed Central

    1989-01-01

    beta-Adrenergic stimulation of ventricular heart cells results in the enhancement of two important ion currents that regulate the plateau phase of the action potential: the delayed rectifier potassium channel current (IK) and L-type calcium channel current (ICa). The temperature dependence of beta-adrenergic modulation of these two currents was examined in patch-clamped guinea pig ventricular myocytes at various steps in the beta-receptor/cyclic AMP-dependent protein kinase pathway. External applications of isoproterenol and forskolin were used to activate the beta-receptor and the enzyme adenylate cyclase, respectively. Internal dialysis of cyclic 3',5'-adenosine monophosphate (cAMP) or the catalytic subunit of cAMP-dependent protein kinase (CS), as well as the external addition of 8-chlorphenylthio cAMP (CPT-cAMP) was applied to increase intracellular levels of cAMP and CS. Isoproterenol-mediated increases in IK, but not ICa, were found to be very temperature dependent over the range of 20-37 degrees C. At room temperature (20-22 degrees C) isoproterenol produced a large (threefold) enhancement of ICa but had no effect on IK. In contrast, at warmer temperatures (30-37 degrees C) both currents increased in the presence of this agonist and the kinetics of IK were slowed at -30 mV. A similar temperature sensitivity also existed after exposure to forskolin, CPT-cAMP, cAMP, and CS, suggesting that this temperature sensitivity of IK may arise at the channel protein level. Modulation of IK during each of these interventions was accompanied by a slowing in IK kinetics. Thus, regulation of cardiac potassium channels but not calcium channels involves a temperature-dependent step that occurs after activation of the catalytic subunit of cAMP-dependent protein kinase. PMID:2472462

  11. Regional cardiac adrenergic function using I-123 meta-iodobenzylguanidine tomographic imaging after acute myocardial infarction

    SciTech Connect

    McGhie, A.I.; Corbett, J.R.; Akers, M.S.; Kulkarni, P.; Sills, M.N.; Kremers, M.; Buja, L.M.; Durant-Reville, M.; Parkey, R.W.; Willerson, J.T. )

    1991-02-01

    The effect of acute myocardial infarction (AMI) on regional cardiac adrenergic function was studied in 27 patients mean +/- standard deviation 10 +/- 4 days after AMI. Regional adrenergic function was evaluated noninvasively with I-123 meta-iodobenzylguanidine (MIBG) using a dedicated 3-detector tomograph. Four hours after its administration, there was reduced MIBG uptake in the region of infarction, 0.38 +/- 0.31 counts/pixel/mCi x 103 compared with 0.60 +/- 0.30 counts/pixel/mCi x 103 and 0.92 +/- 0.35 counts/pixel/mCi x 103 in the zones bordering and distant from the infarct area, respectively, p less than 0.001. In all patients, the area of reduced MIBG uptake after 4 hours was more extensive that the associated thallium-201 perfusion defect with defect scores of 52 +/- 22 and 23 +/- 18%, respectively, p less than 0.001. After anterior wall AMI, the 4-hour MIBG defect score was 70 +/- 13% and the degree of mismatch between myocardial perfusion and MIBG uptake was 30 +/- 9% compared with 39 +/- 17 and 21 +/- 17% after inferior AMI, p less than 0.001 and p = 0.016, respectively. The 4-hour MIBG defect score correlated inversely with the predischarge left ventricular ejection fraction, r = -0.73, p less than 0.001. Patients with ventricular arrhythmia of greater than or equal to 1 ventricular premature complexes per hour, paired ventricular premature complexes or ventricular tachycardia detected during the late hospital phase had higher 4-hour MIBG defect scores, 62.5 +/- 15.0%, than patients with no detectable complex ventricular ectopic activity and a ventricular premature complex frequency of less than 1 per hour, 44.6 +/- 23.4%, p = 0.036.

  12. Adrenergic responsiveness is reduced, while baseline cardiac function is preserved in old adult conscious monkeys

    NASA Technical Reports Server (NTRS)

    Sato, N.; Kiuchi, K.; Shen, Y. T.; Vatner, S. F.; Vatner, D. E.

    1995-01-01

    To examine the physiological deficit to adrenergic stimulation with aging, five younger adult (3 +/- 1 yr old) and nine older adult (17 +/- 1 yr old) healthy monkeys were studied after instrumentation with a left ventricular (LV) pressure gauge, aortic and left atrial catheters, and aortic flow probes to measure cardiac output directly. There were no significant changes in baseline hemodynamics in conscious older monkeys. For example, an index of contractility, the first derivative of LV pressure (LV dP/dt) was similar (3,191 +/- 240, young vs. 3,225 +/- 71 mmHg/s, old) as well as in isovolumic relaxation, tau (24.3 +/- 1.7 ms, young vs. 23.0 +/- 1.0 ms, old) was similar. However, inotropic, lusitropic, and chronotropic responses to isoproterenol (Iso; 0.1 micrograms/kg), norepinephrine (NE; 0.4 micrograms/kg), and forskolin (For; 75 nmol/kg) were significantly (P < 0.05) depressed in older monkeys. For example. Iso increased LV dP/dt by by 146 +/- 14% in younger monkeys and by only 70 +/- 5% in older monkeys. Iso also reduced tau more in younger monkeys (-28 +/- 7%) compared with older monkeys (-13 +/- 3%). Furthermore, peripheral vascular responsiveness to Iso, NE, For, and phenylephrine (PE; 5 micrograms/kg) was significantly (P < 0.05) reduced in older monkeys. For example, phenylephrine (5 micrograms/kg) increased total peripheral resistence by 69 +/- 4% in younger monkeys and by only 45 +/- 3% in older monkeys. Thus in older monkeys without associated cardiovascular disease, baseline hemodynamics are preserved, but adrenergic receptor responsiveness is reduced systemically, not just in the heart.

  13. Remodeling of intrinsic cardiac neurons: effects of β-adrenergic receptor blockade in guinea pig models of chronic heart disease.

    PubMed

    Hardwick, Jean C; Southerland, E Marie; Girasole, Allison E; Ryan, Shannon E; Negrotto, Sara; Ardell, Jeffrey L

    2012-11-01

    Chronic heart disease induces remodeling of cardiac tissue and associated neuronal components. Treatment of chronic heart disease often involves pharmacological blockade of adrenergic receptors. This study examined the specific changes in neuronal sensitivity of guinea pig intrinsic cardiac neurons to autonomic modulators in animals with chronic cardiac disease, in the presence or absence of adrenergic blockage. Myocardial infarction (MI) was produced by ligature of the coronary artery and associated vein on the dorsal surface of the heart. Pressure overload (PO) was induced by a banding of the descending dorsal aorta (∼20% constriction). Animals were allowed to recover for 2 wk and then implanted with an osmotic pump (Alzet) containing either timolol (2 mg·kg(-1)·day(-1)) or vehicle, for a total of 6-7 wk of drug treatment. At termination, intracellular recordings from individual neurons in whole mounts of the cardiac plexus were used to assess changes in physiological responses. Timolol treatment did not inhibit the increased sensitivity to norepinephrine seen in both MI and PO animals, but it did inhibit the stimulatory effects of angiotensin II on the norepinephrine-induced increases in neuronal excitability. Timolol treatment also inhibited the increase in synaptically evoked action potentials observed in PO animals with stimulation of fiber tract bundles. These results demonstrate that β-adrenergic blockade can inhibit specific aspects of remodeling within the intrinsic cardiac plexus. In addition, this effect was preferentially observed with active cardiac disease states, indicating that the β-receptors were more influential on remodeling during dynamic disease progression.

  14. Comparative anatomy and evolution of the cardiac innervation in New World monkeys (Platyrrhini, e. Geoffroy, 1812).

    PubMed

    Kawashima, Tomokazu; Thorington, Richard W; Whatton, James F

    2009-05-01

    The morphology of the autonomic cardiac nervous system (ACNS) was examined in 24 sides of 12 New World monkeys (Platyrrhini) of all four families to document the morphology systematically and to study the evolutionary changes of the ACNS in this primate lineage. We report the following: (1) Although several trivial intra- and inter-specific variations are present, a family-dependent morphology of the ACNS does not exist in New World monkeys. (2) The sympathetic ganglia in New World monkeys consist of the superior cervical, the middle cervical, and the cervicothoracic which is composed of the inferior cervical and first and second thoracic, and the thoracic ganglia starting with the third thoracic. The general cardiac nervous system is the sympathetic middle and inferior cardiac nerves and all parasympathetic vagal cardiac branches. (3) The morphology of the ACNS in the New World monkeys is almost consistent regardless of the number of vertebrae, the cardiac position and deviation (axis), and the great arterial branching pattern of the aortic arch, and it is very similar to that in the Old World monkeys, with only one difference: the superior cervical ganglion in the New World monkeys tends to be relatively smaller, higher, and provides a narrower contribution to the spinal nerves than in the Old World monkeys. The ACNS morphology exhibits significant evolutionary changes within the primate lineage from New and Old World monkeys to humans. The comparative morphology within the lineage is concordant with the phylogeny, suggesting that the primate ACNS preserves its evolutionary history in close alignment with phylogeny.

  15. Cardiac physiologic regulation of sub-type specific adrenergic receptors in transgenic mice overexpressing β1- and β2-adrenergic receptors

    PubMed Central

    Kim, Ka Eul; Tae, Hyun-Jin; Natalia, Petrashevskaya; Lee, Jae-Chul; Ahn, Ji Hyeon; Park, Joon Ha; Kim, In Hye; Ohk, Taek Geun; Park, Chan Woo; Cho, Jun Hwi; Won, Moo-Ho

    2016-01-01

    Objective Combination of β1-adrenergic receptor (AR) blockade and β2-AR activation might be a potential novel therapy for treating heart failure. However, use of β-AR agonists and/or antagonists in the clinical setting is controversial because of the lack of information on cardiac inotropic or chronotropic regulation by AR signaling. Methods In this study, we performed hemodynamic evaluation by examining force frequency response (FFR), Frank-Starling relationship, and response to a non-selective β-AR agonist (isoproterenol) in hearts isolated from 6-month-old transgenic (TG) mice overexpressing β1- and β2-ARs (β1- and β2-AR TG mice, respectively). Results Cardiac physiologic consequences of β1- and β2-AR overexpression resulted in similar maximal response to isoproterenol and faster temporary decline of positive inotropic response in β2-AR TG mice. β1-AR TG mice showed a pronounced negative limb of FFR, whereas β2-AR TG mice showed high stimulation frequencies with low contractile depression during FFR. In contrast, Frank-Starling relationship was equally enhanced in both β1- and β2-AR TG mice. Conclusion Hemodynamic evaluation performed in the present showed a difference in β1- and β2-AR signaling, which may be due to the difference in the desensitization of β1- and β2-ARs. PMID:27752636

  16. Adrenergic Repression of the Epigenetic Reader MeCP2 Facilitates Cardiac Adaptation in Chronic Heart Failure

    PubMed Central

    Mayer, Sandra C.; Gilsbach, Ralf; Preissl, Sebastian; Monroy Ordonez, Elsa Beatriz; Schnick, Tilman; Beetz, Nadine; Lother, Achim; Rommel, Carolin; Ihle, Hannah; Bugger, Heiko; Rühle, Frank; Schrepper, Andrea; Schwarzer, Michael; Heilmann, Claudia; Bönisch, Ulrike; Gupta, Shashi Kumar; Wilpert, Jochen; Kretz, Oliver; von Elverfeldt, Dominik; Orth, Joachim; Aktories, Klaus; Beyersdorf, Friedhelm; Bode, Christoph; Stiller, Brigitte; Krüger, Markus; Thum, Thomas; Doenst, Torsten; Stoll, Monika

    2015-01-01

    Rationale: In chronic heart failure, increased adrenergic activation contributes to structural remodeling and altered gene expression. Although adrenergic signaling alters histone modifications, it is unknown, whether it also affects other epigenetic processes, including DNA methylation and its recognition. Objective: The aim of this study was to identify the mechanism of regulation of the methyl-CpG–binding protein 2 (MeCP2) and its functional significance during cardiac pressure overload and unloading. Methods and Results: MeCP2 was identified as a reversibly repressed gene in mouse hearts after transverse aortic constriction and was normalized after removal of the constriction. Similarly, MeCP2 repression in human failing hearts resolved after unloading by a left ventricular assist device. The cluster miR-212/132 was upregulated after transverse aortic constriction or on activation of α1- and β1-adrenoceptors and miR-212/132 led to repression of MeCP2. Prevention of MeCP2 repression by a cardiomyocyte-specific, doxycycline-regulatable transgenic mouse model aggravated cardiac hypertrophy, fibrosis, and contractile dysfunction after transverse aortic constriction. Ablation of MeCP2 in cardiomyocytes facilitated recovery of failing hearts after reversible transverse aortic constriction. Genome-wide expression analysis, chromatin immunoprecipitation experiments, and DNA methylation analysis identified mitochondrial genes and their transcriptional regulators as MeCP2 target genes. Coincident with its repression, MeCP2 was removed from its target genes, whereas DNA methylation of MeCP2 target genes remained stable during pressure overload. Conclusions: These data connect adrenergic activation with a microRNA—MeCP2 epigenetic pathway that is important for cardiac adaptation during the development and recovery from heart failure. PMID:26195221

  17. Focal myocardial infarction induces global remodeling of cardiac sympathetic innervation: neural remodeling in a spatial context

    PubMed Central

    Ajijola, Olujimi A.; Yagishita, Daigo; Patel, Krishan J.; Vaseghi, Marmar; Zhou, Wei; Yamakawa, Kentaro; So, Eileen; Lux, Robert L.; Mahajan, Aman

    2013-01-01

    Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms2, P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (P = 0.0001), whereas left stellate ganglion stimulation showed the reverse (P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced. PMID:23893167

  18. Dynamic molecular imaging of cardiac innervation using a dual headpinhole SPECT system

    SciTech Connect

    Hu, Jicun; Boutchko, Rostyslav; Sitek, Arkadiusz; Reutter, BryanW.; Huesman, Ronald H.; Gullberg, Grant T.

    2008-03-29

    Typically 123I-MIBG is used for the study of innervation andfunction of the sympathetic nervous system in heart failure. The protocolinvolves two studies: first a planar or SPECT scan is performed tomeasure initial uptake of the tracer, followed some 3-4 hours later byanother study measuring the wash-out of the tracer from the heart. A fastwash-out is indicative of a compromised heart. In this work, a dual headpinhole SPECT system was used for imaging the distribution and kineticsof 123I-MIBG in the myocardium of spontaneous hypertensive rats (SHR) andnormotensive Wistar Kyoto (WKY) rats. The system geometry was calibratedbased on a nonlinear point projection fitting method using a three-pointsource phantom. The angle variation effect of the parameters was modeledwith a sinusoidal function. A dynamic acquisition was performed byinjecting 123I-MIBG into rats immediately after starting the dataacquisition. The detectors rotated continuously performing a 360o dataacquisition every 90 seconds. We applied the factor analysis (FA)methodand region of interest (ROI) sampling method to obtain time activitycurves (TACs)in the blood pool and myocardium and then appliedtwo-compartment modeling to estimate the kinetic parameters. Since theinitial injection bolus is too fast for obtaining a consistenttomographic data set in the first few minutes of the study, we appliedthe FA method directly to projections during the first rotation. Then thetime active curves for blood and myocardial tissue were obtained from ROIsampling. The method was applied to determine if there were differencesin the kinetics between SHR and WKY rats and requires less time byreplacing the delayed scan at 3-4 hours after injection with a dynamicacquisition over 90 to 120 minutes. The results of a faster washout and asmaller distribution volume of 123IMIBG near the end of life in the SHRmodel of hypertrophic cardiomyopthy may be indicative of a failing heartin late stages of heart failure.

  19. Effect of age on upregulation of the cardiac adrenergic beta receptors

    SciTech Connect

    Tumer, N.; Houck, W.T.; Roberts, J.

    1990-03-01

    Radioligand binding studies were performed to determine whether upregulation of postjunctional beta receptors occurs in sympathectomized hearts of aged animals. Fischer 344 rats 6, 12, and 24 months of age (n = 10) were used in these experiments. To produce sympathectomy, rats were injected with 6-hydroxydopamine hydrobromide (6-OHDA; 2 x 50 mg/kg iv) on days 1 and 8; the animals were decapitated on day 15. The depletion of norepinephrine in the heart was about 86% in each age group. 125I-Iodopindolol (IPIN), a beta adrenergic receptor antagonist, was employed to determine the affinity and total number of beta adrenergic receptors in the ventricles of the rat heart. The maximal number of binding sites (Bmax) was significantly elevated by 37%, 48%, and 50% in hearts from sympathectomized 6-, 12-, and 24-month-old rats, respectively. These results indicate that beta receptor mechanisms in older hearts can respond to procedures that cause upregulation of the beta adrenergic receptors.

  20. Hepatocyte innervation in primates

    PubMed Central

    1977-01-01

    The efferent innervation and some characteristics of nerve fibers of the liver lobule in the tree shrew, a primate, are described. Nerve endings on hepatocytes were encountered regularly and were determined to be efferent adrenergic nerves. Transmission electron microscopy revealed nerve endings and varicosities in close apposition to the hepatocytes adjacent to the connective tissue of the triads as well as within the liver lobule in the space of Disse. Fluorescence microscopy indicated the existence of adrenergic nerves with a similar distribution. Autoradiography of the avid uptake of exogenous [3H]norepinephrine indicated that all intralobular nerves are potentially norepinephrinergic (adrenergic). Chemical sympathectomy with 6-OH-dopamine resulted in the degeneration of all intralobular liver nerve fibers as revealed by fluorescence microscopy and electron microscopy. Substantial regeneration occurred after 60-90 days but was not completed by that time. Some nerves were also observed in close association with von Kupffer cells and endothelial cells. The functional significance of the efferent liver innervation is discussed. PMID:406265

  1. Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family.

    PubMed Central

    Gocayne, J; Robinson, D A; FitzGerald, M G; Chung, F Z; Kerlavage, A R; Lentes, K U; Lai, J; Wang, C D; Fraser, C M; Venter, J C

    1987-01-01

    Two cDNA clones, lambda RHM-MF and lambda RHB-DAR, encoding the muscarinic cholinergic receptor and the beta-adrenergic receptor, respectively, have been isolated from a rat heart cDNA library. The cDNA clones were characterized by restriction mapping and automated DNA sequence analysis utilizing fluorescent dye primers. The rat heart muscarinic receptor consists of 466 amino acids and has a calculated molecular weight of 51,543. The rat heart beta-adrenergic receptor consists of 418 amino acids and has a calculated molecular weight of 46,890. The two cardiac receptors have substantial amino acid homology (27.2% identity, 50.6% with favored substitutions). The rat cardiac beta receptor has 88.0% homology (92.5% with favored substitutions) with the human brain beta receptor and the rat cardiac muscarinic receptor has 94.6% homology (97.6% with favored substitutions) with the porcine cardiac muscarinic receptor. The muscarinic cholinergic and beta-adrenergic receptors appear to be as conserved as hemoglobin and cytochrome c but less conserved than histones and are clearly members of a multigene family. These data support our hypothesis, based upon biochemical and immunological evidence, that suggests considerable structural homology and evolutionary conservation between adrenergic and muscarinic cholinergic receptors. To our knowledge, this is the first report utilizing automated DNA sequence analysis to determine the structure of a gene. Images PMID:2825184

  2. Characterization of a beta-adrenergically inhibited K+ current in rat cardiac ventricular cells.

    PubMed Central

    Scamps, F

    1996-01-01

    1. The electrophysiological properties and beta-adrenergic regulation of a non-inactivating K+ current were studied using the whole-cell patch-clamp technique (22 +/- 2 degrees C) in adult rat ventricular cells. 2. In the presence of 4-aminopyridine, an inhibitor of the rapidly inactivating current, the depolarization-activated current consisted only of a slowly decaying outward current (IK). The presence of a non-inactivating current (ISS) was revealed when analysing inactivation curves. 3. IK and ISS were both sensitive to 50 mM tetraethylammonium and 10 mM 4-aminopyridine inhibition. IK was totally blocked by 100 microM clofilium, while ISS was not inhibited but rather enhanced by this class III anti-arrhythmic agent. 4. Unlike IK, ISS was only slightly decreased by depolarizing prepulses and it did not show time-dependent inactivation when measured during 500 ms depolarizations. 5. ISS was decreased by the beta-adrenergic agonist isoprenaline (1 microM). Forskolin (10 microM) mimicked the effects of isoprenaline. The non-specific beta-adrenergic antagonist, propranolol (3 microM), and a specific beta 1-adrenergic antagonist, CGP 20712A (0.3 microM), both prevented the effects of isoprenaline. Cell perfusion with 100 microM PKI6-22, a peptide inhibitor of the cyclic AMP-dependent protein kinase, reduced or abolished the effects of isoprenaline. 6. The dose-response curve for the inhibition of ISS by isoprenaline was positioned to the left of that for the calcium current. The threshold dose and the dose giving 50% of the maximal effect were, respectively, 0.1 and 0.21 nM for ISS and 1 and 4.3 nM for ICa. 7. In view of the high sensitivity of ISS to isoprenaline, its possible physiological effect was evaluated on action potential duration during beta-adrenergic stimulation. At 1 nM, a concentration that did not increase ICa, isoprenaline induced a significant prolongation of action potential duration as a consequence of ISS inhibition. With 1 microM isoprenaline

  3. Assessment of anti-arrhythmic activity of antipsychotic drugs in an animal model: influence of non-cardiac α₁-adrenergic receptors.

    PubMed

    Mow, Tomas; Frederiksen, Kristen; Thomsen, Morten B

    2015-02-01

    Torsades de Pointes (TdP) is a potentially lethal cardiac arrhythmia and a known adverse effect of many drugs secondary to block of the rapidly activating delayed rectifier potassium current (IKr). In animal models antipsychotic drugs have shown reduced pro-arrhythmic potential compared to drugs with comparable IKr-blocking characteristics. The reduced pro-arrhythmic properties of antipsychotic drugs has been attributed to a variety of different causes e.g., effects on α₁-adrenergic receptors, β-adrenergic receptors, muscarinic receptors or cardiac ion channels like Ca(2+)- and Na(+)-channels. Since only limited experimental information exists about the effects of α₁-adrenergic receptor activity of antipsychotic drugs in pro-arrhythmic models, we have decided to investigate this. In this study we show that four antipsychotic drugs all have high affinity for α₁-adrenergic receptor (sertindole>risperidone>haloperidol>olanzapine) and all block IKr (sertindole>haloperidol>risperidone>olanzapine). In canine Purkinje fibres, α₁-adrenergic stimulation prolonged action potential duration; however, the stimulation does not cause afterdepolarizations, even in the presence of dofetilide-induced delayed repolarization. We showed for the first time in an in vivo pro-arrhythmic rabbit model that several antipsychotic drugs in accordance with their known α₁-adrenergic receptor blocking properties reduced the incidence of drug-induced TdP and that the overall ability of the antipsychotic drugs to prevent TdP was associated with prevention of methoxamine induced increase in blood pressure. Further investigations are required to clarify the relative importance of α₁-adrenergic receptor antagonism in conjunction with the additional effects of antipsychotic drugs on various receptors and ion channels.

  4. Cardiac Myocyte Alternans in Intact Heart: Influence of Cell-Cell Coupling and β-Adrenergic Stimulation

    PubMed Central

    Hammer, Karin P.; Ljubojevic, Senka; Ripplinger, Crystal M.; Pieske, Burkert M.; Bers, Donald M.

    2015-01-01

    Background Cardiac alternans are proarrhythmic and mechanistically link cardiac mechanical dysfunction and sudden cardiac death. Beat-to-beat alternans occur when beats with large Ca2+ transients and long action potential duration (APD) alternate with the converse. APD alternans are typically driven by Ca2+ alternans and sarcoplasmic reticulum (SR) Ca2+ release alternans. But the effect of intercellular communication via gap junctions (GJ) on alternans in intact heart remains unknown. Objective We assessed the effects of cell-to-cell coupling on local alternans in intact Langen-dorff-perfused mouse hearts, measuring single myocyte [Ca2+] alternans synchronization among neighboring cells, and effects of β-adrenergic receptor (β-AR) activation and reduced GJ coupling. Methods and Results Mouse hearts (C57BL/6) were retrogradely perfused and loaded with Fluo-8 AM to record cardiac myocyte [Ca2+] in situ with confocal microscopy. Single cell resolution allowed analysis of alternans within the intact organ during alternans induction. Carbenoxolone (25 μM), a GJ inhibitor, significantly increased the occurrence and amplitude of alternans in single cells within the intact heart. Alternans were concordant between neighboring cells throughout the field of view, except transiently during onset. β-AR stimulation only reduced Ca2+ alternans in tissue that had reduced GJ coupling, matching effects seen in isolated myocytes. Conclusions Ca2+ alternans among neighboring myocytes is predominantly concordant, likely because of electrical coupling between cells. Consistent with this, partial GJ uncoupling increased propensity and amplitude of Ca2+ alternans, and made them more sensitive to reversal by β-AR activation, as in isolated myocytes. Electrical coupling between myocytes may thus limit the alternans initiation, but also allow alternans to be more stable once established. PMID:25828762

  5. Cardiomyocyte Circadian Oscillations Are Cell-Autonomous, Amplified by β-Adrenergic Signaling, and Synchronized in Cardiac Ventricle Tissue

    PubMed Central

    Welsh, David K.

    2016-01-01

    Circadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in culture. In the present study, we examined the relationship between intrinsic myocardial function and circadian rhythms in cultures from mouse heart. We cultured ventricular explants or dispersed cardiomyocytes from neonatal mice expressing a PER2::LUC bioluminescent reporter of circadian clock gene expression. We found that isoproterenol, a β-adrenoceptor agonist known to increase heart rate and contractility, also amplifies PER2 circadian rhythms in ventricular explants. We found robust, cell-autonomous PER2 circadian rhythms in dispersed cardiomyocytes. Single-cell rhythms were initially synchronized in ventricular explants but desynchronized in dispersed cells. In addition, we developed a method for long-term, simultaneous monitoring of clock gene expression, contraction rate, and basal intracellular Ca2+ level in cardiomyocytes using PER2::LUC in combination with GCaMP3, a genetically encoded fluorescent Ca2+ reporter. In contrast to robust PER2 circadian rhythms in cardiomyocytes, we detected no rhythms in contraction rate and only weak rhythms in basal Ca2+ level. In summary, we found that PER2 circadian rhythms of cardiomyocytes are cell-autonomous, amplified by adrenergic signaling, and synchronized by intercellular communication in ventricle explants, but we detected no robust circadian rhythms in contraction rate or basal Ca2+. PMID:27459195

  6. Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation.

    PubMed

    Jensen, Brian C; OʼConnell, Timothy D; Simpson, Paul C

    2014-04-01

    Alpha-1-adrenergic receptors (ARs) are G protein-coupled receptors activated by catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer alpha-1-ARs than beta-ARs in the nonfailing heart, but their abundance is maintained or increased in the setting of heart failure, which is characterized by pronounced chronic elevation of catecholamines and beta-AR dysfunction. Decades of evidence from gain and loss-of-function studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive functions for cardiac alpha-1-ARs to include physiological hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively, these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the treatment of heart failure.

  7. Cardiac Dysfunction Induced by Obesity Is Not Related to β-Adrenergic System Impairment at the Receptor-Signalling Pathway.

    PubMed

    Ferron, Artur Junio Togneri; Jacobsen, Bruno Barcellos; Sant'Ana, Paula Grippa; de Campos, Dijon Henrique Salomé; de Tomasi, Loreta Casquel; Luvizotto, Renata de Azevedo Mello; Cicogna, Antonio Carlos; Leopoldo, André Soares; Lima-Leopoldo, Ana Paula

    2015-01-01

    Obesity has been shown to impair myocardial performance. Some factors have been suggested as responsible for possible cardiac abnormalities in models of obesity, among them beta-adrenergic (βA) system, an important mechanism of regulation of myocardial contraction and relaxation. The objective of present study was to evaluate the involvement of βA system components in myocardial dysfunction induced by obesity. Thirty-day-old male Wistar rats were distributed in control (C, n = 25) and obese (Ob, n = 25) groups. The C group was fed a standard diet and Ob group was fed four unsaturated high-fat diets for 15 weeks. Cardiac function was evaluated by isolated papillary muscle preparation and βA system evaluated by using cumulative concentrations of isoproterenol and Western blot. After 15 weeks, the Ob rats developed higher adiposity index than C rats and several comorbidities; however, were not associated with changes in systolic blood pressure. Obesity caused structural changes and the myocardial responsiveness to post-rest contraction stimulus and increased extracellular calcium (Ca2+) was compromised. There were no changes in cardiac function between groups after βA stimulation. The obesity was not accompanied by changes in protein expression of G protein subunit alpha (Gsα) and βA receptors (β1AR and β2AR). In conclusion, the myocardial dysfunction caused by unsaturated high-fat diet-induced obesity, after 15 weeks, is not related to βAR system impairment at the receptor-signalling pathway. PMID:26390297

  8. Cardiac Dysfunction Induced by Obesity Is Not Related to β-Adrenergic System Impairment at the Receptor-Signalling Pathway

    PubMed Central

    Sant’Ana, Paula Grippa; de Campos, Dijon Henrique Salomé; de Tomasi, Loreta Casquel; Luvizotto, Renata de Azevedo Mello; Cicogna, Antonio Carlos; Leopoldo, André Soares; Lima-Leopoldo, Ana Paula

    2015-01-01

    Obesity has been shown to impair myocardial performance. Some factors have been suggested as responsible for possible cardiac abnormalities in models of obesity, among them beta-adrenergic (βA) system, an important mechanism of regulation of myocardial contraction and relaxation. The objective of present study was to evaluate the involvement of βA system components in myocardial dysfunction induced by obesity. Thirty-day-old male Wistar rats were distributed in control (C, n = 25) and obese (Ob, n = 25) groups. The C group was fed a standard diet and Ob group was fed four unsaturated high-fat diets for 15 weeks. Cardiac function was evaluated by isolated papillary muscle preparation and βA system evaluated by using cumulative concentrations of isoproterenol and Western blot. After 15 weeks, the Ob rats developed higher adiposity index than C rats and several comorbidities; however, were not associated with changes in systolic blood pressure. Obesity caused structural changes and the myocardial responsiveness to post-rest contraction stimulus and increased extracellular calcium (Ca2+) was compromised. There were no changes in cardiac function between groups after βA stimulation. The obesity was not accompanied by changes in protein expression of G protein subunit alpha (Gsα) and βA receptors (β1AR and β2AR). In conclusion, the myocardial dysfunction caused by unsaturated high-fat diet-induced obesity, after 15 weeks, is not related to βAR system impairment at the receptor-signalling pathway. PMID:26390297

  9. Cardiac-specific ablation of G-protein receptor kinase 2 redefines its roles in heart development and beta-adrenergic signaling.

    PubMed

    Matkovich, Scot J; Diwan, Abhinav; Klanke, Justin L; Hammer, Daniel J; Marreez, Yehia; Odley, Amy M; Brunskill, Eric W; Koch, Walter J; Schwartz, Robert J; Dorn, Gerald W

    2006-10-27

    G-protein receptor kinase 2 (GRK2) is 1 of 7 mammalian GRKs that phosphorylate ligand-bound 7-transmembrane receptors, causing receptor uncoupling from G proteins and potentially activating non-G-protein signaling pathways. GRK2 is unique among members of the GRK family in that its genetic ablation causes embryonic lethality. Cardiac abnormalities in GRK2 null embryos implicated GRK2 in cardiac development but prevented studies of the knockout phenotype in adult hearts. Here, we created GRK2-loxP-targeted mice and used Cre recombination to generate germline and cardiac-specific GRK2 knockouts. GRK2 deletion in the preimplantation embryo with EIIa-Cre (germline null) resulted in developmental retardation and embryonic lethality between embryonic day 10.5 (E10.5) and E11.5. At E9.5, cardiac myocyte specification and cardiac looping were normal, but ventricular development was delayed. Cardiomyocyte-specific ablation of GRK2 in the embryo with Nkx2.5-driven Cre (cardiac-specific GRK2 knockout) produced viable mice with normal heart structure, function, and cardiac gene expression. Cardiac-specific GRK2 knockout mice exhibited enhanced inotropic sensitivity to the beta-adrenergic receptor agonist isoproterenol, with impairment of normal inotropic and lusitropic tachyphylaxis, and exhibited accelerated development of catecholamine toxicity with chronic isoproterenol treatment. These findings show that cardiomyocyte autonomous GRK2 is not essential for myocardial development after cardiac specification, suggesting that embryonic developmental abnormalities may be attributable to extracardiac effects of GRK2 ablation. In the adult heart, cardiac GRK2 is a major factor regulating inotropic and lusitropic tachyphylaxis to beta-adrenergic agonist, which likely contributes to its protective effects in catecholamine cardiomyopathy. PMID:17008600

  10. α1A-Adrenergic receptor prevents cardiac ischemic damage through PKCδ/GLUT1/4-mediated glucose uptake.

    PubMed

    Shi, Ting; Papay, Robert S; Perez, Dianne M

    2016-01-01

    While α(1)-adrenergic receptors (ARs) have been previously shown to limit ischemic cardiac damage, the mechanisms remain unclear. Most previous studies utilized low oxygen conditions in addition to ischemic buffers with glucose deficiencies, but we discovered profound differences if the two conditions are separated. We assessed both mouse neonatal and adult myocytes and HL-1 cells in a series of assays assessing ischemic damage under hypoxic or low glucose conditions. We found that α(1)-AR stimulation protected against increased lactate dehydrogenase release or Annexin V(+) apoptosis under conditions that were due to low glucose concentration not to hypoxia. The α(1)-AR antagonist prazosin or nonselective protein kinase C (PKC) inhibitors blocked the protective effect. α(1)-AR stimulation increased (3)H-deoxyglucose uptake that was blocked with either an inhibitor to glucose transporter 1 or 4 (GLUT1 or GLUT4) or small interfering RNA (siRNA) against PKCδ. GLUT1/4 inhibition also blocked α(1)-AR-mediated protection from apoptosis. The PKC inhibitor rottlerin or siRNA against PKCδ blocked α(1)-AR stimulated GLUT1 or GLUT4 plasma membrane translocation. α(1)-AR stimulation increased plasma membrane concentration of either GLUT1 or GLUT4 in a time-dependent fashion. Transgenic mice overexpressing the α(1A)-AR but not α(1B)-AR mice displayed increased glucose uptake and increased GLUT1 and GLUT4 plasma membrane translocation in the adult heart while α(1A)-AR but not α(1B)-AR knockout mice displayed lowered glucose uptake and GLUT translocation. Our results suggest that α(1)-AR activation is anti-apoptotic and protective during cardiac ischemia due to glucose deprivation and not hypoxia by enhancing glucose uptake into the heart via PKCδ-mediated GLUT translocation that may be specific to the α(1A)-AR subtype.

  11. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death.

    PubMed

    Bouilloux, Fabrice; Thireau, Jérôme; Ventéo, Stéphanie; Farah, Charlotte; Karam, Sarah; Dauvilliers, Yves; Valmier, Jean; Copeland, Neal G; Jenkins, Nancy A; Richard, Sylvain; Marmigère, Frédéric

    2016-01-01

    Although cardio-vascular incidents and sudden cardiac death (SCD) are among the leading causes of premature death in the general population, the origins remain unidentified in many cases. Genome-wide association studies have identified Meis1 as a risk factor for SCD. We report that Meis1 inactivation in the mouse neural crest leads to an altered sympatho-vagal regulation of cardiac rhythmicity in adults characterized by a chronotropic incompetence and cardiac conduction defects, thus increasing the susceptibility to SCD. We demonstrated that Meis1 is a major regulator of sympathetic target-field innervation and that Meis1 deficient sympathetic neurons die by apoptosis from early embryonic stages to perinatal stages. In addition, we showed that Meis1 regulates the transcription of key molecules necessary for the endosomal machinery. Accordingly, the traffic of Rab5(+) endosomes is severely altered in Meis1-inactivated sympathetic neurons. These results suggest that Meis1 interacts with various trophic factors signaling pathways during postmitotic neurons differentiation. PMID:26857994

  12. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death

    PubMed Central

    Bouilloux, Fabrice; Thireau, Jérôme; Ventéo, Stéphanie; Farah, Charlotte; Karam, Sarah; Dauvilliers, Yves; Valmier, Jean; Copeland, Neal G; Jenkins, Nancy A; Richard, Sylvain; Marmigère, Frédéric

    2016-01-01

    Although cardio-vascular incidents and sudden cardiac death (SCD) are among the leading causes of premature death in the general population, the origins remain unidentified in many cases. Genome-wide association studies have identified Meis1 as a risk factor for SCD. We report that Meis1 inactivation in the mouse neural crest leads to an altered sympatho-vagal regulation of cardiac rhythmicity in adults characterized by a chronotropic incompetence and cardiac conduction defects, thus increasing the susceptibility to SCD. We demonstrated that Meis1 is a major regulator of sympathetic target-field innervation and that Meis1 deficient sympathetic neurons die by apoptosis from early embryonic stages to perinatal stages. In addition, we showed that Meis1 regulates the transcription of key molecules necessary for the endosomal machinery. Accordingly, the traffic of Rab5+ endosomes is severely altered in Meis1-inactivated sympathetic neurons. These results suggest that Meis1 interacts with various trophic factors signaling pathways during postmitotic neurons differentiation. DOI: http://dx.doi.org/10.7554/eLife.11627.001 PMID:26857994

  13. Tendon Innervation.

    PubMed

    Ackermann, Paul W; Salo, Paul; Hart, David A

    2016-01-01

    The regulation of tendon metabolism including the responses to loading is far from being well understood. During the last decade, however, accumulating data show that tendon innervation in addition to afferent functions, via efferent pathways has a regulatory role in tendon homeostasis via a wide range of neuromediators, which coordinate metabolic and neuro-inflammatory pathways.Innervation of intact healthy tendons is localized in the surrounding structures, i.e paratenon, endotenon and epitenon, whereas the tendon proper is practically devoid of neuronal supply. This anatomical finding reflects that the tendon metabolism is regulated from the tendon envelope, i.e. interfascicular matrix (see Chap. 1 ).Tendon innervation after injury and during repair, however, is found as extensive nerve ingrowth into the tendon proper, followed by a time-dependent emergence of different neuronal mediators, which amplify and fine-tune inflammatory and metabolic pathways in tendon regeneration. After healing nerve fibers retract to the tendon envelope.In tendinopathy innervation has been identified to consist of excessive and protracted nerve ingrowth in the tendon proper, suggesting pro-inflammatory, nociceptive and hypertrophic (degenerative) tissue responses.In metabolic disorders such as eg. diabetes impaired tendon healing has been established to be related to dysregulation of neuronal growth factors.Targeted approaches to the peripheral nervous system including neuronal mediators and their receptors may prove to be effective therapies for painful, degenerative and traumatic tendon disorders. PMID:27535247

  14. Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal.

    PubMed

    Kreipke, R E; Birren, S J

    2015-12-01

    Sympathetic drive to the heart is a key modulator of cardiac function and interactions between heart tissue and innervating sympathetic fibres are established early in development. Significant innervation takes place during postnatal heart development, a period when cardiomyocytes undergo a rapid transition from proliferative to hypertrophic growth. The question of whether these innervating sympathetic fibres play a role in regulating the modes of cardiomyocyte growth was investigated using 6-hydroxydopamine (6-OHDA) to abolish early sympathetic innervation of the heart. Postnatal chemical sympathectomy resulted in rats with smaller hearts, indicating that heart growth is regulated by innervating sympathetic fibres during the postnatal period. In vitro experiments showed that sympathetic interactions resulted in delays in markers of cardiomyocyte maturation, suggesting that changes in the timing of the transition from hyperplastic to hypertrophic growth of cardiomyocytes could underlie changes in heart size in the sympathectomized animals. There was also an increase in the expression of Meis1, which has been linked to cardiomyocyte cell cycle withdrawal, suggesting that sympathetic signalling suppresses cell cycle withdrawal. This signalling involves β-adrenergic activation, which was necessary for sympathetic regulation of cardiomyocyte proliferation and hypertrophy. The effect of β-adrenergic signalling on cardiomyocyte hypertrophy underwent a developmental transition. While young postnatal cardiomyocytes responded to isoproterenol (isoprenaline) with a decrease in cell size, mature cardiomyocytes showed an increase in cell size in response to the drug. Together, these results suggest that early sympathetic effects on proliferation modulate a key transition between proliferative and hypertrophic growth of the heart and contribute to the sympathetic regulation of adult heart size.

  15. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Cyclic ADP-Ribose (cADPR) Mediate Ca2+ Signaling in Cardiac Hypertrophy Induced by β-Adrenergic Stimulation

    PubMed Central

    Shawl, Asif Iqbal; Im, Soo-Yeul; Nam, Tae-Sik; Lee, Sun-Hwa; Ko, Jae-Ki; Jang, Kyu Yoon; Kim, Donghee; Kim, Uh-Hyun

    2016-01-01

    Ca2+ signaling plays a fundamental role in cardiac hypertrophic remodeling, but the underlying mechanisms remain poorly understood. We investigated the role of Ca2+-mobilizing second messengers, NAADP and cADPR, in the cardiac hypertrophy induced by β-adrenergic stimulation by isoproterenol. Isoproterenol induced an initial Ca2+ transients followed by sustained Ca2+ rises. Inhibition of the cADPR pathway with 8-Br-cADPR abolished only the sustained Ca2+ increase, whereas inhibition of the NAADP pathway with bafilomycin-A1 abolished both rapid and sustained phases of the isoproterenol-mediated signal, indicating that the Ca2+ signal is mediated by a sequential action of NAADP and cADPR. The sequential production of NAADP and cADPR was confirmed biochemically. The isoproterenol-mediated Ca2+ increase and cADPR production, but not NAADP production, were markedly reduced in cardiomyocytes obtained from CD38 knockout mice. CD38 knockout mice were rescued from chronic isoproterenol infusion-induced myocardial hypertrophy, interstitial fibrosis, and decrease in fractional shortening and ejection fraction. Thus, our findings indicate that β-adrenergic stimulation contributes to the development of maladaptive cardiac hypertrophy via Ca2+ signaling mediated by NAADP-synthesizing enzyme and CD38 that produce NAADP and cADPR, respectively. PMID:26959359

  16. Adrenergic modulation of the delayed rectifier potassium channel in calf cardiac Purkinje fibers.

    PubMed Central

    Bennett, P; McKinney, L; Begenisich, T; Kass, R S

    1986-01-01

    We have investigated the modulation of the delayed rectifier potassium channel in calf cardiac Purkinje fibers by the neurohormone norepinephrine. We find that 0.5 microM norepinephrine increases this K channel current by a factor of 2.7. A maximal increase of about four was found for concentrations of 1 microM and above. Norepinephrine produced a small (less than 5 mV) and variable shift of the K channel reversal potential toward more negative values. The kinetics of the potassium channel are well described by a two-exponential process, both in the absence and presence of norepinephrine. However, norepinephrine substantially decreases the slower time constant with no significant effect on the fast time constant. Potassium channel activation curves in the presence of norepinephrine are very similar to control curves except at large positive potentials. A simple sequential three-state model for this channel can reproduce these data both with and without norepinephrine. The logarithms of the rate constants derived from this model are quadratic functions of voltage, suggesting the involvement of electric field-induced dipoles in the gating of this channel. Most of the kinetic effects of norepinephrine appear to be on a single rate constant. PMID:2424513

  17. β-Adrenergic receptor desensitization in man: insight into post-exercise attenuation of cardiac function

    PubMed Central

    Hart, Emma; Dawson, Ellen; Rasmussen, Peter; George, Keith; Secher, Niels H; Whyte, Greg; Shave, Rob

    2006-01-01

    Desensitization of the β-adrenoreceptors (β-AR) may contribute to a post-exercise reduction in left ventricular (LV) function. However, attenuation of the chronotropic and inotropic responses to a β-AR agonist may depend upon alterations in parasympathetic tone. Furthermore, changes in cardiac output Q˙ and LV diastolic function in response to a β-AR agonist, pre- to post-prolonged exercise, remain unclear. Seven trained males (mean ± s.d., age 27 ± 6 years) performed 4 h of ergometer rowing. Peak heart rate (HR) and LV systolic and diastolic functional responses to incremental isoproterenol (isoprenaline) infusion (2, 4 and 6 μg kg min−1) were assessed after vagal blockade (glycopyrrolate, 1.2 mg). LV systolic function was assessed by the pressure/volume ratio (systolic blood pressure/end systolic volume) and Q˙, whilst diastolic function was evaluated as peak early and late transmitral filling velocities. Following exercise, the pressure/volume ratio decreased by 25% (P < 0.05), whereas Q˙ was unchanged (P > 0.05). The early/late filling ratio was reduced by 36% after exercise, due to an elevation in late LV filling (P < 0.01). The increase in HR response to isoproterenol infusion was blunted post-exercise at both 4 and 6 μg kg min−1 (127 ± 7 and 132 ± 6 beats min−1) compared with pre-exercise (138 ± 8 and 141 ± 12 beats min−1, P < 0.05). Additionally, the pressure/volume ratio and Q˙ were blunted post-exercise in response to isoproterenol (P < 0.05). In contrast, diastolic function was similar before and after exercise during isoproterenol infusion (P > 0.05). Desensitization of the β-AR contributes to an attenuated left ventricular systolic but not diastolic function following prolonged exercise. PMID:16973702

  18. Sustained augmentation of cardiac alpha1A-adrenergic drive results in pathological remodeling with contractile dysfunction, progressive fibrosis and reactivation of matricellular protein genes.

    PubMed

    Chaulet, H; Lin, F; Guo, J; Owens, W A; Michalicek, J; Kesteven, S H; Guan, Z; Prall, O W; Mearns, B M; Feneley, M P; Steinberg, S F; Graham, R M

    2006-04-01

    We previously reported that transgenic (TG) mice with cardiac-restricted alpha(1A)-adrenergic receptor (alpha(1A)-AR)-overexpression showed enhanced contractility, but no hypertrophy. Since chronic inotropic enhancement may be deleterious, we investigated if long-term, cardiac function and longevity are compromised. alpha(1A)-TG mice, but not their non-TG littermates (NTLs), showed progressive loss of left ventricular (LV) hypercontractility (dP/dt(max): 14,567+/-603 to 11,610+/-915 mmHg/s, P<0.05, A1A1 line: 170-fold overexpression; and 13,625+/-826 to 8322+/-682 mmHg/s, respectively, P<0.05, A1A4 line: 112-fold overexpression, at 2 and 6 months, respectively). Both TG lines developed LV fibrosis, but not LV dilatation or hypertrophy, despite activation of hypertrophic signaling pathways. Microarray and real time RT-PCR analyses revealed activation of matricellular protein genes, including those for thrombospondin 1, connective tissue growth factor and tenascin C, but not transforming growth factor beta1. Life-span was markedly shortened (mean age at death: 155 days, A1A1 line; 224 days, A1A4 line compared with NTLs: >300 days). Telemetric electrocardiography revealed that death in the alpha(1A)-AR TG mice was due to cardiac standstill preceded by a progressive diminution in QRS amplitude, but not by arrhythmias. The QRS changes and sudden death could be mimicked by alpha(1)-AR activation, and reversed preterminally by alpha(1)-AR blockade, suggesting a relationship to stress- or activity-associated catecholamine release. Thus, long-term augmentation of cardiac alpha(1A)-adrenergic drive leads to premature death and progressive LV fibrosis with reactivation of matricellular protein genes. To our knowledge this is the first evidence in vivo for a role of the alpha(1A)-AR in ventricular fibrosis and in pathological cardiac remodeling.

  19. Saturated high-fat diet-induced obesity increases adenylate cyclase of myocardial β-adrenergic system and does not compromise cardiac function.

    PubMed

    Vileigas, Danielle F; de Deus, Adriana F; da Silva, Danielle C T; de Tomasi, Loreta C; de Campos, Dijon H S; Adorni, Caroline S; de Oliveira, Scarlet M; Sant'Ana, Paula G; Okoshi, Katashi; Padovani, Carlos R; Cicogna, Antonio C

    2016-09-01

    Obesity is a worldwide pandemic associated with high incidence of cardiovascular disease. The mechanisms by which the obesity leads cardiac dysfunction are not fully elucidated and few studies have evaluated the relationship between obesity and proteins involved in myocardial β-adrenergic (βA) system. The purpose of this study was to evaluate the cardiac function and βA pathway components in myocardium of obese rats. Male Wistar rats were distributed into two groups: control (n = 17; standard diet) and obese (n = 17; saturated high-fat diet) fed for 33 weeks. Nutritional profile and comorbidities were assessed. Cardiac structure and function was evaluated by macroscopic postmortem, echocardiographic and isolated papillary muscle analyzes. Myocardial protein expression of β1- and β2-adrenergic receptors, Gαs protein, adenylate cyclase (AC) and protein kinase A (PKA) was performed by Western blot. Cardiac cyclic adenosine monophosphate (cAMP) levels and PKA activity were assessed by ELISA Obese rats showed increased adiposity index (P < 0.001) and several comorbidities as hypertension, glucose intolerance, insulin resistance, and dyslipidemia compared with control rats. Echocardiographic assessment revealed increased left atrium diameter (C: 4.98 ± 0.38 vs. Ob: 5.47 ± 0.53, P = 0.024) and posterior wall shortening velocity (C: 37.1 ± 3.6 vs. Ob: 41.8 ± 3.8, P = 0.007) in obese group. Papillary muscle evaluation indicated that baseline data and myocardial responsiveness to isoproterenol stimulation were similar between the groups. Protein expression of myocardial AC was higher in obese group than in the control (C: 1.00 ± 0.21 vs. Ob: 1.25 ± 0.10, P = 0.025), whereas the other components were unchanged. These results suggest that saturated high-fat diet-induced obesity was not effective in triggering cardiac dysfunction and impair the beta-adrenergic signaling. PMID:27582064

  20. Detailed comparative anatomy of the extrinsic cardiac nerve plexus and postnatal reorganization of the cardiac position and innervation in the great apes: orangutans, gorillas, and chimpanzees.

    PubMed

    Kawashima, Tomokazu; Sato, Fumi

    2012-03-01

    To speculate how the extrinsic cardiac nerve plexus (ECNP) evolves phyletically and ontogenetically within the primate lineage, we conducted a comparative anatomical study of the ECNP, including an imaging examination in the great apes using 20 sides from 11 bodies from three species and a range of postnatal stages from newborns to mature adults. Although the position of the middle cervical ganglion (MG) in the great apes tended to be relatively lower than that in humans, the morphology of the ECNP in adult great apes was almost consistent with that in adult humans but essentially different from that in the lesser apes or gibbons. Therefore, the well-argued anatomical question of when did the MG acquire communicating branches with the spinal cervical nerves and appear constantly in all sympathetic cardiac nerves during primate evolution is clearly considered to be after the great apes and gibbons split. Moreover, a horizontal four-chambered heart and a lifted cardiac apex with a relatively large volume in newborn great apes rapidly changed its position downward, as seen in humans during postnatal growth and was associated with a reduction in the hepatic volume by imaging diagnosis and gross anatomy. In addition, our observation using a range of postnatal stages exhibits that two sympathetic ganglia, the middle cervical and cervicothoracic ganglia, differed between the early and later postnatal stages.

  1. Concanavalin A amplifies both beta-adrenergic and muscarinic cholinergic receptor-adenylate cyclase-linked pathways in cardiac myocytes.

    PubMed Central

    Rocha-Singh, K J; Hines, D K; Honbo, N Y; Karliner, J S

    1991-01-01

    Concanavalin A (Con A) is a tetrameric plant lectin that disrupts plasma membrane-cytoskeletal interactions and alters plasma membrane fluidity. We used Con A as a probe to explore beta-adrenergic and muscarinic cholinergic receptor-mediated regulation of cAMP in intact neonatal rat ventricular myocytes. Preincubation with Con A, 0.5 micrograms/ml, attenuated 1 microM (-)-norepinephrine (NE)-induced downregulation of beta-adrenergic receptors and resulted in a 50% augmentation of cAMP accumulation stimulated by 1 microM NE. Con A also augmented forskolin (1-10 microM)-stimulated cAMP accumulation by an average of 37% (P less than 0.05); however, Con A preincubation had no effect on basal or cholera toxin-stimulated cAMP content. The muscarinic cholinergic agonist carbachol (1-100 microM) decreased 1 microM NE-stimulated cAMP generation by an average of 32% (n = 7, P less than 0.05); preincubation with Con A further enhanced the inhibitory effect of carbachol by 18% (n = 7, P less than 0.05). Carbachol (1 microM) for 2 h decreased muscarinic cholinergic receptor density in whole cells by 33%; preincubation with Con A prevented this receptor downregulation. Con A pretreatment did not affect (-)-isoproterenol- or forskolin-stimulated adenylate cyclase activity in cell homogenates, suggesting that an intact cytoarchitecture is necessary for Con A to augment cAMP formation. We conclude that Con A, through its modulation of beta-adrenergic and muscarinic cholinergic receptor signaling, amplifies both stimulatory and inhibitory adenylate cyclase-linked pathways in intact neonatal ventricular myocytes. These data suggest the possibility that plasma membrane-cytoskeletal interaction is an important regulator of transmembrane signaling because interference with this interaction results in alterations in cAMP accumulation mediated by both beta-adrenergic- and muscarinic cholinergic-adenylate cyclase pathways. PMID:1653274

  2. Amrinone combined with dobutamine improves hemodynamics and oxygen delivery without down-regulation of cardiac beta-adrenergic receptor density in porcine endotoxemia.

    PubMed

    Jones, J L; Gengo, P J; Dodam, J R; Hellyer, P W

    1995-03-01

    Effects of amrinone (AMR), a phosphodiesterase inhibitor, alone and in combination with dobutamine (DOB), on hemodynamics and O2 delivery were studied during porcine endotoxemia. Pentobarbital-anesthetized pigs were randomly administered either Escherichia coli lipopolysaccharide (endotoxin) or equivolumetric .9% NaCl (control) as a continuous infusion for 4 h. From 2 to 4 h (T = 120-240 min) of endotoxin infusion, pigs were randomly administered one of the following treatments; AMR infusion (40 micrograms/kg/min) (AMRlow); DOB (10 micrograms/kg/min) (DOB); AMR infusion (40 micrograms/kg/min) + DOB (AMRlow+DOB); AMR bolus (.75 mg/kg) followed by AMR infusion (40 micrograms/kg/min) (AMRhigh); or AMR bolus (.75 mg/kg) followed by infusion (40 micrograms/kg/min) + DOB (AMRhigh+DOB). Myocardial samples were obtained at the end of the experiment and flash-frozen for beta-adrenergic receptor analysis. Endotoxin significantly (p < .05) decreased cardiac index, right ventricular ejection fraction, stroke volume index, maximum rate of rise of left ventricular pressure (dP/dtmax), mean arterial pressure, and O2 delivery, and increased pulmonary vascular resistance and mean pulmonary arterial pressure (p < .05). AMRlow+DOB significantly (p < .05) increased cardiac index, dP/dtmax, right ventricular ejection fraction, stroke volume index, O2 delivery and consumption, and decreased mean pulmonary arterial pressure, pulmonary vascular resistance, mean arterial pressure, and systemic vascular resistance. beta-Adrenergic receptor density (Bmax) and binding equilibrium dissociation constant (KD) for [3H]dihydroalprenolol were not affected by endotoxin or any treatment (p < .05). Endotoxin-induced hemodynamic deterioration and decreased O2 delivery was attenuated by AMRlow+DOB. Potential applications of this combination may exist in treatment of septic patients with inadequate myocardial performance and reduction in O2 delivery complicated by pulmonary hypertension. PMID:7773803

  3. Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation

    PubMed Central

    Borden, Philip; Houtz, Jessica; Leach, Steven D.; Kuruvilla, Rejji

    2013-01-01

    Summary Sympathetic neurons depend on target-derived neurotrophic cues to control their survival and growth. However, whether sympathetic innervation contributes reciprocally to the development of target tissues is less clear. Here, we report that sympathetic innervation is necessary for the formation of the pancreatic islets of Langerhans and for their functional maturation. Genetic or pharmacological ablation of sympathetic innervation during development resulted in altered islet architecture, reduced insulin secretion and impaired glucose tolerance in mice. Similar defects were observed with pharmacological blockade of β-adrenergic signaling. Conversely, the administration of a β-adrenergic agonist restored islet morphology and glucose tolerance in de-innervated animals. Furthermore, in neuron-islet co-cultures, sympathetic neurons promoted islet cell migration in a β-adrenergic dependent manner. This study reveals that islet architecture requires extrinsic inductive cues from neighboring tissues such as sympathetic nerves, and suggests that early perturbations in sympathetic innervation might underlie metabolic disorders. PMID:23850289

  4. Thr164Ile polymorphism of β2‐adrenergic receptor negatively modulates cardiac contractility: implications for prognosis in patients with idiopathic dilated cardiomyopathy

    PubMed Central

    Barbato, Emanuele; Penicka, Martin; Delrue, Leen; Van Durme, Frederic; De Bruyne, Bernard; Goethals, Marc; Wijns, William; Vanderheyden, Marc; Bartunek, Jozef

    2007-01-01

    Background β2‐adrenergic receptor Thr164Ile (threonine (Thr) is replaced by an isoleucine (Ile) at codon 164) polymorphism was postulated to contribute to lower exercise tolerance and poor prognosis in patients with congestive heart failure. However, heart failure is associated with several abnormalities of β receptor signalling, and underlying mechanisms are not clear. Objectives To investigate whether Thr164Ile polymorphism negatively modulates myocardial contractile performance and is associated with adverse long‐term prognosis of patients with congestive heart failure. Methods Among 55 subjects, cardiac contractile response to the β2‐adrenergic receptor agonist terbutaline was assessed from the peak myocardial velocity of systolic shortening (Sm) in 18 subjects with the Ile‐164 variant and 37 matched controls. In total, 24 subjects had normal left ventricular (LV) function and 31 presented with congestive heart failure due to idiopathic dilated cardiomyopathy. Results In patients with normal LV function, peak terbutaline‐induced increase (Δ) in Sm was lower in subjects with the Ile‐164 variant than in controls (Δ33% (4%) vs Δ56% (4%), p<0.01). In patients with heart failure, subjects with Ile‐164 showed further severe reduction of β2‐adrenergic‐mediated increase in Sm as compared with controls with heart failure (Δ20% (5%) vs Δ39% (4%), p<0.05). Patients with heart failure with Ile‐164 showed a severely blunted force–frequency relationship in response to agonist stimulation. At 2‐years of follow‐up, patients with heart failure with the Ile‐164 variant showed higher incidence of adverse events than controls with heart failure (75% (6/8)] vs 30% (7/23), p<0.05). Conclusions The β2‐adrenergic Thr164Ile polymorphism directly modulates adrenergic‐mediated cardiac responses in patients with normal and failing myocardium. Furthermore, blunted β2 adrenergic‐mediated myocardial contractile response in patients with Ile‐164

  5. Beta-adrenergic modulation of the release of atrial natriuretic factor from rat cardiac atria in vitro

    SciTech Connect

    Brown, A.; Imada, T.; Takayanagi, B.; Inagami, T.

    1986-03-01

    Several stimulatory factors for the release of atrial natriuretic factor, such as atrial stretch, atrial pacing and vasopressin, have been reported. We studied the effects of the adrenergic nervous system on the release of ANF using an in vitro perfusion system. Right and left atria from Sprague-Dawley rats were quartered and perfused with Krebs-Ringer bicarbonate solution gassed with 95% CO/sub 2//5% O/sub 2/ at 37/sup 0/C. Perfusate factions were collected every 2 minutes. Fractions were collected 20 minutes before and for 2 hours during the administration of test agents. ANF was measured by radioimmunoassay. Within 10 minutes of exposure to 10/sup -6/M isoproterenol, ANF secretion fell to less than 50% of its baseline level. However, beta agonists showed a stimulatory effect of 4-5 fold. Carbachol, in a concentration of 10/sup -2/M was used to demonstrate the viability of the atria exposed to isoproterenol, and produced a stimulation of ANF release of 4-6 times the basal level. The adrenergic nervous system can modulate ANF release in vitro. Further studies are being performed with selective beta agonists and antagonists to elucidate these results.

  6. Arg16Gly and Gln27Glu β2 adrenergic polymorphisms influence cardiac autonomic modulation and baroreflex sensitivity in healthy young Brazilians

    PubMed Central

    Atala, Magda M; Goulart, Alessandra; Guerra, Grazia M; Mostarda, Cristiano; Rodrigues, Bruno; Mello, Priscila R; Casarine, Dulce E; Irigoyen, Maria-Claudia; Pereira, Alexandre C; Consolim-Colombo, Fernanda M

    2015-01-01

    The association between functional β2 adrenergic receptor (β2-AR) polymorphisms and cardiac autonomic modulation is still unclear. Thus, two common polymorphisms in the β2-AR gene (Gln27Glu β2 and Arg16Gly β2) were studied to determine whether they might affect tonic and reflex cardiac sympathetic activity in healthy young subjects. A total of 213 healthy young white subjects of both genders (53% female), aged 18-30 years (23.5±3.4 y), had their continuous blood pressure curves noninvasively recorded by Finometer at baseline, and other hemodynamic parameters, as cardiac autonomic modulation, baroreflex sensitivity, and allele, genotype, and diplotype frequencies calculated. Associations were made between Arg16Gly β2 and Gln27Glu β2 polymorphisms and between β2-AR diplotypes and all variables. The heart rate was significantly lower (P<0.001) in the presence of homozygous Arg/Arg alleles (60.9±1.5 bpm) than in that of Arg/Gly heterozygotes (65.9±1.0 bpm) or Gly/Gly homozygotes (66.3±1.2 bpm). Homozygous carriers of Arg16 allele had an alpha index (19.2±1.3) significantly higher (P<0.001) than that of the subjects with the Gly allele Gly/Gly (14.5±0.7) or Arg/Gly (14.6±0.7). Furthermore, the recessive Glu27Glu and the heterozygous Gln27Glu genotypes had a higher percentage of low-frequency components (LF%) than the homozygous Gln27Gln (15.1% vs. 16.0% vs. 8.2%, P=0.03, respectively). In healthy young subjects, the presence of β2-AR Arg16 allele in a recessive model was associated with higher baroreflex sensitivity, and increased parasympathetic modulation in studied individuals. PMID:25755837

  7. PDE4B mediates local feedback regulation of β₁-adrenergic cAMP signaling in a sarcolemmal compartment of cardiac myocytes.

    PubMed

    Mika, Delphine; Richter, Wito; Westenbroek, Ruth E; Catterall, William A; Conti, Marco

    2014-03-01

    Multiple cAMP phosphodiesterase (PDE) isoforms play divergent roles in cardiac homeostasis but the molecular basis for their non-redundant function remains poorly understood. Here, we report a novel role for the PDE4B isoform in β-adrenergic (βAR) signaling in the heart. Genetic ablation of PDE4B disrupted βAR-induced cAMP transients, as measured by FRET sensors, at the sarcolemma but not in the bulk cytosol of cardiomyocytes. This effect was further restricted to a subsarcolemmal compartment because PDE4B regulates β1AR-, but not β2AR- or PGE2-induced responses. The spatially restricted function of PDE4B was confirmed by its selective effects on PKA-mediated phosphorylation patterns. PDE4B limited the PKA-mediated phosphorylation of key players in excitation-contraction coupling that reside in the sarcolemmal compartment, including L-type Ca(2+) channels and ryanodine receptors, but not phosphorylation of distal cytosolic proteins. β1AR- but not β2AR-ligation induced PKA-dependent activation of PDE4B and interruption of this negative feedback with PKA inhibitors increased sarcolemmal cAMP. Thus, PDE4B mediates a crucial PKA-dependent feedback that controls β1AR-dependent cAMP signals in a restricted subsarcolemmal domain. Disruption of this feedback augments local cAMP/PKA signals, leading to an increased intracellular Ca(2+) level and contraction rate.

  8. Cardiac β2-Adrenergic Receptor Phosphorylation at Ser355/356 Regulates Receptor Internalization and Functional Resensitization

    PubMed Central

    Zhao, Ru; Zheng, Qingqing; Li, Lan; Yang, Wenbing; Ding, Lu; Xue, Feng; Fan, Junming; Gong, Yongsheng

    2016-01-01

    Previous studies have demonstrated that β2-adrenergic receptors (β2ARs) can be phosphorylated by G protein-coupled receptor kinases (GRKs) and protein kinase A (PKA), affecting β2AR internalization and desensitization. However, the exact physiological function of β2ARs in cardiomyocytes is unknown. In this study, we showed that neonatal mouse cardiomyocytes had different contraction and internalization responses to sustained or repeated, transient agonist stimulation. Specifically, short-time stimulation (10 min) with epinephrine or norepinephrine increased the cardiomyocyte contraction rate, reaching a maximum at 5 min, followed by a slow decline. When the agonist was re-added after a 60-min wash-out period, the increase in the cardiomyocyte contraction rate was similar to the initial response. In contrast, when cardiomyocytes were exposed continuously to epinephrine or norepinephrine for 60 min, the second agonist stimulation did not increase the contraction response. These results indicated that continuous β2AR stimulation caused functional desensitization. Phosphorylation of β2ARs at serine (Ser)355/356 GRK phosphorylation sites, but not at Ser345/346 PKA phosphorylation sites increased with continuous epinephrine stimulation for 60 min. Accordingly, β2AR internalization increased. Interestingly, β2AR internalization was blocked by mutations at the GRK phosphorylation sites, but not by mutations at the PKA phosphorylation sites. Furthermore, inhibition of β2AR dephosphorylation by okadaic acid, a phosphatase 2A inhibitor, impaired the recovery of internalized β2ARs and reduced the cardiomyocyte contraction rate in response to epinephrine. Finally, epinephrine treatment induced the physical interaction of β-arrestin with internalized β2ARs in cardiomyocytes. Together, these data revealed the essential role of the Ser355/356 phosphorylation status of β2ARs in regulating receptor internalization and physiological resensitization in neonatal

  9. Cardiac β2-Adrenergic Receptor Phosphorylation at Ser355/356 Regulates Receptor Internalization and Functional Resensitization.

    PubMed

    Fan, Xiaofang; Gu, Xuejiang; Zhao, Ru; Zheng, Qingqing; Li, Lan; Yang, Wenbing; Ding, Lu; Xue, Feng; Fan, Junming; Gong, Yongsheng; Wang, Yongyu

    2016-01-01

    Previous studies have demonstrated that β2-adrenergic receptors (β2ARs) can be phosphorylated by G protein-coupled receptor kinases (GRKs) and protein kinase A (PKA), affecting β2AR internalization and desensitization. However, the exact physiological function of β2ARs in cardiomyocytes is unknown. In this study, we showed that neonatal mouse cardiomyocytes had different contraction and internalization responses to sustained or repeated, transient agonist stimulation. Specifically, short-time stimulation (10 min) with epinephrine or norepinephrine increased the cardiomyocyte contraction rate, reaching a maximum at 5 min, followed by a slow decline. When the agonist was re-added after a 60-min wash-out period, the increase in the cardiomyocyte contraction rate was similar to the initial response. In contrast, when cardiomyocytes were exposed continuously to epinephrine or norepinephrine for 60 min, the second agonist stimulation did not increase the contraction response. These results indicated that continuous β2AR stimulation caused functional desensitization. Phosphorylation of β2ARs at serine (Ser)355/356 GRK phosphorylation sites, but not at Ser345/346 PKA phosphorylation sites increased with continuous epinephrine stimulation for 60 min. Accordingly, β2AR internalization increased. Interestingly, β2AR internalization was blocked by mutations at the GRK phosphorylation sites, but not by mutations at the PKA phosphorylation sites. Furthermore, inhibition of β2AR dephosphorylation by okadaic acid, a phosphatase 2A inhibitor, impaired the recovery of internalized β2ARs and reduced the cardiomyocyte contraction rate in response to epinephrine. Finally, epinephrine treatment induced the physical interaction of β-arrestin with internalized β2ARs in cardiomyocytes. Together, these data revealed the essential role of the Ser355/356 phosphorylation status of β2ARs in regulating receptor internalization and physiological resensitization in neonatal

  10. Identical unitary current amplitude and Ca(2+) block of cardiac Na channel before and during beta-adrenergic stimulation.

    PubMed

    Hirano, Y; Hiraoka, M

    2001-12-01

    We examined the possibility of Ca(2+) permeation through cardiac Na channels ("slip mode conductance") by an analysis of the voltage-dependent block of Na channels by Ca(2+). A Ca(2+) block of Na channels was evident in rat and guinea pig ventricular myocytes during cell-attached single channel recordings with a physiological ionic environment (140 mM Na(+) and 1 to 10 mM Ca(2+) in the pipette solution). Increasing external Ca(2+) concentration ([Ca(2+)](o)) in the pipette solution reduced the unitary current amplitude predominantly at negative potentials. With [Ca(2+)](o) > 1 mM, unitary current amplitude did not increase at potentials negative to -40 mV in spite of augmented driving forces. The application of 5 microM isoproterenol potentiated the single channel activity elicited by depolarizing pulses from the holding potential of -120 mV, indicating that the channels in the patch under examination were modified by protein kinase A (PKA) stimulation. Increased activity was also confirmed with veratridine-modified Na channels, where channel openings were markedly prolonged. In either case, isoproterenol-induced potentiation neither reduced nor altered the properties of Ca(2+) block of cardiac Na channels, as evidenced by the stable unitary current amplitudes at potential levels from -60 to -20 mV. These results indicate that interactions among Na(+), Ca(2+), and the channel molecule were not modified with respect to permeation properties. They therefore argue against the "slip mode" concept of classical cardiac Na channel if a general concept of ion permeation through "multi-ion pores" is applicable to determine the ionic selectivity of Na channels.

  11. Hypoxia and glucose independently regulate the beta-adrenergic receptor-adenylate cyclase system in cardiac myocytes.

    PubMed Central

    Rocha-Singh, K J; Honbo, N Y; Karliner, J S

    1991-01-01

    We explored the effects of two components of ischemia, hypoxia and glucose deprivation, on the beta-adrenergic receptor (beta AR)-adenylate cyclase system in a model of hypoxic injury in cultured neonatal rat ventricular myocytes. After 2 h of hypoxia in the presence of 5 mM glucose, cell surface beta AR density (3H-CGP-12177) decreased from 54.8 +/- 8.4 to 39 +/- 6.3 (SE) fmol/mg protein (n = 10, P less than 0.025), while cytosolic beta AR density (125I-iodocyanopindolol [ICYP]) increased by 74% (n = 5, P less than 0.05). Upon reexposure to oxygen cell surface beta AR density returned toward control levels. Cells exposed to hypoxia and reoxygenation without glucose exhibited similar alterations in beta AR density. In hypoxic cells incubated with 5 mM glucose, the addition of 1 microM (-)-norepinephrine (NE) increased cAMP generation from 29.3 +/- 10.6 to 54.2 +/- 16.1 pmol/35 mm plate (n = 5, P less than 0.025); upon reoxygenation cAMP levels remained elevated above control (n = 5, P less than 0.05). In contrast, NE-stimulated cAMP content in glucose-deprived hypoxic myocytes fell by 31% (n = 5, P less than 0.05) and did not return to control levels with reoxygenation. beta AR-agonist affinity assessed by (-)-isoproterenol displacement curves was unaltered after 2 h of hypoxia irrespective of glucose content. Addition of forskolin (100 microM) to glucose-supplemented hypoxic cells increased cAMP generation by 60% (n = 5; P less than 0.05), but in the absence of glucose this effect was not seen. In cells incubated in glucose-containing medium, the decline in intracellular ATP levels was attenuated after 2 h of hypoxia (21 vs. 40%, P less than 0.05). Similarly, glucose supplementation prevented LDH release in hypoxic myocytes. We conclude that (a) oxygen and glucose independently regulate beta AR density and agonist-stimulated cAMP accumulation; (b) hypoxia has no effect on beta AR-agonist or antagonist affinity; (c) 5 mM glucose attenuates the rate of decline in

  12. Prognostic Significance of Imaging Myocardial Sympathetic Innervation.

    PubMed

    Malhotra, Saurabh; Fernandez, Stanley F; Fallavollita, James A; Canty, John M

    2015-08-01

    There has been a longstanding interest in understanding whether the presence of inhomogeneity in myocardial sympathetic innervation can predict patients at risk of sudden cardiac arrest from lethal ventricular arrhythmias. The advent of radiolabeled norepinephrine analogs has allowed this to be imaged in patients with ischemic and non-ischemic cardiomyopathy using single, photon emission computed tomography (SPECT) and positron emission tomography (PET). Several observational studies have demonstrated that globally elevated myocardial sympathetic tone (as reflected by reduced myocardial norepinephrine analog uptake) can predict composite cardiac end-points including total cardiovascular mortality. More recent studies have indicated that quantifying the extent of regional denervation can predict the risk of lethal ventricular arrhythmias and sudden cardiac death. This review will summarize our current understanding of the prognostic significance of altered myocardial sympathetic innervation. PMID:26087899

  13. Vasomotion in chicken foot: dual innervation of arteriovenous anastomoses.

    PubMed

    Hillman, P E; Scott, N R; van Tienhoven, A

    1982-05-01

    Blood exits the foot of the domestic chicken via two major venous routes: a counter-current network surrounding the major incoming artery and a large collateral vein. Between these two routes are numerous large collateral vein. Between these two routes are numerous anastomotic veins. Both venous routes drain capillaries and arteriovenous anastomoses (AVAs). Blood flow through the foot was measured on unanesthetized hens. Flow varies with ambient temperature: 0.2 ml/min at 5 degrees C, 2.2 ml/min at thermoneutrality, and 5.4 ml/min at 36 degrees C; the AVAs contribute 8, 26, and 63% to this flow, respectively. Flow through capillaries is reduced by alpha-adrenergic agonists and is increased by beta-adrenergic agonists. Blocking nerve conduction to the foot at thermoneutrality releases alpha-adrenergic tone and increase AVA flow. Faradic stimulation of foot nerves after adrenergic blockage increases AVA flow, but not capillary flow, suggesting active vasodilation of the AVAs. Such AVA vasodilation normally occurs during body heating, since AVA flow decreases after denervation. Dopaminergic or beta-adrenergic nerves are not involved in active vasodilatation, however, purinergic nerves may play a role. Thus AVAs have a functional dual innervation.

  14. The coordinated increased expression of biliverdin reductase and heme oxygenase-2 promotes cardiomyocyte survival: a reductase-based peptide counters β-adrenergic receptor ligand-mediated cardiac dysfunction

    PubMed Central

    Ding, Bo; Gibbs, Peter E. M.; Brookes, Paul S.; Maines, Mahin D.

    2011-01-01

    HO-2 oxidizes heme to CO and biliverdin; the latter is reduced to bilirubin by biliverdin reductase (BVR). In addition, HO-2 is a redox-sensitive K/Ca2-associated protein, and BVR is an S/T/Y kinase. The two enzymes are components of cellular defense mechanisms. This is the first reporting of regulation of HO-2 by BVR and that their coordinated increase in isolated myocytes and intact heart protects against cardiotoxicity of β-adrenergic receptor activation by isoproterenol (ISO). The induction of BVR mRNA, protein, and activity and HO-2 protein was maintained for ≥96 h; increase in HO-1 was modest and transient. In isolated cardiomyocytes, experiments with cycloheximide, proteasome inhibitor MG-132, and siBVR suggested BVR-mediated stabilization of HO-2. In both models, activation of BVR offered protection against the ligand's stimulation of apoptosis. Two human BVR-based peptides known to inhibit and activate the reductase, KKRILHC281 and KYCCSRK296, respectively, were tested in the intact heart. Perfusion of the heart with the inhibitory peptide blocked ISO-mediated BVR activation and augmented apoptosis; conversely, perfusion with the activating peptide inhibited apoptosis. At the functional level, peptide-mediated inhibition of BVR was accompanied by dysfunction of the left ventricle and decrease in HO-2 protein levels. Perfusion of the organ with the activating peptide preserved the left ventricular contractile function and was accompanied by increased levels of HO-2 protein. Finding that BVR and HO-2 levels, myocyte apoptosis, and contractile function of the heart can be modulated by small human BVR-based peptides offers a promising therapeutic approach for treatment of cardiac dysfunctions.—Ding, B., Gibbs, P. E. M., Brookes, P. S., Maines, M. D. The coordinated increased expression of biliverdin reductase and heme oxygenase-2 promotes cardiomyocyte survival; a reductase-based peptide counters β-adrenergic receptor ligand-mediated cardiac dysfunction

  15. Innervation of the rat thymus gland.

    PubMed

    Kendall, M D; al-Shawaf, A A

    1991-03-01

    Current views from different laboratories on the innervation of the thymus gland are reviewed with particular reference to the rat. Noradrenergic nerve profiles of the sympathetic nervous system have been demonstrated in the subcapsular cortex, at the corticomedullary junction and in the cortex itself, and extremely sparsely in the medulla. By following beta-adrenergic receptor development in postnatal rats, it has been shown that there is a marked increase in density and morphological organization of the receptor in the medulla with the maturation of thymocyte function (monitored by measuring the proliferation response to concanavalin A) and a sexual dimorphism during the ontogeny of the receptor. Chemical sympathectomy of adult rats with 6-hydroxydopamine (6-OHDA) or guanethidine resulted in a loss of thymus weight, decreased cellularity, and increased apoptosis but a rise in the numbers of proliferating cells in the cortex. By contrast, proliferation of peripheral T cells was reduced after the use of 6-OHDA. Chemical sympathectomy also demonstrated that there were at least three nerve nets in the gland: noradrenergic neural profiles that were destroyed with both 6-OHDA and guanethidine, vasoactive intestinal polypeptide (VIP)-positive profiles that persisted, and AChE- and CGRP-positive profiles and cells that also persisted but had a different distribution to VIP-positive fibers. Some functional correlates of thymic innervation are discussed although the subject now needs to be further researched.

  16. Cutaneous innervation: form and function.

    PubMed

    Oaklander, Anne Louise; Siegel, Sandra M

    2005-12-01

    It is useful for dermatologists to know about the innervation of the skin because dysfunction of cutaneous neurons can cause symptoms--such as itching, pain, and paresthesias--that are evaluated by dermatologists. We review the innervation of the skin and update readers about recent neuroscientific discoveries.

  17. Innervation of the human gastric wall.

    PubMed Central

    Kyösola, K; Rechardt, L; Veijola, L; Waris, T; Penttilä, O

    1980-01-01

    The intrinsic innervation of the human gastric wall was studied by means of (1) demonstration of the acetylcholinesterase activity, (2) fluorescence microscopy, and (3) electron microscopy. The cholinergic innervation was rich: in the mucosa, a dense three dimensional network consisting of single delicate varicose acetylcholinesterase-positive axons and small nerve fascicles was observed in close relation to the gastric glands. In the submucosa, large nerve trunks and densely woven plexuses mainly consisting of single varicose axons (obviously perivascular plexuses)) were seen. In the muscularis external, a small-meshed net consisting of single varicose axons and nerve fascicles was observed. The ganglia of the myenteric plexus were small and scattered irregularly between and within the muscle layers. Most of the nerve cells exhibited moderate to intense acetylcholinesterase activity. In the serosa, only a few nerves were observed. By fluorescence microscopy, an abundance of brightly yellow fluorescing irregularly fusiform enterochromaffin cells was observed in the epithelial lining of the antral glands. The parietal cells of the fundic glands exhibited a granular, yellow to orange autofluorescence. Fluorescing axons were seen in intimate relation to some enterochromaffin cells, whereas most enterochromaffin cells and parietal cells did not receive any direct functional adrenergic innervation. In the other tissue layers, only a few fluorescing nerves were seen. The main ultrastructural characteristics of the intrinsic innervation of the mucosa were: (1) 'Innervation fasciculée'; (2) the axons were unmyelinated; (3) two main types of nerve terminals were identified according to their vesicle population(s): (a) nerve terminals containing only clear vesicles, (b) nerve terminals containing clear vesicles and large dense-cored vesicles. Most of the axons and nerve terminals within the nerve fascicles were acetylcholinesterase-positive. The nerve terminals were

  18. The effects of α- and β-adrenergic blocking agents on postresuscitation myocardial dysfunction and myocardial tissue injury in a rat model of cardiac arrest.

    PubMed

    Yang, Min; Hu, Xianwen; Lu, Xiaoye; Wu, Xiaobo; Xu, Jiefeng; Yang, Zhengfei; Qian, Jie; Sun, Shijie; Cahoon, Jena; Tang, Wanchun

    2015-05-01

    We investigated the relationship between the severity of postresuscitation (PR) myocardial tissue injury and myocardial dysfunction after the administration of epinephrine as well as the protective effects of α- and β-adrenergic blocking agents. Forty male Sprague-Dawley rats were randomized into 6 groups: (1) placebo; (2) epinephrine; (3) epinephrine pretreated with α1-blocker (prazosin); (4) epinephrine pretreated with α2-blocker (yohimbine); (5) epinephrine pretreated with β-blocker (propranolol); and (6) epinephrine pretreated with β- plus α1-blocker (propranolol and prazosin). Cardiopulmonary resuscitation was initiated after 8 minutes of untreated ventricular fibrillation and continued for an additional 8 minutes. The myocardial function and the serum concentrations of troponin I (Tn I) and N-terminal probrain natriuretic peptide (NT-proBNP) were measured at baseline and after resuscitation. After resuscitation, both Tn I and NT-proBNP were significantly increased in all groups, especially in the epinephrine and epinephrine pretreated with α2-blocker groups. Significantly better PR myocardial function and neurologic deficit score were observed in epinephrine pretreated with the α1- or β-blocker with decreased releases of Tn I and NT-proBNP. However, the most significant improvements were observed in the animals pretreated with β- plus α1-blocker. The present study demonstrated that myocardial stunning may not be the only mechanism of PR myocardial dysfunction. Administration of epinephrine increased the severity of PR myocardial tissue injury and dysfunction. The β- and β- plus α1-blocker pretreatment significantly reduced the severity of PR myocardial tissue injury and myocardial dysfunction with better neurologic function and prolonged duration of survival. PMID:25468485

  19. Reductions in the Cardiac Transient Outward K+ Current Ito Caused by Chronic β-Adrenergic Receptor Stimulation Are Partly Rescued by Inhibition of Nuclear Factor κB.

    PubMed

    Panama, Brian K; Korogyi, Adam S; Aschar-Sobbi, Roozbeh; Oh, Yena; Gray, Charles B B; Gang, Hongying; Brown, Joan Heller; Kirshenbaum, Lorrie A; Backx, Peter H

    2016-02-19

    The fast transient outward potassium current (Ito,f) plays a critical role in the electrical and contractile properties of the myocardium. Ito,f channels are formed by the co-assembly of the pore-forming α-subunits, Kv4.2 and Kv4.3, together with the accessory β-subunit KChIP2. Reductions of Ito,f are common in the diseased heart, which is also associated with enhanced stimulation of β-adrenergic receptors (β-ARs). We used cultured neonatal rat ventricular myocytes to examine how chronic β-AR stimulation decreases Ito,f. To determine which downstream pathways mediate these Ito,f changes, adenoviral infections were used to inhibit CaMKIIδc, CaMKIIδb, calcineurin, or nuclear factor κB (NF-κB). We observed that chronic β-AR stimulation with isoproterenol (ISO) for 48 h reduced Ito,f along with mRNA expression of all three of its subunits (Kv4.2, Kv4.3, and KChIP2). Inhibiting either CaMKIIδc nor CaMKIIδb did not prevent the ISO-mediated Ito,f reductions, even though CaMKIIδc and CaMKIIδb clearly regulated Ito,f and the mRNA expression of its subunits. Likewise, calcineurin inhibition did not prevent the Ito,f reductions induced by β-AR stimulation despite strongly modulating Ito,f and subunit mRNA expression. In contrast, NF-κB inhibition partly rescued the ISO-mediated Ito,f reductions in association with restoration of KChIP2 mRNA expression. Consistent with these observations, KChIP2 promoter activity was reduced by p65 as well as β-AR stimulation. In conclusion, NF-κB, and not CaMKIIδ or calcineurin, partly mediates the Ito,f reductions induced by chronic β-AR stimulation. Both mRNA and KChIP2 promoter data suggest that the ISO-induced Ito,f reductions are, in part, mediated through reduced KChIP2 transcription caused by NF-κB activation. PMID:26742842

  20. Neuronal Na+ Channels Are Integral Components of Pro-arrhythmic Na+/Ca2+ Signaling Nanodomain That Promotes Cardiac Arrhythmias During β-adrenergic Stimulation

    PubMed Central

    Radwański, Przemysław B.; Ho, Hsiang-Ting; Veeraraghavan, Rengasayee; Brunello, Lucia; Liu, Bin; Belevych, Andriy E.; Unudurthi, Sathya D.; Makara, Michael A.; Priori, Silvia G.; Volpe, Pompeo; Armoundas, Antonis A.; Dillmann, Wolfgang H.; Knollmann, Bjorn C.; Mohler, Peter J.; Hund, Thomas J.; Györke, Sándor

    2016-01-01

    Background Cardiac arrhythmias are a leading cause of death in the US. Vast majority of these arrhythmias including catecholaminergic polymorphic ventricular tachycardia (CPVT) are associated with increased levels of circulating catecholamines and involve abnormal impulse formation secondary to aberrant Ca2+ and Na+ handling. However, the mechanistic link between β-AR stimulation and the subcellular/molecular arrhythmogenic trigger(s) remains elusive. Methods and Results We performed functional and structural studies to assess Ca2+ and Na+ signaling in ventricular myocyte as well as surface electrocardiograms in mouse models of cardiac calsequestrin (CASQ2)-associated CPVT. We demonstrate that a subpopulation of Na+ channels (neuronal Na+ channels; nNav) that colocalize with RyR2 and Na+/Ca2+ exchanger (NCX) are a part of the β-AR-mediated arrhythmogenic process. Specifically, augmented Na+ entry via nNav in the settings of genetic defects within the RyR2 complex and enhanced sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA)-mediated SR Ca2+ refill is both an essential and a necessary factor for the arrhythmogenesis. Furthermore, we show that augmentation of Na+ entry involves β-AR-mediated activation of CAMKII subsequently leading to nNav augmentation. Importantly, selective pharmacological inhibition as well as silencing of Nav1.6 inhibit myocyte arrhythmic potential and prevent arrhythmias in vivo. Conclusion These data suggest that the arrhythmogenic alteration in Na+/Ca2+ handling evidenced ruing β-AR stimulation results, at least in part, from enhanced Na+ influx through nNav. Therefore, selective inhibition of these channels and Nav1.6 in particular can serve as a potential antiarrhythmic therapy. PMID:27747307

  1. [Innervation of the intervertebral disc].

    PubMed

    García-Cosamalón, José; Fernández-Fernández, Javier; González-Martínez, Emilio; Ibáñez-Plágaro, Javier; Robla Costales, Javier; Martínez-Madrigal, Milton; López Muñíz, Alfonso; del Valle, Miguel Enrique; Vega, José Antonio

    2013-01-01

    Until very recently, intervertebral disc innervation was a subject of considerable debate. Nowadays, the introduction of inmunohistochemical techniques associated to specific antibodies and studies with retrograde tracers in nerves have allowed greater understanding of disc innervation in physiological and pathological conditions and also endings characteristics and their patterns of distribution in both situations. The existing controversies regarding structural basis of discogenic pain, have raised the interest of knowing the influence of innervation in back pain from discal origin and its characteristics. Today, we know that pathologic neoinnervation accompanying radial fissures is an important factor in the genesis of discogenic pain; within a complex mechanism in which other neurobiomechemical, inflammatory and biomechanical factors are involved. PMID:23582224

  2. The sympathetic innervation of the heart: Important new insights.

    PubMed

    Coote, J H; Chauhan, R A

    2016-08-01

    Autonomic control of the heart has a significant influence over development of life threatening arrhythmias that can lead to sudden cardiac death. Sympathetic activity is known to be upregulated during these conditions and hence the sympathetic nerves present a target for treatment. However, a better understanding of the anatomy and physiology of cardiac sympathetic nerves is required for the progression of clinical interventions. This review explores the organization of the cardiac sympathetic nerves, from the preganglionic origin to the postganglionic innervations, and provides an overview of literature surrounding anti-arrhythmic therapies including thoracic sympathectomy and dorsal spinal cord stimulation. Several features of the innervation are clear. The cardiac nerves differentially supply the nodal and myocardial tissue of the heart and are dependent on activity generated in spinal neurones in the upper thoracic cord which project to synapse with ganglion cells in the stellate complex on each side. Networks of spinal interneurones determine the pattern of activity. Groups of spinal neurones selectively target specific regions of the heart but whether they exhibit a functional selectivity has still to be elucidated. Electrical or ischemic signals can lead to remodeling of nerves in the heart or ganglia. Surgical and electrical methods are proving to be clinically beneficial in reducing atrial and ventricular arrhythmias, heart failure and severe cardiac pain. This is a rapidly developing area and we need more basic understanding of how these methods work to ensure safety and reduction of side effects. PMID:27568995

  3. Netrin-1 controls sympathetic arterial innervation

    PubMed Central

    Brunet, Isabelle; Gordon, Emma; Han, Jinah; Cristofaro, Brunella; Broqueres-You, Dong; Liu, Chun; Bouvrée, Karine; Zhang, Jiasheng; del Toro, Raquel; Mathivet, Thomas; Larrivée, Bruno; Jagu, Julia; Pibouin-Fragner, Laurence; Pardanaud, Luc; Machado, Maria J.C.; Kennedy, Timothy E.; Zhuang, Zhen; Simons, Michael; Levy, Bernard I.; Tessier-Lavigne, Marc; Grenz, Almut; Eltzschig, Holger; Eichmann, Anne

    2014-01-01

    Autonomic sympathetic nerves innervate peripheral resistance arteries, thereby regulating vascular tone and controlling blood supply to organs. Despite the fundamental importance of blood flow control, how sympathetic arterial innervation develops remains largely unknown. Here, we identified the axon guidance cue netrin-1 as an essential factor required for development of arterial innervation in mice. Netrin-1 was produced by arterial smooth muscle cells (SMCs) at the onset of innervation, and arterial innervation required the interaction of netrin-1 with its receptor, deleted in colorectal cancer (DCC), on sympathetic growth cones. Function-blocking approaches, including cell type–specific deletion of the genes encoding Ntn1 in SMCs and Dcc in sympathetic neurons, led to severe and selective reduction of sympathetic innervation and to defective vasoconstriction in resistance arteries. These findings indicate that netrin-1 and DCC are critical for the control of arterial innervation and blood flow regulation in peripheral organs. PMID:24937433

  4. Innervation of sinoatrial nodal cells in the rabbit.

    PubMed

    Inokaitis, Hermanas; Pauziene, Neringa; Rysevaite-Kyguoliene, Kristina; Pauza, Dainius H

    2016-05-01

    In spite of the fact that the rabbit is being widely used as a laboratory animal in experimental neurocardiology, neural control of SAN cells in the rabbit heart has been insufficiently examined thus far. This study analyzes the distribution of SAN cells and their innervation pattern employing fluorescent immunohistochemistry on rabbit whole mount atrial preparations. A dense network of adrenergic (positive for TH), cholinergic (positive for ChAT), nitrergic (positive for nNOS) and possibly sensory (positive for SP) NFs together with numerous neuronal somata were identified on the RRCV where the main mass of SAN cells positive for HCN4 were distributed as well. In general, the area occupied by SAN cells comprised nearly the entire RRCV and possessed a three to four times denser network of NFs compared with adjacent atrial walls. Adrenergic NFs predominated noticeably in-between SAN cells. Solitary neuronal somata or somata gathered into small clusters were positive solely for ChAT or nNOS, respectively or simultaneously for both neuronal markers (ChAT and nNOS). Neuronal somata positive for nNOS were more frequent than those positive for ChAT. In conclusion, findings of the present study demonstrate a dense and complex ganglionated neural network of both autonomic and sensory NFs, closely related to SAN cells which spread widely on the RRCV and extend as sleeves of these cells toward the walls of the rabbit RA. PMID:27045595

  5. Adrenergic deficiency leads to impaired electrical conduction and increased arrhythmic potential in the embryonic mouse heart.

    PubMed

    Baker, Candice; Taylor, David G; Osuala, Kingsley; Natarajan, Anupama; Molnar, Peter J; Hickman, James; Alam, Sabikha; Moscato, Brittany; Weinshenker, David; Ebert, Steven N

    2012-07-01

    To determine if adrenergic hormones play a critical role in the functional development of the cardiac pacemaking and conduction system, we employed a mouse model where adrenergic hormone production was blocked due to targeted disruption of the dopamine β-hydroxylase (Dbh) gene. Immunofluorescent histochemical evaluation of the major gap junction protein, connexin 43, revealed that its expression was substantially decreased in adrenergic-deficient (Dbh-/-) relative to adrenergic-competent (Dbh+/+ and Dbh+/-) mouse hearts at embryonic day 10.5 (E10.5), whereas pacemaker and structural protein staining appeared similar. To evaluate cardiac electrical conduction in these hearts, we cultured them on microelectrode arrays (8×8, 200 μm apart). Our results show a significant slowing of atrioventricular conduction in adrenergic-deficient hearts compared to controls (31.4±6.4 vs. 15.4±1.7 ms, respectively, p<0.05). To determine if the absence of adrenergic hormones affected heart rate and rhythm, mouse hearts from adrenergic-competent and deficient embryos were cultured ex vivo at E10.5, and heart rates were measured before and after challenge with the β-adrenergic receptor agonist, isoproterenol (0.5 μM). On average, all hearts showed increased heart rate responses following isoproterenol challenge, but a significant (p<0.05) 225% increase in the arrhythmic index (AI) was observed only in adrenergic-deficient hearts. These results show that adrenergic hormones may influence heart development by stimulating connexin 43 expression, facilitating atrioventricular conduction, and helping to maintain cardiac rhythm during a critical phase of embryonic development.

  6. Auditory hair cell innervational patterns in lizards.

    PubMed

    Miller, M R; Beck, J

    1988-05-22

    The pattern of afferent and efferent innervation of two to four unidirectional (UHC) and two to nine bidirectional (BHC) hair cells of five different types of lizard auditory papillae was determined by reconstruction of serial TEM sections. The species studies were Crotaphytus wislizeni (iguanid), Podarcis (Lacerta) sicula and P. muralis (lacertids), Ameiva ameiva (teiid), Coleonyx variegatus (gekkonid), and Mabuya multifasciata (scincid). The main object was to determine in which species and in which hair cell types the nerve fibers were innervating only one (exclusive innervation), or two or more hair cells (nonexclusive innervation); how many nerve fibers were supplying each hair cell; how many synapses were made by the innervating fibers; and the total number of synapses on each hair cell. In the species studies, efferent innervation was limited to the UHC, and except for the iguanid, C. wislizeni, it was nonexclusive, each fiber supplying two or more hair cells. Afferent innervation varied both with the species and the hair cell types. In Crotaphytus, both the UHC and the BHC were exclusively innervated. In Podarcis and Ameiva, the UHC were innervated exclusively by some fibers but nonexclusively by others (mixed pattern). In Coleonyx, the UHC were exclusively innervated but the BHC were nonexclusively innervated. In Mabuya, both the UHC and BHC were nonexclusively innervated. The number of afferent nerve fibers and the number of afferent synapses were always larger in the UHC than in the BHC. In Ameiva, Podarcis, and Mabuya, groups of bidirectionally oriented hair cells occur in regions of cytologically distinct UHC, and in Ameiva, unidirectionally oriented hair cells occur in cytologically distinct BHC regions. PMID:3385019

  7. On the adrenergic system of ganoid fish: the beluga, Huso huso (chondrostei).

    PubMed

    Balashov, N V; Fänge, R; Govyrin, V A; Leont'eva, G R; Nilsson, S; Prozorovskaya, M P

    1981-04-01

    The adrenergic system of the beluga, Huso huso, was studied by glyoxylic acid fluorescence histochemistry, analyses of catecholamine content in various organs and studies of the effects of acetylcholine and adrenaline on isolated strip preparations from blood vessels, spleen, atrium and ventricle. Chromaffin cells were found mainly in the walls of the posterior cardinal veins, and to some extent also in the wall of the celiaco-mesenteric artery. The plasma concentration of adrenaline was high enough to affect the contraction force of the isolated atrial and ventricular strips, thus adding an adrenergic component to a possible cholinergic inhibitory vagal control of the heart. Fluorescence histochemistry revealed no direct adrenergic innervation of the heart, but blood vessels in the heart and elsewhere received a rich supply of adrenergic nerve terminals. Adrenaline contracted the celiaco-mesenteric artery and the spleen, and produced positive inotropic effects on the paced atrial and ventricular strip preparations. Acetylcholine contracted the ventral aorta and the celiaco-mesenteric artery, and reduced the contraction force of paced ventricular and, especially, atrial preparations. It is concluded that the beluga has a well developed adrenergic system consisting of both chromaffin cells and adrenergic neurons with varicose nerve terminals of the type found in the higher vertebrates. PMID:7304205

  8. [Adrenergic receptors of blood platelets].

    PubMed

    Lanza, F; Cazenave, J P

    1987-01-01

    Blood platelets possess adrenergic receptors and are stimulated by adrenaline in the circulation. This review summarizes the state of knowledge of the pharmacology of adrenergic receptors and the biochemical mechanisms of platelet activation by adrenaline in various physiological and pathological conditions. PMID:2837727

  9. Sympathetic innervation of human muscle spindles

    PubMed Central

    Radovanovic, Dina; Peikert, Kevin; Lindström, Mona; Domellöf, Fatima Pedrosa

    2015-01-01

    The aim of the present study was to investigate the presence of sympathetic innervation in human muscle spindles, using antibodies against neuropeptide Y (NPY), NPY receptors and tyrosine hydroxylase (TH). A total of 232 muscle spindles were immunohistochemically examined. NPY and NPY receptors were found on the intrafusal fibers, on the blood vessels supplying muscle spindles and on free nerve endings in the periaxial space. TH-immunoreactivity was present mainly in the spindle nerve and vessel. This is, to our knowledge, the first morphological study concerning the sympathetic innervation of the human muscle spindles. The results provide anatomical evidence for direct sympathetic innervation of the intrafusal fibers and show that sympathetic innervation is not restricted to the blood vessels supplying spindles. Knowledge about direct sympathetic innervation of the muscle spindle might expand our understanding of motor and proprioceptive dysfunction under stress conditions, for example, chronic muscle pain syndromes. PMID:25994126

  10. The innervation of the mammalian adrenal gland.

    PubMed Central

    Parker, T L; Kesse, W K; Mohamed, A A; Afework, M

    1993-01-01

    Early conflicting reports and the lack of sensitive anatomical methods have led to an oversimplified view of adrenal gland innervation. It was not until the introduction of nerve fibre tracing techniques in the mid-1970s that the true complexity of adrenal innervation began to emerge. The first part of this article comprises a brief review of these and other relevant reports dealing with both medullary and cortical innervation. In the second part a detailed account is given of the work undertaken in Rex Coupland's Department relating to the innervation of the rodent and primate adrenal medulla using a retrograde fluorescent tracer technique. It was concluded that, in all 3 species studied, the adrenal medulla receives a sympathetic and parasympathetic efferent and an afferent innervation. The possible interrelationship between neural control of cortical and medullar secretions is discussed briefly. Images Fig. 1 Fig. 2 Fig. 5 PMID:8300416

  11. Noradrenergic innervation of juvenile nasopharyngeal angiofibroma.

    PubMed

    Wang, H W; Su, W Y; Wang, J Y

    1994-01-01

    The glyoxylic catecholaminergic histofluorescence method was employed on tissues from five cases of juvenile nasopharyngeal angiofibroma in order to study the sympathetic innervation present. There was no sympathetic innervation identified in tumor parenchyma while some scant noradrenergic fibers were found in the tumor border. These findings indicate that keeping a dissection surface out of tumor during planned excisions may be very important, as vessels there have more sympathetic innervation which will then result in good vessel contraction in controlling bleeding. Non-diseased nasal mucosa from each patient was used as control tissue, with its submucosa seen to be filled with noradrenergic innervation. Some noradrenergic fibers were also found to innervate the muscle layers of arterioles or venules adjacent to the sphenopalatine foramen.

  12. Heart Development, Diseases, and Regeneration - New Approaches From Innervation, Fibroblasts, and Reprogramming.

    PubMed

    Ieda, Masaki

    2016-09-23

    It is well known that cardiac function is tightly controlled by neural activity; however, the molecular mechanism of cardiac innervation during development and the relationship with heart disease remain undetermined. My work has revealed the molecular networks that govern cardiac innervation and its critical roles in heart diseases such as silent myocardial ischemia and arrhythmias. Cardiomyocytes proliferate during embryonic development, but lose their proliferative capacity after birth. Cardiac fibroblasts are a major source of cells during fibrosis and induce cardiac hypertrophy after myocardial injury in the adult heart. Despite the importance of fibroblasts in the adult heart, the role of fibroblasts in embryonic heart development was previously not determined. I demonstrated that cardiac fibroblasts play important roles in myocardial growth and cardiomyocyte proliferation during embryonic development, and I identified key paracrine factors and signaling pathways. In contrast to embryonic cardiomyocytes, adult cardiomyocytes have little regenerative capacity, leading to heart failure and high mortality rates after myocardial infarction. Leveraging the knowledge of developmental biology, I identified cardiac reprogramming factors that can directly convert resident cardiac fibroblasts into cardiomyocytes for heart regeneration. These findings greatly improved our understanding of heart development and diseases, and provide a new strategy for heart regenerative therapy. (Circ J 2016; 80: 2081-2088). PMID:27599529

  13. Ganglionic adrenergic action modulates ovarian steroids and nitric oxide in prepubertal rat.

    PubMed

    Delgado, Silvia Marcela; Casais, Marilina; Sosa, Zulema; Rastrilla, Ana María

    2006-08-01

    Both peripheral innervation and nitric oxide (NO) participate in ovarian steroidogenesis. The purpose of this work was to analyse the ganglionic adrenergic influence on the ovarian release of steroids and NO and the possible steroids/NO relationship. The experiments were carried out in the ex vivo coeliac ganglion-superior ovarian nerve (SON)-ovary system of prepubertal rats. The coeliac ganglion-SON-ovary system was incubated in Krebs Ringer-bicarbonate buffer in presence of adrenergic agents in the ganglionic compartment. The accumulation of progesterone, androstenedione, oestradiol and NO in the ovarian incubation liquid was measured. Norepinephrine in coeliac ganglion inhibited the liberation of progesterone and increased androstenedione, oestradiol and NO in ovary. The addition of alpha and beta adrenergic antagonists also showed different responses in the liberation of the substances mentioned before, which, from a physiological point of view, reveals the presence of adrenergic receptors in coeliac ganglion. In relation to propranolol, it does not revert the effect of noradrenaline on the liberation of progesterone, which leads us to think that it might also have a "per se" effect on the ganglion, responsible for the ovarian response observed for progesterone. Finally, we can conclude that the ganglionic adrenergic action via SON participates on the regulation of the prepubertal ovary in one of two ways: either increasing the NO, a gaseous neurotransmitter with cytostatic characteristics, to favour the immature follicles to remain dormant or increasing the liberation of androstenedione and oestradiol, the steroids necessary for the beginning of the near first estral cycle.

  14. The effect of cold storage on the adrenergic mechanisms of intestinal smooth muscle

    PubMed Central

    Hattori, K.; Kurahashi, K.; Mori, J.; Shibata, S.

    1972-01-01

    1. In the guinea-pig taenia caecum, fluorescent adrenergic fibres terminate in both muscle layers. The density of these fibres is greater in the taenia than in the underlying circular muscle layer. The myenteric plexus and individual ganglion cells are also densely innervated by intensely fluorescent adrenergic nerve fibres. 2. After three days of cold storage, the specific fluorescence disappeared from all tissue layers of the taenia caecum and smooth muscle fibres. In contrast, cholinesterase active substances were still demonstrable in all tissue layers even after seven days of cold storage but the density of these substances was decreased. 3. Cold storage (3-7 days) decreased the tissue noradrenaline content and did not modify the cholinesterase enzyme activity (4 days). 4. In cold stored strips, the inhibitory response to nicotine, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) or electrical transmural stimulation was abolished and enhancement of the contractile response occurred. Cold storage also inhibited the inhibitory action of tyramine. Similar results were observed after reserpine treatment. 5. In fresh taenia, the relaxation produced by nicotine, DMPP and electrical transmural stimulation was inhibited by adrenoceptor blocking agents and bretylium. In cold storage preparations, contraction produced by these stimuli was blocked by parasympathetic blocking agents and potentiated by anti-cholinesterase. These results indicate that the inhibitory response to these stimulants is mediated by stimulation of the adrenergic nerve system more than by non-adrenergic nerves; the excitatory effect is probably due to stimulation of cholinergic nerves. 6. These results suggest that the adrenergic mechanisms of the taenia caecum are more labile in cold storage than the cholinergic mechanisms. Thus, the inhibitory action of cold storage on the relaxation produced by nicotine, DMPP, and transmural stimulation is probably explained by selective physical degeneration of

  15. Species differences in the localization and number of CNS beta adrenergic receptors: Rat versus guinea pig

    SciTech Connect

    Booze, R.M.; Crisostomo, E.A.; Davis, J.N.

    1989-06-01

    The localization and number of beta adrenergic receptors were directly compared in the brains of rats and guinea pigs. The time course of association and saturability of (125I)cyanopindolol (CYP) binding to slide-mounted tissue sections was similar in rats (Kd = 17 pM) and guinea pigs (Kd = 20 pM). The beta-1 and beta-2 receptor subtypes were examined through the use of highly selective unlabeled receptor antagonists, ICI 118,551 (50 nM) and ICI 89,406 (70 nM). Dramatic species differences between rats and guinea pigs were observed in the neuroanatomical regional localization of the beta adrenergic receptor subtypes. For example, in the thalamus prominent beta-1 and beta-2 receptor populations were identified in the rat; however, the entire thalamus of the guinea pig had few, if any, beta adrenergic receptors of either subtype. Hippocampal area CA1 had high levels of beta-2 adrenergic receptors in both rats and guinea pigs but was accompanied by a widespread distribution of beta-2 adrenergic receptors only in rats. Quantitative autoradiographic analyses of 25 selected neuroanatomical regions (1) confirmed the qualitative differences in CNS beta adrenergic receptor localization, (2) determined that guinea pigs had significantly lower levels of beta adrenergic receptors than rats and (3) indicated a differential pattern of receptor subtypes between the two species. Knowledge of species differences in receptor patterns may be useful in designing effective experiments as well as in exploring the relationships between receptor and innervation patterns. Collectively, these data suggest caution be used in extrapolation of the relationships of neurotransmitters and receptors from studies of a single species.

  16. β-adrenergic receptor responsiveness in aging heart and clinical implications

    PubMed Central

    Ferrara, Nicola; Komici, Klara; Corbi, Graziamaria; Pagano, Gennaro; Furgi, Giuseppe; Rengo, Carlo; Femminella, Grazia D.; Leosco, Dario; Bonaduce, Domenico

    2014-01-01

    Elderly healthy individuals have a reduced exercise tolerance and a decreased left ventricle inotropic reserve related to increased vascular afterload, arterial-ventricular load mismatching, physical deconditioning and impaired autonomic regulation (the so called “β-adrenergic desensitization”). Adrenergic responsiveness is altered with aging and the age-related changes are limited to the β-adrenergic receptor density reduction and to the β-adrenoceptor-G-protein(s)-adenylyl cyclase system abnormalities, while the type and level of abnormalities change with species and tissues. Epidemiological studies have shown an high incidence and prevalence of heart failure in the elderly and a great body of evidence correlate the changes of β-adrenergic system with heart failure pathogenesis. In particular it is well known that: (a) levels of cathecolamines are directly correlated with mortality and functional status in heart failure, (b) β1-adrenergic receptor subtype is down-regulated in heart failure, (c) heart failure-dependent cardiac adrenergic responsiveness reduction is related to changes in G proteins activity. In this review we focus on the cardiovascular β-adrenergic changes involvement in the aging process and on similarities and differences between aging heart and heart failure. PMID:24409150

  17. Phospholemman is a negative feed-forward regulator of Ca2+ in β-adrenergic signaling, accelerating β-adrenergic inotropy.

    PubMed

    Yang, Jason H; Saucerman, Jeffrey J

    2012-05-01

    Sympathetic stimulation enhances cardiac contractility by stimulating β-adrenergic signaling and protein kinase A (PKA). Recently, phospholemman (PLM) has emerged as an important PKA substrate capable of regulating cytosolic Ca(2+) transients. However, it remains unclear how PLM contributes to β-adrenergic inotropy. Here we developed a computational model to clarify PLM's role in the β-adrenergic signaling response. Simulating Na(+) and sarcoplasmic reticulum (SR) Ca(2+) clamps, we identify an effect of PLM phosphorylation on SR unloading as the key mechanism by which PLM confers cytosolic Ca(2+) adaptation to long-term β-adrenergic receptor (β-AR) stimulation. Moreover, we show that phospholamban (PLB) opposes and overtakes these actions on SR load, forming a negative feed-forward loop in the β-adrenergic signaling cascade. This network motif dominates the negative feedback conferred by β-AR desensitization and accelerates β-AR-induced inotropy. Model analysis therefore unmasks key actions of PLM phosphorylation during β-adrenergic signaling, indicating that PLM is a critical component of the fight-or-flight response.

  18. β-adrenergic antagonists influence abdominal aorta contractility by mechanisms not involving β-adrenergic receptors.

    PubMed

    Hauzer, Willy; Bujok, Jolanta; Czerski, Albert; Rusiecka, Agnieszka; Pecka, Ewa; Gnus, Jan; Zawadzki, Wojciech; Witkiewicz, Wojciech

    2014-01-01

    β-adrenergic receptors (β-AR) are widely distributed in the cardiovascular system, where they considerably contribute to the control of its functions. β-blockers are commonly used in the treatment of disorders of the circulatory system. They act primarily by inhibiting cardiac β-receptors. However, there are also reports of pleiotropic action of β-blockers as well as of new compounds created to study β3 adrenergic receptors. The study aimed to investigate additional mechanisms of action of β-AR inhibitors in the rabbit abdominal aorta with emphasis on their action on α-adrenergic receptors and calcium influx. Responses to propranolol, betaxolol, metoprolol and SR59230A were evaluated in phenylephrine and PGF(2alpha) precontracted aortic rings. The effect of propranolol on the phenylephrine concentration-contraction curve was examined. Propranolol (≥ 10 μM) and SR59230A (≥ 0.1 μM) induced relaxations in phenylephrine-precontracted rings, while betaxolol and metoprolol had little effect. The β-AR inhibitors produced further contraction of tissues preincubated with PGF(2alpha), excluding SR59230A, which after initial contraction, elicited marked relaxation at a concentration above 1 ĕM. 100 μM of propranolol caused a significant rightward shift of the concentration-contraction curve to phenylephrine with no reduction in the maximum response. Incubation of aortic rings in phentolamine reduced the maximal contraction to propranolol; verapamil pretreatment by contrast enhanced contractile response. In conclusion, SR59230A and propranolol most probably act as α1-AR competitive antagonists in the presence of phenylephrine in rabbit abdominal aortic rings. After α-ARs blockade, propranolol exerts a weak relaxing activity connected with Ca2+ channel inactivation. SR59230A at a high concentration acts on the rabbit aorta by an additional mechanism needing further investigation.

  19. Memory Enhancement Induced by Post-Training Intrabasolateral Amygdala Infusions of [beta]-Adrenergic or Muscarinic Agonists Requires Activation of Dopamine Receptors: Involvement of Right, but Not Left, Basolateral Amygdala

    ERIC Educational Resources Information Center

    LaLumiere, Ryan T.; McGaugh, James L.

    2005-01-01

    Previous findings indicate that the noradrenergic, dopaminergic, and cholinergic innervations of the basolateral amygdala (BLA) modulate memory consolidation. The current study investigated whether memory enhancement induced by post-training intra-BLA infusions of a [beta]-adrenergic or muscarinic cholinergic agonist requires concurrent activation…

  20. β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus

    PubMed Central

    O'Dell, Thomas J.; Connor, Steven A.; Guglietta, Ryan

    2015-01-01

    Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the mammalian brain is norepinephrine (NE), which regulates multiple brain functions such as attention, perception, arousal, sleep, learning, and memory. The mammalian hippocampus receives noradrenergic innervation and hippocampal neurons express β-adrenergic receptors, which are known to play important roles in gating the induction of long-lasting forms of synaptic potentiation. These forms of long-term potentiation (LTP) are believed to importantly contribute to long-term storage of spatial and contextual memories in the brain. In this review, we highlight the contributions of noradrenergic signaling in general and β-adrenergic receptors in particular, toward modulating hippocampal LTP. We focus on the roles of NE and β-adrenergic receptors in altering the efficacies of specific signaling molecules such as NMDA and AMPA receptors, protein phosphatases, and translation initiation factors. Also, the roles of β-adrenergic receptors in regulating synaptic “tagging” and “capture” of LTP within synaptic networks of the hippocampus are reviewed. Understanding the molecular and cellular bases of noradrenergic signaling will enrich our grasp of how the brain makes new, enduring memories, and may shed light on credible strategies for improving mental health through treatment of specific disorders linked to perturbed memory processing and dysfunctional noradrenergic synaptic transmission. PMID:26286656

  1. The functional role of the alpha-1 adrenergic receptors in cerebral blood flow regulation.

    PubMed

    Purkayastha, Sushmita; Raven, Peter B

    2011-09-01

    Cerebral vasculature is richly innervated by the α-1 adrenergic receptors similar to that of the peripheral vasculature. However, the functional role of the α-1adrenergic receptors in cerebral blood flow (CBF) regulation is yet to be established. The traditional thinking being that during normotension and normocapnia sympathetic neural activity does not play a significant role in CBF regulation. Reports in the past have stated that catecholamines do not penetrate the blood brain barrier (BBB) and therefore only influence cerebral vessels from outside the BBB and hence, have a limited role in CBF regulation. However, with the advent of dynamic measurement techniques, beat-to-beat CBF assessment can be done during dynamic changes in arterial blood pressure. Several studies in the recent years have reported a functional role of the α-1adrenergic receptors in CBF regulation. This review focuses on the recent developments on the role of the sympathetic nervous system, specifically that of the α-1 adrenergic receptors in CBF regulation.

  2. Modification by Beta-Adrenergic Blockade of the Circulatory Responses to Acute Hypoxia in Man*

    PubMed Central

    Richardson, David W.; Kontos, Hermes A.; Raper, A. Jarrell; Patterson, John L.

    1967-01-01

    In 17 healthy men, beta-adrenergic blockade reduced significantly the tachycardia and the elevation of cardiac output associated with inhalation of 7.5% oxygen for 7 to 10 minutes. Hypoxia did not increase plasma concentrations of epinephrine or norepinephrine in six subjects. Furthermore, blockade of alpha and beta receptors in the forearm did not modify the vasodilation in the forearm induced by hypoxia, providing pharmacologic evidence that hypoxia of the degree and duration used was not associated with an increase in the concentrations of circulating catecholamines in man. Part of the increase in cardiac output and heart rate during acute hypoxia in man is produced by stimulation of beta-adrenergic receptors, probably by cardiac sympathetic nerves. The mechanism of the vasodilation in the forearm during hypoxia remains uncertain. PMID:4381183

  3. β-Adrenergic response is counteracted by extremely-low-frequency pulsed electromagnetic fields in beating cardiomyocytes.

    PubMed

    Cornacchione, Marisa; Pellegrini, Manuela; Fassina, Lorenzo; Mognaschi, Maria Evelina; Di Siena, Sara; Gimmelli, Roberto; Ambrosino, Paolo; Soldovieri, Maria Virginia; Taglialatela, Maurizio; Gianfrilli, Daniele; Isidori, Andrea M; Lenzi, Andrea; Naro, Fabio

    2016-09-01

    Proper β-adrenergic signaling is indispensable for modulating heart frequency. Studies on extremely-low-frequency pulsed electromagnetic field (ELF-PEMF) effects in the heart beat function are contradictory and no definitive conclusions were obtained so far. To investigate the interplay between ELF-PEMF exposure and β-adrenergic signaling, cultures of primary murine neonatal cardiomyocytes and of sinoatrial node were exposed to ELF-PEMF and short and long-term effects were evaluated. The ELF-PEMF generated a variable magnetic induction field of 0-6mT at a frequency of 75Hz. Exposure to 3mT ELF-PEMF induced a decrease of contraction rate, Ca(2+) transients, contraction force, and energy consumption both under basal conditions and after β-adrenergic stimulation in neonatal cardiomyocytes. ELF-PEMF exposure inhibited β-adrenergic response in sinoatrial node (SAN) region. ELF-PEMF specifically modulated β2 adrenergic receptor response and the exposure did not modify the increase of contraction rate after adenylate cyclase stimulation by forskolin. In HEK293T cells transfected with β1 or β2 adrenergic receptors, ELF-PEMF exposure induced a rapid and selective internalization of β2 adrenergic receptor. The β-adrenergic signaling, was reduced trough Gi protein by ELF-PEMF exposure since the phosphorylation level of phospholamban and the PI3K pathway were impaired after isoproterenol stimulation in neonatal cardiomyocytes. Long term effects of ELF-PEMF exposure were assessed in cultures of isolated cardiomyocytes. ELF-PEMF counteracts cell size increase, the generation of binucleated of cardiomyocytes and prevents the up-regulation of hypertrophic markers after β-adrenergic stimulation, indicating an inhibition of cell growth and maturation. These data show that short and long term exposure to ELF-PEMF induces a reduction of cardiac β-adrenergic response at molecular, functional and adaptative levels.

  4. β-Adrenergic response is counteracted by extremely-low-frequency pulsed electromagnetic fields in beating cardiomyocytes.

    PubMed

    Cornacchione, Marisa; Pellegrini, Manuela; Fassina, Lorenzo; Mognaschi, Maria Evelina; Di Siena, Sara; Gimmelli, Roberto; Ambrosino, Paolo; Soldovieri, Maria Virginia; Taglialatela, Maurizio; Gianfrilli, Daniele; Isidori, Andrea M; Lenzi, Andrea; Naro, Fabio

    2016-09-01

    Proper β-adrenergic signaling is indispensable for modulating heart frequency. Studies on extremely-low-frequency pulsed electromagnetic field (ELF-PEMF) effects in the heart beat function are contradictory and no definitive conclusions were obtained so far. To investigate the interplay between ELF-PEMF exposure and β-adrenergic signaling, cultures of primary murine neonatal cardiomyocytes and of sinoatrial node were exposed to ELF-PEMF and short and long-term effects were evaluated. The ELF-PEMF generated a variable magnetic induction field of 0-6mT at a frequency of 75Hz. Exposure to 3mT ELF-PEMF induced a decrease of contraction rate, Ca(2+) transients, contraction force, and energy consumption both under basal conditions and after β-adrenergic stimulation in neonatal cardiomyocytes. ELF-PEMF exposure inhibited β-adrenergic response in sinoatrial node (SAN) region. ELF-PEMF specifically modulated β2 adrenergic receptor response and the exposure did not modify the increase of contraction rate after adenylate cyclase stimulation by forskolin. In HEK293T cells transfected with β1 or β2 adrenergic receptors, ELF-PEMF exposure induced a rapid and selective internalization of β2 adrenergic receptor. The β-adrenergic signaling, was reduced trough Gi protein by ELF-PEMF exposure since the phosphorylation level of phospholamban and the PI3K pathway were impaired after isoproterenol stimulation in neonatal cardiomyocytes. Long term effects of ELF-PEMF exposure were assessed in cultures of isolated cardiomyocytes. ELF-PEMF counteracts cell size increase, the generation of binucleated of cardiomyocytes and prevents the up-regulation of hypertrophic markers after β-adrenergic stimulation, indicating an inhibition of cell growth and maturation. These data show that short and long term exposure to ELF-PEMF induces a reduction of cardiac β-adrenergic response at molecular, functional and adaptative levels. PMID:27418252

  5. Functional differences between junctional and extrajunctional adrenergic receptor activation in mammalian ventricle

    PubMed Central

    Ajijola, Olujimi A.; Vaseghi, Marmar; Zhou, Wei; Yamakawa, Kentaro; Benharash, Peyman; Hadaya, Joseph; Lux, Robert L.; Mahajan, Aman

    2013-01-01

    Increased cardiac sympathetic activation worsens dispersion of repolarization and is proarrhythmic. The functional differences between intrinsic nerve stimulation and adrenergic receptor activation remain incompletely understood. This study was undertaken to determine the functional differences between efferent cardiac sympathetic nerve stimulation and direct adrenergic receptor activation in porcine ventricles. Female Yorkshire pigs (n = 13) underwent surgical exposure of the heart and stellate ganglia. A 56-electrode sock was placed over the ventricles to record epicardial electrograms. Animals underwent bilateral sympathetic stimulation (BSS) (n = 8) or norepinephrine (NE) administration (n = 5). Activation recovery intervals (ARIs) were measured at each electrode before and during BSS or NE. The degree of ARI shortening during BSS or NE administration was used as a measure of functional nerve or adrenergic receptor density. During BSS, ARI shortening was nonuniform across the epicardium (F value 9.62, P = 0.003), with ARI shortening greatest in the mid-basal lateral right ventricle and least in the midposterior left ventricle (LV) (mean normalized values: 0.9 ± 0.08 vs. 0.56 ± 0.08; P = 0.03). NE administration resulted in greater ARI shortening in the LV apex than basal segments [0.91 ± 0.04 vs. 0.63 ± 0.05 (averaged basal segments); P = 0.003]. Dispersion of ARIs increased in 50% and 60% of the subjects undergoing BSS and NE, respectively, but decreased in the others. There is nonuniform response to cardiac sympathetic activation of both porcine ventricles, which is not fully explained by adrenergic receptor density. Different pools of adrenergic receptors may mediate the cardiac electrophysiological effects of efferent sympathetic nerve activity and circulating catecholamines. PMID:23241324

  6. Cardiac catheterization

    MedlinePlus

    Catheterization - cardiac; Heart catheterization; Angina - cardiac catheterization; CAD - cardiac catheterization; Coronary artery disease - cardiac catheterization; Heart valve - cardiac catheterization; Heart failure - ...

  7. Origins of serotonin innervation of forebrain structures

    NASA Technical Reports Server (NTRS)

    Kellar, K. J.; Brown, P. A.; Madrid, J.; Bernstein, M.; Vernikos-Danellis, J.; Mehler, W. R.

    1977-01-01

    The tryptophan hydroxylase activity and high-affinity uptake of (3H) serotonin ((3H)5-HT) were measured in five discrete brain regions of rats following lesions of the dorsal or median raphe nuclei. Dorsal raphe lesions reduced enzyme and uptake activity in the striatum only. Median raphe lesions reduced activities in the hippocampus, septal area, frontal cortex, and, to a lesser extent, in the hypothalamus. These data are consistent with the suggestion that the dorsal and median raphe nuclei are the origins of two separate ascending serotonergic systems - one innervating striatal structures and the other mesolimbic structures, predominantly. In addition, the data suggest that measurements of high-affinity uptake of (3H)5-HT may be a more reliable index of innervation than either 5-HT content or tryptophan hydroxylase activity.

  8. Social temperament and lymph node innervation

    PubMed Central

    Sloan, Erica K.; Capitanio, John P.; Tarara, Ross P.; Cole, Steve W.

    2008-01-01

    Socially inhibited individuals show increased vulnerability to viral infections, and this has been linked to increased activity of the sympathetic nervous system (SNS). To determine whether structural alterations in SNS innervation of lymphoid tissue might contribute to these effects, we assayed the density of catecholaminergic nerve fibers in 13 lymph nodes from 7 healthy adult rhesus macaques that showed stable individual differences in propensity to socially affiliate (Sociability). Tissues from Low Sociable animals showed a 2.8-fold greater density of catecholaminergic innervation relative to tissues from High Sociable animals, and this was associated with a 2.3-fold greater expression of nerve growth factor (NGF) mRNA, suggesting a molecular mechanism for observed differences. Low Sociable animals also showed alterations in lymph node expression of the immunoregulatory cytokine genes IFNG and IL4, and lower secondary IgG responses to tetanus vaccination. These findings are consistent with the hypothesis that structural differences in lymphoid tissue innervation might potentially contribute to relationships between social temperament and immunobiology. PMID:18068331

  9. Effects of adrenergic agents on the expression of zebrafish (Danio rerio) vitellogenin Ao1

    SciTech Connect

    Yin Naida; Jin Xia; He Jiangyan; Yin Zhan

    2009-07-01

    Teleost vitellogenins (VTGs) are large multidomain apolipoproteins, traditionally considered to be estrogen-responsive precursors of the major egg yolk proteins, expressed and synthesized mainly in hepatic tissue. The inducibility of VTGs has made them one of the most frequently used in vivo and in vitro biomarkers of exposure to estrogen-active substances. A significant level of zebrafish vtgAo1, a major estrogen responsive form, has been unexpectedly found in heart tissue in our present studies. Our studies on zebrafish cardiomyopathy, caused by adrenergic agonist treatment, suggest a similar protective function of the cardiac expressed vtgAo1. We hypothesize that its function is to unload surplus intracellular lipids in cardiomyocytes for 'reverse triglyceride transportation' similar to that found in lipid transport proteins in mammals. Our results also demonstrated that zebrafish vtgAo1 mRNA expression in heart can be suppressed by both {alpha}-adrenergic agonist, phenylephrine (PE) and {beta}-adrenergic agonist, isoproterenol (ISO). Furthermore, the strong stimulation of zebrafish vtgAo1 expression in plasma induced by the {beta}-adrenergic antagonist, MOXIsylyl, was detected by Enzyme-Linked ImmunoSorbent Assay (ELISA). Such stimulation cannot be suppressed by taMOXIfen, an antagonist to estrogen receptors. Thus, our present data indicate that the production of teleost VTG in vivo can be regulated not only by estrogenic agents, but by adrenergic signals as well.

  10. Hyperplasia of brown adipose tissue after chronic stimulation of beta 3-adrenergic receptor in rats.

    PubMed

    Nagase, I; Sasaki, N; Tsukazaki, K; Yoshida, T; Morimatsu, M; Saito, M

    1994-12-01

    When mammals are exposed to a cold environment for a long time, the capacity of nonshivering thermogenesis by brown adipose tissue (BAT) increases in association with the increased expression of some specific proteins and tissue hyperplasia, which are totally dependent on sympathetic innervation to this tissue. To clarify roles of the beta-adrenergic mechanism in BAT hyperplasia, the effects of chronic administration of various beta-adrenergic agonists on BAT were examined in rats, especially focusing on some agonists to the beta 3-adrenoceptor which is present specifically in adipocytes. Chronic administration of noradrenaline or isoproterenol for 7-10 days produced a marked increase in the tissue contents of DNA, total protein, mitochondrial uncoupling protein, and insulin-regulatable glucose transporter protein. The trophic effects of noradrenaline and isoproterenol were mimicked by chronic administration of beta 3-adrenergic agonists, such as CL316,243, BRL 26830A, and ICI D7114. These results suggest that the beta 3-adrenoceptor plays important roles for hyperplasia of BAT, and thereby increasing in the capacity of thermogenesis. PMID:7745877

  11. Beta Adrenergic Receptors in Keratinocytes

    PubMed Central

    Sivamani, Raja K.; Lam, Susanne T.; Isseroff, R. Rivkah

    2007-01-01

    Synopsis Beta2 adrenergic receptors were identified in keratinocytes more than 30 years ago, but their function in the epidermis continues to be elucidated. Abnormalities in their expression, signaling pathway, or in the generation of endogenous catecholamine agonists by keratinocytes have been implicated in the pathogenesis of cutaneous diseases such as atopic dermatitis, vitiligo and psoriasis. New studies also indicate that the beta2AR also modulates keratinocyte migration, and thus can function to regulate wound re-epithelialization. This review focuses on the function of these receptors in keratinocytes and their contribution to cutaneous physiology and disease. PMID:17903623

  12. Cardiac arrhythmias misdiagnosed as epilepsy.

    PubMed Central

    Rutter, N; Southall, D P

    1985-01-01

    A mother and three children presenting with syncope induced by exercise and emotion were diagnosed as epileptic. They, and three symptom free children, showed frequent ventricular and supraventricular tachyarrhythmias on ambulatory electrocardiographic monitoring. Three died before the correct diagnosis of disordered sympathetic innervation of the heart was made, but episodes of syncope and cardiac arrhythmias in the survivors have been successfully treated by propranolol. Images Fig. 2 PMID:3970569

  13. Cartography of human diaphragmatic innervation: preliminary data.

    PubMed

    Verin, Eric; Marie, Jean-Paul; Similowski, Thomas

    2011-04-30

    In humans, anatomy indicates that the phrenic nerve mainly arises from the C4 cervical root, with variable C3 and C5 contributions. How this translates into functional innervation is unknown. The diaphragm response to electrical stimulation of C3, C4 and C5 was described in three patients undergoing surgical laryngeal reinnervation with an upper phrenic root (surface chest electrodes at anterior, lateral and posterior sites; oesophageal and gastric pressures (Pes and Pga) to derive transdiaphragmatic pressure (Pdi)). Anatomically, the phrenic nerve predominantly originated from C4. Phrenic stimulation elicited motor responses at the three sites in the three patients, as did C4 stimulation. It produced Pdi values of 9, 11, and 14cmH(2)O in the three patients, respectively, vs. 9, 9, and 7cmH(2)O for C4. C3 stimulation produced modest Pdi responses, whereas C5 stimulation could produce Pdi responses close to those observed with C4 stimulation. These singular observations confirm the dominance of C4 in diaphragm innervation but suggest than C5 can be of importance.

  14. Adrenergic signaling and oxidative stress: a role for sirtuins?

    PubMed Central

    Corbi, Graziamaria; Conti, Valeria; Russomanno, Giusy; Longobardi, Giancarlo; Furgi, Giuseppe; Filippelli, Amelia; Ferrara, Nicola

    2013-01-01

    The adrenergic system plays a central role in stress signaling and stress is often associated with increased production of ROS. However, ROS overproduction generates oxidative stress, that occurs in response to several stressors. β-adrenergic signaling is markedly attenuated in conditions such as heart failure, with downregulation and desensitization of the receptors and their uncoupling from adenylyl cyclase. Transgenic activation of β2-adrenoceptor leads to elevation of NADPH oxidase activity, with greater ROS production and p38MAPK phosphorylation. Inhibition of NADPH oxidase or ROS significantly reduced the p38MAPK signaling cascade. Chronic β2-adrenoceptor activation is associated with greater cardiac dilatation and dysfunction, augmented pro-inflammatory and profibrotic signaling, while antioxidant treatment protected hearts against these abnormalities, indicating ROS production to be central to the detrimental signaling of β2-adrenoceptors. It has been demonstrated that sirtuins are involved in modulating the cellular stress response directly by deacetylation of some factors. Sirt1 increases cellular stress resistance, by an increased insulin sensitivity, a decreased circulating free fatty acids and insulin-like growth factor (IGF-1), an increased activity of AMPK, increased activity of PGC-1a, and increased mitochondrial number. Sirt1 acts by involving signaling molecules such P-I-3-kinase-Akt, MAPK and p38-MAPK-β. βAR stimulation antagonizes the protective effect of the AKT pathway through inhibiting induction of Hif-1α and Sirt1 genes, key elements in cell survival. More studies are needed to better clarify the involvement of sirtuins in the β-adrenergic response and, overall, to better define the mechanisms by which tools such as exercise training are able to counteract the oxidative stress, by both activation of sirtuins and inhibition of GRK2 in many cardiovascular conditions and can be used to prevent or treat diseases such as heart failure

  15. Innervation of the renal proximal convoluted tubule of the rat

    SciTech Connect

    Barajas, L.; Powers, K. )

    1989-12-01

    Experimental data suggest the proximal tubule as a major site of neurogenic influence on tubular function. The functional and anatomical axial heterogeneity of the proximal tubule prompted this study of the distribution of innervation sites along the early, mid, and late proximal convoluted tubule (PCT) of the rat. Serial section autoradiograms, with tritiated norepinephrine serving as a marker for monoaminergic nerves, were used in this study. Freehand clay models and graphic reconstructions of proximal tubules permitted a rough estimation of the location of the innervation sites along the PCT. In the subcapsular nephrons, the early PCT (first third) was devoid of innervation sites with most of the innervation occurring in the mid (middle third) and in the late (last third) PCT. Innervation sites were found in the early PCT in nephrons located deeper in the cortex. In juxtamedullary nephrons, innervation sites could be observed on the PCT as it left the glomerulus. This gradient of PCT innervation can be explained by the different tubulovascular relationships of nephrons at different levels of the cortex. The absence of innervation sites in the early PCT of subcapsular nephrons suggests that any influence of the renal nerves on the early PCT might be due to an effect of neurotransmitter released from renal nerves reaching the early PCT via the interstitium and/or capillaries.

  16. [Adrenergic beta-agonist intoxication].

    PubMed

    Carrola, Paulo; Devesa, Nuno; Silva, José Manuel; Ramos, Fernando; Alexandrino, Mário B; Moura, José J

    2003-01-01

    The authors describe two clinical cases (father and daughter), observed in the Hospital Urgency with distal tremors, anxiety, palpitations, nausea, headaches and dizziness, two hours after ingestión of cow liver. They also had leucocytosis (with neutrophylia), hypokalemia and hyperglycaemia. After treatment with potassium i.v. and propranolol, the symptoms disappeared. The symptoms recurred at home because the patients didn't take the prescribed medication and persisted for five days, with spontaneous disappearance. The serum of both patients revealed the presence of clenbuterol (65 hg/ml - father and 58 hg/ml - daughter). The animal's liver had a concentration of 1,42 mg/kg. Clenbuterol is a ß-adrenergic agonist with low specificity, with some veterinary indications. However, this substance has been illegally used as a growth's promotor. We intend to alert doctors for this problem, particularly those that work in the Urgency.

  17. Afferent innervation of the utricular macula in pigeons

    NASA Technical Reports Server (NTRS)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  18. Innervation of the gall bladder and biliary pathways in the guinea-pig.

    PubMed Central

    Cai, W Q; Gabella, G

    1983-01-01

    The innervation of the gall bladder and the biliary pathways was studied in guinea-pigs by means of histochemical methods for catecholamines and for acetylcholinesterase on whole mount preparations, on cryostat sections and on sections of plastic-embedded tissues. The gall bladder contains on average 367 neurons in a ganglionated plexus which lies at the outer surface of the muscle coat. The overall appearance of this plexus is rather similar to that of the submucosal plexus of the duodenum. From the gall bladder the plexus extends into the cystic duct, the hepatic duct and the common bile duct, but from the middle portion of the common bile duct downwards, it is positioned at or near the inner surface of the muscle coat. Concurrently with the marked increase in muscle thickness in the lower parts of the common bile duct, another ganglionated plexus appears, which is truly intramuscular. The latter plexus is highly developed, lies usually between longitudinal and circular muscle and resembles in appearance the myenteric plexus of the duodenum, with which it is in continuity. Throughout the biliary system, the extent of the ganglionated plexus is roughly related to the extent of the musculature. An exchange of adrenergic fibres between the ganglionated plexus and perivascular nerves is observed in the gall bladder. Another nerve plexus, without ganglia but rich in adrenergic and acetylcholinesterase-positive fibres, lies between the mucosa and the muscle coat. Very few nerve fibres run into the musculature of the gall bladder. On the other hand, in the thick musculature of the lower portion of the common bile duct, several intramuscular nerve fibres are found. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:6833124

  19. Role of Cholinergic Innervation and RGS2 in Atrial Arrhythmia

    PubMed Central

    Jones, Douglas L.; Tuomi, Jari M.; Chidiac, Peter

    2012-01-01

    The heart receives sympathetic and parasympathetic efferent innervation as well as the ability to process information internally via an intrinsic cardiac autonomic nervous system (ICANS). For over a century, the role of the parasympathetics via vagal acetylcholine release was related to controlling primarily heart rate. Although in the late 1800s shown to play a role in atrial arrhythmia, the myocardium took precedence from the mid-1950s until in the last decade a resurgence of interest in the autonomics along with signaling cascades, regulators, and ion channels. Originally ignored as being benign and thus untreated, recent emphasis has focused on atrial arrhythmia as atrial fibrillation (AF) is the most common arrhythmia seen by the general practitioner. It is now recognized to have significant mortality and morbidity due to resultant stroke and heart failure. With the aging population, there will be an unprecedented increased burden on health care resources. Although it has been known for more than half a century that cholinergic stimulation can initiate AF, the classical concept focused on the M2 receptor and its signaling cascade including RGS4, as these had been shown to have predominant effects on nodal function (heart rate and conduction block) as well as contractility. However, recent evidence suggests that the M3 receptor may also playa role in initiation and perpetuation of AF and thus RGS2, a putative regulator of the M3 receptor, may be a target for therapeutic intervention. Mice lacking RGS2 (RGS2−/−), were found to have significantly altered electrophysiological atrial responses and were more susceptible to electrically induced AF. Vagally induced or programmed stimulation-induced AF could be blocked by the selective M3R antagonist, darifenacin. These results suggest a potential surgical target (ICANS) and pharmacological targets (M3R, RGS2) for the management of AF. PMID:22754542

  20. Nerve growth factor facilitates perivascular innervation in neovasculatures of mice.

    PubMed

    Goda, Mitsuhiro; Takatori, Shingo; Atagi, Saori; Hashikawa-Hobara, Narumi; Kawasaki, Hiromu

    2016-08-01

    It is well known that blood vessels including arterioles have a perivascular innervation. It is also widely accepted that perivascular nerves maintain vascular tone and regulate blood flow. Although there are currently prevailing opinions, unified views on the innervation of microcirculation in any organs have not been established. The present study was designed to investigate whether there are perivascular nerves innervated in microvessels and neovessels. Furthermore, we examined whether nerve growth factor (NGF) can exert a promotional effect on perivascular nerve innervation in neovessels of Matrigel plugs. A Matrigel was subcutaneously implanted in mouse. The presence of perivascular nerves in Matrigel on Day 7-21 after the implantation was immunohistochemically studied. NGF or saline was subcutaneously administered by an osmotic mini-pump for a period of 3-14 days. The immunostaining of neovasculatures in Matrigel showed the presence of perivascular nerves on Day 21 after Matrigel injection. Perivascular nerve innervation of neovessels within Matrigel implanted in NGF-treated mice was observed in Day 17 after Matrigel implantation. However, NGF treatment did not increase numbers of neovessels in Matrigel. These results suggest that perivascular nerves innervate neovessels as neovasculatures mature and that NGF accelerates the innervation of perivascular nerves in neovessels. PMID:27493098

  1. Afferent innervation patterns of the saccule in pigeons

    NASA Technical Reports Server (NTRS)

    Zakir, M.; Huss, D.; Dickman, J. D.

    2003-01-01

    The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.

  2. Cholinergic innervation and receptors in the cerebellum.

    PubMed

    Jaarsma, D; Ruigrok, T J; Caffé, R; Cozzari, C; Levey, A I; Mugnaini, E; Voogd, J

    1997-01-01

    We have studied the source and ultrastructural characteristics of ChAT-immunoreactive fibers in the cerebellum of the rat, and the distribution of muscarinic and nicotinic receptors in the cerebellum of the rat, rabbit, cat and monkey, in order to define which of the cerebellar afferents may use ACh as a neurotransmitter, what target structures are they, and which cholinergic receptor mediate the actions of these pathways. Our data confirm and extend previous observations that cholinergic markers occur at relatively low density in the cerebellum and show not only interspecies variability, but also heterogeneity between cerebellar lobules in the same species. As previously demonstrated by Barmack et al. (1992a,b), the predominant fiber system in the cerebellum that might use ACh as a transmitter or a co-transmitter is formed by mossy fibers originating in the vestibular nuclei and innervating the nodulus and ventral uvula. Our results show that these fibers innervate both granule cells and unipolar brush cells, and that the presumed cholinergic action of these fibers most likely is mediated by nicotinic receptors. In addition to cholinergic mossy fibers, the rat cerebellum is innervated by beaded ChAT-immunoreactive fibers. We have demonstrated that these fibers originate in the pedunculopontine tegmental nucleus (PPTg), the lateral paragigantocellular nucleus (LPGi), and to a lesser extent in various raphe nuclei. In both the cerebellar cortex and the cerebellar nuclei these fibers make asymmetric synaptic junctions with small and medium-sized dendritic profiles. Both muscarinic and nicotinic receptor could mediate the action of these diffuse beaded fibers. In the cerebellar nuclei the beaded cholinergic fibers form a moderately dense network, and could in principle have a significant effect on neuronal activity. For instance, the cholinergic fibers arising in the PPTg may modulate the excitability of the cerebellonuclear neurons in relation to sleep and arousal (e

  3. Morphology and neurochemistry of rabbit iris innervation.

    PubMed

    He, Jiucheng; Bazan, Haydee E P

    2015-06-01

    The aim of this study was to map the entire nerve architecture and sensory neuropeptide content of the rabbit iris. Irises from New Zealand rabbits were stained with antibodies against neuronal-class βIII-tubulin, calcitonin gene-related peptide (CGRP) and substance P (SP), and whole-mount images were acquired to build a two-dimensional view of the iridal nerve architecture. After taking images in time-lapse mode, we observed thick nerves running in the iris stroma close to the anterior epithelia, forming four to five stromal nerve rings from the iris periphery to the pupillary margin and sub-branches that connected with each other, constituting the stromal nerve plexus. In the anterior side, fine divisions derivated from the stromal nerves, forming a nerve network-like structure to innervate the superficial anterior border layer, with the pupillary margin having the densest innervation. In the posterior side, the nerve bundles ran along with the pupil dilator muscle in a radial pattern. The morphology of the iris nerves on both sides changed with pupil size. To obtain the relative content of the neuropeptides in the iris, the specimens were double stained with βIII-tubulin and CGRP or SP antibodies. Relative nerve fiber densities for each fiber population were assessed quantitatively by computer-assisted analysis. On the anterior side, CGRP-positive nerve fibers constituted about 61%, while SP-positive nerves constitute about 30.5%, of the total nerve content, which was expressed as βIII tubulin-positive fibers. In addition, in the anterior stroma of the collarette region, there were non-neuronal cells that were positive for SP. On the posterior side, CGRP-positive nerve fibers were about 69% of total nerve content, while SP constituted only up to 20%. Similarly, in the trigeminal ganglia (TG), the number of CGRP-positive neurons significantly outnumbered those that were positive for SP. Also, all the SP-positive neurons were labeled with CGRP. This is the

  4. Thyroid hormone dependency in immature but not mature grafted locus coeruleus neurons. Evidence from intraocular innervation of iris transplants.

    PubMed

    Granholm, A C; Seiger, A

    1981-02-01

    Fetal brain tissue pieces containing locus coeruleus noradrenaline neurons were combined with sequentially or simultaneously grafted irides in the anterior eye chamber of thyroidectomized or normal host rats. The aim was to reveal possible morphological alterations in the adrenergic fibres innervating the iris grafts, induced by thyroid hormone deficiency, and to compare that possible hormone dependency with what has been found before in host irides innervated by locus coeruleus neurons. Nerve fibre outgrowth was evaluated in iris whole mounts, using Falck Hillarp fluorescence histochemistry. The distribution of locus-coeruleus-derived fibres on host irides was markedly altered in the thyroidectomized hosts. The number of fluorescent axon bundles was significantly decreased, and the intermingled varicose nerve fibre plexus contained numerous accumulations of fluorescent material. In the iris grafts from normal or thyroidectomized hosts reinnervated by matyured locus coeruleus neurons there was no difference in distribution or morphology between the two groups. This clearly shows that matured locus coeruleus neurons are not thyroid hormone dependent during a reinnervation process, after the stimulus elicited by a sensory denervation of iris. When immature locus coeruleus neurons were made to innervate iris grafts by simultaneous grafting of brain tissue and an iris to the eye a clearly reduced number of axon bundles was formed in the iris grafts of the thyroidectomized group. The morphological discrepancies between the two groups were, however, markedly smaller for iris grafts than for corresponding host irides. This might indicate that the potent growth stimulus elicited by sensory denervation of irides partly counteract the inhibition of axon bundle formation by immature grafted locus coeruleus neurons in irides during thyroid hormone deficiency. PMID:7266087

  5. Origin of the radial nerve branch innervating the brachialis muscle.

    PubMed

    Oh, Chang-Seok; Won, Hyung-Sun; Lee, Kyu-Seok; Chung, In-Hyuk

    2009-05-01

    The brachialis muscle is dually innervated by the musculocutaneous nerve running via the anterior division of the brachial plexus and the radial nerve running via the posterior division of the plexus. There have been inconsistent descriptions of the pathway of the radial nerve branch at the brachial plexus. This study investigated the route of the radial nerve branch innervating the brachialis muscle at the brachial plexus. In 20 samples, the radial nerve branch innervating the brachialis muscle was separated and traced up to the cervical nerve under a surgical microscope. All the radial nerve branches innervating the muscle ran via the posterior cord, the posterior division, and the superior or middle trunk at the brachial plexus. The radial nerve branches arose from C5 in 5 cases, C6 in 11 cases, C5 and C6 in 3 cases, and C6 and C7 in 1 case. PMID:19260072

  6. Retinal Input Regulates the Timing of Corticogeniculate Innervation

    PubMed Central

    Seabrook, Tania A.; El-Danaf, Rana N.; Krahe, Thomas E.

    2013-01-01

    Neurons in layer VI of visual cortex represent one of the largest sources of nonretinal input to the dorsal lateral geniculate nucleus (dLGN) and play a major role in modulating the gain of thalamic signal transmission. However, little is known about how and when these descending projections arrive and make functional connections with dLGN cells. Here we used a transgenic mouse to visualize corticogeniculate projections to examine the timing of cortical innervation in dLGN. Corticogeniculate innervation occurred at postnatal ages and was delayed compared with the arrival of retinal afferents. Cortical fibers began to enter dLGN at postnatal day 3 (P3) to P4, a time when retinogeniculate innervation is complete. However, cortical projections did not fully innervate dLGN until eye opening (P12), well after the time when retinal inputs from the two eyes segregate to form nonoverlapping eye-specific domains. In vitro thalamic slice recordings revealed that newly arriving cortical axons form functional connections with dLGN cells. However, adult-like responses that exhibited paired pulse facilitation did not fully emerge until 2 weeks of age. Finally, surgical or genetic elimination of retinal input greatly accelerated the rate of corticogeniculate innervation, with axons invading between P2 and P3 and fully innervating dLGN by P8 to P10. However, recordings in genetically deafferented mice showed that corticogeniculate synapses continued to mature at the same rate as controls. These studies suggest that retinal and cortical innervation of dLGN is highly coordinated and that input from retina plays an important role in regulating the rate of corticogeniculate innervation. PMID:23761904

  7. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    PubMed

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. PMID:27511839

  8. Beating intraocular hearts: light-controlled rate by autonomic innervation from host iris.

    PubMed

    Olson, L; Seiger, A

    1976-05-01

    The sympathetic adrenergic ground plexus of the rat iris is able to innervate whole embryonic hearts transplanted to the anterior eye chamber. The transplants beat continuously from the time of transplantation and for at least five months, initially at 150-200 beats/min, and later approximately 250 beats/min. From seven days postoperatively onwards increased light to the eye produced deceleration while decreased light produced acceleration of the transplants. The rate changes coincided with changes in pupil diameter. Topical atropine reduced the light dependent rate variations of the transplants, especically the dramatic decrease in rate at white light. Waking stress caused a large rate increase. The "waking-effect" was strongly reduced by sympathetic decentralization and completely abolished by propranolol. The high rate seen in red light was decreased to the low rate of white light by decentralization. Isoprenaline restored red light rate levels in the decentralized transplant. The intraocular heart thus receives a dual functional autonomic input from the host iris and becomes a sensitive monitor of an autonomic nervous activity that can easily be varied at will in a physiological way by changing the light influx to the eye. PMID:178826

  9. Correlation of peripheral innervation density and dorsal horn map scale.

    PubMed

    Wang, L; Millecchia, R; Brown, P B

    1997-08-01

    Dorsal horn map scale and peripheral innervation density were compared to test a hypothesized linear relationship. In anesthetized cats, low-threshold mechanoreceptive peripheral nerve innervation fields (IFs) were measured by outlining areas of skin from which action potentials could be elicited in cutaneous nerves. The same nerves were processed histologically and used to count myelinated axons. Innervation density for each nerve was calculated as number of axons divided by IF area. Single units were recorded throughout the hindlimb representation, in laminae III and IV. These data, combined with single-unit data from other animals and with cell counts in laminae III and IV, permitted estimation of numbers of cells whose receptive field centers fell in contiguous 1-cm bands from tips of toes to proximal thigh. A similar estimate was performed with the use of the nerve innervation data, so that peripheral innervation densities and map scales for the different 1-cm bands of skin could be compared. Correlation between the two was quite high (r = 0.8), and highly significant (P = 2.5 x 10(-7)). These results are consistent with a proposed developmental model in which map scale, peripheral innervation density, and reciprocal of dorsal horn cell receptive field size are mutually proportional, as a result of developmental mechanisms that produce constant divergence and convergence between primary afferent axons and dorsal horn cells. PMID:9307105

  10. Regeneration of specific innervation in Xenopus pectoralis muscle.

    PubMed

    Harada, Y; Grinnell, A D

    1996-12-01

    We investigated the motor unit organization and precision of reinnervation in the Xenopus pectoralis muscle following different manipulations, including crush or section of the posterior pectoralis nerve, foreign nerve innervation, and crush coupled with activity modulation or block. Most fibers have two neuromuscular junctions, and multielectrode recordings were used to identify the axonal origin of all inputs to both junctions on most or all fibers covering about 25% of the muscle surface. Following simple nerve crush, a highly organized innervation pattern was restored, indistinguishable from the normal pattern, including selective innervation of fibers of similar input resistance (R(in)), compact motor unit organization, and high incidence of exclusive innervation of both end plates on each fiber by the same axon (distributed mononeuronal innervation, or a/a pattern). Initial reinnervation was equally precise when nerve conduction in the regenerating nerve was blocked by tetrodotoxin. More distant or repeated nerve crush or nerve section delayed and reduced the precision of reinnervation, but the majority of fibers still received input to both end plates by the same axon, often in combination with others. A foreign nerve, the pectoralis sternalis, which in its own muscle forms only single end plates, showed less precise reinnervation, but still had an incidence of a/a innervation far above chance. These data imply the expression and recognition of remarkably precise chemospecific cues even in mature animals, superimposed on which is a further refinement by synapse elimination, probably based on an activity-dependent process.

  11. Cardiac Rehabilitation

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Cardiac Rehabilitation? Cardiac rehabilitation (rehab) is a medically supervised program ... be designed to meet your needs. The Cardiac Rehabilitation Team Cardiac rehab involves a long-term commitment ...

  12. [The contribution of protein kinase C and Rho-kinase to the control of the receptor-dependent artery contraction decreases with age independently of sympathetic innervation].

    PubMed

    Mochalov, S V; Kalenchuk, V U; Gaĭnullina, D K; Vorotnikov, A V; Tarasova, O S

    2008-01-01

    The age-related dynamics of the activity of signalling pathways coupled to alpha1-adrenergic receptors and their dependence on the sympathetic innervation of arterial smooth muscle have been studied. The effects of the protein kinase C inhibitor (GF109203X, 10(-6) M) and the Rho-kinase inhibitor (Y27632, 10(-5) M) on the isometric contraction of the rat saphenous artery, induced by the alpha1-adrenoceptor agonist methoxamine, were examined. It was shown that the sensitivity to methoxamine of arteries from 2-week-old rats that are partially innervated was reduced as compared to adults, but the effects of both inhibitors were more prominent. The denervation induced by the excision of sympathetic ganglia increased the arterial sensitivity to methoxamine but was not accompanied by changes in sensitivity to the inhibitors. Therefore, the postnatal development of the arterial smooth muscle is characterized by a decrease in the contribution of protein kinase C and Rho-kinase to the regulation of contraction; however, these changes do not correlate with changes in the sensitivity of arteries to methoxamine and development of sympathetic innervation. PMID:19137699

  13. A meta-analysis of the effects of β-adrenergic blockers in chronic heart failure

    PubMed Central

    Zhang, Xiaojian; Shen, Chengwu; Zhai, Shujun; Liu, Yukun; Yue, Wen-Wei; Han, Li

    2016-01-01

    Adrenergic β-blockers are drugs that bind to, but do not activate β-adrenergic receptors. Instead they block the actions of β-adrenergic agonists and are used for the treatment of various diseases such as cardiac arrhythmias, angina pectoris, myocardial infarction, hypertension, headache, migraines, stress, anxiety, prostate cancer, and heart failure. Several meta-analysis studies have shown that β-blockers improve the heart function and reduce the risks of cardiovascular events, rate of mortality, and sudden death through chronic heart failure (CHF) of patients. The present study identified results from recent meta-analyses of β-adrenergic blockers and their usefulness in CHF. Databases including Medline/Embase/Cochrane Central Register of Controlled Trials (CENTRAL), and PubMed were searched for the periods May, 1985 to March, 2011 and June, 2013 to August, 2015, and a number of studies identified. Results of those studies showed that use of β-blockers was associated with decreased sudden cardiac death in patients with heart failure. However, contradictory results have also been reported. The present meta-analysis aimed to determine the efficacy of β-blockers on mortality and morbidity in patients with heart failure. The results showed that mortality was significantly reduced by β-blocker treatment prior to the surgery of heart failure patients. The results from the meta-analysis studies showed that β-blocker treatment in heart failure patients correlated with a significant decrease in long-term mortality, even in patients that meet one or more exclusion criteria of the MERIT-HF study. In summary, the findings of the current meta-analysis revealed beneficial effects different β-blockers have on patients with heart failure or related heart disease. PMID:27703506

  14. Structure, function, and regulation of adrenergic receptors.

    PubMed Central

    Strosberg, A. D.

    1993-01-01

    Adrenergic receptors for adrenaline and noradrenaline belong to the large multigenic family of receptors coupled to GTP-binding proteins. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors modulate phospholipase C via the Go protein. Subtype expression is regulated at the level of the gene, the mRNA, and the protein through various transcriptional and postsynthetic mechanisms. Adrenergic receptors constitute, after rhodopsin, one of the best studied models for the other receptors coupled to G proteins that are likely to display similar structural and functional properties. PMID:8401205

  15. Cardiac arrest: should we consider norepinephrine instead of epinephrine?

    PubMed

    Mion, Georges; Rousseau, Jean Marie; Selcer, Dominique; Samama, Charles-Marc

    2014-12-01

    A patient scheduled for a laparoscopic cholecystectomy had an anaphylactic shock during induction of anesthesia. After the injection of vecuronium, an unusual fall of arterial pressure occurred, with bradycardia, enlargement of the QRS complex, then a circulatory arrest. Chest compressions were initiated, while intravenous epinephrine 1 mg was administered. The cardiac rhythm turned into a ventricular fibrillation (VF). Despite continuous chest compressions with repeated boluses of epinephrine and several external electric shocks, the patient remained in VF. Because of obviously β-adrenergic adverse effects, epinephrine was replaced with norepinephrine. Return of spontaneous circulation was observed, with the recovering of sinusal activity. After staying for several weeks in intensive care unit because of multiorgan failure, the patient recovered without sequelae. Blood samples and cutaneous testing confirmed an allergy to vecuronium. This case report of a cardiac anaphylaxis with prolonged cardiac arrest illustrates the dual activity and adverse effects of epinephrine. Although vasoconstriction is mandated during cardiopulmonary resuscitation to provide an acceptable perfusion pressure to organs, β-adrenergic stimulation seems deleterious to the heart. Experimental studies have shown that blocking the β-adrenergic effects of epinephrine attenuates postresuscitation myocardial dysfunction or helps the return of spontaneous circulation after VF. Norepinephrine, a potent α-adrenergic drug nearly devoid of β-adrenergic properties, could be an interesting alternative to epinephrine. It can improve organ perfusion during cardiopulmonary resuscitation and could be more efficient than epinephrine in case of VF.

  16. CNS Dopamine Transmission Mediated by Noradrenergic Innervation

    PubMed Central

    Smith, Caroline C.; Greene, Robert W.

    2012-01-01

    The pre-synaptic source of dopamine in the CA1 field of dorsal hippocampus is uncertain due to an anatomical mismatch between dopaminergic terminals and receptors. We show, in an in vitro slice preparation from C57BL6 male mice, that a dopamine (DA) D1 receptor (D1R) mediated enhancement in glutamate synaptic transmission occurs following release of endogenous DA with amphetamine exposure. It is assumed DA is released from terminals innervating from the ventral tegmental area (VTA) even though DA transporter (DAT) positive fibers are absent in hippocampus, a region with abundant D1Rs. It has been suggested this results from a lack of DAT expression on VTA terminals rather than a lack of these terminals per se. Neither a knockdown of tyrosine hydroxylase (TH) expression in the VTA by THsiRNA, delivered locally, by adeno-associated viral vector, nor localized pharmacological blockade of DAT to prevent amphetamine uptake into DA terminals, has any effect on the D1R synaptic, enhancement response to amphetamine. However, either a decrease in TH expression in the locus coeruleus (LC) or a blockade of the norepinephrine (NE) transporter prevents the DA mediated response, indicating LC terminals can release both NE and DA. These findings suggest noradrenergic fibers may be the primary source of DA release in hippocampus and corresponding DA mediated increase in synaptic transmission. Accordingly, these data imply the LC may have a role in DA transmission in the CNS in response to drugs of abuse, and potentially, under physiological conditions. PMID:22553014

  17. Fatty old hearts: role of cardiac lipotoxicity in age-related cardiomyopathy

    PubMed Central

    Drosatos, Konstantinos

    2016-01-01

    Age-related cardiomyopathy accounts for a significant part of heart failure cases. Imbalance of the energetic equilibrium of the heart along with mitochondrial dysfunction and impaired β-adrenergic receptor signaling contributes in the aggravation of cardiac function in the elderly. In this review article, studies that correlate cardiac aging with lipotoxicity are summarized. The involvement of inhibition of peroxisome proliferator-activated receptor-α, β-adrenergic receptor desensitization, and mitochondrial dysfunction as underlying mechanisms for the lipid-driven age-related cardiomyopathy are presented with the aim to indicate potential therapeutic targets for cardiac aging. PMID:27558317

  18. Spatial distribution of neurons innervated by chandelier cells.

    PubMed

    Blazquez-Llorca, Lidia; Woodruff, Alan; Inan, Melis; Anderson, Stewart A; Yuste, Rafael; DeFelipe, Javier; Merchan-Perez, Angel

    2015-09-01

    Chandelier (or axo-axonic) cells are a distinct group of GABAergic interneurons that innervate the axon initial segments of pyramidal cells and are thus thought to have an important role in controlling the activity of cortical circuits. To examine the circuit connectivity of chandelier cells (ChCs), we made use of a genetic targeting strategy to label neocortical ChCs in upper layers of juvenile mouse neocortex. We filled individual ChCs with biocytin in living brain slices and reconstructed their axonal arbors from serial semi-thin sections. We also reconstructed the cell somata of pyramidal neurons that were located inside the ChC axonal trees and determined the percentage of pyramidal neurons whose axon initial segments were innervated by ChC terminals. We found that the total percentage of pyramidal neurons that were innervated by a single labeled ChC was 18-22 %. Sholl analysis showed that this percentage peaked at 22-35 % for distances between 30 and 60 µm from the ChC soma, decreasing to lower percentages with increasing distances. We also studied the three-dimensional spatial distribution of the innervated neurons inside the ChC axonal arbor using spatial statistical analysis tools. We found that innervated pyramidal neurons are not distributed at random, but show a clustered distribution, with pockets where almost all cells are innervated and other regions within the ChC axonal tree that receive little or no innervation. Thus, individual ChCs may exert a strong, widespread influence on their local pyramidal neighbors in a spatially heterogeneous fashion. PMID:25056931

  19. Innervation changes induced by inflammation of the rat thoracolumbar fascia.

    PubMed

    Hoheisel, U; Rosner, J; Mense, S

    2015-08-01

    Recently, the fascia innervation has become an important issue, particularly the existence of nociceptive fibers. Fascia can be a source of pain in several disorders such as fasciitis and non-specific low back pain. However, nothing is known about possible changes of the fascia innervation under pathological circumstances. This question is important, because theoretically pain from the fascia cannot only be due to increased nociceptor discharges, but also to a denser innervation of the fascia by nociceptive endings. In this histological study, an inflammation was induced in the thoracolumbar fascia (TLF) of rats and the innervation by various fiber types compared between the inflamed and intact TLF. Although the TLF is generally considered to have proprioceptive functions, no corpuscular proprioceptors (Pacini and Ruffini corpuscles) were found. To obtain quantitative data, the length of fibers and free nerve endings were determined in the three layers of the rat TLF: inner layer (IL, adjacent to the multifidus muscle), middle layer (ML) and outer layer (OL). The main results were that the overall innervation density showed little change; however, there were significant changes in some of the layers. The innervation density was significantly decreased in the OL, but this change was partly compensated for by an increase in the IL. The density of substance P (SP)-positive - presumably nociceptive - fibers was significantly increased. In contrast, the postganglionic sympathetic fibers were significantly decreased. In conclusion, the inflamed TLF showed an increase of presumably nociceptive fibers, which may explain the pain from a pathologically altered fascia. The meaning of the decreased innervation by sympathetic fibers is obscure at present. The lack of proprioceptive corpuscular receptors within the TLF does not preclude its role as a proprioceptive structure, because some of the free nerve endings may function as proprioceptors.

  20. The innervated anterolateral thigh flap: anatomical study and clinical implications.

    PubMed

    Ribuffo, Diego; Cigna, Emanuele; Gargano, Francesco; Spalvieri, Cristina; Scuderi, Nicolò

    2005-02-01

    During the past 20 years, the neural anatomy of many flaps has been investigated, although no extensive studies have been reported yet on the anterolateral thigh flap. The goal of this study was to describe the sensory territories of the nerves supplying the anterolateral thigh flap with dissections on fresh cadavers and with local anesthetic injections in living subjects. The sensate anterolateral thigh flap is typically described as innervated by the lateral cutaneous femoral nerve. Two other well-known nerves, the superior perforator nerve and the median perforator nerve, which enter the flap at its medial border, might have a role in anterolateral thigh flap innervation. Twenty-nine anterolateral thigh flaps were elevated in 15 cadavers, and the lateral cutaneous femoral nerve, the superior perforator nerve, and median perforator nerve were dissected. In the injection study, the lateral cutaneous femoral nerve, superior perforator nerve, and median perforator nerve in 16 thighs of eight subjects were sequentially blocked. The resulting sensory deficit from each injection was mapped on the skin and superimposed on the marked anterolateral thigh flap territory. The study shows that the sensate anterolateral thigh flap is basically innervated by all three nerves. The lateral cutaneous femoral nerve was present in 29 of 29 thighs, whereas the superior perforator nerve was present in 25 of 29 and the median perforator nerve in 24 of 29 thighs. Furthermore, in the proximal half of the flap, the lateral cutaneous femoral nerve lies deep, whereas the superior perforator nerve and median perforator nerve lie more superficially. Whereas the lateral cutaneous femoral nerve innervates the entire flap, the superior perforator nerve innervates 25 percent of the flap and the median perforator nerve innervates 60 percent of the flap. Clinically, a small anterolateral thigh flap (7 x 5 cm) can be raised sparing the lateral cutaneous femoral nerve and using only the selective

  1. Adrenergic lipolysis in guinea pig is not a beta 3-adrenergic response: comparison with human adipocytes.

    PubMed

    Carpéné, C; Castan, I; Collon, P; Galitzky, J; Moratinos, J; Lafontan, M

    1994-03-01

    beta 3-Adrenoceptor agonists are potent lipolytic activators in rats, but they are only weak stimulators in human adipocytes, indicating interspecies differences in the adrenergic regulation of lipid mobilization. Like human but not rat adipocytes, guinea pig fat cells were poorly responsive to the beta 3-agonists BRL-37344, CGP-12177, SR-58611, and ICI-215001, acid metabolite of ICI-D7114. In guinea pigs, the beta 1-agonist dobutamine was more lipolytic than the beta 2-agonist procaterol. Anatomic location of fat deposits was without major influence on the beta-adrenergic responsiveness. Weak responses to beta 3-agonists were found whatever the sex or the age (from 2 days to 16 mo) of the animals. Even in the interscapular brown adipose tissue, which is well known in rats for its beta 3-adrenergic responsiveness, a blunted response to BRL-37344 was observed. The alpha 2-adrenergic antilipolytic effect and receptor number were smaller in guinea pig than in human adipocytes, but the beta-adrenergic receptor number was similar in the two species. Thus guinea pig adipocytes resemble human fat cells when their weak beta 3-adrenergic responsiveness is considered. PMID:7909205

  2. Cardiac Effects of Attenuating Gsα - Dependent Signaling

    PubMed Central

    Meyer, Sören; Ochs, Marco M.; Hagenmueller, Marco; Riffel, Johannes H.; Buss, Sebastian J.; Heger, Thomas; Katus, Hugo A.; Hardt, Stefan E.

    2016-01-01

    Aims Inhibition of β-adrenergic signalling plays a key role in treatment of heart failure. Gsα is essential for β-adrenergic signal transduction. In order to reduce side-effects of beta-adrenergic inhibition diminishing β-adrenergic signalling in the heart at the level of Gsα is a promising option. Methods and Results We analyzed the influence of Gsα on regulation of myocardial function and development of cardiac hypertrophy, using a transgenic mouse model (C57BL6/J mice) overexpressing a dominant negative Gsα-mutant under control of the α-MHC-promotor. Cardiac phenotype was characterized in vivo and in vitro and under acute and chronic β-adrenergic stimulation. At rest, Gsα-DN-mice showed bradycardia (602 ± 13 vs. 660 ± 17 bpm, p<0.05) and decreased dp/dtmax (5037 ± 546- vs. 6835 ± 505 mmHg/s, p = 0.02). No significant differences were found regarding ejection fraction, heart weight and cardiomyocyte size. β-blockade by propranolol revealed no baseline differences of hemodynamic parameters between wildtype and Gsα-DN-mice. Acute adrenergic stimulation resulted in decreased β-adrenergic responsiveness in Gsα-DN-mice. Under chronic adrenergic stimulation, wildtype mice developed myocardial hypertrophy associated with increase of LV/BW-ratio by 23% (4.4 ± 0.2 vs. 3.5 ± 0.1 mg/g, p<0.01) and cardiac myocyte size by 24% (14927 ± 442 px vs. 12013 ± 583 px, p<0.001). In contrast, both parameters were unchanged in Gsα-DN-mice after chronic isoproterenol stimulation. Conclusion Overexpression of a dominant negative mutant of Gsα leads to decreased β-adrenergic responsiveness and is protective against isoproterenol-induced hypertrophy. Thus, Gsα-DN-mice provide novel insights into β-adrenergic signal transduction and its modulation in myocardial overload and failure. PMID:26811901

  3. Deletion of CXCR4 in cardiomyocytes exacerbates cardiac dysfunction following isoproterenol administration.

    PubMed

    Wang, E R; Jarrah, A A; Benard, L; Chen, J; Schwarzkopf, M; Hadri, L; Tarzami, S T

    2014-05-01

    Altered alpha- and beta-adrenergic receptor signaling is associated with cardiac hypertrophy and failure. Stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 have been reported to mediate cardioprotection after injury through the mobilization of stem cells into injured tissue. However, little is known regarding whether SDF-1/CXCR4 induces acute protection following pathological hypertrophy and if so, by what molecular mechanism. We have previously reported that CXCR4 physically interacts with the beta-2 adrenergic receptor and modulates its downstream signaling. Here we have shown that CXCR4 expression prevents beta-adrenergic receptor-induced hypertrophy. Cardiac beta-adrenergic receptors were stimulated with the implantation of a subcutaneous osmotic pump administrating isoproterenol and CXCR4 expression was selectively abrogated in cardiomyocytes using Cre-loxP-mediated gene recombination. CXCR4 knockout mice showed worsened fractional shortening and ejection fraction. CXCR4 ablation increased susceptibility to isoproterenol-induced heart failure, by upregulating apoptotic markers and reducing mitochondrial function; cardiac function decreases whereas fibrosis increases. In addition, CXCR4 expression was rescued with the use of cardiotropic adeno-associated viral-9 vectors. CXCR4 gene transfer reduced cardiac apoptotic signaling, improved mitochondrial function and resulted in a recovered cardiac function. Our results represent the first evidence that SDF-1/CXCR4 signaling mediates acute cardioprotection through modulating beta-adrenergic receptor signaling in vivo. PMID:24646609

  4. Deletion of CXCR4 in cardiomyocytes exacerbates cardiac dysfunction following isoproterenol administration

    PubMed Central

    Wang, ER; Jarrah, AA; Benard, L; Chen, J; Schwarzkopf, M; Hadri, L; Tarzami, ST

    2014-01-01

    Altered alpha- and beta-adrenergic receptor signaling is associated with cardiac hypertrophy and failure. Stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 have been reported to mediate cardioprotection after injury through the mobilization of stem cells into injured tissue. However, little is known regarding whether SDF-1/CXCR4 induces acute protection following pathological hypertrophy and if so, by what molecular mechanism. We have previously reported that CXCR4 physically interacts with the beta-2 adrenergic receptor and modulates its down stream signaling. Here we have shown that CXCR4 expression prevents beta-adrenergic receptor induced hypertrophy. Cardiac beta-adrenergic receptors were stimulated with the implantation of a subcutaneous osmotic pump administrating isoproterenol and CXCR4 expression was selectively abrogated in cardiomyocytes using Cre-loxP-mediated gene recombination. CXCR4 knockout mice showed worsened fractional shortening and ejection fraction. CXCR4 ablation increased susceptibility to isoproterenol-induced heart failure, by upregulating apoptotic markers and reducing mitochondrial function; cardiac function decreases while fibrosis increases. Additionally, CXCR4 expression was rescued with the use of cardiotropic Adeno-associated viral-9 (AAV9) vectors. CXCR4 gene transfer reduced cardiac apoptotic signaling, improved mitochondrial function and resulted in a recovered cardiac function. Our results represent the first evidence that SDF-1/CXCR4 signaling mediates acute cardioprotection through modulating beta-adrenergic receptor signaling in vivo. PMID:24646609

  5. The Lesser Palatine Nerve Innervates the Levator Veli Palatini Muscle

    PubMed Central

    Matsuura, Yoshitaka; Kawai, Katsuya; Yamada, Shigehito; Suzuki, Shigehiko

    2016-01-01

    Summary: When the lesser palatine nerve (LPN) is supposed to be a branch of the trigeminal nerve and innervate sensation of the soft palate, whether the LPN contains motor fibers is unclear. In this study, we monitored the electromyogram of the levator veli palatini (LVP) muscle on stimulating the LPN during palatoplasty in 3 patients. The electromyogram of the muscles showed the myogenic potential induced by electrostimulation of the LPN. Taken together with the finding from our previous anatomical study that the motor fibers come from the facial nerve, this result supports the double innervation theory of the LVP, which posits that both the pharyngeal plexus and the facial nerve innervate it. Identifying and preserving the LPN during palatoplasty might improve postoperative speech results. PMID:27757354

  6. Function and innervation of the involuntary m. retroauricularis.

    PubMed

    Heuser, M

    1976-10-01

    Beside the automatic, obligatory and tonic coinnervation of the involuntary m. retroauricularis in conjugate lateral gaze (oculoauricular phenomenon, nystagmus) several other physiological ways of accidental coinnervation are described. In talking, chewing, swallowing and during involuntary inspiration irregular bursts of innervation may be registered. In sleep regular rhythmic inspiratory innervation is demonstrated as well as myoclonic jerks. With reservation, an allusion is made to rem-sleep. In "nervous subjects" irregular involuntary innervation of the m. retroauricularis might serve as a measurement instrument for the involuntary somatomotor nervous system, i.e. the degree of neurotic tensity. An early myasthenic reaction is gained from the M. retroauricularis in patients with ocular forms of the disease. A common motor nucleus of abducens and facial nerve is discussed. Complementary studies are announced on the various forms of facial paralysis, strabismus and nystagmus. A further diagnostic use is presumed.

  7. The innervation of the zebrafish pharyngeal jaws and teeth.

    PubMed

    Crucke, Jeroen; Van de Kelft, Annelore; Huysseune, Ann

    2015-07-01

    Zebrafish (Danio rerio) teeth are increasingly used as a model to study odontogenesis in non-mammalians. Using serial semi-thin section histology and immunohistochemistry, the nerves innervating the pharyngeal jaws and teeth have been identified. The last pair of branchial arches, which are non-gill bearing but which carry the teeth, are innervated by an internal branch of a post-trematic ramus of the vagal nerve. Another, external, branch is probably responsible for the motor innervation of the branchiomeric musculature. Nerve fibres appear in the pulp cavity of the teeth only late during cytodifferentiation, and are therefore likely not involved in early steps of tooth formation. The precise role of the nervous system during continuous tooth replacement remains to be determined. Nonetheless, this study provides the necessary morphological background information to address this question.

  8. Remodelling sympathetic innervation in rat pancreatic islets ontogeny

    PubMed Central

    Cabrera-Vásquez, Siraam; Navarro-Tableros, Víctor; Sánchez-Soto, Carmen; Gutiérrez-Ospina, Gabriel; Hiriart, Marcia

    2009-01-01

    Background Pancreatic islets are not fully developed at birth and it is not clear how they are vascularised and innervated. Nerve Growth Factor (NGF) is required to guide sympathetic neurons that innervate peripheral organs and also in cardiovascular system and ovary angiogenesis. Pancreatic beta cells of a transgenic mouse that over-expressed NGF in attracts sympathetic hyper-innervation towards them. Moreover, we have previously demonstrated that adult beta cells synthesize and secrete NGF; however, we do not know how is NGF secreted during development, nor if it might be trophic for sympathetic innervation and survival in the pancreas. We analyzed sympathetic innervation and vasculature development in rat pancreatic islets at different developmental stages; foetal (F19), early postnatal (P1), weaning period (P20) and adults. We temporarily correlated these events to NGF secretion by islet cells. Results Sympathetic fibres reached pancreatic islets in the early postnatal period, apparently following blood vessels. The maximal number of sympathetic fibres (TH immunopositive) in the periphery of the islets was observed at P20, and then fibres entered the islets and reached the core where beta cells are mainly located. The number of fibres decreased from that stage to adulthood. At all stages studied, islet cells secreted NGF and also expressed the high affinity receptor TrkA. Foetal and neonatal isolated islet cells secreted more NGF than adults. TrkA receptors were expressed at all stages in pancreatic sympathetic fibres and blood vessels. These last structures were NGF–immunoreactive only at early stages (foetal and P0). Conclusion The results suggest that NGF signalling play an important role in the guidance of blood vessels and sympathetic fibres toward the islets during foetal and neonatal stages and could also preserve innervation at later stages of life. PMID:19534767

  9. Effects of trifluoperazine on beta-adrenergic responses of rat papillary muscle: related to calmodulin?

    PubMed

    Aass, H; Skomedal, T; Osnes, J B

    1983-10-01

    The beta-adrenergic stimulation of cardiac contraction and relaxation is related to an augmented Ca++ oscillation mediated by cAMP. This Ca++ mobilization may secondarily involve calmodulin in a way modulating the mechanical responses. We tested this possibility by studying interferences of trifluoperazine (which is able to block Ca++-calmodulin) with beta-adrenergic responses in rat heart papillary muscles. Trifluoperazine up to 10(-5) mol/l did not change the basal function. 10(-5) mol/l trifluoperazine augmented the contractile response to isoprenaline above 10(-7) mol/l. The inotropic effects of isoprenaline below 10(-7) mol/l and of the partial beta-agonist prenalterol were not influenced by trifluoperazine. 10(-5) mol/l trifluoperazine attenuated the stimulation of initial relaxation by isoprenaline in the entire concentration range. Thus this beta-adrenergic response was more sensitive to trifluoperazine than the contractile response. But trifluoperazine only slightly and non-significantly attenuated the stimulation of initial relaxation by prenalterol. From experiments on broken cell preparations the present results can be explained in terms of calmodulin blockade and thus inhibition of Ca++ efflux across the sarcolemma and of Ca++ uptake by the sarcoplasmic reticulum. Trifluoperazine effects unrelated to calmodulin can hardly account for the results. Thus a full beta-agonist can apparently mobilize enough Ca++ to activate calmodulin systems important for the final effects on the contraction-relaxation cycle.

  10. Cardiac rehabilitation

    MedlinePlus

    ... Coronary artery disease - cardiac rehab; Angina - cardiac rehab; Heart failure - cardiac rehab ... have had: Heart attack Coronary heart disease (CHD) Heart failure Angina (chest pain) Heart or heart valve surgery ...

  11. Hypoxia increases exercise heart rate despite combined inhibition of β-adrenergic and muscarinic receptors.

    PubMed

    Siebenmann, C; Rasmussen, P; Sørensen, H; Bonne, T C; Zaar, M; Aachmann-Andersen, N J; Nordsborg, N B; Secher, N H; Lundby, C

    2015-06-15

    Hypoxia increases the heart rate response to exercise, but the mechanism(s) remains unclear. We tested the hypothesis that the tachycardic effect of hypoxia persists during separate, but not combined, inhibition of β-adrenergic and muscarinic receptors. Nine subjects performed incremental exercise to exhaustion in normoxia and hypoxia (fraction of inspired O2 = 12%) after intravenous administration of 1) no drugs (Cont), 2) propranolol (Prop), 3) glycopyrrolate (Glyc), or 4) Prop + Glyc. HR increased with exercise in all drug conditions (P < 0.001) but was always higher at a given workload in hypoxia than normoxia (P < 0.001). Averaged over all workloads, the difference between hypoxia and normoxia was 19.8 ± 13.8 beats/min during Cont and similar (17.2 ± 7.7 beats/min, P = 0.95) during Prop but smaller (P < 0.001) during Glyc and Prop + Glyc (9.8 ± 9.6 and 8.1 ± 7.6 beats/min, respectively). Cardiac output was enhanced by hypoxia (P < 0.002) to an extent that was similar between Cont, Glyc, and Prop + Glyc (2.3 ± 1.9, 1.7 ± 1.8, and 2.3 ± 1.2 l/min, respectively, P > 0.4) but larger during Prop (3.4 ± 1.6 l/min, P = 0.004). Our results demonstrate that the tachycardic effect of hypoxia during exercise partially relies on vagal withdrawal. Conversely, sympathoexcitation either does not contribute or increases heart rate through mechanisms other than β-adrenergic transmission. A potential candidate is α-adrenergic transmission, which could also explain why a tachycardic effect of hypoxia persists during combined β-adrenergic and muscarinic receptor inhibition.

  12. Non-co-ordinate development of beta-adrenergic receptors and adenylate cyclase in chick heart.

    PubMed Central

    Alexander, R W; Galper, J B; Neer, E J; Smith, T W

    1982-01-01

    We have studied the properties of beta-adrenergic receptors and of their interaction with adenylate cyclase in the chick myocardium during embryogenesis. Between 4.5 and 7.5 days in ovo the number of receptors determined by (-)-[3H]dihydroalprenolol ([3H]DHA) binding is constant at approx. 0.36 pmol of receptor/mg of protein. By day 9 the density decreases significantly to 0.22 pmol of receptor/mg of protein. At day 12.5--13.5 the number was 0.14--0.18 pmol of receptor/mg of protein. This number did not change further up to day 16. The same results were obtained with guanosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppG) added to the assay mixtures. There was no significant change in receptor affinity for the antagonist [3H]DHA between days 5.5 and 13. Despite the decrease in numbers of beta-adrenergic receptors, there was no change in basal, p[NH]ppG-, isoprenaline- or isoprenaline-plus-p[NH]ppG-stimulated adenylate cyclase activity between days 3 and 12 of development. We conclude that beta-adrenergic receptors and adenylate cyclase are not co-ordinately regulated during early embryonic development of the chick heart. Some of the beta-adrenergic receptors present very early in the ontogeny of cardiac tissue appear not to be coupled to adenylate cyclase since their loss is not reflected in decreased activation of the enzyme. PMID:6289805

  13. Hypersomnolence with beta-adrenergic blockers.

    PubMed

    Thachil, J; Zeller, J R; Kochar, M S

    1987-11-01

    An elderly, mildly demented, hypertensive male patient developed hypersomnolence on administration of propranolol for treatment of hypertension; no other cause for hypersomnolence was detected. Upon replacement of propranolol with atenolol, he felt better but continued to be quite somnolent. When atenolol was discontinued, he reported to have lack of sleep. On readministration of subtherapeutic doses of the same beta-adrenergic blocking agents, he once again experienced excessive sleepiness. By discontinuing beta-blocking agents and introducing captopril, he felt much better, became pleasant and talkative, and blood pressure was well controlled. Beta antagonists are important drugs in the management of many cardiovascular problems. Propranolol, a lipophilic beta-blocking agent, and atenolol, a hydrophilic beta-blocking agent, are two of the major agents currently used clinically in the United States. Numerous neuropsychiatric side-effects of the beta-adrenergic blocking drugs have been reported, but hypersomnolence is not readily recognized as one of them. PMID:3665616

  14. Wounded Embryonic Corneas Exhibit Nonfibrotic Regeneration and Complete Innervation

    PubMed Central

    Spurlin, James W.; Lwigale, Peter Y.

    2013-01-01

    Purpose. Wound healing in adult corneas is characterized by activation of keratocytes and extracellular matrix (ECM) synthesis that results in fibrotic scar formation and loss of transparency. Since most fetal wounds heal without scaring, we investigated the regenerative potential of wounded embryonic corneas. Methods. On embryonic day (E) 7 chick corneas were wounded by making a linear incision traversing the epithelium and anterior stroma. Wounded corneas were collected between E7 and E18, and analyzed for apoptosis, cell proliferation, staining of ECM components, and corneal innervation. Results. Substantial wound retraction was observed within 16-hours postwounding (hpw) and partial re-epithelialized by 5-days postwounding (dpw). Corneal wounds were fully re-epithelialized by 11 dpw with no visible scars. There was no difference in the number of cells undergoing apoptosis between wounded and control corneas. Cell proliferation was reduced in the wounded corneas, albeit mitotic cells in the regenerating epithelium. Staining for alpha–smooth muscle actin (α-SMA), tenascin, and fibronectin was vivid but transient at the wound site. Staining for procollagen I, perlecan, and keratan sulfate proteoglycan was reduced at the wound site. Wounded corneas were fully regenerated by 11 dpw and showed similar patterns of staining for ECM components, albeit an increase in perlecan staining. Corneal innervation was inhibited during wound healing, but regenerated corneas were innervated similar to controls. Conclusions. These data show that minimal keratocyte activation, rapid ECM reconstruction, and proper innervation occur during nonfibrotic regeneration of the embryonic cornea. PMID:24003085

  15. Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding

    PubMed Central

    Reinert, Rachel B.; Cai, Qing; Hong, Ji-Young; Plank, Jennifer L.; Aamodt, Kristie; Prasad, Nripesh; Aramandla, Radhika; Dai, Chunhua; Levy, Shawn E.; Pozzi, Ambra; Labosky, Patricia A.; Wright, Christopher V. E.; Brissova, Marcela; Powers, Alvin C.

    2014-01-01

    Neurovascular alignment is a common anatomical feature of organs, but the mechanisms leading to this arrangement are incompletely understood. Here, we show that vascular endothelial growth factor (VEGF) signaling profoundly affects both vascularization and innervation of the pancreatic islet. In mature islets, nerves are closely associated with capillaries, but the islet vascularization process during embryonic organogenesis significantly precedes islet innervation. Although a simple neuronal meshwork interconnects the developing islet clusters as they begin to form at E14.5, the substantial ingrowth of nerve fibers into islets occurs postnatally, when islet vascularization is already complete. Using genetic mouse models, we demonstrate that VEGF regulates islet innervation indirectly through its effects on intra-islet endothelial cells. Our data indicate that formation of a VEGF-directed, intra-islet vascular plexus is required for development of islet innervation, and that VEGF-induced islet hypervascularization leads to increased nerve fiber ingrowth. Transcriptome analysis of hypervascularized islets revealed an increased expression of extracellular matrix components and axon guidance molecules, with these transcripts being enriched in the islet-derived endothelial cell population. We propose a mechanism for coordinated neurovascular development within pancreatic islets, in which endocrine cell-derived VEGF directs the patterning of intra-islet capillaries during embryogenesis, forming a scaffold for the postnatal ingrowth of essential autonomic nerve fibers. PMID:24574008

  16. The evidence for the spinal segmental innervation of bone.

    PubMed

    Ivanusic, Jason J

    2007-11-01

    Dermatomes and myotomes are areas of skin and muscle, respectively, that are innervated by single spinal segmental nerves, and reflect a principle of organization that appears in just about every clinical textbook available today. The evidence for the existence of dermatomes and myotomes has a long and substantial history. A lesser known, but similar principle exists for the skeletal system. The term "sclerotome" was first used in the non-embryological sense by Inman and Saunders ([1944] J. Nerv. Ment. Dis. 99:660-667) to define a region of bone and periosteum that is innervated by a single spinal segment. It is used by clinicians in many healthcare settings to aid in the diagnosis and description of a variety of deep and/or skeletal tissue pathologies and pain syndromes. In this article, the evidence for the existence of the sclerotomes is described in detail. Early clinical studies that define the sclerotomes, evidence from studies of the development of skeletal innervation, and the contributions of anatomical and physiological investigations are explored. It is suggested that there is in fact little direct evidence for the existence of discrete spinal segmental innervation patterns for the skeleton. PMID:17948287

  17. Follicle Microstructure and Innervation Vary between Pinniped Micro- and Macrovibrissae.

    PubMed

    Mattson, Erin E; Marshall, Christopher D

    2016-01-01

    Histological data from terrestrial, semiaquatic, and fully aquatic mammal vibrissa (whisker) studies indicate that follicle microstructure and innervation vary across the mystacial vibrissal array (i.e. medial microvibrissae to lateral macrovibrissae). However, comparative data are lacking, and current histological studies on pinniped vibrissae only focus on the largest ventrolateral vibrissae. Consequently, we investigated the microstructure, medial-to-lateral innervation, and morphometric trends in harp seal (Pagophilus groenlandicus) vibrissal follicle-sinus complexes (F-SCs). The F-SCs were sectioned either longitudinally or in cross-section and stained with a modified Masson's trichrome stain (microstructure) or Bodian's silver stain (innervation). All F-SCs exhibited a tripartite blood organization system. The dermal capsule thickness, the distribution of major branches of the deep vibrissal nerve, and the hair shaft design were more symmetrical in medial F-SCs, but these features became more asymmetrical as the F-SCs became more lateral. Overall, the mean axon count was 1,221 ± 422.3 axons/F-SC and mean axon counts by column ranged from 550 ± 97.4 axons/F-SC (medially, column 11) to 1,632 ± 173.2 axons/F-SC (laterally, column 2). These values indicate a total of 117,216 axons innervating the entire mystacial vibrissal array. The mean axon count of lateral F-SCs was 1,533 ± 192.9 axons/ F-SC, which is similar to values reported in the literature for other pinniped F-SCs. Our data suggest that conventional studies that only examine the largest ventrolateral vibrissae may overestimate the total innervation by ∼20%. However, our study also accounts for variation in quantification methods and shows that conventional analyses likely only overestimate innervation by ∼10%. The relationship between axon count and cross-sectional F-SC surface area was nonlinear, and axon densities were consistent across the snout. Our data indicate that harp seals exhibit

  18. Follicle Microstructure and Innervation Vary between Pinniped Micro- and Macrovibrissae.

    PubMed

    Mattson, Erin E; Marshall, Christopher D

    2016-01-01

    Histological data from terrestrial, semiaquatic, and fully aquatic mammal vibrissa (whisker) studies indicate that follicle microstructure and innervation vary across the mystacial vibrissal array (i.e. medial microvibrissae to lateral macrovibrissae). However, comparative data are lacking, and current histological studies on pinniped vibrissae only focus on the largest ventrolateral vibrissae. Consequently, we investigated the microstructure, medial-to-lateral innervation, and morphometric trends in harp seal (Pagophilus groenlandicus) vibrissal follicle-sinus complexes (F-SCs). The F-SCs were sectioned either longitudinally or in cross-section and stained with a modified Masson's trichrome stain (microstructure) or Bodian's silver stain (innervation). All F-SCs exhibited a tripartite blood organization system. The dermal capsule thickness, the distribution of major branches of the deep vibrissal nerve, and the hair shaft design were more symmetrical in medial F-SCs, but these features became more asymmetrical as the F-SCs became more lateral. Overall, the mean axon count was 1,221 ± 422.3 axons/F-SC and mean axon counts by column ranged from 550 ± 97.4 axons/F-SC (medially, column 11) to 1,632 ± 173.2 axons/F-SC (laterally, column 2). These values indicate a total of 117,216 axons innervating the entire mystacial vibrissal array. The mean axon count of lateral F-SCs was 1,533 ± 192.9 axons/ F-SC, which is similar to values reported in the literature for other pinniped F-SCs. Our data suggest that conventional studies that only examine the largest ventrolateral vibrissae may overestimate the total innervation by ∼20%. However, our study also accounts for variation in quantification methods and shows that conventional analyses likely only overestimate innervation by ∼10%. The relationship between axon count and cross-sectional F-SC surface area was nonlinear, and axon densities were consistent across the snout. Our data indicate that harp seals exhibit

  19. Alpha-blockade therapy for benign prostatic hyperplasia: from a nonselective to a more selective alpha1A-adrenergic antagonist.

    PubMed

    Beduschi, M C; Beduschi, R; Oesterling, J E

    1998-06-01

    Benign prostatic hyperplasia (BPH) is very common in older men, causing symptoms that can markedly impair quality of life. Surgical treatment, typically transurethral resection of the prostate (TURP), is highly effective but can be costly and is associated with the risk for significant morbidity. Medical treatments for BPH are targeted toward reducing bladder outlet obstruction either by androgen blockade to reduce prostatic volume or alpha-adrenergic blockade to relax the smooth muscle tone of the prostate. In recent years, understanding of the sympathetic innervation of the prostate has improved. This has been paralleled by the development of alpha-adrenergic blocking agents, from nonselective alpha-antagonists, to selective alpha1-antagonists, to the more selective alpha1A-antagonists. It is anticipated that more specific agents will optimize the therapeutic effectiveness of alpha-adrenergic blockade in the prostate while reducing the side effects associated with alpha-adrenergic blockade in other areas of the body, such as the vascular system. This article reviews the evolution of alpha-blockade therapy in management of BPH, focusing on tamsulosin, an agent targeted toward the alpha1A-adrenoceptor that predominates in the prostate. Clinical trials in Europe and the United States have provided evidence that tamsulosin is effective at doses of 0.4 and 0.8 mg/day. At both doses, tamsulosin is associated with significant improvements in the American Urological Association symptom score and the mean and peak urinary flow rates as compared with placebo. This once-daily alpha1A-adrenergic antagonist is well-tolerated, with a minimal potential for the side effects associated with alphas-blocker therapy.

  20. Extrinsic innervation of ileum and pelvic flexure of foals with ileocolonic aganglionosis.

    PubMed

    Giancola, F; Gentilini, F; Romagnoli, N; Spadari, A; Turba, M E; Giunta, M; Sadeghinezhad, J; Sorteni, C; Chiocchetti, R

    2016-10-01

    Equine ileocolonic aganglionosis, which is also called lethal white foal syndrome (LWFS), is a severe congenital condition characterized by the unsuccessful colonization of neural crest progenitors in the caudal part of the small intestine and the entire large intestine. LWFS, which is attributable to a mutation in the endothelin receptor B gene, is the horse equivalent of Hirschsprung's disease in humans. Affected foals suffer from aganglionosis or hypoganglionosis of the enteric ganglia resulting in intestinal akinesia and colic. In other species with aganglionosis, fibers of extrinsic origin show an abnormal distribution pattern within the gut wall, but we have no information to date regarding this occurrence in horses. Our present aim is to investigate the distribution of extrinsic sympathetic and sensory neural fibers in LWFS, focusing on ileum and the pelvic flexure of the colon of two LWFS foals compared with a control subject. The sympathetic fibers were immunohistochemically identified with the markers tyrosine hydroxylase and dopamine beta-hydroxylase. The extrinsic sensory fibers were identified with the markers Substance P (SP) and calcitonin gene-related peptide (CGRP). Since SP and CGRP are also synthesized by subclasses of horse intramural neurons, LWFS represents a good model for the selective study of extrinsic fiber distribution. Affected foals showed large bundles of extrinsic fibers, compared with the control, as observed in Hirschsprung's disease. Furthermore, altered adrenergic pathways were observed, prominently in the pelvic flexure. The numbers of SP- and CGRP-immunoreactive fibers in the muscle, a target of enteric neurons, were dramatically reduced, whereas fibers deduced to be extrinsic sensory axons persisted around submucosal blood vessels. Fiber numbers in the mucosa were reduced. Thus, extrinsic innervation, contributing to modulate enteric functions, might also be affected during LWFS.

  1. Probing of β-adrenergic receptors by novel fluorescent β-adrenergic blockers

    PubMed Central

    Atlas, Daphne; Levitzki, Alexander

    1977-01-01

    The synthesis of two high-affinity fluorescent β-adrenergic blockers is described: dl-N1-[2-hydroxy-3-(1-naphthyloxy)propyl]-N2-(9-acridyl)-1,2-propanediamine (9-aminoacridylpropanolol, 9-AAP) and dl-N-[2-hydroxy-3-(1-naphthyloxy)propyl]-N′-dansylethylenediamine (dansyl analogue of propranolol, DAPN). Both 9-AAP and DAPN inhibit competitively the l-epinephrine-dependent adenylate cyclase activity [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] in turkey erythrocyte membranes without affecting the fluoride-stimulated adenylate cyclase activity. Similarly, 9-AAP and DAPN inhibit in a competitive manner the binding of [125I]-iodohydroxybenzylpindolol to these β-adrenergic receptors. The two fluorescent β-adrenergic blockers 9-AAP and DAPN probe specifically β-adrenergic receptors in the central nervous system as well as in other organs when injected into rats. The fluorescence pattern can be monitored by fluorescence microscopy performed on cryostat slices of these organs. The appearance of the characteristic fluorescence pattern can be blocked in a stereospecific fashion by a prior injection of l-propranolol and not by a prior injection of d-propranolol. These compounds therefore offer a powerful means to map β-adrenergic receptors in vivo. The stereospecific displacement of 9-AAP from the β-adrenergic receptors of turkey erythrocyte membranes by l-propranolol and by l-epinephrine can be detected in vitro using front-face fluorescence. The potential use of these compounds to probe β-receptors in vitro and in vivo is discussed. Images PMID:23531

  2. Homologous beta-adrenergic desensitization in isolated rat hepatocytes.

    PubMed Central

    García-Sáinz, J A; Michel, B

    1987-01-01

    Hepatocytes from hypothyroid rats have a marked beta-adrenergic responsiveness. Preincubation of these hepatocytes with isoprenaline induced a time-dependent and concentration-dependent desensitization of the beta-adrenergic responsiveness without altering that to glucagon (homologous desensitization). The desensitization was evidenced both in the cyclic AMP accumulation and in the stimulation of ureagenesis induced by the beta-adrenergic agonists. Under the same conditions, preincubation with glucagon induced no desensitization. Propranolol was also unable to induce desensitization, but blocked that induced by isoprenaline. Pertussis-toxin treatment did not alter the homologous beta-adrenergic desensitization induced by isoprenaline. PMID:2825633

  3. GSK-3α directly regulates β-adrenergic signaling and the response of the heart to hemodynamic stress in mice

    PubMed Central

    Zhou, Jibin; Lal, Hind; Chen, Xiongwen; Shang, Xiying; Song, Jianliang; Li, Yingxin; Kerkela, Risto; Doble, Bradley W.; MacAulay, Katrina; DeCaul, Morgan; Koch, Walter J.; Farber, John; Woodgett, James; Gao, Erhe; Force, Thomas

    2010-01-01

    The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases consists of 2 highly related isoforms, α and β. Although GSK-3β has an important role in cardiac development, much remains unknown about the function of either GSK-3 isoform in the postnatal heart. Herein, we present what we believe to be the first studies defining the role of GSK-3α in the mouse heart using gene targeting. Gsk3a–/– mice over 2 months of age developed progressive cardiomyocyte and cardiac hypertrophy and contractile dysfunction. Following thoracic aortic constriction in young mice, we observed enhanced hypertrophy that rapidly transitioned to ventricular dilatation and contractile dysfunction. Surprisingly, markedly impaired β-adrenergic responsiveness was found at both the organ and cellular level. This phenotype was reproduced by acute treatment of WT cardiomyocytes with a small molecule GSK-3 inhibitor, confirming that the response was not due to a chronic adaptation to LV dysfunction. Thus, GSK-3α appears to be the central regulator of a striking range of essential processes, including acute and direct positive regulation of β-adrenergic responsiveness. In the absence of GSK-3α, the heart cannot respond effectively to hemodynamic stress and rapidly fails. Our findings identify what we believe to be a new paradigm of regulation of β-adrenergic signaling and raise concerns given the rapid expansion of drug development targeting GSK-3. PMID:20516643

  4. Group I fibers: pressor reflex and cardiac activity.

    PubMed

    Decandia, G F; Decandia, M; Orani, G P

    1991-09-01

    Experiments were performed on cats to see whether stimulation of group I afferent fibers from gastrocnemius-soleus muscles induced changes in cardiac activity, in addition to the increase in systemic arterial pressure already established. The results show that the increase in arterial pressure is accompanied by an increase in systolic left ventricular pressure, without any significant changes in cardiac inotropism and chronotropism. It is concluded that the cardiac innervation is not an important efferent pathway of the pressor reflex evoked by stimulating group I afferent fibers, and that the reflex increase in arterial pressure depends mainly on an increase in peripheral vascular resistance. PMID:1742468

  5. β2-Adrenergic receptor supports prolonged theta tetanus-induced LTP.

    PubMed

    Qian, Hai; Matt, Lucas; Zhang, Mingxu; Nguyen, Minh; Patriarchi, Tommaso; Koval, Olha M; Anderson, Mark E; He, Kaiwen; Lee, Hey-Kyoung; Hell, Johannes W

    2012-05-01

    The widespread noradrenergic innervation in the brain promotes arousal and learning by molecular mechanisms that remain largely undefined. Recent work shows that the β(2)-adrenergic receptor (β(2)AR) is linked to the AMPA-type glutamate receptor subunit GluA1 via stargazin and PSD-95 (Joiner ML, Lise MF, Yuen EY, Kam AY, Zhang M, Hall DD, Malik ZA, Qian H, Chen Y, Ulrich JD, Burette AC, Weinberg RJ, Law PY, El-Husseini A, Yan Z, Hell JW. EMBO J 29: 482-495, 2010). We now demonstrate that the β(2)AR plays a prominent role in long-term potentiation (LTP) induced by a train of 900 stimuli at 5 Hz (prolonged theta-tetanus-LTP, or PTT-LTP) in the hippocampal CA1 region in mice, which requires simultaneous β-adrenergic stimulation. Although PTT-LTP was impaired in hippocampal slices from β(1)AR and β(2)AR knockout (KO) mice, only β(2)AR-selective stimulation with salbutamol supported this PTT-LTP in wild-type (WT) slices, whereas β(1)AR-selective stimulation with dobutamine (+ prazosin) did not. Furthermore, only the β(2)AR-selective antagonist ICI-118551 and not the β(1)AR-selective antagonist CGP-20712 inhibited PTT-LTP and phosphorylation of GluA1 on its PKA site S845 in WT slices. Our analysis of S845A knockin (KI) mice indicates that this phosphorylation is relevant for PTT-LTP. These results identify the β(2)AR-S845 signaling pathway as a prominent regulator of synaptic plasticity.

  6. Beta 1- and beta 2-adrenergic /sup 125/I-pindolol binding sites in the interpeduncular nucleus of the rat: Normal distribution and the effects of deafferentation

    SciTech Connect

    Battisti, W.P.; Artymyshyn, R.P.; Murray, M.

    1989-07-01

    The plasticity of the beta 1- and beta 2-adrenergic receptor subtypes was examined in the interpeduncular nucleus (IPN) of the adult rat. The beta-adrenergic receptor antagonist 125I-pindolol (125I-PIN) was used in conjunction with the selective subtype antagonists ICI 118,551 and ICI 89,406 to determine the subnuclear distribution of beta 1- and beta 2-adrenergic receptors in this nucleus and to correlate the receptor distribution with the distribution of both noradrenergic afferents from the locus coeruleus (LC) and non-noradrenergic afferents from the fasiculus retroflexus (FR). The density of these binding sites was examined following lesions that decreased (LC lesions) or increased (FR lesions) the density of the noradrenergic projection in the IPN. Quantitative radioautography indicated that beta 1-labeled binding sites account for the larger percentage of binding sites in the IPN. The beta 1-binding sites are densest in those subnuclei that receive a noradrenergic projection from the LC: the central, rostral, and intermediate subnuclei. beta 1-binding sites are algo homogeneously distributed throughout the lateral subnuclei, where there is no detectable noradrenergic innervation. beta 2-binding sites have a more restricted distribution. They are concentrated in the ventral half of the lateral subnuclei, where they account for 70% of total 125I-PIN binding sites. beta 2-binding sites are also present along the ventral border of the IPN. Some of this labeling extends into the central and intermediate subnuclei. Bilateral lesions of the LC, which selectively remove noradrenergic innervation to the IPN, result in an increase in the beta 1-binding sites. Bilateral lesions of the FR, which remove the major cholinergic and peptidergic input from the IPN, elicit an increase in noradrenergic projections and a decrease in beta 1-binding sites.

  7. Cardiac cAMP: production, hydrolysis, modulation and detection

    PubMed Central

    Boularan, Cédric; Gales, Céline

    2015-01-01

    Cyclic adenosine 3′,5′-monophosphate (cAMP) modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors' signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefly discuss the complexity of cAMP synthesis and degradation in the cardiac context, describe the way to detect it and review the main pharmacological arsenal to modulate its availability. PMID:26483685

  8. Increased expression of adenylylcyclase type VI proportionately increases β-adrenergic receptor-stimulated production of cAMP in neonatal rat cardiac myocytes

    PubMed Central

    Gao, Meihua; Ping, Peipei; Post, Steven; Insel, Paul A.; Tang, Ruoying; Hammond, H. Kirk

    1998-01-01

    Cellular content of cAMP generated by activation of adenylylcyclase (AC; EC 4.6.1.1) is a key determinant of functional responsiveness in the heart and other tissues. We have tested two hypotheses regarding the relationship between AC content and β-adrenergic receptor (βAR)-mediated signal transduction in cardiac myocytes. First, that AC content limits adrenergic signal transduction, and, second, that increased AC, independent of (βAR) number and G-protein content, yields a proportional increase in βAR-mediated transmembrane signaling. We used recombinant adenovirus to increase AC isoform VI (ACVI) expression in neonatal cardiac myocytes. Cells that overexpressed ACVI responded to agonist stimulation with marked increases in cAMP production in proportion to protein expressed. In parallel experiments performed on cells transfected with lacZ (control) or ACVI, [3H]forskolin binding, used to assess AC protein expression, was amplified 6-fold, while βAR-stimulated cAMP production from these cells was increased 7-fold. No changes in βAR number, or in the heterotrimeric GTP-binding proteins, Gαs or Gαi2, were observed. Previous studies indicate that increased cardiac expression of βAR or Gαs does not yield proportional increases in transmembrane adrenergic signaling. In contrast, the current data demonstrate that increased ACVI expression provides a proportional increase in β-adrenergic signal transduction. Our results show that the amount of AC sets a limit on transmembrane β-adrenergic signaling. We speculate that similar functional responses are possible in other cell types in which AC plays an important physiological role. PMID:9448281

  9. Adrenergic stimulation sensitizes TRPV1 through upregulation of cystathionine β-synthetase in a rat model of visceral hypersensitivity.

    PubMed

    Zhu, Liyan; Zhao, Liting; Qu, Ruobing; Zhu, Hong-Yan; Wang, Yongmeng; Jiang, Xinghong; Xu, Guang-Yin

    2015-11-03

    The pathogenesis of pain in irritable bowel syndrome (IBS) is poorly understood and treatment remains difficult. The present study was designed to investigate roles of adrenergic signaling and the endogenous hydrogen sulfide producing enzyme cystathionine β-synthetase (CBS) in a previously validated rat model of IBS induced by neonatal colonic inflammation (NCI). Here we showed that NCI-induced visceral hypersensitivity (VH) was significantly attenuated by β2 subunit inhibitor but not by β1 or β3 or α subunit inhibitor. NCI markedly elevated plasma norepinephrine (NE) concentration without alteration in expression of β2 subunit receptors in dorsal root ganglion (DRGs) innervating the colon. In addition, NCI markedly enhanced TRPV1 and CBS expression in the colon DRGs. CBS inhibitor AOAA reversed the upregulation of TRPV1 in NCI rats. In vitro experiments showed that incubation of DRG cells with NE markedly enhanced expression of TRPV1, which was reversed by application of AOAA. Incubation of DRG cells with the H2S donor NaHS greatly enhanced TRPV1 expression. Collectively, these data suggest that activation of adrenergic signaling by NCI sensitizes TRPV1 channel activity, which is likely mediated by upregulation of CBS expression in peripheral sensory neurons, thus contributing to chronic visceral hypersensitivity.

  10. Sympathetic Nervous System Control of Carbon Tetrachloride-Induced Oxidative Stress in Liver through α-Adrenergic Signaling.

    PubMed

    Lin, Jung-Chun; Peng, Yi-Jen; Wang, Shih-Yu; Lai, Mei-Ju; Young, Ton-Ho; Salter, Donald M; Lee, Herng-Sheng

    2016-01-01

    In addition to being the primary organ involved in redox cycling, the liver is one of the most highly innervated tissues in mammals. The interaction between hepatocytes and sympathetic, parasympathetic, and peptidergic nerve fibers through a variety of neurotransmitters and signaling pathways is recognized as being important in the regulation of hepatocyte function, liver regeneration, and hepatic fibrosis. However, less is known regarding the role of the sympathetic nervous system (SNS) in modulating the hepatic response to oxidative stress. Our aim was to investigate the role of the SNS in healthy and oxidatively stressed liver parenchyma. Mice treated with 6-hydroxydopamine hydrobromide were used to realize chemical sympathectomy. Carbon tetrachloride (CCl4) injection was used to induce oxidative liver injury. Sympathectomized animals were protected from CCl4 induced hepatic lipid peroxidation-mediated cytotoxicity and genotoxicity as assessed by 4-hydroxy-2-nonenal levels, morphological features of cell damage, and DNA oxidative damage. Furthermore, sympathectomy modulated hepatic inflammatory response induced by CCl4-mediated lipid peroxidation. CCl4 induced lipid peroxidation and hepatotoxicity were suppressed by administration of an α-adrenergic antagonist. We conclude that the SNS provides a permissive microenvironment for hepatic oxidative stress indicating the possibility that targeting the hepatic α-adrenergic signaling could be a viable strategy for improving outcomes in patients with acute hepatic injury.

  11. Adrenergic stimulation sensitizes TRPV1 through upregulation of cystathionine β-synthetase in a rat model of visceral hypersensitivity.

    PubMed

    Zhu, Liyan; Zhao, Liting; Qu, Ruobing; Zhu, Hong-Yan; Wang, Yongmeng; Jiang, Xinghong; Xu, Guang-Yin

    2015-01-01

    The pathogenesis of pain in irritable bowel syndrome (IBS) is poorly understood and treatment remains difficult. The present study was designed to investigate roles of adrenergic signaling and the endogenous hydrogen sulfide producing enzyme cystathionine β-synthetase (CBS) in a previously validated rat model of IBS induced by neonatal colonic inflammation (NCI). Here we showed that NCI-induced visceral hypersensitivity (VH) was significantly attenuated by β2 subunit inhibitor but not by β1 or β3 or α subunit inhibitor. NCI markedly elevated plasma norepinephrine (NE) concentration without alteration in expression of β2 subunit receptors in dorsal root ganglion (DRGs) innervating the colon. In addition, NCI markedly enhanced TRPV1 and CBS expression in the colon DRGs. CBS inhibitor AOAA reversed the upregulation of TRPV1 in NCI rats. In vitro experiments showed that incubation of DRG cells with NE markedly enhanced expression of TRPV1, which was reversed by application of AOAA. Incubation of DRG cells with the H2S donor NaHS greatly enhanced TRPV1 expression. Collectively, these data suggest that activation of adrenergic signaling by NCI sensitizes TRPV1 channel activity, which is likely mediated by upregulation of CBS expression in peripheral sensory neurons, thus contributing to chronic visceral hypersensitivity. PMID:26527188

  12. Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for beta-adrenergic signaling in the pancreatic microenvironment.

    PubMed

    Kim-Fuchs, Corina; Le, Caroline P; Pimentel, Matthew A; Shackleford, David; Ferrari, Davide; Angst, Eliane; Hollande, Frédéric; Sloan, Erica K

    2014-08-01

    Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural signaling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dissemination to normal adjacent pancreas. These effects were associated with increased expression of invasion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of β-adrenergic signaling induced similar effects to chronic stress, and pharmacological β-blockade reversed the effects of chronic stress on pancreatic cancer progression. These findings indicate that neural β-adrenergic signaling regulates pancreatic cancer progression and suggest β-blockade as a novel strategy to complement existing therapies for pancreatic cancer.

  13. Adrenergic stimulation sensitizes TRPV1 through upregulation of cystathionine β-synthetase in a rat model of visceral hypersensitivity

    PubMed Central

    Zhu, Liyan; Zhao, Liting; Qu, Ruobing; Zhu, Hong-Yan; Wang, Yongmeng; Jiang, Xinghong; Xu, Guang-Yin

    2015-01-01

    The pathogenesis of pain in irritable bowel syndrome (IBS) is poorly understood and treatment remains difficult. The present study was designed to investigate roles of adrenergic signaling and the endogenous hydrogen sulfide producing enzyme cystathionine β-synthetase (CBS) in a previously validated rat model of IBS induced by neonatal colonic inflammation (NCI). Here we showed that NCI-induced visceral hypersensitivity (VH) was significantly attenuated by β2 subunit inhibitor but not by β1 or β3 or α subunit inhibitor. NCI markedly elevated plasma norepinephrine (NE) concentration without alteration in expression of β2 subunit receptors in dorsal root ganglion (DRGs) innervating the colon. In addition, NCI markedly enhanced TRPV1 and CBS expression in the colon DRGs. CBS inhibitor AOAA reversed the upregulation of TRPV1 in NCI rats. In vitro experiments showed that incubation of DRG cells with NE markedly enhanced expression of TRPV1, which was reversed by application of AOAA. Incubation of DRG cells with the H2S donor NaHS greatly enhanced TRPV1 expression. Collectively, these data suggest that activation of adrenergic signaling by NCI sensitizes TRPV1 channel activity, which is likely mediated by upregulation of CBS expression in peripheral sensory neurons, thus contributing to chronic visceral hypersensitivity. PMID:26527188

  14. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells.

    PubMed

    Suli, Arminda; Pujol, Remy; Cunningham, Dale E; Hailey, Dale W; Prendergast, Andrew; Rubel, Edwin W; Raible, David W

    2016-06-01

    Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse.

  15. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells.

    PubMed

    Suli, Arminda; Pujol, Remy; Cunningham, Dale E; Hailey, Dale W; Prendergast, Andrew; Rubel, Edwin W; Raible, David W

    2016-06-01

    Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse. PMID:27103160

  16. Sympathetic innervation of the ileocecal junction in horses.

    PubMed

    Russo, D; Bombardi, C; Grandis, A; Furness, J B; Spadari, A; Bernardini, C; Chiocchetti, R

    2010-10-01

    The distribution and chemical phenotypes of sympathetic and dorsal root ganglion (DRG) neurons innervating the equine ileocecal junction (ICJ) were studied by combining retrograde tracing and immunohistochemistry. Immunoreactivity (IR) for tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), neuronal nitric oxide synthase (nNOS), calcitonin gene-related peptide (CGRP), substance P (SP), and neuropeptide Y (NPY) was investigated. Sympathetic neurons projecting to the ICJ were distributed within the celiac (CG), cranial mesenteric (CranMG), and caudal mesenteric (CaudMG) ganglia, as well as in the last ganglia of the thoracic sympathetic chain and in the splanchnic ganglia. In the CG and CranMG 91 +/- 8% and 93 +/- 12% of the neurons innervating the ICJ expressed TH- and DBH-IR, respectively. In the CaudMG 90 +/- 15% and 94 +/- 5% of ICJ innervating neurons were TH- and DBH-IR, respectively. Sympathetic (TH-IR) fibers innervated the myenteric and submucosal ganglia, ileal blood vessels, and the muscle layers. They were more concentrated at the ICJ level and were also seen encircling myenteric plexus (MP) and submucosal plexus (SMP) descending neurons that were retrogradely labeled from the ICJ. Among the few retrogradely labeled DRG neurons, nNOS-, CGRP-, and SP-IR nerve cells were observed. Dense networks of CGRP-, nNOS-, and SP-IR varicosities were seen around retrogradely labeled prevertebral ganglia neurons. The CGRP-IR fibers are probably the endings of neurons projecting from the intestine to the prevertebral ganglia. These findings indicate that this crucial region of the intestinal tract is strongly influenced by the sympathetic system and that sensory information of visceral origin influences the sympathetic control of the ICJ.

  17. Characterization of primary afferent spinal innervation of mouse uterus.

    PubMed

    Herweijer, Geraldine; Kyloh, Melinda; Beckett, Elizabeth A H; Dodds, Kelsi N; Spencer, Nick J

    2014-01-01

    The primary afferent innervation of the uterus is incompletely understood. The aim of this study was to identify the location and characteristics of primary afferent neurons that innervate the uterine horn of mice and correlate the different morphological types of putative primary afferent nerve endings, immunoreactive to the sensory marker, calcitonin gene related peptide (CGRP). Using retrograde tracing, injection of 5-10 μL of 1,1'-didodecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI) into discrete single sites in each uterine horn revealed a biomodal distribution of sensory neurons in dorsal root ganglia (DRG) with peak labeling occurring between T13-L3 and a second smaller peak between L6-S1. The mean cross sectional area of labeled cells was 463 μm(2) ± s.e.m. A significantly greater proportion of labeled neurons consisted of small cell bodies (<300 μm(2)) in the sacral spinal cord (S2) compared with peak labeling at the lumbar (L2) region. In both sections and whole mount preparations, immunohistochemical staining for CGRP revealed substantial innervation of the uterus by CGRP-positive nerve fibers located primarily at the border between the circular and longitudinal muscle layers (N = 4). The nerve endings were classified into three distinct types: "single," "branching," or "complex," that often aligned preferentially in either the circular or longitudinal axis of the smooth muscles. Complex endings were often associated with mesenteric vessels. We have identified that the cell bodies of primary afferent neurons innervating the mouse uterus lie primarily in DRG at L2 and S1 spinal levels. Also, the greatest density of CGRP immunoreactivity lies within the myometrium, with at least three different morphological types of nerve endings identified. These findings will facilitate further investigations into the mechanisms underlying sensory transduction in mouse uterus. PMID:25120416

  18. Anatomy and innervation ratios in motor units of cat gastrocnemius

    PubMed Central

    Burke, R. E.; Tsairis, P.

    1973-01-01

    1. Muscle fibres belonging to single motor units of identified type were studied in frozen sections of cat medial and lateral gastrocnemius muscles. Reconstruction of the distribution of fibres in individual units showed that the territories of all three physiological types present in the cat medial gastrocnemius were quite extensive. Within its territory, fibres belonging to the studied unit were distributed more or less uniformly without localized collections. The density of unit fibres suggests that, in cat medial gastrocnemius, a given region of the muscle may be shared by as many as fifty different muscle units. 2. Direct determination of innervation ratios in identified muscle units required complete reconstruction of the three-dimensional distribution of unit fibres within the whole medial gastrocnemius. Satisfactory results were obtained with two type FF units and one type FR unit. 3. Indirect estimates of the average innervation ratios expected for muscle units of different physiological type were obtained using counts of muscle fibres with characteristic histochemical profiles and data on relative frequencies of motor units of known type in the medial gastrocnemius unit pool. Such indirect estimates of innervation ratios agreed with the results of direct fibre counts in identified units for types FF and FR muscle units. Taken in sum, the available evidence suggests that an average muscle unit in the cat medial gastrocnemius contains between 400 and 800 muscle fibres, irrespective of physiological type. 4. Tension production by single muscle units depends on a number of factors, including innervation ratio, the cross-sectional areas of unit fibres and the specific tension outputs of the unit fibres. The present results suggest that the specific tension output of gastrocnemius type S unit muscle fibres is considerably smaller (about 0·6 kg/cm2) than in either FF units (about 1·5-2·0 kg/cm2) or type FR units (2·6-2·9 kg/cm2). PMID:4148753

  19. Compartmental Innervation of the Superior Oblique Muscle in Mammals

    PubMed Central

    Le, Alan; Poukens, Vadims; Ying, Howard; Rootman, Daniel; Goldberg, Robert A.; Demer, Joseph L.

    2015-01-01

    Purpose Intramuscular innervation of mammalian horizontal rectus extraocular muscles (EOMs) is compartmental. We sought evidence of similar compartmental innervation of the superior oblique (SO) muscle. Methods Three fresh bovine orbits and one human orbit were dissected to trace continuity of SO muscle and tendon fibers to the scleral insertions. Whole orbits were also obtained from four humans (two adults, a 17-month-old child, and a 33-week stillborn fetus), two rhesus monkeys, one rabbit, and one cow. Orbits were formalin fixed, embedded whole in paraffin, serially sectioned in the coronal plane at 10-μm thickness, and stained with Masson trichrome. Extraocular muscle fibers and branches of the trochlear nerve (CN4) were traced in serial sections and reconstructed in three dimensions. Results In the human, the lateral SO belly is in continuity with tendon fibers inserting more posteriorly on the sclera for infraducting mechanical advantage, while the medial belly is continuous with anteriorly inserting fibers having mechanical advantage for incycloduction. Fibers in the monkey superior SO insert more posteriorly on the sclera to favor infraduction, while the inferior portion inserts more anteriorly to favor incycloduction. In all species, CN4 bifurcates prior to penetrating the SO belly. Each branch innervates a nonoverlapping compartment of EOM fibers, consisting of medial and lateral compartments in humans and monkeys, and superior and inferior compartments in cows and rabbits. Conclusions The SO muscle of humans and other mammals is compartmentally innervated in a manner that could permit separate CN4 branches to selectively influence vertical versus torsional action. PMID:26426404

  20. Has iprindole an alpha adrenergic activity?

    PubMed

    Ganry, H; Bourin, M

    1993-05-01

    1. Acute administration of iprindole potentiated the toxicity of 1-norepinephrine and increased the intensity of oxotremorine-induced tremors. 2. On the forced swimming test combination iprindole with imipramine reduced the duration of immobility. 3. The action of yohimbine on the locomotor activity was antagonized by a pre-injection of iprindole. 4. Iprindole increased and prolonged exophthalmia and loss of righting reflex induced by xylazine. 5 All these results seems indicate that iprindole has an indirect alpha 1 and alpha 2 adrenergic activity.

  1. Immunohistochemical demonstration of lumbar intervertebral disc innervation in the dog.

    PubMed

    Willenegger, S; Friess, A E; Lang, J; Stoffel, M H

    2005-04-01

    Low back pain is a common ailment in dogs, particularly in specific breeds such as the German shepherd dog. A number of structures such as facet joint capsules, ligaments, dorsal root ganglia, periosteum, vertebral endplates and meninges have been associated with this condition. Yet, in spite of all diagnostic efforts, the origin of pain remains obscure in a substantial proportion of all cases. A further structure often being involved in vertebral column disorders is the intervertebral disc. The presence of nerves, however, is a precondition for pain sensation and, consequently, structures lacking innervation can be left out of consideration as a cause for low back pain. Nerve fibres have been demonstrated at the periphery of the intervertebral disc in man, rabbit and rat. With regard to the dog, however, the extent of intervertebral disc innervation is still being disputed. The goal of the present study, therefore, was to substantiate and expand current knowledge of intervertebral disc innervation. Protein gene product (PGP) 9.5 was used for immunohistochemical examination of serial transversal and sagittal paraffin sections of lumbar discs from adult dogs. This general marker revealed nerve fibres to be confined to the periphery of the intervertebral discs. These results indicate that even limited pathological processes affecting the outer layers of the intervertebral disc are prone to cause low back pain.

  2. Ovarian innervation develops before initiation of folliculogenesis in the rat.

    PubMed

    Malamed, S; Gibney, J A; Ojeda, S R

    1992-10-01

    Sympathetic neurotransmitters have been shown to be present in the ovary of the rat during early postnatal development and to affect steroidogenesis before the ovary becomes responsive to gonadotropins, and before the first primordial follicles are formed. This study was undertaken to determine if development of the ovarian innervation is an event that antedates the initiation of folliculogenesis in the rat, Rattus norvegicus. Serial sections of postnatal ovaries revealed a negligible frequency of follicles 24 h after birth (about 1 primordial follicle per ovary). Twelve hours later there were about 500 follicles per ovary, a number that more than doubled to about 1300 during the subsequent 12 h, indicating that an explosive period of follicular differentiation occurs between the end of postnatal days 1 and 2. Electron microscopy demonstrated that before birth the ovaries are already innervated by fibers containing clear and dense-core vesicles. Immunohistochemistry performed on either fetal (day 19) or newborn (less than 15h after birth) ovaries showed the presence of catecholaminergic nerves, identified by their content of immunoreactive tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. While some of these fibers innervate blood vessels, others are associated with primordial ovarian cells, thereby suggesting their participation in non-vascular functions. Since prefollicular ovaries are insensitive to gonadotropins, the results suggest that the developing ovary becomes subjected to direct neurogenic influences before it acquires responsiveness to gonadotropins.

  3. Innervation of amphibian reproductive system. Histological and ultrastructural studies.

    PubMed

    Cisint, Susana; Crespo, Claudia A; Medina, Marcela F; Iruzubieta Villagra, Lucrecia; Fernández, Silvia N; Ramos, Inés

    2014-10-01

    In the present study we describe for the first time in anuran amphibians the histological and ultrastructural characteristics of innervation in the female reproductive organs. The observations in Rhinella arenarum revealed the presence of nerve fibers located predominantly in the ovarian hilium and in the oviduct wall. In both organs the nerves fibers are placed near blood vessels and smooth muscles fibers. In the present study the histological observations were confirmed using antibodies against peripherin and neurofilament 200 proteins. Ultrastructural analyses demonstrated that the innervation of the reproductive organs is constituted by unmyelinated nerve fibers surrounded by Schwann cells. Axon terminals contain a population of small, clear, translucent vesicles that coexist with a few dense cored vesicles. The ultrastructural characteristics together with the immunopositive reaction to tyrosine hydroxylase of the nerve fibers and the type of synaptic vesicles present in the axon terminal would indicate that the reproductive organs of R. arenarum females are innervated by the sympathetic division of the autonomic nervous system.

  4. Physiological and Clinical Implications of Adrenergic Pathways at High Altitude.

    PubMed

    Richalet, Jean-Paul

    2016-01-01

    The adrenergic system is part of a full array of mechanisms allowing the human body to adapt to the hypoxic environment. Triggered by the stimulation of peripheral chemoreceptors, the adrenergic centers in the medulla are activated in acute hypoxia and augment the adrenergic drive to the organs, especially to the heart, leading to tachycardia. With prolonged exposure to altitude hypoxia, the adrenergic drive persists, as witnessed by elevated blood concentrations of catecholamines and nerve activity in adrenergic fibers. In response to this persistent stimulation, the pathways leading to the activation of adenylate cyclase are modified. A downregulation of β-adrenergic and adenosinergic receptors is observed, while muscarinic receptors are upregulated. The expression and activity of Gi and Gs proteins are modified, leading to a decreased response of adenylate cyclase activity to adrenergic stimulation. The clinical consequences of these cellular and molecular changes are of importance, especially for exercise performance and protection of heart function. The decrease in maximal exercise heart rate in prolonged hypoxia is fully accounted for the observed changes in adrenergic and muscarinic pathways. The decreased heart rate response to isoproterenol infusion is another marker of the desensitization of adrenergic pathways. These changes can be considered as mechanisms protecting the heart from a too high oxygen consumption in conditions where the oxygen availability is severely reduced. Similarly, intermittent exposure to hypoxia has been shown to protect the heart from an ischemic insult with similar mechanisms involving G proteins and downregulation of β receptors. Other pathways with G proteins are concerned in adaptation to hypoxia, such as lactate release by the muscles and renal handling of calcium. Altogether, the activation of the adrenergic system is useful for the acute physiological response to hypoxia. With prolonged exposure to hypoxia, the autonomous

  5. Agonistic autoantibodies to the α(1) -adrenergic receptor and the β(2) -adrenergic receptor in Alzheimer's and vascular dementia.

    PubMed

    Karczewski, P; Hempel, P; Kunze, R; Bimmler, M

    2012-05-01

    Although primary causes of Alzheimer's and vascular dementia are unknown, the importance of preceding vascular lesions is widely accepted. Furthermore, there is strong evidence for the involvement of autoimmune mechanisms. Here, we report the presence of agonistic autoantibodies directed at adrenergic receptors in the circulation of patients with mild to moderate Alzheimer's and vascular dementia. In 59% of these patients, agonistic autoantibodies against the α(1) -adrenergic receptor and the β(2) -adrenergic receptor were identified. The majority of positive patients (66%) contained both types of autoantibodies in combination. In a control group of patients with neurological impairments others than Alzheimer's and vascular dementia, only 17% were found to harbour these autoantibodies. The autoantibodies to the α(1) -adrenergic receptor interacted preferably with the extracellular loop1 of the receptor. They were further studied in IgG preparations from the column regenerate of a patient who underwent immunoadsorption. The α(1) -adrenergic receptor autoantibodies specifically bound to the extracellular loop1 peptide of the receptor with an apparent EC(50) value of 30 nm. They mobilized intracellular calcium in a clonal cell line expressing the human form of the α(1) -adrenergic receptor. Our data support the notion that autoimmune mechanisms play a significant role in the pathogenesis of Alzheimer's and vascular dementia. We suggest that agonistic autoantibodies to the α(1) -adrenergic and the β(2) -adrenergic receptor may contribute to vascular lesions and increased plaque formation.

  6. Cardiac arrest

    MedlinePlus

    ... Article.jsp. Accessed June 16, 2014. Myerburg RJ, Castellanos A. Approach to cardiac arrest and life-threatening ... PA: Elsevier Saunders; 2011:chap 63. Myerburg RJ, Castellanos A. Cardiac arrest and audden aardiac death. In: ...

  7. Identification of motoneurons supplying multiply- or singly-innervated extraocular muscle fibers in the rat.

    PubMed

    Eberhorn, A C; Büttner-Ennever, J A; Horn, A K E

    2006-02-01

    In mammals, the extraocular muscle fibers can be categorized in singly-innervated and multiply-innervated muscle fibers. In the monkey oculomotor, trochlear and abducens nucleus the motoneurons of multiply-innervated muscle fibers lie separated from those innervating singly-innervated muscle fibers and show different histochemical properties. In order to discover, if this organization is a general feature of the oculomotor system, we investigated the location of singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons in the rat using combined tract-tracing and immunohistochemical techniques. The singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons of the medial and lateral rectus muscle were identified by retrograde tracer injections into the muscle belly or the distal myotendinous junction. The belly injections labeled the medial rectus muscle subgroup of the oculomotor nucleus or the greatest part of abducens nucleus, including some cells outside the medial border of abducens nucleus. In contrast, the distal injections labeled only a subset of the medial rectus muscle motoneurons and exclusively cells outside the medial border of abducens nucleus. The tracer detection was combined with immunolabeling using antibodies for perineuronal nets (chondroitin sulfate proteoglycan) and non-phosphorylated neurofilaments. In monkeys both antibodies permit a distinction between singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons. The experiments revealed that neurons labeled from a distal injection lack both markers and are assumed to represent multiply-innervated muscle fiber motoneurons, whereas those labeled from a belly injection are chondroitin sulfate proteoglycan- and non-phosphorylated neurofilament-immunopositive and assumed to represent singly-innervated muscle fiber motoneurons. The overall identification of multiply-innervated muscle fiber and singly-innervated muscle fiber motoneurons

  8. beta. -Adrenergic stimulation of brown adipocyte proliferation

    SciTech Connect

    Geloeen, A.; Collet, A.J.; Guay, G.; Bukowiecki, L.J. Laboratoire de Thermoregulation et Metabolisme Energetique, Lyon )

    1988-01-01

    The mechanisms of brown adipose tissue (BAT) growth were studied by quantitative photonic radioautography using tritiated thymidine to follow mitotic activity. To identify the nature of the adrenergic pathways mediating brown adipocyte proliferation and differentiation, the effects of cold exposure (4 days at 4{degree}C) on BAT growth were compared with those induced by treating rats at 25{degree}C with norepinephrine (a mixed agonist), isoproterenol (a {beta}-agonist), and phenylephrine (an {alpha}-agonist). Norepinephrine mimicked the effects of cold exposure, not only on the mitotic activity, but also on the distribution of the labeling among the various cellular types. Isoproterenol entirely reproduced the effects of norepinephrine both on the labeling index and on the cellular type labeling frequency. These results demonstrate that norepinephrine triggers a coordinated proliferation of brown adipocytes and endothelial cells in warm-exposed rats that is similar to that observed after cold exposure. They also suggest that cold exposure stimulates BAT growth by increasing the release of norepinephrine from sympathetic nerves and that the neurohormone activates mitoses in BAT precursor cells via {beta}-adrenergic pathways.

  9. Adrenergic regulation of innate immunity: a review

    PubMed Central

    Scanzano, Angela; Cosentino, Marco

    2015-01-01

    The sympathetic nervous system has a major role in the brain-immune cross-talk, but few information exist on the sympathoadrenergic regulation of innate immune system. The aim of this review is to summarize available knowledge regarding the sympathetic modulation of the innate immune response, providing a rational background for the possible repurposing of adrenergic drugs as immunomodulating agents. The cells of immune system express adrenoceptors (AR), which represent the target for noradrenaline and adrenaline. In human neutrophils, adrenaline and noradrenaline inhibit migration, CD11b/CD18 expression, and oxidative metabolism, possibly through β-AR, although the role of α1- and α2-AR requires further investigation. Natural Killer express β-AR, which are usually inhibitory. Monocytes express β-AR and their activation is usually antiinflammatory. On murine Dentritic cells (DC), β-AR mediate sympathetic influence on DC-T cells interactions. In human DC β2-AR may affect Th1/2 differentiation of CD4+ T cells. In microglia and in astrocytes, β2-AR dysregulation may contribute to neuroinflammation in autoimmune and neurodegenerative disease. In conclusion, extensive evidence supports a critical role for adrenergic mechanisms in the regulation of innate immunity, in peripheral tissues as well as in the CNS. Sympathoadrenergic pathways in the innate immune system may represent novel antiinflammatory and immunomodulating targets with significant therapeutic potential. PMID:26321956

  10. Re-evaluating the efficacy of β-adrenergic agonists and antagonists in long QT-3 syndrome through computational modelling

    PubMed Central

    Ahrens-Nicklas, Rebecca C.; Clancy, Colleen E.; Christini, David J.

    2009-01-01

    Aims Long QT syndrome (LQTS) is a heterogeneous collection of inherited cardiac ion channelopathies characterized by a prolonged electrocardiogram QT interval and increased risk of sudden cardiac death. β-Adrenergic blockers are the mainstay of treatment for LQTS. While their efficacy has been demonstrated in LQTS patients harbouring potassium channel mutations, studies of β-blockers in subtype 3 (LQT3), which is caused by sodium channel mutations, have produced ambiguous results. In this modelling study, we explore the effects of β-adrenergic drugs on the LQT3 phenotype. Methods and results In order to investigate the effects of β-adrenergic activity and to identify sources of ambiguity in earlier studies, we developed a computational model incorporating the effects of β-agonists and β-blockers into an LQT3 mutant guinea pig ventricular myocyte model. β-Activation suppressed two arrhythmogenic phenomena, transmural dispersion of repolarization and early after depolarizations, in a dose-dependent manner. However, the ability of β-activation to prevent cardiac conduction block was pacing-rate-dependent. Low-dose β-blockade by propranolol reversed the beneficial effects of β-activation, while high dose (which has off-target sodium channel effects) decreased arrhythmia susceptibility. Conclusion These results demonstrate that β-activation may be protective in LQT3 and help to reconcile seemingly conflicting results from different experimental models. They also highlight the need for well-controlled clinical investigations re-evaluating the use of β-blockers in LQT3 patients. PMID:19264765

  11. Alpha-adrenergic regulation of systemic peripheral resistance and blood flow distribution in the turtle Trachemys scripta during anoxic submergence at 5 degrees C and 21 degrees C.

    PubMed

    Stecyk, J A W; Overgaard, J; Farrell, A P; Wang, T

    2004-01-01

    Anoxic exposure in the anoxia-tolerant freshwater turtle is attended by substantial decreases in heart rate and blood flows, but systemic blood pressure (P(sys)) only decreases marginally due to an increase in systemic peripheral resistance (R(sys)). Here, we investigate the role of the alpha-adrenergic system in modulating R(sys) during anoxia at 5 degrees C and 21 degrees C in the turtle Trachemys scripta, and also describe how anoxia affects relative systemic blood flow distribution (%.Q(sys)) and absolute tissue blood flows. Turtles were instrumented with an arterial cannula for measurement of P(sys) and ultrasonic flow probes on major systemic blood vessels for determination of systemic cardiac output ((.Qsys)). Alpha-adrenergic tone was assessed from vascular injections of alpha-adrenergic agonists and antagonists (phenylephrine and phentolamine, respectively) during normoxia and following either 6 h (21 degrees C) or 12 days (5 degrees C) of anoxic submergence. Coloured microspheres, injected through a left atrial cannula during normoxia and anoxia, as well as after alpha-adrenergic stimulation and blockade during anoxia at both temperatures, were used to determine relative and absolute tissue blood flows. Anoxia was associated with an increased R(sys) and functional alpha-adrenergic vasoactivity at both acclimation temperatures. However, while anoxia at 21 degrees C was associated with a high systemic alpha-adrenergic tone, the progressive increase of R(sys) at 5 degrees C was not mediated by alpha-adrenergic control. A redistribution of blood flow away from ancillary vascular beds towards more vital circulations occurred with anoxia at both acclimation temperatures. %.Q(sys) and absolute blood flow were reduced to the digestive and urogenital tissues (approximately 2- to 15-fold), while %.Q(sys) and absolute blood flows to the heart and brain were maintained at normoxic levels. The importance of liver and muscle glycogen stores in fueling anaerobic

  12. Cholinergic and adrenergic influence on the teleost heart in vivo.

    PubMed

    Axelsson, M; Ehrenström, F; Nilsson, S

    1987-01-01

    The tonical cholinergic and adrenergic influence on the heart rate was investigated in vivo in seven species of marine teleosts (pollack, Pollachius pollachius; cuckoo wrasse, Labrus mixtus; ballan wrasse, Labrus berggylta; five-bearded rockling, Ciliata mustela; tadpole fish, Raniceps raninus; eel-pout, Zoarces viviparus and short-spined sea scorpion, Myoxocephalus scor pius) during rest and, in two of the species (P. pollachius and L. mixtus), also during moderate swimming exercise in a Blazka-type swim tunnel. Ventral aortic blood pressure and heart rate were recorded via a catheter implanted in an afferent branchial artery, and the influence of the cholinergic and adrenergic tonus on the heart rate was assessed by injection of atropine and sotalol respectively. During rest the adrenergic tonus was higher than the cholinergic tonus in all species except L. berggylta, where the reverse was true. In P. pollachius and L. mixtus, exercise appeared to produce a lowering of the cholinergic tonus on the heart and, possibly, a slight increase of the adrenergic tonus. The nature of the adrenergic tonus (humoral or neural) is not clear, but the low plasma concentrations of catecholamines both during rest and exercise could be interpreted in favour of a mainly neural adrenergic tonus on the teleost heart. These experiments are compatible with the view that both a cholinergic inhibitory tonus and an adrenergic excitatory tonus are general features in the control of the teleost heart in vivo, both at rest and during moderate swimming exercise.

  13. Cocaine downregulates beta-adrenergic receptors in pregnant sheep myometrium.

    PubMed

    Wang, F L; Gauvin, J M; Dombrowski, M P; Smith, Y R; Christopher, K A; Hurd, W W

    1996-01-01

    Cocaine abuse is associated with premature labor. Although cocaine is known to competitively inhibit beta-adrenergic receptor binding, cocaine's effect on receptor downregulation is uncertain. This study was designed to determine the in vitro effect of cocaine on downregulation of beta-adrenergic receptors in pregnant myometrium. Pregnant sheep myometrium was incubated with either cocaine, isoproterenol, or a cocaine metabolite, benzoylecgonine. Membrane fractions were assayed for beta-adrenergic receptors using (125I)-cyanopindolol and the beta 2-adrenergic antagonist ICI 118,551. We found that cocaine (10(-6) to 10(-4) mol/L), but not benzoylecgonine, downregulated both beta 1- and beta 2-adrenergic receptors, but did not further augment receptor downregulation by isoproterenol. The 46% decrease in beta-adrenergic receptors seen after exposure to cocaine was similar to the 53% decrease seen after isoproterenol. We hypothesize downregulation of beta-adrenergic receptors by cocaine may play a role in the association of cocaine abuse with premature labor.

  14. Role of angiotensin II and alpha-adrenergic receptors during estrogen-induced vasodilation in ewes.

    PubMed

    Davis, L E; Magness, R R; Rosenfeld, C R

    1992-11-01

    Estradiol-17 beta (E2 beta) produces uterine and systemic vasodilation in nonpregnant ewes without altering mean arterial pressure (MAP). Mechanisms responsible for maintaining MAP and thus uterine blood flow (UBF) may include activation of the renin-angiotensin and/or adrenergic systems. We therefore investigated the effects of systemic blockade of angiotensin II (ANG II) and/or alpha-adrenergic receptors in nonpregnant, castrated ewes, using saralasin (Sar) and/or phentolamine (Phen) in the presence or absence of intravenous E2 beta (1.0 microgram/kg). In nonestrogenized ewes neither antagonist alone had substantial cardiovascular effects; however, Sar + Phen decreased systemic vascular resistance (SVR) 20 +/- 7.4% (SE) and increased heart rate (HR) 50 +/- 19% (P < 0.01); MAP and UBF were unaffected. Following E2 beta treatment SVR fell 17 +/- 2.4% (P < 0.01), UBF increased more than fourfold, and MAP was unchanged. Compared with E2 beta alone, Phen + E2 beta decreased SVR 42 +/- 4.7%, and MAP fell 11 +/- 1.8% (P < 0.05) despite 40-50% increases in HR and cardiac output (P < 0.05). Responses to Sar + E2 beta were similar to E2 beta alone, except for a fall in MAP, whereas responses to Sar + Phen + E2 beta resembled those of Phen + E2 beta. E2 beta-induced uterine vasodilation was unaltered by Sar and/or Phen. During E2 beta-induced vasodilation, MAP is maintained by enhanced activation of the alpha-adrenergic and renin-angiotensin systems; however, uterine vascular responses to E2 beta are independent of both systems and perfusion pressure.

  15. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation.

    PubMed

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-09-15

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in Bdnf(lacZ/+) mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development.

  16. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation

    PubMed Central

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-01-01

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in BdnflacZ/+ mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. PMID:26164656

  17. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation.

    PubMed

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-09-15

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in Bdnf(lacZ/+) mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. PMID:26164656

  18. Prenatal exposure to methyldopa leading to hypertensive crisis and cardiac failure in a neonate.

    PubMed

    Su, Jennifer A; Tang, William; Rivero, Niurka; Bar-Cohen, Yaniv

    2014-05-01

    A 2-week-old infant with normal intracardiac anatomy presented to the emergency department in a hypertensive crisis with acute cardiac failure. Despite extensive evaluation, no underlying disease was found. The patient's hypertension and cardiac dysfunction resolved after 1 week of supportive care in the PICU, and she was discharged within 2 weeks of presentation. The patient's history revealed transplacental exposure to the α-adrenergic agonist methyldopa for 10 weeks before delivery. Her age at presentation and the self-limited nature of cardiac sequelae with complete resolution of cardiac dysfunction suggest withdrawal effects from this exposure. Whereas the rebound hypertensive effects of α-adrenergic agonists are well established in the adult population, this report shows an unusual adverse outcome of in utero exposure to methyldopa.

  19. The innervation of tandem muscle spindles in the cat neck.

    PubMed

    Richmond, F J; Bakker, G J; Bakker, D A; Stacey, M J

    1986-03-22

    Patterns of innervation were examined in tandem muscle spindles teased from silver-stained muscles of the cat neck. Each tandem spindle was composed of two or more encapsulated receptors linked in series by a shared bag2 fiber. In most tandem spindles, two different types of encapsulation were identified according to differences in their intrafusal fiber content. One type, the b1b2c unit, contained typical bag1, bag2, and chain fibers and was structurally similar to single spindles described in other cat muscles. Each b1b2c unit contained a single primary sensory ending and 1-6 secondary endings. Fusimotor innervation was supplied by many axons. Some fusimotor axons ended in trail ramifications on bag2 and chain fibers, others ended in plates on the bag1 or long chain fiber. The other type of tandem encapsulation, the b2c unit, had only bag2 and chain fibers in its intrafusal fiber bundle. The b2c unit was usually supplied by only one sensory axon that ended on the nucleated part of the intrafusal fiber bundle. This single ending had a more variable terminal morphology than the primary ending in b1b2c units. A few b2c units (3/49) were also supplied by a secondary ending. The fusimotor innervation of the b2c unit was relatively simple. A single pole of the b2c unit was usually supplied by only one to three axons, all ending in trail ramifications. No plate endings were found in b2c units. These morphological specializations suggest that b1b2c and b2c units in tandem spindles differ in both their transductive and fusimotor mechanisms. Thus, the tandem spindle is a specialized structure that may provide additional proprioceptive information beyond that available from single muscle spindles.

  20. [Changes in adrenergic nerve plexuses of the heart during immobilization stress in the rat].

    PubMed

    Mar'ian, K L; Buniatian, A M

    1984-03-01

    Luminescent microscopical analysis on the state of the cardiac adrenergic neural apparatus under immobilization stress has been performed in 48 rats of August and Wistar strains. The rats of August strain demonstrate a high sensitivity to the stress: 40% of the animals died during the first 4-17 h of immobilization. Cryostate sections are treated in 2% glyoxylic acid and studied in the luminescent microscope. Quantitative analysis of density distribution of the adrenergic neural terminals is performed by means of dot nets. Decreasing luminescent brightness and decreasing density by 10-15% are noted in the right auricle, and by 30-34%--in the left ventricle, comparing to that of the control. In the animals died a sudden death these parameters are even stronger (28% and 54%, respectively). The data obtained correlate to the functional disturbances of the heart activity (fluctuations of the arterial pressure, disturbances of the rhythm, ECG changes). A suggestion is made that catecholamines content in the neural terminals of the heart is of certain importance in development of the cardiovascular disturbances under immobilization stress.

  1. Beta-adrenergic receptor sensitivity, autonomic balance and serotonergic activity in practitioners of Transcendental Meditation

    SciTech Connect

    Hill, D.A.

    1989-01-01

    The aim of this thesis was to investigate the acute autonomic effects of the Transcendental Meditation Program (TM) and resolve the conflict arising from discrepant neurochemical and psychophysiological data. Three experimental investigations were performed. The first examined beta{sub 2}-adrenergic receptors (AR's) on peripheral blood lymphocytes, via (I{sup 125})iodocyanopindolol binding, in 10 male mediating and 10 age matched non-meditating control subjects, to test the hypothesis that the long-term practice of TM and the TM Sidhi Program (TMSP) reduces end organ sensitivity to adrenergic agonists. The second investigated respiratory sinus arrhythmia (an indirect measure of cardiac Parasympathetic Nervous System tone), and skin resistance (a measure of Sympathetic Nervous System tone) during periods of spontaneous respiratory apneusis, a phenomenon occurring during TM that is known to mark the subjective experience of transcending. The third was within subject investigation of the acute effects of the TMSP on 5-hydroxytryptamine (5-HT) activity. Platelet 5-HT was assayed by high pressure liquid chromatography with electrochemical detection, plasma prolactin (PL) and lutenizing hormone (LH) by radioimmunoassay, tryptophan by spectrofluorimetry, and alpha-1-acid glycoprotein (AGP, a modulator of 5-HT uptake) by radial immunodiffusion assay.

  2. Localization of motoneurons innervating individual abdominal muscles of the cat

    NASA Technical Reports Server (NTRS)

    Miller, Alan D.

    1987-01-01

    The paper presents the results of a systematic investigation of the innervation of the cat's individual abdominal muscles. The segmental distribution of the different motor pools was determined by using electrical microstimulation of the ventral horn to produce visible localized muscle twitches and by retrograde transport of horseradish peroxidase injected into individual muscles. The segmental distribution of each motor pool was as follows: rectus abdominis, T4-L3; external oblique, T6-L3; transverse abdominis, T9-L3; and internal oblique, T13-L3.

  3. Adrenergic receptors in human fetal liver membranes.

    PubMed

    Falkay, G; Kovács, L

    1990-01-01

    The adrenergic receptor binding capacities in human fetal and adult livers were measured to investigate the mechanism of the reduced alpha-1 adrenoreceptor response of the liver associated with a reciprocal increase in beta-adrenoreceptor activity in a number of conditions. Alpha-1 and beta-adrenoreceptor density were determined using 3H-prazosin and 3H-dihydroalprenolol, respectively, as radioligand. Heterogenous populations of beta-adrenoreceptors were found in fetal liver contrast to adult. Decreased alpha-1 and increased beta-receptor density were found which may relate to a decreased level in cellular differentiation. These findings may be important for the investigation of perinatal hypoglycaemia of newborns after treatment of premature labour with beta-mimetics. This is the first demonstration of differences in the ratio of alpha-1 and beta-adrenoceptors in human fetal liver.

  4. Beta-adrenergic receptor sensitivity in subjects practicing transcendental meditation.

    PubMed

    Mills, P J; Schneider, R H; Hill, D; Walton, K G; Wallace, R K

    1990-01-01

    Several studies suggest that behavioral techniques such as meditation and relaxation may be associated with reduced end organ adrenergic receptor sensitivity. Thus far the evidence supporting this hypothesis has been indirect. We present preliminary findings showing reduced beta-adrenergic receptor sensitivity in a group of subjects practicing Transcendental Meditation. The meditation group (N = 10), compared to controls (N = 10), had a lower percentage of functional lymphocyte beta-adrenergic receptors (p = 0.009), but showed no difference in total receptor number or plasma catecholamines. There were no differences between the groups in Type A behavior, the Type A components, exercise, or family history of hypertension. The results provide some support for studies postulating that meditation is associated with reduced sympathetic adrenergic receptor sensitivity, and provide encouragement for the efficacy of receptor measurement in psychophysiology research.

  5. Pharmacologic specificity of alpha-2 adrenergic receptor subtypes

    SciTech Connect

    Petrash, A.; Bylund, D.

    1986-03-01

    The authors have defined alpha-2 adrenergic receptor subtypes in human and rat tissues using prazosin as a subtype selective drug. Prazosin has a lower affinity (250 nM) at alpha-2A receptor and a higher affinity (5 nM) at alpha-2B receptors. In order to determine if other adrenergic drugs are selective for one or the other subtypes, the authors performed (/sup 3/H)yohimbine inhibition experiments with various adrenergic drugs in tissues containing alpha-2A, alpha-2B or both subtypes. Oxymetazoline, WB4101 and yohimbine were found to be 80-, 20- and 10-fold more potent at alpha-2A receptors than at alpha-2B receptors. Phentolamine, adazoxan, (+)- and (-)-mianserin, clonidine, (+)-butaclamol, (-)- and (+)-norepinephrine, epinephrine, dopamine and thioridazine were found to have equal affinities for the two subtypes. These results further validate the subdivision of alpha-2 adrenergic receptors into alpha-2A and alpha-2B subtypes.

  6. Rabbit alveolar beta-adrenergic receptors increase with gestational age.

    PubMed

    Lewis, V; Goldfien, A C; Day, J P; Roberts, J M

    1990-01-01

    Pulmonary beta-adrenergic receptors, which mediate the actions of endogenous catecholamines, increase before birth, an important step in pulmonary maturation. This increase, which occurs primarily in the alveoli, may be hastened by corticosteroids. However, because the lung is composed of more than 40 cell types, we asked whether the normal distribution of beta-adrenergic receptors changes with gestational age in a way that seems physiologically relevant. We compared lungs from fetal rabbits at 26 and 31 days' gestation with lungs from adult rabbits by autoradiography with 125iodocyanopindolol, a beta-adrenergic antagonist. While the total silver grain concentration increased during gestation, the greatest proportional increase occurred in the alveoli. We conclude that pulmonary beta-adrenergic receptor concentration increases during gestation and that this increase is most dramatic for alveoli. This pattern is consistent with that previously observed after treatment of fetal rabbits in utero with corticosteroids.

  7. Toxic rhinitis-induced changes of human nasal mucosa innervation.

    PubMed

    Groneberg, David A; Heppt, Werner; Cryer, Annette; Wussow, Anke; Peiser, Christian; Zweng, Martina; Dinh, Q Thai; Witt, Christian; Fischer, Axel

    2003-01-01

    Irritative toxic rhinitis is a nasal disorder induced by chemical compounds like ozone, formaldehyde, nickel, chrome, solvents and tobacco smoke. These noxious stimuli may have effects on the nasal innervation leading to a cascade of neuro-immune interactions and an augmentation of the symptoms. Here we examined changes in the neuropeptide content of mucosal parasympathetic, sympathetic and sensory nerves of patients with toxic rhinitis caused by chronic cigarette smoke exposure. Semiquantitative immunohistochemistry using antibodies against calcitonin gene-related peptide (CGRP), substance P (SP), neuropeptide tyrosine (NPY), and vasoactive intestinal peptide (VIP) was carried out on cryostat sections of human nasal mucosa obtained from normal subjects and patients with toxic rhinitis and revealed significant differences between both groups. Toxic rhinitis patients had significantly elevated expression scores for VIP (2.83 +/- 0.31 vs 1.27 +/- 0.47 control group) and NPY (3.17 +/- 0.31 vs 0.91 +/- 0.37 control group) revealing an increase of mediators in distinct subpopulations of airway nerves. In summary, the present studies indicate a differential participation of subclasses of mucosal nerves in the pathophysiology of toxic rhinitis. Airway innervation may have a major role in the pathophysiology of toxic rhinitis associated with chronic cigarette smoke exposure.

  8. Differential serotonergic innervation of the amygdala in bonobos and chimpanzees.

    PubMed

    Stimpson, Cheryl D; Barger, Nicole; Taglialatela, Jared P; Gendron-Fitzpatrick, Annette; Hof, Patrick R; Hopkins, William D; Sherwood, Chet C

    2016-03-01

    Humans' closest living relatives are bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), yet these great ape species differ considerably from each other in terms of social behavior. Bonobos are more tolerant of conspecifics in competitive contexts and often use sexual behavior to mediate social interactions. Chimpanzees more frequently employ aggression during conflicts and actively patrol territories between communities. Regulation of emotional responses is facilitated by the amygdala, which also modulates social decision-making, memory and attention. Amygdala responsiveness is further regulated by the neurotransmitter serotonin. We hypothesized that the amygdala of bonobos and chimpanzees would differ in its neuroanatomical organization and serotonergic innervation. We measured volumes of regions and the length density of serotonin transporter-containing axons in the whole amygdala and its lateral, basal, accessory basal and central nuclei. Results showed that accessory basal nucleus volume was larger in chimpanzees than in bonobos. Of particular note, the amygdala of bonobos had more than twice the density of serotonergic axons than chimpanzees, with the most pronounced differences in the basal and central nuclei. These findings suggest that variation in serotonergic innervation of the amygdala may contribute to mediating the remarkable differences in social behavior exhibited by bonobos and chimpanzees. PMID:26475872

  9. Evidence that the extraocular motor nuclei innervate monkey palisade endings.

    PubMed

    Zimmermann, Lars; May, Paul J; Pastor, Angel M; Streicher, Johannes; Blumer, Roland

    2011-02-01

    Palisade endings are found in the extraocular muscles (EOMs) of almost every mammalian species, including primates. These nerve specializations surrounding the muscle fiber insertion have been postulated to be the proprioceptors of the EOMs. However, it was recently demonstrated that palisade endings have a cholinergic nature, which reopened the question of whether palisade endings are motor or sensory structures. In this work, we examined whether the cell bodies of palisade endings lie in EOM motor nuclei by injecting an anterograde tracer, biotinylated dextran amine, into the abducens nucleus of a macaque monkey. Tracer visualization in the lateral rectus muscle was combined with choline acetyltransferase (ChAT) and α-bungarotoxin staining. Analysis of the samples was performed by conventional light microscopy and confocal laser scanning microscopy. About 30% of the nerve fibers innervating the muscle were tracer positive. These were ChAT positive as well. Tracer positive nerve fibers established motor contacts on singly and multiply innervated muscle fibers, which were confirmed by α-bungarotoxin staining. At the transition between muscle and distal tendon, we found palisade endings that contained tracer. Palisade endings exhibited the classic morphology: axons arising from the muscle extend onto the tendon, then turn back 180° and terminate in a cuff of terminals around an individual muscle fiber tip. This finding suggests that the cell bodies of palisade endings lie in the EOM motor nuclei, which complements prior studies demonstrating a cholinergic, and possibly motor, phenotype for palisade endings.

  10. Differential serotonergic innervation of the amygdala in bonobos and chimpanzees.

    PubMed

    Stimpson, Cheryl D; Barger, Nicole; Taglialatela, Jared P; Gendron-Fitzpatrick, Annette; Hof, Patrick R; Hopkins, William D; Sherwood, Chet C

    2016-03-01

    Humans' closest living relatives are bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), yet these great ape species differ considerably from each other in terms of social behavior. Bonobos are more tolerant of conspecifics in competitive contexts and often use sexual behavior to mediate social interactions. Chimpanzees more frequently employ aggression during conflicts and actively patrol territories between communities. Regulation of emotional responses is facilitated by the amygdala, which also modulates social decision-making, memory and attention. Amygdala responsiveness is further regulated by the neurotransmitter serotonin. We hypothesized that the amygdala of bonobos and chimpanzees would differ in its neuroanatomical organization and serotonergic innervation. We measured volumes of regions and the length density of serotonin transporter-containing axons in the whole amygdala and its lateral, basal, accessory basal and central nuclei. Results showed that accessory basal nucleus volume was larger in chimpanzees than in bonobos. Of particular note, the amygdala of bonobos had more than twice the density of serotonergic axons than chimpanzees, with the most pronounced differences in the basal and central nuclei. These findings suggest that variation in serotonergic innervation of the amygdala may contribute to mediating the remarkable differences in social behavior exhibited by bonobos and chimpanzees.

  11. β-Adrenergic Signaling Inhibits Gq-Dependent PKD Activation by Preventing PKD Translocation

    PubMed Central

    Nichols, C. Blake; Chang, Chia-Wei; Ferrero, Maura; Wood, Brittani M.; Stein, Matthew L.; Ferguson, Amanda J.; Ha, Derrick; Rigor, Robert R.; Bossuyt, Sven; Bossuyt, Julie

    2014-01-01

    Rationale Both β-adrenergic (β-AR) and Gq-coupled agonist (GqR) driven signaling play key roles in the events leading up to and during cardiac dysfunction. How these stimuli interact at the level of protein kinase D (PKD), a nodal point in cardiac hypertrophic signaling, remains unclear. Objective To assess the spatiotemporal dynamics of PKD activation in response to β-AR signaling alone and upon co-activation with GqR agonists. This will test our hypothesis that compartmentalized PKD signaling reconciles disparate findings of protein kinase A (PKA) facilitation and inhibition of PKD activation. Methods and Results We report on the spatial and temporal profiles of PKD activation using GFP-tagged PKD (wildtype or mutant S427E) and targeted FRET based biosensors (DKARs) in adult cardiomyocytes. We find that β-AR/PKA signaling drives local nuclear activation of PKD, without preceding sarcolemmal translocation. We also discover pronounced interference of β-AR/cAMP/PKA signaling on GqR-induced translocation and activation of PKD throughout the cardiomyocyte. We attribute these effects to direct, PKA-dependent phosphorylation of PKD-S427. We also show that phosphomimetic substitution of S427 likewise impedes GqR-induced PKD translocation and activation. In neonatal myocytes, S427E inhibits GqR-evoked cell growth and expression of hypertrophic markers. Lastly, we show altered S427 phosphorylation in TAC-induced hypertrophy. Conclusions β-AR signaling triggers local nuclear signaling and inhibits GqR-mediated PKD activation by preventing its intracellular translocation. PKA-dependent phosphorylation of PKD S427 fine-tunes the PKD responsiveness to GqR-agonists, serving as a key integration point for β-adrenergic and Gq-coupled stimuli. PMID:24643961

  12. Cardiac Sarcoidosis.

    PubMed

    Birnie, David; Ha, Andrew C T; Gula, Lorne J; Chakrabarti, Santabhanu; Beanlands, Rob S B; Nery, Pablo

    2015-12-01

    Studies suggest clinically manifest cardiac involvement occurs in 5% of patients with pulmonary/systemic sarcoidosis. The principal manifestations of cardiac sarcoidosis (CS) are conduction abnormalities, ventricular arrhythmias, and heart failure. Data indicate that an 20% to 25% of patients with pulmonary/systemic sarcoidosis have asymptomatic (clinically silent) cardiac involvement. An international guideline for the diagnosis and management of CS recommends that patients be screened for cardiac involvement. Most studies suggest a benign prognosis for patients with clinically silent CS. Immunosuppression therapy is advocated for clinically manifest CS. Device therapy, with implantable cardioverter defibrillators, is recommended for some patients.

  13. VEGF-A and Semaphorin3A: Modulators of vascular sympathetic innervation

    PubMed Central

    Long, Jennifer B.; Jay, Steven M.; Segal, Steven S.; Madri, Joseph A.

    2010-01-01

    Sympathetic nerve activity regulates blood pressure by altering peripheral vascular resistance. Variations in vascular sympathetic innervation suggest that vascular-derived cues promote selective innervation of particular vessels during development. As axons extend towards peripheral targets, they migrate along arterial networks following gradients of guidance cues. Collective ratios of these gradients may determine whether axons grow towards and innervate vessels or continue past non-innervated vessels towards peripheral targets. Utilizing directed neurite outgrowth in a three-dimensional (3D) co-culture, we observed increased axon growth from superior cervical ganglion explants (SCG) towards innervated compared to non-innervated vessels, mediated in part by vascular endothelial growth factor (VEGF-A) and Semaphorin3A (Sema3A) which both signal via neuropilin-1 (Nrp1). Exogenous VEGF-A, delivered by high-expressing VEGF-A–LacZ vessels or by rhVEGF-A/alginate spheres, increased sympathetic neurite outgrowth while exogenous rhSema3A/Fc decreased neurite outgrowth. VEGF-A expression is similar between the innervated and non-innervated vessels examined. Sema3A expression is higher in non-innervated vessels. Spatial gradients of Sema3A and VEGF-A may promote differential Nrp1 binding. Vessels expressing high levels of Sema3A favor Nrp1-PlexinA1 signaling, producing chemorepulsive cues limiting sympathetic neurite outgrowth and vascular innervation; while low Sema3A expressing vessels favor Nrp1-VEGFR2 signaling providing chemoattractive cues for sympathetic neurite outgrowth and vascular innervation. PMID:19631637

  14. Monovalent cation and amiloride analog modulation of adrenergic ligand binding to the unglycosylated alpha 2B-adrenergic receptor subtype

    SciTech Connect

    Wilson, A.L.; Seibert, K.; Brandon, S.; Cragoe, E.J. Jr.; Limbird, L.E. )

    1991-04-01

    The unglycosylated alpha 2B subtype of the alpha 2-adrenergic receptor found in NG-108-15 cells possesses allosteric regulation of adrenergic ligand binding by monovalent cations and 5-amino-substituted amiloride analogs. These findings demonstrate that allosteric modulation of adrenergic ligand binding is not a property unique to the alpha 2A subtype. The observation that amiloride analogs as well as monovalent cations can modulate adrenergic ligand binding to the nonglycosylated alpha 2B subtype indicates that charge shielding due to carbohydrate moieties does not play a role in this allosteric modulation but, rather, these regulatory effects result from interactions of cations and amiloride analogs with the protein moiety of the receptor. Furthermore, the observation that both alpha 2A and alpha 2B receptor subtypes are modulated by amiloride analogs suggests that structural domains that are conserved between the two are likely to be involved in this allosteric modulation.

  15. Regulation of cardiac C-protein phosphorylation

    SciTech Connect

    Titus, F.L.

    1985-01-01

    Molecular mechanisms of cardiac sympathetic and parasympathetic responses were addressed by studying subcellular changes in protein phosphorylation, cAMP-dependent protein kinase activity and protein phosphatase activity in frog hearts. B-adrenergic agonists increased and muscarinic cholinergic agonists decreased (/sup 32/P)phosphate incorporation into C-protein, a thick filament component. Regulation of protein phosphatase activity by Iso and methacholine (MCh) was assayed using extracts of drug treated frog hearts and (/sup 32/P)phospho-C-protein as substrate. Total phosphatase activity decreased 21% in extracts from hearts perfused with 0.1 ..mu..M Iso and 17% in hearts exposed to Iso plus 1 ..mu..M methacholine. This decrease reflected decreased phosphatase-2A activity. No changes in total phosphatase activity were measurable in broken cells treated with Iso or MCh. The results suggest adrenergic stimulation changes contractile activity in frog hearts by activating cAMP-dependent protein kinase associated with particulate cellular elements and inactivating soluble protein phosphatase-2A. This is the first demonstration of coordinated regulation of these enzymes by B-adrenergic agonists favoring phosphorylation of effector proteins. Coordinated regulation by methacholine in the presence of Iso was not observed.

  16. Cardiac transplantation.

    PubMed

    Shanewise, Jack

    2004-12-01

    Cardiac transplantation is a proven, accepted mode of therapy for selected patients with end-stage heart failure, but the inadequate number of suitable donor hearts available ultimately limits its application. This chapter reviews adult cardiac transplantation, with an emphasis on the anesthetic considerations of the heart transplant operation itself.

  17. Cardiac metastases

    PubMed Central

    Bussani, R; De‐Giorgio, F; Abbate, A; Silvestri, F

    2007-01-01

    Tumours metastatic to the heart (cardiac metastases) are among the least known and highly debated issues in oncology, and few systematic studies are devoted to this topic. Although primary cardiac tumours are extremely uncommon (various postmortem studies report rates between 0.001% and 0.28%), secondary tumours are not, and at least in theory, the heart can be metastasised by any malignant neoplasm able to spread to distant sites. In general, cardiac metastases are considered to be rare; however, when sought for, the incidence seems to be not as low as expected, ranging from 2.3% and 18.3%. Although no malignant tumours are known that diffuse preferentially to the heart, some do involve the heart more often than others—for example, melanoma and mediastinal primary tumours. This paper attempts to review the pathophysiology of cardiac metastatic disease, epidemiology and clinical presentation of cardiac metastases, and pathological characterisation of the lesions. PMID:17098886

  18. Cardiac Sympathetic Afferent Denervation Attenuates Cardiac Remodeling and Improves Cardiovascular Dysfunction in Rats with Heart Failure

    PubMed Central

    Wang, Han-Jun; Wang, Wei; Cornish, Kurtis G.; Rozanski, George J.; Zucker, Irving H.

    2014-01-01

    The enhanced cardiac sympathetic afferent reflex (CSAR) contributes to the exaggerated sympatho-excitation in chronic heart failure (CHF). Increased sympatho-excitation is positively related to mortality in CHF patients. However, the potential beneficial effects of chronic CSAR deletion on cardiac and autonomic function in CHF have not been previously explored. Here we determined the effects of chronic CSAR deletion on cardiac remodeling and autonomic dysfunction in CHF. In order to selectively delete the transient receptor potential vanilloid 1 receptor (TRPV1) -expressing CSAR afferents, epicardial application of resiniferatoxin (RTX, 50 μg/ml), an ultrapotent analogue of capsaicin, was performed during myocardium infarction (MI) surgery in rats. This procedure largely abolished the enhanced CSAR, prevented the exaggerated renal and cardiac sympathetic nerve activity and improved baroreflex sensitivity in CHF rats. Most importantly, we found that epicardial application of RTX largely prevented the elevated LVEDP, lung edema and cardiac hypertrophy, partially reduced left ventricular dimensions in the failing heart and increased cardiac contractile reserve in response to β-adrenergic receptor stimulation with isoproterenol in CHF rats. Molecular evidence showed that RTX attenuated cardiac fibrosis and apoptosis and reduced expression of fibrotic markers and TGF β-receptor I in CHF rats. Pressure - volume loop analysis showed that RTX reduced the end diastolic pressure volume relations in CHF rats indicating improved cardiac compliance. In summary, cardiac sympathetic afferent deletion exhibits protective effects against deleterious cardiac remodeling and autonomic dysfunction in CHF. These data suggest a potential new paradigm and therapeutic potential in the management of CHF. PMID:24980663

  19. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-mediated Calcium Signaling and Arrhythmias in the Heart Evoked by β-Adrenergic Stimulation*♦

    PubMed Central

    Nebel, Merle; Schwoerer, Alexander P.; Warszta, Dominik; Siebrands, Cornelia C.; Limbrock, Ann-Christin; Swarbrick, Joanna M.; Fliegert, Ralf; Weber, Karin; Bruhn, Sören; Hohenegger, Martin; Geisler, Anne; Herich, Lena; Schlegel, Susan; Carrier, Lucie; Eschenhagen, Thomas; Potter, Barry V. L.; Ehmke, Heimo; Guse, Andreas H.

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+-releasing second messenger known to date. Here, we report a new role for NAADP in arrhythmogenic Ca2+ release in cardiac myocytes evoked by β-adrenergic stimulation. Infusion of NAADP into intact cardiac myocytes induced global Ca2+ signals sensitive to inhibitors of both acidic Ca2+ stores and ryanodine receptors and to NAADP antagonist BZ194. Furthermore, in electrically paced cardiac myocytes BZ194 blocked spontaneous diastolic Ca2+ transients caused by high concentrations of the β-adrenergic agonist isoproterenol. Ca2+ transients were recorded both as increases of the free cytosolic Ca2+ concentration and as decreases of the sarcoplasmic luminal Ca2+ concentration. Importantly, NAADP antagonist BZ194 largely ameliorated isoproterenol-induced arrhythmias in awake mice. We provide strong evidence that NAADP-mediated modulation of couplon activity plays a role for triggering spontaneous diastolic Ca2+ transients in isolated cardiac myocytes and arrhythmias in the intact animal. Thus, NAADP signaling appears an attractive novel target for antiarrhythmic therapy. PMID:23564460

  20. Intrinsic innervation in the intestine of the lizard Podarcis hispanica.

    PubMed

    Martinez-Ciriano, C; Junquera, C; Castiella, T; Gomez-Barrena, E; Aisa, J; Blasco, J

    2000-10-01

    The aim of this study was the description of the morphology and distribution of nerve structure elements in the intestine of the lizard Podarcis hispanica using different histochemical methods; namely acetylcholinesterase (AChE), formol-induced fluorescence for catecholamines (FIF), nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), and immunohistochemistry for vasoactive intestinal peptide (VIP), as well as substance P (SP) and electron microscopy. The AChE method showed fibres in the myenteric and submucosal plexus, with a higher fibre density in the large intestine. The highest number of related neurons was located in the myenteric plexus ganglia. Noradrenergic innervation was distributed through the myenteric and submucosal plexus, and also around blood vessels, with the highest fibre density in the large intestine. VIP immunohistochemistry showed a wide distribution of positive fibres throughout the intestine, although the highest density was again detected in the large intestine. Small positive cells for VIP were located at internodal segments in the plexus. SP labeling, although subtle, was present all along the intestine. It showed delicate varicose nets and few fibres innervating blood vessels. Small positive cells for SP were located in the large intestine. The indirect method to detect nitric oxide (NO)-producing system showed neural cells in the myenteric plexus ganglia of the large intestine. Electron microscopy showed ganglion neurons with scattered chromatin condensations, glial cells with higher electron density, and axons with varicosities occupied by different vesicles. We also identified certain cells as interstitial cells of Cajal due to their ultrastructural features. They were mostly located in the region of the myenteric plexus.

  1. Target areas innervated by PACAP-immunoreactive retinal ganglion cells.

    PubMed

    Hannibal, Jens; Fahrenkrug, Jan

    2004-04-01

    The retinohypothalamic tract (RHT) originates from a subset of retinal ganglion cells (RGCs). The cells of the RHT co-store the neurotransmitters PACAP and glutamate, which in a complex interplay mediate light information to the circadian clock located in the suprachiasmatic nuclei (SCN). These ganglion cells are intrinsically photosensitive probably due to expression of melanopsin, a putative photoreceptor involved in light entrainment. In the present study we examined PACAP-containing retinal projections to the brain using intravitreal injection of the anterograde tracer cholera toxin subunit B (ChB) and double immunostaining for PACAP and ChB. Our results show that the PACAP-containing nerve fibres not only constituted the major projections to the SCN and the intergeniculate leaflet of the thalamus but also had a large terminal field in the olivary pretectal nucleus. The contralateral projection dominated except for the SCN, which showed bilateral innervation. PACAP-containing retinal fibres were also found in the ventrolateral preoptic nucleus, the anterior and lateral hypothalamic area, the subparaventricular zone, the ventral part of the lateral geniculate nucleus and the nucleus of the optic tract. Retinal projections not previously described in the rat also contained PACAP. These new projections were found in the lateral posterior nucleus, the posterior limitans nucleus, the dorsal part of the anterior pretectal nucleus and the posterior and medial pretectal nuclei. Only a few PACAP-containing retinal fibres were found in the superior colliculus. Areas innervated by PACAP-immunoreactive fibres also expressed the PACAP-specific PAC1 receptor as shown by in situ hybridization histochemistry. The findings suggest that PACAP plays a role as neurotransmitter in non-imaging photoperception to target areas in the brain regulating circadian timing, masking, regulation of sleep-wake cycle and pupillary reflex.

  2. Sudomotor innervation in transthyretin amyloid neuropathy: Pathology and functional correlates

    PubMed Central

    Huang, Cho‐Min; Chiang, Hao‐Hua; Luo, Kai‐Ren; Kan, Hung‐Wei; Yang, Naomi Chu‐Chiao; Chiang, Hao; Lin, Whei‐Min; Lai, Shu‐Mei; Lee, Ming‐Jen; Shun, Chia‐Tung; Hsieh, Sung‐Tsang

    2015-01-01

    Objective Autonomic neuropathy is a major component of familial amyloid polyneuropathy (FAP) due to mutated transthyretin, with sudomotor failure as a common manifestation. This study aimed to investigate the pathology and clinical significance of sudomotor denervation. Methods Skin biopsies were performed on the distal leg of FAP patients with a follow‐up duration of 3.8 ± 1.6 years. Sudomotor innervation was stained with 2 markers: protein gene product 9.5 (PGP 9.5), a general neuronal marker, and vasoactive intestinal peptide (VIP), a sudomotor nerve functional marker, followed by quantitation according to sweat gland innervation index (SGII) for PGP 9.5 (SGIIPGP 9.5) and VIP (SGIIVIP). Results There were 28 patients (25 men) with Ala97Ser transthyretin and late onset (59.9 ± 6.0 years) disabling neuropathy. Autonomic symptoms were present in 22 patients (78.6%) at the time of skin biopsy. The SGIIPGP 9.5 and SGIIVIP of FAP patients were significantly lower than those of age‐ and gender‐matched controls. The reduction of SGIIVIP was more severe than that of SGIIPGP 9.5 (p = 0.002). Patients with orthostatic hypotension or absent sympathetic skin response at palms were associated with lower SGIIPGP 9.5 (p = 0.019 and 0.002, respectively). SGIIPGP 9.5 was negatively correlated with the disability grade at the time of skin biopsy (p = 0.004), and was positively correlated with the interval from the time of skin biopsy to the time of wheelchair usage (p = 0.029). Interpretation This study documented the pathological evidence of sudomotor denervation in FAP. SGIIPGP 9.5 was functionally correlated with autonomic symptoms, autonomic tests, ambulation status, and progression of disability. Ann Neurol 2015;78:272℃283 PMID:25973863

  3. Effects of Polysialic Acid on Sensory Innervation of the Cornea

    PubMed Central

    Mao, Xiuli; Zhang, Yuntao; Schwend, Tyler; Conrad, Gary W.

    2014-01-01

    Sensory trigeminal growth cones innervate the cornea in a coordinated fashion during embryonic development. Polysialic acid (polySia) is known for its important roles during nerve development and regeneration. The purpose of this work is to determine whether polySia, present in developing eyefronts and on the surface of sensory nerves, may provide guidance cues to nerves during corneal innervation. Expression and localization of polySia in embryonic day (E)5-14 chick eyefronts and E9 trigeminal ganglia were identified using Western blotting and immunostaining. Effects of polySia removal on trigeminal nerve growth behavior were determined in vivo, using exogenous endoneuraminidase (endoN) treatments to remove polySia substrates during chick cornea development, and in vitro, using neuronal explant cultures. PolySia substrates, made by the physical adsorption of colominic acid to a surface coated with poly-D-lysine (PDL), were used as a model to investigate functions of the polySia expressed in axonal environments. PolySia was localized within developing eyefronts and on trigeminal sensory nerves. Distributions of PolySia in corneas and pericorneal regions are developmentally regulated. PolySia removal caused defasciculation of the limbal nerve trunk in vivo from E7 to E10. Removal of polySia on trigeminal neurites inhibited neurite outgrowth and caused axon defasciculation, but did not affect Neural Cell Adhesion Molecule (NCAM) expression or Schwann cell migration in vitro. PolySia substrates in vitro inhibited outgrowth of trigeminal neurites and promoted their fasciculation. In conclusion, polySia is localized on corneal nerves and in their targeting environment during early developing stages of chick embryos. PolySias promote fasciculation of trigeminal axons in vivo and in vitro, whereas, in contrast, their removal promotes defasciculation. PMID:25478909

  4. The Alpha-1A Adrenergic Receptor in the Rabbit Heart.

    PubMed

    Thomas, R Croft; Cowley, Patrick M; Singh, Abhishek; Myagmar, Bat-Erdene; Swigart, Philip M; Baker, Anthony J; Simpson, Paul C

    2016-01-01

    The alpha-1A-adrenergic receptor (AR) subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR) on mRNA from ventricular myocardium of adult male New Zealand White rabbits, the alpha-1B was 99% of total alpha-1-AR mRNA, with <1% alpha-1A and alpha-1D, whereas alpha-1A mRNA was over 50% of total in brain and liver. Saturation radioligand binding identified ~4 fmol total alpha-1-ARs per mg myocardial protein, with 17% alpha-1A by competition with the selective antagonist 5-methylurapidil. The alpha-1D was not detected by competition with BMY-7378, indicating that 83% of alpha-1-ARs were alpha-1B. In isolated left ventricle and right ventricle, the selective alpha-1A agonist A61603 stimulated a negative inotropic effect, versus a positive inotropic effect with the nonselective alpha-1-agonist phenylephrine and the beta-agonist isoproterenol. Blood pressure assay in conscious rabbits using an indwelling aortic telemeter showed that A61603 by bolus intravenous dosing increased mean arterial pressure by 20 mm Hg at 0.14 μg/kg, 10-fold lower than norepinephrine, and chronic A61603 infusion by iPRECIO programmable micro Infusion pump did not increase BP at 22 μg/kg/d. A myocardial slice model useful in human myocardium and an anthracycline cardiotoxicity model useful in mouse were both problematic in rabbit. We conclude that alpha-1A mRNA is very low in rabbit heart, but the receptor is present by binding and mediates a negative inotropic response. Expression and function of the alpha-1A in rabbit heart differ from mouse and human, but the vasopressor response is similar to mouse. PMID:27258143

  5. The Alpha-1A Adrenergic Receptor in the Rabbit Heart

    PubMed Central

    Myagmar, Bat-Erdene; Swigart, Philip M.; Baker, Anthony J.; Simpson, Paul C.

    2016-01-01

    The alpha-1A-adrenergic receptor (AR) subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR) on mRNA from ventricular myocardium of adult male New Zealand White rabbits, the alpha-1B was 99% of total alpha-1-AR mRNA, with <1% alpha-1A and alpha-1D, whereas alpha-1A mRNA was over 50% of total in brain and liver. Saturation radioligand binding identified ~4 fmol total alpha-1-ARs per mg myocardial protein, with 17% alpha-1A by competition with the selective antagonist 5-methylurapidil. The alpha-1D was not detected by competition with BMY-7378, indicating that 83% of alpha-1-ARs were alpha-1B. In isolated left ventricle and right ventricle, the selective alpha-1A agonist A61603 stimulated a negative inotropic effect, versus a positive inotropic effect with the nonselective alpha-1-agonist phenylephrine and the beta-agonist isoproterenol. Blood pressure assay in conscious rabbits using an indwelling aortic telemeter showed that A61603 by bolus intravenous dosing increased mean arterial pressure by 20 mm Hg at 0.14 μg/kg, 10-fold lower than norepinephrine, and chronic A61603 infusion by iPRECIO programmable micro Infusion pump did not increase BP at 22 μg/kg/d. A myocardial slice model useful in human myocardium and an anthracycline cardiotoxicity model useful in mouse were both problematic in rabbit. We conclude that alpha-1A mRNA is very low in rabbit heart, but the receptor is present by binding and mediates a negative inotropic response. Expression and function of the alpha-1A in rabbit heart differ from mouse and human, but the vasopressor response is similar to mouse. PMID:27258143

  6. Effects of cholinergic and beta-adrenergic blockade on orthostatic tolerance in healthy subjects.

    PubMed

    Convertino, V A; Sather, T M

    2000-12-01

    Cardiovascular responses during a graded lower body negative pressure (LBNP) protocol were compared before and after atropine and propranolol administration to test the hypothesis that both sympathetic and parasympathetic control of cardio-acceleration are associated with syncopal predisposition to orthostatic stress in healthy subjects. Eleven men were categorized into two groups having high (HT, N = 6) or low (LT, N = 5) tolerance based on their total time before the onset of presyncopal symptoms. HT and LT groups were similar in physical characteristics, fitness, and baseline cardiovascular measurements. Atropine treatment had no effect on LBNP tolerance or mean arterial pressure at presyncope, despite an atropine-induced increase in heart rate. Propranolol treatment reduced (p<0.05) LBNP tolerance in both groups. Diminished LBNP tolerance after propranolol administration was associated with reductions in cardiac output, whereas increase in systemic peripheral resistance from baseline to presyncope was unaffected by propranolol. Reduction in cardiac output and LBNP tolerance after beta blockade reflected a chronotropic effect because lower LBNP tolerance for the HT (-50%) and LT (-39%) groups was associated with dramatic reductions (p <0.05) in the magnitude of LBNP-induced tachycardia without significant effects on stroke volume at presyncope. Absence of an atropine-induced difference in cardiac output and systemic peripheral resistance between HT and LT groups failed to support the notion that cardiac vagal withdrawal represents a predominant mechanism that could account for differences in orthostatic tolerance. Because a reduction in LBNP tolerance in both HT and LT groups after propranolol treatment was most closely associated with reduced tachycardia, the data suggest that a primary autonomically mediated mechanism for maintenance of mean arterial pressure and orthostatic tolerance in healthy subjects is beta adrenergic-induced tachycardia. PMID:11324988

  7. Effects of cholinergic and beta-adrenergic blockade on orthostatic tolerance in healthy subjects

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Sather, T. M.

    2000-01-01

    Cardiovascular responses during a graded lower body negative pressure (LBNP) protocol were compared before and after atropine and propranolol administration to test the hypothesis that both sympathetic and parasympathetic control of cardio-acceleration are associated with syncopal predisposition to orthostatic stress in healthy subjects. Eleven men were categorized into two groups having high (HT, N = 6) or low (LT, N = 5) tolerance based on their total time before the onset of presyncopal symptoms. HT and LT groups were similar in physical characteristics, fitness, and baseline cardiovascular measurements. Atropine treatment had no effect on LBNP tolerance or mean arterial pressure at presyncope, despite an atropine-induced increase in heart rate. Propranolol treatment reduced (p<0.05) LBNP tolerance in both groups. Diminished LBNP tolerance after propranolol administration was associated with reductions in cardiac output, whereas increase in systemic peripheral resistance from baseline to presyncope was unaffected by propranolol. Reduction in cardiac output and LBNP tolerance after beta blockade reflected a chronotropic effect because lower LBNP tolerance for the HT (-50%) and LT (-39%) groups was associated with dramatic reductions (p <0.05) in the magnitude of LBNP-induced tachycardia without significant effects on stroke volume at presyncope. Absence of an atropine-induced difference in cardiac output and systemic peripheral resistance between HT and LT groups failed to support the notion that cardiac vagal withdrawal represents a predominant mechanism that could account for differences in orthostatic tolerance. Because a reduction in LBNP tolerance in both HT and LT groups after propranolol treatment was most closely associated with reduced tachycardia, the data suggest that a primary autonomically mediated mechanism for maintenance of mean arterial pressure and orthostatic tolerance in healthy subjects is beta adrenergic-induced tachycardia.

  8. Creating a cardiac pacemaker by gene therapy.

    PubMed

    Anghel, Traian M; Pogwizd, Steven M

    2007-02-01

    While electronic cardiac pacing in its various modalities represents standard of care for treatment of symptomatic bradyarrhythmias and heart failure, it has limitations ranging from absent or rudimentary autonomic modulation to severe complications. This has prompted experimental studies to design and validate a biological pacemaker that could supplement or replace electronic pacemakers. Advances in cardiac gene therapy have resulted in a number of strategies focused on beta-adrenergic receptors as well as specific ion currents that contribute to pacemaker function. This article reviews basic pacemaker physiology, as well as studies in which gene transfer approaches to develop a biological pacemaker have been designed and validated in vivo. Additional requirements and refinements necessary for successful biopacemaker function by gene transfer are discussed. PMID:17139515

  9. Decreased Polycystin 2 Levels Result in Non-Renal Cardiac Dysfunction with Aging.

    PubMed

    Kuo, Ivana Y; Duong, Sophie L; Nguyen, Lily; Ehrlich, Barbara E

    2016-01-01

    Mutations in the gene for polycystin 2 (Pkd2) lead to polycystic kidney disease, however the main cause of mortality in humans is cardiac related. We previously showed that 5 month old Pkd2+/- mice have altered calcium-contractile activity in cardiomyocytes, but have preserved cardiac function. Here, we examined 1 and 9 month old Pkd2+/- mice to determine if decreased amounts of functional polycystin 2 leads to impaired cardiac function with aging. We observed changes in calcium handling proteins in 1 month old Pkd2+/- mice, and these changes were exacerbated in 9 month old Pkd2+/- mice. Anatomically, the 9 month old Pkd2+/- mice had thinner left ventricular walls, consistent with dilated cardiomyopathy, and the left ventricular ejection fraction was decreased. Intriguingly, in response to acute isoproterenol stimulation to examine β-adrenergic responses, the 9 month old Pkd2+/- mice exhibited a stronger contractile response, which also coincided with preserved localization of the β2 adrenergic receptor. Importantly, the Pkd2+/- mice did not have any renal impairment. We conclude that the cardiac-related impact of decreased polycystin 2 progresses over time towards cardiac dysfunction and altered adrenergic signaling. These results provide further evidence that polycystin 2 provides a critical function in the heart, independent of renal involvement. PMID:27081851

  10. Adrenergic Metabolic and Hemodynamic Effects of Octopamine in the Liver

    PubMed Central

    de Oliveira, Andrea Luiza; de Paula, Mariana Nascimento; Comar, Jurandir Fernando; Vilela, Vanessa Rodrigues; Peralta, Rosane Marina; Bracht, Adelar

    2013-01-01

    The fruit extracts of Citrus aurantium (bitter orange) are traditionally used as weight-loss products and as appetite suppressants. A component of these extracts is octopamine, which is an adrenergic agent. Weight-loss and adrenergic actions are always related to metabolic changes and this work was designed to investigate a possible action of octopamine on liver metabolism. The isolated perfused rat liver was used to measure catabolic and anabolic pathways and hemodynamics. Octopamine increased glycogenolysis, glycolysis, oxygen uptake, gluconeogenesis and the portal perfusion pressure. Octopamine also accelerated the oxidation of exogenous fatty acids (octanoate and oleate), as revealed by the increase in 14CO2 production derived from 14C labeled precursors. The changes in glycogenolysis, oxygen uptake and perfusion pressure were almost completely abolished by α1-adrenergic antagonists. The same changes were partly sensitive to the β-adrenergic antagonist propranolol. It can be concluded that octopamine accelerates both catabolic and anabolic processes in the liver via adrenergic stimulation. Acceleration of oxygen uptake under substrate-free perfusion conditions also means acceleration of the oxidation of endogenous fatty acids, which are derived from lipolysis. All these effects are compatible with an overall stimulating effect of octopamine on metabolism, which is compatible with its reported weight-loss effects in experimental animals. PMID:24196353

  11. Adrenal medullary regulation of rat renal cortical adrenergic receptors

    SciTech Connect

    Sundaresan, P.R.; Guarnaccia, M.M.; Izzo, J.L. Jr. )

    1987-11-01

    The role of the adrenal medulla in the regulation of renal cortical adrenergic receptors was investigated in renal cortical particular fractions from control rats and rats 6 wk after adrenal demedullation. The specific binding of ({sup 3}H)prazosin, ({sup 3}H)rauwolscine, and ({sup 125}I)iodocyanopindolol were used to quantitate {alpha}{sub 1}-, {alpha}{sub 2}-, and {beta}-adrenergic receptors, respectively. Adrenal demedullation increased the concentration of all three groups of renal adrenergic receptors; maximal number of binding sites (B{sub max}, per milligram membrane protein) for {alpha}{sub 1}-, and {alpha}{sub 2}-, and {beta}-adrenergic receptors were increased by 22, 18.5, and 25%, respectively. No differences were found in the equilibrium dissociation constants (K{sub D}) for any of the radioligands. Plasma corticosterone and plasma and renal norepinephrine levels were unchanged, whereas plasma epinephrine was decreased 72% by adrenal demedullation, renal cortical epinephrine was not detectable in control or demedullated animals. The results suggest that, in the physiological state, the adrenal medulla modulates the number of renal cortical adrenergic receptors, presumably through the actions of a circulating factor such as epinephrine.

  12. [Treatment of a patient with refractory cardiac arrhythmias using stellate ganglion block. Access by the classical and ultrasound-guided approach].

    PubMed

    Mata Francisco, N C; Gómez Pesquera, E; Ruiz López, N; Álvarez López, J C; Jorge-Monjas, P

    2014-10-01

    Stellate ganglion block is a technique that is often used by anesthesiologists for the treatment of complex regional pain syndromes of the upper extremity. This technique interrupts cardiac sympathetic innervation and has been proposed as treatment for refractory arrhythmias. We present the case of a patient with arrhythmias that were refractory to pharmacological treatment, and were finally treated by continuous stellate ganglion block. Left stellate ganglion is a lynchpin of cardiac arrhythmias due to being a structure where the majority of postganglion sympathetic fibers responsible for preferentially innervating the atriventricular node, bundle of His and ventricular mass are originated, fundamentals in the origin and maintenance of ventricular arrhythmias.

  13. Motor activity affects adult skeletal muscle re-innervation acting via tyrosine kinase receptors.

    PubMed

    Sartini, Stefano; Bartolini, Fanny; Ambrogini, Patrizia; Betti, Michele; Ciuffoli, Stefano; Lattanzi, Davide; Di Palma, Michael; Cuppini, Riccardo

    2013-05-01

    Recently, muscle expression of brain-derived neurotrophic factor (BDNF) mRNA and protein under activity control has been reported. BDNF is a neurotrophin known to be involved in axon sprouting in the CNS. Hence, we set out to study the effect of chronic treadmill mid-intensity running on adult rat muscle re-innervation, and to explore the involvement of BDNF and tropomyosin-related kinase (Trk) receptors. After nerve crush, muscle re-innervation was evaluated using intracellular recordings, tension recordings, immunostaining and Western blot analyses. An enhanced muscle multiple innervation was found in running rats that was fully reversed to control values blocking Trk receptors or interrupting the running activity. An increase in muscle multiple innervation was also found in sedentary rats treated with a selective TrkB receptor agonist. The expression of TrkB receptors by intramuscular axons was demonstrated, and increased muscle expression of BDNF was found in running animals. The increase in muscle multiple innervation was consistent with the faster muscle re-innervation that we found in running animals. We conclude that, when regenerating axons contact muscle cells, muscle activity progressively increases modulating BDNF and possibly other growth factors, which in turn, acting via Trk receptors, induce axon sprouting to re-innervate skeletal muscle.

  14. Cardiac amyloidosis

    MedlinePlus

    ... the way electrical signals move through the heart (conduction system). This can lead to abnormal heartbeats ( arrhythmias ) ... due to medicine) Sick sinus syndrome Symptomatic cardiac conduction system disease (arrhythmias related to abnormal conduction of ...

  15. Cardiac Sarcoidosis

    MedlinePlus

    ... is Cardiac Sarcoidosis? Sarcoidosis is a poorly understood disease that commonly affects the lungs. It can also involve the lymph nodes, liver, spleen, eyes, skin, bones, salivary glands and heart. ...

  16. Innervation patterns of the canine masticatory muscles in comparison to human.

    PubMed

    Yang, Hun-Mu; Hu, Kyung-Seok; Song, Woo-Chul; Park, Jong-Tae; Kim, Heung-Joong; Koh, Ki-Seok; Kim, Hee-Jin

    2010-01-01

    The aim of this study was to clarify the nerve distribution of the masseter, temporalis, and zygomaticomandibularis (ZM) muscles to elucidate the phylogenetic traits of canine mastication. A detailed dissection was made of 15 hemisectioned heads of adult beagle dogs. The innervations of the masticatory nerve twigs exhibited a characteristic pattern and were classified into seven groups. Twig innervating the anterior portion of the temporalis (aTM) was defined as the anterior temporal nerve (ATN). Anterior twig of ATN branched from the buccal nerve and innervated only the aTM, whereas posterior twig of ATN innervated both of the aTM and deep layer of the tempolaris (dTM). From this and morphological observations, it was proposed that the action of the canine aTM is more independent than that of the human. The middle temporal nerve ran superoposteriorly within the dTM and superficial layer of the temporalis (sTM) innervating both of them, whereas the posterior temporal nerve innervated only the posterior region of the sTM. The masseteric nerve (MSN) innervated the ZM and the three layers of the masseter. Deep twig of MSN was also observed innervating sTM after entering the ZM in all cases. The major role played by the canine ZM might thus underlie the differential arrangement of the distribution of the masticatory nerve bundles in dogs and humans. Although the patterns of innervation to the canine and human masticatory muscles were somewhat similar, there were some differences that might be due to evolutionary adaptation to their respective feeding styles.

  17. Alpha adrenergic receptor mediation of cardiovascular and metabolic responses to alcohol

    SciTech Connect

    Brackett, D.J.; Gauvin, D.V.; Lerner, M.R.; Holloway, F.H.; Wilson, M.F. Veterans Affairs Medical Center, Oklahoma City, OK )

    1992-02-26

    The role of alpha adrenergic receptors in acute cardiovascular and metabolic responses to alcohol (ETOH) have not been clearly defined. In this study two groups of male Sprague-Dawley rats were given intravenous phentolamine mesylate or saline prior to intragastric alcohol to blockade of alpha receptors during alcohol intoxication in conscious rats. ETOH alone evoked an increase in systemic vascular resistance (SVR), heart rate (HR), and blood glucose concentrations (G) and a decrease in mean arterial pressure (MAP), cardiac output (CO), central venous pressure (CVP), respiration rate (RR) and cardiac stroke volume (SV). Blood alcohol concentration (BAC) peaked at 30 min and remained elevated for the four hrs of monitoring. Phentolamine pretreatment produced a decrease in MAP and SV and an increase in HR. However, antagonism of the alpha receptor blocked the decrease in CO and the increase in SVR and G. The decrease in CVP was unaffected. Surprisingly, the early rise and peak in BAC in the phentolamine treated group was attenuated, but was the same as the untreated group during the final 3 hrs. These data suggest that alpha receptors are significant mediators of cardiovascular and glucoregulatory responses elicited by alcohol. Furthermore, alpha receptor blockade appears to effect the absorption and/or distribution of intragastrically administered alcohol.

  18. Na/K-ATPase--an integral player in the adrenergic fight-or-flight response.

    PubMed

    Bers, Donald M; Despa, Sanda

    2009-05-01

    During activation of the sympathetic nervous system, cardiac performance is increased as part of the fight-or-flight stress response. The increase in contractility with sympathetic stimulation is an orchestrated combination of intrinsic inotropic, lusitropic, and chronotropic effects, mediated in part by activation of beta-adrenergic receptors and protein kinase A. This causes phosphorylation of several Ca cycling proteins in cardiac myocytes (increasing Ca entry via L-type Ca channels, sarcoplasmic reticulum Ca pumping, and the dissociation rate of Ca from the myofilaments). Here, we discuss how stimulation of the Na/K-ATPase, mediated by phosphorylation of phospholemman (a small sarcolemmal protein that associates with and modulates Na/K-ATPase), is an additional important player in the sympathetic fight-or-flight response. Enhancement of Na/K- ATPase activity limits the rise in [Na](i) caused by the higher level of Na influx and by doing so limits the rise in cellular and sarcoplasmic reticulum Ca load by favoring Ca extrusion via the Na/Ca exchanger. Thus, phospholemman-mediated activation of the Na/K-ATPase may prevent Ca overload and triggered arrhythmias during stress.

  19. Ontogeny of the serotonergic projection to rat neocortex: transient expression of a dense innervation to primary sensory areas

    SciTech Connect

    D'Amato, R.J.; Blue, M.E.; Largent, B.L.; Lynch, D.R.; Ledbetter, D.J.; Molliver, M.E.; Snyder, S.H.

    1987-06-01

    The development of serotonergic innervation to rat cerebral cortex was characterized by immunohistochemical localization of serotonin combined with autoradiographic imaging of serotonin-uptake sites. In neonatal rat, a transient, dense, serotonergic innervation appears in all primary sensory areas of cortex. In somatosensory cortex, dense patches of serotonergic innervation are aligned with specialized cellular aggregates called barrels. The dense patches are not apparent after 3 weeks of age, and the serotonergic innervation becomes more uniform in adult neocortex. This precocious neonatal serotonergic innervation may play a transient physiologic role in sensory areas of cortex or may exert a trophic influence on the development of cortical circuitry and thalamocortical connections.

  20. Topical administration of adrenergic receptor pharmaceutics and nerve growth factor

    PubMed Central

    Steinle, Jena J

    2010-01-01

    Topical application of nerve growth factor (NGF) and adrenergic receptor pharmaceutics are currently in use for corneal ulcers and glaucoma. A recent interest in the neuroprotective abilities of NGF has led to a renewed interest in NGF as a therapeutic for retinal and choroidal diseases. NGF can promote cell proliferation through actions of the TrkA receptor or promote apoptosis through receptor p75NTR. This understanding has led to novel interest in the role of NGF for diseases of the posterior eye. The role of β-adrenergic receptor agonists and antagonists for treatments of glaucoma, diabetic retinopathy, and their potential mechanisms of action, are still under investigation. This review discusses the current knowledge and applications of topical NGF and adrenergic receptor drugs for ocular disease. PMID:20668722

  1. The lophophore innervation pattern of the inarticulate brachiopod Lingula anatina (Brachiopoda) supports monophyly of Lophophorata.

    PubMed

    Temereva, E N; Malakhov, V V

    2015-01-01

    Lophophore innervation in the brachiopod Lingula anatina has been investigated using immunocytochemistry and laser confocal microscopy. Three prominent nerves, namely, the main brachial nerve, the accessory brachial nerve, and the lower brachial nerve, have been found to extend along each brachium of the lophophore. Tentacle innervation is also described in detail. Comparative analysis revealed homologous nerves in lophophores of brachiopods, phoronids, and bryozoans. Similarities in tentacle innervation in these phyla of invertebrates have been detected. The results obtained confirm lophophore homology in different groups of lophophorates and provide evidence for monophyly of Lophophorata.

  2. Are so many adrenergic receptor subtypes really present in domestic animal tissues? A pharmacological perspective.

    PubMed

    Badino, P; Odore, R; Re, G

    2005-09-01

    Adrenergic receptors (ARs) are the cellular membrane binding sites through which natural catecholamines and sympathomimetic drugs exert their physiological and pharmacological effects. In recent decades, studies to clarify the distribution and function of ARs have been performed mostly on cultured cells, laboratory animals and human target tissues, but little is known about these aspects in domestic animals. This review focuses on AR structure, classification and signalling pathways and on AR subtype distribution in target tissues of some domestic animals, namely dogs, horses and bovines. In these species, different alpha- and beta-AR subtypes have been characterized and the functions controlled by the adrenergic systems have been studied. In the dog, the role played by the adrenergic system in the pathogenesis of cardiovascular disorders and in the modulation of canine aggression has roused particular interest. In dogs affected by dilated cardiomyopathy a significant down-regulation of beta-ARs has been observed both in the heart and circulating lymphocytes. This finding confirms the involvement of the adrenergic system in the pathogenesis and progression of the disorder and suggests new therapeutic strategies. In the horse, AR distribution has been studied in the cardiac, respiratory and gastrointestinal systems as well as in digital veins and arteries. The cardiac beta-ARs in healthy horses seem to be predominantly represented by the beta(1) subtype. In this species, heart failure may increase the expression of the beta(2) subtype, rather than causing AR down-regulation. Different beta- and alpha-AR subtypes have been characterized in the smooth muscle of equine ileum. The sympathetic relaxation of equine ileum smooth muscle seems to depend mainly on beta(3)-AR subtype activation, with minor involvement of the beta(2) subtype. In the respiratory tract, regional differences have been evidenced in the functionality of beta-AR subtype. The beta(2) subtype

  3. Mechanisms of alpha 1-adrenergic vascular desensitization in conscious dogs

    NASA Technical Reports Server (NTRS)

    Kiuchi, K.; Vatner, D. E.; Uemura, N.; Bigaud, M.; Hasebe, N.; Hempel, D. M.; Graham, R. M.; Vatner, S. F.

    1992-01-01

    To investigate the mechanisms of alpha 1-adrenergic vascular desensitization, osmotic minipumps containing either saline (n = 9) or amidephrine mesylate (AMD) (n = 9), a selective alpha 1-adrenergic receptor agonist, were implanted subcutaneously in dogs with chronically implanted arterial and right atrial pressure catheters and aortic flow probes. After chronic alpha 1-adrenergic receptor stimulation, significant physiological desensitization to acute AMD challenges was observed, i.e., pressor and vasoconstrictor responses to the alpha 1-adrenergic agonist were significantly depressed (p < 0.01) compared with responses in the same dogs studied in the conscious state before pump implantation. However, physiological desensitization to acute challenges of the neurotransmitter norepinephrine (NE) (0.1 micrograms/kg per minute) in the presence of beta-adrenergic receptor blockade was not observed for either mean arterial pressure (MAP) (30 +/- 7 versus 28 +/- 5 mm Hg) or total peripheral resistance (TPR) (29.8 +/- 4.9 versus 28.9 +/- 7.3 mm Hg/l per minute). In the presence of beta-adrenergic receptor plus ganglionic blockade after AMD pump implantation, physiological desensitization to NE was unmasked since the control responses to NE (0.1 micrograms/kg per minute) before the AMD pumps were now greater (p < 0.01) than after chronic AMD administration for both MAP (66 +/- 5 versus 32 +/- 2 mm Hg) and TPR (42.6 +/- 10.3 versus 23.9 +/- 4.4 mm Hg/l per minute). In the presence of beta-adrenergic receptor, ganglionic, plus NE-uptake blockade after AMD pump implantation, desensitization was even more apparent, since NE (0.1 micrograms/kg per minute) induced even greater differences in MAP (33 +/- 5 versus 109 +/- 6 mm Hg) and TPR (28.1 +/- 1.8 versus 111.8 +/- 14.7 mm Hg/l per minute). The maximal force of contraction induced by NE in the presence or absence of endothelium was significantly decreased (p < 0.05) in vitro in mesenteric artery rings from AMD pump dogs

  4. Adrenergic receptors on cerebral microvessels in control and Parkinsonian subjects

    SciTech Connect

    Cash, R.; Lasbennes, F.; Sercombe, R.; Seylaz, J.; Agid, Y.

    1985-08-12

    The binding of adrenergic ligands (/sup 3/H-prazosin, /sup 3/H-clonidine, /sup 3/H-dihydroalprenolol) was studied on a preparation of cerebral microvessels in the prefrontal cortex and putamen of control and Parkinsonian subjects. The adrenergic receptor density in microvessels of control patients was less than 0.5% and 3.3% respectively of the total binding. A significant decrease in the number of alpha-1 binding sites was observed on microvessels in the putamen of patients with Parkinson's disease. 22 references, 2 tables.

  5. Changes of lymphocyte beta-adrenergic receptors after surgical stress.

    PubMed

    Eandi, M; Buraglio, M; Arduino, C; Viano, I; Sansalvadore, G; Arbinolo, M A

    1984-01-01

    In this study the authors' purpose was to observe the effects of surgical stress on the number of lymphocyte beta-adrenergic receptors in hypertensive and normotensive subjects. It was noticed that after surgery a significant reduction occurred in the number of binding sites of lymphocytes of both hypertensive and normotensive subjects. The time course of recovery to the pre-operative values of binding sites varied between the two groups, being slower in normotensive than in hypertensive patients. This might suggest a different pattern of regulation of the beta-adrenergic receptor between hypertensive and normotensive subjects.

  6. Constitutive glycogen synthase kinase-3α/β activity protects against chronic β-adrenergic remodelling of the heart

    PubMed Central

    Webb, Ian G.; Nishino, Yasuhiro; Clark, James E.; Murdoch, Colin; Walker, Simon J.; Makowski, Marcus R.; Botnar, Rene M.; Redwood, Simon R.; Shah, Ajay M.; Marber, Michael S.

    2010-01-01

    Aims Glycogen synthase kinase 3 (GSK-3) signalling is implicated in the growth of the heart during development and in response to stress. However, its precise role remains unclear. We set out to characterize developmental growth and response to chronic isoproterenol (ISO) stress in knockin (KI) mice lacking the critical N-terminal serines, 21 of GSK-3α and 9 of GSK-3β respectively, required for inactivation by upstream kinases. Methods and results Between 5 and 15 weeks, KI mice grew more rapidly, but normalized heart weight and contractile performance were similar to wild-type (WT) mice. Isolated hearts of both genotypes responded comparably to acute ISO infusion with increases in heart rate and contractility. In WT mice, chronic subcutaneous ISO infusion over 14 days resulted in cardiac hypertrophy, interstitial fibrosis, and impaired contractility, accompanied by foetal gene reactivation. These effects were all significantly attenuated in KI mice. Indeed, ISO-treated KI hearts demonstrated reversible physiological remodelling traits with increased stroke volume and a preserved contractile response to acute adrenergic stimulation. Furthermore, simultaneous pharmacological inhibition of GSK-3 in KI mice treated with chronic subcutaneous ISO recapitulated the adverse remodelling phenotype seen in WT hearts. Conclusion Expression of inactivation-resistant GSK-3α/β does not affect eutrophic myocardial growth but protects against pathological hypertrophy induced by chronic adrenergic stimulation, maintaining cardiac function and attenuating interstitial fibrosis. Accordingly, strategies to prevent phosphorylation of Ser-21/9, and consequent inactivation of GSK-3α/β, may enable a sustained cardiac response to chronic β-agonist stimulation while preventing pathological remodelling. PMID:20299330

  7. Sympathetic alpha-adrenergic regulation of blood flow and volume in hamsters arousing from hibernation.

    PubMed

    Osborne, P G; Sato, J; Shuke, N; Hashimoto, M

    2005-08-01

    Mammals arousing from hibernation display pronounced regional heterothermy, where the thoracic and head regions warm faster than the abdominal and hindlimb regions. We used laser-Doppler flowmetry to measure peripheral hind foot blood flow during hibernation and arousal and gamma imaging of technetium-labeled albumin to measure whole blood volume distribution in hamsters arousing from hibernation. It was discovered that the hibernating hamster responds to physical but not to sound or hypercapnic stimulation with rapid, 73% reduction of hind foot blood flow. Hind foot blood flow vasoconstriction was maintained from the onset of arousal until late in arousal when rectal temperature was rapidly increased. alpha-Adrenergic blockade early in arousal increased hind foot blood flow by 700%, suggesting that vasoconstriction was mediated by activation of sympathetic tone. Gamma imaging revealed that, by the early phase of arousal from hibernation, the blood volume of the body below the liver is greatly reduced, whereas blood volumes of the thorax and head are much greater than corresponding volumes in anesthetized hamsters. As arousal progresses and cardiac activity increases and regional heterothermy develops, this regional blood volume distribution is largely maintained; however, blood volume slowly decreases in the thoracic region and slowly increases in the shoulder and head regions. The rapid increase in rectal temperature, characteristic of mid- to late- arousal phases, is probably mediated, in part, by reduction of adrenergic tone on abdominal and hindlimb vasculature. Warm blood then moves into the hind body, produces an increase in temperature, blood flow, and blood volume in the hind body and compensatory reductions of blood volume in the neck, head, and thoracic regions.

  8. Dopamine Innervation in the Thalamus: Monkey versus Rat

    PubMed Central

    García-Cabezas, Miguel Ángel; Martínez-Sánchez, Patricia; Sánchez-González, Miguel Ángel; Garzón, Miguel

    2009-01-01

    We recently identified the thalamic dopaminergic system in the human and macaque monkey brains, and, based on earlier reports on the paucity of dopamine in the rat thalamus, hypothesized that this dopaminergic system was particularly developed in primates. Here we test this hypothesis using immunohistochemistry against the dopamine transporter (DAT) in adult macaque and rat brains. The extent and density of DAT-immunoreactive (-ir) axons were remarkably greater in the macaque dorsal thalamus, where the mediodorsal association nucleus and the ventral motor nuclei held the densest immunolabeling. In contrast, sparse DAT immunolabeling was present in the rat dorsal thalamus; it was mainly located in the mediodorsal, paraventricular, ventral medial, and ventral lateral nuclei. The reticular nucleus, zona incerta, and lateral habenular nucleus held numerous DAT-ir axons in both species. Ultrastructural analysis in the macaque mediodorsal nucleus revealed that thalamic interneurons are a main postsynaptic target of DAT-ir axons; this suggests that the marked expansion of the dopamine innervation in the primate in comparison to the rodent thalamus may be related to the presence of a sizable interneuron population in primates. We remark that it is important to be aware of brain species differences when using animal models of human brain disease. PMID:18550594

  9. From innervation density to tactile acuity: 1. Spatial representation.

    PubMed

    Brown, Paul B; Koerber, H Richard; Millecchia, Ronald

    2004-06-11

    We tested the hypothesis that the population receptive field representation (a superposition of the excitatory receptive field areas of cells responding to a tactile stimulus) provides spatial information sufficient to mediate one measure of static tactile acuity. In psychophysical tests, two-point discrimination thresholds on the hindlimbs of adult cats varied as a function of stimulus location and orientation, as they do in humans. A statistical model of the excitatory low threshold mechanoreceptive fields of spinocervical, postsynaptic dorsal column and spinothalamic tract neurons was used to simulate the population receptive field representations in this neural population of the one- and two-point stimuli used in the psychophysical experiments. The simulated and observed thresholds were highly correlated. Simulated and observed thresholds' relations to physiological and anatomical variables such as stimulus location and orientation, receptive field size and shape, map scale, and innervation density were strikingly similar. Simulated and observed threshold variations with receptive field size and map scale obeyed simple relationships predicted by the signal detection model, and were statistically indistinguishable from each other. The population receptive field representation therefore contains information sufficient for this discrimination. PMID:15140641

  10. Excitatory and inhibitory enteric innervation of horse lower esophageal sphincter.

    PubMed

    Chiocchetti, R; Giancola, F; Mazzoni, M; Sorteni, C; Romagnoli, N; Pietra, M

    2015-06-01

    The lower esophageal sphincter (LES) is a specialized, thickened muscle region with a high resting tone mediated by myogenic and neurogenic mechanisms. During swallowing or belching, the LES undergoes strong inhibitory innervation. In the horse, the LES seems to be organized as a "one-way" structure, enabling only the oral-anal progression of food. We characterized the esophageal and gastric pericardial inhibitory and excitatory intramural neurons immunoreactive (IR) for the enzymes neuronal nitric oxide synthase (nNOS) and choline acetyltransferase. Large percentages of myenteric plexus (MP) and submucosal (SMP) plexus nNOS-IR neurons were observed in the esophagus (72 ± 9 and 69 ± 8 %, respectively) and stomach (57 ± 17 and 45 ± 3 %, respectively). In the esophagus, cholinergic MP and SMP neurons were 29 ± 14 and 65 ± 24 vs. 36 ± 8 and 38 ± 20 % in the stomach, respectively. The high percentage of nitrergic inhibitory motor neurons observed in the caudal esophagus reinforces the role of the enteric nervous system in the horse LES relaxation. These findings might allow an evaluation of whether selective groups of enteric neurons are involved in horse neurological disorders such as megaesophagus, equine dysautonomia, and white lethal foal syndrome.

  11. Role of GPR55 during Axon Growth and Target Innervation.

    PubMed

    Cherif, Hosni; Argaw, Anteneh; Cécyre, Bruno; Bouchard, Alex; Gagnon, Jonathan; Javadi, Pasha; Desgent, Sébastien; Mackie, Ken; Bouchard, Jean-François

    2015-01-01

    Guidance molecules regulate the navigation of retinal ganglion cell (RGC) projections toward targets in the visual thalamus. In this study, we demonstrate that the G-protein-coupled receptor 55 (GPR55) is expressed in the retina during development, and regulates growth cone (GC) morphology and axon growth. In vitro, neurons obtained from gpr55 knock-out (gpr55(-/-) ) mouse embryos have smaller GCs, less GC filopodia, and have a decreased outgrowth compared with gpr55(+/+) neurons. When gpr55(+/+) neurons were treated with GPR55 agonists, lysophosphatidylinositol (LPI) and O-1602, we observed a chemo-attractive effect and an increase in GC size and filopodia number. In contrast, cannabidiol (CBD) decreased the GC size and filopodia number inducing chemo-repulsion. In absence of the receptor (gpr55(-/-) ), no pharmacologic effects of the GPR55 ligands were observed. In vivo, compared to their wild-type (WT) littermates, gpr55(-/-) mice revealed a decreased branching in the dorsal terminal nucleus (DTN) and a lower level of eye-specific segregation of retinal projections in the superior colliculus (SC) and in the dorsal lateral geniculate nucleus (dLGN). Moreover, a single intraocular injection of LPI increased branching in the DTN, whereas treatment with CBD, an antagonist of GPR55, decreased it. These results indicate that GPR55 modulates the growth rate and the targets innervation of retinal projections and highlight, for the first time, an important role of GPR55 in axon refinement during development. PMID:26730399

  12. Role of GPR55 during Axon Growth and Target Innervation

    PubMed Central

    Cherif, Hosni; Argaw, Anteneh; Cécyre, Bruno; Bouchard, Alex; Gagnon, Jonathan; Javadi, Pasha; Desgent, Sébastien; Mackie, Ken

    2015-01-01

    Abstract Guidance molecules regulate the navigation of retinal ganglion cell (RGC) projections toward targets in the visual thalamus. In this study, we demonstrate that the G-protein-coupled receptor 55 (GPR55) is expressed in the retina during development, and regulates growth cone (GC) morphology and axon growth. In vitro, neurons obtained from gpr55 knock-out (gpr55-/-) mouse embryos have smaller GCs, less GC filopodia, and have a decreased outgrowth compared with gpr55+/+ neurons. When gpr55+/+ neurons were treated with GPR55 agonists, lysophosphatidylinositol (LPI) and O-1602, we observed a chemo-attractive effect and an increase in GC size and filopodia number. In contrast, cannabidiol (CBD) decreased the GC size and filopodia number inducing chemo-repulsion. In absence of the receptor (gpr55-/-), no pharmacologic effects of the GPR55 ligands were observed. In vivo, compared to their wild-type (WT) littermates, gpr55-/- mice revealed a decreased branching in the dorsal terminal nucleus (DTN) and a lower level of eye-specific segregation of retinal projections in the superior colliculus (SC) and in the dorsal lateral geniculate nucleus (dLGN). Moreover, a single intraocular injection of LPI increased branching in the DTN, whereas treatment with CBD, an antagonist of GPR55, decreased it. These results indicate that GPR55 modulates the growth rate and the targets innervation of retinal projections and highlight, for the first time, an important role of GPR55 in axon refinement during development. PMID:26730399

  13. Anatomical study on the innervation of the elbow capsule☆

    PubMed Central

    Cavalheiro, Cristina Schmitt; Filho, Mauro Razuk; Rozas, João; Wey, João; de Andrade, Antonio Marcos; Caetano, Edie Benedito

    2015-01-01

    Objectives To put forward an anatomical description of the innervation of the elbow capsule, illustrated through morphological analysis on dissections. Methods Thirty elbows from fresh fixed adult cadavers aged 32–74 years, of both sexes, were dissected. Results Among the dissected arms, we observed that the median nerve did not have any branches in two arms, while it had one branch in five arms, two branches in two arms, three branches in ten arms, four branches in nine arms and five branches in two arms. The radial nerve did not have any branches in two arms, while it had one branch in two arms, two branches in nine arms, three branches in ten arms, four branches in five arms and five branches in two arms. The ulnar nerve did not have any branches in three arms, while it had one branch in six arms, two branches in four arms, three branches in five arms, four branches in seven arms, five branches in four arms and six branches in one arm. Conclusions We observed branches of the radial, ulnar and medial nerves in the elbow joint, and a close relationship between their capsular and motor branches. PMID:27218079

  14. Ultrastructure and innervation of water buffalo (Bubalus bubalis) seminal vesicle.

    PubMed

    Abou-Elmagd, A; Kujat, R; Wrobel, K H

    1992-01-01

    The lining epithelium of secretory end pieces and central glandular duct in the seminal vesicle of the water buffalo (Bubalus bubalis) consists of columnar principal and small polymorphous basal cells. A system of intercellular and even intracellular canaliculi enlarges the secretory surface. The most prominent organelle of the columnar principal cells is the granular endoplasmic reticulum, forming large aggregates of parallel lamellae. Using antibodies against the neural cell adhesion molecule L1 and the neural marker protein gene product 9.5 (PGP 9.5), the innervation pattern of the seminal vesicle becomes evident. The muscular layer surrounding the propria contains a dense network of unmyelinated fibers. Thicker bundles traverse the muscular layer to reach the propria. Around glandular secretory tubules and below the epithelial lining of the glandular duct a tightly woven subepithelial plexus is observed which sends short penetrating branches into the basal zone of the epithelium. These intraepithelial nerves are devoid of Schwann cells and basal lamina (naked axons) and are situated within the intercellular spaces between principal and basal cells. Acetylcholinesterase histochemistry with short (1-2 h) incubation times, dopamine-beta-hydroxylase immunohistochemistry and ultrastructural study of transmitter-containing vesicles was performed. The results suggest that muscular contraction in the seminal vesicle is predominantly under the influence of the sympathetic nervous system, whereas secretory epithelial function is regulated by both sympathetic and parasympathetic fibers.

  15. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex.

    PubMed

    Chattopadhyaya, Bidisha; Di Cristo, Graziella; Wu, Cai Zhi; Knott, Graham; Kuhlman, Sandra; Fu, Yu; Palmiter, Richard D; Huang, Z Josh

    2007-06-21

    The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. Here, we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramidal neurons, and complexity of the innervation fields; the same manipulation had little influence on the subsequent maintenance of perisomatic synapses. These effects of GABA deficiency were rescued by suppressing GABA reuptake and by GABA receptor agonists. Germline knockdown of GAD67 but not GAD65 showed similar deficits, suggesting a specific role of GAD67 in the maturation of perisomatic innervation. Since intracellular GABA levels are modulated by neuronal activity, our results implicate GAD67-mediated GABA synthesis in activity-dependent regulation of inhibitory innervation patterns.

  16. Correlation between automated writing movements and striatal dopaminergic innervation in patients with Wilson's disease.

    PubMed

    Hermann, Wieland; Eggers, Birk; Barthel, Henryk; Clark, Daniel; Villmann, Thomas; Hesse, Swen; Grahmann, Friedrich; Kühn, Hans-Jürgen; Sabri, Osama; Wagner, Armin

    2002-08-01

    Handwriting defects are an early sign of motor impairment in patients with Wilson's disease. The basal ganglia being the primary site of copper accumulation in the brain suggests a correlation with lesions in the nigrostiatal dopaminergic system. We have analysed and correlated striatal dopaminergic innervation using [(123)I]beta-CIT-SPECT and automated handwriting movements in 37 patients with Wilson's disease. There was a significant correlation of putaminal dopaminergic innervation with fine motor ability (p < 0,05 for NIV [number of inversion in velocity], NIA [number of inversion in acceleration], frequency). These data suggest that loss of dorsolateral striatal dopaminergic innervation has a pathophysiological function for decreased automated motor control in Wilson's disease. Furthermore analysis of automated handwriting movements could be useful for therapy monitoring and evaluation of striatal dopaminergic innervation. PMID:12195459

  17. Management of facial erythema of rosacea: what is the role of topical α-adrenergic receptor agonist therapy?

    PubMed

    Del Rosso, James Q

    2013-12-01

    Several more recent advances have led to a better understanding of the pathophysiologic mechanisms involved in rosacea and therapeutic modalities used for treatment. Although the clinical features may vary among patients, there are some unifying mechanisms that appear to relate to the more common presentations of rosacea. Both neurovascular dysregulation and augmented immune detection and response appear to play central roles that lead to many of the signs and symptoms of rosacea. Diffuse central facial erythema is a very common finding that intensifies during flares and persists to varying degrees between flares. This background of facial redness occurs secondary to vasodilation and fixed vascular changes that develop over time. Physical modalities are commonly used to treat the erythema that persists as a result of fixed changes in superficial cutaneous vasculature that do not remit after treatment with agents whose mechanisms are active primarily against some of the inflammatory processes operative in rosacea (ie metronidazole, azelaic acid, tetracyclines). As enlarged superficial cutaneous vessels that contribute to the fixed background facial redness of rosacea remain vasoactive to sympathetic nervous system innervation, topical α-adrenergic receptor agonists, namely brimonidine and oxymetazoline, are currently under evaluation for the treatment of facial erythema of rosacea. This article focuses on the clinical differentiation of facial erythema of rosacea and its management.

  18. α-1 Adrenergic receptors are localized on presynaptic elements in the nucleus accumbens and regulate mesolimbic dopamine transmission.

    PubMed

    Mitrano, Darlene A; Schroeder, Jason P; Smith, Yoland; Cortright, James J; Bubula, Nancy; Vezina, Paul; Weinshenker, David

    2012-08-01

    Brainstem noradrenergic neurons innervate the mesocorticolimbic reward pathway both directly and indirectly, with norepinephrine facilitating dopamine (DA) neurotransmission via α1-adrenergic receptors (α1ARs). Although α1AR signaling in the prefrontal cortex (PFC) promotes mesolimbic transmission and drug-induced behaviors, the potential contribution of α1ARs in other parts of the pathway, such as the ventral tegmental area (VTA) and nucleus accumbens (NAc), has not been investigated before. We found that local blockade of α1ARs in the medial NAc shell, but not the VTA, attenuates cocaine- and morphine-induced locomotion. To determine the neuronal substrates that could mediate these effects, we analyzed the cellular, subcellular, and subsynaptic localization of α1ARs and characterized the chemical phenotypes of α1AR-containing elements within the mesocorticolimbic system using single and double immunocytochemical methods at the electron microscopic (EM) level. We found that α1ARs are found mainly extra-synaptically in axons and axon terminals in the NAc and are enriched in glutamatergic and dopaminergic elements. α1ARs are also abundant in glutamatergic terminals in the PFC, and in GABA-positive terminals in the VTA. In line with these observations, microdialysis experiments revealed that local blockade of α1ARs attenuated the increase in extracellular DA in the medial NAc shell following administration of cocaine. These data indicate that local α1ARs control DA transmission in the medial NAc shell and behavioral responses to drugs of abuse.

  19. In vivo beta-adrenergic induction of the unmasking of the uncoupling protein in rat brown fat.

    PubMed

    Goubern, M; Chapey, M F; Laury, M C; Portet, R

    1993-09-01

    1. In 28 degrees C adapted rats (WA) both cold stress and norepinephrine (NE) led to a 4-fold increase of uncoupling protein dependent proton conductance which was abolished by propranolol (PRO). 2. In 4-day warm re-exposed rats (after 10 days at 5 degrees C) (WR) the same uncoupling by cold stress was observed but the NE effect was lower. Uncoupling by cold stress was not abolished by PRO. 3. In WR rats, uncoupling was not due to the involvement of an alpha-adrenergic pathway. 4. Both beta-agonist isoproterenol and beta 3-agonists BRL 35135A and ICI D7114 led to high levels of unmasking. 5. Interscapular brown adipose tissue surgical denervation, which abolished cold stress unmasking both in WA and, WR rats, indicates a mediation by direct sympathetic innervation. 6. Depending on the thermal history of the rat, the possibility that unmasking by cold stress could be mediated by different types of beta-receptors is discussed. PMID:7903611

  20. Adrenergic regulation of ovarian androgen biosynthesis is mediated via beta 2-adrenergic theca-interstitial cell recognition sites.

    PubMed

    Hernandez, E R; Jimenez, J L; Payne, D W; Adashi, E Y

    1988-04-01

    Acting alone or in concert with pituitary gonadotropins, catecholamines have recently been shown to enhance androgen production by ovarian theca-interstitial cells. It is the objective of the in vitro studies reported herein to further characterize this catecholaminergic activity as well as to type and subtype the putative adrenergic recognition sites mediating this phenomenon. Treatment of collagenase-processed whole ovarian dispersates or highly enriched (greater than 90%) theca-interstitial cells from immature rats with norepinephrine (10(-6) M) resulted in a 2.0-fold increment in the accumulation of androsterone (3 alpha-hydroxy-5 alpha-androstane-17-one), the main androgenic steroid identified in culture medium by HPLC. Qualitatively similar stimulation was obtained using beta (isoproterenol)- but not alpha (methoxamine)-selective adrenergic agonists. Moreover, combined treatment with both norepinephrine (10(-6) M) and hCG (1 ng/ml) unmasked a synergistic interaction subject to stereospecific blockade by beta (propranolol)- but not alpha (phentolamine)-selective adrenergic antagonists. Further probing with subtype-selective adrenergic ligands revealed terbutaline (a beta 2-selective agonist) to enhance androgen biosynthesis, with dobutamine (a beta 1-selective agonist) having little or no effect. Moreover, a beta 2 (ICI-118406)- but not a beta 1 (ICI-89406)-selective adrenergic antagonist yielded dose-dependent inhibition of the isoproterenol effect. Unaccounted for by either enhanced cellular growth or an alteration of the overall steroidogenic pattern, catecholaminergically stimulated androgen biosynthesis proved time and dose dependent but independent of the hCG dose (0.1-10 ng/ml) employed. Binding of [125I]iodocyanopindolol to highly enriched theca-interstitial cells proved stereoselective and saturable, displaying a single class (Hill coefficient = 0.96 +/- 0.01) of high affinity (Kd = 5.6 X 10(-11) M), low capacity (1219 +/- 317 sites/cell) binding

  1. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    NASA Astrophysics Data System (ADS)

    Evtushenko, A. V.; Evtushenko, V. V.; Saushkina, Yu. V.; Lishmanov, Yu. B.; Pokushalov, E. A.; Sergeevichev, D. S.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V.; Anfinogenova, Ya. D.; Smyshlyaev, K. A.; Lotkov, A. I.; Kurlov, I. O.

    2015-11-01

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using 123I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  2. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    SciTech Connect

    Evtushenko, A. V. Evtushenko, V. V.; Saushkina, Yu. V.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Smyshlyaev, K. A.; Kurlov, I. O.; Lishmanov, Yu. B.; Anfinogenova, Ya. D.; Sergeevichev, D. S.; Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V.; Lotkov, A. I.; Pokushalov, E. A.

    2015-11-17

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using {sup 123}I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  3. Lamination of the masticatory muscles in the kangaroo according to their innervation.

    PubMed

    Nakajima, K; Townsend, G; Tomo, S; Ide, Y; Oka, K; Wakatsuki, E

    2000-03-01

    An analysis of the laminations of the masseteric, zygomaticomandibular and temporalis muscles of the Red Kangaroo (Macropus Rufus) and all of the masticatory muscles of the Eastern Gray Kangaroo (Macropus Giganteus) was carried out based on their innervation. The masseteric muscle was divided into superficial and deep layers; the superficial layer was further subdivided into three laminae from the rostro-lateral portion to caudo-internal portion. The deep layer was divided into lateral, caudo-internal and rostro-internal laminae. The zygomaticomandibular muscle which was located between the masseteric and temporal muscles was divided into lateral, internal and rostral laminae, on the basis of its innervation. The lateral and internal laminae were innervated by the nerve which arises between the masseteric nerve and the posterior deep temporal nerve. A small rostral portion of the muscle was innervated by masseteric nerves, which passed through the internal lamina of the deep layer of the masseteric muscle. The temporalis muscle was innervated by an anterior deep temporal nerve and posterior deep temporal nerve. Only the most rostro-internal lamina of the temporalis muscle was innervated by the anterior deep temporal nerve. The anterior deep temporal nerve and lateral pterygoid nerve had a common trunk. We believe that the rostro-internal lamina was closely related to the lateral pterygoid muscle. The lateral pterygoid muscle displayed one lamina, whereas the medial pterygoid muscle was divided into internal and lateral laminae. The lateral lamina was further divided into rostro-internal and caudo-lateral laminae.

  4. cap alpha. -2 adrenergic receptor: a radiohistochemical study

    SciTech Connect

    Unnerstall, J.R.

    1984-01-01

    ..cap alpha..-2 adrenergic agents have been shown to influence blood pressure, heart rate and other physiological and behavioral functions through interactions with adrenergic pathways within the central nervous system. Pharmacologically relevant ..cap alpha..-1 adrenergic receptors were biochemically characterized and radiohistochemically analyzed in intact tissue sections of the rat and human central nervous system. The anatomical distribution of the ..cap alpha..-2 receptors, labeled with the agonist (/sup 3/H)para-aminoclonidine, verified the concept that ..cap alpha..-2 receptors are closely associated with adrenergic nerve terminals and that ..cap alpha..-2 agents can influence autonomic and endocrine function through an action in the central nervous system. Since ..cap alpha..-2 agonists can influence sympathetic outflow, ..cap alpha..-2 binding sites were closely analyzed in the intermediolateral cell column of the thoracic spinal cord. The transport of putative presynaptic ..cap alpha..-2 binding sites in the rat sciatic nerve was analyzed by light microscopic radiohistochemical techniques. Finally, in intact tissue section of the rat central nervous system, the biochemical characteristics of (/sup 3/H)rauwolscine binding were analyzed. Data were also shown which indicates that the synthetic ..cap alpha..-2 antagonist (/sup 3/H)RX781094 also binds to ..cap alpha..-2 receptors with high-affinity. Further, the distribution of (/sup 3/H)RX781094 binding sites in the rat central nervous system was identical to the distribution seen when using (/sup 3/H)para-aminoclonidine.

  5. Adrenergic receptor subtypes in the cerebral circulation of newborn piglets

    SciTech Connect

    Wagerle, L.C.; Delivoria-Papadopoulos, M.

    1987-06-01

    The purpose of this study was to identify the ..cap alpha..-adrenergic receptor subtype mediating cerebral vasoconstriction during sympathetic nerve stimulation in the newborn piglet. The effect of ..cap alpha../sub 1/- and ..cap alpha../sub 2/-antagonists prazosin and yohimbine on the cerebrovascular response to unilateral electrical stimulation (15 Hz, 15 V) of the superior cervical sympathetic trunk was studied in 25 newborn piglets. Regional cerebral blood flow was measured with tracer microspheres. Sympathetic stimulation decreased blood flow to the ipsilateral cerebrum hippocampus, choroid plexus, and masseter muscle. ..cap alpha../sub 1/-Adrenergic receptor blockade with prazosin inhibited the sympathetic vasoconstriction in the cerebrum, hippocampus, and masseter muscle and abolished it in the choroid plexus. ..cap alpha../sub s/-Adrenergic receptor blockade with yohimbine had no effect. Following the higher dose of yohimbine, however, blood flow to all brain regions was increased by approximately two-fold, possibly due to enhanced cerebral metabolism. These data demonstrate that vascular ..cap alpha../sub 1/-adrenergic receptors mediate vasoconstriction to neuroadrenergic stimulation in cerebral resistance vessels in the newborn piglet.

  6. DNA encoding an. alpha. sub 2B -adrenergic receptor

    SciTech Connect

    Weinshank, R.L.; Hartig, P.R.

    1991-10-01

    This paper describes an isolated nucleic acid molecule encoding a human alpha 2B-adrenergic receptor. This patent also describes an isolated nucleic acid molecule, wherein the isolated nucleic acid molecule is a DNA molecule and a mammalian cell comprising the DNA molecule.

  7. Molecular characterization of an. alpha. sub 2B -adrenergic receptor

    SciTech Connect

    Harrison, J.K.; Dewan Zeng; D'Angelo, D.D.; Tucker, A.L.; Zhihong Lu; Barber, C.M.; Lynch, K.R. )

    1990-02-26

    {alpha}{sub 2}-Adrenergic receptors comprise a heterogeneous population based on pharmacologic and molecular evidence. The authors have isolated a cDNA clone (pRNG{alpha}2) encoding a previously undescribed third subtype of an {alpha}{sub 2}-adrenergic receptor from a rat kidney cDNA library. The library was screened with an oligonucleotide encoding a highly conserved region found in all biogenic amine receptors described to date. The deduced amino acid sequence displays many features of G-protein coupled receptors with exception of the absence of the consensus N-linked glycosylation site at the amino terminus. Membranes prepared from COS-1 cells transfected with pRNG{alpha}2 display high affinity and saturable binding to {sup 3}H-rauwolscine (K{sub d}=2 nM).Competition curve data analysis shows that pRNG{alpha}2 protein binds to a variety of adrenergic drugs with the following rank order of potency: yohimbine {ge} cholorpromazine > prazosin {ge} clonidine > norepinephrine {ge} oxymetazoline. pRNG{alpha}2 RNA accumulates in both adult rat kidney and rat neonatal lung (predominant species is 4.0 kb). They conclude that pRNG{alpha}2 likely represents a cDNA for the {alpha}{sub 2B}-adrenergic receptor.

  8. Sympathetic restraint of respiratory sinus arrhythmia: implications for vagal-cardiac tone assessment in humans

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Myers, C. W.; Halliwill, J. R.; Seidel, H.; Eckberg, D. L.

    2001-01-01

    Clinicians and experimentalists routinely estimate vagal-cardiac nerve traffic from respiratory sinus arrhythmia. However, evidence suggests that sympathetic mechanisms may also modulate respiratory sinus arrhythmia. Our study examined modulation of respiratory sinus arrhythmia by sympathetic outflow. We measured R-R interval spectral power in 10 volunteers that breathed sequentially at 13 frequencies, from 15 to 3 breaths/min, before and after beta-adrenergic blockade. We fitted changes of respiratory frequency R-R interval spectral power with a damped oscillator model: frequency-dependent oscillations with a resonant frequency, generated by driving forces and modified by damping influences. beta-Adrenergic blockade enhanced respiratory sinus arrhythmia at all frequencies (at some, fourfold). The damped oscillator model fit experimental data well (39 of 40 ramps; r = 0.86 +/- 0.02). beta-Adrenergic blockade increased respiratory sinus arrhythmia by amplifying respiration-related driving forces (P < 0.05), without altering resonant frequency or damping influences. Both spectral power data and the damped oscillator model indicate that cardiac sympathetic outflow markedly reduces heart period oscillations at all frequencies. This challenges the notion that respiratory sinus arrhythmia is mediated simply by vagal-cardiac nerve activity. These results have important implications for clinical and experimental estimation of human vagal cardiac tone.

  9. The Evolving Impact of G Protein-Coupled Receptor Kinases in Cardiac Health and Disease

    PubMed Central

    Sato, Priscila Y.; Chuprun, J. Kurt; Schwartz, Mathew; Koch, Walter J.

    2015-01-01

    G protein-coupled receptors (GPCRs) are important regulators of various cellular functions via activation of intracellular signaling events. Active GPCR signaling is shut down by GPCR kinases (GRKs) and subsequent β-arrestin-mediated mechanisms including phosphorylation, internalization, and either receptor degradation or resensitization. The seven-member GRK family varies in their structural composition, cellular localization, function, and mechanism of action (see sect. II). Here, we focus our attention on GRKs in particular canonical and novel roles of the GRKs found in the cardiovascular system (see sects. III and IV). Paramount to overall cardiac function is GPCR-mediated signaling provided by the adrenergic system. Overstimulation of the adrenergic system has been highly implicated in various etiologies of cardiovascular disease including hypertension and heart failure. GRKs acting downstream of heightened adrenergic signaling appear to be key players in cardiac homeostasis and disease progression, and herein we review the current data on GRKs related to cardiac disease and discuss their potential in the development of novel therapeutic strategies in cardiac diseases including heart failure. PMID:25834229

  10. Interaction among cardiac, respiratory, and locomotor rhythms during cardiolocomotor synchronization.

    PubMed

    Niizeki, K; Kawahara, K; Miyamoto, Y

    1993-10-01

    The nature of entrainment between cardiac and locomotor rhythms was investigated while normal human subjects walked or ran on a treadmill. To detect the incidence of entrainment occurrence, the phase relationships among cardiac, respiratory, and locomotor rhythms were analyzed. The phase relationship between heartbeats and gait signals showed that entrainment of cardiac rhythm to locomotor rhythm occurred in all subjects at one or more treadmill speeds. To elucidate interactions among cardiac, respiratory, and locomotor rhythms during the cardiolocomotor synchronization, spectral and coherence analyses were done for these three rhythms. Spectral and coherence analyses on fluctuations in the heart period and respiratory rhythms revealed that the strength of coupling between cardiac and respiratory rhythms decreased in the presence of cardiolocomotor synchronization. In addition, the coupling of cardiac and locomotor rhythms appeared to induce dissociation of coupling between respiratory and locomotor rhythms. These results were similar to those observed when stepping was voluntarily synchronized with cardiac rhythm. Possible mechanisms to explain coordination and interaction among the neural oscillators innervating these three rhythms are discussed.

  11. [Cardiac amyloidosis].

    PubMed

    Hoyer, Caroline; Angermann, Christiane E; Knop, Stefan; Ertl, Georg; Störk, Stefan

    2008-03-15

    Amyloidoses are a heterogeneous group of multisystem disorders, which are characterized by an extracellular deposition of amyloid fibrils. Typically affected are the heart, liver, kidneys, and nervous system. More than half of the patients die due to cardiac involvement. Clinical signs of cardiac amyloidosis are edema of the lower limbs, hepatomegaly, ascites and elevated jugular vein pressure, frequently in combination with dyspnea. There can also be chest pain, probably due to microvessel disease. Dysfunction of the autonomous nervous system or arrhythmias may cause low blood pressure, dizziness, or recurrent syncope. The AL amyloidosis caused by the deposition of immunoglobulin light chains is the most common form. It can be performed by monoclonal gammopathy. The desirable treatment therapy consists of high-dose melphalan therapy twice followed by autologous stem cell transplantation. Due to the high peritransplantation mortality, selection of appropriate patients is mandatory. The ATTR amyloidosis is an autosomal dominant disorder caused by the amyloidogenic form of transthyretin, a plasmaprotein that is synthesized in the liver. Therefore, liver transplantation is the only curative therapy. The symptomatic treatment of cardiac amyloidosis is based on the current guidelines for chronic heart failure according to the patient's New York Heart Association (NYHA) state. Further types of amyloidosis with possible cardiac involvement comprise the senile systemic amyloidosis caused by the wild-type transthyretin, secondary amyloidosis after chronic systemic inflammation, and the beta(2)-microglobulin amyloidosis after long-term dialysis treatment. PMID:18344065

  12. Nitrergic innervation of trigeminal and hypoglossal motoneurons in the cat.

    PubMed

    Pose, Ines; Fung, Simon; Sampogna, Sharon; Chase, Michael H; Morales, Francisco R

    2005-04-11

    The present study was undertaken to determine the location of trigeminal and hypoglossal premotor neurons that express neuronal nitric oxide synthase (nNOS) in the cat. Cholera toxin subunit b (CTb) was injected into the trigeminal (mV) or the hypoglossal (mXII) motor nuclei in order to label the corresponding premotor neurons. CTb immunocytochemistry was combined with NADPH-d histochemistry or nNOS immunocytochemistry to identify premotor nitrergic (NADPH-d(+)/CTb(+) or nNOS(+)/ CTb(+) double-labeled) neurons. Premotor trigeminal as well as premotor hypoglossal neurons were located in the ventro-medial medullary reticular formation in a region corresponding to the nucleus magnocellularis (Mc) and the ventral aspect of the nucleus reticularis gigantocellularis (NRGc). Following the injection of CTb into the mV, this region was found to contain a total of 60 +/- 15 double-labeled neurons on the ipsilateral side and 33 +/- 14 on the contralateral side. CTb injections into the mXII resulted in 40 +/- 17 double-labeled neurons in this region on the ipsilateral side and 16 +/- 5 on the contralateral side. Thus, we conclude that premotor trigeminal and premotor hypoglossal nitrergic cells coexist in the same medullary region. They are colocalized with a larger population of nitrergic cells (7200 +/- 23). Premotor neurons in other locations did not express nNOS. The present data demonstrate that a population of neurons within the Mc and the NRGc are the source of the nitrergic innervation of trigeminal and hypoglossal motoneurons. Based on the characteristics of nitric oxide actions and its diffusibility, we postulate that these neurons may serve to synchronize the activity of mV and mXII motoneurons. PMID:15804497

  13. The innervation of salivary glands as revealed by morphological methods.

    PubMed

    Garrett, J R; Kidd, A

    1993-09-01

    Salivary secretion is nerve mediated. The salivary glands are supplied by parasympathetic and sympathetic efferent nerves which travel to the glands by separate routes. Once in the glands the axons from each type of nerve intermingle and travel together in association with Schwann cells, forming Schwann-axon bundles. Two types of neuro-effector relationships exist with salivary parenchymal and myoepithelial cells: epilemmal (outside the parenchymal basement membrane) and hypolemmal (within the parenchymal basement membrane). Their relative frequencies with either type of nerve differ greatly between glands and species. Salivary blood vessels receive epilemmal innervations by both sympathetic and parasympathetic axons. The classical transmitters--acetylcholine in parasympathetic and noradrenaline in sympathetic axons--are stored in small vesicles. A variety of non-conventional neuropeptide transmitters have also been found in salivary nerves by immunohistochemistry, and they occur in large dense-cored vesicles. Prolonged high frequency stimulation has been found to cause depletion of large dense-cored vesicles from glandular nerves. In recent years afferent nerves have started to be identified and are found in greatest numbers around the main salivary ducts, where they may form a hypolemmal association with the epithelial cells. Functional studies demonstrate complex interactions between parasympathetic and sympathetic nerves. Morphological assessments of changes in the parenchymal cells after nerve stimulations or denervations add greatly to our understanding of the nerve functions. At least four types of influence can be exerted on salivary parenchymal cells by the nerves: hydrokinetic (water mobilizing), proteokinetic (protein secreting), synthetic (inducing synthesis), and trophic (maintaining normal functional size and state). In respect to each role, wide glandular and species differences exist between the relative contributions made by each type of nerve.

  14. The innervation of salivary glands as revealed by morphological methods.

    PubMed

    Garrett, J R; Kidd, A

    1993-09-01

    Salivary secretion is nerve mediated. The salivary glands are supplied by parasympathetic and sympathetic efferent nerves which travel to the glands by separate routes. Once in the glands the axons from each type of nerve intermingle and travel together in association with Schwann cells, forming Schwann-axon bundles. Two types of neuro-effector relationships exist with salivary parenchymal and myoepithelial cells: epilemmal (outside the parenchymal basement membrane) and hypolemmal (within the parenchymal basement membrane). Their relative frequencies with either type of nerve differ greatly between glands and species. Salivary blood vessels receive epilemmal innervations by both sympathetic and parasympathetic axons. The classical transmitters--acetylcholine in parasympathetic and noradrenaline in sympathetic axons--are stored in small vesicles. A variety of non-conventional neuropeptide transmitters have also been found in salivary nerves by immunohistochemistry, and they occur in large dense-cored vesicles. Prolonged high frequency stimulation has been found to cause depletion of large dense-cored vesicles from glandular nerves. In recent years afferent nerves have started to be identified and are found in greatest numbers around the main salivary ducts, where they may form a hypolemmal association with the epithelial cells. Functional studies demonstrate complex interactions between parasympathetic and sympathetic nerves. Morphological assessments of changes in the parenchymal cells after nerve stimulations or denervations add greatly to our understanding of the nerve functions. At least four types of influence can be exerted on salivary parenchymal cells by the nerves: hydrokinetic (water mobilizing), proteokinetic (protein secreting), synthetic (inducing synthesis), and trophic (maintaining normal functional size and state). In respect to each role, wide glandular and species differences exist between the relative contributions made by each type of nerve

  15. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine

    PubMed Central

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-01-01

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na+ current (INa), and is known to reduce the Na+-dependent Ca2+ overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na+ channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca2+ calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine. PMID:26655634

  16. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine.

    PubMed

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-01-01

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na(+) current (INa), and is known to reduce the Na(+)-dependent Ca(2+) overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na(+) channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca(2+) calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine. PMID:26655634

  17. β1-adrenergic antagonists improve sleep and behavioural disturbances in a circadian disorder, Smith-Magenis syndrome

    PubMed Central

    De Leersnyder, H.; de Blois, M.-C.; Vekemans, M.; Sidi, D.; Villain, E.; Kindermans, C.; Munnich, A.

    2001-01-01

    Smith-Magenis syndrome (SMS) is a clinically recognisable contiguous gene syndrome ascribed to interstitial deletions of chromosome 17p11.2. Patients have a phase shift of their circadian rhythm of melatonin with a paradoxical diurnal secretion of the hormone. Serum melatonin levels and day-night behaviour were studied in nine SMS children (aged 4 to 17 years) given acebutolol, a selective β1-adrenergic antagonist (10 mg/kg early in the morning). Cardiac examination, serum melatonin, motor activity recordings, and sleep diaries were monitored before and after drug administration. The present study shows that a single morning dose of acebutolol suppressed the inappropriate secretion of melatonin in SMS. A significant improvement of inappropriate behaviour with increased concentration, delayed sleep onset, increased hours of sleep, and delayed waking were also noted. These results suggest that β1-adrenergic antagonists help to manage hyperactivity, enhance cognitive performance, and reduce sleep disorders in SMS.


Keywords: Smith-Magenis syndrome; circadian rhythms; melatonin PMID:11546826

  18. Involvement of catecholaminergic neurons in motor innervation of striated muscle in the mouse esophagus.

    PubMed

    van der Keylen, Piet; Garreis, Fabian; Steigleder, Ruth; Sommer, Daniel; Neuhuber, Winfried L; Wörl, Jürgen

    2016-05-01

    Enteric co-innervation is a peculiar innervation pattern of striated esophageal musculature. Both anatomical and functional data on enteric co-innervation related to various transmitters have been collected in different species, although its function remains enigmatic. However, it is unclear whether catecholaminergic components are involved in such a co-innervation. Thus, we examined to identify catecholaminergic neuronal elements and clarify their relationship to other innervation components in the esophagus, using immunohistochemistry with antibodies against tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT), choline acetyltransferase (ChAT) and protein gene product 9.5 (PGP 9.5), α-bungarotoxin (α-BT) and PCR with primers for amplification of cDNA encoding TH and dopamine-β-hydroxylase (DBH). TH-positive nerve fibers were abundant throughout the myenteric plexus and localized on about 14% of α-BT-labelled motor endplates differing from VAChT-positive vagal nerve terminals. TH-positive perikarya represented a subpopulation of only about 2.8% of all PGP 9.5-positive myenteric neurons. Analysis of mRNA showed both TH and DBH transcripts in the mouse esophagus. As ChAT-positive neurons in the compact formation of the nucleus ambiguus were negative for TH, the TH-positive nerve varicosities on motor endplates are presumably of enteric origin, although a sympathetic origin cannot be excluded. In the medulla oblongata, the cholinergic ambiguus neurons were densely supplied with TH-positive varicosities. Thus, catecholamines may modulate vagal motor innervation of esophageal-striated muscles not only at the peripheral level via enteric co-innervation but also at the central level via projections to the nucleus ambiguus. As Parkinson's disease, with a loss of central dopaminergic neurons, also affects the enteric nervous system and dysphagia is prevalent in patients with this disease, investigation of intrinsic catecholamines in the esophagus may

  19. Succinate dehydrogenase activity and soma size of motoneurons innervating different portions of the rat tibialis anterior

    NASA Technical Reports Server (NTRS)

    Ishihara, A.; Roy, R. R.; Edgerton, V. R.

    1995-01-01

    The spatial distribution, soma size and oxidative enzyme activity of gamma and alpha motoneurons innervating muscle fibres in the deep (away from the surface of the muscle) and superficial (close to the surface of the muscle) portions of the tibialis anterior in normal rats were determined. The deep portion had a higher percentage of high oxidative fibres than the superficial portion of the muscle. Motoneurons were labelled by retrograde neuronal transport of fluorescent tracers: Fast Blue and Nuclear Yellow were injected into the deep portion and Nuclear Yellow into the superficial portion of the muscle. Therefore, motoneurons innervating the deep portion were identified by both a blue fluorescent cytoplasm and a golden-yellow fluorescent nucleus, while motoneurons innervating the superficial portion were identified by only a golden-yellow fluorescent nucleus. After staining for succinate dehydrogenase activity on the same section used for the identification of the motoneurons, soma size and succinate dehydrogenase activity of the motoneurons were measured. The gamma and alpha motoneurons innervating both the deep and superficial portions were located primarily at L4 and were intermingled within the same region of the dorsolateral portion of the ventral horn in the spinal cord. Mean soma size was similar for either gamma or alpha motoneurons in the two portions of the muscle. The alpha motoneurons innervating the superficial portion had a lower mean succinate dehydrogenase activity than those innervating the deep portion of the muscle. An inverse relationship between soma size and succinate dehydrogenase activity of alpha, but not gamma, motoneurons innervating both the deep and superficial portions was observed. Based on three-dimensional reconstructions within the spinal cord, there were no apparent differences in the spatial distribution of the motoneurons, either gamma or alpha, associated with the deep and superficial compartments of the muscle. The data

  20. 3D engineered cardiac tissue models of human heart disease: learning more from our mice.

    PubMed

    Ralphe, J Carter; de Lange, Willem J

    2013-02-01

    Mouse engineered cardiac tissue constructs (mECTs) are a new tool available to study human forms of genetic heart disease within the laboratory. The cultured strips of cardiac cells generate physiologic calcium transients and twitch force, and respond to electrical pacing and adrenergic stimulation. The mECT can be made using cells from existing mouse models of cardiac disease, providing a robust readout of contractile performance and allowing a rapid assessment of genotype-phenotype correlations and responses to therapies. mECT represents an efficient and economical extension to the existing tools for studying cardiac physiology. Human ECTs generated from iPSCMs represent the next logical step for this technology and offer significant promise of an integrated, fully human, cardiac tissue model.

  1. Cardiac syndrome X. Diagnosis, pathogenesis and management.

    PubMed

    Kaski, Juan Carlos; Aldama, Guillermo; Cosín-Sales, Juan

    2004-01-01

    Patients with cardiac syndrome X (typical chest pain and normal coronary arteriograms) represent a heterogeneous syndrome, which encompasses different pathogenic mechanisms. Although symptoms in most patients with cardiac syndrome X are non-cardiac, a sizable proportion of them have angina pectoris due to transient myocardial ischemia. Thus radionuclide myocardial perfusion defects, coronary sinus oxygen saturation abnormalities and pH changes, myocardial lactate production and stress-induced alterations of cardiac high energy phosphate suggest an ischemic origin of symptoms in at least a proportion of patients with cardiac syndrome X. Microvascular abnormalities, caused by endothelial dysfunction, appear to be responsible for myocardial ischemia in patients with cardiac syndrome X. Endothelial dysfunction is likely to be multifactorial in these patients and it is conceivable that risk factors such as hypertension, hypercholesterolemia, diabetes mellitus and smoking can contribute to its development. Most patients with cardiac syndrome X are postmenopausal women and estrogen deficiency has been therefore proposed as a pathogenic factor in female patients. Additional factors such as abnormal pain perception may contribute to the pathogenesis of chest pain in patients with angina pectoris and normal coronary angiograms. Although prognosis is good regarding survival, patients with cardiac syndrome X have an impaired quality of life. Management of this syndrome represents a major challenge to the treating physician. Understanding the mechanism underlying the condition is of vital importance for patient management. Thus diagnostic tests should aim at identifying the cause of the symptoms in the individual patient, i.e. myocardial ischemia, increased pain perception, abnormalities of adrenergic tone, non-cardiac mechanisms, etc. Moreover, it is important to bear in mind that treatment of cardiac syndrome X should be mainly directed towards improving quality of life, as

  2. β-adrenergic impact underlies the effect of mood and hedonic instrumentality on effort-related cardiovascular response.

    PubMed

    Silvestrini, Nicolas; Gendolla, Guido H E

    2011-05-01

    After habituation, participants were first induced into negative vs. positive moods and performed then an attention task with either low vs. high hedonic instrumentality of success. In the high-instrumentality condition participants expected to see a funny movie after success and an unpleasant movie after failure; in the low-instrumentality condition participants expected an unpleasant movie after success and a pleasant movie after failure. Effort-related cardiovascular response (ICG, blood pressure) was assessed during mood inductions and task performance. As predicted by the mood-behavior-model (Gendolla, 2000), responses of cardiac pre-ejection period (PEP) and systolic blood pressure were stronger in the high-instrumentality/negative-mood condition than in the other three cells. Here the high hedonic instrumentality of success justified the high effort that was perceived as necessary in a negative mood. Moreover, the PEP effects indicate that cardiovascular response was driven by beta-adrenergic impact on the heart rather than by vascular adjustments.

  3. Spatial heterogeneity of blood flow in the dog heart. II. Temporal stability in response to adrenergic stimulation.

    PubMed

    Deussen, A; Flesche, C W; Lauer, T; Sonntag, M; Schrader, J

    1996-07-01

    results it is concluded firstly that local myocardial blood flow under resting conditions is an important determinant of local flow during adrenergic stimulation. Secondly, the anatomical region does not have any predictive value for the blood flow change during adrenergic stimulation and finally, the close relationship between local blood flow before and after cardiac stimulation indicates that the spatial blood flow heterogeneity is temporally stable over hours.

  4. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  5. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    PubMed Central

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  6. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  7. Cardiac Surgery

    PubMed Central

    Weisse, Allen B.

    2011-01-01

    Well into the first decades of the 20th century, medical opinion held that any surgical attempts to treat heart disease were not only misguided, but unethical. Despite such reservations, innovative surgeons showed that heart wounds could be successfully repaired. Then, extracardiac procedures were performed to correct patent ductus arteriosus, coarctation of the aorta, and tetralogy of Fallot. Direct surgery on the heart was accomplished with closed commissurotomy for mitral stenosis. The introduction of the heart-lung machine and cardiopulmonary bypass enabled the surgical treatment of other congenital and acquired heart diseases. Advances in aortic surgery paralleled these successes. The development of coronary artery bypass grafting greatly aided the treatment of coronary heart disease. Cardiac transplantation, attempts to use the total artificial heart, and the application of ventricular assist devices have brought us to the present day. Although progress in the field of cardiovascular surgery appears to have slowed when compared with the halcyon times of the past, substantial challenges still face cardiac surgeons. It can only be hoped that sufficient resources and incentive can carry the triumphs of the 20th century into the 21st. This review covers past developments and future opportunities in cardiac surgery. PMID:22163121

  8. Innervation of propatagial musculature in a flying squirrel, Glaucomys volans (Rodentia, Sciuridae).

    PubMed

    Chickering, J G; Sokoloff, A J

    1996-01-01

    The propatagium of gliding and flying mammals is of both functional and phylogenetic interest. The innervation of the propatagial muscle, platysma II, was studied with the axonal tracer wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) in a flying squirrel, Glaucomys volans. Injections of WGA-HRP into the proximal third of platysma II labeled motoneurons in the lateral part of the medial subdivision of the ipsilateral facial nucleus and in the ipsilateral ventral horn of the brachial enlargement. Injections into distal regions of platysma II labeled motoneurons in the ipsilateral ventral horn of spinal segments C5-C8 but not in the facial nucleus. Injections along the whole length of the muscle labeled afferent axons in the ipsilateral dorsal horn of spinal segments C4-T1. These results demonstrate a mixed facial and spinal motor innervation of propatagial musculature in the flying squirrel and indicate that this pattern of mixed innervation is more widespread among flying and gliding mammals than previously reported. Mixed facial and cervical propatagial innervation, independently derived in different flying and gliding mammals, may represent a common solution in the design of the propatagium. These findings complicate the use of propatagial muscle innervation patterns for the establishment of phylogenetic relationships among flying and gliding mammals. PMID:8834780

  9. Analysis and Measurement of the Sympathetic and Sensory Innervation of White and Brown Adipose Tissue

    PubMed Central

    Vaughan, Cheryl H.; Zarebidaki, Eleen; Ehlen, J. Christopher; Bartness, Timothy J.

    2014-01-01

    Here, we provide a detailed account of how to denervate white and brown adipose tissue (WAT and BAT) and how to measure sympathetic nervous system (SNS) activity to these and other tissues neurochemically. The brain controls many of the functions of WAT and BAT via the SNS innervation of the tissues, especially lipolysis and thermogenesis, respectively. There is no clearly demonstrated parasympathetic innervation of WAT or the major interscapular BAT (IBAT) depot. WAT and BAT communicate with the brain neurally via sensory nerves. We detail the surgical denervation (eliminating both innervations) of several WAT pads and IBAT. We also detail more selective chemical denervation of the SNS innervation via intra-WAT/IBAT 6-hydroxy-dopamine (a catecholaminergic neurotoxin) injections and selective chemical sensory denervation via intra-WAT/IBAT capsaicin (a sensory nerve neurotoxin) injections. Verifications of the denervations are provided (HPLC-EC detection for SNS, ELIA for calcitonin gene-related peptide (proven sensory nerve marker)). Finally, assessment of the SNS drive to WAT/BAT or other tissues is described using the alpha-methyl-para-tyrosine method combined with HPLC-EC, a direct neurochemical measure of SNS activity. These methods have proven useful for us and for other investigators interested in innervation of adipose tissues. The chemical denervation approach has been extended to nonadipose tissues as well. PMID:24480348

  10. Analysis and measurement of the sympathetic and sensory innervation of white and brown adipose tissue.

    PubMed

    Vaughan, Cheryl H; Zarebidaki, Eleen; Ehlen, J Christopher; Bartness, Timothy J

    2014-01-01

    Here, we provide a detailed account of how to denervate white and brown adipose tissue (WAT and BAT) and how to measure sympathetic nervous system (SNS) activity to these and other tissues neurochemically. The brain controls many of the functions of WAT and BAT via the SNS innervation of the tissues, especially lipolysis and thermogenesis, respectively. There is no clearly demonstrated parasympathetic innervation of WAT or the major interscapular BAT (IBAT) depot. WAT and BAT communicate with the brain neurally via sensory nerves. We detail the surgical denervation (eliminating both innervations) of several WAT pads and IBAT. We also detail more selective chemical denervation of the SNS innervation via intra-WAT/IBAT 6-hydroxy-dopamine (a catecholaminergic neurotoxin) injections and selective chemical sensory denervation via intra-WAT/IBAT capsaicin (a sensory nerve neurotoxin) injections. Verifications of the denervations are provided (HPLC-EC detection for SNS, ELIA for calcitonin gene-related peptide (proven sensory nerve marker)). Finally, assessment of the SNS drive to WAT/BAT or other tissues is described using the alpha-methyl-para-tyrosine method combined with HPLC-EC, a direct neurochemical measure of SNS activity. These methods have proven useful for us and for other investigators interested in innervation of adipose tissues. The chemical denervation approach has been extended to nonadipose tissues as well.

  11. Innervation is required for sense organ development in the lateral line system of adult zebrafish.

    PubMed

    Wada, Hironori; Dambly-Chaudière, Christine; Kawakami, Koichi; Ghysen, Alain

    2013-04-01

    Superficial mechanosensory organs (neuromasts) distributed over the head and body of fishes and amphibians form the "lateral line" system. During zebrafish adulthood, each neuromast of the body (posterior lateral line system, or PLL) produces "accessory" neuromasts that remain tightly clustered, thereby increasing the total number of PLL neuromasts by a factor of more than 10. This expansion is achieved by a budding process and is accompanied by branches of the afferent nerve that innervates the founder neuromast. Here we show that innervation is essential for the budding process, in complete contrast with the development of the embryonic PLL, where innervation is entirely dispensable. To obtain insight into the molecular mechanisms that underlie the budding process, we focused on the terminal system that develops at the posterior tip of the body and on the caudal fin. In this subset of PLL neuromasts, bud neuromasts form in a reproducible sequence over a few days, much faster than for other PLL neuromasts. We show that wingless/int (Wnt) signaling takes place during, and is required for, the budding process. We also show that the Wnt activator R-spondin is expressed by the axons that innervate budding neuromasts. We propose that the axon triggers Wnt signaling, which itself is involved in the proliferative phase that leads to bud formation. Finally, we show that innervation is required not only for budding, but also for long-term maintenance of all PLL neuromasts.

  12. The Influence of Dopaminergic Striatal Innervation on Upper Limb Locomotor Synergies

    PubMed Central

    Isaias, Ioannis U.; Volkmann, Jens; Marzegan, Alberto; Marotta, Giorgio; Cavallari, Paolo; Pezzoli, Gianni

    2012-01-01

    To determine the role of striatal dopaminergic innervation on upper limb synergies during walking, we measured arm kinematics in 13 subjects with Parkinson disease. Patients were recruited according to several inclusion criteria to represent the best possible in vivo model of dopaminergic denervation. Of relevance, we included only subjects with normal spatio-temporal parameters of the stride and gait speed to avoid an impairment of upper limbs locomotor synergies as a consequence of gait impairment per se. Dopaminergic innervation of the striatum was measured by FP-CIT and SPECT. All patients showed a reduction of gait-associated arms movement. No linear correlation was found between arm ROM reduction and contralateral dopaminergic putaminal innervation loss. Still, a partition analysis revealed a 80% chance of reduced arm ROM when putaminal dopamine content loss was >47%. A significant correlation was described between the asymmetry indices of the swinging of the two arms and dopaminergic striatal innervation. When arm ROM was reduced, we found a positive correlation between upper-lower limb phase shift modulation (at different gait velocities) and striatal dopaminergic innervation. These findings are preliminary evidence that dopaminergic striatal tone plays a modulatory role in upper-limb locomotor synergies and upper-lower limb coupling while walking at different velocities. PMID:23236504

  13. Catecholamime Interactions with the Cardiac Ryanodine Receptor

    NASA Astrophysics Data System (ADS)

    Klipp, Robert Carl

    The cardiac ryanodine receptor (RyR2) is a Ca2+ ion channel found in the sarcoplasmic reticulum (SR), an intracellular membranous Ca2+ storage system. It is well known that a destabilization of RyR2 can lead to a Ca2+ flux out of the SR, which results in an overload of intracellular Ca2+; this can also lead to arrhythmias and heart failure. The catecholamines play a large role in the regulation of RyR2; stimulation of the beta-adrenergic receptor on the cell membrane can lead to a hyperphosphorylation of RyR2, making it more leaky to Ca2+. We have previously shown that strong electron donors will inhibit RyR2. It is hypothesized that the catecholamines, sharing a similar structure with other proven inhibitors of RyR2, will also inhibit RyR2. Here we confirm this hypothesis and show for the first time that the catecholamines, isoproterenol and epinephrine, act as strong electron donors and inhibit RyR2 activity at the single channel level. This data suggests that the catecholamines can influence RyR2 activity at two levels. This offers promising insight into the potential development of a new class of drugs to treat heart failure and arrhythmia; ones that can both prevent the hyperphosphorylation of RyR2 by blocking the beta-adrenergic receptor, but can also directly inhibit the release of Ca2+ from RyR2.

  14. The effect of adrenergic blockade on blushing and facial flushing.

    PubMed

    Drummond, P D

    1997-03-01

    The effect of adrenergic blockade on vascular responses in the forehead was assessed during stressful mental arithmetic, singing, and moderate exercise in 21 frequent blushers and 21 infrequent blushers. Adrenergic antagonists were introduced into a small site on the forehead by iontophoresis, and vascular responses were monitored bilaterally with laser Doppler flowmetry. Beta blockade prevented increases in blood flow in infrequent blushers during mental arithmetic and partially inhibited vasodilatation during singing, indicating minor participation of beta-adrenoceptors in blushing. Alpha blockade did not affect blushing but augmented vasodilatation during exercise. Despite higher ratings of self-consciousness in frequent than in infrequent blushers, vascular responses were similar in both groups. Thus, blushing propensity does not appear to be related to the density of alpha- or beta-adrenoceptors in facial vessels and may have a psychological basis. PMID:9090265

  15. Extrinsic cardiac nerve segments in the domestic dog (Canis familiaris- Linnaeus, 1758). Comparative study in young and adult dogs.

    PubMed

    Brugnaro, M; De Souza, R R; Ribeiro, A A C M

    2003-08-01

    In this paper, important connections between the two main contingents of the autonomic nervous system, intrinsic and extrinsic visceral plexus were analysed. Concerning heart innervation, the territories of extrinsic innervation are very important in the treatment of congenital or acquired cardiopathy, thoracic neoplasia and aortic arch persistence, among others. This research compared young and adult extrinsic cardiac innervation and described the surgical anatomic nerve segments. Animals were perfused with a 10% formaldehyde solution in PBS (0.1 m) (pH 7.4) and submitted to macro- and meso-scopic dissection immersed in 60% acetic acid alcoholic solution and 20% hydrogen peroxide aqueous solution. The nerve segments were assigned as: right vagus nerve segment, left vagus nerve segment, right middle cervical ganglion segment, left middle cervical ganglion segment, right caudal laryngeal nerve segment, left caudal laryngeal nerve segment, right phrenic nerve segment and left phrenic nerve segment.

  16. Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium.

    PubMed

    Major, Jennifer L; Salih, Maysoon; Tuana, Balwant S

    2015-07-01

    The E2F/Pocket protein (Rb) pathway regulates cell growth, differentiation, and death by modulating gene expression. We previously examined this pathway in the myocardium via manipulation of the unique E2F repressor, E2F6, which is believed to repress gene activity independently of Rb. Mice with targeted expression of E2F6 in postnatal myocardium developed dilated cardiomyopathy (DCM) without hypertrophic growth. We assessed the mechanisms of the apparent failure of compensatory hypertrophic growth as well as their response to the β-adrenergic agonist isoproterenol. As early as 2 weeks, E2F6 transgenic (Tg) mice present with dilated thinner left ventricles and significantly reduced ejection fraction and fractional shortening which persists at 6 weeks of age, but with no apparent increase in left ventricle weight: body weight (LVW:BW). E2F6-Tg mice treated with isoproterenol (6.1 mg/kg/day) show double the increase in LVW:BW than their Wt counterparts (32% vs 16%, p-value: 0.007). Western blot analysis revealed the activation of the adrenergic pathway in Tg heart tissue under basal conditions with ~2-fold increase in the level of β2-adrenergic receptors (p-value: 8.9E-05), protein kinase A catalytic subunit (PKA-C) (p-value: 0.0176), activated c-Src tyrosine-protein kinase (p-value: 0.0002), extracellular receptor kinase 2 (ERK2) (p-value: 0.0005), and induction of the anti-apoptotic protein Bcl2 (p-value 0. 0.00001). In contrast, a ~60% decrease in the cardiac growth regulator: AKT1 (p-value 0.0001) and a ~four fold increase in cyclic AMP dependent phosphodiesterase 4D (PDE4D), the negative regulator of PKA activity, were evident in the myocardium of E2F6-Tg mice. The expression of E2F3 was down-regulated by E2F6, but was restored by isoproterenol. Further, Rb expression was down-regulated in Tg mice in response to isoproterenol implying a net activation of the E2F pathway. Thus the unique regulation of E2F activity by E2F6 renders the myocardium hypersensitive

  17. Beta 2-adrenergic receptors are colocalized and coregulated with "whisker barrels" in rat somatosensory cortex.

    PubMed Central

    Vos, P; Kaufmann, D; Hand, P J; Wolfe, B B

    1990-01-01

    Autoradiography has been used to visualize independently the subtypes of beta-adrenergic receptors in rat somatosensory cortex. Beta 2-Adrenergic receptors, but not beta 1-adrenergic receptors colocalize with "whisker barrels" in this tissue. Thus, each whisker sends a specific multisynaptic pathway to the somatosensory cortex that can be histochemically visualized and only one subtype of beta-adrenergic receptor is specifically associated with this cortical representation. Additionally, neonatal lesion of any or all of the whisker follicles results in loss of the corresponding barrel(s) as shown by histochemical markers. This loss is paralleled by a similar loss in the organization of beta 2-adrenergic receptors in the somatosensory cortex. Other results indicate that these beta 2-adrenergic receptors are not involved in moment-to-moment signal transmission in this pathway and, additionally, are not involved in a gross way in the development of whisker-barrel array. Images PMID:2164222

  18. Targeting myocardial beta-adrenergic receptor signaling and calcium cycling for heart failure gene therapy.

    PubMed

    Pleger, Sven T; Boucher, Matthieu; Most, Patrick; Koch, Walter J

    2007-06-01

    Heart failure (HF) is a leading cause of morbidity and mortality in Western countries and projections reveal that HF incidence in the coming years will rise significantly because of an aging population. Pharmacologic therapy has considerably improved HF treatment during the last 2 decades, but fails to rescue failing myocardium and to increase global cardiac function. Therefore, novel therapeutic approaches to target the underlying molecular defects of ventricular dysfunction and to increase the outcome of patients in HF are needed. Failing myocardium generally exhibits distinct changes in beta-adrenergic receptor (betaAR) signaling and intracellular Ca2+-handling providing opportunities for research. Recent advances in transgenic and gene therapy techniques have presented novel therapeutic strategies to alter myocardial function and to target both betaAR signaling and Ca2+-cycling. In this review, we will discuss functional alterations of the betaAR system and Ca2+-handling in HF as well as corresponding therapeutic strategies. We will then focus on recent in vivo gene therapy strategies using the targeted inhibition of the betaAR kinase (betaARK1 or GRK2) and the restoration of S100A1 protein expression to support the injured heart and to reverse or prevent HF.

  19. The effects of beta-adrenergic blocking agents on blood lipid levels.

    PubMed

    Wolinsky, H

    1987-10-01

    This review examines the effects of beta-adrenergic blocking agents on blood lipids. These agents have been effective in the treatment of angina and hypertension and in the reduction of recurrence of ischemic cardiac disease, such as myocardial infarction. Many beta blockers, however, have an adverse effect on blood lipids, especially by reducing high-density lipoprotein (HDL) cholesterol and increasing triglycerides. One result is an unfavorable influence on the cholesterol ratio (expressed either as low-density lipoprotein [LDL]/HDL or total cholesterol/HDL). These cholesterol parameters have been shown to have a strong influence on coronary heart disease (CHD) risk. Studies have shown that antihypertensive therapy has reduced the incidence of cerebrovascular disease but, in many instances, has not reduced the incidence of CHD. A hypothesis for this lesser effect on coronary disease is that antihypertensive agents may be adversely affecting blood lipids. Thus, while one major risk factor for CHD is reduced, another may be somewhat enhanced. Pharmacologic properties of some beta blockers such as peripheral alpha blockade (e.g., with labetalol) or intrinsic sympathomimetic activity (ISA) (e.g., with pindolol) may counteract some of these negative lipid effects. An investigational beta blocker, bevantolol, which will be marketed shortly in the United States, has been effective in antihypertensive therapy. Bevantolol has been shown to lower LDL cholesterol and not adversely affect HDL cholesterol; in this way, bevantolol favorably influences the serum lipoprotein profile. Whether this effect will have clinical significance remains to be seen.

  20. Modeling the Actions of β-Adrenergic Signaling on Excitation–Contraction Coupling Processes

    PubMed Central

    GREENSTEIN, JOSEPH L.; TANSKANEN, ANTTI J.; WINSLOW, RAIMOND L.

    2005-01-01

    Activation of the β-adrenergic (β-AR) signaling pathway enhances cardiac function through protein kinase A (PKA)–mediated phosphorylation of target proteins involved in the process of excitation–contraction (EC) coupling. Experimental studies of the effects of β-AR stimulation on EC coupling have yielded complex results, including increased, decreased, or unchanged EC coupling gain. In this study, we extend a previously developed model of the canine ventricular myocyte describing local control of sarcoplasmic reticulum (SR) calcium (Ca2+) release to include the effects of β-AR stimulation. Incorporation of phosphorylation-dependent effects on model membrane currents and Ca2+-cycling proteins yields changes of action potential (AP) and Ca2+ transients in agreement with those measured experimentally in response to the nonspecific β-AR agonist isoproterenol (ISO). The model reproduces experimentally observed alterations in EC coupling gain in response to β-AR agonists and predicts the specific roles of L-type Ca2+ channel (LCC) and SR Ca2+ release channel phosphorylation in altering the amplitude and shape of the EC coupling gain function. The model also indicates that factors that promote mode 2 gating of LCCs, such as β-AR stimulation or activation of the Ca2+/calmodulin-dependent protein kinase II (CaMKII), may increase the probability of occurrence of early after-depolarizations (EADs), due to the random, long-duration opening of LCC gating in mode 2. PMID:15201146

  1. Adrenergic and noradrenergic regulation of poultry behavior and production.

    PubMed

    Dennis, R L

    2016-07-01

    Norepinephrine and epinephrine (noradrenaline and adrenaline) are integral in maintaining behavioral and physiological homeostasis during both aversive and rewarding events. They regulate the response to stressful stimuli through direct activation of adrenergic receptors in the central and sympathetic nervous systems, hormonal activity and through the interaction of the brain, gut, and microbiome. The multiple functions of these catecholamines work synergistically to prepare an individual for a "fight or flight" response. However, hyper-reactivity of this system can lead to increased fearfulness and aggression, decreased health and productivity, and a reduction in overall well-being. Behaviors, such as aggression and certain fear-related behaviors, are a serious problem in the poultry industry that can lead to injury and cannibalism. For decades, catecholamines have been used as a measure of stress in animals. However, few studies have specifically targeted the adrenergic systems as means to reduce behaviors that are damaging or maladapted to their rearing environments and improve animal well-being. This article attempts to address our current understanding of specific, adrenergic-regulated behaviors that impact chicken well-being and production. PMID:27345328

  2. Intrinsic innervation of the urinary bladder of kangaroo and albino rats.

    PubMed

    Mostafa, F A; Nassar, A M; MPAHRAN, Z Y; El-Mahallawi, M N

    1975-01-01

    A comparative study of the intrinsic innervation in desert rodents (kangaroo rats) and others (albino rats) was carried out in an attempt to understand the functional anatomy of the bladder in these animals which are known to sustain severe water restraint. The bladder of the albino rat was innervated by predominantly thin nerves, more numerous beaded endings and few ganglia. That of the kangaroo rat had more numerous thick nerves (pre-ganglionic), large verve trunks, and ganglia which were extensively distributed in the wall. These findings indicate that the bladder of the albino rat depends mainly on the intrinsic innervation and facilatory micturition reflexes, while that of the kangaroo rat is intrinsically regulated, depending on a short neuron system. It was concluded that all the structural differences found might be essential for constant urine retention.

  3. Functional and morphological assessment of diaphragm innervation by phrenic motor neurons.

    PubMed

    Martin, Melanie; Li, Ke; Wright, Megan C; Lepore, Angelo C

    2015-01-01

    This protocol specifically focuses on tools for assessing phrenic motor neuron (PhMN) innervation of the diaphragm at both the electrophysiological and morphological levels. Compound muscle action potential (CMAP) recording following phrenic nerve stimulation can be used to quantitatively assess functional diaphragm innervation by PhMNs of the cervical spinal cord in vivo in anesthetized rats and mice. Because CMAPs represent simultaneous recording of all myofibers of the whole hemi-diaphragm, it is useful to also examine the phenotypes of individual motor axons and myofibers at the diaphragm NMJ in order to track disease- and therapy-relevant morphological changes such as partial and complete denervation, regenerative sprouting and reinnervation. This can be accomplished via whole-mount immunohistochemistry (IHC) of the diaphragm, followed by detailed morphological assessment of individual NMJs throughout the muscle. Combining CMAPs and NMJ analysis provides a powerful approach for quantitatively studying diaphragmatic innervation in rodent models of CNS and PNS disease. PMID:26066371

  4. Nanofibers implant functionalized by neural growth factor as a strategy to innervate a bioengineered tooth.

    PubMed

    Eap, Sandy; Bécavin, Thibault; Keller, Laetitia; Kökten, Tunay; Fioretti, Florence; Weickert, Jean-Luc; Deveaux, Etienne; Benkirane-Jessel, Nadia; Kuchler-Bopp, Sabine

    2014-03-01

    Current strategies for jaw reconstruction require multiple procedures, to repair the bone defect, to offer sufficient support, and to place the tooth implant. The entire procedure can be painful and time-consuming, and the desired functional repair can be achieved only when both steps are successful. The ability to engineer combined tooth and bone constructs, which would grow in a coordinated fashion with the surrounding tissues, could potentially improve the clinical outcomes and also reduce patient suffering. A unique nanofibrous and active implant for bone-tooth unit regeneration and also the innervation of this bioengineered tooth are demonstrated. A nanofibrous polycaprolactone membrane is functionalized with neural growth factor, along with dental germ, and tooth innervation follows. Such innervation allows complete functionality and tissue homeostasis of the tooth, such as dentinal sensitivity, odontoblast function, masticatory forces, and blood flow. PMID:24124118

  5. Innervation pattern of the suprascapular nerve within supraspinatus: a three-dimensional computer modeling study.

    PubMed

    Hermenegildo, J A; Roberts, S L; Kim, S Y

    2014-05-01

    The relationship between the innervation pattern of the suprascapular nerve (SSN) and the muscle architecture of supraspinatus has not been thoroughly investigated. The supraspinatus is composed of two architecturally distinct regions: anterior and posterior. Each of these regions is further subdivided into three parts: superficial, middle and deep. The purpose of this study was to investigate the course of the SSN throughout the volume of supraspinatus and to relate the intramuscular branches to the distinct regions and parts of the supraspinatus. The SSN was dissected in thirty formalin embalmed cadaveric specimens and digitized throughout the muscle volume in six of those specimens. The digitized data were modeled using Autodesk(®) Maya(®) 2011. The three-dimensional (3D) models were used to relate the intramuscular innervation pattern to the muscle and tendon architecture defined by Kim et al. (2007, Clin Anat 20:648-655). The SSN bifurcated into two main trunks: medial and lateral. All parts of the anterior region were predominantly innervated by the medial trunk and its proximal and medial branches, whereas all parts of the posterior region predominantly by the lateral trunk and its posterolateral and/or posteromedial branches. The posterior region also received innervation from the proximal branch of the medial trunk in half of the specimens. These findings provide evidence that the anterior and posterior regions are distinct with respect to their innervation. The 3D map of the innervation pattern will aid in planning future clinical studies investigating muscle activation patterns and provide insight into possible injury of the nerve with supraspinatus pathology and surgical techniques. PMID:23649406

  6. Localization of Biogenic Amines in the Foregut of Aplysia californica: Catecholaminergic and Serotonergic Innervation

    PubMed Central

    Martínez-Rubio, Clarissa; Serrano, Geidy E.; Miller, Mark W.

    2009-01-01

    This study examined the catecholaminergic and serotonergic innervation of the foregut of Aplysia californica, a model system in which the control of feeding behaviors can be investigated at the cellular level. Similar numbers (15-25) of serotonin-like-immunoreactive (5HTli) and tyrosine hydroxylase-like-immunoreactive (THli) fibers were present in each (bilateral) esophageal nerve (En), the major source of pregastric neural innervation in this system. The majority of En 5HTli and THli fibers originated from the anterior branch (En2), which innervates the pharynx and the anterior esophagus. Fewer fibers were present in the posterior branch (En1), which innervates the majority of the esophagus and the crop. Backfills of the two En branches toward the central nervous system (CNS) labeled a single, centrifugally projecting serotonergic fiber, originating from the metacerebral cell (MCC). The MCC fiber projected only to En2. No central THli neurons were found to project to the En. Surveys of the pharynx and esophagus revealed major differences between their patterns of catecholaminergic (CA) and serotonergic innervation. Whereas THli fibers and cell bodies were distributed throughout the foregut, 5HTli fibers were present in restricted plexi, and no 5HTli somata were detected. Double-labeling experiments in the periphery revealed THli neurons projecting toward the buccal ganglion via En2. Other afferents received dense perisomatic serotonergic innervation. Finally, qualitative and quantitative differences were observed between the buccal motor programs (BMPs) produced by stimulation of the two En branches. These observations increase our understanding of aminergic contributions to the pregastric regulation of Aplysia feeding behaviors. PMID:19330814

  7. Innervation pattern of the suprascapular nerve within supraspinatus: a three-dimensional computer modeling study.

    PubMed

    Hermenegildo, J A; Roberts, S L; Kim, S Y

    2014-05-01

    The relationship between the innervation pattern of the suprascapular nerve (SSN) and the muscle architecture of supraspinatus has not been thoroughly investigated. The supraspinatus is composed of two architecturally distinct regions: anterior and posterior. Each of these regions is further subdivided into three parts: superficial, middle and deep. The purpose of this study was to investigate the course of the SSN throughout the volume of supraspinatus and to relate the intramuscular branches to the distinct regions and parts of the supraspinatus. The SSN was dissected in thirty formalin embalmed cadaveric specimens and digitized throughout the muscle volume in six of those specimens. The digitized data were modeled using Autodesk(®) Maya(®) 2011. The three-dimensional (3D) models were used to relate the intramuscular innervation pattern to the muscle and tendon architecture defined by Kim et al. (2007, Clin Anat 20:648-655). The SSN bifurcated into two main trunks: medial and lateral. All parts of the anterior region were predominantly innervated by the medial trunk and its proximal and medial branches, whereas all parts of the posterior region predominantly by the lateral trunk and its posterolateral and/or posteromedial branches. The posterior region also received innervation from the proximal branch of the medial trunk in half of the specimens. These findings provide evidence that the anterior and posterior regions are distinct with respect to their innervation. The 3D map of the innervation pattern will aid in planning future clinical studies investigating muscle activation patterns and provide insight into possible injury of the nerve with supraspinatus pathology and surgical techniques.

  8. The Role of Alpha-2 Adrenergic Receptors in Anti-ulcer Activity.

    PubMed

    Suleyman, Halis

    2012-04-01

    Although peptic ulcer disease has long been recognized, the proposed mechanisms of its etiopathogenesis change every year. This review shows that gastric ulcers have a significant relationship with alpha-2 adrenergic receptors. The aggravating factors of gastric ulcer formation have been reported to act by blocking alpha-2 adrenergic receptors, whereas drugs possessing anti-ulcer activity have been shown to ensure gastric protection by stimulating the alpha-2 adrenergic receptors. The data derived from the literature indicate the likelihood that any drug or substance selectively stimulating the alpha-2 adrenergic receptors may possess anti-ulcer activity.

  9. Cardiac conduction system

    MedlinePlus

    The cardiac conduction system is a group of specialized cardiac muscle cells in the walls of the heart that send signals ... to contract. The main components of the cardiac conduction system are the SA node, AV node, bundle ...

  10. Three-dimensional analysis of vestibular efferent neurons innervating semicircular canals of the gerbil

    NASA Technical Reports Server (NTRS)

    Purcell, I. M.; Perachio, A. A.

    1997-01-01

    Anterograde labeling techniques were used to examine peripheral innervation patterns of vestibular efferent neurons in the crista ampullares of the gerbil. Vestibular efferent neurons were labeled by extracellular injections of biocytin or biotinylated dextran amine into the contralateral or ipsilateral dorsal subgroup of efferent cell bodies (group e) located dorsolateral to the facial nerve genu. Anterogradely labeled efferent terminal field varicosities consist mainly of boutons en passant with fewer of the terminal type. The bouton swellings are located predominately in apposition to the basolateral borders of the afferent calyces and type II hair cells, but several boutons were identified close to the hair cell apical border on both types. Three-dimensional reconstruction and morphological analysis of the terminal fields from these cells located in the sensory neuroepithelium of the anterior, horizontal, and posterior cristae were performed. We show that efferent neurons densely innervate each end organ in widespread terminal fields. Subepithelial bifurcations of parent axons were minimal, with extensive collateralization occurring after the axons penetrated the basement membrane of the neuroepithelium. Axonal branching ranged between the 6th and 27th orders and terminal field collecting area far exceeds that of the peripheral terminals of primary afferent neurons. The terminal fields of the efferent neurons display three morphologically heterogeneous types: central, peripheral, and planum. All cell types possess terminal fields displaying a high degree of anisotropy with orientations typically parallel to or within +/-45 degrees of the longitudinal axis if the crista. Terminal fields of the central and planum zones predominately project medially toward the transverse axis from the more laterally located penetration of the basement membrane by the parent axon. Peripheral zone terminal fields extend predominately toward the planum semilunatum. The innervation

  11. Catecholamine innervation of the forebrain in the bull frog, Rana catesbiana.

    PubMed

    Tohyama, M; Yamamoto, K; Satoh, K; Sakumoto, T; Shimizu, N

    1977-01-01

    The innervation of forebrain catecholamine (CA) were experimentally investigated with use of sensitive fluorescence method of glyoxylic acid formaldehyde in the brain of the bull frog, Rana catesbiana. The CA of the olfactory bulb is supplied by CA neurons situated in olfactory bulb. And CA neurons in the hypothalamus contribute the main source for the forebrain CA except olfactory bulb. The hypothalamic CA neurons also give rise to long descending axons to innervate the brain stem. Judging from their anatomical aspects it seems that the structure homologous to mammalian nigro-neostriatal dopamine or mesolimbic dopamine system is not present in amphibian brain. PMID:303652

  12. Deficient Vasoactive Intestinal Peptide Innervation in the Sweat Glands of Cystic Fibrosis Patients

    NASA Astrophysics Data System (ADS)

    Heinz-Erian, Peter; Dey, Richard D.; Flux, Marinus; Said, Sami I.

    1985-09-01

    The innervation of acini and ducts of eccrine sweat glands by immunoreactive, vasoactive intestinal peptide--containing nerve fibers was sharply reduced in seven patients with cystic fibrosis compared to eight normal subjects. The decrease in innervation by this neuropeptide, which has been shown to promote blood flow and the movement of water and chloride across epithelial surfaces in other systems, may be a basic mechanism for the decreased water content and relative impermeability of the epithelium to chloride and other ions that characterize cystic fibrosis.

  13. Autonomic control of cardiac function and myocardial oxygen consumption during hypoxic hypoxia.

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Stone, H. L.

    1972-01-01

    Investigation in 19 conscious dogs of the importance of the sympathetic nervous system in the coronary and cardiac response to altitude (hypoxic) hypoxia. Beta-adrenergic blockade was used to minimize the cardiac effect associated with sympathetic receptors. It is shown that the autonomic nervous system, and particularly the sympathetic nervous system, is responsible for the increase in ventricular function and myocardial oxygen consumption that occurs during hypoxia. Minimizing this response through appropriate conditioning and training may improve the operating efficiency of the heart and reduce the hazard of hypoxia and other environmental stresses, such as acceleration, which are encountered in advanced aircraft systems.

  14. Regulation of β-adrenergic control of heart rate by GTP-cyclohydrolase 1 (GCH1) and tetrahydrobiopterin

    PubMed Central

    Adlam, David; Herring, Neil; Douglas, Gillian; De Bono, Joseph P.; Li, Dan; Danson, Edward J.; Tatham, Amy; Lu, Cheih-Ju; Jennings, Katie A.; Cragg, Stephanie J.; Casadei, Barbara; Paterson, David J.; Channon, Keith M.

    2012-01-01

    Aims Clinical markers of cardiac autonomic function, such as heart rate and response to exercise, are important predictors of cardiovascular risk. Tetrahydrobiopterin (BH4) is a required cofactor for enzymes with roles in cardiac autonomic function, including tyrosine hydroxylase and nitric oxide synthase. Synthesis of BH4 is regulated by GTP cyclohydrolase I (GTPCH), encoded by GCH1. Recent clinical studies report associations between GCH1 variants and increased heart rate, but the mechanistic importance of GCH1 and BH4 in autonomic function remains unclear. We investigate the effect of BH4 deficiency on the autonomic regulation of heart rate in the hph-1 mouse model of BH4 deficiency. Methods and results In the hph-1 mouse, reduced cardiac GCH1 expression, GTPCH enzymatic activity, and BH4 were associated with increased resting heart rate; blood pressure was not different. Exercise training decreased resting heart rate, but hph-1 mice retained a relative tachycardia. Vagal nerve stimulation in vitro induced bradycardia equally in hph-1 and wild-type mice both before and after exercise training. Direct atrial responses to carbamylcholine were equal. In contrast, propranolol treatment normalized the resting tachycardia in vivo. Stellate ganglion stimulation and isoproterenol but not forskolin application in vitro induced a greater tachycardic response in hph-1 mice. β1-adrenoceptor protein was increased as was the cAMP response to isoproterenol stimulation. Conclusion Reduced GCH1 expression and BH4 deficiency cause tachycardia through enhanced β-adrenergic sensitivity, with no effect on vagal function. GCH1 expression and BH4 are novel determinants of cardiac autonomic regulation that may have important roles in cardiovascular pathophysiology. PMID:22241166

  15. Modulation of the release of ( sup 3 H)norepinephrine from the base and body of the rat urinary bladder by endogenous adrenergic and cholinergic mechanisms

    SciTech Connect

    Somogyi, G.T.; de Groat, W.C. )

    1990-10-01

    Modulation of (3H)NE release was studied in rat urinary bladder strips prelabeled with (3H)NE. (3H)NE uptake occurred in strips from the bladder base and body, but was very prominent in the base where the noradrenergic innervation is most dense. Electrical field stimulation markedly increased (3H)NE outflow from the superfused tissue. The quantity of (3H)NE release was approximately equal during three consecutive periods of stimulation. Activation of presynaptic muscarinic receptors by 1.0 microM oxotremorine reduced (3H)NE release to 46% of the control. Atropine (1 microM) blocked the effect of oxotremorine and increased the release to 147% of predrug control levels. Activation of presynaptic alpha-2 adrenoceptors by 1 microM clonidine reduced (3H)NE release to 55% of control. Yohimbine blocked the action of clonidine and increased the release to 148% of control. The release of (3H)NE from the bladder base and body was increased by both 1 microM atropine (to 167% and 174% of control, respectively) and 1 microM yohimbine (to 286% and 425% of control, respectively). Atropine and yohimbine administered in combination had similar facilitatory effects as when administered alone. We conclude that the release of (3H)NE from adrenergic nerve endings in electrically stimulated bladder strips is modulated via endogenous transmitters acting on both muscarinic and alpha-2 adrenergic presynaptic receptors and that the latter provide the most prominent control.

  16. Functional role of M-type (KCNQ) K⁺ channels in adrenergic control of cardiomyocyte contraction rate by sympathetic neurons.

    PubMed

    Zaika, Oleg; Zhang, Jie; Shapiro, Mark S

    2011-05-15

    M-type (KCNQ) K⁺ channels are known to regulate excitability and firing properties of sympathetic neurons (SNs), but their role in regulating neurotransmitter release is unclear, requiring further study. We sought to use a physiological preparation in which SNs innervate primary cardiomyocytes to evaluate the direct role of M-channels in the release of noradrenaline (NA) from SNs. Co-cultures of rat SNs and mouse cardiomyocytes were prepared, and the contraction rate (CR) of the cardiomyocyte syncytium monitored by video microscopy. We excited the SNs with nicotine, acting on nicotinic acetylcholine receptors, and monitored the increase in CR in the presence or absence of the specific M-channel opener retigabine, or agonists of bradykinin B2 or purinergic P2Y receptors on the SNs. The maximal adrenergic effect on the CR was determined by application of isoproterenol (isoprenaline). To isolate the actions of B2 or P2Y receptor stimulation to the neurons, we prepared cardiomyocytes from B2 receptor or P2Y2 receptor knock-out mice, respectively. We found that co-application of retigabine strongly decreased the nicotine-induced increase in CR. Conversely, co-application of bradykinin or the P2Y-receptor agonist UTP augmented the nicotine-induced increase in CR to about half of the level produced by isoproterenol. All effects on the CR were wholly blocked by propranolol. Our data support the role of M-type K⁺ channels in the control of NA release by SNs at functional adrenergic synapses on cardiomyocytes.We conclude that physiological receptor agonists control the heart rate via the regulation of M-current in SNs.

  17. Deletion of thioredoxin-interacting protein improves cardiac inotropic reserve in the streptozotocin-induced diabetic heart.

    PubMed

    Myers, Ronald B; Fomovsky, Gregory M; Lee, Samuel; Tan, Max; Wang, Bing F; Patwari, Parth; Yoshioka, Jun

    2016-06-01

    Although the precise pathogenesis of diabetic cardiac damage remains unclear, potential mechanisms include increased oxidative stress, autonomic nervous dysfunction, and altered cardiac metabolism. Thioredoxin-interacting protein (Txnip) was initially identified as an inhibitor of the antioxidant thioredoxin but is now recognized as a member of the arrestin superfamily of adaptor proteins that classically regulate G protein-coupled receptor signaling. Here we show that Txnip plays a key role in diabetic cardiomyopathy. High glucose levels induced Txnip expression in rat cardiomyocytes in vitro and in the myocardium of streptozotocin-induced diabetic mice in vivo. While hyperglycemia did not induce cardiac dysfunction at baseline, β-adrenergic challenge revealed a blunted myocardial inotropic response in diabetic animals (24-wk-old male and female C57BL/6;129Sv mice). Interestingly, diabetic mice with cardiomyocyte-specific deletion of Txnip retained a greater cardiac response to β-adrenergic stimulation than wild-type mice. This benefit in Txnip-knockout hearts was not related to the level of thioredoxin activity or oxidative stress. Unlike the β-arrestins, Txnip did not interact with β-adrenergic receptors to desensitize downstream signaling. However, our proteomic and functional analyses demonstrated that Txnip inhibits glucose transport through direct binding to glucose transporter 1 (GLUT1). An ex vivo analysis of perfused hearts further demonstrated that the enhanced functional reserve afforded by deletion of Txnip was associated with myocardial glucose utilization during β-adrenergic stimulation. These data provide novel evidence that hyperglycemia-induced Txnip is responsible for impaired cardiac inotropic reserve by direct regulation of insulin-independent glucose uptake through GLUT1 and plays a role in the development of diabetic cardiomyopathy. PMID:27037370

  18. Rescue of NGF-deficient mice II: basal forebrain cholinergic projections require NGF for target innervation but not guidance.

    PubMed

    Phillips, Heidi S; Nishimura, Merry; Armanini, Mark P; Chen, Karen; Albers, Kathryn M; Davis, Brian M

    2004-04-29

    Basal forebrain cholinergic (BFC) neurons are an important substrate of cognitive function and are hypothesized to require the presence of nerve growth factor (NGF) for survival and target innervation. NGF-deficient mice develop BFC neurons that extend projections into telencephalic targets, but the mice perish before innervation is fully established. Rescue of NGF-deficient mice by transgenic expression of NGF under the keratin promoter yields viable mice with disrupted CNS expression of NGF. In the current study, rescued NGF-deficient mice contain normal numbers of septal cholinergic neurons yet reveal severe compromise of cholinergic innervation of both cortex and hippocampus. Surprisingly, intracerebroventricular infusion of NGF into juvenile mice can induce an essentially normal pattern of cholinergic innervation of the hippocampus. These results indicate that NGF is required for induction of proper innervation by BFC neurons, but that the cellular pattern of expression of this factor is not critical for specifying the distribution of axon terminals. PMID:15093680

  19. Molecular and pharmacological characteristics of the gerbil α(1a)-adrenergic receptor.

    PubMed

    Witt, Kelly M; Bockman, Charles S; Dang, Herbert K; Gruber, Daniel D; Wangemann, Philine; Scofield, Margaret A

    2012-01-01

    The spiral modiolar artery supplies blood and essential nutrients to the cochlea. Our previous functional study indicates the α(1A)-adrenergic receptor subtype mediates vasoconstriction of the gerbil spiral modiolar artery. Although the gerbil cochlea is often used as a model in hearing research, the molecular and pharmacological characteristics of the cloned gerbil α(1a)-adrenergic receptor have not been determined. Thus we cloned, expressed and characterized the gerbil α(1a)-adrenergic receptor and then compared its molecular and pharmacological properties to those of other mammalian α(1a)-adrenergic receptors. The cDNA clone contained 1404 nucleotides, which encoded a 467 amino acid peptide with a deduced sequence having 96.8, 96.4 and 91.6% identity to rat, mouse and human α(1a)-receptors, respectively. We transiently transfected the α(1a)-adrenergic receptor into COS-1 cells and determined its pharmacological characteristics by [(3)H]prazosin binding. Unlabeled prazosin had a K(i) of 0.89±0.1nM. The α(1A)-adrenergic receptor-selective antagonists, 5-methylurapidil and WB-4101, bound with high affinity and had K(i) values of 4.9±1 and 1.0±0.1nM, respectively. BMY-7378, an α(1D)-adrenergic receptor-selective antagonist, bound with low affinity (260±60nM). The 91.6% amino acid sequence identity and K(i)s of the cloned gerbil α(1a)-adrenergic receptor are similar to those of the human α(1a)-adrenergic receptor clone. These results show that the gerbil α(1a)-adrenergic receptor is representative of the human α(1a)-adrenergic receptor, lending validity to the use of the gerbil spiral modiolar artery as a model in studies of vascular disorders of the cochlea.

  20. Regulation of subtypes of beta-adrenergic receptors in rat brain following treatment with 6-hydroxydopamine

    SciTech Connect

    Johnson, E.W.; Wolfe, B.B.; Molinoff, P.B.

    1989-07-01

    The technique of quantitative autoradiography has been used to localize changes in the densities of subtypes of beta-adrenergic receptors in rat brain following treatment with 6-hydroxydopamine. Previously reported increases in the density of beta 1-adrenergic receptors in the cerebral cortex were confirmed. The anatomical resolution of autoradiography made it possible to detect changes in the density of beta 2-adrenergic receptors in the cortex and in a number of other brain regions. The density of beta 1-adrenergic receptors increased from 30 to 50% depending on the region of the cortex being examined. The increase in the somatomotor cortex was greater than that in the frontal or occipital cortex. The increase in the density of beta 2-adrenergic receptors in the cortex was not as widespread as that of beta 1-adrenergic receptors and occurred primarily in frontal cortex, where the density of receptors increased by 40%. The densities of both beta 1- and beta 2-adrenergic receptors increased in a number of forebrain, thalamic, and midbrain structures. Selective changes in the density of beta 1-adrenergic receptors were observed in the superficial gray layer of the superior colliculus and in the amygdala. The density of beta 2-adrenergic receptors increased in the caudate-putamen, the substantia nigra, and the lateral and central nuclei of the thalamus, whereas the density of beta 1-adrenergic receptors did not change in these regions. The densities of both subtypes of beta-adrenergic receptors increased in the hippocampus, the cerebellum, the lateral posterior nucleus of the thalamus, and the dorsal lateral geniculate.

  1. Adrenergic Receptor Polymorphism and Maximal Exercise Capacity after Orthotopic Heart Transplantation

    PubMed Central

    Feliciano, Helene; Martin, David; Regamey, Julien; Tozzi, Piergiorgio; Meyer, Philippe; Hullin, Roger

    2016-01-01

    Background Maximal exercise capacity after heart transplantion (HTx) is reduced to the 50–70% level of healthy controls when assessed by cardiopulmonary exercise testing (CPET) despite of normal left ventricular function of the donor heart. This study investigates the role of donor heart β1 and β2- adrenergic receptor (AR) polymorphisms for maximal exercise capacity after orthotopic HTx. Methods CPET measured peak VO2 as outcome parameter for maximal exercise in HTx recipients ≥9 months and ≤4 years post-transplant (n = 41; mean peak VO2: 57±15% of predicted value). Donor hearts were genotyped for polymorphisms of the β1-AR (Ser49Gly, Arg389Gly) and the β2-AR (Arg16Gly, Gln27Glu). Circumferential shortening of the left ventricle was measured using magnetic resonance based CSPAMM tagging. Results Peak VO2 was higher in donor hearts expressing the β1-Ser49Ser alleles when compared with β1-Gly49 carriers (60±15% vs. 47±10% of the predicted value; p = 0.015), and by trend in cardiac allografts with the β1-AR Gly389Gly vs. β1-Arg389 (61±15% vs. 54±14%, p = 0.093). Peak VO2 was highest for the haplotype Ser49Ser-Gly389, and decreased progressively for Ser49Ser-Arg389Arg > 49Gly-389Gly > 49Gly-Arg389Arg (adjusted R2 = 0.56, p = 0.003). Peak VO2 was not different for the tested β2-AR polymorphisms. Independent predictors of peak VO2 (adjusted R2 = 0.55) were β1-AR Ser49Gly SNP (p = 0.005), heart rate increase (p = 0.016), and peak systolic blood pressure (p = 0.031). Left ventricular (LV) motion kinetics as measured by cardiac MRI CSPAMM tagging at rest was not different between carriers and non-carriers of the β1-AR Gly49allele. Conclusion Similar LV cardiac motion kinetics at rest in donor hearts carrying either β1-AR Gly49 or β1-Ser49Ser variant suggests exercise-induced desensitization and down-regulation of the β1-AR Gly49 variant as relevant pathomechanism for reduced peak VO2 in β1-AR Gly49 carriers. PMID:27669015

  2. Beta-adrenergic-regulated phosphorylation of the skeletal muscle Ca(V)1.1 channel in the fight-or-flight response.

    PubMed

    Emrick, Michelle A; Sadilek, Martin; Konoki, Keiichi; Catterall, William A

    2010-10-26

    Ca(V)1 channels initiate excitation-contraction coupling in skeletal and cardiac muscle. During the fight-or-flight response, epinephrine released by the adrenal medulla and norepinephrine released from sympathetic nerves increase muscle contractility by activation of the β-adrenergic receptor/cAMP-dependent protein kinase pathway and up-regulation of Ca(V)1 channels in skeletal and cardiac muscle. Although the physiological mechanism of this pathway is well defined, the molecular mechanism and the sites of protein phosphorylation required for Ca(V)1 channel regulation are unknown. To identify the regulatory sites of phosphorylation under physiologically relevant conditions, Ca(V)1.1 channels were purified from skeletal muscle and sites of phosphorylation on the α1 subunit were identified by mass spectrometry. Two phosphorylation sites were identified in the proximal C-terminal domain, serine 1575 (S1575) and threonine 1579 (T1579), which are conserved in cardiac Ca(V)1.2 channels (S1700 and T1704, respectively). In vitro phosphorylation revealed that Ca(V)1.1-S1575 is a substrate for both cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II, whereas Ca(V)1.1-T1579 is a substrate for casein kinase 2. Treatment of rabbits with isoproterenol to activate β-adrenergic receptors increased phosphorylation of S1575 in skeletal muscle Ca(V)1.1 channels in vivo, and treatment with propranolol to inhibit β-adrenergic receptors reduced phosphorylation. As S1575 and T1579 in Ca(V)1.1 channels and their homologs in Ca(V)1.2 channels are located at a key regulatory interface between the distal and proximal C-terminal domains, it is likely that phosphorylation of these sites in skeletal and cardiac muscle is directly involved in calcium channel regulation in response to the sympathetic nervous system in the fight-or-flight response.

  3. Innervation patterns of sea otter (Enhydra lutris) mystacial follicle-sinus complexes.

    PubMed

    Marshall, Christopher D; Rozas, Kelly; Kot, Brian; Gill, Verena A

    2014-01-01

    Sea otters (Enhydra lutris) are the most recent group of mammals to return to the sea, and may exemplify divergent somatosensory tactile systems among mammals. Therefore, we quantified the mystacial vibrissal array of sea otters and histologically processed follicle-sinus complexes (F - SCs) to test the hypotheses that the number of myelinated axons per F - SC is greater than that found for terrestrial mammalian vibrissae and that their organization and microstructure converge with those of pinniped vibrissae. A mean of 120.5 vibrissae were arranged rostrally on a broad, blunt muzzle in 7-8 rows and 9-13 columns. The F-SCs of sea otters are tripartite in their organization and similar in microstructure to pinnipeds rather than terrestrial species. Each F-SC was innervated by a mean 1339 ± 408.3 axons. Innervation to the entire mystacial vibrissal array was estimated at 161,313 axons. Our data support the hypothesis that the disproportionate expansion of the coronal gyrus in somatosensory cortex of sea otters is related to the high innervation investment of the mystacial vibrissal array, and that quantifying innervation investment is a good proxy for tactile sensitivity. We predict that the tactile performance of sea otter mystacial vibrissae is comparable to that of harbor seals, sea lions and walruses. PMID:25400554

  4. The role of Sema3–Npn-1 signaling during diaphragm innervation and muscle development

    PubMed Central

    Huettl, Rosa-Eva; Hanuschick, Philipp; Amend, Anna-Lena; Alberton, Paolo; Aszodi, Attila; Huber, Andrea B.

    2016-01-01

    ABSTRACT Correct innervation of the main respiratory muscle in mammals, namely the thoracic diaphragm, is a crucial pre-requisite for the functionality of this muscle and the viability of the entire organism. Systemic impairment of Sema3A–Npn-1 (Npn-1 is also known as NRP1) signaling causes excessive branching of phrenic nerves in the diaphragm and into the central tendon region, where the majority of misguided axons innervate ectopic musculature. To elucidate whether these ectopic muscles are a result of misguidance of myoblast precursors due to the loss of Sema3A–Npn-1 signaling, we conditionally ablated Npn-1 in somatic motor neurons, which led to a similar phenotype of phrenic nerve defasciculation and, intriguingly, also formation of innervated ectopic muscles. We therefore hypothesize that ectopic myocyte fusion is caused by additional factors released by misprojecting growth cones. Slit2 and its Robo receptors are expressed by phrenic motor axons and migrating myoblasts, respectively, during innervation of the diaphragm. In vitro analyses revealed a chemoattractant effect of Slit2 on primary diaphragm myoblasts. Thus, we postulate that factors released by motor neuron growth cones have an influence on the migration properties of myoblasts during establishment of the diaphragm. PMID:27466379

  5. Patterns of peripheral innervation of the tongue and hyobranchial apparatus in caecilians (Amphibia: Gymnophiona).

    PubMed

    Wake, M H

    1992-04-01

    The innervation of the musculature of the tongue and the hyobranchial apparatus of caecilians has long been assumed to be simple and to exhibit little interspecific variation. A study of 14 genera representing all six families of caecilians demonstrates that general patterns of innervation by the trigeminal, facial, glossopharyngeal, and vagus nerves are similar across taxa but that the composition of the "hypoglossal" nerve is highly variable. Probably in all caecilians, spinal nerves 1 and 2 contribute to the hypoglossal. In addition, in certain taxa, an "occipital," the vagus, and/or spinal 3 appear to contribute fibers to the composition of the hypoglossal nerve. These patterns, the lengths of fusion of the contributing elements, and the branching patterns of the hypoglossal are assessed according to the currently accepted hypothesis of phylogenetic relationships of caecilians, and of amphibians. An hypothesis is proposed that limblessness and a simple tongue, with concomitant reduced complexity of innervation of muscles associated with limbs and the tongue, has released a constraint on pattern of innervation. As a consequence, a greater diversity and, in several taxa, greater complexity of neuroanatomical associations of nerve roots to form the hypoglossal are expressed.

  6. Innervation of vasculature and microvasculature of the human vagina by NOS and neuropeptide-containing nerves.

    PubMed Central

    Hoyle, C H; Stones, R W; Robson, T; Whitley, K; Burnstock, G

    1996-01-01

    The aims of the present study were to determine whether nerves that contain nitric oxide synthase (NOS), calcitonin gene-related peptide (CGRP) or substance P (SP) are present in the human vagina and, if so, to determine the pattern of innervation relative to that of other neurotransmitters, particularly vasoactive intestinal polypeptide (VIP) and neuropeptide Y (NPY). Surgical specimens of vaginal tissue (n = 10) from pre- and postmenopausal women were fixed and processed for immunohistochemistry of peptides and NOS and for histochemistry of NADPH-diaphorase. SP-immunoreactive nerves were very sparse, being absent from 9 of the 10 tissue samples. For other peptides and NOS, the innervation of the deep arteries and veins was greater than that of blood vessels in the propria. Capillaries in the epithelial papillae also appeared to be innervated by nerves containing NOS, CGRP, NPY and VIP. Beneath the epithelium nerve fibres formed a subepithelial plexus; no nerve cell bodies were seen. The relative density of innervation by immunoreactive fibres was PGP-9.5 > NPY > VIP >> NOS > CGRP > SP. These results imply that nerves that utilise nitric oxide or NPY, VIP or CGRP as a neurotransmitter may play a role in controlling blood flow and capillary permeability in the human vagina. The origin and function of all these nerves is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8763480

  7. Innervation patterns of sea otter (Enhydra lutris) mystacial follicle-sinus complexes

    PubMed Central

    Marshall, Christopher D.; Rozas, Kelly; Kot, Brian; Gill, Verena A.

    2014-01-01

    Sea otters (Enhydra lutris) are the most recent group of mammals to return to the sea, and may exemplify divergent somatosensory tactile systems among mammals. Therefore, we quantified the mystacial vibrissal array of sea otters and histologically processed follicle-sinus complexes (F - SCs) to test the hypotheses that the number of myelinated axons per F - SC is greater than that found for terrestrial mammalian vibrissae and that their organization and microstructure converge with those of pinniped vibrissae. A mean of 120.5 vibrissae were arranged rostrally on a broad, blunt muzzle in 7–8 rows and 9–13 columns. The F-SCs of sea otters are tripartite in their organization and similar in microstructure to pinnipeds rather than terrestrial species. Each F-SC was innervated by a mean 1339 ± 408.3 axons. Innervation to the entire mystacial vibrissal array was estimated at 161,313 axons. Our data support the hypothesis that the disproportionate expansion of the coronal gyrus in somatosensory cortex of sea otters is related to the high innervation investment of the mystacial vibrissal array, and that quantifying innervation investment is a good proxy for tactile sensitivity. We predict that the tactile performance of sea otter mystacial vibrissae is comparable to that of harbor seals, sea lions and walruses. PMID:25400554

  8. Patterns of peripheral innervation of the tongue and hyobranchial apparatus in caecilians (Amphibia: Gymnophiona).

    PubMed

    Wake, M H

    1992-04-01

    The innervation of the musculature of the tongue and the hyobranchial apparatus of caecilians has long been assumed to be simple and to exhibit little interspecific variation. A study of 14 genera representing all six families of caecilians demonstrates that general patterns of innervation by the trigeminal, facial, glossopharyngeal, and vagus nerves are similar across taxa but that the composition of the "hypoglossal" nerve is highly variable. Probably in all caecilians, spinal nerves 1 and 2 contribute to the hypoglossal. In addition, in certain taxa, an "occipital," the vagus, and/or spinal 3 appear to contribute fibers to the composition of the hypoglossal nerve. These patterns, the lengths of fusion of the contributing elements, and the branching patterns of the hypoglossal are assessed according to the currently accepted hypothesis of phylogenetic relationships of caecilians, and of amphibians. An hypothesis is proposed that limblessness and a simple tongue, with concomitant reduced complexity of innervation of muscles associated with limbs and the tongue, has released a constraint on pattern of innervation. As a consequence, a greater diversity and, in several taxa, greater complexity of neuroanatomical associations of nerve roots to form the hypoglossal are expressed. PMID:1588590

  9. Estrogen and female reproductive tract innervation: cellular and molecular mechanisms of autonomic neuroplasticity

    PubMed Central

    Brauer, M. Mónica; Smith, Peter G.

    2014-01-01

    The female reproductive tract undergoes remarkable functional and structural changes associated with cycling, conception and pregnancy, and it is likely advantageous to both individual and species to alter relationships between reproductive tissues and innervation. For several decades, it has been appreciated that the mammalian uterus undergoes massive sympathetic axon depletion in late pregnancy, possibly representing an adaptation to promote smooth muscle quiescence and sustained blood flow. Innervation to other structures such as cervix and vagina also undergo pregnancy-related changes in innervation that may facilitate parturition. These tissues provide highly tractable models for examining cellular and molecular mechanisms underlying peripheral nervous system plasticity. Studies show that estrogen elicits rapid degeneration of sympathetic terminal axons in myometrium, which regenerate under low-estrogen conditions. Degeneration is mediated by the target tissue: under estrogen's influence, the myometrium produces proteins repulsive to sympathetic axons including BDNF, neurotrimin, semaphorins, and pro-NGF, and extracellular matrix components are remodeled. Interestingly, nerve depletion does not involve diminished levels of classical sympathetic neurotrophins that promote axon growth. Estrogen also affects sympathetic neuron neurotrophin receptor expression in ways that appear to favor pro-degenerative effects of the target tissue. In contrast to the uterus, estrogen depletes vaginal autonomic and nociceptive axons, with the latter driven in part by estrogen-induced suppression BMP4 synthesis. These findings illustrate that hormonally mediated physiological plasticity is a highly complex phenomenon involving multiple, predominantly repulsive target-derived factors acting in concert to achieve rapid and selective reductions in innervation. PMID:25530517

  10. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  11. Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3',5'-monophosphate signaling.

    PubMed

    Rath, Martin F; Bailey, Michael J; Kim, Jong-So; Ho, Anthony K; Gaildrat, Pascaline; Coon, Steven L; Møller, Morten; Klein, David C

    2009-02-01

    Pax4 is a homeobox gene that is known to be involved in embryonic development of the endocrine pancreas. In this tissue, Pax4 counters the effects of the related protein, Pax6. Pax6 is essential for development of the pineal gland. In this study we report that Pax4 is strongly expressed in the pineal gland and retina of the rat. Pineal Pax4 transcripts are low in the fetus and increase postnatally; Pax6 exhibits an inverse pattern of expression, being more strongly expressed in the fetus. In the adult the abundance of Pax4 mRNA exhibits a diurnal rhythm in the pineal gland with maximal levels occurring late during the light period. Sympathetic denervation of the pineal gland by superior cervical ganglionectomy prevents the nocturnal decrease in pineal Pax4 mRNA. At night the pineal gland is adrenergically stimulated by release of norepinephrine from the sympathetic innervation; here, we found that treatment with adrenergic agonists suppresses pineal Pax4 expression in vivo and in vitro. This suppression appears to be mediated by cAMP, a second messenger of norepinephrine in the pineal gland, based on the observation that treatment with a cAMP mimic reduces pineal Pax4 mRNA levels. These findings suggest that the nocturnal decrease in pineal Pax4 mRNA is controlled by the sympathetic neural pathway that controls pineal function acting via an adrenergic-cAMP mechanism. The daily changes in Pax4 expression may influence gene expression in the pineal gland.

  12. Mapping Neuronal Activation and the Influence of Adrenergic Signaling during Contextual Memory Retrieval

    ERIC Educational Resources Information Center

    Zhang, Wei-Ping; Guzowski, John F.; Thomas, Steven A.

    2005-01-01

    We recently described a critical role for adrenergic signaling in the hippocampus during contextual and spatial memory retrieval. To determine which neurons are activated by contextual memory retrieval and its sequelae in the presence and absence of adrenergic signaling, transcriptional imaging for the immediate-early gene "Arc" was used in…

  13. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    ERIC Educational Resources Information Center

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  14. Thyrotropin-releasing hormone-containing axons innervate histaminergic neurons in the tuberomammillary nucleus.

    PubMed

    Sárvári, Anna; Farkas, Erzsébet; Kádár, Andrea; Zséli, Györgyi; Füzesi, Tamás; Lechan, Ronald M; Fekete, Csaba

    2012-12-01

    Recent studies indicate that the effect of thyrotropin-releasing hormone (TRH) on the regulation of food intake may be mediated by histaminergic neurons. To elucidate the anatomical basis for a functional relationship between TRH- and histamine-synthesizing neuronal systems, double-labeling immunocytochemistry was performed on the tuberomammillary nucleus (TMN) of rats, the exclusive location of histaminergic neurons. TRH-immunoreactive (IR) innervation of the histaminergic neurons were detected in all five subnuclei (E1-5) of the TMN, but was most prominent in the E4 and E5 subnuclei where 100% of the histamine-IR neurons were contacted. The number of TRH-IR varicosities in contact with histamine-IR neurons was also greatest in the E4 and E5 subnuclei, averaging 27.0±1.2 in E4 and 7.9±0.5 in E5. Somewhat fewer histamine-IR neurons were juxtaposed by TRH-IR varicosities in E2 and E3 and contacted by 6.3±0.2 and 6.8±0.2 varicosities/innervated cell, respectively. The number of juxtapositions of TRH-IR axon varicosities with histamine-IR neurons was the lowest in the E1 subnucleus (85.7±0.9%; 4.0±0.2 varicosities/innervated cell). Ultrastructural analysis demonstrated that TRH-IR axons established both asymmetric and symmetric type synapses on the perikaryon and dendrites of the histamine-IR neurons, although the majority of synapses were asymmetric type. These data demonstrate that TRH neurons heavily innervate histaminergic neurons in all subdivisions of the TMN, with the densest innervation in the E4 and E5 subdivisions, and are likely to exert activating effects.

  15. Egr3-Dependent Muscle Spindle Stretch Receptor Intrafusal Muscle Fiber Differentiation and Fusimotor Innervation Homeostasis

    PubMed Central

    Oliveira Fernandes, Michelle

    2015-01-01

    Muscle stretch proprioceptors (muscle spindles) are required for stretch reflexes and locomotor control. Proprioception abnormalities are observed in many human neuropathies, but the mechanisms involved in establishing and maintaining muscle spindle innervation and function are still poorly understood. During skeletal muscle development, sensory (Ia-afferent) innervation induces contacted myotubes to transform into intrafusal muscle fibers that form the stretch receptor core. The transcriptional regulator Egr3 is induced in Ia-afferent contacted myotubes by Neuregulin1 (Nrg1)/ErbB receptor signaling and it has an essential role in spindle morphogenesis and function. Because Egr3 is widely expressed during development and has a pleiotropic function, whether Egr3 functions primarily in skeletal muscle, Ia-afferent neurons, or in Schwann cells that myelinate Ia-afferent axons remains unresolved. In the present studies, cell-specific ablation of Egr3 in mice showed that it has a skeletal muscle autonomous function in stretch receptor development. Moreover, using genetic tracing, we found that Ia-afferent contacted Egr3-deficient myotubes were induced in normal numbers, but their development was blocked to generate one to two shortened fibers that failed to express some characteristic myosin heavy chain (MyHC) proteins. These “spindle remnants” persisted into adulthood, remained innervated by Ia-afferents, and expressed neurotrophin3 (NT3), which is required for Ia-afferent neuron survival. However, they were not innervated by fusimotor axons and they did not express glial derived neurotrophic factor (GDNF), which is essential for fusimotor neuron survival. These results demonstrate that Egr3 has an essential role in regulating gene expression that promotes normal intrafusal muscle fiber differentiation and fusimotor innervation homeostasis. PMID:25855173

  16. Adrenergic Drugs Blockers or Enhancers for Cognitive Decline ? What to Choose for Alzheimer's Disease Patients?

    PubMed

    Femminella, Grazia D; Leosco, Dario; Ferrara, Nicola; Rengo, Giuseppe

    2016-01-01

    The adrenergic system has an important role in normal central nervous system function as well as in brain disease. The locus coeruleus, the main source of norepinephrine in brain, is involved in the regulation of learning and memory, reinforcement of sleep-wake cycle and synaptic plasticity. In Alzheimer's disease, locus coeruleus degeneration is observed early in the course of the disease, years before the onset of clinical cognitive signs, with neurofibrillary detected at the stage of mild cognitive impairment, preceding amyloid deposition. Thus, in the last years, a great interest has grown in evaluating the possibility of central adrenergic system modulation as a therapeutic tool in Alzheimer's disease. However, evidences do not show univocal results, with some studies suggesting that adrenergic stimulation might be beneficial in Alzheimer's Disease and some others favoring adrenergic blockade. In this review, we summarize data from both hypothesis and describe the pathophysiological role of the adrenergic system in neurodegeneration. PMID:27189470

  17. Effect of inotropic stimulation on mitochondrial calcium in cardiac muscle.

    PubMed

    Moravec, C S; Bond, M

    1992-03-15

    Ca(2+)-dependent activation of citric acid cycle enzymes has been demonstrated in isolated cardiac mitochondria. These observations led to the hypothesis that Ca2+ is the signal coupling myofibrillar energy use to mitochondrial energy production in vivo. To test this hypothesis we have measured mitochondrial Ca2+ content during increased energy demand, using electron probe microanalysis. Mitochondrial Ca2+ was measured in hamster papillary muscles rapidly frozen at the peak rate of tension rise under control conditions and after stimulation with the beta-adrenergic agonist isoproterenol (10(-6) M). A third group of muscles was frozen after incubation in low (46.5 mM) Na+ solution to Ca2+ load the cells. Pyruvate dehydrogenase activity was measured in each of the muscles. Isoproterenol caused a 39% increase in force and a 43% increase in pyruvate dehydrogenase activity but no change in mitochondrial Ca2+ (0.46 +/- 0.19 (S.E.) mmol of Ca2+/kg, dry weight) compared with control (0.54 +/- 0.12). In contrast, low Na+ increased pyruvate dehydrogenase activity by 56% and also elevated mitochondrial Ca2+ to 1.28 +/- 0.31 (p less than 0.02). These results demonstrate that mitochondrial Ca2+ is not elevated after inotropic stimulation of cardiac muscle by beta-adrenergic agonists although pyruvate dehydrogenase activity is increased. We conclude that Ca2+ uptake by mitochondria is not a requirement for activation of mitochondrial respiration after increased energy demand. PMID:1544913

  18. Imaging of cardiac sarcoidosis.

    PubMed

    Erthal, Fernanda; Juneau, Daniel; Lim, Siok P; Dwivedi, Girish; Nery, Pablo B; Birnie, David; Beanlands, Rob S

    2016-09-01

    Sarcoidosis is a multisystem inflammatory disease. Cardiac involvement is described in up to 50% of the cases. The disease spectrum is wide and cardiac manifestations ranges from being asymptomatic to heart failure, arrhythmias and sudden cardiac death. The diagnosis of cardiac sarcoidosis can be challenging due to its non-specific nature and the focal involvement of the heart. In this review, we discuss the utility of a stepwise approach with multimodality cardiac imaging in the diagnosis and management of CS. PMID:27225318

  19. Mutated human beta3-adrenergic receptor (Trp64Arg) lowers the response to beta3-adrenergic agonists in transfected 3T3-L1 preadipocytes.

    PubMed

    Kimura, K; Sasaki, N; Asano, A; Mizukami, J; Kayahashi, S; Kawada, T; Fushiki, T; Morimatsu, M; Yoshida, T; Saito, M

    2000-03-01

    Wild-type or mutated human beta3-adrenergic receptor (Trp64Arg) cDNAs were stably expressed in mouse 3T3-L1 cells. Saturation binding study using a beta-adrenergic ligand revealed that there was no significant difference in the receptor density and the equilibrium dissociation constant between the two cell lines. However, the ability of the mutant beta3-adrenergic receptor to accumulate cyclic AMP (cAMP) in response to isoproterenol was much reduced and Kact for cAMP accumulation was lowered as compared to the wild type receptor. The amount of alpha subunit of stimulatory GTP-binding protein (GSalpha) and adenylyl cyclase activity in response to forskolin were not different in the two cell lines. The responses of the mutant receptor to epinephrine, norepinephrine and L-755,507, a highly specific agonist for human beta3-adrenergic receptor, were also reduced, but the reduction of Kact for L-755,507 was more evident than other agonists tested. The cAMP accumulation in response to some conventional beta3 agonists was less than 10% of that to isoproterenol even in the cells expressing the wild type receptor. These results suggest that the Trp64Arg mutant beta3-adrenergic receptor has less ability to stimulate adenylyl cyclase, and that lipolytic activity through the beta3-adrenergic receptor by catecholamines in subjects carrying this mutation might be suppressed. PMID:10786926

  20. CaMKIIδ mediates β-adrenergic effects on RyR2 phosphorylation and SR Ca2+ leak and the pathophysiological response to chronic β-adrenergic stimulation

    PubMed Central

    Grimm, Michael; Ling, Haiyun; Pereira, Laetitia; Willeford, Andrew; Gray, Charles B. B.; Erickson, Jeffrey R.; Sarma, Satyam; Respress, Jonathan L.; Wehrens, Xander H.T.; Bers, Donald M.; Brown, Joan Heller

    2015-01-01

    Chronic activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the deleterious effects of β-adrenergic receptor (β-AR) signaling on the heart, in part by enhancing RyR2-mediated sarcoplasmic reticulum (SR) Ca2+ leak. We used CaMKIIδ knockout (CaMKIIδ-KO) mice, and knock-in mice with an inactivated CaMKII site S2814 on the ryanodine receptor type-2 (S2814A), to interrogate the involvement of these processes in β-AR signaling and cardiac remodeling. Langendorff-perfused hearts from CaMKIIδ-KO mice showed inotropic and chronotropic responses to isoproterenol (ISO) that were similar to those of wild type (WT) mice, however in CaMKIIδ-KO mice CaMKII phosphorylation of phospholamban and RyR2 was decreased and isolated myocytes from CaMKIIδ-KO mice had reduced SR Ca2+ leak in response to isoproterenol (ISO). Chronic catecholamine stress with ISO induced comparable increases in relative heart weight and other measures of hypertrophy from day 9 through week 4 in WT and CaMKIIδ-KO mice, but development of cardiac fibrosis was prevented in CaMKIIδ-KO animals. A 4-week challenge with ISO resulted in reduced cardiac function and pulmonary congestion in WT, but not in CaMKIIδ-KO or S2814A mice, implicating CaMKIIδ-dependent phosphorylation of RyR2-S2814 in the cardiomyopathy, independent of hypertrophy, induced by prolonged β-AR stimulation. PMID:26080362

  1. β1-Adrenergic and M2 Muscarinic Autoantibodies and Thyroid Hormone Facilitate Induction of Atrial Fibrillation in Male Rabbits.

    PubMed

    Li, Hongliang; Murphy, Taylor; Zhang, Ling; Huang, Bing; Veitla, Vineet; Scherlag, Benjamin J; Kem, David C; Yu, Xichun

    2016-01-01

    Activating autoantibodies to the β1-adrenergic and M2 muscarinic receptors are present in a very high percentage of patients with Graves' disease and atrial fibrillation (AF). The objective of this study was to develop a reproducible animal model and thereby to examine the impact of these endocrine-like autoantibodies alone and with thyroid hormone on induction of thyroid-associated atrial tachyarrhythmias. Five New Zealand white rabbits were coimmunized with peptides from the second extracellular loops of the β1-adrenergic and M2 muscarinic receptors to produce both sympathomimetic and parasympathomimetic antibodies. A catheter-based electrophysiological study was performed on anesthetized rabbits before and after immunization and subsequent treatment with thyroid hormone. Antibody expression facilitated the induction of sustained sinus, junctional and atrial tachycardias, but not AF. Addition of excessive thyroid hormone resulted in induced sustained AF in all animals. AF induction was blocked acutely by the neutralization of these antibodies with immunogenic peptides despite continued hyperthyroidism. The measured atrial effective refractory period as one parameter of AF propensity shortened significantly after immunization and was acutely reversed by peptide neutralization. No further decrease in the effective refractory period was observed after the addition of thyroid hormone, suggesting other cardiac effects of thyroid hormone may contribute to its role in AF induction. This study demonstrates autonomic autoantibodies and thyroid hormone potentiate the vulnerability of the heart to AF, which can be reversed by decoy peptide therapy. These data help fulfill Witebsky's postulates for an increased autoimmune/endocrine basis for Graves' hyperthyroidism and AF. PMID:26517045

  2. Optimum Topical Delivery of Adrenergic Agonists to Oral Mucosa Vasculature

    PubMed Central

    Soref, Cheryl M.

    2015-01-01

    Purpose Identify an orotopical vehicle to deliver an α-adrenergic vasoconstrictor to submucosal vasculature that is readily palatable to cancer/bone marrow transplant patients that suppresses chemo-radiotherapy-associated oral mucositis. Methods A [3H] norepinephrine ligand binding assay was developed to quantify receptor binding in hamster oral mucosa. Vehicle components (alcohols, polyols, cellulose, PVP) were tested versus [3H] norepinephrine binding. Vehicle refinement was also done to mask phenylephrine bitter taste and achieve human subject acceptance. The optimized vehicle was tested with α-adrenergic active agents to suppress radiation-induced oral mucositis in mice. Results The ligand binding assay quantified dose- and time-dependent, saturable binding of [3H] norepinephrine. An ethanol:glycerol:propylene glycol:water (6:6:8:80) vehicle provided the best delivery and binding. Further vehicle modification (flavoring and sucralose) yielded a vehicle with excellent taste scores in humans. Addition of phenylephrine, norepinephrine or epinephrine to the optimized vehicle and painting into mouse mouths 20 min before 19 Gy irradiation conferred significant suppression of the weight loss (P < 0.001) observed in mice who received oral vehicle. Conclusion We identified a highly efficient vehicle for the topical delivery of phenylephrine to the oral mucosa of both hamster and human subjects. This will enable its testing to suppress oral mucositis in an upcoming human clinical trial. PMID:25079392

  3. Vascular adrenergic receptor responses in skeletal muscle in myotonic dystrophy

    SciTech Connect

    Mechler, F.; Mastaglia, F.L.

    1981-02-01

    The pharmacological responses of vascular adrenergic receptors to intravenously administered epinephrine, phentolamine, and propranolol were assessed by measuring muscle blood flow (MBF) changes in the tibialis anterior muscle using the xenon 133 clearance technique and were compared in 8 normal subjects and 11 patients with myotonic dystrophy. In cases with advanced involvement of the muscle, the resting MBF was reduced and was not significantly altered by epinephrine before or after alpha- or beta-receptor blockade. In patients in whom the tibialis anterior muscle was normal or only minimally affected clinically, a paradoxical reduction in the epinephrine-induced increase in MBF was found after alpha blockade by phentolamine, and the epinephrine-induced MBF increase was not completely blocked by propranolol as in the normal subjects. These findings point to functional alteration in the properties of vascular adrenergic receptors in muscle in myotonic dystrophy. While this may be another manifestation of a widespread cell membrane defect in the disease, the possibility that the changes are secondary to the myotonic state cannot be excluded.

  4. The Principles of Ligand Specificity on beta-2-adrenergic receptor

    PubMed Central

    Chan, H. C. Stephen; Filipek, Slawomir; Yuan, Shuguang

    2016-01-01

    G protein-coupled receptors are recognized as one of the largest families of membrane proteins. Despite sharing a characteristic seven-transmembrane topology, G protein-coupled receptors regulate a wide range of cellular signaling pathways in response to various physical and chemical stimuli, and prevail as an important target for drug discovery. Notably, the recent progress in crystallographic methods led to a breakthrough in elucidating the structures of membrane proteins. The structures of β2-adrenergic receptor bound with a variety of ligands provide atomic details of the binding modes of agonists, antagonists and inverse agonists. In this study, we selected four representative molecules from each functional class of ligands and investigated their impacts on β2-adrenergic receptor through a total of 12 × 100 ns molecular dynamics simulations. From the obtained trajectories, we generated molecular fingerprints exemplifying propensities of protein-ligand interactions. For each functional class of compounds, we characterized and compared the fluctuation of the protein backbone, the volumes in the intracellular pockets, the water densities in the receptors, the domain interaction networks as well as the movements of transmembrane helices. We discovered that each class of ligands exhibits a distinct mode of interactions with mainly TM5 and TM6, altering the shape and eventually the state of the receptor. Our findings provide insightful prospective into GPCR targeted structure-based drug discoveries. PMID:27703221

  5. Pharmacogenetics of beta2 adrenergic receptor agonists in asthma management.

    PubMed

    Ortega, V E

    2014-07-01

    Beta2 (β2) adrenergic receptor agonists (beta agonists) are a commonly prescribed treatment for asthma despite the small increase in risk for life-threatening adverse responses associated with long-acting beta agonist (LABA). The concern for life-threatening adverse effects associated with LABA and the inter-individual variability of therapeutic responsiveness to LABA-containing combination therapies provide the rationale for pharmacogenetic studies of beta agonists. These studies primarily evaluated genes within the β2-adrenergic receptor and related pathways; however, recent genome-wide studies have identified novel loci for beta agonist response. Recent studies have identified a role for rare genetic variants in determining beta agonist response and, potentially, the risk for rare, adverse responses to LABA. Before genomics research can be applied to the development of genetic profiles for personalized medicine, it will be necessary to continue adapting to the analysis of an increasing volume of genetic data in larger cohorts with a combination of analytical methods and in vitro studies.

  6. Myocardial adrenergic responsiveness after lethal and nonlethal doses of endotoxin

    SciTech Connect

    Shepherd, R.E.; Lang, C.H.; McDonough, K.H.

    1987-02-01

    A dose-dependent impairment of intrinsic myocardial performance has been observed following in vivo administration of endotoxin. The present study reports a dose-dependent increase in plasma catecholamines following endotoxin (ET) that may impair ..beta..-adrenergic responsiveness. Hearts were removed from pentobarbital-anesthetized rats 4 h after a bolus injection of saline or ET and were studied as isolated cell preparations following collagenase digestion. Responsiveness of isoproterenol-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) accumulation in myocytes prepared from hearts of animals injected with 10 and 100 ..mu..g ET was decreased when compared with control rats and was significantly blunted in myocytes prepared from animals receiving 1000 ..mu..g ET. Similar sensitivities of the cAMP system existed, as judged by similar half-maximum effective concentration values. cAMP accumulation in the presence of 1 ..mu..M forskolin was depressed in myocytes from the 1000-..mu..g ET animals; ..beta..-adrenergic receptor density was decreased 25% in myocytes from high-dose ET animals when compared with control animals. This was accompanied by a nonsignificant reduction in the affinity of binding sites for (+/-)(/sup 3/H)CGP 12177. The blunted myocyte hormonal responsiveness following ET challenge appears to be related to the decreased activity of the adenylate cyclase that may be attributed to alterations in both receptor density and in the adenylate cyclase itself.

  7. CARDIAC MUSCLE

    PubMed Central

    Sommer, Joachim R.; Johnson, Edward A.

    1968-01-01

    With light and electron microscopy a comparison has been made of the morphology of ventricular (V) and Purkinje (P) fibers of the hearts of guinea pig, rabbit, cat, dog, goat, and sheep. The criteria, previously established for the rabbit heart, that V fibers are distinguished from P fibers by the respective presence and absence of transverse tubules is shown to be true for all animals studied. No evidence was found of a permanent connection between the sarcoplasmic reticulum and the extracellular space. The sarcoplasmic reticulum (SR) of V fibers formed couplings with the sarcolemma of a transverse tubule (interior coupling) and with the peripheral sarcolemma (peripheral coupling), whereas in P fibers the SR formed only peripheral couplings. The forms of the couplings were identical. The significance, with respect to excitation-contraction coupling, of the difference in the form of the couplings in cardiac versus skeletal muscle is discussed together with the electrophysiological implications of the differing geometries of bundles of P fibers from different animals. PMID:5645545

  8. Initial innervation of embryonic rat tongue and developing taste papillae: nerves follow distinctive and spatially restricted pathways.

    PubMed

    Mbiene, J P; Mistretta, C M

    1997-01-01

    The rat tongue has an extensive, complex innervation from four cranial nerves. However, the precise developmental time course and spatial routes of these nerves into the embryonic tongue are not known, although this knowledge is crucial for studying mechanisms that regulate development and innervation of the lingual taste organs, gustatory papillae and resident taste buds. We determined the initial spatial course of nerves in the developing tongue and papillae, and tested the hypothesis that sensory nerves first innervate the tongue homogeneously and then retract to more densely innervate papillae and taste buds. Antibodies to GAP-43 and neurofilaments were used to label nerve fibers in rat embryo heads from gestational day 11 through 16 (E11-E16). Serial sagittal sections were traced and reconstructed to follow paths of each nerve. In E11 rat, geniculate, trigeminal and petrosal ganglia were labeled and fibers left the ganglia and extended toward respective branchial arches. At E13 when the developing tongue is still a set of tissue swellings, the combined chorda/lingual, hypoglossal and petrosal nerves approached the lingual swellings from separate positions. Only the chorda/lingual entered the tongue base at this stage. At E14 and E15, the well-developed tongue was innervated by all four cranial nerves. However, the nerves maintained distinctive entry points and relatively restricted mesenchymal territories within the tongue, and did not follow one another in common early pathways. Furthermore, the chorda/lingual and glossopharyngeal nerves did not set up an obvious prepattern for gustatory papilla development, but rather seemed attracted to developing papillae which became very densely innervated compared to surrounding epithelium at E15. To effect this dense papilla innervation, sensory nerves did not first innervate the tongue in a homogeneous manner with subsequent retraction and/or extensive redirection of fibers into the taste organs. Results contribute to

  9. Experimental studies into mechanisms of cardiac arrest.

    PubMed Central

    Russell, D C

    1984-01-01

    Experimental studies have revealed that a wide variety of different pathophysiological mechanisms may induce ventricular fibrillation (VF) and cardiac arrest during acute myocardial ischaemia or infarction. Distinct phases of enhanced vulnerability (the amount of current required to stimulate ectopic activity in the heart following application of an extra stimulus) to VF follow coronary occlusion and correspond to 'pre-hospital', 'in-hospital' and 'out-of-hospital' periods of arrhythmogenesis. Electrophysiological evidence suggests very early (phase 1a) VF results from multiple re-entrant excitation within the ischaemic zone. Slowed and fragmented conduction and inhomogeneities in refractoriness rapidly develop which mapping studies show to occur in association with development of spatial inhomogeneities in residual blood flow distribution and metabolism. Onset of VF may be triggered by adrenergic mechanisms or influenced by peripheral metabolic responses. Automatic mechanisms (spontaneous pacemaker activity) may induce later VF or VF on reperfusion or trigger re-entry. Findings indicate no single therapeutic approach to be likely to protect against all forms of cardiac arrest. PMID:6399208

  10. The formation and regression of synapses during the re-innervation of axolotl striated muscles.

    PubMed Central

    Bennett, M R; Raftos, J

    1977-01-01

    1. A study has been made of the formation and regression of synapses formed by spinal nerves 16 and 17 in axolotl hind-limb flexor muscles following the severing of nerve 16, using histological, ultrastructural and electrophysiological techniques. 2. Axolotl hind-limb flexor myofibres possessed 'en plaque' end-plates from either spinal nerve 16 or 17 or both at intervals of about 1000 micronm along their length; the myofibre's length constant was about 700 micronm allowing electrophysiological observations of at least two of these synapses during a single impalement; transmitter release at these synapses could be described by binomial statistics and in a given set of ionic conditions the binomial statistic parameter n was directly proportional to the size of the nerve terminals whilst the binomial statistic parameter p was invariant to changes in nerve terminal size. 3. The distribution of synapses formed by spinal nerves 16 and 17 in different sectors of the axolotl hind-limb flexor muscles was determined from a study of evoked end-plate potentials; the middle and proximal sectors of the flexor muscles contained myofibres which received an innervation from nerve 16 only, whereas the sectors surrounding these contained myofibres innervated either by nerve 16 or nerve 17 or by both nerves. 4. Six days following the severing of spinal nerve 16, evoked transmitter release from the synapses formed by this nerve had failed; transmission was subsequently recorded at a few synapses formed by nerve 17 in the middle and proximal sectors of the flexor muscles which are not normally innervated by this nerve and these synapses had a low n; during the succeeding four weeks the value of n at the synapses increased to a size about 70% that of the terminals normally formed by nerve 16 at these sites. 5. Four weeks after severing nerve 16, myofibres which possessed synapses formed by nerve 17 also possessed synapses from re-innervating nerve 16 and these were sometimes formed at

  11. Sensory and autonomic innervation of the rat eyelid: neuronal origins and peptide phenotypes.

    PubMed

    Simons, E; Smith, P G

    1994-07-01

    Neuronal origins, peptide phenotypes and target distributions were determined for sensory and autonomic nerves projecting to the eyelid. The retrograde tracer, Fluoro-Ruby, was injected into the superior tarsal muscle and meibomian gland of Sprague-Dawley rats. Labelled neurons were observed within the pterygopalatine (31 +/- 6 of a total of 8238 +/- 1610 ganglion neurons), trigeminal (173 +/- 43 of 62,082 +/- 5869) and superior cervical ganglia (184 +/- 35 of 21,900 +/- 1741). Immunostaining revealed vasoactive intestinal polypeptide immunoreactivity (VIP-ir) in nearly all Fluoro-Ruby-labelled pterygopalatine ganglion neurons (86 +/- 5%) but only rarely in trigeminal (0.3 +/- 0.3%) or superior cervical (1.4 +/- 1.4%) ganglion neurons. Calcitonin gene-related peptide (CGRP)-ir was not observed in pterygopalatine or superior cervical ganglion somata, but was present in 24 +/- 4% of trigeminal neurons. Bright dopamine beta-hydroxylase (DBH) immunofluorescence was observed in the majority of eyelid-projecting neurons within the superior cervical ganglia (65 +/- 5%) and lighter staining was detected in pterygopalatine neurons (63 +/- 3%), but no DBH-ir was observed in trigeminal neurons. Examination of eyelid sections revealed dense VIP-ir innervation of meibomian gland acini and vasculature and modest distribution within tarsal muscle. CGRP-ir fibers surrounded ductal and vascular elements of the meibomian gland and the perimeter of tarsal muscle. DBH-ir fibers were associated with meibomian gland blood vessels and acini, and were more densely distributed within tarsal muscle. This study provides evidence for prominent meibomian gland innervation by parasympathetic pterygopalatine ganglion VIP-ir neurons, with more restricted innervation by sensory trigeminal CGRP-ir and sympathetic neurons. Tarsal muscle receives abundant sympathetic innervation, as well as moderate parasympathetic and sensory CGRP-ir projections. The eyelid contains substantial non-CGRP-ir sensory

  12. Therapeutic synergy and complementarity for ischemia/reperfusion injury: β1-adrenergic blockade and phosphodiesterase-3 inhibition.

    PubMed

    Huang, Ming-He; Poh, Kian-Keong; Tan, Huay-Cheem; Welt, Frederick G P; Lui, Charles Y

    2016-07-01

    The β1-blocker when administered before reperfusion activates myocyte prosurvival signaling via β2-adrenergic receptor (β2-AR) and protein kinase A (PKA)-dependent mechanism during ischemia/reperfusion (I/R). The heart is endowed with powerful self-protective ability executed by endogenous β2-adrenopeptide receptor activation. I/R triggers cardiac epinephrine and neuropeptide calcitonin gene-related peptide (CGRP) release. Cardiac β1- and β2-AR stimulation mediates pro- and anti-apoptotic cell signaling, respectively. Removal of myocardial β1-AR-derived proapoptotic force with β1-AR blockade unmasks the dominance of β2-AR mediated prosurvival cell signaling through the well-defined PKA-Akt dependent mechanism. This review focuses on recent clinical and experimental findings including intrinsic cardiac β2-adrenopeptide neuroparacrine signaling mechanisms involved in I/R injury protection. While β2-adrenopeptide-mediated cardioprotection is important, age-related β2-adrenopeptide receptor decoupling can result in their ineffectiveness in response to the receptor-specific therapies. Accordingly, direct activation of receptor-coupled upstream PKA-dependent signaling may serve as a therapeutic alternative to achieve cardioprotection bypassing adrenopeptidergic receptor decoupling accompanied with aging. Phosphodiesterase-3 (PDE3) inhibitor reduces infarct-size via cAMP-dependent PKA signaling. Non-β1-AR-mediated PKA activation activates multiple prosurvival signaling pathways eventually leading to Akt activation. Combination therapy with β1-blocker esmolol and PDE3 inhibitor milrinone additively reduced infarct-size in preclinical studies. Concurrent β1-AR blockade and PDE3 inhibition provides complementary synergy with promising therapeutic potential in patients with acute myocardial infarction and beyond. PMID:27085132

  13. Nuclear β-adrenergic receptors modulate gene expression in adult rat heart

    PubMed Central

    Vaniotis, George; Del Duca, Danny; Trieu, Phan; Rohlicek, Charles V.; Hébert, Terence E.; Allen, Bruce G.

    2016-01-01

    Both β1- and β3-adrenergic receptors (β1ARs and β3ARs) are present on nuclear membranes in adult ventricular myocytes. These nuclear-localized receptors are functional with respect to ligand binding and effector activation. In isolated cardiac nuclei, the non-selective βAR agonist isoproterenol stimulated de novo RNA synthesis measured using assays of transcription initiation (Boivin et al., 2006 Cardiovasc Res. 71:69–78). In contrast, stimulation of endothelin receptors, another G protein-coupled receptor (GPCR) that localizes to the nuclear membrane, resulted in decreased RNA synthesis. To investigate the signalling pathway(s) involved in GPCR-mediated regulation of RNA synthesis, nuclei were isolated from intact adult rat hearts and treated with receptor agonists in the presence or absence of inhibitors of different mitogen-activated protein kinase (MAPK) and PI3K/PKB pathways. Components of p38, JNK, and ERK1/2 MAP kinase cascades as well as PKB were detected in nuclear preparations. Inhibition of PKB with triciribine, in the presence of isoproterenol, converted the activation of the βAR from stimulatory to inhibitory with regards to RNA synthesis, while ERK1/2, JNK and p38 inhibition reduced both basal and isoproterenol-stimulated activity. Analysis by qPCR indicated an increase in the expression of 18 S rRNA following isoproterenol treatment and a decrease in NFκB mRNA. Further qPCR experiments revealed that isoproterenol treatment also reduced the expression of several other genes involved in the activation of NFκB, while ERK1/2 and PKB inhibition substantially reversed this effect. Our results suggest that GPCRs on the nuclear membrane regulate nuclear functions such as gene expression and this process is modulated by activation/inhibition of downstream protein kinases within the nucleus. PMID:20732414

  14. The rush to adrenaline: drugs in sport acting on the β-adrenergic system

    PubMed Central

    Davis, E; Loiacono, R; Summers, R J

    2008-01-01

    Athletes attempt to improve performance with drugs that act on the β-adrenergic system directly or indirectly. Of three β-adrenoceptor (AR) subtypes, the β2-AR is the main target in sport; they have bronchodilator and anabolic actions and enhance anti-inflammatory actions of corticosteroids. Although demonstrable in animal experiments and humans, there is little evidence that these properties can significantly improve performance in trained athletes. Their actions may also be compromised by receptor desensitization and by common, naturally occurring receptor mutations (polymorphisms) that can influence receptor signalling and desensitization properties in individuals. Indirectly acting agents affect release and reuptake of noradrenaline and adrenaline, thereby influencing all AR subtypes including the three β-ARs. These agents can have potent psychostimulant effects that provide an illusion of better performance that does not usually translate into improvement in practice. Amphetamines and cocaine also have considerable potential for cardiac damage. β-AR antagonists (β-blockers) are used in sports that require steadiness and accuracy, such as archery and shooting, where their ability to reduce heart rate and muscle tremor may improve performance. They have a deleterious effect in endurance sports because they reduce physical performance and maximum exercise load. Recent studies have identified that many β-AR antagonists not only block the actions of agonists but also activate other (mitogen-activated PK) signalling pathways influencing cell growth and fate. The concept that many compounds previously regarded as ‘blockers' may express their own spectrum of pharmacological properties has potentially far-reaching consequences for the use of drugs both therapeutically and illicitly. PMID:18500380

  15. T-Tubular Electrical Defects Contribute to Blunted β-Adrenergic Response in Heart Failure.

    PubMed

    Crocini, Claudia; Coppini, Raffaele; Ferrantini, Cecilia; Yan, Ping; Loew, Leslie M; Poggesi, Corrado; Cerbai, Elisabetta; Pavone, Francesco S; Sacconi, Leonardo

    2016-01-01

    Alterations of the β-adrenergic signalling, structural remodelling, and electrical failure of T-tubules are hallmarks of heart failure (HF). Here, we assess the effect of β-adrenoceptor activation on local Ca(2+) release in electrically coupled and uncoupled T-tubules in ventricular myocytes from HF rats. We employ an ultrafast random access multi-photon (RAMP) microscope to simultaneously record action potentials and Ca(2+) transients from multiple T-tubules in ventricular cardiomyocytes from a HF rat model of coronary ligation compared to sham-operated rats as a control. We confirmed that β-adrenergic stimulation increases the frequency of Ca(2+) sparks, reduces Ca(2+) transient variability, and hastens the decay of Ca(2+) transients: all these effects are similarly exerted by β-adrenergic stimulation in control and HF cardiomyocytes. Conversely, β-adrenergic stimulation in HF cells accelerates a Ca(2+) rise exclusively in the proximity of T-tubules that regularly conduct the action potential. The delayed Ca(2+) rise found at T-tubules that fail to conduct the action potential is instead not affected by β-adrenergic signalling. Taken together, these findings indicate that HF cells globally respond to β-adrenergic stimulation, except at T-tubules that fail to conduct action potentials, where the blunted effect of the β-adrenergic signalling may be directly caused by the lack of electrical activity. PMID:27598150

  16. Purification and reconstitution of the human platelet. cap alpha. /sub 2/-adrenergic receptor

    SciTech Connect

    Regan, J.W.; Cerione, R.A.; Nakata, H.; Benovic, J.L.; DeMarinis, R.M.; Caron, M.G.; Lefkowitz, R.J.

    1986-05-01

    Human platelet ..cap alpha../sub 2/-adrenergic receptors have been purified approx.80,000 fold to apparent homogeneity by a five step chromatographic procedure. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of radioiodinated protein from purified receptor preparations shows a single major band of M/sub r/ 64,000. The competitive binding of ligands to the purified receptor protein shows the proper ..cap alpha../sub 2/-adrenergic specificity. The ..cap alpha../sub 2/-adrenergic receptor contains an essential sulfhydryl residues. Thus, exposure of the purified receptor to the sulfhydryl specific reagent, phenylmercuric chloride (PMC), resulted in a 80% loss of binding activity. This loss of binding activity was prevented when exposure to PMC was done in the presence of ..cap alpha../sub 2/-adrenergic ligands and it was reversed by subsequent exposure to dithiothreitol. Partial proteolysis of purified ..cap alpha../sub 2/-adrenergic receptors was obtained with S. aureus V-8 protease, ..cap alpha..-chymotrypsin and papain. In a comparison with purified ..beta../sub 2/-adrenergic receptors no common partial proteolytic products were found. Partially purified preparations of the ..cap alpha../sub 2/-adrenergic receptor were successfully reconstituted into phospholipid vesicles with the inhibitory guanyl nucleotide-binding regulatory protein, N/sub i/. In these reconstituted preparations, epinephrine could stimulate, and phentolamine could block, the GTPase activity of N/sub i/.

  17. T-Tubular Electrical Defects Contribute to Blunted β-Adrenergic Response in Heart Failure

    PubMed Central

    Crocini, Claudia; Coppini, Raffaele; Ferrantini, Cecilia; Yan, Ping; Loew, Leslie M.; Poggesi, Corrado; Cerbai, Elisabetta; Pavone, Francesco S.; Sacconi, Leonardo

    2016-01-01

    Alterations of the β-adrenergic signalling, structural remodelling, and electrical failure of T-tubules are hallmarks of heart failure (HF). Here, we assess the effect of β-adrenoceptor activation on local Ca2+ release in electrically coupled and uncoupled T-tubules in ventricular myocytes from HF rats. We employ an ultrafast random access multi-photon (RAMP) microscope to simultaneously record action potentials and Ca2+ transients from multiple T-tubules in ventricular cardiomyocytes from a HF rat model of coronary ligation compared to sham-operated rats as a control. We confirmed that β-adrenergic stimulation increases the frequency of Ca2+ sparks, reduces Ca2+ transient variability, and hastens the decay of Ca2+ transients: all these effects are similarly exerted by β-adrenergic stimulation in control and HF cardiomyocytes. Conversely, β-adrenergic stimulation in HF cells accelerates a Ca2+ rise exclusively in the proximity of T-tubules that regularly conduct the action potential. The delayed Ca2+ rise found at T-tubules that fail to conduct the action potential is instead not affected by β-adrenergic signalling. Taken together, these findings indicate that HF cells globally respond to β-adrenergic stimulation, except at T-tubules that fail to conduct action potentials, where the blunted effect of the β-adrenergic signalling may be directly caused by the lack of electrical activity. PMID:27598150

  18. Progesterone prevents linkage of rabbit myometrial alpha 2-adrenergic receptors to inhibition of adenylate cyclase.

    PubMed

    Wu, Y Y; Riemer, R K; Goldfien, A; Roberts, J M

    1989-04-01

    The uterine response to adrenergic stimulation is determined by the hormonal milieu. This response is particularly well characterized in the rabbit. In this species, as in humans, the response of the uterus to sympathetic stimulation is alpha-adrenergically mediated contraction with elevated circulating estrogen. However, with progesterone predominance, similar stimulation inhibits uterine contractions, a response mediated by beta-adrenergic receptors acting through their second message, cyclic adenosine monophosphate. We studied the mechanisms by which sex steroids regulate myometrial adrenergic responses. In this study, we questioned whether part of the effect of sex steroids could be explained by an alteration of the coupling of the alpha 2-adrenergic receptor to the inhibition of adenylate cyclase. We found that in the progesterone-treated rabbit, although alpha 2-receptors are present, they are not linked to inhibition of cyclic adenosine monophosphate synthesis. The net synthesis of cyclic adenosine monophosphage in response to endogenous catecholamines is determined by their activation of beta-adrenergic receptors to increase and alpha 2-receptors to decrease cyclic adenosine monophosphate formation. Thus the uncoupling of alpha 2-receptors contributes to increased intracellular cyclic adenosine monophosphate in myometrium of progesterone-treated animals consistent with the reported predominance of beta-adrenergic contractile responses in this setting.

  19. The role of α-adrenergic receptors in mediating beat-by-beat sympathetic vascular transduction in the forearm of resting man.

    PubMed

    Fairfax, Seth T; Holwerda, Seth W; Credeur, Daniel P; Zuidema, Mozow Y; Medley, John H; Dyke, Peter C; Wray, D Walter; Davis, Michael J; Fadel, Paul J

    2013-07-15

    Sympathetic vascular transduction is commonly understood to act as a basic relay mechanism, but under basal conditions, competing dilatory signals may interact with and alter the ability of sympathetic activity to decrease vascular conductance. Thus, we determined the extent to which spontaneous bursts of muscle sympathetic nerve activity (MSNA) mediate decreases in forearm vascular conductance (FVC) and the contribution of local α-adrenergic receptor-mediated pathways to the observed FVC responses. In 19 young men, MSNA (microneurography), arterial blood pressure and brachial artery blood flow (duplex Doppler ultrasound) were continuously measured during supine rest. These measures were also recorded in seven men during intra-arterial infusions of normal saline, phentolamine (PHEN) and PHEN with angiotensin II (PHEN+ANG). The latter was used to control for increases in resting blood flow with α-adrenergic blockade. Spike-triggered averaging was used to characterize beat-by-beat changes in FVC for 15 cardiac cycles following each MSNA burst and a peak response was calculated. Following MSNA bursts, FVC initially increased by +3.3 ± 0.3% (P = 0.016) and then robustly decreased to a nadir of -5.8 ± 1.6% (P < 0.001). The magnitude of vasoconstriction appeared graded with the number of consecutive MSNA bursts; while individual burst size only had a mild influence. Neither PHEN nor PHEN+ANG infusions affected the initial rise in FVC, but both infusions significantly attenuated the subsequent decrease in FVC (-2.1 ± 0.7% and -0.7 ± 0.8%, respectively; P < 0.001 vs. normal saline). These findings indicate that spontaneous MSNA bursts evoke robust beat-by-beat decreases in FVC that are exclusively mediated via α-adrenergic receptors.

  20. Functional cross-talk between the α1- and β1-adrenergic receptors modulates the rapidly activating delayed rectifier potassium current in guinea pig ventricular myocytes.

    PubMed

    Xu, Di; Wang, Sen; Wu, Ting-Ting; Wang, Xiao-Yan; Qian, Jin; Guo, Yan

    2014-08-15

    The rapidly activating delayed rectifier potassium current (IKr) plays a critical role in cardiac repolarization. Although IKr is known to be regulated by both α1- and β1-adrenergic receptors (ARs), the cross-talk and feedback mechanisms that dictate its response to α1- and β1-AR activation are not known. In the present study, IKr was recorded using the whole-cell patch-clamp technique. IKr amplitude was measured before and after the sequential application of selective adrenergic agonists targeting α1- and β1-ARs. Stimulation of either receptor alone (α1-ARs using 1 μM phenylephrine (PE) or β1-ARs using 10 μM xamoterol (Xamo)) reduced IKr by 0.22 ± 0.03 and 0.28 ± 0.01, respectively. The voltage-dependent activation curve of IKr shifted in the negative direction. The half-maximal activation voltage (V0.5) was altered by -6.35 ± 1.53 and -1.95 ± 2.22 mV, respectively, with no major change in the slope factor (k). When myocytes were pretreated with Xamo, PE-induced reduction in IKr was markedly blunted and the corresponding change in V0.5 was significantly altered. Similarly, when cells were pretreated with PE, Xamo-induced reduction of IKr was significantly attenuated. The present results demonstrate that functional cross-talk between α1- and β1-AR signaling regulates IKr. Such non-linear regulation may form a protective mechanism under excessive adrenergic stimulation.

  1. Gross anatomical study of the sympathetic cardiac nerves in the house musk shrew (Suncus murinus).

    PubMed

    Tanaka, Ai; Tanaka, Shigenori; Miyamoto, Kensaku; Yi, Shuang-Qin; Nakatani, Toshio

    2007-05-01

    The sympathetic cardiac nerves originating from the cervical and upper thoracic sympathetic ganglia in the house musk shrew (Suncus murinus) were examined using macroscopic and whole-mount immunohistochemical methods. Based on the results, the nerves were macroscopically classified into the following three groups: nerves innervating the cervical sympathetic ganglia mainly to the arterial porta of the heart; nerves supplying the stellate and thoracic sympathetic ganglia at the level of T2-T5 or T6 for both the arterial and venous portae of the heart; and nerves innervating the thoracic sympathetic ganglia at the level of T4-T9 to the esophagus and lung and then the heart via the blood vessels within the mediastinal pleura. These findings in the house musk shrew suggest a possible primitive morphological pattern of the cervical and thoracic sympathetic nervous system that may be related to those in other mammals, including humans. PMID:17393537

  2. On the vagal cardiac nerves, with special reference to the early evolution of the head-trunk interface.

    PubMed

    Higashiyama, Hiroki; Hirasawa, Tatsuya; Oisi, Yasuhiro; Sugahara, Fumiaki; Hyodo, Susumu; Kanai, Yoshiakira; Kuratani, Shigeru

    2016-09-01

    The vagus nerve, or the tenth cranial nerve, innervates the heart in addition to other visceral organs, including the posterior visceral arches. In amniotes, the anterior and posterior cardiac branches arise from the branchial and intestinal portions of the vagus nerve to innervate the arterial and venous poles of the heart, respectively. The evolution of this innervation pattern has yet to be elucidated, due mainly to the lack of morphological data on the vagus in basal vertebrates. To investigate this topic, we observed the vagus nerves of the lamprey (Lethenteron japonicum), elephant shark (Callorhinchus milii), and mouse (Mus musculus), focusing on the embryonic patterns of the vagal branches in the venous pole. In the lamprey, no vagus branch was found in the venous pole throughout development, whereas the arterial pole was innervated by a branch from the branchial portion. In contrast, the vagus innervated the arterial and venous poles in the mouse and elephant shark. Based on the morphological patterns of these branches, the venous vagal branches of the mouse and elephant shark appear to belong to the intestinal part of the vagus, implying that the cardiac nerve pattern is conserved among crown gnathostomes. Furthermore, we found a topographical shift of the structures adjacent to the venous pole (i.e., the hypoglossal nerve and pronephros) between the extant gnathostomes and lamprey. Phylogenetically, the lamprey morphology is likely to be the ancestral condition for vertebrates, suggesting that the evolution of the venous branch occurred early in the gnathostome lineage, in parallel with the remodeling of the head-trunk interfacial domain during the acquisition of the neck. J. Morphol. 277:1146-1158, 2016. © 2016 Wiley Periodicals, Inc. PMID:27216138

  3. Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons

    PubMed Central

    Kubota, Yoshiyuki; Kondo, Satoru; Nomura, Masaki; Hatada, Sayuri; Yamaguchi, Noboru; Mohamed, Alsayed A; Karube, Fuyuki; Lübke, Joachim; Kawaguchi, Yasuo

    2015-01-01

    Inhibitory interneurons target precise membrane regions on pyramidal cells, but differences in their functional effects on somata, dendrites and spines remain unclear. We analyzed inhibitory synaptic events induced by cortical, fast-spiking (FS) basket cells which innervate dendritic shafts and spines as well as pyramidal cell somata. Serial electron micrograph (EMg) reconstructions showed that somatic synapses were larger than dendritic contacts. Simulations with precise anatomical and physiological data reveal functional differences between different innervation styles. FS cell soma-targeting synapses initiate a strong, global inhibition, those on shafts inhibit more restricted dendritic zones, while synapses on spines may mediate a strictly local veto. Thus, FS cell synapses of different sizes and sites provide functionally diverse forms of pyramidal cell inhibition. DOI: http://dx.doi.org/10.7554/eLife.07919.001 PMID:26142457

  4. Is fast fiber innervation responsible for increased acetylcholinesterase activity in reinnervating soleus muscles?

    NASA Technical Reports Server (NTRS)

    Misulis, K. E.; Dettbarn, W. D.

    1985-01-01

    An investigation was conducted as to whether the predominantly slow SOL, which is low in AChE activity, is initially reinnervated by axons that originally innervated fast muscle fibers with high AChE activity, such as those of the EDL. Local denervation of the SOL in the guinea pig was performed because this muscle is composed solely of slow (type I) fibers; thereby virtually eliminating the possibility of homologous muscle fast fiber innervation. The overshoot in this preparation was qualitatively similar to that seen with distal denervation in the guinea pig and local and distal denervation in the rat. Thus, initial fast fiber innvervation is not responsible for the patterns of change in AChE activity seen with reinnervation in the SOL. It is concluded that the neural control of AChe is different in these two muscles and may reflect specific differences in the characteristics of AChE regulation in fast and slow muscle.

  5. Topographic and quantitative evaluation of gentamicin-induced damage to peripheral innervation of mouse cochleae.

    PubMed

    Ruan, Qingwei; Ao, Huafei; He, Jingchun; Chen, Zhengnong; Yu, Zhuowei; Zhang, Ruxin; Wang, Jian; Yin, Shankai

    2014-01-01

    Ototoxicity induced by aminoglycoside antibiotics appears to occur both in hair cells (HCs) and the cochlear nerves that innervate them. Although HC loss can be easily quantified, neuronal lesions are difficult to quantify because two types of afferent dendrites and two types of efferent axons are tangled beneath the hair cells. In the present study, ototoxicity was induced by gentamicin in combination with the diuretic agent furosemide. Neuronal lesions were quantified in cochlear whole-mount preparations combined with microsections across the habenular perforate (HP) openings to achieve a clear picture of the topographic relationship between neuronal damage and HC loss. Multiple immunostaining methods were employed to differentiate the two types of afferent dendrites and two types of efferent axons. The results show that co-administration of gentamicin and furosemide resulted in a typical dynamic pattern of HC loss that spread from the basal turn to the outer hair cells to the apex and inner hair cells, depending on the dose and survival time after drug administration. Lesions of the innervation appeared to occur at two stages. At the early stage (2-4 days), the loss of labeling of the two types of afferent dendrites was more obvious than the loss of labeled efferent axons. At the late stage (2-4 weeks), the loss of labeled efferent axons was more rapid. In the high-dose gentamicin group, the loss of outer HCs was congruent with afferent dendrite loss at the early stage and efferent axon loss at the late stage. In the low-dose gentamicin group, the loss of labeling for cochlear innervation was more severe and widespread. Thus, we hypothesize that the gentamicin-induced damage to cochlear innervation occurs independently of hair cell loss.

  6. Innervation of the cricothyroid muscle by extralaryngeal branches of the recurrent laryngeal nerve

    PubMed Central

    Masuoka, Hiroo; Nakayama, Ayako; Higashiyama, Takuya

    2015-01-01

    Objectives/Hypothesis A major concern in thyroid surgery is possible changes in the patient's voice due to dysfunction of the laryngeal muscles. The classical understanding of the anatomy is that the cricothyroid muscle (CTM) is innervated solely by the external branch of the superior laryngeal nerve (EBSLN), and the endolaryngeal muscles are covered only by the recurrent laryngeal nerve (RLN). Meticulous anatomical studies found communication between these nerves. Recent neurophysiological studies revealed cross‐innervations among these nerve–muscle sets. Here, we report innervation of the CTM by extralaryngeal branches of the RLN. Study Design Clinical observation during thyroid surgery at a hospital center for thyroid diseases. Methods During thyroid cancer surgeries, we encountered four adult Japanese patients who had an extralaryngeal branch of the RLN, the electrical stimulation of which showed contraction of the CTM. The EBSLN and RLN were electrically stimulated. Responses were evaluated by visual observation of contraction of the CTM and palpable laryngeal twitch of the endolaryngeal muscles. Electromyographic studies were also performed in two patients. Results Five of the seven RLNs examined showed contraction of the CTM on stimulation. Four of these five RLNs had an extralaryngeal branch that showed contraction of the CTM on stimulation. Stimulation of the RLN proximal to the branch yielded contraction of the CTM and laryngeal twitch, whereas stimulation of the RLN distal to the branch yielded only laryngeal twitch. Conclusions Extralaryngeal branches of the RLN innervated the CTM in four patients. This phenomenon might influence voice changes following thyroid surgery. Level of Evidence 4. Laryngoscope, 126:1157–1162, 2016 PMID:26509739

  7. GABAergic innervation organizes synaptic and extrasynaptic GABAA receptor clustering in cultured hippocampal neurons.

    PubMed

    Christie, Sean B; Miralles, Celia P; De Blas, Angel L

    2002-02-01

    We have studied the effects of GABAergic innervation on the clustering of GABA(A) receptors (GABA(A)Rs) in cultured hippocampal neurons. In the absence of GABAergic innervation, pyramidal cells form small (0.36 +/- 0.01 micrometer diameter) GABA(A)R clusters at their surface in the dendrites and soma. When receiving GABAergic innervation from glutamic acid decarboxylase-containing interneurons, pyramidal cells form large (1.62 +/- 0.08 micrometer breadth) GABA(A)R clusters at GABAergic synapses. This is accompanied by a disappearance of the small GABA(A)R clusters in the local area surrounding each GABAergic synapse. Although the large synaptic GABA(A)R clusters of any neuron contained all GABA(A)R subunits and isoforms expressed by that neuron, the small clusters not localized at GABAergic synapses showed significant heterogeneity in subunit and isoform composition. Another difference between large GABAergic and small non-GABAergic GABA(A)R clusters was that a significant proportion of the latter was juxtaposed to postsynaptic markers of glutamatergic synapses such as PSD-95 and AMPA receptor GluR1 subunit. The densities of both the glutamate receptor-associated and non-associated small GABA(A)R clusters were decreased in areas surrounding GABAergic synapses. However, no effect on the density or distribution of glutamate receptor clusters was observed. The results suggest that there are local signals generated at GABAergic synapses that induce both assembly of large synaptic GABA(A)R clusters at the synapse and disappearance of the small GABA(A)R clusters in the surrounding area. In the absence of GABAergic innervation, weaker GABA(A)R-clustering signals, generated at glutamatergic synapses, induce the formation of small postsynaptic GABA(A)R clusters that remain juxtaposed to glutamate receptors at glutamatergic synapses.

  8. Expression of Sex Steroid Hormone Receptors in Vagal Motor Neurons Innervating the Trachea and Esophagus in Mouse

    PubMed Central

    Mukudai, Shigeyuki; Ichi Matsuda, Ken; Bando, Hideki; Takanami, Keiko; Nishio, Takeshi; Sugiyama, Yoichiro; Hisa, Yasuo; Kawata, Mitsuhiro

    2016-01-01

    The medullary vagal motor nuclei, the nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMV), innervate the respiratory and gastrointestinal tracts. We conducted immunohistochemical analysis of expression of the androgen receptor (AR) and estrogen receptor α (ERα), in relation to innervation of the trachea and esophagus via vagal motor nuclei in mice. AR and ERα were expressed in the rostral NA and in part of the DMV. Tracing experiments using cholera toxin B subunit demonstrated that neurons of vagal motor nuclei that innervate the trachea and esophagus express AR and ERα. There was no difference in expression of sex steroid hormone receptors between trachea- and esophagus-innervating neurons. These results suggest that sex steroid hormones may act on vagal motor nuclei via their receptors, thereby regulating functions of the trachea and esophagus. PMID:27006520

  9. Impaired chronotropic response to exercise in mice lacking catecholamines in adrenergic cells.

    PubMed

    Bao, Xuping; Liu, Fujun; Gu, Yusu; Lu, Chuanyi M; Ziegler, Michael G

    2008-12-01

    To define the in vivo role of adrenergic catecholamines (CAs), we generated a mouse model whereby tyrosine hydroxylase (TH) was knocked out (KO) in phenylethanolamine N-methyltransferase-expressing cells. These adrenergic specific TH-KO mice were viable and grossly normal. Their resting heart rate and blood pressure, as monitored by telemetry, were unchanged. However, when challenged with treadmill exercise, their chronotropic responses were significantly reduced by 14% compared to wild-type mice. Thus, our data suggest that adrenergic CA is required for normal chronotropic responses to stress, but not required for prenatal and postnatal development or normal cardiovascular function at rest.

  10. Alpha-1-adrenergic receptors: targets for agonist drugs to treat heart failure.

    PubMed

    Jensen, Brian C; O'Connell, Timothy D; Simpson, Paul C

    2011-10-01

    Evidence from cell, animal, and human studies demonstrates that α1-adrenergic receptors mediate adaptive and protective effects in the heart. These effects may be particularly important in chronic heart failure, when catecholamine levels are elevated and β-adrenergic receptors are down-regulated and dysfunctional. This review summarizes these data and proposes that selectively activating α1-adrenergic receptors in the heart might represent a novel and effective way to treat heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."

  11. Synthesis and pharmacological characterization of beta2-adrenergic agonist enantiomers: zilpaterol.

    PubMed

    Kern, Christopher; Meyer, Thorsten; Droux, Serge; Schollmeyer, Dieter; Miculka, Christian

    2009-03-26

    The beta-adrenergic agonist 1 (zilpaterol) is used as production enhancer in cattle. Binding experiments of separated enantiomers on recombinant human beta(2)-adrenergic and mu-opioid receptors and functional studies showed that the (-)-1 enantiomer accounts for essentially all the beta(2)-adrenergic agonist activity and that it exhibits less affinity toward the mu-opioid receptor than (+)-1, which is a mu-opioid receptor antagonist. X-ray crystallography revealed the absolute configuration of (-)-1 to be 6R,7R.

  12. Vasomotor innervation of the skin of the hand: a contribution to the study of human anatomy.

    PubMed Central

    Campero, M; Verdugo, R J; Ochoa, J L

    1993-01-01

    The sympathetic vasomotor innervation of the skin of the human hand was studied in 47 subjects who underwent local anaesthetic block of ulnar, median or radial nerves at elbow or wrist levels. Areas of cutaneous anaesthesia were compared with cutaneous territories of paralytic vasodilatation delineated by infrared telethermography. It was found that: (1) during ulnar nerve block the area of vasodilatation matched the area of anaesthesia in all 15 cases; (2) median nerve block induced paralytic vasodilatation which, in 14 of 15 cases, matched the area of cutaneous anaesthesia in median territory, but also extended to the unanaesthetised lateral part of the dorsum of the hand; (3) no vasodilatation developed during radial nerve block in 17 of 18 cases, whereas areas of sympathetic sudomotor paralysis matched the area of radial sensory loss in all 5 subjects in whom sweating function was studied. It is concluded that: (1) the ulnar nerve supplies vasomotor fibres to its cutaneous sensory territory, no less and no more; (2) the median nerve normally provides supplementary vasomotor innervation to the skin of the radial aspect of the dorsum of the hand; (3) the radial nerve supplies sudomotor innervation for the lateral aspect of the dorsum of the hand, but (4) does not normally contribute vasomotor sympathetic fibres to the skin of the hand. Images Fig. 1 Fig. 2 Fig. 3 PMID:8226291

  13. Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons In Vitro.

    PubMed

    Gunewardene, Niliksha; Crombie, Duncan; Dottori, Mirella; Nayagam, Bryony A

    2016-01-01

    Induced pluripotent stem cells (iPSCs) may serve as an autologous source of replacement neurons in the injured cochlea, if they can be successfully differentiated and reconnected with residual elements in the damaged auditory system. Here, we explored the potential of hiPSC-derived neurons to innervate early postnatal hair cells, using established in vitro assays. We compared two hiPSC lines against a well-characterized hESC line. After ten days' coculture in vitro, hiPSC-derived neural processes contacted inner and outer hair cells in whole cochlear explant cultures. Neural processes from hiPSC-derived neurons also made contact with hair cells in denervated sensory epithelia explants and expressed synapsin at these points of contact. Interestingly, hiPSC-derived neurons cocultured with hair cells at an early stage of differentiation formed synapses with a higher number of hair cells, compared to hiPSC-derived neurons cocultured at a later stage of differentiation. Notable differences in the innervation potentials of the hiPSC-derived neurons were also observed and variations existed between the hiPSC lines in their innervation efficiencies. Collectively, these data illustrate the promise of hiPSCs for auditory neuron replacement and highlight the need to develop methods to mitigate variabilities observed amongst hiPSC lines, in order to achieve reliable clinical improvements for patients.

  14. Innervation of different parts of the predentin and dentin in young human premolars.

    PubMed

    Lilja, J

    1979-01-01

    The innervation of the predentin and inner part of the mineralized dentin was studied at the ultrastructural level in ten premolars. Each tooth was divided into fifteen different parts, each containing odontoblasts, predentin and dentin. It was found that the innervation in the coronal dentin was more compact than in the root dentin. Within the coronal dentin itself, the most densely innervated area was the dentin covering the pulp horns. No nerves were identified more than 100 microns from the pulp-dentinal border. No nervous structures were found in the mineralized dentin of the root. Nervous structures which seemed to have no connection with the odontoblastic processes were frequently observed in the predentin of the root. Signs of degeneration of the nervous structures of the predentin of the root was also a common finding. The observation that the intradentinal nerves were confined to the predentin and the most pulpal part of the dentin supports the theory that surface stimulation on dentin has an indirect effect on the nerves activated by movements in the liquid of the dentinal tubules.

  15. Vasopressin Innervation of the Mouse (Mus musculus) Brain and Spinal Cord

    PubMed Central

    Rood, Benjamin D.; De Vries, Geert J.

    2014-01-01

    The neuropeptide vasopressin (AVP) has been implicated in the regulation of numerous physiological and behavioral processes. Although mice have become an important model for studying this regulation, there is no comprehensive description of AVP distribution in the mouse brain and spinal cord. With C57BL/6 mice, we used immunohistochemistry to corroborate the location of AVP-containing cells and to define the location of AVP-containing fibers throughout the mouse central nervous system. We describe AVP-immunoreactive (-ir) fibers in midbrain, hindbrain, and spinal cord areas, which have not previously been reported in mice, including innervation of the ventral tegmental area, dorsal and median raphe, lateral and medial parabrachial, solitary, ventrolateral periaqueductal gray, and interfascicular nuclei. We also provide a detailed description of AVP-ir innervation in heterogenous regions such as the amygdala, bed nucleus of the stria terminalis, and ventral forebrain. In general, our results suggest that, compared with other species, the mouse has a particularly robust and widespread distribution of AVP-ir fibers, which, as in other species, originates from a number of different cell groups in the telencephalon and diencephalon. Our data also highlight the robust nature of AVP innervation in specific regulatory nuclei, such as the ventral tegmental area and dorsal raphe nucleus among others, that are implicated in the regulation of many behaviors. PMID:21456024

  16. Immunohistochemical characterization of the innervation of human colonic mesenteric and submucosal blood vessels.

    PubMed

    De Fontgalland, D; Wattchow, D A; Costa, M; Brookes, S J H

    2008-11-01

    The aim was to characterize quantitatively the classes of nerves innervating human mesenteric and submucosal vessels. Specimens of uninvolved normal human mesentery and colon were obtained with prior informed consent from patients undergoing elective surgery for bowel carcinoma. Mesenteric and submucosal vessels were processed for double-labelling immunohistochemical localization of tyrosine hydroxylase (TH), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), somatostatin (SOM), vesicular acetylcholine transporter (VAChT) and enkephelin (ENK), each compared to the pan-neuronal marker protein gene product 9.5. Branching patterns of individual nerve fibres were investigated using in vitro anterograde tracing. Sympathetic neurons containing TH and NPY were the largest population, accounting for more than 85% on all vessels. Extrinsic sensory axons, containing SP but not CGRP comprised a second major population on mesenteric vessels: these axons generally lacked TH, NPY and VAChT. On submucosal, but not mesenteric vessels, an additional population of SOM-immunoreactive fibres was present: these axons did not co-localize with TH. Major similarities and differences with enteric vessel innervation in laboratory animals were identified. Sympathetic neurons comprise the largest input. Extrinsic sensory neurons in humans largely lack CGRP but contain SP. Submucosal vessels receive an additional source of innervation not present in mesenteric vessels, which contain SOM, but are rarely cholinergic. These results have significant implications for understanding the control of blood flow to the human gut.

  17. Distribution and innervation of putative arterial chemoreceptors in the bullfrog (Rana catesbeiana).

    PubMed

    Reyes, Catalina; Fong, Angelina Y; Brink, Dee L; Milsom, William K

    2014-11-01

    Peripheral arterial chemoreceptors have been located previously in the carotid labyrinth, the aortic arch, and the pulmocutaneous artery of frogs. In the present study we used cholera toxin B neuronal tract tracing and immunohistochemical markers for cholinergic cells (vesicular acetylcholine transporter [VAChT]), tyrosine hydroxylase (TH), and serotonin (5HT) to identify putative O2-sensing cells in Rana catesbeiana. We found potential O2-sensing cells in all three vascular areas innervated by branches of the vagus nerve, whereas only cells in the carotid labyrinth were innervated by the glossopharyngeal nerve. Cells containing either 5HT or TH were found in all three sites, whereas cells containing both neurotransmitters were found only in the carotid labyrinth. Cell bodies containing VAChT were not found at any site. The morphology and innervation of putative O2-sensing cells were similar to those of glomus cells found in other vertebrates. The presence of 5HT- and TH-immunoreactive cells in the aorta, pulmocutaneous artery, and carotid labyrinth appears to reflect a phylogenetic transition between the major neurotransmitter seen in the putative O2-sensing cells of fish (5HT) and those found in the glomus cells of mammals (acetylcholine, adenosine, and catecholamines). PMID:24954002

  18. Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons In Vitro

    PubMed Central

    Gunewardene, Niliksha; Crombie, Duncan; Dottori, Mirella; Nayagam, Bryony A.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) may serve as an autologous source of replacement neurons in the injured cochlea, if they can be successfully differentiated and reconnected with residual elements in the damaged auditory system. Here, we explored the potential of hiPSC-derived neurons to innervate early postnatal hair cells, using established in vitro assays. We compared two hiPSC lines against a well-characterized hESC line. After ten days' coculture in vitro, hiPSC-derived neural processes contacted inner and outer hair cells in whole cochlear explant cultures. Neural processes from hiPSC-derived neurons also made contact with hair cells in denervated sensory epithelia explants and expressed synapsin at these points of contact. Interestingly, hiPSC-derived neurons cocultured with hair cells at an early stage of differentiation formed synapses with a higher number of hair cells, compared to hiPSC-derived neurons cocultured at a later stage of differentiation. Notable differences in the innervation potentials of the hiPSC-derived neurons were also observed and variations existed between the hiPSC lines in their innervation efficiencies. Collectively, these data illustrate the promise of hiPSCs for auditory neuron replacement and highlight the need to develop methods to mitigate variabilities observed amongst hiPSC lines, in order to achieve reliable clinical improvements for patients. PMID:26966437

  19. Distribution and innervation of putative arterial chemoreceptors in the bullfrog (Rana catesbeiana).

    PubMed

    Reyes, Catalina; Fong, Angelina Y; Brink, Dee L; Milsom, William K

    2014-11-01

    Peripheral arterial chemoreceptors have been located previously in the carotid labyrinth, the aortic arch, and the pulmocutaneous artery of frogs. In the present study we used cholera toxin B neuronal tract tracing and immunohistochemical markers for cholinergic cells (vesicular acetylcholine transporter [VAChT]), tyrosine hydroxylase (TH), and serotonin (5HT) to identify putative O2-sensing cells in Rana catesbeiana. We found potential O2-sensing cells in all three vascular areas innervated by branches of the vagus nerve, whereas only cells in the carotid labyrinth were innervated by the glossopharyngeal nerve. Cells containing either 5HT or TH were found in all three sites, whereas cells containing both neurotransmitters were found only in the carotid labyrinth. Cell bodies containing VAChT were not found at any site. The morphology and innervation of putative O2-sensing cells were similar to those of glomus cells found in other vertebrates. The presence of 5HT- and TH-immunoreactive cells in the aorta, pulmocutaneous artery, and carotid labyrinth appears to reflect a phylogenetic transition between the major neurotransmitter seen in the putative O2-sensing cells of fish (5HT) and those found in the glomus cells of mammals (acetylcholine, adenosine, and catecholamines).

  20. Reduced innervation in the human pharynx in patients with obstructive sleep apnea.

    PubMed

    de Carlos, Félix; Cobo, Juan; Macías, Emilio; Feito, Jorge; González, Mónica; Cobo, Teresa; Fernández-Mondragón, María P; García-Suárez, Olivia; Vega, José A

    2015-07-01

    Obstructive sleep apnea is a disease characterized by repetitive breathing during sleep that lead to reduced oxygen saturation and sleep disturbance among other symptoms. Obstructive sleep apnea is caused by blockade of the upper respiratory airway, although the pathogenic mechanism underlying this occlusion remains unknown. In these studies we explored the hypothesis that alterations in the innervation, especially mechanosensory innervation, of the pharynx may contribute to obstructive sleep apnea. We tested this hypothesis by analyzing the innervation of the human pharynx in normal individuals and in subjects clinically diagnosed with obstructive sleep apnea. Using immunohistochemistry for axon and Schwann cells, as well as for two putative mechanoproteins (ASIC2 and TRPV4), we observed a significant reduction in the density of nerve fibers in the submucosa of patients with obstructive sleep apnea as well as morphological abnormalities in mechanosensory corpuscles. Importantly, while ASIC2 and TRPV4 expression was regularly found in the axons of mechanosensory corpuscles distributed throughout the muscular layer in the control subjects, it was absent in patients with obstructive sleep apnea. These findings support that neurological alterations are important contributors to the pathogenesis of obstructive sleep apnea.

  1. Effects of the re-innervation of organotypic skin explants on the epidermis.

    PubMed

    Lebonvallet, Nicolas; Boulais, Nicholas; Le Gall, Christelle; Pereira, Ulysse; Gauché, Dominique; Gobin, Eric; Pers, Jacques-Olivier; Jeanmaire, Christine; Danoux, Louis; Pauly, Gilles; Misery, Laurent

    2012-02-01

    The nervous system takes part in skin homeostasis and interacts with skin cells. In in vitro organotypic skin models, these interactions are lost owing to the absence of nerve endings. We have developed an in vitro organotypic skin model based on a re-innervated human skin explant using primary sensory neurons from the dorsal root ganglia of rats. After 10 days of co-culture between skin explant and neurons, a dense network of nerve fibres was observed. The epidermis and dermis presented nerve fibres associated with cellular body from sensory neurons introduced in the co-culture. Epidermal thickness, cell density and quality of re-innervated skin explant were all higher when skin explants were re-innervated by sensory neurons at 10 days of culture. Proliferation of epidermal cell was not modified, but the apoptosis was significantly diminished. Hence, this innovative model of co-cultured skin explants and neurons allows better epidermal integrity and could be useful for studies concerning interactions between the skin and its peripheral nervous system.

  2. Symptoms of notalgia paresthetica may be explained by increased dermal innervation.

    PubMed

    Springall, D R; Karanth, S S; Kirkham, N; Darley, C R; Polak, J M

    1991-09-01

    Notalgia paresthetica is a sensory neuropathy characterized by infrascapular pruritus, burning pain, hyperalgesia, or tenderness. To assess whether the symptoms may be caused by alterations in the cutaneous innervation, skin from the affected area of patients (n = 5) was compared with controls (n = 10) comprising the contralateral unaffected area from the same patients and site-matched biopsies of normals, using immunohistochemistry. Frozen sections were immunostained with antisera to the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, and neuropeptide with tyrosine, and to the general neural marker PGP 9.5 and the glial marker S-100 to show the overall innervation and glial cells, respectively. No discernible change in the distribution of neuropeptide-immunoreactive axons was found, but all of the specimens from the affected areas had a significant increase in the number of intradermal PGP 9.5-immunoreactive nerve fibers compared with unaffected areas from the same patients and normal controls. Epidermal dendritic cells immunoreactive for S-100, possibly Langerhans cells, were substantially increased. It is concluded that there is an increase in the sensory epidermal innervation in the affected skin areas in notalgia paresthetica, which could contribute to the symptoms, and that neural immunohistochemistry of skin biopsies could be helpful in the diagnosis of the disease. PMID:1831466

  3. Re-innervation of fast and slow twitch muscle following nerve crush at birth.

    PubMed

    McArdle, J J; Sansone, F M

    1977-10-01

    1. The frequency of miniature end-plate potentials (m.e.p.p.s) was significantly greater in the fast twitch extensor digitorum longus muscle (extensor) than in the slow twitch soleus, even though end-plate surface area was greater for fibres in the latter muscle. 2. Crush of the sciatic nerve at birth did not prevent the appearance of this difference in m.e.p.p. frequency. However, the frequency of the potentials in the re-innervated muscles was less than normal, even though the regenerated neuromuscular junction was qualitatively normal in morphology. 3. Though the re-innevated muscles were differentiated with respect to twitch time course, the extensor muscle was more responsive than normal to the contracture-inducing action of caffeine. 4. The Z line of the re-innervated extensor muscle was similar to that of the normal soleus in thickness. 5. Resting potential, passive electrical properties and action potential generating mechanism of the sarcolemma were normal. 6. Since the re-innervated muscles lacked muscle spindles, a role of sensory feed-back in the function of the neuromuscular junction as well as the neutrotrophic regulation of muscle is discussed.

  4. What Is Cardiac Rehabilitation?

    MedlinePlus

    ANSWERS by heart Treatments + Tests What Is Cardiac Rehabilitation? A cardiac rehabilitation (rehab) program takes place in a hospital or ... special help in making lifestyle changes. During your rehabilitation program you’ll… • Have a medical evaluation to ...

  5. Interactive effect of beta-adrenergic stimulation and mechanical stretch on low-frequency oscillations of ventricular action potential duration in humans.

    PubMed

    Pueyo, Esther; Orini, Michele; Rodríguez, José F; Taggart, Peter

    2016-08-01

    Ventricular repolarization dynamics are crucial to arrhythmogenesis. Low-frequency oscillations of repolarization have recently been reported in humans and the magnitude of these oscillations proposed to be a strong predictor of sudden cardiac death. Available evidence suggests a role of the sympathetic nervous system. We have used biophysically detailed models integrating ventricular electrophysiology, calcium dynamics, mechanics and β-adrenergic signaling to investigate the underlying mechanisms. The main results were: (1) Phasic beta-adrenergic stimulation (β-AS) at a Mayer wave frequency between 0.03 and 0.15Hz resulted in a gradual decrease of action potential (AP) duration (APD) with concomitant small APD oscillations. (2) After 3-4minutes of phasic β-AS, the mean APD adapted and oscillations of APD became apparent. (3) Phasic changes in haemodynamic loading at the same Mayer wave frequency (a known accompaniment of enhanced sympathetic nerve activity), simulated as variations in the sarcomere length, also induced APD oscillations. (4) The effect of phasic β-AS and haemodynamic loading on the magnitude of APD oscillations was synergistic. (5) The presence of calcium overload and reduced repolarization reserve further enhanced the magnitude of APD oscillations and was accompanied by afterdepolarizations and/or spontaneous APs. In conclusion, low-frequency oscillations of repolarization recently reported in humans were induced by phasic β-AS and phasic mechanical loading, which acted synergistically, and were greatly enhanced by disease-associated conditions, leading to arrhythmogenic events. PMID:27178727

  6. β1-adrenergic receptor antagonists signal via PDE4 translocation.

    PubMed

    Richter, Wito; Mika, Delphine; Blanchard, Elise; Day, Peter; Conti, Marco

    2013-03-01

    It is generally assumed that antagonists of Gs-coupled receptors do not activate cAMP signalling, because they do not stimulate cAMP production via Gs-protein/adenylyl cyclase activation. Here, we report a new signalling pathway whereby antagonists of β1-adrenergic receptors (β1ARs) increase cAMP levels locally without stimulating cAMP production directly. Binding of antagonists causes dissociation of a preformed complex between β1ARs and Type-4 cyclic nucleotide phosphodiesterases (PDE4s). This reduces the local concentration of cAMP-hydrolytic activity, thereby increasing submembrane cAMP and PKA activity. Our study identifies receptor/PDE4 complex dissociation as a novel mechanism of antagonist action that contributes to the pharmacological properties of β1AR antagonists and might be shared by other receptor subtypes.

  7. Agonist-Directed Desensitization of the β2-Adrenergic Receptor

    PubMed Central

    Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M.; Wu, Qi; Fang, Ye

    2011-01-01

    The β2-adrenergic receptor (β2AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β2AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β2AR desensitization at the whole cell level. PMID:21541288

  8. Mild Hyperbaric Oxygen Improves Decreased Oxidative Capacity of Spinal Motoneurons Innervating the Soleus Muscle of Rats with Type 2 Diabetes.

    PubMed

    Takemura, Ai; Ishihara, Akihiko

    2016-09-01

    Rats with type 2 diabetes exhibit decreased oxidative capacity, such as reduced oxidative enzyme activity, low-intensity staining for oxidative enzymes in fibers, and no high-oxidative type IIA fibers, in the skeletal muscle, especially in the soleus muscle. In contrast, there are no data available concerning the oxidative capacity of spinal motoneurons innervating skeletal muscle of rats with type 2 diabetes. This study examined the oxidative capacity of motoneurons innervating the soleus muscle of non-obese rats with type 2 diabetes. In addition, this study examined the effects of mild hyperbaric oxygen at 1.25 atmospheres absolute with 36 % oxygen for 10 weeks on the oxidative capacity of motoneurons innervating the soleus muscle because mild hyperbaric oxygen improves the decreased oxidative capacity of the soleus muscle in non-obese rats with type 2 diabetes. Spinal motoneurons innervating the soleus muscle were identified using nuclear yellow, a retrograde fluorescent neuronal tracer. Thereafter, the cell body sizes and succinate dehydrogenase activity of identified motoneurons were analyzed. Decreased succinate dehydrogenase activity of small-sized alpha motoneurons innervating the soleus muscle was observed in rats with type 2 diabetes. The decreased succinate dehydrogenase activity of these motoneurons was improved by mild hyperbaric oxygen. Therefore, we concluded that rats with type 2 diabetes have decreased oxidative capacity in motoneurons innervating the soleus muscle and this decreased oxidative capacity is improved by mild hyperbaric oxygen.

  9. Vagal non-adrenergic inhibition of guinea-pig stomach

    PubMed Central

    Beani, L.; Bianchi, Clementina; Crema, A.

    1971-01-01

    1. The effect of vagal and sympathetic stimulation on the mechanical and electrical activity (intracellular recording) of the body of the guinea-pig stomach was investigated in vitro. 2. Following atropine, 1 × 10-6-1 × 10-7 g/ml., vagal responses were reversed from excitatory to inhibitory. 3. Sympathetic blockade, produced by α- and β-receptor antagonists and adrenergic neurone-blocking agents, reduced or abolished sympathetic, but not vagal inhibition. 4. Hexamethonium (5 × 10-5 g/ml.) reduced vagal relaxation to 11-30% according to the stimulation rate. The residual response was maintained in the presence of 5-hydroxytryptamine tachyphylaxis. 5. Many muscle cells were observed to be under the influence of both vagus and sympathetic nerves: the effect of sympathetic stimulation was always inhibitory in nature, but high stimulation rates were required. The effect of vagal stimulation was both excitatory and inhibitory even in the absence of atropine: low stimulation rates gave rise either to E.J.P.s (excitatory junctional potentials), often followed by spikes, or to I.J.P.s (inhibitory junctional potentials). 6. In some spontaneously firing cells the interruption of electrical activity produced by vagal stimulation at 2/sec and sympathetic stimulation at 20/sec was recorded for a long enough time to check the effect of guanethedine (5 × 10-6 g/ml.): the drug selectively blocked sympathetic inhibition. 7. The significance of the inhibitory non-adrenergic transmitter, released by the intramural neurones activated by preganglionic vagal fibres, is discussed. PMID:4398576

  10. Leutropin/beta-adrenergic receptor chimeras bind choriogonadotropin and adrenergic ligands but are not expressed at the cell surface.

    PubMed

    Moyle, W R; Bernard, M P; Myers, R V; Marko, O M; Strader, C D

    1991-06-15

    In some G-protein-coupled receptors (e.g. beta-adrenergic receptor (beta 2 AR)), the ligand-binding pocket is contained within the hydrophobic transmembrane domain. In others (e.g. luteinizing hormone receptor (LHR)), the relative roles of the extracellular N-terminal domain and the transmembrane region in hormone binding are unknown. To study the roles of these domains, we prepared vectors encoding the rat LHR N-terminal domain alone (L- -), the LHR N-terminal domain fused to the transmembrane and C-terminal domains of the vesicular stomatitis virus-G protein (LVV), the LHR N-terminal domain fused to the transmembrane and C-terminal domains of the hamster beta 2 AR (LAA), and the beta 2 AR N-terminal domain fused to the transmembrane and C-terminal domains of the rat LHR (ALL). Membrane preparations obtained from COS-7 cells expressing the beta 2 AR or LAA bound the beta-adrenergic antagonist 125I-cyanopindolol with equal affinity, confirming the observation that the beta 2 AR transmembrane domain forms the hormone-binding site. Membranes from COS-7 cells transfected with LHR bound 125I-human choriomic gonadotropin (hCG). However, membranes from LAA-, L(- -)-, and LVV-transfected cells had low capacity to bind 125I-hCG unless they were solubilized with Triton X-100. The affinity of the detergent-solubilized receptors for 125I-hCG was similar to that of the LHR. We were unable to detect binding of 125I-hCG to ALL in the presence or absence of detergent. These observations suggest that, whereas the transmembrane region of the beta 2 AR is sufficient to bind adrenergic ligands, the N-terminal region of the LHR is required for binding of hCG. Although the N terminus of the LHR is sufficient to bind hCG, both the N terminus and the transmembrane domains of the LHR are required for receptor expression on the cell surface.

  11. Cholinergic Signaling Exerts Protective Effects in Models of Sympathetic Hyperactivity-Induced Cardiac Dysfunction

    PubMed Central

    Gavioli, Mariana; Lara, Aline; Almeida, Pedro W. M.; Lima, Augusto Martins; Damasceno, Denis D.; Rocha-Resende, Cibele; Ladeira, Marina; Resende, Rodrigo R.; Martinelli, Patricia M.; Melo, Marcos Barrouin; Brum, Patricia C.; Fontes, Marco Antonio Peliky; Souza Santos, Robson A.; Prado, Marco A. M.; Guatimosim, Silvia

    2014-01-01

    Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i) the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO), and ii) the α2A/α2C-adrenergic receptor knockout (KO) mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease. PMID:24992197

  12. The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition.

    PubMed

    Luongo, Timothy S; Lambert, Jonathan P; Yuan, Ancai; Zhang, Xueqian; Gross, Polina; Song, Jianliang; Shanmughapriya, Santhanam; Gao, Erhe; Jain, Mohit; Houser, Steven R; Koch, Walter J; Cheung, Joseph Y; Madesh, Muniswamy; Elrod, John W

    2015-07-01

    Cardiac contractility is mediated by a variable flux in intracellular calcium (Ca(2+)), thought to be integrated into mitochondria via the mitochondrial calcium uniporter (MCU) channel to match energetic demand. Here, we examine a conditional, cardiomyocyte-specific, mutant mouse lacking Mcu, the pore-forming subunit of the MCU channel, in adulthood. Mcu(-/-) mice display no overt baseline phenotype and are protected against mCa(2+) overload in an in vivo myocardial ischemia-reperfusion injury model by preventing the activation of the mitochondrial permeability transition pore, decreasing infarct size, and preserving cardiac function. In addition, we find that Mcu(-/-) mice lack contractile responsiveness to acute β-adrenergic receptor stimulation and in parallel are unable to activate mitochondrial dehydrogenases and display reduced bioenergetic reserve capacity. These results support the hypothesis that MCU may be dispensable for homeostatic cardiac function but required to modulate Ca(2+)-dependent metabolism during acute stress.

  13. The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition.

    PubMed

    Luongo, Timothy S; Lambert, Jonathan P; Yuan, Ancai; Zhang, Xueqian; Gross, Polina; Song, Jianliang; Shanmughapriya, Santhanam; Gao, Erhe; Jain, Mohit; Houser, Steven R; Koch, Walter J; Cheung, Joseph Y; Madesh, Muniswamy; Elrod, John W

    2015-07-01

    Cardiac contractility is mediated by a variable flux in intracellular calcium (Ca(2+)), thought to be integrated into mitochondria via the mitochondrial calcium uniporter (MCU) channel to match energetic demand. Here, we examine a conditional, cardiomyocyte-specific, mutant mouse lacking Mcu, the pore-forming subunit of the MCU channel, in adulthood. Mcu(-/-) mice display no overt baseline phenotype and are protected against mCa(2+) overload in an in vivo myocardial ischemia-reperfusion injury model by preventing the activation of the mitochondrial permeability transition pore, decreasing infarct size, and preserving cardiac function. In addition, we find that Mcu(-/-) mice lack contractile responsiveness to acute β-adrenergic receptor stimulation and in parallel are unable to activate mitochondrial dehydrogenases and display reduced bioenergetic reserve capacity. These results support the hypothesis that MCU may be dispensable for homeostatic cardiac function but required to modulate Ca(2+)-dependent metabolism during acute stress. PMID:26119731

  14. Impact of L-NAME on the cardiopulmonary reflex in cardiac hypertrophy.

    PubMed

    Buckley, Maria M; Johns, Edward J

    2011-11-01

    There is evidence that in cardiac failure, there is defective baroreceptor reflex control of sympathetic nerve activity. Often, cardiac failure is preceded by a state of cardiac hypertrophy in which there may be enhanced performance of the heart. This study investigated whether in two different models of cardiac hypertrophy, there was an increased contribution of nitric oxide (NO) to the low-pressure baroreceptor regulation of renal sympathetic nerve activity (RSNA) and nerve-dependent excretory function. Administration of a volume load, 0.25* body wt/min saline for 30 min, in normal rats decreased RSNA by 40* and increased urine flow by some 9-fold. Following nitro-L-arginine methyl ester (L-NAME) administration, 10 μg·kg(-1)·min(-1) for 60 min, which had no effect on blood pressure, heart rate, or RSNA, the volume load-induced renal sympathoinhibitory and excretory responses were markedly enhanced. In cardiac hypertrophy states induced by 2 wk of isoprenaline/caffeine or 1 wk thyroxine administration, the volume challenge failed to suppress RSNA, and there were blunted increases in urine flow in the innervated kidneys, but following L-NAME infusion, the volume load decreased RSNA by 30-40* and increased urine flow by some 20-fold in the innervated kidneys, roughly to the same extent as observed in normal rats. These findings suggest that the blunted renal sympathoinhibition and nerve-dependent diuresis to the volume load in cardiac hypertrophy are related to a heightened production or activity of NO within either the afferent or central arms of the reflex. PMID:21865544

  15. Age-dependent changes in expression of alpha/sub 1/-adrenergic receptors in rat myocardium

    SciTech Connect

    Schaffer, W.; Williams, R.S.

    1986-07-16

    The expression of alpha/sub 1/-adrenergic receptors within ventricular myocardium of rats ranging in age from 21 days of fetal life to 24 months after birth was measured from (/sup 125/I) 2-(..beta.. hydroxy phenyl) ethylaminomethyl tetralone binding isotherms. No difference was observed in binding affinity between any of the age groups studied. The number of alpha/sub 1/-adrenergic receptors was found to be 60-120% higher in membranes from fetal or immature rats up to 25 days of age when compared with adult animals. The increased expression of alpha/sub 1/-adrenergic receptors in the developing heart relative to that observed in adult heart is consistent with the hypothesis that alpha/sub 1/-adrenergic receptor stimulation may modulate protein synthesis and growth in mammalian myocardium.

  16. Alpha 2 adrenergic receptors in hyperplastic human prostate: identification and characterization using (/sup 3/H) rauwolscine

    SciTech Connect

    Shapiro, E.; Lepor, H.

    1986-05-01

    (/sup 3/H)Rauwolscine ((/sup 3/H)Ra), a selective ligand for the alpha 2 adrenergic receptor, was used to identify and characterize alpha 2 adrenergic receptors in prostate glands of men with benign prostatic hyperplasia. Specific binding of (/sup 3/H)Ra to prostatic tissue homogenates was rapid and readily reversible by addition of excess unlabelled phentolamine. Scatchard analysis of saturation experiments demonstrates a single, saturable class of high affinity binding sites (Bmax = 0.31 +/- 0.04 fmol./microgram. DNA, Kd = 0.9 +/- 0.11 nM.). The relative potency of alpha adrenergic drugs (clonidine, alpha-methylnorepinephrine and prazosin) in competing for (/sup 3/H)Ra binding sites was consistent with the order predicted for an alpha 2 subtype. The role of alpha 2 adrenergic receptors in normal prostatic function and in men with bladder outlet obstruction secondary to BPH requires further investigation.

  17. Dissociation between renin and arterial pressure responses to beta-adrenergic blockade in human essential hypertension.

    PubMed

    Bravo, E L; Tarazi, R C; Dustan, H P; Lewis, J W

    1975-06-01

    Studies were carried out in 69 patients with essential hypertension to examine the relationship between changes in plasma renin activity (PRA) and arterial pressure (BP) in response to a beta-adrenergic blocking agent, propranolol. PRA had no consistent relationship with BP during treatment, either in patients receiving propranolol alone (r = 0.12) or in those receiving a combination of diuretics and propranolol (r = 0.18). Furthermore, long-term beta-adrenergic blockade failed to inhibit increases of PRA induced by diuretics or rapid sodium depletion. These results indicate that (1) beta-adrenergic blockade can reduce BP by mechanisms other than PRA suppression; and (2) the beta-adrenergic nervous system is important, but not essential, for renin release. PMID:236841

  18. Dihydrotestosterone decreases beta-adrenergic receptor binding in the fetal rabbit lung.

    PubMed

    Moawad, A H; River, L P; River, J M

    1988-07-01

    Tritium-labeled dihydroalprenolol was used to quantify the beta-adrenergic receptor sites in day 30 fetal rabbit lung tissue. Each of the fetuses of New Zealand White rabbits on day 28 of gestation was injected with dihydrotestosterone (2.0 micrograms) in one horn of the uterus and 10% ethanol in normal saline (the solvent) in the contralateral one. The animals were sacrificed 48 hours later and the fetal lung tissue was assayed. Dihydrotestosterone decreased the beta-adrenergic receptor site number in the treatment group compared with the control group (86 versus 111 fmol/mg protein, p less than 0.05 by paired t-test). In the presence of dihydrotestosterone, beta-adrenergic receptor binding is inhibited in the preterm fetal rabbit. This effect may be implicated in the beta-adrenergic mediation of phospholipid synthesis and/or release by fetal alveolar cells.

  19. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo.

    PubMed

    Chang, Audrey N; Battiprolu, Pavan K; Cowley, Patrick M; Chen, Guohua; Gerard, Robert D; Pinto, Jose R; Hill, Joseph A; Baker, Anthony J; Kamm, Kristine E; Stull, James T

    2015-04-24

    In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.

  20. Evidence for increased cardiac compliance during exposure to simulated microgravity

    NASA Technical Reports Server (NTRS)

    Koenig, S. C.; Convertino, V. A.; Fanton, J. W.; Reister, C. A.; Gaffney, F. A.; Ludwig, D. A.; Krotov, V. P.; Trambovetsky, E. V.; Latham, R. D.

    1998-01-01

    We measured hemodynamic responses during 4 days of head-down tilt (HDT) and during graded lower body negative pressure (LBNP) in invasively instrumented rhesus monkeys to test the hypotheses that exposure to simulated microgravity increases cardiac compliance and that decreased stroke volume, cardiac output, and orthostatic tolerance are associated with reduced left ventricular peak dP/dt. Six monkeys underwent two 4-day (96 h) experimental conditions separated by 9 days of ambulatory activities in a crossover counterbalance design: 1) continuous exposure to 10 degrees HDT and 2) approximately 12-14 h per day of 80 degrees head-up tilt and 10-12 h supine (control condition). Each animal underwent measurements of central venous pressure (CVP), left ventricular and aortic pressures, stroke volume, esophageal pressure (EsP), plasma volume, alpha1- and beta1-adrenergic responsiveness, and tolerance to LBNP. HDT induced a hypovolemic and hypoadrenergic state with reduced LBNP tolerance compared with the control condition. Decreased LBNP tolerance with HDT was associated with reduced stroke volume, cardiac output, and peak dP/dt. Compared with the control condition, a 34% reduction in CVP (P = 0.010) and no change in left ventricular end-diastolic area during HDT was associated with increased ventricular compliance (P = 0.0053). Increased cardiac compliance could not be explained by reduced intrathoracic pressure since EsP was unaltered by HDT. Our data provide the first direct evidence that increased cardiac compliance was associated with headward fluid shifts similar to those induced by exposure to spaceflight and that reduced orthostatic tolerance was associated with lower cardiac contractility.

  1. Competitive and non-competitive re-innervation of mammalian sympathetic neurones by native and foreign fibres.

    PubMed Central

    Purves, D

    1976-01-01

    The ability of native (sympathetic preganglionic) and foreign (vagal) nerve fibres to re-innervate neurones of the guinea-pig superior cervical ganglion, either alone or in competition with each other, has been studied by means of intracellular recording and electron microscopy. 1. Native fibres make synaptic contacts with nearly all ganglion cells within one month of cervical trunk section; within 6 months the degree of innervation, judged by measurement of excitatory post-synaptic potential (e.p.s.p.) amplitude and electron microscopical synapse counts, approaches normal. However, even after 15 months innervation was weaker than in normal control ganglia. 2. Vagal fibres are less successful during re-innervation. Although a similar number of foreign fibres grown into denervated ganglia and make contact with nearly all ganglion cells within a month, after 6-12 months e.p.s.p. amplitudes in response to foreign nerve stimulation remain relatively small, and counts of synapses are only about 60% as great as in ganglia re-innervated with the native nerve. 3. When both native and foreign fibres are allowed to re-innervate ganglion cells simultaneously, about half the neurones in the ganglion receive synapses from both sources after 1 month. The proportion of dually invervated cells remains roughly constant for at least 14 months. Neither set of preganglionic fibres dominates or displaces the other, although neurones generally are re-innervated more effectively by native than foreign fibres, as is true during non-competitive re-innervation. 4. Thus during re-innervation of mammalian sympathetic neurones native fibres are preferred to foreign ones only in the sense that roughly the same number of native fibres form many more synapses on ganglion cells than do vagal axons. A foreign synapse, once formed, is as stable as a native one, and shows no tendency to be replaced by native terminals. These findings are discussed in relation to other evidence which has suggested

  2. Cardiac ion channels

    PubMed Central

    Priest, Birgit T; McDermott, Jeff S

    2015-01-01

    Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype. PMID:26556552

  3. Beta-Adrenergic Blockade Therapy for Autonomic Dysfunction is Less Effective for Elderly Patients with Heart Failure and Reduced Left Ventricular Ejection Fraction

    PubMed Central

    Shimamoto, Ken; Kawana, Masatoshi

    2015-01-01

    OBJECTIVE Heart rate variability (HRV) has been reported to be an independent predictor of all-cause and sudden cardiac death in patients with heart failure. In the aging heart, however, both autonomic and cardiac functions appear to be altered. We assessed the relationship between aging and responsiveness of HRV and ventricular remodeling to beta-adrenergic blockade therapy in patients with heart failure and reduced ejection fraction (HFREF). METHODS Twenty-eight clinically stable patients with chronic heart failure, sinus rhythm, and left ventricular ejection fraction <50% as confirmed by echocardiography were included. At baseline and after carvedilol treatment, 24-hour ambulatory Holter monitor recording was used to analyze HRV indices by the maximum entropy method. Changes in these parameters were compared among three age groups. RESULTS HR decreased in all groups after carvedilol treatment, but was still highest in the youngest group despite the same treatment doses. Time and frequency domain variables improved. The response of time domain variables (the standard deviation of all normal sinus to normal sinus [NN] intervals and the standard deviation of the averages of NN intervals in all 5-minute or 30-minute segments) to carvedilol therapy significantly decreased with increasing age. Ventricular reverse remodeling induced by carvedilol therapy significantly decreased with increasing age. Increases in time domain variables and a low-frequency domain moderately correlated with left ventricular reverse remodeling. CONCLUSION Beta-adrenergic blockade therapy improved HRV variables and ventricular remodeling in HFREF patients; however, the response tended to be milder in the elderly. HRV improvement was associated with ventricular reverse remodeling. PMID:26483614

  4. Cardiac gated ventilation

    SciTech Connect

    Hanson, C.W. III; Hoffman, E.A.

    1995-12-31

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart.

  5. Cardiac gated ventilation

    NASA Astrophysics Data System (ADS)

    Hanson, C. William, III; Hoffman, Eric A.

    1995-05-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. We evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50msec scan aperture. Multislice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. We observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a nonfailing model of the heart.

  6. Ablation of cardiac myosin–binding protein-C accelerates contractile kinetics in engineered cardiac tissue

    PubMed Central

    de Lange, Willem J.; Grimes, Adrian C.; Hegge, Laura F.

    2013-01-01

    Hypertrophic cardiomyopathy (HCM) caused by mutations in cardiac myosin–binding protein-C (cMyBP-C) is a heterogenous disease in which the phenotypic presentation is influenced by genetic, environmental, and developmental factors. Though mouse models have been used extensively to study the contractile effects of cMyBP-C ablation, early postnatal hypertrophic and dilatory remodeling may overshadow primary contractile defects. The use of a murine engineered cardiac tissue (mECT) model of cMyBP-C ablation in the present study permits delineation of the primary contractile kinetic abnormalities in an intact tissue model under mechanical loading conditions in the absence of confounding remodeling events. We generated mechanically integrated mECT using isolated postnatal day 1 mouse cardiac cells from both wild-type (WT) and cMyBP-C–null hearts. After culturing for 1 wk to establish coordinated spontaneous contraction, we measured twitch force and Ca2+ transients at 37°C during pacing at 6 and 9 Hz, with and without dobutamine. Compared with WT, the cMyBP-C–null mECT demonstrated faster late contraction kinetics and significantly faster early relaxation kinetics with no difference in Ca2+ transient kinetics. Strikingly, the ability of cMyBP-C–null mECT to increase contractile kinetics in response to adrenergic stimulation and increased pacing frequency were severely impaired. We conclude that cMyBP-C ablation results in constitutively accelerated contractile kinetics with preserved peak force with minimal contractile kinetic reserve. These functional abnormalities precede the development of the hypertrophic phenotype and do not result from alterations in Ca2+ transient kinetics, suggesting that alterations in contractile velocity may serve as the primary functional trigger for the development of hypertrophy in this model of HCM. Our findings strongly support a mechanism in which cMyBP-C functions as a physiological brake on contraction by positioning myosin

  7. Defective adrenergic responses in patients with arsenic-induced peripheral vascular disease.

    PubMed

    Lee, Chih-Hung; Chang, Huoy-Rou; Chen, Jau-Shiuh; Chen, Gwo-Shing; Yu, Hsin-Su

    2007-01-01

    Blackfoot disease is an endemic arsenic-induced peripheral vascular disease in southern Taiwan. The main pathologic feature is atherosclerosis, which may relate to imbalances of the adrenergic system. The purpose of this study is to investigate the peripheral adrenergic responses of patients with blackfoot disease. Eight patients with blackfoot disease and four age-matched healthy controls were enrolled in this study. Baseline cutaneous perfusion was measured with a laser Doppler flowmeter. The response of alpha-adrenoceptors in the cutaneous microcirculation was assessed with laser Doppler flowmetry with iontophoresis of phenylephrine into the nailfold. In vitro binding with (125)I-cyanopindolol determined beta-adrenoceptor density in lymphocytes. The cyclic adenosine monophosphate (cAMP) level at baseline and after isoproterenol stimulation reflects lymphocyte beta-adrenergic responsiveness. Results revealed persistently decreased skin perfusion in patients with blackfoot disease. In contrast, there was a transient decrease in skin perfusion in healthy controls after iontophoresis of phenylephrine. Both beta-2 receptor density and isoproterenol-stimulated cAMP levels in lymphocytes decreased. Increased peripheral alpha-adrenergic response and decreased beta-2-adrenergic response are related to increased vascular tone and result in atherosclerosis. Our findings of accentuated alpha-adrenergic response in microcirculation and decreased lymphocyte beta-2-adrenoceptor response play an important role in the pathogenesis of atherosclerosis in blackfoot disease.

  8. Adrenergic DNA damage of embryonic pluripotent cells via β2 receptor signalling.

    PubMed

    Sun, Fan; Ding, Xu-Ping; An, Shi-Min; Tang, Ya-Bin; Yang, Xin-Jie; Teng, Lin; Zhang, Chun; Shen, Ying; Chen, Hong-Zhuan; Zhu, Liang

    2015-01-01

    Embryonic pluripotent cells are sensitive to genotoxicity though they need more stringent genome integrity to avoid compromising multiple cell lineages and subsequent generations. However it remains unknown whether the cells are susceptible to adrenergic stress which can induce somatic cell genome lesion. We have revealed that adrenergic stress mediators cause DNA damage of the cells through the β2 adrenergic receptor/adenylate cyclase/cAMP/PKA signalling pathway involving an induction of intracellular reactive oxygen species (ROS) accumulation. The adrenergic stress agonists adrenaline, noradrenaline, and isoprenaline caused DNA damage and apoptosis of embryonic stem (ES) cells and embryonal carcinoma stem cells. The effects were mimicked by β2 receptor-coupled signalling molecules and abrogated by selective blockade of β2 receptors and inhibition of the receptor signalling pathway. RNA interference targeting β2 receptors of ES cells conferred the cells the ability to resist the DNA damage and apoptosis. In addition, adrenergic stimulation caused a consistent accumulation of ROS in the cells and the effect was abrogated by β2 receptor blockade; quenching of ROS reversed the induced DNA damage. This finding will improve the understanding of the stem cell regulatory physiology/pathophysiology in an adrenergic receptor subtype signalling mechanism. PMID:26516061

  9. Analysis of adrenergic regulation of melatonin synthesis in Siberian hamster pineal emphasizes the role of HIOMT.

    PubMed

    Ceinos, R M; Chansard, M; Revel, F; Calgari, C; Míguez, J M; Simonneaux, V

    2004-01-01

    Seasonal variations of environmental factors are translated into annual fluctuations in synthesis and release of melatonin, which in turn acts as a neuroendocrine messenger for the synchronization of annual functions. So far, most studies performed to understand the regulation of melatonin synthesis have used the non seasonal laboratory rat. It was demonstrated that nocturnal melatonin synthesis depends on alpha- and beta-adrenergic activation of the enzyme arylalkylamine N-acetyltransferase (AA-NAT). In this study, we investigated the mechanisms of melatonin synthesis in the Siberian hamster, a seasonal species with marked photoperiodic variation in melatonin peak duration and amplitude. A beta-adrenergic receptor agonist alone markedly stimulated AA-NAT activity and melatonin synthesis and release. An alpha-adrenergic receptor agonist, while having no effect per se, potentiated the beta-adrenergic stimulation of AA-NAT activity both in vitro and in vivo. Strikingly, the potentiation of AA-NAT activity did not result in a potentiation of melatonin synthesis, suggesting that the rate of melatonin production is limited downstream in the metabolic pathway, most probably at the level of hydroxyindole-O-methyltransferase (HIOMT). HIOMT presented a constitutively high activity that was not acutely (within hours) stimulated by beta-adrenergic agonist, but was rather up-regulated by chronic application of the agonist. This long-term beta-adrenergic regulation may explain the reported large photoperiodic variation of HIOMT activity that drives the photoperiodic variation in melatonin peak.

  10. α(1D)-Adrenergic receptors constitutive activity and reduced expression at the plasma membrane.

    PubMed

    García-Sáinz, J Adolfo; Romero-Ávila, M Teresa; Medina, Luz Del Carmen

    2010-01-01

    Adrenergic receptors are a heterogeneous family of the G protein-coupled receptors that mediate the actions of adrenaline and noradrenaline. Adrenergic receptors comprise three subfamilies (α(1), α(2), and β, with three members each) and the α(1D)-adrenergic receptor is one of the members of the α(1) subfamily with some interesting traits. The α(1D)-adrenergic receptor is difficult to express, seems predominantly located intracellularly, and exhibits constitutive activity. In this chapter, we will describe in detail the conditions and procedures used to determine changes in intracellular free calcium concentration which has been instrumental to define the constitutive activity of these receptors. Taking advantage of the fact that truncation of the first 79 amino acids of α(1D)-adrenergic receptors markedly increased their membrane expression, we were able to show that constitutive activity is present in receptors truncated at the amino and carboxyl termini, which indicates that such domains are dispensable for this action. Constitutive activity could be observed in cells expressing either the rat or human α(1D)-adrenergic receptor orthologs. Such constitutive activity has been observed in native rat arteries and we will discuss the possible functional implications that it might have in the regulation of blood pressure.

  11. Adrenergic DNA damage of embryonic pluripotent cells via β2 receptor signalling

    PubMed Central

    Sun, Fan; Ding, Xu-Ping; An, Shi-Min; Tang, Ya-Bin; Yang, Xin-Jie; Teng, Lin; Zhang, Chun; Shen, Ying; Chen, Hong-Zhuan; Zhu, Liang

    2015-01-01

    Embryonic pluripotent cells are sensitive to genotoxicity though they need more stringent genome integrity to avoid compromising multiple cell lineages and subsequent generations. However it remains unknown whether the cells are susceptible to adrenergic stress which can induce somatic cell genome lesion. We have revealed that adrenergic stress mediators cause DNA damage of the cells through the β2 adrenergic receptor/adenylate cyclase/cAMP/PKA signalling pathway involving an induction of intracellular reactive oxygen species (ROS) accumulation. The adrenergic stress agonists adrenaline, noradrenaline, and isoprenaline caused DNA damage and apoptosis of embryonic stem (ES) cells and embryonal carcinoma stem cells. The effects were mimicked by β2 receptor-coupled signalling molecules and abrogated by selective blockade of β2 receptors and inhibition of the receptor signalling pathway. RNA interference targeting β2 receptors of ES cells conferred the cells the ability to resist the DNA damage and apoptosis. In addition, adrenergic stimulation caused a consistent accumulation of ROS in the cells and the effect was abrogated by β2 receptor blockade; quenching of ROS reversed the induced DNA damage. This finding will improve the understanding of the stem cell regulatory physiology/pathophysiology in an adrenergic receptor subtype signalling mechanism. PMID:26516061

  12. Immunoanalogue of vertebrate beta-adrenergic receptor in the unicellular eukaryote Paramecium.

    PubMed

    Wiejak, Jolanta; Surmacz, Liliana; Wyroba, Elzbieta

    2002-01-01

    Cell fractionation, SDS-PAGE, quantitative Western blot, confocal immunolocalization and immunogold labelling were performed to find an interpretation of the physiological response of the unicellular eukaryote Paramecium to beta-adrenergic ligands. The 69 kDa polypeptide separated by SDS-PAGE in S2 and P2 Paramecium subcellular fractions cross-reacted with antibody directed against human beta2-adrenergic receptor. This was detected by Western blotting followed by chemiluminescent detection. Quantitative image analysis showed that beta-selective adrenergic agonist (-)-isoproterenol--previously shown to enhance phagocytic activity--evoked redistribution of the adrenergic receptor analogue from membraneous (P2) to cytosolic (S2) fraction. The relative increase in immunoreactive band intensity in S2 reached 80% and was paralleled by a 59% decrease in P2 fraction. Confocal immunofluorescence revealed beta2-adrenergic receptor sites on the cell surface and at the ridge of the cytopharynx--where nascent phagosomes are formed. This localization was confirmed by immunoelectron microscopy. These results indicate that the 69 kDa Paramecium polypeptide immunorelated to vertebrate beta2-adrenergic receptor appeared in this evolutionary ancient cell as a nutrient receptor.

  13. beta. -adrenergic relaxation of smooth muscle: differences between cells and tissues

    SciTech Connect

    Scheid, C.R.

    1987-09-01

    The present studies were carried out in an attempt to resolve the controversy about the Na/sup +/ dependence of ..beta..-adrenergic relaxation in smooth muscle. Previous studies on isolated smooth muscle cells from the toad stomach had suggested that at least some of the actions of ..beta..-adrenergic agents, including a stimulatory effect on /sup 45/Ca efflux, were dependent on the presence of a normal transmembrane Na/sup +/ gradient. Studies by other investigators using tissues derived from mammalian sources had suggested that the relaxing effect of ..beta..-adrenergic agents was Na/sup +/ independent. Uncertainty remained as to whether these discrepancies reflected differences between cells and tissues or differences between species. Thus, in the present studies, the authors utilized both tissues and cells from the same source, the stomach muscle of the toad Bufo marinus, and assessed the Na/sup +/ dependence of ..beta..-adrenergic relaxation. They found that elimination of a normal Na/sup +/ gradient abolished ..beta..-adrenergic relaxation of isolated cells. In tissues, however, similar manipulations had no effect on relaxation. The reasons for this discrepancy are unclear but do not appear to be attributable to changes in smooth muscle function following enzymatic dispersion. Thus the controversy concerning the mechanisms of ..beta..-adrenergic relaxation may reflect inherent differences between tissues and cells.

  14. Activity of the Adrenergic Nerve System in the Airways Permeability of Healthy Persons

    PubMed Central

    Gashi, Njazi; Islami, Pëllumb; Mustafa, Lirim; Maloku, Halit; Veseli, Arta; Islami, Hilmi

    2013-01-01

    Objective: In this work, role of the adrenergic nerve system (alpha1 and beta2) in adjustment of the bronchomotor tonus in healthy people was researched. Methods: Parameters of the lung function are determined by Body plethysmography. Raw and ITGV were registered and SRaw was calculated as well. Aerosolization is done with standard aerosolizing machines – Asema. Results: Results gained shows that following the blockade of beta-2 adrenergic receptor with Propranolol (20 mg–aerosol), stimulation of alpha adrenergic receptor with Oxedrine (120 mg-aerosol) and blockage of these receptors with Tolazoline (20 mg-aerosol), does not change significantly the bronchomotor tonus of the tracheobronchial tree (p > 0.1). Meanwhile, stimulation of the beta-2 adrenergic receptor with Hexoprenaline (2 inh × 0.2 mg) is associated with a significant increase of the peripheral resistance of the airways (p < 0.01). Conclusion: This suggests that the activity of the alpha1-adrenergic receptor, unlike the activity of the beta2-adrenergic receptor in the healthy people smooth musculature, is not significant and as such is insufficient to oppose to the tonic activities of the cholinergic system. PMID:24554803

  15. Estradiol alters the chemosensitive cardiac afferent reflex in female rats by augmenting sympathoinhibition and attenuating sympathoexcitation.

    PubMed

    Pinkham, Maximilian I; Barrett, Carolyn J

    2015-06-01

    The chemosensitive cardiac vagal and sympathetic afferent reflexes are implicated in driving pathophysiological changes in sympathetic nerve activity (SNA) in cardiovascular disease states. This study investigated the impact of sex and ovarian hormones on the chemosensitive cardiac afferent reflex. Experiments were performed in anaesthetized, sinoaortic baroreceptor denervated male, female and ovariectomized female (OVX) Wistar rats with either intact cardiac innervation or bilateral vagotomy. To investigate the chemosensitive cardiac afferent reflexes renal SNA, heart rate (HR) and arterial pressure (AP) were recorded before and following application of capsaicin onto the epicardial surface of the left ventricle. Compared to males, ovary-intact females displayed similar cardiac afferent reflex mediated changes in renal SNA albeit with a reduced maximum sympathetic reflex driven increase in renal SNA. In females, ovariectomy significantly attenuated the cardiac vagal afferent reflex mediated inhibition of renal SNA (renal SNA decreased 2 ± 17% in OVX versus -50 ± 4% in ovary-intact females, P < 0.05) and augmented cardiac sympathetic afferent reflex mediated sympathoexcitation (renal SNA increased 91 ± 11% in OVX vs 62 ± 9% in ovary-intact females, P < 0.05) so that overall increases in reflex driven sympathoexcitation were significantly enhanced. Chronic estradiol replacement, but not progesterone replacement, begun at time of ovariectomy restored cardiac afferent reflex responses to be similar as ovary-intact females. Vagal denervation eliminated all group differences. The current findings show ovariectomy in female rats, mimicking menopause in women, results in greater chemosensitive cardiac afferent reflex driven sympathoexcitation and does so, at least partly, via the loss of estradiols actions on the cardiac vagal afferent reflex pathway.

  16. Nitric Oxide Synthase 1 Modulates Basal and β-Adrenergic-Stimulated Contractility by Rapid and Reversible Redox-Dependent S-Nitrosylation of the Heart

    PubMed Central

    Vielma, Alejandra Z.; León, Luisa; Fernández, Ignacio C.; González, Daniel R.

    2016-01-01

    S-nitrosylation of several Ca2+ regulating proteins in response to β-adrenergic stimulation was recently described in the heart; however the specific nitric oxide synthase (NOS) isoform and signaling pathways responsible for this modification have not been elucidated. NOS-1 activity increases inotropism, therefore, we tested whether β-adrenergic stimulation induces NOS-1-dependent S-nitrosylation of total proteins, the ryanodine receptor (RyR2), SERCA2 and the L-Type Ca2+ channel (LTCC). In the isolated rat heart, isoproterenol (10 nM, 3-min) increased S-nitrosylation of total cardiac proteins (+46±14%) and RyR2 (+146±77%), without affecting S-nitrosylation of SERCA2 and LTCC. Selective NOS-1 blockade with S-methyl-L-thiocitrulline (SMTC) and Nω-propyl-l-arginine decreased basal contractility and relaxation (−25–30%) and basal S-nitrosylation of total proteins (−25–60%), RyR2, SERCA2 and LTCC (−60–75%). NOS-1 inhibition reduced (−25–40%) the inotropic response and protein S-nitrosylation induced by isoproterenol, particularly that of RyR2 (−85±7%). Tempol, a superoxide scavenger, mimicked the effects of NOS-1 inhibition on inotropism and protein S-nitrosylation; whereas selective NOS-3 inhibitor L-N5-(1-Iminoethyl)ornithine had no effect. Inhibition of NOS-1 did not affect phospholamban phosphorylation, but reduced its oligomerization. Attenuation of contractility was abolished by PKA blockade and unaffected by guanylate cyclase inhibition. Additionally, in isolated mouse cardiomyocytes, NOS-1 inhibition or removal reduced the Ca2+-transient amplitude and sarcomere shortening induced by isoproterenol or by direct PKA activation. We conclude that 1) normal cardiac performance requires basal NOS-1 activity and S-nitrosylation of the calcium-cycling machinery; 2) β-adrenergic stimulation induces rapid and reversible NOS-1 dependent, PKA and ROS-dependent, S-nitrosylation of RyR2 and other proteins, accounting for about one third of its

  17. Nitric Oxide Synthase 1 Modulates Basal and β-Adrenergic-Stimulated Contractility by Rapid and Reversible Redox-Dependent S-Nitrosylation of the Heart.

    PubMed

    Vielma, Alejandra Z; León, Luisa; Fernández, Ignacio C; González, Daniel R; Boric, Mauricio P

    2016-01-01

    S-nitrosylation of several Ca2+ regulating proteins in response to β-adrenergic stimulation was recently described in the heart; however the specific nitric oxide synthase (NOS) isoform and signaling pathways responsible for this modification have not been elucidated. NOS-1 activity increases inotropism, therefore, we tested whether β-adrenergic stimulation induces NOS-1-dependent S-nitrosylation of total proteins, the ryanodine receptor (RyR2), SERCA2 and the L-Type Ca2+ channel (LTCC). In the isolated rat heart, isoproterenol (10 nM, 3-min) increased S-nitrosylation of total cardiac proteins (+46±14%) and RyR2 (+146±77%), without affecting S-nitrosylation of SERCA2 and LTCC. Selective NOS-1 blockade with S-methyl-L-thiocitrulline (SMTC) and Nω-propyl-l-arginine decreased basal contractility and relaxation (-25-30%) and basal S-nitrosylation of total proteins (-25-60%), RyR2, SERCA2 and LTCC (-60-75%). NOS-1 inhibition reduced (-25-40%) the inotropic response and protein S-nitrosylation induced by isoproterenol, particularly that of RyR2 (-85±7%). Tempol, a superoxide scavenger, mimicked the effects of NOS-1 inhibition on inotropism and protein S-nitrosylation; whereas selective NOS-3 inhibitor L-N5-(1-Iminoethyl)ornithine had no effect. Inhibition of NOS-1 did not affect phospholamban phosphorylation, but reduced its oligomerization. Attenuation of contractility was abolished by PKA blockade and unaffected by guanylate cyclase inhibition. Additionally, in isolated mouse cardiomyocytes, NOS-1 inhibition or removal reduced the Ca2+-transient amplitude and sarcomere shortening induced by isoproterenol or by direct PKA activation. We conclude that 1) normal cardiac performance requires basal NOS-1 activity and S-nitrosylation of the calcium-cycling machinery; 2) β-adrenergic stimulation induces rapid and reversible NOS-1 dependent, PKA and ROS-dependent, S-nitrosylation of RyR2 and other proteins, accounting for about one third of its inotropic effect.

  18. Distribution of beta-adrenergic receptors in failing human myocardium. Implications for mechanisms of down-regulation

    SciTech Connect

    Murphree, S.S.; Saffitz, J.E.

    1989-06-01

    The density of beta-adrenergic receptors is reduced in crude membranes prepared from failing human myocardium. We used quantitative autoradiography of radioligand binding sites in intact tissue slices to determine whether the total tissue content of receptors is reduced and to characterize the transmural distribution of receptors in cardiac myocytes and the coronary vasculature in hearts obtained from nine cardiac transplant patients with severe congestive failure. Binding of (125Iodo)cyanopindolol to transmural slices of human myocardium was rapid, saturable, stereoselective, and displaceable by agonists and antagonists with an appropriate rank order of potency. Binding isotherms in four normal and nine failing ventricles showed a significant reduction in the total tissue content of beta-receptors in failing myocardium (38.3 +/- 2.0 fmol/mg protein) compared with normal tissue (52.4 +/- 1.7 fmol/mg protein, p = 0.038). In the normal ventricles, the greatest receptor density was observed autoradiographically in myocytic regions of the subendocardium. Receptor density of the coronary arterioles was approximately 70% of that in adjacent myocytic regions. The density of binding sites in both myocytic regions and arterioles was diminished in all regions of the failing ventricles, but down-regulation was due primarily to a selective reduction of beta-receptors of subendocardial myocytes (63 +/- 5% of subepicardial receptor density vs. 115 +/- 6% in controls, p less than 0.0001). These observations indicate that down-regulation occurs nonuniformly in the transmural distribution and thus is likely not related simply to elevated circulating catecholamine levels.

  19. Adrenergic Inhibition with Dexmedetomidine to Treat Stress Cardiomyopathy during Alcohol Withdrawal: A Case Report and Literature Review

    PubMed Central

    Harris, Zachary M.; Alonso, Alvaro; Kennedy, Thomas P.

    2016-01-01

    Stress (Takotsubo) cardiomyopathy is a form of reversible left ventricular dysfunction with a heightened risk of ventricular arrhythmia thought to be caused by high circulating catecholamines. We report a case of stress cardiomyopathy that developed during severe alcohol withdrawal successfully treated with dexmedetomidine. The case involves a 53-year-old man with a significant history of alcohol abuse who presented to a teaching hospital with new-onset seizures. His symptoms of acute alcohol withdrawal were initially treated with benzodiazepines, but the patient later developed hypotension, and stress cardiomyopathy was suspected based on ECG and echocardiographic findings. Adjunctive treatment with the alpha-2-adrenergic agonist, dexmedetomidine, was initiated to curtail excessive sympathetic outflow of the withdrawal syndrome, thereby targeting the presumed pathophysiology of the cardiomyopathy. Significant clinical improvement was observed within one day of initiation of dexmedetomidine. These findings are consistent with other reports suggesting that sympathetic dysregulation during alcohol withdrawal produces ideal pathobiology for stress cardiomyopathy and leads to ventricular arrhythmogenicity. Stress cardiomyopathy should be recognized as a complication of alcohol withdrawal that significantly increases cardiac-related mortality. By helping to correct autonomic dysregulation of the withdrawal syndrome, dexmedetomidine may be useful in the treatment of stress-induced cardiomyopathy. PMID:27006838

  20. β-adrenergic impact underlies the effect of mood and hedonic instrumentality on effort-related cardiovascular response.

    PubMed

    Silvestrini, Nicolas; Gendolla, Guido H E

    2011-05-01

    After habituation, participants were first induced into negative vs. positive moods and performed then an attention task with either low vs. high hedonic instrumentality of success. In the high-instrumentality condition participants expected to see a funny movie after success and an unpleasant movie after failure; in the low-instrumentality condition participants expected an unpleasant movie after success and a pleasant movie after failure. Effort-related cardiovascular response (ICG, blood pressure) was assessed during mood inductions and task performance. As predicted by the mood-behavior-model (Gendolla, 2000), responses of cardiac pre-ejection period (PEP) and systolic blood pressure were stronger in the high-instrumentality/negative-mood condition than in the other three cells. Here the high hedonic instrumentality of success justified the high effort that was perceived as necessary in a negative mood. Moreover, the PEP effects indicate that cardiovascular response was driven by beta-adrenergic impact on the heart rather than by vascular adjustments. PMID:21382436

  1. Signaling from beta1- and beta2-adrenergic receptors is defined by differential interactions with PDE4.

    PubMed

    Richter, Wito; Day, Peter; Agrawal, Rani; Bruss, Matthew D; Granier, Sébastien; Wang, Yvonne L; Rasmussen, Søren G F; Horner, Kathleen; Wang, Ping; Lei, Tao; Patterson, Andrew J; Kobilka, Brian; Conti, Marco

    2008-01-23

    Beta1- and beta2-adrenergic receptors (betaARs) are highly homologous, yet they play clearly distinct roles in cardiac physiology and pathology. Myocyte contraction, for instance, is readily stimulated by beta1AR but not beta2AR signaling, and chronic stimulation of the two receptors has opposing effects on myocyte apoptosis and cell survival. Differences in the assembly of macromolecular signaling complexes may explain the distinct biological outcomes. Here, we demonstrate that beta1AR forms a signaling complex with a cAMP-specific phosphodiesterase (PDE) in a manner inherently different from a beta2AR/beta-arrestin/PDE complex reported previously. The beta1AR binds a PDE variant, PDE4D8, in a direct manner, and occupancy of the receptor by an agonist causes dissociation of this complex. Conversely, agonist binding to the beta2AR is a prerequisite for the recruitment of a complex consisting of beta-arrestin and the PDE4D variant, PDE4D5, to the receptor. We propose that the distinct modes of interaction with PDEs result in divergent cAMP signals in the vicinity of the two receptors, thus, providing an additional layer of complexity to enforce the specificity of beta1- and beta2-adrenoceptor signaling.

  2. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator

    NASA Astrophysics Data System (ADS)

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C.

    2014-06-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  3. Temporary Incomplete Ischemia of the Legs Induced by Aortic Clamping in Man: Effects on Central Hemodynamics and Skeletal Muscle Metabolism by Adrenergic Block

    PubMed Central

    Eklöf, B.; Neglén, P.; Thomson, D.

    1981-01-01

    The hemodynamic changes which occur when clamping and unclamping the aorta during reconstructive surgery might be a threat to the elderly patient with concomitant cardiac disease. In addition, the cross-clamping induces a temporary ischemia of the legs, with severe metabolic derangement after the release of the aortic clamp. We have studied the effect of a intraoperative adrenergic block (phenoxybenzamine plus metoprolol) on the central circulation and the skeletal metabolism in 14 patients undergoing aortic reconstruction to treat occlusive arteriosclerotic disease. Cardiac output, heart rate, arterial and pulmonary artery pressures, and cardiac filling pressures, as well as femoral venous blood flow were studied. Biopsy specimens of the lateral vastus muscle and blood samples from the radial artery and iliac vein were taken before aortic clamping, and before, 30 minutes, four and 16 hours after the aorta was unclamped, as well as five days postoperatively. In addition, intramuscular temperature and pH were measured. Glycogen, glucose, lactate, pyruvate, ATP, ADP, AMP, phosphocreatine (PCr) and creatine (Cr) contents of the muscle and lactate and pyruvate concentrations in iliac venous and radial arterial blood were determined using enzymatic fluorometric techniques. Mean arterial blood pressure (MAP) averaged 80 mmHg before clamping, chiefly because of the low systemic vascular resistance (SVR), and left ventricular stroke work (LVSW) was normal. At clamping MAP, SVR, LVSW, remained unchanged. MAP and LVSW were unaffected even though SVR decreased slightly after the aorta was unclamped and resulted in an increased cardiac output, mainly due to a higher stroke volume. No major change in the pulmonary circulation was observed. During clamping the muscle lactate/pyruvate ratio increased, intramuscular pH and femoral venous blood flow decreased indicating insufficient tissue perfusion. Energy charge (EC), the adenylate (ATP + ADP + AMP) and creatine (PCr + Cr) pools

  4. Severe hypoglycemia-induced lethal cardiac arrhythmias are mediated by sympathoadrenal activation.

    PubMed

    Reno, Candace M; Daphna-Iken, Dorit; Chen, Y Stefanie; VanderWeele, Jennifer; Jethi, Krishan; Fisher, Simon J

    2013-10-01

    For people with insulin-treated diabetes, severe hypoglycemia can be lethal, though potential mechanisms involved are poorly understood. To investigate how severe hypoglycemia can be fatal, hyperinsulinemic, severe hypoglycemic (10-15 mg/dL) clamps were performed in Sprague-Dawley rats with simultaneous electrocardiogram monitoring. With goals of reducing hypoglycemia-induced mortality, the hypotheses tested were that: 1) antecedent glycemic control impacts mortality associated with severe hypoglycemia; 2) with limitation of hypokalemia, potassium supplementation could limit hypoglycemia-associated deaths; 3) with prevention of central neuroglycopenia, brain glucose infusion could prevent hypoglycemia-associated arrhythmias and deaths; and 4) with limitation of sympathoadrenal activation, adrenergic blockers could prevent hypoglycemia-induced arrhythmic deaths. Severe hypoglycemia-induced mortality was noted to be worsened by diabetes, but recurrent antecedent hypoglycemia markedly improved the ability to survive an episode of severe hypoglycemia. Potassium supplementation tended to reduce mortality. Severe hypoglycemia caused numerous cardiac arrhythmias including premature ventricular contractions, tachycardia, and high-degree heart block. Intracerebroventricular glucose infusion reduced severe hypoglycemia-induced arrhythmias and overall mortality. β-Adrenergic blockade markedly reduced cardiac arrhythmias and completely abrogated deaths due to severe hypoglycemia. Under conditions studied, sudden deaths caused by insulin-induced severe hypoglycemia were mediated by lethal cardiac arrhythmias triggered by brain neuroglycopenia and the marked sympathoadrenal response.

  5. [Disorders of intestinal innervation as a possible cause for chronic constipation].

    PubMed

    Wedel, T; Roblick, U; Gleiss, J; Ott, V; Eggers, R; Kühnel, W; Krammer, H J

    1999-01-01

    The gastrointestinal tract contains the largest amount of nerve cells apart from the central nervous system constituting together with glial cells the enteric nervous system (ENS). The morphology of the ENS is characterized by intramurally located ganglionated and non-ganglionated plexus of different structure. The diversity of neurotransmitters synthesized by the different nerve cell types as well as the complex neuronal circuits establish the basis for the mediation of a coordinated intestinal motility. Subsequently abnormalities of the ENS may cause severe constipation. The most acknowledged intestinal innervation disorder represents aganglionosis (Hirschsprung's disease) characterized by the absence of intramural nerve cells and the hypertrophy of nerve fiber bundles within the affected intestinal segment. Non-aganglionic intestinal innervation disorders include intestinal neuronal dysplasia (IND), hypoganglionosis and heterotopic ganglia. The pathogenesis of intestinal neuronal malformations is mainly attributed to development disorders of the ENS, in part caused by genetic defects. Furthermore, the ENS can sustain damage during the postnatal period by ischemic, inflammatory, autoimmunological processes or neurotoxic agents. The histopathological diagnosis of intestinal innervation disorders is achieved by enzyme- and immunohistochemical methods. The examination of the ENS can be carried out on mucosal, deep submucosal or full-thickness biopsies using serial transverse sections as well as on intestinal whole-mount preparations allowing a three-dimensional demonstration and assessment of the intramural plexus. Structural abnormalities of the myenteric and submucosal plexus and an abnormal content of neurotransmitters have been considered to be responsible for primary chronic constipation. However, until now no unified pathophysiological concept has been established due to the partly contradictory findings. Therefore, an important goal in patients with chronic

  6. Estradiol-dependent catecholaminergic innervation of auditory areas in a seasonally breeding songbird.

    PubMed

    Matragrano, Lisa L; Sanford, Sara E; Salvante, Katrina G; Sockman, Keith W; Maney, Donna L

    2011-08-01

    A growing body of evidence suggests that gonadal steroids such as estradiol (E2) alter neural responses not only in brain regions associated with reproductive behavior but also in sensory areas. Because catecholamine systems are involved in sensory processing and selective attention, and because they are sensitive to E2 in many species, they may mediate the neural effects of E2 in sensory areas. Here, we tested the effects of E2 on catecholaminergic innervation, synthesis and activity in the auditory system of white-throated sparrows, a seasonally breeding songbird in which E2 promotes selective auditory responses to song. Non-breeding females with regressed ovaries were held on a winter-like photoperiod and implanted with silastic capsules containing either no hormone or E2. In one hemisphere of the brain, we used immunohistochemistry to quantify fibers immunoreactive for tyrosine hydroxylase or dopamine beta-hydroxylase in the auditory forebrain, thalamus and midbrain. E2 treatment increased catecholaminergic innervation in the same areas of the auditory system in which E2 promotes selectivity for song. In the contralateral hemisphere we quantified dopamine, norepinephrine and their metabolites in tissue punches using HPLC. Norepinephrine increased in the auditory forebrain, but not the midbrain, after E2 treatment. We found that evidence of interhemispheric differences, both in immunoreactivity and catecholamine content that did not depend on E2 treatment. Overall, our results show that increases in plasma E2 typical of the breeding season enhanced catecholaminergic innervation and synthesis in some parts of the auditory system, raising the possibility that catecholamines play a role in E2-dependent auditory plasticity in songbirds.

  7. Developmental adaptation of withdrawal reflexes to early alteration of peripheral innervation in the rat.

    PubMed Central

    Holmberg, H; Schouenborg, J

    1996-01-01

    1. In adult decerebrate spinal rats whose plantar nerves (PLN) had been transected at either postnatal day 1 (P1) or P21 the nociceptive withdrawal reflexes (NWR) of musculi extensor digitorum longus (EDL), peroneus longus (PER) and semitendinosus (ST) were characterized with respect to receptive field (RF) organization, magnitude and time course, using electromyography. Thermal (short CO2 laser pulses) and mechanical (calibrated pinch) stimulation were used. The innervation patterns in normal and lesioned adult rats were assessed by acute nerve lesions. 2. The spatial organization of the mean mechano- and thermonociceptive RFs of all the muscles studied was similar to normal in both P1- and P21-lesioned rats, although in some P21-lesioned rats atypical EDL RFs were encountered. 3. In P1-lesioned rats thermo-NWR of PER and EDL had normal magnitudes, while mechano-NWR were reduced. In P21-lesioned rats both thermo- and mechano-NWR of these muscles had reduced magnitudes. Except for thermo-NWR of ST in P1-lesioned rats, which were increased, NWR of ST had normal magnitudes in both P1- and P21-lesioned rats. The time course of thermonociceptive NWR of the muscles studied were near normal in both P1- and P21-lesioned rats. 4. Acute nerve lesions in adult P1-lesioned rats revealed an essentially abolished contribution to NWR from the PLN. Instead, the contribution to NWR from other hindpaw nerves, such as the superficial and deep peroneal nerves, was dramatically increased. By contrast, in P21-lesioned rats, the regenerated PLN contributed significantly to the NWR. 5. It is concluded that despite profound alterations of plantar hindpaw innervation induced by early PLN transection the cutaneous nociceptive input to NWR attained an essentially normal spatial organization. An experience-dependent mechanism is suggested to be instrumental in adapting the reflex connectivity to the peripheral innervation. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 PMID

  8. OXYTOCIN-IMMUNOREACTIVE INNERVATION OF IDENTIFIED NEURONS IN THE RAT DORSAL VAGAL COMPLEX

    PubMed Central

    Llewellyn-Smith, Ida J.; Kellett, Daniel O.; Jordan, David; Browning, Kirsteen N.; Travagli, R. Alberto

    2011-01-01

    Background Oxytocin (OXT) has been implicated in reproduction and social interactions as well as in the control of digestion and blood pressure. OXT-immunoreactive axons occur in the dorsal vagal complex (DVC; nucleus tractus solitarius, NTS, dorsal motor nucleus of the vagus, DMV, and area postrema, AP), which contains neurons that regulate autonomic homeostasis. The aim of the present work was to provide a systematic investigation of the OXT-immunoreactive innervation of DVC neurons involved in the control of gastrointestinal (GI) function. Methods We studied DMV neurons identified by 1) prior injection of retrograde tracers in the stomach, ileum or cervical vagus or 2) induction of c-fos expression by glucoprivation with 2-deoxyglucose. Another subgroup of DMV neurons was identified electrophysiologically by stimulation of the cervical vagus and then juxtacellularly labelled with biotinamide. We used two- or three-color immunoperoxidase labelling for studies at the light microscopic level. Results Close appositions from OXT-immunoreactive varicosities were found on the cell bodies, dendrites and axons of DMV neurons that projected to the GI tract and that responded to 2-deoxyglucose as well as juxtacellularly-labelled DMV neurons. Double staining for OXT and choline acetyltransferase revealed that OXT innervation was heavier in the caudal and lateral DMV than in other regions. OXT-immunoreactive varicosities also closely apposed a small subset of tyrosine hydroxylase-immunoreactive NTS and DMV neurons. Conclusions and inferences Our results provide the first anatomical evidence for direct OXT-immunoreactive innervation of GI-related neurons in the DVC. PMID:22188490

  9. Long-Term Effects of Simulated Childbirth Injury on Function and Innervation of the Urethra

    PubMed Central

    Song, Qi-Xiang; Balog, Brian M.; Kerns, James; Lin, Dan Li; Sun, Yinghao; Damaser, Margot S.; Jiang, Hai-Hong

    2016-01-01

    Aims Pudendal nerve and external urethral sphincter (EUS) injury during vaginal delivery are risk factors for stress urinary incontinence (SUI). Although most patients with short-term postpartum SUI regain continence within 1 year, they have a higher predisposition to develop recurrent SUI years later, suggesting a possible mechanistic relationship. In contrast, animal models generally recover spontaneously and have not been studied much in the long term. The aim of this study was to investigate the long-term effects of simulated childbirth injury in rats. Methods Thirty-four Sprague–Dawley female rats underwent sham injury or pudendal nerve crush and vaginal distension (PNC + VD), a simulated childbirth injury. Nine weeks later, leak point pressure (LPP) and EUS electromyography (EMG) were recorded simultaneously. The pudendal nerve was harvested for histological analysis. EUS neuromuscular junctions (NMJs) and their innervation were qualitatively assessed using immunofluorescence. A t-test was used to compare quantitative outcomes between groups, with P <0.05 indicating a significant difference. Results There was no significant difference in LPP or EUS EMG amplitude or firing rate between the two groups. Nonetheless after PNC + VD, NMJs in the EUS were diffuse and were innervated by tortuous and multiple axons, demonstrating that reinnervation of the EUS was still in progress. Conclusions Although continence function recovered 9 weeks after simulated childbirth injury, innervation of EUS was not complete at this time point, suggestive of persistent neurogenic deficiency which when compounded by the effects of aging may lead to a delayed recurrence of SUI in this animal model with increased age. PMID:24501018

  10. Defective parasympathetic innervation is associated with airway branching abnormalities in experimental CDH.

    PubMed

    Rhodes, Julie; Saxena, Deeksha; Zhang, GuangFeng; Gittes, George K; Potoka, Douglas A

    2015-07-15

    Developmental mechanisms leading to lung hypoplasia in congenital diaphragmatic hernia (CDH) remain poorly defined. Pulmonary innervation is defective in the human disease and in the rodent models of CDH. We hypothesize that defective parasympathetic innervation may contribute to airway branching abnormalities and, therefore, lung hypoplasia, during lung development in CDH. The murine nitrofen model of CDH was utilized to study the effect of the cholinergic agonist carbachol on embryonic day 11.5 (E11.5) lung explant cultures. Airway branching and contractions were quantified. In a subset of experiments, verapamil was added to inhibit airway contractions. Sox9 immunostaining and 5-bromo-2-deoxyuridine incorporation were used to identify and quantify the number and proliferation of distal airway epithelial progenitor cells. Intra-amniotic injections were used to determine the in vivo effect of carbachol. Airway branching and airway contractions were significantly decreased in nitrofen-treated lungs compared with controls. Carbachol resulted in increased airway contractions and branching in nitrofen-treated lungs. Nitrofen-treated lungs exhibited an increased number of proliferating Sox9-positive distal epithelial progenitor cells, which were decreased and normalized by treatment with carbachol. Verapamil inhibited the carbachol-induced airway contractions in nitrofen-treated lungs but had no effect on the carbachol-induced increase in airway branching, suggesting a direct carbachol effect independent of airway contractions. In vivo treatment of nitrofen-treated embryos via amniotic injection of carbachol at E10.5 resulted in modest increases in lung size and branching at E17.5. These results suggest that defective parasympathetic innervation may contribute to airway branching abnormalities in CDH. PMID:25934671

  11. Increased serotonergic innervation of lumbosacral motoneurons of rolling mouse Nagoya in correlation with abnormal hindlimb extension.

    PubMed

    Koyanagi, Y; Sawada, K; Sakata-Haga, H; Jeong, Y-G; Fukui, Y

    2006-12-01

    Rolling Mouse Nagoya (RMN) carries a mutation in a gene encoding for alpha(1A) subunit of P/Q-type Ca(2+) channel (Ca(v)2.1). In addition to ataxia, this mutant mouse exhibits abnormal hindlimb extension, which is characterized by a sustained excessive tone of hindlimb extensor muscles. This study aimed to clarify whether serotonergic (5-HTergic) innervation of the spinal motoneurons was altered in RMN in relation to the abnormal hindlimb extension. The density of 5-HT immunoreactive fibres in the ventral horn of lumbar and sacral regions of spinal cord was significantly greater in RMN than in controls. Retrograde wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) labelling combined with 5-HT immunostaining revealed that the number of 5-HT immunoreactive terminals adjoining femoris quadriceps motoneurons was about 2.5-fold greater in RMN than in controls. Furthermore, 5-HT immunostaining in the lumbar cord ventral horn was examined in three other Ca(v)2.1 mutant mice (tottering, leaner and pogo) as to whether or not they showed the abnormal hindlimb extension. Among these mutants, the increased density of 5-HT immunoreactive fibres was observed in correlation with the presence of the abnormal hindlimb extension. The results suggest an increased 5-HTergic innervation of the lumbosacral motoneurons in correlation with the abnormal hindlimb extension in RMN and other Ca(v)2.1 mutant mice. As 5-HT is known to induce the sustained membrane depolarizations without continuous excitatory synaptic inputs (plateau potentials) in spinal motoneurons, the increased 5-HTergic innervation may cause the sustained excitation of hindlimb extensor motoneurons, resulting in the abnormal hindlimb extension.

  12. Defective parasympathetic innervation is associated with airway branching abnormalities in experimental CDH

    PubMed Central

    Rhodes, Julie; Saxena, Deeksha; Zhang, GuangFeng; Gittes, George K.

    2015-01-01

    Developmental mechanisms leading to lung hypoplasia in congenital diaphragmatic hernia (CDH) remain poorly defined. Pulmonary innervation is defective in the human disease and in the rodent models of CDH. We hypothesize that defective parasympathetic innervation may contribute to airway branching abnormalities and, therefore, lung hypoplasia, during lung development in CDH. The murine nitrofen model of CDH was utilized to study the effect of the cholinergic agonist carbachol on embryonic day 11.5 (E11.5) lung explant cultures. Airway branching and contractions were quantified. In a subset of experiments, verapamil was added to inhibit airway contractions. Sox9 immunostaining and 5-bromo-2-deoxyuridine incorporation were used to identify and quantify the number and proliferation of distal airway epithelial progenitor cells. Intra-amniotic injections were used to determine the in vivo effect of carbachol. Airway branching and airway contractions were significantly decreased in nitrofen-treated lungs compared with controls. Carbachol resulted in increased airway contractions and branching in nitrofen-treated lungs. Nitrofen-treated lungs exhibited an increased number of proliferating Sox9-positive distal epithelial progenitor cells, which were decreased and normalized by treatment with carbachol. Verapamil inhibited the carbachol-induced airway contractions in nitrofen-treated lungs but had no effect on the carbachol-induced increase in airway branching, suggesting a direct carbachol effect independent of airway contractions. In vivo treatment of nitrofen-treated embryos via amniotic injection of carbachol at E10.5 resulted in modest increases in lung size and branching at E17.5. These results suggest that defective parasympathetic innervation may contribute to airway branching abnormalities in CDH. PMID:25934671

  13. Structure, innervation and response properties of integumentary sensory organs in crocodilians

    PubMed Central

    Leitch, Duncan B.; Catania, Kenneth C.

    2012-01-01

    SUMMARY Integumentary sensory organs (ISOs) are densely distributed on the jaws of crocodilians and on body scales of members of the families Crocodilidae and Gavialidae. We examined the distribution, anatomy, innervation and response properties of ISOs on the face and body of crocodilians and documented related behaviors for an alligatorid (Alligator mississippiensis) and a crocodylid (Crocodylus niloticus). Each of the ISOs (roughly 4000 in A. mississippiensis and 9000 in C. niloticus) was innervated by networks of afferents supplying multiple different mechanoreceptors. Electrophysiological recordings from the trigeminal ganglion and peripheral nerves were made to isolate single-unit receptive fields and to test possible osmoreceptive and electroreceptive functions. Multiple small (<0.1 mm2) receptive fields, often from a single ISO, were recorded from the premaxilla, the rostral dentary, the gingivae and the distal digits. These responded to a median threshold of 0.08 mN. The less densely innervated caudal margins of the jaws had larger receptive fields (>100 mm2) and higher thresholds (13.725 mN). Rapidly adapting, slowly adapting type I and slowly adapting type II responses were identified based on neuronal responses. Several rapidly adapting units responded maximally to vibrations at 20–35 Hz, consistent with reports of the ISOs' role in detecting prey-generated water surface ripples. Despite crocodilians' armored bodies, the ISOs imparted a mechanical sensitivity exceeding that of primate fingertips. We conclude that crocodilian ISOs have diverse functions, including detection of water movements, indicating when to bite based on direct contact of pursued prey, and fine tactile discrimination of items held in the jaws. PMID:23136155

  14. Quantitative immunohistochemical investigation of the intrinsic vasodilator innervation of the guinea pig lingual artery.

    PubMed

    Henrich, Michael; Haberberger, Rainer V; Hempelmann, Gunter; Kummer, Wolfgang

    2003-01-31

    The vasculature of the guinea pig tongue is supplied by parasympathetic vasodilator nerve fibres of intrinsic origin. Here, we investigated first to what extent neuropeptides and the synthesizing enzymes of NO, CO and acetylcholine are contained and colocalized within periarterial lingual vasodilator axons of intrinsic origin. Then it was determined whether perivascular innervation by these fibre types changes with vascular diameter, in particular in comparison with the sensory substance P (SP)-positive and sympathetic noradrenergic vascular innervation. To this end, single, double and triple labelling histochemical techniques were performed on control tongues and tongues kept in short-term organotypic culture to induce degeneration of extrinsically originating nerve fibres. Cell bodies of intrinsic microganglia and their periarterial axons contained, simultaneously, NO synthase, vasoactive intestinal peptide and the acetylcholine-synthesizing enzyme choline acetyltransferase. Additionally, neuropeptide Y (NPY) was observed in a small percentage (12%) of neurons that increased to 39% after 36 h of organotypic culture. The CO synthesizing enzyme heme oxygenase-2 was detected only in perikarya but not in periarterial axons. Intrinsic vasodilator fibres were invariably present at arteries down to a luminal diameter of 150 microm, and reached 65% of section profiles of smallest arterioles, while noradrenergic and substance P-positive axons reached 80% of arteriolar profiles. These findings show that the intrinsic lingual vasodilator innervation of the guinea pig is far extending although slightly less developed than that by sensory and sympathetic axons, and differs both in this aspect and in patterns of colocalization from that reported for other organs, e.g. lung and pelvic organs. PMID:12531400

  15. Innervation of periesophageal region of cat's diaphragm - Implication for studies of control of vomiting

    NASA Technical Reports Server (NTRS)

    Tan, L. K.; Miller, A. D.

    1986-01-01

    The extent of the region of the diaphragm around the esophagus that displays greatly reduced activity during the expulsive phase of vomiting was determined from electromyographic studies in cats to be about 0.75-1.0 cm from the esophagus. Horseradish peroxidase injected into this region retrogradely labeled motoneurons throughout most of the rostral-caudal extent of the phrenic nucleus, with the exception of caudal C6 and rostral C7. This widespread intermingling of motoneurons that innervate the region of reduced activity with other phrenic motoneurons creates a difficulty for needed follow-up studies of diaphragmatic control during vomiting.

  16. Innervation of the skin of camel (Camelus dromedarius) as revealed by cholinesterase technique.

    PubMed

    Mahdi, A H; El-Shafey, S M; Al-Shaikaly, A K

    1982-01-01

    Skin samples from 4 body sites were taken from 10 camels and histochemically treated for the localization of AChE and BuChE enzymes. The sebaceous and sewat glands were active site for both enzymes. The weat gland were innervated by a plexus of AChE-positive nerve fibers. In the papillary layer, the nerve breaks to form a plexus supplying the blood vessels, from this plexus fibers end in the deep interface of the epidermis. End bulbs and free intraepidermal nerve ending reactive for AChE were demonstrated.

  17. Phosphorylation sites required for regulation of cardiac calcium channels in the fight-or-flight response.

    PubMed

    Fu, Ying; Westenbroek, Ruth E; Scheuer, Todd; Catterall, William A

    2013-11-26

    L-type Ca(2+) currents conducted by CaV1.2 channels initiate excitation-contraction coupling in the heart. Their activity is increased by β-adrenergic/cAMP signaling via phosphorylation by PKA in the fight-or-flight response, but the sites of regulation are unknown. We describe the functional role of phosphorylation of Ser1700 and Thr1704-sites of phosphorylation by PKA and casein kinase II at the interface between the proximal and distal C-terminal regulatory domains. Mutation of both residues to Ala in STAA mice reduced basal L-type Ca(2+) currents, due to a small decrease in expression and a substantial decrease in functional activity. The increase in L-type Ca(2+) current caused by isoproterenol was markedly reduced at physiological levels of stimulation (3-10 nM). Maximal increases in calcium current at nearly saturating concentrations of isoproterenol (100 nM) were also significantly reduced, but the mutation effects were smaller, suggesting that alternative regulatory mechanisms are engaged at maximal levels of stimulation. The β-adrenergic increase in cell contraction was also diminished. STAA ventricular myocytes exhibited arrhythmic contractions in response to isoproterenol, and up to 20% of STAA cells failed to sustain contractions when stimulated at 1 Hz. STAA mice have reduced exercise capacity, and cardiac hypertrophy is evident at 3 mo. We conclude that phosphorylation of Ser1700 and Thr1704 is essential for regulation of basal activity of CaV1.2 channels and for up-regulation by β-adrenergic signaling at physiological levels of stimulation. Disruption of phosphorylation at those sites leads to impaired cardiac function in vivo, as indicated by reduced exercise capacity and cardiac hypertrophy.

  18. Essential role of sympathetic endothelin A receptors for adverse cardiac remodeling

    PubMed Central

    Lehmann, Lorenz H.; Rostosky, Julia S.; Buss, Sebastian J.; Kreusser, Michael M.; Krebs, Jutta; Mier, Walter; Enseleit, Frank; Spiger, Katharina; Hardt, Stefan E.; Wieland, Thomas; Haass, Markus; Lüscher, Thomas F.; Schneider, Michael D.; Parlato, Rosanna; Gröne, Hermann-Josef; Haberkorn, Uwe; Yanagisawa, Masashi; Katus, Hugo A.; Backs, Johannes

    2014-01-01

    In preclinical studies, endothelin receptor A (ETA) antagonists (ETAi) attenuated the progression of heart failure (HF). However, clinical HF trials failed to demonstrate beneficial effects of ETAi. These conflicting data may be explained by the possibility that established HF drugs such as adrenergic receptor blockers interfered with the mechanism of ETAi action in clinical trials. Here we report that mice lacking ETA only in sympathetic neurons (SN-KO) showed less adverse structural remodeling and cardiac dysfunction in response to pathological pressure overload induced by transverse aortic constriction (TAC). In contrast, mice lacking ETA only in cardiomyocytes (CM-KO) were not protected. TAC led to a disturbed sympathetic nerve function as measured by cardiac norepinephrine (NE) tissue levels and [124I]-metaiodobenzylguanidine-PET, which was prevented in SN-KO. In a rat model of HF, ETAi improved cardiac and sympathetic nerve function. In cocultures of cardiomyocytes (CMs) and sympathetic neurons (SNs), endothelin-1 (ET1) led to a massive NE release and exaggerated CM hypertrophy compared with CM monocultures. ETA-deficient CMs gained a hypertrophic response through wild-type SNs, but ETA-deficient SNs failed to mediate exaggerated CM hypertrophy. Furthermore, ET1 mediated its effects indirectly via NE in CM-SN cocultures through adrenergic receptors and histone deacetylases, resulting in activation of the prohypertrophic transcription factor myocyte enhancer factor 2. In conclusion, sympathetic ETA amplifies ET1 effects on CMs through adrenergic signaling pathways. Thus, antiadrenergic therapies may blunt potentially beneficial effects of ETAi. Taken together, this may indicate that patients with β blocker intolerance or disturbed sympathetic nerve function could be evaluated for a potential benefit from ETAi. PMID:25197047

  19. Sensory innervation of the dorsal longitudinal ligament and the meninges in the lumbar spine of the dog.

    PubMed

    Waber-Wenger, Barbara; Forterre, Franck; Kuehni-Boghenbor, Kathrin; Danuser, Renzo; Stein, Jens Volker; Stoffel, Michael Hubert

    2014-10-01

    Although intervertebral disc herniation is a well-known disease in dogs, pain management for this condition has remained a challenge. The goal of the present study is to address the lack of information regarding the innervation of anatomical structures within the canine vertebral canal. Immunolabeling was performed with antibodies against protein gene product 9.5, Tuj-1 (neuron-specific class III β-tubulin), calcitonin gene-related peptide, and neuropeptide Y in combination with the lectin from Lycopersicon esculentum as a marker for blood vessels. Staining was indicative of both sensory and sympathetic fibers. Innervation density was the highest in lateral areas, intermediate in dorsal areas, and the lowest in ventral areas. In the dorsal longitudinal ligament (DLL), the highest innervation density was observed in the lateral regions. Innervation was lower at mid-vertebral levels than at intervertebral levels. The presence of sensory and sympathetic fibers in the canine dura and DLL suggests that pain may originate from both these structures. Due to these regional differences in sensory innervation patterns, trauma to intervertebral DLL and lateral dura is expected to be particularly painful. The results ought to provide a better basis for the assessment of medicinal and surgical procedures.

  20. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons

    NASA Technical Reports Server (NTRS)

    Postigo, Antonio; Calella, Anna Maria; Fritzsch, Bernd; Knipper, Marlies; Katz, David; Eilers, Andreas; Schimmang, Thomas; Lewin, Gary R.; Klein, Rudiger; Minichiello, Liliana

    2002-01-01

    Signaling by brain-derived neurotrophic factor (BDNF) via the TrkB receptor, or by neurotrophin-3 (NT3) through the TrkC receptor support distinct populations of sensory neurons. The intracellular signaling pathways activated by Trk (tyrosine kinase) receptors, which in vivo promote neuronal survival and target innervation, are not well understood. Using mice with TrkB or TrkC receptors lacking the docking site for Shc adaptors (trkB(shc/shc) and trkC(shc/shc) mice), we show that TrkB and TrkC promote survival of sensory neurons mainly through Shc site-independent pathways, suggesting that these receptors use similar pathways to prevent apoptosis. In contrast, the regulation of target innervation appears different: in trkB(shc/shc) mice neurons lose target innervation, whereas in trkC(shc/shc) mice the surviving TrkC-dependent neurons maintain target innervation and function. Biochemical analysis indicates that phosphorylation at the Shc site positively regulates autophosphorylation of TrkB, but not of TrkC. Our findings show that although TrkB and TrkC signals mediating survival are largely similar, TrkB and TrkC signals required for maintenance of target innervation in vivo are regulated by distinct mechanisms.

  1. Platelet alpha 2-adrenergic receptors in major depressive disorder. Binding of tritiated clonidine before and after tricyclic antidepressant drug treatment

    SciTech Connect

    Garcia-Sevilla, J.A.; Zis, A.P.; Hollingsworth, P.J.; Greden, J.F.; Smith, C.B.

    1981-12-01

    The specific binding of tritiated (3H)-clonidine, an alpha 2-adrenergic receptor agonist, to platelet membranes was measured in normal subjects and in patients with major depressive disorder. The number of platelet alpha 2-adrenergic receptors from the depressed group was significantly higher than that found in platelets obtained from the control population. Treatment with tricyclic antidepressant drugs led to significant decreases in the number of platelet alpha 2-adrenergic receptors. These results support the hypothesis that the depressive syndrome is related to an alpha 2-adrenergic receptor supersensitivity and that the clinical effectiveness of tricyclic antidepressant drugs is associated with a decrease in the number of these receptors.

  2. Cloning and expression of a human kidney cDNA for an /alpha//sub 2/-adrenergic receptor subtype

    SciTech Connect

    Regan, J.W.; Kobilka, T.S.; Yang-Feng, T.L.; Caron, M.G.; Lefkowitz, R.J.; Kobilka, B.K.

    1988-09-01

    An /alpha//sub 2/-adrenergic receptor subtype has been cloned from a human kidney cDNA library using the gene for the human platelet /alpha//sub 2/-adrenergic receptor as a probe. The deduced amino acid sequence resembles the human platelet /alpha//sub 2/-adrenergic receptor and is consistent with the structure of other members of he family of guanine nucleotide-binding protein-coupled receptors. The cDNA was expressed in a mammalian cell line (COS-7), and the /alpha//sub 2/-adrenergic ligand (/sup 3/H)rauwolscine was bound. Competition curve analysis with a variety of adrenergic ligands suggests that this cDNA clone represents the /alpha//sub 2/B-adrenergic receptor. The gene for this receptor is on human chromosome 4, whereas the gene for the human platelet /alpha//sub 2/-adrenergic receptor (/alpha//sub 2/A) lies on chromosome 10. This ability to express the receptor in mammalian cells, free of other adrenergic receptor subtypes, should help in developing more selective /alpha/-adrenergic ligands.

  3. A device for rapid and quantitative measurement of cardiac myocyte contractility

    NASA Astrophysics Data System (ADS)

    Gaitas, Angelo; Malhotra, Ricky; Li, Tao; Herron, Todd; Jalife, José

    2015-03-01

    Cardiac contractility is the hallmark of cardiac function and is a predictor of healthy or diseased cardiac muscle. Despite advancements over the last two decades, the techniques and tools available to cardiovascular scientists are limited in their utility to accurately and reliably measure the amplitude and frequency of cardiomyocyte contractions. Isometric force measurements in the past have entailed cumbersome attachment of isolated and permeabilized cardiomyocytes to a force transducer followed by measurements of sarcomere lengths under conditions of submaximal and maximal Ca2+ activation. These techniques have the inherent disadvantages of being labor intensive and costly. We have engineered a micro-machined cantilever sensor with an embedded deflection-sensing element that, in preliminary experiments, has demonstrated to reliably measure cardiac cell contractions in real-time. Here, we describe this new bioengineering tool with applicability in the cardiovascular research field to effectively and reliably measure cardiac cell contractility in a quantitative manner. We measured contractility in both primary neonatal rat heart cardiomyocyte monolayers that demonstrated a beat frequency of 3 Hz as well as human embryonic stem cell-derived cardiomyocytes with a contractile frequency of about 1 Hz. We also employed the β-adrenergic agonist isoproterenol (100 nmol l-1) and observed that our cantilever demonstrated high sensitivity in detecting subtle changes in both chronotropic and inotropic responses of monolayers. This report describes the utility of our micro-device in both basic cardiovascular research as well as in small molecule drug discovery to monitor cardiac cell contractions.

  4. Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice.

    PubMed

    Shan, Jian; Kushnir, Alexander; Betzenhauser, Matthew J; Reiken, Steven; Li, Jingdong; Lehnart, Stephan E; Lindegger, Nicolas; Mongillo, Marco; Mohler, Peter J; Marks, Andrew R

    2010-12-01

    During the classic "fight-or-flight" stress response, sympathetic nervous system activation leads to catecholamine release, which increases heart rate and contractility, resulting in enhanced cardiac output. Catecholamines bind to β-adrenergic receptors, causing cAMP generation and activation of PKA, which phosphorylates multiple targets in cardiac muscle, including the cardiac ryanodine receptor/calcium release channel (RyR2) required for muscle contraction. PKA phosphorylation of RyR2 enhances channel activity by sensitizing the channel to cytosolic calcium (Ca²+). Here, we found that mice harboring RyR2 channels that cannot be PKA phosphorylated (referred to herein as RyR2-S2808A+/+ mice) exhibited blunted heart rate and cardiac contractile responses to catecholamines (isoproterenol). The isoproterenol-induced enhancement of ventricular myocyte Ca²+ transients and fractional shortening (contraction) and the spontaneous beating rate of sinoatrial nodal cells were all blunted in RyR2-S2808A+/+ mice. The blunted cardiac response to catecholamines in RyR2-S2808A+/+ mice resulted in impaired exercise capacity. RyR2-S2808A+/+ mice were protected against chronic catecholaminergic-induced cardiac dysfunction. These studies identify what we believe to be new roles for PKA phosphorylation of RyR2 in both the heart rate and contractile responses to acute catecholaminergic stimulation.

  5. A device for rapid and quantitative measurement of cardiac myocyte contractility

    PubMed Central

    Malhotra, Ricky; Li, Tao; Herron, Todd; Jalife, José

    2015-01-01

    Cardiac contractility is the hallmark of cardiac function and is a predictor of healthy or diseased cardiac muscle. Despite advancements over the last two decades, the techniques and tools available to cardiovascular scientists are limited in their utility to accurately and reliably measure the amplitude and frequency of cardiomyocyte contractions. Isometric force measurements in the past have entailed cumbersome attachment of isolated and permeabilized cardiomyocytes to a force transducer followed by measurements of sarcomere lengths under conditions of submaximal and maximal Ca2+ activation. These techniques have the inherent disadvantages of being labor intensive and costly. We have engineered a micro-machined cantilever sensor with an embedded deflection-sensing element that, in preliminary experiments, has demonstrated to reliably measure cardiac cell contractions in real-time. Here, we describe this new bioengineering tool with applicability in the cardiovascular research field to effectively and reliably measure cardiac cell contractility in a quantitative manner. We measured contractility in both primary neonatal rat heart cardiomyocyte monolayers that demonstrated a beat frequency of 3 Hz as well as human embryonic stem cell-derived cardiomyocytes with a contractile frequency of about 1 Hz. We also employed the β-adrenergic agonist isoproterenol (100 nmol l−1) and observed that our cantilever demonstrated high sensitivity in detecting subtle changes in both chronotropic and inotropic responses of monolayers. This report describes the utility of our micro-device in both basic cardiovascular research as well as in small molecule drug discovery to monitor cardiac cell contractions. PMID:25832250

  6. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling.

    PubMed

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj; Schönberger, Tanja; Noegel, Angelika A; Gawaz, Meinrad; Lang, Florian

    2014-02-28

    Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca(2+) signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7(-/-)) and wild-type mice (anxa7(+/+)) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7(-/-) mice than in anxa7(+/+) mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions. PMID:24508799

  7. Adrenergic signaling in teleost fish liver, a challenging path.

    PubMed

    Fabbri, Elena; Moon, Thomas W

    2016-09-01

    Adrenergic receptors or adrenoceptors (ARs) belong to the huge family of G-protein coupled receptors (GPCRs) that have been well characterized in mammals primarily because of their importance as therapeutic drug targets. ARs are found across vertebrates and this review examines the path to identify and characterize these receptors in fish with emphasis on hepatic metabolism. The absence of reliable and specific pharmacological agents led investigators to define the fish hepatic AR system as relying solely on a β2-AR, cAMP-dependent signaling transduction pathway. The use of calcium-radiometric imaging, purified membranes for ligand-binding studies, and perifused rather than static cultured fish hepatocytes, unequivocally demonstrated that both α1- and β2-AR signaling systems existed in the fish liver consistent with studies in mammals. Additionally, the use of molecular tools and phylogenetic analysis clearly demonstrated the existence of multiple AR-types and -subtypes in hepatic and other tissues of a number of fish species. This review also examines the use of β-blockers as pharmaceuticals and how these drugs that are now in the aquatic environment may be impacting aquatic species including fish and some invertebrates. Clearly there is a large conservation of structure and function within the AR system of vertebrates but there remain a number of key questions that need to be addressed before a clear understanding of these systems can be resolved. PMID:26482086

  8. Postnatal development of adrenergic responsiveness in the rabbit heart.

    PubMed

    Feng, Z P; Dryden, W F; Gordon, T

    1989-08-01

    It is uncertain how changes in the beta-adrenoceptor population influence the contractility of developing heart. To resolve this we have examined postnatal developmental changes in the adrenergic responsiveness of the rabbit heart. The inotropic effect of isoproterenol on isolated left ventricular papillary muscles from rabbits aged 3, 21, and 90 days was compared with the relative number of beta-adrenoceptors at each age measured using [3H]dihydroalprenolol ([3H]DHA) as the specific ligand. The maximum tension developed in response to isoproterenol increases from 37 +/- 7 to 175 +/- 33% above control twitch tension between 3 and 21 days of age; this is followed by a decrease to 68 +/- 12% in the young adult. During this period of development, there is a decline in EC50 towards increased sensitivity. These differences are partially accounted for by an increase in the numbers of specific [3H]DHA binding sites from 17.3 +/- 2.3 to 56.6 +/- 9.9 fmol/mg wet tissue weight from 3 to 21 days, and a subsequent decrease to 32 +/- 4.5 fmol/mg tissue in the young adult. The proportionally larger increase in contractility compared with the number of beta-adrenoceptor binding sites during the first 3 weeks of life is discussed in terms of the developmental changes in the efficacy of coupling between receptor occupancy and contraction.

  9. Adrenergic signaling in teleost fish liver, a challenging path.

    PubMed

    Fabbri, Elena; Moon, Thomas W

    2016-09-01

    Adrenergic receptors or adrenoceptors (ARs) belong to the huge family of G-protein coupled receptors (GPCRs) that have been well characterized in mammals primarily because of their importance as therapeutic drug targets. ARs are found across vertebrates and this review examines the path to identify and characterize these receptors in fish with emphasis on hepatic metabolism. The absence of reliable and specific pharmacological agents led investigators to define the fish hepatic AR system as relying solely on a β2-AR, cAMP-dependent signaling transduction pathway. The use of calcium-radiometric imaging, purified membranes for ligand-binding studies, and perifused rather than static cultured fish hepatocytes, unequivocally demonstrated that both α1- and β2-AR signaling systems existed in the fish liver consistent with studies in mammals. Additionally, the use of molecular tools and phylogenetic analysis clearly demonstrated the existence of multiple AR-types and -subtypes in hepatic and other tissues of a number of fish species. This review also examines the use of β-blockers as pharmaceuticals and how these drugs that are now in the aquatic environment may be impacting aquatic species including fish and some invertebrates. Clearly there is a large conservation of structure and function within the AR system of vertebrates but there remain a number of key questions that need to be addressed before a clear understanding of these systems can be resolved.

  10. Optodynamic simulation of β-adrenergic receptor signalling

    PubMed Central

    Siuda, Edward R.; McCall, Jordan G.; Al-Hasani, Ream; Shin, Gunchul; Il Park, Sung; Schmidt, Martin J.; Anderson, Sonya L.; Planer, William J.; Rogers, John A.; Bruchas, Michael R.

    2015-01-01

    Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β2 adrenergic receptor (opto-β2AR) is similar in dynamics to endogenous β2AR in terms of: cAMP generation, MAP kinase activation and receptor internalization. In addition, we develop and characterize a novel toolset of optically active, functionally selective GPCRs that can bias intracellular signalling cascades towards either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how photoactivation of opto-β2AR in vivo modulates neuronal activity and induces anxiety-like behavioural states in both fiber-tethered and wireless, freely moving animals when expressed in brain regions known to contain β2ARs. These new GPCR approaches enhance the utility of optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and in vivo. PMID:26412387

  11. Adrenergic activation attenuates astrocyte swelling induced by hypotonicity and neurotrauma.

    PubMed

    Vardjan, Nina; Horvat, Anemari; Anderson, Jamie E; Yu, Dou; Croom, Deborah; Zeng, Xiang; Lužnik, Zala; Kreft, Marko; Teng, Yang D; Kirov, Sergei A; Zorec, Robert

    2016-06-01

    Edema in the central nervous system can rapidly result in life-threatening complications. Vasogenic edema is clinically manageable, but there is no established medical treatment for cytotoxic edema, which affects astrocytes and is a primary trigger of acute post-traumatic neuronal death. To test the hypothesis that adrenergic receptor agonists, including the stress stimulus epinephrine protects neural parenchyma from damage, we characterized its effects on hypotonicity-induced cellular edema in cortical astrocytes by in vivo and in vitro imaging. After epinephrine administration, hypotonicity-induced swelling of astrocytes was markedly reduced and cytosolic 3'-5'-cyclic adenosine monophosphate (cAMP) was increased, as shown by a fluorescence resonance energy transfer nanosensor. Although, the kinetics of epinephrine-induced cAMP signaling was slowed in primary cortical astrocytes exposed to hypotonicity, the swelling reduction by epinephrine was associated with an attenuated hypotonicity-induced cytosolic Ca(2+) excitability, which may be the key to prevent astrocyte swelling. Furthermore, in a rat model of spinal cord injury, epinephrine applied locally markedly reduced neural edema around the contusion epicenter. These findings reveal new targets for the treatment of cellular edema in the central nervous system. PMID:27018061

  12. Pharmacogenetics of the β2-Adrenergic Receptor Gene

    PubMed Central

    Ortega, Victor E.; Hawkins, Gregory A.; Peters, Stephen P.; Bleecker, Eugene R.

    2009-01-01

    Asthma is a complex genetic disease with multiple genetic and environmental determinants contributing to the observed variability in response to common anti-asthma therapies. Asthma pharmacogenetic research has focused on multiple candidate genes including the β2-adrenergic receptor gene (ADRβ2) and its effect on individual responses to beta agonist therapy. At present, knowledge about the effects of ADRβ2 variation on therapeutic responses is evolving and should not alter current Asthma Guideline approaches consisting of the use of short acting beta agonists for as-needed symptom based therapy and the use of a regular long-acting beta agonist in combination with inhaled corticosteroid therapy for optimal control of asthma symptoms in those asthmatics who are not controlled on inhaled corticosteroid alone. This approach is based upon studies showing a consistent pharmacogenetic response to regular use of short acting beta agonists (SABA) and less consistent findings in studies evaluating long acting beta agonist (LABA). While emerging pharmacogenetic studies are provocative and should lead to functional approaches, conflicting data with responses to LABA therapy may be caused by factors that include small sample sizes of study populations and differences in experimental design that may limit the conclusions that may be drawn from these clinical trials at the present time. PMID:17996583

  13. Modification by choline of adrenergic transmission in rat mesenteric arteries

    PubMed Central

    Malik, K. U.; McGiff, J. C.

    1971-01-01

    1. The action of choline on the vasoconstrictor responses of the perfused mesenteric arteries of the rat to sympathetic nerve stimulation and to injected noradrenaline has been investigated. 2. The infusion of choline (500 μg/ml), for periods of 15 s, increased the response to sympathetic nerve stimulation, whereas the infusion of the same concentration for 20 min greatly reduced the response to nerve stimulation. Choline (up to 500 μg/ml), infused either for short or long periods, did not alter the response to injected noradrenaline. 3. The inhibitory action of choline on the response to nerve stimulation was abolished either by an increase in the calcium concentration from 1·8 to 5·4 mM or by simultaneous infusion of (+)-amphetamine or atropine. 4. The results suggest that choline in concentrations of 500 μg/ml has the same effect on adrenergic transmission in mesenteric arteries as acetylcholine at concentrations of 5 ng/ml. PMID:4339884

  14. Molecular evolution of the mammalian alpha 2B adrenergic receptor.

    PubMed

    Madsen, Ole; Willemsen, Diederik; Ursing, Björn M; Arnason, Ulfur; de Jong, Wilfried W

    2002-12-01

    The alpha 2B adrenergic receptor (A2AB) is a heptahelical G protein-coupled receptor for catecholamines. We compared the almost complete coding region (about 1,175 bp) of the A2AB gene from 48 mammalian species, including eight newly determined sequences, representing all the 18 eutherian and two marsupial orders. Comparison of the encoded proteins reveals that residues thought to be involved in agonist binding are highly conserved, as are the regions playing a role in G protein-coupling. The three extracellular loops are generally more variable than the transmembrane domains and two of the intracellular loops, indicating a lower functional constraint. However, the greatest variation is observed in the very long, third intracellular loop, where only a few residues and a polyglutamyl tract are preserved. Although this polyglutamyl domain displays a great variation in length, its presence in all described A2ABs confirms its proposed role in agonist-dependent phosphorylation of the third intracellular loop. Phylogenetic analyses of the A2AB data set, including Bayesian methods, recognized the superordinal clades Afrotheria, Laurasiatheria, and Euarchontoglires, in agreement with recent molecular evidence, albeit with lower support. Within Afrotheria, A2AB strongly supports the paenungulate clade and the association of the continental African otter shrew with Malagasy tenrecs. Among Laurasiatheria, A2AB confirms the nesting of whales within the artiodactyls, as a sister group to hippopotamus. Within the Euarchontoglires, there is constant support for rodent monophyly. PMID:12446807

  15. Modulation of haemocyte phagocytic and antibacterial activity by alpha-adrenergic receptor in scallop Chlamys farreri.

    PubMed

    Zhou, Zhi; Jiang, Qiufeng; Wang, Mengqiang; Yue, Feng; Wang, Lingling; Wang, Leilei; Li, Fengmei; Liu, Rui; Song, Linsheng

    2013-09-01

    The adrenergic receptors are a class of G protein-coupled receptors, through which norepinephrine and epinephrine trigger the second messenger to modulate the immune response in immunocytes of vertebrate. In the present study, a gene coding the homologue of α-adrenergic receptor was identified from scallop Chlamys farreri (designated CfαAR). Its deduced protein comprised 318 amino acids, and contained a conserved 7tm_1 domain. After CfαAR protein was expressed in the HEK293 cells, the stimulation of octopamine, tyramine, epinephrine and isoprenaline (β-adrenergic receptor agonist) did not change significantly the intracellular cAMP concentration, whereas the stimulation of norepinephrine and phenylephrine (α-adrenergic receptor agonist) lowered significantly the cAMP level to 0.52 and 0.84 pmol μl(-1) (P < 0.05), respectively. The CfαAR transcripts were ubiquitously detected in the tested tissues including haemocytes, adductor muscle, kidney, hepatopancreas, gill, gonad and mantle, with the highest expression in the gill. The expression level of CfαAR mRNA decreased significantly (0.21-fold, P < 0.05) at 3 h after the challenge of bacteria Vibrio anguillarum. Then, it began to increase (4.74-fold, P < 0.05) at 12 h, and reached the highest level (4.92-fold, P < 0.05) at 24 h after bacteria challenge. The addition of α-adrenergic receptor agonist to the primary scallop haemocytes repressed significantly the increase of phagocytic and antibacterial activity induced by LPS stimulation, while the induction was reverted by the addition of α-adrenergic receptor antagonist. These results collectively suggested that α-adrenergic receptor could be regulated dynamically in the transcriptional level during the immune response, and it could modulate the haemocyte phagocytic and antibacterial function through the second messenger cAMP, which might be requisite for pathogen elimination and the homeostasis maintenance in scallop.

  16. Ghrelin-induced hypophagia is mediated by the β2 adrenergic receptor in chicken.

    PubMed

    Zendehdel, Morteza; Hassanpour, Shahin

    2014-09-01

    The purpose of this study was to examine the effects of intracerebroventricular injection of metoprolol (a β1 adrenergic receptor antagonist), ICI 118,551 (a β2 adrenergic receptor antagonist), and SR 59230R (a β3 adrenergic receptor antagonist) on ghrelin-induced food and water intake by 3-h food-deprived (FD3) cockerels. The chickens were randomly allocated to 4 treatment groups with 8 replicates in each group. A cannula was surgically implanted into the lateral ventricle of the brain. In experiment 1, chickens received the β1 adrenergic receptor antagonist (24 nmol) before injection of the ghrelin (0.6 nmol). In experiment 2, chickens received the β2 adrenergic receptor antagonist (5 nmol) before injection of the ghrelin (0.6 nmol). In experiment 3, birds were injected with ghrelin (0.6 nmol) after the β3 adrenergic receptor antagonist (20 nmol). Cumulative food and water intake were recorded 3-h post injection and analyzed by two-way analysis of variance. According to the results, ghrelin injection reduced food and water intake by broiler cockerels (p≤0.05). The effect of ghrelin on food intake was significantly attenuated by pretreatment with the β2 receptor antagonist (p≤0.05). Furthermore, the β2 receptor antagonist had no effect on water intake induced by ghrelin. Also, pretreatment with the β1 and β3 receptors antagonists had no effect on ghrelin-induced food and water intake. These results suggest that the effect of ghrelin on cumulative food intake by cockerels is mediated via β2 adrenergic receptors.

  17. β-Adrenergic-stimulated macrophages: Comprehensive localization in the M1-M2 spectrum.

    PubMed

    Lamkin, Donald M; Ho, Hsin-Yun; Ong, Tiffany H; Kawanishi, Carly K; Stoffers, Victoria L; Ahlawat, Nivedita; Ma, Jeffrey C Y; Arevalo, Jesusa M G; Cole, Steve W; Sloan, Erica K

    2016-10-01

    β-Adrenergic signaling can regulate macrophage involvement in several diseases and often produces anti-inflammatory properties in macrophages, which are similar to M2 properties in a dichotomous M1 vs. M2 macrophage taxonomy. However, it is not clear that β-adrenergic-stimulated macrophages may be classified strictly as M2. In this in vitro study, we utilized recently published criteria and transcriptome-wide bioinformatics methods to map the relative polarity of murine β-adrenergic-stimulated macrophages within a wider M1-M2 spectrum. Results show that β-adrenergic-stimulated macrophages did not fit entirely into any one pre-defined category of the M1-M2 spectrum but did express genes that are representative of some M2 side categories. Moreover, transcript origin analysis of genome-wide transcriptional profiles located β-adrenergic-stimulated macrophages firmly on the M2 side of the M1-M2 spectrum and found active suppression of M1 side gene transcripts. The signal transduction pathways involved were mapped through blocking experiments and bioinformatics analysis of transcription factor binding motifs. M2-promoting effects were mediated specifically through β2-adrenergic receptors and were associated with CREB, C/EBPβ, and ATF transcription factor pathways but not with established M1-M2 STAT pathways. Thus, β-adrenergic-signaling induces a macrophage transcriptome that locates on the M2 side of the M1-M2 spectrum but likely accomplishes this effect through a signaling pathway that is atypical for M2-spectrum macrophages. PMID:27485040

  18. Alpha-adrenergic stimulation of thermogenesis in a rat kangaroo (Marsupialia, Bettongia gaimardi).

    PubMed

    Ye, J M; Edwards, S J; Rose, R W; Steen, J T; Clark, M G; Colquhoun, E Q

    1996-09-01

    The Tasmanian bettong (Bettongia gaimardi) is a small rat kangaroo without detectable brown adipose tissue (BAT). In view of our previous findings of norepinephrine-mediated increase in O2 consumption (Vo2) in the perfused hindlimb of this species, the present study examined the effect of alpha-adrenoceptors on the thermogenesis of conscious bettongs at rest by infusing adrenergic agents via an indwelling catheter in the tail vein. The resting Vo2 was 22.9 +/- 1.9 mmol.kg-1.h-1. Norepinephrine (10-80 micrograms.kg-1.min-1) stimulated Vo2 in a dose-dependent manner with the maximal increment of 46.7%. Naphazoline (an alpha 1,alpha 2-adrenergic agonist) and phenylephrine (an alpha 1-adrenergic agonist) also elicited increases in Vo2 with maximal values of 29.6 and 34.8%, respectively. In contrast, the alpha 2-adrenergic agonist clonidine had no significant effects. Both alpha- and beta-adrenergic blockers were used to antagonize the submaximal increase in Vo2 elicited by norepinephrine. As a dose of 10 micrograms.kg-1.min-1, the alpha-adrenergic blocker phentolamine abolished the effects of naphazoline and phenylephrine and reduced norepinephrine-induced Vo2 by 45.5%. The beta-adrenergic blocker propranolol inhibited the norepinephrine-induced Vo2 by 58.8% at 20 micrograms.kg-1.min-1. A combination of the two antagonists blocked 82.5% of the norepinephrine-induced Vo2. Pretreatment of the animal with indomethacin (1 mg/kg), a known inhibitor of prostaglandin cyclooxygenase, had no effect on phenylephrine-elicited Vo2. Taken together, these results indicate that alpha 1-adrenoceptors are directly involved in norepinephrine-induced thermogenesis in non-BAT tissue(s).

  19. The effect of increased cardiac output on luteal phase gonadal steroids: a hypothesis for runners amenorrhea.

    PubMed

    Casper, R F; Wilkinson, D; Cotterell, M A

    1984-03-01

    The beta-adrenergic agonist isoproterenol was infused intravenously for 4 hours during the midluteal phase of the cycle in six normal women. A rapid increase in cardiac output occurred for the entire duration of the isoproterenol infusion and serum estrogen and progesterone levels (but not luteinizing hormone levels) decreased significantly (P less than 0.001) to a nadir of 30% and 50% of baseline levels, respectively, suggesting increased metabolic clearance of the two steroids. We hypothesize that endurance training chronically increases metabolic clearance of gonadal steroids, resulting in abnormal negative and/or positive feedback on the hypothalamic/pituitary axis leading to the menstrual irregularities commonly seen in athletes.

  20. Isolated myocardial bridging and exercise-related cardiac events.

    PubMed

    Gowd, B M P; Thompson, P D

    2014-12-01

    Myocardial bridging, which is defined as cardiac muscle overlying a part of a coronary artery, is the most common congenital coronary artery anomaly. Myocardial bridging is usually benign, but has been associated with exercise-related cardiac events. Guidelines for athletic participation in these patients are primarily based on reports from the general population with myocardial bridging. We performed a systematic literature search of PubMed, Ovid and Google Scholar for articles addressing exercise-related cardiac events associated with myocardial bridging. We identified 69 cases of which only 35 were well defined. We conclude that there are insufficient data to form definitive guidelines as to how physically active individuals with myocardial bridging should be managed. Prudence suggests that management should be individualized for those with possible symptoms. Beta adrenergic blockade is recommended as initial medical therapy. Surgery should be restricted to those with continued symptoms despite beta blocker therapy. There is no evidence that asymptomatic individuals without clinical evidence of ischemia should be restricted from vigorous activity. PMID:25144435

  1. Cardiac reactive oxygen species after traumatic brain injury

    PubMed Central

    Larson, Brett E; Stockwell, David W.; Boas, Stefan; Andrews, Trevor; Wellman, George C.; Lockette, Warren; Freeman, Kalev

    2011-01-01

    Background Cardiovascular complications after traumatic brain injury (TBI) contribute to morbidity and mortality and may provide a target for therapy. We examined blood pressure and left ventricle contractility after TBI, and tested the hypothesis that beta-adrenergic blockade would decrease oxidative stress after TBI. Material and Methods Rodents received fluid-percussion injury or sham surgery, confirmed with magnetic resonance imaging (MRI) and histopathology. We followed recovery with sensorimotor coordination testing and blood pressure measurements. We assessed left ventricular ejection fraction using ECG-gated cardiac MRI and measured myocardial reactive oxygen species (ROS) with dihydroethidium. We randomized additional TBI and sham animals to post-operative treatment with propranolol or control, for measurement of ROS. Results Blood pressure and cardiac contractility were elevated 48 hours after TBI. Myocardial tissue sections showed increased ROS. Treatment with propranolol diminished ROS levels following TBI. Conclusions TBI is associated with increased cardiac contractility and myocardial ROS; decreased myocardial ROS after beta-blockade suggests that sympathetic stimulation is a mechanism of oxidative stress. PMID:22172132