Sample records for cardiac analysis software

  1. 78 FR 1162 - Cardiovascular Devices; Reclassification of External Cardiac Compressor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... safety and electromagnetic compatibility; For devices containing software, software verification... electromagnetic compatibility; For devices containing software, software verification, validation, and hazard... electrical components, appropriate analysis and testing must validate electrical safety and electromagnetic...

  2. Accurate analysis and visualization of cardiac (11)C-PIB uptake in amyloidosis with semiautomatic software.

    PubMed

    Kero, Tanja; Lindsjö, Lars; Sörensen, Jens; Lubberink, Mark

    2016-08-01

    (11)C-PIB PET is a promising non-invasive diagnostic tool for cardiac amyloidosis. Semiautomatic analysis of PET data is now available but it is not known how accurate these methods are for amyloid imaging. The aim of this study was to evaluate the feasibility of one semiautomatic software tool for analysis and visualization of (11)C-PIB left ventricular retention index (RI) in cardiac amyloidosis. Patients with systemic amyloidosis and cardiac involvement (n = 10) and healthy controls (n = 5) were investigated with dynamic (11)C-PIB PET. Two observers analyzed the PET studies with semiautomatic software to calculate the left ventricular RI of (11)C-PIB and to create parametric images. The mean RI at 15-25 min from the semiautomatic analysis was compared with RI based on manual analysis and showed comparable values (0.056 vs 0.054 min(-1) for amyloidosis patients and 0.024 vs 0.025 min(-1) in healthy controls; P = .78) and the correlation was excellent (r = 0.98). Inter-reader reproducibility also was excellent (intraclass correlation coefficient, ICC > 0.98). Parametric polarmaps and histograms made visual separation of amyloidosis patients and healthy controls fast and simple. Accurate semiautomatic analysis of cardiac (11)C-PIB RI in amyloidosis patients is feasible. Parametric polarmaps and histograms make visual interpretation fast and simple.

  3. FloWave.US: validated, open-source, and flexible software for ultrasound blood flow analysis.

    PubMed

    Coolbaugh, Crystal L; Bush, Emily C; Caskey, Charles F; Damon, Bruce M; Towse, Theodore F

    2016-10-01

    Automated software improves the accuracy and reliability of blood velocity, vessel diameter, blood flow, and shear rate ultrasound measurements, but existing software offers limited flexibility to customize and validate analyses. We developed FloWave.US-open-source software to automate ultrasound blood flow analysis-and demonstrated the validity of its blood velocity (aggregate relative error, 4.32%) and vessel diameter (0.31%) measures with a skeletal muscle ultrasound flow phantom. Compared with a commercial, manual analysis software program, FloWave.US produced equivalent in vivo cardiac cycle time-averaged mean (TAMean) velocities at rest and following a 10-s muscle contraction (mean bias <1 pixel for both conditions). Automated analysis of ultrasound blood flow data was 9.8 times faster than the manual method. Finally, a case study of a lower extremity muscle contraction experiment highlighted the ability of FloWave.US to measure small fluctuations in TAMean velocity, vessel diameter, and mean blood flow at specific time points in the cardiac cycle. In summary, the collective features of our newly designed software-accuracy, reliability, reduced processing time, cost-effectiveness, and flexibility-offer advantages over existing proprietary options. Further, public distribution of FloWave.US allows researchers to easily access and customize code to adapt ultrasound blood flow analysis to a variety of vascular physiology applications. Copyright © 2016 the American Physiological Society.

  4. HRVanalysis: A Free Software for Analyzing Cardiac Autonomic Activity

    PubMed Central

    Pichot, Vincent; Roche, Frédéric; Celle, Sébastien; Barthélémy, Jean-Claude; Chouchou, Florian

    2016-01-01

    Since the pioneering studies of the 1960s, heart rate variability (HRV) has become an increasingly used non-invasive tool for examining cardiac autonomic functions and dysfunctions in various populations and conditions. Many calculation methods have been developed to address these issues, each with their strengths and weaknesses. Although, its interpretation may remain difficult, this technique provides, from a non-invasive approach, reliable physiological information that was previously inaccessible, in many fields including death and health prediction, training and overtraining, cardiac and respiratory rehabilitation, sleep-disordered breathing, large cohort follow-ups, children's autonomic status, anesthesia, or neurophysiological studies. In this context, we developed HRVanalysis, a software to analyse HRV, used and improved for over 20 years and, thus, designed to meet laboratory requirements. The main strength of HRVanalysis is its wide application scope. In addition to standard analysis over short and long periods of RR intervals, the software allows time-frequency analysis using wavelet transform as well as analysis of autonomic nervous system status on surrounding scored events and on preselected labeled areas. Moreover, the interface is designed for easy study of large cohorts, including batch mode signal processing to avoid running repetitive operations. Results are displayed as figures or saved in TXT files directly employable in statistical softwares. Recordings can arise from RR or EKG files of different types such as cardiofrequencemeters, holters EKG, polygraphs, and data acquisition systems. HRVanalysis can be downloaded freely from the Web page at: https://anslabtools.univ-st-etienne.fr HRVanalysis is meticulously maintained and developed for in-house laboratory use. In this article, after a brief description of the context, we present an overall view of HRV analysis and we describe the methodological approach of the different techniques provided by the software. PMID:27920726

  5. [Image processing applying in analysis of motion features of cultured cardiac myocyte in rat].

    PubMed

    Teng, Qizhi; He, Xiaohai; Luo, Daisheng; Wang, Zhengrong; Zhou, Beiyi; Yuan, Zhirun; Tao, Dachang

    2007-02-01

    Study of mechanism of medicine actions, by quantitative analysis of cultured cardiac myocyte, is one of the cutting edge researches in myocyte dynamics and molecular biology. The characteristics of cardiac myocyte auto-beating without external stimulation make the research sense. Research of the morphology and cardiac myocyte motion using image analysis can reveal the fundamental mechanism of medical actions, increase the accuracy of medicine filtering, and design the optimal formula of medicine for best medical treatments. A system of hardware and software has been built with complete sets of functions including living cardiac myocyte image acquisition, image processing, motion image analysis, and image recognition. In this paper, theories and approaches are introduced for analysis of living cardiac myocyte motion images and implementing quantitative analysis of cardiac myocyte features. A motion estimation algorithm is used for motion vector detection of particular points and amplitude and frequency detection of a cardiac myocyte. Beatings of cardiac myocytes are sometimes very small. In such case, it is difficult to detect the motion vectors from the particular points in a time sequence of images. For this reason, an image correlation theory is employed to detect the beating frequencies. Active contour algorithm in terms of energy function is proposed to approximate the boundary and detect the changes of edge of myocyte.

  6. Cardiac variation of inferior vena cava: new concept in the evaluation of intravascular blood volume.

    PubMed

    Nakamura, Kensuke; Tomida, Makoto; Ando, Takehiro; Sen, Kon; Inokuchi, Ryota; Kobayashi, Etsuko; Nakajima, Susumu; Sakuma, Ichiro; Yahagi, Naoki

    2013-07-01

    Evaluation of the intravascular blood volume is an important assessment in emergency and critical care medicine. Measurement of the inferior vena cava (IVC) respiratory variation by ultrasound echography is useful, but it entails subjective problems. We have hypothesized that IVC cardiac variation is also correlated with intravascular blood volume and analyzed it automatically using computer software of two kinds, later comparing the results. Snakes, software to track boundaries by curve line continuity, and template matching software were incorporated into a computer with an ultrasound machine to track the short-axis view of IVC automatically and analyze it with approximation by ellipse. Eight healthy volunteers with temporary mild hypovolemia underwent echography before and after passive leg raising and while wearing medical anti-shock trousers. IVC cardiac variation was visually decreased by both leg raising and medical anti-shock trousers. The collapse index (maximum - minimum/maximum) of area during three cardiac beats was decreased showing a good relationship to fluid load simulations; 0.24 ± 0.03 at baseline versus 0.11 ± 0.01 with leg raising and 0.12 ± 0.01 with medical anti-shock trousers. In conclusion, IVC cardiac variation has the potential to provide an evaluation of water volume. It presents some advantages in mechanical analysis over respiratory variation. At the very least, we need to exercise some caution with cardiac variation when evaluating respiratory variation.

  7. Performance of Automated Software in the Assessment of Segmental Left Ventricular Function in Cardiac CT: Comparison with Cardiac Magnetic Resonance.

    PubMed

    Wang, Rui; Meinel, Felix G; Schoepf, U Joseph; Canstein, Christian; Spearman, James V; De Cecco, Carlo N

    2015-12-01

    To evaluate the accuracy, reliability and time saving potential of a novel cardiac CT (CCT)-based, automated software for the assessment of segmental left ventricular function compared to visual and manual quantitative assessment of CCT and cardiac magnetic resonance (CMR). Forty-seven patients with suspected or known coronary artery disease (CAD) were enrolled in the study. Wall thickening was calculated. Segmental LV wall motion was automatically calculated and shown as a colour-coded polar map. Processing time for each method was recorded. Mean wall thickness in both systolic and diastolic phases on polar map, CCT, and CMR was 9.2 ± 0.1 mm and 14.9 ± 0.2 mm, 8.9 ± 0.1 mm and 14.5 ± 0.1 mm, 8.3 ± 0.1 mm and 13.6 ± 0.1 mm, respectively. Mean wall thickening was 68.4 ± 1.5 %, 64.8 ± 1.4 % and 67.1 ± 1.4 %, respectively. Agreement for the assessment of LV wall motion between CCT, CMR and polar maps was good. Bland-Altman plots and ICC indicated good agreement between CCT, CMR and automated polar maps of the diastolic and systolic segmental wall thickness and thickening. The processing time using polar map was significantly decreased compared with CCT and CMR. Automated evaluation of segmental LV function with polar maps provides similar measurements to manual CCT and CMR evaluation, albeit with substantially reduced analysis time. • Cardiac computed tomography (CCT) can accurately assess segmental left ventricular wall function. • A novel automated software permits accurate and fast evaluation of wall function. • The software may improve the clinical implementation of segmental functional analysis.

  8. Myocardial blood flow quantification by Rb-82 cardiac PET/CT: A detailed reproducibility study between two semi-automatic analysis programs.

    PubMed

    Dunet, Vincent; Klein, Ran; Allenbach, Gilles; Renaud, Jennifer; deKemp, Robert A; Prior, John O

    2016-06-01

    Several analysis software packages for myocardial blood flow (MBF) quantification from cardiac PET studies exist, but they have not been compared using concordance analysis, which can characterize precision and bias separately. Reproducible measurements are needed for quantification to fully develop its clinical potential. Fifty-one patients underwent dynamic Rb-82 PET at rest and during adenosine stress. Data were processed with PMOD and FlowQuant (Lortie model). MBF and myocardial flow reserve (MFR) polar maps were quantified and analyzed using a 17-segment model. Comparisons used Pearson's correlation ρ (measuring precision), Bland and Altman limit-of-agreement and Lin's concordance correlation ρc = ρ·C b (C b measuring systematic bias). Lin's concordance and Pearson's correlation values were very similar, suggesting no systematic bias between software packages with an excellent precision ρ for MBF (ρ = 0.97, ρc = 0.96, C b = 0.99) and good precision for MFR (ρ = 0.83, ρc = 0.76, C b = 0.92). On a per-segment basis, no mean bias was observed on Bland-Altman plots, although PMOD provided slightly higher values than FlowQuant at higher MBF and MFR values (P < .0001). Concordance between software packages was excellent for MBF and MFR, despite higher values by PMOD at higher MBF values. Both software packages can be used interchangeably for quantification in daily practice of Rb-82 cardiac PET.

  9. Diagnostic value of quantitative assessment of cardiac 18F-fluoro-2-deoxyglucose uptake in suspected cardiac sarcoidosis.

    PubMed

    Lebasnier, Adrien; Legallois, Damien; Bienvenu, Boris; Bergot, Emmanuel; Desmonts, Cédric; Zalcman, Gérard; Agostini, Denis; Manrique, Alain

    2018-06-01

    The identification of cardiac sarcoidosis is challenging as there is no gold standard consensually admitted for its diagnosis. The aim of this study was to evaluate the diagnostic value of the assessment of cardiac dynamic 18 F-fluoro-2-deoxyglucose positron emission tomography ( 18 F-FDG PET/CT) and net influx constant (Ki) in patients suspected of cardiac sarcoidosis. Data obtained from 30 biopsy-proven sarcoidosis patients suspected of cardiac sarcoidosis who underwent a 50-min list-mode cardiac dynamic 18 F-FDG PET/CT after a 24 h high-fat and low-carbohydrate diet were analyzed. A normalized coefficient of variation of quantitative glucose influx constant, calculated as the ratio: standard deviation of the segmental Ki (min -1 )/global Ki (min -1 ) was determined using a validated software (Carimas ® 2.4, Turku PET Centre). Cardiac sarcoidosis was diagnosed according to the Japanese Ministry of Health and Welfare criteria. Receiving operating curve analysis was performed to determine sensitivity and specificity of cardiac dynamic 18 F-FDG PET/CT analysis to diagnose cardiac sarcoidosis. Six out of 30 patients (20%) were diagnosed as having cardiac sarcoidosis. Myocardial glucose metabolism was significantly heterogeneous in patients with cardiac sarcoidosis who showed significantly higher normalized coefficient of variation values compared to patients without cardiac sarcoidosis (0.513 ± 0.175 vs. 0.205 ± 0.081; p = 0.0007). Using ROC curve analysis, we found a cut-off value of 0.38 for the diagnosis of cardiac sarcoidosis with a sensitivity of 100% and a specificity of 91%. Our results suggest that quantitative analysis of cardiac dynamic 18 F-FDG PET/CT could be a useful tool for the diagnosis of cardiac sarcoidosis.

  10. Novel Analysis Software for Detecting and Classifying Ca2+ Transient Abnormalities in Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Penttinen, Kirsi; Siirtola, Harri; Àvalos-Salguero, Jorge; Vainio, Tiina; Juhola, Martti; Aalto-Setälä, Katriina

    2015-01-01

    Comprehensive functioning of Ca2+ cycling is crucial for excitation–contraction coupling of cardiomyocytes (CMs). Abnormal Ca2+ cycling is linked to arrhythmogenesis, which is associated with cardiac disorders and heart failure. Accordingly, we have generated spontaneously beating CMs from induced pluripotent stem cells (iPSC) derived from patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), which is an inherited and severe cardiac disease. Ca2+ cycling studies have revealed substantial abnormalities in these CMs. Ca2+ transient analysis performed manually lacks accepted analysis criteria, and has both low throughput and high variability. To overcome these issues, we have developed a software tool, AnomalyExplorer based on interactive visualization, to assist in the classification of Ca2+ transient patterns detected in CMs. Here, we demonstrate the usability and capability of the software, and we also compare the analysis efficiency to manual analysis. We show that AnomalyExplorer is suitable for detecting normal and abnormal Ca2+ transients; furthermore, this method provides more defined and consistent information regarding the Ca2+ abnormality patterns and cell line specific differences when compared to manual analysis. This tool will facilitate and speed up the analysis of CM Ca2+ transients, making it both more accurate and user-independent. AnomalyExplorer can be exploited in Ca2+ cycling analysis to study basic disease pathology and the effects of different drugs. PMID:26308621

  11. Novel Analysis Software for Detecting and Classifying Ca2+ Transient Abnormalities in Stem Cell-Derived Cardiomyocytes.

    PubMed

    Penttinen, Kirsi; Siirtola, Harri; Àvalos-Salguero, Jorge; Vainio, Tiina; Juhola, Martti; Aalto-Setälä, Katriina

    2015-01-01

    Comprehensive functioning of Ca2+ cycling is crucial for excitation-contraction coupling of cardiomyocytes (CMs). Abnormal Ca2+ cycling is linked to arrhythmogenesis, which is associated with cardiac disorders and heart failure. Accordingly, we have generated spontaneously beating CMs from induced pluripotent stem cells (iPSC) derived from patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), which is an inherited and severe cardiac disease. Ca2+ cycling studies have revealed substantial abnormalities in these CMs. Ca2+ transient analysis performed manually lacks accepted analysis criteria, and has both low throughput and high variability. To overcome these issues, we have developed a software tool, AnomalyExplorer based on interactive visualization, to assist in the classification of Ca2+ transient patterns detected in CMs. Here, we demonstrate the usability and capability of the software, and we also compare the analysis efficiency to manual analysis. We show that AnomalyExplorer is suitable for detecting normal and abnormal Ca2+ transients; furthermore, this method provides more defined and consistent information regarding the Ca2+ abnormality patterns and cell line specific differences when compared to manual analysis. This tool will facilitate and speed up the analysis of CM Ca2+ transients, making it both more accurate and user-independent. AnomalyExplorer can be exploited in Ca2+ cycling analysis to study basic disease pathology and the effects of different drugs.

  12. Comparison of Segmental Versus Longitudinal Intravascular Ultrasound Analysis for Pediatric Cardiac Allograft Vasculopathy.

    PubMed

    Kuhn, M A; Burch, M; Chinnock, R E; Fenton, M J

    2017-10-01

    Intravascular ultrasound (IVUS) has been routinely used in some centers to investigate cardiac allograft vasculopathy in pediatric heart transplant recipients. We present an alternative method using more sophisticated imaging software. This study presents a comparison of this method with an established standard method. All patients who had IVUS performed in 2014 were retrospectively evaluated. The standard technique consisted of analysis of 10 operator-selected segments along the vessel. Each study was re-evaluated using a longitudinal technique, taken at every third cardiac cycle, along the entire vessel. Semiautomatic edge detection software was used to detect vessel imaging planes. Measurements included outer and inner diameter, total and luminal area, maximal intimal thickness (MIT), and intimal index. Each IVUS was graded for severity using the Stanford classification. All results were given as mean ± standard deviation (SD). Groups were compared using Student t test. A P value <.05 was considered significant. There were 59 IVUS studies performed on 58 patients. There was no statistically significant difference between outer diameter, inner diameter, or total area. In the longitudinal group, there was a significantly smaller luminal area, higher MIT, and higher intimal index. Using the longitudinal technique, there was an increase in Stanford classification in 20 patients. The longitudinal technique appeared more sensitive in assessing the degree of cardiac allograft vasculopathy and may play a role in the increase in the degree of thickening seen. It may offer an alternative way of grading severity of cardiac allograft vasculopathy in pediatric heart transplant recipients. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cybersecurity and medical devices: A practical guide for cardiac electrophysiologists

    PubMed Central

    Kramer, Daniel B.; Foo Kune, Denis; Auto de Medeiros, Julio; Yan, Chen; Xu, Wenyuan; Crawford, Thomas; Fu, Kevin

    2017-01-01

    Abstract Medical devices increasingly depend on software. While this expands the ability of devices to perform key therapeutic and diagnostic functions, reliance on software inevitably causes exposure to hazards of security vulnerabilities. This article uses a recent high‐profile case example to outline a proactive approach to security awareness that incorporates a scientific, risk‐based analysis of security concerns that supports ongoing discussions with patients about their medical devices. PMID:28512774

  14. The Cardiac Atlas Project--an imaging database for computational modeling and statistical atlases of the heart.

    PubMed

    Fonseca, Carissa G; Backhaus, Michael; Bluemke, David A; Britten, Randall D; Chung, Jae Do; Cowan, Brett R; Dinov, Ivo D; Finn, J Paul; Hunter, Peter J; Kadish, Alan H; Lee, Daniel C; Lima, Joao A C; Medrano-Gracia, Pau; Shivkumar, Kalyanam; Suinesiaputra, Avan; Tao, Wenchao; Young, Alistair A

    2011-08-15

    Integrative mathematical and statistical models of cardiac anatomy and physiology can play a vital role in understanding cardiac disease phenotype and planning therapeutic strategies. However, the accuracy and predictive power of such models is dependent upon the breadth and depth of noninvasive imaging datasets. The Cardiac Atlas Project (CAP) has established a large-scale database of cardiac imaging examinations and associated clinical data in order to develop a shareable, web-accessible, structural and functional atlas of the normal and pathological heart for clinical, research and educational purposes. A goal of CAP is to facilitate collaborative statistical analysis of regional heart shape and wall motion and characterize cardiac function among and within population groups. Three main open-source software components were developed: (i) a database with web-interface; (ii) a modeling client for 3D + time visualization and parametric description of shape and motion; and (iii) open data formats for semantic characterization of models and annotations. The database was implemented using a three-tier architecture utilizing MySQL, JBoss and Dcm4chee, in compliance with the DICOM standard to provide compatibility with existing clinical networks and devices. Parts of Dcm4chee were extended to access image specific attributes as search parameters. To date, approximately 3000 de-identified cardiac imaging examinations are available in the database. All software components developed by the CAP are open source and are freely available under the Mozilla Public License Version 1.1 (http://www.mozilla.org/MPL/MPL-1.1.txt). http://www.cardiacatlas.org a.young@auckland.ac.nz Supplementary data are available at Bioinformatics online.

  15. Atrioventricular junction (AVJ) motion tracking: a software tool with ITK/VTK/Qt.

    PubMed

    Pengdong Xiao; Shuang Leng; Xiaodan Zhao; Hua Zou; Ru San Tan; Wong, Philip; Liang Zhong

    2016-08-01

    The quantitative measurement of the Atrioventricular Junction (AVJ) motion is an important index for ventricular functions of one cardiac cycle including systole and diastole. In this paper, a software tool that can conduct AVJ motion tracking from cardiovascular magnetic resonance (CMR) images is presented by using Insight Segmentation and Registration Toolkit (ITK), The Visualization Toolkit (VTK) and Qt. The software tool is written in C++ by using Visual Studio Community 2013 integrated development environment (IDE) containing both an editor and a Microsoft complier. The software package has been successfully implemented. From the software engineering practice, it is concluded that ITK, VTK, and Qt are very handy software systems to implement automatic image analysis functions for CMR images such as quantitative measure of motion by visual tracking.

  16. Software development for the analysis of heartbeat sounds with LabVIEW in diagnosis of cardiovascular disease.

    PubMed

    Topal, Taner; Polat, Hüseyin; Güler, Inan

    2008-10-01

    In this paper, a time-frequency spectral analysis software (Heart Sound Analyzer) for the computer-aided analysis of cardiac sounds has been developed with LabVIEW. Software modules reveal important information for cardiovascular disorders, it can also assist to general physicians to come up with more accurate and reliable diagnosis at early stages. Heart sound analyzer (HSA) software can overcome the deficiency of expert doctors and help them in rural as well as urban clinics and hospitals. HSA has two main blocks: data acquisition and preprocessing, time-frequency spectral analyses. The heart sounds are first acquired using a modified stethoscope which has an electret microphone in it. Then, the signals are analysed using the time-frequency/scale spectral analysis techniques such as STFT, Wigner-Ville distribution and wavelet transforms. HSA modules have been tested with real heart sounds from 35 volunteers and proved to be quite efficient and robust while dealing with a large variety of pathological conditions.

  17. Automated Data Abstraction of Cardiopulmonary Resuscitation Process Measures for Complete Episodes of Cardiac Arrest Resuscitation.

    PubMed

    Lin, Steve; Turgulov, Anuar; Taher, Ahmed; Buick, Jason E; Byers, Adam; Drennan, Ian R; Hu, Samantha; J Morrison, Laurie

    2016-10-01

    Cardiopulmonary resuscitation (CPR) process measures research and quality assurance has traditionally been limited to the first 5 minutes of resuscitation due to significant costs in time, resources, and personnel from manual data abstraction. CPR performance may change over time during prolonged resuscitations, which represents a significant knowledge gap. Moreover, currently available commercial software output of CPR process measures are difficult to analyze. The objective was to develop and validate a software program to help automate the abstraction and transfer of CPR process measures data from electronic defibrillators for complete episodes of cardiac arrest resuscitation. We developed a software program to facilitate and help automate CPR data abstraction and transfer from electronic defibrillators for entire resuscitation episodes. Using an intermediary Extensible Markup Language export file, the automated software transfers CPR process measures data (electrocardiogram [ECG] number, CPR start time, number of ventilations, number of chest compressions, compression rate per minute, compression depth per minute, compression fraction, and end-tidal CO 2 per minute). We performed an internal validation of the software program on 50 randomly selected cardiac arrest cases with resuscitation durations between 15 and 60 minutes. CPR process measures were manually abstracted and transferred independently by two trained data abstractors and by the automated software program, followed by manual interpretation of raw ECG tracings, treatment interventions, and patient events. Error rates and the time needed for data abstraction, transfer, and interpretation were measured for both manual and automated methods, compared to an additional independent reviewer. A total of 9,826 data points were each abstracted by the two abstractors and by the software program. Manual data abstraction resulted in a total of six errors (0.06%) compared to zero errors by the software program. The mean ± SD time measured per case for manual data abstraction was 20.3 ± 2.7 minutes compared to 5.3 ± 1.4 minutes using the software program (p = 0.003). We developed and validated an automated software program that efficiently abstracts and transfers CPR process measures data from electronic defibrillators for complete cardiac arrest episodes. This software will enable future cardiac arrest studies and quality assurance programs to evaluate the impact of CPR process measures during prolonged resuscitations. © 2016 by the Society for Academic Emergency Medicine.

  18. Emotion Risk-Factor in Patients With Cardiac Diseases: The Role of Cognitive Emotion Regulation Strategies, Positive Affect and Negative Affect (A Case-Control Study)

    PubMed Central

    Bahremand, Mostafa; Alikhani, Mostafa; Zakiei, Ali; Janjani, Parisa; Aghaei, Abbas

    2016-01-01

    Application of psychological interventions is essential in classic treatments for patient with cardiac diseases. The present study compared cognitive emotion regulation strategies, positive affect, and negative affect for cardiac patients with healthy subjects. This study was a case-control study. Fifty subjects were selected using convenient sampling method from cardiac (coronary artery disease) patients presenting in Imam Ali medical center of Kermanshah, Iran in the spring 2013. Fifty subjects accompanied the patients to the medical center, selected as control group, did not have any history of cardiac diseases. For collecting data, the cognitive emotion regulation questionnaire and positive and negative affect scales were used. For data analysis, multivariate analysis of variance (MANOVA) was applied using the SPSS statistical software (ver. 19.0). In all cognitive emotion regulation strategies, there was a significant difference between the two groups. A significant difference was also detected regarding positive affect between the two groups, but no significant difference was found regarding negative affect. We found as a result that, having poor emotion regulation strategies is a risk factor for developing heart diseases. PMID:26234976

  19. Emotion Risk-Factor in Patients with Cardiac Diseases: The Role of Cognitive Emotion Regulation Strategies, Positive Affect and Negative Affect (A Case-Control Study).

    PubMed

    Bahremand, Mostafa; Alikhani, Mostafa; Zakiei, Ali; Janjani, Parisa; Aghei, Abbas

    2015-05-17

    Application of psychological interventions is essential in classic treatments for patient with cardiac diseases. The present study compared cognitive emotion regulation strategies, positive affect, and negative affect for cardiac patients with healthy subjects. This study was a case-control study. Fifty subjects were selected using convenient sampling method from cardiac (coronary artery disease) patients presenting in Imam Ali medical center of Kermanshah, Iran in the spring 2013. Fifty subjects accompanied the patients to the medical center, selected as control group, did not have any history of cardiac diseases. For collecting data, the cognitive emotion regulation questionnaire and positive and negative affect scales were used. For data analysis, multivariate analysis of variance (MANOVA) Was applied using the SPSS statistical software (ver. 19.0). In all cognitive emotion regulation strategies, there was a significant difference between the two groups. A significant difference was also detected regarding positive affect between the two groups, but no significant difference was found regarding negative affect. We found as a result that, having poor emotion regulation strategies is a risk factor for developing heart diseases.

  20. Assessment of drug-induced arrhythmic risk using limit cycle and autocorrelation analysis of human iPSC-cardiomyocyte contractility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, R. Jason

    2016-08-15

    Cardiac safety assays incorporating label-free detection of human stem-cell derived cardiomyocyte contractility provide human relevance and medium throughput screening to assess compound-induced cardiotoxicity. In an effort to provide quantitative analysis of the large kinetic datasets resulting from these real-time studies, we applied bioinformatic approaches based on nonlinear dynamical system analysis, including limit cycle analysis and autocorrelation function, to systematically assess beat irregularity. The algorithms were integrated into a software program to seamlessly generate results for 96-well impedance-based data. Our approach was validated by analyzing dose- and time-dependent changes in beat patterns induced by known proarrhythmic compounds and screening a cardiotoxicitymore » library to rank order compounds based on their proarrhythmic potential. We demonstrate a strong correlation for dose-dependent beat irregularity monitored by electrical impedance and quantified by autocorrelation analysis to traditional manual patch clamp potency values for hERG blockers. In addition, our platform identifies non-hERG blockers known to cause clinical arrhythmia. Our method provides a novel suite of medium-throughput quantitative tools for assessing compound effects on cardiac contractility and predicting compounds with potential proarrhythmia and may be applied to in vitro paradigms for pre-clinical cardiac safety evaluation. - Highlights: • Impedance-based monitoring of human iPSC-derived cardiomyocyte contractility • Limit cycle analysis of impedance data identifies aberrant oscillation patterns. • Nonlinear autocorrelation function quantifies beat irregularity. • Identification of hERG and non-hERG inhibitors with known risk of arrhythmia • Automated software processes limit cycle and autocorrelation analyses of 96w data.« less

  1. MUSCLEMOTION: A Versatile Open Software Tool to Quantify Cardiomyocyte and Cardiac Muscle Contraction In Vitro and In Vivo.

    PubMed

    Sala, Luca; van Meer, Berend J; Tertoolen, Leon G J; Bakkers, Jeroen; Bellin, Milena; Davis, Richard P; Denning, Chris; Dieben, Michel A E; Eschenhagen, Thomas; Giacomelli, Elisa; Grandela, Catarina; Hansen, Arne; Holman, Eduard R; Jongbloed, Monique R M; Kamel, Sarah M; Koopman, Charlotte D; Lachaud, Quentin; Mannhardt, Ingra; Mol, Mervyn P H; Mosqueira, Diogo; Orlova, Valeria V; Passier, Robert; Ribeiro, Marcelo C; Saleem, Umber; Smith, Godfrey L; Burton, Francis L; Mummery, Christine L

    2018-02-02

    There are several methods to measure cardiomyocyte and muscle contraction, but these require customized hardware, expensive apparatus, and advanced informatics or can only be used in single experimental models. Consequently, data and techniques have been difficult to reproduce across models and laboratories, analysis is time consuming, and only specialist researchers can quantify data. Here, we describe and validate an automated, open-source software tool (MUSCLEMOTION) adaptable for use with standard laboratory and clinical imaging equipment that enables quantitative analysis of normal cardiac contraction, disease phenotypes, and pharmacological responses. MUSCLEMOTION allowed rapid and easy measurement of movement from high-speed movies in (1) 1-dimensional in vitro models, such as isolated adult and human pluripotent stem cell-derived cardiomyocytes; (2) 2-dimensional in vitro models, such as beating cardiomyocyte monolayers or small clusters of human pluripotent stem cell-derived cardiomyocytes; (3) 3-dimensional multicellular in vitro or in vivo contractile tissues, such as cardiac "organoids," engineered heart tissues, and zebrafish and human hearts. MUSCLEMOTION was effective under different recording conditions (bright-field microscopy with simultaneous patch-clamp recording, phase contrast microscopy, and traction force microscopy). Outcomes were virtually identical to the current gold standards for contraction measurement, such as optical flow, post deflection, edge-detection systems, or manual analyses. Finally, we used the algorithm to quantify contraction in in vitro and in vivo arrhythmia models and to measure pharmacological responses. Using a single open-source method for processing video recordings, we obtained reliable pharmacological data and measures of cardiac disease phenotype in experimental cell, animal, and human models. © 2017 The Authors.

  2. XML-based scripting of multimodality image presentations in multidisciplinary clinical conferences

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Allada, Vivekanand; Dahlbom, Magdalena; Marcus, Phillip; Fine, Ian; Lapstra, Lorelle

    2002-05-01

    We developed a multi-modality image presentation software for display and analysis of images and related data from different imaging modalities. The software is part of a cardiac image review and presentation platform that supports integration of digital images and data from digital and analog media such as videotapes, analog x-ray films and 35 mm cine films. The software supports standard DICOM image files as well as AVI and PDF data formats. The system is integrated in a digital conferencing room that includes projections of digital and analog sources, remote videoconferencing capabilities, and an electronic whiteboard. The goal of this pilot project is to: 1) develop a new paradigm for image and data management for presentation in a clinically meaningful sequence adapted to case-specific scenarios, 2) design and implement a multi-modality review and conferencing workstation using component technology and customizable 'plug-in' architecture to support complex review and diagnostic tasks applicable to all cardiac imaging modalities and 3) develop an XML-based scripting model of image and data presentation for clinical review and decision making during routine clinical tasks and multidisciplinary clinical conferences.

  3. Development of MATLAB software to control data acquisition from a multichannel systems multi-electrode array.

    PubMed

    Messier, Erik

    2016-08-01

    A Multichannel Systems (MCS) microelectrode array data acquisition (DAQ) unit is used to collect multichannel electrograms (EGM) from a Langendorff perfused rabbit heart system to study sudden cardiac death (SCD). MCS provides software through which data being processed by the DAQ unit can be displayed and saved, but this software's combined utility with MATLAB is not very effective. MCSs software stores recorded EGM data in a MathCad (MCD) format, which is then converted to a text file format. These text files are very large, and it is therefore very time consuming to import the EGM data into MATLAB for real-time analysis. Therefore, customized MATLAB software was developed to control the acquisition of data from the MCS DAQ unit, and provide specific laboratory accommodations for this study of SCD. The developed DAQ unit control software will be able to accurately: provide real time display of EGM signals; record and save EGM signals in MATLAB in a desired format; and produce real time analysis of the EGM signals; all through an intuitive GUI.

  4. Angina on the Palm: randomized controlled pilot trial of Palm PDA software for referrals for cardiac testing.

    PubMed

    Greiver, Michelle; Drummond, Neil; White, David; Weshler, Jason; Moineddin, Rahim

    2005-03-01

    Personal digital assistants (PDAs) are popular with physicians: in 2003, 33% of Canadian doctors reported using them in their practices. We do not know, however, whether using a PDA changes the behaviour of practising physicians. We studied the effectiveness of a PDA software application to help family physicians diagnose angina among patients with chest pain. Prospective randomized controlled pilot trial using a cluster design. Primary care practices in the Toronto area. Eighteen family physicians belonging to the North Toronto Primary Care Research Network (Nortren) or recruited from a local hospital. We randomized physicians to receive a Palm PDA (which included the angina diagnosis software) or to continue conventional care. Physicians prospectively recorded the process of care for patients aged 30 to 75 presenting with suspected angina, over 7 months. Did the process of care for patients with suspected angina improve when their physicians had PDAs and software? The primary outcomes we looked at were frequency of cardiac stress test orders for suspected angina, and the appropriateness of referral for cardiac stress testing at presentation and for nuclear cardiology testing after cardiac stress testing. Secondary outcome was referrals to cardiologists. The software led to more overall use of cardiac stress testing (81% vs 50%). The absolute increase was 31% (P = .007, 95% confidence interval [CI] 8% to 58%). There was a trend toward more appropriate use of stress testing (48.6% with the PDA vs 28.6% control), an increase of 20% (P = .284, 95% CI -11.54% to 51.4%). There was also a trend toward more appropriate use of nuclear cardiology following cardiac stress testing (63.0% vs 45.5%), an absolute increase of 17.5% (P =.400, 95% CI -13.9% to 48.9%). Referrals to cardiologists did not increase (38.2% with the PDA vs 40.9%, P =.869). A PDA-based software application can lead to improved care for patients with suspected angina seen in family practices; this finding requires confirmation in a larger study.

  5. Cardiovascular imaging environment: will the future be cloud-based?

    PubMed

    Kawel-Boehm, Nadine; Bluemke, David A

    2017-07-01

    In cardiovascular CT and MR imaging large datasets have to be stored, post-processed, analyzed and distributed. Beside basic assessment of volume and function in cardiac magnetic resonance imaging e.g., more sophisticated quantitative analysis is requested requiring specific software. Several institutions cannot afford various types of software and provide expertise to perform sophisticated analysis. Areas covered: Various cloud services exist related to data storage and analysis specifically for cardiovascular CT and MR imaging. Instead of on-site data storage, cloud providers offer flexible storage services on a pay-per-use basis. To avoid purchase and maintenance of specialized software for cardiovascular image analysis, e.g. to assess myocardial iron overload, MR 4D flow and fractional flow reserve, evaluation can be performed with cloud based software by the consumer or complete analysis is performed by the cloud provider. However, challenges to widespread implementation of cloud services include regulatory issues regarding patient privacy and data security. Expert commentary: If patient privacy and data security is guaranteed cloud imaging is a valuable option to cope with storage of large image datasets and offer sophisticated cardiovascular image analysis for institutions of all sizes.

  6. Myokit: A simple interface to cardiac cellular electrophysiology.

    PubMed

    Clerx, Michael; Collins, Pieter; de Lange, Enno; Volders, Paul G A

    2016-01-01

    Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac cellular electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical user interface, single and multi-cell simulation engines and a library of advanced analysis tools accessible through a Python interface. Models can be loaded from Myokit's native file format or imported from CellML. Model export is provided to C, MATLAB, CellML, CUDA and OpenCL. Patch-clamp data can be imported and used to estimate model parameters. In this paper, we review existing tools to simulate the cardiac cellular action potential to find that current tools do not cater specifically to model development and that there is a gap between easy-to-use but limited software and powerful tools that require strong programming skills from their users. We then describe Myokit's capabilities, focusing on its model description language, simulation engines and import/export facilities in detail. Using three examples, we show how Myokit can be used for clinically relevant investigations, multi-model testing and parameter estimation in Markov models, all with minimal programming effort from the user. This way, Myokit bridges a gap between performance, versatility and user-friendliness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The effect of Cardiac Arrhythmias Simulation Software on the nurses' learning and professional development.

    PubMed

    Bazrafkan, Leila; Hemmati, Mehdi

    2018-04-01

    One of the important tasks of nurses in intensive care unit is interpretation of ECG. The use of training simulator is a new paradigm in the age of computers. This study was performed to evaluate the impact of cardiac arrhythmias simulator software on nurses' learning in the subspecialty Vali-Asr Hospital in 2016. This study was conducted by quasi-experimental randomized Salomon four group design with the participation of 120 nurses in subspecialty Vali-Asr Hospital in Tehran, Iran in 2016 that were selected purposefully and allocated in 4 groups. By this design other confounding factors such as the prior information, maturation and the role of sex and age were controlled by Solomon 4 design. The valid and reliable multiple choice test tools were used to gather information; the validity of the test was approved by experts and its reliability was obtained by Cronbach's alpha coefficient 0.89. At first, the knowledge and skills of the participants were assessed by a pre-test; following the educational intervention with cardiac arrhythmias simulator software during 14 days in ICUs, the mentioned factors were measured for the two groups again by a post-test in the four groups. Data were analyzed using the two way ANOVA. The significance level was considered as p<0.05. Based on randomized four-group Solomon designs and our test results, using cardiac arrhythmias simulator software as an intervention was effective in the nurses' learning since a significant difference was found between pre-test and post-test in the first group (p<0.05). Also, other comparisons by ANOVA test showed that there was no interaction between pre-test and intervention in all of the three knowledge areas of cardiac arrhythmias, their treatments and their diagnosis (P>0.05). The use of software-based simulator for cardiac arrhythmias was effective in nurses' learning in light of its attractive components and interactive method. This intervention increased the knowledge of the nurses in cognitive domain of cardiac arrhythmias in addition to their diagnosis and treatment. Also, the package can be used for training in other areas such as continuing medical education.

  8. Functional video-based analysis of 3D cardiac structures generated from human embryonic stem cells.

    PubMed

    Nitsch, Scarlett; Braun, Florian; Ritter, Sylvia; Scholz, Michael; Schroeder, Insa S

    2018-05-01

    Human embryonic stem cells (hESCs) differentiated into cardiomyocytes (CM) often develop into complex 3D structures that are composed of various cardiac cell types. Conventional methods to study the electrophysiology of cardiac cells are patch clamp and microelectrode array (MEAs) analyses. However, these methods are not suitable to investigate the contractile features of 3D cardiac clusters that detach from the surface of the culture dishes during differentiation. To overcome this problem, we developed a video-based motion detection software relying on the optical flow by Farnebäck that we call cBRA (cardiac beat rate analyzer). The beating characteristics of the differentiated cardiac clusters were calculated based on the local displacement between two subsequent images. Two differentiation protocols, which profoundly differ in the morphology of cardiac clusters generated and in the expression of cardiac markers, were used and the resulting CM were characterized. Despite these differences, beat rates and beating variabilities could be reliably determined using cBRA. Likewise, stimulation of β-adrenoreceptors by isoproterenol could easily be identified in the hESC-derived CM. Since even subtle changes in the beating features are detectable, this method is suitable for high throughput cardiotoxicity screenings. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Characteristics, survival and incidence rates and trends of primary cardiac malignancies in the United States.

    PubMed

    Saad, Anas M; Abushouk, Abdelrahman Ibrahim; Al-Husseini, Muneer J; Salahia, Sami; Alrefai, Anas; Afifi, Ahmed M; Abdel-Daim, Mohamed M

    The available literature on the incidence, management and prognosis of primary malignant cardiac tumors [PMCTs] is limited to single-center studies, prone to small sample size and referral bias. We used data from the Surveillance, Epidemiology, and End Results [SEER]-18 registry (between 2000 and 2014) to investigate the distribution, incidence trends and the survival rates of PMCTs. We used SEER*Stat (version 8.3.4) and the National Cancer Institute's Joinpoint Regression software (version 4.5.0.1) to calculate the incidence rates and annual percentage changes [APC] of PMCTs, respectively. We later used SPSS software (version 23) to perform Kaplan-Meier survival tests and covariate-adjusted Cox models. We identified 497 patients with PMCTs, including angiosarcomas (27.3%) and Non-Hodgkin's lymphomas [NHL] (26.9%). Unlike the incidence rate of NHL (0.108 per 10 6 person-years) that increased significantly (APC=3.56%, 95% CI, [1.445 to 5.725], P=.003) over the study period, we detected no significant change (APC=1.73%, 95% CI [-3.354 to 7.081], P=.483) in the incidence of cardiac angiosarcomas (0.107 per 10 6 person-years). Moreover, our analysis showed that the overall survival of NHL is significantly better than angiosarcomas (P<.001). In addition, surgical treatment was associated with a significant improvement (P=.027) in the overall survival of PMCTs. Our analysis showed a significant increase in the incidence of cardiac-NHL over the past 14 years with a significantly better survival than angiosarcomas. To further characterize these rare tumors, future studies should report data on the medical history and diagnostic and treatment modalities in these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Automated flow quantification in valvular heart disease based on backscattered Doppler power analysis: implementation on matrix-array ultrasound imaging systems.

    PubMed

    Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A

    2008-06-01

    Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.

  11. Diagnostic evaluation of three cardiac software packages using a consecutive group of patients

    PubMed Central

    2011-01-01

    Purpose The aim of this study was to compare the diagnostic performance of the three software packages 4DMSPECT (4DM), Emory Cardiac Toolbox (ECTb), and Cedars Quantitative Perfusion SPECT (QPS) for quantification of myocardial perfusion scintigram (MPS) using a large group of consecutive patients. Methods We studied 1,052 consecutive patients who underwent 2-day stress/rest 99mTc-sestamibi MPS studies. The reference/gold-standard classifications for the MPS studies were obtained from three physicians, with more than 25 years each of experience in nuclear cardiology, who re-evaluated all MPS images. Automatic processing was carried out using 4DM, ECTb, and QPS software packages. Total stress defect extent (TDE) and summed stress score (SSS) based on a 17-segment model were obtained from the software packages. Receiver-operating characteristic (ROC) analysis was performed. Results A total of 734 patients were classified as normal and the remaining 318 were classified as having infarction and/or ischemia. The performance of the software packages calculated as the area under the SSS ROC curve were 0.87 for 4DM, 0.80 for QPS, and 0.76 for ECTb (QPS vs. ECTb p = 0.03; other differences p < 0.0001). The area under the TDE ROC curve were 0.87 for 4DM, 0.82 for QPS, and 0.76 for ECTb (QPS vs. ECTb p = 0.0005; other differences p < 0.0001). Conclusion There are considerable differences in performance between the three software packages with 4DM showing the best performance and ECTb the worst. These differences in performance should be taken in consideration when software packages are used in clinical routine or in clinical studies. PMID:22214226

  12. Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour.

    PubMed

    Land, Sander; Gurev, Viatcheslav; Arens, Sander; Augustin, Christoph M; Baron, Lukas; Blake, Robert; Bradley, Chris; Castro, Sebastian; Crozier, Andrew; Favino, Marco; Fastl, Thomas E; Fritz, Thomas; Gao, Hao; Gizzi, Alessio; Griffith, Boyce E; Hurtado, Daniel E; Krause, Rolf; Luo, Xiaoyu; Nash, Martyn P; Pezzuto, Simone; Plank, Gernot; Rossi, Simone; Ruprecht, Daniel; Seemann, Gunnar; Smith, Nicolas P; Sundnes, Joakim; Rice, J Jeremy; Trayanova, Natalia; Wang, Dafang; Jenny Wang, Zhinuo; Niederer, Steven A

    2015-12-08

    Models of cardiac mechanics are increasingly used to investigate cardiac physiology. These models are characterized by a high level of complexity, including the particular anisotropic material properties of biological tissue and the actively contracting material. A large number of independent simulation codes have been developed, but a consistent way of verifying the accuracy and replicability of simulations is lacking. To aid in the verification of current and future cardiac mechanics solvers, this study provides three benchmark problems for cardiac mechanics. These benchmark problems test the ability to accurately simulate pressure-type forces that depend on the deformed objects geometry, anisotropic and spatially varying material properties similar to those seen in the left ventricle and active contractile forces. The benchmark was solved by 11 different groups to generate consensus solutions, with typical differences in higher-resolution solutions at approximately 0.5%, and consistent results between linear, quadratic and cubic finite elements as well as different approaches to simulating incompressible materials. Online tools and solutions are made available to allow these tests to be effectively used in verification of future cardiac mechanics software.

  13. Design of a cardiac monitor in terms of parameters of QRS complex.

    PubMed

    Chen, Zhen-cheng; Ni, Li-li; Su, Ke-ping; Wang, Hong-yan; Jiang, Da-zong

    2002-08-01

    Objective. To design a portable cardiac monitor system based on the available ordinary ECG machine and works on the basis of QRS parameters. Method. The 80196 single chip microcomputer was used as the central microprocessor and real time electrocardiac signal was collected and analyzed [correction of analysized] in the system. Result. Apart from the performance of an ordinary monitor, this machine possesses also the following functions: arrhythmia analysis, HRV analysis, alarm, freeze, and record of automatic papering. Convenient in carrying, the system is powered by AC or DC sources. Stability, low power and low cost are emphasized in the hardware design; and modularization method is applied in software design. Conclusion. Popular in usage and low cost made the portable monitor system suitable for use under simple conditions.

  14. Cardiac Versus Non-Cardiac Related Mortality Following Percutaneous Coronary Intervention in Patients with Insulin-Treated Type 2 Diabetes Mellitus: A Meta-Analysis.

    PubMed

    Wang, Qiang; Liu, Hao; Ding, Jiawang

    2018-05-19

    Cardiovascular mortality is a major concern for patients with type 2 diabetes mellitus (T2DM). Insulin therapy significantly contributes to a high rate of death in these patients. We have performed a meta-analysis comparing cardiac and non-cardiac-related mortality following percutaneous coronary intervention (PCI) in a sample of patients with insulin-treated type 2 diabetes mellitus (ITDM). Studies were included in the meta-analysis if: (1) they were trials or cohort studies involving patients with T2DM post-PCI; (2) the outcomes in ITDM were separately reported; and (3) they reported cardiac death and non-cardiac death among their clinical endpoints. ITDM patients with any degree of coronary artery disease were included. The analysis was carried out using RevMan version 5.3 software, and data were reported with odds ratios (OR) and 95% confidence intervals (CI) as the main parameters. A total of 4072 participants with ITDM were included, of whom 1658 participants and 2414 participants were extracted from randomized controlled trials and observational cohorts, respectively. Analysis of all data showed that death due to cardiac causes was significantly higher in patients with ITDM (OR 2.16, 95% CI 1.79-2.59; P = 0.00001). At 1 year of follow-up, cardiac death was still significantly higher compared to non-cardiac death (OR 2.39, 95% CI 1.47-3.88; P = 0.0004), and this result did not change with a longer follow-up period (3-5 years) (OR 2.09, 95% CI 1.70-2.56; P = 0.00001). Death due to cardiac causes was still significantly higher in the subpopulations of patients with everolimus-eluting stents (OR 2.31, 95% CI 1.26-4.26; P = 0.007), paclitaxel-eluting stents (OR 2.36, 95% CI 1.63-3.39; P = 0.00001), sirolimus-eluting stents (OR 2.11, 95% CI 1.67-2.67; P = 0.00001), and zotarolimus-eluting stents (OR 2.12, 95% CI 1.11-4.05; P = 0.02), respectively. Mortality due to cardiac causes was significantly higher than that due to non-cardiac causes in patients with ITDM who had undergone PCI. The same conclusion could be drawn from analyses focused on different follow-up periods, types of coronary stents, and type of study data used.

  15. Computational Analysis of Human Blood Flow

    NASA Astrophysics Data System (ADS)

    Panta, Yogendra; Marie, Hazel; Harvey, Mark

    2009-11-01

    Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.

  16. Quantification of myocardial fibrosis by digital image analysis and interactive stereology

    PubMed Central

    2014-01-01

    Background Cardiac fibrosis disrupts the normal myocardial structure and has a direct impact on heart function and survival. Despite already available digital methods, the pathologist’s visual score is still widely considered as ground truth and used as a primary method in histomorphometric evaluations. The aim of this study was to compare the accuracy of digital image analysis tools and the pathologist’s visual scoring for evaluating fibrosis in human myocardial biopsies, based on reference data obtained by point counting performed on the same images. Methods Endomyocardial biopsy material from 38 patients diagnosed with inflammatory dilated cardiomyopathy was used. The extent of total cardiac fibrosis was assessed by image analysis on Masson’s trichrome-stained tissue specimens using automated Colocalization and Genie software, by Stereology grid count and manually by Pathologist’s visual score. Results A total of 116 slides were analyzed. The mean results obtained by the Colocalization software (13.72 ± 12.24%) were closest to the reference value of stereology (RVS), while the Genie software and Pathologist score gave a slight underestimation. RVS values correlated strongly with values obtained using the Colocalization and Genie (r > 0.9, p < 0.001) software as well as the pathologist visual score. Differences in fibrosis quantification by Colocalization and RVS were statistically insignificant. However, significant bias was found in the results obtained by using Genie versus RVS and pathologist score versus RVS with mean difference values of: -1.61% and 2.24%. Bland-Altman plots showed a bidirectional bias dependent on the magnitude of the measurement: Colocalization software overestimated the area fraction of fibrosis in the lower end, and underestimated in the higher end of the RVS values. Meanwhile, Genie software as well as the pathologist score showed more uniform results throughout the values, with a slight underestimation in the mid-range for both. Conclusion Both applied digital image analysis methods revealed almost perfect correlation with the criterion standard obtained by stereology grid count and, in terms of accuracy, outperformed the pathologist’s visual score. Genie algorithm proved to be the method of choice with the only drawback of a slight underestimation bias, which is considered acceptable for both clinical and research evaluations. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9857909611227193 PMID:24912374

  17. Quantification of myocardial fibrosis by digital image analysis and interactive stereology.

    PubMed

    Daunoravicius, Dainius; Besusparis, Justinas; Zurauskas, Edvardas; Laurinaviciene, Aida; Bironaite, Daiva; Pankuweit, Sabine; Plancoulaine, Benoit; Herlin, Paulette; Bogomolovas, Julius; Grabauskiene, Virginija; Laurinavicius, Arvydas

    2014-06-09

    Cardiac fibrosis disrupts the normal myocardial structure and has a direct impact on heart function and survival. Despite already available digital methods, the pathologist's visual score is still widely considered as ground truth and used as a primary method in histomorphometric evaluations. The aim of this study was to compare the accuracy of digital image analysis tools and the pathologist's visual scoring for evaluating fibrosis in human myocardial biopsies, based on reference data obtained by point counting performed on the same images. Endomyocardial biopsy material from 38 patients diagnosed with inflammatory dilated cardiomyopathy was used. The extent of total cardiac fibrosis was assessed by image analysis on Masson's trichrome-stained tissue specimens using automated Colocalization and Genie software, by Stereology grid count and manually by Pathologist's visual score. A total of 116 slides were analyzed. The mean results obtained by the Colocalization software (13.72 ± 12.24%) were closest to the reference value of stereology (RVS), while the Genie software and Pathologist score gave a slight underestimation. RVS values correlated strongly with values obtained using the Colocalization and Genie (r>0.9, p<0.001) software as well as the pathologist visual score. Differences in fibrosis quantification by Colocalization and RVS were statistically insignificant. However, significant bias was found in the results obtained by using Genie versus RVS and pathologist score versus RVS with mean difference values of: -1.61% and 2.24%. Bland-Altman plots showed a bidirectional bias dependent on the magnitude of the measurement: Colocalization software overestimated the area fraction of fibrosis in the lower end, and underestimated in the higher end of the RVS values. Meanwhile, Genie software as well as the pathologist score showed more uniform results throughout the values, with a slight underestimation in the mid-range for both. Both applied digital image analysis methods revealed almost perfect correlation with the criterion standard obtained by stereology grid count and, in terms of accuracy, outperformed the pathologist's visual score. Genie algorithm proved to be the method of choice with the only drawback of a slight underestimation bias, which is considered acceptable for both clinical and research evaluations. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9857909611227193.

  18. Optimal reproducibility of gated sestamibi and thallium myocardial perfusion study left ventricular ejection fractions obtained on a solid-state CZT cardiac camera requires operator input.

    PubMed

    Cherk, Martin H; Ky, Jason; Yap, Kenneth S K; Campbell, Patrina; McGrath, Catherine; Bailey, Michael; Kalff, Victor

    2012-08-01

    To evaluate the reproducibility of serial re-acquisitions of gated Tl-201 and Tc-99m sestamibi left ventricular ejection fraction (LVEF) measurements obtained on a new generation solid-state cardiac camera system during myocardial perfusion imaging and the importance of manual operator optimization of left ventricular wall tracking. Resting blinded automated (auto) and manual operator optimized (opt) LVEF measurements were measured using ECT toolbox (ECT) and Cedars-Sinai QGS software in two separate cohorts of 55 Tc-99m sestamibi (MIBI) and 50 thallium (Tl-201) myocardial perfusion studies (MPS) acquired in both supine and prone positions on a cadmium zinc telluride (CZT) solid-state camera system. Resting supine and prone automated LVEF measurements were similarly obtained in a further separate cohort of 52 gated cardiac blood pool scans (GCBPS) for validation of methodology and comparison. Appropriate use of Bland-Altman, chi-squared and Levene's equality of variance tests was used to analyse the resultant data comparisons. For all radiotracer and software combinations, manual checking and optimization of valve planes (+/- centre radius with ECT software) resulted in significant improvement in MPS LVEF reproducibility that approached that of planar GCBPS. No difference was demonstrated between optimized MIBI/Tl-201 QGS and planar GCBPS LVEF reproducibility (P = .17 and P = .48, respectively). ECT required significantly more manual optimization compared to QGS software in both supine and prone positions independent of radiotracer used (P < .02). Reproducibility of gated sestamibi and Tl-201 LVEF measurements obtained during myocardial perfusion imaging with ECT toolbox or QGS software packages using a new generation solid-state cardiac camera with improved image quality approaches that of planar GCBPS however requires visual quality control and operator optimization of left ventricular wall tracking for best results. Using this superior cardiac technology, Tl-201 reproducibility also appears at least equivalent to sestamibi for measuring LVEF.

  19. MIQuant – Semi-Automation of Infarct Size Assessment in Models of Cardiac Ischemic Injury

    PubMed Central

    Esteves, Tiago; de Pina, Maria de Fátima; Guedes, Joana G.; Freire, Ana; Quelhas, Pedro; Pinto-do-Ó, Perpétua

    2011-01-01

    Background The cardiac regenerative potential of newly developed therapies is traditionally evaluated in rodent models of surgically induced myocardial ischemia. A generally accepted key parameter for determining the success of the applied therapy is the infarct size. Although regarded as a gold standard method for infarct size estimation in heart ischemia, histological planimetry is time-consuming and highly variable amongst studies. The purpose of this work is to contribute towards the standardization and simplification of infarct size assessment by providing free access to a novel semi-automated software tool. The acronym MIQuant was attributed to this application. Methodology/Principal Findings Mice were subject to permanent coronary artery ligation and the size of chronic infarcts was estimated by area and midline-length methods using manual planimetry and with MIQuant. Repeatability and reproducibility of MIQuant scores were verified. The validation showed high correlation (r midline length = 0.981; r area = 0.970 ) and agreement (Bland-Altman analysis), free from bias for midline length and negligible bias of 1.21% to 3.72% for area quantification. Further analysis demonstrated that MIQuant reduced by 4.5-fold the time spent on the analysis and, importantly, MIQuant effectiveness is independent of user proficiency. The results indicate that MIQuant can be regarded as a better alternative to manual measurement. Conclusions We conclude that MIQuant is a reliable and an easy-to-use software for infarct size quantification. The widespread use of MIQuant will contribute towards the standardization of infarct size assessment across studies and, therefore, to the systematization of the evaluation of cardiac regenerative potential of emerging therapies. PMID:21980376

  20. Development of a patch type embedded cardiac function monitoring system using dual microprocessor for arrhythmia detection in heart disease patient.

    PubMed

    Jang, Yongwon; Noh, Hyung Wook; Lee, I B; Jung, Ji-Wook; Song, Yoonseon; Lee, Sooyeul; Kim, Seunghwan

    2012-01-01

    A patch type embedded cardiac function monitoring system was developed to detect arrhythmias such as PVC (Premature Ventricular Contraction), pause, ventricular fibrillation, and tachy/bradycardia. The overall system is composed of a main module including a dual processor and a Bluetooth telecommunication module. The dual microprocessor strategy minimizes power consumption and size, and guarantees the resources of embedded software programs. The developed software was verified with standard DB, and showed good performance.

  1. Comparative Proteome Profiling during Cardiac Hypertrophy and Myocardial Infarction Reveals Altered Glucose Oxidation by Differential Activation of Pyruvate Dehydrogenase E1 Component Subunit β.

    PubMed

    Mitra, Arkadeep; Basak, Trayambak; Ahmad, Shadab; Datta, Kaberi; Datta, Ritwik; Sengupta, Shantanu; Sarkar, Sagartirtha

    2015-06-05

    Cardiac hypertrophy and myocardial infarction (MI) are two etiologically different disease forms with varied pathological characteristics. However, the precise molecular mechanisms and specific causal proteins associated with these diseases are obscure to date. In this study, a comparative cardiac proteome profiling was performed in Wistar rat models for diseased and control (sham) groups using two-dimensional difference gel electrophoresis followed by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Proteins were identified using Protein Pilot™ software (version 4.0) and were subjected to stringent statistical analysis. Alteration of key proteins was validated by Western blot analysis. The differentially expressed protein sets identified in this study were associated with different functional groups, involving various metabolic pathways, stress responses, cytoskeletal organization, apoptotic signaling and other miscellaneous functions. It was further deciphered that altered energy metabolism during hypertrophy in comparison to MI may be predominantly attributed to induced glucose oxidation level, via reduced phosphorylation of pyruvate dehydrogenase E1 component subunit β (PDHE1-B) protein during hypertrophy. This study reports for the first time the global changes in rat cardiac proteome during two etiologically different cardiac diseases and identifies key signaling regulators modulating ontogeny of these two diseases culminating in heart failure. This study also pointed toward differential activation of PDHE1-B that accounts for upregulation of glucose oxidation during hypertrophy. Downstream analysis of altered proteome and the associated modulators would enhance our present knowledge regarding altered pathophysiology of these two etiologically different cardiac disease forms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Assessment of left ventricular size and function by 3-dimensional transthoracic echocardiography: Impact of the echocardiography platform and analysis software.

    PubMed

    Castel, Anne Laure; Toledano, Manuel; Tribouilloy, Christophe; Delelis, François; Mailliet, Amandine; Marotte, Nathalie; Guerbaai, Raphaëlle A; Levy, Franck; Graux, Pierre; Ennezat, Pierre-Vladimir; Maréchaux, Sylvestre

    2018-05-27

    Whether echocardiography platform and analysis software impact left ventricular (LV) volumes, ejection fraction (EF), and stroke volume (SV) by transthoracic tridimensional echocardiography (3DE) has not yet been assessed. Hence, our aim was to compare 3DE LV end-diastolic and end-systolic volumes (EDV and ESV), LVEF, and SV obtained with echocardiography platform from 2 different manufacturers. 3DE was performed in 84 patients (65% of screened consecutive patients), with equipment from 2 different manufacturers, with subsequent off-line postprocessing to obtain parameters of LV function and size (Philips QLAB 3DQ and General Electric EchoPAC 4D autoLVQ). Twenty-five patients with clinical indication for cardiac magnetic resonance imaging served as a validation subgroup. LVEDV and LVESV from 2 vendors were highly correlated (r = 0.93), but compared with 4D autoLVQ, the use of Qlab 3DQ resulted in lower LVEDV and LVESV (bias: 11 mL, limits of agreement: -25 to +47 and bias: 6 mL, limits of agreement: -22 to +34, respectively). The agreement between LVEF values of each software was poor (intraclass correlation coefficient 0.62) despite no or minimal bias. SVs were also lower with Qlab 3DQ advanced compared with 4D autoLVQ, and both were poorly correlated (r = 0.66). Consistently, the underestimation of LVEDV, LVESV, and SV by 3DE compared with cardiac magnetic resonance imaging was more pronounced with Philips QLAB 3DQ advanced than with 4D autoLVQ. The echocardiography platform and analysis software significantly affect the values of LV parameters obtained by 3DE. Intervendor standardization and improvements in 3DE modalities are needed to broaden the use of LV parameters obtained by 3DE in clinical practice. Copyright © 2018. Published by Elsevier Inc.

  3. [Design and application of user managing system of cardiac remote monitoring network].

    PubMed

    Chen, Shouqiang; Zhang, Jianmin; Yuan, Feng; Gao, Haiqing

    2007-12-01

    According to inpatient records, data managing demand of cardiac remote monitoring network and computer, this software was designed with relative database ACCESS. Its interface, operational button and menu were designed in VBA language assistantly. Its design included collective design, amity, practicability and compatibility. Its function consisted of registering, inquiring, statisticing and printing, et al. It could be used to manage users effectively and could be helpful to exerting important action of cardiac remote monitoring network in preventing cardiac-vascular emergency ulteriorly.

  4. Prehospital therapeutic hypothermia after cardiac arrest: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Diao, Mengyuan; Huang, Fenglou; Guan, Jun; Zhang, Zhe; Xiao, Yan; Shan, Yi; Lin, Zhaofen; Ding, Liangcai

    2013-08-01

    Therapeutic hypothermia has been recommended for the treatment of cardiac arrest patients who remain comatose after the return of spontaneous circulation. However, the optimal time to initiate therapeutic hypothermia remains unclear. The objective of the present study is to assess the effectiveness and safety of prehospital therapeutic hypothermia after cardiac arrest. Databases such as MEDLINE, Embase, and Cochrane Library were searched from their establishment date to May of 2012 to retrieve randomized control trials on prehospital therapeutic hypothermia after cardiac arrest. Thereafter, the studies retrieved were screened based on predefined inclusion and exclusion criteria. Data were extracted and the quality of the included studies was evaluated. A meta-analysis was performed by using the Cochrane Collaboration Review Manager 5.1.6 software. Five studies involving 633 cases were included, among which 314 cases were assigned to the treatment group and the other 319 cases to the control group. The meta-analysis indicated that prehospital therapeutic hypothermia after cardiac arrest produced significant differences in temperature on hospital admission compared with in-hospital therapeutic hypothermia or normothermia (patient data; mean difference=-0.95; 95% confidence interval -1.15 to -0.75; I(2)=0%). However, no significant differences were observed in the survival to the hospital discharge, favorable neurological outcome at hospital discharge, and rearrest. The risk of bias was low; however, the quality of the evidence was very low. This review demonstrates that prehospital therapeutic hypothermia after cardiac arrest can decrease temperature on hospital admission. On the other hand, regarding the survival to hospital discharge, favorable neurological outcome at hospital discharge, and rearrest, our meta-analysis and review produces non-significant results. Using the Grading of Recommendations, Assessment, Development and Evaluation methodology, we conclude that the quality of evidence is very low. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Reference ranges for LVEF and LV volumes from electrocardiographically gated 82Rb cardiac PET/CT using commercially available software.

    PubMed

    Bravo, Paco E; Chien, David; Javadi, Mehrbod; Merrill, Jennifer; Bengel, Frank M

    2010-06-01

    Electrocardiographic gating is increasingly used for (82)Rb cardiac PET/CT, but reference ranges for global functional parameters are not well defined. We sought to establish reference values for left ventricular ejection fraction (LVEF), end systolic volume (ESV), and end diastolic volume (EDV) using 4 different commercial software packages. Additionally, we compared 2 different approaches for the definition of a healthy individual. Sixty-two subjects (mean age +/- SD, 49 +/- 9 y; 85% women; mean body mass index +/- SD, 34 +/- 10 kg/m(2)) who underwent (82)Rb-gated myocardial perfusion PET/CT were evaluated. All subjects had normal myocardial perfusion and no history of coronary artery disease (CAD) or cardiomyopathy. Subgroup 1 consisted of 34 individuals with low pretest probability of CAD (<10%), and subgroup 2 comprised 28 subjects who had no atherosclerosis on a coronary CT angiogram obtained concurrently during the PET/CT session. LVEF, ESV, and EDV were calculated at rest and during dipyridamole-induced stress, using CardIQ Physio (a dedicated PET software) and the 3 major SPECT software packages (Emory Cardiac Toolbox, Quantitative Gated SPECT, and 4DM-SPECT). Mean LVEF was significantly different among all 4 software packages. LVEF was most comparable between CardIQ Physio (62% +/- 6% and 54% +/- 7% at stress and rest, respectively) and 4DM-SPECT (64% +/- 7% and 56% +/- 8%, respectively), whereas Emory Cardiac Toolbox yielded higher values (71% +/- 6% and 65% +/- 6%, respectively, P < 0.001) and Quantitated Gated SPECT lower values (56% +/- 8% and 50% +/- 8%, respectively, P < 0.001). Subgroup 1 (low likelihood) demonstrated higher LVEF values than did subgroup 2 (normal CT angiography findings), using all software packages (P < 0.05). However, mean ESV and EDV at stress and rest were comparable between both subgroups (p = NS). Intra- and interobserver agreement were excellent for all methods. The reference range of LVEF and LV volumes from gated (82)Rb PET/CT varies significantly among available software programs and therefore cannot be used interchangeably. LVEF results were higher when healthy subjects were defined by a low pretest probability of CAD than by normal CT angiography results.

  6. Fast interactive real-time volume rendering of real-time three-dimensional echocardiography: an implementation for low-end computers

    NASA Technical Reports Server (NTRS)

    Saracino, G.; Greenberg, N. L.; Shiota, T.; Corsi, C.; Lamberti, C.; Thomas, J. D.

    2002-01-01

    Real-time three-dimensional echocardiography (RT3DE) is an innovative cardiac imaging modality. However, partly due to lack of user-friendly software, RT3DE has not been widely accepted as a clinical tool. The object of this study was to develop and implement a fast and interactive volume renderer of RT3DE datasets designed for a clinical environment where speed and simplicity are not secondary to accuracy. Thirty-six patients (20 regurgitation, 8 normal, 8 cardiomyopathy) were imaged using RT3DE. Using our newly developed software, all 3D data sets were rendered in real-time throughout the cardiac cycle and assessment of cardiac function and pathology was performed for each case. The real-time interactive volume visualization system is user friendly and instantly provides consistent and reliable 3D images without expensive workstations or dedicated hardware. We believe that this novel tool can be used clinically for dynamic visualization of cardiac anatomy.

  7. HeartSaver: a mobile cardiac monitoring system for auto-detection of atrial fibrillation, myocardial infarction, and atrio-ventricular block.

    PubMed

    Sankari, Ziad; Adeli, Hojjat

    2011-04-01

    A mobile medical device, dubbed HeartSaver, is developed for real-time monitoring of a patient's electrocardiogram (ECG) and automatic detection of several cardiac pathologies, including atrial fibrillation, myocardial infarction and atrio-ventricular block. HeartSaver is based on adroit integration of four different modern technologies: electronics, wireless communication, computer, and information technologies in the service of medicine. The physical device consists of four modules: sensor and ECG processing unit, a microcontroller, a link between the microcontroller and the cell phone, and mobile software associated with the system. HeartSaver includes automated cardiac pathology detection algorithms. These algorithms are simple enough to be implemented on a low-cost, limited-power microcontroller but powerful enough to detect the relevant cardiac pathologies. When an abnormality is detected, the microcontroller sends a signal to a cell phone. This operation triggers an application software on the cell phone that sends a text message transmitting information about patient's physiological condition and location promptly to a physician or a guardian. HeartSaver can be used by millions of cardiac patients with the potential to transform the cardiac diagnosis, care, and treatment and save thousands of lives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Usefulness of the novel risk estimation software, Heart Risk View, for the prediction of cardiac events in patients with normal myocardial perfusion SPECT.

    PubMed

    Sakatani, Tomohiko; Shimoo, Satoshi; Takamatsu, Kazuaki; Kyodo, Atsushi; Tsuji, Yumika; Mera, Kayoko; Koide, Masahiro; Isodono, Koji; Tsubakimoto, Yoshinori; Matsuo, Akiko; Inoue, Keiji; Fujita, Hiroshi

    2016-12-01

    Myocardial perfusion single-photon emission-computed tomography (SPECT) can predict cardiac events in patients with coronary artery disease with high accuracy; however, pseudo-negative cases sometimes occur. Heart Risk View, which is based on the prospective cohort study (J-ACCESS), is a software for evaluating cardiac event probability. We examined whether Heart Risk View was useful to evaluate the cardiac risk in patients with normal myocardial perfusion SPECT (MPS). We studied 3461 consecutive patients who underwent MPS to detect myocardial ischemia and those who had normal MPS were enrolled in this study (n = 698). We calculated cardiac event probability by Heart Risk View and followed-up for 3.8 ± 2.4 years. The cardiac events were defined as cardiac death, non-fatal myocardial infarction, and heart failure requiring hospitalization. During the follow-up period, 21 patients (3.0 %) had cardiac events. The event probability calculated by Heart Risk View was higher in the event group (5.5 ± 2.6 vs. 2.9 ± 2.6 %, p < 0.001). According to the receiver-operating characteristics curve, the cut-off point of the event probability for predicting cardiac events was 3.4 % (sensitivity 0.76, specificity 0.72, and AUC 0.85). Kaplan-Meier curves revealed that a higher event rate was observed in the high-event probability group by the log-rank test (p < 0.001). Although myocardial perfusion SPECT is useful for the prediction of cardiac events, risk estimation by Heart Risk View adds more prognostic information, especially in patients with normal MPS.

  9. Visualization of spiral and scroll waves in simulated and experimental cardiac tissue

    NASA Astrophysics Data System (ADS)

    Cherry, E. M.; Fenton, F. H.

    2008-12-01

    The heart is a nonlinear biological system that can exhibit complex electrical dynamics, complete with period-doubling bifurcations and spiral and scroll waves that can lead to fibrillatory states that compromise the heart's ability to contract and pump blood efficiently. Despite the importance of understanding the range of cardiac dynamics, studying how spiral and scroll waves can initiate, evolve, and be terminated is challenging because of the complicated electrophysiology and anatomy of the heart. Nevertheless, over the last two decades advances in experimental techniques have improved access to experimental data and have made it possible to visualize the electrical state of the heart in more detail than ever before. During the same time, progress in mathematical modeling and computational techniques has facilitated using simulations as a tool for investigating cardiac dynamics. In this paper, we present data from experimental and simulated cardiac tissue and discuss visualization techniques that facilitate understanding of the behavior of electrical spiral and scroll waves in the context of the heart. The paper contains many interactive media, including movies and interactive two- and three-dimensional Java appletsDisclaimer: IOP Publishing was not involved in the programming of this software and does not accept any responsibility for it. You download and run the software at your own risk. If you experience any problems with the software, please contact the author directly. To the fullest extent permitted by law, IOP Publishing Ltd accepts no responsibility for any loss, damage and/or other adverse effect on your computer system caused by your downloading and running this software. IOP Publishing Ltd accepts no responsibility for consequential loss..

  10. Novel Three-Dimensional Image Fusion Software to Facilitate Guidance of Complex Cardiac Catheterization : 3D image fusion for interventions in CHD.

    PubMed

    Goreczny, Sebastian; Dryzek, Pawel; Morgan, Gareth J; Lukaszewski, Maciej; Moll, Jadwiga A; Moszura, Tomasz

    2017-08-01

    We report initial experience with novel three-dimensional (3D) image fusion software for guidance of transcatheter interventions in congenital heart disease. Developments in fusion imaging have facilitated the integration of 3D roadmaps from computed tomography or magnetic resonance imaging datasets. The latest software allows live fusion of two-dimensional (2D) fluoroscopy with pre-registered 3D roadmaps. We reviewed all cardiac catheterizations guided with this software (Philips VesselNavigator). Pre-catheterization imaging and catheterization data were collected focusing on fusion of 3D roadmap, intervention guidance, contrast and radiation exposure. From 09/2015 until 06/2016, VesselNavigator was applied in 34 patients for guidance (n = 28) or planning (n = 6) of cardiac catheterization. In all 28 patients successful 2D-3D registration was performed. Bony structures combined with the cardiovascular silhouette were used for fusion in 26 patients (93%), calcifications in 9 (32%), previously implanted devices in 8 (29%) and low-volume contrast injection in 7 patients (25%). Accurate initial 3D roadmap alignment was achieved in 25 patients (89%). Six patients (22%) required realignment during the procedure due to distortion of the anatomy after introduction of stiff equipment. Overall, VesselNavigator was applied successfully in 27 patients (96%) without any complications related to 3D image overlay. VesselNavigator was useful in guidance of nearly all of cardiac catheterizations. The combination of anatomical markers and low-volume contrast injections allowed reliable 2D-3D registration in the vast majority of patients.

  11. Development of new anatomy reconstruction software to localize cardiac isochrones to the cardiac surface from the 12 lead ECG.

    PubMed

    van Dam, Peter M; Gordon, Jeffrey P; Laks, Michael M; Boyle, Noel G

    2015-01-01

    Non-invasive electrocardiographic imaging (ECGI) of the cardiac muscle can help the pre-procedure planning of the ablation of ventricular arrhythmias by reducing the time to localize the origin. Our non-invasive ECGI system, the cardiac isochrone positioning system (CIPS), requires non-intersecting meshes of the heart, lungs and torso. However, software to reconstruct the meshes of the heart, lungs and torso with the capability to check and prevent these intersections is currently lacking. Consequently the reconstruction of a patient specific model with realistic atrial and ventricular wall thickness and incorporating blood cavities, lungs and torso usually requires additional several days of manual work. Therefore new software was developed that checks and prevents any intersections, and thus enables the use of accurate reconstructed anatomical models within CIPS. In this preliminary study we investigated the accuracy of the created patient specific anatomical models from MRI or CT. During the manual segmentation of the MRI data the boundaries of the relevant tissues are determined. The resulting contour lines are used to automatically morph reference meshes of the heart, lungs or torso to match the boundaries of the morphed tissue. Five patients were included in the study; models of the heart, lungs and torso were reconstructed from standard cardiac MRI images. The accuracy was determined by computing the distance between the segmentation contours and the morphed meshes. The average accuracy of the reconstructed cardiac geometry was within 2mm with respect to the manual segmentation contours on the MRI images. Derived wall volumes and left ventricular wall thickness were within the range reported in literature. For each reconstructed heart model the anatomical heart axis was computed using the automatically determined anatomical landmarks of the left apex and the mitral valve. The accuracy of the reconstructed heart models was well within the accuracy of the used medical image data (pixel size <1.5mm). For the lungs and torso the number of triangles in the mesh was reduced, thus decreasing the accuracy of the reconstructed mesh. A novel software tool has been introduced, which is able to reconstruct accurate cardiac anatomical models from MRI or CT within only a few hours. This new anatomical reconstruction tool might reduce the modeling errors within the cardiac isochrone positioning system and thus enable the clinical application of CIPS to localize the PVC/VT focus to the ventricular myocardium from only the standard 12 lead ECG. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Cardiac imaging: working towards fully-automated machine analysis & interpretation.

    PubMed

    Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido

    2017-03-01

    Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered: This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary: Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation.

  13. An update on technical and methodological aspects for cardiac PET applications.

    PubMed

    Presotto, Luca; Busnardo, Elena; Gianolli, Luigi; Bettinardi, Valentino

    2016-12-01

    Positron emission tomography (PET) is indicated for a large number of cardiac diseases: perfusion and viability studies are commonly used to evaluate coronary artery disease; PET can also be used to assess sarcoidosis and endocarditis, as well as to investigate amyloidosis. Furthermore, a hot topic for research is plaque characterization. Most of these studies are technically very challenging. High count rates and short acquisition times characterize perfusion scans while very small targets have to be imaged in inflammation/infection and plaques examinations. Furthermore, cardiac PET suffers from respiratory and cardiac motion blur. Each type of studies has specific requirements from the technical and methodological point of view, thus PET systems with overall high performances are required. Furthermore, in the era of hybrid PET/computed tomography (CT) and PET/Magnetic Resonance Imaging (MRI) systems, the combination of complementary functional and anatomical information can be used to improve diagnosis and prognosis. Moreover, PET images can be qualitatively and quantitatively improved exploiting information from the other modality, using advanced algorithms. In this review we will report the latest technological and methodological innovations for PET cardiac applications, with particular reference to the state of the art of the hybrid PET/CT and PET/MRI. We will also report the most recent advancements in software, from reconstruction algorithms to image processing and analysis programs.

  14. Digital stethoscope system: the feasibility of cardiac auscultation

    NASA Astrophysics Data System (ADS)

    Pariaszewska, Katarzyna; Młyńczak, Marcel; Niewiadomski, Wiktor; Cybulski, Gerard

    2013-10-01

    The application of the digital stethoscope system is a new tendency in methods of cardiac auscultation. Heart sounds, generated by the fluctuations of blood velocity and vibrations of muscle structure, are an important signal in the primary diagnosis of heart diseases. Since the XIXs century for physical examination an analog stethoscope was used, but the development of microelectronics enable the construction of digital stethoscopes which started modern phonocardiography. The typical hardware of the system could be divided into analog and digital parts, respectively. The first one consists of microphone and pre-amplifier. The second one contains a microcontroller with peripherals for data saving and transmission. Usually the specialized software is applied for the signal acquisition and digital signal processing (filtering, spectral analysis and others). This paper presents an overview of methods used in cardiac auscultation and expected developing path in the future. It also contains the description of our digital stethoscope system, which is planned to be used in poliphysiographical studies.

  15. Development of Poincare Software to Predict Arrythmias

    NASA Technical Reports Server (NTRS)

    Maaliki, Samer

    2003-01-01

    The most distressing types of heart malfunction occur because of an abnormal rhythm of the heart. Cardiac arrythmias can be caused by abnormal rhythmicity of the pacemaker, electrolyte disturbances, blockage of the transmission of the electric impulse through the heart, and other abnormalities. There is strong evidence that space flight is associated with decreased cardiac electrical stability that may pose a life threatening risk to astronauts. For example, during the Skylab missions, a crewmember had a five beat run of ventricular tachycardia during lower body negative pressure. Also, analysis of nine 24-hour Holter monitor recordings obtained during long term spaceflight on Mir revealed one 14-beat run of ventricular tachycardia. A Mir cosmonaut was replaced in 1986 because of cardiac dysrhythmias. Most recently, in July of 1997, a Mir commander was unable to participate in the Spektr module repair due to complaints of an irregular heart rhythm. Despite these examples, possible mechanisms of arrhythmias and countermeasure strategies have barely been addressed. The Poincare method has been proposed as a technique that might potentially predict life-threatening arrhythmias before they occur. According to this method, each RR interval obtained from an EKG recording is plotted sequentially vs. the previous RR interval. Several studies using the method have demonstrated a strong correlation between the shape of the Poincare plot and ventricular arrhythmia. Our purpose was to develop an automated software program that detects the R peaks from an EKG recording while simultaneously displaying the Poincare plot and other related parameters.

  16. Development of a Cyclic Strain Bioreactor for Mechanical Enhancement and Assessment of Bioengineered Myocardial Constructs

    PubMed Central

    Salazar, Betsy H.; Cashion, Avery T.; Dennis, Robert G.; Birla, Ravi K.

    2015-01-01

    Purpose The purpose of this study was to develop enabling bioreactor technologies using a novel voice coil actuator system for investigating the effects of periodic strain on cardiac patches fabricated with rat cardiomyocytes. Methods The bioengineered muscle constructs used in this study were formed by culturing rat neonatal primary cardiac cells on a fibrin gel. The physical design of the bioreactor was initially conceived using Solidworks to test clearances and perform structural strain analysis. Once the software design phase was completed the bioreactor was assembled using a combination of commercially available, custom machined, and 3-D printed parts. We utilized the bioreactor to evaluate the effect of a 4-hour stretch protocol on the contractile properties of the tissue after which immunohistological assessment of the tissue was also performed. Results An increase in contractile force was observed after the strain protocol of 10% stretch at 1Hz, with no significant increase observed in the control group. Additionally, an increase in cardiac myofibril alignment, connexin 43 expression, and collagen type I distribution were noted. Conclusion In this study we demonstrated the effectiveness of a new bioreactor design to improve contractility of engineered cardiac muscle tissue. PMID:26577484

  17. Development of a Cyclic Strain Bioreactor for Mechanical Enhancement and Assessment of Bioengineered Myocardial Constructs.

    PubMed

    Salazar, Betsy H; Cashion, Avery T; Dennis, Robert G; Birla, Ravi K

    2015-12-01

    The purpose of this study was to develop enabling bioreactor technologies using a novel voice coil actuator system for investigating the effects of periodic strain on cardiac patches fabricated with rat cardiomyocytes. The bioengineered muscle constructs used in this study were formed by culturing rat neonatal primary cardiac cells on a fibrin gel. The physical design of the bioreactor was initially conceived using Solidworks to test clearances and perform structural strain analysis. Once the software design phase was completed the bioreactor was assembled using a combination of commercially available, custom machined, and 3-D printed parts. We utilized the bioreactor to evaluate the effect of a 4-h stretch protocol on the contractile properties of the tissue after which immunohistological assessment of the tissue was also performed. An increase in contractile force was observed after the strain protocol of 10% stretch at 1 Hz, with no significant increase observed in the control group. Additionally, an increase in cardiac myofibril alignment, connexin 43 expression, and collagen type I distribution were noted. In this study we demonstrated the effectiveness of a new bioreactor design to improve contractility of engineered cardiac muscle tissue.

  18. ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos

    NASA Astrophysics Data System (ADS)

    de Luca, Elisa; Zaccaria, Gian Maria; Hadhoud, Marwa; Rizzo, Giovanna; Ponzini, Raffaele; Morbiducci, Umberto; Santoro, Massimo Mattia

    2014-05-01

    Heartbeat measurement is important in assesssing cardiac function because variations in heart rhythm can be the cause as well as an effect of hidden pathological heart conditions. Zebrafish (Danio rerio) has emerged as one of the most useful model organisms for cardiac research. Indeed, the zebrafish heart is easily accessible for optical analyses without conducting invasive procedures and shows anatomical similarity to the human heart. In this study, we present a non-invasive, simple, cost-effective process to quantify the heartbeat in embryonic zebrafish. To achieve reproducibility, high throughput and flexibility (i.e., adaptability to any existing confocal microscope system and with a user-friendly interface that can be easily used by researchers), we implemented this method within a software program. We show here that this platform, called ZebraBeat, can successfully detect heart rate variations in embryonic zebrafish at various developmental stages, and it can record cardiac rate fluctuations induced by factors such as temperature and genetic- and chemical-induced alterations. Applications of this methodology may include the screening of chemical libraries affecting heart rhythm and the identification of heart rhythm variations in mutants from large-scale forward genetic screens.

  19. Pit-a-Pat: A Smart Electrocardiogram System for Detecting Arrhythmia.

    PubMed

    Park, Juyoung; Lee, Kuyeon; Kang, Kyungtae

    2015-10-01

    Electrocardiogram (ECG) telemonitoring is one of the most promising applications of medical telemetry. However, previous approaches to ECG telemonitoring have largely relied on public databases of ECG results. In this article we propose a smart ECG system called Pit-a-Pat, which extracts features from ECG signals and detects arrhythmia. It is designed to run on an Android™ (Google, Mountain View, CA) device, without requiring modifications to other software. We implemented the Pit-a-Pat system using a commercial ECG device, and the experimental results demonstrate the effectiveness and accuracy of Pit-a-Pat for monitoring the ECG signal and analyzing the cardiac activity of a mobile patient. The proposed system allows monitoring of cardiac activity with automatic analysis, thereby providing a convenient, inexpensive, and ubiquitous adjunct to personal healthcare.

  20. Computerized system for the follow-up of patients with heart valve replacements.

    PubMed

    Bain, W H; Fyfe, I C; Rodger, R A

    1985-04-01

    A system is described which will accept, store, retrieve and analyze information on large numbers of patients who undergo valve replacement surgery. The purpose of the database is to yield readily available facts concerning the patient's clinical course, prosthetic valve function, length of survival, and incidence of complications. The system uses the Apple Macintosh computer, which is one of the current examples of small, desk-top microprocessors. The software for the input, editing and analysis programs has been written by a professional software writer in close collaboration with a cardiac surgeon. Its content is based on 8 years' experience of computer-based valve follow-up. The system is inexpensive and has proved easy to use in practice.

  1. Synthetic ALSPAC longitudinal datasets for the Big Data VR project.

    PubMed

    Avraam, Demetris; Wilson, Rebecca C; Burton, Paul

    2017-01-01

    Three synthetic datasets - of observation size 15,000, 155,000 and 1,555,000 participants, respectively - were created by simulating eleven cardiac and anthropometric variables from nine collection ages of the ALSAPC birth cohort study. The synthetic datasets retain similar data properties to the ALSPAC study data they are simulated from (co-variance matrices, as well as the mean and variance values of the variables) without including the original data itself or disclosing participant information.  In this instance, the three synthetic datasets have been utilised in an academia-industry collaboration to build a prototype virtual reality data analysis software, but they could have a broader use in method and software development projects where sensitive data cannot be freely shared.

  2. Analysis and visualization of intracardiac electrograms in diagnosis and research: Concept and application of KaPAVIE.

    PubMed

    Oesterlein, Tobias Georg; Schmid, Jochen; Bauer, Silvio; Jadidi, Amir; Schmitt, Claus; Dössel, Olaf; Luik, Armin

    2016-04-01

    Progress in biomedical engineering has improved the hardware available for diagnosis and treatment of cardiac arrhythmias. But although huge amounts of intracardiac electrograms (EGMs) can be acquired during electrophysiological examinations, there is still a lack of software aiding diagnosis. The development of novel algorithms for the automated analysis of EGMs has proven difficult, due to the highly interdisciplinary nature of this task and hampered data access in clinical systems. Thus we developed a software platform, which allows rapid implementation of new algorithms, verification of their functionality and suitable visualization for discussion in the clinical environment. A software for visualization was developed in Qt5 and C++ utilizing the class library of VTK. The algorithms for signal analysis were implemented in MATLAB. Clinical data for analysis was exported from electroanatomical mapping systems. The visualization software KaPAVIE (Karlsruhe Platform for Analysis and Visualization of Intracardiac Electrograms) was implemented and tested on several clinical datasets. Both common and novel algorithms were implemented which address important clinical questions in diagnosis of different arrhythmias. It proved useful in discussions with clinicians due to its interactive and user-friendly design. Time after export from the clinical mapping system to visualization is below 5min. KaPAVIE(2) is a powerful platform for the development of novel algorithms in the clinical environment. Simultaneous and interactive visualization of measured EGM data and the results of analysis will aid diagnosis and help understanding the underlying mechanisms of complex arrhythmias like atrial fibrillation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. [Subjective Aspects of Return to Work and Social Reintegration in Patients with Extensive Work-related Problems in Cardiac Rehabilitation - Results of a Qualitative Investigation].

    PubMed

    Schulz-Behrendt, C; Salzwedel, A; Rabe, S; Ortmann, K; Völler, H

    2017-06-01

    This study investigated subjective biopsychosocial effects of coronary heart disease (CHD), coping strategies and social support in patients undergoing cardiac rehabilitation (CR) and having extensive work-related problems. A qualitative investigation was performed in 17 patients (48.9±7.0 y, 13 male) with extensive work-related problems (SIMBO-C>30). All patients were interviewed with structured surveys. Data analysis was performed using a software that is based on the content analysis approach of Mayring. In regard to effects of disease, patients indicated social aspects including occupational aspects (62%) more often than physical or mental factors (9 or 29%). Applied coping strategies and support services are mainly focused on physical impairments (70 or 45%). The development of appropriate coping strategies was insufficient although social effects of disease were subjectively meaningful for patients in CR. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Cardiac imaging: working towards fully-automated machine analysis & interpretation

    PubMed Central

    Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido

    2017-01-01

    Introduction Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation. PMID:28277804

  5. Real-Time Analysis of Electrocardiographic Data for Heart Rate Turbulence

    NASA Technical Reports Server (NTRS)

    Greco, E. Carl, Jr.

    2005-01-01

    Episodes of ventricular ectopy (premature ventricular contractions, PVCs) have been reported in several astronauts and cosmonauts during space flight. Indeed, the "Occurrence of Serious Cardiac Dysrhythmias" is now NASA's #1 priority critical path risk factor in the cardiovascular area that could jeopardize a mission as well as the health and welfare of the astronaut. Epidemiological, experimental and clinical observations suggest that severe autonomic dysfunction and/or transient cardiac ischemia can initiate potentially lethal ventricular arrhythmias. On earth, Heart Rate Turbulence (HRT) in response to PVCs has been shown to provide not only an index of baroreflex sensitivity (BRS), but also more importantly, an index of the propensity for lethal ventricular arrhythmia. An HRT procedure integrated into the existing advanced electrocardiographic system under development in JSC's Human Adaptation and Countermeasures Office was developed to provide a system for assessment of PVCs in a real-time monitoring or offline (play-back) scenario. The offline heart rate turbulence software program that was designed in the summer of 2003 was refined and modified for "close to" real-time results. In addition, assistance was provided with the continued development of the real-time heart rate variability software program. These programs should prove useful in evaluating the risk for arrhythmias in astronauts who do and who do not have premature ventricular contractions, respectively. The software developed for these projects has not been included in this report. Please contact Dr. Todd Schlegel for information on acquiring a specific program.

  6. A novel multimedia tool to improve bedside teaching of cardiac auscultation

    PubMed Central

    Woywodt, A; Herrmann, A; Kielstein, J; Haller, H; Haubitz, M; Purnhagen, H

    2004-01-01

    Training in cardiac auscultation is a core element of undergraduate teaching but recent studies have documented a remarkable decline in auscultatory skills. Therefore there is an interest in new ways to teach cardiac auscultation. In analogy to phonocardiography, an electronic system for simultaneous auscultation and visualisation of murmurs was sought. For this purpose, an electronic stethoscope was linked to a laptop computer and software created to visualise auscultatory findings. In a preliminary trial in undergraduate students, this approach greatly facilitated teaching. Amalgamating traditional phonocardiography with a multimedia approach, this system represents a novel tool for bedside teaching of cardiac auscultation. PMID:15192171

  7. Implementation of a portable device for real-time ECG signal analysis.

    PubMed

    Jeon, Taegyun; Kim, Byoungho; Jeon, Moongu; Lee, Byung-Geun

    2014-12-10

    Cardiac disease is one of the main causes of catastrophic mortality. Therefore, detecting the symptoms of cardiac disease as early as possible is important for increasing the patient's survival. In this study, a compact and effective architecture for detecting atrial fibrillation (AFib) and myocardial ischemia is proposed. We developed a portable device using this architecture, which allows real-time electrocardiogram (ECG) signal acquisition and analysis for cardiac diseases. A noisy ECG signal was preprocessed by an analog front-end consisting of analog filters and amplifiers before it was converted into digital data. The analog front-end was minimized to reduce the size of the device and power consumption by implementing some of its functions with digital filters realized in software. With the ECG data, we detected QRS complexes based on wavelet analysis and feature extraction for morphological shape and regularity using an ARM processor. A classifier for cardiac disease was constructed based on features extracted from a training dataset using support vector machines. The classifier then categorized the ECG data into normal beats, AFib, and myocardial ischemia. A portable ECG device was implemented, and successfully acquired and processed ECG signals. The performance of this device was also verified by comparing the processed ECG data with high-quality ECG data from a public cardiac database. Because of reduced computational complexity, the ARM processor was able to process up to a thousand samples per second, and this allowed real-time acquisition and diagnosis of heart disease. Experimental results for detection of heart disease showed that the device classified AFib and ischemia with a sensitivity of 95.1% and a specificity of 95.9%. Current home care and telemedicine systems have a separate device and diagnostic service system, which results in additional time and cost. Our proposed portable ECG device provides captured ECG data and suspected waveform to identify sporadic and chronic events of heart diseases. This device has been built and evaluated for high quality of signals, low computational complexity, and accurate detection.

  8. [The design of a cardiac monitoring and analysing system with low power consumption].

    PubMed

    Chen, Zhen-cheng; Ni, Li-li; Zhu, Yan-gao; Wang, Hong-yan; Ma, Yan

    2002-07-01

    The paper deals with a portable analyzing monitor system with liquid crystal display (LCD), which is low in power consumption and suitable for China's specific conditions. Apart from the development of the overall scheme of the system, the paper introduces the design of the hardware and the software. The 80196 single chip microcomputer is used as the central microprocessor to process and real-time electrocardiac signal data. The system have the following functions: five types of arrhythmia analysis, alarm, freeze, and record of automatic paperfeeding. The portable system can be operated by alternate-current (AC) or direct-current (DC). Its hardware circuit is simplified and its software structure is optimized. Multiple low power consumption and LCD unit are adopted in its modular designs.

  9. Cardiac Amyloidosis Shows Decreased Diastolic Function as Assessed by Echocardiographic Parameterized Diastolic Filling.

    PubMed

    Salman, Katrin; Cain, Peter A; Fitzgerald, Benjamin T; Sundqvist, Martin G; Ugander, Martin

    2017-07-01

    Cardiac amyloidosis is a rare but serious condition with poor survival. One of the early findings by echocardiography is impaired diastolic function, even before the development of cardiac symptoms. Early diagnosis is important, permitting initiation of treatment aimed at improving survival. The parameterized diastolic filling (PDF) formalism entails describing the left ventricular filling pattern during early diastole using the mathematical equation for the motion of a damped harmonic oscillator. We hypothesized that echocardiographic PDF analysis could detect differences in diastolic function between patients with amyloidosis and controls. Pulsed-wave Doppler echocardiography of transmitral flow was measured in 13 patients with amyloid heart disease and 13 age- and gender matched controls. E- waves (2 to 3 per subject) were analyzed using in-house developed software. Nine PDF-derived parameters were obtained in addition to conventional echocardiographic parameters of diastolic function. Compared to controls, cardiac amyloidosis patients had a larger left atrial area (23.7 ± 7.5 cm 2 vs. 18.5 ± 4.8 cm 2 , p = 0.04), greater interventricular septum wall thickness (14.4 ± 2.6 mm vs. 9.3 ± 1.3 mm, p < 0.001), lower e' (0.06 ± 0.02 m/s vs. 0.09 ± 0.02 m/s, p < 0.001) and higher E/e' (18.0 ± 12.9 vs. 7.7 ± 1.3, p = 0.001). The PDF parameter peak resistive force was greater in cardiac amyloidosis patients compared to controls (17.9 ± 5.7 mN vs. 13.1 ± 3.1 mN, p = 0.03), and other PDF parameters did not differ. PDF analysis revealed that patients with cardiac amyloidosis had a greater peak resistive force compared to controls, consistent with a greater degree of diastolic dysfunction. PDF analysis may be useful in characterizing diastolic function in amyloid heart disease. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Arterial pressure-based cardiac output monitoring: a multicenter validation of the third-generation software in septic patients.

    PubMed

    De Backer, Daniel; Marx, Gernot; Tan, Andrew; Junker, Christopher; Van Nuffelen, Marc; Hüter, Lars; Ching, Willy; Michard, Frédéric; Vincent, Jean-Louis

    2011-02-01

    Second-generation FloTrac software has been shown to reliably measure cardiac output (CO) in cardiac surgical patients. However, concerns have been raised regarding its accuracy in vasoplegic states. The aim of the present multicenter study was to investigate the accuracy of the third-generation software in patients with sepsis, particularly when total systemic vascular resistance (TSVR) is low. Fifty-eight septic patients were included in this prospective observational study in four university-affiliated ICUs. Reference CO was measured by bolus pulmonary thermodilution (iCO) using 3-5 cold saline boluses. Simultaneously, CO was computed from the arterial pressure curve recorded on a computer using the second-generation (CO(G2)) and third-generation (CO(G3)) FloTrac software. CO was also measured by semi-continuous pulmonary thermodilution (CCO). A total of 401 simultaneous measurements of iCO, CO(G2), CO(G3), and CCO were recorded. The mean (95%CI) biases between CO(G2) and iCO, CO(G3) and iCO, and CCO and iCO were -10 (-15 to -5)% [-0.8 (-1.1 to -0.4) L/min], 0 (-4 to 4)% [0 (-0.3 to 0.3) L/min], and 9 (6-13)% [0.7 (0.5-1.0) L/min], respectively. The percentage errors were 29 (20-37)% for CO(G2), 30 (24-37)% for CO(G3), and 28 (22-34)% for CCO. The difference between iCO and CO(G2) was significantly correlated with TSVR (r(2) = 0.37, p < 0.0001). A very weak (r(2) = 0.05) relationship was also observed for the difference between iCO and CO(G3). In patients with sepsis, the third-generation FloTrac software is more accurate, as precise, and less influenced by TSVR than the second-generation software.

  11. Establishing a clinical cardiac MRI service.

    PubMed

    O'Regan, D P; Schmitz, S A

    2006-03-01

    After several years of research development cardiovascular MRI has evolved into a widely accepted clinical tool. It offers important diagnostic and prognostic information for a variety of clinical indications, which include ischaemic heart disease, cardiomyopathies, valvular dysfunction and congenital heart disorders. It is a safe non-invasive technique that employs a variety of imaging sequences optimized for temporal or spatial resolution, tissue-specific contrast, flow quantification or angiography. Cardiac MRI offers specific advantages over conventional imaging techniques for a significant number of patients. The demand for cardiac MRI studies from cardiothoracic surgeons, cardiologists and other referrers is likely to continue to rise with pressure for more widespread local service provision. Setting up a cardiac MRI service requires careful consideration regarding funding issues and how it will be integrated with existing service provision. The purchase of cardiac phased array coils, monitoring equipment and software upgrades must also be considered, as well as the training needs of those involved. The choice of appropriate imaging protocols will be guided by operator experience, clinical indication and equipment capability, and is likely to evolve as the service develops. Post-processing and offline analysis form a significant part of the time taken to report studies and an efficient method of providing quantitative reports is an important requirement. Collaboration between radiologists and cardiologists is needed to develop a successful service and multi-disciplinary meetings are key component of this. This review will explore these issues from our perspective of a new clinical cardiac MRI service operating over its first year in a teaching hospital imaging department.

  12. Evaluation of a new 3-dimensional color Doppler flow method to quantify flow across the mitral valve and in the left ventricular outflow tract: an in vitro study.

    PubMed

    Kimura, Sumito; Streiff, Cole; Zhu, Meihua; Shimada, Eriko; Datta, Saurabh; Ashraf, Muhammad; Sahn, David J

    2014-02-01

    The aim of this study was to assess the accuracy, feasibility, and reproducibility of determining stroke volume from a novel 3-dimensional (3D) color Doppler flow quantification method for mitral valve (MV) inflow and left ventricular outflow tract (LVOT) outflow at different stroke volumes when compared with the actual flow rate in a pumped porcine cardiac model. Thirteen freshly harvested pig hearts were studied in a water tank. We inserted a latex balloon into each left ventricle from the MV annulus to the LVOT, which were passively pumped at different stroke volumes (30-80 mL) using a calibrated piston pump at increments of 10 mL. Four-dimensional flow volumes were obtained without electrocardiographic gating. The digital imaging data were analyzed offline using prototype software. Two hemispheric flow-sampling planes for color Doppler velocity measurements were placed at the MV annulus and LVOT. The software computed the flow volumes at the MV annulus and LVOT within the user-defined volume and cardiac cycle. This novel 3D Doppler flow quantification method detected incremental increases in MV inflow and LVOT outflow in close agreement with pumped stroke volumes (MV inflow, r = 0.96; LVOT outflow, r = 0.96; P < .01). Bland-Altman analysis demonstrated overestimation of both (MV inflow, 5.42 mL; LVOT outflow, 4.46 mL) with 95% of points within 95% limits of agreement. Interobserver variability values showed good agreement for all stroke volumes at both the MV annulus and LVOT. This study has shown that the 3D color Doppler flow quantification method we used is able to compute stroke volumes accurately at the MV annulus and LVOT in the same cardiac cycle without electrocardiographic gating. This method may be valuable for assessment of cardiac output in clinical studies.

  13. Perioperative management of patients with cardiac implantable electronic devices.

    PubMed

    Poveda-Jaramillo, R; Castro-Arias, H D; Vallejo-Zarate, C; Ramos-Hurtado, L F

    2017-05-01

    The use of implantable cardiac devices in people of all ages is increasing, especially in the elderly population: patients with pacemakers, cardioverter-defibrillators or cardiac resynchronization therapy devices regularly present for surgery for non-cardiac causes. This review was made in order to collect and analyze the latest evidence for the proper management of implantable cardiac devices in the perioperative period. Through a detailed exploration of PubMed, Academic Search Complete (EBSCO), ClinicalKey, Cochrane (Ovid), the search software UpToDate, textbooks and patents freely available to the public on Google, we selected 33 monographs, which matched the objectives of this publication. Copyright © 2016 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Differentiation of tumor from viable myocardium using cardiac tagging with MR imaging.

    PubMed

    Bouton, S; Yang, A; McCrindle, B W; Kidd, L; McVeigh, E R; Zerhouni, E A

    1991-01-01

    We report the application of myocardial tagging by MR to define tissue planes and differentiate contractile from noncontractile tissue in a neonate with congenital cardiac rhabdomyoma. Using custom-written pulse programming software, six 2 mm thick radiofrequency (RF) slice-selective presaturation pulses (tags) were used to label the chest wall and myocardium in a star pattern in diastole, approximately 60 ms before the R-wave gating trigger. This method successfully delineated the myocardium from noncontractile tumor, providing information that influenced clinical management. This RF tagging technique allowed us to confirm the exact intramyocardial location of a congenital cardiac tumor.

  15. A computer program for processing impedance cardiographic data: Improving accuracy through user-interactive software

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Naifeh, Karen; Thrasher, Chet

    1988-01-01

    This report contains the source code and documentation for a computer program used to process impedance cardiography data. The cardiodynamic measures derived from impedance cardiography are ventricular stroke column, cardiac output, cardiac index and Heather index. The program digitizes data collected from the Minnesota Impedance Cardiograph, Electrocardiography (ECG), and respiratory cycles and then stores these data on hard disk. It computes the cardiodynamic functions using interactive graphics and stores the means and standard deviations of each 15-sec data epoch on floppy disk. This software was designed on a Digital PRO380 microcomputer and used version 2.0 of P/OS, with (minimally) a 4-channel 16-bit analog/digital (A/D) converter. Applications software is written in FORTRAN 77, and uses Digital's Pro-Tool Kit Real Time Interface Library, CORE Graphic Library, and laboratory routines. Source code can be readily modified to accommodate alternative detection, A/D conversion and interactive graphics. The object code utilizing overlays and multitasking has a maximum of 50 Kbytes.

  16. Tracking Equilibrium and Nonequilibrium Shifts in Data with TREND.

    PubMed

    Xu, Jia; Van Doren, Steven R

    2017-01-24

    Principal component analysis (PCA) discovers patterns in multivariate data that include spectra, microscopy, and other biophysical measurements. Direct application of PCA to crowded spectra, images, and movies (without selecting peaks or features) was shown recently to identify their equilibrium or temporal changes. To enable the community to utilize these capabilities with a wide range of measurements, we have developed multiplatform software named TREND to Track Equilibrium and Nonequilibrium population shifts among two-dimensional Data frames. TREND can also carry this out by independent component analysis. We highlight a few examples of finding concurrent processes. TREND extracts dual phases of binding to two sites directly from the NMR spectra of the titrations. In a cardiac movie from magnetic resonance imaging, TREND resolves principal components (PCs) representing breathing and the cardiac cycle. TREND can also reconstruct the series of measurements from selected PCs, as illustrated for a biphasic, NMR-detected titration and the cardiac MRI movie. Fidelity of reconstruction of series of NMR spectra or images requires more PCs than needed to plot the largest population shifts. TREND reads spectra from many spectroscopies in the most common formats (JCAMP-DX and NMR) and multiple movie formats. The TREND package thus provides convenient tools to resolve the processes recorded by diverse biophysical methods. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Assessment of left ventricular mechanical dyssynchrony by phase analysis of gated-SPECT myocardial perfusion imaging and tissue Doppler imaging: comparison between QGS and ECTb software packages.

    PubMed

    Rastgou, Fereydoon; Shojaeifard, Maryam; Amin, Ahmad; Ghaedian, Tahereh; Firoozabadi, Hasan; Malek, Hadi; Yaghoobi, Nahid; Bitarafan-Rajabi, Ahmad; Haghjoo, Majid; Amouzadeh, Hedieh; Barati, Hossein

    2014-12-01

    Recently, the phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has become feasible via several software packages for the evaluation of left ventricular mechanical dyssynchrony. We compared two quantitative software packages, quantitative gated SPECT (QGS) and Emory cardiac toolbox (ECTb), with tissue Doppler imaging (TDI) as the conventional method for the evaluation of left ventricular mechanical dyssynchrony. Thirty-one patients with severe heart failure (ejection fraction ≤35%) and regular heart rhythm, who referred for gated-SPECT MPI, were enrolled. TDI was performed within 3 days after MPI. Dyssynchrony parameters derived from gated-SPECT MPI were analyzed by QGS and ECTb and were compared with the Yu index and septal-lateral wall delay measured by TDI. QGS and ECTb showed a good correlation for assessment of phase histogram bandwidth (PHB) and phase standard deviation (PSD) (r = 0.664 and r = 0.731, P < .001, respectively). However, the mean value of PHB and PSD by ECTb was significantly higher than that of QGS. No significant correlation was found between ECTb and QGS and the Yu index. Nevertheless, PHB, PSD, and entropy derived from QGS revealed a significant (r = 0.424, r = 0.478, r = 0.543, respectively; P < .02) correlation with septal-lateral wall delay. Despite a good correlation between QGS and ECTb software packages, different normal cut-off values of PSD and PHB should be defined for each software package. There was only a modest correlation between phase analysis of gated-SPECT MPI and TDI data, especially in the population of heart failure patients with both narrow and wide QRS complex.

  18. [Development of multi-channels cardiac electrophysiological polygraph with LabVIEW as software platform and its clinical application].

    PubMed

    Fan, Shounian; Jiang, Yi; Jiang, Chenxi; Yang, Tianhe; Zhang, Chengyun; Liu, Junshi; Wu, Qiang; Zheng, Yaxi; Liu, Xiaoqiao

    2004-10-01

    Polygraph has become a necessary instrument in interventional cardiology and fundamental research of medicine up to the present. In this study, a LabView development system (DS) (developed by NI in U.S.) used as software platform, a DAQ data acquisition module and universal computer used as hardware platform, were creatively coupled with our self-made low noise multi-channels preamplifier to develop Multi-channels electrocardiograph. The device possessed the functions such as real time display of physiological process, digit highpass and lowpass, 50Hz filtered and gain adjustment, instant storing, random playback and printing, and process control stimulation. Besides, it was small-sized, economically practical and easy to operate. It could advance the spread of cardiac intervention treatment in hospitals.

  19. Comparison of two methods for cardiac output measurement in critically ill patients.

    PubMed

    Saraceni, E; Rossi, S; Persona, P; Dan, M; Rizzi, S; Meroni, M; Ori, C

    2011-05-01

    The aim of recent haemodynamic monitoring has been to obtain continuous and reliable measures of cardiac output (CO) and indices of preload responsiveness. Many of these methods are based on the arterial pressure waveform analysis. The aim of our study was to assess the accuracy of CO measurements obtained by FloTrac/Vigileo, software version 1.07 and the new version 1.10 (Edwards Lifesciences LLC, Irvine, CA, USA), compared with CO measurements obtained by bolus thermodilution by pulmonary artery catheterization (PAC) in the intensive care setting. In 21 critically ill patients (enrolled in two University Hospitals), requiring invasive haemodynamic monitoring, PAC and FloTrac/Vigileo transducers connected to the arterial pressure line were placed. Simultaneous measurements of CO by two methods (FloTrac/Vigileo and thermodilution) were obtained three times a day for 3 consecutive days, when possible. The level of concordance between the two methods was assessed by the procedure suggested by Bland and Altman. One hundred and forty-one pairs of measurements (provided by thermodilution and by both 1.07 and 1.10 FloTrac/Vigileo versions) were obtained in 21 patients (seven of them were trauma patients) with a mean (sd) age of 59 (16) yr. The Pearson product moment coefficient was 0.62 (P<0.001). The bias was -0.18 litre min(-1). The limits of agreement were 4.54 and -4.90 litre min(-1), respectively. Our data show a poor level of concordance between measures provided by the two methods. We found an underestimation of CO values measured with the 1.07 software version of FloTrac for supranormal values of CO. The new software (1.10) has been improved in order to correct this bias; however, its reliability is still poor. On the basis of our data, we can therefore conclude that both software versions of FloTrac/Vigileo did not still provide reliable estimation of CO in our intensive care unit setting.

  20. Absolute myocardial flow quantification with (82)Rb PET/CT: comparison of different software packages and methods.

    PubMed

    Tahari, Abdel K; Lee, Andy; Rajaram, Mahadevan; Fukushima, Kenji; Lodge, Martin A; Lee, Benjamin C; Ficaro, Edward P; Nekolla, Stephan; Klein, Ran; deKemp, Robert A; Wahl, Richard L; Bengel, Frank M; Bravo, Paco E

    2014-01-01

    In clinical cardiac (82)Rb PET, globally impaired coronary flow reserve (CFR) is a relevant marker for predicting short-term cardiovascular events. However, there are limited data on the impact of different software and methods for estimation of myocardial blood flow (MBF) and CFR. Our objective was to compare quantitative results obtained from previously validated software tools. We retrospectively analyzed cardiac (82)Rb PET/CT data from 25 subjects (group 1, 62 ± 11 years) with low-to-intermediate probability of coronary artery disease (CAD) and 26 patients (group 2, 57 ± 10 years; P=0.07) with known CAD. Resting and vasodilator-stress MBF and CFR were derived using three software applications: (1) Corridor4DM (4DM) based on factor analysis (FA) and kinetic modeling, (2) 4DM based on region-of-interest (ROI) and kinetic modeling, (3) MunichHeart (MH), which uses a simplified ROI-based retention model approach, and (4) FlowQuant (FQ) based on ROI and compartmental modeling with constant distribution volume. Resting and stress MBF values (in milliliters per minute per gram) derived using the different methods were significantly different: using 4DM-FA, 4DM-ROI, FQ, and MH resting MBF values were 1.47 ± 0.59, 1.16 ± 0.51, 0.91 ± 0.39, and 0.90 ± 0.44, respectively (P<0.001), and stress MBF values were 3.05 ± 1.66, 2.26 ± 1.01, 1.90 ± 0.82, and 1.83 ± 0.81, respectively (P<0.001). However, there were no statistically significant differences among the CFR values (2.15 ± 1.08, 2.05 ± 0.83, 2.23 ± 0.89, and 2.21 ± 0.90, respectively; P=0.17). Regional MBF and CFR according to vascular territories showed similar results. Linear correlation coefficient for global CFR varied between 0.71 (MH vs. 4DM-ROI) and 0.90 (FQ vs. 4DM-ROI). Using a cut-off value of 2.0 for abnormal CFR, the agreement among the software programs ranged between 76 % (MH vs. FQ) and 90 % (FQ vs. 4DM-ROI). Interobserver agreement was in general excellent with all software packages. Quantitative assessment of resting and stress MBF with (82)Rb PET is dependent on the software and methods used, whereas CFR appears to be more comparable. Follow-up and treatment assessment should be done with the same software and method.

  1. A mechanical simulator of cardiac wall kinematics.

    PubMed

    Cutrì, Elena; Bagnoli, Paola; Marcelli, Emanuela; Biondi, Federico; Cercenelli, Laura; Costantino, Maria Laura; Plicchi, Gianni; Fumero, Roberto

    2010-01-01

    Aim of this study is to develop a mechanical simulator (MS) reproducing cardiac wall kinematics [i.e., radial (R), longitudinal (L) and rotational (RT) motions] to test piezoelectric gyroscopic sensors (GS) that are able to measure cardiac torsion that has proved to be a sensitive index of cardiac performance. The MS consists of three brushless motors controlled by a dedicated software either separately or simultaneously reproducing the three main cardiac wall movements (R, L, RT) obtained by implementing different physiologic or pathologic velocity profiles derived from in vivo data. GS accuracy (max % error) was experimentally tested by connecting it to the MS driven in velocity in different working conditions [i.e., cardiac period (515-1030 ms), RT angle (4-16 degrees), GS axis inclination (0-90 degrees) with respect to the cardiac rotation axis]. The MS reproduced the tested velocity profiles well. The GS showed high accuracy in measuring both physiologic and pathologic RT velocity profiles, whereas they proved insensitive to R and L motions. GS axis inclination influenced measurements; however, it was possible to correct this taking the inclination angle cosine into account. The MS proved to be a useful tool to study cardiac wall kinematics and test GS reliability with a view to in vivo application.

  2. Analysis of bystander CPR quality during out-of-hospital cardiac arrest using data derived from automated external defibrillators.

    PubMed

    Fernando, Shannon M; Vaillancourt, Christian; Morrow, Stanley; Stiell, Ian G

    2018-07-01

    Little is known regarding the quality of cardiopulmonary resuscitation (CPR) performed by bystanders in out-of-hospital cardiac arrest (OHCA). We sought to determine quality of bystander CPR provided during OHCA using CPR quality data stored by Automated External Defibrillators (AEDs). We used the Resuscitation Outcomes Consortium database to identify OHCA cases of presumed cardiac etiology where an AED was utilized. We then matched AED data to each case identified. AED data was analyzed using manufacturer software in order to determine overall measures of bystander CPR quality, changes in bystander CPR quality over time, and adherence to existing 2010 Resuscitation Quality Guidelines. 100 cases of OHCA of presumed cardiac etiology involving bystander CPR and with corresponding AED data. Mean age was 62.3 years, and 75% were male. Bystanders demonstrated high-quality CPR over all minutes of resuscitation, with a chest compression fraction of 76%, a compression depth of 5.3 cm, and a compression rate of 111.2 compressions/min. Mean perishock pause was 26.8 s. Adherence rates to 2010 Resuscitation Guidelines for compression rate and depth were found to be 66% and 55%, respectively. CPR quality was lowest in the first minute, resulting from increased delay to rhythm analysis (mean 40.7 s). In cases involving shock delivery, latency from initiation of AED to shock delivery was 59.2 s. We found that bystanders perform high-quality CPR, with strong adherence rates to existing Resuscitation Guidelines. High-quality CPR is maintained over the first five minutes of resuscitation, but was lowest in the first minute. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A step-wise approach for analysis of the mouse embryonic heart using 17.6 Tesla MRI

    PubMed Central

    Gabbay-Benziv, Rinat; Reece, E. Albert; Wang, Fang; Bar-Shir, Amnon; Harman, Chris; Turan, Ozhan M.; Yang, Peixin; Turan, Sifa

    2018-01-01

    Background The mouse embryo is ideal for studying human cardiac development. However, laboratory discoveries do not easily translate into clinical findings partially because of histological diagnostic techniques that induce artifacts and lack standardization. Aim To present a step-wise approach using 17.6 T MRI, for evaluation of mice embryonic heart and accurate identification of congenital heart defects. Subjects 17.5-embryonic days embryos from low-risk (non-diabetic) and high-risk (diabetic) model dams. Study design Embryos were imaged using 17.6 Tesla MRI. Three-dimensional volumes were analyzed using ImageJ software. Outcome measures Embryonic hearts were evaluated utilizing anatomic landmarks to locate the four-chamber view, the left- and right-outflow tracts, and the arrangement of the great arteries. Inter- and intra-observer agreement were calculated using kappa scores by comparing two researchers’ evaluations independently analyzing all hearts, blinded to the model, on three different, timed occasions. Each evaluated 16 imaging volumes of 16 embryos: 4 embryos from normal dams, and 12 embryos from diabetic dams. Results Inter-observer agreement and reproducibility were 0.779 (95% CI 0.653–0.905) and 0.763 (95% CI 0.605–0.921), respectively. Embryonic hearts were structurally normal in 4/4 and 7/12 embryos from normal and diabetic dams, respectively. Five embryos from diabetic dams had defects: ventricular septal defects (n = 2), transposition of great arteries (n = 2) and Tetralogy of Fallot (n = 1). Both researchers identified all cardiac lesions. Conclusion A step-wise approach for analysis of MRI-derived 3D imaging provides reproducible detailed cardiac evaluation of normal and abnormal mice embryonic hearts. This approach can accurately reveal cardiac structure and, thus, increases the yield of animal model in congenital heart defect research. PMID:27569369

  4. Lesion size estimator of cardiac radiofrequency ablation at different common locations with different tip temperatures.

    PubMed

    Lai, Yu-Chi; Choy, Young Bin; Haemmerich, Dieter; Vorperian, Vicken R; Webster, John G

    2004-10-01

    Finite element method (FEM) analysis has become a common method to analyze the lesion formation during temperature-controlled radiofrequency (RF) cardiac ablation. We present a process of FEM modeling a system including blood, myocardium, and an ablation catheter with a thermistor embedded at the tip. The simulation used a simple proportional-integral (PI) controller to control the entire process operated in temperature-controlled mode. Several factors affect the lesion size such as target temperature, blood flow rate, and application time. We simulated the time response of RF ablation at different locations by using different target temperatures. The applied sites were divided into two groups each with a different convective heat transfer coefficient. The first group was high-flow such as the atrioventricular (AV) node and the atrial aspect of the AV annulus, and the other was low-flow such as beneath the valve or inside the coronary sinus. Results showed the change of lesion depth and lesion width with time, under different conditions. We collected data for all conditions and used it to create a database. We implemented a user-interface, the lesion size estimator, where the user enters set temperature and location. Based on the database, the software estimated lesion dimensions during different applied durations. This software could be used as a first-step predictor to help the electrophysiologist choose treatment parameters.

  5. Ability and efficiency of an automatic analysis software to measure microvascular parameters.

    PubMed

    Carsetti, Andrea; Aya, Hollmann D; Pierantozzi, Silvia; Bazurro, Simone; Donati, Abele; Rhodes, Andrew; Cecconi, Maurizio

    2017-08-01

    Analysis of the microcirculation is currently performed offline, is time consuming and operator dependent. The aim of this study was to assess the ability and efficiency of the automatic analysis software CytoCamTools 1.7.12 (CC) to measure microvascular parameters in comparison with Automated Vascular Analysis (AVA) software 3.2. 22 patients admitted to the cardiothoracic intensive care unit following cardiac surgery were prospectively enrolled. Sublingual microcirculatory videos were analysed using AVA and CC software. The total vessel density (TVD) for small vessels, perfused vessel density (PVD) and proportion of perfused vessels (PPV) were calculated. Blood flow was assessed using the microvascular flow index (MFI) for AVA software and the averaged perfused speed indicator (APSI) for the CC software. The duration of the analysis was also recorded. Eighty-four videos from 22 patients were analysed. The bias between TVD-CC and TVD-AVA was 2.20 mm/mm 2 (95 % CI 1.37-3.03) with limits of agreement (LOA) of -4.39 (95 % CI -5.66 to -3.16) and 8.79 (95 % CI 7.50-10.01) mm/mm 2 . The percentage error (PE) for TVD was ±32.2 %. TVD was positively correlated between CC and AVA (r = 0.74, p < 0.001). The bias between PVD-CC and PVD-AVA was 6.54 mm/mm 2 (95 % CI 5.60-7.48) with LOA of -4.25 (95 % CI -8.48 to -0.02) and 17.34 (95 % CI 13.11-21.57) mm/mm 2 . The PE for PVD was ±61.2 %. PVD was positively correlated between CC and AVA (r = 0.66, p < 0.001). The median PPV-AVA was significantly higher than the median PPV-CC [97.39 % (95.25, 100 %) vs. 81.65 % (61.97, 88.99), p < 0.0001]. MFI categories cannot estimate or predict APSI values (p = 0.45). The time required for the analysis was shorter with CC than with AVA system [2'42″ (2'12″, 3'31″) vs. 16'12″ (13'38″, 17'57″), p < 0.001]. TVD is comparable between the two softwares, although faster with CC software. The values for PVD and PPV are not interchangeable given the different approach to assess microcirculatory flow.

  6. Refinement of detecting atrial fibrillation in stroke patients: results from the TRACK-AF Study.

    PubMed

    Reinke, F; Bettin, M; Ross, L S; Kochhäuser, S; Kleffner, I; Ritter, M; Minnerup, J; Dechering, D; Eckardt, L; Dittrich, R

    2018-04-01

    Detection of occult atrial fibrillation (AF) is crucial for optimal secondary prevention in stroke patients. The AF detection rate was determined by implantable cardiac monitor (ICM) and compared to the prediction rate of the probability of incident AF by software based analysis of a continuously monitored electrocardiogram at follow-up (stroke risk analysis, SRA); an optimized AF detection algorithm is proposed by combining both tools. In a monocentric prospective study 105 out of 389 patients with cryptogenic stroke despite extensive diagnostic workup were investigated with two additional cardiac monitoring tools: (a) 20 months' monitoring by ICM and (b) SRA during hospitalization at the stroke unit. The detection rate of occult AF was 18% by ICM (n = 19) (range 6-575 days) and 62% (n = 65) had an increased risk for AF predicted by SRA. When comparing the predictive accuracy of SRA to ICM, the sensitivity was 95%, specificity 35%, positive predictive value 27% and negative predictive value 96%. In 18 patients with AF detected by ICM, SRA also showed a medium risk for AF. Only one patient with a very low risk predicted by SRA developed AF revealed by ICM after 417 days. A combination of SRA and ICM is a promising strategy to detect occult AF. SRA is reliable in predicting incident AF with a high negative predictive value. Thus, SRA may serve as a cost-effective pre-selection tool identifying patients at risk for AF who may benefit from further cardiac monitoring by ICM. © 2017 EAN.

  7. A system for intelligent home care ECG upload and priorisation.

    PubMed

    D'Angelo, Lorenzo T; Tarita, Eugeniu; Zywietz, Tosja K; Lueth, Tim C

    2010-01-01

    In this contribution, a system for internet based, automated home care ECG upload and priorisation is presented for the first time. It unifies the advantages of existing telemonitoring ECG systems adding functionalities such as automated priorisation and usability for home care. Chronic cardiac diseases are a big group in the geriatric field. Most of them can be easily diagnosed with help of an electrocardiogram. A frequent or long-term ECG analysis allows early diagnosis of e.g. a cardiac infarction. Nevertheless, patients often aren't willing to visit a doctor for prophylactic purposes. Possible solutions of this problem are home care devices, which are used to investigate patients at home without the presence of a doctor on site. As the diffusion of such systems leads to a huge amount of data which has to be managed and evaluated, the presented approach focuses on an easy to use software for ECG upload from home, a web based management application and an algorithm for ECG preanalysis and priorisation.

  8. Integrated approach to ischemic heart disease. The one-stop shop.

    PubMed

    Kramer, C M

    1998-05-01

    Magnetic resonance imaging is unique in its variety of applications for imaging the cardiovascular system. A thorough assessment of myocardial structure, function, and perfusion; assessment of coronary artery anatomy and flow; and spectroscopic evaluation of cardiac energetics can be readily performed by magnetic resonance imaging. One key to the advancement of cardiac magnetic resonance imaging as a clinical tool in the evaluation, the so called one stop shop. Improvements in magnetic resonance hardware, software, and imaging speed now permit this integrated examination. Cardiac magnetic resonance is a powerful technique with the potential to replace or complement other commonly used techniques in the diagnostic armamentarium of physicians caring for patients with ischemic heart disease.

  9. User Interactive Software for Analysis of Human Physiological Data

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, William; Taylor, Bruce C.; Acharya, Soumydipta

    2006-01-01

    Ambulatory physiological monitoring has been used to study human health and performance in space and in a variety of Earth-based environments (e.g., military aircraft, armored vehicles, small groups in isolation, and patients). Large, multi-channel data files are typically recorded in these environments, and these files often require the removal of contaminated data prior to processing and analyses. Physiological data processing can now be performed with user-friendly, interactive software developed by the Ames Psychophysiology Research Laboratory. This software, which runs on a Windows platform, contains various signal-processing routines for both time- and frequency- domain data analyses (e.g., peak detection, differentiation and integration, digital filtering, adaptive thresholds, Fast Fourier Transform power spectrum, auto-correlation, etc.). Data acquired with any ambulatory monitoring system that provides text or binary file format are easily imported to the processing software. The application provides a graphical user interface where one can manually select and correct data artifacts utilizing linear and zero interpolation and adding trigger points for missed peaks. Block and moving average routines are also provided for data reduction. Processed data in numeric and graphic format can be exported to Excel. This software, PostProc (for post-processing) requires the Dadisp engineering spreadsheet (DSP Development Corp), or equivalent, for implementation. Specific processing routines were written for electrocardiography, electroencephalography, electromyography, blood pressure, skin conductance level, impedance cardiography (cardiac output, stroke volume, thoracic fluid volume), temperature, and respiration

  10. Automated systematic random sampling and Cavalieri stereology of histologic sections demonstrating acute tubular necrosis after cardiac arrest and cardiopulmonary resuscitation in the mouse.

    PubMed

    Wakasaki, Rumie; Eiwaz, Mahaba; McClellan, Nicholas; Matsushita, Katsuyuki; Golgotiu, Kirsti; Hutchens, Michael P

    2018-06-14

    A technical challenge in translational models of kidney injury is determination of the extent of cell death. Histologic sections are commonly analyzed by area morphometry or unbiased stereology, but stereology requires specialized equipment. Therefore, a challenge to rigorous quantification would be addressed by an unbiased stereology tool with reduced equipment dependence. We hypothesized that it would be feasible to build a novel software component which would facilitate unbiased stereologic quantification on scanned slides, and that unbiased stereology would demonstrate greater precision and decreased bias compared with 2D morphometry. We developed a macro for the widely used image analysis program, Image J, and performed cardiac arrest with cardiopulmonary resuscitation (CA/CPR, a model of acute cardiorenal syndrome) in mice. Fluorojade-B stained kidney sections were analyzed using three methods to quantify cell death: gold standard stereology using a controlled stage and commercially-available software, unbiased stereology using the novel ImageJ macro, and quantitative 2D morphometry also using the novel macro. There was strong agreement between both methods of unbiased stereology (bias -0.004±0.006 with 95% limits of agreement -0.015 to 0.007). 2D morphometry demonstrated poor agreement and significant bias compared to either method of unbiased stereology. Unbiased stereology is facilitated by a novel macro for ImageJ and results agree with those obtained using gold-standard methods. Automated 2D morphometry overestimated tubular epithelial cell death and correlated modestly with values obtained from unbiased stereology. These results support widespread use of unbiased stereology for analysis of histologic outcomes of injury models.

  11. Real time monitoring of risk-adjusted paediatric cardiac surgery outcomes using variable life-adjusted display: implementation in three UK centres

    PubMed Central

    Pagel, Christina; Utley, Martin; Crowe, Sonya; Witter, Thomas; Anderson, David; Samson, Ray; McLean, Andrew; Banks, Victoria; Tsang, Victor; Brown, Katherine

    2013-01-01

    Objective To implement routine in-house monitoring of risk-adjusted 30-day mortality following paediatric cardiac surgery. Design Collaborative monitoring software development and implementation in three specialist centres. Patients and methods Analyses incorporated 2 years of data routinely audited by the National Institute of Cardiac Outcomes Research (NICOR). Exclusion criteria were patients over 16 or undergoing non-cardiac or only catheter procedures. We applied the partial risk adjustment in surgery (PRAiS) risk model for death within 30 days following surgery and generated variable life-adjusted display (VLAD) charts for each centre. These were shared with each clinical team and feedback was sought. Results Participating centres were Great Ormond Street Hospital, Evelina Children's Hospital and The Royal Hospital for Sick Children in Glasgow. Data captured all procedures performed between 1 January 2010 and 31 December 2011. This incorporated 2490 30-day episodes of care, 66 of which were associated with a death within 30 days.The VLAD charts generated for each centre displayed trends in outcomes benchmarked to recent national outcomes. All centres ended the 2-year period within four deaths from what would be expected. The VLAD charts were shared in multidisciplinary meetings and clinical teams reported that they were a useful addition to existing quality assurance initiatives. Each centre is continuing to use the prototype software to monitor their in-house surgical outcomes. Conclusions Timely and routine monitoring of risk-adjusted mortality following paediatric cardiac surgery is feasible. Close liaison with hospital data managers as well as clinicians was crucial to the success of the project. PMID:23564473

  12. CARFMAP: A Curated Pathway Map of Cardiac Fibroblasts.

    PubMed

    Nim, Hieu T; Furtado, Milena B; Costa, Mauro W; Kitano, Hiroaki; Rosenthal, Nadia A; Boyd, Sarah E

    2015-01-01

    The adult mammalian heart contains multiple cell types that work in unison under tightly regulated conditions to maintain homeostasis. Cardiac fibroblasts are a significant and unique population of non-muscle cells in the heart that have recently gained substantial interest in the cardiac biology community. To better understand this renaissance cell, it is essential to systematically survey what has been known in the literature about the cellular and molecular processes involved. We have built CARFMAP (http://visionet.erc.monash.edu.au/CARFMAP), an interactive cardiac fibroblast pathway map derived from the biomedical literature using a software-assisted manual data collection approach. CARFMAP is an information-rich interactive tool that enables cardiac biologists to explore the large body of literature in various creative ways. There is surprisingly little overlap between the cardiac fibroblast pathway map, a foreskin fibroblast pathway map, and a whole mouse organism signalling pathway map from the REACTOME database. Among the use cases of CARFMAP is a common task in our cardiac biology laboratory of identifying new genes that are (1) relevant to cardiac literature, and (2) differentially regulated in high-throughput assays. From the expression profiles of mouse cardiac and tail fibroblasts, we employed CARFMAP to characterise cardiac fibroblast pathways. Using CARFMAP in conjunction with transcriptomic data, we generated a stringent list of six genes that would not have been singled out using bioinformatics analyses alone. Experimental validation showed that five genes (Mmp3, Il6, Edn1, Pdgfc and Fgf10) are differentially regulated in the cardiac fibroblast. CARFMAP is a powerful tool for systems analyses of cardiac fibroblasts, facilitating systems-level cardiovascular research.

  13. Social media: a tool to spread information: a case study analysis of twitter conversation at the Cardiac Society of Australia & New Zealand 61st annual scientific meeting 2013.

    PubMed

    Ferguson, Caleb; Inglis, Sally C; Newton, Phillip J; Cripps, Peter J S; MacDonald, Peter S; Davidson, Patricia M

    2014-01-01

    The World Wide Web has changed the way in which people communicate and consume information. More importantly, this innovation has increased the speed and spread of information. There has been recent increase in the percentage of cardiovascular professionals, including journals and associations using Twitter to engage with others and exchange ideas. Evaluating the reach and impact in scientific meetings is important in promoting the use of social media. This study evaluated Twitter use during the recent 61st Annual Scientific Meeting at the Cardiac Society of Australia and New Zealand. During the Cardiac Society of Australia and New Zealand 2013 61st Annual Scientific Meeting Symplur was used to curate conversations that were publicly posted with the hashtag #CSANZ2013. The hashtag was monitored with analysis focused on the influencers, latest tweets, tweet statistics, activity comparisons, and tweet activity during the conference. Additionally, Radian6 social media listening software was used to collect data. A summary is provided. There were 669 total tweets sent from 107 unique Twitter accounts during 8th August 9 a.m. to 11th August 1 p.m. This averaged nine tweets per hour and six tweets per participant. This assisted in the sharing of ideas and disseminating the findings and conclusions from presenters at the conference with a total 1,432,573 potential impressions in Twitter users tweet streams. This analysis of Twitter conversations during a recent scientific meeting highlights the significance and place of social media within research dissemination and collaboration. Researchers and clinicians should consider using this technology to enhance timely communication of findings. The potential to engage with consumers and enhance shared decision-making should be explored further.

  14. Evaluation of M-AID, a first aid application for mobile phones.

    PubMed

    Zanner, Robert; Wilhelm, Dirk; Feussner, Hubertus; Schneider, Gerhard

    2007-09-01

    When performed effectively, cardiopulmonary resuscitation (CPR) by bystanders reduces mortality due to sudden cardiac arrest. Telemedicine applications offer a means by which bystanders can get specific instructions for handling the emergency situation. M-AID, a first aid application for mobile phones, uses an intelligent algorithm of 'yes' or 'no' questions to judge the ongoing situation and give the user detailed instructions. The aim of this study was to evaluate the benefit of this mobile phone application in a scenario of sudden cardiac arrest. One hundred and nineteen volunteers were assigned at random either to the test or the control group. All participants were confronted with the same scenario of acute coronary syndrome leading to cardiac arrest. The participants were either equipped with a mobile phone running the software (test group) or had to handle the situation without support (control group). The participants received a certain amount of credits for each action taken according to a pre-defined protocol and these credits were added to a score and compared between the groups. Participants were divided into subgroups according to their medical and technical experience. The test group generally achieved a slightly higher average score that was not statistically significant (21.11 versus 19.97; p=0.302). In contrast, the performance of the individuals in the control group was significantly faster (2.41 min versus 4.24 min; p<0.001). Use of the mobile phone software did not enhance the chance of survival. Subgroup analysis showed that experienced mobile phone users performed significantly better than non-experienced individuals, but not as well as participants with advanced first aid knowledge. Experience in the use of mobile phones is a prerequisite for the efficient use of the tested M-AID version. This application cannot replace skills acquisition by practical training. In a subgroup with experience in mobile phone use and basic knowledge in CPR, the device improved performance of CPR.

  15. [Design of a Front-end Device of Heart Rate Variability Analysis System Based on Photoplethysmography].

    PubMed

    Shi, Lei; Sun, Peng; Pang, Yu; Luo, Zhiyong; Wang, Wei; Wang, Yanxiang

    2016-02-01

    Heart rate variability (HRV) is the difference between the successive changes in the heartbeat cycle, and it is produced in the autonomic nervous system modulation of the sinus node of the heart. The HRV is a valuable indicator in predicting the sudden cardiac death and arrhythmic events. Traditional analysis of HRV is based on a multielectrocardiogram (ECG), but the ECG signal acquisition is complex, so we have designed an HRV analysis system based on photoplethysmography (PPG). PPG signal is collected by a microcontroller from human's finger, and it is sent to the terminal via USB-Serial module. The terminal software not only collects the data and plot waveforms, but also stores the data for future HRV analysis. The system is small in size, low in power consumption, and easy for operation. It is suitable for daily care no matter whether it is used at home or in a hospital.

  16. Cardiac registers: the adult cardiac surgery register.

    PubMed

    Bridgewater, Ben

    2010-09-01

    AIMS OF THE SCTS ADULT CARDIAC SURGERY DATABASE: To measure the quality of care of adult cardiac surgery in GB and Ireland and provide information for quality improvement and research. Feedback of structured data to hospitals, publication of named hospital and surgeon mortality data, publication of benchmarked activity and risk adjusted clinical outcomes through intermittent comprehensive database reports, annual screening of all hospital and individual surgeon risk adjusted mortality rates by the professional society. All NHS hospitals in England, Scotland and Wales with input from some private providers and hospitals in Ireland. 1994-ongoing. Consecutive patients, unconsented. Current number of records: 400000. Adult cardiac surgery operations excluding cardiac transplantation and ventricular assist devices. 129 fields covering demographic factors, pre-operative risk factors, operative details and post-operative in-hospital outcomes. Entry onto local software systems by direct key board entry or subsequent transcription from paper records, with subsequent electronic upload to the central cardiac audit database. Non-financial incentives at hospital level. Local validation processes exist in the hospitals. There is currently no external data validation process. All cause mortality is obtained through linkage with Office for National Statistics. No other linkages exist at present. Available for research and audit by application to the SCTS database committee at http://www.scts.org.

  17. Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    PubMed Central

    Kumar, Sunil; Kambhatla, Kashyap; Hu, Fei; Lifson, Mark; Xiao, Yang

    2008-01-01

    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation. PMID:18604301

  18. Ubiquitous computing for remote cardiac patient monitoring: a survey.

    PubMed

    Kumar, Sunil; Kambhatla, Kashyap; Hu, Fei; Lifson, Mark; Xiao, Yang

    2008-01-01

    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation.

  19. Computing volume potentials for noninvasive imaging of cardiac excitation.

    PubMed

    van der Graaf, A W Maurits; Bhagirath, Pranav; van Driel, Vincent J H M; Ramanna, Hemanth; de Hooge, Jacques; de Groot, Natasja M S; Götte, Marco J W

    2015-03-01

    In noninvasive imaging of cardiac excitation, the use of body surface potentials (BSP) rather than body volume potentials (BVP) has been favored due to enhanced computational efficiency and reduced modeling effort. Nowadays, increased computational power and the availability of open source software enable the calculation of BVP for clinical purposes. In order to illustrate the possible advantages of this approach, the explanatory power of BVP is investigated using a rectangular tank filled with an electrolytic conductor and a patient specific three dimensional model. MRI images of the tank and of a patient were obtained in three orthogonal directions using a turbo spin echo MRI sequence. MRI images were segmented in three dimensional using custom written software. Gmsh software was used for mesh generation. BVP were computed using a transfer matrix and FEniCS software. The solution for 240,000 nodes, corresponding to a resolution of 5 mm throughout the thorax volume, was computed in 3 minutes. The tank experiment revealed that an increased electrode surface renders the position of the 4 V equipotential plane insensitive to mesh cell size and reduces simulated deviations. In the patient-specific model, the impact of assigning a different conductivity to lung tissue on the distribution of volume potentials could be visualized. Generation of high quality volume meshes and computation of BVP with a resolution of 5 mm is feasible using generally available software and hardware. Estimation of BVP may lead to an improved understanding of the genesis of BSP and sources of local inaccuracies. © 2014 Wiley Periodicals, Inc.

  20. Validation of a finite element method framework for cardiac mechanics applications

    NASA Astrophysics Data System (ADS)

    Danan, David; Le Rolle, Virginie; Hubert, Arnaud; Galli, Elena; Bernard, Anne; Donal, Erwan; Hernández, Alfredo I.

    2017-11-01

    Modeling cardiac mechanics is a particularly challenging task, mainly because of the poor understanding of the underlying physiology, the lack of observability and the complexity of the mechanical properties of myocardial tissues. The choice of cardiac mechanic solvers, especially, implies several difficulties, notably due to the potential instability arising from the nonlinearities inherent to the large deformation framework. Furthermore, the verification of the obtained simulations is a difficult task because there is no analytic solutions for these kinds of problems. Hence, the objective of this work is to provide a quantitative verification of a cardiac mechanics implementation based on two published benchmark problems. The first problem consists in deforming a bar whereas the second problem concerns the inflation of a truncated ellipsoid-shaped ventricle, both in the steady state case. Simulations were obtained by using the finite element software GETFEM++. Results were compared to the consensus solution published by 11 groups and the proposed solutions were indistinguishable. The validation of the proposed mechanical model implementation is an important step toward the proposition of a global model of cardiac electro-mechanical activity.

  1. Definition of Local Diagnostic Reference Levels in a Radiology Department Using a Dose Tracking Software.

    PubMed

    Ghetti, C; Ortenzia, O; Palleri, F; Sireus, M

    2017-06-01

    Dose optimization in radiological examinations is a mandatory issue: in this study local Diagnostic Reference Levels (lDRLs) for Clinical Mammography (MG), Computed Tomography (CT) and Interventional Cardiac Procedures (ICP) performed in our Radiology Department were established. Using a dose tracking software, we have collected Average Glandular Dose (AGD) for two clinical mammographic units; CTDIvol, Size-Specific Dose Estimate (SSDE), Dose Length Product (DLP) and total DLP (DLPtot) for five CT scanners; Fluoro Time, Fluoro Dose Area Product (DAP) and total DAP (DAPtot) for two angiographic systems. Data have been compared with Italian Regulation and with the recent literature. The 75th percentiles of the different dosimetric indices have been calculated. Automated methods of radiation dose data collection allow a fast and detailed analysis of a great amount of data and an easy determination of lDRLs for different radiological procedures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. [Extension of cardiac monitoring function by used of ordinary ECG machine].

    PubMed

    Chen, Zhencheng; Jiang, Yong; Ni, Lili; Wang, Hongyan

    2002-06-01

    This paper deals with a portable monitor system on liquid crystal display (LCD) based on this available ordinary ECG machine, which is low power and suitable for China's specific condition. Apart from developing the overall scheme of the system, this paper also has completed the design of the hardware and the software. The 80c196 single chip microcomputer is taken as the central microprocessor and real time electrocardiac single is data treated and analyzed in the system. With the performance of ordinary monitor, this machine also possesses the following functions: five types of arrhythmia analysis, alarm, freeze, and record of automatic pappering, convenient in carrying, with alternate-current (AC) or direct-current (DC) powered. The hardware circuit is simplified and the software structure is optimized in this paper. Multiple low power designs and LCD unit design are adopted and completed in it. Popular in usage, low in cost price, the portable monitor system will have a valuable influence on China's monitor system field.

  3. Identification of Pulmonary Hypertension Caused by Left-Sided Heart Disease (World Health Organization Group 2) Based on Cardiac Chamber Volumes Derived From Chest CT Imaging.

    PubMed

    Aviram, Galit; Rozenbaum, Zach; Ziv-Baran, Tomer; Berliner, Shlomo; Topilsky, Yan; Fleischmann, Dominik; Sung, Yon K; Zamanian, Roham T; Guo, Haiwei Henry

    2017-10-01

    Evaluations of patients with pulmonary hypertension (PH) commonly include chest CT imaging. We hypothesized that cardiac chamber volumes calculated from the same CT scans can yield additional information to distinguish PH related to left-sided heart disease (World Health Organization group 2) from other PH subtypes. Patients who had PH confirmed by right heart catheterization and contrast-enhanced chest CT studies were enrolled in this retrospective multicenter study. Cardiac chamber volumes were calculated using automated segmentation software and compared between group 2 and non-group 2 patients with PH. This study included 114 patients with PH, 27 (24%) of whom were classified as group 2 based on their pulmonary capillary wedge pressure. Patients with group 2 PH exhibited significantly larger median left atrial (LA) volumes (118 mL vs 63 mL; P < .001), larger median left ventricular (LV) volumes (90 mL vs 76 mL; P = .02), and smaller median right ventricular (RV) volumes (173 mL vs 210 mL; P = .005) than did non-group 2 patients. On multivariate analysis adjusted for age, sex, and mean pulmonary arterial pressure, group 2 PH was significantly associated with larger median LA and LV volumes (P < .001 and P = .008, respectively) and decreased volume ratios of RA/LA, RV/LV, and RV/LA (P = .001, P = .004, and P < .001, respectively). Enlarged LA volumes demonstrated a high discriminatory ability for group 2 PH (area under the curve, 0.92; 95% CI, 0.870-0.968). Volumetric analysis of the cardiac chambers from nongated chest CT scans, particularly with findings of an enlarged left atrium, exhibited high discriminatory ability for identifying patients with PH due to left-sided heart disease. Copyright © 2017. Published by Elsevier Inc.

  4. Cardiac Magnetic Resonance Imaging in Myocarditis Reveals Persistent Disease Activity Despite Normalization of Cardiac Enzymes and Inflammatory Parameters at 3-Month Follow-Up.

    PubMed

    Berg, Jan; Kottwitz, Jan; Baltensperger, Nora; Kissel, Christine K; Lovrinovic, Marina; Mehra, Tarun; Scherff, Frank; Schmied, Christian; Templin, Christian; Lüscher, Thomas F; Heidecker, Bettina; Manka, Robert

    2017-11-01

    There is a major unmet need to identify high-risk patients in myocarditis. Although decreasing cardiac and inflammatory markers are commonly interpreted as resolving myocarditis, this assumption has not been confirmed as of today. We sought to evaluate whether routine laboratory parameters at diagnosis predict dynamic of late gadolinium enhancement (LGE) as persistent LGE has been shown to be a risk marker in myocarditis. Myocarditis was diagnosed based on clinical presentation, high-sensitivity troponin T, and cardiac magnetic resonance imaging, after exclusion of obstructive coronary artery disease by angiography. Cardiac magnetic resonance imaging was repeated at 3 months. LGE extent was analyzed with the software GT Volume. Change in LGE >20% was considered significant. Investigated cardiac and inflammatory markers included high-sensitivity troponin T, creatine kinase, myoglobin, N-terminal B-type natriuretic peptide, C-reactive protein, and leukocyte count. Twenty-four patients were enrolled. Absolute levels of cardiac enzymes and inflammatory markers at baseline did not predict change in LGE at 3 months. Cardiac and inflammatory markers had normalized in 21 patients (88%). LGE significantly improved in 16 patients (67%); however, it persisted to a lesser degree in 17 of them (71%) and increased in a small percentage (21%) despite normalization of cardiac enzymes. This is the first study reporting that cardiac enzymes and inflammatory parameters do not sufficiently reflect LGE in myocarditis. Although a majority of patients with normalizing laboratory markers experienced improved LGE, in a small percentage LGE worsened. These data suggest that cardiac magnetic resonance imaging might add value to currently existing diagnostic tools for risk assessment in myocarditis. © 2017 American Heart Association, Inc.

  5. Measurement of cardiac output in children by pressure-recording analytical method.

    PubMed

    Urbano, Javier; López, Jorge; González, Rafael; Solana, María José; Fernández, Sarah N; Bellón, José M; López-Herce, Jesús

    2015-02-01

    We evaluated two pressure-recording analytical method (PRAM) software versions (v.1 and v.2) to measure cardiac index (CI) in hemodynamically stable critically ill children and investigate factors that influence PRAM values. The working hypothesis was that PRAM CI measurements would stay within normal limits in hemodynamically stable patients. Ninety-five CI PRAM measurements were analyzed in 47 patients aged 1-168 months. Mean CI was 4.1 ± 1.4 L/min/m(2) (range 2.0-7.0). CI was outside limits defined as normal (3-5 L/min/m(2)) in 53.7% of measurements (47.8% with software v.1 and 69.2% with software v.2, p = 0.062). Moreover, 14.7% of measurements were below 2.5 L/min/m(2), and 13.6% were above 6 L/min/m(2). CI was significantly lower in patients with a clearly visible dicrotic notch than in those without (3.7 vs. 4.6 L/min/m(2), p = 0.004) and in children with a radial arterial catheter (3.5 L/min/m(2)) than in those with a brachial (4.4 L/min/m(2), p = 0.021) or femoral catheter (4.7 L/min/m(2), p = 0.005). By contrast, CI was significantly higher in children under 12 months (4.2 vs. 3.6 L/min/m(2), p = 0.034) and weighing under 10 kg (4.2 vs. 3.6 L/min/m(2), p = 0.026). No significant differences were observed between cardiac surgery patients and the rest of children. A high percentage of CI measurements registered by PRAM were outside normal limits in hemodynamically stable, critically ill children. CI measured by PRAM may be influenced by the age, weight, location of catheter, and presence of a dicrotic notch.

  6. Monitoring of intrathoracic volemia and cardiac output in critically ill children.

    PubMed

    Cecchetti, C; Stoppa, F; Vanacore, N; Barbieri, M A; Raucci, U; Pasotti, E; Tomasello, C; Marano, M; Pirozzi, N

    2003-12-01

    Hemodynamic monitoring is an important step in the management of critically ill children despite the difficulty in measuring preload indices continuously. The aim of the study was to analyze cardiac output parameters and preload indices after acute changes in mean airway pressure and volemia. Twenty-three children treated at our unit were enrolled in a prospective non randomized cohort study. Respiration was supported by controlled mechanical ventilation with positive expiratory-end pressure (PEEP), peak inspiratory pressure <20 cm H(2)O and mean airway pressure <10 cm H(2)O, and hemodynamic monitoring using the PiCCO system. Hemodynamic parameters were measured at T0 (base line), T(1) (after an increase in PEEP of 5 cm H(2)O for 10 min), and T(2) (after fluid challenge). The statistical analysis (BMPD New System software package) comprised comparison of changes at T(0) vs T(1), T(1) vs T(2) and T(0) vs T(2), construction of 3 correlation matrices and multiple linear regression analysis. Sixty-nine hemodynamic parameters were measured in the 23 patients. A comparison between T(0) and T(1) showed no significant changes; differences between T(0) and T(2) were found for cardiac index (CI), (p=0.003); between T(0) and T(2) significant differences were found for CI (p=0.0015), intrathoracic blood volume index (ITBVI) (p=0.04) and stroke volume index (SVI) (p=0.06). The analysis of the correlation matrices yielded ITBVI with CI (p=0.0006), ITBVI with SVI (p=1 x 10(-5)), CI with SVI (p=0.002); a significant correlation between CI and extravascular lung water index (EVLWI) was found only at T(1). Multiple linear regression analysis showed that ITBVI and SVI were predictive for variance of CI at each time point. ITBVI measured by a volumetric monitoring system such as the PiCCO may be considered a sensitive preload indicator also in critically ill children.

  7. The Telemetric and Holter ECG Warehouse Initiative (THEW): a Data Repository for the Design, Implementation and Validation of ECG-related Technologies

    PubMed Central

    Couderc, Jean-Philippe

    2011-01-01

    We present an initiative supported by the National Heart Lung, and Blood Institute and the Food and Drug Administration for the development of a repository containing continuous electrocardiographic information to be shared with the worldwide scientific community. We believe that sharing data reinforces open scientific inquiry. It encourages diversity of analysis and opinion while promoting new research and facilitating the education of new researchers. In this paper, we present the resources available in this initiative for the scientific community. We describe the set of ECG signals currently hosted and we briefly discuss the associated clinical information (medical history. Disease and study-specific endpoints) and software tools we propose. Currently, the repository contains more than 250GB of data from eight clinical studies including healthy individuals and cardiac patients. This data is available for the development, implementation and validation of technologies related to body-surface ECGs. To conclude, the Telemetric and Holter ECG Warehouse (THEW) is an initiative developed to benefit the scientific community and to advance the field of quantitative electrocardiography and cardiac safety. PMID:21097349

  8. Left ventricular eccentricity index measured with SPECT myocardial perfusion imaging: An additional parameter of adverse cardiac remodeling.

    PubMed

    Gimelli, Alessia; Liga, Riccardo; Clemente, Alberto; Marras, Gavino; Kusch, Annette; Marzullo, Paolo

    2017-01-12

    Single-photon emission computed-tomography (SPECT) allows the quantification of LV eccentricity index (EI), a measure of cardiac remodeling. We sought to evaluate the feasibility of EI measurement with SPECT myocardial perfusion imaging and its interactions with relevant LV functional and structural parameters. Four-hundred and fifty-six patients underwent myocardial perfusion imaging on a Cadmium-Zinc-Telluride (CZT) camera. The summed rest, stress, and difference scores were calculated. From rest images, the LV end-diastolic (EDV) and end-systolic volumes, ejection fraction (EF), and peak filling rate (PFR) were calculated. In every patient, the EI, ranging from 0 (sphere) to 1 (line), was computed using a dedicated software (QGS/QPS; Cedars-Sinai Medical Center). Three-hundred and thirty-eight/456 (74%) patients showed a normal EF (>50%), while 26% had LV systolic dysfunction. The EI was computed from CZT images with excellent reproducibility (interclass correlation coefficient: 0.99, 95% CI 0.98-0.99). More impaired EI values correlated with the presence of a more abnormal LV perfusion (P < .001), function (EF and PFR, P < .001), and structure (EDV, P < .001). On multivariate analysis, higher EDV (P < .001) and depressed EF (P = .014) values were independent predictors of abnormal EI. The evaluation of LV eccentricity is feasible on gated CZT images. Abnormal EI associates with significant cardiac structural and functional abnormalities.

  9. Accurate reconstruction of 3D cardiac geometry from coarsely-sliced MRI.

    PubMed

    Ringenberg, Jordan; Deo, Makarand; Devabhaktuni, Vijay; Berenfeld, Omer; Snyder, Brett; Boyers, Pamela; Gold, Jeffrey

    2014-02-01

    We present a comprehensive validation analysis to assess the geometric impact of using coarsely-sliced short-axis images to reconstruct patient-specific cardiac geometry. The methods utilize high-resolution diffusion tensor MRI (DTMRI) datasets as reference geometries from which synthesized coarsely-sliced datasets simulating in vivo MRI were produced. 3D models are reconstructed from the coarse data using variational implicit surfaces through a commonly used modeling tool, CardioViz3D. The resulting geometries were then compared to the reference DTMRI models from which they were derived to analyze how well the synthesized geometries approximate the reference anatomy. Averaged over seven hearts, 95% spatial overlap, less than 3% volume variability, and normal-to-surface distance of 0.32 mm was observed between the synthesized myocardial geometries reconstructed from 8 mm sliced images and the reference data. The results provide strong supportive evidence to validate the hypothesis that coarsely-sliced MRI may be used to accurately reconstruct geometric ventricular models. Furthermore, the use of DTMRI for validation of in vivo MRI presents a novel benchmark procedure for studies which aim to substantiate their modeling and simulation methods using coarsely-sliced cardiac data. In addition, the paper outlines a suggested original procedure for deriving image-based ventricular models using the CardioViz3D software. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Blood-threshold CMR volume analysis of functional univentricular heart.

    PubMed

    Secchi, Francesco; Alì, Marco; Petrini, Marcello; Pluchinotta, Francesca Romana; Cozzi, Andrea; Carminati, Mario; Sardanelli, Francesco

    2018-05-01

    To validate a blood-threshold (BT) segmentation software for cardiac magnetic resonance (CMR) cine images in patients with functional univentricular heart (FUH). We evaluated retrospectively 44 FUH patients aged 25 ± 8 years (mean ± standard deviation). For each patient, the epicardial contour of the single ventricle was manually segmented on cine images by two readers and an automated BT algorithm was independently applied to calculate end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and cardiac mass (CM). Aortic flow analysis (AFA) was performed on through-plane images to obtain forward volumes and used as a benchmark. Reproducibility was tested in a subgroup of 24 randomly selected patients. Wilcoxon, Spearman, and Bland-Altman statistics were used. No significant difference was found between SV (median 57.7 ml; interquartile range 47.9-75.6) and aortic forward flow (57.4 ml; 48.9-80.4) (p = 0.123), with a high correlation (r = 0.789, p < 0.001). Intra-reader reproducibility was 86% for SV segmentation, and 96% for AFA. Inter-reader reproducibility was 85 and 96%, respectively. The BT segmentation provided an accurate and reproducible assessment of heart function in FUH patients.

  11. Software-based measurement of thin filament lengths: an open-source GUI for Distributed Deconvolution analysis of fluorescence images

    PubMed Central

    Gokhin, David S.; Fowler, Velia M.

    2016-01-01

    The periodically arranged thin filaments within the striated myofibrils of skeletal and cardiac muscle have precisely regulated lengths, which can change in response to developmental adaptations, pathophysiological states, and genetic perturbations. We have developed a user-friendly, open-source ImageJ plugin that provides a graphical user interface (GUI) for super-resolution measurement of thin filament lengths by applying Distributed Deconvolution (DDecon) analysis to periodic line scans collected from fluorescence images. In the workflow presented here, we demonstrate thin filament length measurement using a phalloidin-stained cryosection of mouse skeletal muscle. The DDecon plugin is also capable of measuring distances of any periodically localized fluorescent signal from the Z- or M-line, as well as distances between successive Z- or M-lines, providing a broadly applicable tool for quantitative analysis of muscle cytoarchitecture. These functionalities can also be used to analyze periodic fluorescence signals in nonmuscle cells. PMID:27644080

  12. A comprehensive gene expression analysis at sequential stages of in vitro cardiac differentiation from isolated MESP1-expressing-mesoderm progenitors

    PubMed Central

    den Hartogh, Sabine C.; Wolstencroft, Katherine; Mummery, Christine L.; Passier, Robert

    2016-01-01

    In vitro cardiac differentiation of human pluripotent stem cells (hPSCs) closely recapitulates in vivo embryonic heart development, and therefore, provides an excellent model to study human cardiac development. We recently generated the dual cardiac fluorescent reporter MESP1mCherry/wNKX2-5eGFP/w line in human embryonic stem cells (hESCs), allowing the visualization of pre-cardiac MESP1+ mesoderm and their further commitment towards the cardiac lineage, marked by activation of the cardiac transcription factor NKX2-5. Here, we performed a comprehensive whole genome based transcriptome analysis of MESP1-mCherry derived cardiac-committed cells. In addition to previously described cardiac-inducing signalling pathways, we identified novel transcriptional and signalling networks indicated by transient activation and interactive network analysis. Furthermore, we found a highly dynamic regulation of extracellular matrix components, suggesting the importance to create a versatile niche, adjusting to various stages of cardiac differentiation. Finally, we identified cell surface markers for cardiac progenitors, such as the Leucine-rich repeat-containing G-protein coupled receptor 4 (LGR4), belonging to the same subfamily of LGR5, and LGR6, established tissue/cancer stem cells markers. We provide a comprehensive gene expression analysis of cardiac derivatives from pre-cardiac MESP1-progenitors that will contribute to a better understanding of the key regulators, pathways and markers involved in human cardiac differentiation and development. PMID:26783251

  13. Software development, nomenclature schemes, and mapping strategies for an international pediatric cardiac surgery database system.

    PubMed

    Jacobs, Jeffrey P

    2002-01-01

    The field of congenital heart surgery has the opportunity to create the first comprehensive international database for a medical subspecialty. An understanding of the demographics of congenital heart disease and the rapid growth of computer technology leads to the realization that creating a comprehensive international database for pediatric cardiac surgery represents an important and achievable goal. The evolution of computer-based data analysis creates an opportunity to develop software to manage an international congenital heart surgery database and eventually become an electronic medical record. The same database data set for congenital heart surgery is now being used in Europe and North America. Additional work is under way to involve Africa, Asia, Australia, and South America. The almost simultaneous publication of the European Association for Cardio-thoracic Surgery/Society of Thoracic Surgeons coding system and the Association for European Paediatric Cardiology coding system resulted in the potential for multiple coding. Representatives of the Association for European Paediatric Cardiology, Society of Thoracic Surgeons, European Association for Cardio-thoracic Surgery, and European Congenital Heart Surgeons Foundation agree that these hierarchical systems are complementary and not competitive. An international committee will map the two systems. The ideal coding system will permit a diagnosis or procedure to be coded only one time with mapping allowing this code to be used for patient care, billing, practice management, teaching, research, and reporting to governmental agencies. The benefits of international data gathering and sharing are global, with the long-term goal of the continued upgrade in the quality of congenital heart surgery worldwide. Copyright 2002 by W.B. Saunders Company

  14. Reproducibility of a novel echocardiographic 3D automated software for the assessment of mitral valve anatomy.

    PubMed

    Aquila, Iolanda; González, Ariana; Fernández-Golfín, Covadonga; Rincón, Luis Miguel; Casas, Eduardo; García, Ana; Hinojar, Rocio; Jiménez-Nacher, José Julio; Zamorano, José Luis

    2016-05-17

    3D transesophageal echocardiography (TEE) is superior to 2D TEE in quantitative anatomic evaluation of the mitral valve (MV) but it shows limitations regarding automatic quantification. Here, we tested the inter-/intra-observer reproducibility of a novel full-automated software in the evaluation of MV anatomy compared to manual 3D assessment. Thirty-six out of 61 screened patients referred to our Cardiac Imaging Unit for TEE were retrospectively included. 3D TEE analysis was performed both manually and with the automated software by two independent operators. Mitral annular area, intercommissural distance, anterior leaflet length and posterior leaflet length were assessed. A significant correlation between both methods was found for all variables: intercommissural diameter (r = 0.84, p < 0.01), mitral annular area (r = 0.94, p > 0, 01), anterior leaflet length (r = 0.83, p < 0.01) and posterior leaflet length (r = 0.67, p < 0.01). Interobserver variability assessed by the intraclass correlation coefficient was superior for the automatic software: intercommisural distance 0.997 vs. 0.76; mitral annular area 0.957 vs. 0.858; anterior leaflet length 0.963 vs. 0.734 and posterior leaflet length 0.936 vs. 0.838. Intraobserver variability was good for both methods with a better level of agreement with the automatic software. The novel 3D automated software is reproducible in MV anatomy assessment. The incorporation of this new tool in clinical MV assessment may improve patient selection and outcomes for MV interventions as well as patient diagnosis and prognosis stratification. Yet, high-quality 3D images are indispensable.

  15. [Proteomic analysis of myocardial hypertrophy induced by left kidney artery coarctation in rats].

    PubMed

    Lv, Yuan-yuan; Sun, Biao; Ma, Ji-zheng

    2009-05-01

    To identify the expression of proteins in cardiomyocytes in rats with left kidney artery coarctation. 16 male SD rats were separated into 2 groups (n=8): 2 kidney 1 Clip group (2K1C) and sham operation group (SO). The postoperational 8th week, after examination by normal doppler and tissue doppler echocardiography, the extracted proteins from cardiomyocytes were isolated by two-dimensional gel electrophoresis with staining. The gel images were acquired by scanner and 2-DE analysis software. Different spots observed on two 2D gels were selected and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Overall, 21 protein spots showed significant difference, and 14 out of which were identified. Kidney artery coactation-induced cardiac hypertrophy displays different expression of proteins in cardiomyocytes.

  16. Biventricular Heart Remodeling After Percutaneous or Surgical Pulmonary Valve Implantation: Evaluation by Cardiac Magnetic Resonance.

    PubMed

    Secchi, Francesco; Resta, Elda C; Cannaò, Paola M; Pluchinotta, Francesca; Piazza, Luciane; Butera, Gianfranco; Carminati, Mario; Sardanelli, Francesco

    2017-11-01

    The aim of this study was to evaluate the impact of percutaneous pulmonary valve implantation (PPVI) and surgical pulmonary valve replacement (SPVR) on biventricular and pulmonary valve function using cardiac magnetic resonance. Thirty-five patients aged 20±8 years (mean±SD) underwent PPVI, whereas 16 patients aged 30±11 years underwent SPVR. Cardiac magnetic resonance examinations were performed before and after the procedures with an average follow-up interval of 10 months. Cine steady-state free precession sequences for cardiac function and phase-contrast sequences for pulmonary flow were performed. The right ventricle (RV) and left ventricle (LV) functions were evaluated using a dedicated software. The RV end-diastolic volume index (mL/m) decreased significantly after PPVI and SPVR, from 74 to 64 (P=0.030) and from 137 to 83 (P=0.001), respectively. The RV ejection fraction increased significantly after SPVR, from 47% to 53% (P=0.038). The LV end-diastolic volume index increased significantly after PPVI, from 66 to 76 mL/m (P<0.001). The LV stroke volume index increased significantly after PPVI, from 34 to 43 mL/m (P=0.004). The analysis of bivariate correlations showed that in patients undergoing SPVR the RV changes after the procedure were positively correlated to LV changes in terms of end-systolic volume index (r=0587; P=0.017) and ejection fraction (r=0.681; P=0.004). A RV volumetric reduction and a positive effect on ventricular-ventricular interaction were observed after both PPVI and SPVR. After PPVI, a positive volumetric LV remodeling was found. No LV remodeling was found after SPVR. After both procedures, the replaced pulmonary valve functioned well.

  17. Manual, semiautomated, and fully automated measurement of the aortic annulus for planning of transcatheter aortic valve replacement (TAVR/TAVI): analysis of interchangeability.

    PubMed

    Lou, Junyang; Obuchowski, Nancy A; Krishnaswamy, Amar; Popovic, Zoran; Flamm, Scott D; Kapadia, Samir R; Svensson, Lars G; Bolen, Michael A; Desai, Milind Y; Halliburton, Sandra S; Tuzcu, E Murat; Schoenhagen, Paul

    2015-01-01

    Preprocedural 3-dimensional CT imaging of the aortic annular plane plays a critical role for transcatheter aortic valve replacement (TAVR) planning; however, manual reconstructions are complex. Automated analysis software may improve reproducibility and agreement between readers but is incompletely validated. In 110 TAVR patients (mean age, 81 years; 37% female) undergoing preprocedural multidetector CT, automated reconstruction of the aortic annular plane and planimetry of the annulus was performed with a prototype of now commercially available software (syngo.CT Cardiac Function-Valve Pilot; Siemens Healthcare, Erlangen, Germany). Fully automated, semiautomated, and manual annulus measurements were compared. Intrareader and inter-reader agreement, intermodality agreement, and interchangeability were analyzed. Finally, the impact of these measurements on recommended valve size was evaluated. Semiautomated analysis required major correction in 5 patients (4.5%). In the remaining 95.5%, only minor correction was performed. Mean manual annulus area was significantly smaller than fully automated results (P < .001 for both readers) but similar to semiautomated measurements (5.0 vs 5.4 vs 4.9 cm(2), respectively). The frequency of concordant recommendations for valve size increased if manual analysis was replaced with the semiautomated method (60% agreement was improved to 82.4%; 95% confidence interval for the difference [69.1%-83.4%]). Semiautomated aortic annulus analysis, with minor correction by the user, provides reliable results in the context of TAVR annulus evaluation. Copyright © 2015 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  18. Programmable Pacemaker

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Released in 1995, the Trilogy cardiac pacemaker is the fourth generation of a unit developed in the 1970s by NASA, Johns Hopkins Applied Physics Laboratory and St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.). The new system incorporates the company's PDx diagnostic and programming software and a powerful microprocessor that allows more functions to be fully automatic and gives more detailed information on the patient's health and the performance of the pacing systems. The pacemaker incorporates bidirectional telemetry used for space communications for noninvasive communication with the implanted pacemaker, smaller implantable pulse generators from space microminiaturization, and longer-life batteries from technology for spacecraft electrical power systems.

  19. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen

    2013-12-15

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequencemore » is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using minimal external hardware and software modification through a single input channel, while still recording cardiac gating signals.« less

  20. Semiautomatic segmentation of the heart from CT images based on intensity and morphological features

    NASA Astrophysics Data System (ADS)

    Redwood, Abena B.; Camp, Jon J.; Robb, Richard A.

    2005-04-01

    The incidence of certain types of cardiac arrhythmias is increasing. Effective, minimally invasive treatment has remained elusive. Pharmacologic treatment has been limited by drug intolerance and recurrence of disease. Catheter based ablation has been moderately successful in treating certain types of cardiac arrhythmias, including typical atrial flutter and fibrillation, but there remains a relatively high rate of recurrence. Additional side effects associated with cardiac ablation procedures include stroke, perivascular lung damage, and skin burns caused by x-ray fluoroscopy. Access to patient specific 3-D cardiac images has potential to significantly improve the process of cardiac ablation by providing the physician with a volume visualization of the heart. This would facilitate more effective guidance of the catheter, increase the accuracy of the ablative process, and eliminate or minimize the damage to surrounding tissue. In this study, a semiautomatic method for faithful cardiac segmentation was investigated using Analyze - a comprehensive processing software package developed at the Biomedical Imaging Resource, Mayo Clinic. This method included use of interactive segmentation based on math morphology and separation of the chambers based on morphological connections. The external surfaces of the hearts were readily segmented, while accurate separation of individual chambers was a challenge. Nonetheless, a skilled operator could manage the task in a few minutes. Useful improvements suggested in this paper would give this method a promising future.

  1. Modeling Patient-Specific Deformable Mitral Valves.

    PubMed

    Ginty, Olivia; Moore, John; Peters, Terry; Bainbridge, Daniel

    2018-06-01

    Medical imaging has advanced enormously over the last few decades, revolutionizing patient diagnostics and care. At the same time, additive manufacturing has emerged as a means of reproducing physical shapes and models previously not possible. In combination, they have given rise to 3-dimensional (3D) modeling, an entirely new technology for physicians. In an era in which 3D imaging has become a standard for aiding in the diagnosis and treatment of cardiac disease, this visualization now can be taken further by bringing the patient's anatomy into physical reality as a model. The authors describe the generalized process of creating a model of cardiac anatomy from patient images and their experience creating patient-specific dynamic mitral valve models. This involves a combination of image processing software and 3D printing technology. In this article, the complexity of 3D modeling is described and the decision-making process for cardiac anesthesiologists is summarized. The management of cardiac disease has been altered with the emergence of 3D echocardiography, and 3D modeling represents the next paradigm shift. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Comparison of Electronic Learning Versus Lecture-based Learning in Improving Emergency Medicine Residents' Knowledge About Mild Induced Hypothermia After Cardiac Arrest.

    PubMed

    Soleimanpour, Maryam; Rahmani, Farzad; Naghizadeh Golzari, Mehrad; Ala, Alireza; Morteza Bagi, Hamid Reza; Mehdizadeh Esfanjani, Robab; Soleimanpour, Hassan

    2017-08-01

    The process of medical education depends on several issues such as training materials, students, professors, educational fields, and the applied technologies. The current study aimed at comparing the impacts of e-learning and lecture-based learning of mild induced hypothermia (MIH) after cardiac arrest on the increase of knowledge among emergency medicine residents. In a pre- and post-intervention study, MIH after cardiac arrest was taught to 44 emergency medicine residents. Residents were randomly divided into 2 groups. The first group included 21 participants (lecture-based learning) and the second had 23 participants (e-learning). A 19-item questionnaire with approved validity and reliability was employed as the pretest and posttest. Then, data were analyzed with SPSS software version 17.0. There was no statistically significant difference in terms of the learning method between the test scores of the 2 groups (P = 0.977). E-learning and lecture-based learning methods was effective in augmentation of residents of emergency medicine knowledge about MIH after cardiac arrest; nevertheless, there was no significant difference between these mentioned methods.

  3. SU-C-201-04: Quantification of Perfusion Heterogeneity Based On Texture Analysis for Fully Automatic Detection of Ischemic Deficits From Myocardial Perfusion Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Y; Huang, H; Su, T

    Purpose: Texture-based quantification of image heterogeneity has been a popular topic for imaging studies in recent years. As previous studies mainly focus on oncological applications, we report our recent efforts of applying such techniques on cardiac perfusion imaging. A fully automated procedure has been developed to perform texture analysis for measuring the image heterogeneity. Clinical data were used to evaluate the preliminary performance of such methods. Methods: Myocardial perfusion images of Thallium-201 scans were collected from 293 patients with suspected coronary artery disease. Each subject underwent a Tl-201 scan and a percutaneous coronary intervention (PCI) within three months. The PCImore » Result was used as the gold standard of coronary ischemia of more than 70% stenosis. Each Tl-201 scan was spatially normalized to an image template for fully automatic segmentation of the LV. The segmented voxel intensities were then carried into the texture analysis with our open-source software Chang Gung Image Texture Analysis toolbox (CGITA). To evaluate the clinical performance of the image heterogeneity for detecting the coronary stenosis, receiver operating characteristic (ROC) analysis was used to compute the overall accuracy, sensitivity and specificity as well as the area under curve (AUC). Those indices were compared to those obtained from the commercially available semi-automatic software QPS. Results: With the fully automatic procedure to quantify heterogeneity from Tl-201 scans, we were able to achieve a good discrimination with good accuracy (74%), sensitivity (73%), specificity (77%) and AUC of 0.82. Such performance is similar to those obtained from the semi-automatic QPS software that gives a sensitivity of 71% and specificity of 77%. Conclusion: Based on fully automatic procedures of data processing, our preliminary data indicate that the image heterogeneity of myocardial perfusion imaging can provide useful information for automatic determination of the myocardial ischemia.« less

  4. NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Hosler, E. Ramon (Editor); Armstrong, Dennis W. (Editor)

    1989-01-01

    The contractor's report contains all sixteen final reports prepared by the participants in the 1989 Summer Faculty Fellowship Program. Reports describe research projects on a number of different topics. Interface software, metal corrosion, rocket triggering lightning, automatic drawing, 60-Hertz power, carotid-cardiac baroreflex, acoustic fields, robotics, AI, CAD/CAE, cryogenics, titanium, and flow measurement are discussed.

  5. Transthoracic impedance used to evaluate performance of cardiopulmonary resuscitation during out of hospital cardiac arrest.

    PubMed

    Stecher, Frederik S; Olsen, Jan-Aage; Stickney, Ronald E; Wik, Lars

    2008-12-01

    There is a need to measure cardiopulmonary resuscitation (CPR) in order to document whether ambulance personnel follow CPR guidelines. Our goal was to do this using defibrillator technology based on changes in transthoracic impedance (TTI) produced by chest compressions and ventilations. 122 incidents of out-of-hospital cardiac arrest between May 2003 and February 2004 were analysed based on data recorded from defibrillators in Oslo EMS. New software was used to analyze chest compressions and ventilations based on changes in thoracic impedance between the defibrillator pads, as well as ECG and other event data. In total, 25+/-14% (varying from 76% to 3%) of the time chest compressions were not performed on patients without spontaneous circulation (NFR=No Flow Ratio). When adjusting for time spent on analysis of ECG, pulse check and defibrillation, NFR was 20+/-13% (varying from 70% to 3%). Mean compressions delivered per minute was 87+/-16 and the compression rate during active compressions was 117+/-9min(-1). Individual variation was 31-117min(-1) (mean) and 95-144min(-1) (active periods). A mean of 14+/-3ventilations/min was recorded, varying from 8 to 26min(-1). Compared with the rest of the episode, the first 5min had a significantly higher proportion of time without chest compressions; 30+/-17% (p<0.001) and significantly lower mean compression and ventilation rates; 80+/-19min(-1) and 12+/-4min(-1), respectively (p<0.001 in both cases). Core CPR values can be measured from TTI signals by using a standard defibrillator and new software. NFR was 25% (20% adjusted) with great rescuer variability.

  6. Complications of Transfusion-Dependent β-Thalassemia Patients in Sistan and Baluchistan, South-East of Iran.

    PubMed

    Yaghobi, Maryam; Miri-Moghaddam, Ebrahim; Majid, Naderi; Bazi, Ali; Navidian, Ali; Kalkali, Asiyeh

    2017-10-01

    Background : Thalassemia syndromes are among prevalent hereditary disorders imposing high expenses on health-care system worldwide and in Iran. Organ failure represents a life-threatening challenge in transfusion- dependent β-thalassemia (TDT) patients. The purpose of the present study was to determine the frequency of organ dysfunctions among TDT patients in Sistan and Baluchistan province in South-East of Iran. Materials and Methods: Laboratory and clinical data were extracted from medical records as well as by interviews. Standard criteria were applied to recognize cardiac, gonadal, endocrine and renal dysfunctions. The collected data were analyzed using the SPSS statistics software (Ver.19). Results: A total of 613 TDT patients (54.3% males and 45.7% females) were included in this study. The mean age of patients was 13.3 ±7.7 years old. Cardiac events comprised the most encountered complications (76.4%), following by hypogonadism (46.8%), parathyroid dysfunction (22%), thyroid abnormalities (8.3%), diabetes (7.8%) and renal disease (1.8%). Hypogonadism comprised the most identified complication in patient <15 years old, while the cardiac complications were the most frequent sequela in patients >15 years old (P<0.01). Conclusion: As cardiac events are significantly more common among TDT patients, close monitoring of the heart function is recommended for identifying patients with cardiac problems.

  7. ECG-derived Cheyne-Stokes respiration and periodic breathing in healthy and hospitalized populations.

    PubMed

    Tinoco, Adelita; Drew, Barbara J; Hu, Xiao; Mortara, David; Cooper, Bruce A; Pelter, Michele M

    2017-11-01

    Cheyne-Stokes respiration (CSR) has been investigated primarily in outpatients with heart failure. In this study we compare CSR and periodic breathing (PB) between healthy and cardiac groups. We compared CSR and PB, measured during 24 hr of continuous 12-lead electrocardiographic (ECG) Holter recording, in a group of 90 hospitalized patients presenting to the emergency department with symptoms suggestive of acute coronary syndrome (ACS) to a group of 100 healthy ambulatory participants. We also examined CSR and PB in the 90 patients presenting with ACS symptoms, divided into a group of 39 (43%) with confirmed ACS, and 51 (57%) with a cardiac diagnosis but non-ACS. SuperECG software was used to derive respiration and then calculate CSR and PB episodes from the ECG Holter data. Regression analyses were used to analyze the data. We hypothesized SuperECG software would differentiate between the groups by detecting less CSR and PB in the healthy group than the group of patients presenting to the emergency department with ACS symptoms. Hospitalized patients with suspected ACS had 7.3 times more CSR episodes and 1.6 times more PB episodes than healthy ambulatory participants. Patients with confirmed ACS had 6.0 times more CSR episodes and 1.3 times more PB episodes than cardiac non-ACS patients. Continuous 12-lead ECG derived CSR and PB appear to differentiate between healthy participants and hospitalized patients. © 2017 Wiley Periodicals, Inc.

  8. Projection-based motion estimation for cardiac functional analysis with high temporal resolution: a proof-of-concept study with digital phantom experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuki; Fung, George S. K.; Shen, Zeyang; Otake, Yoshito; Lee, Okkyun; Ciuffo, Luisa; Ashikaga, Hiroshi; Sato, Yoshinobu; Taguchi, Katsuyuki

    2017-03-01

    Cardiac motion (or functional) analysis has shown promise not only for non-invasive diagnosis of cardiovascular diseases but also for prediction of cardiac future events. Current imaging modalities has limitations that could degrade the accuracy of the analysis indices. In this paper, we present a projection-based motion estimation method for x-ray CT that estimates cardiac motion with high spatio-temporal resolution using projection data and a reference 3D volume image. The experiment using a synthesized digital phantom showed promising results for motion analysis.

  9. Chaste: A test-driven approach to software development for biological modelling

    NASA Astrophysics Data System (ADS)

    Pitt-Francis, Joe; Pathmanathan, Pras; Bernabeu, Miguel O.; Bordas, Rafel; Cooper, Jonathan; Fletcher, Alexander G.; Mirams, Gary R.; Murray, Philip; Osborne, James M.; Walter, Alex; Chapman, S. Jon; Garny, Alan; van Leeuwen, Ingeborg M. M.; Maini, Philip K.; Rodríguez, Blanca; Waters, Sarah L.; Whiteley, Jonathan P.; Byrne, Helen M.; Gavaghan, David J.

    2009-12-01

    Chaste ('Cancer, heart and soft-tissue environment') is a software library and a set of test suites for computational simulations in the domain of biology. Current functionality has arisen from modelling in the fields of cancer, cardiac physiology and soft-tissue mechanics. It is released under the LGPL 2.1 licence. Chaste has been developed using agile programming methods. The project began in 2005 when it was reasoned that the modelling of a variety of physiological phenomena required both a generic mathematical modelling framework, and a generic computational/simulation framework. The Chaste project evolved from the Integrative Biology (IB) e-Science Project, an inter-institutional project aimed at developing a suitable IT infrastructure to support physiome-level computational modelling, with a primary focus on cardiac and cancer modelling. Program summaryProgram title: Chaste Catalogue identifier: AEFD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: LGPL 2.1 No. of lines in distributed program, including test data, etc.: 5 407 321 No. of bytes in distributed program, including test data, etc.: 42 004 554 Distribution format: tar.gz Programming language: C++ Operating system: Unix Has the code been vectorised or parallelized?: Yes. Parallelized using MPI. RAM:<90 Megabytes for two of the scenarios described in Section 6 of the manuscript (Monodomain re-entry on a slab or Cylindrical crypt simulation). Up to 16 Gigabytes (distributed across processors) for full resolution bidomain cardiac simulation. Classification: 3. External routines: Boost, CodeSynthesis XSD, CxxTest, HDF5, METIS, MPI, PETSc, Triangle, Xerces Nature of problem: Chaste may be used for solving coupled ODE and PDE systems arising from modelling biological systems. Use of Chaste in two application areas are described in this paper: cardiac electrophysiology and intestinal crypt dynamics. Solution method: Coupled multi-physics with PDE, ODE and discrete mechanics simulation. Running time: The largest cardiac simulation described in the manuscript takes about 6 hours to run on a single 3 GHz core. See results section (Section 6) of the manuscript for discussion on parallel scaling.

  10. An Excel‐based implementation of the spectral method of action potential alternans analysis

    PubMed Central

    Pearman, Charles M.

    2014-01-01

    Abstract Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro‐arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T‐wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results. PMID:25501439

  11. White matter changes in comatose survivors of anoxic ischemic encephalopathy and traumatic brain injury: comparative diffusion-tensor imaging study.

    PubMed

    van der Eerden, Anke W; Khalilzadeh, Omid; Perlbarg, Vincent; Dinkel, Julien; Sanchez, Paola; Vos, Pieter E; Luyt, Charles-Edouard; Stevens, Robert D; Menjot de Champfleur, Nicolas; Delmaire, Christine; Tollard, Eleonore; Gupta, Rajiv; Dormont, Didier; Laureys, Steven; Benali, Habib; Vanhaudenhuyse, Audrey; Galanaud, Damien; Puybasset, Louis

    2014-02-01

    To analyze white matter pathologic abnormalities by using diffusion-tensor (DT) imaging in a multicenter prospective cohort of comatose patients following cardiac arrest or traumatic brain injury (TBI). Institutional review board approval and informed consent from proxies and control subjects were obtained. DT imaging was performed 5-57 days after insult in 49 cardiac arrest and 40 TBI patients. To control for DT imaging-processing variability, patients' values were normalized to those of 111 control subjects. Automated segmentation software calculated normalized axial diffusivity (λ1) and radial diffusivity (λ⊥) in 19 predefined white matter regions of interest (ROIs). DT imaging variables were compared by using general linear modeling, and side-to-side Pearson correlation coefficients were calculated. P values were corrected for multiple testing (Bonferroni). In central white matter, λ1 differed from that in control subjects in six of seven TBI ROIs and five of seven cardiac arrest ROIs (all P < .01). The λ⊥ differed from that in control subjects in all ROIs in both patient groups (P < .01). In hemispheres, λ1 was decreased compared with that in control subjects in three of 12 TBI ROIs (P < .05) and nine of 12 cardiac arrest ROIs (P < .01). The λ⊥ was increased in all TBI ROIs (P < .01) and in seven of 12 cardiac arrest ROIs (P < .05). Cerebral hemisphere λ1 was lower in cardiac arrest than in TBI in six of 12 ROIs (P < .01), while λ⊥ was higher in TBI than in cardiac arrest in eight of 12 ROIs (P < .01). Diffusivity values were symmetrically distributed in cardiac arrest (P < .001 for side-to-side correlation) but not in TBI patients. DT imaging findings are consistent with the known predominance of cerebral hemisphere axonal injury in cardiac arrest and chiefly central myelin injury in TBI. This consistency supports the validity of DT imaging for differentiating axon and myelin damage in vivo in humans. © RSNA, 2013

  12. Computer program for analysis of hemodynamic response to head-up tilt test

    NASA Astrophysics Data System (ADS)

    ŚwiÄ tek, Eliza; Cybulski, Gerard; Koźluk, Edward; PiÄ tkowska, Agnieszka; Niewiadomski, Wiktor

    2014-11-01

    The aim of this work was to create a computer program, written in the MATLAB environment, which enables the visualization and analysis of hemodynamic parameters recorded during a passive tilt test using the CNS Task Force Monitor System. The application was created to help in the assessment of the relationship between the values and dynamics of changes of the selected parameters and the risk of orthostatic syncope. The signal analysis included: R-R intervals (RRI), heart rate (HR), systolic blood pressure (sBP), diastolic blood pressure (dBP), mean blood pressure (mBP), stroke volume (SV), stroke index (SI), cardiac output (CO), cardiac index (CI), total peripheral resistance (TPR), total peripheral resistance index (TPRI), ventricular ejection time (LVET) and thoracic fluid content (TFC). The program enables the user to visualize waveforms for a selected parameter and to perform smoothing with selected moving average parameters. It allows one to construct the graph of means for any range, and the Poincare plot for a selected time range. The program automatically determines the average value of the parameter before tilt, its minimum and maximum value immediately after changing positions and the times of their occurrence. It is possible to correct the automatically detected points manually. For the RR interval, it determines the acceleration index (AI) and the brake index (BI). It is possible to save calculated values to an XLS with a name specified by user. The application has a user-friendly graphical interface and can run on a computer that has no MATLAB software.

  13. Simultaneous Assessment of Myocardial Perfusion, Wall Motion, and Deformation during Myocardial Contrast Echocardiography: A Feasibility Study.

    PubMed

    Zoppellaro, Giacomo; Venneri, Lucia; Khattar, Rajdeep S; Li, Wei; Senior, Roxy

    2016-06-01

    Ultrasound contrast agents may be used for the assessment of regional wall motion and myocardial perfusion, but are generally considered not suitable for deformation analysis. The aim of our study was to assess the feasibility of deformation imaging on contrast-enhanced images using a novel methodology. We prospectively enrolled 40 patients who underwent stress echocardiography with continuous intravenous infusion of SonoVue for the assessment of myocardial perfusion imaging with flash replenishment technique. We compared longitudinal strain (Lε) values, assessed with a vendor-independent software (2D CPA), on 68 resting contrast-enhanced and 68 resting noncontrast recordings. Strain analysis on contrast recordings was evaluated in the first cardiac cycles after the flash. Tracking of contrast images was deemed feasible in all subjects and in all views. Contrast administration improved image quality and increased the number of segments used for deformation analysis. Lε of noncontrast and contrast-enhanced images were statistically different (-18.8 ± 4.5% and -22.8 ± 5.4%, respectively; P < 0.001), but their correlation was good (ICC 0.65, 95%CI 0.42-0.78). Patients with resting wall-motion abnormalities showed lower Lε values on contrast recordings (-18.6 ± 6.0% vs. -24.2 ± 5.5%, respectively; P < 0.01). Intra-operator and inter-operator reproducibility was good for both noncontrast and contrast images with no statistical differences. Our study shows that deformation analysis on postflash contrast-enhanced images is feasible and reproducible. Therefore, it would be possible to perform a simultaneous evaluation of wall-motion abnormalities, volumes, ejection fraction, perfusion defects, and cardiac deformation on the same contrast recording. © 2016, Wiley Periodicals, Inc.

  14. Neural Network Prediction of ICU Length of Stay Following Cardiac Surgery Based on Pre-Incision Variables

    PubMed Central

    Pothula, Venu M.; Yuan, Stanley C.; Maerz, David A.; Montes, Lucresia; Oleszkiewicz, Stephen M.; Yusupov, Albert; Perline, Richard

    2015-01-01

    Background Advanced predictive analytical techniques are being increasingly applied to clinical risk assessment. This study compared a neural network model to several other models in predicting the length of stay (LOS) in the cardiac surgical intensive care unit (ICU) based on pre-incision patient characteristics. Methods Thirty six variables collected from 185 cardiac surgical patients were analyzed for contribution to ICU LOS. The Automatic Linear Modeling (ALM) module of IBM-SPSS software identified 8 factors with statistically significant associations with ICU LOS; these factors were also analyzed with the Artificial Neural Network (ANN) module of the same software. The weighted contributions of each factor (“trained” data) were then applied to data for a “new” patient to predict ICU LOS for that individual. Results Factors identified in the ALM model were: use of an intra-aortic balloon pump; O2 delivery index; age; use of positive cardiac inotropic agents; hematocrit; serum creatinine ≥ 1.3 mg/deciliter; gender; arterial pCO2. The r2 value for ALM prediction of ICU LOS in the initial (training) model was 0.356, p <0.0001. Cross validation in prediction of a “new” patient yielded r2 = 0.200, p <0.0001. The same 8 factors analyzed with ANN yielded a training prediction r2 of 0.535 (p <0.0001) and a cross validation prediction r2 of 0.410, p <0.0001. Two additional predictive algorithms were studied, but they had lower prediction accuracies. Our validated neural network model identified the upper quartile of ICU LOS with an odds ratio of 9.8(p <0.0001). Conclusions ANN demonstrated a 2-fold greater accuracy than ALM in prediction of observed ICU LOS. This greater accuracy would be presumed to result from the capacity of ANN to capture nonlinear effects and higher order interactions. Predictive modeling may be of value in early anticipation of risks of post-operative morbidity and utilization of ICU facilities. PMID:26710254

  15. A stethoscope with wavelet separation of cardiac and respiratory sounds for real time telemedicine implemented on field-programmable gate array

    NASA Astrophysics Data System (ADS)

    Castro, Víctor M.; Muñoz, Nestor A.; Salazar, Antonio J.

    2015-01-01

    Auscultation is one of the most utilized physical examination procedures for listening to lung, heart and intestinal sounds during routine consults and emergencies. Heart and lung sounds overlap in the thorax. An algorithm was used to separate them based on the discrete wavelet transform with multi-resolution analysis, which decomposes the signal into approximations and details. The algorithm was implemented in software and in hardware to achieve real-time signal separation. The heart signal was found in detail eight and the lung signal in approximation six. The hardware was used to separate the signals with a delay of 256 ms. Sending wavelet decomposition data - instead of the separated full signa - allows telemedicine applications to function in real time over low-bandwidth communication channels.

  16. Correlation Between Pediatric Open Heart Surgery Outcomes and Arterial-mixed Venous Oxygen Saturation Differences.

    PubMed

    Samadi, Mahmood; Malaki, Majid; Ghaffari, Shamsi; Golshan Khalili, Roza

    2012-01-01

    Low Cardiac Output Syndrome (LCOS) contributes to postoperative morbidity and mortality. This article tries to find a predictive factor to interpret outcome after cardiac operation. In a cross-sectional study, 100 children with congenital heart disease undergoing cardiovascular surgery with cardiopulmonary bypass (CPB) without significant left-to-right shunt were selected. Arterial and central venous oxygen saturation values were measured via blood samples simultaneously obtained in 6-hr intervals for a total of 24-hr during postoperative period at hours 0, 6, 12, 18, and 24. Postoperative ventilation support (intubation period) and cardiovascular support were also obtained from the hospital records. Statistical analysis was later performed comparing the arterial-mixed venous oxygen saturation differences and durations of required ventilatory and cardiovascular support, both for the complicated and non-complicated patient groups. The data was processed with correlation Pearson and Mann-Whitney U tests in SPSS 15 software, P less than 0.05 was significant. Mortality following cardiac operation is 6% and complications may happen in 45% of the cases. The highest Arterial-mixed venous oxygen saturation difference occurred immediately post operation (up to 57%). These measures were high up to 18 hours in complicated and non-complicated groups (36% vs. 31% ; P< 0.05). This factor cannot predict prolongation of intubation period in patients (P > 0.05). Arterial-mixed venous oxygen saturation difference may be high as much as 57% or as low as 23%.These different measures, being higher up to 18 hours in complicated to non-complicated groups after 18 hours, can be related to tissue ischemia during surgery and cannot be discriminative.

  17. A Unique Digital Electrocardiographic Repository for the Development of Quantitative Electrocardiography and Cardiac Safety: The Telemetric and Holter ECG Warehouse (THEW)

    PubMed Central

    Couderc, Jean-Philippe

    2010-01-01

    The sharing of scientific data reinforces open scientific inquiry; it encourages diversity of analysis and opinion while promoting new research and facilitating the education of next generations of scientists. In this article, we present an initiative for the development of a repository containing continuous electrocardiographic information and their associated clinical information. This information is shared with the worldwide scientific community in order to improve quantitative electrocardiology and cardiac safety. First, we present the objectives of the initiative and its mission. Then, we describe the resources available in this initiative following three components: data, expertise and tools. The Data available in the Telemetric and Holter ECG Warehouse (THEW) includes continuous ECG signals and associated clinical information. The initiative attracted various academic and private partners whom expertise covers a large list of research arenas related to quantitative electrocardiography; their contribution to the THEW promotes cross-fertilization of scientific knowledge, resources, and ideas that will advance the field of quantitative electrocardiography. Finally, the tools of the THEW include software and servers to access and review the data available in the repository. To conclude, the THEW is an initiative developed to benefit the scientific community and to advance the field of quantitative electrocardiography and cardiac safety. It is a new repository designed to complement the existing ones such as Physionet, the AHA-BIH Arrhythmia Database, and the CSE database. The THEW hosts unique datasets from clinical trials and drug safety studies that, so far, were not available to the worldwide scientific community. PMID:20863512

  18. Study design and rationale for biomedical shirt-based electrocardiography monitoring in relevant clinical situations: ECG-shirt study.

    PubMed

    Balsam, Paweł; Lodziński, Piotr; Tymińska, Agata; Ozierański, Krzysztof; Januszkiewicz, Łukasz; Główczyńska, Renata; Wesołowska, Katarzyna; Peller, Michał; Pietrzak, Radosław; Książczyk, Tomasz; Borodzicz, Sonia; Kołtowski, Łukasz; Borkowski, Mariusz; Werner, Bożena; Opolski, Grzegorz; Grabowski, Marcin

    2018-01-01

    Today, the main challenge for researchers is to develop new technologies which may help to improve the diagnoses of cardiovascular disease (CVD), thereby reducing healthcare costs and improving the quality of life for patients. This study aims to show the utility of biomedical shirt-based electrocardiography (ECG) monitoring of patients with CVD in different clinical situations using the Nuubo® ECG (nECG) system. An investigator-initiated, multicenter, prospective observational study was carried out in a cardiology (adult and pediatric) and cardiac rehabilitation wards. ECG monitoring was used with the biomedical shirt in the following four independent groups of patients: 1) 30 patients after pulmonary vein isolation (PVI), 2) 30 cardiac resynchronization therapy (CRT) recipients, 3) 120 patients during cardiac rehabilitation after myocardial infarction, and 4) 40 pediatric patients with supraventricular tachycardia (SVT) before electrophysiology study. Approval for all study groups was obtained from the institutional review board. The biomedical shirt captures the electrocardiographic signal via textile electrodes integrated into a garment. The software allows the visualization and analysis of data such as ECG, heart rate, arrhythmia detecting algorithm and relative position of the body is captured by an electronic device. The major advantages of the nECG system are continuous ECG monitoring during daily activities, high quality of ECG recordings, as well as assurance of a proper adherence due to adequate comfort while wearing the shirt. There are only a few studies that have examined wearable systems, especially in pediatric populations. This study is registered in ClinicalTrials.gov: Identifier NCT03068169. (Cardiol J 2018; 25, 1: 52-59).

  19. Navigating the fifth dimension: new concepts in interactive multimodality and multidimensional image navigation

    NASA Astrophysics Data System (ADS)

    Ratib, Osman; Rosset, Antoine; Dahlbom, Magnus; Czernin, Johannes

    2005-04-01

    Display and interpretation of multi dimensional data obtained from the combination of 3D data acquired from different modalities (such as PET-CT) require complex software tools allowing the user to navigate and modify the different image parameters. With faster scanners it is now possible to acquire dynamic images of a beating heart or the transit of a contrast agent adding a fifth dimension to the data. We developed a DICOM-compliant software for real time navigation in very large sets of 5 dimensional data based on an intuitive multidimensional jog-wheel widely used by the video-editing industry. The software, provided under open source licensing, allows interactive, single-handed, navigation through 3D images while adjusting blending of image modalities, image contrast and intensity and the rate of cine display of dynamic images. In this study we focused our effort on the user interface and means for interactively navigating in these large data sets while easily and rapidly changing multiple parameters such as image position, contrast, intensity, blending of colors, magnification etc. Conventional mouse-driven user interface requiring the user to manipulate cursors and sliders on the screen are too cumbersome and slow. We evaluated several hardware devices and identified a category of multipurpose jogwheel device that is used in the video-editing industry that is particularly suitable for rapidly navigating in five dimensions while adjusting several display parameters interactively. The application of this tool will be demonstrated in cardiac PET-CT imaging and functional cardiac MRI studies.

  20. Nppa and Nppb act redundantly during zebrafish cardiac development to confine AVC marker expression and reduce cardiac jelly volume.

    PubMed

    Grassini, Daniela R; Lagendijk, Anne K; De Angelis, Jessica E; Da Silva, Jason; Jeanes, Angela; Zettler, Nicole; Bower, Neil I; Hogan, Benjamin M; Smith, Kelly A

    2018-05-11

    Atrial natriuretic peptide ( nppa/anf ) and brain natriuretic peptide ( nppb/bnp ) form a gene cluster with expression in the chambers of the developing heart. Despite restricted expression, a function in cardiac development has not been demonstrated by mutant analysis. This is attributed to functional redundancy however their genomic location in cis has impeded formal analysis. Using genome-editing, we generated mutants for nppa and nppb and found single mutants indistinguishable from wildtype whereas nppa / nppb double mutants display heart morphogenesis defects and pericardial oedema. Analysis of atrioventricular canal (AVC) markers show expansion of bmp4 , tbx2b, has2 and versican expression into the atrium of double mutants. This expanded expression correlates with increased extracellular matrix in the atrium. Using a biosensor for Hyaluronic acid to measure the cardiac jelly (cardiac extracellular matrix), we confirm cardiac jelly expansion in nppa / nppb double mutants. Finally, bmp4 knockdown rescues the expansion of has2 expression and cardiac jelly in double mutants. This definitively shows that nppa and nppb function redundantly during cardiac development to restrict gene expression to the AVC, preventing excessive cardiac jelly synthesis in the atrial chamber. © 2018. Published by The Company of Biologists Ltd.

  1. [A basis for application of cardiac contractility variability in the Evaluation and assessment of exercise and fitness].

    PubMed

    Bu, Bin; Wang, Aihua; Han, Haijun; Xiao, Shouzhong

    2010-06-01

    Cardiac contractility variability (CCV) is a new concept which is introduced in the research field of cardiac contractility in recent years, that is to say, there are some disparities between cardiac contractilities when heart contracts. The changing signals of cardiac contractility contain a plenty of information on the cardiovascular function and disorder. In order to collect and analyze the message, we could quantitatively evaluate the tonicity and equilibrium of cardiac sympathetic nerve and parasympathetic nerve, and the effects of bio-molecular mechanism on the cardiovascular activities. By analyzing CCV, we could further understand the background of human being's heritage characteristics, nerve types, the adjusting mechanism, the molecular biology, and the adjustment of cardiac automatic nerve. With the development of the computing techniques, the digital signal processing method and its application in medical field, this analysis has been progressing greatly. By now, the assessment of CCV, just like the analysis of heart rate variability, is mainly via time domain and frequency domain analysis. CCV is one of the latest research fields in human cardiac signals being scarcely reported in the field of sports medicine; however, its research progresses are of important value for cardiac physiology and pathology in sports medicine and rehabilitation medicine.

  2. Predictive Modeling of Cardiac Ischemia

    NASA Technical Reports Server (NTRS)

    Anderson, Gary T.

    1996-01-01

    The goal of the Contextual Alarms Management System (CALMS) project is to develop sophisticated models to predict the onset of clinical cardiac ischemia before it occurs. The system will continuously monitor cardiac patients and set off an alarm when they appear about to suffer an ischemic episode. The models take as inputs information from patient history and combine it with continuously updated information extracted from blood pressure, oxygen saturation and ECG lines. Expert system, statistical, neural network and rough set methodologies are then used to forecast the onset of clinical ischemia before it transpires, thus allowing early intervention aimed at preventing morbid complications from occurring. The models will differ from previous attempts by including combinations of continuous and discrete inputs. A commercial medical instrumentation and software company has invested funds in the project with a goal of commercialization of the technology. The end product will be a system that analyzes physiologic parameters and produces an alarm when myocardial ischemia is present. If proven feasible, a CALMS-based system will be added to existing heart monitoring hardware.

  3. Important advances in technology and unique applications related to cardiac magnetic resonance imaging.

    PubMed

    Ghosn, Mohamad G; Shah, Dipan J

    2014-01-01

    Cardiac magnetic resonance has become a well-established imaging modality and is considered the gold standard for myocardial tissue viability assessment and ventricular volumes quantification. Recent technological hardware and software advancements in magnetic resonance imaging technology have allowed the development of new methods that can improve clinical cardiovascular diagnosis and prognosis. The advent of a new generation of higher magnetic field scanners can be beneficial to various clinical applications. Also, the development of faster acquisition techniques have allowed mapping of the magnetic relaxation properties T1, T2, and T2* in the myocardium that can be used to quantify myocardial diffuse fibrosis, determine the presence of edema or inflammation, and measure iron within the myocardium, respectively. Another recent major advancement in CMR has been the introduction of three-dimension (3D) phase contrast imaging, also known as 4D flow. The following review discusses key advances in cardiac magnetic resonance technology and their potential to improve clinical cardiovascular diagnosis and outcomes.

  4. Challenges with the establishment of congenital cardiac surgery centers in Nigeria: survey of cardiothoracic surgeons and residents.

    PubMed

    Okonta, Kelechi E; Tobin-West, Charles I

    2016-05-01

    There are gaps in understanding the challenges with the establishment of pediatric cardiac surgical practices in Nigeria. The aim of this study was to examine the prospects and challenges limiting the establishment of pediatric cardiac surgical practices in Nigeria from the perspectives of cardiothoracic surgeons and resident doctors. A descriptive study was carried out to articulate the views of the cardiothoracic surgeons and cardiothoracic resident doctors in Nigeria. A self-administered questionnaire was used to generate information from the participants between December 2014 and January 2015. Data were analyzed using the SPSS version 21 statistical software package. Thirty-one of the 51 eligible participants (60.7%) took part in the survey. Twenty-one (67.7%) were specialists/consultants, and 10 (32.3%) were resident doctors in cardiothoracic surgical units. Most of the respondents, 26 (83.9%) acknowledged the enormity of pediatric patients with cardiac problems in Nigeria; however, nearly all such children were referred outside Nigeria for treatment. The dearth of pediatric cardiac surgical centers in Nigeria was attributed to weak health system, absence of skilled manpower, funds, and equipment. Although there was a general consensus on the need for the establishment of open pediatric cardiac surgical centers in the country, their set up mechanisms were not explicit. The obvious necessity and huge potentials for the establishment of pediatric cardiac centers in Nigeria cannot be overemphasized. Nevertheless, weakness of the national health system, including human resources remains a daunting challenge. Therefore, local and international partnerships and collaborations with country leadership are strongly advocated to pioneer this noble service. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Improvement of cardiac CT reconstruction using local motion vector fields.

    PubMed

    Schirra, Carsten Oliver; Bontus, Claas; van Stevendaal, Udo; Dössel, Olaf; Grass, Michael

    2009-03-01

    The motion of the heart is a major challenge for cardiac imaging using CT. A novel approach to decrease motion blur and to improve the signal to noise ratio is motion compensated reconstruction which takes motion vector fields into account in order to correct motion. The presented work deals with the determination of local motion vector fields from high contrast objects and their utilization within motion compensated filtered back projection reconstruction. Image registration is applied during the quiescent cardiac phases. Temporal interpolation in parameter space is used in order to estimate motion during strong motion phases. The resulting motion vector fields are during image reconstruction. The method is assessed using a software phantom and several clinical cases for calcium scoring. As a criterion for reconstruction quality, calcium volume scores were derived from both, gated cardiac reconstruction and motion compensated reconstruction throughout the cardiac phases using low pitch helical cone beam CT acquisitions. The presented technique is a robust method to determine and utilize local motion vector fields. Motion compensated reconstruction using the derived motion vector fields leads to superior image quality compared to gated reconstruction. As a result, the gating window can be enlarged significantly, resulting in increased SNR, while reliable Hounsfield units are achieved due to the reduced level of motion artefacts. The enlargement of the gating window can be translated into reduced dose requirements.

  6. [Evaluation on stability of internal controls in human cardiac muscle by real-time RT-PCR during early postmortem interval].

    PubMed

    Zhang, Ping; Ma, Kai-Jun; Zhang, Heng; Wang, Hui-Jun; Shen, Yi-Wen; Chen, Long

    2012-04-01

    To explore the stability of internal controls in human cardiac muscle by real-time RT-PCR during early postmortem interval (PMI) in order to find the most stable marker. Ten individuals with similar environmental conditions (the average store temperature: 25 degrees C) and different PMI ranging from 4.3 to 22.3 h were selected. Total RNA was extracted from each sample and six commonly internal controls were used including beta-actin, GAPDH, B2M, U6, 18S rRNA and HSA-miR-1, and the expression was detected in cardiac muscle by real-time RT-PCR. The expression stability of internal controls was evaluated using genormPLUS software during early PMI. The internal control with the most stability was selected. The relationship between the most stable marker and its expression level affected by some other parameters such as age, gender and cause of death was also analyzed. The U6 showed the most stable expression during early PMI in cardiac muscle, and its expression level was not affected by those parameters including age, gender and cause of death (P > 0.05). U6 may be a valuable internal control for the study of relationship between PMI determination and degradation of nucleic acid in human cardiac muscle by real-time RT-PCR.

  7. Complications of Transfusion-Dependent β-Thalassemia Patients in Sistan and Baluchistan, South-East of Iran

    PubMed Central

    Yaghobi, Maryam; Miri-Moghaddam, Ebrahim; Majid, Naderi; Bazi, Ali; Navidian, Ali; Kalkali, Asiyeh

    2017-01-01

    Background: Thalassemia syndromes are among prevalent hereditary disorders imposing high expenses on health-care system worldwide and in Iran. Organ failure represents a life-threatening challenge in transfusion- dependent β-thalassemia (TDT) patients. The purpose of the present study was to determine the frequency of organ dysfunctions among TDT patients in Sistan and Baluchistan province in South-East of Iran. Materials and Methods: Laboratory and clinical data were extracted from medical records as well as by interviews. Standard criteria were applied to recognize cardiac, gonadal, endocrine and renal dysfunctions. The collected data were analyzed using the SPSS statistics software (Ver.19). Results: A total of 613 TDT patients (54.3% males and 45.7% females) were included in this study. The mean age of patients was 13.3 ±7.7 years old. Cardiac events comprised the most encountered complications (76.4%), following by hypogonadism (46.8%), parathyroid dysfunction (22%), thyroid abnormalities (8.3%), diabetes (7.8%) and renal disease (1.8%). Hypogonadism comprised the most identified complication in patient <15 years old, while the cardiac complications were the most frequent sequela in patients >15 years old (P<0.01). Conclusion: As cardiac events are significantly more common among TDT patients, close monitoring of the heart function is recommended for identifying patients with cardiac problems. PMID:29340121

  8. Dynamic Clamp in Cardiac and Neuronal Systems Using RTXI

    PubMed Central

    Ortega, Francis A.; Butera, Robert J.; Christini, David J.; White, John A.; Dorval, Alan D.

    2016-01-01

    The injection of computer-simulated conductances through the dynamic clamp technique has allowed researchers to probe the intercellular and intracellular dynamics of cardiac and neuronal systems with great precision. By coupling computational models to biological systems, dynamic clamp has become a proven tool in electrophysiology with many applications, such as generating hybrid networks in neurons or simulating channelopathies in cardiomyocytes. While its applications are broad, the approach is straightforward: synthesizing traditional patch clamp, computational modeling, and closed-loop feedback control to simulate a cellular conductance. Here, we present two example applications: artificial blocking of the inward rectifier potassium current in a cardiomyocyte and coupling of a biological neuron to a virtual neuron through a virtual synapse. The design and implementation of the necessary software to administer these dynamic clamp experiments can be difficult. In this chapter, we provide an overview of designing and implementing a dynamic clamp experiment using the Real-Time eXperiment Interface (RTXI), an open- source software system tailored for real-time biological experiments. We present two ways to achieve this using RTXI’s modular format, through the creation of a custom user-made module and through existing modules found in RTXI’s online library. PMID:25023319

  9. Three-dimensional cardiac architecture determined by two-photon microtomy

    NASA Astrophysics Data System (ADS)

    Huang, Hayden; MacGillivray, Catherine; Kwon, Hyuk-Sang; Lammerding, Jan; Robbins, Jeffrey; Lee, Richard T.; So, Peter

    2009-07-01

    Cardiac architecture is inherently three-dimensional, yet most characterizations rely on two-dimensional histological slices or dissociated cells, which remove the native geometry of the heart. We previously developed a method for labeling intact heart sections without dissociation and imaging large volumes while preserving their three-dimensional structure. We further refine this method to permit quantitative analysis of imaged sections. After data acquisition, these sections are assembled using image-processing tools, and qualitative and quantitative information is extracted. By examining the reconstructed cardiac blocks, one can observe end-to-end adjacent cardiac myocytes (cardiac strands) changing cross-sectional geometries, merging and separating from other strands. Quantitatively, representative cross-sectional areas typically used for determining hypertrophy omit the three-dimensional component; we show that taking orientation into account can significantly alter the analysis. Using fast-Fourier transform analysis, we analyze the gross organization of cardiac strands in three dimensions. By characterizing cardiac structure in three dimensions, we are able to determine that the α crystallin mutation leads to hypertrophy with cross-sectional area increases, but not necessarily via changes in fiber orientation distribution.

  10. Can Functional Cardiac Age be Predicted from ECG in a Normal Healthy Population

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd; Starc, Vito; Leban, Manja; Sinigoj, Petra; Vrhovec, Milos

    2011-01-01

    In a normal healthy population, we desired to determine the most age-dependent conventional and advanced ECG parameters. We hypothesized that changes in several ECG parameters might correlate with age and together reliably characterize the functional age of the heart. Methods: An initial study population of 313 apparently healthy subjects was ultimately reduced to 148 subjects (74 men, 84 women, in the range from 10 to 75 years of age) after exclusion criteria. In all subjects, ECG recordings (resting 5-minute 12-lead high frequency ECG) were evaluated via custom software programs to calculate up to 85 different conventional and advanced ECG parameters including beat-to-beat QT and RR variability, waveform complexity, and signal-averaged, high-frequency and spatial/spatiotemporal ECG parameters. The prediction of functional age was evaluated by multiple linear regression analysis using the best 5 univariate predictors. Results: Ignoring what were ultimately small differences between males and females, the functional age was found to be predicted (R2= 0.69, P < 0.001) from a linear combination of 5 independent variables: QRS elevation in the frontal plane (p<0.001), a new repolarization parameter QTcorr (p<0.001), mean high frequency QRS amplitude (p=0.009), the variability parameter % VLF of RRV (p=0.021) and the P-wave width (p=0.10). Here, QTcorr represents the correlation between the calculated QT and the measured QT signal. Conclusions: In apparently healthy subjects with normal conventional ECGs, functional cardiac age can be estimated by multiple linear regression analysis of mostly advanced ECG results. Because some parameters in the regression formula, such as QTcorr, high frequency QRS amplitude and P-wave width also change with disease in the same direction as with increased age, increased functional age of the heart may reflect subtle age-related pathologies in cardiac electrical function that are usually hidden on conventional ECG.

  11. Evaluation of Right Ventricular Myocardial Mechanics Using Velocity Vector Imaging of Cardiac MRI Cine Images in Transposition of the Great Arteries Following Atrial and Arterial Switch Operations.

    PubMed

    Thattaliyath, Bijoy D; Forsha, Daniel E; Stewart, Chad; Barker, Piers C A; Campbell, Michael J

    2015-01-01

    The aim of the study was to determine right and left ventricle deformation parameters in patients with transposition of the great arteries who had undergone atrial or arterial switch procedures. Patients with transposition are born with a systemic right ventricle. Historically, the atrial switch operation, in which the right ventricle remains the systemic ventricle, was performed. These patients have increased rates of morbidity and mortality. We used cardiac MRI with Velocity Vector Imaging analysis to characterize and compare ventricular myocardial deformation in patients who had an atrial switch or arterial switch operation. Patients with a history of these procedures, who had a clinically ordered cardiac MRI were included in the study. Consecutive 20 patients (75% male, 28.7 ± 1.8 years) who underwent atrial switch operation and 20 patients (60% male, 17.7 ± 1.9 years) who underwent arterial switch operation were included in the study. Four chamber and short-axis cine images were used to determine longitudinal and circumferential strain and strain rate using Vector Velocity Imaging software. Compared with the arterial switch group, the atrial switch group had decreased right ventricular ejection fraction and increased end-diastolic and end-systolic volumes, and no difference in left ventricular ejection fraction and volumes. The atrial switch group had decreased longitudinal and circumferential strain and strain rate. When compared with normal controls multiple strain parameters in the atrial switch group were reduced. Myocardial deformation analysis of transposition patients reveals a reduction of right ventricular function and decreased longitudinal and circumferential strain parameters in patients with an atrial switch operation compared with those with arterial switch operation. A better understanding of the mechanisms of right ventricle failure in transposition of great arteries may lead to improved therapies and adaptation. © 2015 Wiley Periodicals, Inc.

  12. Cardiac Magnetic Resonance Imaging for the Diagnosis of Coronary Artery Disease

    PubMed Central

    2010-01-01

    Executive Summary In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease (CAD), an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients suspected of having CAD. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities. After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies for the diagnosis of CAD. Evidence-based analyses have been prepared for each of these five imaging modalities: cardiac magnetic resonance imaging, single photon emission computed tomography, 64-slice computed tomographic angiography, stress echocardiography, and stress echocardiography with contrast. For each technology, an economic analysis was also completed (where appropriate). A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website). The Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease series is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html Single Photon Emission Computed Tomography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis Stress Echocardiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis Stress Echocardiography with Contrast for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis 64-Slice Computed Tomographic Angiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis Cardiac Magnetic Resonance Imaging for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis Pease note that two related evidence-based analyses of non-invasive cardiac imaging technologies for the assessment of myocardial viability are also available on the MAS website: Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis Magnetic Resonance Imaging for the Assessment of Myocardial Viability: an Evidence-Based Analysis The Toronto Health Economics and Technology Assessment Collaborative has also produced an associated economic report entitled: The Relative Cost-effectiveness of Five Non-invasive Cardiac Imaging Technologies for Diagnosing Coronary Artery Disease in Ontario [Internet]. Available from: http://theta.utoronto.ca/reports/?id=7 Objective The objective of this analysis was to determine the diagnostic accuracy of cardiac magnetic resonance imaging (MRI) for the diagnosis of patients with known/suspected coronary artery disease (CAD) compared to coronary angiography. Cardiac MRI Stress cardiac MRI is a non-invasive, x-ray free imaging technique that takes approximately 30 to 45 minutes to complete and can be performed using to two different methods, a) perfusion imaging following a first pass of an intravenous bolus of gadolinium contrast, or b) wall motion imaging. Stress is induced pharmacologically with either dobutamine, dipyridamole, or adenosine, as physical exercise is difficult to perform within the magnet bore and often induces motion artifacts. Alternatives to stress cardiac perfusion MRI include stress single-photon emission computed tomography (SPECT) and stress echocardiography (ECHO). The advantage of cardiac MRI is that it does not pose the radiation burden associated with SPECT. During the same sitting, cardiac MRI can also assess left and right ventricular dimensions, viability, and cardiac mass. It may also mitigate the need for invasive diagnostic coronary angiography in patients with intermediate risk factors for CAD. Evidence-Based Analysis Literature Search A literature search was performed on October 9, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2005 to October 9, 2008. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any relevant studies not identified through the search. Articles with unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology. Given the large amount of clinical heterogeneity of the articles meeting the inclusion criteria, as well as suggestions from an Expert Advisory Panel Meeting held on October 5, 2009, the inclusion criteria were revised to examine the effectiveness of cardiac MRI for the detection of CAD. Inclusion Criteria Exclusion Criteria Heath technology assessments, systematic reviews, randomized controlled trials, observational studies ≥20 adult patients enrolled. Published 2004-2009 Licensed by Health Canada For diagnosis of CAD: Reference standard is coronary angiography Significant CAD defined as ≥ 50% coronary stenosis Patients with suspected or known CAD Reported results by patient, not segment Non-English studies Grey literature Planar imaging MUGA Patients with recent MI (i.e., within 1 month) Patients with non-ischemic heart disease Studies done exclusively in special populations (e.g., women, diabetics) Outcomes of Interest Sensitivity and specificity Area under the curve (AUC) Diagnostic odds ratio (DOR) Summary of Findings Stress cardiac MRI using perfusion analysis yielded a pooled sensitivity of 0.91 (95% CI: 0.89 to 0.92) and specificity of 0.79 (95% CI: 0.76 to 0.82) for the detection of CAD. Stress cardiac MRI using wall motion analysis yielded a pooled sensitivity of 0.81 (95% CI: 0.77 to 0.84) and specificity of 0.85 (95% CI: 0.81 to 0.89) for the detection of CAD. Based on DORs, there was no significant difference between pooled stress cardiac MRI using perfusion analysis and pooled stress cardiac MRI using wall motion analysis (P=0.26) for the detection of CAD. Pooled subgroup analysis of stress cardiac MRI using perfusion analysis showed no significant difference in the DORs between 1.5T and 3T MRI (P=0.72) for the detection of CAD. One study (N=60) was identified that examined stress cardiac MRI using wall motion analysis with a 3T MRI. The sensitivity and specificity of 3T MRI were 0.64 (95% CI: 0.44 to 0.81) and 1.00 (95% CI: 0.89 to 1.00), respectively, for the detection of CAD. The effectiveness of stress cardiac MRI for the detection of CAD in unstable patients with acute coronary syndrome was reported in only one study (N=35). Using perfusion analysis, the sensitivity and specificity were 0.72 (95% CI: 0.53 to 0.87) and 1.00 (95% CI: 0.54 to 1.00), respectively, for the detection of CAD. Ontario Health System Impact Analysis According to an expert consultant, in Ontario: Stress first pass perfusion is currently performed in small numbers in London (London Health Sciences Centre) and Toronto (University Health Network at the Toronto General Hospital site and Sunnybrook Health Sciences Centre). Stress wall motion is only performed as part of research protocols and not very often. Cardiac MRI machines use 1.5T almost exclusively, with 3T used in research for first pass perfusion. On November 25 2009, the Cardiac Imaging Expert Advisory Panel met and made the following comments about stress cardiac MRI for perfusion analysis: Accessibility to cardiac MRI is limited and generally used to assess structural abnormalities. Most MRIs in Ontario are already in 24–hour, constant use and it would thus be difficult to add cardiac MRI for CAD diagnosis as an additional indication. The performance of cardiac MRI for the diagnosis of CAD can be technically challenging. GRADE Quality of Evidence for Cardiac MRI in the Diagnosis of CAD The quality of the body of evidence was assessed according to the GRADE Working Group criteria for diagnostic tests. For perfusion analysis, the overall quality was determined to be low and for wall motion analysis the overall quality was very low. PMID:23074389

  13. Subclinical arterial and cardiac damage in white-coat and masked hypertension.

    PubMed

    Wojciechowska, Wiktoria; Stolarz-Skrzypek, Katarzyna; Olszanecka, Agnieszka; Klima, Łukasz; Gąsowski, Jerzy; Grodzicki, Tomasz; Kawecka-Jaszcz, Kalina; Czarnecka, Danuta

    2016-08-01

    The study aimed to compare arterial and echocardiographic parameters in subjects with newly diagnosed masked (MH) or white-coat hypertension (WCH) to subjects with sustained normotension or sustained hypertension, defined according to the 2014 European Society of Hypertension practice guidelines for ambulatory blood pressure (BP) monitoring. We recruited 303 participants (mean age 46.9 years) in a family-based population study. SpaceLabs monitors and oscillometric sphygmomanometers were used to evaluate ambulatory and office BP, respectively. Central pulse pressure (PP) and aortic pulse-wave velocity (PWV) were measured with pulse-wave analysis (SphygmoCor software). Carotid intima-media thickness (IMT) and cardiac evaluation were assessed by ultrasonography. Analysing participants without antihypertensive treatment (115 sustained normotensives, 41 sustained hypertensives, 20 with WCH, 25 with MH), we detected significantly higher peripheral and central PP, PWV, IMT and left ventricular mass index in hypertensive subgroups than in those with sustained normotension. The differences between categories remained significant for peripheral PP and PWV after adjustment for confounding factors, including 24 h systolic and diastolic BP. Participants with WCH and MH, defined according to strict criteria, had more pronounced arterial and heart involvement than normotensive participants. The study demonstrates a high prevalence of these conditions in the general population that deserves special attention from physicians.

  14. Three-dimensional printing in congenital heart disease: A systematic review.

    PubMed

    Lau, Ivan; Sun, Zhonghua

    2018-02-17

    Three-dimensional (3D) printing has shown great promise in medicine with increasing reports in congenital heart disease (CHD). This systematic review aims to analyse the main clinical applications and accuracy of 3D printing in CHD, as well as to provide an overview of the software tools, time and costs associated with the generation of 3D printed heart models. A search of different databases was conducted to identify studies investigating the application of 3D printing in CHD. Studies based on patient's medical imaging datasets were included for analysis, while reports on in vitro phantom or review articles were excluded from the analysis. A total of 28 studies met selection criteria for inclusion in the review. More than half of the studies were based on isolated case reports with inclusion of 1-12 cases (61%), while 10 studies (36%) focused on the survey of opinion on the usefulness of 3D printing by healthcare professionals, patients, parents of patients and medical students, and the remaining one involved a multicentre study about the clinical value of 3D printed models in surgical planning of CHD. The analysis shows that patient-specific 3D printed models accurately replicate complex cardiac anatomy, improve understanding and knowledge about congenital heart diseases and demonstrate value in preoperative planning and simulation of cardiac or interventional procedures, assist surgical decision-making and intra-operative orientation, and improve patient-doctor communication and medical education. The cost of 3D printing ranges from USD 55 to USD 810. This systematic review shows the usefulness of 3D printed models in congenital heart disease with applications ranging from accurate replication of complex cardiac anatomy and pathology to medical education, preoperative planning and simulation. The additional cost and time required to manufacture the 3D printed models represent the limitations which need to be addressed in future studies. © 2018 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  15. Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes

    PubMed Central

    Laughner, Jacob I.; Ng, Fu Siong; Sulkin, Matthew S.; Arthur, R. Martin

    2012-01-01

    Optical mapping has become an increasingly important tool to study cardiac electrophysiology in the past 20 years. Multiple methods are used to process and analyze cardiac optical mapping data, and no consensus currently exists regarding the optimum methods. The specific methods chosen to process optical mapping data are important because inappropriate data processing can affect the content of the data and thus alter the conclusions of the studies. Details of the different steps in processing optical imaging data, including image segmentation, spatial filtering, temporal filtering, and baseline drift removal, are provided in this review. We also provide descriptions of the common analyses performed on data obtained from cardiac optical imaging, including activation mapping, action potential duration mapping, repolarization mapping, conduction velocity measurements, and optical action potential upstroke analysis. Optical mapping is often used to study complex arrhythmias, and we also discuss dominant frequency analysis and phase mapping techniques used for the analysis of cardiac fibrillation. PMID:22821993

  16. Cardiac magnetic resonance imaging for the diagnosis of coronary artery disease: an evidence-based analysis.

    PubMed

    2010-01-01

    In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease (CAD), an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients suspected of having CAD. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities.After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies for the diagnosis of CAD. Evidence-based analyses have been prepared for each of these five imaging modalities: cardiac magnetic resonance imaging, single photon emission computed tomography, 64-slice computed tomographic angiography, stress echocardiography, and stress echocardiography with contrast. For each technology, an economic analysis was also completed (where appropriate). A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website).The Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease series is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlSINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY FOR THE DIAGNOSIS OF CORONARY ARTERY DISEASE: An Evidence-Based AnalysisSTRESS ECHOCARDIOGRAPHY FOR THE DIAGNOSIS OF CORONARY ARTERY DISEASE: An Evidence-Based AnalysisSTRESS ECHOCARDIOGRAPHY WITH CONTRAST FOR THE DIAGNOSIS OF CORONARY ARTERY DISEASE: An Evidence-Based Analysis64-Slice Computed Tomographic Angiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based AnalysisCARDIAC MAGNETIC RESONANCE IMAGING FOR THE DIAGNOSIS OF CORONARY ARTERY DISEASE: An Evidence-Based AnalysisPease note that two related evidence-based analyses of non-invasive cardiac imaging technologies for the assessment of myocardial viability are also available on the MAS website:POSITRON EMISSION TOMOGRAPHY FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based AnalysisMAGNETIC RESONANCE IMAGING FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: an Evidence-Based AnalysisThe Toronto Health Economics and Technology Assessment Collaborative has also produced an associated economic report entitled:The Relative Cost-effectiveness of Five Non-invasive Cardiac Imaging Technologies for Diagnosing Coronary Artery Disease in Ontario [Internet]. Available from: http://theta.utoronto.ca/reports/?id=7 OBJECTIVE: The objective of this analysis was to determine the diagnostic accuracy of cardiac magnetic resonance imaging (MRI) for the diagnosis of patients with known/suspected coronary artery disease (CAD) compared to coronary angiography. Stress cardiac MRI is a non-invasive, x-ray free imaging technique that takes approximately 30 to 45 minutes to complete and can be performed using to two different methods, a) perfusion imaging following a first pass of an intravenous bolus of gadolinium contrast, or b) wall motion imaging. Stress is induced pharmacologically with either dobutamine, dipyridamole, or adenosine, as physical exercise is difficult to perform within the magnet bore and often induces motion artifacts. Alternatives to stress cardiac perfusion MRI include stress single-photon emission computed tomography (SPECT) and stress echocardiography (ECHO). The advantage of cardiac MRI is that it does not pose the radiation burden associated with SPECT. During the same sitting, cardiac MRI can also assess left and right ventricular dimensions, viability, and cardiac mass. It may also mitigate the need for invasive diagnostic coronary angiography in patients with intermediate risk factors for CAD. EVIDENCE-BASED ANALYSIS: A literature search was performed on October 9, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2005 to October 9, 2008. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any relevant studies not identified through the search. Articles with unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology. Given the large amount of clinical heterogeneity of the articles meeting the inclusion criteria, as well as suggestions from an Expert Advisory Panel Meeting held on October 5, 2009, the inclusion criteria were revised to examine the effectiveness of cardiac MRI for the detection of CAD. Inclusion CriteriaExclusion CriteriaHeath technology assessments, systematic reviews, randomized controlled trials, observational studies≥20 adult patients enrolled.Published 2004-2009Licensed by Health CanadaFor diagnosis of CAD:Reference standard is coronary angiographySignificant CAD defined as ≥ 50% coronary stenosisPatients with suspected or known CADReported results by patient, not segmentNon-English studiesGrey literaturePlanar imagingMUGAPatients with recent MI (i.e., within 1 month)Patients with non-ischemic heart diseaseStudies done exclusively in special populations (e.g., women, diabetics) Sensitivity and specificityArea under the curve (AUC)Diagnostic odds ratio (DOR) SUMMARY OF FINDINGS: Stress cardiac MRI using perfusion analysis yielded a pooled sensitivity of 0.91 (95% CI: 0.89 to 0.92) and specificity of 0.79 (95% CI: 0.76 to 0.82) for the detection of CAD.Stress cardiac MRI using wall motion analysis yielded a pooled sensitivity of 0.81 (95% CI: 0.77 to 0.84) and specificity of 0.85 (95% CI: 0.81 to 0.89) for the detection of CAD.Based on DORs, there was no significant difference between pooled stress cardiac MRI using perfusion analysis and pooled stress cardiac MRI using wall motion analysis (P=0.26) for the detection of CAD.Pooled subgroup analysis of stress cardiac MRI using perfusion analysis showed no significant difference in the DORs between 1.5T and 3T MRI (P=0.72) for the detection of CAD.One study (N=60) was identified that examined stress cardiac MRI using wall motion analysis with a 3T MRI. The sensitivity and specificity of 3T MRI were 0.64 (95% CI: 0.44 to 0.81) and 1.00 (95% CI: 0.89 to 1.00), respectively, for the detection of CAD.The effectiveness of stress cardiac MRI for the detection of CAD in unstable patients with acute coronary syndrome was reported in only one study (N=35). Using perfusion analysis, the sensitivity and specificity were 0.72 (95% CI: 0.53 to 0.87) and 1.00 (95% CI: 0.54 to 1.00), respectively, for the detection of CAD. According to an expert consultant, in Ontario: Stress first pass perfusion is currently performed in small numbers in London (London Health Sciences Centre) and Toronto (University Health Network at the Toronto General Hospital site and Sunnybrook Health Sciences Centre).Stress wall motion is only performed as part of research protocols and not very often.Cardiac MRI machines use 1.5T almost exclusively, with 3T used in research for first pass perfusion.On November 25 2009, the Cardiac Imaging Expert Advisory Panel met and made the following comments about stress cardiac MRI for perfusion analysis: Accessibility to cardiac MRI is limited and generally used to assess structural abnormalities. Most MRIs in Ontario are already in 24-hour, constant use and it would thus be difficult to add cardiac MRI for CAD diagnosis as an additional indication.The performance of cardiac MRI for the diagnosis of CAD can be technically challenging. The quality of the body of evidence was assessed according to the GRADE Working Group criteria for diagnostic tests. For perfusion analysis, the overall quality was determined to be low and for wall motion analysis the overall quality was very low.

  17. Increased Rate of Poor Laryngoscopic Views in Patients Scheduled for Cardiac Surgery Versus Patients Scheduled for General Surgery: A Propensity Score-Based Analysis of 21,561 Cases.

    PubMed

    Heinrich, Sebastian; Ackermann, Andreas; Prottengeier, Johannes; Castellanos, Ixchel; Schmidt, Joachim; Schüttler, Jürgen

    2015-12-01

    Former analyses reported an increased rate of poor direct laryngoscopy view in cardiac surgery patients; however, these findings frequently could be attributed to confounding patient characteristics. In most of the reported cardiac surgery cohorts, the rate of well-known risk factors for poor direct laryngoscopy view such as male sex, obesity, or older age, were increased compared with the control groups. Especially in the ongoing debate on anesthesia staff qualification for cardiac interventions outside the operating room a detailed and stratified risk analysis seems necessary. Retrospective, anonymous, propensity score-based, matched-pair analysis. Single-center study in a university hospital. No active participants. Retrospective, anonymous chart analysis. The anesthesia records of patients undergoing cardiac surgery in a period of 6 consecutive years were analyzed retrospectively. The results were compared with those of a control group of patients who underwent general surgery. Poor laryngoscopic view was defined as Cormack and Lehane classification grade 3 or 4. The records of 21,561 general anesthesia procedures were reviewed for the study. The incidence of poor direct laryngoscopic views in patients scheduled for cardiac surgery was significantly increased compared with those of the general surgery cohort (7% v 4.2%). Using propensity score-based matched-pair analysis, equal subgroups were generated of each surgical department, with 2,946 patients showing identical demographic characteristics. After stratifying for demographic characteristics, the rate of poor direct laryngoscopy view remained statistically significantly higher in the cardiac surgery group (7.5% v 5.7%). Even with stratification for demographic risk factors, cardiac surgery patients showed a significantly higher rate of poor direct laryngoscopic view compared with general surgery patients. These results should be taken into account for human resource management and distribution of difficult airway equipment, especially when cardiac interventional programs are implemented in remote hospital locations. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Radiation safety in the cardiac catheterization lab: A time series quality improvement initiative.

    PubMed

    Abuzeid, Wael; Abunassar, Joseph; Leis, Jerome A; Tang, Vicky; Wong, Brian; Ko, Dennis T; Wijeysundera, Harindra C

    Interventional cardiologists have one of the highest annual radiation exposures yet systems of care that promote radiation safety in cardiac catheterization labs are lacking. This study sought to reduce the frequency of radiation exposure, for PCI procedures, above 1.5Gy in labs utilizing a Phillips system at our local institution by 40%, over a 12-month period. We performed a time series study to assess the impact of different interventions on the frequency of radiation exposure above 1.5Gy. Process measures were percent of procedures where collimation and magnification were used and percent of completion of online educational modules. Balancing measures were the mean number of cases performed and mean fluoroscopy time. Information sessions, online modules, policies and posters were implemented followed by the introduction of a new lab with a novel software (AlluraClarity©) to reduce radiation dose. There was a significant reduction (91%, p<0.05) in the frequency of radiation exposure above 1.5Gy after utilizing a novel software (AlluraClarity©) in a new Phillips lab. Process measures of use of collimation (95.0% to 98.0%), use of magnification (20.0% to 14.0%) and completion of online modules (62%) helped track implementation. The mean number of cases performed and mean fluoroscopy time did not change significantly. While educational strategies had limited impact on reducing radiation exposure, implementing a novel software system provided the most effective means of reducing radiation exposure. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  19. Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos.

    PubMed

    Giurumescu, Claudiu A; Kang, Sukryool; Planchon, Thomas A; Betzig, Eric; Bloomekatz, Joshua; Yelon, Deborah; Cosman, Pamela; Chisholm, Andrew D

    2012-11-01

    A quantitative understanding of tissue morphogenesis requires description of the movements of individual cells in space and over time. In transparent embryos, such as C. elegans, fluorescently labeled nuclei can be imaged in three-dimensional time-lapse (4D) movies and automatically tracked through early cleavage divisions up to ~350 nuclei. A similar analysis of later stages of C. elegans development has been challenging owing to the increased error rates of automated tracking of large numbers of densely packed nuclei. We present Nucleitracker4D, a freely available software solution for tracking nuclei in complex embryos that integrates automated tracking of nuclei in local searches with manual curation. Using these methods, we have been able to track >99% of all nuclei generated in the C. elegans embryo. Our analysis reveals that ventral enclosure of the epidermis is accompanied by complex coordinated migration of the neuronal substrate. We can efficiently track large numbers of migrating nuclei in 4D movies of zebrafish cardiac morphogenesis, suggesting that this approach is generally useful in situations in which the number, packing or dynamics of nuclei present challenges for automated tracking.

  20. Bioimpedance Harmonic Analysis as a Diagnostic Tool to Assess Regional Circulation and Neural Activity

    NASA Astrophysics Data System (ADS)

    Mudraya, I. S.; Revenko, S. V.; Khodyreva, L. A.; Markosyan, T. G.; Dudareva, A. A.; Ibragimov, A. R.; Romich, V. V.; Kirpatovsky, V. I.

    2013-04-01

    The novel technique based on harmonic analysis of bioimpedance microvariations with original hard- and software complex incorporating a high-resolution impedance converter was used to assess the neural activity and circulation in human urinary bladder and penis in patients with pelvic pain, erectile dysfunction, and overactive bladder. The therapeutic effects of shock wave therapy and Botulinum toxin detrusor injections were evaluated quantitatively according to the spectral peaks at low 0.1 Hz frequency (M for Mayer wave), respiratory (R) and cardiac (C) rhythms with their harmonics. Enhanced baseline regional neural activity identified according to M and R peaks was found to be presumably sympathetic in pelvic pain patients, and parasympathetic - in patients with overactive bladder. Total pulsatile activity and pulsatile resonances found in the bladder as well as in the penile spectrum characterised regional circulation and vascular tone. The abnormal spectral parameters characteristic of the patients with genitourinary diseases shifted to the norm in the cases of efficient therapy. Bioimpedance harmonic analysis seems to be a potent tool to assess regional peculiarities of circulatory and autonomic nervous activity in the course of patient treatment.

  1. Automated tuning of an eight-channel cardiac transceive array at 7 tesla using piezoelectric actuators.

    PubMed

    Keith, Graeme A; Rodgers, Christopher T; Hess, Aaron T; Snyder, Carl J; Vaughan, J Thomas; Robson, Matthew D

    2015-06-01

    Ultra-high field (UHF) MR scanning in the body requires novel coil designs due to B1 field inhomogeneities. In the transverse electromagnetic field (TEM) design, maximum B1 transmit power can only be achieved if each individual transmit element is tuned and matched for different coil loads, which requires a considerable amount of valuable scanner time. An integrated system for autotuning a multichannel parallel transmit (pTx) cardiac TEM array was devised, using piezoelectric actuators, power monitoring equipment and control software. The reproducibility and performance of the system were tested and the power responses of the coil elements were profiled. An automated optimization method was devised and evaluated. The time required to tune an eight-element pTx cardiac RF array was reduced from a mean of 30 min to less than 10 min with the use of this system. Piezoelectric actuators are an attractive means of tuning RF coil arrays to yield more efficient B1 transmission into the subject. An automated mechanism for tuning these elements provides a practical solution for cardiac imaging at UHF, bringing this technology closer to clinical use. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  2. Novel echocardiographic prediction of non-response to cardiac resynchronization therapy

    NASA Astrophysics Data System (ADS)

    Chan, R.; Tournoux, F.; Tournoux, A. C.; Nandigam, V.; Manzke, R.; Dalal, S.; Solis-Martin, J.; McCarty, D.; Ruskin, J. N.; Picard, M. H.; Weyman, A. E.; Singh, J. P.

    2009-02-01

    Imaging techniques try to identify patients who may respond to cardiac resynchronization therapy (CRT). However, it may be clinically more useful to identify patients for whom CRT would not be beneficial as the procedure would not be indicated for this group. We developed a novel, clinically feasible and technically-simple echocardiographic dyssynchrony index and tested its negative predictive value. Subjects with standard indications for CRT had echo preand post-device implantation. Atrial-ventricular dyssynchrony was defined as a left ventricular (LV) filling time of <40% of the cardiac cycle. Intra-ventricular dyssynchrony was quantified as the magnitude of LV apical rocking. The apical rocking was measured using tissue displacement estimates from echo data. In a 4-chamber view, a region of interest was positioned within the apical end of the middle segment within each wall. Tissue displacement curves were analyzed with custom software in MATLAB. Rocking was quantified as a percentage of the cardiac cycle over which the displacement curves showed discordant behavior and classified as non-significant for values <35%. Validation in 50 patients showed that absence of significant LV apical rocking or atrial-ventricular dyssynchrony was associated with non-response to CRT. This measure may therefore be useful in screening to avoid non-therapeutic CRT procedures.

  3. Evaluation of bluetooth low power for physiological monitoring in a home based cardiac rehabilitation program.

    PubMed

    Martin, Timothy; Ding, Hang; D'Souza, Matthew; Karunanithi, Mohan

    2012-01-01

    Cardiovascular disease (CVD) is the leading cause of mortality in Australia, and places large burdens on the healthcare system. To assist patients with CVDs in recovering from cardiac events and mediating cardiac risk factors, a home based cardiac rehabilitation program, known as the Care Assessment Platform (CAP), was developed. In the CAP program, patients are required to manually enter health information into their mobile phones on a daily basis. The manual operation is often subject to human errors and is inconvenient for some elderly patients. To improve this, an automated wireless solution has been desired. The objectives of this paper are to investigate the feasibility of implementing the newly released Bluetooth 4.0 (BT4.0) for the CAP program, and practically evaluate BT4.0 communications between a developed mobile application and some emulated healthcare devices. The study demonstrated that BT4.0 addresses usability, interoperability and security for healthcare applications, reduces the power consumption in wireless communication, and improves the flexibility of interface for software development. This evaluation study provides an essential mobile BT4.0 framework to incorporate a large range of healthcare devices for clinical assessment and intervention in the CAP program, and hence it is useful for similar development and research work of other mobile healthcare solutions.

  4. Dosimetric Predictors of Symptomatic Cardiac Events after Conventional-Dose Chemoradiation Therapy for Inoperable Non-Small Cell Lung Cancer.

    PubMed

    Yegya-Raman, Nikhil; Wang, Kyle; Kim, Sinae; Reyhan, Meral; Deek, Matthew P; Sayan, Mutlay; Li, Diana; Patel, Malini; Malhotra, Jyoti; Aisner, Joseph; Marks, Lawrence B; Jabbour, Salma K

    2018-06-05

    We hypothesized that higher cardiac doses correlates with clinically significant cardiotoxicity after standard-dose chemoradiation therapy (CRT) (∼60 Gy) for inoperable non-small cell lung cancer (NSCLC). We retrospectively reviewed the records of 140 patients with inoperable NSCLC treated with concurrent CRT from 2007-2015. Extracted data included baseline cardiac status, dosimetric parameters to the whole heart (WH) and cardiac substructures, and the development of post-CRT symptomatic cardiac events (acute coronary syndrome [ACS], arrhythmia, pericardial effusion, pericarditis, and congestive heart failure [CHF]). Competing risks analysis was used to estimate time to cardiac events. Median follow-up was 47.4 months. Median radiation therapy dose was 61.2 Gy (interquartile range, 60-66 Gy). Forty patients (28.6%) developed 47 symptomatic cardiac events at a median of 15.3 months to first event. On multivariate analysis, higher WH doses and baseline cardiac status were associated with an increased risk of symptomatic cardiac events. The 4-year cumulative incidence of symptomatic cardiac events was 48.6% versus 18.5% for mean WH dose ≥ 20 Gy versus < 20 Gy, respectively (p = 0.0002). Doses to the WH, ventricles, and left anterior descending artery were associated with ACS/CHF, whereas doses to the WH and atria were not associated with supraventricular arrhythmias. Symptomatic cardiac events (p = 0.0001) were independently associated with death. Incidental cardiac irradiation was associated with subsequent symptomatic cardiac events, particularly ACS/CHF, and symptomatic cardiac events were associated with inferior survival. These results support the minimization of cardiac doses among patients with inoperable NSCLC receiving standard-dose CRT. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  5. [Complications in patients undergoing pulmonary oncological surgery].

    PubMed

    Mitás, L; Horváth, T; Sobotka, M; Garajová, B; Hanke, I; Kala, Z; Penka, I; Ivicic, J; Vomela, J

    2010-02-01

    A survey evaluating incidence and risk factors of complications in persons underwent complete open lung resection because of primary or secondary lung malignancy. Retrospective study of 189 open surgery procedures in 128 males and 61 females, mean age males 61 years (range 21-78), females 64 years (range 33-80) during a five-years period (2003-2007). Data processing and analysis were performed with the statistical software system Statistica and compared by parametres odds ratio a chi2 test. Complications were divided into five groups. First group was defined as complications in perioperative period and was composed of three events 1.5%: endotracheal tube dysfunction (i.e. 0.5%), heavy cardiac arrhytmia 0.5% and serious haemorrhage, that occurred immediately after operation 0.5%. Second group includes complications within period of 7 days after surgery: prolonged air leak (PAL > 7 days) 7.4%, bronchopneumonia 6.9%, cardiac arrhythmia 6.9%, postoperative delirium 4.2%, atelectasis 2.6%, wound infection 1.1%, bleeding 1.1% and chylothorax 0.5%. Third group contains events between 8th and 30th postoperative days: thoracic empyema 2.1%, dysphonia 2.1%, painfull shoulder 1.1%, alimentary tract infection 0.5% and bronchial closure insufficiency 0.5%. Fourth group contains patients with severe complications, that led to death during 30 days after operation: ischemic stroke 0.5% and pulmonary embolism 0.5%. Patients without any complication formed the fifth group of 60.5%. Main risk factors for complications in postoperative period after lung resection due to primary or secondary lung malignancy in our group of patients are COPD, corticotherapy, time of operation over 3 hours, BMI over 25, left side tumor localization and bronchoplastic procedure. For cardiac arrhytmia seems to be risk factor pneumonectomy and previous neoadjuvant radiochemotherapy.

  6. The role of remote ischemic preconditioning in organ protection after cardiac surgery: a meta-analysis.

    PubMed

    Haji Mohd Yasin, Nur A B; Herbison, Peter; Saxena, Pankaj; Praporski, Slavica; Konstantinov, Igor E

    2014-01-01

    Remote ischemic preconditioning (RIPC) appears to protect distant organs from ischemia-reperfusion injury. We undertook meta-analysis of clinical studies to evaluate the effects of RIPC on organ protection and clinical outcomes in patients undergoing cardiac surgery. A review of evidence for cardiac, renal, and pulmonary protection after RIPC was performed. We also did meta-regressions on RIPC variables, such as duration of ischemia, cuff pressure, and timing of application of preconditioning. Secondary outcomes included length of hospital and intensive care unit stay, duration of mechanical ventilation, and mortality at 30 days. Randomized control trials (n = 25) were included in the study for quantitative analysis of cardiac (n = 16), renal (n = 6), and pulmonary (n = 3) protection. RIPC provided statistically significant cardiac protection (standardized mean difference [SMD], -0.77; 95% confidence interval [CI], -1.15, -0.39; Z = 3.98; P < 0.0001) and on subgroup analysis, the protective effect remained consistent for all types of cardiac surgical procedures. However, there was no evidence of renal protection (SMD, 0.74; 95% CI, 0.53, 1.02; Z = 1.81; P = 0.07) or pulmonary protection (SMD, -0.03; 95% CI, -0.56, 0.50; Z = 0.12; P = 0.91). There was no statistical difference in the short-term clinical outcomes between the RIPC and control groups. RIPC provides cardiac protection, but there is no evidence of renal or pulmonary protection in patients undergoing cardiac surgery using cardiopulmonary bypass. Larger multicenter trials are required to define the role of RIPC in surgical practice. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  7. Validation of a novel CARTOSEG™ segmentation module software for contrast-enhanced computed tomography-guided radiofrequency ablation in patients with atrial fibrillation.

    PubMed

    Imanli, Hasan; Bhatty, Shaun; Jeudy, Jean; Ghzally, Yousra; Ume, Kiddy; Vunnam, Rama; Itah, Refael; Amit, Mati; Duell, John; See, Vincent; Shorofsky, Stephen; Dickfeld, Timm M

    2017-11-01

    Visualization of left atrial (LA) anatomy using image integration modules has been associated with decreased radiation exposure and improved procedural outcome when used for guidance of pulmonary vein isolation (PVI) in atrial fibrillation (AF) ablation. We evaluated the CARTOSEG™ CT Segmentation Module (Biosense Webster, Inc.) that offers a new CT-specific semiautomatic reconstruction of the atrial endocardium. The CARTOSEG™ CT Segmentation Module software was assessed prospectively in 80 patients undergoing AF ablation. Using preprocedural contrast-enhanced computed tomography (CE-CT), cardiac chambers, coronary sinus (CS), and esophagus were semiautomatically segmented. Segmentation quality was assessed from 1 (poor) to 4 (excellent). The reconstructed structures were registered with the electroanatomic map (EAM). PVI was performed using the registered 3D images. Semiautomatic reconstruction of the heart chambers was successfully performed in all 80 patients with AF. CE-CT DICOM file import, semiautomatic segmentation of cardiac chambers, esophagus, and CS was performed in 185 ± 105, 18 ± 5, 119 ± 47, and 69 ± 19 seconds, respectively. Average segmentation quality was 3.9 ± 0.2, 3.8 ± 0.3, and 3.8 ± 0.2 for LA, esophagus, and CS, respectively. Registration accuracy between the EAM and CE-CT-derived segmentation was 4.2 ± 0.9 mm. Complications consisted of one perforation (1%) which required pericardiocentesis, one increased pericardial effusion treated conservatively (1%), and one early termination of ablation due to thrombus formation on the ablation sheath without TIA/stroke (1%). All targeted PVs (n  =  309) were successfully isolated. The novel CT- CARTOSEG™ CT Segmentation Module enables a rapid and reliable semiautomatic 3D reconstruction of cardiac chambers and adjacent anatomy, which facilitates successful and safe PVI. © 2017 Wiley Periodicals, Inc.

  8. Simulation system of arrhythmia using ActiveX control.

    PubMed

    Takeuchi, Akihiro; Hirose, Minoru; Hamada, Atsushi; Ikeda, Noriaki

    2005-07-01

    A simulation system for arrhythmias has been developed using Windows-based software technology, ActiveX control. The cardiac module consists of six cells, the sinus, atrium, AV node, ventricle, and ectopic foci. The physiological properties of the cells, the automaticity and conduction delay, were modelled, respectively, by the phase response curve and the excitability recovery curve. Cell functions were implemented in the ActiveX control and incorporated into the cardiac module. The system draws the ECG sequence as a ladder diagram in real time. The system interactively shows diverse arrhythmias for various user settings of the cell function and bidirectional conduction between the cells. Users are able to experiment virtually by setting up a so-called electrophysiological stimulation. This system is useful for learning and for teaching the interaction between the cells and arrhythmias.

  9. An Excel-based implementation of the spectral method of action potential alternans analysis.

    PubMed

    Pearman, Charles M

    2014-12-01

    Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro-arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T-wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results. © 2014 The Author. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  10. Ginseng Is Useful to Enhance Cardiac Contractility in Animals

    PubMed Central

    Cherng, Yih-Giun; Chen, Li-Jen; Niu, Ho-Shan; Chang, Chen Kuei; Niu, Chiang-Shan

    2014-01-01

    Ginseng has been shown to be effective on cardiac dysfunction. Recent evidence has highlighted the mediation of peroxisome proliferator-activated receptors (PPARs) in cardiac function. Thus, we are interested to investigate the role of PPARδ in ginseng-induced modification of cardiac contractility. The isolated hearts in Langendorff apparatus and hemodynamic analysis in catheterized rats were applied to measure the actions of ginseng ex vivo and in vivo. In normal rats, ginseng enhanced cardiac contractility and hemodynamic dP/dt max significantly. Both actions were diminished by GSK0660 at a dose enough to block PPARδ. However, ginseng failed to modify heart rate at the same dose, although it did produce a mild increase in blood pressure. Data of intracellular calcium level and Western blotting analysis showed that both the PPARδ expression and troponin I phosphorylation were raised by ginseng in neonatal rat cardiomyocyte. Thus, we suggest that ginseng could enhance cardiac contractility through increased PPARδ expression in cardiac cells. PMID:24689053

  11. The UNC-45 Chaperone Is Critical for Establishing Myosin-Based Myofibrillar Organization and Cardiac Contractility in the Drosophila Heart Model

    PubMed Central

    Melkani, Girish C.; Bodmer, Rolf; Ocorr, Karen; Bernstein, Sanford I.

    2011-01-01

    UNC-45 is a UCS (UNC-45/CRO1/She4P) class chaperone necessary for myosin folding and/or accumulation, but its requirement for maintaining cardiac contractility has not been explored. Given the prevalence of myosin mutations in eliciting cardiomyopathy, chaperones like UNC-45 are likely to be equally critical in provoking or modulating myosin-associated cardiomyopathy. Here, we used the Drosophila heart model to examine its role in cardiac physiology, in conjunction with RNAi-mediated gene silencing specifically in the heart in vivo. Analysis of cardiac physiology was carried out using high-speed video recording in conjunction with movement analysis algorithms. unc-45 knockdown resulted in severely compromised cardiac function in adults as evidenced by prolonged diastolic and systolic intervals, and increased incidence of arrhythmias and extreme dilation; the latter was accompanied by a significant reduction in muscle contractility. Structural analysis showed reduced myofibrils, myofibrillar disarray, and greatly decreased cardiac myosin accumulation. Cardiac unc-45 silencing also dramatically reduced life-span. In contrast, third instar larval and young pupal hearts showed mild cardiac abnormalities, as severe cardiac defects only developed during metamorphosis. Furthermore, cardiac unc-45 silencing in the adult heart (after metamorphosis) led to less severe phenotypes. This suggests that UNC-45 is mostly required for myosin accumulation/folding during remodeling of the forming adult heart. The cardiac defects, myosin deficit and decreased life-span in flies upon heart-specific unc-45 knockdown were significantly rescued by UNC-45 over-expression. Our results are the first to demonstrate a cardiac-specific requirement of a chaperone in Drosophila, suggestive of a critical role of UNC-45 in cardiomyopathies, including those associated with unfolded proteins in the failing human heart. The dilated cardiomyopathy phenotype associated with UNC-45 deficiency is mimicked by myosin knockdown suggesting that UNC-45 plays a crucial role in stabilizing myosin and possibly preventing human cardiomyopathies associated with functional deficiencies of myosin. PMID:21799905

  12. Image registration and analysis for quantitative myocardial perfusion: application to dynamic circular cardiac CT.

    PubMed

    Isola, A A; Schmitt, H; van Stevendaal, U; Begemann, P G; Coulon, P; Boussel, L; Grass, M

    2011-09-21

    Large area detector computed tomography systems with fast rotating gantries enable volumetric dynamic cardiac perfusion studies. Prospectively, ECG-triggered acquisitions limit the data acquisition to a predefined cardiac phase and thereby reduce x-ray dose and limit motion artefacts. Even in the case of highly accurate prospective triggering and stable heart rate, spatial misalignment of the cardiac volumes acquired and reconstructed per cardiac cycle may occur due to small motion pattern variations from cycle to cycle. These misalignments reduce the accuracy of the quantitative analysis of myocardial perfusion parameters on a per voxel basis. An image-based solution to this problem is elastic 3D image registration of dynamic volume sequences with variable contrast, as it is introduced in this contribution. After circular cone-beam CT reconstruction of cardiac volumes covering large areas of the myocardial tissue, the complete series is aligned with respect to a chosen reference volume. The results of the registration process and the perfusion analysis with and without registration are evaluated quantitatively in this paper. The spatial alignment leads to improved quantification of myocardial perfusion for three different pig data sets.

  13. Reference Values for Cardiac and Aortic Magnetic Resonance Imaging in Healthy, Young Caucasian Adults.

    PubMed

    Eikendal, Anouk L M; Bots, Michiel L; Haaring, Cees; Saam, Tobias; van der Geest, Rob J; Westenberg, Jos J M; den Ruijter, Hester M; Hoefer, Imo E; Leiner, Tim

    2016-01-01

    Reference values for morphological and functional parameters of the cardiovascular system in early life are relevant since they may help to identify young adults who fall outside the physiological range of arterial and cardiac ageing. This study provides age and sex specific reference values for aortic wall characteristics, cardiac function parameters and aortic pulse wave velocity (PWV) in a population-based sample of healthy, young adults using magnetic resonance (MR) imaging. In 131 randomly selected healthy, young adults aged between 25 and 35 years (mean age 31.8 years, 63 men) of the general-population based Atherosclerosis-Monitoring-and-Biomarker-measurements-In-The-YOuNg (AMBITYON) study, descending thoracic aortic dimensions and wall thickness, thoracic aortic PWV and cardiac function parameters were measured using a 3.0T MR-system. Age and sex specific reference values were generated using dedicated software. Differences in reference values between two age groups (25-30 and 30-35 years) and both sexes were tested. Aortic diameters and areas were higher in the older age group (all p<0.007). Moreover, aortic dimensions, left ventricular mass, left and right ventricular volumes and cardiac output were lower in women than in men (all p<0.001). For mean and maximum aortic wall thickness, left and right ejection fraction and aortic PWV we did not observe a significant age or sex effect. This study provides age and sex specific reference values for cardiovascular MR parameters in healthy, young Caucasian adults. These may aid in MR guided pre-clinical identification of young adults who fall outside the physiological range of arterial and cardiac ageing.

  14. Prognostic value of adrenal gland volume after cardiac arrest: Association of CT-scan evaluation with shock and mortality.

    PubMed

    Mongardon, Nicolas; Savary, Guillaume; Geri, Guillaume; El Bejjani, Marie-Rose; Silvera, Stéphane; Dumas, Florence; Charpentier, Julien; Pène, Frédéric; Mira, Jean-Paul; Cariou, Alain

    2018-05-28

    Adrenal gland volume is associated with survival in septic shock. As sepsis and post-cardiac arrest syndrome share many pathophysiological features, we assessed the association between adrenal gland volume measured by computerized tomography (CT)-scan and post-cardiac arrest shock and intensive care unit (ICU) mortality, in a large cohort of out-of-hospital cardiac arrest (OHCA) patients. We also investigated the association between adrenal hormonal function and both adrenal gland volume and outcomes. Prospective analysis of CT-scan performed at hospital admission in patients admitted after OHCA (2007-2012). A pair of blinded radiologist calculated manually adrenal gland volume. In a subgroup of patients, plasma cortisol was measured at admission and 60 min after a cosyntropin test. Factors associated with post-cardiac arrest shock and ICU mortality were identified using multivariate logistic regression. Among 775 patients admitted during this period after OHCA, 138 patients were included: 72 patients (52.2%) developed a post-cardiac arrest shock, and 98 patients (71.1%) died. In univariate analysis, adrenal gland volume was not different between patients with and without post-cardiac arrest shock: 10.6 and 11.3 cm 3 , respectively (p = 0.9) and between patients discharged alive or dead: 10.2 and 11.8 cm 3 , respectively (p = 0.4). Multivariate analysis confirmed that total adrenal gland volume was associated neither with post-cardiac arrest shock nor mortality. Neither baseline cortisol level nor delta between baseline and after cosyntropin test cortisol levels were associated with adrenal volume, post-cardiac arrest shock onset or mortality. After OHCA, adrenal gland volume is not associated with post-cardiac arrest shock onset or ICU mortality. Adrenal gland volume does not predict adrenal gland hormonal response. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Agreement of Bioreactance Cardiac Output Monitoring With Thermodilution During Hemorrhagic Shock and Resuscitation in Adult Swine.

    PubMed

    Berlin, David A; Peprah-Mensah, Harrison; Manoach, Seth; Heerdt, Paul M

    2017-02-01

    The study tests the hypothesis that noninvasive cardiac output monitoring based upon bioreactance (Cheetah Medical, Portland, OR) has acceptable agreement with intermittent bolus thermodilution over a wide range of cardiac output in an adult porcine model of hemorrhagic shock and resuscitation. Prospective laboratory animal investigation. Preclinical university laboratory. Eight ~ 50 kg Yorkshire swine with a femoral artery catheter for blood pressure measurement and a pulmonary artery catheter for bolus thermodilution. With the pigs anesthetized and mechanically ventilated, 40 mL/kg of blood was removed yielding marked hypotension and a rise in plasma lactate. After 60 minutes, pigs were resuscitated with shed blood and crystalloid. Noninvasive cardiac output monitoring and intermittent thermodilution cardiac output were simultaneously measured at nine time points spanning baseline, hemorrhage, and resuscitation. Simultaneous noninvasive cardiac output monitoring and thermodilution measurements of cardiac output were compared by Bland-Altman analysis. A plot was constructed using the difference of each paired measurement expressed as a percentage of the mean of the pair plotted against the mean of the pair. Percent bias was used to scale the differences in the measurements for the magnitude of the cardiac output. Method concordance was assessed from a four-quadrant plot with a 15% zone of exclusion. Overall, noninvasive cardiac output monitoring percent bias was 1.47% (95% CI, -2.5 to 5.4) with limits of agreement of upper equal to 33.4% (95% CI, 26.5-40.2) and lower equal to -30.4% (95% CI, -37.3 to -23.6). Trending analysis demonstrated a 97% concordance between noninvasive cardiac output monitoring and thermodilution cardiac output. Over the wide range of cardiac output produced by hemorrhage and resuscitation in large pigs, noninvasive cardiac output monitoring has acceptable agreement with thermodilution cardiac output.

  16. Magnetic Resonance Imaging as a Predictor of Survival Free of Life-Threatening Arrhythmias and Transplantation in Cardiac Sarcoidosis.

    PubMed

    Ekström, Kaj; Lehtonen, Jukka; Hänninen, Helena; Kandolin, Riina; Kivistö, Sari; Kupari, Markku

    2016-05-02

    Cardiac magnetic resonance imaging has a key role in today's diagnosis of cardiac sarcoidosis. We set out to investigate whether cardiac magnetic resonance imaging also helps predict outcome in cardiac sarcoidosis. Our work involved 59 patients with cardiac sarcoidosis (38 female, mean age 46±10 years) seen at our hospital since February 2004 and followed up after contrast-enhanced cardiac magnetic resonance imaging. The extent of myocardial late gadolinium enhancement (measured as percentage of left ventricular mass), the volumes and ejection fractions of the left and right ventricles, and the thickness of the basal interventricular septum were determined and analyzed for prognostic significance. By April 2015, 23 patients had reached the study's end point, consisting of a composite of cardiac death (n=3), cardiac transplantation (n=1), and occurrence of life-threatening ventricular tachyarrhythmias (n=19; ventricular fibrillation in 5 and sustained ventricular tachycardia in 14 patients). In univariate analysis, myocardial extent of late gadolinium enhancement predicted event-free survival, as did scar-like thinning (<4 mm) of the basal interventricular septum and the ejection fraction of the right ventricle (P<0.05 for all). In multivariate Cox regression analysis, extent of late gadolinium enhancement was the only independent predictor of outcome events on cardiac magnetic resonance imaging, with a hazard ratio of 2.22 per tertile (95% CI 1.07-4.59). An extent of late gadolinium enhancement >22% (third tertile) had positive and negative predictive values for serious cardiac events of 75% and 76%, respectively. Findings on cardiac magnetic resonance imaging and the extent of myocardial late gadolinium enhancement in particular help predict serious cardiac events in cardiac sarcoidosis. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  17. Validation of cardiac output studies from the Mostcare compared to a pulmonary artery catheter in septic patients.

    PubMed

    Gopal, S; Do, T; Pooni, J S; Martinelli, G

    2014-03-01

    The Mostcare monitor is a non-invasive cardiac output monitor. It has been well validated in cardiac surgical patients but there is limited evidence on its use in patients with severe sepsis and septic shock. The study included the first 22 consecutive patients with severe sepsis and septic shock in whom the floatation of a pulmonary artery catheter was deemed necessary to guide clinical management. Cardiac output measurements including cardiac output, cardiac index and stroke volume were simultaneously calculated and recorded from a thermodilution pulmonary artery catheter and from the Mostcare monitor respectively. The two methods of measuring cardiac output were compared by Bland-Altman statistics and linear regression analysis. A percentage error of less than 30% was defined as acceptable for this study. Bland-Altman analysis for cardiac output showed a Bias of 0.31 L.min-1, precision (=SD) of 1.97 L.min-1 and a percentage error of 62.54%. For Cardiac Index the bias was 0.21 L.min-1.m-2, precision of 1.10 L.min-1.m-2 and a percentage error of 64%. For stroke volume the bias was 5 mL, precision of 24.46 mL and percentage error of 70.21%. Linear regression produced a correlation coefficient r2 for cardiac output, cardiac index, and stroke volume, of 0.403, 0.306, and 0.3 respectively. Compared to thermodilution cardiac output, cardiac output studies obtained from the Mostcare monitor have an unacceptably high error rate. The Mostcare monitor demonstrated to be an unreliable monitoring device to measure cardiac output in patients with severe sepsis and septic shock on an intensive care unit.

  18. Evaluation of several two-dimensional gel electrophoresis techniques in cardiac proteomics.

    PubMed

    Li, Zhao Bo; Flint, Paul W; Boluyt, Marvin O

    2005-09-01

    Two-dimensional gel electrophoresis (2-DE) is currently the best method for separating complex mixtures of proteins, and its use is gradually becoming more common in cardiac proteome analysis. A number of variations in basic 2-DE have emerged, but their usefulness in analyzing cardiac tissue has not been evaluated. The purpose of the present study was to systematically evaluate the capabilities and limitations of several 2-DE techniques for separating proteins from rat heart tissue. Immobilized pH gradient strips of various pH ranges, parameters of protein loading and staining, subcellular fractionation, and detection of phosphorylated proteins were studied. The results provide guidance for proteome analysis of cardiac and other tissues in terms of selection of the isoelectric point separating window for cardiac proteins, accurate quantitation of cardiac protein abundance, stabilization of technical variation, reduction of sample complexity, enrichment of low-abundant proteins, and detection of phosphorylated proteins.

  19. BeatBox-HPC simulation environment for biophysically and anatomically realistic cardiac electrophysiology.

    PubMed

    Antonioletti, Mario; Biktashev, Vadim N; Jackson, Adrian; Kharche, Sanjay R; Stary, Tomas; Biktasheva, Irina V

    2017-01-01

    The BeatBox simulation environment combines flexible script language user interface with the robust computational tools, in order to setup cardiac electrophysiology in-silico experiments without re-coding at low-level, so that cell excitation, tissue/anatomy models, stimulation protocols may be included into a BeatBox script, and simulation run either sequentially or in parallel (MPI) without re-compilation. BeatBox is a free software written in C language to be run on a Unix-based platform. It provides the whole spectrum of multi scale tissue modelling from 0-dimensional individual cell simulation, 1-dimensional fibre, 2-dimensional sheet and 3-dimensional slab of tissue, up to anatomically realistic whole heart simulations, with run time measurements including cardiac re-entry tip/filament tracing, ECG, local/global samples of any variables, etc. BeatBox solvers, cell, and tissue/anatomy models repositories are extended via robust and flexible interfaces, thus providing an open framework for new developments in the field. In this paper we give an overview of the BeatBox current state, together with a description of the main computational methods and MPI parallelisation approaches.

  20. Software analysis handbook: Software complexity analysis and software reliability estimation and prediction

    NASA Technical Reports Server (NTRS)

    Lee, Alice T.; Gunn, Todd; Pham, Tuan; Ricaldi, Ron

    1994-01-01

    This handbook documents the three software analysis processes the Space Station Software Analysis team uses to assess space station software, including their backgrounds, theories, tools, and analysis procedures. Potential applications of these analysis results are also presented. The first section describes how software complexity analysis provides quantitative information on code, such as code structure and risk areas, throughout the software life cycle. Software complexity analysis allows an analyst to understand the software structure, identify critical software components, assess risk areas within a software system, identify testing deficiencies, and recommend program improvements. Performing this type of analysis during the early design phases of software development can positively affect the process, and may prevent later, much larger, difficulties. The second section describes how software reliability estimation and prediction analysis, or software reliability, provides a quantitative means to measure the probability of failure-free operation of a computer program, and describes the two tools used by JSC to determine failure rates and design tradeoffs between reliability, costs, performance, and schedule.

  1. Automatic control of finite element models for temperature-controlled radiofrequency ablation.

    PubMed

    Haemmerich, Dieter; Webster, John G

    2005-07-14

    The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100 degrees C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input.

  2. A high-speed network for cardiac image review.

    PubMed

    Elion, J L; Petrocelli, R R

    1994-01-01

    A high-speed fiber-based network for the transmission and display of digitized full-motion cardiac images has been developed. Based on Asynchronous Transfer Mode (ATM), the network is scaleable, meaning that the same software and hardware is used for a small local area network or for a large multi-institutional network. The system can handle uncompressed digital angiographic images, considered to be at the "high-end" of the bandwidth requirements. Along with the networking, a general-purpose multi-modality review station has been implemented without specialized hardware. This station can store a full injection sequence in "loop RAM" in a 512 x 512 format, then interpolate to 1024 x 1024 while displaying at 30 frames per second. The network and review stations connect to a central file server that uses a virtual file system to make a large high-speed RAID storage disk and associated off-line storage tapes and cartridges all appear as a single large file system to the software. In addition to supporting archival storage and review, the system can also digitize live video using high-speed Direct Memory Access (DMA) from the frame grabber to present uncompressed data to the network. Fully functional prototypes have provided the proof of concept, with full deployment in the institution planned as the next stage.

  3. A high-speed network for cardiac image review.

    PubMed Central

    Elion, J. L.; Petrocelli, R. R.

    1994-01-01

    A high-speed fiber-based network for the transmission and display of digitized full-motion cardiac images has been developed. Based on Asynchronous Transfer Mode (ATM), the network is scaleable, meaning that the same software and hardware is used for a small local area network or for a large multi-institutional network. The system can handle uncompressed digital angiographic images, considered to be at the "high-end" of the bandwidth requirements. Along with the networking, a general-purpose multi-modality review station has been implemented without specialized hardware. This station can store a full injection sequence in "loop RAM" in a 512 x 512 format, then interpolate to 1024 x 1024 while displaying at 30 frames per second. The network and review stations connect to a central file server that uses a virtual file system to make a large high-speed RAID storage disk and associated off-line storage tapes and cartridges all appear as a single large file system to the software. In addition to supporting archival storage and review, the system can also digitize live video using high-speed Direct Memory Access (DMA) from the frame grabber to present uncompressed data to the network. Fully functional prototypes have provided the proof of concept, with full deployment in the institution planned as the next stage. PMID:7949964

  4. [Correction of respiratory movement using ultrasound for cardiac nuclear medicine examinations: fundamental study using an X-ray TV machine].

    PubMed

    Yoda, Kazushige; Umeda, Tokuo; Hasegawa, Tomoyuki

    2003-11-01

    Organ movements that occur naturally as a result of vital functions such as respiration and heartbeat cause deterioration of image quality in nuclear medicine imaging. Among these movements, respiration has a large effect, but there has been no practical method of correcting for this. In the present study, we examined a method of correction that uses ultrasound images to correct baseline shifts caused by respiration in cardiac nuclear medicine examinations. To evaluate the validity of this method, simulation studies were conducted with an X-ray TV machine instead of a nuclear medicine scanner. The X-ray TV images and ultrasound images were recorded as digital movies and processed with public domain software (Scion Image). Organ movements were detected in the ultrasound images of the subcostal four-chamber view mode using slit regions of interest and were measured on a two-dimensional image coordinate. Then translational shifts were applied to the X-ray TV images to correct these movements by using macro-functions of the software. As a result, respiratory movements of about 20.1 mm were successfully reduced to less than 2.6 mm. We conclude that this correction technique is potentially useful in nuclear medicine cardiology.

  5. Automated Description of Regional Left Ventricular Motion in Patients With Cardiac Amyloidosis: A Quantitative Study Using Heart Deformation Analysis.

    PubMed

    Meng, Leng; Lin, Kai; Collins, Jeremy; Markl, Michael; Carr, James C

    2017-08-01

    The purpose of this article is to test the hypothesis that heart deformation analysis can automatically quantify regional myocardial motion patterns in patients with cardiac amyloidosis. Eleven patients with cardiac amyloidosis and 11 healthy control subjects were recruited to undergo cardiac MRI. Cine images were analyzed using heart deformation analysis and feature tracking. Heart deformation analysis-derived myocardial motion indexes in radial and circumferential directions, including radial and circumferential displacement, radial and circumferential velocity, radial and circumferential strain, and radial and circumferential strain rate, were compared between the two groups. The heart deformation analysis tool required a shorter mean (± SD) processing time than did the feature-tracking tool (1.5 ± 0.3 vs 5.1 ± 1.2 minutes). Patients with cardiac amyloidosis had lower peak radial displacement (4.32 ± 1.37 vs 5.62 ± 1.19 mm), radial velocity (25.50 ± 7.70 vs 33.41 ± 5.43 mm/s), radial strain (23.32% ± 10.24% vs 31.21% ± 8.71%), circumferential strain (-13.44% ± 4.21% vs -17.84% ± 2.84%), radial strain rate (1.14 ± 0.46 vs 1.58 ± 0.41 s -1 ), and circumferential strain rate (-0.78 ± 0.22 vs -1.08 ± 0.20 s -1 ) than did healthy control subjects. Heart deformation analysis-derived indexes correlated with feature tracking-derived indexes (r = 0.411 and 0.552). Heart deformation analysis is able to automatically quantify regional myocardial motion in patients with cardiac amyloidosis without the need for operator interaction.

  6. Nuclear cardiac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slutsky, R.; Ashburn, W.L.

    1982-01-01

    The relationship between nuclear medicine and cardiology has continued to produce a surfeit of interesting, illuminating, and important reports involving the analysis of cardiac function, perfusion, and metabolism. To simplify the presentation, this review is broken down into three major subheadings: analysis of myocardial perfusion; imaging of the recent myocardial infarction; and the evaluation of myocardial function. There appears to be an increasingly important relationship between cardiology, particularly cardiac physiology, and nuclear imaging techniques. (KRM)

  7. Curvature Analysis of Cardiac Excitation Wavefronts

    DTIC Science & Technology

    2013-04-01

    required at this level either. To enable this kind of analysis, a type field is added to the polyline data structure, too. The downside of reusing the...GPU-based parallel methods. The wave curvature and the refractory period of the cardiac cells influence the motion of cardiac waves. The role of...propagation speed, the action potential duration, and the refractory period is studied. In the recent work of [26], multiple spirals and their

  8. Adverse cardiac events in 56,000 orthopaedic trauma patients: Does anatomic area make a difference?

    PubMed

    Lee, Adam K; Dodd, Ashley C; Lakomkin, Nikita; Yarlagadda, Mahesh; Jahangir, A Alex; Collinge, Cory A; Sethi, Manish K

    2016-08-01

    Postoperative cardiac events in orthopaedic trauma patients constitute severe morbidity and mortality. It is therefore increasingly important to determine patient risk factors that are predictive of postoperative myocardial infarctions and cardiac arrests. This study sought to assess if there is an association between anatomic area and cardiac complications in the orthopaedic trauma patient. From 2006-2013, a total of 361,402 orthopaedic patients were identified in the NSQIP database using Current Procedural Terminology (CPT) codes. Of these, 56,336 (15.6%) patients were identified as orthopaedic trauma patients broken down by anatomic region: 11,905 (21.1%) upper extremity patients (UE), 29,009 (51.5%) hip/pelvis patients (HP), and 15,422 (27.4%) lower extremity patients (LE) using CPT codes. Patients were defined as having adverse cardiac events if they developed myocardial infarctions or cardiac arrests within 30days after surgery. Chi-squared analysis was used to determine if there was an association between anatomic area and rates of cardiac events. Multivariate logistical analysis was used with over 40 patient characteristics including age, gender, history of cardiac disease, and anatomic region as independent predictors to determine whether anatomic area significantly predicted the development of cardiac complications. There were significant differences in baseline demographics among the three groups: HP patients had the greatest average age (77.6 years) compared to 54.8 years for UE patients and 54.1 years in LE patients (p<0.001). HP patients also had the highest average ASA score (3.0) (p<0.001). There was a significant difference in adverse cardiac events based on anatomic area: 0.27% (32/11,905) UE patients developed cardiac complications compared to 2.15% (623/29,009) HP patients and 0.61% (94/15,422) LE patients. After multivariate analysis, HP patients were significantly more likely to develop cardiac complications compared to both UE patients (OR: 6.377, p=0.014) and LE patients (OR: 2.766, p=0.009). There is a significant difference in adverse cardiac events following orthopaedic trauma based on anatomic region. Hip/Pelvis surgery appeared to be a significant risk factor in developing an adverse cardiac event. Further studies should investigate why hip/pelvic patients are at a higher risk of adverse cardiac events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Quantitative myocardial blood flow imaging with integrated time-of-flight PET-MR.

    PubMed

    Kero, Tanja; Nordström, Jonny; Harms, Hendrik J; Sörensen, Jens; Ahlström, Håkan; Lubberink, Mark

    2017-12-01

    The use of integrated PET-MR offers new opportunities for comprehensive assessment of cardiac morphology and function. However, little is known on the quantitative accuracy of cardiac PET imaging with integrated time-of-flight PET-MR. The aim of the present work was to validate the GE Signa PET-MR scanner for quantitative cardiac PET perfusion imaging. Eleven patients (nine male; mean age 59 years; range 46-74 years) with known or suspected coronary artery disease underwent 15 O-water PET scans at rest and during adenosine-induced hyperaemia on a GE Discovery ST PET-CT and a GE Signa PET-MR scanner. PET-MR images were reconstructed using settings recommended by the manufacturer, including time-of-flight (TOF). Data were analysed semi-automatically using Cardiac VUer software, resulting in both parametric myocardial blood flow (MBF) images and segment-based MBF values. Correlation and agreement between PET-CT-based and PET-MR-based MBF values for all three coronary artery territories were assessed using regression analysis and intra-class correlation coefficients (ICC). In addition to the cardiac PET-MR reconstruction protocol as recommended by the manufacturer, comparisons were made using a PET-CT resolution-matched reconstruction protocol both without and with TOF to assess the effect of time-of-flight and reconstruction parameters on quantitative MBF values. Stress MBF data from one patient was excluded due to movement during the PET-CT scanning. Mean MBF values at rest and stress were (0.92 ± 0.12) and (2.74 ± 1.37) mL/g/min for PET-CT and (0.90 ± 0.23) and (2.65 ± 1.15) mL/g/min for PET-MR (p = 0.33 and p = 0.74). ICC between PET-CT-based and PET-MR-based regional MBF was 0.98. Image quality was improved with PET-MR as compared to PET-CT. ICC between PET-MR-based regional MBF with and without TOF and using different filter and reconstruction settings was 1.00. PET-MR-based MBF values correlated well with PET-CT-based MBF values and the parametric PET-MR images were excellent. TOF and reconstruction settings had little impact on MBF values.

  10. Cardiac Expression of ms1/STARS, a Novel Gene Involved in Cardiac Development and Disease, Is Regulated by GATA4

    PubMed Central

    Kobayashi, Satoru; Peterson, Richard E.; He, Aibin; Motterle, Anna; Samani, Nilesh J.; Menick, Donald R.; Pu, William T.; Liang, Qiangrong

    2012-01-01

    Ms1/STARS is a novel muscle-specific actin-binding protein that specifically modulates the myocardin-related transcription factor (MRTF)-serum response factor (SRF) regulatory axis within striated muscle. This ms1/STARS-dependent regulatory axis is of central importance within the cardiac gene regulatory network and has been implicated in cardiac development and postnatal cardiac function/homeostasis. The dysregulation of ms1/STARS is associated with and causative of pathological cardiac phenotypes, including cardiac hypertrophy and cardiomyopathy. In order to gain an understanding of the mechanisms governing ms1/STARS expression in the heart, we have coupled a comparative genomic in silico analysis with reporter, gain-of-function, and loss-of-function approaches. Through this integrated analysis, we have identified three evolutionarily conserved regions (ECRs), α, SINA, and DINA, that act as cis-regulatory modules and confer differential cardiac cell-specific activity. Two of these ECRs, α and DINA, displayed distinct regulatory sensitivity to the core cardiac transcription factor GATA4. Overall, our results demonstrate that within embryonic, neonatal, and adult hearts, GATA4 represses ms1/STARS expression with the pathologically associated depletion of GATA4 (type 1/type 2 diabetic models), resulting in ms1/STARS upregulation. This GATA4-dependent repression of ms1/STARS expression has major implications for MRTF-SRF signaling in the context of cardiac development and disease. PMID:22431517

  11. Composition and distribution of elements and ultrastructural topography of a human cardiac calculus.

    PubMed

    Cheng, Ching-Li; Chang, Hsiao-Huang; Huang, Pei-Jung; Chu, Yu-Ting; Lin, Shan-Yang

    2013-04-01

    Trace elements (TEs) may contribute to the formation of calculi or stones or be involved in the aetiopathogenesis of stone diseases. The compositions and spatial distribution of elements from the inner nucleus to outer crust of the cardiac calculus were investigated by energy-dispersive X-ray fluorescence (EDXRF) spectrometer. The surface topograph, distribution map of elements, elemental and chemical compositions were also determined by environmental scanning electron microscope (ESEM)-energy-dispersive X-ray (EDX) analysis. Twenty-five elements were identifiable from 18 positions on the cardiac calculus by EDXRF spectrometer, in which the highest concentrations of toxic TEs (Ni, Pt, Hg, Sn, Pb, W, Au, Al, Si) and higher levels of essential TEs (Ca, Sr, Cr, P) were detected. A moderate positive Pearson's correlation between TEs concentrations of Mg, Ca or P and location differences from centre to periphery in the cardiac calculus was observed. A positive correlation was also found for Ca/Zn and Ca/Cu, indicating the gradual increase of calcium concentration from inner nucleus to outer crust of cardiac calculus. The drop-like nodules/crystals on the surface of petrous part of cardiac calculus were observed from ESEM analysis. ESEM-EDX analysis determined the calculus to be predominantly composed of calcium hydroxyapatite and cholesterol, as indicated by the petrous surface and drop-like nodules/crystals, respectively. This composition was confirmed using a portable Raman analyser. The spatial distribution analysis indicated a gradual increase in Mg, P and Ca concentrations from the inner nucleus to the outer crust of the cardiac calculus. The major chemical compositions of calcium hydroxyapatite and cholesterol were detected on this cardiac calculus.

  12. Purification of cardiac myocytes from human heart biopsies for gene expression analysis.

    PubMed

    Kosloski, L M; Bales, I K; Allen, K B; Walker, B L; Borkon, A M; Stuart, R S; Pak, A F; Wacker, M J

    2009-09-01

    The collection of gene expression data from human heart biopsies is important for understanding the cellular mechanisms of arrhythmias and diseases such as cardiac hypertrophy and heart failure. Many clinical and basic research laboratories conduct gene expression analysis using RNA from whole cardiac biopsies. This allows for the analysis of global changes in gene expression in areas of the heart, while eliminating the need for more complex and technically difficult single-cell isolation procedures (such as flow cytometry, laser capture microdissection, etc.) that require expensive equipment and specialized training. The abundance of fibroblasts and other cell types in whole biopsies, however, can complicate gene expression analysis and the interpretation of results. Therefore, we have designed a technique to quickly and easily purify cardiac myocytes from whole cardiac biopsies for RNA extraction. Human heart tissue samples were collected, and our purification method was compared with the standard nonpurification method. Cell imaging using acridine orange staining of the purified sample demonstrated that >98% of total RNA was contained within identifiable cardiac myocytes. Real-time RT-PCR was performed comparing nonpurified and purified samples for the expression of troponin T (myocyte marker), vimentin (fibroblast marker), and alpha-smooth muscle actin (smooth muscle marker). Troponin T expression was significantly increased, and vimentin and alpha-smooth muscle actin were significantly decreased in the purified sample (n = 8; P < 0.05). Extracted RNA was analyzed during each step of the purification, and no significant degradation occurred. These results demonstrate that this isolation method yields a more purified cardiac myocyte RNA sample suitable for downstream applications, such as real-time RT-PCR, and allows for more accurate gene expression changes in cardiac myocytes from heart biopsies.

  13. Caffeic acid phenethyl ester attenuates pathological cardiac hypertrophy by regulation of MEK/ERK signaling pathway in vivo and vitro.

    PubMed

    Ren, Jie; Zhang, Nan; Liao, Haihan; Chen, Si; Xu, Ling; Li, Jing; Yang, Zheng; Deng, Wei; Tang, Qizhu

    2017-07-15

    To explore the effects of caffeic acid phenethyl ester (CAPE) on cardiac hypertrophy induced by pressure overload. Male wild-type C57 mice, aged 8-10weeks, were used for aortic banding (AB) to induce cardiac hypertrophy. CAPE or (resveratrol) RS was administered from the 3rd day after AB surgery for 6weeks. Echocardiography and hemodynamic analysis were performed to estimate cardiac function. Mice hearts were collected for H&E and PSR staining. Western blot analysis and quantitative PCR were performed for to investigate molecular mechanism. We further confirmed our findings in H9c2 cardiac fibroblasts treated with PE or CAPE. CAPE protected against cardiac hypertrophy induced by pressure overload, as evidenced by inhibition of cardiac hypertrophy and improvement in mouse cardiac function. The effect of CAPE on cardiac hypertrophy was mediated via inhibition of the MEK/ERK and TGFβ-Smad signaling pathways. We also demonstrated that CAPE protected H9c2 cells from PE-induced hypertrophy in vitro via a similar molecular mechanism as seen in the mouse heart. Finally, CAPE seemed to be as effective as RS for treatment of pressure overload induced mouse cardiac hypertrophy. Our results suggest that CAPE may play an important role in the regulation of cardiac hypertrophy induced by pressure overload via negative regulation of the MEK/ERK and TGFβ/Smad signaling pathways. These results indicate that CAPE could potentially be used for treatment of cardiac hypertrophy. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Intraoperative Right Ventricular Fractional Area Change Is a Good Indicator of Right Ventricular Contractility: A Retrospective Comparison Using Two- and Three-Dimensional Echocardiography.

    PubMed

    Imada, Tatsuyuki; Kamibayashi, Takahiko; Ota, Chiho; Carl Shibata, Sho; Iritakenishi, Takeshi; Sawa, Yoshiki; Fujino, Yuji

    2015-08-01

    Intraoperative two-dimensional echocardiography is technically challenging, given the unique geometry of the right ventricle (RV). It was hypothesized that the RV fractional area change (RVFAC) could be used as a simple method to evaluate RV function during surgery. Therefore, the correlation between the intraoperative RVFAC and the true right ventricular ejection fraction (RVEF), as measured using newly developed three-dimensional (3D) analysis software, was evaluated. Retrospective study. University hospital. Patients who underwent cardiac surgery with transesophageal echocardiography monitoring between March 2014 and June 2014. None. Sixty-two patients were included in this study. After the exclusion of poor imaging data and patients with arrhythmias, 54 data sets were analyzed. RVFAC was measured by one anesthesiologist during surgery, and full-volume 3D echocardiographic data were recorded simultaneously. The 3D data were analyzed postoperatively using off-line 3D analysis software by a second anesthesiologist, who was blinded to the RVFAC results. The mean RVFAC was 38.8% ± 8.7%, the mean RVEF was 41.4% ± 8.3%, and there was a good correlation between the RVFAC and the RVEF (r(2) = 0.638; p<0.0001). The RVFAC was well-correlated with the RVEF calculated using 3D echocardiography; therefore, RVFAC provides a simple and useful method for anesthesiologists to evaluate intraoperative RV function. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Nonlinear analysis of the heartbeats in public patient ECGs using an automated PD2i algorithm for risk stratification of arrhythmic death

    PubMed Central

    Skinner, James E; Anchin, Jerry M; Weiss, Daniel N

    2008-01-01

    Heart rate variability (HRV) reflects both cardiac autonomic function and risk of arrhythmic death (AD). Reduced indices of HRV based on linear stochastic models are independent risk factors for AD in post-myocardial infarct cohorts. Indices based on nonlinear deterministic models have a significantly higher sensitivity and specificity for predicting AD in retrospective data. A need exists for nonlinear analytic software easily used by a medical technician. In the current study, an automated nonlinear algorithm, the time-dependent point correlation dimension (PD2i), was evaluated. The electrocardiogram (ECG) data were provided through an National Institutes of Health-sponsored internet archive (PhysioBank) and consisted of all 22 malignant arrhythmia ECG files (VF/VT) and 22 randomly selected arrhythmia files as the controls. The results were blindly calculated by automated software (Vicor 2.0, Vicor Technologies, Inc., Boca Raton, FL) and showed all analyzable VF/VT files had PD2i < 1.4 and all analyzable controls had PD2i > 1.4. Five VF/VT and six controls were excluded because surrogate testing showed the RR-intervals to contain noise, possibly resulting from the low digitization rate of the ECGs. The sensitivity was 100%, specificity 85%, relative risk > 100; p < 0.01, power > 90%. Thus, automated heartbeat analysis by the time-dependent nonlinear PD2i-algorithm can accurately stratify risk of AD in public data made available for competitive testing of algorithms. PMID:18728829

  16. Sickle cell anemia mice develop a unique cardiomyopathy with restrictive physiology

    PubMed Central

    Bakeer, Nihal; James, Jeanne; Roy, Swarnava; Wansapura, Janaka; Shanmukhappa, Shiva Kumar; Lorenz, John N.; Osinska, Hanna; Backer, Kurt; Huby, Anne-Cecile; Shrestha, Archana; Niss, Omar; Fleck, Robert; Quinn, Charles T.; Taylor, Michael D.; Purevjav, Enkhsaikhan; Aronow, Bruce J.; Towbin, Jeffrey A.; Malik, Punam

    2016-01-01

    Cardiopulmonary complications are the leading cause of mortality in sickle cell anemia (SCA). Elevated tricuspid regurgitant jet velocity, pulmonary hypertension, diastolic, and autonomic dysfunction have all been described, but a unifying pathophysiology and mechanism explaining the poor prognosis and propensity to sudden death has been elusive. Herein, SCA mice underwent a longitudinal comprehensive cardiac analysis, combining state-of-the-art cardiac imaging with electrocardiography, histopathology, and molecular analysis to determine the basis of cardiac dysfunction. We show that in SCA mice, anemia-induced hyperdynamic physiology was gradually superimposed with restrictive physiology, characterized by progressive left atrial enlargement and diastolic dysfunction with preserved systolic function. This phenomenon was absent in WT mice with experimentally induced chronic anemia of similar degree and duration. Restrictive physiology was associated with microscopic cardiomyocyte loss and secondary fibrosis detectable as increased extracellular volume by cardiac-MRI. Ultrastructural mitochondrial changes were consistent with severe chronic hypoxia/ischemia and sarcomere diastolic-length was shortened. Transcriptome analysis revealed up-regulation of genes involving angiogenesis, extracellular-matrix, circadian-rhythm, oxidative stress, and hypoxia, whereas ion-channel transport and cardiac conduction were down-regulated. Indeed, progressive corrected QT prolongation, arrhythmias, and ischemic changes were noted in SCA mice before sudden death. Sudden cardiac death is common in humans with restrictive cardiomyopathies and long QT syndromes. Our findings may thus provide a unifying cardiac pathophysiology that explains the reported cardiac abnormalities and sudden death seen in humans with SCA. PMID:27503873

  17. Longitudinal changes in late systolic cardiac load and serum NT-proBNP levels in healthy middle-aged Japanese men.

    PubMed

    Tomiyama, Hirofumi; Nishikimi, Toshio; Matsumoto, Chisa; Kimura, Kazutaka; Odaira, Mari; Shiina, Kazuki; Yamashina, Akira

    2015-04-01

    We determined whether any significant association exists between change in late systolic cardiac load with time, estimated by radial pressure waveform analysis, and development of cardiac hemodynamic stress in individuals with preserved cardiac function. Brachial-ankle pulse wave velocity, radial augmentation index (rAI), first peak of the radial pressure waveform (SP1), systolic and pulse pressure at the second peak of the radial pressure waveform (SP2 and PP2), and serum levels of N-terminal fragment B-type natriuretic peptide (NT-proBNP) were measured at the start (first examination) and at the end (second examination) of this 3-year study in healthy Japanese men (n = 1,851). A stepwise multivariate linear regression analysis demonstrated that among the parameters of radial pressure waveform analysis and markers of arterial stiffness analyzed, only PP2 was significantly associated with serum NT-proBNP levels in study participants at both the first and second examinations. Furthermore, among the parameters analyzed, only change in PP2 was significantly correlated with the change in serum NT-proBNP levels during the study period (beta = 0.131, P < 0.001). Sustained late systolic cardiac load might be a more significant determinant of the development of cardiac hemodynamic stress than sustained early systolic cardiac load or arterial stiffening in individuals with preserved cardiac function. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Economic and Social Impact of Increasing Uptake of Cardiac Rehabilitation Services--A Cost Benefit Analysis.

    PubMed

    De Gruyter, Elaine; Ford, Greg; Stavreski, Bill

    2016-02-01

    Cardiac rehabilitation can reduce mortality, improve cardiac risk factor profile and reduce readmissions; yet uptake remains low at 30%. This research aims to investigate the social and economic impact of increasing the uptake of cardiac rehabilitation in Victoria, Australia using cost benefit analysis (CBA). Cost benefit analysis has been undertaken over a 10-year period to analyse three scenarios: (1) Base Case: 30% uptake; (2) Scenario 1: 50% uptake; and (3) Scenario 2: 65% uptake. Impacts considered include cardiac rehabilitation program costs, direct inpatient costs, other healthcare costs, burden of disease, productivity losses, informal care costs and net deadweight loss. There is a net financial saving of $46.7-$86.7 million under the scenarios. Compared to the Base Case, an additional net benefit of $138.9-$227.2 million is expected. This results in a Benefit Cost Ratio of 5.6 and 6.8 for Scenarios 1 and 2 respectively. Disability Adjusted Life Years were 21,117-37,565 years lower than the Base Case. Greater uptake of cardiac rehabilitation can reduce the burden of disease, directly translating to benefits for society and the economy. This research supports the need for greater promotion, routine referral to be made standard practice and implementation of reforms to boost uptake. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  19. False dyssynchrony: problem with image-based cardiac functional analysis using x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kidoh, Masafumi; Shen, Zeyang; Suzuki, Yuki; Ciuffo, Luisa; Ashikaga, Hiroshi; Fung, George S. K.; Otake, Yoshito; Zimmerman, Stefan L.; Lima, Joao A. C.; Higuchi, Takahiro; Lee, Okkyun; Sato, Yoshinobu; Becker, Lewis C.; Fishman, Elliot K.; Taguchi, Katsuyuki

    2017-03-01

    We have developed a digitally synthesized patient which we call "Zach" (Zero millisecond Adjustable Clinical Heart) phantom, which allows for an access to the ground truth and assessment of image-based cardiac functional analysis (CFA) using CT images with clinically realistic settings. The study using Zach phantom revealed a major problem with image-based CFA: "False dyssynchrony." Even though the true motion of wall segments is in synchrony, it may appear to be dyssynchrony with the reconstructed cardiac CT images. It is attributed to how cardiac images are reconstructed and how wall locations are updated over cardiac phases. The presence and the degree of false dyssynchrony may vary from scan-to-scan, which could degrade the accuracy and the repeatability (or precision) of image-based CT-CFA exams.

  20. Non-contact cardiac pulse rate estimation based on web-camera

    NASA Astrophysics Data System (ADS)

    Wang, Yingzhi; Han, Tailin

    2015-12-01

    In this paper, we introduce a new methodology of non-contact cardiac pulse rate estimation based on the imaging Photoplethysmography (iPPG) and blind source separation. This novel's approach can be applied to color video recordings of the human face and is based on automatic face tracking along with blind source separation of the color channels into RGB three-channel component. First of all, we should do some pre-processings of the data which can be got from color video such as normalization and sphering. We can use spectrum analysis to estimate the cardiac pulse rate by Independent Component Analysis (ICA) and JADE algorithm. With Bland-Altman and correlation analysis, we compared the cardiac pulse rate extracted from videos recorded by a basic webcam to a Commercial pulse oximetry sensors and achieved high accuracy and correlation. Root mean square error for the estimated results is 2.06bpm, which indicates that the algorithm can realize the non-contact measurements of cardiac pulse rate.

  1. Impedance cardiography: a comparison of cardiac output vs waveform analysis for assessing left ventricular systolic dysfunction.

    PubMed

    DeMarzo, Arthur P; Kelly, Russell F; Calvin, James E

    2007-01-01

    Early detection of asymptomatic left ventricular systolic dysfunction (LVSD) is beneficial in managing heart failure. Recent studies have cast doubt on the usefulness of cardiac output as an indicator of LVSD. In impedance cardiography (ICG), the dZ/dt waveform has a systolic wave called the E wave. This study looked at measurements of the amplitude and area of the E wave compared with ICG-derived cardiac output, stroke volume, cardiac index, and stroke index as methods of assessing LVSD. ICG data were obtained from patients (n=26) admitted to a coronary care unit. Clinical LVSD severity was stratified into 4 groups (none, mild, moderate, and severe) based on echocardiography data and standard clinical assessment by a cardiologist blinded to ICG data. Statistical analysis showed that the E wave amplitude and area were better indicators of the level of LVSD than cardiac output, stroke volume, cardiac index, or stroke index. ICG waveform analysis has potential as a simple point-of-care test for detecting LVSD in asymptomatic patients at high risk for developing heart failure and for monitoring LVSD in patients being treated for heart failure.

  2. A Cardiac Early Warning System with Multi Channel SCG and ECG Monitoring for Mobile Health

    PubMed Central

    Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lee, Ming-Yih

    2017-01-01

    Use of information and communication technology such as smart phone, smart watch, smart glass and portable health monitoring devices for healthcare services has made Mobile Health (mHealth) an emerging research area. Coronary Heart Disease (CHD) is considered as a leading cause of death world wide and an increasing number of people die prematurely due to CHD. Under such circumstances, there is a growing demand for a reliable cardiac monitoring system to catch the intermittent abnormalities and detect critical cardiac behaviors which lead to sudden death. Use of mobile devices to collect Electrocardiography (ECG), Seismocardiography (SCG) data and efficient analysis of those data can monitor a patient’s cardiac activities for early warning. This paper presents a novel cardiac data acquisition method and combined analysis of Electrocardiography (ECG) and multi channel Seismocardiography (SCG) data. An early warning system is implemented to monitor the cardiac activities of a person and accuracy assessment of the early warning system is conducted for the ECG data only. The assessment shows 88% accuracy and effectiveness of our proposed analysis, which implies the viability and applicability of the proposed early warning system. PMID:28353681

  3. A Cardiac Early Warning System with Multi Channel SCG and ECG Monitoring for Mobile Health.

    PubMed

    Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lee, Ming-Yih

    2017-03-29

    Use of information and communication technology such as smart phone, smart watch, smart glass and portable health monitoring devices for healthcare services has made Mobile Health (mHealth) an emerging research area. Coronary Heart Disease (CHD) is considered as a leading cause of death world wide and an increasing number of people die prematurely due to CHD. Under such circumstances, there is a growing demand for a reliable cardiac monitoring system to catch the intermittent abnormalities and detect critical cardiac behaviors which lead to sudden death. Use of mobile devices to collect Electrocardiography (ECG), Seismocardiography (SCG) data and efficient analysis of those data can monitor a patient's cardiac activities for early warning. This paper presents a novel cardiac data acquisition method and combined analysis of Electrocardiography (ECG) and multi channel Seismocardiography (SCG) data. An early warning system is implemented to monitor the cardiac activities of a person and accuracy assessment of the early warning system is conducted for the ECG data only. The assessment shows 88% accuracy and effectiveness of our proposed analysis, which implies the viability and applicability of the proposed early warning system.

  4. Development of a tele-stethoscope and its application in pediatric cardiology.

    PubMed

    Hedayioglu, F L; Mattos, S S; Moser, L; de Lima, M E

    2007-01-01

    Over the years, many attempts have been made to develop special stethoscopes for the teaching of auscultation. The objective of this article is to report on the experience with the development and implementation of an electronic stethoscope and a virtual library of cardiac sounds. There were four stages to this project: (1) the building of the prototype to acquire, filter and amplify the cardiac sounds, (2) the development of a software program to record, reproduce and visualize them, (3) the testing of the prototype in a clinical scenario, and (4) the development of an internet site, to store and display the sounds collected. The first two stages are now complete. The prototype underwent an initial evaluation in a clinical scenario within the Unit and during virtual out-patient clinical sessions. One hundred auscultations were recorded during these tests. They were reviewed and discussed on-line by a panel of experience cardiologists during the sessions. Although the sounds were considered "satisfactory" for diagnostic purposes by the cardiology team, they identified some qualitative differences in the electronic recorded auscultations, such as a higher pitch of the recorded sounds. Prospective clinical studies are now being conducted to further evaluate the interference of the electronic device in the physicians' capability to diagnose different cardiac conditions. An internet site (www.caduceusvirtual.com.br/ auscultaped) was developed to host these cardiac auscultations. It is set as a library of cardiac sounds, catalogued by pathologies and already contains examples from auscultations of the majority of common congenital heart lesions, such as septal defects and valvar lesions.

  5. Ethics and the cardiac pacemaker: more than just end-of-life issues.

    PubMed

    Hutchison, Katrina; Sparrow, Robert

    2018-05-01

    For many years, ethical debate about pacemakers has focused on whether and under what circumstances they may be turned off in end of life care. Several other important ethical issues have been neglected, perhaps because the dilemmas they pose for cardiologists are not so immediate. These include: potential conflicts of interest, particularly those arising from the role of industry employed allied professionals (IEAPs) in pacemaker care; unanticipated impacts of commercial competition and the device improvement cycle; risks associated with remotely accessible software; equity in access to healthcare; and questions about reuse of explanted pacemakers in low and middle income countries. This paper analyses these issues in order to facilitate a more comprehensive approach to ethics and the cardiac pacemaker. Cardiologists should be aware of all of these issues and contribute to ongoing discussions about how they are resolved.

  6. Real-time MRI guidance of cardiac interventions.

    PubMed

    Campbell-Washburn, Adrienne E; Tavallaei, Mohammad A; Pop, Mihaela; Grant, Elena K; Chubb, Henry; Rhode, Kawal; Wright, Graham A

    2017-10-01

    Cardiac magnetic resonance imaging (MRI) is appealing to guide complex cardiac procedures because it is ionizing radiation-free and offers flexible soft-tissue contrast. Interventional cardiac MR promises to improve existing procedures and enable new ones for complex arrhythmias, as well as congenital and structural heart disease. Guiding invasive procedures demands faster image acquisition, reconstruction and analysis, as well as intuitive intraprocedural display of imaging data. Standard cardiac MR techniques such as 3D anatomical imaging, cardiac function and flow, parameter mapping, and late-gadolinium enhancement can be used to gather valuable clinical data at various procedural stages. Rapid intraprocedural image analysis can extract and highlight critical information about interventional targets and outcomes. In some cases, real-time interactive imaging is used to provide a continuous stream of images displayed to interventionalists for dynamic device navigation. Alternatively, devices are navigated relative to a roadmap of major cardiac structures generated through fast segmentation and registration. Interventional devices can be visualized and tracked throughout a procedure with specialized imaging methods. In a clinical setting, advanced imaging must be integrated with other clinical tools and patient data. In order to perform these complex procedures, interventional cardiac MR relies on customized equipment, such as interactive imaging environments, in-room image display, audio communication, hemodynamic monitoring and recording systems, and electroanatomical mapping and ablation systems. Operating in this sophisticated environment requires coordination and planning. This review provides an overview of the imaging technology used in MRI-guided cardiac interventions. Specifically, this review outlines clinical targets, standard image acquisition and analysis tools, and the integration of these tools into clinical workflow. 1 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:935-950. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Mobile phone-assisted basic life support augmented with a metronome.

    PubMed

    Paal, Peter; Pircher, Iris; Baur, Thomas; Gruber, Elisabeth; Strasak, Alexander M; Herff, Holger; Brugger, Hermann; Wenzel, Volker; Mitterlechner, Thomas

    2012-09-01

    Basic life support (BLS) performed by lay rescuers is poor. We developed software for mobile phones augmented with a metronome to improve BLS. To assess BLS in lay rescuers with or without software assistance. Medically untrained volunteers were randomized to run through a cardiac arrest scenario with ("assisted BLS") or without ("non-assisted BLS") the aid of a BLS software program installed on a mobile phone. Sixty-four lay rescuers were enrolled in the "assisted BLS" and 77 in the "non-assisted BLS" group. The "assisted BLS" when compared to the "non-assisted BLS" group, achieved a higher overall score (19.2 ± 7.5 vs. 12.9 ± 5.7 credits; p < 0.001). Moreover, the "assisted BLS" when compared to the "non-assisted" group checked (64% vs. 27%) and protected themselves more often from environmental risks (70% vs. 39%); this group also called more often for help (56% vs. 27%), opened the upper airway (78% vs. 16%), and had more correct chest compressions rates (44% ± 38% vs. 14% ± 28%; all p < 0.001). However, the "assisted BLS" when compared to the "non-assisted BLS" group, was slower in calling the dispatch center (113.6 ± 86.4 vs. 54.1 ± 45.1 s; p < 0.001) and starting chest compressions (165.3 ± 93.3 vs. 87.1 ± 53.2 s; p < 0.001). "Assisted BLS" augmented by a metronome resulted in a higher overall score and a better chest compression rate when compared to "non-assisted BLS." However, in the "assisted BLS" group, time to call the dispatch center and to start chest compressions was longer. In both groups, lay persons did not ventilate satisfactorily during this cardiac arrest scenario. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Radiation Therapy and Cardiac Death in Long-Term Survivors of Esophageal Cancer: An Analysis of the Surveillance, Epidemiology, and End Result Database.

    PubMed

    Gharzai, Laila; Verma, Vivek; Denniston, Kyle A; Bhirud, Abhijeet R; Bennion, Nathan R; Lin, Chi

    2016-01-01

    Radiation therapy (RT) for esophageal cancer often results in unintended radiation doses delivered to the heart owing to anatomic proximity. Using the Surveillance, Epidemiology, and End Results (SEER) database, we examined late cardiac death in survivors of esophageal cancer that had or had not received RT. 5,630 patients were identified that were diagnosed with esophageal squamous cell carcinoma (SCC) or adenocarcinoma (AC) from 1973-2012, who were followed for at least 5 years after therapy. Examined risk factors for cardiac death included age (≤55/56-65/66-75/>75), gender, race (white/non-white), stage (local/regional/distant), histology (SCC/AC), esophageal location (<18cm/18-24cm/25-32cm/33-40cm from incisors), diagnosis year (1973-1992/1993-2002/2003-2012), and receipt of surgery and/or RT. Time to cardiac death was evaluated using the Kaplan-Meier method. A Cox model was used to evaluate risk factors for cardiac death in propensity score matched data. Patients who received RT were younger, diagnosed more recently, had more advanced disease, SCC histology, and no surgery. The RT group had higher risk of cardiac death than the no-RT group (log-rank p<0.0001). The median time to cardiac death in the RT group was 289 months (95% CI, 255-367) and was not reached in the no-RT group. The probability of cardiac death increased with age and decreased with diagnosis year, and this trend was more pronounced in the RT group. Multivariate analysis found RT to be associated with higher probability of cardiac death (OR 1.23, 95% CI 1.03-1.47, HR 1.961, 95% CI 1.466-2.624). Lower esophageal subsite (33-40 cm) was also associated with a higher risk of cardiac death. Other variables were not associated with cardiac death. Recognizing the limitations of a SEER analysis including lack of comorbidity accountability, these data should prompt more definitive study as to whether a possible associative effect of RT on cardiac death could potentially be a causative effect.

  9. Levosimendan versus milrinone in neonates and infants after corrective open-heart surgery: a pilot study.

    PubMed

    Lechner, Evelyn; Hofer, Anna; Leitner-Peneder, Gabriele; Freynschlag, Roland; Mair, Rudolf; Weinzettel, Robert; Rehak, Peter; Gombotz, Hans

    2012-09-01

    Low cardiac output syndrome commonly complicates the postoperative course after open-heart surgery in children. To prevent low cardiac output syndrome, prophylactic administration of milrinone after cardiopulmonary bypass is commonly used in small children. The aim of this study was to compare the effect of prophylactically administered levosimendan and milrinone on cardiac index in neonates and infants after corrective open-heart surgery. Prospective, single-center, double-blind, randomized pilot study. Tertiary care center, postoperative pediatric cardiac intensive care unit. After written informed consent, 40 infants undergoing corrective open-heart surgery were included. At weaning from cardiopulmonary bypass, either a 24-hr infusion of 0.1 μg/kg/min levosimendan or of 0.5 μg/kg/min milrinone were administered. Cardiac output was evaluated at 2, 6, 9, 12, 18, 24, and 48 hrs after cardiopulmonary bypass using a transesophageal Doppler technique (Cardio-QP, Deltex Medical, Chichester, UK). Cardiac index was calculated from cardiac output and the patients' respective body surface area. Intention-to-treat data of 39 patients (19 in the levosimendan and 20 in the milrinone group) were analyzed using analysis of variance for repeated measurements for statistics. Analysis of variance revealed for both, cardiac index and cardiac output, similar results with no significant differences of the factors group and time. A significant interaction for cardiac output (p = .005) and cardiac index (p = .007) was found, which indicates different time courses of cardiac index in the two groups. Both drugs were well tolerated; no death or serious adverse event occurred. In our small study, postoperative cardiac index over time was similar in patients with prophylactically administered levosimendan and patients with prophylactically given milrinone. We observed an increase in cardiac output and cardiac index over time in the levosimendan group, whereas cardiac output and cardiac index remained stable in the milrinone group. This pilot study has primarily served to obtain experience using the new drug levosimendan in neonates and infants and to initiate further multicenter trials in pediatric patients.

  10. Cardiac MR in robotic heart surgery for preoperative identification of the target vessel and precise port placement--a theoretical model.

    PubMed

    Bergmann, P; Huber, S; Segl, H; Maechler, H; Reiter, U; Reiter, G; Rienmueller, R; Oberwalder, P; Rigler, B

    2003-08-01

    The identification of the ideal anastomosis site and the proper port placement are critical for the success of closed-chest robotic surgery. We investigated a new systematic procedure for precise port placement for TECABs. We used trigonometry and a human thoracic model to determine the optimal working angles between anastomotic plane, instruments, and endoscope. We then applied the results to seven human subjects as follows: 1. A navigation grid was located extrathoracically before cardiac MR examination. 2. The ideal anastomosis site was defined with the MR. Intrathoracic distances and angles were computed with cardiac MR software and projected onto the thorax. 3. The ideal port placement points were marked on the thorax. The optimal working angle between endoscope and instruments was 35 degrees. 0 degrees and 90 degrees angles were associated with a significant reduction in visualization, technical ease, quality and anastomosis time. The course of the LAD was identified in all seven volunteers with MR. Mean deviation of the endoscope port from the medioclavicular line was 4.3+/-2.1 cm and of the instrument ports from the anterior axillary line 8.4+/-2.4 cm. Cardiac MR in combination with the navigation grid proved suitable for the visualization of coronary vessels for individually calculating port placement points on the thorax.

  11. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents

    PubMed Central

    Hou, Jennifer H.; Kralj, Joel M.; Douglass, Adam D.; Engert, Florian; Cohen, Adam E.

    2014-01-01

    The cardiac action potential (AP) and the consequent cytosolic Ca2+ transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function. PMID:25309445

  12. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents.

    PubMed

    Hou, Jennifer H; Kralj, Joel M; Douglass, Adam D; Engert, Florian; Cohen, Adam E

    2014-01-01

    The cardiac action potential (AP) and the consequent cytosolic Ca(2+) transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function.

  13. Factors associated with the outcome of out-of-hospital cardiopulmonary arrest among people over 80 years old in Japan.

    PubMed

    Nagata, Takashi; Abe, Takeru; Hasegawa, Manabu; Hagihara, Akihito

    2017-04-01

    To determine if termination of resuscitation should be considered for older individuals, we sought to identify factors associated with clinical outcome following out-of-hospital cardiac arrest (OHCA) in people ≥80 years old and over. A prospective, population-based, observational study was conducted for ≥80-year-old individuals who experienced out-of-hospital cardiac arrest and to whom resuscitation was provided by emergency responders between January 1, 2005 and December 31, 2012 (n=377,577). The primary endpoint was 1-month survival. Signal detection analysis was applied to estimate predictive factors among 17 variables. Among all out-of-hospital cardiac arrest cases, 59.4% were of cardiac origin, and 1-month survival rate was 3.3%. Following signal detection analysis, cases of both cardiac and non-cardiac origin were categorized into three subgroups defined by return of spontaneous circulation (ROSC) and epinephrine use. One-month survival ranged between 1.2 and 41.0% for the three subgroups of cardiac origin and between 2.0 and 41.1% for the three subgroups of non-cardiac origin. ROSC was the most significant predictor of 1-month survival among patients with cardiac and non-cardiac OHCA who were ≥80 years old. Absence of ROSC might be an important factor to the termination of resuscitation rule for OHCA in individuals who are ≥80years old. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Differential and Conditional Activation of PKC-Isoforms Dictates Cardiac Adaptation during Physiological to Pathological Hypertrophy

    PubMed Central

    Naskar, Shaon; Datta, Kaberi; Mitra, Arkadeep; Pathak, Kanchan; Datta, Ritwik; Bansal, Trisha; Sarkar, Sagartirtha

    2014-01-01

    A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week male Balb/c mice (Mus musculus) models, by reverse transcriptase-PCR, western blot analysis and M-mode echocardiography for cardiac function analysis. PKC-δ was significantly induced during pathological hypertrophy while PKC-α was exclusively activated during physiological hypertrophy in our study. PKC-δ activation during pathological hypertrophy resulted in cardiomyocyte apoptosis leading to compromised cardiac function and on the other hand, activation of PKC-α during physiological hypertrophy promoted cardiomyocyte growth but down regulated cellular apoptotic load resulting in improved cardiac function. Reversal in PKC-isoform with induced activation of PKC-δ and simultaneous inhibition of phospho-PKC-α resulted in an efficient myocardium to deteriorate considerably resulting in compromised cardiac function during physiological hypertrophy via augmentation of apoptotic and fibrotic load. This is the first report where PKC-α and -δ have been shown to play crucial role in cardiac adaptation during physiological and pathological hypertrophy respectively thereby rendering compromised cardiac function to an otherwise efficient heart by conditional reversal of their activation. PMID:25116170

  15. N-Terminal Pro-B-type Natriuretic Peptide Is Useful to Predict Cardiac Complications Following Lung Resection Surgery

    PubMed Central

    Lee, Chang Young; Bae, Mi Kyung; Lee, Jin Gu; Kim, Kwan-Wook; Park, In Kyu

    2011-01-01

    Background Cardiovascular complications are major causes of morbidity and mortality following non-cardiac thoracic operations. Recent studies have demonstrated that elevation of N-Terminal Pro-B-type natriuretic peptide (NT-proBNP) levels can predict cardiac complications following non-cardiac major surgery as well as cardiac surgery. However, there is little information on the correlation between lung resection surgery and NT-proBNP levels. We evaluated the role of NT-proBNP as a potential marker for the risk stratification of cardiac complications following lung resection surgery. Material and Methods Prospectively collected data of 98 patients, who underwent elective lung resection from August 2007 to February 2008, were analyzed. Postoperative adverse cardiac events were categorized as myocardial injury, ECG evidence of ischemia or arrhythmia, heart failure, or cardiac death. Results Postoperative cardiac complications were documented in 9 patients (9/98, 9.2%): Atrial fibrillation in 3, ECG-evidenced ischemia in 2 and heart failure in 4. Preoperative median NT-proBNP levels was significantly higher in patients who developed postoperative cardiac complications than in the rest (200.2 ng/L versus 45.0 ng/L, p=0.009). NT-proBNP levels predicted adverse cardiac events with an area under the receiver operating characteristic curve of 0.76 [95% confidence interval (CI) 0.545~0.988, p=0.01]. A preoperative NT-proBNP value of 160 ng/L was found to be the best cut-off value for detecting postoperative cardiac complication with a positive predictive value of 0.857 and a negative predictive value of 0.978. Other factors related to cardiac complications by univariate analysis were a higher American Society of Anesthesiologists grade, a higher NYHA functional class and a history of hypertension. In multivariate analysis, however, high preoperative NT-proBNP level (>160 ng/L) only remained significant. Conclusion An elevated preoperative NT-proBNP level is identified as an independent predictor of cardiac complications following lung resection surgery. PMID:22263123

  16. Cardiac misconceptions in healthcare workers.

    PubMed

    Angus, Neil; Patience, Fiona; Maclean, Elizabeth; Corrigall, Helen; Bradbury, Ian; Thompson, David R; Atherton, Iain; Leslie, Stephen J

    2012-12-01

    Cardiac misconceptions are common and may have a detrimental effect on patients. Such misconceptions may be introduced or reinforced by vague and inconsistent advice from healthcare staff and can adversely affect health outcomes. To assess whether level of cardiac misconceptions significantly differs between groups of healthcare staff based on occupation. The 22-item York cardiac beliefs questionnaire (YCBQ) was administered to a convenience sample of healthcare staff (n = 263) in direct contact with cardiac patients. Data was also collected on the occupation of healthcare staff and years worked. Medical staff had the lowest mean score (17.5, CI 15.6-19.4), indicating fewest misconceptions, and unqualified healthcare workers had the highest mean score (32.1, CI 28.4-35.7). Analysis by ANOVA indicated differences between staff groups to be statistically significant (F = 17.66, p < 0.001). Length of time worked was found to be significantly associated with cardiac misconception score (Pearson's r = - 0.243, p < 0.001). Further analysis demonstrated that significant differences between mean group scores remained when years worked was defined as a covariate, F = 15.68, p < 0.001). There is significant variability in cardiac misconceptions in different groups of healthcare staff. Education to correct cardiac misconceptions should be particularly targeted at unqualified healthcare staff. The importance of maintaining appropriate ratios of qualified to unqualified healthcare staff in the care of cardiac patients is supported by this study.

  17. Characterization of Epicardial-Derived Cardiac Interstitial Cells: Differentiation and Mobilization of Heart Fibroblast Progenitors

    PubMed Central

    Ehrbar, Martin; Pérez-Pomares, José M.

    2013-01-01

    The non-muscular cells that populate the space found between cardiomyocyte fibers are known as ‘cardiac interstitial cells’ (CICs). CICs are heterogeneous in nature and include different cardiac progenitor/stem cells, cardiac fibroblasts and other cell types. Upon heart damage CICs soon respond by initiating a reparative response that transforms with time into extensive fibrosis and heart failure. Despite the biomedical relevance of CICs, controversy remains on the ontogenetic relationship existing between the different cell kinds homing at the cardiac interstitium, as well as on the molecular signals that regulate their differentiation, maturation, mutual interaction and role in adult cardiac homeostasis and disease. Our work focuses on the analysis of epicardial-derived cells, the first cell type that colonizes the cardiac interstitium. We present here a characterization and an experimental analysis of the differentiation potential and mobilization properties of a new cell line derived from mouse embryonic epicardium (EPIC). Our results indicate that these cells express some markers associated with cardiovascular stemness and retain part of the multipotent properties of embryonic epicardial derivatives, spontaneously differentiating into smooth muscle, and fibroblast/myofibroblast-like cells. Epicardium-derived cells are also shown to initiate a characteristic response to different growth factors, to display a characteristic proteolytic expression profile and to degrade biological matrices in 3D in vitro assays. Taken together, these data indicate that EPICs are relevant to the analysis of epicardial-derived CICs, and are a god model for the research on cardiac fibroblasts and the role these cells play in ventricular remodeling in both ischemic or non/ischemic myocardial disease. PMID:23349729

  18. Punjabi Sikh patients' cardiac rehabilitation experiences following myocardial infarction: a qualitative analysis.

    PubMed

    Galdas, Paul M; Kang, H Bindy K

    2010-11-01

    To explore the cardiac rehabilitation experiences of Punjabi Sikh patients post myocardial infarction. Punjabi Sikh people are at significantly higher risk of mortality from myocardial infarction compared with those of European descent. Punjabi Sikh patients' participation in cardiac rehabilitation post myocardial infarction is therefore likely to yield considerable benefits. However, uptake of cardiac rehabilitation by South Asian people has been reported to be modest. Previous investigators have seldom provided insight into experiences of Punjabi Sikh patients post myocardial infarction and the steps that can be taken to improve the appropriateness of cardiac rehabilitation programmes for this at-risk patient group. Interpretive qualitative design. In-depth interviews, based on the McGill Illness Narrative Interview schedule, with 15 Punjabi Sikh patients post myocardial infarction attending a cardiac rehabilitation programme in British Columbia, Canada, were conducted; thematic analysis using grounded theory methods of coding and constant comparative analysis was employed. Four mutually exclusive themes emerged relating to the salient aspects of participants' cardiac rehabilitation experience: 'making sense of the diagnosis', 'practical dietary advice', 'ongoing interaction with peers and the multi-disciplinary team' and 'transport and attendance'. The themes identified point towards some of the ingredients necessary for providing culturally appropriate cardiac rehabilitation interventions for Punjabi Sikh patients following myocardial infarction. The findings highlight the importance of providing culturally relevant rehabilitation advice about diet and lifestyle changes and providing time for ongoing dialogue with support from health care professionals and peers. The findings from this study also illustrate the need to avoid generalisations about the impact religious beliefs may have on South Asian individuals' willingness to adhere to cardiac rehabilitation advice and make lifestyle adjustments. This study raises awareness of some of the salient features of experiences of Punjabi Sikh patients with post myocardial infarction that can help guide nurses to provide culturally appropriate cardiac rehabilitation and coronary health promotion. © 2010 Blackwell Publishing Ltd.

  19. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals.

    PubMed

    Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lin, Wen-Yen; Chang, Po-Cheng; Lee, Ming-Yih

    2018-01-28

    Cardiovascular disease (CVD) is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG) signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG) signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB) approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to the standalone use of ECG and SCG.

  20. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals

    PubMed Central

    Lin, Wen-Yen; Chang, Po-Cheng

    2018-01-01

    Cardiovascular disease (CVD) is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG) signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG) signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB) approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to the standalone use of ECG and SCG. PMID:29382098

  1. Ischaemic heart disease following conventional and hypofractionated radiation treatment in a contemporary breast cancer series.

    PubMed

    James, Melissa; Swadi, Sami; Yi, Ma; Johansson, Lisa; Robinson, Bridget; Dixit, Ashutosh

    2018-06-01

    We report the incidence of ischaemic cardiac toxicity in a contemporary cohort of patients receiving conventional (CFRT) or hypofractionated (HFRT) radiation after surgery for early breast cancer and investigate the interplay of cardiac risk factors and fractionation. Included were patients receiving external beam radiation treatment from 2002 to 2006 at the Christchurch public hospital. Hospital coding databases, oncology databases and medical records were reviewed for baseline characteristics, treatment details and outcomes. The primary outcome was cardiac toxicity (including myocardial infarction, admission for cardiac chest pain, coronary angiogram positivity and ischaemic cardiac death). Kaplan-Meier methods were used to derive ischaemic cardiac event free and overall survival. Predefined univariate and multivariate analysis was performed to investigate interaction with radiation fraction size, cardiac risk factors, age and side of cancer. Standardised mortality ratios were constructed. Five hundred and one patients were identified, 220 treated with CFRT and 281 with HFRT. The median age was 56 and median follow-up 10.33 years. The 10-year breast cancer specific survival was 81.8% (95% CI %.78.1-85.0). The 10-year freedom from cardiac death was 98.6% (95% CI 96.9-99.4). There were 27 post radiation cardiac events including 5 cardiac deaths and 19 cases of acute myocardial infarction. 265 (53%) had at least one cardiac risk factor. Twenty five of the 27 patients with a cardiac event had cardiac risk factors. On univariate and multivariate analysis, fractionation schedule was not significantly associated with a post radiation ischaemic event, however, there was a significant relationship with age and the presence of a cardiac risk factor. The standardised mortality ratio was 0.89 (95% CI: 0-3.13). Our study has shown a low rate of ischaemic cardiac disease for both CFRT and HFRT in women treated for breast cancer with no evidence of an effect with fractionation schedule. Coexisting cardiac risk factors are common in the population. © 2018 The Royal Australian and New Zealand College of Radiologists.

  2. Distributed and Collaborative Software Analysis

    NASA Astrophysics Data System (ADS)

    Ghezzi, Giacomo; Gall, Harald C.

    Throughout the years software engineers have come up with a myriad of specialized tools and techniques that focus on a certain type of software analysissoftware analysis such as source code analysis, co-change analysis or bug prediction. However, easy and straight forward synergies between these analyses and tools rarely exist because of their stand-alone nature, their platform dependence, their different input and output formats and the variety of data to analyze. As a consequence, distributed and collaborative software analysiscollaborative software analysis scenarios and in particular interoperability are severely limited. We describe a distributed and collaborative software analysis platform that allows for a seamless interoperability of software analysis tools across platform, geographical and organizational boundaries. We realize software analysis tools as services that can be accessed and composed over the Internet. These distributed analysis services shall be widely accessible in our incrementally augmented Software Analysis Broker software analysis broker where organizations and tool providers can register and share their tools. To allow (semi-) automatic use and composition of these tools, they are classified and mapped into a software analysis taxonomy and adhere to specific meta-models and ontologiesontologies for their category of analysis.

  3. Health Literacy Predicts Cardiac Knowledge Gains in Cardiac Rehabilitation Participants

    ERIC Educational Resources Information Center

    Mattson, Colleen C.; Rawson, Katherine; Hughes, Joel W.; Waechter, Donna; Rosneck, James

    2015-01-01

    Objective: Health literacy is increasingly recognised as a potentially important patient characteristic related to patient education efforts. We evaluated whether health literacy would predict gains in knowledge after completion of patient education in cardiac rehabilitation. Method: This was a re-post observational analysis study design based on…

  4. Using Time Series Analysis to Predict Cardiac Arrest in a PICU.

    PubMed

    Kennedy, Curtis E; Aoki, Noriaki; Mariscalco, Michele; Turley, James P

    2015-11-01

    To build and test cardiac arrest prediction models in a PICU, using time series analysis as input, and to measure changes in prediction accuracy attributable to different classes of time series data. Retrospective cohort study. Thirty-one bed academic PICU that provides care for medical and general surgical (not congenital heart surgery) patients. Patients experiencing a cardiac arrest in the PICU and requiring external cardiac massage for at least 2 minutes. None. One hundred three cases of cardiac arrest and 109 control cases were used to prepare a baseline dataset that consisted of 1,025 variables in four data classes: multivariate, raw time series, clinical calculations, and time series trend analysis. We trained 20 arrest prediction models using a matrix of five feature sets (combinations of data classes) with four modeling algorithms: linear regression, decision tree, neural network, and support vector machine. The reference model (multivariate data with regression algorithm) had an accuracy of 78% and 87% area under the receiver operating characteristic curve. The best model (multivariate + trend analysis data with support vector machine algorithm) had an accuracy of 94% and 98% area under the receiver operating characteristic curve. Cardiac arrest predictions based on a traditional model built with multivariate data and a regression algorithm misclassified cases 3.7 times more frequently than predictions that included time series trend analysis and built with a support vector machine algorithm. Although the final model lacks the specificity necessary for clinical application, we have demonstrated how information from time series data can be used to increase the accuracy of clinical prediction models.

  5. An ontology-based annotation of cardiac implantable electronic devices to detect therapy changes in a national registry.

    PubMed

    Rosier, Arnaud; Mabo, Philippe; Chauvin, Michel; Burgun, Anita

    2015-05-01

    The patient population benefitting from cardiac implantable electronic devices (CIEDs) is increasing. This study introduces a device annotation method that supports the consistent description of the functional attributes of cardiac devices and evaluates how this method can detect device changes from a CIED registry. We designed the Cardiac Device Ontology, an ontology of CIEDs and device functions. We annotated 146 cardiac devices with this ontology and used it to detect therapy changes with respect to atrioventricular pacing, cardiac resynchronization therapy, and defibrillation capability in a French national registry of patients with implants (STIDEFIX). We then analyzed a set of 6905 device replacements from the STIDEFIX registry. Ontology-based identification of therapy changes (upgraded, downgraded, or similar) was accurate (6905 cases) and performed better than straightforward analysis of the registry codes (F-measure 1.00 versus 0.75 to 0.97). This study demonstrates the feasibility and effectiveness of ontology-based functional annotation of devices in the cardiac domain. Such annotation allowed a better description and in-depth analysis of STIDEFIX. This method was useful for the automatic detection of therapy changes and may be reused for analyzing data from other device registries.

  6. Comparative evaluation of 18F-FLT and 18F-FDG for detecting cardiac and extra-cardiac thoracic involvement in patients with newly diagnosed sarcoidosis.

    PubMed

    Norikane, Takashi; Yamamoto, Yuka; Maeda, Yukito; Noma, Takahisa; Dobashi, Hiroaki; Nishiyama, Yoshihiro

    2017-08-29

    18 F-FDG PET has been used in sarcoidosis for diagnosis and determination of the extent of the disease. However, assessing inflammatory lesions in cardiac sarcoidosis using 18 F-FDG can be challenging because it accumulates physiologically in normal myocardium. Another radiotracer, 3'-deoxy-3'- 18 F-fluorothymidine ( 18 F-FLT), has been investigated as a promising PET tracer for evaluating tumor proliferative activity. In contrast to 18 F-FDG, 18 F-FLT uptake in the normal myocardium is low. The purpose of this retrospective study was to compare the uptake of 18 F-FLT and 18 F-FDG in the evaluation of cardiac and extra-cardiac thoracic involvement in patients with newly diagnosed sarcoidosis. Data for 20 patients with newly diagnosed sarcoidosis were examined. 18 F-FLT and 18 F-FDG PET/CT studies had been performed at 1 h after each radiotracer injection. The patients had fasted for at least 18 h before 18 F-FDG PET/CT but were given no special dietary instructions regarding the period before 18 F-FLT PET/CT. Uptake of 18 F-FLT and 18 F-FDG was examined visually and semiquantitatively using maximal standardized uptake value (SUVmax). Two patients had cardiac sarcoidosis, 7 had extra-cardiac thoracic sarcoidosis, and 11 had both cardiac and extra-cardiac thoracic sarcoidosis. On visual analysis for diagnosis of cardiac sarcoidosis, 4/20 18 F-FDG scans were rated as inconclusive because the 18 F-FDG pattern was diffuse, whereas no FLT scans were rated as inconclusive. The sensitivity of 18 F-FDG PET/CT for detection of cardiac sarcoidosis was 85%; specificity, 100%; and accuracy, 90%. The corresponding values for 18 F-FLT PET/CT were 92, 100, and 95%, respectively. Using semiquantitative analysis of cardiac sarcoidosis, the mean 18 F-FDG SUVmax was significantly higher than the mean 18 F-FLT SUVmax (P < 0.005). Both 18 F-FDG and 18 F-FLT PET/CT studies detected all 24 extra-cardiac lesions. Using semiquantitative analysis of extra-cardiac sarcoidosis, the mean 18 F-FDG SUVmax was significantly higher than the mean 18 F-FLT SUVmax (P < 0.001). The results of this preliminary study suggest that 18 F-FLT PET/CT can detect cardiac and extra-cardiac thoracic involvement in patients with newly diagnosed sarcoidosis as well as 18 F-FDG PET/CT, although uptake of 18 F-FLT in lesions was significantly lower than that of 18 F-FDG. However, 18 F-FLT PET/CT may be easier to perform since it requires neither prolonged fasting nor a special diet prior to imaging.

  7. Systematic review and meta-analysis in cardiac surgery: a primer.

    PubMed

    Yanagawa, Bobby; Tam, Derrick Y; Mazine, Amine; Tricco, Andrea C

    2018-03-01

    The purpose of this article is to review the strengths and weaknesses of systematic reviews and meta-analyses to inform our current understanding of cardiac surgery. A systematic review and meta-analysis of a focused topic can provide a quantitative estimate for the effect of a treatment intervention or exposure. In cardiac surgery, observational studies and small, single-center prospective trials provide most of the clinical outcomes that form the evidence base for patient management and guideline recommendations. As such, meta-analyses can be particularly valuable in synthesizing the literature for a particular focused surgical question. Since the year 2000, there are over 800 meta-analysis-related publications in our field. There are some limitations to this technique, including clinical, methodological and statistical heterogeneity, among other challenges. Despite these caveats, results of meta-analyses have been useful in forming treatment recommendations or in providing guidance in the design of future clinical trials. There is a growing number of meta-analyses in the field of cardiac surgery. Knowledge translation via meta-analyses will continue to guide and inform cardiac surgical practice and our practice guidelines.

  8. [Genetics of congenital heart diseases].

    PubMed

    Bonnet, Damien

    2017-06-01

    Developmental genetics of congenital heart diseases has evolved from analysis of serial slices in embryos towards molecular genetics of cardiac morphogenesis with a dynamic view of cardiac development. Genetics of congenital heart diseases has also changed from formal genetic analysis of familial recurrences or population-based analysis to screening for mutations in candidates genes identified in animal models. Close cooperation between molecular embryologists, pathologists involved in heart development and pediatric cardiologists is crucial for further increase of knowledge in the field of cardiac morphogenesis and genetics of cardiac defects. The genetic model for congenital heart disease has to be revised to favor a polygenic origin rather than a monogenic one. The main mechanism is altered genic dosage that can account for heart diseases in chromosomal anomalies as well as in point mutations in syndromic and isolated congenital heart diseases. The use of big data grouping information from cardiac development, interactions between genes and proteins, epigenetic factors such as chromatin remodeling or DNA methylation is the current source for improving our knowledge in the field and to give clues for future therapies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Prognostic Value of Myocardial Perfusion Analysis in Patients with Coronary Artery Disease: A Meta-Analysis.

    PubMed

    Xiu, Jiancheng; Cui, Kai; Wang, Yuegang; Zheng, Hua; Chen, Gangbin; Feng, Qian; Bin, Jianping; Wu, Juefei; Porter, Thomas R

    2017-03-01

    Myocardial perfusion (MP) imaging during stress myocardial contrast echocardiography (MCE) improves the detection of coronary artery disease (CAD). However, its prognostic value to predict cardiac events in patients with known or suspected CAD is still undefined. A search was conducted for single- or multicenter prospective studies that evaluated the prognostic value of stress MCE in patients with known or suspected CAD. A database search was performed through June 2015. Effect sizes of relative risk ratios (RRs) with their corresponding 95% CIs were used to evaluate the association between the occurrence of total cardiac events (cardiac death, nonfatal myocardial infarction, coronary revascularization) and hard cardiac events (cardiac death and nonfatal myocardial infarction) in subjects with normal and abnormal MP measured by MCE. The Cochran Q statistic and the I 2 statistic were used to assess heterogeneity. A comprehensive literature search of the MEDLINE, Google Scholar, Cochrane, and Embase databases identified 11 studies enrolling a total of 4,045 patients. The overall analysis of RRs revealed that patients with abnormal MP were at higher risk for total cardiac events compared with patients with normal MP (RR, 5.58; 95% CI, 3.64-8.57; P < .001), with low heterogeneity among trials (I 2  = 48.15%, Q = 7.71, P = .103). Similarly, patients with abnormal MP were at higher risk for hard cardiac events compared with patients with normal MP (RR, 4.99; 95% CI, 1.75-14.32; P = .003), with significant heterogeneity among trials (I 2  = 81.48%, Q = 21.59, P < .001). The results of this meta-analysis suggest that MP assessment using stress MCE is an effective prognostic tool for predicting the occurrence of cardiac events in patients with known or suspected CAD. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  10. Automatic control of finite element models for temperature-controlled radiofrequency ablation

    PubMed Central

    Haemmerich, Dieter; Webster, John G

    2005-01-01

    Background The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. Methods We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. Results We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100°C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. Discussion The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input. PMID:16018811

  11. Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos

    PubMed Central

    Giurumescu, Claudiu A.; Kang, Sukryool; Planchon, Thomas A.; Betzig, Eric; Bloomekatz, Joshua; Yelon, Deborah; Cosman, Pamela; Chisholm, Andrew D.

    2012-01-01

    A quantitative understanding of tissue morphogenesis requires description of the movements of individual cells in space and over time. In transparent embryos, such as C. elegans, fluorescently labeled nuclei can be imaged in three-dimensional time-lapse (4D) movies and automatically tracked through early cleavage divisions up to ~350 nuclei. A similar analysis of later stages of C. elegans development has been challenging owing to the increased error rates of automated tracking of large numbers of densely packed nuclei. We present Nucleitracker4D, a freely available software solution for tracking nuclei in complex embryos that integrates automated tracking of nuclei in local searches with manual curation. Using these methods, we have been able to track >99% of all nuclei generated in the C. elegans embryo. Our analysis reveals that ventral enclosure of the epidermis is accompanied by complex coordinated migration of the neuronal substrate. We can efficiently track large numbers of migrating nuclei in 4D movies of zebrafish cardiac morphogenesis, suggesting that this approach is generally useful in situations in which the number, packing or dynamics of nuclei present challenges for automated tracking. PMID:23052905

  12. Cardiac and autonomic nerve function after reduced-intensity stem cell transplantation for hematologic malignancy in patients with pre-transplant cardiac dysfunction.

    PubMed

    Nakane, Takahiko; Nakamae, Hirohisa; Muro, Takashi; Yamagishi, Hiroyuki; Kobayashi, Yoshiki; Aimoto, Mizuki; Sakamoto, Erina; Terada, Yoshiki; Nakamae, Mika; Koh, Ki-Ryang; Yamane, Takahisa; Yoshiyama, Minoru; Hino, Masayuki

    2009-09-01

    Recent reports have shown that cardiomyopathy caused by hemochromatosis in severe aplastic anemia is reversible after reduced-intensity allogeneic stem-cell transplantation (RIST). We comprehensively evaluated cardiac and autonomic nerve function to determine whether cardiac dysfunction due to causes other than hemochromatosis is attenuated after RIST. In five patients with cardiac dysfunction before transplant, we analyzed the changes in cardiac and autonomic nerve function after transplant, using electrocardiography (ECG), echocardiography, radionuclide angiography (RNA), serum markers, and heart rate variability (HRV), before and up to 100 days after transplant. There was no significant improvement in cardiac function in any patient and no significant alteration in ECG, echocardiogram, RNA, or serum markers. However, on time-domain analysis of HRV, the SD of normal-to-normal RR intervals (SDNN) and the coefficient of variation of the RR interval (CVRR) decreased significantly 30 and 60 days after transplant (P = 0.04 and 0.01, respectively). Similarly, on frequency-domain analysis of HRV, low and high frequency power (LF and HF) significantly and temporarily decreased (P = 0.003 and 0.03, respectively). Notably, in one patient who had acute heart failure after transplantation, the values of SDNN, CVRR, r-MSSD, LF, and HF at 30 and 60 days after transplantation were the lowest of all the patients. In conclusion, this study suggests that (a) RIST is well-tolerated in patients with cardiac dysfunction, but we cannot expect improvement in cardiac dysfunction due to causes other than hemochromatosis; and (b) monitoring HRV may be useful in predicting cardiac events after RIST.

  13. Effects of levosimendan on mortality in patients undergoing cardiac surgery: A systematic review and meta-analysis.

    PubMed

    Chen, Peili; Wu, Xiaoqiang; Wang, Zhiwei; Li, Zhenya; Tian, Xiangyong; Wang, Junpeng; Yan, Tianzhong

    2018-06-01

    We sought to determine the impact of levosimendan on mortality following cardiac surgery based on large-scale randomized controlled trials (RCTs). We searched PubMed, Web of Science, Cochrane databases, and ClinicalTrials.gov for RCTs published up to December 2017, on levosimendan for patients undergoing cardiac surgery. A total of 25 RCTs enrolling 2960 patients met the inclusion criteria; data from 15 placebo-controlled randomized trials were included for meta-analysis. Pooled analysis showed that the all-cause mortality rate was 6.4% (71 of 1106) in the levosimendan group and 8.4% (93 of 1108) in the placebo group (odds ratio [OR], 0.76; 95% confidence interval [CI], 0.55-1.04; P = 0.09). There were no significant differences between the two groups in the rates of myocardial infarction (OR: 0.91; 95% CI, 0.68-1.21; P = 0.52), serious adverse events (OR: 0.84; 95% CI, 0.66-1.07; P = 0.17), hypotension (OR: 1.69; 95% CI, 0.94-3.03; P = 0.08), and low cardiac output syndrome (OR: 0.47; 95% CI, 0.22-1.02; P = 0.05). Levosimendan did not result in a reduction in mortality in adult cardiac surgery patients. Well designed, adequately powered, multicenter trials are necessary to determine the role of levosimendan in adult cardiac surgery. © 2018 The Authors. Journal of Cardiac Surgery Published by Wiley Periodicals Inc.

  14. Impact of Milrinone Administration in Adult Cardiac Surgery Patients: Updated Meta-Analysis.

    PubMed

    Ushio, Masahiro; Egi, Moritoki; Wakabayashi, Junji; Nishimura, Taichi; Miyatake, Yuji; Obata, Norihiko; Mizobuchi, Satoshi

    2016-12-01

    To determine the effects of milrinone on short-term mortality in cardiac surgery patients with focus on the presence or absence of heterogeneity of the effect. A systematic review and meta-analysis. Five hundred thirty-seven adult cardiac surgery patients from 12 RCTs. Milrinone administration. The authors conducted a systematic Medline and Pubmed search to assess the effect of milrinone on short-term mortality in adult cardiac surgery patients. Subanalysis was performed according to the timing for commencement of milrinone administration and the type of comparators. The primary outcome was any short-term mortality. Overall analysis showed no difference in mortality rates in patients who received milrinone and patients who received comparators (odds ratio = 1.25, 95% CI 0.45-3.51, p = 0.67). In subanalysis for the timing to commence milrinone administration and the type of comparators, odds ratio for mortality varied from 0.19 (placebo as control drug, start of administration after cardiopulmonary bypass) to 2.58 (levosimendan as control drug, start of administration after cardiopulmonary bypass). Among RCTs to assess the effect of milrinone administration in adult cardiac surgery patients, there are wide variations of the odds ratios of administration of milrinone for short-term mortality according to the comparators and the timing of administration. This fact may suggest that a simple pooling meta-analysis is not applicable for assessing the risk and benefit of milrinone administration in an adult cardiac surgery cohort. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Evidence of cardiac involvement in the fetal inflammatory response syndrome: disruption of gene networks programming cardiac development in nonhuman primates.

    PubMed

    Mitchell, Timothy; MacDonald, James W; Srinouanpranchanh, Sengkeo; Bammler, Theodor K; Merillat, Sean; Boldenow, Erica; Coleman, Michelle; Agnew, Kathy; Baldessari, Audrey; Stencel-Baerenwald, Jennifer E; Tisoncik-Go, Jennifer; Green, Richard R; Gale, Michael J; Rajagopal, Lakshmi; Adams Waldorf, Kristina M

    2018-04-01

    Most early preterm births are associated with intraamniotic infection and inflammation, which can lead to systemic inflammation in the fetus. The fetal inflammatory response syndrome describes elevations in the fetal interleukin-6 level, which is a marker for inflammation and fetal organ injury. An understanding of the effects of inflammation on fetal cardiac development may lead to insight into the fetal origins of adult cardiovascular disease. The purpose of this study was to determine whether the fetal inflammatory response syndrome is associated with disruptions in gene networks that program fetal cardiac development. We obtained fetal cardiac tissue after necropsy from a well-described pregnant nonhuman primate model (pigtail macaque, Macaca nemestrina) of intrauterine infection (n=5) and controls (n=5). Cases with the fetal inflammatory response syndrome (fetal plasma interleukin-6 >11 pg/mL) were induced by either choriodecidual inoculation of a hypervirulent group B streptococcus strain (n=4) or intraamniotic inoculation of Escherichia coli (n=1). RNA and protein were extracted from fetal hearts and profiled by microarray and Luminex (Millipore, Billerica, MA) for cytokine analysis, respectively. Results were validated by quantitative reverse transcriptase polymerase chain reaction. Statistical and bioinformatics analyses included single gene analysis, gene set analysis, Ingenuity Pathway Analysis (Qiagen, Valencia, CA), and Wilcoxon rank sum. Severe fetal inflammation developed in the context of intraamniotic infection and a disseminated bacterial infection in the fetus. Interleukin-6 and -8 in fetal cardiac tissues were elevated significantly in fetal inflammatory response syndrome cases vs controls (P<.05). A total of 609 probe sets were expressed differentially (>1.5-fold change, P<.05) in the fetal heart (analysis of variance). Altered expression of select genes was validated by quantitative reverse transcriptase polymerase chain reaction that included several with known functions in cardiac injury, morphogenesis, angiogenesis, and tissue remodeling (eg, angiotensin I converting enzyme 2, STEAP family member 4, natriuretic peptide A, and secreted frizzled-related protein 4; all P<.05). Multiple gene sets and pathways that are involved in cardiac morphogenesis and vasculogenesis were downregulated significantly by gene set and Ingenuity Pathway Analysis (hallmark transforming growth factor beta signaling, cellular morphogenesis during differentiation, morphology of cardiovascular system; all P<.05). Disruption of gene networks for cardiac morphogenesis and vasculogenesis occurred in the preterm fetal heart of nonhuman primates with preterm labor, intraamniotic infection, and severe fetal inflammation. Inflammatory injury to the fetal heart in utero may contribute to the development of heart disease later in life. Development of preterm labor therapeutics must also target fetal inflammation to lessen organ injury and potential long-term effects on cardiac function. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. In-hospital pediatric cardiac arrest in Spain.

    PubMed

    López-Herce, Jesús; del Castillo, Jimena; Cañadas, Sonia; Rodríguez-Núñez, Antonio; Carrillo, Angel

    2014-03-01

    The objective was to analyze the characteristics and prognostic factors of in-hospital pediatric cardiac arrest in Spain. A prospective observational study was performed to examine in-hospital pediatric cardiac arrest. Two hundred children were studied, aged between 1 month and 18 years, with in-hospital cardiac arrest. Univariate and multivariate logistic regression analyses were performed to assess the influence of each factor on survival to hospital discharge. Return of spontaneous circulation was achieved in 74% of the patients and 41% survived to hospital discharge. The survival rate was significantly higher than that reported in a previous Spanish study 10 years earlier (25.9%). In the univariate analysis, the factors related to mortality were body weight higher than 10 kg; continuous infusion of vasoactive drugs prior to cardiac arrest; sepsis and neurological disorders as causes of cardiac arrest, the need for treatment with adrenaline, bicarbonate, and volume expansion, and prolonged cardiopulmonary resuscitation. In the multivariate analysis, the factors related to mortality were hematologic/oncologic diseases, continuous infusion of vasoactive drugs prior to cardiac arrest, cardiopulmonary resuscitation for more than 20 min, and treatment with bicarbonate and volume expansion. Survival after in-hospital cardiac arrest in children has significantly improved in recent years. The factors related to in-hospital mortality were hematologic/oncologic diseases, continuous infusion of vasoactive drugs prior to cardiac arrest, the duration of cardiopulmonary resuscitation, and treatment with bicarbonate and volume expansion. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  17. Endocardial left ventricle feature tracking and reconstruction from tri-plane trans-esophageal echocardiography data

    NASA Astrophysics Data System (ADS)

    Dangi, Shusil; Ben-Zikri, Yehuda K.; Cahill, Nathan; Schwarz, Karl Q.; Linte, Cristian A.

    2015-03-01

    Two-dimensional (2D) ultrasound (US) has been the clinical standard for over two decades for monitoring and assessing cardiac function and providing support via intra-operative visualization and guidance for minimally invasive cardiac interventions. Developments in three-dimensional (3D) image acquisition and transducer design and technology have revolutionized echocardiography imaging enabling both real-time 3D trans-esophageal and intra-cardiac image acquisition. However, in most cases the clinicians do not access the entire 3D image volume when analyzing the data, rather they focus on several key views that render the cardiac anatomy of interest during the US imaging exam. This approach enables image acquisition at a much higher spatial and temporal resolution. Two such common approaches are the bi-plane and tri-plane data acquisition protocols; as their name states, the former comprises two orthogonal image views, while the latter depicts the cardiac anatomy based on three co-axially intersecting views spaced at 600 to one another. Since cardiac anatomy is continuously changing, the intra-operative anatomy depicted using real-time US imaging also needs to be updated by tracking the key features of interest and endocardial left ventricle (LV) boundaries. Therefore, rapid automatic feature tracking in US images is critical for three reasons: 1) to perform cardiac function assessment; 2) to identify location of surgical targets for accurate tool to target navigation and on-target instrument positioning; and 3) to enable pre- to intra-op image registration as a means to fuse pre-op CT or MR images used during planning with intra-operative images for enhanced guidance. In this paper we utilize monogenic filtering, graph-cut based segmentation and robust spline smoothing in a combined work flow to process the acquired tri-plane TEE time series US images and demonstrate robust and accurate tracking of the LV endocardial features. We reconstruct the endocardial LV geometry using the tri-plane contours and spline interpolation, and assess the accuracy of the proposed work flow against gold-standard results from the GE Echopac PC clinical software according to quantitative clinical LV characterization parameters, such as the length, circumference, area and volume. Our proposed combined work flow leads to consistent, rapid and automated identification of the LV endocardium, suitable for intra-operative applications and "on-the-fly" computer-assisted assessment of ejection fraction for cardiac function monitoring.Two-dimensional (2D) ultrasound (US) has been the clinical standard for over two decades for monitoring and assessing cardiac function and providing support via intra-operative visualization and guidance for minimally invasive cardiac interventions. Developments in three-dimensional (3D) image acquisition and transducer design and technology have revolutionized echocardiography imaging enabling both real-time 3D trans-esophageal and intra-cardiac image acquisition. However, in most cases the clinicians do not access the entire 3D image volume when analyzing the data, rather they focus on several key views that render the cardiac anatomy of interest during the US imaging exam. This approach enables image acquisition at a much higher spatial and temporal resolution. Two such common approaches are the bi-plane and tri-plane data acquisition protocols; as their name states, the former comprises two orthogonal image views, while the latter depicts the cardiac anatomy based on three co-axially intersecting views spaced at 600 to one another. Since cardiac anatomy is continuously changing, the intra-operative anatomy depicted using real-time US imaging also needs to be updated by tracking the key features of interest and endocardial left ventricle (LV) boundaries. Therefore, rapid automatic feature tracking in US images is critical for three reasons: 1) to perform cardiac function assessment; 2) to identify location of surgical targets for accurate tool to target navigation and on-target instrument positioning; and 3) to enable pre- to intra-op image registration as a means to fuse pre-op CT or MR images used during planning with intra-operative images for enhanced guidance. In this paper we utilize monogenic filtering, graph-cut based segmentation and robust spline smoothing in a combined work flow to process the acquired tri-plane TEE time series US images and demonstrate robust and accurate tracking of the LV endocardial features. We reconstruct the endocardial LV geometry using the tri-plane contours and spline interpolation, and assess the accuracy of the proposed work flow against gold-standard results from the GE Echopac PC clinical software according to quantitative clinical LV characterization parameters, such as the length, circumference, area and volume. Our proposed combined work flow leads to consistent, rapid and automated identification of the LV endocardium, suitable for intra-operative applications and on-the- y" computer-assisted assessment of ejection fraction for cardiac function monitoring.

  18. Predictors of change in sexual activity after cardiac diagnosis: Elements to inform sexual counseling.

    PubMed

    Mosack, Victoria; Hill, Twyla J; Steinke, Elaine E

    2017-06-01

    Safely returning to sexual activity after being diagnosed with a cardiac condition is at the core of sexual counseling strategies. To further inform sexual counseling, this study examined changes in sexual activity before and after a cardiac diagnosis. Logistic analysis was used to suggest factors that can contribute to a change in sexual activity among cardiac patients. Reduced frequency in sexual activity after a cardiac diagnosis was influenced by greater sexual concerns and a history of smoking, as well as by education and employment status. These findings suggest that cardiac patients experiencing significant concerns about resuming sexual activity need added support through the mental health system.

  19. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010.

    PubMed

    Mehra, Mandeep R; Crespo-Leiro, Maria G; Dipchand, Anne; Ensminger, Stephan M; Hiemann, Nicola E; Kobashigawa, Jon A; Madsen, Joren; Parameshwar, Jayan; Starling, Randall C; Uber, Patricia A

    2010-07-01

    The development of cardiac allograft vasculopathy remains the Achilles heel of cardiac transplantation. Unfortunately, the definitions of cardiac allograft vasculopathy are diverse, and there are no uniform international standards for the nomenclature of this entity. This consensus document, commissioned by the International Society of Heart and Lung Transplantation Board, is based on best evidence and clinical consensus derived from critical analysis of available information pertaining to angiography, intravascular ultrasound imaging, microvascular function, cardiac allograft histology, circulating immune markers, non-invasive imaging tests, and gene-based and protein-based biomarkers. This document represents a working formulation for an international nomenclature of cardiac allograft vasculopathy, similar to the development of the system for adjudication of cardiac allograft rejection by histology.

  20. Fast Gated EPR Imaging of the Beating Heart: Spatiotemporally-Resolved 3D Imaging of Free Radical Distribution during the Cardiac Cycle

    PubMed Central

    Chen, Zhiyu; Reyes, Levy A.; Johnson, David H.; Velayutham, Murugesan; Yang, Changjun; Samouilov, Alexandre; Zweier, Jay L.

    2012-01-01

    In vivo or ex vivo electron paramagnetic resonance imaging (EPRI) is a powerful technique for determining the spatial distribution of free radicals and other paramagnetic species in living organs and tissues. However, applications of EPRI have been limited by long projection acquisition times and the consequent fact that rapid gated EPRI was not possible. Hence in vivo EPRI typically provided only time-averaged information. In order to achieve direct gated EPRI, a fast EPR acquisition scheme was developed to decrease EPR projection acquisition time down to 10 – 20 ms, along with corresponding software and instrumentation to achieve fast gated EPRI of the isolated beating heart with submillimeter spatial resolution in as little as 2 to 3 minutes. Reconstructed images display temporal and spatial variations of the free radical distribution, anatomical structure, and contractile function within the rat heart during the cardiac cycle. PMID:22473660

  1. Digital photocontrol of the network of live excitable cells

    NASA Astrophysics Data System (ADS)

    Erofeev, I. S.; Magome, N.; Agladze, K. I.

    2011-11-01

    Recent development of tissue engineering techniques allows creating and maintaining almost indefinitely networks of excitable cells with desired architecture. We coupled the network of live excitable cardiac cells with a common computer by sensitizing them to light, projecting a light pattern on the layer of cells, and monitoring excitation with the aid of fluorescent probes (optical mapping). As a sensitizing substance we used azobenzene trimethylammonium bromide (AzoTAB). This substance undergoes cis-trans-photoisomerization and trans-isomer of AzoTAB inhibits excitation in the cardiac cells, while cis-isomer does not. AzoTAB-mediated sensitization allows, thus, reversible and dynamic control of the excitation waves through the entire cardiomyocyte network either uniformly, or in a preferred spatial pattern. Technically, it was achieved by coupling a common digital projector with a macroview microscope and using computer graphic software for creating the projected pattern of conducting pathways. This approach allows real time interactive photocontrol of the heart tissue.

  2. Intelligent platforms for disease assessment: novel approaches in functional echocardiography.

    PubMed

    Sengupta, Partho P

    2013-11-01

    Accelerating trends in the dynamic digital era (from 2004 onward) has resulted in the emergence of novel parametric imaging tools that allow easy and accurate extraction of quantitative information from cardiac images. This review principally attempts to heighten the awareness of newer emerging paradigms that may advance acquisition, visualization and interpretation of the large functional data sets obtained during cardiac ultrasound imaging. Incorporation of innovative cognitive software that allow advanced pattern recognition and disease forecasting will likely transform the human-machine interface and interpretation process to achieve a more efficient and effective work environment. Novel technologies for automation and big data analytics that are already active in other fields need to be rapidly adapted to the health care environment with new academic-industry collaborations to enrich and accelerate the delivery of newer decision making tools for enhancing patient care. Copyright © 2013. Published by Elsevier Inc.

  3. Detrended Fluctuation Analysis of Heart Rate Dynamics Is an Important Prognostic Factor in Patients with End-Stage Renal Disease Receiving Peritoneal Dialysis

    PubMed Central

    Lin, Lian-Yu; Chang, Chin-Hao; Chu, Fang-Ying; Lin, Yen-Hung; Wu, Cho-Kai; Lee, Jen-Kuang; Hwang, Juei-Jen; Lin, Jiunn-Lee; Chiang, Fu-Tien

    2016-01-01

    Background and Objectives Patients with severe kidney function impairment often have autonomic dysfunction, which could be evaluated noninvasively by heart rate variability (HRV) analysis. Nonlinear HRV parameters such as detrended fluctuation analysis (DFA) has been demonstrated to be an important outcome predictor in patients with cardiovascular diseases. Whether cardiac autonomic dysfunction measured by DFA is also a useful prognostic factor in patients with end-stage renal disease (ESRD) receiving peritoneal dialysis (PD) remains unclear. The purpose of the present study was designed to test the hypothesis. Materials and Methods Patients with ESRD receiving PD were included for the study. Twenty-four hour Holter monitor was obtained from each patient together with other important traditional prognostic makers such as underlying diseases, left ventricular ejection fraction (LVEF) and serum biochemistry profiles. Short-term (DFAα1) and long-term (DFAα2) DFA as well as other linear HRV parameters were calculated. Results A total of 132 patients (62 men, 72 women) with a mean age of 53.7±12.5 years were recruited from July 2007 to March 2009. During a median follow-up period of around 34 months, eight cardiac and six non-cardiac deaths were observed. Competing risk analysis demonstrated that decreased DFAα1 was a strong prognostic predictor for increased cardiac and total mortality. ROC analysis showed that the AUC of DFAα1 (<0.95) to predict mortality was 0.761 (95% confidence interval (CI). = 0.617–0.905). DFAα1≧ 0.95 was associated with lower cardiac mortality (Hazard ratio (HR) 0.062, 95% CI = 0.007–0.571, P = 0.014) and total mortality (HR = 0.109, 95% CI = 0.033–0.362, P = 0.0003). Conclusion Cardiac autonomic dysfunction evaluated by DFAα1 is an independent predictor for cardiac and total mortality in patients with ESRD receiving PD. PMID:26828209

  4. Ubiquitous health monitoring and real-time cardiac arrhythmias detection: a case study.

    PubMed

    Li, Jian; Zhou, Haiying; Zuo, Decheng; Hou, Kun-Mean; De Vaulx, Christophe

    2014-01-01

    As the symptoms and signs of heart diseases that cause sudden cardiac death, cardiac arrhythmia has attracted great attention. Due to limitations in time and space, traditional approaches to cardiac arrhythmias detection fail to provide a real-time continuous monitoring and testing service applicable in different environmental conditions. Integrated with the latest technologies in ECG (electrocardiograph) analysis and medical care, the pervasive computing technology makes possible the ubiquitous cardiac care services, and thus brings about new technical challenges, especially in the formation of cardiac care architecture and realization of the real-time automatic ECG detection algorithm dedicated to care devices. In this paper, a ubiquitous cardiac care prototype system is presented with its architecture framework well elaborated. This prototype system has been tested and evaluated in all the clinical-/home-/outdoor-care modes with a satisfactory performance in providing real-time continuous cardiac arrhythmias monitoring service unlimitedly adaptable in time and space.

  5. A mobile phone-based care model for outpatient cardiac rehabilitation: the care assessment platform (CAP).

    PubMed

    Walters, Darren L; Sarela, Antti; Fairfull, Anita; Neighbour, Kylie; Cowen, Cherie; Stephens, Belinda; Sellwood, Tom; Sellwood, Bernadette; Steer, Marie; Aust, Michelle; Francis, Rebecca; Lee, Chi-Keung; Hoffman, Sheridan; Brealey, Gavin; Karunanithi, Mohan

    2010-01-28

    Cardiac rehabilitation programs offer effective means to prevent recurrence of a cardiac event, but poor uptake of current programs have been reported globally. Home based models are considered as a feasible alternative to avoid various barriers related to care centre based programs. This paper sets out the study design for a clinical trial seeking to test the hypothesis that these programs can be better and more efficiently supported with novel Information and Communication Technologies (ICT). We have integrated mobile phones and web services into a comprehensive home- based care model for outpatient cardiac rehabilitation. Mobile phones with a built-in accelerometer sensor are used to measure physical exercise and WellnessDiary software is used to collect information on patients' physiological risk factors and other health information. Video and teleconferencing are used for mentoring sessions aiming at behavioural modifications through goal setting. The mentors use web-portal to facilitate personal goal setting and to assess the progress of each patient in the program. Educational multimedia content are stored or transferred via messaging systems to the patients phone to be viewed on demand. We have designed a randomised controlled trial to compare the health outcomes and cost efficiency of the proposed model with a traditional community based rehabilitation program. The main outcome measure is adherence to physical exercise guidelines. The study will provide evidence on using mobile phones and web services for mentoring and self management in a home-based care model targeting sustainable behavioural modifications in cardiac rehabilitation patients. The trial has been registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) with number ACTRN12609000251224.

  6. Computer-aided auscultation of murmurs in children: evaluation of commercially available software.

    PubMed

    Lee, Cecilia; Rankin, Kathryn N; Zuo, Kevin J; Mackie, Andrew S

    2016-10-01

    Heart murmurs are common in children and may represent congenital or acquired cardiac pathology. Auscultation is challenging and many primary-care physicians lack the skill to differentiate innocent from pathologic murmurs. We sought to determine whether computer-aided auscultation (CardioscanTM) identifies which children require referral to a cardiologist. We consecutively enrolled children aged between 0 and 17 years with a murmur, innocent or pathologic, being evaluated in a tertiary-care cardiology clinic. Children being evaluated for the first time and patients with known cardiac pathology were eligible. We excluded children who had undergone cardiac surgery previously or were unable to sit still for auscultation. CardioscanTM auscultation was performed in a quiet room with the subject in the supine position. The sensitivity and specificity of a potentially pathologic murmur designation by CardioscanTM - that is, requiring referral - was determined using echocardiography as the reference standard. We enrolled 126 subjects (44% female) with a median age of 1.7 years, with 93 (74%) having cardiac pathology. The sensitivity and specificity of a potentially pathologic murmur determination by CardioscanTM for identification of cardiac pathology were 83.9 and 30.3%, respectively, versus 75.0 and 71.4%, respectively, when limited to subjects with a heart rate of 50-120 beats per minute. The combination of a CardioscanTM potentially pathologic murmur designation or an abnormal electrocardiogram improved sensitivity to 93.5%, with no haemodynamically significant lesions missed. Sensitivity of CardioscanTM when interpreted in conjunction with an abnormal electrocardiogram was high, although specificity was poor. Re-evaluation of computer-aided auscultation will remain necessary as advances in this technology become available.

  7. A mobile phone-based care model for outpatient cardiac rehabilitation: the care assessment platform (CAP)

    PubMed Central

    2010-01-01

    Background Cardiac rehabilitation programs offer effective means to prevent recurrence of a cardiac event, but poor uptake of current programs have been reported globally. Home based models are considered as a feasible alternative to avoid various barriers related to care centre based programs. This paper sets out the study design for a clinical trial seeking to test the hypothesis that these programs can be better and more efficiently supported with novel Information and Communication Technologies (ICT). Methods/Design We have integrated mobile phones and web services into a comprehensive home- based care model for outpatient cardiac rehabilitation. Mobile phones with a built-in accelerometer sensor are used to measure physical exercise and WellnessDiary software is used to collect information on patients' physiological risk factors and other health information. Video and teleconferencing are used for mentoring sessions aiming at behavioural modifications through goal setting. The mentors use web-portal to facilitate personal goal setting and to assess the progress of each patient in the program. Educational multimedia content are stored or transferred via messaging systems to the patients phone to be viewed on demand. We have designed a randomised controlled trial to compare the health outcomes and cost efficiency of the proposed model with a traditional community based rehabilitation program. The main outcome measure is adherence to physical exercise guidelines. Discussion The study will provide evidence on using mobile phones and web services for mentoring and self management in a home-based care model targeting sustainable behavioural modifications in cardiac rehabilitation patients. Trial registration The trial has been registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) with number ACTRN12609000251224. PMID:20109196

  8. Lay Bystanders' Perspectives on What Facilitates Cardiopulmonary Resuscitation and Use of Automated External Defibrillators in Real Cardiac Arrests.

    PubMed

    Malta Hansen, Carolina; Rosenkranz, Simone Mørk; Folke, Fredrik; Zinckernagel, Line; Tjørnhøj-Thomsen, Tine; Torp-Pedersen, Christian; Sondergaard, Kathrine B; Nichol, Graham; Hulvej Rod, Morten

    2017-03-13

    Many patients who suffer an out-of-hospital cardiac arrest will fail to receive bystander intervention (cardiopulmonary resuscitation [CPR] or defibrillation) despite widespread CPR training and the dissemination of automated external defibrillators (AEDs). We sought to investigate what factors encourage lay bystanders to initiate CPR and AED use in a cohort of bystanders previously trained in CPR techniques who were present at an out-of-hospital cardiac arrest. One-hundred and twenty-eight semistructured qualitative interviews with CPR-trained lay bystanders to consecutive out-of-hospital cardiac arrest, where an AED was present were conducted (from January 2012 to April 2015, in Denmark). Purposive maximum variation sampling was used to establish the breadth of the bystander perspective. Twenty-six of the 128 interviews were chosen for further in-depth analyses, until data saturation. We used cross-sectional indexing (using software), and inductive in-depth thematic analyses, to identify those factors that facilitated CPR and AED use. In addition to prior hands-on CPR training, the following were described as facilitators: prior knowledge that intervention is crucial in improving survival, cannot cause substantial harm, and that the AED will provide guidance through CPR; prior hands-on training in AED use; during CPR performance, teamwork (ie, support), using the AED voice prompt and a ventilation mask, as well as demonstrating leadership and feeling a moral obligation to act. Several factors other than previous hands-on CPR training facilitate lay bystander instigation of CPR and AED use. The recognition and modification of these factors may increase lay bystander CPR rates and patient survival following an out-of-hospital cardiac arrest. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. Dynamic three-dimensional display of common congenital cardiac defects from reconstruction of two-dimensional echocardiographic images.

    PubMed

    Hsieh, K S; Lin, C C; Liu, W S; Chen, F L

    1996-01-01

    Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.

  10. Cardiac gating with a pulse oximeter for dual-energy imaging

    NASA Astrophysics Data System (ADS)

    Shkumat, N. A.; Siewerdsen, J. H.; Dhanantwari, A. C.; Williams, D. B.; Paul, N. S.; Yorkston, J.; Van Metter, R.

    2008-11-01

    The development and evaluation of a prototype cardiac gating system for double-shot dual-energy (DE) imaging is described. By acquiring both low- and high-kVp images during the resting phase of the cardiac cycle (diastole), heart misalignment between images can be reduced, thereby decreasing the magnitude of cardiac motion artifacts. For this initial implementation, a fingertip pulse oximeter was employed to measure the peripheral pulse waveform ('plethysmogram'), offering potential logistic, cost and workflow advantages compared to an electrocardiogram. A gating method was developed that accommodates temporal delays due to physiological pulse propagation, oximeter waveform processing and the imaging system (software, filter-wheel, anti-scatter Bucky-grid and flat-panel detector). Modeling the diastolic period allowed the calculation of an implemented delay, timp, required to trigger correctly during diastole at any patient heart rate (HR). The model suggests a triggering scheme characterized by two HR regimes, separated by a threshold, HRthresh. For rates at or below HRthresh, sufficient time exists to expose on the same heartbeat as the plethysmogram pulse [timp(HR) = 0]. Above HRthresh, a characteristic timp(HR) delays exposure to the subsequent heartbeat, accounting for all fixed and variable system delays. Performance was evaluated in terms of accuracy and precision of diastole-trigger coincidence and quantitative evaluation of artifact severity in gated and ungated DE images. Initial implementation indicated 85% accuracy in diastole-trigger coincidence. Through the identification of an improved HR estimation method (modified temporal smoothing of the oximeter waveform), trigger accuracy of 100% could be achieved with improved precision. To quantify the effect of the gating system on DE image quality, human observer tests were conducted to measure the magnitude of cardiac artifact under conditions of successful and unsuccessful diastolic gating. Six observers independently measured the artifact in 111 patient DE images. The data indicate that successful diastolic gating results in a statistically significant reduction (p < 0.001) in the magnitude of cardiac motion artifact, with residual artifact attributed primarily to gross patient motion.

  11. Left atrial concomitant surgical ablation for treatment of atrial fibrillation in cardiac surgery: A meta-analysis of randomized controlled trials

    PubMed Central

    Wang, Chunguo; Ye, Minhua; Lin, Jiang; Jin, Jiang; Hu, Quanteng; Zhu, Chengchu; Chen, Baofu

    2018-01-01

    Introduction Surgical ablation is a generally established treatment for patients with atrial fibrillation undergoing concomitant cardiac surgery. Left atrial (LA) lesion set for ablation is a simplified procedure suggested to reduce the surgery time and morbidity after procedure. The present meta-analysis aims to explore the outcomes of left atrial lesion set versus no ablative treatment in patients with AF undergoing cardiac surgery. Methods A literature research was performed in six database from their inception to July 2017, identifying all relevant randomized controlled trials (RCTs) comparing left atrial lesion set versus no ablative treatment in AF patient undergoing cardiac surgery. Data were extracted and analyzed according to predefined clinical endpoints. Results Eleven relevant RCTs were included for analysis in the present study. The prevalence of sinus rhythm in ablation group was significantly higher at discharge, 6-month and 1-year follow-up period. The morbidity including 30 day mortality, late all-cause mortality, reoperation for bleeding, permanent pacemaker implantation and neurological events were of no significant difference between two groups. Conclusions The result of our meta-analysis demonstrates that left atrial lesion set is an effective and safe surgical ablation strategy for AF patients undergoing concomitant cardiac surgery. PMID:29360851

  12. Gut microbiome composition is associated with cardiac disease in zoo-housed western lowland gorillas (Gorilla gorilla gorilla).

    PubMed

    Krynak, Katherine L; Burke, David J; Martin, Ryan A; Dennis, Patricia M

    2017-08-15

    Cardiac disease is a leading cause of mortality in zoo-housed western lowland gorillas (Gorilla gorilla gorilla). The gut microbiome is associated with cardiac disease in humans and similarly the gut microbiome may be associated with cardiac diseases in close relatives of humans, such as gorillas. We assessed the relationship between cardiac disease and gut bacterial composition in eight zoo-housed male western lowland gorillas (N = 4 with and N = 4 without cardiac disease) utilizing 16S rRNA gene analysis on the Illumina MiSeq sequencing platform. We found bacterial composition differences between gorillas with and without cardiac disease. Bacterial operational taxonomic units from phyla Bacteroidetes, Spirochaetes, Proteobacteria and Firmicutes were significant indicators of cardiac disease. Our results suggest that further investigations between diet and cardiac disease could improve the management and health of zoo-housed populations of this endangered species. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Association between patient activity and long-term cardiac death in patients with implantable cardioverter-defibrillators and cardiac resynchronization therapy defibrillators.

    PubMed

    Zhao, Shuang; Chen, Keping; Su, Yangang; Hua, Wei; Chen, Silin; Liang, Zhaoguang; Xu, Wei; Dai, Yan; Liu, Zhimin; Fan, Xiaohan; Hou, Cuihong; Zhang, Shu

    2017-05-01

    Background Patient activity (PA) has been demonstrated to predict all-cause mortality. However, the association between PA and cardiac death is unclear. Aims The aims of this study were to determine whether PA can predict cardiac death and what is the cut-off of PA to discriminate cardiac death, as well as the mechanism underlying the relationship between PA and survival in patients with home monitoring. Methods This study retrospectively analysed clinical and implantable cardioverter-defibrillator/cardiac resynchronization therapy defibrillator device data in 845 patients. Data regarding PA and PP variability during the first 30-60 days of home monitoring were collected, and mean values were calculated. The primary endpoint was cardiac death, and the secondary endpoint was all-cause mortality. Results The mean PA percentage was 11 ± 5.8%. Based on receiver operating characteristic curve analysis, we determined that a PA cut-off value of 7.84% (113 min) can predict cardiac death. During a mean follow-up period of 31.1 ± 12.9 months (ranging from three to 60 months), PA ≤ 7.84% was associated with increased risks of cardiac death in an unadjusted analysis; after adjusting in a multivariate Cox model, the relationship remained significant between PA≤7.84% and cardiac death (hazard ratio = 3.644, 95% confidence interval = 2.424-5.477, p < 0.001). Moreover, a significant correlation was observed between PA and PP variability ( r = 0.601, p < 0.001). Conclusions A baseline PA ≤ 7.84% was associated with a higher risk of cardiac death in patients who have survived more than three months after implantable cardioverter-defibrillator/cardiac resynchronization therapy defibrillator implantation. PA had a sizable effect on heart rate variability, reflecting autonomic function.

  14. Cardiac output by pulse contour analysis does not match the increase measured by rebreathing during human spaceflight.

    PubMed

    Hughson, Richard L; Peterson, Sean D; Yee, Nicholas J; Greaves, Danielle K

    2017-11-01

    Pulse contour analysis of the noninvasive finger arterial pressure waveform provides a convenient means to estimate cardiac output (Q̇). The method has been compared with standard methods under a range of conditions but never before during spaceflight. We compared pulse contour analysis with the Modelflow algorithm to estimates of Q̇ obtained by rebreathing during preflight baseline testing and during the final month of long-duration spaceflight in nine healthy male astronauts. By Modelflow analysis, stroke volume was greater in supine baseline than seated baseline or inflight. Heart rate was reduced in supine baseline so that there were no differences in Q̇ by Modelflow estimate between the supine (7.02 ± 1.31 l/min, means ± SD), seated (6.60 ± 1.95 l/min), or inflight (5.91 ± 1.15 l/min) conditions. In contrast, rebreathing estimates of Q̇ increased from seated baseline (4.76 ± 0.67 l/min) to inflight (7.00 ± 1.39 l/min, significant interaction effect of method and spaceflight, P < 0.001). Pulse contour analysis utilizes a three-element Windkessel model that incorporates parameters dependent on aortic pressure-area relationships that are assumed to represent the entire circulation. We propose that a large increase in vascular compliance in the splanchnic circulation invalidates the model under conditions of spaceflight. Future spaceflight research measuring cardiac function needs to consider this important limitation for assessing absolute values of Q̇ and stroke volume. NEW & NOTEWORTHY Noninvasive assessment of cardiac function during human spaceflight is an important tool to monitor astronaut health. This study demonstrated that pulse contour analysis of finger arterial blood pressure to estimate cardiac output failed to track the 46% increase measured by a rebreathing method. These results strongly suggest that alternative methods not dependent on pulse contour analysis are required to track cardiac function in spaceflight. Copyright © 2017 the American Physiological Society.

  15. Heterogeneous response of cardiac sympathetic function to cardiac resynchronization therapy in heart failure documented by 11[C]-hydroxy-ephedrine and PET/CT.

    PubMed

    Capitanio, Selene; Nanni, Cristina; Marini, Cecilia; Bonfiglioli, Rachele; Martignani, Cristian; Dib, Bassam; Fuccio, Chiara; Boriani, Giuseppe; Picori, Lorena; Boschi, Stefano; Morbelli, Silvia; Fanti, Stefano; Sambuceti, Gianmario

    2015-11-01

    Cardiac resynchronization therapy (CRT) is an accepted treatment in patients with end-stage heart failure. PET permits the absolute quantification of global and regional homogeneity in cardiac sympathetic innervation. We evaluated the variation of cardiac adrenergic activity in patients with idiopathic heart failure (IHF) disease (NYHA III-IV) after CRT using (11)C-hydroxyephedrine (HED) PET/CT. Ten IHF patients (mean age = 68; range = 55-81; average left ventricular ejection fraction 26 ± 4%) implanted with a resynchronization device underwent three HED PET/CT studies: PET 1 one week after inactive device implantation; PET 2, one week after PET 1 under stimulated rhythm; PET 3, at 3 months under active CRT. A dedicated software (PMOD 3.4 version) was used to estimate global and regional cardiac uptake of HED through 17 segment polar maps. At baseline, HED uptake was heterogeneously distributed throughout the left ventricle with a variation coefficient of 18 ± 5%. This variable markedly decreased after three months CRT (12 ± 5%, p < 0.01). Interestingly, subdividing the 170 myocardial segments (17 segments of each patient multiplied by the number of patients) into two groups, according to the median value of tracer uptake expressed as % of maximal myocardial uptake (76%), we observed a different behaviour depending on baseline innervation: HED uptake significantly increased only in segments with "impaired innervation" (SUV 2.61 ± 0.92 at PET1 and 3.05 ± 1.67 at three months, p < 0.01). As shown by HED PET/CT uptake and distribution, improvement in homogeneity of myocardial neuronal function reflected a selective improvement of tracer uptake in regions with more severe neuronal damage. These finding supported the presence of a myocardial regional variability in response of cardiac sympathetic system to CRT and a systemic response involving remote tissues with rich adrenergic innervation. This work might contribute to identify imaging parameters that could predict the response to CRT therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Three- and four-dimensional reconstruction of intra-cardiac anatomy from two-dimensional magnetic resonance images.

    PubMed

    Miquel, M E; Hill, D L G; Baker, E J; Qureshi, S A; Simon, R D B; Keevil, S F; Razavi, R S

    2003-06-01

    The present study was designed to evaluate the feasibility and clinical usefulness of three-dimensional (3D) reconstruction of intra-cardiac anatomy from a series of two-dimensional (2D) MR images using commercially available software. Sixteen patients (eight with structurally normal hearts but due to have catheter radio-frequency ablation of atrial tachyarrhythmias and eight with atrial septal defects (ASD) due for trans-catheter closure) and two volunteers were imaged at 1T. For each patient, a series of ECG-triggered images (5 mm thick slices, 2-3 mm apart) were acquired during breath holding. Depending on image quality, T1- or T2-weighted spin-echo images or gradient-echo cine images were used. The 3D reconstruction was performed off-line: the blood pools within cardiac chambers and great vessels were semi-automatically segmented, their outer surface was extracted using a marching cube algorithm and rendered. Intra- and inter-observer variability, effect of breath-hold position and differences between pulse sequences were assessed by imaging a volunteer. The 3D reconstructions were assessed by three cardiologists and compared with the 2D MR images and with 2D and 3D trans-esophagal and intra-cardiac echocardiography obtained during interventions. In every case, an anatomically detailed 3D volume was obtained. In the two patients where a 3 mm interval between slices was used, the resolution was not as good but it was still possible to visualize all the major anatomical structures. Spin-echo images lead to reconstructions more detailed than those obtained from gradient-echo images. However, gradient-echo images are easier to segment due to their greater contrast. Furthermore, because images were acquired at least at ten points in the cardiac cycles for every slice it was possible to reconstruct a cine loop and, for example, to visualize the evolution of the size and margins of the ASD during the cardiac cycle. 3D reconstruction proved to be an effective way to assess the relationship between the different parts of the cardiac anatomy. The technique was useful in planning interventions in these patients.

  17. Night-time care routine interaction and sleep disruption in adult cardiac surgery.

    PubMed

    Casida, Jesus M; Davis, Jean E; Zalewski, Aaron; Yang, James J

    2018-04-01

    To explore the context and the influence of night-time care routine interactions (NCRIs) on night-time sleep effectiveness (NSE) and daytime sleepiness (DSS) of patients in the cardiac surgery critical-care and progressive-care units of a hospital. There exists a paucity of empirical data regarding the influence of NCRIs on sleep and associated outcomes in hospitalised adult cardiac surgery patients. An exploratory repeated-measures research design was employed on the data provided by 38 elective cardiac surgery patients (mean age 60.0 ± 15.9 years). NCRI forms were completed by the bedside nurses and patients completed a 9-item Visual Analogue Sleep Scale (100-mm horizontal lines measuring NSE and DSS variables). All data were collected during postoperative nights/days (PON/POD) 1 through 5 and analysed with IBM SPSS software. Patient assessment, medication administration and laboratory/diagnostic procedures were the top three NCRIs reported between midnight and 6:00 a.m. During PON/POD 1 through 5, the respective mean NSE and DSS scores ranged from 52.9 ± 17.2 to 57.8 ± 13.5 and from 27.0 ± 22.6 to 45.6 ± 16.5. Repeated-measures ANOVA showed significant changes in DSS scores (p < .05). NSE and DSS were negatively correlated (r = -.44, p < .05), but changes in NSE scores were not significant (p > .05). Finally, of 8 NCRIs, only 1 (postoperative exercises) was significantly related to sleep variables (r > .40, p < .05). Frequent NCRIs are a common occurrence in cardiac surgery units of a hospital. Further research is needed to make a definitive conclusion about the impact of NCRIs on sleep/sleep disruptions and daytime sleepiness in adult cardiac surgery. Worldwide, acute and critical-care nurses are well positioned to lead initiatives aimed at improving sleep and clinical outcomes in cardiac surgery. © 2018 John Wiley & Sons Ltd.

  18. Development of an organ-specific insert phantom generated using a 3D printer for investigations of cardiac computed tomography protocols.

    PubMed

    Abdullah, Kamarul A; McEntee, Mark F; Reed, Warren; Kench, Peter L

    2018-04-30

    An ideal organ-specific insert phantom should be able to simulate the anatomical features with appropriate appearances in the resultant computed tomography (CT) images. This study investigated a 3D printing technology to develop a novel and cost-effective cardiac insert phantom derived from volumetric CT image datasets of anthropomorphic chest phantom. Cardiac insert volumes were segmented from CT image datasets, derived from an anthropomorphic chest phantom of Lungman N-01 (Kyoto Kagaku, Japan). These segmented datasets were converted to a virtual 3D-isosurface of heart-shaped shell, while two other removable inserts were included using computer-aided design (CAD) software program. This newly designed cardiac insert phantom was later printed by using a fused deposition modelling (FDM) process via a Creatbot DM Plus 3D printer. Then, several selected filling materials, such as contrast media, oil, water and jelly, were loaded into designated spaces in the 3D-printed phantom. The 3D-printed cardiac insert phantom was positioned within the anthropomorphic chest phantom and 30 repeated CT acquisitions performed using a multi-detector scanner at 120-kVp tube potential. Attenuation (Hounsfield Unit, HU) values were measured and compared to the image datasets of real-patient and Catphan ® 500 phantom. The output of the 3D-printed cardiac insert phantom was a solid acrylic plastic material, which was strong, light in weight and cost-effective. HU values of the filling materials were comparable to the image datasets of real-patient and Catphan ® 500 phantom. A novel and cost-effective cardiac insert phantom for anthropomorphic chest phantom was developed using volumetric CT image datasets with a 3D printer. Hence, this suggested the printing methodology could be applied to generate other phantoms for CT imaging studies. © 2018 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  19. SU-E-J-134: Optimizing Technical Parameters for Using Atlas Based Automatic Segmentation for Evaluation of Contour Accuracy Experience with Cardiac Structures From NRG Oncology/RTOG 0617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J; Gong, Y; Bar-Ad, V

    Purpose: Accurate contour delineation is crucial for radiotherapy. Atlas based automatic segmentation tools can be used to increase the efficiency of contour accuracy evaluation. This study aims to optimize technical parameters utilized in the tool by exploring the impact of library size and atlas number on the accuracy of cardiac contour evaluation. Methods: Patient CT DICOMs from RTOG 0617 were used for this study. Five experienced physicians delineated the cardiac structures including pericardium, atria and ventricles following an atlas guideline. The consistency of cardiac structured delineation using the atlas guideline was verified by a study with four observers and seventeenmore » patients. The CT and cardiac structure DICOM files were then used for the ABAS technique.To study the impact of library size (LS) and atlas number (AN) on automatic contour accuracy, automatic contours were generated with varied technique parameters for five randomly selected patients. Three LS (20, 60, and 100) were studied using commercially available software. The AN was four, recommended by the manufacturer. Using the manual contour as the gold standard, Dice Similarity Coefficient (DSC) was calculated between the manual and automatic contours. Five-patient averaged DSCs were calculated for comparison for each cardiac structure.In order to study the impact of AN, the LS was set 100, and AN was tested from one to five. The five-patient averaged DSCs were also calculated for each cardiac structure. Results: DSC values are highest when LS is 100 and AN is four. The DSC is 0.90±0.02 for pericardium, 0.75±0.06 for atria, and 0.86±0.02 for ventricles. Conclusion: By comparing DSC values, the combination AN=4 and LS=100 gives the best performance. This project was supported by NCI grants U24CA12014, U24CA180803, U10CA180868, U10CA180822, PA CURE grant and Bristol-Myers Squibb and Eli Lilly.« less

  20. Automated Real-Time Behavioral and Physiological Data Acquisition and Display Integrated with Stimulus Presentation for fMRI

    PubMed Central

    Voyvodic, James T.; Glover, Gary H.; Greve, Douglas; Gadde, Syam

    2011-01-01

    Functional magnetic resonance imaging (fMRI) is based on correlating blood oxygen-level dependent (BOLD) signal fluctuations in the brain with other time-varying signals. Although the most common reference for correlation is the timing of a behavioral task performed during the scan, many other behavioral and physiological variables can also influence fMRI signals. Variations in cardiac and respiratory functions in particular are known to contribute significant BOLD signal fluctuations. Variables such as skin conduction, eye movements, and other measures that may be relevant to task performance can also be correlated with BOLD signals and can therefore be used in image analysis to differentiate multiple components in complex brain activity signals. Combining real-time recording and data management of multiple behavioral and physiological signals in a way that can be routinely used with any task stimulus paradigm is a non-trivial software design problem. Here we discuss software methods that allow users control of paradigm-specific audio–visual or other task stimuli combined with automated simultaneous recording of multi-channel behavioral and physiological response variables, all synchronized with sub-millisecond temporal accuracy. We also discuss the implementation and importance of real-time display feedback to ensure data quality of all recorded variables. Finally, we discuss standards and formats for storage of temporal covariate data and its integration into fMRI image analysis. These neuroinformatics methods have been adopted for behavioral task control at all sites in the Functional Biomedical Informatics Research Network (FBIRN) multi-center fMRI study. PMID:22232596

  1. Performance of new automated transthoracic three-dimensional echocardiographic software for left ventricular volumes and function assessment in routine clinical practice: Comparison with 3 Tesla cardiac magnetic resonance.

    PubMed

    Levy, Franck; Dan Schouver, Elie; Iacuzio, Laura; Civaia, Filippo; Rusek, Stephane; Dommerc, Carinne; Marechaux, Sylvestre; Dor, Vincent; Tribouilloy, Christophe; Dreyfus, Gilles

    2017-11-01

    Three-dimensional (3D) transthoracic echocardiography (TTE) is superior to two-dimensional Simpson's method for assessment of left ventricular (LV) volumes and LV ejection fraction (LVEF). Nevertheless, 3D TTE is not incorporated into everyday practice, as current LV chamber quantification software products are time-consuming. To evaluate the feasibility, accuracy and reproducibility of new fully automated fast 3D TTE software (HeartModel A.I. ; Philips Healthcare, Andover, MA, USA) for quantification of LV volumes and LVEF in routine practice; to compare the 3D LV volumes and LVEF obtained with a cardiac magnetic resonance (CMR) reference; and to optimize automated default border settings with CMR as reference. Sixty-three consecutive patients, who had comprehensive 3D TTE and CMR examinations within 24hours, were eligible for inclusion. Nine patients (14%) were excluded because of insufficient echogenicity in the 3D TTE. Thus, 54 patients (40 men; mean age 63±13 years) were prospectively included into the study. The inter- and intraobserver reproducibilities of 3D TTE were excellent (coefficient of variation<10%) for end-diastolic volume (EDV), end-systolic volume (ESV) and LVEF. Despite a slight underestimation of EDV using 3D TTE compared with CMR (bias=-22±34mL; P<0.0001), a significant correlation was found between the two measurements (r=0.93; P=0.0001). Enlarging default border detection settings leads to frequent volume overestimation in the general population, but improved agreement with CMR in patients with LVEF≤50%. Correlations between 3D TTE and CMR for ESV and LVEF were excellent (r=0.93 and r=0.91, respectively; P<0.0001). 3D TTE using new-generation fully automated software is a feasible, fast, reproducible and accurate imaging modality for LV volumetric quantification in routine practice. Optimization of border detection settings may increase agreement with CMR for EDV assessment in dilated ventricles. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Quantitative assessment of primary mitral regurgitation using left ventricular volumes obtained with new automated three-dimensional transthoracic echocardiographic software: A comparison with 3-Tesla cardiac magnetic resonance.

    PubMed

    Levy, Franck; Marechaux, Sylvestre; Iacuzio, Laura; Schouver, Elie Dan; Castel, Anne Laure; Toledano, Manuel; Rusek, Stephane; Dor, Vincent; Tribouilloy, Christophe; Dreyfus, Gilles

    2018-03-30

    Quantitative assessment of primary mitral regurgitation (MR) using left ventricular (LV) volumes obtained with three-dimensional transthoracic echocardiography (3D TTE) recently showed encouraging results. Nevertheless, 3D TTE is not incorporated into everyday practice, as current LV chamber quantification software products are time consuming. To investigate the accuracy and reproducibility of new automated fast 3D TTE software (HeartModel A.I. ; Philips Healthcare, Andover, MA, USA) for the quantification of LV volumes and MR severity in patients with isolated degenerative primary MR; and to compare regurgitant volume (RV) obtained with 3D TTE with a cardiac magnetic resonance (CMR) reference. Fifty-three patients (37 men; mean age 64±12 years) with at least mild primary isolated MR, and having comprehensive 3D TTE and CMR studies within 24h, were eligible for inclusion. MR RV was calculated using the proximal isovelocity surface area (PISA) method and the volumetric method (total LV stroke volume minus aortic stroke volume) with either CMR or 3D TTE. Inter- and intraobserver reproducibility of 3D TTE was excellent (coefficient of variation≤10%) for LV volumes. MR RV was similar using CMR and 3D TTE (57±23mL vs 56±28mL; P=0.22), but was significantly higher using the PISA method (69±30mL; P<0.05 compared with CMR and 3D TTE). The PISA method consistently overestimated MR RV compared with CMR (bias 12±21mL), while no significant bias was found between 3D TTE and CMR (bias 2±14mL). Concordance between echocardiography and CMR was higher using 3D TTE MR grading (intraclass correlation coefficient [ICC]=0.89) than with PISA MR grading (ICC=0.78). Complete agreement with CMR grading was more frequent with 3D TTE than with the PISA method (76% vs 63%). 3D TTE RV assessment using the new generation of automated software correlates well with CMR in patients with isolated degenerative primary MR. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. High performance MRI simulations of motion on multi-GPU systems.

    PubMed

    Xanthis, Christos G; Venetis, Ioannis E; Aletras, Anthony H

    2014-07-04

    MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance multi-GPU environment. Three different motion models were introduced in the Magnetic Resonance Imaging SIMULator (MRISIMUL) of this study: cardiac motion, respiratory motion and flow. Simulation of a simple Gradient Echo pulse sequence and a CINE pulse sequence on the corresponding anatomical model was performed. Myocardial tagging was also investigated. In pulse sequence design, software crushers were introduced to accommodate the long execution times in order to avoid spurious echoes formation. The displacement of the anatomical model isochromats was calculated within the Graphics Processing Unit (GPU) kernel for every timestep of the pulse sequence. Experiments that would allow simulation of custom anatomical and motion models were also performed. Last, simulations of motion with MRISIMUL on single-node and multi-node multi-GPU systems were examined. Gradient Echo and CINE images of the three motion models were produced and motion-related artifacts were demonstrated. The temporal evolution of the contractility of the heart was presented through the application of myocardial tagging. Better simulation performance and image quality were presented through the introduction of software crushers without the need to further increase the computational load and GPU resources. Last, MRISIMUL demonstrated an almost linear scalable performance with the increasing number of available GPU cards, in both single-node and multi-node multi-GPU computer systems. MRISIMUL is the first MR physics simulator to have implemented motion with a 3D large computational load on a single computer multi-GPU configuration. The incorporation of realistic motion models, such as cardiac motion, respiratory motion and flow may benefit the design and optimization of existing or new MR pulse sequences, protocols and algorithms, which examine motion related MR applications.

  4. Development of a force-reflecting robotic platform for cardiac catheter navigation.

    PubMed

    Park, Jun Woo; Choi, Jaesoon; Pak, Hui-Nam; Song, Seung Joon; Lee, Jung Chan; Park, Yongdoo; Shin, Seung Min; Sun, Kyung

    2010-11-01

    Electrophysiological catheters are used for both diagnostics and clinical intervention. To facilitate more accurate and precise catheter navigation, robotic cardiac catheter navigation systems have been developed and commercialized. The authors have developed a novel force-reflecting robotic catheter navigation system. The system is a network-based master-slave configuration having a 3-degree of freedom robotic manipulator for operation with a conventional cardiac ablation catheter. The master manipulator implements a haptic user interface device with force feedback using a force or torque signal either measured with a sensor or estimated from the motor current signal in the slave manipulator. The slave manipulator is a robotic motion control platform on which the cardiac ablation catheter is mounted. The catheter motions-forward and backward movements, rolling, and catheter tip bending-are controlled by electromechanical actuators located in the slave manipulator. The control software runs on a real-time operating system-based workstation and implements the master/slave motion synchronization control of the robot system. The master/slave motion synchronization response was assessed with step, sinusoidal, and arbitrarily varying motion commands, and showed satisfactory performance with insignificant steady-state motion error. The current system successfully implemented the motion control function and will undergo safety and performance evaluation by means of animal experiments. Further studies on the force feedback control algorithm and on an active motion catheter with an embedded actuation mechanism are underway. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Web-based multimedia courseware for emergency cardiac patient management simulations.

    PubMed

    Ambrosiadou, V; Compton, T; Panchal, T; Polovina, S

    2000-01-01

    This is a multidisciplinary inter-departmental/faculty project between the departments of computer science, electronic, communications and electrical engineering and nursing and paramedic sciences. The objective is to develop a web based multimedia front end to existing simulations of cardiac emergency scenaria. It will be used firstly in the teaching of nurses. The University of Hertfordshire is the only University in Britain using simulations of cardiac emergency scenaria for nurse and paramedic science education and therefore this project will add the multimedia dimension in distributed courses over the web and will assess the improvement in the educational process. The use of network and multimedia technologies, provide interactive learning, immediate feedback to students' responses, individually tailored instructions, objective testing and entertaining delivery. The end product of this project will serve as interactive material to enhance experiential learning for nursing students using the simulations of cardiac emergency scenaria. The emergency treatment simulations have been developed using VisSim and may be compiled as C code. The objective of the project is to provide a web based user friendly multimedia interface in order to demonstrate the way in which patients may be managed in critical situations by applying advanced technological equipment and drug administration. Then the user will be able to better appreciate the concepts involved by running the VisSim simulations. The evaluation group for the proposed software will be the Department of Nursing and Paramedic Sciences About 200 nurses use simulations every year for training purposes as part of their course requirements.

  6. A Fiber-Based Ratiometric Optical Cardiac Mapping Channel Using a Diffraction Grating and Split Detector

    PubMed Central

    Brown, Ninita H.; Dobrovolny, Hana M.; Gauthier, Daniel J.; Wolf, Patrick D.

    2007-01-01

    Optical fiber-based mapping systems are used to record the cardiac action potential (AP) throughout the myocardium. The optical AP contains a contraction-induced motion artifact (MA), which makes it difficult to accurately measure the action potential duration (APD). MA is removed by preventing contraction with electrical-mechanical uncoupling drugs, such as 2,3-butanedione monoxime (BDM). We designed a novel fiber-based ratiometric optical channel using a blue light emitting diode, a diffraction grating, and a split photodetector that can accurately measure the cardiac AP without the need for BDM. The channel was designed based on simulations using the optical design software ZEMAX. The channel has an electrical bandwidth of 150 Hz and an root mean-square dark noise of 742 μV. The channel successfully recorded the cardiac AP from the wall of five rabbit heart preparations without the use of BDM. After 20-point median filtering, the mean signal/noise ratio was 25.3 V/V. The APD measured from the base of a rabbit heart was 134 ± 8.4 ms, compared to 137.6 ± 3.3 ms from simultaneous microelectrode recordings. This difference was not statistically significant (p-value = 0.3). The quantity of MA removed was also measured using the motion ratio. The reduction in MA was significant (p-value = 0.0001). This fiber-based system is the first of its kind to enable optical APD measurements in the beating heart wall without the use of BDM. PMID:17416627

  7. Relationship between cardiac autonomic function and cognitive function in Alzheimer's disease.

    PubMed

    Nonogaki, Zen; Umegaki, Hiroyuki; Makino, Taeko; Suzuki, Yusuke; Kuzuya, Masafumi

    2017-01-01

    Alzheimer's disease (AD) affects many central nervous structures and neurotransmitter systems. These changes affect not only cognitive function, but also cardiac autonomic function. However, the functional relationship between cardiac autonomic function and cognition in AD has not yet been investigated. The objective of the present study was to evaluate the association between cardiac autonomic function measured by heart rate variability and cognitive function in AD. A total of 78 AD patients were recruited for this study. Cardiac autonomic function was evaluated using heart rate variability analysis. Multiple linear regression analysis was used to model the association between heart rate variability and cognitive function (global cognitive function, memory, executive function and processing speed), after adjustment for covariates. Global cognitive function was negatively associated with sympathetic modulation (low-to-high frequency power ratio). Memory performance was positively associated with parasympathetic modulation (high frequency power) and negatively associated with sympathetic modulation (low-to-high frequency power ratio). These associations were independent of age, sex, educational years, diabetes, hypertension and cholinesterase inhibitor use. Cognitive function, especially in the areas of memory, is associated with cardiac autonomic function in AD. Specifically, lower cognitive performance was found to be associated with significantly higher cardiac sympathetic and lower parasympathetic function in AD. Geriatr Gerontol Int 2017; 17: 92-98. © 2015 Japan Geriatrics Society.

  8. [Pulmonary hypertensive crisis in children with idiopathic pulmonary arterial hypertension undergoing cardiac catheterization: the risk factors and clinical aspects].

    PubMed

    Zhang, C; Zhu, Y; Li, Q Q; Gu, H

    2018-06-02

    Objective: To investigate the risk factors, clinical features, treatments, and prevention of pulmonary hypertensive crisis (PHC) in children with idiopathic pulmonary arterial hypertension (IPAH) undergoing cardiac catheterization. Methods: This retrospective study included 67 children who were diagnosed with IPAH and underwent cardiac catheterization between April 2009 and June 2017 in Beijing Anzhen Hospital. The medical histories, clinical manifestations, treatments, and outcomes were characterized. Statistical analyses were performed using t test, χ(2) test and a multiple Logistic regression analysis. Results: During cardiac catheterization, five children developed PHC who presented with markedly elevated pulmonary artery pressure and central venous pressure, decline in systemic arterial pressure and oxygen saturation. Heart rate decreased in 4 cases and increased in the remaining one. After the treatments including cardiopulmonary resuscitation, pulmonary vasodilator therapy, improving cardiac output and blood pressure, and correction of acidosis, 4 of the 5 cases recovered, while 1 died of severe right heart failure with irreversible PHC 3 days after operation. Potential PHC was considered in 7 other patients, whose pulmonary artery pressure increased and exceeded systemic arterial pressure, oxygen saturation decreased, and central venous pressure and vital signs were relatively stable. Univariate analysis showed that the risk factors of PHC in children with IPAH undergoing cardiac catheterization were younger age ( t= 3.160, P= 0.004), low weight ( t= 4.004, P< 0.001), general anesthesia (χ(2)=4.970, P= 0.026), history of syncope (χ(2)=4.948, P= 0.026), and WHO cardiac functional class Ⅲ or Ⅳ (χ(2)=19.013, P< 0.001). Multivariate Logistic regression analysis revealed that worse WHO cardiac functional class ( Wald =13.128, P< 0.001, OR= 15.076, 95% CI : 3.475-65.418) was the independent risk factor of PHC. Conclusions: PHC is a severe and extremely dangerous complication in children with IPAH during cardiac catheterization. WHO cardiac functional class may be associated with PHC. Integrated treatment is required for these patients. Reducing risk factors, early identification, and active treatment may help to prevent the occurrence and progression of PHC.

  9. The clinical implications of myocardial perfusion abnormalities in patients with esophageal or lung cancer after chemoradiation therapy.

    PubMed

    Gayed, Isis; Gohar, Salman; Liao, Zhongxing; McAleer, Mary; Bassett, Roland; Yusuf, Syed Wamique

    2009-06-01

    This study aims to identify the clinical implications of myocardial perfusion defects after chemoradiation therapy (CRT) in patients with esophageal and lung cancer. We retrospectively compared myocardial perfusion imaging (MPI) results before and after CRT in 16 patients with esophageal cancer and 24 patients with lung cancer. New MPI defects in the radiation therapy (RT) fields were considered related to RT. Follow-up to evaluate for cardiac complications and their relation with the results of MPI was performed. Statistical analysis identified predictors of cardiac morbidities. Eleven females and twenty nine males at a mean age of 66.7 years were included. Five patients (31%) with esophageal cancer and seven patients (29%) with lung cancer developed myocardial ischemia in the RT field at mean intervals of 7.0 and 8.4 months after RT. The patients were followed-up for mean intervals of 15 and 23 months in the esophageal and lung cancer groups, respectively. Seven patients in each of the esophageal (44%) and lung (29%) cancer patients (P = 0.5) developed cardiac complications of which one patient with esophageal cancer died of complete heart block. Six out of the fourteen patients (43%) with cardiac complication had new ischemia on MPI after CRT of which only one developed angina. The remaining eight patients with cardiac complications had normal MPI results. MPI result was not a statistically significant predictor of future cardiac complications after CRT. A history of congestive heart failure (CHF) (P = 0.003) or arrhythmia (P = 0.003) is a significant predictor of cardiac morbidity after CRT in univariate analysis but marginal predictors when multivariate analysis was performed (P = 0.06 and 0.06 for CHF and arrhythmia, respectively). Cardiac complications after CRT are more common in esophageal than lung cancer patients but the difference is not statistically significant. MPI abnormalities are frequently seen after CRT but are not predictive of future cardiac complications. A history of arrhythmia or CHF is significantly associated with cardiac complications after CRT.

  10. Improving Interpretation of Cardiac Phenotypes and Enhancing Discovery With Expanded Knowledge in the Gene Ontology

    PubMed Central

    Roncaglia, Paola; Howe, Douglas G.; Laulederkind, Stanley J.F.; Khodiyar, Varsha K.; Berardini, Tanya Z.; Tweedie, Susan; Foulger, Rebecca E.; Osumi-Sutherland, David; Campbell, Nancy H.; Huntley, Rachael P.; Talmud, Philippa J.; Blake, Judith A.; Breckenridge, Ross; Riley, Paul R.; Lambiase, Pier D.; Elliott, Perry M.; Clapp, Lucie; Tinker, Andrew; Hill, David P.

    2018-01-01

    Background: A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. Methods and Results: In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. Conclusions: We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects. PMID:29440116

  11. Improving Interpretation of Cardiac Phenotypes and Enhancing Discovery With Expanded Knowledge in the Gene Ontology.

    PubMed

    Lovering, Ruth C; Roncaglia, Paola; Howe, Douglas G; Laulederkind, Stanley J F; Khodiyar, Varsha K; Berardini, Tanya Z; Tweedie, Susan; Foulger, Rebecca E; Osumi-Sutherland, David; Campbell, Nancy H; Huntley, Rachael P; Talmud, Philippa J; Blake, Judith A; Breckenridge, Ross; Riley, Paul R; Lambiase, Pier D; Elliott, Perry M; Clapp, Lucie; Tinker, Andrew; Hill, David P

    2018-02-01

    A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects. © 2018 The Authors.

  12. Identification and Assessment of Cardiac Amyloidosis by Myocardial Strain Analysis of Cardiac Magnetic Resonance Imaging.

    PubMed

    Oda, Seitaro; Utsunomiya, Daisuke; Nakaura, Takeshi; Yuki, Hideaki; Kidoh, Masafumi; Morita, Kosuke; Takashio, Seiji; Yamamuro, Megumi; Izumiya, Yasuhiro; Hirakawa, Kyoko; Ishida, Toshifumi; Tsujita, Kenichi; Ueda, Mitsuharu; Yamashita, Taro; Ando, Yukio; Hata, Hiroyuki; Yamashita, Yasuyuki

    2017-06-23

    We explored the usefulness of myocardial strain analysis on cardiac magnetic resonance imaging (CMR) scans for the identification of cardiac amyloidosis.Methods and Results:The 61 patients with systemic amyloidosis underwent 3.0-T CMR, including CMR tagging and late-gadolinium enhanced (LGE) imaging. The circumferential strain (CS) of LGE-positive and LGE-negative patients was measured on midventricular short-axis images and compared. Logistic regression modeling of CMR parameters was performed to detect patients with LGE-positive cardiac amyloidosis. Of the 61 patients with systemic amyloidosis 48 were LGE-positive and 13 were LGE-negative. The peak CS was significantly lower in the LGE-positive than in the LGE-negative patients (-9.5±2.3 vs. -13.3±1.4%, P<0.01). The variability in the peak CS time was significantly greater in the LGE-positive than in the LGE-negative patients (46.1±24.5 vs. 21.2±20.1 ms, P<0.01). The peak CS significantly correlated with clinical biomarkers. The sensitivity, specificity, and accuracy of the diagnostic model using CS parameters for the identification of LGE-positive amyloidosis were 93.8%, 76.9%, and 90.2%, respectively. Myocardial strain analysis by CMR helped detect LGE-positive amyloidosis without the need for contrast medium. The peak CS and variability in the peak CS time may correlate with the severity of cardiac amyloid deposition and may be more sensitive than LGE imaging for the detection of early cardiac disease in patients with amyloidosis.

  13. LGE Provides Incremental Prognostic Information Over Serum Biomarkers in AL Cardiac Amyloidosis.

    PubMed

    Boynton, Samuel J; Geske, Jeffrey B; Dispenzieri, Angela; Syed, Imran S; Hanson, Theodore J; Grogan, Martha; Araoz, Philip A

    2016-06-01

    This study sought to determine the prognostic value of cardiac magnetic resonance (CMR) late gadolinium enhancement (LGE) in amyloid light chain (AL) cardiac amyloidosis. Cardiac involvement is the major determinant of mortality in AL amyloidosis. CMR LGE is a marker of amyloid infiltration of the myocardium. The purpose of this study was to evaluate retrospectively the prognostic value of CMR LGE for determining all-cause mortality in AL amyloidosis and to compare the prognostic power with the biomarker stage. Seventy-six patients with histologically proven AL amyloidosis underwent CMR LGE imaging. LGE was categorized as global, focal patchy, or none. Global LGE was considered present if it was visualized on LGE images or if the myocardium nulled before the blood pool on a cine multiple inversion time (TI) sequence. CMR morphologic and functional evaluation, echocardiographic diastolic evaluation, and cardiac biomarker staging were also performed. Subjects' charts were reviewed for all-cause mortality. Cox proportional hazards analysis was used to evaluate survival in univariate and multivariate analysis. There were 40 deaths, and the median study follow-up period was 34.4 months. Global LGE was associated with all-cause mortality in univariate analysis (hazard ratio = 2.93; p < 0.001). In multivariate modeling with biomarker stage, global LGE remained prognostic (hazard ratio = 2.43; p = 0.01). Diffuse LGE provides incremental prognosis over cardiac biomarker stage in patients with AL cardiac amyloidosis. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Remote health monitoring system for detecting cardiac disorders.

    PubMed

    Bansal, Ayush; Kumar, Sunil; Bajpai, Anurag; Tiwari, Vijay N; Nayak, Mithun; Venkatesan, Shankar; Narayanan, Rangavittal

    2015-12-01

    Remote health monitoring system with clinical decision support system as a key component could potentially quicken the response of medical specialists to critical health emergencies experienced by their patients. A monitoring system, specifically designed for cardiac care with electrocardiogram (ECG) signal analysis as the core diagnostic technique, could play a vital role in early detection of a wide range of cardiac ailments, from a simple arrhythmia to life threatening conditions such as myocardial infarction. The system that the authors have developed consists of three major components, namely, (a) mobile gateway, deployed on patient's mobile device, that receives 12-lead ECG signals from any ECG sensor, (b) remote server component that hosts algorithms for accurate annotation and analysis of the ECG signal and (c) point of care device of the doctor to receive a diagnostic report from the server based on the analysis of ECG signals. In the present study, their focus has been toward developing a system capable of detecting critical cardiac events well in advance using an advanced remote monitoring system. A system of this kind is expected to have applications ranging from tracking wellness/fitness to detection of symptoms leading to fatal cardiac events.

  15. RETROSPECTIVE ANALYSIS OF ADULT-ONSET CARDIAC DISEASE IN FRANÇOIS' LANGURS (TRACHYPITHECUS FRANCOISI) HOUSED IN U.S. ZOOS.

    PubMed

    Flanders, John A; Buoscio, Dana A; Jacobs, Bonnie A; Gamble, Kathryn C

    2016-09-01

    Cardiac disease is a common condition in captive primates, and multiple cases in François' langurs ( Trachypithecus francoisi ) were noted on review of the Species Survival Plan studbook. To determine the prevalence of cardiac disease in this species, surveys were distributed to current and previous holding institutions (n = 23) for the U.S. studbook population (n = 216). After exclusion of stillbirths (n = 48), animals less than 1 yr of age (n = 8), and animals housed internationally (n = 2), a study group (n = 158) was identified for this analysis. Robust data was received for 98.7% (n = 156) of the study group and antemortem and postmortem cardiac abnormalities were reported for 25.3% (n = 40) of these animals. Eight animals were reported as medically managed for clinical cardiac disease, and three of these were alive at the time of survey. Six of 11 animals with radiographic cardiac silhouette enlargement antemortem were noted with cardiomegaly on postmortem examination. Of 102 deceased animals in the study group, four were identified with dilated cardiomyopathy, and varying degrees of myocardial fibrosis was observed in 18 animals. Langurs with cardiac fibrosis were found to be significantly older than langurs without cardiac fibrosis (P = 0.003) and more commonly were male (P = 0.036). Screening tests for cardiac disease, such as thoracic radiographs and echocardiography, are recommended to diagnose affected animals earlier, to monitor progression of disease, and to guide treatment, although they should be interpreted with caution because of apparent insensitivity when compared with pathologic results.

  16. Asymptomatic and symptomatic embolic events in infective endocarditis: associated factors and clinical impact.

    PubMed

    Monteiro, Thaíssa S; Correia, Marcelo G; Golebiovski, Wilma F; Barbosa, Giovanna Ianini F; Weksler, Clara; Lamas, Cristiane C

    Embolic complications of infective endocarditis are common. The impact of asymptomatic embolism is uncertain. To determine the frequency of emboli due to IE and to identify events associated with embolism. Retrospective analysis of an endocarditis database, prospectively implemented, with a post hoc study driven by analysis of data on embolic events. Data was obtained from the International Collaboration Endocarditis case report forms and additional information on embolic events and imaging reports were obtained from the medical records. Variables associated with embolism were analyzed by the statistical software R version 3.1.0. In the study period, 2006-2011, 136 episodes of definite infective endocarditis were included. The most common complication was heart failure (55.1%), followed by embolism (50%). Among the 100 medical records analyzed for emboli in left-sided infective endocarditis, 36 (36%) were found to have had asymptomatic events, 11 (11%) to the central nervous system and 28 (28%) to the spleen. Cardiac surgery was performed in 98/136 (72%). In the multivariate analysis, splenomegaly was the only associated factor for embolism to any site (p<0.01, OR 4.7, 95% CI 2.04-11). Factors associated with embolism to the spleen were positive blood cultures (p=0.05, OR 8.9, 95% CI 1.45-177) and splenomegaly (p<0.01, OR 9.28, 95% CI 3.32-29); those associated to the central nervous system were infective endocarditis of the mitral valve (p<0.05, OR 3.5, 95% CI 1.23-10) and male gender (p<0.05, OR 3.2, 95% CI 1.04-10). Splenectomy and cardiac surgery did not impact on in-hospital mortality. Asymptomatic embolism to the central nervous system and to the spleen were frequent. Splenomegaly was consistently associated with embolic events. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. Physiome-model-based state-space framework for cardiac deformation recovery.

    PubMed

    Wong, Ken C L; Zhang, Heye; Liu, Huafeng; Shi, Pengcheng

    2007-11-01

    To more reliably recover cardiac information from noise-corrupted, patient-specific measurements, it is essential to employ meaningful constraining models and adopt appropriate optimization criteria to couple the models with the measurements. Although biomechanical models have been extensively used for myocardial motion recovery with encouraging results, the passive nature of such constraints limits their ability to fully count for the deformation caused by active forces of the myocytes. To overcome such limitations, we propose to adopt a cardiac physiome model as the prior constraint for cardiac motion analysis. The cardiac physiome model comprises an electric wave propagation model, an electromechanical coupling model, and a biomechanical model, which are connected through a cardiac system dynamics for a more complete description of the macroscopic cardiac physiology. Embedded within a multiframe state-space framework, the uncertainties of the model and the patient's measurements are systematically dealt with to arrive at optimal cardiac kinematic estimates and possibly beyond. Experiments have been conducted to compare our proposed cardiac-physiome-model-based framework with the solely biomechanical model-based framework. The results show that our proposed framework recovers more accurate cardiac deformation from synthetic data and obtains more sensible estimates from real magnetic resonance image sequences. With the active components introduced by the cardiac physiome model, cardiac deformations recovered from patient's medical images are more physiologically plausible.

  18. Runtime Verification of Pacemaker Functionality Using Hierarchical Fuzzy Colored Petri-nets.

    PubMed

    Majma, Negar; Babamir, Seyed Morteza; Monadjemi, Amirhassan

    2017-02-01

    Today, implanted medical devices are increasingly used for many patients and in case of diverse health problems. However, several runtime problems and errors are reported by the relevant organizations, even resulting in patient death. One of those devices is the pacemaker. The pacemaker is a device helping the patient to regulate the heartbeat by connecting to the cardiac vessels. This device is directed by its software, so any failure in this software causes a serious malfunction. Therefore, this study aims to a better way to monitor the device's software behavior to decrease the failure risk. Accordingly, we supervise the runtime function and status of the software. The software verification means examining limitations and needs of the system users by the system running software. In this paper, a method to verify the pacemaker software, based on the fuzzy function of the device, is presented. So, the function limitations of the device are identified and presented as fuzzy rules and then the device is verified based on the hierarchical Fuzzy Colored Petri-net (FCPN), which is formed considering the software limits. Regarding the experiences of using: 1) Fuzzy Petri-nets (FPN) to verify insulin pumps, 2) Colored Petri-nets (CPN) to verify the pacemaker and 3) To verify the pacemaker by a software agent with Petri-network based knowledge, which we gained during the previous studies, the runtime behavior of the pacemaker software is examined by HFCPN, in this paper. This is considered a developing step compared to the earlier work. HFCPN in this paper, compared to the FPN and CPN used in our previous studies reduces the complexity. By presenting the Petri-net (PN) in a hierarchical form, the verification runtime, decreased as 90.61% compared to the verification runtime in the earlier work. Since we need an inference engine in the runtime verification, we used the HFCPN to enhance the performance of the inference engine.

  19. Angiographic findings and clinical outcomes in asymptomatic patients with severe obstructive atherosclerosis on computed tomography angiography.

    PubMed

    Kornowski, Ran; Bachar, Gil N; Dvir, Danny; Fuchs, Shmuel; Atar, Eli

    2008-01-01

    Cardiac computed tomography angiography is a relatively new imaging modality to detect coronary atherosclerosis. To explore the diagnostic value of CTA in assessing coronary artery disease among asymptomatic patients. In this retrospective single-centered analysis, 622 consecutive patients underwent CTA of coronary arteries between November 2004 and May 2006 at the Mor Institute for Cardiovascular Imaging in Bnei Brak, Israel. All patients were asymptomatic but had at least one risk factor for atherosclerotic CAD. The initial 244 patients were examined with the 16-slice Brilliance CT scanner (Philips, Cleveland, OH, U.S.A.), and in the remaining 378 patients the 64-slice scanner (GE Healthcare, The Netherlands) with dedicated cardiac reconstruction software and electrocardiography triggering was used. Scanning was performed in the cranio-caudal direction. Images reconstructed in different phases of the cardiac cycle using a retrospective ECG-gated reconstruction algorithm were transferred to a dedicated workstation for review by experienced CT radiologists and cardiologists. Of 622 patients, 52 (8.4%) had severe obstructive atherosclerosis (suspected > or = 75% stenosis) according to CTA interpretation. Invasive coronary angiography was performed in 48 patients while 4 patients had no further procedure. A non-significant CAD (e.g., diameter stenosis < 70%) was identified in 6 of 48 patients (12%) by selective coronary angiography. Forty-two patients showed severe CAD with at least one lesion of 70% stenosis. Percutaneous coronary intervention was performed in 35 patients and coronary artery bypass grafting surgery in the other 4 patients. Angioplasty procedures were successful in all 35 patients and stents were utilized in all cases without complications. No further complications occurred among the study cohort undergoing either PCI or surgery. The 6 month survival rate in these patients was 100%. Non-invasive coronary CTA appears to be a reliable technique, with reasonably high accuracy, to detect obstructive atherosclerosis in asymptomatic high risk patients for atherosclerotic CAD.

  20. MicroRNA-320 is Involved in the Regulation of Cardiac Ischemia/Reperfusion Injury by Targeting Hsp20

    PubMed Central

    Ren, Xiao-Ping; Wang, Xiaohong; Sartor, Maureen A.; Jones, Keith; Qian, Jiang; Nicolaou, Persoulla; Pritchard, Tracy J.; Fan, Guo-Chang

    2009-01-01

    Background Recent studies have identified critical roles for microRNAs (miRNAs) in a variety of cellular processes, including regulation of cardiomyocyte death. However, the signature of miRNA expression and possible roles of miRNA in the ischemic heart have been less well-studied. Methods and Results Here we performed miRNA arrays to detect the expression pattern of miRNAs in murine hearts subjected to ischemia/reperfusion (I/R) in vivo and ex vivo. Surprisingly, we found that only miR-320 expression was significantly decreased in the hearts upon I/R in vivo and ex vivo. This was further confirmed by Taqman RT-PCR. Gain-of-function and loss-of-function approaches were employed in cultured adult rat cardiomyocytes to investigate the functional roles of miR-320. Overexpression of miR-320 enhanced cardiomyocyte death and apoptosis, while knock-down was cytoprotective, upon simulated I/R. Furthermore, transgenic mice with cardiac-specific overexpression of miR-320 revealed an increased extent of apoptosis and infarction size in the hearts upon I/R in vivo and ex vivo, relative to the WT controls. Conversely, in vivo treatment with antagomir-320 reduced the infarction size, relative to the administration of mutant antagomir-320 and saline controls. Using Target-Scan software and proteomic analysis, we identified Hsp20, a known cardioprotective protein, as an important candidate target for miR-320. This was validated experimentally by utilizing a luciferase/GFP reporter activity assay and examining the expression of Hsp20 upon miR-320 overexpression and knockdown in cardiomyocytes. Conclusions Our data demonstrate that miR-320 is involved in the regulation of I/R-induced cardiac injury and dysfunction via antithetical regulation of Hsp20. Thus, miR-320 may constitute a new therapeutic target for ischemic heart diseases. PMID:19380620

  1. Orbiter subsystem hardware/software interaction analysis. Volume 8: AFT reaction control system, part 2

    NASA Technical Reports Server (NTRS)

    Becker, D. D.

    1980-01-01

    The orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are examined. Potential interaction with the software is examined through an evaluation of the software requirements. The analysis is restricted to flight software requirements and excludes utility/checkout software. The results of the hardware/software interaction analysis for the forward reaction control system are presented.

  2. The Influence of Cardiac Risk Factor Burden on Cardiac Stress Test Outcomes.

    PubMed

    Schrock, Jon W; Li, Morgan; Orazulike, Chidubem; Emerman, Charles L

    2011-06-01

    Chest pain is the most common admission diagnosis for observation unit patients. These patients often undergo cardiac stress testing to further risk stratify for coronary artery disease (CAD). The decision of whom to stress is currently based on clinical judgment. We sought to determine the influence of cardiac risk factor burden on cardiac stress test outcome for patients tested from an observation unit, inpatient or outpatient setting. We performed a retrospective observational cohort study for all patients undergoing stress testing in our institution from June 2006 through July 2007. Cardiac risk factors were collected at the time of stress testing. Risk factors were evaluated in a summative fashion using multivariate regression adjusting for age and known coronary artery disease. The model was tested for goodness of fit and collinearity and the c statistic was calculated using the receiver operating curve. A total of 4026 subjects were included for analysis of which 22% had known CAD. The rates of positive outcome were 89 (12.0%), 95 (12.6%), and 343 (16.9%) for the OU, outpatients, and hospitalized patients respectively. While the odds of a positive test outcome increased for additional cardiac risk factors, ROC curve analysis indicates that simply adding the number of risk factors does not add significant diagnostic value. Hospitalized patients were more likely to have a positive stress test, OR 1.41 (1.10 - 1.81). Our study does not support basing the decision to perform a stress test on the number of cardiac risk factors.

  3. A free software for the calculation of T2* values for iron overload assessment.

    PubMed

    Fernandes, Juliano Lara; Fioravante, Luciana Andrea Barozi; Verissimo, Monica P; Loggetto, Sandra R

    2017-06-01

    Background Iron overload assessment with magnetic resonance imaging (MRI) using T2* has become a key diagnostic method in the management of many diseases. Quantitative analysis of the MRI images with a cost-effective tool has been a limitation to increased use of the method. Purpose To provide a free software solution for this purpose comparing the results with a commercial solution. Material and Methods The free tool was developed as a standalone program to be directly downloaded and ran in a common personal computer platform without the need of a dedicated workstation. Liver and cardiac T2* values were calculated using both tools and the values obtained compared between them in a group of 56 patients with suspected iron overload using Bland-Altman plots and concordance correlation coefficients (CCC). Results In the heart, the mean T2* differences between the two methods was 0.46 ms (95% confidence interval [CI], -0.037 -0.965) and in the liver 0.49 ms (95% CI, 0.257-0.722). The CCC for both the heart and the liver were significantly high (0.98 [95% CI, 0.966-0.988] with a Pearson ρ of 0.9811 and 0.991 [95% CI, 0.986-0.994] with a Pearson ρ of 0.996, respectively. No significant differences were observed when analyzing only patients with abnormal concentrations of iron in both organs compared to the whole cohort. Conclusion The proposed free software tool is accurate for calculation of T2* values of the liver and heart and might be a solution for centers that cannot use paid commercial solutions.

  4. Cumulative Burden of Myocardial Dysfunction in Cardiac Amyloidosis Assessed Using Four-Chamber Cardiac Strain.

    PubMed

    Kado, Yuichiro; Obokata, Masaru; Nagata, Yasufumi; Ishizu, Tomoko; Addetia, Karima; Aonuma, Kazutaka; Kurabayashi, Masahiko; Lang, Roberto M; Takeuchi, Masaaki; Otsuji, Yutaka

    2016-11-01

    The aim of this study was to test the hypothesis that prognosis in patients with cardiac amyloidosis is closely coupled with amyloid burden in all four cardiac chambers. The goal was to evaluate longitudinal strain (LS) in each cardiac chamber and to determine whether LS in specific cardiac chambers is preferentially associated with prognosis over conventional two-dimensional echocardiographic parameters in patients with cardiac amyloidosis. Patients with two phenotypes of left ventricular (LV) hypertrophy (cardiac amyloidosis in 55 patients and nonobstructive hypertrophic cardiomyopathy in 40 patients) and 55 healthy subjects were retrospectively enrolled for the simultaneous assessment of LS of all four cardiac chambers in the apical four-chamber view. Patients with cardiac amyloidosis were followed up to record major adverse cardiovascular events, including cardiac death, heart transplantation, nonfatal myocardial infarction, ventricular tachyarrhythmia, and exacerbation of heart failure requiring hospitalization. LS in each chamber was significantly depressed in patients with both LV hypertrophy phenotypes compared with healthy subjects. Right atrial LS was significantly lower in patients with cardiac amyloidosis than those with nonobstructive hypertrophic cardiomyopathy after adjusting for LV ejection fraction and LV mass index. During a median follow-up period of 10 months, major adverse cardiovascular events developed in 22 patients with cardiac amyloidosis. Four-chamber LS were significantly associated with major adverse cardiovascular events, with incremental value over traditional echocardiographic parameters. Cardiac amyloidosis involves all cardiac chambers, and thus, chamber-specific strain analysis may be useful to assess the total cumulative burden of cardiac dysfunction. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  5. Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization

    NASA Astrophysics Data System (ADS)

    Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang

    2015-08-01

    The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress.

  6. Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization

    PubMed Central

    Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang

    2015-01-01

    The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress. PMID:26286628

  7. In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: Effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology

    USDA-ARS?s Scientific Manuscript database

    The mouse heart is a target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during fetal development, and microarray analysis demonstrates significant changes in expression of cardiac genes involved in extracellular matrix (ECM) remodeling. We tested the hypothesis that developmental TCDD exposure wo...

  8. Measurement of cardiac output using improved chromatographic analysis of sulfur hexafluoride (SF6).

    PubMed

    Klocke, F J; Roberts, D L; Farhi, E R; Naughton, B J; Sekovski, B; Klocke, R A

    1977-06-01

    A constant current variable frequency pulsed electron capture detector has been incorporated into the gas chromatographic analysis of trace amounts of sulfur hexafluoride (SF6) in water and blood. The resulting system offers a broader effective operating range than more conventional electron capture units and has been utilized for measurements of cardiac output employing constant-rate infusion of dissolved SF6. The SF6 technique has been validated against direct volumetric measurements of cardiac output in a canine right-heart bypass preparation and used subsequently for rapidly repeated measurements in conscious animals and man.

  9. Four applications of a software data collection and analysis methodology

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Selby, Richard W., Jr.

    1985-01-01

    The evaluation of software technologies suffers because of the lack of quantitative assessment of their effect on software development and modification. A seven-step data collection and analysis methodology couples software technology evaluation with software measurement. Four in-depth applications of the methodology are presented. The four studies represent each of the general categories of analyses on the software product and development process: blocked subject-project studies, replicated project studies, multi-project variation studies, and single project strategies. The four applications are in the areas of, respectively, software testing, cleanroom software development, characteristic software metric sets, and software error analysis.

  10. Cost-consequence analysis of different active flowable hemostatic matrices in cardiac surgical procedures.

    PubMed

    Makhija, D; Rock, M; Xiong, Y; Epstein, J D; Arnold, M R; Lattouf, O M; Calcaterra, D

    2017-06-01

    A recent retrospective comparative effectiveness study found that use of the FLOSEAL Hemostatic Matrix in cardiac surgery was associated with significantly lower risks of complications, blood transfusions, surgical revisions, and shorter length of surgery than use of SURGIFLO Hemostatic Matrix. These outcome improvements in cardiac surgery procedures may translate to economic savings for hospitals and payers. The objective of this study was to estimate the cost-consequence of two flowable hemostatic matrices (FLOSEAL or SURGIFLO) in cardiac surgeries for US hospitals. A cost-consequence model was constructed using clinical outcomes from a previously published retrospective comparative effectiveness study of FLOSEAL vs SURGIFLO in adult cardiac surgeries. The model accounted for the reported differences between these products in length of surgery, rates of major and minor complications, surgical revisions, and blood product transfusions. Costs were derived from Healthcare Cost and Utilization Project's National Inpatient Sample (NIS) 2012 database and converted to 2015 US dollars. Savings were modeled for a hospital performing 245 cardiac surgeries annually, as identified as the average for hospitals in the NIS dataset. One-way sensitivity analysis and probabilistic sensitivity analysis were performed to test model robustness. The results suggest that if FLOSEAL is utilized in a hospital that performs 245 mixed cardiac surgery procedures annually, 11 major complications, 31 minor complications, nine surgical revisions, 79 blood product transfusions, and 260.3 h of cumulative operating time could be avoided. These improved outcomes correspond to a net annualized saving of $1,532,896. Cost savings remained consistent between $1.3m and $1.8m and between $911k and $2.4m, even after accounting for the uncertainty around clinical and cost inputs, in a one-way and probabilistic sensitivity analysis, respectively. Outcome differences associated with FLOSEAL vs SURGIFLO that were previously reported in a comparative effectiveness study may result in substantial cost savings for US hospitals.

  11. Linear and Nonlinear Analyses of the Cardiac Autonomic Control in Children With Developmental Coordination Disorder: A Case-Control Study.

    PubMed

    Cavalcante Neto, Jorge L; Zamunér, Antonio R; Moreno, Bianca C; Silva, Ester; Tudella, Eloisa

    2018-01-01

    Children with Developmental Coordination Disorder (DCD) and children at risk for DCD (r-DCD) present motor impairments interfering in their school, leisure and daily activities. In addition, these children may have abnormalities in their cardiac autonomic control, which together with their motor impairments, restrict their health and functionality. Therefore, this study aimed to assess the cardiac autonomic control, by linear and nonlinear analysis, at supine and during an orthostatic stimulus in DCD, r-DCD and typically developed children. Thirteen DCD children (11 boys and 2 girls, aged 8.08 ± 0.79 years), 19 children at risk for DCD (13 boys and 6 girls, aged 8.10 ± 0.96 years) and 18 typically developed children, who constituted the control group (CG) (10 boys and 8 girls, aged 8.50 ± 0.96 years) underwent a heart rate variability (HRV) examination. R-R intervals were recorded in order to assess the cardiac autonomic control using a validated HR monitor. HRV was analyzed by linear and nonlinear methods and compared between r-DCD, DCD, and CG. The DCD group presented blunted cardiac autonomic adjustment to the orthostatic stimulus, which was not observed in r-DCD and CG. Regarding nonlinear analysis of HRV, the DCD group presented lower parasympathetic modulation in the supine position compared to the r-DCD and CG groups. In the within group analysis, only the DCD group did not increase HR from supine to standing posture. Symbolic analysis revealed a significant decrease in 2LV ( p < 0.0001) and 2UV ( p < 0.0001) indices from supine to orthostatic posture only in the CG. In conclusion, r-DCD and DCD children present cardiac autonomic dysfunction characterized by higher sympathetic, lower parasympathetic and lower complexity of cardiac autonomic control in the supine position, as well as a blunted autonomic adjustment to the orthostatic stimulus. Therefore, cardiovascular health improvement should be part of DCD children's management, even in cases of less severe motor impairment.

  12. The Cultural Meaning of Cardiac Illness and Self-Care Among Lebanese Patients With Coronary Artery Disease.

    PubMed

    Dumit, Nuhad Yazbik; Magilvy, Joan Kathy; Afifi, Rima

    2016-07-01

    Cardiac disease is the leading cause of death in Lebanon, accounting for 22% to 26% of total deaths in the country. A thorough understanding of perceptions of cardiac illness and related self-care management is critical to the development of secondary prevention programs that are specific to the Lebanese culture. To explore the cultural perceptions of cardiac illness and the associated meaning of self-care among Lebanese patients. Using a qualitative descriptive method, semistructured interviews were conducted with a purposive sample of 15 Lebanese cardiac patients recruited from a medical center in Beirut, Lebanon. The qualitative descriptive analysis yielded one overarching and two other themes describing perceptions of cardiac illness and self-care within the Lebanese cultural context. The overarching cultural theme was, "Lebanese cardiac patients were unfamiliar with the term concept and meaning of self-care." Lebanese cardiac patients thanked God and accepted their fate (Theme I). The participants considered their cardiac incident a life or death warning (Theme II). Health care providers need to consider patients' cultural perception of illness while planning and evaluating cardiac self-care programs. © The Author(s) 2015.

  13. Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome.

    PubMed

    Gao, Ling; Cao, Jia-Tian; Liang, Yan; Zhao, Yi-Chao; Lin, Xian-Hua; Li, Xiao-Cui; Tan, Ya-Jing; Li, Jing-Yi; Zhou, Cheng-Liang; Xu, Hai-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-05-01

    Polycystic ovary syndrome (PCOS) is a complex reproductive and metabolic disorder affecting 10 % of reproductive-aged women, and is well associated with an increased prevalence of cardiovascular risk factors. However, there are few data concerning the direct association of PCOS with cardiac pathologies. The present study aims to investigate the changes in cardiac structure, function, and cardiomyocyte survival in a PCOS model, and explore the possible effect of calcitriol administration on these changes. PCOS was induced in C57BL/6J female mice by chronic dihydrotestosterone administration, as evidenced by irregular estrous cycles, obesity and dyslipidemia. PCOS mice progressively developed cardiac abnormalities including cardiac hypertrophy, interstitial fibrosis, myocardial apoptosis, and cardiac dysfunction. Conversely, concomitant administration of calcitriol significantly attenuated cardiac remodeling and cardiomyocyte apoptosis, and improved cardiac function. Molecular analysis revealed that the beneficial effect of calcitriol was associated with normalized autophagy function by increasing phosphorylation levels of AMP-activated protein kinase and inhibiting phosphorylation levels of mammalian target of rapamycin complex. Our findings provide the first evidence for the presence of cardiac remodeling in a PCOS model, and vitamin D supplementation may be a potential therapeutic strategy for the prevention and treatment of PCOS-related cardiac remodeling.

  14. Bifurcation diagrams of frequency dependence of repolarization during long QT syndrome using the Luo-Rudy model of cardiac repolarization

    NASA Astrophysics Data System (ADS)

    Bondarenko, V. E.; Doedel, E. J.; Rasmusson, R. L.

    2000-02-01

    We applied bifurcation analysis to the Luo-Rudy model of the guinea pig cardiac ventricular cell to investigate the behavior of repolarization in response to a simulated form of inherited arrhythmia, long QT syndrome. In this paper, we simulate pathological changes in cardiac repolarization through reductions in IKr. Decreased expression of this current has been linked to an inherited form of long QT syndrome which results in a high mortality, presumably due to sudden cardiac death from ventricular fibrillation.

  15. Thyroid disease and the cardiovascular system.

    PubMed

    Danzi, Sara; Klein, Irwin

    2014-06-01

    Thyroid hormones, specifically triiodothyronine (T3), have significant effects on the heart and cardiovascular system. Hypothyroidism, hyperthyroidism, subclinical thyroid disease, and low T3 syndrome each cause cardiac and cardiovascular abnormalities through both genomic and nongenomic effects on cardiac myocytes and vascular smooth muscle cells. In compromised health, such as occurs in heart disease, alterations in thyroid hormone metabolism may further impair cardiac and cardiovascular function. Diagnosis and treatment of cardiac disease may benefit from including analysis of thyroid hormone status, including serum total T3 levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Transgenic Analysis of the Role of FKBP12.6 in Cardiac Function and Intracellular Calcium Release

    PubMed Central

    Liu, Ying; Chen, Hanying; Ji, Guangju; Li, Baiyan; Mohler, Peter J.; Zhu, Zhiming; Yong, Weidong; Chen, Zhuang; Xu, Xuehong

    2011-01-01

    Abstract FK506 binding protein12.6 (FKBP12.6) binds to the Ca2+ release channel ryanodine receptor (RyR2) in cardiomyocytes and stabilizes RyR2 to prevent premature sarcoplasmic reticulum Ca2+ release. Previously, two different mouse strains deficient in FKBP12.6 were reported to have different abnormal cardiac phenotypes. The first mutant strain displayed sex-dependent cardiac hypertrophy, while the second displayed exercise-induced cardiac arrhythmia and sudden death. In this study, we tested whether FKBP12.6-deficient mice that display hypertrophic hearts can develop exercise-induced cardiac sudden death and whether the hypertrophic heart is a direct consequence of abnormal calcium handling in mutant cardiomyocytes. Our data show that FKBP12.6-deficient mice with cardiac hypertrophy do not display exercise-induced arrhythmia and/or sudden cardiac death. To investigate the role of FKBP12.6 overexpression for cardiac function and cardiomyocyte calcium release, we generated a transgenic mouse line with cardiac specific overexpression of FKBP12.6 using α-myosin heavy chain (αMHC) promoter. MHC-FKBP12.6 mice displayed normal cardiac development and function. We demonstrated that MHC-FKBP12.6 mice are able to rescue abnormal cardiac hypertrophy and abnormal calcium release in FKBP12.6-deficient mice. PMID:22087651

  17. Influence of cardiac and respiratory motion on tomographic reconstructions of the heart: implications for quantitative nuclear cardiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ter-Pogossian, M.M.; Bergmann, S.R.; Sobel, B.E.

    1982-12-01

    The potential influence of physiological, periodic motions of the heart due to the cardiac cycle, the respiratory cycle, or both on quantitative image reconstruction by positron emission tomography (PET) has been largely neglected. To define their quantitative impact, cardiac PET was performed in 6 dogs after injection of /sup 11/C-palmitate under disparate conditions including: normal cardiac and respiration cycles and cardiac arrest with and without respiration. Although in vitro assay of myocardial samples demonstrated that palmitate uptake was homogeneous (coefficient of variation . 10.1%), analysis of the reconstructed images demonstrated significant heterogeneity of apparent cardiac distribution of radioactivity due tomore » both intrinsic cardiac and respiratory motion. Image degradation due to respiratory motion was demonstrated in a healthy human volunteer as well, in whom cardiac tomography was performed with Super PETT I during breath-holding and during normal breathing. The results indicate that quantitatively significant degradation of reconstructions of true tracer distribution occurs in cardiac PET due to both intrinsic cardiac and respiratory induced motion of the heart. They suggest that avoidance of or minimization of these influences can be accomplished by gating with respect to both the cardiac cycle and respiration or by employing brief scan times during breath-holding.« less

  18. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    PubMed Central

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  19. Racial differences in dietary antioxidant intake and cardiac event-free survival in patients with heart failure.

    PubMed

    Wu, Jia-Rong; Song, Eun Kyeung; Moser, Debra K; Lennie, Terry A

    2018-04-01

    Heart failure is a chronic, burdensome condition with higher re-hospitalization rates in African Americans than Whites. Higher dietary antioxidant intake is associated with lower oxidative stress and improved endothelial function. Lower dietary antioxidant intake in African Americans may play a role in the re-hospitalization disparity between African American and White patients with heart failure. The objective of this study was to examine the associations among race, dietary antioxidant intake, and cardiac event-free survival in patients with heart failure. In a secondary analysis of 247 patients with heart failure who completed a four-day food diary, intake of alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, zeaxanthin, lycopene, vitamins C and E, zinc, and selenium were assessed. Antioxidant deficiency was defined as intake below the estimated average requirement for antioxidants with an established estimated average requirement, or lower than the sample median for antioxidants without an established estimated average requirement. Patients were followed for a median of one year to determine time to first cardiac event (hospitalization or death). Survival analysis was used for data analysis. African American patients had more dietary antioxidant deficiencies and a shorter cardiac event-free survival compared with Whites ( p = .007 and p = .028, respectively). In Cox regression, race and antioxidant deficiency were associated with cardiac event-free survival before and after adjusting for covariates. African Americans with heart failure had more dietary antioxidant deficiencies and shorter cardiac event-free survival than Whites. This suggests that encouraging African American patients with heart failure to consume an antioxidant-rich diet may be beneficial in lengthening cardiac event-free survival.

  20. Cardio-PACs: a new opportunity

    NASA Astrophysics Data System (ADS)

    Heupler, Frederick A., Jr.; Thomas, James D.; Blume, Hartwig R.; Cecil, Robert A.; Heisler, Mary

    2000-05-01

    It is now possible to replace film-based image management in the cardiac catheterization laboratory with a Cardiology Picture Archiving and Communication System (Cardio-PACS) based on digital imaging technology. The first step in the conversion process is installation of a digital image acquisition system that is capable of generating high-quality DICOM-compatible images. The next three steps, which are the subject of this presentation, involve image display, distribution, and storage. Clinical requirements and associated cost considerations for these three steps are listed below: Image display: (1) Image quality equal to film, with DICOM format, lossless compression, image processing, desktop PC-based with color monitor, and physician-friendly imaging software; (2) Performance specifications include: acquire 30 frames/sec; replay 15 frames/sec; access to file server 5 seconds, and to archive 5 minutes; (3) Compatibility of image file, transmission, and processing formats; (4) Image manipulation: brightness, contrast, gray scale, zoom, biplane display, and quantification; (5) User-friendly control of image review. Image distribution: (1) Standard IP-based network between cardiac catheterization laboratories, file server, long-term archive, review stations, and remote sites; (2) Non-proprietary formats; (3) Bidirectional distribution. Image storage: (1) CD-ROM vs disk vs tape; (2) Verification of data integrity; (3) User-designated storage capacity for catheterization laboratory, file server, long-term archive. Costs: (1) Image acquisition equipment, file server, long-term archive; (2) Network infrastructure; (3) Review stations and software; (4) Maintenance and administration; (5) Future upgrades and expansion; (6) Personnel.

  1. microRNA expression profiling in fetal single ventricle malformation identified by deep sequencing.

    PubMed

    Yu, Zhang-Bin; Han, Shu-Ping; Bai, Yun-Fei; Zhu, Chun; Pan, Ya; Guo, Xi-Rong

    2012-01-01

    microRNAs (miRNAs) have emerged as key regulators in many biological processes, particularly cardiac growth and development, although the specific miRNA expression profile associated with this process remains to be elucidated. This study aimed to characterize the cellular microRNA profile involved in the development of congenital heart malformation, through the investigation of single ventricle (SV) defects. Comprehensive miRNA profiling in human fetal SV cardiac tissue was performed by deep sequencing. Differential expression of 48 miRNAs was revealed by sequencing by oligonucleotide ligation and detection (SOLiD) analysis. Of these, 38 were down-regulated and 10 were up-regulated in differentiated SV cardiac tissue, compared to control cardiac tissue. This was confirmed by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Predicted target genes of the 48 differentially expressed miRNAs were analyzed by gene ontology and categorized according to cellular process, regulation of biological process and metabolic process. Pathway-Express analysis identified the WNT and mTOR signaling pathways as the most significant processes putatively affected by the differential expression of these miRNAs. The candidate genes involved in cardiac development were identified as potential targets for these differentially expressed microRNAs and the collaborative network of microRNAs and cardiac development related-mRNAs was constructed. These data provide the basis for future investigation of the mechanism of the occurrence and development of fetal SV malformations.

  2. Angiotensin II promotes differentiation of mouse c-kit-positive cardiac stem cells into pacemaker-like cells

    PubMed Central

    XUE, CHENG; ZHANG, JUN; LV, ZHAN; LIU, HUI; HUANG, CONGXIN; YANG, JING; WANG, TEN

    2015-01-01

    Cardiac stem cells (CSCs) can differentiate into cardiac muscle-like cells; however, it remains unknown whether CSCs may possess the ability to differentiate into pacemaker cells. The aim of the present study was to determine whether angiotensin II (Ang II) could promote the specialization of CSCs into pacemaker-like cells. Mouse CSCs were treated with Ang II from day 3–5, after cell sorting. The differentiation potential of the cells was then analyzed by morphological analysis, flow cytometry, reverse transcription-polymerase chain reaction, immunohistochemistry and patch clamp analysis. Treatment with Ang II resulted in an increased number of cardiac muscle-like cells (32.7±4.8% vs. 21.5±4.8%; P<0.05), and inhibition of smooth muscle-like cells (6.2±7.3% vs. 20.5±5.1%; P<0.05). Following treatment with Ang II, increased levels of the cardiac progenitor-specific markers GATA4 and Nkx2.5 were observed in the cells. Furthermore, the transcript levels of pacemaker function-related genes, including hyperpolarization-activated cyclic nucleotide-gated (HCN)2, HCN4, T-box (Tbx)2 and Tbx3, were significantly upregulated. Immunofluorescence analysis confirmed the increased number of pacemaker-like cells. The pacemaker current (If) was recorded in the cells derived from CSCs, treated with Ang II. In conclusion, treatment of CSCs with Ang II during the differentiation process modified cardiac-specific gene expression and resulted in the enhanced formation of pacemaker-like cells. PMID:25572000

  3. A Comparison of a Machine Learning Model with EuroSCORE II in Predicting Mortality after Elective Cardiac Surgery: A Decision Curve Analysis.

    PubMed

    Allyn, Jérôme; Allou, Nicolas; Augustin, Pascal; Philip, Ivan; Martinet, Olivier; Belghiti, Myriem; Provenchere, Sophie; Montravers, Philippe; Ferdynus, Cyril

    2017-01-01

    The benefits of cardiac surgery are sometimes difficult to predict and the decision to operate on a given individual is complex. Machine Learning and Decision Curve Analysis (DCA) are recent methods developed to create and evaluate prediction models. We conducted a retrospective cohort study using a prospective collected database from December 2005 to December 2012, from a cardiac surgical center at University Hospital. The different models of prediction of mortality in-hospital after elective cardiac surgery, including EuroSCORE II, a logistic regression model and a machine learning model, were compared by ROC and DCA. Of the 6,520 patients having elective cardiac surgery with cardiopulmonary bypass, 6.3% died. Mean age was 63.4 years old (standard deviation 14.4), and mean EuroSCORE II was 3.7 (4.8) %. The area under ROC curve (IC95%) for the machine learning model (0.795 (0.755-0.834)) was significantly higher than EuroSCORE II or the logistic regression model (respectively, 0.737 (0.691-0.783) and 0.742 (0.698-0.785), p < 0.0001). Decision Curve Analysis showed that the machine learning model, in this monocentric study, has a greater benefit whatever the probability threshold. According to ROC and DCA, machine learning model is more accurate in predicting mortality after elective cardiac surgery than EuroSCORE II. These results confirm the use of machine learning methods in the field of medical prediction.

  4. Use of supplemental long-chain omega-3 fatty acids and risk for cardiac death: An updated meta-analysis and review of research gaps.

    PubMed

    Maki, Kevin C; Palacios, Orsolya M; Bell, Marjorie; Toth, Peter P

    Randomized controlled trials (RCTs) assessing use of long-chain omega-3 polyunsaturated fatty acids (LC-OM3), primarily eicosapentaenoic acid, and/or docosahexaenoic acid have shown mixed results. The objectives of the study were to update and further explore the available RCT data regarding LC-OM3 supplementation and risk for cardiac death and to propose testable hypotheses for the mixed results obtained in RCTs regarding supplemental LC-OM3 use and cardiac risk. A literature search was conducted using PubMed and Ovid/MEDLINE for RCTs assessing LC-OM3 supplements or pharmaceuticals with intervention periods of at least 6 months and reporting on the outcome of cardiac death. Meta-analysis was used to compare cumulative frequencies of cardiac death events between the LC-OM3 and control groups, including sensitivity and subset analyses. Fourteen RCTs were identified for the primary analysis (71,899 subjects). In the LC-OM3 arms, 1613 cardiac deaths were recorded (4.48% of subjects), compared with 1746 cardiac deaths in the control groups (4.87% of subjects). The pooled relative risk estimate showed an 8.0% (95% confidence interval 1.6%, 13.9%, P = .015) lower risk in the LC-OM3 arms vs controls. Subset analyses showed numerically larger effects (12.9%-29.1% lower risks, all P < .05) in subsets of RCTs with eicosapentaenoic acid + docosahexaenoic acid dosages >1 g/d and higher risk samples (secondary prevention, baseline mean or median triglycerides ≥150 mg/dL, low-density lipoprotein cholesterol ≥130 mg/dL, statin use <40% of subjects). Heterogeneity was low (I 2  ≤ 15.5%, P > .05) for the primary and subset analyses. LC-OM3 supplementation is associated with a modest reduction in cardiac death. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  5. Association between intraoperative hypotension and 30-day mortality, major adverse cardiac events, and acute kidney injury after non-cardiac surgery: A meta-analysis of cohort studies.

    PubMed

    Gu, Wan-Jie; Hou, Bai-Ling; Kwong, Joey S W; Tian, Xin; Qian, Yue; Cui, Yin; Hao, Jing; Li, Ju-Chen; Ma, Zheng-Liang; Gu, Xiao-Ping

    2018-05-01

    The association between intraoperative hypotension (IOH) and postoperative outcomes is not fully understood. We performed a meta-analysis to determine whether IOH is associated with increased risk of 30-day mortality, major adverse cardiac events (MACEs) and acute kidney injury (AKI) after non-cardiac surgery. We searched PubMed and Embase through May 2016 to identify cohort studies that investigated the association between IOH and risk of 30-day mortality, MACEs, or AKI in adult patients after non-cardiac surgery. Ascertainment of IOH and assessment of outcomes were defined by the individual study. Considering the level of clinical heterogeneity, adjusted odds ratios (ORs) with 95% confidence interval (CIs) were pooled using a random-effects model. This meta-analysis is registered on PROSPERO (CRD42016049405). We included 14 cohort studies that were heterogeneous in terms of definition of IOH. IOH alone was associated with increased risk of 30-day mortality (OR 1.29 [95% CI, 1.19-1.41]), MACEs (OR 1.59 [95% CI, 1.23-2.05]), especially myocardial injury (OR 1.67 [95% CI, 1.31-2.13]), and AKI (OR 1.39 [95% CI, 1.09-1.77]). Triple low (IOH coincident with low bispectral index and low minimum alveolar concentration) also predicts increased risk of 30-day mortality (OR 1.32 [95% CI, 1.03-1.68]). IOH alone significantly increases the risk of postoperative 30-day mortality, MACEs, especially myocardial injury, and AKI in adult patients after non-cardiac surgery. Triple low also predicts increased risk of 30-day mortality after non-cardiac surgery. These findings provide evidence that IOH should be recognized as an independent risk factor for postoperative adverse outcomes after non-cardiac surgery. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Efficacy of a Newly Designed Cephalometric Analysis Software for McNamara Analysis in Comparison with Dolphin Software.

    PubMed

    Nouri, Mahtab; Hamidiaval, Shadi; Akbarzadeh Baghban, Alireza; Basafa, Mohammad; Fahim, Mohammad

    2015-01-01

    Cephalometric norms of McNamara analysis have been studied in various populations due to their optimal efficiency. Dolphin cephalometric software greatly enhances the conduction of this analysis for orthodontic measurements. However, Dolphin is very expensive and cannot be afforded by many clinicians in developing countries. A suitable alternative software program in Farsi/English will greatly help Farsi speaking clinicians. The present study aimed to develop an affordable Iranian cephalometric analysis software program and compare it with Dolphin, the standard software available on the market for cephalometric analysis. In this diagnostic, descriptive study, 150 lateral cephalograms of normal occlusion individuals were selected in Mashhad and Qazvin, two major cities of Iran mainly populated with Fars ethnicity, the main Iranian ethnic group. After tracing the cephalograms, the McNamara analysis standards were measured both with Dolphin and the new software. The cephalometric software was designed using Microsoft Visual C++ program in Windows XP. Measurements made with the new software were compared with those of Dolphin software on both series of cephalograms. The validity and reliability were tested using intra-class correlation coefficient. Calculations showed a very high correlation between the results of the Iranian cephalometric analysis software and Dolphin. This confirms the validity and optimal efficacy of the newly designed software (ICC 0.570-1.0). According to our results, the newly designed software has acceptable validity and reliability and can be used for orthodontic diagnosis, treatment planning and assessment of treatment outcome.

  7. Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin

    PubMed Central

    Wiese, Cornelia; Nikolova, Teodora; Zahanich, Ihor; Sulzbacher, Sabine; Fuchs, Joerg; Yamanaka, Satoshi; Graf, Eva; Ravens, Ursula; Boheler, Kenneth R.; Wobus, Anna M.

    2015-01-01

    Background Embryonic stem (ES) cells differentiate into cardiac phenotypes representing early pacemaker-, atrial-, ventricular-, and sinus node-like cells, however, ES-derived specification into sinus nodal cells is not yet known. By using the naphthylamine derivative of urea, suramin, we were able to follow the process of cardiac specialization into sinus node-like cells. Methods Differentiating mouse ES cells were treated with suramin (500 μM) from day 5 to 7 of embryoid body formation, and cells were analysed for their differentiation potential via morphological analysis, flow cytometry, RT-PCR, immunohistochemistry and patch clamp analysis. Results Application of suramin resulted in an increased number of cardiac cells, but inhibition of neuronal, skeletal muscle and definitive endoderm differentiation. Immediately after suramin treatment, a decreased mesendoderm differentiation was found. Brachyury, FGF10, Wnt8 and Wnt3a transcript levels were significantly down-regulated, followed by a decrease in mesoderm- and cardiac progenitor-specific markers BMP2, GATA4/5, Wnt11, Isl1, Nkx2.5 and Tbx5 immediately after removal of the substance. With continued differentiation, a significant up-regulation of Brachyury, FGF10 and GATA5 transcript levels was observed, whereas Nkx2.5, Isl1, Tbx5, BMP2 and Wnt11 levels were normalized to control levels. At advanced differentiation stages, sinus node-specific HCN4, Tbx2 and Tbx3 transcript levels were significantly up-regulated. Immunofluorescence and patch-clamp analysis confirmed the increased number of sinus node-like cells, and electrophysiological analysis revealed a lower number of atrial- and ventricular-like cardiomyocytes following suramin treatment. Conclusion We conclude that the interference of suramin with the cardiac differentiation process modified mesoderm- and cardiac-specific gene expression resulting in enhanced formation of sinus node-like cells. PMID:19775764

  8. Heart dosimetric analysis of three types of cardiac toxicity in patients treated on dose-escalation trials for Stage III non-small-cell lung cancer.

    PubMed

    Wang, Kyle; Pearlstein, Kevin A; Patchett, Nicholas D; Deal, Allison M; Mavroidis, Panayiotis; Jensen, Brian C; Lipner, Matthew B; Zagar, Timothy M; Wang, Yue; Lee, Carrie B; Eblan, Michael J; Rosenman, Julian G; Socinski, Mark A; Stinchcombe, Thomas E; Marks, Lawrence B

    2017-11-01

    To assess associations between radiation dose/volume parameters for cardiac subvolumes and different types of cardiac events in patients treated on radiation dose-escalation trials. Patients with Stage III non-small-cell lung cancer received dose-escalated radiation (median 74 Gy) using 3D-conformal radiotherapy on six prospective trials from 1996 to 2009. Volumes analyzed included whole heart, left ventricle (LV), right atrium (RA), and left atrium (LA). Cardiac events were divided into three categories: pericardial (symptomatic effusion and pericarditis), ischemia (myocardial infarction and unstable angina), and arrhythmia. Univariable competing risks analysis was used. 112 patients were analyzed, with median follow-up 8.8 years for surviving patients. Nine patients had pericardial, seven patients had ischemic, and 12 patients had arrhythmic events. Pericardial events were correlated with whole heart, RA, and LA dose (eg, heart-V30 [p=0.024], RA-V30 [p=0.013], and LA-V30 [p=0.001]), but not LV dose. Ischemic events were correlated with LV and whole heart dose (eg, LV-V30 [p=0.012], heart-V30 [p=0.048]). Arrhythmic events showed borderline significant associations with RA, LA, and whole heart dose (eg, RA-V30 [p=0.082], LA-V30 [p=0.076], heart-V30 [p=0.051]). Cardiac events were associated with decreased survival on univariable analysis (p=0.008, HR 2.09), but only disease progression predicted for decreased survival on multivariable analysis. Cardiac events were heterogeneous and associated with distinct heart subvolume doses. These data support the hypothesis of distinct etiologies for different types of radiation-associated cardiotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Advanced ECG in 2016: is there more than just a tracing?

    PubMed

    Reichlin, Tobias; Abächerli, Roger; Twerenbold, Raphael; Kühne, Michael; Schaer, Beat; Müller, Christian; Sticherling, Christian; Osswald, Stefan

    2016-01-01

    The 12-lead electrocardiogram (ECG) is the most frequently used technology in clinical cardiology. It is critical for evidence-based management of patients with most cardiovascular conditions, including patients with acute myocardial infarction, suspected chronic cardiac ischaemia, cardiac arrhythmias, heart failure and implantable cardiac devices. In contrast to many other techniques in cardiology, the ECG is simple, small, mobile, universally available and cheap, and therefore particularly attractive. Standard ECG interpretation mainly relies on direct visual assessment. The progress in biomedical computing and signal processing, and the available computational power offer fascinating new options for ECG analysis relevant to all fields of cardiology. Several digital ECG markers and advanced ECG technologies have shown promise in preliminary studies. This article reviews promising novel surface ECG technologies in three different fields. (1) For the detection of myocardial ischaemia and infarction, QRS morphology feature analysis, the analysis of high frequency QRS components (HF-QRS) and methods using vectorcardiography as well as ECG imaging are discussed. (2) For the identification and management of patients with cardiac arrhythmias, methods of advanced P-wave analysis are discussed and the concept of ECG imaging for noninvasive localisation of cardiac arrhythmias is presented. (3) For risk stratification of sudden cardiac death and the selection of patients for medical device therapy, several novel markers including an automated QRS-score for scar quantification, the QRS-T angle or the T-wave peak-to-end-interval are discussed. Despite the existing preliminary data, none of the advanced ECG markers and technologies has yet accomplished the transition into clinical practice. Further refinement of these technologies and broader validation in large unselected patient cohorts are the critical next step needed to facilitate translation of advanced ECG technologies into clinical cardiology.

  10. There is no benefit to universal carotid artery duplex screening before a major cardiac surgical procedure.

    PubMed

    Adams, Brian C; Clark, Ross M; Paap, Christina; Goff, James M

    2014-01-01

    Perioperative stroke is a devastating complication after cardiac surgery. In an attempt to minimize this complication, many cardiac surgeons routinely preoperatively order carotid artery duplex scans to assess for significant carotid stenosis. We hypothesize that the routine screening of preoperative cardiac surgery patients with carotid artery duplex scans detects few patients who would benefit from carotid intervention or that a significant carotid stenosis reliably predicts stroke risk after cardiac surgery. A retrospective review identified 1,499 patients who underwent cardiac surgical procedures between July 1999 and September 2010. Data collected included patient demographics, comorbidities, history of previous stroke, preoperative carotid artery duplex scan results, location of postoperative stroke, and details of carotid endarterectomy (CEA) procedures before, in conjunction with, or after cardiac surgery. Statistical methods included univariate analysis and Fisher's exact test. Twenty-six perioperative strokes were identified (1.7%). In the 21 postoperative stroke patients for whom there is complete carotid artery duplex scan data, 3 patients had a hemodynamically significant lesion (>70%) and 1 patient underwent unilateral carotid CEA for bilateral disease. Postoperative strokes occurred in the anterior cerebral circulation (69.2%), posterior cerebral circulation (15.4%), or both (15.4%). Patient comorbidities, preoperative carotid artery duplex scan screening velocities, or types of cardiac surgical procedure were not predictive for stroke. Thirteen patients (0.86%) underwent CEA before, in conjunction with, or after cardiac surgery. Two of these patients had symptomatic disease, 1 of whom underwent CEA before and the other after his cardiac surgery. Of the 11 asymptomatic patients, 2 underwent CEA before, 3 concurrently, and 6 after cardiac surgery. Left main disease (≥50% stenosis), previous stroke, and peripheral vascular disease were found to be statistically significant predictors of carotid revascularization. A cost analysis of universal screening resulted in an estimated net cost of $378,918 during the study period. The majority of postoperative strokes after cardiac surgery are not related to extracranial carotid artery disease and they are not predicted by preoperative carotid artery duplex scan screening. Consequently, universal carotid artery duplex scan screening cannot be recommended and a selective approach should be adopted. Published by Elsevier Inc.

  11. Fully digital data processing during cardiovascular implantable electronic device follow-up in a high-volume tertiary center.

    PubMed

    Staudacher, Ingo; Nalpathamkalam, Asha Roy; Uhlmann, Lorenz; Illg, Claudius; Seehausen, Sebastian; Akhavanpoor, Mohammadreza; Buchauer, Anke; Geis, Nicolas; Lugenbiel, Patrick; Schweizer, Patrick A; Xynogalos, Panagiotis; Zylla, Maura M; Scholz, Eberhard; Zitron, Edgar; Katus, Hugo A; Thomas, Dierk

    2017-10-11

    Increasing numbers of patients with cardiovascular implantable electronic devices (CIEDs) and limited follow-up capacities highlight unmet challenges in clinical electrophysiology. Integrated software (MediConnect ® ) enabling fully digital processing of device interrogation data has been commercially developed to facilitate follow-up visits. We sought to assess feasibility of fully digital data processing (FDDP) during ambulatory device follow-up in a high-volume tertiary hospital to provide guidance for future users of FDDP software. A total of 391 patients (mean age, 70 years) presenting to the outpatient department for routine device follow-up were analyzed (pacemaker, 44%; implantable cardioverter defibrillator, 39%; cardiac resynchronization therapy device, 16%). Quality of data transfer and follow-up duration were compared between digital (n = 265) and manual processing of device data (n = 126). Digital data import was successful, complete and correct in 82% of cases when early software versions were used. When using the most recent software version the rate of successful digital data import increased to 100%. Software-based import of interrogation data was complete and without failure in 97% of cases. The mean duration of a follow-up visit did not differ between the two groups (digital 18.7 min vs. manual data transfer 18.2 min). FDDP software was successfully implemented into the ambulatory follow-up of patients with implanted pacemakers and defibrillators. Digital data import into electronic patient management software was feasible and supported the physician's workflow. The total duration of follow-up visits comprising technical device interrogation and clinical actions was not affected in the present tertiary center outpatient cohort.

  12. Assessment of cardiopulmonary resuscitation practices in emergency departments for out-of-hospital cardiac arrest victims in Lebanon.

    PubMed

    Noureddine, Samar; Avedissian, Tamar; Isma'eel, Hussain; El Sayed, Mazen J

    2016-01-01

    The survival rate of out-of-hospital cardiac arrest (OHCA) victims in Lebanon is low. A national policy on resuscitation practice is lacking. This survey explored the practices of emergency physicians related to the resuscitation of OHCA victims in Lebanon. A sample of 705 physicians working in emergency departments (EDs) was recruited and surveyed using the LimeSurvey software (Carsten Schmitz, Germany). Seventy-five participants responded, yielding 10.64% response rate. The most important factors in the participants' decision to initiate or continue resuscitation were presence of pulse on arrival (93.2%), underlying cardiac rhythm (93.1%), the physician's ethical duty to resuscitate (93.2%), transport time to the ED (89%), and down time (84.9%). The participants were optimistic regarding the survival of OHCA victims (58.1% reporting > 10% survival) and reported frequent resuscitation attempts in medically futile situations. The most frequently reported challenges during resuscitation decisions were related to pressure or presence of victim's family (38.8%) and lack of policy (30%). In our setting, physicians often rely on well-established criteria for initiating/continuing resuscitation; however, their decisions are also influenced by cultural factors such as victim's family wishes. The findings support the need for a national policy on resuscitation of OHCA victims.

  13. FPGA implementation of a ZigBee wireless network control interface to transmit biomedical signals

    NASA Astrophysics Data System (ADS)

    Gómez López, M. A.; Goy, C. B.; Bolognini, P. C.; Herrera, M. C.

    2011-12-01

    In recent years, cardiac hemodynamic monitors have incorporated new technologies based on wireless sensor networks which can implement different types of communication protocols. More precisely, a digital conductance catheter system recently developed adds a wireless ZigBee module (IEEE 802.15.4 standards) to transmit cardiac signals (ECG, intraventricular pressure and volume) which would allow the physicians to evaluate the patient's cardiac status in a noninvasively way. The aim of this paper is to describe a control interface, implemented in a FPGA device, to manage a ZigBee wireless network. ZigBee technology is used due to its excellent performance including simplicity, low-power consumption, short-range transmission and low cost. FPGA internal memory stores 8-bit signals with which the control interface prepares the information packets. These data were send to the ZigBee END DEVICE module that receives and transmits wirelessly to the external COORDINATOR module. Using an USB port, the COORDINATOR sends the signals to a personal computer for displaying. Each functional block of control interface was assessed by means of temporal diagrams. Three biological signals, organized in packets and converted to RS232 serial protocol, were sucessfully transmitted and displayed in a PC screen. For this purpose, a custom-made graphical software was designed using LabView.

  14. Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure

    PubMed Central

    Karunamuni, Ganga; Gu, Shi; Doughman, Yong Qiu; Noonan, Amanda I.; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko

    2014-01-01

    Background The most commonly used method to analyze congenital heart defects involves serial sectioning and histology. However, this is often a time-consuming process where the quantification of cardiac defects can be difficult due to problems with accurate section registration. Here we demonstrate the advantages of using optical coherence tomography, a comparatively new and rising technology, to phenotype avian embryo hearts in a model of Fetal Alcohol Syndrome where a binge-like quantity of alcohol/ethanol was introduced at gastrulation. Results The rapid, consistent imaging protocols allowed for the immediate identification of cardiac anomalies, including ventricular septal defects and misaligned/missing vessels. Interventricular septum thicknesses and vessel diameters for three of the five outflow arteries were also significantly reduced. Outflow and atrio-ventricular valves were segmented using image processing software and had significantly reduced volumes compared to controls. This is the first study to our knowledge that has 3-D reconstructed the late-stage cardiac valves in precise detail in order to examine their morphology and dimensions. Conclusion We believe therefore that OCT, with its ability to rapidly image and quantify tiny embryonic structures in high resolution, will serve as an excellent and cost-effective preliminary screening tool for developmental biologists working with a variety of experimental/disease models. PMID:25546089

  15. Role of cardiac imaging and three-dimensional printing in percutaneous appendage closure.

    PubMed

    Iriart, Xavier; Ciobotaru, Vlad; Martin, Claire; Cochet, Hubert; Jalal, Zakaria; Thambo, Jean-Benoit; Quessard, Astrid

    2018-06-06

    Atrial fibrillation is the most frequent cardiac arrhythmia, affecting up to 13% of people aged>80 years, and is responsible for 15-20% of all ischaemic strokes. Left atrial appendage occlusion devices have been developed as an alternative approach to reduce the risk of stroke in patients for whom oral anticoagulation is contraindicated. The procedure can be technically demanding, and obtaining a complete left atrial appendage occlusion can be challenging. These observations have emphasized the importance of preprocedural planning, to optimize the accuracy and safety of the procedure. In this setting, a multimodality imaging approach, including three-dimensional imaging, is often used for preoperative assessment and procedural guidance. These imaging modalities, including transoesophageal echocardiography and multislice computed tomography, allow acquisition of a three-dimensional dataset that improves understanding of the cardiac anatomy; dedicated postprocessing software integrated into the clinical workflow can be used to generate a stereolithography file, which can be printed in a rubber-like material, seeking to replicate the myocardial tissue characteristics and mechanical properties of the left atrial appendage wall. The role of multimodality imaging and 3D printing technology offers a new field for implantation simulation, which may have a major impact on physician training and technique optimization. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. The impact of obesity in the cardiac lipidome and its consequences in the cardiac damage observed in obese rats.

    PubMed

    Marín-Royo, Gema; Martínez-Martínez, Ernesto; Gutiérrez, Beatriz; Jurado-López, Raquel; Gallardo, Isabel; Montero, Olimpio; Bartolomé, Mª Visitación; Román, José Alberto San; Salaices, Mercedes; Nieto, María Luisa; Cachofeiro, Victoria

    To explore the impact of obesity on the cardiac lipid profile in rats with diet-induced obesity, as well as to evaluate whether or not the specific changes in lipid species are associated with cardiac fibrosis. Male Wistar rats were fed either a high-fat diet (HFD, 35% fat) or standard diet (3.5% fat) for 6 weeks. Cardiac lipids were analyzed using by liquid chromatography-tandem mass spectrometry. HFD rats showed cardiac fibrosis and enhanced levels of cardiac superoxide anion (O 2 ), HOMA index, adiposity, and plasma leptin, as well as a reduction in those of cardiac glucose transporter (GLUT 4), compared with control animals. Cardiac lipid profile analysis showed a significant increase in triglycerides, especially those enriched with palmitic, stearic, and arachidonic acid. An increase in levels of diacylglycerol (DAG) was also observed. No changes in cardiac levels of diacyl phosphatidylcholine, or even a reduction in total levels of diacyl phosphatidylethanolamine, diacyl phosphatidylinositol, and sphingomyelins (SM) was observed in HFD, as compared with control animals. After adjustment for other variables (oxidative stress, HOMA, cardiac hypertrophy), total levels of DAG were independent predictors of cardiac fibrosis while the levels of total SM were independent predictors of the cardiac levels of GLUT 4. These data suggest that obesity has a significant impact on cardiac lipid composition, although it does not modulate the different species in a similar manner. Nonetheless, these changes are likely to participate in the cardiac damage in the context of obesity, since total DAG levels can facilitate the development of cardiac fibrosis, and SM levels predict GLUT4 levels. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Reliability of Heart Rate Variability Analysis by Using Electrocardiogram Recorded Unrestrainedly from an Automobile Steering-Wheel

    NASA Astrophysics Data System (ADS)

    Osaka, Motohisa; Murata, Hiroshige; Tateoka, Katsuhiko; Katoh, Takao

    2007-07-01

    Some cases of traffic accidents are assumed to be due to the occurrences of cardiac events during driving, which are thought to be induced by imbalance of autonomic nervous activities. These can be measured by analyzing heart rate variability. Therefore, we developed a new system of steering-wheel electrocardiogram with a soft-ware to remove noises. We compared the trends of sympathetic and parasympathetic nerve activities measured from the steering-wheel electrocardiograms with those recorded simultaneously from chest leads. For each parameter of instantaneous heart rate, low- or high-frequency component of heart rate variability in all the cases, the trend from the steering-wheel electrocardiogram resembled that from the chest-lead electrocardiogram. In 3 of 7 subjects, the trend of LF/HF showed a strong relationship between the steering-wheel electrocardiogram and the chest-lead electrocardiogram. Our system will open doors to a new strategy to keep a driver out of a risk by notifying it while driving.

  18. Nonlinear analysis of heart rate variability to assess the reaction of ewe fetuses undergoing fetal cardiac surgery.

    PubMed

    Del Gaudio, Costantino; Carotti, Adriano; Grigioni, Mauro; Morbiducci, Umberto

    2012-05-01

    Fetal cardiac surgery (FCS) represents a challenging issue for the in utero treatment of congenital heart defects. However, FCS has still not gained the sufficient reliability for clinical practice due to an incompletely elucidated fetal stress response. For example, blood sampling can contribute to its onset, leading to fetoplacental unit dysfunction, one of the main causes of failure of the surgical procedure. In order to address this issue, the role of the autonomic control system during an experimental procedure of cardiac bypass on ewe fetuses was investigated by means of recurrence quantification analysis (RQA), a well-recognized method for the analysis of nonlinear systems. RQA was applied to time series extracted from fetal arterial pressure recordings before and after the cardiac bypass established by means of an extracorporeal circuit, including an axial blood pump, and taking advantage of the capability of the placenta to work as a natural oxygenator. Statistically significant correlations were found among RQA-based metrics and fetal blood gas data, suggesting the possibility to infer the clinical status of the fetus starting from its hemodynamic signals.This study shows the relevance of RQA as a complementary tool for the monitoring of the fetal status during cardiac bypass.

  19. Evaluation of cardiac modulation in children in response to apnea/hypopnea using the Phone Oximeter(™).

    PubMed

    Dehkordi, Parastoo; Garde, Ainara; Karlen, Walter; Petersen, Christian L; Wensley, David; Dumont, Guy A; Mark Ansermino, J

    2016-02-01

    Individuals with sleep disordered breathing (SDB) can experience changes in automatic cardiac regulation as a result of frequent sleep fragmentation and disturbance in normal respiration and oxygenation that accompany most apnea/hypopnea events. In adults, these changes are reflected in enhanced sympathetic and reduced parasympathetic activity. In this study, we examined the autonomic cardiac regulation in children with and without SDB, through spectral and detrended fluctuation analysis (DFA) of pulse rate variability (PRV). PRV was measured from pulse-to-pulse intervals (PPIs) of the photoplethysmogram (PPG) recorded from 160 children using the Phone Oximeter(™) in the standard setting of overnight polysomnography. Spectral analysis of PRV showed the cardiac parasympathetic index (high frequency, HF) was lower (p < 0.01) and cardiac sympathetic indices (low frequency, LF and LF/HF ratio) were higher (p < 0.01) during apnea/hypopnea events for more than 95% of children with SDB. DFA showed the short- and long-range fluctuations of heart rate were more strongly correlated in children with SDB compared to children without SDB. These findings confirm that the analysis of the PPG recorded using the Phone Oximeter(™) could be the basis for a new screening tool for assessing PRV in non-clinical environment.

  20. Fractal Dynamics of Heartbeat Interval Fluctuations in Health and Disease

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Marconi, C.; Rahmel, A.; Grassi, B.; Ferretti, G.; Skinner, J. E.; Cerretelli, P.

    The dynamics of heartbeat interval time series were studied by a modified random walk analysis recently introduced as Detrended Fluctuation Analysis. In this analysis, the intrinsic fractal long-range power-law correlation properties of beat-to-beat fluctuations generated by the dynamical system (i.e. cardiac rhythm generator), after decomposition from extrinsic uncorrelated sources, can be quantified by the scaling exponent which, in healthy subjects, is about 1.0. The finding of a scaling coefficient of 1.0, indicating scale-invariant long-range power-law correlations (1/ƒnoise) of heartbeat fluctuations, would reflect a genuinely self-similar fractal process that typically generates fluctuations on a wide range of time scales. Lack of a characteristic time scale suggests that the neuroautonomic system underlying the control of heart rate dynamics helps prevent excessive mode-locking (error tolerance) that would restrict its functional responsiveness (plasticity) to environmental stimuli. The 1/ƒ dynamics of heartbeat interval fluctuations are unaffected by exposure to chronic hypoxia suggesting that the neuroautonomic cardiac control system is preadapted to hypoxia. Functional (hypothermia, cardiac disease) and/or structural (cardiac transplantation, early cardiac development) inactivation of neuroautonomic control is associated with the breakdown or absence of fractal complexity reflected by anticorrelated random walk-like dynamics, indicating that in these conditions the heart is unadapted to its environment.

  1. Exercise self-efficacy and symptoms of depression after cardiac rehabilitation: predicting changes over time using a piecewise growth curve analysis.

    PubMed

    Howarter, Alisha D; Bennett, Kymberley K; Barber, Carolyn E; Gessner, Stacia N; Clark, Jillian M R

    2014-01-01

    Cardiac rehabilitation is often recommended after experiencing a cardiac event and has been shown to significantly improve health outcomes among patients. Several psychosocial variables have been linked with cardiac rehabilitation program success, including exercise self-efficacy. However, little is known about temporal patterns in patients' exercise self-efficacy after program completion. This study examined changes in exercise self-efficacy among 133 cardiac rehabilitation patients and whether symptoms of depression impacted the rate of change in exercise self-efficacy. Participants completed questionnaires at the beginning and end of cardiac rehabilitation and at 6-month intervals for 2 years. Growth curve analyses showed that exercise self-efficacy levels were highest at the beginning of cardiac rehabilitation, significantly declined 6 months after cardiac rehabilitation, and leveled off over the next 18 months. Results also showed that baseline depressive symptoms interacted with time: Compared with participants with fewer symptoms, participants high in depressive symptoms began cardiac rehabilitation with lower levels of exercise self-efficacy and evidenced significant declines 6 months after cardiac rehabilitation. At no time were they equal to their counterparts in exercise self-efficacy, and their means were lower 2 years after cardiac rehabilitation than before cardiac rehabilitation. Our findings imply that patients show unrealistic optimism surrounding the ease of initiating and maintaining an exercise program and that integrating efficacy-building activities into cardiac rehabilitation, especially for patients who show signs of distress, is advisable.

  2. Where no guideline has gone before: retrospective analysis of resuscitation in the 24th century.

    PubMed

    Hörburger, David; Haslinger, Julia; Bickel, Hubert; Graf, Nikolaus; Schober, Andreas; Testori, Christoph; Weiser, Christoph; Sterz, Fritz; Haugk, Moritz

    2014-12-01

    Evaluation of the treatment, epidemiology and outcome of cardiac arrest in the television franchise Star Trek. Retrospective cohort study of prospective events. Screening of all episodes of Star Trek: The Next Generation, Star Trek: Deep Space Nine and Star Trek: Voyager for cardiac arrest events. Documentation was performed according to the Utstein guidelines for cardiac arrest documentation. All adult, single person cardiac arrests were included. Patients were excluded if cardiac arrest occurred during mass casualties, if the victims were annihilated by energy weapons or were murdered and nobody besides the assassin could provide first aid. Epidemiological data, treatment and outcome of cardiac arrest victims in the 24th century were studied. Ninety-six cardiac arrests were included. Twenty-three individuals were female (24%). Cardiac arrest was witnessed in 91 cases (95%), trauma was the leading cause (n = 38; 40%). Resuscitation was initiated in 17 cases (18%) and 12 patients (13%) had return of spontaneous circulation. Favorable neurological outcome and long-term survival was documented in nine patients (9%). Technically diagnosed cardiac arrest was associated with higher rates of favorable neurological outcome and long-term survival. Neurological outcome and survival did not depend on cardiac arrest location. Cardiac arrest remains a critical event in the 24th century. We observed a change of etiology from cardiac toward traumatic origin. Quick access to medical help and new prognostic tools were established to treat cardiac arrest.

  3. Dispatch-assisted CPR: where are the hold-ups during calls to emergency dispatchers? A preliminary analysis of caller-dispatcher interactions during out-of-hospital cardiac arrest using a novel call transcription technique.

    PubMed

    Clegg, Gareth R; Lyon, Richard M; James, Scott; Branigan, Holly P; Bard, Ellen G; Egan, Gerry J

    2014-01-01

    Survival from out-of-hospital cardiac arrest (OHCA) is dependent on the chain of survival. Early recognition of cardiac arrest and provision of bystander cardiopulmonary resuscitation (CPR) are key determinants of OHCA survival. Emergency medical dispatchers play a key role in cardiac arrest recognition and giving telephone CPR advice. The interaction between caller and dispatcher can influence the time to bystander CPR and quality of resuscitation. We sought to pilot the use of emergency call transcription to audit and evaluate the holdups in performing dispatch-assisted CPR. A retrospective case selection of 50 consecutive suspected OHCA was performed. Audio recordings of calls were downloaded from the emergency medical dispatch centre computer database. All calls were transcribed using proprietary software and voice dialogue was compared with the corresponding stage on the Medical Priority Dispatch System (MPDS). Time to progress through each stage and number of caller-dispatcher interactions were calculated. Of the 50 downloaded calls, 47 were confirmed cases of OHCA. Call transcription was successfully completed for all OHCA calls. Bystander CPR was performed in 39 (83%) of these. In the remaining cases, the caller decided the patient was beyond help (n = 7) or the caller said that they were physically unable to perform CPR (n = 1). MPDS stages varied substantially in time to completion. Stage 9 (determining if the patient is breathing through airway instructions) took the longest time to complete (median = 59 s, IQR 22-82 s). Stage 11 (giving CPR instructions) also took a relatively longer time to complete compared to the other stages (median = 46 s, IQR 37-75 s). Stage 5 (establishing the patient's age) took the shortest time to complete (median = 5.5s, IQR 3-9s). Transcription of OHCA emergency calls and caller-dispatcher interaction compared to MPDS stage is feasible. Confirming whether a patient is breathing and completing CPR instructions required the longest time and most interactions between caller and dispatcher. Use of call transcription has the potential to identify key factors in caller-dispatcher interaction that could improve time to CPR and further research is warranted in this area. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. SU-C-303-06: Treatment Planning Study for Non-Invasive Cardiac Arrhythmia Ablation with Scanned Carbon Ions in An Animal Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichhorn, A; Constantinescu, A; Prall, M

    Purpose: Scanned carbon ion beams might offer a non-invasive alternative treatment for cardiac arrhythmia, which are a major health-burden. We studied the feasibility of this procedure in an animal model. The underlying treatment planning and motion mitigation strategies will be presented. Methods: The study was carried out in 15 pigs, randomly distributed to 3 target groups: atrioventricular node (AVN, 8 animals with 25, 40, and 55 Gy target dose), left ventricular free-wall (LV, 4 animals with 40 Gy) and superior pulmonary vein (SPV, 3 animals with 40 Gy). Breathing motion was suppressed by repeated enforced breathholds at end exhale. Cardiacmore » motion was mitigated by an inhomogeneous rescanning scheme with up to 15 rescans. The treatment planning was performed using the GSI in-house software TRiP4D on cardiac-gated 4DCTs, applying a range-considering ITV based on an extended CTV. For AVN and SPV isotropic 5 mm margins were applied to the CTV, while for the LV 2mm+2% range margins were used. The opposing fields for AVN and LV targets were optimized independently (SFUD), while SPV treatments were optimized as IMPT deliveries, including dose restrictions to the radiosensitive AVN. Results: Median value of D{sub 95} over all rescanning simulations was 99.1% (AVN), 98.0% (SPV) and 98.3% (LV) for the CTV and 94.7% (AVN) and 92.7% (SPV) for the PTV, respectively. The median D{sub 5}-D{sub 95} was improved with rescanning compared to unmitigated delivery from 13.3 to 6.5% (CTV) and from 23.4 to 11.6% (PTV). ICRP dose limits for aorta, trachea, esophagus and skin were respected. The maximal dose in the coronary arteries was limited to 30 Gy. Conclusion: We demonstrated the feasibility of a homogeneous dose delivery to different cardiac structures in a porcine model using a time-optimized inhomogeneous rescanning scheme. The presented treatment planning strategies were applied in a pig study with the analysis ongoing. Funding: This work was supported in part by the Helmholtz Association, the American Heart Association Midwest Affiliate Postdoctoral Fellowship Grant, the Mayo Clinic Foundation, and the Goldsmith Foundation.« less

  5. Debugging and Performance Analysis Software Tools for Peregrine System |

    Science.gov Websites

    High-Performance Computing | NREL Debugging and Performance Analysis Software Tools for Peregrine System Debugging and Performance Analysis Software Tools for Peregrine System Learn about debugging and performance analysis software tools available to use with the Peregrine system. Allinea

  6. Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function

    PubMed Central

    Wild, Philipp S.; Felix, Janine F.; Schillert, Arne; Chen, Ming-Huei; Leening, Maarten J.G.; Völker, Uwe; Großmann, Vera; Brody, Jennifer A.; Irvin, Marguerite R.; Shah, Sanjiv J.; Pramana, Setia; Lieb, Wolfgang; Schmidt, Reinhold; Stanton, Alice V.; Malzahn, Dörthe; Lyytikäinen, Leo-Pekka; Tiller, Daniel; Smith, J. Gustav; Di Tullio, Marco R.; Musani, Solomon K.; Morrison, Alanna C.; Pers, Tune H.; Morley, Michael; Kleber, Marcus E.; Aragam, Jayashri; Bis, Joshua C.; Bisping, Egbert; Broeckel, Ulrich; Cheng, Susan; Deckers, Jaap W.; Del Greco M, Fabiola; Edelmann, Frank; Fornage, Myriam; Franke, Lude; Friedrich, Nele; Harris, Tamara B.; Hofer, Edith; Hofman, Albert; Huang, Jie; Hughes, Alun D.; Kähönen, Mika; investigators, KNHI; Kruppa, Jochen; Lackner, Karl J.; Lannfelt, Lars; Laskowski, Rafael; Launer, Lenore J.; Lindgren, Cecilia M.; Loley, Christina; Mayet, Jamil; Medenwald, Daniel; Morris, Andrew P.; Müller, Christian; Müller-Nurasyid, Martina; Nappo, Stefania; Nilsson, Peter M.; Nuding, Sebastian; Nutile, Teresa; Peters, Annette; Pfeufer, Arne; Pietzner, Diana; Pramstaller, Peter P.; Raitakari, Olli T.; Rice, Kenneth M.; Rotter, Jerome I.; Ruohonen, Saku T.; Sacco, Ralph L.; Samdarshi, Tandaw E.; Sharp, Andrew S.P.; Shields, Denis C.; Sorice, Rossella; Sotoodehnia, Nona; Stricker, Bruno H.; Surendran, Praveen; Töglhofer, Anna M.; Uitterlinden, André G.; Völzke, Henry; Ziegler, Andreas; Münzel, Thomas; März, Winfried; Cappola, Thomas P.; Hirschhorn, Joel N.; Mitchell, Gary F.; Smith, Nicholas L.; Fox, Ervin R.; Dueker, Nicole D.; Jaddoe, Vincent W.V.; Melander, Olle; Lehtimäki, Terho; Ciullo, Marina; Hicks, Andrew A.; Lind, Lars; Gudnason, Vilmundur; Pieske, Burkert; Barron, Anthony J.; Zweiker, Robert; Schunkert, Heribert; Ingelsson, Erik; Liu, Kiang; Arnett, Donna K.; Psaty, Bruce M.; Blankenberg, Stefan; Larson, Martin G.; Felix, Stephan B.; Franco, Oscar H.; Zeller, Tanja; Vasan, Ramachandran S.; Dörr, Marcus

    2017-01-01

    BACKGROUND. Understanding the genetic architecture of cardiac structure and function may help to prevent and treat heart disease. This investigation sought to identify common genetic variations associated with inter-individual variability in cardiac structure and function. METHODS. A GWAS meta-analysis of echocardiographic traits was performed, including 46,533 individuals from 30 studies (EchoGen consortium). The analysis included 16 traits of left ventricular (LV) structure, and systolic and diastolic function. RESULTS. The discovery analysis included 21 cohorts for structural and systolic function traits (n = 32,212) and 17 cohorts for diastolic function traits (n = 21,852). Replication was performed in 5 cohorts (n = 14,321) and 6 cohorts (n = 16,308), respectively. Besides 5 previously reported loci, the combined meta-analysis identified 10 additional genome-wide significant SNPs: rs12541595 near MTSS1 and rs10774625 in ATXN2 for LV end-diastolic internal dimension; rs806322 near KCNRG, rs4765663 in CACNA1C, rs6702619 near PALMD, rs7127129 in TMEM16A, rs11207426 near FGGY, rs17608766 in GOSR2, and rs17696696 in CFDP1 for aortic root diameter; and rs12440869 in IQCH for Doppler transmitral A-wave peak velocity. Findings were in part validated in other cohorts and in GWAS of related disease traits. The genetic loci showed associations with putative signaling pathways, and with gene expression in whole blood, monocytes, and myocardial tissue. CONCLUSION. The additional genetic loci identified in this large meta-analysis of cardiac structure and function provide insights into the underlying genetic architecture of cardiac structure and warrant follow-up in future functional studies. FUNDING. For detailed information per study, see Acknowledgments. PMID:28394258

  7. Predictive value of EEG in postanoxic encephalopathy: A quantitative model-based approach.

    PubMed

    Efthymiou, Evdokia; Renzel, Roland; Baumann, Christian R; Poryazova, Rositsa; Imbach, Lukas L

    2017-10-01

    The majority of comatose patients after cardiac arrest do not regain consciousness due to severe postanoxic encephalopathy. Early and accurate outcome prediction is therefore essential in determining further therapeutic interventions. The electroencephalogram is a standardized and commonly available tool used to estimate prognosis in postanoxic patients. The identification of pathological EEG patterns with poor prognosis relies however primarily on visual EEG scoring by experts. We introduced a model-based approach of EEG analysis (state space model) that allows for an objective and quantitative description of spectral EEG variability. We retrospectively analyzed standard EEG recordings in 83 comatose patients after cardiac arrest between 2005 and 2013 in the intensive care unit of the University Hospital Zürich. Neurological outcome was assessed one month after cardiac arrest using the Cerebral Performance Category. For a dynamic and quantitative EEG analysis, we implemented a model-based approach (state space analysis) to quantify EEG background variability independent from visual scoring of EEG epochs. Spectral variability was compared between groups and correlated with clinical outcome parameters and visual EEG patterns. Quantitative assessment of spectral EEG variability (state space velocity) revealed significant differences between patients with poor and good outcome after cardiac arrest: Lower mean velocity in temporal electrodes (T4 and T5) was significantly associated with poor prognostic outcome (p<0.005) and correlated with independently identified visual EEG patterns such as generalized periodic discharges (p<0.02). Receiver operating characteristic (ROC) analysis confirmed the predictive value of lower state space velocity for poor clinical outcome after cardiac arrest (AUC 80.8, 70% sensitivity, 15% false positive rate). Model-based quantitative EEG analysis (state space analysis) provides a novel, complementary marker for prognosis in postanoxic encephalopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Location of cardiac arrest and impact of pre-arrest chronic disease and medication use on survival.

    PubMed

    Granfeldt, Asger; Wissenberg, Mads; Hansen, Steen Møller; Lippert, Freddy K; Torp-Pedersen, Christian; Christensen, Erika Frischknecht; Christiansen, Christian Fynbo

    2017-05-01

    Cardiac arrest in a private location is associated with a higher mortality when compared to public location. Past studies have not accounted for pre-arrest factors such as chronic disease and medication. To investigate whether the association between cardiac arrest in a private location and a higher mortality can be explained by differences in chronic diseases and medication. We identified 27,771 out-of-hospital cardiac arrest patients ≥18 years old from the Danish Cardiac Arrest Registry (2001-2012). Using National Registries, we identified pre-arrest chronic disease and medication. To investigate the importance of cardiac arrest related factors and chronic disease and medication use we performed adjusted Cox regression analyses during day 0-7 and day 8-365 following cardiac arrest to calculate hazard ratios (HR) for death. Day 0-7: Un-adjusted HR for death day 0-7 was 1.21 (95%CI:1.18-1.25) in private compared to public location. When including cardiac arrest related factors HR for death was 1.09 (95%CI:1.06-1.12). Adding chronic disease and medication to the analysis changed HR for death to 1.08 (95%CI:1.05-1.12). 8-365 day: The un-adjusted HR for death day 8-365 was 1.70 (95% CI: 1.43-2.02) in private compared to public location. When including cardiac arrest related factors the HR decreased to 1.39 (95% CI: 1.14-1.68). Adding chronic disease and medication to the analysis changed HR for death to 1.27 (95% CI:1.04-1.54). The higher mortality following cardiac arrest in a private location is partly explained by a higher prevalence of chronic disease and medication use in patients surviving until day 8. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Nandrolone decanoate determines cardiac remodelling and injury by an imbalance in cardiac inflammatory cytokines and ACE activity, blunting of the Bezold-Jarisch reflex, resulting in the development of hypertension.

    PubMed

    Franquni, João Vicente Maggioni; do Nascimento, Andrews Marques; de Lima, Eweliny Miranda; Brasil, Girlândia Alexandre; Heringer, Otávio Arruda; Cassaro, Karla Oliveira Dos Santos; da Cunha, Thony Vinicius Pita; Musso, Carlos; Silva Santos, Maria Carmen L F; Kalil, Ieda Carneiro; Endringer, Denise Coutinho; Boëchat, Giovanna Assis Pereirra; Bissoli, Nazaré Souza; de Andrade, Tadeu Uggere

    2013-03-01

    The aims of this study were to evaluate the effects of nandrolone (ND) on cardiac inflammatory cytokines, ACE activity, troponin I, and the sensitivity of the Bezold-Jarisch reflex (BJR). Male Wistar rats were administered either ND (20 mg/kg; DECA) or vehicle (control animals; CONT) for 4 weeks. BJR was analyzed by measuring the bradycardia and hypotension responses elicited by serotonin administration (2-32 μg/kg). Mean arterial pressure (MAP) was assessed and myocyte hypertrophy was determined by the heart weight/body weight ratio and by morphometric analysis. Matrix collagen deposition was assessed by histological analysis of the picrosirius red-stained samples. Mesenteric vascular reactivity was performed and central venous pressure (CVP) evaluated. Cardiac inflammatory cytokine levels and angiotensin-converting enzyme (ACE) activity were studied as well the biomarker of cardiac lesion, troponin I. DECA group showed enhancement of matrix type I collagen deposition (p < 0.01) and cardiac ACE activity (p < 0.01) compared with the CONT. Interleukin (IL)-10 was reduced (p < 0.01) and pro-inflammatory cytokines (TNF-α and IL-6; p < 0.01) were increased in the DECA group compared with CONT. Cardiac injury was observed in the DECA group shown by the reduction in cardiac troponin I (p < 0.01) compared with the CONT group. Animals in the DECA group also developed myocyte hypertrophy and reduction of BJR sensitivity. The MAP of animals treated with ND reached hypertensive levels (p < 0.01; compared with CONT). No changes in CVP and vascular reactivity were observed in both experimental groups. We conclude that high doses of ND elicit cardiotoxic effects with cardiac remodelling and injury. Cardiac changes reduce the BJR sensitivity. Together, these abnormalities contributed to the development of hypertension in animals in the DECA group. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Beat to beat 3-dimensional intracardiac echocardiography: theoretical approach and practical experiences.

    PubMed

    Stapf, Daniel; Franke, Andreas; Schreckenberg, Marcus; Schummers, Georg; Mischke, Karl; Marx, Nikolaus; Schauerte, Patrick; Knackstedt, Christian

    2013-04-01

    Three-dimensional (3D)-imaging provides important information on cardiac anatomy during electrophysiological procedures. Real-time updates of modalities with high soft-tissue contrast are particularly advantageous during cardiac procedures. Therefore, a beat to beat 3D visualization of cardiac anatomy by intracardiac echocardiography (ICE) was developed and tested in phantoms and animals. An electronic phased-array 5-10 MHz ICE-catheter (Acuson, AcuNav/Siemens Medical Solutions USA/64 elements) providing a 90° sector image was used for ICE-imaging. A custom-made mechanical prototype controlled by a servo motor allowed automatic rotation of the ICE-catheter around its longitudinal axis. During a single heartbeat, the ICE-catheter was rotated and 2D-images were acquired. Reconstruction into a 3D volume and rendering by a prototype software was performed beat to beat. After experimental validation using a rigid phantom, the system was tested in an animal study and afterwards, for quantitative validation, in a dynamic phantom. Acquisition of beat to beat 3D-reconstruction was technically feasible. However, twisting of the ICE-catheter shaft due to friction and torsion was found and rotation was hampered. Also, depiction of catheters was not always ensured in case of parallel alignment. Using a curved sheath for depiction of cardiac anatomy there was no congruent depiction of shape and dimension of static and moving objects. Beat to beat 3D-ICE-imaging is feasible. However, shape and dimension of static and moving objects cannot always be displayed with necessary steadiness as needed in the clinical setting. As catheter depiction is also limited, clinical use seems impossible.

  11. Comparison of an automatic analysis and a manual analysis of conjunctival microcirculation in a sheep model of haemorrhagic shock.

    PubMed

    Arnemann, Philip-Helge; Hessler, Michael; Kampmeier, Tim; Morelli, Andrea; Van Aken, Hugo Karel; Westphal, Martin; Rehberg, Sebastian; Ertmer, Christian

    2016-12-01

    Life-threatening diseases of critically ill patients are known to derange microcirculation. Automatic analysis of microcirculation would provide a bedside diagnostic tool for microcirculatory disorders and allow immediate therapeutic decisions based upon microcirculation analysis. After induction of general anaesthesia and instrumentation for haemodynamic monitoring, haemorrhagic shock was induced in ten female sheep by stepwise blood withdrawal of 3 × 10 mL per kilogram body weight. Before and after the induction of haemorrhagic shock, haemodynamic variables, samples for blood gas analysis, and videos of conjunctival microcirculation were obtained by incident dark field illumination microscopy. Microcirculatory videos were analysed (1) manually with AVA software version 3.2 by an experienced user and (2) automatically by AVA software version 4.2 for total vessel density (TVD), perfused vessel density (PVD) and proportion of perfused vessels (PPV). Correlation between the two analysis methods was examined by intraclass correlation coefficient and Bland-Altman analysis. The induction of haemorrhagic shock decreased the mean arterial pressure (from 87 ± 11 to 40 ± 7 mmHg; p < 0.001); stroke volume index (from 38 ± 14 to 20 ± 5 ml·m -2 ; p = 0.001) and cardiac index (from 2.9 ± 0.9 to 1.8 ± 0.5 L·min -1 ·m -2 ; p < 0.001) and increased the heart rate (from 72 ± 9 to 87 ± 11 bpm; p < 0.001) and lactate concentration (from 0.9 ± 0.3 to 2.0 ± 0.6 mmol·L -1 ; p = 0.001). Manual analysis showed no change in TVD (17.8 ± 4.2 to 17.8 ± 3.8 mm*mm -2 ; p = 0.993), whereas PVD (from 15.6 ± 4.6 to 11.5 ± 6.5 mm*mm -2 ; p = 0.041) and PPV (from 85.9 ± 11.8 to 62.7 ± 29.6%; p = 0.017) decreased significantly. Automatic analysis was not able to identify these changes. Correlation analysis showed a poor correlation between the analysis methods and a wide spread of values in Bland-Altman analysis. As characteristic changes in microcirculation during ovine haemorrhagic shock were not detected by automatic analysis and correlation between automatic and manual analyses (current gold standard) was poor, the use of the investigated software for automatic analysis of microcirculation cannot be recommended in its current version at least in the investigated model. Further improvements in automatic vessel detection are needed before its routine use.

  12. Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy

    PubMed Central

    Zhou, Jibin; Ahmad, Firdos; Parikh, Shan; Hoffman, Nichole E.; Rajan, Sudarsan; Verma, Vipin K.; Song, Jianliang; Yuan, Ancai; Shanmughapriya, Santhanam; Guo, Yuanjun; Gao, Erhe; Koch, Walter; Woodgett, James R.; Muniswamy, Madesh; Kishore, Raj; Lal, Hind; Force, Thomas

    2016-01-01

    Rationale Cardiac myocyte-specific deletion of either Glycogen Synthase Kinase (GSK)3A or GSK3B leads to cardiac protection following myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration due to the fact that all GSK-3–targeted drugs including the drugs already in clinical trial target both isoforms of GSK-3 and none are isoform specific. Objective To identify the consequences of combined deletion of cardiac myocyte GSK3A and GSK3B in heart function. Methods and Results We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout, DKO). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, DKO hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from DKO implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. DKO cardiac myocytes showed cell cycle progression resulting in increased DNA content and multi-nucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. Conclusion Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis and its loss is incompatible with life due to cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy. PMID:26976650

  13. Comparative Analysis of Telomerase Activity in CD117⁺ CD34⁺ Cardiac Telocytes with Bone Mesenchymal Stem Cells, Cardiac Fibroblasts and Cardiomyocytes.

    PubMed

    Li, Yuan-Yuan; Lu, Shan-Shan; Xu, Ting; Zhang, Hong-Qi; Li, Hua

    2015-07-20

    This study characterized the cardiac telocyte (TC) population both in vivo and in vitro, and investigated its telomerase activity related to mitosis. Using transmission electron microscopy and a phase contrast microscope, the typical morphological features of cardiac TCs were observed; by targeting the cell surface proteins CD117 and CD34, CD117 + CD34 + cardiac TCs were sorted via flow cytometry and validated by immunofluorescence based on the primary cell culture. Then the optimized basal nutrient medium for selected population was examined with the cell counting kit 8. Under this conditioned medium, the process of cell division was captured, and the telomerase activity of CD117 + CD34 + cardiac TCs was detected in comparison with bone mesenchymal stem cells (BMSCs), cardiac fibroblasts (CFBs), cardiomyocytes (CMs). Cardiac TCs projected characteristic telopodes with thin segments (podomers) in alternation with dilation (podoms). In addition, 64% of the primary cultured cardiac TCs were composed of CD117 + CD34 + cardiac TCs; which was verified by immunofluorescence. In a live cell imaging system, CD117 + CD34 + cardiac TCs were observed to enter into cell division in a short time, followed by an significant invagination forming across the middle of the cell body. Using a real-time quantitative telomeric-repeat amplification assay, the telomerase concentration in CD117 + CD34 + cardiac TCs was obviously lower than in BMSCs and CFBs, and significantly higher than in CMs. Cardiac TCs represent a unique cell population and CD117 + CD34 + cardiac TCs have relative low telomerase activity that differs from BMSCs, CFBs and CMs and thus they might play an important role in maintaining cardiac homeostasis.

  14. Survival and surgical outcomes of cardiac cancer of the remnant stomach in comparison with primary cardiac cancer

    PubMed Central

    2014-01-01

    Background Although cardiac cancer of the remnant stomach and primary cardiac cancer both occur in the same position, their clinical characteristics and outcomes have not been compared previously. The objective of this study was designed to evaluate the prognosis of cardiac cancer of the remnant stomach in comparison with primary cardiac cancer. Methods In this retrospective comparative study, clinical data and prognosis were compared in 48 patients with cardiac cancer of the remnant stomach and 96 patients with primary cardiac cancer who underwent radical resection from January 1995 to June 2007. Clinicopathologic characteristics, survival times, mortality, and complications were analyzed. Results The 5-year survival rate was significantly higher in patients with primary cardiac cancer than in those with cardiac cancer of the remnant stomach (28.4% vs. 16.7%, P = 0.035). Serosal invasion, lymph node metastasis and tumor location were independent prognostic factors for survival. Subgroup analysis, however, showed similar survival rates in patients with primary cardiac cancer and cardiac cancer of the remnant stomach without serosal invasion (25.0% vs. 43.8%, P = 0.214) and without lymph node metastasis (25.0% vs. 38.8%, P = 0.255), as well as similar complication rates (20.8% vs. 11.5%, P = 0.138). Conclusion Although the survival rates after radical resection in patients with cardiac cancer of the remnant stomach were poorer than in those with primary cardiac cancer, they were similar in survival rates when patients without serosal invasion or lymph node metastasis. Therefore, early detection is an important way to improve overall survival in cardiac cancer of the remnant stomach. PMID:24468299

  15. Blunt Cardiac Injury in the Severely Injured – A Retrospective Multicentre Study

    PubMed Central

    Hanschen, Marc; Kanz, Karl-Georg; Kirchhoff, Chlodwig; Khalil, Philipe N.; Wierer, Matthias; van Griensven, Martijn; Laugwitz, Karl-Ludwig; Biberthaler, Peter; Lefering, Rolf; Huber-Wagner, Stefan

    2015-01-01

    Background Blunt cardiac injury is a rare trauma entity. Here, we sought to evaluate the relevance and prognostic significance of blunt cardiac injury in severely injured patients. Methods In a retrospective multicentre study, using data collected from 47,580 patients enrolled to TraumaRegister DGU (1993-2009), characteristics of trauma, prehospital / hospital trauma management, and outcome analysis were correlated to the severity of blunt cardiac injury. The severity of cardiac injury was assessed according to the abbreviated injury score (AIS score 1-6), the revised injury severity score (RISC) allowed comparison of expected outcome with injury severity-dependent outcome. N = 1.090 had blunt cardiac trauma (AIS 1-6) (2.3% of patients). Results Predictors of blunt cardiac injury could be identified. Sternal fractures indicate a high risk of the presence of blunt cardiac injury (AIS 0 [control]: 3.0%; AIS 1: 19.3%; AIS 2-6: 19.1%). The overall mortality rate was 13.9%, minor cardiac injury (AIS 1) and severe cardiac injury (AIS 2-6) are associated with higher rates. Severe blunt cardiac injury (AIS 4 and AIS 5-6) is associated with a higher mortality (OR 2.79 and 4.89, respectively) as compared to the predicted average mortality (OR 2.49) of the study collective. Conclusion Multiple injured patients with blunt cardiac trauma are at high risk to be underestimated. Careful evaluation of trauma patients is able to predict the presence of blunt cardiac injury. The severity of blunt cardiac injury needs to be stratified according to the AIS score, as the patients’ outcome is dependent on the severity of cardiac injury. PMID:26136126

  16. Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy.

    PubMed

    Zhou, Jibin; Ahmad, Firdos; Parikh, Shan; Hoffman, Nichole E; Rajan, Sudarsan; Verma, Vipin K; Song, Jianliang; Yuan, Ancai; Shanmughapriya, Santhanam; Guo, Yuanjun; Gao, Erhe; Koch, Walter; Woodgett, James R; Madesh, Muniswamy; Kishore, Raj; Lal, Hind; Force, Thomas

    2016-04-15

    Cardiac myocyte-specific deletion of either glycogen synthase kinase (GSK)-3α and GSK-3β leads to cardiac protection after myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration because of the fact that all GSK-3-targeted drugs, including the drugs already in clinical trial target both isoforms of GSK-3, and none are isoform specific. To identify the consequences of combined deletion of cardiac myocyte GSK-3α and GSK-3β in heart function. We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, double-knockout hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from double-knockout implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. Double-knockout cardiac myocytes showed cell cycle progression resulting in increased DNA content and multinucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe-induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis, and its loss is incompatible with life because of cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy. © 2016 American Heart Association, Inc.

  17. Modulation of cardiac fibrosis by Krüppel-like factor 6 through transcriptional control of thrombospondin 4 in cardiomyocytes

    PubMed Central

    Sawaki, Daigo; Hou, Lianguo; Tomida, Shota; Sun, Junqing; Zhan, Hong; Aizawa, Kenichi; Son, Bo-Kyung; Kariya, Taro; Takimoto, Eiki; Otsu, Kinya; Conway, Simon J.; Manabe, Ichiro; Komuro, Issei; Friedman, Scott L.; Nagai, Ryozo; Suzuki, Toru

    2015-01-01

    Aims Krüppel-like factors (KLFs) are a family of transcription factors which play important roles in the heart under pathological and developmental conditions. We previously identified and cloned Klf6 whose homozygous mutation in mice results in embryonic lethality suggesting a role in cardiovascular development. Effects of KLF6 on pathological regulation of the heart were investigated in the present study. Methods and results Mice heterozygous for Klf6 resulted in significantly diminished levels of cardiac fibrosis in response to angiotensin II infusion. Intriguingly, a similar phenotype was seen in cardiomyocyte-specific Klf6 knockout mice, but not in cardiac fibroblast-specific knockout mice. Microarray analysis revealed increased levels of the extracellular matrix factor, thrombospondin 4 (TSP4), in the Klf6-ablated heart. Mechanistically, KLF6 directly suppressed Tsp4 expression levels, and cardiac TSP4 regulated the activation of cardiac fibroblasts to regulate cardiac fibrosis. Conclusion Our present studies on the cardiac function of KLF6 show a new mechanism whereby cardiomyocytes regulate cardiac fibrosis through transcriptional control of the extracellular matrix factor, TSP4, which, in turn, modulates activation of cardiac fibroblasts. PMID:25987545

  18. Limits of clinical tests to screen autonomic function in diabetes type 1.

    PubMed

    Ducher, M; Bertram, D; Sagnol, I; Cerutti, C; Thivolet, C; Fauvel, J P

    2001-11-01

    A precocious detection of cardiac autonomic dysfunction is of major clinical interest that could lead to a more intensive supervision of diabetic patients. However, classical clinical exploration of cardiac autonomic function is not easy to undertake in a reproducible way. Thus, respective interests of autonomic nervous parameters provided by both clinical tests and computerized analysis of resting blood pressure were checked in type 1 diabetic patients without orthostatic hypotension and microalbuminuria. Thirteen diabetic subjects matched for age and gender to thirteen healthy subjects volunteered to participate to the study. From clinical tests (standing up, deep breathing, Valsalva maneuver, handgrip test), autonomic function was scored according to Ewing's methodology. Analysis of resting beat to beat blood pressure provided autonomic indices of the cardiac function (spectral analysis or Z analysis). 5 of the 13 diabetic patients exhibited a pathological score (more than one pathological response) suggesting the presence of cardiovascular autonomic dysfunction. The most discriminative test was the deep breathing test. However, spectral indices of BP recordings and baro-reflex sensitivity (BRS) of these 5 subjects were similar to those of healthy subjects and of remaining diabetic subjects. Alteration in Ewing's score given by clinical tests may not reflect an alteration of cardiac autonomic function in asymptomatic type 1 diabetic patients, because spectral indices of sympathetic and parasympathetic (including BRS) function were within normal range. Our results strongly suggest to confront results provided by both methodologies before concluding to an autonomic cardiac impairment in asymptomatic diabetic patients.

  19. Rho-associated kinases play an essential role in cardiac morphogenesis and cardiomyocyte proliferation.

    PubMed

    Zhao, Zhiyong; Rivkees, Scott A

    2003-01-01

    Rho-associated coiled-coil kinases (ROCKs), initially identified as effectors for Rho GTPases, play a role in cardiac cell physiology and are also expressed in the developing heart. However, their role in cardiac development is not known. To investigate the role of these kinases in cardiac development, we examined cardiac development in cultured murine embryos treated with the ROCK inhibitor Y27632. After inhibition of ROCK activity, we found disturbed cardiac chamber formation and trabeculation. To further examine the mechanisms by which ROCK blockade causes cardiac hypoplasia, we assessed programmed cell death and cell proliferation in the hearts. We found decreased cell proliferation in the Y27632-treated hearts, but no changes in programmed cell death. We further observed that ROCK inhibition decreased cardiac myocyte proliferation, suggesting that ROCK kinases regulate cardiomyocyte division. To identify factors involved in ROCK action in regulation of cardiac cell division, we examined expression of cell cycle proteins by using Western blot analysis. We found that ROCK blockade decreased expression of cell cycle proteins, cyclin D3, CDK6, and p27(KIP1) in the hearts and cardiomyocytes, which are required for initiation of cell cycle and G1/S phase transition. These observations show that ROCK kinases play a role in cardiac development and that ROCK kinases regulate cardiac cell proliferation and cell cycle protein expression. Copyright 2002 Wiley-Liss, Inc.

  20. Sudden cardiac death and sarcoidosis of the heart in a young patient.

    PubMed

    Jotterand, Morgane; Grabherr, Silke; Lobrinus, Johannes Alexandre; Michaud, Katarzyna

    Sarcoidosis is a granulomatous disease of unknown etiology affecting any organ, microscopically characterized by noncaseating granulomata. Cardiac involvement in sarcoidosis has been reported. It might be symptomatic or not and even revealed by sudden death. Heart conduction system is rarely investigated at autopsy, even in cases of sudden cardiac death. We present a case of a 32-year-old woman who died suddenly. The examination of the heart conduction system revealed a cardiac sarcoidosis that could explain the sudden death. The review of clinical data of the patient revealed some symptoms consistent/in agreement with this hypothesis. Cardiac sarcoidosis remains a diagnostic challenge and can be easily missed, clinically and pathologically. The retrospective analysis of clinical data and autopsy results of fatal and unusual cases might help to better understand sarcoidosis and its clinical presentations. Examination of the cardiac conduction system is crucial in selected cases of sudden cardiac death. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Scanning X-ray diffraction on cardiac tissue: automatized data analysis and processing.

    PubMed

    Nicolas, Jan David; Bernhardt, Marten; Markus, Andrea; Alves, Frauke; Burghammer, Manfred; Salditt, Tim

    2017-11-01

    A scanning X-ray diffraction study of cardiac tissue has been performed, covering the entire cross section of a mouse heart slice. To this end, moderate focusing by compound refractive lenses to micrometer spot size, continuous scanning, data acquisition by a fast single-photon-counting pixel detector, and fully automated analysis scripts have been combined. It was shown that a surprising amount of structural data can be harvested from such a scan, evaluating the local scattering intensity, interfilament spacing of the muscle tissue, the filament orientation, and the degree of anisotropy. The workflow of data analysis is described and a data analysis toolbox with example data for general use is provided. Since many cardiomyopathies rely on the structural integrity of the sarcomere, the contractile unit of cardiac muscle cells, the present study can be easily extended to characterize tissue from a diseased heart.

  2. Optimisation of quantitative lung SPECT applied to mild COPD: a software phantom simulation study.

    PubMed

    Norberg, Pernilla; Olsson, Anna; Alm Carlsson, Gudrun; Sandborg, Michael; Gustafsson, Agnetha

    2015-01-01

    The amount of inhomogeneities in a (99m)Tc Technegas single-photon emission computed tomography (SPECT) lung image, caused by reduced ventilation in lung regions affected by chronic obstructive pulmonary disease (COPD), is correlated to disease advancement. A quantitative analysis method, the CVT method, measuring these inhomogeneities was proposed in earlier work. To detect mild COPD, which is a difficult task, optimised parameter values are needed. In this work, the CVT method was optimised with respect to the parameter values of acquisition, reconstruction and analysis. The ordered subset expectation maximisation (OSEM) algorithm was used for reconstructing the lung SPECT images. As a first step towards clinical application of the CVT method in detecting mild COPD, this study was based on simulated SPECT images of an advanced anthropomorphic lung software phantom including respiratory and cardiac motion, where the mild COPD lung had an overall ventilation reduction of 5%. The best separation between healthy and mild COPD lung images as determined using the CVT measure of ventilation inhomogeneity and 125 MBq (99m)Tc was obtained using a low-energy high-resolution collimator (LEHR) and a power 6 Butterworth post-filter with a cutoff frequency of 0.6 to 0.7 cm(-1). Sixty-four reconstruction updates and a small kernel size should be used when the whole lung is analysed, and for the reduced lung a greater number of updates and a larger kernel size are needed. A LEHR collimator and 125 (99m)Tc MBq together with an optimal combination of cutoff frequency, number of updates and kernel size, gave the best result. Suboptimal selections of either cutoff frequency, number of updates and kernel size will reduce the imaging system's ability to detect mild COPD in the lung phantom.

  3. AEDs at your fingertips: automated external defibrillators on college campuses and a novel approach for increasing accessibility.

    PubMed

    Berger, Ryan J; O'Shea, Jesse G

    2014-01-01

    The use of automated external defibrillators (AEDs) increases survival in cardiac arrest events. Due to the success of previous efforts and free, readily available mobile mapping software, the discussion is to emphasize the importance of the use of AEDs to prevent sudden cardiac arrest-related deaths on college campuses and abroad, while suggesting a novel approach to aiding in access and awareness issues. A user-friendly mobile application (a low-cost iOS map) was developed at Florida State University to decrease AED retrieval distance and time. The development of mobile AED maps is feasible for a variety of universities and other entities, with the potential to save lives. Just having AEDs installed is not enough--they need to be easily locatable. Society increasingly relies on phones to provide information, and there are opportunities to use mobile technology to locate and share information about relevant emergency devices; these should be incorporated into the chain of survival.

  4. High-temporal-resolution CdTe nuclear stethoscope for cardiac γ-ventriculography: preclinical evaluation

    NASA Astrophysics Data System (ADS)

    Eclancher, Bernard; Arntz, Y.; Chambron, Jacques; Prat, Vincent; Perret, C.; Karman, Miklos; Pszota, Agnes; Nemeth, Laszlo

    1999-10-01

    A hand-size probe including 64 elementary 5 X 5 X 2 mm CdTe detectors has been optimized to detect the (gamma) tracer 99Tc in the heart left ventricle. The system, has been developed, not for imaging, allowing acquisitions at 33 Hz to describe the labeled blood volume variations. The (gamma) -counts variations were found accurately proportional to the known volume variations of an artificial ventricle paced at variable rate and systolic volume. Softwares for on line data monitoring and for post-processing have been developed for beat to beat assessment of cardiac performance at rest and during physical exercise. The evaluation of this probe has been performed on 5 subjects in the Nucl Dep of Balatonfured Cardiology Hospital. It appears that the probe needs to be better shielded to work properly in the hot environment of the ventricle, but can provide reliable ventriculography, even under heavy exercise load, although the ventricle volume itself is unknown.

  5. Data analysis software for the autoradiographic enhancement process. Volumes 1, 2, and 3, and appendix

    NASA Technical Reports Server (NTRS)

    Singh, S. P.

    1979-01-01

    The computer software developed to set up a method for Wiener spectrum analysis of photographic films is presented. This method is used for the quantitative analysis of the autoradiographic enhancement process. The software requirements and design for the autoradiographic enhancement process are given along with the program listings and the users manual. A software description and program listings modification of the data analysis software are included.

  6. Large-deflection statics analysis of active cardiac catheters through co-rotational modelling.

    PubMed

    Peng Qi; Chen Qiu; Mehndiratta, Aadarsh; I-Ming Chen; Haoyong Yu

    2016-08-01

    This paper presents a co-rotational concept for large-deflection formulation of cardiac catheters. Using this approach, the catheter is first discretized with a number of equal length beam elements and nodes, and the rigid body motions of an individual beam element are separated from its deformations. Therefore, it is adequate for modelling arbitrarily large deflections of a catheter with linear elastic analysis at the local element level. A novel design of active cardiac catheter of 9 Fr in diameter at the beginning of the paper is proposed, which is based on the contra-rotating double helix patterns and is improved from the previous prototypes. The modelling section is followed by MATLAB simulations of various deflections when the catheter is exerted different types of loads. This proves the feasibility of the presented modelling approach. To the best knowledge of the authors, it is the first to utilize this methodology for large-deflection static analysis of the catheter, which will enable more accurate control of robot-assisted cardiac catheterization procedures. Future work would include further experimental validations.

  7. Resuscitation Practices Associated With Survival After In-Hospital Cardiac Arrest: A Nationwide Survey.

    PubMed

    Chan, Paul S; Krein, Sarah L; Tang, Fengming; Iwashyna, Theodore J; Harrod, Molly; Kennedy, Mary; Lehrich, Jessica; Kronick, Steven; Nallamothu, Brahmajee K

    2016-05-01

    Although survival of patients with in-hospital cardiac arrest varies markedly among hospitals, specific resuscitation practices that distinguish sites with higher cardiac arrest survival rates remain unknown. To identify resuscitation practices associated with higher rates of in-hospital cardiac arrest survival. Nationwide survey of resuscitation practices at hospitals participating in the Get With the Guidelines-Resuscitation registry and with 20 or more adult in-hospital cardiac arrest cases from January 1, 2012, through December 31, 2013. Data analysis was performed from June 10 to December 22, 2015. Risk-standardized survival rates for cardiac arrest were calculated at each hospital and were then used to categorize hospitals into quintiles of performance. The association between resuscitation practices and quintiles of survival was evaluated using hierarchical proportional odds logistic regression models. Overall, 150 (78.1%) of 192 eligible hospitals completed the study survey, and 131 facilities with 20 or more adult in-hospital cardiac arrest cases comprised the final study cohort. Risk-standardized survival rates after in-hospital cardiac arrest varied substantially (median, 23.7%; range, 9.2%-37.5%). Several resuscitation practices were associated with survival on bivariate analysis, although only 3 were significant after multivariable adjustment: monitoring for interruptions in chest compressions (adjusted odds ratio [OR] for being in a higher survival quintile category, 2.71; 95% CI, 1.24-5.93; P = .01), reviewing cardiac arrest cases monthly (adjusted OR for being in a higher survival quintile category, 8.55; 95% CI, 1.79-40.00) or quarterly (OR, 6.85; 95% CI, 1.49-31.30; P = .03), and adequate resuscitation training (adjusted OR, 3.23; 95% CI, 1.21-8.33; P = .02). Using survey information from acute care hospitals participating in a national quality improvement registry, we identified 3 resuscitation strategies associated with higher hospital rates of survival for patients with in-hospital cardiac arrest. These strategies can form the foundation for best practices for resuscitation care at hospitals given the high incidence and variation in survival for in-hospital cardiac arrest.

  8. Circulating microRNAs as emerging cardiac biomarkers responsive to acute exercise.

    PubMed

    de Gonzalo-Calvo, David; Dávalos, Alberto; Fernández-Sanjurjo, Manuel; Amado-Rodríguez, Laura; Díaz-Coto, Susana; Tomás-Zapico, Cristina; Montero, Ana; García-González, Ángela; Llorente-Cortés, Vicenta; Heras, Maria Eugenia; Boraita Pérez, Araceli; Díaz-Martínez, Ángel E; Úbeda, Natalia; Iglesias-Gutiérrez, Eduardo

    2018-08-01

    Circulating microRNAs (c-miRNAs) are mediators of intercellular communication with great potential as cardiac biomarkers. The analysis of c-miRNAs in response to physiological stress, such as exercise, would provide valuable information for clinical practice and a deeper understanding of the molecular response to physical activity. Here, we analysed for the first time the acute exercise response of c-miRNAs reported as biomarkers of cardiac disease in a well-characterized cohort of healthy active adults. Blood samples were collected immediately before and after (0 h, 24 h, 72 h) a 10-km race, a half-marathon (HM) and a marathon (M). Serum RNA from 10-km and M samples was extracted and a panel of 74 miRNAs analysed using RT-qPCR. c-miRNA response was compared with a panel of nine cardiac biomarkers. Functional enrichment analysis was performed. Pre- and post-M echocardiographic analyses were carried out. Serum levels of all cardiac biomarkers were upregulated in a dose-dependent manner in response to exercise, even in the absence of symptoms or signs of cardiac injury. A deregulation in the profiles of 5 and 19 c-miRNAs was observed for 10-km and M, respectively. Each race induced a specific qualitative and quantitative alteration of c-miRNAs implicated in cardiac adaptions. Supporting their discriminative potential, a number of c-miRNAs previously associated with cardiac disease were undetectable or stable in response to exercise. Conversely, "pseudo-disease" signatures were also observed. c-miRNAs may be useful for the management of cardiac conditions in the context of acute aerobic exercise. Circulating microRNAs could offer incremental diagnostic value to established and emerging cardiac biomarkers, such as hs-cTnT or NT-proBNP, in those patients with cardiac dysfunction symptoms after an acute bout of endurance exercise. Furthermore, circulating miRNAs could also show "pseudo-disease" signatures in response to acute exercise. Clinical practitioners should be aware of the impact caused by exercise in the interpretation of miRNA data. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Correlation between increased urinary sodium excretion and decreased left ventricular diastolic function in patients with type 2 diabetes mellitus.

    PubMed

    Kagiyama, Shuntaro; Koga, Tokushi; Kaseda, Shigeru; Ishihara, Shiro; Kawazoe, Nobuyuki; Sadoshima, Seizo; Matsumura, Kiyoshi; Takata, Yutaka; Tsuchihashi, Takuya; Iida, Mitsuo

    2009-10-01

    Increased salt intake may induce hypertension, lead to cardiac hypertrophy, and exacerbate heart failure. When elderly patients develop heart failure, diastolic dysfunction is often observed, although the ejection fraction has decreased. Diabetes mellitus (DM) is an established risk factor for heart failure. However, little is known about the relationship between cardiac function and urinary sodium excretion (U-Na) in patients with DM. We measured 24-hour U-Na; cardiac function was evaluated directly during coronary catheterization in type 2 DM (n = 46) or non-DM (n = 55) patients with preserved cardiac systolic function (ejection fraction > or = 60%). Cardiac diastolic and systolic function was evaluated as - dp/dt and + dp/dt, respectively. The average of U-Na was 166.6 +/- 61.2 mEq/24 hour (mean +/- SD). In all patients, stepwise multivariate regression analysis revealed that - dp/dt had a negative correlation with serum B-type natriuretic peptide (BNP; beta = - 0.23, P = .021) and U-Na (beta = - 0.24, P = .013). On the other hand, + dp/dt negatively correlated with BNP (beta = - 0.30, P < .001), but did not relate to U-Na. In the DM-patients, stepwise multivariate regression analysis showed that - dp/dt still had a negative correlation with U-Na (beta = - 0.33, P = .025). The results indicated that increased urinary sodium excretion is associated with an impairment of cardiac diastolic function, especially in patients with DM, suggesting that a reduction of salt intake may improve cardiac diastolic function.

  10. Patient perceptions of experience with cardiac rehabilitation after isolated heart valve surgery.

    PubMed

    Hansen, Tina B; Berg, Selina K; Sibilitz, Kirstine L; Zwisler, Ann D; Norekvål, Tone M; Lee, Anne; Buus, Niels

    2018-01-01

    Little evidence exists on whether cardiac rehabilitation is effective for patients after heart valve surgery. Yet, accepted recommendations for patients with ischaemic heart disease continue to support it. To date, no studies have determined what heart valve surgery patients prefer in a cardiac rehabilitation programme, and none have analysed their experiences with it. The purpose of this qualitative analysis was to gain insight into patients' experiences in cardiac rehabilitation, the CopenHeart VR trial. This trial specifically assesses patients undergoing isolated heart valve surgery. Semi-structured interviews were conducted with nine patients recruited from the intervention arm of the trial. The intervention consisted of a physical training programme and a psycho-educational intervention. Participants were interviewed three times: 2-3 weeks, 3-4 months and 8-9 months after surgery between April 2013 and October 2014. Data were analysed using qualitative thematic analysis. Participants had diverse needs and preferences. Two overall themes emerged: cardiac rehabilitation played an important role in (i) reducing insecurity and (ii) helping participants to take active personal responsibility for their health. Despite these benefits, participants experienced existential and psychological challenges and musculoskeletal problems. Participants also sought additional advice from healthcare professionals both inside and outside the healthcare system. Even though the cardiac rehabilitation programme reduced insecurity and helped participants take active personal responsibility for their health, they experienced existential, psychological and physical challenges during recovery. The cardiac rehabilitation programme had several limitations, having implications for designing future programmes.

  11. Cardiac gating with a pulse oximeter for dual-energy imaging.

    PubMed

    Shkumat, N A; Siewerdsen, J H; Dhanantwari, A C; Williams, D B; Paul, N S; Yorkston, J; Van Metter, R

    2008-11-07

    The development and evaluation of a prototype cardiac gating system for double-shot dual-energy (DE) imaging is described. By acquiring both low- and high-kVp images during the resting phase of the cardiac cycle (diastole), heart misalignment between images can be reduced, thereby decreasing the magnitude of cardiac motion artifacts. For this initial implementation, a fingertip pulse oximeter was employed to measure the peripheral pulse waveform ('plethysmogram'), offering potential logistic, cost and workflow advantages compared to an electrocardiogram. A gating method was developed that accommodates temporal delays due to physiological pulse propagation, oximeter waveform processing and the imaging system (software, filter-wheel, anti-scatter Bucky-grid and flat-panel detector). Modeling the diastolic period allowed the calculation of an implemented delay, t(imp), required to trigger correctly during diastole at any patient heart rate (HR). The model suggests a triggering scheme characterized by two HR regimes, separated by a threshold, HR(thresh). For rates at or below HR(thresh), sufficient time exists to expose on the same heartbeat as the plethysmogram pulse [t(imp)(HR) = 0]. Above HR(thresh), a characteristic t(imp)(HR) delays exposure to the subsequent heartbeat, accounting for all fixed and variable system delays. Performance was evaluated in terms of accuracy and precision of diastole-trigger coincidence and quantitative evaluation of artifact severity in gated and ungated DE images. Initial implementation indicated 85% accuracy in diastole-trigger coincidence. Through the identification of an improved HR estimation method (modified temporal smoothing of the oximeter waveform), trigger accuracy of 100% could be achieved with improved precision. To quantify the effect of the gating system on DE image quality, human observer tests were conducted to measure the magnitude of cardiac artifact under conditions of successful and unsuccessful diastolic gating. Six observers independently measured the artifact in 111 patient DE images. The data indicate that successful diastolic gating results in a statistically significant reduction (p < 0.001) in the magnitude of cardiac motion artifact, with residual artifact attributed primarily to gross patient motion.

  12. Impaired atrioventricular transport in patients with transposition of the great arteries palliated by atrial switch and preserved systolic right ventricular function: A magnetic resonance imaging study.

    PubMed

    Ladouceur, Magalie; Kachenoura, Nadjia; Soulat, Gilles; Bollache, Emilie; Redheuil, Alban; Azizi, Michel; Delclaux, Christophe; Chatellier, Gilles; Boutouyrie, Pierre; Iserin, Laurence; Bonnet, Damien; Mousseaux, Elie

    2017-07-01

    We aimed (1) determine if systemic right ventricle filling parameters influence systemic right ventricle stroke volume in adult patients with D-transposition of the great arteries (D-TGA) palliated by atrial switch, using cardiac magnetic resonance imaging and echocardiography, and (2) to study relationship of these diastolic parameters with exercise performance and BNP, in patients with preserved systolic systemic right ventricle function. Single-center, cross-sectional, prospective study. In patients with D-TGA palliated by atrial switch, diastolic dysfunction of the systemic right ventricle may precede systolic dysfunction. Forty-five patients with D-TGA and atrial switch and 45 age and sex-matched healthy subjects underwent cardiac magnetic resonance imaging and echocardiography. Filling flow-rates measured by phase-contrast cardiac magnetic resonance imaging were analyzed using customized software to estimate diastolic parameters and compared with exercise performance. In D-TGA, early filling of systemic right ventricle was impaired with a lower peak filling rate normalized by filling volume (Ef/FV measured by cardiac magnetic resonance imaging) and a higher early filling peak velocity normalized by early peak myocardial velocity (E US /Ea measured by echocardiography) compared with controls (P ≤ .04). Stroke volume of systemic right ventricle showed a direct and significant association with pulmonary venous pathway size (respectively r = 0.50, P < .01). Systemic right atrial area and systemic right ventricle mass/volume index measured by cardiac magnetic resonance imaging, as well as Ef/FV were significantly correlated with exercise performances and BNP (P < .01). All correlations were independent of age, gender, body mass index and blood pressure. Systemic right ventricle pre-load and stroke volume depend mainly on intraatrial pathway function. Moreover, systemic right ventricle remodeling and right atrial dysfunction impair systemic right ventricle filling, leading to BNP increase and exercise limitation. Cardiac magnetic resonance imaging should assess systemic right ventricle filling abnormalities in D-TGA patients. © 2017 Wiley Periodicals, Inc.

  13. A Comparison of a Machine Learning Model with EuroSCORE II in Predicting Mortality after Elective Cardiac Surgery: A Decision Curve Analysis

    PubMed Central

    Allyn, Jérôme; Allou, Nicolas; Augustin, Pascal; Philip, Ivan; Martinet, Olivier; Belghiti, Myriem; Provenchere, Sophie; Montravers, Philippe; Ferdynus, Cyril

    2017-01-01

    Background The benefits of cardiac surgery are sometimes difficult to predict and the decision to operate on a given individual is complex. Machine Learning and Decision Curve Analysis (DCA) are recent methods developed to create and evaluate prediction models. Methods and finding We conducted a retrospective cohort study using a prospective collected database from December 2005 to December 2012, from a cardiac surgical center at University Hospital. The different models of prediction of mortality in-hospital after elective cardiac surgery, including EuroSCORE II, a logistic regression model and a machine learning model, were compared by ROC and DCA. Of the 6,520 patients having elective cardiac surgery with cardiopulmonary bypass, 6.3% died. Mean age was 63.4 years old (standard deviation 14.4), and mean EuroSCORE II was 3.7 (4.8) %. The area under ROC curve (IC95%) for the machine learning model (0.795 (0.755–0.834)) was significantly higher than EuroSCORE II or the logistic regression model (respectively, 0.737 (0.691–0.783) and 0.742 (0.698–0.785), p < 0.0001). Decision Curve Analysis showed that the machine learning model, in this monocentric study, has a greater benefit whatever the probability threshold. Conclusions According to ROC and DCA, machine learning model is more accurate in predicting mortality after elective cardiac surgery than EuroSCORE II. These results confirm the use of machine learning methods in the field of medical prediction. PMID:28060903

  14. Evaluation of concordance among three cardiac output measurement techniques in adult patients during cardiovascular surgery postoperative care.

    PubMed

    Muñoz, L; Velandia, A; Reyes, L E; Arevalo-Rodríguez, I; Mejía, C; Asprilla, D; Uribe, D V; Arevalo, J J

    2017-12-01

    The standard method for cardiac output measuring is thermodilution although it is an invasive technique. Transesophageal Echocardiography (TEE) offers a dynamic and functional alternative to thermodilution. Analyze concordance between two TEE methods and thermodilution for cardiac output assessment. Observational concordance study in cardiovascular surgery patients that required pulmonary artery catheter. TEE cardiac output measurement at both mitral annulus (MA) and left ventricle outflow tract (LVOT) were performed. Results were compared with thermodilution. Correlation was evaluated by Lin's concordance correlation coefficient and Bland-Altman analysis. Statistical analysis was undertaken in STATA 13.0. Twenty-five patients were enrolled. Fifty two percent of patients were male, median age and ejection fraction was 63 years and 35% respectively. Median thermodilution, LVOT and MA -measured cardiac output was 3.25 L/min, 3.46 L/min and 8.4 L/min respectively. Different values between thermodilution and MA measurements were found (Lin concordance=0.071; Confidence Interval 95%=-0.009 to 0.151; Spearman's correlation=0.22) as values between thermodilution and LVOT (Lin concordance=0.232; Confidence Interval 95%=-0.12 a 0.537; Spearman's correlation 0.28). Bland-Altman analysis showed greater difference between MA measurements and thermodilution (DM=-0.408; Bland-Altman Limits=-0.809 to -0.007), than the other echocardiographic findings (DM=0.007; Bland-Altman Limits=-0.441 to 0.428). Results from cardiac output measurement by doppler and 2D-TEE on both MA and LVOT do not correlate with those obtained by thermodilution. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  15. Causes of in-hospital cardiac arrest and influence on outcome.

    PubMed

    Wallmuller, Christian; Meron, Giora; Kurkciyan, Istepan; Schober, Andreas; Stratil, Peter; Sterz, Fritz

    2012-10-01

    To evaluate the relationship between cause and outcome of in-hospital cardiac arrest. Retrospective analysis of resuscitation data, causes of cardiac arrest and outcome with a follow-up to 6 months of a cardiac arrest registry in an emergency department of a tertiary care hospital, covering a 17.5-year period. Of 1041 patients, 653 were male (63%), the median age was 64 years (IQR 53-73), 51% suffered cardiac arrest in the emergency department. The first recorded rhythm showed PEA in 432 (41%), ventricular fibrillation in 404 (39%) and asystole in 205 (20%) patients. Cardiac arrest of cardiac origin occurred in 63% of all patients, with 35% of them due to acute myocardial infarction. Non-cardiac causes were mostly due to pulmonary causes (15% of all patients). Aortic dissection/rupture, exsanguination, intoxication and adverse drug reactions, metabolic, cerebral, sepsis and accidental hypothermia each ranged between 1 and 4% of the cohort. Of all patients, 376 (36%) were discharged in good neurologic condition. Overall, patients with cardiac causes had a significantly better outcome than those with non-cardiac causes (44% vs. 23%, p<0.01). Patients with pulmonary causes survived in 24%. The other subgroups showed widely divergent survival results (3-65%). Patients who had suffered cardiac arrest in the emergency department had a better outcome then patients of the regular ward or radiology department. In hospital cardiac arrest is caused mainly by cardiac and pulmonary causes, outcome depends on the cause, with a big variability. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. [The maximum heart rate in the exercise test: the 220-age formula or Sheffield's table?].

    PubMed

    Mesquita, A; Trabulo, M; Mendes, M; Viana, J F; Seabra-Gomes, R

    1996-02-01

    To determine in the maximum cardiac rate in exercise test of apparently healthy individuals may be more properly estimated through 220-age formula (Astrand) or the Sheffield table. Retrospective analysis of clinical history and exercises test of apparently healthy individuals submitted to cardiac check-up. Sequential sampling of 170 healthy individuals submitted to cardiac check-up between April 1988 and September 1992. Comparison of maximum cardiac rate of individuals studied by the protocols of Bruce and modified Bruce, in interrupted exercise test by fatigue, and with the estimated values by the formulae: 220-age versus Sheffield table. The maximum cardiac heart rate is similar with both protocols. This parameter in normal individuals is better predicted by the 220-age formula. The theoretic maximum cardiac heart rate determined by 220-age formula should be recommended for a healthy, and for this reason the Sheffield table has been excluded from our clinical practice.

  17. Dual regression physiological modeling of resting-state EPI power spectra: Effects of healthy aging.

    PubMed

    Viessmann, Olivia; Möller, Harald E; Jezzard, Peter

    2018-02-02

    Aging and disease-related changes in the arteriovasculature have been linked to elevated levels of cardiac cycle-induced pulsatility in the cerebral microcirculation. Functional magnetic resonance imaging (fMRI), acquired fast enough to unalias the cardiac frequency contributions, can be used to study these physiological signals in the brain. Here, we propose an iterative dual regression analysis in the frequency domain to model single voxel power spectra of echo planar imaging (EPI) data using external recordings of the cardiac and respiratory cycles as input. We further show that a data-driven variant, without external physiological traces, produces comparable results. We use this framework to map and quantify cardiac and respiratory contributions in healthy aging. We found a significant increase in the spatial extent of cardiac modulated white matter voxels with age, whereas the overall strength of cardiac-related EPI power did not show an age effect. Copyright © 2018. Published by Elsevier Inc.

  18. Identification of genes regulated during mechanical load-induced cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Johnatty, S. E.; Dyck, J. R.; Michael, L. H.; Olson, E. N.; Abdellatif, M.; Schneider, M. (Principal Investigator)

    2000-01-01

    Cardiac hypertrophy is associated with both adaptive and adverse changes in gene expression. To identify genes regulated by pressure overload, we performed suppressive subtractive hybridization between cDNA from the hearts of aortic-banded (7-day) and sham-operated mice. In parallel, we performed a subtraction between an adult and a neonatal heart, for the purpose of comparing different forms of cardiac hypertrophy. Sequencing more than 100 clones led to the identification of an array of functionally known (70%) and unknown genes (30%) that are upregulated during cardiac growth. At least nine of those genes were preferentially expressed in both the neonatal and pressure over-load hearts alike. Using Northern blot analysis to investigate whether some of the identified genes were upregulated in the load-independent calcineurin-induced cardiac hypertrophy mouse model, revealed its incomplete similarity with the former models of cardiac growth. Copyright 2000 Academic Press.

  19. Coi-wiz: An interactive computer wizard for analyzing cardiac optical signals.

    PubMed

    Yuan, Xiaojing; Uyanik, Ilyas; Situ, Ning; Xi, Yutao; Cheng, Jie

    2009-01-01

    A number of revolutionary techniques have been developed for cardiac electrophysiology research to better study the various arrhythmia mechanisms that can enhance ablating strategies for cardiac arrhythmias. Once the three-dimensional high resolution cardiac optical imaging data is acquired, it is time consuming to manually go through them and try to identify the patterns associated with various arrhythmia symptoms. In this paper, we present an interactive computer wizard that helps cardiac electrophysiology researchers to visualize and analyze the high resolution cardiac optical imaging data. The wizard provides a file interface that accommodates different file formats. A series of analysis algorithms output waveforms, activation and action potential maps after spatial and temporal filtering, velocity field and heterogeneity measure. The interactive GUI allows the researcher to identify the region of interest in both the spatial and temporal domain, thus enabling them to study different heart chamber at their choice.

  20. Infusing Reliability Techniques into Software Safety Analysis

    NASA Technical Reports Server (NTRS)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  1. Regular physical exercise improves cardiac autonomic and muscle vasodilatory responses to isometric exercise in healthy elderly.

    PubMed

    Sarmento, Adriana de Oliveira; Santos, Amilton da Cruz; Trombetta, Ivani Credidio; Dantas, Marciano Moacir; Oliveira Marques, Ana Cristina; do Nascimento, Leone Severino; Barbosa, Bruno Teixeira; Dos Santos, Marcelo Rodrigues; Andrade, Maria do Amparo; Jaguaribe-Lima, Anna Myrna; Brasileiro-Santos, Maria do Socorro

    2017-01-01

    The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis) and muscle blood flow (venous occlusion plethysmography) were measured for 10 minutes at rest (baseline) and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver). Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann-Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey's post hoc test. Sedentary older adults had higher cardiac sympathetic activity compared to physically active older adult subjects at baseline (63.13±3.31 vs 50.45±3.55 nu, P =0.02). The variance (heart rate variability index) was increased in active older adults (1,438.64±448.90 vs 1,402.92±385.14 ms, P =0.02), and cardiac sympathetic activity (symbolic analysis) was increased in sedentary older adults (5,660.91±1,626.72 vs 4,381.35±1,852.87, P =0.03) during isometric handgrip exercise. Sedentary older adults showed higher cardiac sympathetic activity (spectral analysis) (71.29±4.40 vs 58.30±3.50 nu, P =0.03) and lower parasympathetic modulation (28.79±4.37 vs 41.77±3.47 nu, P =0.03) compared to physically active older adult subjects during isometric handgrip exercise. Regarding muscle vasodilation response, there was an increase in the skeletal muscle blood flow in the second (4.1±0.5 vs 3.7±0.4 mL/min per 100 mL, P =0.01) and third minute (4.4±0.4 vs 3.9±0.3 mL/min per 100 mL, P =0.03) of handgrip exercise in active older adults. The results indicate that regular physical activity improves neurovascular control of muscle blood flow and cardiac autonomic response during isometric handgrip exercise in healthy older adult subjects.

  2. Regular physical exercise improves cardiac autonomic and muscle vasodilatory responses to isometric exercise in healthy elderly

    PubMed Central

    Sarmento, Adriana de Oliveira; Santos, Amilton da Cruz; Trombetta, Ivani Credidio; Dantas, Marciano Moacir; Oliveira Marques, Ana Cristina; do Nascimento, Leone Severino; Barbosa, Bruno Teixeira; Dos Santos, Marcelo Rodrigues; Andrade, Maria do Amparo; Jaguaribe-Lima, Anna Myrna; Brasileiro-Santos, Maria do Socorro

    2017-01-01

    The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis) and muscle blood flow (venous occlusion plethysmography) were measured for 10 minutes at rest (baseline) and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver). Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann–Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey’s post hoc test. Sedentary older adults had higher cardiac sympathetic activity compared to physically active older adult subjects at baseline (63.13±3.31 vs 50.45±3.55 nu, P=0.02). The variance (heart rate variability index) was increased in active older adults (1,438.64±448.90 vs 1,402.92±385.14 ms, P=0.02), and cardiac sympathetic activity (symbolic analysis) was increased in sedentary older adults (5,660.91±1,626.72 vs 4,381.35±1,852.87, P=0.03) during isometric handgrip exercise. Sedentary older adults showed higher cardiac sympathetic activity (spectral analysis) (71.29±4.40 vs 58.30±3.50 nu, P=0.03) and lower parasympathetic modulation (28.79±4.37 vs 41.77±3.47 nu, P=0.03) compared to physically active older adult subjects during isometric handgrip exercise. Regarding muscle vasodilation response, there was an increase in the skeletal muscle blood flow in the second (4.1±0.5 vs 3.7±0.4 mL/min per 100 mL, P=0.01) and third minute (4.4±0.4 vs 3.9±0.3 mL/min per 100 mL, P=0.03) of handgrip exercise in active older adults. The results indicate that regular physical activity improves neurovascular control of muscle blood flow and cardiac autonomic response during isometric handgrip exercise in healthy older adult subjects. PMID:28721030

  3. Dimensionality of the Hospital Anxiety and Depression Scale (HADS) in Cardiac Patients: Comparison of Mokken Scale Analysis and Factor Analysis

    ERIC Educational Resources Information Center

    Emons, Wilco H. M.; Sijtsma, Klaas; Pedersen, Susanne S.

    2012-01-01

    The Hospital Anxiety and Depression Scale (HADS) measures anxiety and depressive symptoms and is widely used in clinical and nonclinical populations. However, there is some debate about the number of dimensions represented by the HADS. In a sample of 534 Dutch cardiac patients, this study examined (a) the dimensionality of the HADS using Mokken…

  4. Epidemiology and Outcomes After In-Hospital Cardiac Arrest After Pediatric Cardiac Surgery

    PubMed Central

    Gupta, Punkaj; Jacobs, Jeffrey P.; Pasquali, Sara K.; Hill, Kevin D.; Gaynor, J. William; O’Brien, Sean M.; He, Max; Sheng, Shubin; Schexnayder, Stephen M.; Berg, Robert A.; Nadkarni, Vinay M.; Imamura, Michiaki; Jacobs, Marshall L.

    2014-01-01

    Background Multicenter data regarding cardiac arrest in children undergoing heart operations are limited. We describe epidemiology and outcomes associated with postoperative cardiac arrest in a large multiinstitutional cohort. Methods Patients younger than 18 years in the Society of Thoracic Surgeons Congenital Heart Surgery Database (2007 through 2012) were included. Patient factors, operative characteristics, and outcomes were described for patients with and without postoperative cardiac arrest. Multivariable models were used to evaluate the association of center volume with cardiac arrest rate and mortality after cardiac arrest, adjusting for patient and procedural factors. Results Of 70,270 patients (97 centers), 1,843 (2.6%) had postoperative cardiac arrest. Younger age, lower weight, and presence of preoperative morbidities (all p < 0.0001) were associated with cardiac arrest. Arrest rate increased with procedural complexity across common benchmark operations, ranging from 0.7% (ventricular septal defect repair) to 12.7% (Norwood operation). Cardiac arrest was associated with significant mortality risk across procedures, ranging from 15.4% to 62.3% (all p < 0.0001). In multivariable analysis, arrest rate was not associated with center volume (odds ratio, 1.06; 95% confidence interval, 0.71 to 1.57 in low- versus high-volume centers). However, mortality after cardiac arrest was higher in low-volume centers (odds ratio, 2.00; 95% confidence interval, 1.52 to 2.63). This association was present for both high- and low-complexity operations. Conclusions Cardiac arrest carries a significant mortality risk across the stratum of procedural complexity. Although arrest rates are not associated with center volume, lower-volume centers have increased mortality after cardiac arrest. Further study of mechanisms to prevent cardiac arrest and to reduce mortality in those with an arrest is warranted. PMID:25443018

  5. The Effect of Previous Coronary Artery Revascularization on the Adverse Cardiac Events Ninety days After Total Joint Arthroplasty.

    PubMed

    Feng, Bin; Lin, Jin; Jin, Jin; Qian, Wenwei; Cao, Shiliang; Weng, Xisheng

    2018-01-01

    Although coronary artery revascularization therapies are effective for treating coronary artery disease (CAD), these patients may be more susceptible to adverse cardiac events during later non-cardiac surgeries. The purpose of this study is to evaluate post-operative 90-day complications of total joint arthroplasty (TJA) in CAD patients with a history of CAD and to study the risk factors for cardiac complications. We performed a retrospective analysis of TJA patients between 2005 and 2015 at our institute by summarizing the history of CAD, cardiac revascularization, and cardiac complications within 90 days after the operation. Multivariate logistic regression was performed to identify the factors that predicted cardiac complications within 90 days after the operation. A total of 4414 patients were included; of these, 64 underwent cardiac revascularization and 201 CAD patients underwent medical therapy other than revascularization. All the revascularization had history of myocardial infarction (MI). The rate of cardiac complications within 90 days for the CAD with revascularization was 18.7%, 18.4% for the CAD without revascularization, and 2.0% for the non-CAD group. A history of CAD and revascularization, bilateral TJA, general anesthesia, body mass index ≥30 kg/m 2 , and history of MI were associated with a higher risk of cardiac complications. Patients who underwent TJA within 2 years after cardiac revascularization had a significantly higher cardiac complication rate, and the risk decreased with time. There is an increased risk of cardiac complications within 90 days after the operation among TJA patients with a history of CAD. Revascularization cannot significantly reduce the risk of cardiac complications after TJA for CAD patients. However, the risk decreased as the interval between revascularization and TJA increased. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Plasma hepatocyte growth factor is a novel marker of AL cardiac amyloidosis.

    PubMed

    Swiger, Kristopher J; Friedman, Eitan A; Brittain, Evan L; Tomasek, Kelsey A; Huang, Shi; Su, Yan R; Sawyer, Douglas B; Lenihan, Daniel J

    2016-12-01

    Cardiac amyloidosis is an infiltrative cardiomyopathy that is challenging to diagnose. We hypothesized that the novel biomarkers hepatocyte growth factor (HGF), galectin-3 (GAL-3), interleukin-6 (IL-6), and vascular endothelial growth factor (VEGF) would be elevated in cardiac amyloidosis and may be able to discriminate from non-cardiac systemic amyloidosis or other cardiomyopathies with similar clinical or morphologic characteristics. Patients were selected from the Vanderbilt Main Heart Registry according to the following groups: (1) amyloid light-chain (AL) cardiac amyloidosis (n = 26); (2) transthyretin (ATTR) cardiac amyloidosis (n = 7); (3) left ventricular hypertrophy (LVH) (n = 45); (4) systolic heart failure (n = 42); and (5) non-cardiac systemic amyloidosis (n = 7). Biomarkers were measured in stored plasma samples. Biomarkers' discrimination performance in predicting AL cardiac amyloidosis (i.e., Concordance index) was reported. A survival analysis was used to explore the relationship between HGF levels and mortality among AL cardiac amyloidosis patients. HGF levels were markedly elevated in patients with AL cardiac amyloidosis (median = 622, interquartile range (IQR): 299-1228 pg/mL) compared with the other groups, including those with non-cardiac systemic amyloidosis (median = 134, IQR: 94-163 pg/mL, p < 0.001). HGF was not a specific marker for ATTR amyloidosis. Gal-3 was elevated in all groups with amyloidosis but could not differentiate between those with and without cardiac involvement. There was no difference in IL-6 or VEGF between those with AL cardiac amyloidosis compared to other groups (p = 0.13 and 0.057, respectively). HGF may be a specific marker that distinguishes AL cardiac amyloidosis from other cardiomyopathies with similar clinical or morphologic characteristics. Further studies are necessary to determine whether HGF levels predict the likelihood of survival.

  7. Generating new knowledge in cardiac interventions.

    PubMed

    Blackstone, Eugene H

    2013-06-01

    Cardiac interventions are among the most quantitatively studied therapies. It is important for all involved with cardiac interventions to understand how information generated from observations made during patient care is transformed into data suitable for analysis, to appreciate at a high level what constitutes appropriate analyses of those data, to effectively evaluate inferences drawn from those analyses, and to apply new knowledge to better care for individual patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Real-time magnetic resonance-guided ablation of typical right atrial flutter using a combination of active catheter tracking and passive catheter visualization in man: initial results from a consecutive patient series.

    PubMed

    Hilbert, Sebastian; Sommer, Philipp; Gutberlet, Matthias; Gaspar, Thomas; Foldyna, Borek; Piorkowski, Christopher; Weiss, Steffen; Lloyd, Thomas; Schnackenburg, Bernhard; Krueger, Sascha; Fleiter, Christian; Paetsch, Ingo; Jahnke, Cosima; Hindricks, Gerhard; Grothoff, Matthias

    2016-04-01

    Recently cardiac magnetic resonance (CMR) imaging has been found feasible for the visualization of the underlying substrate for cardiac arrhythmias as well as for the visualization of cardiac catheters for diagnostic and ablation procedures. Real-time CMR-guided cavotricuspid isthmus ablation was performed in a series of six patients using a combination of active catheter tracking and catheter visualization using real-time MR imaging. Cardiac magnetic resonance utilizing a 1.5 T system was performed in patients under deep propofol sedation. A three-dimensional-whole-heart sequence with navigator technique and a fast automated segmentation algorithm was used for online segmentation of all cardiac chambers, which were thereafter displayed on a dedicated image guidance platform. In three out of six patients complete isthmus block could be achieved in the MR scanner, two of these patients did not need any additional fluoroscopy. In the first patient technical issues called for a completion of the procedure in a conventional laboratory, in another two patients the isthmus was partially blocked by magnetic resonance imaging (MRI)-guided ablation. The mean procedural time for the MR procedure was 109 ± 58 min. The intubation of the CS was performed within a mean time of 2.75 ± 2.21 min. Total fluoroscopy time for completion of the isthmus block ranged from 0 to 7.5 min. The combination of active catheter tracking and passive real-time visualization in CMR-guided electrophysiologic (EP) studies using advanced interventional hardware and software was safe and enabled efficient navigation, mapping, and ablation. These cases demonstrate significant progress in the development of MR-guided EP procedures. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  9. Heart rate variability and heart rate turbulence in patients with polycystic ovary syndrome.

    PubMed

    Özkeçeci, Gülay; Ünlü, Bekir Serdar; Dursun, Hüseyin; Akçi, Önder; Köken, Gülengül; Onrat, Ersel; Avşar, Alaettin

    2016-05-01

    Cardiac autonomic dysfunction may develop in patients with polycystic ovary syndrome (PCOS). Heart rate variability (HRV) and heart rate turbulence (HRT) are used in assessing cardiac autonomic functions. The goal of this study was to compare the cardiac autonomic functions in patients with PCOS and healthy controls. To our knowledge, this is the first study evaluating cardiac autonomic functions in patients with PCOS with respect to both HRV and HRT. Twenty-three patients with PCOS (mean age 22.8±3.9 years) and 25 healthy female volunteers who were matched for age and body mass index (BMI) (mean age 23.5±6.2 years) were enrolled in this as case-control study. Twenty-four hour ambulatory electrocardiogram recordings of all participants were taken using Pathfinder software. The time domain parameters of HRV and HRT, including turbulence onset (TO) and turbulence slope, were calculated. Diagnosis of PCOS was made with physical and laboratory findings of hirsutism or biochemical hyperandrogenism and chronic anovulation. Diabetes mellitus, other hormon disorders or hormon therapy, pregnancy, atrial fibrilation, obesite, chronic diseases, disorders of the autonomic nervous system, a history of drug use affecting the autonomic nervous system were excluded. There were no significant differences in HRV and HRT parameters between the two groups. Cardiovascular risk factors, such as BMI, blood pressure, fasting blood glucose, and lipid parameters, were also similar. Triangular index measure of HRV was negatively correlated with high density lipoprotein cholesterol levels (r=-0.47, p<0.05), while age and BMI were significantly correlated with TO (r=0.31 and 0.47, respectively; p<0.05 for all). Cardiac autonomic functions were not found to be altered in patients with PCOS in comparison with healthy controls. These results may be explained with the absence of concomitant cardiovascular risk factors with the patients being in the early stage of the disease.

  10. Evaluation of carotid artery dynamics & correlation with cardiac & hepatic iron in β-thalassaemia patients.

    PubMed

    Merchant, Rashid H; Chate, Someshwar; Ahmed, Javed; Ahmad, Noor; Karnik, Alka; Jankaria, Bhavin

    2016-04-01

    Early atherosclerosis and vascular complication have been described in thalassaemia patients. There is lack of data or guidelines regarding monitoring of vascular health in thalassaemia. This study was conducted to compare carotid artery structural and functional indices such as carotid artery intima-media thickness (CIMT), stiffness index (SI) and Young's elastic modulus (YEM) in β-thalassemia patients with age and sex matched controls, and to correlate these parameters with serum ferritin, cardiac iron, and hepatic iron. This cross-sectional study included 53 β-thalassaemia patients receiving regular blood transfusions. Carotid artery indices such as CIMT, SI, and YEM were calculated by duplex ultrasound and colour Doppler. Serum ferritin levels were measured by chemiluminescence. Cardiac and hepatic iron estimation were done using MRI T2* sequences analyzed by a special thalassaemia software. Mean CIMT of cases and controls were 0.48 ± 0.04 and 0.44±0.02 mm, respectively and these were significantly different (P<0.001). Similarly significant differences were noted in SI and YEM of cases (2.45±0.79 and 96.12±34.85, respectively) as compared to controls (1.98±0.54 and 68.60±24.29, respectively) (p<0.001). There was significant inverse correlation between stiffness index and cardiac iron overload assessed by MRI cardiac T2* (p=0.03). Mean SI and YEM of cases were (2.1736 ± 0.2986 and 107.3± 41.6, respectively) significantly higher among non-splenectomized patients compared to splenectomized patients (2.0136 ± 0.263 and 86.9 ± 25.2, respectively) (p<0.05). CIMT and arterial stiffness indices were significantly increased in β-thalassaemia patients compared to controls which was indicative of early atherogenic changes. This study supports the hypothesis that iron overload is a risk factor for early atherosclerosis and cardiovascular disease.

  11. Urinary 8-hydroxy-2'-deoxyguanosine as a novel biomarker for predicting cardiac events and evaluating the effectiveness of carvedilol treatment in patients with chronic systolic heart failure.

    PubMed

    Susa, Takehisa; Kobayashi, Shigeki; Tanaka, Takeo; Murakami, Wakako; Akashi, Shintaro; Kunitsugu, Ichiro; Okuda, Shinichi; Doi, Masahiro; Wada, Yasuaki; Nao, Tomoko; Yamada, Jutaro; Ueyama, Takeshi; Okamura, Takayuki; Yano, Masafumi; Matsuzaki, Masunori

    2012-01-01

    The authors recently reported that urinary 8-hydroxy-2'-deoxyguanosine (U8-OHdG) derived from cardiac tissue reflects clinical status and cardiac dysfunction severity in patients with chronic heart failure (CHF). The aim of the present study was to investigate whether U8-OHdG levels can accurately predict cardiac events in CHF patients and their response to β-blocker treatment. Plasma brain natriuretic peptide (BNP) and U8-OHdG levels were measured in 186 consecutive CHF patients before discharge. Patients were then prospectively followed (median follow-up, 649 days) with endpoints of cardiac death or hospitalization due to progressive heart failure. From receiver operating characteristic curve analysis, cut-offs were 12.4ng/mg creatinine (Cr) for U8-OHdG and 207pg/ml for BNP. On multivariate Cox analysis, U8-OHdG and BNP were independent predictors of cardiac events. Patients were classified into 4 groups according to U8-OHdG and BNP cut-offs. The hazard ratio for cardiac events in patients with BNP ≥207pg/ml and U8-OHdG ≥12.4ng/mg Cr was 16.2 compared with approximately 4 for patients with only 1 indicator above its respective cut-off. Furthermore, carvedilol therapy was initiated in 30 CHF patients. In responders (≥10% increase in left ventricular ejection fraction [LVEF] or ≥1 class decrease in New York Heart Association [NYHA] class), U8-OHdG levels decreased significantly along with improved NYHA class, LVEF, and BNP levels after treatment. U8-OHdG may be a useful biomarker for predicting cardiac events and evaluating β-blocker therapy effectiveness in CHF patients.

  12. Cardiomyocyte-Restricted Low Density Lipoprotein Receptor-Related Protein 6 (LRP6) Deletion Leads to Lethal Dilated Cardiomyopathy Partly Through Drp1 Signaling

    PubMed Central

    Chen, Zhidan; Li, Yang; Wang, Ying; Qian, Juying; Ma, Hong; Wang, Xiang; Jiang, Guoliang; Liu, Ming; An, Yanpeng; Ma, Leilei; Kang, Le; Jia, Jianguo; Yang, Chunjie; Zhang, Guoping; Chen, Ying; Gao, Wei; Fu, Mingqiang; Huang, Zheyong; Tang, Huiru; Zhu, Yichun; Ge, Junbo; Gong, Hui; Zou, Yunzeng

    2018-01-01

    Low density lipoprotein receptor-related protein 6 (LRP6), a wnt co-receptor, regulates multiple functions in various organs. However, the roles of LRP6 in the adult heart are not well understood. Methods: We observed LRP6 expression in heart with end-stage dilated cardiomyopathy (DCM) by western blot. Tamoxifen-inducible cardiac-specific LRP6 knockout mouse was constructed. Hemodynamic and echocardiographic analyses were performed to these mice. Results: Cardiac LRP6 expression was dramatically decreased in patients with end-stage dilated cardiomyopathy (DCM) compared to control group. Tamoxifen-inducible cardiac-specific LRP6 knockout mice developed acute heart failure and mitochondrial dysfunction with reduced survival. Proteomic analysis suggests the fatty acid metabolism disorder involving peroxisome proliferator-activated receptors (PPARs) signaling in the LRP6 deficient heart. Accumulation of mitochondrial targeting to autophagosomes and lipid droplet were observed in LRP6 deletion hearts. Further analysis revealed cardiac LRP6 deletion suppressed autophagic degradation and fatty acid utilization, coinciding with activation of dynamin-related protein 1 (Drp1) and downregulation of nuclear TFEB (Transcription factor EB). Injection of Mdivi-1, a Drp1 inhibitor, not only promoted nuclear translocation of TFEB, but also partially rescued autophagic degradation, improved PPARs signaling, and attenuated cardiac dysfunction induced by cardiac specific LRP6 deletion. Conclusions: Cardiac LRP6 deficiency greatly suppressed autophagic degradation and fatty acid utilization, and subsequently leads to lethal dilated cardiomyopathy and cardiac dysfunction through activation of Drp1 signaling. It suggests that heart failure progression may be attenuated by therapeutic modulation of LRP6 expression. PMID:29344294

  13. Clinicians' adherence to clinical practice guidelines for cardiac function monitoring during antipsychotic treatment: a retrospective report on 434 patients with severe mental illness.

    PubMed

    Manchia, Mirko; Firinu, Giorgio; Carpiniello, Bernardo; Pinna, Federica

    2017-03-31

    Severe mental illness (SMI) has considerable excess morbidity and mortality, a proportion of which is explained by cardiovascular diseases, caused in part by antipsychotic (AP) induced QT-related arrhythmias and sudden death by Torsade de Point (TdP). The implementation of evidence-based recommendations for cardiac function monitoring might reduce the incidence of these AP-related adverse events. To investigate clinicians' adherence to cardiac function monitoring before and after starting AP, we performed a retrospective assessment of 434 AP-treated SMI patients longitudinally followed-up for 5 years at an academic community mental health center. We classified antipsychotics according to their risk of inducing QT-related arrhythmias and TdP (Center for Research on Therapeutics, University of Arizona). We used univariate tests and multinomial or binary logistic regression model for data analysis. Univariate and multinomial regression analysis showed that psychiatrists were more likely to perform pre-treatment electrocardiogram (ECG) and electrolyte testing with AP carrying higher cardiovascular risk, but not on the basis of AP pharmacological class. Univariate and binomial regression analysis showed that cardiac function parameters (ECG and electrolyte balance) were more frequently monitored during treatment with second generation AP than with first generation AP. Our data show the presence of weaknesses in the cardiac function monitoring of AP-treated SMI patients, and might guide future interventions to tackle them.

  14. Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family.

    PubMed

    Gocayne, J; Robinson, D A; FitzGerald, M G; Chung, F Z; Kerlavage, A R; Lentes, K U; Lai, J; Wang, C D; Fraser, C M; Venter, J C

    1987-12-01

    Two cDNA clones, lambda RHM-MF and lambda RHB-DAR, encoding the muscarinic cholinergic receptor and the beta-adrenergic receptor, respectively, have been isolated from a rat heart cDNA library. The cDNA clones were characterized by restriction mapping and automated DNA sequence analysis utilizing fluorescent dye primers. The rat heart muscarinic receptor consists of 466 amino acids and has a calculated molecular weight of 51,543. The rat heart beta-adrenergic receptor consists of 418 amino acids and has a calculated molecular weight of 46,890. The two cardiac receptors have substantial amino acid homology (27.2% identity, 50.6% with favored substitutions). The rat cardiac beta receptor has 88.0% homology (92.5% with favored substitutions) with the human brain beta receptor and the rat cardiac muscarinic receptor has 94.6% homology (97.6% with favored substitutions) with the porcine cardiac muscarinic receptor. The muscarinic cholinergic and beta-adrenergic receptors appear to be as conserved as hemoglobin and cytochrome c but less conserved than histones and are clearly members of a multigene family. These data support our hypothesis, based upon biochemical and immunological evidence, that suggests considerable structural homology and evolutionary conservation between adrenergic and muscarinic cholinergic receptors. To our knowledge, this is the first report utilizing automated DNA sequence analysis to determine the structure of a gene.

  15. Is copeptin level associated with 1-year mortality after out-of-hospital cardiac arrest? Insights from the Paris registry*.

    PubMed

    Geri, Guillaume; Dumas, Florence; Chenevier-Gobeaux, Camille; Bouglé, Adrien; Daviaud, Fabrice; Morichau-Beauchant, Tristan; Jouven, Xavier; Mira, Jean-Paul; Pène, Frédéric; Empana, Jean-Philippe; Cariou, Alain

    2015-02-01

    The availability of circulating biomarkers that helps to identify early out-of-hospital cardiac arrest survivors who are at increased risk of long-term mortality remains challenging. Our aim was to prospectively study the association between copeptin and 1-year mortality in patients with out-of-hospital cardiac arrest admitted in a tertiary cardiac arrest center. Retrospective monocenter study. Tertiary cardiac arrest center in Paris, France. Copeptin was assessed at admission and day 3. Pre- and intrahospital factors associated with 1-year mortality were analyzed by multivariate Cox proportional analysis. None. Two hundred ninety-eight consecutive out-of-hospital cardiac arrest patients (70.3% male; median age, 60.2 yr [49.9-71.4]) were admitted in a tertiary cardiac arrest center in Paris (France). After multivariate analysis, higher admission copeptin was associated with 1-year mortality with a threshold effect (hazard ratio(5th vs 1st quintile) = 1.64; 95% CI, 1.05-2.58; p = 0.03). Day 3 copeptin was associated with 1-year mortality in a dose-dependent manner (hazard ratio(2nd vs 1st quintile) = 1.87; 95% CI, 1.00-3.49; p = 0.05; hazard ratio(3rd vs 1st quintile) = 1.92; 95% CI, 1.02-3.64; p = 0.04; hazard ratio(4th vs 1st quintile) = 2.12; 95% CI, 1.14-3.93; p = 0.02; and hazard ratio(5th vs 1st quintile) = 2.75; 95% CI, 1.47-5.15; p < 0.01; p for trend < 0.01). For both admission and day 3 copeptin, association with 1-year mortality existed for out-of-hospital cardiac arrest of cardiac origin only (p for interaction = 0.05 and < 0.01, respectively). When admission and day 3 copeptin were mutually adjusted, only day 3 copeptin remained associated with 1-year mortality in a dose-dependent manner (p for trend = 0.01). High levels of copeptin were associated with 1-year mortality independently from prehospital and intrahospital risk factors, especially in out-of-hospital cardiac arrest of cardiac origin. Day 3 copeptin was superior to admission copeptin: this could permit identification of out-of-hospital cardiac arrest survivors at increased risk of mortality and allow for close observation of such patients.

  16. A methodology based on openEHR archetypes and software agents for developing e-health applications reusing legacy systems.

    PubMed

    Cardoso de Moraes, João Luís; de Souza, Wanderley Lopes; Pires, Luís Ferreira; do Prado, Antonio Francisco

    2016-10-01

    In Pervasive Healthcare, novel information and communication technologies are applied to support the provision of health services anywhere, at anytime and to anyone. Since health systems may offer their health records in different electronic formats, the openEHR Foundation prescribes the use of archetypes for describing clinical knowledge in order to achieve semantic interoperability between these systems. Software agents have been applied to simulate human skills in some healthcare procedures. This paper presents a methodology, based on the use of openEHR archetypes and agent technology, which aims to overcome the weaknesses typically found in legacy healthcare systems, thereby adding value to the systems. This methodology was applied in the design of an agent-based system, which was used in a realistic healthcare scenario in which a medical staff meeting to prepare a cardiac surgery has been supported. We conducted experiments with this system in a distributed environment composed by three cardiology clinics and a center of cardiac surgery, all located in the city of Marília (São Paulo, Brazil). We evaluated this system according to the Technology Acceptance Model. The case study confirmed the acceptance of our agent-based system by healthcare professionals and patients, who reacted positively with respect to the usefulness of this system in particular, and with respect to task delegation to software agents in general. The case study also showed that a software agent-based interface and a tools-based alternative must be provided to the end users, which should allow them to perform the tasks themselves or to delegate these tasks to other people. A Pervasive Healthcare model requires efficient and secure information exchange between healthcare providers. The proposed methodology allows designers to build communication systems for the message exchange among heterogeneous healthcare systems, and to shift from systems that rely on informal communication of actors to a more automated and less error-prone agent-based system. Our methodology preserves significant investment of many years in the legacy systems and allows developers to extend them adding new features to these systems, by providing proactive assistance to the end-users and increasing the user mobility with an appropriate support. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. High resolution heart rate variability analysis in patients with angina pectoris during coronary artery bypass graft surgery

    NASA Astrophysics Data System (ADS)

    Mironov, V. A.; Mironova, T. F.; Kuvatov, V. A.; Nokhrina, O. Yu.; Kuvatova, E. V.

    2017-12-01

    The purpose of the study is approbation of the capabilities of high-resolution rhythmocardiography (RCG) for the determination of the actual cardiovascular status of operated patients with angina pectoris during coronary artery bypass graft surgery (CABGS) for myocardial revascularization. The research was done by means of a KAP-RK-02-Mikor hardware-software complex with a monitor record and the time- and frequency-domain analyses of heart rate variability (HRV). Monitor records were made at each stage of CABGS in 123 patients. As a result, HRV manifested itself as a fairly adequate and promising method for the determination of the cardiovascular status during CABGS. In addition, the data of the HRV study during CABGS testify to the capability of RCG to determine the high risk of life-threatening cardioarrhythmias before and during operation, to different changes in sinoatrial heart node (SN) dysregulation, and contain the HRV symptoms of a high death risk before, during and after shunting. The loss of the peripheral autonomic sympathetic and parasympathetic control in SN in the form of the autonomic cardioneuropathy syndrome is a predictor of the complications related to CABGS. The obtained data on RCG monitoring of HRV recording are suggestive of wide prospects of the high-resolution RCG method to be used in cardiac surgery as a whole. The actual multivariant dysregulations of SN pacemaker activity testify to its adequacy to the pathophysiology of each period of the cardiac operation, according to the initial ischemic damages and localization of cardiosurgical manipulations during CABGS.

  18. Feasibility of single-beat full-volume capture real-time three-dimensional echocardiography for quantification of right ventricular volume: validation by cardiac magnetic resonance imaging.

    PubMed

    Zhang, Quan Bin; Sun, Jing Ping; Gao, Rui Feng; Lee, Alex Pui-Wai; Feng, Yan Lin; Liu, Xiao Rong; Sheng, Wei; Liu, Feng; Yang, Xing Sheng; Fang, Fang; Yu, Cheuk-Man

    2013-10-09

    The lack of an accurate noninvasive method for assessing right ventricular (RV) volume and function has been a major deficiency of two-dimensional (2D) echocardiography. The aim of our study was to test the feasibility of single-beat full-volume capture with real-time three-dimensional echo (3DE) imaging system for the evaluation of RV volumes and function validated by cardiac magnetic resonance imaging (CMRI). Sixty-one subjects (16 normal subjects, 20 patients with hypertension, 16 patients with pulmonary heart disease and 9 patients with coronary heart disease) were studied. RV volume and function assessments using 3DE were compared with manual tracing with CMRI as the reference method. Fifty-nine of 61 patients (96.7%; 36 male, mean age, 62 ± 15 years) had adequate three-dimensional echocardiographic data sets for analysis. The mean RV end diastolic volume (EDV) was 105 ± 38 ml, end-systolic volume (ESV) was 60 ± 30 and RV ejection fraction (EF) was 44 ± 11% by CMRI; and EDV 103 ± 38 ml, ESV 60 ± 28 ml and RV EF 41 ± 13% by 3DE. The correlations and agreements between measurements estimated by two methods were acceptable. RV volumes and function can be analyzed with 3DE software in most of subjects with or without heart diseases, which is able to be estimated with single-beat full-volume capture with real-time 3DE compared with CMRI. © 2013.

  19. Magnetic Resonance Imaging Measurement of Transmission of Arterial Pulsation to the Brain on Propranolol Versus Amlodipine.

    PubMed

    Webb, Alastair J S; Rothwell, Peter M

    2016-06-01

    Cerebral arterial pulsatility is associated with leukoaraiosis and depends on central arterial pulsatility and arterial stiffness. The effect of antihypertensive drugs on transmission of central arterial pulsatility to the cerebral circulation is unknown, partly because of limited methods of assessment. In a technique-development pilot study, 10 healthy volunteers were randomized to crossover treatment with amlodipine and propranolol. At baseline and on each drug, we assessed aortic (Sphygmocor) and middle cerebral artery pulsatility (TCDtranscranial ultrasound). We also performed whole-brain, 3-tesla multiband blood-oxygen level dependent magnetic resonance imaging (multiband factor 6, repetition time=0.43s), concurrent with a novel method of continuous noninvasive blood pressure monitoring. Drug effects on relationships between cardiac cycle variation in blood pressure and blood-oxygen level dependent imaging were determined (fMRI Expert Analysis Tool, fMRIB Software Library [FEAT-FSL]). Aortic pulsatility was similar on amlodipine (27.3 mm Hg) and propranolol (27.9 mm Hg, P diff=0.33), while MCA pulsatility increased nonsignificantly more from baseline on propranolol (+6%; P=0.09) than amlodipine (+1.5%; P=0.58). On magnetic resonance imaging, cardiac frequency blood pressure variations were found to be significantly more strongly associated with blood-oxygen level dependent imaging on propranolol than amlodipine. We piloted a novel method of assessment of arterial pulsatility with concurrent high-frequency blood-oxygen level dependent magnetic resonance imaging and noninvasive blood pressure monitoring. This method was able to identify greater transmission of aortic pulsation on propranolol than amlodipine, which warrants further investigation. © 2016 American Heart Association, Inc.

  20. Meta-analysis of randomized trials of effect of milrinone on mortality in cardiac surgery: an update.

    PubMed

    Majure, David T; Greco, Teresa; Greco, Massimiliano; Ponschab, Martin; Biondi-Zoccai, Giuseppe; Zangrillo, Alberto; Landoni, Giovanni

    2013-04-01

    The long-term use of milrinone is associated with increased mortality in chronic heart failure. A recent meta-analysis suggested that it might increase mortality in patients undergoing cardiac surgery. The authors conducted an updated meta-analysis of randomized trials in patients undergoing cardiac surgery to determine if milrinone impacted survival. A meta-analysis. Hospitals. One thousand thirty-seven patients from 20 randomized trials. None. Biomed, Central, PubMed, EMBASE, the Cochrane central register of clinical trials, and conference proceedings were searched for randomized trials that compared milrinone versus placebo or any other control in adult and pediatric patients undergoing cardiac surgery. Authors of trials that did not include mortality data were contacted. Only trials for which mortality data were available were included. Overall analysis showed no difference in mortality between patients receiving milrinone versus control (12/554 [2.2%] in the milrinone group v 10/483 [2.1%] in the control arm; relative risk [RR] = 1.15; 95% confidence interval [CI], 0.55-2.43; p = 0.7) or in analysis restricted to adults (11/364 [3%] in the milrinone group v 9/371 [2.4%] in the control arm; RR = 1.17; 95% CI, 0.54-2.53; p = 0.7). Sensitivity analyses in trials with a low risk of bias showed a trend toward an increase in mortality with milrinone (8/153 [5.2%] in the milrinone arm v 2/152 [1.3%] in the control arm; RR = 2.71; 95% CI, 0.82-9; p for effect = 0.10). Despite theoretic concerns for increased mortality with intravenous milrinone in patients undergoing cardiac surgery, the authors were unable to confirm an adverse effect on survival. However, sensitivity analysis of high-quality trials showed a trend toward increased mortality with milrinone. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Variability and Reproducibility of Segmental Longitudinal Strain Measurement: A Report From the EACVI-ASE Strain Standardization Task Force.

    PubMed

    Mirea, Oana; Pagourelias, Efstathios D; Duchenne, Jurgen; Bogaert, Jan; Thomas, James D; Badano, Luigi P; Voigt, Jens-Uwe

    2018-01-01

    In this study, we compared left ventricular (LV) segmental strain measurements obtained with different ultrasound machines and post-processing software packages. Global longitudinal strain (GLS) has proven to be a reproducible and valuable tool in clinical practice. Data about the reproducibility and intervendor differences of segmental strain measurements, however, are missing. We included 63 volunteers with cardiac magnetic resonance-proven infarct scar with segmental LV function ranging from normal to severely impaired. Each subject was examined within 2 h by a single expert sonographer with machines from multiple vendors. All 3 apical views were acquired twice to determine the test-retest and the intervendor variability. Segmental longitudinal peak systolic, end-systolic, and post-systolic strain were measured using 7 vendor-specific systems (Hitachi, Tokyo, Japan; Esaote, Florence, Italy; GE Vingmed Ultrasound, Horten, Norway; Philips, Andover, Massachusetts; Samsung, Seoul, South Korea; Siemens, Mountain View, California; and Toshiba, Otawara, Japan) and 2 independent software packages (Epsilon, Ann Arbor, Michigan; and TOMTEC, Unterschleissheim, Germany) and compared among vendors. Image quality and tracking feasibility differed among vendors (analysis of variance, p < 0.05). The absolute test-retest difference ranged from 2.5% to 4.9% for peak systolic, 2.6% to 5.0% for end-systolic, and 2.5% to 5.0% for post-systolic strain. The average segmental strain values varied significantly between vendors (up to 4.5%). Segmental strain parameters from each vendor correlated well with the mean of all vendors (r 2 range 0.58 to 0.81) but showed very different ranges of values. Bias and limits of agreement were up to -4.6 ± 7.5%. In contrast to GLS, LV segmental longitudinal strain measurements have a higher variability on top of the known intervendor bias. The fidelity of different software to follow segmental function varies considerably. We conclude that single segmental strain values should be used with caution in the clinic. Segmental strain pattern analysis might be a more robust alternative. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Motion Artifact Reduction in Ultrasound Based Thermal Strain Imaging of Atherosclerotic Plaques Using Time Series Analysis

    PubMed Central

    Dutta, Debaditya; Mahmoud, Ahmed M.; Leers, Steven A.; Kim, Kang

    2013-01-01

    Large lipid pools in vulnerable plaques, in principle, can be detected using US based thermal strain imaging (US-TSI). One practical challenge for in vivo cardiovascular application of US-TSI is that the thermal strain is masked by the mechanical strain caused by cardiac pulsation. ECG gating is a widely adopted method for cardiac motion compensation, but it is often susceptible to electrical and physiological noise. In this paper, we present an alternative time series analysis approach to separate thermal strain from the mechanical strain without using ECG. The performance and feasibility of the time-series analysis technique was tested via numerical simulation as well as in vitro water tank experiments using a vessel mimicking phantom and an excised human atherosclerotic artery where the cardiac pulsation is simulated by a pulsatile pump. PMID:24808628

  3. Inertial Upper Stage (IUS) software analysis

    NASA Technical Reports Server (NTRS)

    Grayson, W. L.; Nickel, C. E.; Rose, P. L.; Singh, R. P.

    1979-01-01

    The Inertial Upper Stage (IUS) System, an extension of the Space Transportation System (STS) operating regime to include higher orbits, orbital plane changes, geosynchronous orbits, and interplanetary trajectories is presented. The IUS software design, the IUS software interfaces with other systems, and the cost effectiveness in software verification are described. Tasks of the IUS discussed include: (1) design analysis; (2) validation requirements analysis; (3) interface analysis; and (4) requirements analysis.

  4. Cardiac Dysautonomia in Huntington's Disease.

    PubMed

    Abildtrup, Mads; Shattock, Michael

    2013-01-01

    Huntington's disease is a fatal, hereditary, neurodegenerative disorder best known for its clinical triad of progressive motor impairment, cognitive deficits and psychiatric disturbances. Although a disease of the central nervous system, mortality surveys indicate that heart disease is a leading cause of death. The nature of such cardiac abnormalities remains unknown. Clinical findings indicate a high prevalence of autonomic nervous system dysfunction - dysautonomia - which may be a result of pathology of the central autonomic network. Dysautonomia can have profound effects on cardiac health, and pronounced autonomic dysfunction can be associated with neurogenic arrhythmias and sudden cardiac death. Significant advances in the knowledge of neural mechanisms in cardiac disease have recently been made which further aid our understanding of cardiac mortality in Huntington's disease. Even so, despite the evidence of aberrant autonomic activity the potential cardiac consequences of autonomic dysfunction have been somewhat ignored. In fact, underlying cardiac abnormalities such as arrhythmias have been part of the exclusion criteria in clinical autonomic Huntington's disease research. A comprehensive analysis of cardiac function in Huntington's disease patients is warranted. Further experimental and clinical studies are needed to clarify how the autonomic nervous system is controlled and regulated in higher, central areas of the brain - and how these regions may be altered in neurological pathology, such as Huntington's disease. Ultimately, research will hopefully result in an improvement of management with the aim of preventing early death in Huntington's disease from cardiac causes.

  5. Cardiac DPP-4 inhibition by saxagliptin ameliorates isoproterenol-induced myocardial remodeling and cardiac diastolic dysfunction in rats.

    PubMed

    Ikeda, Junichi; Kimoto, Naoya; Kitayama, Tetsuya; Kunori, Shunji

    2016-09-01

    Saxagliptin, a potent and selective DPP-4 inhibitor, is characterized by its slow dissociation from DPP-4 and its long half-life and is expected to have a potent tissue membrane-bound DPP-4-inhibitory effect in various tissues. In the present study, we examined the effects of saxagliptin on in situ cardiac DPP-4 activity. We also examined the effects of saxagliptin on isoproterenol-induced the changes in the early stage such as, myocardial remodeling and cardiac diastolic dysfunction. Male SD rats treated with isoproterenol (1 mg/kg/day via osmotic pump) received vehicle or saxagliptin (17.5 mg/kg via drinking water) for 2 weeks. In situ cardiac DPP-4 activity was measured by a colorimetric assay. Cardiac gene expressions were examined and an echocardiographic analysis was performed. Saxagliptin treatment significantly inhibited in situ cardiac DPP-4 activity and suppressed isoproterenol-induced myocardial remodeling and the expression of related genes without altering the blood glucose levels. Saxagliptin also significantly ameliorated cardiac diastolic dysfunction in isoproterenol-treated rats. In conclusion, the inhibition of DPP-4 activity in cardiac tissue by saxagliptin was associated with suppression of myocardial remodeling and cardiac diastolic dysfunction independently of its glucose-lowering action in isoproterenol-treated rats. Cardiac DPP-4 activity may contribute to myocardial remodeling in the development of heart failure. Copyright © 2016 Kyowa Hakko Kirin Co.,Ltd. Production and hosting by Elsevier B.V. All rights reserved.

  6. Ulinastatin administration is associated with a lower incidence of acute kidney injury after cardiac surgery: a propensity score matched study.

    PubMed

    Wan, Xin; Xie, Xiangcheng; Gendoo, Yasser; Chen, Xin; Ji, Xiaobing; Cao, Changchun

    2016-02-17

    Systemic inflammation is involved in the development of acute kidney injury (AKI) after cardiac surgery with cardiopulmonary bypass (CPB). Ulinastatin, a urinary trypsin inhibitor (UTI), possesses a variety of anti-inflammatory effects. Therefore, we hypothesized that the administration of ulinastatin would reduce the occurrence of AKI in patients undergoing cardiac surgery with CPB. A retrospective propensity score matched analysis was used to evaluate the effect of ulinastatin on the development of AKI in patients undergoing first documented cardiac surgery with CPB between January 2008 and December 2012 in our hospital. Multiple logistic regression models were also employed to identify the association between UTI administration and development of AKI. A total of 2072 patients who underwent cardiac surgery with CPB met the inclusion criteria. Before propensity score matching, variables such as age, baseline creatinine, CPB duration, red blood cells transfused, and hematocrit were statistically different between the ulinastatin (UTI) group and the control group. On the basis of propensity scores, 409 UTI patients were successfully matched to the 409 patients from among those 1663 patients without UTI administration. After propensity score matching, no statistically significant differences in the baseline characteristics were found between the UTI group and the control group. The propensity score matched cohort analysis revealed that AKI and the need for renal replacement therapy occurred more frequently in the control group than in the UTI group (40.83% vs. 30.32%, P = 0.002; 2.44% vs. 0.49%, P = 0.02, respectively). However, there were no significant differences in mortality, length of intensive care unit stay, and length of hospital stay between the UTI group and the control group. Using multivariate logistic regression analysis, we found ulinastatin played a protective role in the development of AKI after cardiac surgery (odds ratio 0.71, 95% confidence interval 0.56-0.90, P = 0.005). This study shows that ulinastatin was associated with a lower incidence of AKI after cardiac surgery, suggesting that the administration of ulinastatin may be favorable for those patients undergoing cardiac surgery with CPB.

  7. Presence of Late Gadolinium Enhancement by Cardiac Magnetic Resonance Among Patients With Suspected Cardiac Sarcoidosis Is Associated With Adverse Cardiovascular Prognosis: A Systematic Review and Meta-Analysis.

    PubMed

    Hulten, Edward; Agarwal, Vikram; Cahill, Michael; Cole, Geoff; Vita, Tomas; Parrish, Scott; Bittencourt, Marcio Sommer; Murthy, Venkatesh L; Kwong, Raymond; Di Carli, Marcelo F; Blankstein, Ron

    2016-09-01

    Individuals with cardiac sarcoidosis have an increased risk of ventricular arrhythmia and death. Several small cohort studies have evaluated the ability of late gadolinium enhancement (LGE) by cardiac magnetic resonance imaging (MRI) to predict adverse cardiovascular events. However, studies have yielded inconsistent results, and some analyses were underpowered. Therefore, we sought to systematically review and perform meta-analysis of the prognostic value of cardiac MRI for patients with known or suspected cardiac sarcoidosis. We systematically searched for cohort studies of patients with known sarcoidosis with suspected cardiac involvement who underwent cardiac MRI with LGE with at least 12 months of either prospective or retrospective follow-up data regarding post-MRI adverse cardiovascular outcomes. We identified 7 studies of 694 subjects (mean age 53; 42% men).One hundred and ninety-nine patients (29%) were LGE positive. All-cause mortality occurred in 19 LGE-positive versus 17 LGE-negative subjects (annualized incidence, 3.1% versus 0.6%). The pooled relative risk was 3.38 (95% confidence interval, 1.07-10.7; P=0.04). Cardiovascular mortality occurred in 10 LGE-positive versus 2 LGE-negative subjects (annualized incidence, 1.9% versus 0.3%; relative risk 10.7 [95% confidence interval, 1.34-86.3]; P=0.03). Ventricular arrhythmia occurred in 41 LGE-positive versus 0 LGE-negative subjects (annualized incidence, 5.9% versus 0%; relative risk 19.5 [95% confidence interval, 2.68-143]; P=0.003). A combined end point of death or ventricular arrhythmia occurred in 64 LGE-positive versus 18 LGE-negative subjects (annualized incidence, 8.8% versus 0.6%; relative risk 6.20 [95% confidence interval, 2.47-15.6]; P<0.001). There was no significant heterogeneity for any outcomes. LGE is associated with future cardiovascular death and ventricular arrhythmia among patients referred to MRI for known or suspected cardiac sarcoidosis. © 2016 American Heart Association, Inc.

  8. Association of ethnicity and acute kidney injury after cardiac surgery in a South East Asian population.

    PubMed

    Chew, S T H; Mar, W M T; Ti, L K

    2013-03-01

    Postoperative acute kidney injury (AKI) is a frequent and serious complication after cardiac surgery. Clinical factors alone have failed to accurately predict the incidence of AKI after cardiac surgery. Ethnicity has been shown to be a predictor of AKI in the Western population. We tested the hypothesis that ethnicity is an independent predictor of AKI in patients undergoing cardiac surgery in a South East Asian population. A total of 1756 consecutive patients undergoing cardiac surgery were prospectively recruited. Among them, data of 1639 patients met the criteria for analysis. There were 1182 Chinese, 195 Indian, and 262 Malay patients. The main outcome was postoperative AKI, defined as a 25% or greater increase in preoperative to a maximum postoperative serum creatinine level within 3 days after surgery. Five hundred and seventy-nine patients (35.3%) developed AKI after cardiac surgery. Ethnicity was shown to be an independent predictor of AKI after cardiac surgery with Indians and Malays having a higher risk of developing AKI when compared with Chinese patients (odds ratio: Indian vs Chinese 1.44, Malay vs Chinese 1.51). Indians and Malays have a higher risk of developing AKI after cardiac surgery than Chinese in a South East Asian population. Ethnicity was shown to be an independent predictor of AKI after cardiac surgery.

  9. Comparative effects of torasemide and furosemide on gap junction proteins and cardiac fibrosis in a rat model of dilated cardiomyopathy.

    PubMed

    Watanabe, Kenichi; Sreedhar, Remya; Thandavarayan, Rajarajan A; Karuppagounder, Vengadeshprabhu; Giridharan, Vijayasree V; Antony, Shanish; Harima, Meilei; Nakamura, Masahiko; Suzuki, Kenji; Suzuki, Hiroshi; Sone, Hirohito; Arumugam, Somasundaram

    2017-03-01

    Cardiac fibrosis is the major hallmark of adverse cardiac remodeling in chronic heart failure (CHF) and its therapeutic targeting might help against cardiac dysfunction during chronic conditions. Diuretic agents are potentially useful in these cases, but their effects on the cardiac fibrosis pathogenesis are yet to be identified. This study was designed to identify and compare the effects of diuretic drugs torasemide and furosemide on cardiac fibrosis in a rat model of dilated cardiomyopathy induced by porcine cardiac myosin mediated experimental autoimmune myocarditis. Gap junction proteins, connexin-43 and N-cadherin, expressions were downregulated in the hearts of CHF rats, while torasemide treatment has upregulated their expression. Western blotting and immunohistochemical analysis for various cardiac fibrosis related proteins as well as histopathological studies have shown that both drugs have potential anti-fibrotic effects. Among them, torasemide has superior efficacy in offering protection against adverse cardiac remodeling in the selected rat model of dilated cardiomyopathy. In conclusion, torasemide treatment has potential anti-fibrotic effect in the hearts of CHF rats, possibly via improving the gap junction proteins expression and thereby improving the cell-cell interaction in the heart. © 2016 BioFactors, 43(2):187-194, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  10. Low b-value diffusion-weighted cardiac magnetic resonance imaging: initial results in humans using an optimal time-window imaging approach.

    PubMed

    Rapacchi, Stanislas; Wen, Han; Viallon, Magalie; Grenier, Denis; Kellman, Peter; Croisille, Pierre; Pai, Vinay M

    2011-12-01

    Diffusion-weighted imaging (DWI) using low b-values permits imaging of intravoxel incoherent motion in tissues. However, low b-value DWI of the human heart has been considered too challenging because of additional signal loss due to physiological motion, which reduces both signal intensity and the signal-to-noise ratio (SNR). We address these signal loss concerns by analyzing cardiac motion during a heartbeat to determine the time-window during which cardiac bulk motion is minimal. Using this information to optimize the acquisition of DWI data and combining it with a dedicated image processing approach has enabled us to develop a novel low b-value diffusion-weighted cardiac magnetic resonance imaging approach, which significantly reduces intravoxel incoherent motion measurement bias introduced by motion. Simulations from displacement encoded motion data sets permitted the delineation of an optimal time-window with minimal cardiac motion. A number of single-shot repetitions of low b-value DWI cardiac magnetic resonance imaging data were acquired during this time-window under free-breathing conditions with bulk physiological motion corrected for by using nonrigid registration. Principal component analysis (PCA) was performed on the registered images to improve the SNR, and temporal maximum intensity projection (TMIP) was applied to recover signal intensity from time-fluctuant motion-induced signal loss. This PCATMIP method was validated with experimental data, and its benefits were evaluated in volunteers before being applied to patients. Optimal time-window cardiac DWI in combination with PCATMIP postprocessing yielded significant benefits for signal recovery, contrast-to-noise ratio, and SNR in the presence of bulk motion for both numerical simulations and human volunteer studies. Analysis of mean apparent diffusion coefficient (ADC) maps showed homogeneous values among volunteers and good reproducibility between free-breathing and breath-hold acquisitions. The PCATMIP DWI approach also indicated its potential utility by detecting ADC variations in acute myocardial infarction patients. Studying cardiac motion may provide an appropriate strategy for minimizing the impact of bulk motion on cardiac DWI. Applying PCATMIP image processing improves low b-value DWI and enables reliable analysis of ADC in the myocardium. The use of a limited number of repetitions in a free-breathing mode also enables easier application in clinical conditions.

  11. Software Safety Progress in NASA

    NASA Technical Reports Server (NTRS)

    Radley, Charles F.

    1995-01-01

    NASA has developed guidelines for development and analysis of safety-critical software. These guidelines have been documented in a Guidebook for Safety Critical Software Development and Analysis. The guidelines represent a practical 'how to' approach, to assist software developers and safety analysts in cost effective methods for software safety. They provide guidance in the implementation of the recent NASA Software Safety Standard NSS-1740.13 which was released as 'Interim' version in June 1994, scheduled for formal adoption late 1995. This paper is a survey of the methods in general use, resulting in the NASA guidelines for safety critical software development and analysis.

  12. Epidemiology and outcomes of cardiac arrest among children with Down Syndrome: a multicenter analysis.

    PubMed

    Padiyath, Asif; Rettiganti, Mallikarjuna; Gossett, Jeffrey M; Tadphale, Sachin D; Garcia, Xiomara; Seib, Paul M; Gupta, Punkaj

    2017-06-01

    With the increasing prevalence of Down Syndrome, it is unknown if children with Down Syndrome are associated with increased incidence of cardiac arrest and poor outcomes after cardiac arrest. The objective of this study was to evaluate the epidemiology of cardiac arrest and mortality after cardiac arrest among critically ill children with and without Down Syndrome. Patients ≤18 years admitted at a Pediatric Health Information Systems (PHIS) participating Intensive Care Unit were included (2004-2014). Multivariable logistic regression models were fitted to evaluate association of Down Syndrome with study outcomes after adjusting for patient and center characteristics. A total of 849,250 patients from 44 centers were included. Of the 25,143 patients with Down Syndrome, cardiac arrest was noted among 568 (2.3%) patients with an associated mortality at hospital discharge of 248 (43.6%) patients. In contrast, of the 824,107 patients without Down Syndrome, cardiac arrest was noted among 15,822 (1.9%) patients with an associated mortality at hospital discharge of 7775 (49.1%) patients. In adjusted models, patients with Down Syndrome had a higher likelihood of having cardiac arrest as compared to patients without Down Syndrome (with vs. without Down, OR: 1.14, 95% CI: 1.03-1.25, P=0.01). Despite having a higher likelihood of cardiac arrest, patients with Down Syndrome were associated with a lower mortality after cardiac arrest (OR: 0.78, 95% CI: 0.63-0.96, P=0.02). Both incidence of cardiac arrest, and mortality at hospital discharge in those with cardiac arrest vary substantially in children with and without Down Syndrome.

  13. Perioperative depression or anxiety and postoperative mortality in cardiac surgery: a systematic review and meta-analysis.

    PubMed

    Takagi, Hisato; Ando, Tomo; Umemoto, Takuya

    2017-12-01

    We performed a systematic review and meta-analysis to determine whether perioperative depression and anxiety are associated with increased postoperative mortality in patients undergoing cardiac surgery. MEDLINE and EMBASE were searched through January 2017 using PubMed and OVID, to identify observational studies enrolling patients undergoing cardiac surgery and reporting relative risk estimates (RREs) (including odds, hazard, or mortality ratios) of short term (30 days or in-hospital) and/or late all-cause mortality for patients with versus without perioperative depression or anxiety. Study-specific estimates were combined using inverse variance-weighted averages of logarithmic RREs in the random-effects models. Our search identified 16 eligible studies. In total, the present meta-analysis included data on 236,595 patients undergoing cardiac surgery. Pooled analysis demonstrated that perioperative depression was significantly associated with increased both postoperative early (RRE, 1.44; 95% confidence interval [CI] 1.01-2.05; p = 0.05) and late mortality (RRE, 1.44; 95% CI 1.24-1.67; p < 0.0001), and that perioperative anxiety significantly correlated with increased postoperative late mortality (RRE, 1.81; 95% CI 1.20-2.72; p = 0.004). The relation between anxiety and early mortality was reported in only one study and not statistically significant. In the association of depression with late mortality, there was no evidence of significant publication bias and meta-regression indicated that the effects of depression are not modulated by the duration of follow-up. In conclusion, perioperative depression and anxiety may be associated with increased postoperative mortality in patients undergoing cardiac surgery.

  14. Bioimpedance harmonic analysis as a tool to simultaneously assess circulation and nervous control.

    PubMed

    Mudraya, I S; Revenko, S V; Nesterov, A V; Gavrilov, I Yu; Kirpatovsky, V I

    2011-07-01

    Multicycle harmonic (Fourier) analysis of bioimpedance was employed to simultaneously assess circulation and neural activity in visceral (rat urinary bladder) and somatic (human finger) organs. The informative value of the first cardiac harmonic of the bladder impedance as an index of bladder circulation is demonstrated. The individual reactions of normal and obstructive bladders in response to infusion cystometry were recorded. The potency of multicycle harmonic analysis of bioimpedance to assess sympathetic and parasympathetic neural control in urinary bladder is discussed. In the human finger, bioimpedance harmonic analysis revealed three periodic components at the rate of the heart beat, respiration and Mayer wave (0.1 Hz), which were observed under normal conditions and during blood flow arrest in the hand. The revealed spectrum peaks were explained by the changes in systemic blood pressure and in regional vascular tone resulting from neural vasomotor control. During normal respiration and circulation, two side cardiac peaks were revealed in a bioimpedance amplitude spectrum, whose amplitude reflected the depth of amplitude respiratory modulation of the cardiac output. During normal breathing, the peaks corresponding to the second and third cardiac harmonics were split, reflecting frequency respiratory modulation of the heart rate. Multicycle harmonic analysis of bioimpedance is a novel potent tool to examine the interaction between the respiratory and cardiovascular system and to simultaneously assess regional circulation and neural influences in visceral and somatic organs.

  15. Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis.

    PubMed

    Ouweneel, Dagmar M; Schotborgh, Jasper V; Limpens, Jacqueline; Sjauw, Krischan D; Engström, A E; Lagrand, Wim K; Cherpanath, Thomas G V; Driessen, Antoine H G; de Mol, Bas A J M; Henriques, José P S

    2016-12-01

    Veno-arterial extracorporeal life support (ECLS) is increasingly used in patients during cardiac arrest and cardiogenic shock, to support both cardiac and pulmonary function. We performed a systematic review and meta-analysis of cohort studies comparing mortality in patients treated with and without ECLS support in the setting of refractory cardiac arrest and cardiogenic shock complicating acute myocardial infarction. We systematically searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials and the publisher subset of PubMed updated to December 2015. Thirteen studies were included of which nine included cardiac arrest patients (n = 3098) and four included patients with cardiogenic shock after acute myocardial infarction (n = 235). Data were pooled by a Mantel-Haenzel random effects model and heterogeneity was examined by the I 2 statistic. In cardiac arrest, the use of ECLS was associated with an absolute increase of 30 days survival of 13 % compared with patients in which ECLS was not used [95 % CI 6-20 %; p < 0.001; number needed to treat (NNT) 7.7] and a higher rate of favourable neurological outcome at 30 days (absolute risk difference 14 %; 95 % CI 7-20 %; p < 0.0001; NNT 7.1). Propensity matched analysis, including 5 studies and 438 patients (219 in both groups), showed similar results. In cardiogenic shock, ECLS showed a 33 % higher 30-day survival compared with IABP (95 % CI, 14-52 %; p < 0.001; NNT 13) but no difference when compared with TandemHeart/Impella (-3 %; 95 % CI -21 to 14 %; p = 0.70; NNH 33). In cardiac arrest, the use of ECLS was associated with an increased survival rate as well as an increase in favourable neurological outcome. In the setting of cardiogenic shock there was an increased survival with ECLS compared with IABP.

  16. Soft J-tipped guide wire-induced cardiac perforation in a patient with right ventricular lipomatosis and wall thinning.

    PubMed

    Hiroshima, Yuki; Tajima, Katsushi; Shiono, Yousuke; Suzuki, Ikuko; Kohno, Kei; Kato, Yuichi; Shunji, Kawamura; Kato, Takeo

    2012-01-01

    Cardiac tamponade caused by perforation is a rare but potentially lethal complication of central venous catheter (CVC) insertion. We herein report a case of cardiac perforation associated with the use of a soft J-tipped guide wire. Twenty minutes after the insertion of a CVC, the patient developed unexpected cardiac arrest. An autopsy revealed 400 mL of pericardial blood. The right ventricular wall was 1 mm thick with about 10 myocyte layers, which is one-third that of the normal heart. A histological analysis revealed widespread fatty infiltration of the right ventricular wall (right ventricular lipomatosis).

  17. Real-time myocardium segmentation for the assessment of cardiac function variation

    NASA Astrophysics Data System (ADS)

    Zoehrer, Fabian; Huellebrand, Markus; Chitiboi, Teodora; Oechtering, Thekla; Sieren, Malte; Frahm, Jens; Hahn, Horst K.; Hennemuth, Anja

    2017-03-01

    Recent developments in MRI enable the acquisition of image sequences with high spatio-temporal resolution. Cardiac motion can be captured without gating and triggering. Image size and contrast relations differ from conventional cardiac MRI cine sequences requiring new adapted analysis methods. We suggest a novel segmentation approach utilizing contrast invariant polar scanning techniques. It has been tested with 20 datasets of arrhythmia patients. The results do not differ significantly more between automatic and manual segmentations than between observers. This indicates that the presented solution could enable clinical applications of real-time MRI for the examination of arrhythmic cardiac motion in the future.

  18. Cardioprotective stress response in the human fetal heart.

    PubMed

    Coles, John G; Boscarino, Cathy; Takahashi, Mark; Grant, Diane; Chang, Astra; Ritter, Julia; Dai, Xiaojing; Du, Changqing; Musso, Gabriel; Yamabi, Hideaki; Goncalves, Jason; Kumar, Ashu Sunny; Woodgett, James; Lu, Huanzhang; Hannigan, Gregory

    2005-05-01

    We propose that the fetal heart is highly resilient to hypoxic stress. Our objective was to elucidate the human fetal gene expression profile in response to simulated ischemia and reperfusion to identify molecular targets that account for the innate cardioprotection exhibited by the fetal phenotype. Primary cultures of human fetal cardiac myocytes (gestational age, 15-20 weeks) were exposed to simulated ischemia and reperfusion in vitro by using a simulated ischemic buffer under anoxic conditions. Total RNA from treated and baseline cells were isolated, reverse transcribed, and labeled with Cy3 or Cy5 and hybridized to a human cDNA microarray for expression analysis. This analysis revealed a highly significant (false discovery rate, <3%) suppression of interleukin 6 transcript levels during the reperfusion phase confirmed by means of quantitative polymerase chain reaction (0.25 +/- 0.11-fold). Interleukin 6 signaling during ischemia and reperfusion was assessed at the protein expression level by means of Western measurements of interleukin 6 receptor, the signaling subunit of the interleukin 6 receptor complex (gp130), and signal transducer of activated transcription 3. Posttranslational changes in the protein kinase B signaling pathway were determined on the basis of the phosphorylation status of protein kinase B, mitogen-activated protein kinase, and glycogen synthase kinase 3beta. The effect of suppression of a prohypertrophic kinase, integrin-linked kinase, with short-interfering RNA was determined in an ischemia and reperfusion-stressed neonatal rat cardiac myocyte model. Endogenous secretion of interleukin 6 protein in culture supernatants was measured by enzyme-linked immunosorbent assay. Human fetal cardiac myocytes exhibited a significantly lower rate of apoptosis induction during ischemia and reperfusion and after exposure to staurosporine and recombinant interleukin 6 compared with that observed in neonatal rat cardiac myocytes ( P < .05 for all comparisons, analysis of variance). Exposure to exogenously added recombinant interleukin 6 increased the apoptotic rate in both rat and human fetal cardiac myocytes ( P < .05). Short-interfering RNA-mediated suppression of integrin-linked kinase, a prohypertrophy upstream kinase regulating protein kinase B and glycogen synthase kinase 3beta phosphorylation, was cytoprotective against ischemia and reperfusion-induced apoptosis in neonatal rat cardiac myocytes ( P < .05). Human fetal cardiac myocytes exhibit a uniquely adaptive transcriptional response to ischemia and reperfusion that is associated with an apoptosis-resistant phenotype. The stress-inducible fetal cardiac myocyte gene repertoire is a useful platform for identification of targets relevant to the mitigation of cardiac ischemic injury and highlights a novel avenue involving interleukin 6 modulation for preventing the cardiac myocyte injury associated with ischemia and reperfusion.

  19. Novel insights into cardiac remodelling revealed by proteomic analysis of the trout heart during exercise training.

    PubMed

    Dindia, Laura A; Alderman, Sarah L; Gillis, Todd E

    2017-05-24

    The changes in the cardiac proteome of rainbow trout (Oncorhynchus mykiss) were quantified during the early phases (4, 7, and 14d) of a typical exercise-training regime to provide a comprehensive overview of the cellular changes responsible for developing a trained heart phenotype. Enhanced somatic growth during the 14d experiment was paralleled by cardiac growth to maintain relative ventricular mass. This was reflected in the cardiac proteome by the increased abundance of contractile proteins and cellular integrity proteins as early as Day 4, including a pronounced and sustained increase in blood vessel epicardial substance - an intercellular adhesion protein expressed in the vertebrate heart. An unexpected finding was that proteins involved in energy pathways, including glycolysis, β-oxidation, the TCA cycle, and the electron transport chain, were generally present at lower levels relative to Day 0 levels, suggesting a reduced investment in the maintenance of energy production pathways. However, as the fish demonstrated somatic and cardiac growth during the exercise-training program, this change did not appear to influence cardiac function. The in-depth analysis of temporal changes in the cardiac proteome of trout during the early stages of exercise training reveals novel insights into cardiac remodelling in an important model species. Rainbow trout hearts have a remarkable ability for molecular, structural, and functional plasticity, and the inherent athleticism of these fish makes them ideal models for studies in comparative exercise physiology. Indeed, several decades of research using exercise-trained trout has shown both conserved and unique aspects of cardiac plasticity induced by a sustained increase in the workload of the heart. Despite a strong appreciation for the outcome of exercise training, however, the temporal events that generate this phenotype are not known. This study interrogates the early stages of exercise training using in-depth proteomic analysis to understand the molecular pathways of cardiac remodelling. Two major and novel findings emerge: (1) structural remodelling is initiated very early in training, as evidenced by a general increase in proteins associated with muscle contraction and integrity at Day 4, and (2) the abundance of proteins directly involved in energy production are decreased during 14d of exercise training, which contrasts the general acceptance of an exercise-induced increase in aerobic capacity of muscle, and suggests that regulation of energy pathways occurs at a different biological level than protein abundance. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Myocardin-related transcription factors are required for cardiac development and function

    PubMed Central

    Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda

    2016-01-01

    Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the developing or adult heart has not been explored. Through cardiac-specific deletion of MRTF alleles in mice, we show that either MRTF-A or MRTF-B is dispensable for cardiac development and function, whereas deletion of both MRTF-A and MRTF-B causes a spectrum of structural and functional cardiac abnormalities. Defects observed in MRTF-A/B null mice ranged from reduced cardiac contractility and adult onset heart failure to neonatal lethality accompanied by sarcomere disarray. RNA-seq analysis on neonatal hearts identified the most altered pathways in MRTF double knockout hearts as being involved in cytoskeletal organization. Together, these findings demonstrate redundant but essential roles of the MRTFs in maintenance of cardiac structure and function and as indispensible links in cardiac cytoskeletal gene regulatory networks. PMID:26386146

  1. Overall Hospital Cost Estimates in Children with Congenital Heart Disease: Analysis of the 2012 Kid's Inpatient Database.

    PubMed

    Faraoni, David; Nasr, Viviane G; DiNardo, James A

    2016-01-01

    This study sought to determine overall hospital cost in children with congenital heart disease (CHD) and to compare cost associated with cardiac surgical procedures, cardiac catheterizations, non-cardiac surgical procedures, and medical admissions. The 2012 Healthcare Cost and Utilization Project Kid's Inpatient Database was used to evaluate hospital cost in neonates and children with CHD undergoing cardiac surgery, cardiac catheterization, non-cardiac surgical procedures, and medical treatments. Multivariable logistic regression was applied to determine independent predictors for increased hospital cost. In 2012, total hospital cost was 28,900 M$, while hospital cost in children with CHD represented 23% of this total and accounted for only 4.4% of hospital discharges. The median cost was $51,302 ($32,088-$100,058) in children who underwent cardiac surgery, $21,920 ($13,068-$51,609) in children who underwent cardiac catheterization, $4134 ($1771-$10,253) in children who underwent non-cardiac surgery, and $23,062 ($5529-$71,887) in children admitted for medical treatments. Independent predictors for increased cost were hospital bed size <400 beds (P < 0.001), more than four procedures performed during the same hospitalization (P = 0.001), use of ECMO (P < 0.001), length of hospital stay exceeding 14 days (P < 0.001), cardiac failure (P < 0.001), sepsis (P < 0.001), acute kidney injury (P < 0.001), and neurologic (P < 0.001) and thromboembolic complications (P < 0.001). Hospital cost in children with CHD represented 23% of global cost while accounting for only 4.4% of discharges. This study identified factors associated with increased cost of cardiac surgical procedures, cardiac catheterizations, non-cardiac surgical procedures, and medical management in children with CHD.

  2. Application of newly developed Fluoro-QC software for image quality evaluation in cardiac X-ray systems.

    PubMed

    Oliveira, M; Lopez, G; Geambastiani, P; Ubeda, C

    2018-05-01

    A quality assurance (QA) program is a valuable tool for the continuous production of optimal quality images. The aim of this paper is to assess a newly developed automatic computer software for image quality (IR) evaluation in fluoroscopy X-ray systems. Test object images were acquired using one fluoroscopy system, Siemens Axiom Artis model (Siemens AG, Medical Solutions Erlangen, Germany). The software was developed as an ImageJ plugin. Two image quality parameters were assessed: high-contrast spatial resolution (HCSR) and signal-to-noise ratio (SNR). The time between manual and automatic image quality assessment procedures were compared. The paired t-test was used to assess the data. p Values of less than 0.05 were considered significant. The Fluoro-QC software generated faster IQ evaluation results (mean = 0.31 ± 0.08 min) than manual procedure (mean = 4.68 ± 0.09 min). The mean difference between techniques was 4.36 min. Discrepancies were identified in the region of interest (ROI) areas drawn manually with evidence of user dependence. The new software presented the results of two tests (HCSR = 3.06, SNR = 5.17) and also collected information from the DICOM header. Significant differences were not identified between manual and automatic measures of SNR (p value = 0.22) and HCRS (p value = 0.46). The Fluoro-QC software is a feasible, fast and free to use method for evaluating imaging quality parameters on fluoroscopy systems. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  3. High performance MRI simulations of motion on multi-GPU systems

    PubMed Central

    2014-01-01

    Background MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance multi-GPU environment. Methods Three different motion models were introduced in the Magnetic Resonance Imaging SIMULator (MRISIMUL) of this study: cardiac motion, respiratory motion and flow. Simulation of a simple Gradient Echo pulse sequence and a CINE pulse sequence on the corresponding anatomical model was performed. Myocardial tagging was also investigated. In pulse sequence design, software crushers were introduced to accommodate the long execution times in order to avoid spurious echoes formation. The displacement of the anatomical model isochromats was calculated within the Graphics Processing Unit (GPU) kernel for every timestep of the pulse sequence. Experiments that would allow simulation of custom anatomical and motion models were also performed. Last, simulations of motion with MRISIMUL on single-node and multi-node multi-GPU systems were examined. Results Gradient Echo and CINE images of the three motion models were produced and motion-related artifacts were demonstrated. The temporal evolution of the contractility of the heart was presented through the application of myocardial tagging. Better simulation performance and image quality were presented through the introduction of software crushers without the need to further increase the computational load and GPU resources. Last, MRISIMUL demonstrated an almost linear scalable performance with the increasing number of available GPU cards, in both single-node and multi-node multi-GPU computer systems. Conclusions MRISIMUL is the first MR physics simulator to have implemented motion with a 3D large computational load on a single computer multi-GPU configuration. The incorporation of realistic motion models, such as cardiac motion, respiratory motion and flow may benefit the design and optimization of existing or new MR pulse sequences, protocols and algorithms, which examine motion related MR applications. PMID:24996972

  4. TU-H-CAMPUS-IeP1-03: Comparison of Monte Carlo Simulation and Conversion Factor Based Method On Estimation of Effective Dose in Pediatric Patients Undergoing Interventional Cardiac Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, K; Wong, M; Ng, Y

    Purpose: Interventional cardiac procedures utilize frequent fluoroscopy and cineangiography, which impose considerable radiation risk to patients, especially pediatric patients. Accurate calculation of effective dose is important in order to estimate cancer risk over the rest of their lifetime. This study evaluates the difference in effective dose calculated by Monte Carlo simulation with those estimated by locally-derived conversion factors (CF-local) and by commonly quoted conversion factors from Karambatsakidou et al (CF-K). Methods: Effective dose (E),of 12 pediatric patients, age between 2.5–19 years old, who had undergone interventional cardiac procedures, were calculated using PCXMC-2.0 software. Tube spectrum, irradiation geometry, exposure parameters andmore » dose-area product (DAP) of each projection were included in the software calculation. Effective doses for each patient were also estimated by two Methods: 1) CF-local: conversion factor derived locally by generalizing results of 12 patients, multiplied by DAP of each patient gives E-local. 2) CF-K: selected factor from above-mentioned literature, multiplied by DAP of each patient gives E-K. Results: Mean of E, E-local and E-K were 16.01 mSv, 16.80 mSv and 22.25 mSv respectively. A deviation of −29.35% to +34.85% between E and E-local, while a greater deviation of −28.96% to +60.86% between E and EK were observed. E-K overestimated the effective dose for patients at age 7.5–19. Conclusion: Effective dose obtained by conversion factors is simple and quick to estimate radiation risk of pediatric patients. This study showed that estimation by CF-local may bear an error of 35% when compared with Monte Carlo calculation. If using conversion factors derived by other studies may result in an even greater error, of up to 60%, due to factors that are not catered for in the estimation, including patient size, projection angles, exposure parameters, tube filtration, etc. Users must be aware of these potential inaccuracies when simple conversion method is employed.« less

  5. Impact of the viral respiratory season on postoperative outcomes in children undergoing cardiac surgery.

    PubMed

    Spaeder, Michael C; Carson, Kathryn A; Vricella, Luca A; Alejo, Diane E; Holmes, Kathryn W

    2011-08-01

    To compare postoperative outcomes in children undergoing cardiac surgery during the viral respiratory season and nonviral season at our institution. This was a retrospective cohort study and secondary matched case-control analysis. The setting was an urban academic tertiary-care children's hospital. The study was comprised of all patients <18 years of age who underwent cardiac surgery at Johns Hopkins Hospital from October 2002 through September 2007. Patients were stratified by season of surgery, complexity of cardiac disease, and presence or absence of viral respiratory infection. Measurements included patient characteristics and postoperative outcomes. The primary outcome was postoperative length of stay (LOS). A total of 744 patients were included in the analysis. There was no difference in baseline characteristics or outcomes, specifically, no difference in postoperative LOS, intensive care unit (ICU) LOS, and mortality, among patients by seasons of surgery. Patients with viral respiratory illness were more likely to have longer postoperative LOS (p < 0.01) and ICU LOS (p < 0.01) compared with matched controls. We identified no difference in postoperative outcomes based on season in patients undergoing cardiac surgery. Children with viral respiratory infection have significantly worse outcomes than matched controls, strengthening the call for universal administration of influenza vaccination and palivizumab to appropriate groups. Preoperative testing for respiratory viruses should be considered during the winter months for children undergoing elective cardiac surgery.

  6. Cardiac macrophages adopt profibrotic/M2 phenotype in infarcted hearts: Role of urokinase plasminogen activator.

    PubMed

    Carlson, Signe; Helterline, Deri; Asbe, Laura; Dupras, Sarah; Minami, Elina; Farris, Stephen; Stempien-Otero, April

    2017-07-01

    Macrophages (mac) that over-express urokinase plasminogen activator (uPA) adopt a profibrotic M2 phenotype in the heart in association with cardiac fibrosis. We tested the hypothesis that cardiac macs are M2 polarized in infarcted mouse and human hearts and that polarization is dependent on mac-derived uPA. Studies were performed using uninjured (UI) or infarcted (MI) hearts of uPA overexpressing (SR-uPA), uPA null, or nontransgenic littermate (Ntg) mice. At 7days post-infarction, cardiac mac were isolated, RNA extracted and M2 markers Arg1, YM1, and Fizz1 measured with qrtPCR. Histologic analysis for cardiac fibrosis, mac and myofibroblasts was performed at the same time-point. Cardiac macs were also isolated from Ntg hearts and RNA collected after primary isolation or culture with vehicle, IL-4 or plasmin and M2 marker expression measured. Cardiac tissue and blood was collected from humans with ischemic heart disease. Expression of M2 marker CD206 and M1 marker TNFalpha was measured. Macs from WT mice had increased expression of Arg1 and Ym1 following MI (41.3±6.5 and 70.3±36, fold change vs UI, n=8, P<0.007). There was significant up-regulation of cardiac mac Arg1 and YM1 with MI in both WT and uPA null mice (n=4-9 per genotype and condition). Treatment with plasmin increased expression of Arg1 and YM1 in cultured cardiac macs. Histologic analysis revealed increased density of activated fibroblasts and M2 macs in SR-uPA hearts post-infarction with associated increases in fibrosis. Cardiac macs isolated from human hearts with ischemic heart disease expressed increased levels of the M2 marker CD206 in comparison to blood-derived macs (4.9±1.3). Cardiac macs in mouse and human hearts adopt a M2 phenotype in association with fibrosis. Plasmin can induce an M2 phenotype in cardiac macs. However, M2 activation can occur in the heart in vivo in the absence of uPA indicating that alternative pathways to activate plasmin are present in the heart. Excess uPA promotes increased fibroblast density potentially via potentiating fibroblast migration or proliferation. Altering macrophage phenotype in the heart is a potential target to modify cardiac fibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A 3D Hermite-based multiscale local active contour method with elliptical shape constraints for segmentation of cardiac MR and CT volumes.

    PubMed

    Barba-J, Leiner; Escalante-Ramírez, Boris; Vallejo Venegas, Enrique; Arámbula Cosío, Fernando

    2018-05-01

    Analysis of cardiac images is a fundamental task to diagnose heart problems. Left ventricle (LV) is one of the most important heart structures used for cardiac evaluation. In this work, we propose a novel 3D hierarchical multiscale segmentation method based on a local active contour (AC) model and the Hermite transform (HT) for LV analysis in cardiac magnetic resonance (MR) and computed tomography (CT) volumes in short axis view. Features such as directional edges, texture, and intensities are analyzed using the multiscale HT space. A local AC model is configured using the HT coefficients and geometrical constraints. The endocardial and epicardial boundaries are used for evaluation. Segmentation of the endocardium is controlled using elliptical shape constraints. The final endocardial shape is used to define the geometrical constraints for segmentation of the epicardium. We follow the assumption that epicardial and endocardial shapes are similar in volumes with short axis view. An initialization scheme based on a fuzzy C-means algorithm and mathematical morphology was designed. The algorithm performance was evaluated using cardiac MR and CT volumes in short axis view demonstrating the feasibility of the proposed method.

  8. High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: a systematic review and meta-analysis.

    PubMed

    Hannan, Amanda L; Hing, Wayne; Simas, Vini; Climstein, Mike; Coombes, Jeff S; Jayasinghe, Rohan; Byrnes, Joshua; Furness, James

    2018-01-01

    Aerobic capacity has been shown to be inversely proportionate to cardiovascular mortality and morbidity and there is growing evidence that high-intensity interval training (HIIT) appears to be more effective than moderate-intensity continuous training (MICT) in improving cardiorespiratory fitness within the cardiac population. Previously published systematic reviews in cardiovascular disease have neither investigated the effect that the number of weeks of intervention has on cardiorespiratory fitness changes, nor have adverse events been collated. We aimed to undertake a systematic review and meta-analysis of randomized controlled trials (RCTs) within the cardiac population that investigated cardiorespiratory fitness changes resulting from HIIT versus MICT and to collate adverse events. A critical narrative synthesis and meta-analysis was conducted after systematically searching relevant databases up to July 2017. We searched for RCTs that compared cardiorespiratory fitness changes resulting from HIIT versus MICT interventions within the cardiac population. Seventeen studies, involving 953 participants (465 for HIIT and 488 for MICT) were included in the analysis. HIIT was significantly superior to MICT in improving cardiorespiratory fitness overall (SMD 0.34 mL/kg/min; 95% confidence interval [CI; 0.2-0.48]; p <0.00001; I 2 =28%). There were no deaths or cardiac events requiring hospitalization reported in any study during training. Overall, there were more adverse events reported as a result of the MICT (n=14) intervention than the HIIT intervention (n=9). However, some adverse events (n=5) were not classified by intervention group. HIIT is superior to MICT in improving cardiorespiratory fitness in participants of cardiac rehabilitation (CR). Improvements in cardiorespiratory fitness are significant for CR programs of >6-week duration. Programs of 7-12 weeks' duration resulted in the largest improvements in cardiorespiratory fitness for patients with coronary artery disease. HIIT appears to be as safe as MICT for CR participants.

  9. Critical incident technique analysis applied to perianesthetic cardiac arrests at a university teaching hospital.

    PubMed

    Hofmeister, Erik H; Reed, Rachel A; Barletta, Michele; Shepard, Molly; Quandt, Jane

    2018-05-01

    To apply the critical incident technique (CIT) methodology to a series of perianesthetic cardiac arrest events at a university teaching hospital to describe the factors that contributed to cardiac arrest. CIT qualitative analysis of a case series. A group of 16 dogs and cats that suffered a perioperative cardiac arrest between November 2013 and November 2016. If an arrest occurred, the event was discussed among the anesthesiologists. The discussion included a description of the case, a description of the sequence of events leading up to the arrest and a discussion of what could have been done to affect the outcome. A written description of the case and the event including animal signalment and a timeline of events was provided by the supervising anesthesiologist following discussion among the anesthesiologists. Only dogs or cats were included. After the data collection period, information from the medical record was collected. A qualitative document analysis was performed on the summaries provided about each case by the supervising anesthesiologist, the medical record and any supporting documents. Each case was then classified into one or more of the following: animal, human, equipment, drug and procedural factors for cardiac arrest. The most common factor was animal (n=14), followed by human (n=12), procedural (n=4), drugs (n=1) and equipment (n=1). The majority (n=11) of animals had multiple factors identified. Cardiac arrests during anesthesia at a referral teaching hospital were primarily a result of animal and human factors. Arrests because of procedural, drug and equipment factors were uncommon. Most animals experienced more than one factor and two animals arrested after a change in recumbency. Future work should focus on root cause analysis and interventions designed to minimize all factors, particularly human ones. Copyright © 2018 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  10. High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: a systematic review and meta-analysis

    PubMed Central

    Hannan, Amanda L; Hing, Wayne; Simas, Vini; Climstein, Mike; Coombes, Jeff S; Jayasinghe, Rohan; Byrnes, Joshua; Furness, James

    2018-01-01

    Background Aerobic capacity has been shown to be inversely proportionate to cardiovascular mortality and morbidity and there is growing evidence that high-intensity interval training (HIIT) appears to be more effective than moderate-intensity continuous training (MICT) in improving cardiorespiratory fitness within the cardiac population. Previously published systematic reviews in cardiovascular disease have neither investigated the effect that the number of weeks of intervention has on cardiorespiratory fitness changes, nor have adverse events been collated. Objective We aimed to undertake a systematic review and meta-analysis of randomized controlled trials (RCTs) within the cardiac population that investigated cardiorespiratory fitness changes resulting from HIIT versus MICT and to collate adverse events. Methods A critical narrative synthesis and meta-analysis was conducted after systematically searching relevant databases up to July 2017. We searched for RCTs that compared cardiorespiratory fitness changes resulting from HIIT versus MICT interventions within the cardiac population. Results Seventeen studies, involving 953 participants (465 for HIIT and 488 for MICT) were included in the analysis. HIIT was significantly superior to MICT in improving cardiorespiratory fitness overall (SMD 0.34 mL/kg/min; 95% confidence interval [CI; 0.2–0.48]; p<0.00001; I2=28%). There were no deaths or cardiac events requiring hospitalization reported in any study during training. Overall, there were more adverse events reported as a result of the MICT (n=14) intervention than the HIIT intervention (n=9). However, some adverse events (n=5) were not classified by intervention group. Conclusion HIIT is superior to MICT in improving cardiorespiratory fitness in participants of cardiac rehabilitation (CR). Improvements in cardiorespiratory fitness are significant for CR programs of >6-week duration. Programs of 7–12 weeks’ duration resulted in the largest improvements in cardiorespiratory fitness for patients with coronary artery disease. HIIT appears to be as safe as MICT for CR participants. PMID:29416382

  11. A statistical approach to evaluate the performance of cardiac biomarkers in predicting death due to acute myocardial infarction: time-dependent ROC curve

    PubMed

    Karaismailoğlu, Eda; Dikmen, Zeliha Günnur; Akbıyık, Filiz; Karaağaoğlu, Ahmet Ergun

    2018-04-30

    Background/aim: Myoglobin, cardiac troponin T, B-type natriuretic peptide (BNP), and creatine kinase isoenzyme MB (CK-MB) are frequently used biomarkers for evaluating risk of patients admitted to an emergency department with chest pain. Recently, time- dependent receiver operating characteristic (ROC) analysis has been used to evaluate the predictive power of biomarkers where disease status can change over time. We aimed to determine the best set of biomarkers that estimate cardiac death during follow-up time. We also obtained optimal cut-off values of these biomarkers, which differentiates between patients with and without risk of death. A web tool was developed to estimate time intervals in risk. Materials and methods: A total of 410 patients admitted to the emergency department with chest pain and shortness of breath were included. Cox regression analysis was used to determine an optimal set of biomarkers that can be used for estimating cardiac death and to combine the significant biomarkers. Time-dependent ROC analysis was performed for evaluating performances of significant biomarkers and a combined biomarker during 240 h. The bootstrap method was used to compare statistical significance and the Youden index was used to determine optimal cut-off values. Results : Myoglobin and BNP were significant by multivariate Cox regression analysis. Areas under the time-dependent ROC curves of myoglobin and BNP were about 0.80 during 240 h, and that of the combined biomarker (myoglobin + BNP) increased to 0.90 during the first 180 h. Conclusion: Although myoglobin is not clinically specific to a cardiac event, in our study both myoglobin and BNP were found to be statistically significant for estimating cardiac death. Using this combined biomarker may increase the power of prediction. Our web tool can be useful for evaluating the risk status of new patients and helping clinicians in making decisions.

  12. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications.

    PubMed

    Gorain, Bapi; Choudhury, Hira; Pandey, Manisha; Kesharwani, Prashant; Abeer, Muhammad Mustafa; Tekade, Rakesh Kumar; Hussain, Zahid

    2018-08-01

    Myocardial infarction (cardiac tissue death) is among the most prevalent causes of death among the cardiac patients due to the inability of self-repair in cardiac tissues. Myocardial tissue engineering is regarded as one of the most realistic strategies for repairing damaged cardiac tissue. However, hindrance in transduction of electric signals across the cardiomyocytes due to insulating properties of polymeric materials worsens the clinical viability of myocardial tissue engineering. Aligned and conductive scaffolds based on Carbon nanotubes (CNT) have gained remarkable recognition due to their exceptional attributes which provide synthetic but viable microenvironment for regeneration of engineered cardiomyocytes. This review presents an overview and critical analysis of pharmaceutical implications and therapeutic feasibility of CNT based scaffolds in improving the cardiac tissue regeneration and functionality. The expository analysis of the available evidence revealed that inclusion of single- or multi-walled CNT into fibrous, polymeric, and elastomeric scaffolds results in significant improvement in electrical stimulation and signal transduction through cardiomyocytes. Moreover, incorporation of CNT in engineering scaffolds showed a greater potential of augmenting cardiomyocyte proliferation, differentiation, and maturation and has improved synchronous beating of cardiomyocytes. Despite promising ability of CNT in promoting functionality of cardiomyocytes, their presence in scaffolds resulted in substantial improvement in mechanical properties and structural integrity. Conclusively, this review provides new insight into the remarkable potential of CNT aligned scaffolds in improving the functionality of engineered cardiac tissue and signifies their feasibility in cardiac tissue regenerative medicines and stem cell therapy. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Pulmonary vascular volume ratio measured by cardiac computed tomography in children and young adults with congenital heart disease: comparison with lung perfusion scintigraphy.

    PubMed

    Goo, Hyun Woo; Park, Sang Hyub

    2017-11-01

    Lung perfusion scintigraphy is regarded as the gold standard for evaluating differential lung perfusion ratio in congenital heart disease. To compare cardiac CT with lung perfusion scintigraphy for estimated pulmonary vascular volume ratio in patients with congenital heart disease. We included 52 children and young adults (median age 4 years, range 2 months to 28 years; 31 males) with congenital heart disease who underwent cardiac CT and lung perfusion scintigraphy without an interim surgical or transcatheter intervention and within 1 year. We calculated the right and left pulmonary vascular volumes using threshold-based CT volumetry. Then we compared right pulmonary vascular volume percentages at cardiac CT with right lung perfusion percentages at lung perfusion scintigraphy by using paired t-test and Bland-Altman analysis. The right pulmonary vascular volume percentages at cardiac CT (66.3 ± 14.0%) were significantly smaller than the right lung perfusion percentages at lung perfusion scintigraphy (69.1 ± 15.0%; P=0.001). Bland-Altman analysis showed a mean difference of -2.8 ± 5.8% and 95% limits of agreement (-14.1%, 8.5%) between these two variables. Cardiac CT, in a single examination, can offer pulmonary vascular volume ratio in addition to pulmonary artery anatomy essential for evaluating peripheral pulmonary artery stenosis in patients with congenital heart disease. However there is a wide range of agreement between cardiac CT and lung perfusion scintigraphy.

  14. The experiences of male sudden cardiac arrest survivors and their partners: a gender analysis.

    PubMed

    Uren, Alan; Galdas, Paul

    2015-02-01

    To explore how masculinities shape the experiences of men and their partners after survival from out-of-hospital cardiac arrest. Survivors of out-of-hospital cardiac arrest report depression, dependence on others for daily functioning, decreased participation in society and significant decreases in quality of life. There is growing evidence that masculine gender identities play a central role in the recovery experiences of men and their families following other major cardiac events. However, to date, there has been no examination of how masculinities shape men's experiences of recovery following out-of-hospital cardiac arrest. Interview study guided by an interpretive description approach. Data were subjected to thematic analysis. A purposive sample of seven male sudden cardiac arrest survivors and 6 female partners was recruited in 2010 from a secondary care centre in British Columbia, Canada. Three themes were prominent in the experiences of the participants: (1) Support and self-reliance; (2) Dealing with emotional (in) vulnerability; and (3) No longer a 'He-man'. Masculinities played a role in men's experiences of recovery and adaptation following out-of-hospital cardiac arrest. Hegemonic masculinity partly explained men's experiences, notably their reluctance to seek professional support and reactions to changes in lifestyle. However, the study also suggests that the popular stereotype of men being 'strong and silent' in the face of ill-health may only be a part of a more complex story. Nurses would benefit from taking into consideration the potential influence of male gender identities on men's recovery postcardiac arrest. © 2014 John Wiley & Sons Ltd.

  15. Cardiac Complications, Earlier Treatment, and Initial Disease Severity in Kawasaki Disease.

    PubMed

    Abrams, Joseph Y; Belay, Ermias D; Uehara, Ritei; Maddox, Ryan A; Schonberger, Lawrence B; Nakamura, Yosikazu

    2017-09-01

    To assess if observed higher observed risks of cardiac complications for patients with Kawasaki disease (KD) treated earlier may reflect bias due to confounding from initial disease severity, as opposed to any negative effect of earlier treatment. We used data from Japanese nationwide KD surveys from 1997 to 2004. Receipt of additional intravenous immunoglobulin (IVIG) (data available all years) or any additional treatment (available for 2003-2004) were assessed as proxies for initial disease severity. We determined associations between earlier or later IVIG treatment (defined as receipt of IVIG on days 1-4 vs days 5-10 of illness) and cardiac complications by stratifying by receipt of additional treatment or by using logistic modeling to control for the effect of receiving additional treatment. A total of 48 310 patients with KD were included in the analysis. In unadjusted analysis, earlier IVIG treatment was associated with a higher risk for 4 categories of cardiac complications, including all major cardiac complications (risk ratio, 1.10; 95% CI, 1.06-1.15). Stratifying by receipt of additional treatment removed this association, and earlier IVIG treatment became protective against all major cardiac complications when controlling for any additional treatment in logistic regressions (OR, 0.90; 95% CI, 0.80-1.00). Observed higher risks of cardiac complications among patients with KD receiving IVIG treatment on days 1-4 of the illness are most likely due to underlying higher initial disease severity, and patients with KD should continue to be treated with IVIG as early as possible. Published by Elsevier Inc.

  16. Can lay responder defibrillation programmes improve survival to hospital discharge following an out-of-hospital cardiac arrest?

    PubMed

    Smith, Leigh M; Davidson, Patricia M; Halcomb, Elizabeth J; Andrew, Sharon

    2007-11-01

    The importance of early defibrillation in improving outcomes and reducing morbidity following out-of-hospital cardiac arrest underscores the importance of examining novel approaches to treatment access. The increasing evidence to support the importance of early defibrillation has increased attention on the potential for lay responders to deliver this therapy. This paper seeks to critically review the literature that evaluates the impact of lay responder defibrillator programs on survival to hospital discharge following an out-of-hospital cardiac arrest in the adult population. The electronic databases, Medline and CINAHL, were searched using keywords including; "first responder", "lay responder", "defibrillation" and "cardiac arrest". The reference lists of retrieved articles and the Internet were also searched. Articles were included in the review if they reported primary data, in the English language, which described the effect of a lay responder defibrillation program on survival to hospital discharge from out-of-hospital cardiac arrest in adults. Eleven studies met the inclusion criteria. The small number of published studies, heterogeneity of study populations and study outcome methods prohibited formal meta-analysis. Therefore, narrative analysis was undertaken. Studies included in this report provided inconsistent findings in relation to survival to hospital discharge following out-of-hospital cardiac arrest. Although there are limited data, the role of the lay responder appears promising in improving the outcome from out-of-hospital cardiac arrest following early defibrillation. Despite the inherent methodological difficulties in studying this population, future research should address outcomes related to morbidity, mortality and cost-effectiveness.

  17. Using software security analysis to verify the secure socket layer (SSL) protocol

    NASA Technical Reports Server (NTRS)

    Powell, John D.

    2004-01-01

    nal Aeronautics and Space Administration (NASA) have tens of thousands of networked computer systems and applications. Software Security vulnerabilities present risks such as lost or corrupted data, information the3, and unavailability of critical systems. These risks represent potentially enormous costs to NASA. The NASA Code Q research initiative 'Reducing Software Security Risk (RSSR) Trough an Integrated Approach '' offers, among its capabilities, formal verification of software security properties, through the use of model based verification (MBV) to address software security risks. [1,2,3,4,5,6] MBV is a formal approach to software assurance that combines analysis of software, via abstract models, with technology, such as model checkers, that provide automation of the mechanical portions of the analysis process. This paper will discuss: The need for formal analysis to assure software systems with respect to software and why testing alone cannot provide it. The means by which MBV with a Flexible Modeling Framework (FMF) accomplishes the necessary analysis task. An example of FMF style MBV in the verification of properties over the Secure Socket Layer (SSL) communication protocol as a demonstration.

  18. Tobacco smoking and the risk of sudden cardiac death: a systematic review and meta-analysis of prospective studies.

    PubMed

    Aune, Dagfinn; Schlesinger, Sabrina; Norat, Teresa; Riboli, Elio

    2018-06-01

    Smoking is an established risk factor for cardiovascular disease including coronary heart disease and stroke, however, data regarding smoking and sudden cardiac death have not been summarized in a meta-analysis previously. We therefore conducted a systematic review and meta-analysis to clarify this association. We searched the PubMed and Embase databases for studies of smoking and sudden cardiac death up to July 20th 2017. Prospective studies were included if they reported adjusted relative risk (RR) estimates and 95% confidence intervals (CIs) for smoking and sudden cardiac death. Summary RRs were estimated by use of a random effects model. Twelve prospective studies were included. The summary RR was 3.06 (95% CI 2.46-3.82, I 2  = 41%, p heterogeneity  = 0.12, n = 7) for current smokers and 1.38 (95% CI 1.20-1.60, I 2  = 0%, p heterogeneity  = 0.55, n = 7) for former smokers compared to never smokers. For four studies using non-current (never + former) smokers as the reference category the summary RR among current smokers was 2.08 (95% CI 1.70-2.53, I 2  = 18%, p heterogeneity  = 0.30). The results persisted in most of the subgroup analyses. There was no evidence of publication bias. These results confirm that smoking increases the risk of sudden cardiac death. Any further studies should investigate in more detail the effects of duration of smoking, number of cigarettes per day, pack-years, and time since quitting smoking and sudden cardiac death.

  19. Cardiac systolic dysfunction in doxorubicin-challenged rats is associated with upregulation of MuRF2 and MuRF3 E3 ligases

    PubMed Central

    da Silva, Marcia Gracindo; Mattos, Elisabete; Camacho-Pereira, Juliana; Domitrovic, Tatiana; Galina, Antonio; Costa, Mauro W; Kurtenbach, Eleonora

    2012-01-01

    Doxorubicin (DOXO) is an efficient and low-cost chemotherapeutic agent. The use of DOXO is limited by its side effects, including cardiotoxicity, that may progress to cardiac failure as a result of multifactorial events that have not yet been fully elucidated. In the present study, the effects of DOXO at two different doses were analyzed to identify early functional and molecular markers of cardiac distress. One group of rats received 7.5 mg/kg of DOXO (low-dose group) and was followed for 20 weeks. A subset of these animals was then subjected to an additional cycle of DOXO treatment, generating a cumulative dose of 20 mg/kg (high-dose group). Physiological and biochemical parameters were assessed in both treatment groups and in a control group that received saline. Systolic dysfunction was observed only in the high-dose group. Mitochondrial function analysis showed a clear reduction in oxidative cellular respiration for animals in both DOXO treatment groups, with evidence of complex I damage being observed. Transcriptional analysis by quantitative polymerase chain reaction revealed an increase in atrial natriuretic peptide transcript in the high-dose group, which is consistent with cardiac failure. Analysis of transcription levels of key components of the cardiac ubiquitin-proteasome system found that the ubiquitin E3 ligase muscle ring finger 1 (MuRF1) was upregulated in both the low- and high-dose DOXO groups. MuRF2 and MuRF3 were also upregulated in the high-dose group but not in the low-dose group. This molecular profile may be useful as an early physiological and energetic cardiac failure indicator for testing therapeutic interventions in animal models. PMID:23620696

  20. Development of Automated Image Analysis Software for Suspended Marine Particle Classification

    DTIC Science & Technology

    2003-09-30

    Development of Automated Image Analysis Software for Suspended Marine Particle Classification Scott Samson Center for Ocean Technology...REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE Development of Automated Image Analysis Software for Suspended...objective is to develop automated image analysis software to reduce the effort and time required for manual identification of plankton images. Automated

  1. A tool to include gamma analysis software into a quality assurance program.

    PubMed

    Agnew, Christina E; McGarry, Conor K

    2016-03-01

    To provide a tool to enable gamma analysis software algorithms to be included in a quality assurance (QA) program. Four image sets were created comprising two geometric images to independently test the distance to agreement (DTA) and dose difference (DD) elements of the gamma algorithm, a clinical step and shoot IMRT field and a clinical VMAT arc. The images were analysed using global and local gamma analysis with 2 in-house and 8 commercially available software encompassing 15 software versions. The effect of image resolution on gamma pass rates was also investigated. All but one software accurately calculated the gamma passing rate for the geometric images. Variation in global gamma passing rates of 1% at 3%/3mm and over 2% at 1%/1mm was measured between software and software versions with analysis of appropriately sampled images. This study provides a suite of test images and the gamma pass rates achieved for a selection of commercially available software. This image suite will enable validation of gamma analysis software within a QA program and provide a frame of reference by which to compare results reported in the literature from various manufacturers and software versions. Copyright © 2015. Published by Elsevier Ireland Ltd.

  2. Changes of myocardial lipidomics profiling in a rat model of diabetic cardiomyopathy using UPLC/Q-TOF/MS analysis.

    PubMed

    Dong, Shifen; Zhang, Rong; Liang, Yaoyue; Shi, Jiachen; Li, Jiajia; Shang, Fei; Mao, Xuezhou; Sun, Jianning

    2017-01-01

    Diabetic cardiomyopathy (DCM) is a serious cardiac dysfunction induced by changes in the structure and contractility of the myocardium that are initiated in part by alterations in energy substrates. The underlying mechanisms of DCM are still under controversial. The observation of lipids, especially lipidomics profiling, can provide an insight into the know the biomarkers of DCM. The aim of our research was to detect changes of myocardial lipidomics profiling in a rat model of diabetic cardiomyopathy. Diabetic cardiomyopathy was induced by feeding a high-sucrose/fat diet (HSFD) for 28 weeks and streptozotocin (30 mg/kg, intraperitoneally). The ultra-high-performance liquid chromatography (UPLC) coupled to quadruple time-of flight (QTOF) mass spectrometer was used to acquire and analyze the lipidomics profiling of myocardial tissue. Meanwhile, parameters of cardiac function were collected using cardiac catheterization, and the cardiac index was calculated, and fasting blood glucose and lipid levels were measured by an ultraviolet spectrophotometric method. We detected 3023 positive ion peaks and 300 negative ion peaks. Levels of phosphatidylcholine (PC) (22:6/18:2), PC (22:6/18:1), PC (20:4/16:1), PC (16:1/18:3), phosphatidylethanolamine (PE) (20:4/18:2), and PE (20:4/16:0) were down-regulated, and PC (20:2/18:2), PC (18:0/16:0), and PC (20:4/18:0) were up-regulated in DCM model rats, when compared with control rats. Cardiac functions signed as values of left ventricular systolic pressure, maximal uprising velocity of left ventricular pressure and maximal decreasing velocity of left ventricular pressure were injured by 21-44%, and the cardiac index was increased by 25%, and fasting blood glucose and lipids were increased by 34-368%. Meanwhile, the cardiac lipid-related biomarkers have significant correlation with changes of cardiac function and cardiac index. UPLC/Q-TOF/MS analysis data suggested changes of some potential lipid biomarkers in the development of cardiac dysfunction and hypertrophy of diabetic cardiomyopathy, which may serve as potential important targets for clinical diagnosis and therapeutic intervention of DCM in the future.

  3. Significance of worsening renal function and nuclear cardiology for predicting cardiac death in patients with known or suspected coronary artery disease.

    PubMed

    Yoda, Shunichi; Nakanishi, Kanae; Tano, Ayako; Hori, Yusuke; Suzuki, Yasuyuki; Matsumoto, Naoya; Hirayama, Atsushi

    2015-11-01

    Estimated glomerular filtration rates (eGFRs) at baseline are useful to determine the severity of renal function and to predict cardiac events. However, no studies aimed to demonstrate significance of eGFRs measured during follow-up and usefulness of combination with nuclear cardiology for prediction of cardiac death in patients with coronary artery disease (CAD). We retrospectively investigated 1739 patients with known/suspected CAD who underwent myocardial perfusion single photon emission computed tomography (SPECT), who had eGFRs measured at baseline and after one year and who underwent a three-year follow-up. The SPECT images were analyzed with the visual scoring model to estimate summed defect scores. Reduction in eGFRs (ΔeGFR) was defined as the difference between eGFRs measured after one year and at baseline. The endpoint of the follow-up was cardiac deaths within three years after the SPECT, which were identified with medical records or responses to posted questionnaires. Cardiac death was observed in 54 of 1739 patients during the follow-up period (45.6±9.1 months). The multivariate Cox regression analysis showed baseline eGFRs, ΔeGFR, and summed stress scores to be significant independent variables for prediction of cardiac death. The area under receiver operating characteristic curves for detection of cardiac death was 0.677 for the baseline eGFR and 0.802 for the follow-up eGFR. Sensitivity of detection of cardiac death was significantly higher in the follow-up eGFR than in the baseline eGFR (p=0.0002). Combination of the best cut-off values, i.e. 9 for the summed stress scores and 10 for the ΔeGFR, which were suggested by receiver operating characteristic analysis, was useful for risk stratification of cardiac death both in patients with and without chronic kidney disease. Baseline and follow-up eGFRs as well as nuclear variables are useful to predict cardiac death in patients with known/suspected CAD. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  4. FPGA in-the-loop simulations of cardiac excitation model under voltage clamp conditions

    NASA Astrophysics Data System (ADS)

    Othman, Norliza; Adon, Nur Atiqah; Mahmud, Farhanahani

    2017-01-01

    Voltage clamp technique allows the detection of single channel currents in biological membranes in identifying variety of electrophysiological problems in the cellular level. In this paper, a simulation study of the voltage clamp technique has been presented to analyse current-voltage (I-V) characteristics of ion currents based on Luo-Rudy Phase-I (LR-I) cardiac model by using a Field Programmable Gate Array (FPGA). Nowadays, cardiac models are becoming increasingly complex which can cause a vast amount of time to run the simulation. Thus, a real-time hardware implementation using FPGA could be one of the best solutions for high-performance real-time systems as it provides high configurability and performance, and able to executes in parallel mode operation. For shorter time development while retaining high confidence results, FPGA-based rapid prototyping through HDL Coder from MATLAB software has been used to construct the algorithm for the simulation system. Basically, the HDL Coder is capable to convert the designed MATLAB Simulink blocks into hardware description language (HDL) for the FPGA implementation. As a result, the voltage-clamp fixed-point design of LR-I model has been successfully conducted in MATLAB Simulink and the simulation of the I-V characteristics of the ionic currents has been verified on Xilinx FPGA Virtex-6 XC6VLX240T development board through an FPGA-in-the-loop (FIL) simulation.

  5. The Role of Data Analysis Software in Graduate Programs in Education and Post-Graduate Research

    ERIC Educational Resources Information Center

    Harwell, Michael

    2018-01-01

    The importance of data analysis software in graduate programs in education and post-graduate educational research is self-evident. However the role of this software in facilitating supererogated statistical practice versus "cookbookery" is unclear. The need to rigorously document the role of data analysis software in students' graduate…

  6. Underutilisation of public access defibrillation is related to retrieval distance and time-dependent availability.

    PubMed

    Deakin, Charles D; Anfield, Steve; Hodgetts, Gillian A

    2018-05-14

    Public access defibrillation doubles the chances of neurologically intact survival following out-of-hospital cardiac arrest (OHCA). Although there are increasing numbers of defibrillators (automated external defibrillator (AEDs)) available in the community, they are used infrequently, despite often being available. We aimed to match OHCAs with known AED locations in order to understand AED availability, the effects of reduced AED availability at night and the operational radius at which they can be effectively retrieved. All emergency calls to South Central Ambulance Service from April 2014 to April 2016 were screened to identify cardiac arrests. Each was mapped to the nearest AED, according to the time of day. Mapping software was used to calculate the actual walking distance for a bystander between each OHCA and respective AED, when travelling at a brisk walking speed (4 mph). 4012 cardiac arrests were identified and mapped to one of 2076 AEDs. All AEDs were available during daytime hours, but only 713 at night (34.3%). 5.91% of cardiac arrests were within a retrieval (walking) radius of 100 m during the day, falling to 1.59% out-of-hours. Distances to rural AEDs were greater than in urban areas (P<0.0001). An AED could potentially have been retrieved prior to actual ambulance arrival in 25.3% cases. Existing AEDs are underused; 36.4% of OHCAs are located within 500 m of an AED. Although more AEDs will improve availability, greater use can be made of existing AEDs, particularly by ensuring they are all available on a 24/7 basis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Right ventricular functional analysis utilizing first pass radionuclide angiography for pre-operative ventricular assist device planning: a multi-modality comparison.

    PubMed

    Avery, Ryan; Day, Kevin; Jokerst, Clinton; Kazui, Toshinobu; Krupinski, Elizabeth; Khalpey, Zain

    2017-10-10

    Advanced heart failure treated with a left ventricular assist device is associated with a higher risk of right heart failure. Many advanced heart failures patients are treated with an ICD, a relative contraindication to MRI, prior to assist device placement. Given this limitation, left and right ventricular function for patients with an ICD is calculated using radionuclide angiography utilizing planar multigated acquisition (MUGA) and first pass radionuclide angiography (FPRNA), respectively. Given the availability of MRI protocols that can accommodate patients with ICDs, we have correlated the findings of ventricular functional analysis using radionuclide angiography to cardiac MRI, the reference standard for ventricle function calculation, to directly correlate calculated ejection fractions between these modalities, and to also assess agreement between available echocardiographic and hemodynamic parameters of right ventricular function. A retrospective review from January 2012 through May 2014 was performed to identify advanced heart failure patients who underwent both cardiac MRI and radionuclide angiography for ventricular functional analysis. Nine heart failure patients (8 men, 1 woman; mean age of 57.0 years) were identified. The average time between the cardiac MRI and radionuclide angiography exams was 38.9 days (range: 1 - 119 days). All patients undergoing cardiac MRI were scanned using an institutionally approved protocol for ICD with no device-related complications identified. A retrospective chart review of each patient for cardiomyopathy diagnosis, clinical follow-up, and echocardiogram and right heart catheterization performed during evaluation was also performed. The 9 patients demonstrated a mean left ventricular ejection fraction (LVEF) using cardiac MRI of 20.7% (12 - 40%). Mean LVEF using MUGA was 22.6% (12 - 49%). The mean right ventricular ejection fraction (RVEF) utilizing cardiac MRI was 28.3% (16 - 43%), and the mean RVEF calculated by FPRNA was 32.6% (9 - 56%). The mean discrepancy for LVEF between cardiac MRI and MUGA was 4.1% (0 - 9%), and correlation of calculated LVEF using cardiac MRI and MUGA demonstrated an R of 0.9. The mean discrepancy for RVEF between cardiac MRI and FPRNA was 12.0% (range: 2 - 24%) with a moderate correlation (R = 0.5). The increased discrepancies for RV analysis were statistically significant using an unpaired t-test (t = 3.19, p = 0.0061). Echocardiogram parameters of RV function, including TAPSE and FAC, were for available for all 9 patients and agreement with cardiac MRI demonstrated a kappa statistic for TAPSE of 0.39 (95% CI of 0.06 - 0.72) and for FAC of 0.64 (95% of 0.21 - 1.00). Heart failure patients are increasingly requiring left ventricular assist device placement; however, definitive evaluation of biventricular function is required due to the increased mortality rate associated with right heart failure after assist device placement. Our results suggest that FPRNA only has a moderate correlation with reference standard RVEFs calculated using cardiac MRI, which was similar to calculated agreements between cardiac MRI and echocardiographic parameters of right ventricular function. Given the need for identification of patients at risk for right heart failure, further studies are warranted to determine a more accurate estimate of RVEF for heart failure patients during pre-operative ventricular assist device planning.

  8. Usability study of clinical exome analysis software: top lessons learned and recommendations.

    PubMed

    Shyr, Casper; Kushniruk, Andre; Wasserman, Wyeth W

    2014-10-01

    New DNA sequencing technologies have revolutionized the search for genetic disruptions. Targeted sequencing of all protein coding regions of the genome, called exome analysis, is actively used in research-oriented genetics clinics, with the transition to exomes as a standard procedure underway. This transition is challenging; identification of potentially causal mutation(s) amongst ∼10(6) variants requires specialized computation in combination with expert assessment. This study analyzes the usability of user interfaces for clinical exome analysis software. There are two study objectives: (1) To ascertain the key features of successful user interfaces for clinical exome analysis software based on the perspective of expert clinical geneticists, (2) To assess user-system interactions in order to reveal strengths and weaknesses of existing software, inform future design, and accelerate the clinical uptake of exome analysis. Surveys, interviews, and cognitive task analysis were performed for the assessment of two next-generation exome sequence analysis software packages. The subjects included ten clinical geneticists who interacted with the software packages using the "think aloud" method. Subjects' interactions with the software were recorded in their clinical office within an urban research and teaching hospital. All major user interface events (from the user interactions with the packages) were time-stamped and annotated with coding categories to identify usability issues in order to characterize desired features and deficiencies in the user experience. We detected 193 usability issues, the majority of which concern interface layout and navigation, and the resolution of reports. Our study highlights gaps in specific software features typical within exome analysis. The clinicians perform best when the flow of the system is structured into well-defined yet customizable layers for incorporation within the clinical workflow. The results highlight opportunities to dramatically accelerate clinician analysis and interpretation of patient genomic data. We present the first application of usability methods to evaluate software interfaces in the context of exome analysis. Our results highlight how the study of user responses can lead to identification of usability issues and challenges and reveal software reengineering opportunities for improving clinical next-generation sequencing analysis. While the evaluation focused on two distinctive software tools, the results are general and should inform active and future software development for genome analysis software. As large-scale genome analysis becomes increasingly common in healthcare, it is critical that efficient and effective software interfaces are provided to accelerate clinical adoption of the technology. Implications for improved design of such applications are discussed. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Cardiac reserve during weightlessness simulation and shuttle flight

    NASA Technical Reports Server (NTRS)

    Goldberger, A. L.

    1985-01-01

    Bedrest deconditioning is suspected to reduce cardiac function. However, quantitation of subtle decreases in cardiac reserve may be difficult. Normal subjects show considerable variability in heart rate response, reflected by a relatively broadband interbeat interval power spectrum. We hypothesized that the deconditioning effects of bedrest would induce narrowing of this spectrum, reflecting a reduction in the autonomically-modulated variability in heart rate. Ten aerobically conditioned men (average 35-50 years) underwent orthostatic tolerance testing with lower body negative pressure pre-bedrest and after 10 days of bedrest, while on placebo and after intravenous atropine. Spectra were derived by Fourier analysis of 128 interbeat interval data sets from subjects with sufficient numbers of beats during matched periods of the protocol. Data suggest that atropine unmasks the deconditioning effect of bedrest in athletic men, evidenced by a reduction in interbeat interval spectral power compared with placebo. Spectral analysis offers a new means of quantitating the effects of bedrest deconditioning and autonomic perturbations on cardiac dynamics.

  10. Fault Tree Analysis Application for Safety and Reliability

    NASA Technical Reports Server (NTRS)

    Wallace, Dolores R.

    2003-01-01

    Many commercial software tools exist for fault tree analysis (FTA), an accepted method for mitigating risk in systems. The method embedded in the tools identifies a root as use in system components, but when software is identified as a root cause, it does not build trees into the software component. No commercial software tools have been built specifically for development and analysis of software fault trees. Research indicates that the methods of FTA could be applied to software, but the method is not practical without automated tool support. With appropriate automated tool support, software fault tree analysis (SFTA) may be a practical technique for identifying the underlying cause of software faults that may lead to critical system failures. We strive to demonstrate that existing commercial tools for FTA can be adapted for use with SFTA, and that applied to a safety-critical system, SFTA can be used to identify serious potential problems long before integrator and system testing.

  11. RELAP-7 Software Verification and Validation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis L.; Choi, Yong-Joon; Zou, Ling

    This INL plan comprehensively describes the software for RELAP-7 and documents the software, interface, and software design requirements for the application. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7. The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is a nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework – MOOSE (Multi-Physics Object-Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty yearsmore » of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s capability and extends the analysis capability for all reactor system simulation scenarios.« less

  12. Estimating the cost of mental loading in a bimodal divided-attention task: Combining reaction time, heart-rate variability and signal-detection theory

    NASA Technical Reports Server (NTRS)

    Casper, Patricia A.; Kantowitz, Barry H.

    1988-01-01

    Multiple approaches are necessary for understanding and measuring workload. In particular, physiological systems identifiable by employing cardiac measures are related to cognitive systems. One issue of debate in measuring cardiac output is the grain of analysis used in recording and summarizing data. Various experiments are reviewed, the majority of which were directed at supporting or contradicting Lacey's intake-rejection hypothesis. Two of the experiments observed heart rate in operational environments and found virtually no changes associated with mental load. The major problems facing researchers using heart rate variability, or sinus arrhthmia, as a dependent measure have been associated with valid and sensitive scoring and preventing contamination of observed results by influences unrelated to cognition. Spectral analysis of heart rate variability offers two useful procedures: analysis from the time domain and analysis from the frequency domain. Most recently, data have been collected in a divided attention experiment, the performance measures and cardiac measures of which are detailed.

  13. Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Havlin, S.; Hausdorff, J. M.; Mietus, J. E.; Stanley, H. E.; Goldberger, A. L.

    1995-01-01

    Under healthy conditions, the normal cardiac (sinus) interbeat interval fluctuates in a complex manner. Quantitative analysis using techniques adapted from statistical physics reveals the presence of long-range power-law correlations extending over thousands of heartbeats. This scale-invariant (fractal) behavior suggests that the regulatory system generating these fluctuations is operating far from equilibrium. In contrast, it is found that for subjects at high risk of sudden death (e.g., congestive heart failure patients), these long-range correlations break down. Application of fractal scaling analysis and related techniques provides new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as motivating development of novel physiologic models of systems that appear to be heterodynamic rather than homeostatic.

  14. A meta-analysis of platelet gel for prevention of sternal wound infections following cardiac surgery

    PubMed Central

    Kirmani, Bilal H.; Jones, Siôn G.; Datta, Subir; McLaughlin, Edward K.; Hoschtitzky, Andreas J.

    2017-01-01

    Deep sternal wound infection and bleeding are devastating complications following cardiac surgery, which may be reduced by topical application of autologous platelet gel. Systematic review identified seven comparative studies involving 4,692 patients. Meta-analysis showed significant reductions in all sternal wound infections (odds ratio 3.48 [1.08–11.23], p=0.04) and mediastinitis (odds ratio 2.69 [1.20–6.06], p=0.02) but not bleeding. No adverse events relating to the use of topical platelet-rich plasma were reported. The use of autologous platelet gel in cardiac surgery appears to provide significant reductions in serious sternal wound infections, and its use is unlikely to be associated with significant risk. PMID:27177403

  15. Cardiac side population cells and Sca-1-positive cells.

    PubMed

    Nagai, Toshio; Matsuura, Katsuhisa; Komuro, Issei

    2013-01-01

    Since the resident cardiac stem/progenitor cells were discovered, their ability to maintain the architecture and functional integrity of adult heart has been broadly explored. The methods for isolation and purification of the cardiac stem cells are crucial for the precise analysis of their developmental origin and intrinsic potential as tissue stem cells. Stem cell antigen-1 (Sca-1) is one of the useful cell surface markers to purify the cardiac progenitor cells. Another purification strategy is based on the high efflux ability of the dye, which is a common feature of tissue stem cells. These dye-extruding cells have been called side population cells because they locate in the side of dye-retaining cells after fluorescent cell sorting. In this chapter, we describe the methodology for the isolation of cardiac SP cells and Sca-1 positive cells.

  16. Improved cardiac motion detection from ultrasound images using TDIOF: a combined B-mode/ tissue Doppler approach

    NASA Astrophysics Data System (ADS)

    Tavakoli, Vahid; Stoddard, Marcus F.; Amini, Amir A.

    2013-03-01

    Quantitative motion analysis of echocardiographic images helps clinicians with the diagnosis and therapy of patients suffering from cardiac disease. Quantitative analysis is usually based on TDI (Tissue Doppler Imaging) or speckle tracking. These methods are based on two independent techniques - the Doppler Effect and image registration, respectively. In order to increase the accuracy of the speckle tracking technique and cope with the angle dependency of TDI, herein, a combined approach dubbed TDIOF (Tissue Doppler Imaging Optical Flow) is proposed. TDIOF is formulated based on the combination of B-mode and Doppler energy terms in an optical flow framework and minimized using algebraic equations. In this paper, we report on validations with simulated, physical cardiac phantom, and in-vivo patient data. It is shown that the additional Doppler term is able to increase the accuracy of speckle tracking, the basis for several commercially available echocardiography analysis techniques.

  17. Metabonomics Indicates Inhibition of Fatty Acid Synthesis, β-Oxidation, and Tricarboxylic Acid Cycle in Triclocarban-Induced Cardiac Metabolic Alterations in Male Mice.

    PubMed

    Xie, Wenping; Zhang, Wenpeng; Ren, Juan; Li, Wentao; Zhou, Lili; Cui, Yuan; Chen, Huiming; Yu, Wenlian; Zhuang, Xiaomei; Zhang, Zhenqing; Shen, Guolin; Li, Haishan

    2018-02-14

    Triclocarban (TCC) has been identified as a new environmental pollutant that is potentially hazardous to human health; however, the effects of short-term TCC exposure on cardiac function are not known. The aim of this study was to use metabonomics and molecular biology techniques to systematically elucidate the molecular mechanisms of TCC-induced effects on cardiac function in mice. Our results show that TCC inhibited the uptake, synthesis, and oxidation of fatty acids, suppressed the tricarboxylic acid (TCA) cycle, and increased aerobic glycolysis levels in heart tissue after short-term TCC exposure. TCC also inhibited the nuclear peroxisome proliferator-activated receptor α (PPARα), confirming its inhibitory effects on fatty acid uptake and oxidation. Histopathology and other analyses further confirm that TCC altered mouse cardiac physiology and pathology, ultimately affecting normal cardiac metabolic function. We elucidate the molecular mechanisms of TCC-induced harmful effects on mouse cardiac metabolism and function from a new perspective, using metabonomics and bioinformatics analysis data.

  18. The cardiac TBX5 interactome reveals a chromatin remodeling network essential for cardiac septation

    PubMed Central

    Waldron, Lauren; Steimle, Jeffrey D.; Greco, Todd M.; Gomez, Nicholas C.; Dorr, Kerry M.; Kweon, Junghun; Temple, Brenda; Yang, Xinan Holly; Wilczewski, Caralynn M.; Davis, Ian J.; Cristea, Ileana M.; Moskowitz, Ivan P.; Conlon, Frank L.

    2016-01-01

    SUMMARY Human mutations in the cardiac transcription factor gene TBX5 cause Congenital Heart Disease (CHD), however the underlying mechanism is unknown. We report characterization of the endogenous TBX5 cardiac interactome and demonstrate that TBX5, long considered a transcriptional activator, interacts biochemically and genetically with the Nucleosome Remodeling and Deacetylase (NuRD) repressor complex. Incompatible gene programs are repressed by TBX5 in the developing heart. CHD missense mutations that disrupt the TBX5-NuRD interaction cause depression of a subset of repressed genes. Furthermore, the TBX5-NuRD interaction is required for heart development. Phylogenetic analysis showed that the TBX5-NuRD interaction domain evolved during early diversification of vertebrates, simultaneous with the evolution of cardiac septation. Collectively, this work defines a TBX5-NuRD interaction essential to cardiac development and the evolution of the mammalian heart, and when altered may contribute to human CHD. PMID:26859351

  19. Proceedings of the 14th Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Several software related topics are presented. Topics covered include studies and experiment at the Software Engineering Laboratory at the Goddard Space Flight Center, predicting project success from the Software Project Management Process, software environments, testing in a reuse environment, domain directed reuse, and classification tree analysis using the Amadeus measurement and empirical analysis.

  20. Design and validation of Segment--freely available software for cardiovascular image analysis.

    PubMed

    Heiberg, Einar; Sjögren, Jane; Ugander, Martin; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan

    2010-01-11

    Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page http://segment.heiberg.se. Segment is a well-validated comprehensive software package for cardiovascular image analysis. It is freely available for research purposes provided that relevant original research publications related to the software are cited.

  1. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses.

    PubMed

    Bokhari, Sabahat; Castaño, Adam; Pozniakoff, Ted; Deslisle, Susan; Latif, Farhana; Maurer, Mathew S

    2013-03-01

    Differentiating immunoglobulin light-chain (AL) from transthyretin-related cardiac amyloidoses (ATTR) is imperative given implications for prognosis, therapy, and genetic counseling. We validated the discriminatory ability of (99m)Tc-pyrophosphate ((99m)Tc-PYP) scintigraphy in AL versus ATTR. Forty-five subjects (12 AL, 16 ATTR wild type, and 17 ATTR mutants) underwent (99m)Tc-PYP planar and single-photon positive emission computed tomography cardiac imaging. Scans were performed by experienced nuclear cardiologists blinded to the subjects' cohort assignment. Cardiac retention was assessed with both a semiquantitative visual score (range, 0; no uptake to 3, diffuse uptake) and by quantitative analysis by drawing a region of interest over the heart corrected for contralateral counts and calculating a heart-to-contralateral ratio. Subjects with ATTR cardiac amyloid had a significantly higher semiquantitative cardiac visual score than the AL cohort (2.9±0.06 versus 0.8±0.27; P<0.0001) as well as a higher quantitative score (1.80±0.04 versus 1.21±0.04; P<0.0001). Using a heart-to-contralateral ratio >1.5 consistent with intensely diffuse myocardial tracer retention had a 97% sensitivity and 100% specificity with area under the curve 0.992, P<0.0001 for identifying ATTR cardiac amyloidosis. (99m)Tc-PYP cardiac imaging distinguishes AL from ATTR cardiac amyloidosis and may be a simple, widely available method for identifying subjects with ATTR cardiac amyloidosis, which should be studied in a larger prospective manner.

  2. Depressive Symptoms, Cardiac Anxiety, and Fear of Body Sensations in Patients with Non-Cardiac Chest Pain, and Their Relation to Healthcare-Seeking Behavior: A Cross-Sectional Study.

    PubMed

    Mourad, Ghassan; Strömberg, Anna; Johansson, Peter; Jaarsma, Tiny

    2016-02-01

    Patients with non-cardiac chest pain (NCCP) suffer from recurrent chest pain and make substantial use of healthcare resources. To explore the prevalence of depressive symptoms, cardiac anxiety, and fear of body sensations in patients discharged with a NCCP diagnosis; and to describe how depressive symptoms, cardiac anxiety, and fear of body sensations are related to each other and to healthcare-seeking behavior. Cross-sectional design. Data were collected between late October 2013 and early January 2014 in 552 patients with NCCP from four hospitals in southeast Sweden, using the Patient Health Questionnaire-9, Cardiac Anxiety Questionnaire, and Body Sensations Questionnaire. About 26 % (n = 141) of the study participants reported at least moderate depressive symptoms, 42 % (n = 229) reported at least moderate cardiac anxiety, and 62 % (n = 337) reported some degree of fear of body sensations. We found strong positive relationships between depressive symptoms and cardiac anxiety (r s = 0.49; P < 0.01), depressive symptoms and fear of body sensations (r s = 0.50; P < 0.01), and cardiac anxiety and fear of body sensations (r s = 0.56; P < 0.01). About 60 % of the participants sought care because of chest pain once, 26 % two or three times, and the rest more than three times. In a multivariable regression analysis, and after adjustment for multimorbidity, cardiac anxiety was the only variable independently associated with healthcare-seeking behavior. Patients with NCCP and many healthcare consultations had high levels of depressive symptoms and cardiac anxiety, and moderate levels of fear of body sensations. Cardiac anxiety had the strongest relationship with healthcare-seeking behavior and may therefore be an important target for intervention to alleviate suffering and to reduce healthcare use and costs.

  3. User-driven integrated software lives: ``Paleomag'' paleomagnetics analysis on the Macintosh

    NASA Astrophysics Data System (ADS)

    Jones, Craig H.

    2002-12-01

    "PaleoMag," a paleomagnetics analysis package originally developed for the Macintosh operating system in 1988, allows examination of demagnetization of individual samples and analysis of directional data from collections of samples. Prior to recent reinvigorated development of the software for both Macintosh and Windows, it was widely used despite not running properly on machines and operating systems sold after 1995. This somewhat surprising situation demonstrates that there is a continued need for integrated analysis software within the earth sciences, in addition to well-developed scripting and batch-mode software. One distinct advantage of software like PaleoMag is in the ability to combine quality control with analysis within a unique graphical environment. Because such demands are frequent within the earth sciences, means of nurturing the development of similar software should be found.

  4. Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family.

    PubMed Central

    Gocayne, J; Robinson, D A; FitzGerald, M G; Chung, F Z; Kerlavage, A R; Lentes, K U; Lai, J; Wang, C D; Fraser, C M; Venter, J C

    1987-01-01

    Two cDNA clones, lambda RHM-MF and lambda RHB-DAR, encoding the muscarinic cholinergic receptor and the beta-adrenergic receptor, respectively, have been isolated from a rat heart cDNA library. The cDNA clones were characterized by restriction mapping and automated DNA sequence analysis utilizing fluorescent dye primers. The rat heart muscarinic receptor consists of 466 amino acids and has a calculated molecular weight of 51,543. The rat heart beta-adrenergic receptor consists of 418 amino acids and has a calculated molecular weight of 46,890. The two cardiac receptors have substantial amino acid homology (27.2% identity, 50.6% with favored substitutions). The rat cardiac beta receptor has 88.0% homology (92.5% with favored substitutions) with the human brain beta receptor and the rat cardiac muscarinic receptor has 94.6% homology (97.6% with favored substitutions) with the porcine cardiac muscarinic receptor. The muscarinic cholinergic and beta-adrenergic receptors appear to be as conserved as hemoglobin and cytochrome c but less conserved than histones and are clearly members of a multigene family. These data support our hypothesis, based upon biochemical and immunological evidence, that suggests considerable structural homology and evolutionary conservation between adrenergic and muscarinic cholinergic receptors. To our knowledge, this is the first report utilizing automated DNA sequence analysis to determine the structure of a gene. Images PMID:2825184

  5. Cardiac Med1 deletion promotes early lethality, cardiac remodeling, and transcriptional reprogramming

    PubMed Central

    Spitler, Kathryn M.; Ponce, Jessica M.; Oudit, Gavin Y.; Hall, Duane D.

    2017-01-01

    The mediator complex, a multisubunit nuclear complex, plays an integral role in regulating gene expression by acting as a bridge between transcription factors and RNA polymerase II. Genetic deletion of mediator subunit 1 (Med1) results in embryonic lethality, due in large part to impaired cardiac development. We first established that Med1 is dynamically expressed in cardiac development and disease, with marked upregulation of Med1 in both human and murine failing hearts. To determine if Med1 deficiency protects against cardiac stress, we generated two cardiac-specific Med1 knockout mouse models in which Med1 is conditionally deleted (Med1cKO mice) or inducibly deleted in adult mice (Med1cKO-MCM mice). In both models, cardiac deletion of Med1 resulted in early lethality accompanied by pronounced changes in cardiac function, including left ventricular dilation, decreased ejection fraction, and pathological structural remodeling. We next defined how Med1 deficiency alters the cardiac transcriptional profile using RNA-sequencing analysis. Med1cKO mice demonstrated significant dysregulation of genes related to cardiac metabolism, in particular genes that are coordinated by the transcription factors Pgc1α, Pparα, and Errα. Consistent with the roles of these transcription factors in regulation of mitochondrial genes, we observed significant alterations in mitochondrial size, mitochondrial gene expression, complex activity, and electron transport chain expression under Med1 deficiency. Taken together, these data identify Med1 as an important regulator of vital cardiac gene expression and maintenance of normal heart function. NEW & NOTEWORTHY Disruption of transcriptional gene expression is a hallmark of dilated cardiomyopathy; however, its etiology is not well understood. Cardiac-specific deletion of the transcriptional coactivator mediator subunit 1 (Med1) results in dilated cardiomyopathy, decreased cardiac function, and lethality. Med1 deletion disrupted cardiac mitochondrial and metabolic gene expression patterns. PMID:28159809

  6. Comparison of two software systems for quantification of myocardial blood flow in patients with hypertrophic cardiomyopathy.

    PubMed

    Yalcin, Hulya; Valenta, Ines; Zhao, Min; Tahari, Abdel; Lu, Dai-Yin; Higuchi, Takahiro; Yalcin, Fatih; Kucukler, Nagehan; Soleimanifard, Yalda; Zhou, Yun; Pomper, Martin G; Abraham, Theodore P; Tsui, Ben; Lodge, Martin A; Schindler, Thomas H; Roselle Abraham, M

    2018-01-22

    Quantification of myocardial blood flow (MBF) by positron emission tomography (PET) is important for investigation of angina in hypertrophic cardiomyopathy (HCM). Several software programs exist for MBF quantification, but they have been mostly evaluated in patients (with normal cardiac geometry), referred for evaluation of coronary artery disease (CAD). Software performance has not been evaluated in HCM patients who frequently have hyperdynamic LV function, LV outflow tract (LVOT) obstruction, small LV cavity size, and variation in the degree/location of LV hypertrophy. We compared results of MBF obtained using PMod, which permits manual segmentation, to those obtained by FDA-approved QPET software which has an automated segmentation algorithm. 13 N-ammonia PET perfusion data were acquired in list mode at rest and during pharmacologic vasodilation, in 76 HCM patients and 10 non-HCM patients referred for evaluation of CAD (CAD group.) Data were resampled to create static, ECG-gated and 36-frame-dynamic images. Myocardial flow reserve (MFR) and MBF (in ml/min/g) were calculated using QPET and PMod softwares. All HCM patients had asymmetric septal hypertrophy, and 50% had evidence of LVOT obstruction, whereas non-HCM patients (CAD group) had normal wall thickness and ejection fraction. PMod yielded significantly higher values for global and regional stress-MBF and MFR than for QPET in HCM. Reasonably fair correlation was observed for global rest-MBF, stress-MBF, and MFR using these two softwares (rest-MBF: r = 0.78; stress-MBF: r = 0.66.; MFR: r = 0.7) in HCM patients. Agreement between global MBF and MFR values improved when HCM patients with high spillover fractions (> 0.65) were excluded from the analysis (rest-MBF: r = 0.84; stress-MBF: r = 0.72; MFR: r = 0.8.) Regionally, the highest agreement between PMod and QPET was observed in the LAD territory (rest-MBF: r = 0.82, Stress-MBF: r = 0.68) where spillover fraction was the lowest. Unlike HCM patients, the non-HCM patients (CAD group) demonstrated excellent agreement in MBF/MFR values, obtained by the two softwares, when patients with high spillover fractions were excluded (rest-MBF: r = 0.95; stress-MBF: r = 0.92; MFR: r = 0.95). Anatomic characteristics specific to HCM hearts contribute to lower correlations between MBF/MFR values obtained by PMod and QPET, compared with non-HCM patients. These differences indicate that PMod and QPET cannot be used interchangeably for MBF/MFR analyses in HCM patients.

  7. A model of survival following pre-hospital cardiac arrest based on the Victorian Ambulance Cardiac Arrest Register.

    PubMed

    Fridman, Masha; Barnes, Vanessa; Whyman, Andrew; Currell, Alex; Bernard, Stephen; Walker, Tony; Smith, Karen L

    2007-11-01

    This study describes the epidemiology of sudden cardiac arrest patients in Victoria, Australia, as captured via the Victorian Ambulance Cardiac Arrest Register (VACAR). We used the VACAR data to construct a new model of out-of-hospital cardiac arrest (OHCA), which was specified in accordance with observed trends. All cases of cardiac arrest in Victoria that were attended by Victorian ambulance services during the period of 2002-2005. Overall survival to hospital discharge was 3.8% among 18,827 cases of OHCA. Survival was 15.7% among 1726 bystander witnessed, adult cardiac arrests of presumed cardiac aetiology, presenting in ventricular fibrillation or ventricular tachycardia (VF/VT), where resuscitation was attempted. In multivariate logistic regression analysis, bystander CPR, cardiac arrest (CA) location, response time, age and sex were predictors of VF/VT, which, in turn, was a strong predictor of survival. The same factors that affected VF/VT made an additional contribution to survival. However, for bystander CPR, CA location and response time this additional contribution was limited to VF/VT patients only. There was no detectable association between survival and age younger than 60 years or response time over 15min. The new model accounts for relationships among predictors of survival. These relationships indicate that interventions such as reduced response times and bystander CPR act in multiple ways to improve survival.

  8. Computational modeling and analysis for left ventricle motion using CT/Echo image fusion

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Yeon; Kang, Nahyup; Lee, Hyoung-Euk; Kim, James D. K.

    2014-03-01

    In order to diagnose heart disease such as myocardial infarction, 2D strain through the speckle tracking echocardiography (STE) or the tagged MRI is often used. However out-of-plane strain measurement using STE or tagged MRI is inaccurate. Therefore, strain for whole organ which are analyzed by simulation of 3D cardiac model can be applied in clinical diagnosis. To simulate cardiac contraction in a cycle, cardiac physical properties should be reflected in cardiac model. The myocardial wall in left ventricle is represented as a transversely orthotropic hyperelastic material, with the fiber orientation varying sequentially from the epicardial surface, through about 0° at the midwall, to the endocardial surface. A time-varying elastance model is simulated to contract myocardial fiber, and physiological intraventricular systolic pressure curves are employed for the cardiac dynamics simulation in a cycle. And an exact description of the cardiac motion should be acquired in order that essential boundary conditions for cardiac simulation are obtained effectively. Real time cardiac motion can be acquired by using echocardiography and exact cardiac geometrical 3D model can be reconstructed using 3D CT data. In this research, image fusion technology from CT and echocardiography is employed in order to consider patient-specific left ventricle movement. Finally, longitudinal strain from speckle tracking echocardiography which is known to fit actual left ventricle deformation relatively well is used to verify these results.

  9. The relationship between illness perceptions and cardiac misconceptions after Myocardial Infarction.

    PubMed

    Figueiras, Maria João; Maroco, João; Caeiro, Raúl; Monteiro, Rita; Trigo, Miguel

    2015-01-01

    Research about cardiac misconceptions has focused on identifying the most common erroneous beliefs and understanding their impact on patients' outcomes. However, less is known about the underlying structure of cardiac misconceptions and how they relate to other belief dimensions. The aims of the present study were: (a) to characterize illness perceptions and cardiac misconceptions in a sample of Myocardial Infarction (MI) patients; (b) to analyse the structure of an experimental Portuguese version of the York Cardiac Beliefs Questionnaire (YCBQ); and (c) to examine whether illness perceptions are likely to influence cardiac misconceptions. This cross-sectional study included 127 first-MI patients from both sexes, aged up to 70 years old. Confirmatory factor analysis and structural equation modelling were performed with AMOS. The main results showed that a two-dimension (stress avoidance and exercise avoidance) version of the YCBQ offered the best fit to the data. A significant impact of psychological attributions was observed on cardiac misconceptions, as well as a moderate impact of emotional response explaining 26% of the variance. Although exploratory, this study gives a significant contribution to research in this field, as clarification on the different concepts and the way they relate is needed. Our findings suggest that further investigation into the concepts of cardiac knowledge and cardiac misconceptions may have an important role in understanding health behaviours in the context of heart disease.

  10. Review: comparison of PET rubidium-82 with conventional SPECT myocardial perfusion imaging

    PubMed Central

    Ghotbi, Adam A; Kjær, Andreas; Hasbak, Philip

    2014-01-01

    Nuclear cardiology has for many years been focused on gamma camera technology. With ever improving cameras and software applications, this modality has developed into an important assessment tool for ischaemic heart disease. However, the development of new perfusion tracers has been scarce. While cardiac positron emission tomography (PET) so far largely has been limited to centres with on-site cyclotron, recent developments with generator produced perfusion tracers such as rubidium-82, as well as an increasing number of PET scanners installed, may enable a larger patient flow that may supersede that of gamma camera myocardial perfusion imaging. PMID:24028171

  11. A secondary meta-synthesis of qualitative studies of gender and access to cardiac rehabilitation.

    PubMed

    Angus, Jan E; King-Shier, Kathryn M; Spaling, Melisa A; Duncan, Amanda S; Jaglal, Susan B; Stone, James A; Clark, Alexander M

    2015-08-01

    To discuss issues in the theorization and study of gender observed during a qualitative meta-synthesis of influences on uptake of secondary prevention and cardiac rehabilitation services. Women and men can equally benefit from secondary prevention/cardiac rehabilitation and there is a need to understand gender barriers to uptake. Meta-method analysis secondary to meta-synthesis. For the meta-synthesis, a systematic search was performed to identify and retrieve studies published as full papers during or after 1995 and contained: a qualitative research component wholly or in a mixed method design, extractable population specific data or themes for referral to secondary prevention programmes and adults ≥18 years. Databases searched between January 1995-31 October 2011 included: CSA Sociological Abstracts, EBSCOhost CINAHL, EBSCOhost Gender Studies, EBSCOhost Health Source Nursing: Academic Edition, EBSCOhost SPORTDiscus, EBSCOhost SocINDEX. Studies were reviewed against inclusion/exclusion criteria. Included studies were subject to quality appraisal and standardized data extraction. Of 2264 screened articles, 69 were included in the meta-method analysis. Only four studies defined gender or used gender theories. Findings were mostly presented as inherently the characteristic of gendered worldviews of participants. The major themes suggest a mismatch between secondary prevention/cardiac rehabilitation services and consumers' needs, which are usually portrayed as differing according to gender but may also be subject to intersecting influences such as age or socioeconomic status. There is a persistent lack of theoretically informed gender analysis in qualitative literature in this field. Theory-driven gender analysis will improve the conceptual clarity of the evidence base for gender-sensitive cardiac rehabilitation programme development. © 2015 John Wiley & Sons Ltd.

  12. Exome-based analysis of cardiac arrhythmia, respiratory control, and epilepsy genes in sudden unexpected death in epilepsy.

    PubMed

    Bagnall, Richard D; Crompton, Douglas E; Petrovski, Slavé; Lam, Lien; Cutmore, Carina; Garry, Sarah I; Sadleir, Lynette G; Dibbens, Leanne M; Cairns, Anita; Kivity, Sara; Afawi, Zaid; Regan, Brigid M; Duflou, Johan; Berkovic, Samuel F; Scheffer, Ingrid E; Semsarian, Christopher

    2016-04-01

    The leading cause of epilepsy-related premature mortality is sudden unexpected death in epilepsy (SUDEP). The cause of SUDEP remains unknown. To search for genetic risk factors in SUDEP cases, we performed an exome-based analysis of rare variants. Demographic and clinical information of 61 SUDEP cases were collected. Exome sequencing and rare variant collapsing analysis with 2,936 control exomes were performed to test for genes enriched with damaging variants. Additionally, cardiac arrhythmia, respiratory control, and epilepsy genes were screened for variants with frequency of <0.1% and predicted to be pathogenic with multiple in silico tools. The 61 SUDEP cases were categorized as definite SUDEP (n = 54), probable SUDEP (n = 5), and definite SUDEP plus (n = 2). We identified de novo mutations, previously reported pathogenic mutations, or candidate pathogenic variants in 28 of 61 (46%) cases. Four SUDEP cases (7%) had mutations in common genes responsible for the cardiac arrhythmia disease, long QT syndrome (LQTS). Nine cases (15%) had candidate pathogenic variants in dominant cardiac arrhythmia genes. Fifteen cases (25%) had mutations or candidate pathogenic variants in dominant epilepsy genes. No gene reached genome-wide significance with rare variant collapsing analysis; however, DEPDC5 (p = 0.00015) and KCNH2 (p = 0.0037) were among the top 30 genes, genome-wide. A sizeable proportion of SUDEP cases have clinically relevant mutations in cardiac arrhythmia and epilepsy genes. In cases with an LQTS gene mutation, SUDEP may occur as a result of a predictable and preventable cause. Understanding the genetic basis of SUDEP may inform cascade testing of at-risk family members. © 2016 American Neurological Association.

  13. Semantic Metrics for Analysis of Software

    NASA Technical Reports Server (NTRS)

    Etzkorn, Letha H.; Cox, Glenn W.; Farrington, Phil; Utley, Dawn R.; Ghalston, Sampson; Stein, Cara

    2005-01-01

    A recently conceived suite of object-oriented software metrics focus is on semantic aspects of software, in contradistinction to traditional software metrics, which focus on syntactic aspects of software. Semantic metrics represent a more human-oriented view of software than do syntactic metrics. The semantic metrics of a given computer program are calculated by use of the output of a knowledge-based analysis of the program, and are substantially more representative of software quality and more readily comprehensible from a human perspective than are the syntactic metrics.

  14. Benefits and limitations of multimodality imaging in the diagnosis of a primary cardiac lymphoma.

    PubMed

    Nijjar, Prabhjot Singh; Masri, Sofia Carolina; Tamene, Ashenafi; Kassahun, Helina; Liao, Kenneth; Valeti, Uma

    2014-12-01

    Primary cardiac tumors are far rarer than tumors metastatic to the heart. Angiosarcoma is the primary cardiac neoplasm most frequently detected; lymphomas constitute only 1% of primary cardiac tumors. We present the case of a 55-year-old woman with a recently diagnosed intracardiac mass who was referred to our institution for consideration of urgent orthotopic heart transplantation. Initial images suggested an angiosarcoma; however, a biopsy specimen of the mass was diagnostic for diffuse large B-cell lymphoma. The patient underwent chemotherapy rather than surgery, and she was asymptomatic 34 months later. We use our patient's case to discuss the benefits and limitations of multiple imaging methods in the evaluation of cardiac masses. Certain features revealed by computed tomography, cardiac magnetic resonance, and positron emission tomography can suggest a diagnosis of angiosarcoma rather than lymphoma. Cardiac magnetic resonance and positron emission tomography enable reliable distinction between benign and malignant tumors; however, the characteristics of different malignant tumors can overlap. Despite the great usefulness of multiple imaging methods for timely diagnosis, defining the extent of spread and the hemodynamic impact, and monitoring responses to treatment, we think that biopsy analysis is still warranted in order to obtain a correct histologic diagnosis in cases of suspected malignant cardiac tumors.

  15. Effect of HeartMate left ventricular assist device on cardiac autonomic nervous activity.

    PubMed

    Kim, S Y; Montoya, A; Zbilut, J P; Mawulawde, K; Sullivan, H J; Lonchyna, V A; Terrell, M R; Pifarré, R

    1996-02-01

    Clinical performance of a left ventricular assist device is assessed via hemodynamic parameters and end-organ function. This study examined effect of a left ventricular assist device on human neurophysiology. This study evaluated the time course change of cardiac autonomic activity of 3 patients during support with a left ventricular assist device before cardiac transplantation. Cardiac autonomic activity was determined by power spectral analysis of short-term heart rate variability. The heart rate variability before cardiac transplantation was compared with that on the day before left ventricular assist device implantation. The standard deviation of the mean of the R-R intervals of the electrocardiogram, an index of vagal activity, increased to 27 +/- 7 ms from 8 +/- 0.6 ms. The modulus of power spectral components increased. Low frequency (sympathetic activity) and high frequency power (vagal activity) increased by a mean of 9 and 22 times of each baseline value (low frequency power, 5.2 +/- 3.0 ms2; high frequency power, 2.1 +/- 0.7 ms2). The low over high frequency power ratio decreased substantially, indicating an improvement of cardiac sympatho-vagal balance. The study results suggest that left ventricular assist device support before cardiac transplantation may exert a favorable effect on cardiac autonomic control in patients with severe heart failure.

  16. Abnormal cardiac autonomic regulation in mice lacking ASIC3.

    PubMed

    Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  17. In Vivo, High-Frequency Three-Dimensional Cardiac MR Elastography: Feasibility in Normal Volunteers

    PubMed Central

    Arani, Arvin; Glaser, Kevin L.; Arunachalam, Shivaram P.; Rossman, Phillip J.; Lake, David S.; Trzasko, Joshua D.; Manduca, Armando; McGee, Kiaran P.; Ehman, Richard L.; Araoz, Philip A.

    2016-01-01

    Purpose Noninvasive stiffness imaging techniques (elastography) can image myocardial tissue biomechanics in vivo. For cardiac MR elastography (MRE) techniques, the optimal vibration frequency for in vivo experiments is unknown. Furthermore, the accuracy of cardiac MRE has never been evaluated in a geometrically accurate phantom. Therefore, the purpose of this study was to determine the necessary driving frequency to obtain accurate three-dimensional (3D) cardiac MRE stiffness estimates in a geometrically accurate diastolic cardiac phantom and to determine the optimal vibration frequency that can be introduced in healthy volunteers. Methods The 3D cardiac MRE was performed on eight healthy volunteers using 80 Hz, 100 Hz, 140 Hz, 180 Hz, and 220 Hz vibration frequencies. These frequencies were tested in a geometrically accurate diastolic heart phantom and compared with dynamic mechanical analysis (DMA). Results The 3D Cardiac MRE was shown to be feasible in volunteers at frequencies as high as 180 Hz. MRE and DMA agreed within 5% at frequencies greater than 180 Hz in the cardiac phantom. However, octahedral shear strain signal to noise ratios and myocardial coverage was shown to be highest at a frequency of 140 Hz across all subjects. Conclusion This study motivates future evaluation of high-frequency 3D MRE in patient populations. PMID:26778442

  18. Sex-based differences in plasma chemistry and cardiac marker test results in Siamese fighting fowl.

    PubMed

    Sribhen, Choosri; Choothesa, Apassara; Songserm, Thaveesak; Issariyodom, Supaporn; Sribhen, Kosit

    2006-09-01

    Variations in the results of plasma chemistry analysis as a function of sex have rarely been demonstrated in avian species. The aim of the present study was to investigate sex-related differences in values for routine biochemical variables, including conventional muscle enzymes, and novel cardiac markers in female and male Siamese fighting fowl. Plasma chemistry analytes and cardiac marker proteins (creatine kinase-MB and cardiac troponin T) were measured in 70 Siamese fighting fowl using automated chemistry and immunoassay analyzers. Data were compared by 2-tailed t tests between sexes, and Spearman rank correlation between conventional and novel cardiac markers. Male fowl had significantly higher uric acid concentration and gamma-glutamyltransferase activity; whereas, female fowl had significantly higher total cholesterol, triglycerides, and calcium concentrations, and alkaline phosphatase activity. As compared with female fowl, the fighting cocks also had significantly higher plasma concentrations of creatine kinase-MB and cardiac troponin T. Significant correlations between cardiac troponin T, but not creatine kinase-MB, and the activities of conventional muscle enzymes (creatine kinase, aspartate aminotransferase and lactate dehydrogenase) were observed in male but not in female fowl. These results indicate that sex-specific differences exist for several biochemical parameters and cardiac marker proteins in fighting fowl, and that such differences should be considered in interpreting laboratory test results.

  19. Syndecan-4 Signaling Is Required for Exercise-Induced Cardiac Hypertrophy

    PubMed Central

    Xie, Jun; He, Guixin; Chen, Qinhua; Sun, Jiayin; Dai, Qin; Lu, Jianrong; Li, Guannan; Wu, Han; Li, Ran; Chen, Jianzhou; Xu, Wei; Xu, Biao

    2016-01-01

    Cardiac hypertrophy can be broadly classified as either physiological or pathological. Physiological stimuli such as exercise cause adaptive cardiac hypertrophy and normal heart function. Pathological stimuli including hypertension and aortic valvular stenosis cause maladaptive cardiac remodeling and ultimately heart failure. Syndecan-4 (synd4) is a transmembrane proteoglycan identified as being involved in cardiac adaptation after injury, but whether it takes part in physiological cardiac hypertrophy is unclear. We observed upregulation of synd4 in exercise-induced hypertrophic myocardium. To evaluate the role of synd4 in the physiological form of cardiac hypertrophy, mice lacking synd4 (synd4–/–) were exercised by swimming for 4 wks. Ultrasonic cardiogram (UCG) and histological analysis revealed that swimming induced the hypertrophic phenotype but was blunted in synd4–/– compared with wild-type (WT) mice. The swimming-induced activation of Akt, a key molecule in physiological hypertrophy was also more decreased than in WT controls. In cultured cardiomyocytes, synd4 overexpression could induce cell enlargement, protein synthesis and distinct physiological molecular alternation. Akt activation also was observed in synd4-overexpressed cardiomyocytes. Furthermore, inhibition of protein kinase C (PKC) prevented the synd4-induced hypertrophic phenotype and Akt phosphorylation. This study identified an essential role of synd4 in mediation of physiological cardiac hypertrophy. PMID:26835698

  20. Influencing factors of NT-proBNP level inheart failure patients with different cardiacfunctions and correlation with prognosis.

    PubMed

    Xu, Liang; Chen, Yanchun; Ji, Yanni; Yang, Song

    2018-06-01

    Factors influencing N-terminal pro-brain natriuretic peptide (NT-proBNP) level in heart failure patients with different cardiac functions were identified to explore the correlations with prognosis. Eighty heart failure patients with different cardiac functions treated in Yixing People's Hospital from January 2016 to June 2017 were selected, and divided into two groups (group with cardiac function in class II and below and group with cardiac function in class III and above), according to the cardiac function classification established by New York Heart Association (NYHA). Blood biochemical test and outcome analysis were conducted to measure serum NT-proBNP and matrix metalloproteinase-9 (MMP-9) levels in patients with different cardiac functions, and correlations between levels of NT-proBNP and MMP-9 and left ventricular ejection fraction (LVEF) level were analyzed in patients with different cardiac functions at the same time. In addition, risk factors for heart failure in patients with different cardiac functions were analyzed. Compared with the group with cardiac function in class III and above, the group with cardiac function in class II and below had significantly lower serum NT-proBNP and MMP-9 levels (p<0.05). For echocardiogram indexes, left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD) in the group with cardiac function in class II and below were obviously lower than those in the group with cardiac function in class III and above (p<0.05), while LVEF was higher in group with cardiac function in class II and below than that in group with cardiac function in class III and above (p<0.05). NT-proBNP and MMP-9 levels were negatively correlated with LVEF level [r=-0.8517 and -0.8517, respectively, p<0.001 (<0.05)]. Cardiac function in class III and above, increased NT-proBNP, increased MMP-9 and decreased LVEF were relevant risk factors and independent risk factors for heart failure in patients with different cardiac functions. NT-proBNP and MMP-9 levels are negatively correlated with LVEF in patients regardless of the cardiac function class. Therefore, attention should be paid to patients who have cardiac function in class III and above, increased NT-proBNP and MMP-9 levels and decreased LVEF in clinical practices, so as to actively prevent and treat heart failure.

  1. Cardiovascular Magnetic Resonance and prognosis in cardiac amyloidosis

    PubMed Central

    Maceira, Alicia M; Prasad, Sanjay K; Hawkins, Philip N; Roughton, Michael; Pennell, Dudley J

    2008-01-01

    Background Cardiac involvement is common in amyloidosis and associated with a variably adverse outcome. We have previously shown that cardiovascular magnetic resonance (CMR) can assess deposition of amyloid protein in the myocardial interstitium. In this study we assessed the prognostic value of late gadolinium enhancement (LGE) and gadolinium kinetics in cardiac amyloidosis in a prospective longitudinal study. Materials and methods The pre-defined study end point was all-cause mortality. We prospectively followed a cohort of 29 patients with proven cardiac amyloidosis. All patients underwent biopsy, 2D-echocardiography and Doppler studies, 123I-SAP scintigraphy, serum NT pro BNP assay, and CMR with a T1 mapping method and late gadolinium enhancement (LGE). Results Patients with were followed for a median of 623 days (IQ range 221, 1436), during which 17 (58%) patients died. The presence of myocardial LGE by itself was not a significant predictor of mortality. However, death was predicted by gadolinium kinetics, with the 2 minute post-gadolinium intramyocardial T1 difference between subepicardium and subendocardium predicting mortality with 85% accuracy at a threshold value of 23 ms (the lower the difference the worse the prognosis). Intramyocardial T1 gradient was a better predictor of survival than FLC response to chemotherapy (Kaplan Meier analysis P = 0.049) or diastolic function (Kaplan-Meier analysis P = 0.205). Conclusion In cardiac amyloidosis, CMR provides unique information relating to risk of mortality based on gadolinium kinetics which reflects the severity of the cardiac amyloid burden. PMID:19032744

  2. Mammalian enabled (Mena) is a critical regulator of cardiac function

    PubMed Central

    Aguilar, Frédérick; Belmonte, Stephen L.; Ram, Rashmi; Noujaim, Sami F.; Dunaevsky, Olga; Protack, Tricia L.; Jalife, Jose; Todd Massey, H.; Gertler, Frank B.

    2011-01-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena−/−) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena−/− mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena−/− hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena−/− mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction. PMID:21335464

  3. Mammalian enabled (Mena) is a critical regulator of cardiac function.

    PubMed

    Aguilar, Frédérick; Belmonte, Stephen L; Ram, Rashmi; Noujaim, Sami F; Dunaevsky, Olga; Protack, Tricia L; Jalife, Jose; Todd Massey, H; Gertler, Frank B; Blaxall, Burns C

    2011-05-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena(-/-)) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena(-/-) mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena(-/-) hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena(-/-) mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction.

  4. Cost-benefit analysis of screening for esophageal and gastric cardiac cancer.

    PubMed

    Wei, Wen-Qiang; Yang, Chun-Xia; Lu, Si-Han; Yang, Juan; Li, Bian-Yun; Lian, Shi-Yong; Qiao, You-Lin

    2011-03-01

    In 2005, a program named "Early Detection and Early Treatment of Esophageal and Cardiac Cancer" (EDETEC) was initiated in China. A total of 8279 residents aged 40-69 years old were recruited into the EDETEC program in Linzhou of Henan Province between 2005 and 2008. Howerer, the cost-benefit of the EDETEC program is not very clear yet. We conducted herein a cost-benefit analysis of screening for esophageal and cardiac cancer. The assessed costs of the EDETEC program included screening costs for each subject, as well as direct and indirect treatment costs for esophageal and cardiac severe dysplasia and cancer detected by screening. The assessed benefits of this program included the saved treatment costs, both direct and indirect, on esophageal and cardiac cancer, as well as the value of prolonged life due to screening, as determined by the human capital approach. The results showed the screening cost of finding esophageal and cardiac severe dysplasia or cancer ranged from RMB 2707 to RMB 4512, and the total cost on screening and treatment was RMB 13 115-14 920. The cost benefit was RMB 58 944-155 110 (the saved treatment cost, RMB 17 730, plus the value of prolonged life, RMB 41 214-137 380). The ratio of benefit-to-cost (BCR) was 3.95-11.83. Our results suggest that EDETEC has a high benefit-to-cost ratio in China and could be instituted into high risk areas of China.

  5. Randomized controlled trial of internal and external targeted temperature management methods in post- cardiac arrest patients.

    PubMed

    Look, Xinqi; Li, Huihua; Ng, Mingwei; Lim, Eric Tien Siang; Pothiawala, Sohil; Tan, Kenneth Boon Kiat; Sewa, Duu Wen; Shahidah, Nur; Pek, Pin Pin; Ong, Marcus Eng Hock

    2018-01-01

    Targeted temperature management post-cardiac arrest is currently implemented using various methods, broadly categorized as internal and external. This study aimed to evaluate survival-to-hospital discharge and neurological outcomes (Glasgow-Pittsburgh Score) of post-cardiac arrest patients undergoing internal cooling verses external cooling. A randomized controlled trial of post-resuscitation cardiac arrest patients was conducted from October 2008-September 2014. Patients were randomized to either internal or external cooling methods. Historical controls were selected matched by age and gender. Analysis using SPSS version 21.0 presented descriptive statistics and frequencies while univariate logistic regression was done using R 3.1.3. 23 patients were randomized to internal cooling and 22 patients to external cooling and 42 matched controls were selected. No significant difference was seen between internal and external cooling in terms of survival, neurological outcomes and complications. However in the internal cooling arm, there was lower risk of developing overcooling (p=0.01) and rebound hyperthermia (p=0.02). Compared to normothermia, internal cooling had higher survival (OR=3.36, 95% CI=(1.130, 10.412), and lower risk of developing cardiac arrhythmias (OR=0.18, 95% CI=(0.04, 0.63)). Subgroup analysis showed those with cardiac cause of arrest (OR=4.29, 95% CI=(1.26, 15.80)) and sustained ROSC (OR=5.50, 95% CI=(1.64, 20.39)) had better survival with internal cooling compared to normothermia. Cooling curves showed tighter temperature control for internal compared to external cooling. Internal cooling showed tighter temperature control compared to external cooling. Internal cooling can potentially provide better survival-to-hospital discharge outcomes and reduce cardiac arrhythmia complications in carefully selected patients as compared to normothermia. Copyright © 2017. Published by Elsevier Inc.

  6. Low cardiac output syndrome in the postoperative period of cardiac surgery. Profile, differences in clinical course and prognosis. The ESBAGA study.

    PubMed

    Pérez Vela, J L; Jiménez Rivera, J J; Alcalá Llorente, M Á; González de Marcos, B; Torrado, H; García Laborda, C; Fernández Zamora, M D; González Fernández, F J; Martín Benítez, J C

    2018-04-01

    An analysis is made of the clinical profile, evolution and differences in morbidity and mortality of low cardiac output syndrome (LCOS) in the postoperative period of cardiac surgery, according to the 3 diagnostic subgroups defined by the SEMICYUC Consensus 2012. A multicenter, prospective cohort study was carried out. ICUs of Spanish hospitals with cardiac surgery. A consecutive sample of 2,070 cardiac surgery patients was included, with the analysis of 137 patients with LCOS. No intervention was carried out. The mean patient age was 68.3±9.3 years (65.2% males), with a EuroSCORE II of 9.99±13. NYHA functional class III-IV (52.9%), left ventricular ejection fraction<35% (33.6%), AMI (31.9%), severe PHT (21.7%), critical preoperative condition (18.8%), prior cardiac surgery (18.1%), PTCA/stent placement (16.7%). According to subgroups, 46 patients fulfilled hemodynamic criteria of LCOS (group A), 50 clinical criteria (group B), and the rest (n=41) presented cardiogenic shock (group C). Significant differences were observed over the evolutive course between the subgroups in terms of time subjected to mechanical ventilation (114.4, 135.4 and 180.3min in groups A, B and C, respectively; P<.001), renal replacement requirements (11.4, 14.6 and 36.6%; P=.007), multiorgan failure (16.7, 13 and 47.5%), and mortality (13.6, 12.5 and 35.9%; P=.01). The mean maximum lactate concentration was higher in cardiogenic shock patients (P=.002). The clinical evolution of these patients leads to high morbidity and mortality. We found differences between the subgroups in terms of the postoperative clinical course and mortality. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  7. Lagrangian displacement tracking using a polar grid between endocardial and epicardial contours for cardiac strain imaging.

    PubMed

    Ma, Chi; Varghese, Tomy

    2012-04-01

    Accurate cardiac deformation analysis for cardiac displacement and strain imaging over time requires Lagrangian description of deformation of myocardial tissue structures. Failure to couple the estimated displacement and strain information with the correct myocardial tissue structures will lead to erroneous result in the displacement and strain distribution over time. Lagrangian based tracking in this paper divides the tissue structure into a fixed number of pixels whose deformation is tracked over the cardiac cycle. An algorithm that utilizes a polar-grid generated between the estimated endocardial and epicardial contours for cardiac short axis images is proposed to ensure Lagrangian description of the pixels. Displacement estimates from consecutive radiofrequency frames were then mapped onto the polar grid to obtain a distribution of the actual displacement that is mapped to the polar grid over time. A finite element based canine heart model coupled with an ultrasound simulation program was used to verify this approach. Segmental analysis of the accumulated displacement and strain over a cardiac cycle demonstrate excellent agreement between the ideal result obtained directly from the finite element model and our Lagrangian approach to strain estimation. Traditional Eulerian based estimation results, on the other hand, show significant deviation from the ideal result. An in vivo comparison of the displacement and strain estimated using parasternal short axis views is also presented. Lagrangian displacement tracking using a polar grid provides accurate tracking of myocardial deformation demonstrated using both finite element and in vivo radiofrequency data acquired on a volunteer. In addition to the cardiac application, this approach can also be utilized for transverse scans of arteries, where a polar grid can be generated between the contours delineating the outer and inner wall of the vessels from the blood flowing though the vessel.

  8. Identification of cardiac rhythm features by mathematical analysis of vector fields.

    PubMed

    Fitzgerald, Tamara N; Brooks, Dana H; Triedman, John K

    2005-01-01

    Automated techniques for locating cardiac arrhythmia features are limited, and cardiologists generally rely on isochronal maps to infer patterns in the cardiac activation sequence during an ablation procedure. Velocity vector mapping has been proposed as an alternative method to study cardiac activation in both clinical and research environments. In addition to the visual cues that vector maps can provide, vector fields can be analyzed using mathematical operators such as the divergence and curl. In the current study, conduction features were extracted from velocity vector fields computed from cardiac mapping data. The divergence was used to locate ectopic foci and wavefront collisions, and the curl to identify central obstacles in reentrant circuits. Both operators were applied to simulated rhythms created from a two-dimensional cellular automaton model, to measured data from an in situ experimental canine model, and to complex three-dimensional human cardiac mapping data sets. Analysis of simulated vector fields indicated that the divergence is useful in identifying ectopic foci, with a relatively small number of vectors and with errors of up to 30 degrees in the angle measurements. The curl was useful for identifying central obstacles in reentrant circuits, and the number of velocity vectors needed increased as the rhythm became more complex. The divergence was able to accurately identify canine in situ pacing sites, areas of breakthrough activation, and wavefront collisions. In data from human arrhythmias, the divergence reliably estimated origins of electrical activity and wavefront collisions, but the curl was less reliable at locating central obstacles in reentrant circuits, possibly due to the retrospective nature of data collection. The results indicate that the curl and divergence operators applied to velocity vector maps have the potential to add valuable information in cardiac mapping and can be used to supplement human pattern recognition.

  9. The HEART score for early rule out of acute coronary syndromes in the emergency department: a systematic review and meta-analysis.

    PubMed

    Van Den Berg, Patricia; Body, Richard

    2018-03-01

    The objective of this systematic review was to summarise the current evidence on the diagnostic accuracy of the HEART score for predicting major adverse cardiac events in patients presenting with undifferentiated chest pain to the emergency department. Two investigators independently searched Medline, Embase and Cochrane databases between 2008 and May 2016 identifying eligible studies providing diagnostic accuracy data on the HEART score for predicting major adverse cardiac events as the primary outcome. For the 12 studies meeting inclusion criteria, study characteristics and diagnostic accuracy measures were systematically extracted and study quality assessed using the QUADAS-2 tool. After quality assessment, nine studies including data from 11,217 patients were combined in the meta-analysis applying a generalised linear mixed model approach with random effects assumption (Stata 13.1). In total, 15.4% of patients (range 7.3-29.1%) developed major adverse cardiac events after a mean of 6 weeks' follow-up. Among patients categorised as 'low risk' and suitable for early discharge (HEART score 0-3), the pooled incidence of 'missed' major adverse cardiac events was 1.6%. The pooled sensitivity and specificity of the HEART score for predicting major adverse cardiac events were 96.7% (95% confidence interval (CI) 94.0-98.2%) and 47.0% (95% CI 41.0-53.5%), respectively. Patients with a HEART score of 0-3 are at low risk of incident major adverse cardiac events. As 3.3% of patients with major adverse cardiac events are 'missed' by the HEART score, clinicians must ask whether this risk is acceptably low for clinical implementation.

  10. Software Reliability Analysis of NASA Space Flight Software: A Practical Experience

    PubMed Central

    Sukhwani, Harish; Alonso, Javier; Trivedi, Kishor S.; Mcginnis, Issac

    2017-01-01

    In this paper, we present the software reliability analysis of the flight software of a recently launched space mission. For our analysis, we use the defect reports collected during the flight software development. We find that this software was developed in multiple releases, each release spanning across all software life-cycle phases. We also find that the software releases were developed and tested for four different hardware platforms, spanning from off-the-shelf or emulation hardware to actual flight hardware. For releases that exhibit reliability growth or decay, we fit Software Reliability Growth Models (SRGM); otherwise we fit a distribution function. We find that most releases exhibit reliability growth, with Log-Logistic (NHPP) and S-Shaped (NHPP) as the best-fit SRGMs. For the releases that experience reliability decay, we investigate the causes for the same. We find that such releases were the first software releases to be tested on a new hardware platform, and hence they encountered major hardware integration issues. Also such releases seem to have been developed under time pressure in order to start testing on the new hardware platform sooner. Such releases exhibit poor reliability growth, and hence exhibit high predicted failure rate. Other problems include hardware specification changes and delivery delays from vendors. Thus, our analysis provides critical insights and inputs to the management to improve the software development process. As NASA has moved towards a product line engineering for its flight software development, software for future space missions will be developed in a similar manner and hence the analysis results for this mission can be considered as a baseline for future flight software missions. PMID:29278255

  11. Software Reliability Analysis of NASA Space Flight Software: A Practical Experience.

    PubMed

    Sukhwani, Harish; Alonso, Javier; Trivedi, Kishor S; Mcginnis, Issac

    2016-01-01

    In this paper, we present the software reliability analysis of the flight software of a recently launched space mission. For our analysis, we use the defect reports collected during the flight software development. We find that this software was developed in multiple releases, each release spanning across all software life-cycle phases. We also find that the software releases were developed and tested for four different hardware platforms, spanning from off-the-shelf or emulation hardware to actual flight hardware. For releases that exhibit reliability growth or decay, we fit Software Reliability Growth Models (SRGM); otherwise we fit a distribution function. We find that most releases exhibit reliability growth, with Log-Logistic (NHPP) and S-Shaped (NHPP) as the best-fit SRGMs. For the releases that experience reliability decay, we investigate the causes for the same. We find that such releases were the first software releases to be tested on a new hardware platform, and hence they encountered major hardware integration issues. Also such releases seem to have been developed under time pressure in order to start testing on the new hardware platform sooner. Such releases exhibit poor reliability growth, and hence exhibit high predicted failure rate. Other problems include hardware specification changes and delivery delays from vendors. Thus, our analysis provides critical insights and inputs to the management to improve the software development process. As NASA has moved towards a product line engineering for its flight software development, software for future space missions will be developed in a similar manner and hence the analysis results for this mission can be considered as a baseline for future flight software missions.

  12. Cardiac Autonomic Control in Individuals With Down Syndrome

    ERIC Educational Resources Information Center

    Goulopoulou, Styliani; Baynard, Tracy; Collier, Scott; Giannopoulou, Ifigenia; Figueroa, Arturo; Beets, Michael; Pitetti, Kenneth; Fernhall, Bo

    2006-01-01

    Our goal in this study was to compare cardiac autonomic control at rest between 50 individuals with Down syndrome and 24 control participants without disabilities. Resting autonomic function was assessed using analysis of heart rate variability. Participants with Down syndrome had reduced total heart rate variability, which indicates possible…

  13. Radiation effect on implanted pacemakers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourhamidi, A.H.

    1983-10-01

    It was previously thought that diagnostic or therapeutic ionizing radiation did not have an adverse effect on the function of cardiac pacemakers. Recently, however, some authors have reported damaging effect of therapeutic radiation on cardiac pulse generators. An analysis of a recently-extracted pacemaker documented the effect of radiation on the pacemaker pulse generator.

  14. Learn by Yourself: The Self-Learning Tools for Qualitative Analysis Software Packages

    ERIC Educational Resources Information Center

    Freitas, Fábio; Ribeiro, Jaime; Brandão, Catarina; Reis, Luís Paulo; de Souza, Francislê Neri; Costa, António Pedro

    2017-01-01

    Computer Assisted Qualitative Data Analysis Software (CAQDAS) are tools that help researchers to develop qualitative research projects. These software packages help the users with tasks such as transcription analysis, coding and text interpretation, writing and annotation, content search and analysis, recursive abstraction, grounded theory…

  15. Analysis of IR spectra of mineralized deposits on human cardiac valves

    NASA Astrophysics Data System (ADS)

    Ivanov-Omskii, V. I.; Yastrebov, S. G.; Gulyaev, N. I.

    2017-05-01

    IR spectroscopy in the range of vibration of hydroxy groups has been used to analyze the binding energy of mineralized deposits to cardiac valves of patients of varied gender and age. A tendency was revealed toward a gender-independent rise in the binding energy of mineralized deposits to valve tissues with increasing age of patients. The analysis enables making recommendations concerning the early diagnostics of valve calcination, monitoring of its development, and therapy of calcinoses.

  16. Gene network analysis: from heart development to cardiac therapy.

    PubMed

    Ferrazzi, Fulvia; Bellazzi, Riccardo; Engel, Felix B

    2015-03-01

    Networks offer a flexible framework to represent and analyse the complex interactions between components of cellular systems. In particular gene networks inferred from expression data can support the identification of novel hypotheses on regulatory processes. In this review we focus on the use of gene network analysis in the study of heart development. Understanding heart development will promote the elucidation of the aetiology of congenital heart disease and thus possibly improve diagnostics. Moreover, it will help to establish cardiac therapies. For example, understanding cardiac differentiation during development will help to guide stem cell differentiation required for cardiac tissue engineering or to enhance endogenous repair mechanisms. We introduce different methodological frameworks to infer networks from expression data such as Boolean and Bayesian networks. Then we present currently available temporal expression data in heart development and discuss the use of network-based approaches in published studies. Collectively, our literature-based analysis indicates that gene network analysis constitutes a promising opportunity to infer therapy-relevant regulatory processes in heart development. However, the use of network-based approaches has so far been limited by the small amount of samples in available datasets. Thus, we propose to acquire high-resolution temporal expression data to improve the mathematical descriptions of regulatory processes obtained with gene network inference methodologies. Especially probabilistic methods that accommodate the intrinsic variability of biological systems have the potential to contribute to a deeper understanding of heart development.

  17. Kubios HRV--heart rate variability analysis software.

    PubMed

    Tarvainen, Mika P; Niskanen, Juha-Pekka; Lipponen, Jukka A; Ranta-Aho, Perttu O; Karjalainen, Pasi A

    2014-01-01

    Kubios HRV is an advanced and easy to use software for heart rate variability (HRV) analysis. The software supports several input data formats for electrocardiogram (ECG) data and beat-to-beat RR interval data. It includes an adaptive QRS detection algorithm and tools for artifact correction, trend removal and analysis sample selection. The software computes all the commonly used time-domain and frequency-domain HRV parameters and several nonlinear parameters. There are several adjustable analysis settings through which the analysis methods can be optimized for different data. The ECG derived respiratory frequency is also computed, which is important for reliable interpretation of the analysis results. The analysis results can be saved as an ASCII text file (easy to import into MS Excel or SPSS), Matlab MAT-file, or as a PDF report. The software is easy to use through its compact graphical user interface. The software is available free of charge for Windows and Linux operating systems at http://kubios.uef.fi. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Postoperative Outcomes in Obstructive Sleep Apnea Patients Undergoing Cardiac Surgery: A Systematic Review and Meta-analysis of Comparative Studies.

    PubMed

    Nagappa, Mahesh; Ho, George; Patra, Jayadeep; Wong, Jean; Singh, Mandeep; Kaw, Roop; Cheng, Davy; Chung, Frances

    2017-12-01

    Obstructive sleep apnea (OSA) is a common comorbidity in patients undergoing cardiac surgery and may predispose patients to postoperative complications. The purpose of this meta-analysis is to determine the evidence of postoperative complications associated with OSA patients undergoing cardiac surgery. A literature search of Cochrane Database of Systematic Reviews, Medline, Medline In-process, Web of Science, Scopus, EMBASE, Cochrane Central Register of Controlled Trials, and CINAHL until October 2016 was performed. The search was constrained to studies in adult cardiac surgical patients with diagnosed or suspected OSA. All included studies must report at least 1 postoperative complication. The primary outcome is major adverse cardiac or cerebrovascular events (MACCEs) up to 30 days after surgery, which includes death from all-cause mortality, myocardial infarction, myocardial injury, nonfatal cardiac arrest, revascularization process, pulmonary embolism, deep venous thrombosis, newly documented postoperative atrial fibrillation (POAF), stroke, and congestive heart failure. Secondary outcome is newly documented POAF. The other exploratory outcomes include the following: (1) postoperative tracheal intubation and mechanical ventilation; (2) infection and/or sepsis; (3) unplanned intensive care unit (ICU) admission; and (4) duration of stay in hospital and ICU. Meta-analysis and meta- regression were conducted using Cochrane Review Manager 5.3 (Cochrane, London, UK) and OpenBUGS v3.0, respectively. Eleven comparative studies were included (n = 1801 patients; OSA versus non-OSA: 688 vs 1113, respectively). MACCEs were 33.3% higher odds in OSA versus non-OSA patients (OSA versus non-OSA: 31% vs 10.6%; odds ratio [OR], 2.4; 95% confidence interval [CI], 1.38-4.2; P = .002). The odds of newly documented POAF (OSA versus non-OSA: 31% vs 21%; OR, 1.94; 95% CI, 1.13-3.33; P = .02) was higher in OSA compared to non-OSA. Even though the postoperative tracheal intubation and mechanical ventilation (OSA versus non-OSA: 13% vs 5.4%; OR, 2.67; 95% CI, 1.03-6.89; P = .04) were significantly higher in OSA patients, the length of ICU stay and hospital stay were not significantly prolonged in patients with OSA compared to non-OSA. The majority of OSA patients were not treated with continuous positive airway pressure therapy. Meta-regression and sensitivity analysis of the subgroups did not impact the OR of postoperative complications for OSA versus non-OSA groups. Our meta-analysis demonstrates that after cardiac surgery, MACCEs and newly documented POAF were 33.3% and 18.1% higher odds in OSA versus non-OSA patients, respectively.

  19. Treatment of non-traumatic out-of-hospital cardiac arrest with active compression decompression cardiopulmonary resuscitation plus an impedance threshold device.

    PubMed

    Frascone, Ralph J; Wayne, Marvin A; Swor, Robert A; Mahoney, Brian D; Domeier, Robert M; Olinger, Michael L; Tupper, David E; Setum, Cindy M; Burkhart, Nathan; Klann, Lucinda; Salzman, Joshua G; Wewerka, Sandi S; Yannopoulos, Demetris; Lurie, Keith G; O'Neil, Brian J; Holcomb, Richard G; Aufderheide, Tom P

    2013-09-01

    A recent out-of-hospital cardiac arrest (OHCA) clinical trial showed improved survival to hospital discharge (HD) with favorable neurologic function for patients with cardiac arrest of cardiac origin treated with active compression decompression cardiopulmonary resuscitation (CPR) plus an impedance threshold device (ACD+ICD) versus standard (S) CPR. The current analysis examined whether treatment with ACD+ITD is more effective than standard (S-CPR) for all cardiac arrests of non-traumatic origin, regardless of the etiology. This is a secondary analysis of data from a randomized, prospective, multicenter, intention-to-treat, OHCA clinical trial. Adults with presumed non-traumatic cardiac arrest were enrolled and followed for one year post arrest. The primary endpoint was survival to hospital discharge (HD) with favorable neurologic function (Modified Rankin Scale score ≤ 3). Between October 2005 and July 2009, 2738 patients were enrolled (S-CPR=1335; ACD+ITD=1403). Survival to HD with favorable neurologic function was greater with ACD+ITD compared with S-CPR: 7.9% versus 5.7%, (OR 1.42, 95% CI 1.04, 1.95, p=0.027). One-year survival was also greater: 7.9% versus 5.7%, (OR 1.43, 95% CI 1.04, 1.96, p=0.026). Nearly all survivors in both groups had returned to their baseline neurological function by one year. Major adverse event rates were similar between groups. Treatment of out-of-hospital non-traumatic cardiac arrest patients with ACD+ITD resulted in a significant increase in survival to hospital discharge with favorable neurological function when compared with S-CPR. A significant increase survival rates was observed up to one year after arrest in subjects treated with ACD+ITD, regardless of the etiology of the cardiac arrest. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Adverse cardiac events after orthotopic liver transplantation: a cross-sectional study in 389 consecutive patients.

    PubMed

    Nicolau-Raducu, Ramona; Gitman, Marina; Ganier, Donald; Loss, George E; Cohen, Ari J; Patel, Hamang; Girgrah, Nigel; Sekar, Krish; Nossaman, Bobby

    2015-01-01

    Current American College of Cardiology/American Heart Association guidelines caution that preoperative noninvasive cardiac tests may have poor predictive value for detecting coronary artery disease in liver transplant candidates. The purpose of our study was to evaluate the role of clinical predictor variables for early and late cardiac morbidity and mortality and the predictive values of noninvasive cardiac tests for perioperative cardiac events in a high-risk liver transplant population. In all, 389 adult recipients were retrospectively analyzed for a median follow-up time of 3.4 years (range = 2.3-4.4 years). Overall survival was 83%. During the first year after transplantation, cardiovascular morbidity and mortality rates were 15.2% and 2.8%. In patients who survived the first year, cardiovascular morbidity and mortality rates were 3.9% and 2%, with cardiovascular etiology as the third leading cause of death. Dobutamine stress echocardiography (DSE) and single-photon emission computed tomography had respective sensitivities of 9% and 57%, specificities of 98% and 75%, positive predictive values of 33% and 28%, and negative predictive values of 89% and 91% for predicting early cardiac events. A rate blood pressure product less than 12,000 with DSE was associated with an increased risk for postoperative atrial fibrillation. Correspondence analysis identified a statistical association between nonalcoholic steatohepatitis/cryptogenic cirrhosis and postoperative myocardial ischemia. Logistic regression identified 3 risk factors for postoperative acute coronary syndrome: age, history of coronary artery disease, and pretransplant requirement for vasopressors. Multivariable analysis showed statistical associations of the Model for End-Stage Liver Disease score and the development of acute kidney injury as risk factors for overall cardiac-related mortality. These findings may help in identifying high-risk patients and may lead to the development of better cardiac tests. © 2014 American Association for the Study of Liver Diseases.

  1. Risk-taking attitudes and their association with process and outcomes of cardiac care: a cohort study

    PubMed Central

    King, Kathryn M; Norris, Colleen M; Knudtson, Merril L; Ghali, William A

    2009-01-01

    Background Prior research reveals that processes and outcomes of cardiac care differ across sociodemographic strata. One potential contributing factor to such differences is the personality traits of individuals within these strata. We examined the association between risk-taking attitudes and cardiac patients' clinical and demographic characteristics, the likelihood of undergoing invasive cardiac procedures and survival. Methods We studied a large inception cohort of patients who underwent cardiac catheterization between July 1998 and December 2001. Detailed clinical and demographic data were collected at time of cardiac catheterization and through a mailed survey one year post-catheterization. The survey included three general risk attitude items from the Jackson Personality Inventory. Patients' (n = 6294) attitudes toward risk were categorized as risk-prone versus non-risk-prone and were assessed for associations with baseline clinical and demographic characteristics, treatment received (i.e., medical therapy, coronary artery bypass graft (CABG) surgery, percutaneous coronary intervention (PCI)), and survival (to December 2005). Results 2827 patients (45%) were categorized as risk-prone. Having risk-prone attitudes was associated with younger age (p < .001), male sex (p < .001), current smoking (p < .001) and higher household income (p < .001). Risk-prone patients were more likely to have CABG surgery in unadjusted (Odds Ratio [OR] = 1.21; 95% CI 1.08–1.36) and adjusted (OR = 1.18; 95% CI 1.02–1.36) models, but were no more likely to have PCI or any revascularization. Having risk-prone attitudes was associated with better survival in an unadjusted survival analysis (Hazard Ratio [HR] = 0.78 (95% CI 0.66–0.93), but not in a risk-adjusted analysis (HR = 0.92, 95% CI 0.77–1.10). Conclusion These exploratory findings suggest that patient attitudes toward risk taking may contribute to some of the documented differences in use of invasive cardiac procedures. An awareness of these associations could help healthcare providers as they counsel patients regarding cardiac care decisions. PMID:19660137

  2. Treatment of Non-Traumatic Out-of-Hospital Cardiac Arrest with Active Compression Decompression Cardiopulmonary Resuscitation plus an Impedance Threshold Device

    PubMed Central

    Frascone, Ralph J; Wayne, Marvin A; Swor, Robert A; Mahoney, Brian D; Domeier, Robert M; Olinger, Michael L; Tupper, David E; Setum, Cindy M; Burkhart, Nathan; Klann, Lucinda; Salzman, Joshua G; Wewerka, Sandi S; Yannopoulos, Demetris; Lurie, Keith G; O’Neil, Brian J.; Holcomb, Richard G; Aufderheide, Tom P

    2013-01-01

    Background A recent out-of-hospital cardiac arrest (OHCA) clinical trial showed improved survival to hospital discharge (HD) with favorable neurologic function for patients with cardiac arrest of cardiac origin treated with active compression decompression cardiopulmonary resuscitation (CPR) plus an impedance threshold device (ACD+ICD) versus standard (S) CPR. The current analysis examined whether treatment with ACD+ITD is more effective than standard (S-CPR) for all cardiac arrests of non-traumatic origin, regardless of the aetiology. Methods This is a secondary analysis of data from a randomized, prospective, multicenter, intention-to-treat, OHCA clinical trial. Adults with presumed non-traumatic cardiac arrest were enrolled and followed for one year post arrest. The primary endpoint was survival to hospital discharge (HD) with favorable neurologic function (modified Rankin Scale score ≤3). Results Between October 2005 to July 2009, 2738 patients were enrolled (S-CPR = 1335; ACD+ITD =1403). Survival to HD with favorable neurologic function was greater with ACD+ITD compared with S-CPR: 7.9% versus 5.7%, (OR 1.42, 95% CI 1.04, 1.95, p=0.027). One-year survival was also greater: 7.9% versus 5.7%, (OR 1.43, 95% CI 1.04, 1.96, p=0.026). Nearly all survivors in both groups had returned to their baseline neurological function by one year. Major adverse event rates were similar between groups. Conclusions Treatment of out-of-hospital non-traumatic cardiac arrest patients with ACD+ITD resulted in a significant increase in survival to hospital discharge with favorable neurological function when compared with S-CPR. A significant increase survival rates was observed up to one year after arrest in subjects treated with ACD+ITD, regardless of the etiology of the cardiac arrest. Clinical Trial Registration NCT 00189423 (http://www.clinicaltrials.gov) PMID:23669489

  3. An online database for plant image analysis software tools.

    PubMed

    Lobet, Guillaume; Draye, Xavier; Périlleux, Claire

    2013-10-09

    Recent years have seen an increase in methods for plant phenotyping using image analyses. These methods require new software solutions for data extraction and treatment. These solutions are instrumental in supporting various research pipelines, ranging from the localisation of cellular compounds to the quantification of tree canopies. However, due to the variety of existing tools and the lack of central repository, it is challenging for researchers to identify the software that is best suited for their research. We present an online, manually curated, database referencing more than 90 plant image analysis software solutions. The website, plant-image-analysis.org, presents each software in a uniform and concise manner enabling users to identify the available solutions for their experimental needs. The website also enables user feedback, evaluations and new software submissions. The plant-image-analysis.org database provides an overview of existing plant image analysis software. The aim of such a toolbox is to help users to find solutions, and to provide developers a way to exchange and communicate about their work.

  4. GWAMA: software for genome-wide association meta-analysis.

    PubMed

    Mägi, Reedik; Morris, Andrew P

    2010-05-28

    Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies. We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. The software is distributed with scripts that allow simple formatting of files containing the results of each association study and generate graphical summaries of genome-wide meta-analysis results. The GWAMA (Genome-Wide Association Meta-Analysis) software has been developed to perform meta-analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or quantitative traits. Software with source files, documentation and example data files are freely available online at http://www.well.ox.ac.uk/GWAMA.

  5. Use of the single-breath method of estimating cardiac output during exercise-stress testing.

    NASA Technical Reports Server (NTRS)

    Buderer, M. C.; Rummel, J. A.; Sawin, C. F.; Mauldin, D. G.

    1973-01-01

    The single-breath cardiac output measurement technique of Kim et al. (1966) has been modified for use in obtaining cardiac output measurements during exercise-stress tests on Apollo astronauts. The modifications involve the use of a respiratory mass spectrometer for data acquisition and a digital computer program for data analysis. The variation of the modified method for triplicate steady-state cardiac output measurements was plus or minus 1 liter/min. The combined physiological and methodological variation seen during a set of three exercise tests on a series of subjects was 1 to 2.5 liter/min. Comparison of the modified method with the direct Fick technique showed that although the single-breath values were consistently low, the scatter of data was small and the correlation between the two methods was high. Possible reasons for the low single-breath cardiac output values are discussed.

  6. Hereditary cardiac amyloidosis associated with the transthyretin Ile122 mutation in a white man.

    PubMed

    Gillmore, J D; Booth, D R; Pepys, M B; Hawkins, P N

    1999-09-01

    An 83 year old white man with atrial fibrillation was admitted to hospital after a cerebral infarct. Echocardiography was characteristic of cardiac amyloid deposition and subsequent tests confirmed amyloidosis of transthyretin (TTR) type, in association with the Ile122 mutation of the TTR gene; this has only been reported previously in African Americans in whom it occurs with an allele frequency of 2%. Haplotype analysis did not suggest a different founder than for the African Ile122 mutation. Cardiac amyloidosis should be considered among elderly patients presenting with cardiac failure and/or arrhythmia, particularly if they are resistant to conventional treatment; if confirmed, it should be followed by precise characterisation of amyloid fibril type. The prevalence of autosomal dominant cardiac TTR amyloidosis in elderly white people is unknown but early diagnosis and supportive treatment may prevent complications among affected family members.

  7. Early audit of renal complications in a new cardiac surgery service in Australia.

    PubMed

    Bolsin, Stephen N; Stow, Peter; Bucknell, Sarah

    2004-09-01

    To assess the incidence of renal failure in a cardiac surgery service commencing in Australia. Prospective data collection and retrospective database analysis. A tertiary referral, university teaching hospital in the state of Victoria, Australia. The first 502 patients undergoing cardiac surgery in this institution from commencement of the service. The overall rate of renal failure was low in comparison to other studies at 0.2% (95% CI 0.04-1.3%). The rate of postoperative renal dysfunction was also low at 4.2% (95% CI 2.7-6.5%). The safety of the new service with respect to this complication of cardiac surgery was good when compared with published data. However the lack of uniform definitions of renal failure following cardiac surgery make comparisons between studies difficult. Uniform reporting of this complication would facilitate comparisons between units and quality assurance activities in this field.

  8. [Retrospective evaluation of sarcoidosis patients 1970-1979 at the Bad Berka Central Clinic for Heart and Lung Diseases for the detection of possible heart involvement].

    PubMed

    Kirsten, D; Schaedel, H; Kessler, G

    1984-01-01

    Cardiac involvement in pulmonary sarcoidosis was found in a higher percentage than formerly reported, by careful observation. In a retrospective analysis of 1 236 patients with pulmonary sarcoidosis we found a possible cardiac involvement in 15.1%. In cases of pulmonary sarcoidosis or lymph node sarcoidosis combined with sarcoid lesions in other organs (liver, eyes, skin etc.) cardiac involvement is possible. Heart sarcoidosis was found in all roentgenographic stages and without sex difference. Patients with possible heart sarcoidosis suffer from dyspnoe , thoracical pain, heart discomfort, or angina pectoris in a higher part than without it. Enlargement of the heart and/or cardiac failure are signs of sarcoid involvement in patient with sarcoidosis, also in elderly patients. There are some difficulties in differential diagnosis of sarcoid cardiac involvement and ischaemic heart disease.

  9. Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating DNA.

    PubMed

    Zemmour, Hai; Planer, David; Magenheim, Judith; Moss, Joshua; Neiman, Daniel; Gilon, Dan; Korach, Amit; Glaser, Benjamin; Shemer, Ruth; Landesberg, Giora; Dor, Yuval

    2018-04-24

    Detection of cardiomyocyte death is crucial for the diagnosis and treatment of heart disease. Here we use comparative methylome analysis to identify genomic loci that are unmethylated specifically in cardiomyocytes, and develop these as biomarkers to quantify cardiomyocyte DNA in circulating cell-free DNA (cfDNA) derived from dying cells. Plasma of healthy individuals contains essentially no cardiomyocyte cfDNA, consistent with minimal cardiac turnover. Patients with acute ST-elevation myocardial infarction show a robust cardiac cfDNA signal that correlates with levels of troponin and creatine phosphokinase (CPK), including the expected elevation-decay dynamics following coronary angioplasty. Patients with sepsis have high cardiac cfDNA concentrations that strongly predict mortality, suggesting a major role of cardiomyocyte death in mortality from sepsis. A cfDNA biomarker for cardiomyocyte death may find utility in diagnosis and monitoring of cardiac pathologies and in the study of normal human cardiac physiology and development.

  10. Contribution of transpersonal care to cardiac patients in the postoperative period of heart surgery.

    PubMed

    Rabelo, Ana Cleide Silva; Souza, Fabíola Vládia Feire Silva; Silva, Lúcia de Fátima da

    2018-06-07

    To know the contribution of Watson's theory to nursing care for cardiac patients in the postoperative period of cardiac surgery. This is a qualitative study based on the research-care method conducted with ten patients who underwent cardiac surgery in a specialised hospital from June to August 2013, in the city of Fortaleza, Ceará, Brazil. Data were submitted to content analysis based on the Clinical Caritas Process. The results led to four thematic categories: Awareness of being cared for by another being, System of beliefs and subjectivity, Relation of support and trust, and Expression of feelings. Surgery transformed the lives of the patients related to the process of being cared for by other people. The application of Watson's theory to care for cardiac patients after heart surgery shed valuable light on the importance of transpersonal care for the expansion of nursing care.

  11. The relationship between inotrope exposure, six-hour postoperative physiological variables, hospital mortality and renal dysfunction in patients undergoing cardiac surgery.

    PubMed

    Shahin, Jason; DeVarennes, Benoit; Tse, Chun Wing; Amarica, Dan-Alexandru; Dial, Sandra

    2011-07-07

    Acute haemodynamic complications are common after cardiac surgery and optimal perioperative use of inotropic agents, typically guided by haemodynamic variables, remains controversial. The aim of this study was to examine the relationship of inotrope use to hospital mortality and renal dysfunction. A retrospective cohort study of 1,326 cardiac surgery patients was carried out at two university-affiliated ICUs. Multivariable logistic regression analysis and propensity matching were performed to evaluate whether inotrope exposure was independently associated with mortality and renal dysfunction. Patients exposed to inotropes had a higher mortality rate than those not exposed. After adjusting for differences in Parsonnet score, left ventricular ejection fraction, perioperative intraaortic balloon pump use, bypass time, reoperation and cardiac index, inotrope exposure appeared to be independently associated with increased hospital mortality (adjusted odds ratio (OR) 2.3, 95% confidence interval (95% CI) 1.2 to 4.5) and renal dysfunction (adjusted OR 2.7, 95% CI 1.5 to 4.6). A propensity score-matched analysis similarly demonstrated that death and renal dysfunction were significantly more likely to occur in patients exposed to inotropes (P = 0.01). Postoperative inotrope exposure was independently associated with worse outcomes in this cohort study. Further research is needed to better elucidate the appropriate use of inotropes in cardiac surgery.

  12. An algorithm for the beat-to-beat assessment of cardiac mechanics during sleep on Earth and in microgravity from the seismocardiogram.

    PubMed

    Di Rienzo, Marco; Vaini, Emanuele; Lombardi, Prospero

    2017-11-15

    Seismocardiogram, SCG, is the measure of precordial vibrations produced by the beating heart, from which cardiac mechanics may be explored on a beat-to-beat basis. We recently collected a large amount of SCG data (>69 recording hours) from an astronaut to investigate cardiac mechanics during sleep aboard the International Space Station and on Earth. SCG sleep recordings are characterized by a prolonged duration and wide heart rate swings, thus a specific algorithm was developed for their analysis. In this article we describe the new algorithm and its performance. The algorithm is composed of three parts: 1) artifacts removal, 2) identification in each SCG waveform of four fiducial points associated with the opening and closure of the aortic and mitral valves, 3) beat-to-beat computation of indexes of cardiac mechanics from the SCG fiducial points. The algorithm was tested on two sleep recordings and yielded the identification of the fiducial points in more than 36,000 beats with a precision, quantified by the Positive Predictive Value, ≥99.2%. These positive findings provide the first evidence that cardiac mechanics may be explored by the automatic analysis of SCG long-lasting recordings, taken out of the laboratory setting, and in presence of significant heart rate modulations.

  13. Human adipose stem cell and ASC-derived cardiac progenitor cellular therapy improves outcomes in a murine model of myocardial infarction

    PubMed Central

    Davy, Philip MC; Lye, Kevin D; Mathews, Juanita; Owens, Jesse B; Chow, Alice Y; Wong, Livingston; Moisyadi, Stefan; Allsopp, Richard C

    2015-01-01

    Background Adipose tissue is an abundant and potent source of adult stem cells for transplant therapy. In this study, we present our findings on the potential application of adipose-derived stem cells (ASCs) as well as induced cardiac-like progenitors (iCPs) derived from ASCs for the treatment of myocardial infarction. Methods and results Human bone marrow (BM)-derived stem cells, ASCs, and iCPs generated from ASCs using three defined cardiac lineage transcription factors were assessed in an immune-compromised mouse myocardial infarction model. Analysis of iCP prior to transplant confirmed changes in gene and protein expression consistent with a cardiac phenotype. Endpoint analysis was performed 1 month posttransplant. Significantly increased endpoint fractional shortening, as well as reduction in the infarct area at risk, was observed in recipients of iCPs as compared to the other recipient cohorts. Both recipients of iCPs and ASCs presented higher myocardial capillary densities than either recipients of BM-derived stem cells or the control cohort. Furthermore, mice receiving iCPs had a significantly higher cardiac retention of transplanted cells than all other groups. Conclusion Overall, iCPs generated from ASCs outperform BM-derived stem cells and ASCs in facilitating recovery from induced myocardial infarction in mice. PMID:26604802

  14. Higher protein intake increases cardiac function parameters in healthy children: metabolic programming by infant nutrition-secondary analysis from a clinical trial.

    PubMed

    Collell, Rosa; Closa-Monasterolo, Ricardo; Ferré, Natalia; Luque, Veronica; Koletzko, Berthold; Grote, Veit; Janas, Roman; Verduci, Elvira; Escribano, Joaquín

    2016-06-01

    Protein intake may modulate cardiac structure and function in pathological conditions, but there is a lack of knowledge on potential effects in healthy infants. Secondary analysis of an ongoing randomized clinical trial comparing two groups of infants receiving a higher (HP) or lower (LP) protein content formula in the first year of life, and compared with an observational group of breastfed (BF) infants. Growth and dietary intake were assessed periodically from birth to 2 y. Insulin-like growth factor 1 (IGF-1) axis parameters were analyzed at 6 mo in a blood sample. At 2 y, cardiac mass and function were assessed by echocardiography. HP infants (n = 50) showed a higher BMI z-score at 2 y compared with LP (n = 47) or BF (n = 44). Cardiac function parameters were increased in the HP group compared with the LP and were directly related to the protein intake during the first 6 mo of life. Moreover, there was an increase in free IGF-1 in the HP group at 6 mo. A moderate increase in protein supply during the first year of life is associated with higher cardiac function parameters at 2 y. IGF-1 axis modifications may, at least in part, underlie these effects.

  15. [First Results of Analysis of Russian Part of the European Register on Cardiac Rehabilitation EuroCaReD (European Cardiac Rehabilitation Database)].

    PubMed

    Pogosova, N V; Sokolova, O Iu; Iufereva, Iu M; Osipova, I V; Riamzina, I N

    2015-01-01

    The joint European Registry of patients with cardiovascular diseases participating in cardiac rehabilitation programs (European Cardiac Rehabilitation Database, EuroCaReD) is conducted in collaboration between the ESC and EACPR). It's main goals were to improve the routine use of cardiac rehabilitation, to develop joint standards for cardiac rehabilitation in all European countries and evidence based rehabilitation programs and to monitor any changes. In the EuroCaReD registry participated a total of 44 centers from 13 countries, including 3 centers from Russia, which enrolled 151 patients during 2010-2012. This paper is comparing the baseline demographics, clinical data and risk factors in Russian patients versus the rest of Europe. It was shown that cardiac rehabilitation patients in Russia, as in the whole cohort, are predominantly male. Elderly patients from Russia were 3 times less likely to be referred for rehabilitation than in Europe. Unlike the whole cohort Russian patients were almost never sent to rehabilitation because of heart failure or stable angina. Likewise the whole Europe Russian patients had an average of 3 cardiovascular risk factors before rehabilitation, but with some national differences in their prevalence and severity.

  16. Extracting cardiac shapes and motion of the chick embryo heart outflow tract from four-dimensional optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Yin, Xin; Liu, Aiping; Thornburg, Kent L.; Wang, Ruikang K.; Rugonyi, Sandra

    2012-09-01

    Recent advances in optical coherence tomography (OCT), and the development of image reconstruction algorithms, enabled four-dimensional (4-D) (three-dimensional imaging over time) imaging of the embryonic heart. To further analyze and quantify the dynamics of cardiac beating, segmentation procedures that can extract the shape of the heart and its motion are needed. Most previous studies analyzed cardiac image sequences using manually extracted shapes and measurements. However, this is time consuming and subject to inter-operator variability. Automated or semi-automated analyses of 4-D cardiac OCT images, although very desirable, are also extremely challenging. This work proposes a robust algorithm to semi automatically detect and track cardiac tissue layers from 4-D OCT images of early (tubular) embryonic hearts. Our algorithm uses a two-dimensional (2-D) deformable double-line model (DLM) to detect target cardiac tissues. The detection algorithm uses a maximum-likelihood estimator and was successfully applied to 4-D in vivo OCT images of the heart outflow tract of day three chicken embryos. The extracted shapes captured the dynamics of the chick embryonic heart outflow tract wall, enabling further analysis of cardiac motion.

  17. Oral Contraceptives Attenuate Cardiac Autonomic Responses to Musical Auditory Stimulation: Pilot Study.

    PubMed

    Milan, Réveni Carmem; Plassa, Bruna Oliveira; Guida, Heraldo Lorena; de Abreu, Luiz Carlos; Gomes, Rayana L; Garner, David M; Valenti, Vitor E

    2015-01-01

    The literature presents contradictory results regarding the effects of contraceptives on cardiac autonomic regulation. The research team aimed to evaluate the effects of musical auditory stimulation on cardiac autonomic regulation in women who use oral contraceptives. The research team designed a transversal observational pilot study. The setting was the Centro de Estudos do Sistema Nervoso Autônomo (CESNA) in the Departamento de Fonoaudiologia at the Universidade Estadual Paulista (UNESP) in Marília, SP, Brazil. Participants were 22 healthy nonathletic and nonsedentary females, all nonsmokers and aged between 18 and 27 y. Participants were divided into 2 groups: (1) 12 women who were not taking oral contraceptives, the control group; and (2) 10 women who were taking oral contraceptives, the oral contraceptive group. In the first stage, a rest control, the women sat with their earphones turned off for 20 min. After that period, the participants were exposed to 20 min of classical baroque music (ie, "Canon in D Major," Johann Pachelbel), at 63-84 dB. Measurements of the equivalent sound levels were conducted in a soundproof room, and the intervals between consecutive heartbeats (R-R intervals) were recorded, with a sampling rate of 1000 Hz. For calculation of the linear indices, the research team used software to perform an analysis of heart rate variability (HRV). Linear indices of HRV were analyzed in the time domain: (1) the standard deviation of normal-to-normal R-R intervals (SDNN), (2) the root-mean square of differences between adjacent normal R-R intervals in a time interval (RMSSD), and (3) the percentage of adjacent R-R intervals with a difference of duration greater than 50 ms (pNN50). The study also analyzed the frequency domain-low frequency (LF), high frequency (HF), and LF/HF ratio. For the control group, the musical auditory stimulation reduced (1) the SDNN from 52.2 ± 10 ms to 48.4 ± 16 ms (P = .0034); (2) the RMSSD from 45.8 ± 22 ms to 41.2 ± 19 ms (P = .0128); (3) the pNN50 from 25.5 ± 19 to 22.0 ± 18 (P = .0211); and (4) the LF (ms2) from 954.8 ± 457 ms2 to 686.2 ± 491 ms2 (P = .0024). In the oral contraceptive group, no significant changes occurred for the HRV indices during exposure to music. Musical auditory stimulation had a greater influence on cardiac autonomic regulation in women who did not use oral contraceptives.

  18. Calculation of left ventricular volumes and ejection fraction from dynamic cardiac-gated 15O-water PET/CT: 5D-PET.

    PubMed

    Nordström, Jonny; Kero, Tanja; Harms, Hendrik Johannes; Widström, Charles; Flachskampf, Frank A; Sörensen, Jens; Lubberink, Mark

    2017-11-14

    Quantitative measurement of myocardial blood flow (MBF) is of increasing interest in the clinical assessment of patients with suspected coronary artery disease (CAD). 15 O-water positron emission tomography (PET) is considered the gold standard for non-invasive MBF measurements. However, calculation of left ventricular (LV) volumes and ejection fraction (EF) is not possible from standard 15 O-water uptake images. The purpose of the present work was to investigate the possibility of calculating LV volumes and LVEF from cardiac-gated parametric blood volume (V B ) 15 O-water images and from first pass (FP) images. Sixteen patients with mitral or aortic regurgitation underwent an eight-gate dynamic cardiac-gated 15 O-water PET/CT scan and cardiac MRI. V B and FP images were generated for each gate. Calculations of end-systolic volume (ESV), end-diastolic volume (EDV), stroke volume (SV) and LVEF were performed with automatic segmentation of V B and FP images, using commercially available software. LV volumes and LVEF were calculated with surface-, count-, and volume-based methods, and the results were compared with gold standard MRI. Using V B images, high correlations between PET and MRI ESV (r = 0.89, p < 0.001), EDV (r = 0.85, p < 0.001), SV (r = 0.74, p = 0.006) and LVEF (r = 0.72, p = 0.008) were found for the volume-based method. Correlations for FP images were slightly, but not significantly, lower than those for V B images when compared to MRI. Surface- and count-based methods showed no significant difference compared with the volume-based correlations with MRI. The volume-based method showed the best agreement with MRI with no significant difference on average for EDV and LVEF but with an overestimation of values for ESV (14%, p = 0.005) and SV (18%, p = 0.004) when using V B images. Using FP images, none of the parameters showed a significant difference from MRI. Inter-operator repeatability was excellent for all parameters (ICC > 0.86, p < 0.001). Calculation of LV volumes and LVEF from dynamic 15 O-water PET is feasible and shows good correlation with MRI. However, the analysis method is laborious, and future work is needed for more automation to make the method more easily applicable in a clinical setting.

  19. Polymer microfiber meshes facilitate cardiac differentiation of c-kit{sup +} human cardiac stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Lijuan; Thayer, Patrick; Fan, Huimin

    Electrospun microfiber meshes have been shown to support the proliferation and differentiation of many types of stem cells, but the phenotypic fate of c-kit{sup +} human cardiac stem cells (hCSCs) have not been explored. To this end, we utilized thin (~5 µm) elastomeric meshes consisting of aligned 1.7 µm diameter poly (ester-urethane urea) microfibers as substrates to examine their effect on hCSC viability, morphology, proliferation, and differentiation relative to cells cultured on tissue culture polystyrene (TCPS). The results showed that cells on microfiber meshes displayed an elongated morphology aligned in the direction of fiber orientation, lower proliferation rates, but increasedmore » expressions of genes and proteins majorly associated with cardiomyocyte phenotype. The early (NK2 homeobox 5, Nkx2.5) and late (cardiac troponin I, cTnI) cardiomyocyte genes were significantly increased on meshes (Nkx=2.5 56.2±13.0, cTnl=2.9±0.56,) over TCPS (Nkx2.5=4.2±0.9, cTnl=1.6±0.5, n=9, p<0.05 for both groups) after differentiation. In contrast, expressions of smooth muscle markers, Gata6 and myosin heavy chain (SM-MHC), were decreased on meshes. Immunocytochemical analysis with cardiac antibody exhibited the similar pattern of above cardiac differentiation. We conclude that aligned microfiber meshes are suitable for guiding cardiac differentiation of hCSCs and may facilitate stem cell-based therapies for treatment of cardiac diseases. - Highlights: • First study to characterize c-kit{sup +} human cardiac stem cells on microfiber meshes. • Microfiber meshes seem reducing cell proliferation, but no effect on cell viability. • Microfiber meshes facilitate the elongation of human cardiac stem cells in culture. • Cardiac but not smooth muscle differentiation were enhanced on microfiber meshes. • Microfiber meshes may be used as cardiac patches in cell-based cardiac therapy.« less

  20. Relationship between cardiac function and resting cerebral blood flow: MRI measurements in healthy elderly subjects.

    PubMed

    Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja; Larsson, Henrik B W; Rostrup, Egill

    2014-11-01

    Although both impaired cardiac function and reduced cerebral blood flow are associated with ageing, current knowledge of the influence of cardiac function on resting cerebral blood flow (CBF) is limited. The aim of this study was to investigate the potential effects of cardiac function on CBF. CBF and cardiac output were measured in 31 healthy subjects 50-75 years old using magnetic resonance imaging techniques. Mean values of CBF, cardiac output and cardiac index were 43.6 ml per 100 g min(-1), 5.5 l min(-1) and 2.7 l min(-1) m(-2), respectively, in males, and 53.4 ml per 100 g min(-1), 4.3 l min(-1) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P = 0.008) and furthermore lower in males than in females (8.6% versus 12.5%, P = 0.003). Fractional brain flow was also inversely correlated with cerebral white matter lesion grade, although this effect was not significant when adjusted for age. Frequency analysis of heart rate variability showed a gender-related inverse association of increased low-to-high-frequency power ratio with CBF and fractional brain flow. The findings do not support a direct effect of cardiac function on CBF, but demonstrates gender-related differences in cardiac output distribution. We propose fractional brain flow as a novel index that may be a useful marker of adequate brain perfusion in the context of ageing as well as cardiovascular disease. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

Top