Science.gov

Sample records for cardiac autonomic nerve

  1. Gross anatomical study on the human myocardial bridges with special reference to the spatial relationship among coronary arteries, cardiac veins, and autonomic nerves.

    PubMed

    Watanabe, Yuko; Arakawa, Takamitsu; Kageyama, Ikuo; Aizawa, Yukio; Kumaki, Katsuji; Miki, Akinori; Terashima, Toshio

    2016-04-01

    Coronary arteries are frequently covered by cardiac muscles. This arrangement is termed a myocardial bridge. Previous studies have shown that myocardial bridges can cause myocardial ischemic diseases or cardiac arrhythmia, but the relevant pathogenic mechanisms remain unknown. We examined 60 hearts from Japanese cadavers macroscopically to clarify the spatial relationships among coronary arteries, cardiac veins and autonomic nerves. We found 86 myocardial bridges in 47 hearts from the 60 cadavers examined (78.3%). Next, we dissected out nine hearts with myocardial bridges in detail under the operating microscope. We found no additional branches of coronary arteries on the myocardial bridge surfaces. However, the cardiac veins, which usually accompany the coronary arteries, ran independently on the myocardial bridge surfaces in the same region. Cardiac autonomic nerves comprised two rami: one was associated with the coronary artery under the myocardial bridge and the other ran on the surface of the bridge. Such spatial relationships among the coronary arteries, cardiac veins and cardiac autonomic nerves at the myocardial bridges are quite similar to those in mouse embryo hearts.

  2. Oxidative stress predicts progression of peripheral and cardiac autonomic nerve dysfunction over 6 years in diabetic patients.

    PubMed

    Ziegler, Dan; Buchholz, Stefanie; Sohr, Christoph; Nourooz-Zadeh, Jaffar; Roden, Michael

    2015-02-01

    Oxidative stress is implicated in the pathogenesis of experimental diabetic neuropathy, but prospective studies in diabetic patients are lacking. We aimed to evaluate whether the plasma levels of various biomarkers of oxidative stress predict the progression of diabetic neuropathy and mortality over 6 years. We followed 89 diabetic patients aged 54 ± 14 years (59 % with polyneuropathy), 72 of whom underwent nerve function reassessment after 6.2 ± 0.8 years, whereas 17 died after 4.2 ± 1.0 years. Plasma markers of oxidative stress at baseline included superoxide anion, hypochlorous acid, peroxynitrite, 8-iso-prostaglandin F2α, vitamin E/lipid ratio, and vitamin C. Neuropathy was assessed by symptoms and deficits, motor and sensory nerve conduction velocity (MNCV, SNCV), vibration perception thresholds (VPT), thermal detection thresholds, and heart rate variability (HRV). Despite a reduction in HbA1c by 1.4 ± 1.6 % (p < 0.001), median SNCV, sural SNCV, peroneal MNCV, malleolar VPT, and warm TDT deteriorated after 6 years (all p < 0.05). In multivariate models, increased superoxide generation was associated with a decline in median SNCV (β = -0.997; p = 0.036) and deterioration in HRV at rest (OR 1.63 [95 % CI 1.09-2.44]; p = 0.017) over 6 years. Low vitamin E/lipid ratio tended to predict a decrease in peroneal MNCV (β = 0.781; p = 0.057) and an increase in malleolar VPT (β = -0.725; p = 0.077). Plasma superoxide generation was associated with an increased risk of mortality (HR 23.2 [95 % CI 1.05-513]; p = 0.047). In conclusion, increased plasma superoxide generation predicted the decline in sensory and cardiac autonomic nerve function and mortality over 6 years in diabetic patients, but larger studies are required for confirmation.

  3. Effects of carvedilol on cardiac autonomic nerve activities during sinus rhythm and atrial fibrillation in ambulatory dogs

    PubMed Central

    Choi, Eue-Keun; Shen, Mark J.; Lin, Shien-Fong; Chen, Peng-Sheng; Oh, Seil

    2014-01-01

    Aims We hypothesized that carvedilol can effectively suppress autonomic nerve activity (ANA) in ambulatory dogs during sinus rhythm and atrial fibrillation (AF), and that carvedilol withdrawal can lead to rebound elevation of ANA. Carvedilol is known to block pre-junctional β2-adrenoceptor responsible for norepinephrine release. Methods and results We implanted radiotransmitters to record stellate ganglion nerve activity (SGNA), vagal nerve activity (VNA), and superior left ganglionated plexi nerve activity (SLGPNA) in 12 ambulatory dogs. Carvedilol (12.5 mg orally twice a day) was given for 7 days during sinus rhythm (n = 8). Four of the eight dogs and an additional four dogs were paced into persistent AF. Carvedilol reduced heart rate [from 103 b.p.m. (95% confidence interval (CI), 100–105) to 100 b.p.m. (95% CI, 98–102), P = 0.044], suppressed integrated nerve activities (Int-NAs, SGNA by 17%, VNA by 19%, and SLGPNA by 12%; all P < 0.05 vs. the baseline), and significantly reduced the incidence (from 8 ± 6 to 3 ± 3 episodes/day, P < 0.05) and total duration (from 68 ± 64 to 16 ± 21 s/day, P < 0.05) of paroxysmal atrial tachycardia (PAT). Following the development of persistent AF, carvedilol loading was associated with AF termination in three dogs. In the remaining five dogs, Int-NAs were not significantly suppressed by carvedilol, but SGNA significantly increased by 16% after carvedilol withdrawal (P < 0.001). Conclusion Carvedilol suppresses ANA and PAT in ambulatory dogs during sinus rhythm. PMID:24469435

  4. Sensitivity Analysis of Vagus Nerve Stimulation Parameters on Acute Cardiac Autonomic Responses: Chronotropic, Inotropic and Dromotropic Effects

    PubMed Central

    Ojeda, David; Le Rolle, Virginie; Romero-Ugalde, Hector M.; Gallet, Clément; Bonnet, Jean-Luc; Henry, Christine; Bel, Alain; Mabo, Philippe; Carrault, Guy; Hernández, Alfredo I.

    2016-01-01

    Although the therapeutic effects of Vagus Nerve Stimulation (VNS) have been recognized in pre-clinical and pilot clinical studies, the effect of different stimulation configurations on the cardiovascular response is still an open question, especially in the case of VNS delivered synchronously with cardiac activity. In this paper, we propose a formal mathematical methodology to analyze the acute cardiac response to different VNS configurations, jointly considering the chronotropic, dromotropic and inotropic cardiac effects. A latin hypercube sampling method was chosen to design a uniform experimental plan, composed of 75 different VNS configurations, with different values for the main parameters (current amplitude, number of delivered pulses, pulse width, interpulse period and the delay between the detected cardiac event and VNS onset). These VNS configurations were applied to 6 healthy, anesthetized sheep, while acquiring the associated cardiovascular response. Unobserved VNS configurations were estimated using a Gaussian process regression (GPR) model. In order to quantitatively analyze the effect of each parameter and their combinations on the cardiac response, the Sobol sensitivity method was applied to the obtained GPR model and inter-individual sensitivity markers were estimated using a bootstrap approach. Results highlight the dominant effect of pulse current, pulse width and number of pulses, which explain respectively 49.4%, 19.7% and 6.0% of the mean global cardiovascular variability provoked by VNS. More interestingly, results also quantify the effect of the interactions between VNS parameters. In particular, the interactions between current and pulse width provoke higher cardiac effects than the changes on the number of pulses alone (between 6 and 25% of the variability). Although the sensitivity of individual VNS parameters seems similar for chronotropic, dromotropic and inotropic responses, the interacting effects of VNS parameters provoke

  5. Morphologic Changes in Autonomic Nerves in Diabetic Autonomic Neuropathy

    PubMed Central

    Jin, Heung Yong; Baek, Hong Sun

    2015-01-01

    Diabetic neuropathy is one of the major complications of diabetes, and it increases morbidity and mortality in patients with both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Because the autonomic nervous system, for example, parasympathetic axons, has a diffuse and wide distribution, we do not know the morphological changes that occur in autonomic neural control and their exact mechanisms in diabetic patients with diabetic autonomic neuropathy (DAN). Although the prevalence of sympathetic and parasympathetic neuropathy is similar in T1DM versus T2DM patients, sympathetic nerve function correlates with parasympathetic neuropathy only in T1DM patients. The explanation for these discrepancies might be that parasympathetic nerve function was more severely affected among T2DM patients. As parasympathetic nerve damage seems to be more advanced than sympathetic nerve damage, it might be that parasympathetic neuropathy precedes sympathetic neuropathy in T2DM, which was Ewing's concept. This could be explained by the intrinsic morphologic difference. Therefore, the morphological changes in the sympathetic and parasympathetic nerves of involved organs in T1DM and T2DM patients who have DAN should be evaluated. In this review, evaluation methods for morphological changes in the epidermal nerves of skin, and the intrinsic nerves of the stomach will be discussed. PMID:26706915

  6. Morphologic Changes in Autonomic Nerves in Diabetic Autonomic Neuropathy.

    PubMed

    Jin, Heung Yong; Baek, Hong Sun; Park, Tae Sun

    2015-12-01

    Diabetic neuropathy is one of the major complications of diabetes, and it increases morbidity and mortality in patients with both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Because the autonomic nervous system, for example, parasympathetic axons, has a diffuse and wide distribution, we do not know the morphological changes that occur in autonomic neural control and their exact mechanisms in diabetic patients with diabetic autonomic neuropathy (DAN). Although the prevalence of sympathetic and parasympathetic neuropathy is similar in T1DM versus T2DM patients, sympathetic nerve function correlates with parasympathetic neuropathy only in T1DM patients. The explanation for these discrepancies might be that parasympathetic nerve function was more severely affected among T2DM patients. As parasympathetic nerve damage seems to be more advanced than sympathetic nerve damage, it might be that parasympathetic neuropathy precedes sympathetic neuropathy in T2DM, which was Ewing's concept. This could be explained by the intrinsic morphologic difference. Therefore, the morphological changes in the sympathetic and parasympathetic nerves of involved organs in T1DM and T2DM patients who have DAN should be evaluated. In this review, evaluation methods for morphological changes in the epidermal nerves of skin, and the intrinsic nerves of the stomach will be discussed. PMID:26706915

  7. Autonomic nerve preserving total mesorectal excision.

    PubMed

    Havenga, Klaas; Enker, Warren E

    2002-10-01

    The main objectives of surgery for rectal cancer are cure and the prevention of local or pelvic recurrence. Preservation of pelvic autonomic functions are important associated goals that have influenced the design of the operation. These changes began with modifications to the art of lateral pelvic lymphadenectomy, and with the introduction of sharp pelvic dissection along anatomical pelvic fascial planes for rectal cancer in the mid-1970s. These changes evolved to include deliberate autonomic nerve preservation as a part of the operation that was ultimately reported as TME with ANP [1]. While it is a small nuance. dissection was generally directed to the widest possible pelvic margin--medial to the autonomic nerves, as opposed to just peripheral to the mesorectum. Both sexual and urinary functions are complex. and patients undergoing surgery for rectal cancer may have differing baseline levels of function. Pre-existing benign prostatic hypertrophy or stress incontinence are common physical conditions. Patients bring personal or cultural attitudes to the subject of sexual function with advancing years. in a population with a median age in the mid-sixties. Other health issues such as coronary artery or peripheral vascular atherosclerotic disease, diabetes mellitus. smoking or alcohol intake, or the use of medications to treat these conditions, may influence sexual function. Radiation therapy, frequently used in conjunction with chemotherapy in the treatment of rectal cancer, may be associated with its own incidence of impotence caused via a different mechanism. While radiation may affect the vasa nervosa of the autonomic nerves, leading to fibrosis and dysfunction. radiation therapy may also be associated with smooth muscle fibrosis, causing vasculogenic impotence due to penile outflow dysfunction in the corpora cavernosa. The causes of impotence after surgery alone or after surgery. radiation, and chemotherapy for rectal cancer are complex, and not all answers to

  8. Cardiac autonomic control in individuals with Down syndrome.

    PubMed

    Goulopoulou, Styliani; Baynard, Tracy; Collier, Scott; Giannopoulou, Ifigenia; Figueroa, Arturo; Beets, Michael; Pitetti, Kenneth; Fernhall, Bo

    2006-01-01

    Our goal in this study was to compare cardiac autonomic control at rest between 50 individuals with Down syndrome and 24 control participants without disabilities. Resting autonomic function was assessed using analysis of heart rate variability. Participants with Down syndrome had reduced total heart rate variability, which indicates possible autonomic dysfunction in this population. Their VO2 peak and BMI were not significantly correlated with resting cardiac autonomic control. This may suggest that fitness level and obesity differentially affect cardiac autonomic control in persons with Down syndrome compared to their healthy, nondisabled peers.

  9. Measuring Cardiac Autonomic Nervous System (ANS) Activity in Children

    PubMed Central

    van Eijsden, Manon; Gemke, Reinoud J. B. J.; Vrijkotte, Tanja G. M.; de Geus, Eco J.

    2013-01-01

    The autonomic nervous system (ANS) controls mainly automatic bodily functions that are engaged in homeostasis, like heart rate, digestion, respiratory rate, salivation, perspiration and renal function. The ANS has two main branches: the sympathetic nervous system, preparing the human body for action in times of danger and stress, and the parasympathetic nervous system, which regulates the resting state of the body. ANS activity can be measured invasively, for instance by radiotracer techniques or microelectrode recording from superficial nerves, or it can be measured non-invasively by using changes in an organ's response as a proxy for changes in ANS activity, for instance of the sweat glands or the heart. Invasive measurements have the highest validity but are very poorly feasible in large scale samples where non-invasive measures are the preferred approach. Autonomic effects on the heart can be reliably quantified by the recording of the electrocardiogram (ECG) in combination with the impedance cardiogram (ICG), which reflects the changes in thorax impedance in response to respiration and the ejection of blood from the ventricle into the aorta. From the respiration and ECG signals, respiratory sinus arrhythmia can be extracted as a measure of cardiac parasympathetic control. From the ECG and the left ventricular ejection signals, the preejection period can be extracted as a measure of cardiac sympathetic control. ECG and ICG recording is mostly done in laboratory settings. However, having the subjects report to a laboratory greatly reduces ecological validity, is not always doable in large scale epidemiological studies, and can be intimidating for young children. An ambulatory device for ECG and ICG simultaneously resolves these three problems. Here, we present a study design for a minimally invasive and rapid assessment of cardiac autonomic control in children, using a validated ambulatory device 1-5, the VU University Ambulatory Monitoring System (VU

  10. Cardiac autonomic dysfunction in anabolic steroid users.

    PubMed

    Maior, A S; Carvalho, A R; Marques-Neto, S R; Menezes, P; Soares, P P; Nascimento, J H M

    2013-10-01

    This study aimed to evaluate if androgenic-anabolic steroids (AAS) abuse may induce cardiac autonomic dysfunction in recreational trained subjects. Twenty-two men were volunteered for the study. The AAS group (n = 11) utilized AAS at mean dosage of 410 ± 78.6 mg/week. All of them were submitted to submaximal exercise testing using an Astrand-Rhyming protocol. Electrocardiogram (ECG) and respired gas analysis were monitored at rest, during, and post-effort. Mean values of VO2 , VCO2 , and VE were higher in AAS group only at rest. The heart rate variability variables were calculated from ECG using MATLAB-based algorithms. At rest, AAS group showed lower values of the standard deviation of R-R intervals, the proportion of adjacent R-R intervals differing by more than 50 ms (pNN50), the root mean square of successive differences (RMSSD), and the total, the low-frequency (LF) and the high-frequency (HF) spectral power, as compared to Control group. After submaximal exercise testing, pNN50, RMSSD, and HF were lower, and the LF/HF ratio was higher in AAS group when compared to control group. Thus, the use of supraphysiological doses of AAS seems to induce dysfunction in tonic cardiac autonomic regulation in recreational trained subjects.

  11. Real-Time Assessment of Autonomic Nerve Activity During Adaptive Servo-Ventilation Support or Waon Therapy.

    PubMed

    Imamura, Teruhiko; Kinugawa, Koichiro; Nitta, Daisuke; Komuro, Issei

    2016-07-27

    Adaptive servo-ventilation support and Waon therapy are recently developed non-pharmacological and noninvasive therapies for patients with heart failure refractory to guideline-directed medical therapy. These therapies decrease both preload and afterload, increase cardiac output, and appear to ameliorate autonomic nerve activity. However, the time course of autonomic nerve activity during these therapies remains unclear. We performed heart rate variability analysis using the MemCalc power spectral density method (MemCalc system; Suwa Trust Co, Tokyo) to assess autonomic nerve activity during adaptive servo-ventilation support and Waon therapy in two different cases and determined the time course of autonomic nerve activity during these therapies. During both therapies, we found a drastic increase in parasympathetic nerve activity and continuous suppression of sympathetic nerve activity. Heart rate variability analysis using the MemCalc method may be promising for the assessment of the efficacy of various treatments, including adaptive servo-ventilation support and Waon therapy, from the viewpoint of autonomic nerve activity. PMID:27385607

  12. Cardiac autonomic function in healthy young smokers.

    PubMed

    Erdem, Alim; Ayhan, Suzi Selim; Öztürk, Serkan; Özlü, Mehmet Fatih; Alcelik, Aytekin; Sahin, Safak; Tosun, Mehmet; Erdem, Fatma Hizal; Gumustekin, Kenan; Yazici, Mehmet

    2015-01-01

    The present study examined the heart rate turbulence (HRT) and heart rate variability (HRV) parameters in healthy young smokers (<40 years) to assess the effects of smoking on cardiac autonomic function. The study included 75 smokers with a history of habitual smoking for at least 1 year (41 males and 34 females; mean age, 29.3 ± 7.3 years) and 30 nonsmokers (hospital staff; 16 males and 14 females; mean age, 29.0 ± 6.1 years). Addiction to smoking was evaluated using the modified Fagerström test for nicotine-dependence index (NDI). HRT, HRV, basic clinical and echocardiographic, and Holter test parameters were compared between groups. No significant differences between the two groups were found in the basic clinical and echocardiographic variables. Turbulence onset (TO) was significantly higher in the smoking group than in the controls, and turbulence slope was significantly lower in the smokers, than in the controls (p < 0.05). Standard deviation of all normal-to-normal (NN) interval index (SDNNI) was the only HRV parameter that was significantly different between the smoking and control groups (p < 0.05). The NDI was positively correlated with the TO (p < 0.05). Smoking impairs the baroregulatory function in healthy young smokers, particularly the HRT parameters and SDNNI. Our findings highlight the importance of complete smoking cessation.

  13. Cardiac Autonomic Control in Individuals With Down Syndrome

    ERIC Educational Resources Information Center

    Goulopoulou, Styliani; Baynard, Tracy; Collier, Scott; Giannopoulou, Ifigenia; Figueroa, Arturo; Beets, Michael; Pitetti, Kenneth; Fernhall, Bo

    2006-01-01

    Our goal in this study was to compare cardiac autonomic control at rest between 50 individuals with Down syndrome and 24 control participants without disabilities. Resting autonomic function was assessed using analysis of heart rate variability. Participants with Down syndrome had reduced total heart rate variability, which indicates possible…

  14. Extrinsic cardiac nerve segments in the domestic dog (Canis familiaris- Linnaeus, 1758). Comparative study in young and adult dogs.

    PubMed

    Brugnaro, M; De Souza, R R; Ribeiro, A A C M

    2003-08-01

    In this paper, important connections between the two main contingents of the autonomic nervous system, intrinsic and extrinsic visceral plexus were analysed. Concerning heart innervation, the territories of extrinsic innervation are very important in the treatment of congenital or acquired cardiopathy, thoracic neoplasia and aortic arch persistence, among others. This research compared young and adult extrinsic cardiac innervation and described the surgical anatomic nerve segments. Animals were perfused with a 10% formaldehyde solution in PBS (0.1 m) (pH 7.4) and submitted to macro- and meso-scopic dissection immersed in 60% acetic acid alcoholic solution and 20% hydrogen peroxide aqueous solution. The nerve segments were assigned as: right vagus nerve segment, left vagus nerve segment, right middle cervical ganglion segment, left middle cervical ganglion segment, right caudal laryngeal nerve segment, left caudal laryngeal nerve segment, right phrenic nerve segment and left phrenic nerve segment.

  15. Role of the autonomic nervous system in modulating cardiac arrhythmias.

    PubMed

    Shen, Mark J; Zipes, Douglas P

    2014-03-14

    The autonomic nervous system plays an important role in the modulation of cardiac electrophysiology and arrhythmogenesis. Decades of research has contributed to a better understanding of the anatomy and physiology of cardiac autonomic nervous system and provided evidence supporting the relationship of autonomic tone to clinically significant arrhythmias. The mechanisms by which autonomic activation is arrhythmogenic or antiarrhythmic are complex and different for specific arrhythmias. In atrial fibrillation, simultaneous sympathetic and parasympathetic activations are the most common trigger. In contrast, in ventricular fibrillation in the setting of cardiac ischemia, sympathetic activation is proarrhythmic, whereas parasympathetic activation is antiarrhythmic. In inherited arrhythmia syndromes, sympathetic stimulation precipitates ventricular tachyarrhythmias and sudden cardiac death except in Brugada and J-wave syndromes where it can prevent them. The identification of specific autonomic triggers in different arrhythmias has brought the idea of modulating autonomic activities for both preventing and treating these arrhythmias. This has been achieved by either neural ablation or stimulation. Neural modulation as a treatment for arrhythmias has been well established in certain diseases, such as long QT syndrome. However, in most other arrhythmia diseases, it is still an emerging modality and under investigation. Recent preliminary trials have yielded encouraging results. Further larger-scale clinical studies are necessary before widespread application can be recommended.

  16. Association between central auditory processing mechanism and cardiac autonomic regulation

    PubMed Central

    2014-01-01

    Background This study was conducted to describe the association between central auditory processing mechanism and the cardiac autonomic regulation. Methods It was researched papers on the topic addressed in this study considering the following data bases: Medline, Pubmed, Lilacs, Scopus and Cochrane. The key words were: “auditory stimulation, heart rate, autonomic nervous system and P300”. Results The findings in the literature demonstrated that auditory stimulation influences the autonomic nervous system and has been used in conjunction with other methods. It is considered a promising step in the investigation of therapeutic procedures for rehabilitation and quality of life of several pathologies. Conclusion The association between auditory stimulation and the level of the cardiac autonomic nervous system has received significant contributions in relation to musical stimuli. PMID:24834128

  17. [Cardiac autonomic neuropathy. Current realities and future outlook].

    PubMed

    Bauduceau, B; Chanudet, X; Mayaudon, H; Chau, N P; Gaillard, J F; Larroque, P; Gautier, D

    1994-01-01

    Cardiac autonomic neuropathy frequently affects Type 1 and Type 2 diabetic patients. This disease is distinguished by visible clinical consequences which can be tragic. It can also worsen a number of degenerative complications. Therefore, cardiac autonomic neuropathy seems to play a deciding role in silent ischaemia and in dysregulations of blood pressure. Clinical explorations continue to be based on the tests validated by Ewing, but the development of simple and reliable techniques seems to be an objective the interest of which cannot escape any clinician.

  18. Infarction-induced cytokines cause local depletion of tyrosine hydroxylase in cardiac sympathetic nerves

    PubMed Central

    Parrish, Diana C.; Alston, Eric N.; Rohrer, Hermann; Nkadi, Paul; Woodward, William R.; Schütz, Günther; Habecker, Beth A.

    2010-01-01

    Myocardial infarction causes heterogeneity of noradrenergic transmission that contributes to the development of ventricular arrhythmias and sudden cardiac death. Ischemia-induced alterations in sympathetic transmission include regional variations in cardiac norepinephrine (NE) and in tyrosine hydroxylase, the rate-limiting enzyme in NE synthesis. Inflammatory cytokines that act through gp130 are elevated in the heart after myocardial infarction. These cytokines decrease expression of tyrosine hydroxylase in sympathetic neurons, and indirect evidence suggests they contribute to the local depletion of tyrosine hydroxylase in the damaged left ventricle. However, gp130 cytokines are also important for the survival of cardiac myocytes following damage to the heart. To examine the effect of cytokines on tyrosine hydroxylase and NE content in cardiac nerves we used gp130DBH-Cre/lox mice, which have a deletion of the gp130 receptor in neurons expressing dopamine beta hydroxylase. The absence of neuronal gp130 prevented the loss of tyrosine hydroxylase in cardiac sympathetic nerves innervating the left ventricle one week after ischemia-reperfusion. Surprisingly, restoring tyrosine hydroxylase in the damaged ventricle did not return neuronal NE content to normal levels. NE uptake into cardiac nerves was significantly lower in gp130 KO mice, contributing to the lack of neuronal NE stores. There were no significant differences in left ventricular peak systolic pressure, dP/dtMAX, or dP/dtMIN between the two genotypes after myocardial infarction, but ganglionic blockade revealed differences in autonomic tone between the genotypes. Stimulating the heart with dobutamine or releasing endogenous NE with tyramine generated similar responses in both genotypes. Thus, the removal of gp130 from sympathetic neurons prevents the post-infarct depletion of TH in the left ventricle, but does not alter NE content or cardiac function. PMID:19880537

  19. (Non-invasive evaluation of the cardiac autonomic nervous system by PET)

    SciTech Connect

    Not Available

    1992-01-01

    The proposed research addresses the development, validation and application of cardiac PET imaging techniques to characterize the autonomic nervous system of the heart. PET technology has significantly matured over the last two decades. Instrument design, image processing and production of radiochemical compounds have formed an integrative approach to provide a powerful and novel imaging modality for the quantitative in vivo evaluation of the autonomic nervous system of the heart. Animal studies using novel tracers for the sympathetic and parasympathetic nerve terminals will be employed to characterize the functional integrity of nerve terminals. This work will be complemented by the development of agents which bind to postsynaptic receptor sites. The combined evaluation of presynaptic and postsynaptic neuronal function will allow a unique characterization of neuronal function. Initial development in animal studies will be followed by feasibility studies in humans. These studies are designed to test sophisticated imaging protocols in the human heart and validate the scintigraphic findings with independent markers of autonomic innervation. Subsequent clinical application in various cardiac diseases is expected to provide new insights into the neuropathophysiology of the heart.

  20. Usefulness of Cardiac Sympathetic Nerve Imaging Using (123)Iodine-Metaiodobenzylguanidine Scintigraphy for Predicting Sudden Cardiac Death in Patients With Heart Failure.

    PubMed

    Kasama, Shu; Toyama, Takuji; Kurabayashi, Masahiko

    2016-01-01

    The autonomic nervous system plays an important role in the human heart. Activation of the cardiac sympathetic nervous system is a cardinal pathophysiological abnormality associated with the failing human heart. Myocardial imaging using (123)I-metaiodobenzylguanidine (MIBG), an analog of norepinephrine, can be used to investigate the activity of norepinephrine, the predominant neurotransmitter of the sympathetic nervous system. Many clinical trials have demonstrated that (123)I-MIBG scintigraphic parameters predict cardiac adverse events, especially sudden cardiac death, in patients with heart failure. In this review, we summarize results from published studies that have focused on the use of cardiac sympathetic nerve imaging using (123)I-MIBG scintigraphy for risk stratification of sudden cardiac death in patients with heart failure.

  1. Sleep Disordered Breathing and Cardiac Autonomic Modulation in Children

    PubMed Central

    Liao, Duanping; Li, Xian; Rodriguez-Colon, Sol M.; Liu, Jiahao; Vgontzas, Alexandros N.; Calhoun, Susan; Bixler, Edward O.

    2010-01-01

    Objectives To investigate the adverse cardiac autonomic effects of sleep-disordered breathing (SDB) in a large population-based sample and a clinical sample of children. Methods Subjects were based a population-based sample of 700 and a clinically diagnosed sample of 43 SDB children. SDB was defined based on the Apnea Hyponea Index (AHI) hour over one night of polysomnography. Cardiac autonomic modulation was measured by heart rate variability (HRV) analysis of the beat-to-beat RR interval data collected during the polysomnography. Results The mean (SD) age was 112 (21) months, with 49% male and 25% non-white. 73.0% had AHI < 1 (No SDB), 25.8% had 1–5 AHI (Mild SDB), and 1.2% had ≥ 5 AHI (Moderate SDB). Among individuals with moderate SDB in the population-based sample and the clinically diagnosed SDB patients, the mean (SE) of HRV-high frequency power (HF) were significantly lower compared to children without SDB [6.00 (0.32) and 6.24 (0.14), respectively, vs. 6.68 (0.04) ms2, p < 0.05 and p < 0.01, respectively], whereas the low frequency power to high frequency power ratio (LF/HF) were significantly higher [1.62 (0.20) and 1.74 (0.09), respectively, vs. 0.99 (0.02), both p < 0.01)]. Conclusions SDB in healthy young children and in clinical patients is significantly associated with impaired cardiac autonomic modulation, i.e., sympathetic overflow and weaker parasympathetic modulation, which may contribute to increased risk of acute cardiac events in persons with SDB, even before reaching the “high risk age.” PMID:20362503

  2. Autonomic Nerve Regulation of Colonic Peristalsis in Guinea Pigs

    PubMed Central

    Gribovskaja-Rupp, Irena; Babygirija, Reji; Takahashi, Toku; Ludwig, Kirk

    2014-01-01

    Background/Aims Colonic peristalsis is mainly regulated via intrinsic neurons in guinea pigs. However, autonomic regulation of colonic motility is poorly understood. We explored a guinea pig model for the study of extrinsic nerve effects on the distal colon. Methods Guinea pigs were sacrificed, their distal colons isolated, preserving pelvic nerves (PN) and inferior mesenteric ganglia (IMG), and placed in a tissue bath. Fecal pellet propagation was conducted during PN and IMG stimulation at 10 Hz, 0.5 ms and 5 V. Distal colon was connected to a closed circuit system, and colonic motor responses were measured during PN and IMG stimulation. Results PN stimulation increased pellet velocity to 24.6 ± 0.7 mm/sec (n = 20), while IMG stimulation decreased it to 2.0 ± 0.2 mm/sec (n = 12), compared to controls (13.0 ± 0.7 mm/sec, P < 0.01). In closed circuit experiments, PN stimulation increased the intraluminal pressure, which was abolished by atropine (10−6 M) and hexamethonium (10−4 M). PN stimulation reduced the incidence of non-coordinated contractions induced by NG-nitro-L-arginine methyl ester (L-NAME; 10−4 M). IMG stimulation attenuated intraluminal pressure increase, which was partially reversed by alpha-2 adrenoceptor antagonist (yohimbine; 10−6 M). Conclusions PN and IMG input determine speed of pellet progression and peristaltic reflex of the guinea pig distal colon. The stimulatory effects of PN involve nicotinic, muscarinic and nitrergic pathways. The inhibitory effects of IMG stimulation involve alpha-2 adrenoceptors. PMID:24847719

  3. A novel quantitative method for diabetic cardiac autonomic neuropathy assessment in type 1 diabetic mice.

    PubMed

    Chon, Ki H; Yang, Bufan; Posada-Quintero, Hugo F; Siu, Kin L; Rolle, Marsha; Brink, Peter; Birzgalis, Aija; Moore, Leon C

    2014-11-01

    In this work, we used a sensitive and noninvasive computational method to assess diabetic cardiovascular autonomic neuropathy (DCAN) from pulse oximeter (photoplethysmographic; PPG) recordings from mice. The method, which could be easily applied to humans, is based on principal dynamic mode (PDM) analysis of heart rate variability (HRV). Unlike the power spectral density, PDM has been shown to be able to separately identify the activities of the parasympathetic and sympathetic nervous systems without pharmacological intervention. HRV parameters were measured by processing PPG signals from conscious 1.5- to 5-month-old C57/BL6 control mice and in Akita mice, a model of insulin-dependent type 1 diabetes, and compared with the gold-standard Western blot and immunohistochemical analyses. The PDM results indicate significant cardiac autonomic impairment in the diabetic mice in comparison to the controls. When tail-cuff PPG recordings were collected and analyzed starting from 1.5 months of age in both C57/Bl6 controls and Akita mice, onset of DCAN was seen at 3 months in the Akita mice, which persisted up to the termination of the recording at 5 months. Western blot and immunohistochemical analyses also showed a reduction in nerve density in Akita mice at 3 and 4 months as compared to the control mice, thus, corroborating our PDM data analysis of HRV records. Western blot analysis of autonomic nerve proteins corroborated the PPG-based HRV analysis via the PDM approach. In contrast, traditional HRV analysis (based on either the power spectral density or time-domain measures) failed to detect the nerve rarefaction.

  4. Evolutionary and comparative anatomical investigations of the autonomic cardiac nervous system in the African Cercopithecidae.

    PubMed

    Kawashima, Tomokazu; Akita, Keiichi; Sato, Kenji; Sasaki, Hiroshi

    2007-09-01

    The purpose of this study was to clarify the general architecture and morphological variations of the autonomic cardiac nervous system (ACNS) in the African Cercopithecidae (Old World monkeys), and to discuss the evolutionary changes between this system in African/Asian Cercopithecidae and humans. A detailed macroscopic comparative morphological investigation of the ACNS was performed by examining the left and right sides of 11 African cercopithecid specimens, including some previously unreported species (Abyssinian colobus, Angola pied colobus, Savanna monkey, and lesser white-nosed guenon). The common characteristics of the ACNS in the African Cercopithecidae are described in detail. Consequently, homologies of the ACNS between Asian (macaques) and African Cercopithecidae, and differences between the Asian/African Cercopithecidae and humans, were found. In particular, differences in the sympathetic (cardiac) systems of the Cercopithecidae and humans were recognized, despite the similar morphology of the parasympathetic vagal (cardiac) system. These differences include the composition of the cervicothoracic ganglion, the lower positions of the middle cervical and cervicothoracic ganglia, and the narrow range for the origin of the cardiac nerves in the Cercopithecidae, compared with that in humans. In conclusion, these findings are considered with regard to the morphology of the last common ancestors of the Cercopithecidae. PMID:17591730

  5. Nitric oxide and the autonomic regulation of cardiac excitability. The G.L. Brown Prize Lecture.

    PubMed

    Paterson, D

    2001-01-01

    Cardiac sympathetic imbalance and arrhythmia; Nitric oxide-cGMP pathway and the cholinergic modulation of cardiac excitability; Nitric oxide-cGMP pathway and the sympathetic modulation of cardiac excitability; Functional significance of nitric oxide in the autonomic regulation of cardiac excitability; Summary; References. Experimental Physiology (2001) 86.1, 1-12.

  6. Nitric oxide and the autonomic regulation of cardiac excitability. The G.L. Brown Prize Lecture.

    PubMed

    Paterson, D

    2001-01-01

    Cardiac sympathetic imbalance and arrhythmia; Nitric oxide-cGMP pathway and the cholinergic modulation of cardiac excitability; Nitric oxide-cGMP pathway and the sympathetic modulation of cardiac excitability; Functional significance of nitric oxide in the autonomic regulation of cardiac excitability; Summary; References. Experimental Physiology (2001) 86.1, 1-12. PMID:11429613

  7. Systematic morphology and evolutionary anatomy of the autonomic cardiac nervous system in the lesser apes, gibbons (hylobatidae).

    PubMed

    Kawashima, Tomokazu; Thorington, Richard W; Kunimatsu, Yutaka; Whatton, James F

    2008-08-01

    We examined the morphology of the autonomic cardiac nervous system (ACNS) on 20 sides of 10 gibbons (Hylobatidae) of three genera, and we have inferred the evolution of the anatomy of the primate ACNS. We report the following. (1) Several trivial intraspecific and interspecific variations are present in gibbons, but the general arrangement of the ACNS in gibbons is consistent. (2) Although the parasympathetic vagal cardiac nervous system is extremely consistent, the sympathetic cardiac nervous system, such as the composition of the sympathetic ganglia and the range of origin of the sympathetic cardiac nerves, exhibit topographical differences among primates. (3) The vertebral ganglion, seldom observed in the Old World monkeys (Cercopithecidae), was consistently present in gibbons as well as in humans. (4) There are fewer thoracic ganglia contributing to the cervicothoracic ganglion in humans than in gibbons and in gibbons than in Old World monkeys. (5) The superior cardiac nerve originating from the superior cervical ganglion, rarely observed in Old World monkeys but commonly observed in humans, was present in 13 of 20 sides (65%), mostly on the left. Accordingly, the ACNS morphology exhibits evolutionary changes within the primate lineage. These evolutionary differences between Old World monkeys, gibbons, and humans are most parsimoniously interpreted as resulting from regular changes in the lineages leading from their common ancestor to the extant species that we dissected. They include the reduction in the number of thoracic ganglia contributing to the cervicothoracic ganglion and the expansion of the range of the cardiac nervous origin.

  8. Sex differences in cardiac autonomic regulation and in repolarisation electrocardiography.

    PubMed

    Smetana, Peter; Malik, Marek

    2013-05-01

    The review summarises the present knowledge on the sex differences in cardiac autonomic regulations and in related aspects of electrocardiography with particular attention to myocardial repolarisation. Although some of the sex differences are far from fully established, multitude of observations show consistent differences between women and men. Despite more pronounced parasympathetic cardiac regulation, women have higher resting heart rate and lower baroreflex sensitivity. Of the electrocardiographic phenomena, women have longer QT interval duration, repolarisation sequence more synchronised with the inverse of the depolarisation sequence, and likely increased regional heterogeneity of myocardial repolarisation. Studies investigating the relationship of these sex disparities to hormonal differences led frequently to conflicting results. Although sex hormones seem to play a key role by influencing both autonomic tone and electrophysiological properties at the cellular level, neither the truly relevant hormones nor their detailed actions are known. Physiologic usefulness of the described sex differences is also unknown. The review suggests that new studies are needed to advance the understanding of the physiologic mechanisms responsible for these inequalities between women and men and provides key methodological suggestions that need to be followed in future research.

  9. Hypertrophy of Neurons Within Cardiac Ganglia in Human, Canine, and Rat Heart Failure: The Potential Role of Nerve Growth Factor

    PubMed Central

    Singh, Sanjay; Sayers, Scott; Walter, James S.; Thomas, Donald; Dieter, Robert S.; Nee, Lisa M.; Wurster, Robert D.

    2013-01-01

    Background Autonomic imbalances including parasympathetic withdrawal and sympathetic overactivity are cardinal features of heart failure regardless of etiology; however, mechanisms underlying these imbalances remain unknown. Animal model studies of heart and visceral organ hypertrophy predict that nerve growth factor levels should be elevated in heart failure; whether this is so in human heart failure, though, remains unclear. We tested the hypotheses that neurons in cardiac ganglia are hypertrophied in human, canine, and rat heart failure and that nerve growth factor, which we hypothesize is elevated in the failing heart, contributes to this neuronal hypertrophy. Methods and Results Somal morphology of neurons from human (579.54±14.34 versus 327.45±9.17 μm2; P<0.01) and canine hearts (767.80±18.37 versus 650.23±9.84 μm2; P<0.01) failing secondary to ischemia and neurons from spontaneously hypertensive rat hearts (327.98±3.15 versus 271.29±2.79 μm2; P<0.01) failing secondary to hypertension reveal significant hypertrophy of neurons in cardiac ganglia compared with controls. Western blot analysis shows that nerve growth factor levels in the explanted, failing human heart are 250% greater than levels in healthy donor hearts. Neurons from cardiac ganglia cultured with nerve growth factor are significantly larger and have greater dendritic arborization than neurons in control cultures. Conclusions Hypertrophied neurons are significantly less excitable than smaller ones; thus, hypertrophy of vagal postganglionic neurons in cardiac ganglia would help to explain the parasympathetic withdrawal that accompanies heart failure. Furthermore, our observations suggest that nerve growth factor, which is elevated in the failing human heart, causes hypertrophy of neurons in cardiac ganglia. PMID:23959444

  10. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system.

    PubMed

    Sabharwal, Rasna; Chapleau, Mark W

    2014-04-01

    New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of

  11. Rat Whisker Movement after Facial Nerve Lesion: Evidence for Autonomic Contraction of Skeletal Muscle

    PubMed Central

    Heaton, James T.; Sheu, Shu-Hsien; Hohman, Marc H.; Knox, Christopher J.; Weinberg, Julie S.; Kleiss, Ingrid J.; Hadlock, Tessa A.

    2014-01-01

    Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic denervation was from autonomic, cholinergic axons traveling within the infraorbital branch of the trigeminal nerve (ION). Rats underwent unilateral facial nerve transection with repair (N=7) or resection without repair (N=11). Post-operative whisking amplitude was measured weekly across 10 weeks, and during intraoperative stimulation of the ION and facial nerves at ≥18 weeks. Whisking was also measured after subsequent ION transection (N=6) or pharmacologic blocking of the autonomic ganglia using hexamethonium (N=3), and after snout cooling intended to elicit a vasodilation reflex (N=3). Whisking recovered more quickly and with greater amplitude in rats that underwent facial nerve repair compared to resection (P<0.05), but individual rats overlapped in whisking amplitude across both groups. In the resected rats, non-facial-nerve mediated whisking was elicited by electrical stimulation of the ION, temporarily diminished following hexamethonium injection, abolished by transection of the ION, and rapidly and significantly (P<0.05) increased by snout cooling. Moreover, fibrillation-related whisker movements decreased in all rats during the initial recovery period (indicative of reinnervation), but re-appeared in the resected rats after undergoing ION transection (indicative of motor denervation). Cholinergic, parasympathetic axons traveling within the ION innervate whisker pad vasculature, and immunohistochemistry for vasoactive intestinal peptide revealed these axons branching extensively over whisker pad muscles and contacting neuromuscular junctions after facial nerve resection. This study provides the first behavioral and anatomical evidence of spontaneous autonomic innervation

  12. [Non-invasive evaluation of the cardiac autonomic nervous system by PET]. Progress report, September 1991--September 1992

    SciTech Connect

    Not Available

    1992-09-01

    The proposed research addresses the development, validation and application of cardiac PET imaging techniques to characterize the autonomic nervous system of the heart. PET technology has significantly matured over the last two decades. Instrument design, image processing and production of radiochemical compounds have formed an integrative approach to provide a powerful and novel imaging modality for the quantitative in vivo evaluation of the autonomic nervous system of the heart. Animal studies using novel tracers for the sympathetic and parasympathetic nerve terminals will be employed to characterize the functional integrity of nerve terminals. This work will be complemented by the development of agents which bind to postsynaptic receptor sites. The combined evaluation of presynaptic and postsynaptic neuronal function will allow a unique characterization of neuronal function. Initial development in animal studies will be followed by feasibility studies in humans. These studies are designed to test sophisticated imaging protocols in the human heart and validate the scintigraphic findings with independent markers of autonomic innervation. Subsequent clinical application in various cardiac diseases is expected to provide new insights into the neuropathophysiology of the heart.

  13. Cardiac autonomic dysfunction in obese normotensive children and adolescents

    PubMed Central

    Freitas, Isabelle Magalhães G.; Miranda, Josiane Aparecida; Mira, Pedro Augusto C.; Lanna, Carla Marcia M.; Lima, Jorge Roberto P.; Laterza, Mateus Camaroti

    2014-01-01

    OBJECTIVE: To test the hypothesis that obese normotensive children and adolescents present impaired cardiac autonomic control compared to non-obese normotensive ones. METHODS: For this cross-sectional study, 66 children and adolescents were divided into the following groups: Obese (n=31, 12±3 years old) and Non-Obese (n=35, 13±3 years old). Obesity was defined as body mass index greater than the 95th percentile for age and gender. Blood pressure was measured by oscillometric method after 15 minutes of rest in supine position. The heart rate was continuously registered during ten minutes in the supine position with spontaneous breathing. The cardiac autonomic control was assessed by heart rate variability, which was calculated from the five-minute minor variance of the signal. The derivations were the index that indicates the proportion of the number of times in which normal adjacent R-R intervals present differences >50 miliseconds (pNN50), for the time domain, and, for the spectral analysis, low (LF) and high frequency (HF) bands, besides the low and high frequencies ratio (LF/HF). The results were expressed as mean±standard deviation and compared by Student's t-test or Mann-Whitney's U-test. RESULTS: Systolic blood pressure (116±14 versus 114±13mmHg, p=0.693) and diastolic blood pressure (59±8 versus 60±11mmHg, p=0.458) were similar between the Obese and Non-Obese groups. The pNN50 index (29±21 versus 43±23, p=0.015) and HF band (54±20 versus 64±14 normalized units - n.u., p=0.023) were lower in the Obese Group. The LF band (46±20 versus 36±14 n.u., p=0.023) and LF/HF ratio (1.3±1.6 versus 0.7±0.4, p=0.044) were higher in Obese Group. CONCLUSIONS: Obese normotensive children and adolescents present impairment of cardiac autonomic control. PMID:25119757

  14. Regular Football Practice Improves Autonomic Cardiac Function in Male Children

    PubMed Central

    Fernandes, Luis; Oliveira, Jose; Soares-Miranda, Luisa; Rebelo, Antonio; Brito, Joao

    2015-01-01

    Background: The role of the autonomic nervous system (ANS) in the cardiovascular regulation is of primal importance. Since it has been associated with adverse conditions such as cardiac arrhythmias, sudden death, sleep disorders, hypertension and obesity. Objectives: The present study aimed to investigate the impact of recreational football practice on the autonomic cardiac function of male children, as measured by heart rate variability. Patients and Methods: Forty-seven male children aged 9 - 12 years were selected according to their engagement with football oriented practice outside school context. The children were divided into a football group (FG; n = 22) and a control group (CG; n = 25). The FG had regular football practices, with 2 weekly training sessions and occasional weekend matches. The CG was not engaged with any physical activity other than complementary school-based physical education classes. Data from physical activity, physical fitness, and heart rate variability measured in time and frequency domains were obtained. Results: The anthropometric and body composition characteristics were similar in both groups (P > 0.05). The groups were also similar in time spent daily on moderate-to-vigorous physical activities (FG vs. CG: 114 ± 64 vs. 87 ± 55 minutes; P > 0.05). However, the FG performed better (P < 0.05) in Yo-Yo intermittent endurance test (1394 ± 558 vs. 778 ± 408 m) and 15-m sprint test (3.06 ± 0.17 vs. 3.20 ± 0.23 s). Also, the FG presented enhanced autonomic function. Significant differences were detected (P < 0.05) between groups for low frequency normalized units (38.0 ± 15.2 vs. 47.3 ± 14.2 n.u (normalized units)), high frequency normalized units (62.1 ± 15.2 vs. 52.8 ± 14.2 n.u.), and LF:HF ratio (0.7 ± 0.4 vs. 1.1 ± 0.6 ms2). Conclusions: Children engaged with regular football practice presented enhanced physical fitness and autonomic function, by increasing vagal tone at rest. PMID:26448848

  15. Cardiac Autonomic Function in Patients With Ankylosing Spondylitis

    PubMed Central

    Wei, Cheng-Yu; Kung, Woon-Man; Chou, Yi-Sheng; Wang, Yao-Chin; Tai, Hsu-Chih; Wei, James Cheng-Chung

    2016-01-01

    Abstract Ankylosing spondylitis (AS) is a chronic inflammatory disease involing spine and enthesis. The primary aim of this study is to investigate the autonomic nervous system (ANS) function and the association between ANS and the functional status or disease activity in AS. The study included 42 AS patients, all fulfilling the modified New York criteria. All the patients are totally symptom free for ANS involvement and had normal neurological findings. These AS patients and 230 healthy volunteers receive analysis of 5 minutes heart rate variability (HRV) in lying posture. In addition, disease activity and functional status of these AS patients are assessed by Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), and Bath Ankylosing Spondylitis Global Score (BAS-G). Both groups were age and sex-matched. Although the HRV analysis indicates that the peaks of total power (TP, 0–0.5 Hz) and high-frequency power (HF, 0.15–0.40 Hz) are similar in both groups, the activities of low-frequency power (LF, 0.04–0.15 Hz), LF in normalized units (LF%), and the ratio of LF to HF (LF/HF) in AS patients are obviously lower than healthy controls. The erythrocyte sedimentation rate and C-reactive protein revealed negative relationship with HF. The AS patients without peripheral joint disease have higher LF, TP, variance, LF%, and HF than the patients with peripheral joint disease. The AS patients without uvetis have higher HF than the patients with uvetis. The total scores of BASDI, BASFI, and BAS-G do not show any association to HRV parameters. AS patients have significantly abnormal cardiac autonomic regulation. This is closely related with some inflammatory activities. Reduced autonomic function may be one of the factors of high cardiovascular risk in AS patients. PMID:27227940

  16. Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure.

    PubMed

    Kubota, Y; Sato, W; Toichi, M; Murai, T; Okada, T; Hayashi, A; Sengoku, A

    2001-04-01

    Frontal midline theta rhythm (Fm theta), recognized as distinct theta activity on EEG in the frontal midline area, reflects mental concentration as well as meditative state or relief from anxiety. Attentional network in anterior frontal lobes including anterior cingulate cortex is suspected to be the generator of this activity, and the regulative function of the frontal neural network over autonomic nervous system (ANS) during cognitive process is suggested. However no studies have examined peripheral autonomic activities during Fm theta induction, and interaction of central and peripheral mechanism associated with Fm theta remains unclear. In the present study, a standard procedure of Zen meditation requiring sustained attention and breath control was employed as the task to provoke Fm theta, and simultaneous EEG and ECG recordings were performed. For the subjects in which Fm theta activities were provoked (six men, six women, 48% of the total subjects), peripheral autonomic activities were evaluated during the appearance of Fm theta as well as during control periods. Successive inter-beat intervals were measured from the ECG, and a recently developed method of analysis by Toichi et al. (J. Auton. Nerv. Syst. 62 (1997) 79-84) based on heart rate variability was used to assess cardiac sympathetic and parasympathetic functions separately. Both sympathetic and parasympathetic indices were increased during the appearance of Fm theta compared with control periods. Theta band activities in the frontal area were correlated negatively with sympathetic activation. The results suggest a close relationship between cardiac autonomic function and activity of medial frontal neural circuitry.

  17. [Techniques of autonomic nerve preservation in laparoscopic radical resection for rectal cancer].

    PubMed

    Wei, Hongbo; Zheng, Zongheng

    2015-06-01

    Pelvic autonomic nerve is a three-dimensional structure surrounding the rectum. There are several key points related to nerve injury during laparoscopic radical resection for rectal cancer. Hypogastric nerve has close relation with the upper and middle part of the rectum. Combined with S2-S4 pelvic splanchnic nerve, hypogastric nerve forms pelvic plexus. Incorrect operation in pelvic parietal peritoneum during dissection of upper rectum will lead to nerve injury. When performing dissection of inferior mesenteric artery, bilateral nerve tracts should be pushed to posterior abdominal wall and anterior fascia of the abdominal aorta should be well protected to avoid nerve injury. Pelvic plexus fibers located lateral to the rectum of pelvic floor, as well as neurovascular bundle closed to Denonvillier's fascia, also have close relations with nerve injury. Dissection of either lateral or anterior wall of rectum should be performed behind the Denonvillier's fascia and in front of the proper fascia of rectum. Sharp dissection should be performed closed to the mesorectum to protect branches of pelvic plexus.

  18. Diabetic cardiac autonomic neuropathy: Do we have any treatment perspectives?

    PubMed Central

    Serhiyenko, Victoria A; Serhiyenko, Alexandr A

    2015-01-01

    Cardiac autonomic neuropathy (CAN) is a serious and common complication of diabetes mellitus (DM). Despite its relationship to an increased risk of cardiovascular mortality and its association with multiple symptoms and impairments, the significance of CAN has not been fully appreciated. CAN among DM patients is characterized review the latest evidence and own data regarding the treatment and the treatment perspectives for diabetic CAN. Lifestyle modification, intensive glycemic control might prevent development or progression of CAN. Pathogenetic treatment of CAN includes: balanced diet and physical activity; optimization of glycemic control; treatment of dyslipoproteinemia; correction of metabolic abnormalities in myocardium; prevention and treatment of thrombosis; use of aldose reductase inhibitors; dihomo-γ-linolenic acid (DGLA), acetyl-L-carnitine, antioxidants, first of all α-lipoic acid (α-LA), use of long-chain ω-3 and ω-6 polyunsaturated fatty acids (ω-3 and ω-6 PUFAs), vasodilators, fat-soluble vitamin B1, aminoguanidine; substitutive therapy of growth factors, in severe cases-treatment of orthostatic hypotension. The promising methods include research and use of tools that increase blood flow through the vasa vasorum, including prostacyclin analogues, thromboxane A2 blockers and drugs that contribute into strengthening and/or normalization of Na+, K+-ATPase (phosphodiesterase inhibitor), α-LA, DGLA, ω-3 PUFAs, and the simultaneous prescription of α-LA, ω-3 PUFA and DGLA. PMID:25789106

  19. Cardiac Autonomic Dysfunction from Occupational Exposure to Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Lee, Mi-Sun; Magari, Shannon; Christiani, David C.

    2013-01-01

    Objectives Polycyclic aromatic hydrocarbons (PAHs) exposures have been associated with cardiopulmonary mortality and cardiovascular events. This study investigated the association between a biological marker of PAHs exposure, assessed by urinary 1-hydroxypyrene (1-OHP), and heart rate variability (HRV) in an occupational cohort of boilermakers. Methods Continuous 24-hour monitoring of the ambulatory electrocardiogram (ECG) and pre and post shift urinary 1-OHP were repeated over extended periods of the work week. Mixed effects models were fit for the 5-minute standard deviation of normal-to-normal intervals (SDNN) in relation to urinary 1-OHP levels pre and post workshift on the day they wore the monitor, controlling for potential confounders. Results We found a significant decrease in 5-min SDNN during work of −13.6% (95% confidence interval, −17.2% to −9.8%) for every standard deviation (0.53 microgram/gram [μg/g] creatinine) increase in the next-morning pre-shift 1-OHP levels. The magnitude of reduction in 5-min SDNN were largest during the late night period after work and increased with every standard deviation (0.46 μg/g creatinine) increase in post-shift 1-OHP levels. Conclusion This is the first report providing evidence that occupational exposure to PAHs is associated with altered cardiac autonomic function. Acute exposure to PAHs may be an important predictor of cardiovascular disease risk in the work environment. PMID:21172795

  20. Assesment of Heart Rate Variability As A Measure of Cardiac Autonomic Status in Psychiatric Patients Exposed to Chemical Irritants

    PubMed Central

    Gupta, Supriya; Rastogi, Rajesh; Gupta, Manushree

    2015-01-01

    Background and Purpose However, little is known about the cardiac autonomic activity due to chemicals in psychiatric patients. Therefore, the objective of this study was to assess the effect of chemical irritants on the ANS of the person and measure that in the form of Heart Rate Variability (HRV), a noninvasive method to estimate the cardiac autonomic activity. The autonomic nervous system can significantly compromised by use of chemical irritants. Materials and Methods A cross-sectional hospital based study was conducted in which 33 patients (mean age: 29.94 years) of depression/anxiety were compared with 37 age matched controls (mean age: 28.10). The patients who were diagnosed as either depressed or anxious by the psychiatry were included in the study group by random sampling. Out of these 8 patients gave positive history of odour use. Thirty seven age matched healthy persons were taken as controls. Grading of patients was done according to DSMV-IV criteria and short- term HRV was recorded. Five minute HRV recording was done and time domain and frequency domain indices of HRV were assessed using RMS Polyearite D. The result in case and control groups was compared. Results We have reported a poor HRV compared to control group in patients of depression/anxiety as reflected by NN50 values (p< 0.05). Although not significant the trend shows a better HRV control in almost all the time domain and frequency domain parameters in controls compared to cases. Regarding the history of use of chemical irritants the trend showed a poor HRV control in these cases compared to the patients who did not give any such history. Conclusion Our results suggest that impaired cardiac autonomic nerve function characterized by sympathetic over activity may occur in depression/phobic patients. The study also proves a poor HRV in psychiatric subjects with history of use of odoriferous substances. PMID:26266195

  1. Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals.

    PubMed

    Matsukawa, Kanji

    2012-01-01

    Feedforward control by higher brain centres (termed central command) plays a role in the autonomic regulation of the cardiovascular system during exercise. Over the past 20 years, workers in our laboratory have used the precollicular-premammillary decerebrate animal model to identify the neural circuitry involved in the CNS control of cardiac autonomic outflow and arterial baroreflex function. Contrary to the traditional idea that vagal withdrawal at the onset of exercise causes the increase in heart rate, central command did not decrease cardiac vagal efferent nerve activity but did allow cardiac sympathetic efferent nerve activity to produce cardiac acceleration. In addition, central command-evoked inhibition of the aortic baroreceptor-heart rate reflex blunted the baroreflex-mediated bradycardia elicited by aortic nerve stimulation, further increasing the heart rate at the onset of exercise. Spontaneous motor activity and associated cardiovascular responses disappeared in animals decerebrated at the midcollicular level. These findings indicate that the brain region including the caudal diencephalon and extending to the rostral mesencephalon may play a role in generating central command. Bicuculline microinjected into the midbrain ventral tegmental area of decerebrate rats produced a long-lasting repetitive activation of renal sympathetic nerve activity that was synchronized with the motor nerve discharge. When lidocaine was microinjected into the ventral tegmental area, the spontaneous motor activity and associated cardiovascular responses ceased. From these findings, we conclude that cerebral cortical outputs trigger activation of neural circuits within the caudal brain, including the ventral tegmental area, which causes central command to augment cardiac sympathetic outflow at the onset of exercise in decerebrate animal models. PMID:21984731

  2. Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects

    NASA Technical Reports Server (NTRS)

    Koh, J.; Brown, T. E.; Beightol, L. A.; Ha, C. Y.; Eckberg, D. L.

    1994-01-01

    1. We studied eight young men (age range: 20-37 years) with chronic, clinically complete high cervical spinal cord injuries and ten age-matched healthy men to determine how interruption of connections between the central nervous system and spinal sympathetic motoneurones affects autonomic cardiovascular control. 2. Baseline diastolic pressures and R-R intervals (heart periods) were similar in the two groups. Slopes of R-R interval responses to brief neck pressure changes were significantly lower in tetraplegic than in healthy subjects, but slopes of R-R interval responses to steady-state arterial pressure reductions and increases were comparable. Plasma noradrenaline levels did not change significantly during steady-state arterial pressure reductions in tetraplegic patients, but rose sharply in healthy subjects. The range of arterial pressure and R-R interval responses to vasoactive drugs (nitroprusside and phenylephrine) was significantly greater in tetraplegic than healthy subjects. 3. Resting R-R interval spectral power at respiratory and low frequencies was similar in the two groups. During infusions of vasoactive drugs, low-frequency R-R interval spectral power was directly proportional to arterial pressure in tetraplegic patients, but was unrelated to arterial pressure in healthy subjects. Vagolytic doses of atropine nearly abolished both low- and respiratory-frequency R-R interval spectral power in both groups. 4. Our conclusions are as follows. First, since tetraplegic patients have significant levels of low-frequency arterial pressure and R-R interval spectral power, human Mayer arterial pressure waves may result from mechanisms that do not involve stimulation of spinal sympathetic motoneurones by brainstem neurones. Second, since in tetraplegic patients, low-frequency R-R interval spectral power is proportional to arterial pressure, it is likely to be mediated by a baroreflex mechanism. Third, since low-frequency R-R interval rhythms were nearly abolished

  3. Cardiac autonomic responses after resistance exercise in treated hypertensive subjects.

    PubMed

    Trevizani, Gabriela A; Peçanha, Tiago; Nasario-Junior, Olivassé; Vianna, Jeferson M; Silva, Lilian P; Nadal, Jurandir

    2015-01-01

    The aim of this study was to assess and to compare heart rate variability (HRV) after resistance exercise (RE) in treated hypertensive and normotensive subjects. Nine hypertensive men [HT: 58.0 ± 7.7 years, systolic blood pressure (SBP) = 133.6 ± 6.5 mmHg, diastolic blood pressure (DBP) = 87.3 ± 8.1 mmHg; under antihypertensive treatment] and 11 normotensive men (NT: 57.1 ± 6.0 years, SBP = 127 ± 8.5 mmHg, DBP = 82.7 ± 5.5 mmHg) performed a single session of RE (2 sets of 15-20 repetitions, 50% of 1 RM, 120 s interval between sets/exercise) for the following exercises: leg extension, leg press, leg curl, bench press, seated row, triceps push-down, seated calf flexion, seated arm curl. HRV was assessed at resting and during 10 min of recovery period by calculating time (SDNN, RMSSD, pNN50) and frequency domain (LF, HF, LF/HF) indices. Mean values of HRV indices were reduced in the post-exercise period compared to the resting period (HT: lnHF: 4.7 ± 1.4 vs. 2.4 ± 1.2 ms(2); NT: lnHF: 4.8 ± 1.5 vs. 2.2 ± 1.1 ms(2), p < 0.01). However, there was no group vs. time interaction in this response (p = 0.8). The results indicate that HRV is equally suppressed after RE in normotensive and hypertensive individuals. These findings suggest that a single session of RE does not bring additional cardiac autonomic stress to treated hypertensive subjects. PMID:26441677

  4. The subdiaphragmatic part of the phrenic nerve - morphometry and connections to autonomic ganglia.

    PubMed

    Loukas, Marios; Du Plessis, Maira; Louis, Robert G; Tubbs, R Shane; Wartmann, Christopher T; Apaydin, Nihal

    2016-01-01

    Few anatomical textbooks offer much information concerning the anatomy and distribution of the phrenic nerve inferior to the diaphragm. The aim of this study was to identify the subdiaphragmatic distribution of the phrenic nerve, the presence of phrenic ganglia, and possible connections to the celiac plexus. One hundred and thirty formalin-fixed adult cadavers were studied. The right phrenic nerve was found inferior to the diaphragm in 98% with 49.1% displaying a right phrenic ganglion. In 22.8% there was an additional smaller ganglion (right accessory phrenic ganglion). The remaining 50.9% had no grossly identifiable right phrenic ganglion. Most (65.5% of specimens) exhibited plexiform communications with the celiac ganglion, aorticorenal ganglion, and suprarenal gland. The left phrenic nerve inferior to the diaphragm was observed in 60% of specimens with 19% containing a left phrenic ganglion. No accessory left phrenic ganglia were observed. The left phrenic ganglion exhibited plexiform communications to several ganglia in 71.4% of specimens. Histologically, the right phrenic and left phrenic ganglia contained large soma concentrated in their peripheries. Both phrenic nerves and ganglia were closely related to the diaphragmatic crura. Surgically, sutures to approximate the crura for repair of hiatal hernias must be placed above the ganglia in order to avoid iatrogenic injuries to the autonomic supply to the diaphragm and abdomen. These findings could also provide a better understanding of the anatomy and distribution of the fibers of that autonomic supply.

  5. Artifacts produced during electrical stimulation of the vestibular nerve in cats. [autonomic nervous system components of motion sickness

    NASA Technical Reports Server (NTRS)

    Tang, P. C.

    1973-01-01

    Evidence is presented to indicate that evoked potentials in the recurrent laryngeal, the cervical sympathetic, and the phrenic nerve, commonly reported as being elicited by vestibular nerve stimulation, may be due to stimulation of structures other than the vestibular nerve. Experiments carried out in decerebrated cats indicated that stimulation of the petrous bone and not that of the vestibular nerve is responsible for the genesis of evoked potentials in the recurrent laryngeal and the cervical sympathetic nerves. The phrenic response to electrical stimulation applied through bipolar straight electrodes appears to be the result of stimulation of the facial nerve in the facial canal by current spread along the petrous bone, since stimulation of the suspended facial nerve evoked potentials only in the phrenic nerve and not in the recurrent laryngeal nerve. These findings indicate that autonomic components of motion sickness represent the secondary reactions and not the primary responses to vestibular stimulation.

  6. Effects of culture supernatant from Lactobacillus pentosus strain S-PT84 on autonomic nerve activity in rats.

    PubMed

    Beppu, Yoshinori; Izumo, Takayuki; Horii, Yuko; Shen, Jiao; Fujisaki, Yoshiyuki; Nakashima, Toshihiro; Tsuruoka, Nobuo; Nagai, Katsuya

    2012-01-01

    Intestinal administration of various lactobacilli has been reported to affect autonomic neurotransmission, blood pressure, blood glucose, and body weight in rats, however, the mechanisms of action of the lactobacilli remain to be clarified. Therefore, the effect of the culture supernatant of Lactobacillus pentosus strain S-PT84 on the autonomic nerve activity in urethane-anesthetized rats was investigated. Intraduodenal injection of the low-molecular-weight (LMW) fraction (molecules less than 10,000 Da) of the S-PT84 culture supernatant elevated the brown adipose tissue sympathetic nerve activity and reduced the gastric vagal nerve activity. Moreover, intraoral administration of this LMW fraction increased the body temperature of rats above the interscapular brown adipose tissue. These results suggest that the LMW fraction of the S-PT84 culture supernatant affects the autonomic nerve activity and thermogenesis, and that the change in thermogenesis may be caused by the change in the sympathetic nerve activity of brown adipose tissue.

  7. Olfactory stimulatory with grapefruit and lavender oils change autonomic nerve activity and physiological function.

    PubMed

    Nagai, Katsuya; Niijima, Akira; Horii, Yuko; Shen, Jiao; Tanida, Mamoru

    2014-10-01

    This review summarizes the effects of olfactory stimulation with grapefruit and lavender oils on autonomic nerve activity and physiological function. Olfactory stimulation with the scent of grapefruit oil (GFO) increases the activity of sympathetic nerves that innervate white and brown adipose tissues, the adrenal glands, and the kidneys, decreases the activity of the gastric vagal nerve in rats and mice. This results in an increase in lipolysis, thermogenesis, and blood pressure, and a decrease in food intake. Olfactory stimulation with the scent of lavender oil (LVO) elicits the opposite changes in nerve activity and physiological variables. Olfactory stimulation with scent of limonene, a component of GFO, and linalool, a component of LVO, has similar effects to stimulation with GFO and LVO, respectively. The histamine H1-receptor antagonist, diphenhydramine, abolishes all GFO-induced changes in nerve activity and physiological variables, and the hitstamine H3-receptor antagonist, thioperamide, eliminates all LVO-induced changes. Lesions to the hypothalamic suprachiasmatic nucleus and anosmic treatment with ZnSO4 also abolish all GFO- and LVO-induced changes. These findings indicate that limonene and linalool might be the active substances in GFO and LVO, and suggest that the suprachiasmatic nucleus and histamine are involved in mediating the GFO- and LVO-induced changes in nerve activity and physiological variables. PMID:25002406

  8. Olfactory stimulatory with grapefruit and lavender oils change autonomic nerve activity and physiological function.

    PubMed

    Nagai, Katsuya; Niijima, Akira; Horii, Yuko; Shen, Jiao; Tanida, Mamoru

    2014-10-01

    This review summarizes the effects of olfactory stimulation with grapefruit and lavender oils on autonomic nerve activity and physiological function. Olfactory stimulation with the scent of grapefruit oil (GFO) increases the activity of sympathetic nerves that innervate white and brown adipose tissues, the adrenal glands, and the kidneys, decreases the activity of the gastric vagal nerve in rats and mice. This results in an increase in lipolysis, thermogenesis, and blood pressure, and a decrease in food intake. Olfactory stimulation with the scent of lavender oil (LVO) elicits the opposite changes in nerve activity and physiological variables. Olfactory stimulation with scent of limonene, a component of GFO, and linalool, a component of LVO, has similar effects to stimulation with GFO and LVO, respectively. The histamine H1-receptor antagonist, diphenhydramine, abolishes all GFO-induced changes in nerve activity and physiological variables, and the hitstamine H3-receptor antagonist, thioperamide, eliminates all LVO-induced changes. Lesions to the hypothalamic suprachiasmatic nucleus and anosmic treatment with ZnSO4 also abolish all GFO- and LVO-induced changes. These findings indicate that limonene and linalool might be the active substances in GFO and LVO, and suggest that the suprachiasmatic nucleus and histamine are involved in mediating the GFO- and LVO-induced changes in nerve activity and physiological variables.

  9. [Drug with a high metabolic activity, cocarnit, in the treatment of diabetic cardiac autonomic neuropathy].

    PubMed

    Popov, S V; Melekhovets', O K; Demikhova, N V; Vynnychenko, L B

    2012-01-01

    Left ventricular diastolic dysfunction in patients with diabetes is formed in the absence of atherosclerotic changes as a consequence of diabetic cardiac autonomic neuropathy in the early stages of diabetes. Progression of autonomic cardiac neuropathy in cardio-vascular type is associated with the violation of energy supply of cells, protein synthesis, electrolyte exchange, the exchange of trace elements, oxidation reduction processes, oxygen-transport function of blood, so that metabolic therapy is carried out to optimize the processes of formation and energy costs. The drug cocarnit activates processes of aerobic oxidation of glucose, as well as providing regulatory influence on the oxidation of fatty acids. Applying of cocarnit in complex therapy in patients with diabetic cardiac autonomic neuropathy found improvement of left ventricular diastolic function, and positive dynamics in the efferent activity balance of the sympathetic and parasympathetic control of heart rate variability, which provides the regression of clinical symptoms. PMID:23356142

  10. Cardiac Sympathetic Nerve Sprouting and Susceptibility to Ventricular Arrhythmias after Myocardial Infarction.

    PubMed

    Li, Chang-Yi; Li, Yi-Gang

    2015-01-01

    Ventricular arrhythmogenesis is thought to be a common cause of sudden cardiac death following myocardial infarction (MI). Nerve remodeling as a result of MI is known to be an important genesis of life-threatening arrhythmias. It is hypothesized that neural modulation might serve as a therapeutic option of malignant arrhythmias. In fact, left stellectomy or β-blocker therapy is shown to be effective in the prevention of ventricular tachyarrhythmias (VT), ventricular fibrillation (VF), and sudden cardiac death (SCD) after MI both in patients and in animal models. Results from decades of research already evidenced a positive relationship between abnormal nerve density and ventricular arrhythmias after MI. In this review, we summarized the molecular mechanisms involved in cardiac sympathetic rejuvenation and mechanisms related to sympathetic hyperinnervation and arrhythmogenesis after MI and analyzed the potential therapeutic implications of nerve sprouting modification for ventricular arrhythmias and SCD control. PMID:26793403

  11. Cardiac Sympathetic Nerve Sprouting and Susceptibility to Ventricular Arrhythmias after Myocardial Infarction

    PubMed Central

    Li, Chang-Yi; Li, Yi-Gang

    2015-01-01

    Ventricular arrhythmogenesis is thought to be a common cause of sudden cardiac death following myocardial infarction (MI). Nerve remodeling as a result of MI is known to be an important genesis of life-threatening arrhythmias. It is hypothesized that neural modulation might serve as a therapeutic option of malignant arrhythmias. In fact, left stellectomy or β-blocker therapy is shown to be effective in the prevention of ventricular tachyarrhythmias (VT), ventricular fibrillation (VF), and sudden cardiac death (SCD) after MI both in patients and in animal models. Results from decades of research already evidenced a positive relationship between abnormal nerve density and ventricular arrhythmias after MI. In this review, we summarized the molecular mechanisms involved in cardiac sympathetic rejuvenation and mechanisms related to sympathetic hyperinnervation and arrhythmogenesis after MI and analyzed the potential therapeutic implications of nerve sprouting modification for ventricular arrhythmias and SCD control. PMID:26793403

  12. Effects of Eucommia leaf extracts on autonomic nerves, body temperature, lipolysis, food intake, and body weight.

    PubMed

    Horii, Yuko; Tanida, Mamoru; Shen, Jiao; Hirata, Tetsuya; Kawamura, Naomi; Wada, Atsunori; Nagai, Katsuya

    2010-08-01

    Eucommia ulmoides Oliver leaf extracts (ELE) have been shown to exert a hypolipidemic effect in hamsters. Therefore, it was hypothesized that ELE might affect lipid metabolism via changes in autonomic nerve activities and causes changes in thermogenesis and body weight. We examined this hypothesis, and found that intraduodenal (ID) injection of ELE elevated epididymal white adipose tissue sympathetic nerve activity (WAT-SNA) and interscapular brown adipose tissue sympathetic nerve activity (BAT-SNA) in urethane-anesthetized rats and elevated the plasma concentration of free fatty acids (FFA) (a marker of lipolysis) and body temperature (BT) (a marker of thermogenesis) in conscious rats. Furthermore, it was observed that ID administration of ELE decreased gastric vagal nerve activity (GVNA) in urethane-anesthetized rats, and that ELE given as food reduced food intake, body and abdominal adipose tissue weights and decreased plasma triglyceride level. These findings suggest that ELE stimulates lipolysis and thermogenesis through elevations in WAT-SNA and BAT-SNA, respectively, suppresses appetite by inhibiting the activities of the parasympathetic nerves innervating the gastrointestinal tract, including GVNA, and decreases the amount of abdominal fat and body weight via these changes.

  13. Low-dose enalapril reduces angiotensin II and attenuates diabetic-induced cardiac and autonomic dysfunctions.

    PubMed

    Malfitano, Christiane; De Angelis, Kátia; Fernandes, Tiago; Wichi, Rogério Brandão; Rosa, Kaleizu; Pazzine, Mariana; Mostarda, Cristiano; Ronchi, Fernanda Aparecida; Oliveira, Edilamar Menezes; de Oliveira, Edilamar Menezes; Casarini, Dulce Elena; Irigoyen, Maria-Claudia

    2012-01-01

    Activation of renin-angiotensin system has been linked to cardiovascular and autonomic dysfunctions in diabetes. Experiments were performed to investigate the effects of angiotensin-converting enzyme inhibitor (ACEI), enalapril, on cardiac and autonomic functions in diabetic rats. Diabetes was induced by streptozotocin (50 mg/kg), and rats were treated with enalapril (1 mg · kg(-1) · d(-1)). After 30 days, evaluations were performed in control, diabetic, and enalapril-treated groups. Cardiac function was evaluated by echocardiography and through cannulation of the left ventricle (at baseline and in response to volume overload). Heart rate and systolic blood pressure variabilities were evaluated in the time and frequency domains. Streptozotocin rats had left ventricular systolic and diastolic dysfunctions, expressed by reduced ejection fraction and increased isovolumic relaxation time. The ACEI prevented these changes, improved diastolic cardiac responses to volume overload and total power of heart rate variability, reduced the ACE1 activity and protein expression and cardiac angiotensin (Ang) II levels, and increased angiotensin-converting enzyme 2 activity, despite unchanged blood pressure. Correlations were obtained between Ang II content with systolic and diastolic functions and heart rate variability. These findings provide evidence that the low-dose ACEI prevents autonomic and cardiac dysfunctions induced by diabetes without changing blood pressure and associated with reduced cardiac Ang II and increased angiotensin-converting enzyme 2 activity. PMID:21921804

  14. Total mesorectal excision for rectal cancer with emphasis on pelvic autonomic nerve preservation: Expert technical tips for robotic surgery.

    PubMed

    Kim, Nam Kyu; Kim, Young Wan; Cho, Min Soo

    2015-09-01

    The primary goal of surgical intervention for rectal cancer is to achieve an oncologic cure while preserving function. Since the introduction of total mesorectal excision (TME), the oncologic outcome has improved greatly in terms of local recurrence and cancer-specific survival. However, there are still concerns regarding functional outcomes such as sexual and urinary dysfunction, even among experienced colorectal surgeons. Intraoperative nerve damage is the primary reason for sexual and urinary dysfunction and occurs due to lack of anatomical knowledge and poor visualization of the pelvic autonomic nerves. The rectum is located concavely along the curved sacrum and both the ischial tuberosity and iliac wing limit the pelvic cavity boundary. Thus, pelvic autonomic nerve preservation during dissection in a narrow or deep pelvis, with adherence to the TME principles, is very challenging for colorectal surgeons. Recent developments in robotic technology enable overcoming these difficulties caused by complex pelvic anatomy. This system can facilitate better preservation of the pelvic autonomic nerve and thereby achieve favorable postoperative sexual and voiding functions after rectal cancer surgery. The nerve-preserving TME technique includes identification and preservation of the superior hypogastric plexus nerve, bilateral hypogastric nerves, pelvic plexus, and neurovascular bundles. Standardized procedures should be performed sequentially as follows: posterior dissection, deep posterior dissection, anterior dissection, posterolateral dissection, and final circumferential pelvic dissection toward the pelvic floor. In future perspective, a structured education program on nerve-preserving robotic TME should be incorporated in the training for minimally invasive surgery.

  15. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  16. DAILY VARIATION OF PARTICULATE AIR POLLUTION AND POOR CARDIAC AUTONOMIC CONTROL IN THE ELDERLY

    EPA Science Inventory

    Particulate matter air pollution (PM) has been related to cardiovascular disease mortality in a number of recent studies. The pathophysiologic mechanisms for this association are under study. Low heart rate variability, a marker of poor cardiac autonomic control, is associated wi...

  17. Teaching Cardiac Autonomic Function Dynamics Employing the Valsalva (Valsalva-Weber) Maneuver

    ERIC Educational Resources Information Center

    Junqueira, Luiz Fernando, Jr.

    2008-01-01

    In this report, a brief history of the Valsalva (Valsalva-Weber) maneuver is outlined, followed by an explanation on the use of this approach for the evaluation of cardiac autonomic function based on underlying heart rate changes. The most important methodological and interpretative aspects of the Valsalva-Weber maneuver are critically updated,…

  18. Modulation of Cardiac Autonomic Dysfunction in Ischemic Stroke following Ayurveda (Indian System of Medicine) Treatment

    PubMed Central

    Jaideep, Sriranjini Sitaram; Nagaraja, Dindagur; Pal, Pramod Kumar; Sudhakara, D.; Talakad, Sathyaprabha N.

    2014-01-01

    Objectives. Cardiac autonomic dysfunction in stroke has implications on morbidity and mortality. Ayurveda (Indian system of medicine) describes stroke as pakshaghata. We intended to study the effect of Ayurveda therapies on the cardiac autonomic dysfunction. Methods. Fifty patients of ischemic stroke (middle cerebral artery territory) (mean age 39.26 ± 9.88 years; male 43, female 7) were recruited within one month of ictus. All patients received standard allopathic medications as advised by neurologist. In addition, patients were randomized to receive physiotherapy (Group I) or Ayurveda treatment (Group II) for 14 days. Continuous electrocardiogram and finger arterial pressure were recorded for 15 min before and after treatments and analyzed offline to obtain heart rate and blood pressure variability and baroreflex sensitivity (BRS). Results were analysed by RMANOVA. Results. Patients in Group II showed statistically significant improvement in cardiac autonomic parameters. The standard deviation of normal to normal intervals,and total and low frequency powers were significantly enhanced (F = 8.16, P = 0.007, F = 9.73, P = 0.004, F = 13.51, and P = 0.001, resp.). The BRS too increased following the treatment period (F = 10.129, P = 0.004). Conclusions. The current study is the first to report a positive modulation of cardiac autonomic activity after adjuvant Ayurveda treatment in ischemic stroke. Further long term studies are warranted. PMID:24971149

  19. Gross anatomical study of the sympathetic cardiac nerves in the house musk shrew (Suncus murinus).

    PubMed

    Tanaka, Ai; Tanaka, Shigenori; Miyamoto, Kensaku; Yi, Shuang-Qin; Nakatani, Toshio

    2007-05-01

    The sympathetic cardiac nerves originating from the cervical and upper thoracic sympathetic ganglia in the house musk shrew (Suncus murinus) were examined using macroscopic and whole-mount immunohistochemical methods. Based on the results, the nerves were macroscopically classified into the following three groups: nerves innervating the cervical sympathetic ganglia mainly to the arterial porta of the heart; nerves supplying the stellate and thoracic sympathetic ganglia at the level of T2-T5 or T6 for both the arterial and venous portae of the heart; and nerves innervating the thoracic sympathetic ganglia at the level of T4-T9 to the esophagus and lung and then the heart via the blood vessels within the mediastinal pleura. These findings in the house musk shrew suggest a possible primitive morphological pattern of the cervical and thoracic sympathetic nervous system that may be related to those in other mammals, including humans. PMID:17393537

  20. Slow breathing influences cardiac autonomic responses to postural maneuver: Slow breathing and HRV.

    PubMed

    Vidigal, Giovanna Ana de Paula; Tavares, Bruna S; Garner, David M; Porto, Andrey A; Carlos de Abreu, Luiz; Ferreira, Celso; Valenti, Vitor E

    2016-05-01

    Chronic slow breathing has been reported to improve Heart Rate Variability (HRV) in patients with cardiovascular disorders. However, it is not clear regarding its acute effects on HRV responses on autonomic analysis. We evaluated the acute effects of slow breathing on cardiac autonomic responses to postural change manoeuvre (PCM). The study was conducted on 21 healthy male students aged between 18 and 35 years old. In the control protocol, the volunteer remained at rest seated for 15 min under spontaneous breathing and quickly stood up within 3 s and remained standing for 15 min. In the slow breathing protocol, the volunteer remained at rest seated for 10 min under spontaneous breath, then performed slow breathing for 5 min and rapidly stood up within 3 s and remained standing for 15 min. Slow breathing intensified cardiac autonomic responses to postural maneuver. PMID:27157952

  1. The epicardium as modulator of the cardiac autonomic response during early development.

    PubMed

    Kelder, Tim P; Duim, Sjoerd N; Vicente-Steijn, Rebecca; Végh, Anna M D; Kruithof, Boudewijn P T; Smits, Anke M; van Bavel, Thomas C; Bax, Noortje A M; Schalij, Martin J; Gittenberger-de Groot, Adriana C; DeRuiter, Marco C; Goumans, Marie-José; Jongbloed, Monique R M

    2015-12-01

    The cardiac autonomic nervous system (cANS) modulates heart rate, contraction force and conduction velocity. The embryonic chicken heart already responds to epinephrine prior to establishment of the cANS. The aim of this study was to define the regions of the heart that might participate in modulating the early autonomic response to epinephrine. Immunofluorescence analysis reveals expression of neural markers tubulin beta-3 chain and neural cell adhesion molecule in the epicardium during early development. In addition, expression of the β2 adrenergic receptor, the receptor for epinephrine, was found in the epicardium. Ex-ovo micro-electrode recordings in hearts with inhibition of epicardial outgrowth showed a significantly reduced response of the heart rate to epinephrine compared to control hearts. This study suggests a role for the epicardium as autonomic modulator during early cardiac development. PMID:26527381

  2. A role for autonomic cardiac control in the effects of oxytocin on social behavior and psychiatric illness

    PubMed Central

    Quintana, Daniel S.; Kemp, Andrew H.; Alvares, Gail A.; Guastella, Adam J.

    2013-01-01

    Cumulative evidence over the last decade indicates that intranasally administered oxytocin (OT) has a major impact on social behavior and cognition. In parallel, researchers have also highlighted the effects of OT on cardiovascular (CV) and autonomic nervous system (ANS) regulation. Taken at face value, these two streams of research appear largely unrelated. However, another line of evidence highlights a key role for autonomic cardiac control in social behavior and cognition. In this review, we suggest that autonomic cardiac control may moderate the relationship between OT and social behavior. We also highlight the importance of autonomic cardiac control in psychiatric disorders of social dysfunction and suggest that heart rate variability (HRV)—an index of autonomic cardiac control—may play a key role in patient response in treatment trials of OT. PMID:23565075

  3. Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure.

    PubMed

    Kimura, Kensuke; Kanazawa, Hideaki; Ieda, Masaki; Kawaguchi-Manabe, Haruko; Miyake, Yoshiko; Yagi, Takashi; Arai, Takahide; Sano, Motoaki; Fukuda, Keiichi

    2010-08-25

    In severe congestive heart failure (CHF), sympathetic overactivity correlates with the exacerbation of cardiac performance. To test the hypothesis that the cardiac sympathetic nerve density dramatically changes with the acceleration of circulating norepinephrine (NE) concentration, we investigated the temporal association of nerve growth factor (NGF) expression in the heart and cardiac sympathetic nerve density during the development of CHF in the continuous NE-infused rats. The animals were analyzed at 0-, 1-, 3-, 7-, 14-, and 28-day after implantation of osmotic pump at a rate of 0.05 mg/kg/hr. The cardiac performance was temporally facilitated in NE-exposed rats at 3-day in accordance with the sympathetic hyper-innervation induced by the augmentation of NGF mRNA expression in the heart. In NE-treated rats, left ventricular end-diastolic pressure was significantly increased after 7-day and marked left ventricular hypertrophy and systemic fluid retention were observed at 28-day. CHF-induced sympathetic overactivity further increased plasma NE concentration in NE-treated rats and finally reached to 16.1+/-5.6 ng/ml at 28-day (control level was 0.39+/-0.1 ng/ml, p<0.01). In the decompensated CHF rats at 28-day, the NGF mRNA expression was conspicuously reduced concomitant with the obvious nerve fiber loss confirmed by the immunostaining of nerve axonal marker, PGP9.5 and sympathetic neuron marker, tyrosine hydroxylase. This resulted in the attenuated tissue NE contents and the exacerbating cardiac performance. The cardiac sympathetic fiber loss was also confirmed in NE-exposed DBH (dopamine beta-hydroxylase)-Cre/Floxed-EGFP (enhanced green fluorescent protein) mice with severe CHF, in which sympathetic nerve could be traced by EGFP. Our results suggest that the cardiac sympathetic nerve density is strictly regulated by the NGF expression in the heart and long-exposure of high plasma NE concentration caused myocardial NGF reduction, following sympathetic fiber loss

  4. The influence of age and weight status on cardiac autonomic control in healthy children: a review.

    PubMed

    Eyre, E L J; Duncan, M J; Birch, S L; Fisher, J P

    2014-12-01

    Heart rate variability (HRV) analyses can provide a non-invasive evaluation of cardiac autonomic activity. How autonomic control normally develops in childhood and how this is affected by obesity remain incompletely understood. In this review we examine the evidence that childhood age and weight status influence autonomic control of the heart as assessed using HRV. Electronic databases (Pubmed, EMBASE and Cochrane Library) were searched for studies examining HRV in healthy children from birth to 18 years who adhered to the Task Force (1996) guidelines. Twenty-four studies met our inclusion criteria. Seven examined childhood age and HRV. A reduction in 24-hour LF:HF was reported from birth to infancy (1 year), while overall HRV (SDNN) showed a marked and progressive increase. From infancy to early-to-late childhood (from 12 months to 15 years) LF:HF ratio was reported to decline further albeit at a slower rate, while RMSSD and SDNN increased. Twenty studies examined the effects of weight status and body composition on HRV. In a majority of studies, obese children exhibited reductions in RMSSD (n = 8/13), pNN50% (n = 7/9) and HF power (n = 14/18), no difference was reported for LF (n = 10/18), while LF:HF ratio was elevated (n = 10/15). HRV changes during childhood are consistent with a marked and progressive increase in cardiac parasympathetic activity relative to sympathetic activity. Obesity disrupts the normal maturation of cardiac autonomic control.

  5. Cardiac Autonomic Adjustments During Baroreflex Test in Obese and Non-Obese Preadolescents

    PubMed Central

    Paschoal, Mário Augusto; Brunelli, Aline Carnio; Tamaki, Gabriela Midori; Magela, Sofia Serafim

    2016-01-01

    Background Recent studies have shown changes in cardiac autonomic control of obese preadolescents. Objective To assess the heart rate responses and cardiac autonomic modulation of obese preadolescents during constant expiratory effort. Methods This study assessed 10 obese and 10 non-obese preadolescents aged 9 to 12 years. The body mass index of the obese group was between the 95th and 97th percentiles of the CDC National Center for Health Statistics growth charts, while that of the non-obese group, between the 5th and 85th percentiles. Initially, they underwent anthropometric and clinical assessment, and their maximum expiratory pressures were obtained. Then, the preadolescents underwent a constant expiratory effort of 70% of their maximum expiratory pressure for 20 seconds, with heart rate measurement 5 minutes before, during and 5 minutes after it. Heart rate variability (HRV) and heart rate values were analyzed by use of a software. Results The HRV did not differ when compared before and after the constant expiratory effort intra- and intergroup. The heart rate values differed (p < 0.05) during the effort, being the total variation in non-obese preadolescents of 18.5 ± 1.5 bpm, and in obese, of 12.2 ± 1.3 bpm. Conclusion The cardiac autonomic modulation did not differ between the groups when comparing before and after the constant expiratory effort. However, the obese group showed lower cardiovascular response to baroreceptor stimuli during the effort, suggesting lower autonomic baroreflex sensitivity. PMID:27007224

  6. Docetaxel does not impair cardiac autonomic function in breast cancer patients previously treated with anthracyclines.

    PubMed

    Ekholm, Eeva; Rantanen, Virpi; Syvänen, Kari; Jalonen, Jarmo; Antila, Kari; Salminen, Eeva

    2002-04-01

    The effects of docetaxel treatment on autonomic cardiac function was studied with 24-h ECG recordings in breast cancer patients pretreated with anthracyclines. Twenty-four women were evaluated before docetaxel treatment and after 3-4 courses of docetaxel 100 mg/m(2). The heart rate, cardiac extrasystoles and heart rate variability (HRV) in both the time and frequency domain were assessed from 24-h ECG recordings. The acute effects of docetaxel were calculated from 1-h recordings immediately prior to, during and after infusion. Long-term effects were evaluated from 24-h recordings performed before treatment and after 3-4 courses of docetaxel. There was no increase in the number of cardiac extrasystoles during docetaxel infusion. The number of ventricular extrasystoles decreased from 14 (23) to 7 (14) during and 5 (10) after the first infusion (p=0.02). The heart rate, HRV and extrasystoles were similar before and after 3-4 courses of docetaxel. The treatment did not abolish circadian variability of the heart rate. Docetaxel did not deteriorate autonomic cardiac function. In conclusion, our findings suggest that docetaxel does not have harmful cumulative effects on autonomic control of the heart and is therefore unlikely to be cardiotoxic.

  7. Cardiac autonomic control in high level Brazilian power and endurance track-and-field athletes.

    PubMed

    Abad, C C C; do Nascimento, A M; Gil, S; Kobal, R; Loturco, I; Nakamura, F Y; Mostarda, C T; Irigoyen, M C

    2014-08-01

    The autonomic nervous system (ANS) has an important role in physical performance. However, the cardiac ANS activity in high-level track and field athletes has been poorly explored. Thus, we tested the hypothesis that endurance and power athletes would present a markedly different cardiac autonomic control at rest. We analyzed the cardiac ANS by means of time and frequency domains heart rate variability (HRV) analyses and by symbolic analysis. Endurance athletes showed higher pulse interval than power athletes (1,265±126 vs. 1,031±98 ms respectively; p<0.05). No differences were found in time and frequency domains between the groups. However, the LF%, HF% and LF/HF ratio presented high effect sizes (1.46, 1.46 and 1.30, respectively). The symbolic analysis revealed that endurance athletes had higher 2V parasympathetic modulation (36±6.5) than power athletes (24±9.3; p<0.05). A reduced 0V sympathetic modulation was observed in endurance athletes (21±9.9) compared to power athletes (33±11; p<0.05 and ES=1.30). Our results suggest greater parasympathetic modulation and less sympathetic modulation in endurance athletes compared to power athletes. Additionally, the type of HRV analysis needs to be chosen with well-defined criteria and caution because their use in assessing cardiac autonomic modulation can interfere with the interpretation of results. In practical terms, symbolic analysis appears to better discriminate between cardiac autonomic activities of athletes with different training backgrounds than frequency domain analysis.

  8. The Role of the Suprachiasmatic Nucleus in Cardiac Autonomic Control during Sleep

    PubMed Central

    Joustra, S. D.; Reijntjes, R. H.; Pereira, A. M.; Lammers, G. J.; Biermasz, N. R.; Thijs, R. D.

    2016-01-01

    Background The suprachiasmatic nucleus (SCN) may play an important role in central autonomic control, since its projections connect to (para)sympathetic relay stations in the brainstem and spinal cord. The cardiac autonomic modifications during nighttime may therefore not only result from direct effects of the sleep-related changes in the central autonomic network, but also from endogenous circadian factors as directed by the SCN. To explore the influence of the SCN on autonomic fluctuations during nighttime, we studied heart rate and its variability (HRV) in a clinical model of SCN damage. Methods Fifteen patients in follow-up after surgical treatment for nonfunctioning pituitary macroadenoma (NFMA) compressing the optic chiasm (8 females, 26–65 years old) and fifteen age-matched healthy controls (5 females, 30–63 years) underwent overnight ambulatory polysomnography. Eleven patients had hypopituitarism and received adequate replacement therapy. HRV was calculated for each 30-second epoch and corrected for sleep stage, arousals, and gender using mixed effect regression models. Results Compared to controls, patients spent more time awake after sleep onset and in NREM1-sleep, and less in REM-sleep. Heart rate, low (LF) and high frequency (HF) power components and the LF/HF ratio across sleep stages were not significantly different between groups. Conclusions These findings suggest that the SCN does not play a dominant role in cardiac autonomic control during sleep. PMID:27010631

  9. Cardiac Autonomic Drive during Arterial Hypertension and Metabolic Disturbances.

    PubMed

    Kseneva, S I; Borodulina, E V; Trifonova, O Yu; Udut, V V

    2016-06-01

    ANS support of the cardiac work was assessed with analysis of heart rate variability in representative samples of patients with arterial hypertension and metabolic disturbances manifested by overweight, classes I-II obesity, compromised glucose tolerance, and type II diabetes. Initially enhanced sympathetic effects on the heart rate demonstrated no further increase during the orthostatic test in contrast to suprasegmentary influences enhanced by this test. The pronouncedness of revealed peculiarities in ANS drive to the heart correlated with metabolic disturbances, and these peculiarities attained maximum in patients with type II diabetes. PMID:27383176

  10. Autonomic control of cardiac function and myocardial oxygen consumption during hypoxic hypoxia.

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Stone, H. L.

    1972-01-01

    Investigation in 19 conscious dogs of the importance of the sympathetic nervous system in the coronary and cardiac response to altitude (hypoxic) hypoxia. Beta-adrenergic blockade was used to minimize the cardiac effect associated with sympathetic receptors. It is shown that the autonomic nervous system, and particularly the sympathetic nervous system, is responsible for the increase in ventricular function and myocardial oxygen consumption that occurs during hypoxia. Minimizing this response through appropriate conditioning and training may improve the operating efficiency of the heart and reduce the hazard of hypoxia and other environmental stresses, such as acceleration, which are encountered in advanced aircraft systems.

  11. Effects of Effortful Swallow on Cardiac Autonomic Regulation.

    PubMed

    Gomes, Lívia M S; Silva, Roberta G; Melo, Monique; Silva, Nayra N; Vanderlei, Franciele M; Garner, David M; de Abreu, Luiz Carlos; Valenti, Vitor E

    2016-04-01

    Swallowing-induced changes in heart rate have been recently reported. However, it is not apparent the responses of heart rate variability (HRV) elicited by effortful swallow maneuver. We investigated the acute effects of effortful swallowing maneuver on HRV. This study was performed on 34 healthy women between 18 and 35 years old. We assessed heart rate variability in the time (SDNN, RMSSD, and pNN50) and frequency (HF, LF, and LF/HF ratio) domains and, visual analysis through the Poincaré plot. The subjects remained at rest for 5 min during spontaneous swallowing and then performed effortful swallowing for 5 min. HRV was analyzed during spontaneous and effortful swallowing. We found no significant differences for SDNN, pNN50, RMSSD, HF in absolute units (ms(2)). There is a trend for increase of LF in absolute (p = 0.05) and normalized (p = 0.08) units during effortful swallowing. HF in normalized units reduced (p = 0.02) during effortful swallowing and LF/HF ratio (p = 0.03) increased during effortful swallowing. In conclusion effortful swallow maneuver in healthy women increased sympathetic cardiac modulation, indicating a cardiac overload. PMID:26650792

  12. Cardiac autonomic responses induced by mental tasks and the influence of musical auditory stimulation.

    PubMed

    Barbosa, Juliana Cristina; Guida, Heraldo L; Fontes, Anne M G; Antonio, Ana M S; de Abreu, Luiz Carlos; Barnabé, Viviani; Marcomini, Renata S; Vanderlei, Luiz Carlos M; da Silva, Meire L; Valenti, Vitor E

    2014-08-01

    We investigated the acute effects of musical auditory stimulation on cardiac autonomic responses to a mental task in 28 healthy men (18-22 years old). In the control protocol (no music), the volunteers remained at seated rest for 10 min and the test was applied for five minutes. After the end of test the subjects remained seated for five more minutes. In the music protocol, the volunteers remained at seated rest for 10 min, then were exposed to music for 10 min; the test was then applied over five minutes, and the subjects remained seated for five more minutes after the test. In the control and music protocols the time domain and frequency domain indices of heart rate variability remained unchanged before, during and after the test. We found that musical auditory stimulation with baroque music did not influence cardiac autonomic responses to the mental task. PMID:25129880

  13. Teaching cardiac autonomic function dynamics employing the Valsalva (Valsalva-Weber) maneuver.

    PubMed

    Junqueira, Luiz Fernando

    2008-03-01

    In this report, a brief history of the Valsalva (Valsalva-Weber) maneuver is outlined, followed by an explanation on the use of this approach for the evaluation of cardiac autonomic function based on underlying heart rate changes. The most important methodological and interpretative aspects of the Valsalva-Weber maneuver are critically updated, and some guidelines are established for simple application of the maneuver in a teaching or research laboratory setting. These include the hemodynamic and cardiac autonomic mechanisms involved, technical aspects such as the intensity and duration of the expiratory straining, frequency of maneuver sessions, training and posture of the individuals tested, different time- and grade change-dependent indexes of heart interval variation, and clinical application of the maneuver.

  14. Application of heat- and steam-generating sheets to the lumbar or abdominal region affects autonomic nerve activity.

    PubMed

    Nagashima, Yoshinao; Oda, Hideshi; Igaki, Michihito; Suzuki, Megumi; Suzuki, Atsushi; Yada, Yukihiro; Tsuchiya, Shuichi; Suzuki, Toshiyuki; Ohishi, Sachiko

    2006-06-30

    Effects of applying a heat- and steam-generating (HSG) sheet on peripheral hemodynamics and autonomic nerve activity were examined. An HSG sheet was applied to the lumbar or abdominal region. Measurements included skin temperature at the lumbar and abdominal regions and the fingertip, total hemoglobin, tissue oxygen saturation ratio (StO2), pupillary light reflex, changes in ECG R-R interval blood pressure and percutaneous electrogastrography (EGG). A heat-generating sheet without steam was used as the control. Based on the present findings, application of the HSG sheet to the lumbar or abdominal region may improve peripheral hemodynamics and inhibit sympathetic nerve activity, resulting in parasympathetic nerve activity dominance.

  15. Functional Ser205Leu polymorphism of the nerve growth factor receptor (NGFR) gene is associated with vagal autonomic dysregulation in humans.

    PubMed

    Chang, Chuan-Chia; Fang, Wen-Hui; Chang, Hsin-An; Huang, San-Yuan

    2015-01-01

    Evidence indicates that reduced cardiac vagal (parasympathetic) tone, a robust cardiovascular risk factor, is a trait vulnerability marker of major depressive disorder (MDD). The Ser205/Ser205 genotype of the functional polymorphism (Ser205Leu) of the nerve growth factor receptor (NGFR), also called p75 neurotrophin receptor (p75(NTR)), gene is reported to increase the risk of MDD. Here, we hypothesized that the NGFR Ser205Leu polymorphism may have an effect on vagal control. A sample of 810 healthy, drug-free, unrelated Han Chinese (413 males, 397 females; mean age 35.17 ± 8.53 years) was included in the NGFR genotyping. Short-term heart rate variability (HRV) was used to assess vagus-mediated autonomic function. Potential HRV covariates, such as mood/anxiety status and serum metabolic parameters, were assessed. Homozygotes of the Ser205 allele had significantly lower high frequency power and root mean square of successive heartbeat interval differences, both HRV indices of vagal modulation, compared to Leu205 allele carriers. Even after adjusting for relevant confounders, these associations remained significant. Further stratification by sex revealed that the associations were observed only in males. Our results implicate that decreased parasympathetic activity is associated with the NGFR Ser205/Ser205 genotype in a gender-specific manner, suggesting a potential role of NGFR polymorphism in modulating cardiac autonomic function. PMID:26278479

  16. Daily variation of particulate air pollution and poor cardiac autonomic control in the elderly.

    PubMed Central

    Liao, D; Creason, J; Shy, C; Williams, R; Watts, R; Zweidinger, R

    1999-01-01

    examined the cardiac autonomic response to daily variations in PM in 26 elderly (mean age 81) individuals for 3 consecutive weeks. Several standardized methods were used to measure 24-hr average PM concentrations prior to the clinical test inside (indoor PM2.5) and immediately outside (outdoor PM2.5 and PM2.5-10) of participants' residences. Resting, supine, 6-min R wave to R wave (R-R) interval data were collected to estimate high frequency (0.15-0.40 Hz) and low frequency (0.04-0.15 Hz) powers and standard deviation of normal R-R intervals (SDNN) as cardiac autonomic control indices. Participant-specific lower heart rate variability days were defined as days for which the high-frequency indices fell below the first tertile of the individual's high-frequency distribution over the study period. Indoor PM2.5 > 15 microg/m3 was used to define high pollution days. Results show that the odds ratio (95% confidence interval) of low heart rate variability high frequency for high (vs. not high) pollution days was 3.08 (1.43, 6.59). The ss-coefficients (standard error) from mixed models to assess the quantitative relationship between variations in indoor PM2.5 and the log-transformed high frequency, low frequency, and SDNN were: -0.029 (0.010), -0.027 (0.009), and -0.004 (0.003), respectively. This first study of cardiac autonomic control response to daily variations of PM2.5 indicates that increased levels of PM2.5 are associated with lower cardiac autonomic control, suggesting a possible mechanistic link between PM and cardiovascular disease mortality. Images Figure 1 PMID:10378998

  17. Gender differences in cardiac autonomic modulation during medical internship.

    PubMed

    Lin, Yu-Hsuan; Chen, Ching-Yen; Lin, Sheng-Hsuan; Liu, Chun-Hao; Weng, Wei-Hung; Kuo, Terry B J; Yang, Cheryl C H

    2013-06-01

    Medical internship is known to be a time of high stress and long working hours, which increases the risk of depression and cardiovascular disease. Gender differences in medical interns' cardiovascular risk have not been reported previously. Thirty-eight medical interns (29 males) were repeatedly tested for depressive symptoms using the Hospital Anxiety and Depression Scale and 5-min spectral analysis of heart rate variability (HRV) at 3-month intervals during their internship. Among the male interns, the variance of the heart rate decreased at 6, 9, 12 months, and a reduced high frequency, which suggests reduced cardiac parasympathetic modulation, was found at 9 and 12 months into their internship. Increased depressive symptoms were also identified at 12 months in the male group. No significant differences in depression or any of the HRV indices were identified among the female interns during their internship.

  18. Increased Efferent Cardiac Sympathetic Nerve Activity and Defective Intrinsic Heart Rate Regulation in Type 2 Diabetes.

    PubMed

    Thaung, H P Aye; Baldi, J Chris; Wang, Heng-Yu; Hughes, Gillian; Cook, Rosalind F; Bussey, Carol T; Sheard, Phil W; Bahn, Andrew; Jones, Peter P; Schwenke, Daryl O; Lamberts, Regis R

    2015-08-01

    Elevated sympathetic nerve activity (SNA) coupled with dysregulated β-adrenoceptor (β-AR) signaling is postulated as a major driving force for cardiac dysfunction in patients with type 2 diabetes; however, cardiac SNA has never been assessed directly in diabetes. Our aim was to measure the sympathetic input to and the β-AR responsiveness of the heart in the type 2 diabetic heart. In vivo recording of SNA of the left efferent cardiac sympathetic branch of the stellate ganglion in Zucker diabetic fatty rats revealed an elevated resting cardiac SNA and doubled firing rate compared with nondiabetic rats. Ex vivo, in isolated denervated hearts, the intrinsic heart rate was markedly reduced. Contractile and relaxation responses to β-AR stimulation with dobutamine were compromised in externally paced diabetic hearts, but not in diabetic hearts allowed to regulate their own heart rate. Protein levels of left ventricular β1-AR and Gs (guanine nucleotide binding protein stimulatory) were reduced, whereas left ventricular and right atrial β2-AR and Gi (guanine nucleotide binding protein inhibitory regulatory) levels were increased. The elevated resting cardiac SNA in type 2 diabetes, combined with the reduced cardiac β-AR responsiveness, suggests that the maintenance of normal cardiovascular function requires elevated cardiac sympathetic input to compensate for changes in the intrinsic properties of the diabetic heart.

  19. Response of cardiac autonomic modulation after a single exposure to musical auditory stimulation.

    PubMed

    Ferreira, Lucas L; Vanderlei, Luiz Carlos M; Guida, Heraldo L; de Abreu, Luiz Carlos; Garner, David M; Vanderlei, Franciele M; Ferreira, Celso; Valenti, Vitor E

    2015-01-01

    The acute effects after exposure to different styles of music on cardiac autonomic modulation assessed through heart rate variability (HRV) analysis have not yet been well elucidated. We aimed to investigate the recovery response of cardiac autonomic modulation in women after exposure to musical auditory stimulation of different styles. The study was conducted on 30 healthy women aged between 18 years and 30 years. We did not include subjects having previous experience with musical instruments and those who had an affinity for music styles. The volunteers remained at rest for 10 min and were exposed to classical baroque (64-84 dB) and heavy metal (75-84 dB) music for 10 min, and their HRV was evaluated for 30 min after music cessation. We analyzed the following HRV indices: Standard deviation of normal-to-normal (SDNN) intervals, root mean square of successive differences (RMSSD), percentage of normal-to-normal 50 (pNN50), low frequency (LF), high frequency (HF), and LF/HF ratio. SDNN, LF in absolute units (ms 2 ) and normalized (nu), and LF/HF ratio increased while HF index (nu) decreased after exposure to classical baroque music. Regarding the heavy metal music style, it was observed that there were increases in SDNN, RMSSD, pNN50, and LF (ms 2 ) after the musical stimulation. In conclusion, the recovery response of cardiac autonomic modulation after exposure to auditory stimulation with music featured an increased global activity of both systems for the two musical styles, with a cardiac sympathetic modulation for classical baroque music and a cardiac vagal tone for the heavy metal style.

  20. Response of cardiac autonomic modulation after a single exposure to musical auditory stimulation.

    PubMed

    Ferreira, Lucas L; Vanderlei, Luiz Carlos M; Guida, Heraldo L; de Abreu, Luiz Carlos; Garner, David M; Vanderlei, Franciele M; Ferreira, Celso; Valenti, Vitor E

    2015-01-01

    The acute effects after exposure to different styles of music on cardiac autonomic modulation assessed through heart rate variability (HRV) analysis have not yet been well elucidated. We aimed to investigate the recovery response of cardiac autonomic modulation in women after exposure to musical auditory stimulation of different styles. The study was conducted on 30 healthy women aged between 18 years and 30 years. We did not include subjects having previous experience with musical instruments and those who had an affinity for music styles. The volunteers remained at rest for 10 min and were exposed to classical baroque (64-84 dB) and heavy metal (75-84 dB) music for 10 min, and their HRV was evaluated for 30 min after music cessation. We analyzed the following HRV indices: Standard deviation of normal-to-normal (SDNN) intervals, root mean square of successive differences (RMSSD), percentage of normal-to-normal 50 (pNN50), low frequency (LF), high frequency (HF), and LF/HF ratio. SDNN, LF in absolute units (ms 2 ) and normalized (nu), and LF/HF ratio increased while HF index (nu) decreased after exposure to classical baroque music. Regarding the heavy metal music style, it was observed that there were increases in SDNN, RMSSD, pNN50, and LF (ms 2 ) after the musical stimulation. In conclusion, the recovery response of cardiac autonomic modulation after exposure to auditory stimulation with music featured an increased global activity of both systems for the two musical styles, with a cardiac sympathetic modulation for classical baroque music and a cardiac vagal tone for the heavy metal style. PMID:25774614

  1. Response of cardiac autonomic modulation after a single exposure to musical auditory stimulation

    PubMed Central

    Ferreira, Lucas L.; Vanderlei, Luiz Carlos M.; Guida, Heraldo L.; de Abreu, Luiz Carlos; Garner, David M.; Vanderlei, Franciele M.; Ferreira, Celso; Valenti, Vitor E.

    2015-01-01

    The acute effects after exposure to different styles of music on cardiac autonomic modulation assessed through heart rate variability (HRV) analysis have not yet been well elucidated. We aimed to investigate the recovery response of cardiac autonomic modulation in women after exposure to musical auditory stimulation of different styles. The study was conducted on 30 healthy women aged between 18 years and 30 years. We did not include subjects having previous experience with musical instruments and those who had an affinity for music styles. The volunteers remained at rest for 10 min and were exposed to classical baroque (64-84 dB) and heavy metal (75-84 dB) music for 10 min, and their HRV was evaluated for 30 min after music cessation. We analyzed the following HRV indices: Standard deviation of normal-to-normal (SDNN) intervals, root mean square of successive differences (RMSSD), percentage of normal-to-normal 50 (pNN50), low frequency (LF), high frequency (HF), and LF/HF ratio. SDNN, LF in absolute units (ms2) and normalized (nu), and LF/HF ratio increased while HF index (nu) decreased after exposure to classical baroque music. Regarding the heavy metal music style, it was observed that there were increases in SDNN, RMSSD, pNN50, and LF (ms2) after the musical stimulation. In conclusion, the recovery response of cardiac autonomic modulation after exposure to auditory stimulation with music featured an increased global activity of both systems for the two musical styles, with a cardiac sympathetic modulation for classical baroque music and a cardiac vagal tone for the heavy metal style. PMID:25774614

  2. Cancer Pain Control for Advanced Cancer Patients by Using Autonomic Nerve Pharmacopuncture

    PubMed Central

    Kang, Hwi-joong; Yoon, Jung-won; Park, Ji-hye; Cho, Chong-kwan; Yoo, Hwa-seung

    2014-01-01

    Objectives: The purpose of this study is to report a case series of advanced cancer patients whose cancer pain was relieved by using autonomic nerve pharmacopuncture (ANP) treatment. ANP is a subcutaneous injection therapy of mountain ginseng pharmacopuncture (MGP) along the acupoints on the spine (Hua-Tuo-Jia-Ji-Xue; 0.5 cun lateral to the lower border of the spinous processes of vertebrae) to enhance the immune system and to balance autonomic nerve function. Methods: Patients with three different types of cancer (gastric cancer, lung cancer, colon cancer with distant metastases) with cancer pain were treated with ANP. 1 mL of MGP was injected into the bilateral Hua-Tuo-Jia-Ji-Xue on the T1-L5 sites (total 12 ─ 20 mL injection) of each patient’s dorsum by using the principle of symptom differentiation. During ANP treatment, the visual analogue scale (VAS) for pain was used to assess their levels of cancer pain; also, the dosage and the frequency of analgesic use were measured. Results: The cancer pain levels of all three patients improved with treatment using ANP. The VAS scores of the three patients decreased as the treatment progressed. The dosage and the frequency of analgesics also gradually decreased during the treatment period. Significantly, no related adverse events were found. Conclusion: ANP has shown benefit in controlling cancer pain for the three different types of cancer investigated in this study and in reducing the dosage and the frequency of analgesics. ANP is expected to be beneficial for reducing cancer pain and, thus, to be a promising new treatment for cancer pain. PMID:25780711

  3. Stress-induced cardiac autonomic reactivity and preclinical atherosclerosis: does arterial elasticity modify the association?

    PubMed

    Chumaeva, Nadja; Hintsanen, Mirka; Pulkki-Råback, Laura; Merjonen, Päivi; Elovainio, Marko; Hintsa, Taina; Juonala, Markus; Kähönen, Mika; Raitakari, Olli T; Keltikangas-Järvinen, Liisa

    2015-01-01

    The effect of acute mental stress on atherosclerosis can be estimated using arterial elasticity measured by carotid artery distensibility (Cdist). We examined the interactive effect of acute stress-induced cardiac reactivity and Cdist to preclinical atherosclerosis assessed by carotid intima-media thickness (IMT) in 58 healthy adults aged 24-39 years participated in the epidemiological Young Finns Study. Cdist and IMT were measured ultrasonographically. Impedance electrocardiography was used to measure acute mental stress-induced cardiac autonomic responses: heart rate (HR), respiratory sinus arrhythmia and pre-ejection period after the mental arithmetic and the public speaking tasks. Interactions between HR reactivity and Cdist in relation to preclinical atherosclerosis were found. The results imply that elevated HR reactivity to acute mental stress is related to less atherosclerosis among healthy participants with higher arterial elasticity. Possibly, increased cardiac reactivity in response to challenging tasks is an adaptive reaction related to better cardiovascular health.

  4. [Axon-reflex based nerve fiber function assessment in the detection of autonomic neuropathy].

    PubMed

    Siepmann, T; Illigens, B M-W; Reichmann, H; Ziemssen, T

    2014-10-01

    Axon-reflex-based tests of peripheral small nerve fiber function including techniques to quantify vasomotor and sudomotor responses following acetylcholine iontophoresis are used in the assessment of autonomic neuropathy. However, the established axon-reflex-based techniques, laser Doppler flowmetry (LDF) to assess vasomotor function and quantitative sudomotor axon-reflex test (QSART) to measure sudomotor function, are limited by technically demanding settings as well as interindividual variability and are therefore restricted to specialized clinical centers. New axon-reflex tests are characterized by quantification of axon responses with both temporal and spatial resolution and include "laser Doppler imaging (LDI) axon-reflex flare area test" to assess vasomotor function, the quantitative direct and indirect test of sudomotor function (QDIRT) to quantify sudomotor function, as well as the quantitative pilomotor axon-reflex test (QPART), a technique to measure pilomotor nerve fiber function using adrenergic cutaneous stimulation through phenylephrine iontophoresis. The effectiveness of new axon-reflex tests in the assessment of neuropathy is currently being investigated in clinical studies.

  5. Non-cardiac autonomic tests in diabetes: use of the galvanic skin response.

    PubMed

    Macleod, A F; Smith, S A; Cowell, T; Richardson, P R; Sonksen, P H

    1991-01-01

    Diabetic peripheral neuropathy affects both large myelinated and small unmyelinated nerve fibres. It has been proposed that the small unmyelinated fibres, responsible for pain and temperature sense, and autonomic function, are involved early, particularly in subjects with painful symptoms, and may be important in foot ulceration. The sympathetic skin response has been used to investigate the function of small unmyelinated sympathetic fibres in the limbs of diabetic subjects. Changes in skin resistance at the fingers and toes have been measured simultaneously after a sound stimulus. These procedures were controlled using a microcomputer. Data collected from 55 diabetic subjects, randomly selected from the diabetic clinic, have been compared with results from conventional tests of large motor and sensory fibres and autonomic function. The ratio of the change in skin resistance for toes to fingers correlated with sural and posterior tibial nerve conduction velocity (correlation coefficients 0.54 and 0.42, p less than 0.001 and p less than 0.01, respectively), with the expired to inspired ratio (correlation coefficient 0.51, p less than 0.01), and inversely with vibration perception threshold in the feet (correlation coefficient 0.50, p less than 0.001). Correlation with the dark adapted pupil diameter, however, only just achieved statistical significance (correlation coefficient 0.27, p = 0.043). We propose that this simple test may elucidate the role of the peripheral autonomic system in diabetic neuropathy.

  6. Influence of Smoking Consumption and Nicotine Dependence Degree in Cardiac Autonomic Modulation

    PubMed Central

    dos Santos, Ana Paula Soares; Ramos, Dionei; de Oliveira, Gabriela Martins; dos Santos, Ana Alice Soares; Freire, Ana Paula Coelho Figueira; It, Juliana Tiyaki; Fernandes, Renato Peretti Prieto; Vanderlei, Luiz Carlos Marques; Ramos, Ercy Mara Cipulo

    2016-01-01

    Background Smoking consumption alters cardiac autonomic function. Objective Assess the influence of the intensity of smoking and the nicotine dependence degree in cardiac autonomic modulation evaluated through index of heart rate variability (HRV). Methods 83 smokers, of both genders, between 50 and 70 years of age and with normal lung function were divided according to the intensity of smoking consumption (moderate and severe) and the nicotine dependency degree (mild, moderate and severe). The indexes of HRV were analyzed in rest condition, in linear methods in the time domain (TD), the frequency domain (FD) and through the Poincaré plot. For the comparison of smoking consumption, unpaired t test or Mann-Whitney was employed. For the analysis between the nicotine dependency degrees, we used the One-way ANOVA test, followed by Tukey's post test or Kruskal-Wallis followed by Dunn's test. The significance level was p < 0,05. Results Differences were only found when compared to the different intensities of smoking consumption in the indexes in the FD. LFun (62.89 ± 15.24 vs 75.45 ± 10.28), which corresponds to low frequency spectrum component in normalized units; HFun (37.11 ± 15.24 vs 24.55 ± 10.28), which corresponds to high frequency spectrum component in normalized units and in the LF/HF ratio (2.21 ± 1.47 vs 4.07 ± 2.94). However, in the evaluation of nicotine dependency, significant differences were not observed (p > 0.05). Conclusion Only the intensity of smoking consumption had an influence over the cardiac autonomic modulation of the assessed tobacco smokers. Tobacco smokers with severe intensity of smoking consumption presented a lower autonomic modulation than those with moderate intensity. PMID:27142649

  7. Myocardial Infarction Causes Transient Cholinergic Transdifferentiation of Cardiac Sympathetic Nerves via gp130

    PubMed Central

    Olivas, Antoinette; Gardner, Ryan T.; Wang, Lianguo; Ripplinger, Crystal M.; Woodward, William R.

    2016-01-01

    Sympathetic and parasympathetic control of the heart is a classic example of norepinephrine (NE) and acetylcholine (ACh) triggering opposing actions. Sympathetic NE increases heart rate and contractility through activation of β receptors, whereas parasympathetic ACh slows the heart through muscarinic receptors. Sympathetic neurons can undergo a developmental transition from production of NE to ACh and we provide evidence that mouse cardiac sympathetic nerves transiently produce ACh after myocardial infarction (MI). ACh levels increased in viable heart tissue 10–14 d after MI, returning to control levels at 21 d, whereas NE levels were stable. At the same time, the genes required for ACh synthesis increased in stellate ganglia, which contain most of the sympathetic neurons projecting to the heart. Immunohistochemistry 14 d after MI revealed choline acetyltransferase (ChAT) in stellate sympathetic neurons and vesicular ACh transporter immunoreactivity in tyrosine hydroxylase-positive cardiac sympathetic fibers. Finally, selective deletion of the ChAT gene from adult sympathetic neurons prevented the infarction-induced increase in cardiac ACh. Deletion of the gp130 cytokine receptor from sympathetic neurons prevented the induction of cholinergic genes after MI, suggesting that inflammatory cytokines induce the transient acquisition of a cholinergic phenotype in cardiac sympathetic neurons. Ex vivo experiments examining the effect of NE and ACh on rabbit cardiac action potential duration revealed that ACh blunted both the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. This raises the possibility that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility. SIGNIFICANCE STATEMENT Sympathetic neurons normally make norepinephrine (NE), which increases heart rate and the contractility of cardiac myocytes. We found that, after myocardial infarction, the

  8. Effect of exercise on cardiac autonomic function in females with rheumatoid arthritis.

    PubMed

    Janse van Rensburg, Dina C; Ker, James A; Grant, Catharina C; Fletcher, Lizelle

    2012-08-01

    The objective of this study is to evaluate the effect of exercise on cardiac autonomic function as measured by short-term heart rate variability (HRV) in females suffering from rheumatoid arthritis (RA). Females with confirmed RA were randomly assigned to an exercise group (RAE) and a sedentary group (RAC). RAE was required to train under supervision two to three times per week, for 3 months. Three techniques (time domain, frequency domain and Poincaré plot analyses) were used to measure HRV at baseline and study completion. At baseline, RAC (n = 18) had a significantly higher variability compared to RAE (n = 19) for most HRV indicators. At study completion, the variables showing significant changes (p = 0.01 to 0.05) favoured RAE in all instances. Wilcoxon signed rank tests were performed to assess changes within groups from start to end. RAE showed significant improvement for most of the standing variables, including measurements of combined autonomic influence, e.g. SDRR (p = 0.002) and variables indicating only vagal influence, e.g. pNN50 (p = 0.014). RAC mostly deteriorated with emphasis on variables measuring vagal influence (RMSSD, pNN50, SD1 and HF (ms(2)). Study results indicated that 12 weeks of exercise intervention had a positive effect on cardiac autonomic function as measured by short-term HRV, in females with RA. Several of the standing variables indicated improved vagal influence on the heart rate. Exercise can thus potentially be used as an instrument to improve cardiac health in a patient group known for increased cardiac morbidity.

  9. Preserved cardiac autonomic dynamics during sleep in patients with spinal cord injury

    PubMed Central

    Tobaldini, Eleonora; Proserpio, Paola; Sambusida, Katrina; Lanza, Andrea; Redaelli, Tiziana; Frigerio, Pamela; Fratticci, Lara; Rosa, Silvia; Casali, Karina R.; Somers, Virend K; Nobili, Lino; Montano, Nicola

    2015-01-01

    Spinal cord injuries (SCI) are associated with altered cardiovascular autonomic control. Sleep is characterized by modifications of autonomic control across sleep stages; however, no data are available on the effects of SCI on CAC during sleep. The aim of our study was to assess cariac autonomic modulation during sleep in SCI patients. Overnight polysomnographic recordings were obtained in 27 patients with cervical (Cerv) and thoracic (Thor) SCI and in healthy subjects (Controls). ECG and respiration were extracted from PSG, divided into sleep stages (W, N2, N3 and REM) for assessment of CAC, using symbolic analysis and Corrected Conditional Entropy. SA identifies three main indices, 0V%, index of sympathetic modulation, and 2LV% and 2UV%, markers of vagal modulation. CCE evaluates the complexity of heart period time series. Symbolic analysis revealed a reduction of 0V% in N2 and N3 compared to W and REM and an increase of 2LV% and 2UV% in N2 and N3 compared to W and REM in SCI patients, independent of the level of the lesion, and similar to Controls. Corrected Conditional Entropy was higher in N2 and N3 compared to W and REM in all three groups. In SCI patients, cardiac autonomic control changed across sleep stages, with a reduction of sympathetic and an increase of parasympathetic modulation during NREM compared to W and REM and a parallel increase of complexity during NREM, similar to Controls. Cardiac autonomic dynamics during sleep are maintained in SCI, independent of the level of the lesion. PMID:25953303

  10. Vasopressin responses to unloading arterial baroreceptors during cardiac nerve blockade in conscious dogs

    NASA Technical Reports Server (NTRS)

    O'Donnell, C. P.; Keil, L. C.; Thrasher, T. N.

    1992-01-01

    We examined the relative contributions of afferent input from the heart and from arterial baroreceptors in the stimulation of arginine vasopressin (AVP) secretion in response to hypotension caused by thoracic inferior vena caval constriction (TIVCC). Afferent input from cardiac receptors was reversibly blocked by infusing 2% procaine into the pericardial space to anesthetize the cardiac nerves. Acute cardiac nerve blockade (CNB) alone caused a rise in mean arterial pressure (MAP) of 24 +/- 3 mmHg but no change in plasma AVP. If the rise in MAP was prevented by TIVCC, plasma AVP increased by 39 +/- 15 pg/ml, and if MAP was allowed to increase and then was forced back to control by TIVCC, plasma AVP increased by 34 +/- 15 pg/ml. Thus the rise in MAP during CNB stimulated arterial baroreceptors, which in turn compensated for the loss of inhibitory input from cardiac receptors on AVP secretion. These results indicate that the maximum secretory response resulting from complete unloading of cardiac receptors at a normal MAP results in a mean increase in plasma AVP of 39 pg/ml in this group of dogs. When MAP was reduced 25% below control levels (from 95 +/- 5 to 69 +/- 3 mmHg) by TIVCC during pericardial saline infusion, plasma AVP increased by 79 +/- 42 pg/ml. However, the same degree of hypotension during CNB (MAP was reduced from 120 +/- 5 to 71 +/- 3 mmHg) led to a greater (P less than 0.05) increase in plasma AVP of 130 +/- 33 pg/ml. Because completely unloading cardiac receptors can account for an increase of only 39 pg/ml on average in this group of dogs, the remainder of the increase in plasma AVP must be due to other sources of stimulation. We suggest that the principal stimulus to AVP secretion after acute CNB in these studies arises from unloading the arterial baroreceptors.

  11. Assessment of Cardiac Autonomic Functions in Medical Students With Type D Personality

    PubMed Central

    Panwar, R. Abhilasha Singh

    2016-01-01

    Introduction Type D personality experiences joint occurrence of Negative Affectivity and Social Inhibition. It is an emerging risk factor for cardiovascular disease, with prevalence being 18-53% among cardiac patients. Type D personality people have exaggerated cardiovascular activity mediated by increased sympathetic drive and decreased vagal control of the heart which leads to enhanced risk of hypertension and is an independent risk factor for coronary heart disease. Aim To compare the cardiac autonomic function of Type D and non-Type D students. To compare cardiac autonomic functions among male and female students and students with and without family history of hypertension and coronary artery disease among Type D. To find the most affected test among Type D students. Materials and Methods Thirty Type D and 30 non- Type D medical students were identified by DS14. The Parasympathetic cardiac autonomic tests done assessed Heart Rate response to valsalva manoeuvre, immediate heart rate response to standing and heart rate variation during deep breathing. Sympathetic tests assessed BP response to standing and Sustained Hand Grip. The heart rate and R-R interval measurement were got from lead II of ECG recordings on Polyrite D. Statistical analysis was done using SPSS software. Unpaired student’s t-test was used and p-value <0.05 was considered to be statistically significant. Results Type D students showed slightly decreased parasympathetic activity and increased sympathetic activity when compared to non-Type D students even though there was no statistically significant difference between them. There is a statistically significant decrease in valsalva ratio among females (p<0.01) when compared to males. There is a statistically significant decrease in 30:15 ratio and BP response to handgrip (p<0.05) among students with family history of hypertension and coronary artery disease when compared with students with no family history of coronary artery disease. Valsalva

  12. Silent myocardial infarction secondary to cardiac autonomic neuropathy in a patient with rheumatoid arthritis.

    PubMed

    Unnikrishnan, Dileep; Jacob, Aasems; Anthony Diaz, Mark; Lederman, Jeffrey

    2016-01-01

    An 83-year-old female patient with rheumatoid arthritis and hypertension presented to the emergency department with fever and chills of 1 day duration. On examination, temperature was 100.9 F, heart rate 111/min and she had orthostatic hypotension. Laboratory tests showed elevated blood urea nitrogen and white cell count. The patient underwent treatment for symptomatic urinary tract infection and while her fever and leucocytosis resolved, tachycardia persisted. An EKG done showed T inversions in leads II, III, arteriovenous fistula, V2 and V3. Troponin-I was elevated. Nuclear stress test revealed apical wall motion abnormality confirming myocardial infarction. Ewing's tests were carried out at bedside and these diagnosed severe autonomic neuropathy. Rheumatoid arthritis can cause cardiac autonomic neuropathy from chronic inflammation. This case entails the importance of assessing and detecting cardiac autonomic neuropathy in chronic inflammatory conditions, and the need to be cautious of acute coronary events in these patients, even for minimal or no symptoms. PMID:27489064

  13. Abnormal autonomic cardiac response to transient hypoxia in sickle cell anemia

    PubMed Central

    Sangkatumvong, S; Coates, T D; Khoo, M C K

    2010-01-01

    The objective of this study was to non-invasively assess cardiac autonomic control in subjects with sickle cell anemia (SCA) by tracking the changes in heart rate variability (HRV) that occur following brief exposure to a hypoxic stimulus. Five African–American SCA patients and seven healthy control subjects were recruited to participate in this study. Each subject was exposed to a controlled hypoxic stimulus consisting of five breaths of nitrogen. Time-varying spectral analysis of HRV was applied to estimate the cardiac autonomic response to the transient episode of hypoxia. The confounding effects of changes in respiration on the HRV spectral indices were reduced by using a computational model. A significant decrease in the parameters related to parasympathetic control was detected in the post-hypoxic responses of the SCA subjects relative to normal controls. The spectral index related to sympathetic activity, on the other hand, showed a tendency to increase the following hypoxic stimulation, but the change was not significant. This study suggests that there is some degree of cardiovascular autonomic dysfunction in SCA that is revealed by the response to transient hypoxia. PMID:18460753

  14. Effects of Kefir on the Cardiac Autonomic Tones and Baroreflex Sensitivity in Spontaneously Hypertensive Rats

    PubMed Central

    Klippel, Brunella F.; Duemke, Licia B.; Leal, Marcos A.; Friques, Andreia G. F.; Dantas, Eduardo M.; Dalvi, Rodolfo F.; Gava, Agata L.; Pereira, Thiago M. C.; Andrade, Tadeu U.; Meyrelles, Silvana S.; Campagnaro, Bianca P.; Vasquez, Elisardo C.

    2016-01-01

    Aims: It has been previously shown that the probiotic kefir (a symbiotic matrix containing acid bacteria and yeasts) attenuated the hypertension and the endothelial dysfunction in spontaneously hypertensive rats (SHR). In the present study, the effect of chronic administration of kefir on the cardiac autonomic control of heart rate (HR) and baroreflex sensitivity (BRS) in SHR was evaluated. Methods: SHR were treated with kefir (0.3 mL/100 g body weight) for 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Cardiac autonomic vagal (VT) and sympathetic (ST) tones were estimated through the blockade of the cardiac muscarinic receptors (methylatropine) and the blockade of β1−adrenoceptor (atenolol). The BRS was evaluated by the tachycardia and bradycardia responses to vasoactive drug-induced decreases and increases in arterial blood pressure (BP), respectively. Additionally, spontaneous BRS was estimated by autoregressive spectral analysis. Results: Kefir-treated SHR exhibited significant attenuation of basal BP, HR, and cardiac hypertrophy compared to non-treated SHR (12, 13, and 21%, respectively). Cardiac VT and ST were significantly altered in the SHR (~40 and ~90 bpm) compared with Wistar rats (~120 and ~30 bpm) and were partially recovered in SHR-kefir (~90 and ~25 bpm). SHR exhibited an impaired bradycardic BRS (~50%) compared with Wistar rats, which was reduced to ~40% in the kefir-treated SHR and abolished by methylatropine in all groups. SHR also exhibited a significant impairment of the tachycardic BRS (~23%) compared with Wistar rats and this difference was reduced to 8% in the SHR-kefir. Under the action of atenolol the residual reflex tachycardia was smaller in SHR than in Wistar rats and kefir attenuated this abnormality. Spectral analysis revealed increased low frequency components of BP (~3.5-fold) and pulse interval (~2-fold) compared with Wistar rats and these differences were reduced by kefir-treatment to ~1

  15. An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Doubutamine Challenges in Heart Failure-Prone Rats

    EPA Science Inventory

    Background: Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) is an ubiquitous air pollutant believed to provoke cardiac events partly through imbalance of the sympathetic and parasympathetic branches of the autonomic nervo...

  16. The effect of ovariectomy on cardiac autonomic control in rats submitted to aerobic physical training.

    PubMed

    Tezini, Geisa C S V; Silveira, Larissa C R; Maida, Karina D; Blanco, João Henrique D; Souza, Hugo C D

    2008-12-01

    We have investigated the ovariectomy effects on the cardiovascular autonomic adaptations induced by aerobic physical training and the role played by nitric oxide (NO). Female Wistar rats (n=70) were divided into five groups: Sedentary Sham (SS); Trained Sham (TS); Trained Hypertensive Sham treated with N(G)-nitro-L-arginine methyl ester (L-NAME) (THS); Trained Ovariectomized (TO); and Trained Hypertensive Ovariectomized treated with L-NAME (THO). Trained groups were submitted to a physical training during 10 weeks. The cardiovascular autonomic control was investigated in all groups using different approaches: 1) pharmacological evaluation of autonomic tonus with methylatropine and propranolol; 2) analysis of heart rate (HR) and systolic arterial pressure (AP) variability; 3) spontaneous baroreflex sensitivity (BRS) evaluation. Hypertension was observed in THS and THO groups. Pharmacological analysis showed that TS group had increased predominance of autonomic vagal tonus compared to SS group. HR and intrinsic HR were found to be reduced in all trained animals. TS group, compared to other groups, showed a reduction in LF oscillations (LF=0.2-0.75 Hz) of pulse interval in both absolute and normalized units as well as an increase in HF oscillations (HF=0.75-2.50 Hz) in normalized unit. BRS analysis showed that alpha-index was different between all groups. TS group presented the greatest value, followed by the TO, SS, THO and THS groups. Ovariectomy has negative effects on cardiac autonomic modulation in trained rats, which is characterized by an increase in the sympathetic autonomic modulation. These negative effects suggest NO deficiency. In contrast, the ovariectomy seems to have no effect on AP variability.

  17. Juvenile onset depression alters cardiac autonomic balance in response to psychological and physical challenges

    PubMed Central

    Bylsma, Lauren M.; Yaroslavsky, Ilya; Rottenberg, Jonathan; Jennings, J. Richard; George, Charles J.; Kiss, Enikő; Kapornai, Krisztina; Halas, Kitti; Dochnal, Roberta; Lefkovics, Eszter; Benák, István; Baji, Ildikó; Vetró, Ágnes; Kovacs, Maria

    2015-01-01

    Cardiac autonomic balance (CAB) indexes the ratio of parasympathetic to sympathetic activation (Berntson, Norman, Hawkley, & Cacioppo, 2008), and is believed to reflect overall autonomic flexibility in the face of environmental challenges. However, CAB has not been examined in depression. We examined changes in CAB and other physiological variables in 179 youth with a history of juvenile onset depression (JOD) and 161 healthy controls, in response to two psychological (unsolvable puzzle, sad film) and two physical (handgrip, and forehead cold pressor) challenges. In repeated measures analyses, controls showed expected reductions in CAB for both the handgrip and unsolvable puzzle, reflecting a shift to sympathetic relative to parasympathetic activation. By contrast, JOD youth showed increased CAB from baseline for both tasks (ps<.05). No effects were found for the forehead cold pressor or sad film tasks, suggesting that CAB differences may arise under conditions requiring greater attentional control or sustained effort. PMID:26225465

  18. Cardiac-Autonomic Imbalance and Baroreflex Dysfunction in the Renovascular Angiotensin-Dependent Hypertensive Mouse

    PubMed Central

    Campagnaro, Bianca P.; Gava, Agata L.; Meyrelles, Silvana S.; Vasquez, Elisardo C.

    2012-01-01

    Mouse models provide powerful tools for studying the mechanisms underlying the dysfunction of the autonomic reflex control of cardiovascular function and those involved in cardiovascular diseases. The established murine model of two-kidney, one-clip (2K1C) angiotensin II-dependent hypertension represents a useful tool for studying the neural control of cardiovascular function. In this paper, we discuss the main contributions from our laboratory and others regarding cardiac-autonomic imbalance and baroreflex dysfunction. We show recent data from the angiotensin-dependent hypertensive mouse demonstrating DNA damage and oxidative stress using the comet assay and flow cytometry, respectively. Finally, we highlight the relationships between angiotensin and peripheral and central nervous system areas of cardiovascular control and oxidative stress in the 2K1C hypertensive mouse. PMID:23193440

  19. Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation

    NASA Astrophysics Data System (ADS)

    Guiraud, David; Andreu, David; Bonnet, Stéphane; Carrault, Guy; Couderc, Pascal; Hagège, Albert; Henry, Christine; Hernandez, Alfredo; Karam, Nicole; Le Rolle, Virginie; Mabo, Philippe; Maciejasz, Paweł; Malbert, Charles-Henri; Marijon, Eloi; Maubert, Sandrine; Picq, Chloé; Rossel, Olivier; Bonnet, Jean-Luc

    2016-08-01

    Objective. Neural signals along the vagus nerve (VN) drive many somatic and autonomic functions. The clinical interest of VN stimulation (VNS) is thus potentially huge and has already been demonstrated in epilepsy. However, side effects are often elicited, in addition to the targeted neuromodulation. Approach. This review examines the state of the art of VNS applied to two emerging modulations of autonomic function: heart failure and obesity, especially morbid obesity. Main results. We report that VNS may benefit from improved stimulation delivery using very advanced technologies. However, most of the results from fundamental animal studies still need to be demonstrated in humans.

  20. Sympathetic cardiac hyperinnervation and atrial autonomic imbalance in diet-induced obesity promote cardiac arrhythmias.

    PubMed

    McCully, Belinda H; Hasan, Wohaib; Streiff, Cole T; Houle, Jennifer C; Woodward, William R; Giraud, George D; Brooks, Virginia L; Habecker, Beth A

    2013-11-15

    Obesity increases the risk of arrhythmias and sudden cardiac death, but the mechanisms are unknown. This study tested the hypothesis that obesity-induced cardiac sympathetic outgrowth and hyperinnervation promotes the development of arrhythmic events. Male Sprague-Dawley rats (250-275 g), fed a high-fat diet (33% kcal/fat), diverged into obesity-resistant (OR) and obesity-prone (OP) groups and were compared with rats fed normal chow (13% kcal/fat; CON). In vitro experiments showed that both OR and OP rats exhibited hyperinnervation of the heart and high sympathetic outgrowth compared with CON rats, even though OR rats are not obese. Despite the hyperinnervation and outgrowth, we showed that, in vivo, OR rats were less susceptible to arrhythmic events after an intravenous epinephrine challenge compared with OP rats. On examining total and stimulus-evoked neurotransmitter levels in an ex vivo system, we demonstrate that atrial acetylcholine content and release were attenuated in OP compared with OR and CON groups. OP rats also expressed elevated atrial norepinephrine content, while norepinephrine release was suppressed. These findings suggest that the consumption of a high-fat diet, even in the absence of overt obesity, stimulates sympathetic outgrowth and hyperinnervation of the heart. However, normalized cardiac parasympathetic nervous system control may protect the heart from arrhythmic events.

  1. [Non-invasive evaluation of the cardiac autonomic nervous system by PET]. Progress report

    SciTech Connect

    Not Available

    1992-12-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data.

  2. [Non-invasive evaluation of the cardiac autonomic nervous system by PET

    SciTech Connect

    Not Available

    1992-01-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data.

  3. Bariatric Surgery Restores Cardiac and Sudomotor Autonomic C-Fiber Dysfunction towards Normal in Obese Subjects with Type 2 Diabetes

    PubMed Central

    Lieb, David C.; Wohlgemuth, Stephen D.

    2016-01-01

    Objective The aim was to evaluate the impact of bariatric surgery on cardiac and sudomotor autonomic C-fiber function in obese subjects with and without Type 2 diabetes mellitus (T2DM), using sudorimetry and heart rate variability (HRV) analysis. Method Patients were evaluated at baseline, 4, 12 and 24 weeks after vertical sleeve gastrectomy or Roux-en-Y gastric bypass. All subjects were assessed using SudoscanTM to measure electrochemical skin conductance (ESC) of hands and feet, time and frequency domain analysis of HRV, Neurologic Impairment Scores of lower legs (NIS-LL), quantitative sensory tests (QST) and sural nerve conduction studies. Results Seventy subjects completed up to 24-weeks of follow-up (24 non-T2DM, 29 pre-DM and 17 T2DM). ESC of feet improved significantly towards normal in T2DM subjects (Baseline = 56.71±3.98 vs 12-weeks = 62.69±3.71 vs 24-weeks = 70.13±2.88, p<0.005). HRV improved significantly in T2DM subjects (Baseline sdNN (sample difference of the beat to beat (NN) variability) = 32.53±4.28 vs 12-weeks = 44.94±4.18 vs 24-weeks = 49.71±5.19, p<0,001 and baseline rmsSD (root mean square of the difference of successive R-R intervals) = 23.88±4.67 vs 12-weeks = 38.06±5.39 vs 24-weeks = 43.0±6.25, p<0.0005). Basal heart rate (HR) improved significantly in all groups, as did weight, body mass index (BMI), percent body fat, waist circumference and high-density lipoprotein (HDL). Glycated hemoglobin (HbA1C), insulin and HOMA2-IR (homeostatic model assessment) levels improved significantly in pre-DM and T2DM subjects. On multiple linear regression analysis, feet ESC improvement was independently associated with A1C, insulin and HOMA2-IR levels at baseline, and improvement in A1C at 24 weeks, after adjusting for age, gender and ethnicity. Sudomotor function improvement was not associated with baseline weight, BMI, % body fat or lipid levels. Improvement in basal HR was also independently associated with A1C, insulin and HOMA2-IR levels at

  4. Perinatal taurine exposure programs patterns of autonomic nerve activity responses to tooth pulp stimulation in adult male rats

    PubMed Central

    Khimsuksri, Sawita; Wyss, J. Michael; Thaeomor, Atcharaporn; Paphangkorakit, Jarin; Jirakulsomchok, Dusit; Roysommuti, Sanya

    2016-01-01

    Perinatal taurine excess or deficit influences adult health and disease, especially relative to the autonomic nervous system. This study tests the hypothesis that perinatal taurine exposure influences adult autonomic nervous system control of arterial pressure in response to acute electrical tooth pulp stimulation. Female Sprague-Dawley rats were fed normal rat chow with 3% β-alanine (taurine depletion, TD), 3% taurine (taurine supplementation, TS) or water alone (control, C) from conception to weaning. Their male offspring were fed normal rat chow and tap water throughout the experiment. At 8–10 weeks of age, blood chemistry, arterial pressure, heart rate and renal sympathetic nerve activity were measured in anesthetized rats. Age, body weight, mean arterial pressure, heart rate, plasma electrolytes, blood urea nitrogen, plasma creatinine and plasma cortisol were not significantly different among the three groups. Before tooth pulp stimulation, low (0.3–0.5 Hz) and high frequency (0.5–4.0 Hz) power spectral densities of arterial pressure were not significantly different among groups, while the power spectral densities of renal sympathetic nerve activity were significantly decreased in TD compared to control rats. Tooth pulp stimulation did not change arterial pressure, heart rate, renal sympathetic nerve and arterial pressure power spectral densities in the 0.3–4.0 Hz spectrum or renal sympathetic nerve firing rate in any group. In contrast, perinatal taurine imbalance disturbed very low frequency power spectral densities of both arterial pressure and renal sympathetic nerve activity (below 0.1 Hz), both before and after the tooth pulp stimulation. The power densities of TS were most sensitive to ganglionic blockade and central adrenergic inhibition, while those of TD were sensitive to both central and peripheral adrenergic inhibition. The present data indicate that perinatal taurine imbalance can lead to aberrant autonomic nervous system responses in

  5. Effects of Intrinsic and Extrinsic Cardiac Nerves on Atrial Arrhythmia in Experimental Pulmonary Artery Hypertension.

    PubMed

    Zhao, Qingyan; Deng, Hongping; Jiang, Xuejun; Dai, Zixuan; Wang, Xiaozhan; Wang, Xule; Guo, Zongwen; Hu, Wei; Yu, Shengbo; Yang, Bo; Tang, Yanhong; Huang, Congxin

    2015-11-01

    Atrial arrhythmia, which includes atrial fibrillation (AF) and atrial flutter (AFL), is common in patients with pulmonary arterial hypertension (PAH), who often have increased sympathetic nerve activity. Here, we tested the hypothesis that autonomic nerves play important roles in vulnerability to AF/AFL in PAH. The atrial effective refractory period and AF/AFL inducibility at baseline and after anterior right ganglionated plexi ablation were determined during left stellate ganglion stimulation or left renal sympathetic nerve stimulation in beagle dogs with or without PAH. Then, sympathetic nerve, β-adrenergic receptor densities and connexin 43 expression in atrial tissues were assessed. The sum of the window of vulnerability to AF/AFL was increased in the right atrium compared with the left atrium at baseline in the PAH dogs but not in the controls. The atrial effective refractory period dispersion was increased in the control dogs, but not in the PAH dogs, during left stellate ganglion stimulation. The voltage thresholds for inducing AF/AFL during anterior right ganglionated plexi stimulation were lower in the PAH dogs than in the controls. The AF/AFL inducibility was suppressed after ablation of the anterior right ganglionated plexi in the PAH dogs. The PAH dogs had higher sympathetic nerve and β1-adrenergic receptor densities, increased levels of nonphosphorylated connexin 43, and heterogeneous connexin 43 expression in the right atrium when compared with the control dogs. The anterior right ganglionated plexi play important roles in the induction of AF/AFL. AF/AFL induction was associated with right atrium substrate remodeling in dogs with PAH.

  6. Comparison of Transcutaneous Electrical Nerve Stimulation and Parasternal Block for Postoperative Pain Management after Cardiac Surgery.

    PubMed

    Ozturk, Nilgun Kavrut; Baki, Elif Dogan; Kavakli, Ali Sait; Sahin, Ayca Sultan; Ayoglu, Raif Umut; Karaveli, Arzu; Emmiler, Mustafa; Inanoglu, Kerem; Karsli, Bilge

    2016-01-01

    Background. Parasternal block and transcutaneous electrical nerve stimulation (TENS) have been demonstrated to produce effective analgesia and reduce postoperative opioid requirements in patients undergoing cardiac surgery. Objectives. To compare the effectiveness of TENS and parasternal block on early postoperative pain after cardiac surgery. Methods. One hundred twenty patients undergoing cardiac surgery were enrolled in the present randomized, controlled prospective study. Patients were assigned to three treatment groups: parasternal block, intermittent TENS application, or a control group. Results. Pain scores recorded 4 h, 5 h, 6 h, 7 h, and 8 h postoperatively were lower in the parasternal block group than in the TENS and control groups. Total morphine consumption was also lower in the parasternal block group than in the TENS and control groups. It was also significantly lower in the TENS group than in the control group. There were no statistical differences among the groups regarding the extubation time, rescue analgesic medication, length of intensive care unit stay, or length of hospital stay. Conclusions. Parasternal block was more effective than TENS in the management of early postoperative pain and the reduction of opioid requirements in patients who underwent cardiac surgery through median sternotomy. This trial is registered with Clinicaltrials.gov number NCT02725229. PMID:27445610

  7. Effect of Yoga on migraine: A comprehensive study using clinical profile and cardiac autonomic functions

    PubMed Central

    Kisan, Ravikiran; Sujan, MU; Adoor, Meghana; Rao, Raghavendra; Nalini, A; Kutty, Bindu M; Chindanda Murthy, BT; Raju, TR; Sathyaprabha, TN

    2014-01-01

    Context and Aims: Migraine is an episodic disabling headache requiring long-term management. Migraine management through Yoga therapy would reduce the medication cost with positive health benefits. Yoga has shown to improve the quality of life, reduce the episode of headache and medication. The aim of the present study was to evaluate the efficacy of Yoga as an adjuvant therapy in migraine patients by assessing clinical outcome and autonomic functions tests. Subjects and Methods: Migraine patients were randomly given either conventional care (n = 30) or Yoga with conventional care (n = 30). Yoga group received Yoga practice session for 5 days a week for 6 weeks along with conventional care. Clinical assessment (frequency, intensity of headache and headache impact) and autonomic function test were done at baseline and at the end of the intervention. Results: Yoga with conventional care and convention care groups showed significant improvement in clinical variables, but it was better with Yoga therapy. Improvement in the vagal tone along with reduced sympathetic activity was observed in patients with migraine receiving Yoga as adjuvant therapy. Conclusions: Intervention showed significant clinical improvement in both groups. Headache frequency and intensity were reduced more in Yoga with conventional care than the conventional care group alone. Furthermore, Yoga therapy enhanced the vagal tone and decreased the sympathetic drive, hence improving the cardiac autonomic balance. Thus, Yoga therapy can be effectively incorporated as an adjuvant therapy in migraine patients. PMID:25035622

  8. [Autonomic features in Parkinson disease].

    PubMed

    Yamamoto, Toshimasa; Tamura, Naotoshi

    2012-04-01

    Nonmotor symptoms such as autonomic and neuropsychiatric dysfunctions, are commonly seen in Parkinson disease (PD). Recent studies have shown that PD is accompanied by cardiac sympathetic denervation and constipation even in the early stage. Neuropathological studies confirmed changes in the cardiac sympathetic nerves and the gastrointestinal tract. These findings suggest that PD neuropathology may occur first in the peripheral autonomic pathways and extend to the central autonomic pathways, in agreement with the "Braak theory". This article will reviews the symptoms and pathophysiology of gastrointestinal dysfunction, urinary disturbance, sexual dysfunction, sweating dysfunction, pupillary autonomic dysfunction, and orthostatic and postprandial hypotension in PD patients, and discuss to organ selectiveness in autonomic dysfunction in PD. PMID:22481512

  9. Cardiac Autonomic Regulation During Sleep in Idiopathic REM Sleep Behavior Disorder

    PubMed Central

    Lanfranchi, Paola A.; Fradette, Lorraine; Gagnon, Jean-François; Colombo, Roberto; Montplaisir, Jacques

    2007-01-01

    Objective: To assess cardiac autonomic and respiratory changes from stage 2 non-rapid eye movement sleep (NREM) to rapid eye movement (REM) sleep in subjects with idiopathic REM sleep behavior disorder (RBD) and controls. We tested the hypothesis that REM-related cardiorespiratory activation is altered in subjects with RBD. Design: Retrospective case-control study. Setting: University hospital-based sleep research laboratory. Patients: Ten subjects with idiopathic RBD (2 women, mean age 63.4 ± 6.2 years) and 10 sex- and age-matched controls (mean age 63.9 ± 6.3 years). Intervention: One-night polysomnography was used to assess R-R variability during NREM and REM sleep. Measurements and Results: Spectral analysis of R-R interval and respiration were performed. Mean R-R interval, low-frequency (LF) and high-frequency (HF) components in both absolute and normalized units (LFnu and HFnu), and the LF/HF ratio were obtained from 5-minute electrocardiogram segments selected during NREM and REM sleep under stable conditions (stable breathing pattern, no microarousals or leg movements). Respiratory frequency was also assessed. Values obtained were then averaged for each stage and analyzed by 2 × 2 analysis of variance with group (RBD subjects and controls) as factor and state (NREM and REM) as repeated measures. RR interval, HF, and HFnu components decreased from NREM to REM in controls but did not change in RBD subjects (Interaction P < 0.05). LFnu (interaction P < 0. 001), LF/HF (interaction P < 0. 001), and respiratory frequency (interaction P < 0. 05) increased from NREM to REM sleep in controls but remained stable in RBD subjects. Conclusion: REM-related cardiac and respiratory responses are absent in subjects with idiopathic RBD. Citation: Lanfranchi PA; Fradette L; Gagnon JF; Colombo R; Montplaisir J. Cardiac autonomic regulation during sleep in idiopathic REM sleep behavior disorder. SLEEP 2007;30(8):1019–1025. PMID:17702272

  10. Analyzing Systolic-Diastolic Interval Interaction Characteristics in Diabetic Cardiac Autonomic Neuropathy Progression

    PubMed Central

    Imam, Mohammad Hasan; Jelinek, Herbert F.; Palaniswami, Marimuthu; Khandoker, Ahsan H.

    2015-01-01

    Cardiac autonomic neuropathy (CAN), one of the major complications in diabetes, if detected at the subclinical stage allows for effective treatment and avoiding further complication including cardiovascular pathology. Surface ECG (Electrocardiogram)-based diagnosis of CAN is useful to overcome the limitation of existing cardiovascular autonomic reflex tests traditionally used for CAN identification in clinical settings. The aim of this paper is to analyze the changes in the mechanical function of the ventricles in terms of systolic-diastolic interval interaction (SDI) from a surface ECG to assess the severity of CAN progression [no CAN, early CAN (ECAN) or subclinical CAN, and definite CAN (DCAN) or clinical CAN]. ECG signals recorded in supine resting condition from 72 diabetic subjects without CAN (CAN-) and 70 diabetic subjects with CAN were analyzed in this paper. The severity of CAN was determined by Ewing’s Cardiovascular autonomic reflex tests. Fifty-five subjects of the CAN group had ECAN and 15 subjects had DCAN. In this paper, we propose an improved version of the SDI parameter (i.e., TQ/RR interval ratio) measured from the electrical diastolic interval (i.e., TQ interval) and the heart rate interval (i.e., RR interval). The performance of the proposed SDI measure was compared with the performance of the existing SDI measure (i.e., QT/TQ interval ratio). The proposed SDI parameter showed significant differences among three groups (no CAN, ECAN, and DCAN). In addition, the proposed SDI parameter was found to be more sensitive in detecting CAN progression than other ECG interval-based features traditionally used for CAN diagnosis. The modified SDI parameter might be used as an alternative measure for the Ewing autonomic reflex tests to identify CAN progression for those subjects who are unable to perform the traditional tests. These findings could also complement the echocardiographic findings of the left ventricular diastolic dysfunction by providing

  11. The VITAH Trial Vitamin D supplementation and cardiac autonomic tone in hemodialysis: a blinded, randomized controlled trial

    PubMed Central

    2014-01-01

    Background Patients with end-stage kidney disease (ESKD) have a high rate of mortality and specifically an increased risk of sudden cardiac death (SCD). Impaired cardiac autonomic tone is associated with elevated risk of SCD. Moreover, patients with ESKD are often vitamin D deficient, which we have shown may be linked to autonomic dysfunction in humans. To date, it is not known whether vitamin D supplementation normalizes cardiac autonomic function in the high-risk ESKD population. The VITamin D supplementation and cardiac Autonomic tone in Hemodialysis (VITAH) randomized trial will determine whether intensive vitamin D supplementation therapies improve cardiac autonomic tone to a greater extent than conventional vitamin D supplementation regimens in ESKD patients requiring chronic hemodialysis. Methods/Design A total of 60 subjects with ESKD requiring thrice weekly chronic hemodialysis will be enrolled in this 2x2 crossover, blinded, randomized controlled trial. Following a 4-week washout period from any prior vitamin D therapy, subjects are randomized 1:1 to intensive versus standard vitamin D therapy for 6 weeks, followed by a 12-week washout period, and finally the remaining treatment arm for 6 weeks. Intensive vitamin D treatment includes alfacalcidiol (activated vitamin D) 0.25mcg orally with each dialysis session combined with ergocalciferol (nutritional vitamin D) 50 000 IU orally once per week and placebo the remaining two dialysis days for 6 weeks. The standard vitamin D treatment includes alfacalcidiol 0.25mcg orally combined with placebo each dialysis session per week for 6 weeks. Cardiac autonomic tone is measured via 24 h Holter monitor assessments on the first dialysis day of the week every 6 weeks throughout the study period. The primary outcome is change in the low frequency: high frequency heart rate variability (HRV) ratio during the first 12 h of the Holter recording at 6 weeks versus baseline. Secondary outcomes include additional

  12. Physical training induced resting bradycardia and its association with cardiac autonomic nervous activities.

    PubMed

    Alom, M M; Bhuiyan, N I; Hossain, M M; Hoque, M F; Rozario, R J; Nessa, W

    2011-10-01

    Regular physical exercise causes resting bradycardia. This exercise-induced resting bradycardia may be associated with exercise-induced changes in Cardiac autonomic nervous activities (CANA). Power Spectral Analysis (PSA) of Heart rate variability (HRV) is one of the most promising new techniques to quantify CANA. Regular physical exercise induced bradycardia is associated with exercise-induced adaptation in CANA. To observe the HRV parameters by frequency domain method (PSA), in male adolescent athletes in order to find out the influence of regular physical exercise on resting heart rate (HR) and CANA. The cross sectional study was carried out on 62 adolescent male athletes aged 12-18 years (group B), in the Department of Physiology, Bangabandhu Sheikh Mujib Medical University from 1st July 2007 to 30th June 2008. For comparison 30 age, sex and socioeconomic condition matched apparently healthy sedentary subjects (group A) were also studied. The study group was selected from the BKSP (Bangladesh Krira Shikka Prothistan, Savar, Dhaka) and the control from a residential school of Dhaka city. HRV parameters were assessed by Polygraph (Polyrite D, version 2.2). For statistical analysis Independent-Samples t-test was done as applicable. Resting mean HR was significantly (p<0.001) lower in the athletes. The mean value of Total (variance), VLF, LF and HF power was significantly (p<0.001) higher in athletes than that of non-athetes. Regular physical exercise-induced resting bradycardia is associated with exercise-induced adaptation in cardiac autonomic nervous activities. PMID:22081187

  13. Effortful control and resiliency exhibit different patterns of cardiac autonomic control.

    PubMed

    Spangler, Derek P; Friedman, Bruce H

    2015-05-01

    Effortful control (EC) and ego-resiliency (often shortened to resiliency) may similarly encode adaptability to stress. Differentiation of these traits in terms of autonomic control may highlight each construct's relative mechanisms in stress regulation. In the current study, 84 subjects self-reported levels of EC and resiliency and then were exposed to 3 mental stressors (mental arithmetic, speech preparation, verbal fluency), during which heart rate variability (HRV) was assessed to index cardiac vagal influences. Interbeat intervals (IBIs) were also collected, while pre-ejection period (PEP) and left ventricular ejection time (LVET) were assessed as sympathetic indices. Multiple regression was used to explore the extent to which autonomic control was moderated by each EC and resiliency. Results indicate that EC was related to concordance between IBI and HRV, along with negative emotion. Resiliency was more associated with coherence between IBI and PEP, and with positive emotion. Findings suggest that regulatory processes play a role in EC's adaptability to stress, while resiliency may involve approach motivation in stress control. PMID:25758131

  14. Distinctive cardiac autonomic dysfunction following stress exposure in both sexes in an animal model of PTSD.

    PubMed

    Koresh, Ori; Kaplan, Zeev; Zohar, Joseph; Matar, Michael A; Geva, Amir B; Cohen, Hagit

    2016-07-15

    It is unclear whether the poor autonomic flexibility or dysregulation observed in patients with posttraumatic stress disorder (PTSD) represents a pre-trauma vulnerability factor or results from exposure to trauma. We used an animal model of PTSD to assess the association between the behavioral response to predator scent stress (PSS) and the cardiac autonomic modulation in male and female rats. The rats were surgically implanted with radiotelemetry devices to measure their electrocardiograms and locomotor activity (LMA). Following baseline telemetric monitoring, the animals were exposed to PSS or sham-PSS. Continuous telemetric monitoring (24h/day sampling) was performed over the course of 7days. The electrocardiographic recordings were analyzed using the time- and frequency-domain indexes of heart rate variability (HRV). The behavioral response patterns were assessed using the elevated plus maze and acoustic startle response paradigms for the retrospective classification of individuals according to the PTSD-related cut-off behavioral criteria. During resting conditions, the male rats had significantly higher heart rates (HR) and lower HRV parameters than the female rats during both the active and inactive phases of the daily cycle. Immediately after PSS exposure, both the female and male rats demonstrated a robust increase in HR and a marked drop in HRV parameters, with a shift of sympathovagal balance towards sympathetic predominance. In both sexes, autonomic system habituation and recovery were selectively inhibited in the rats whose behavior was extremely disrupted after exposure to PSS. However, in the female rats, exposure to the PSS produced fewer EBR rats, with a more rapid recovery curve than that of the male rats. PSS did not induce changes to the circadian rhythm of the LMA. According to our results, PTSD can be conceptualized as a disorder that is related to failure-of-recovery mechanisms that impede the restitution of physiological homeostasis. PMID

  15. Cardiac Autonomic Function in Patients With Ankylosing Spondylitis: A Case-Control Study.

    PubMed

    Wei, Cheng-Yu; Kung, Woon-Man; Chou, Yi-Sheng; Wang, Yao-Chin; Tai, Hsu-Chih; Wei, James Cheng-Chung

    2016-05-01

    Ankylosing spondylitis (AS) is a chronic inflammatory disease involing spine and enthesis. The primary aim of this study is to investigate the autonomic nervous system (ANS) function and the association between ANS and the functional status or disease activity in AS.The study included 42 AS patients, all fulfilling the modified New York criteria. All the patients are totally symptom free for ANS involvement and had normal neurological findings. These AS patients and 230 healthy volunteers receive analysis of 5 minutes heart rate variability (HRV) in lying posture. In addition, disease activity and functional status of these AS patients are assessed by Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), and Bath Ankylosing Spondylitis Global Score (BAS-G).Both groups were age and sex-matched. Although the HRV analysis indicates that the peaks of total power (TP, 0-0.5 Hz) and high-frequency power (HF, 0.15-0.40 Hz) are similar in both groups, the activities of low-frequency power (LF, 0.04-0.15 Hz), LF in normalized units (LF%), and the ratio of LF to HF (LF/HF) in AS patients are obviously lower than healthy controls. The erythrocyte sedimentation rate and C-reactive protein revealed negative relationship with HF. The AS patients without peripheral joint disease have higher LF, TP, variance, LF%, and HF than the patients with peripheral joint disease. The AS patients without uvetis have higher HF than the patients with uvetis. The total scores of BASDI, BASFI, and BAS-G do not show any association to HRV parameters.AS patients have significantly abnormal cardiac autonomic regulation. This is closely related with some inflammatory activities. Reduced autonomic function may be one of the factors of high cardiovascular risk in AS patients.

  16. Cardiac autonomic responses at onset of exercise: effects of aerobic fitness.

    PubMed

    D'Agosto, T; Peçanha, T; Bartels, R; Moreira, D N; Silva, L P; Nóbrega, A C L; Lima, J R P

    2014-09-01

    Analyzes of cardiac autonomic responses at the initial transient of exercise have been used for the investigation of the cardiovascular health. We evaluated the influence of aerobic fitness on HR and HRV responses at the onset of exercise. 25 male subjects (22.3±2.4 years) were divided into 2 groups: 'low aerobic fitness' (36.2±2.6ml.kg(-1).min(-1); n=10) and 'high aerobic fitness' (46.4±5.0ml.kg(-1).min(-1); n=15). The experimental session consisted of assessing the beat-to-beat HR at rest and during submaximal exercise. The autonomic responses at the onset of exercise were calculated by fitting the HR and HRV (rMSSD-index) curves during the initial 300s of exercise into a first-order exponential equation. The time constant of HR and of the rMSSD index (τonHR and τonrMSSD) were calculated for analysis. We observed lower values of τonrMSSD in the high aerobic fitness group compared to the low aerobic fitness group (26.8±5s vs. 38.0±18s, respectively; p=0.02). The τonHR (42.0±15 vs. 49.3±26s, p=0.38) for the groups showed no difference. Aerobic fitness partially influenced the autonomic responses during exercise, since individuals with higher fitness showed faster decreases in beat-to-beat HRV at the onset of exercise.

  17. Influence of hydrotherapy on clinical and cardiac autonomic function in migraine patients

    PubMed Central

    Sujan, M. U.; Rao, M. Raghavendra; Kisan, Ravikiran; Abhishekh, Hulegar A.; Nalini, Atchayaram; Raju, Trichur R.; Sathyaprabha, T. N.

    2016-01-01

    Background: Migraine is associated with autonomic symptoms. The growing body of literature suggests that the dysfunctional autonomic nervous system might play a pivotal role in the pathogenesis of migraine. Thermal therapies have been hypothesized to modulate these changes and alleviate pain. However, data regarding the efficacy of hydrotherapy in migraine remain scant. We evaluated the effect of add on hydrotherapy procedure (a hot arm and foot bath with ice massage to head) in migraine patients. Methods: Forty chronic migraine patients fulfilling the International Classification of Headache Disorders II criteria were recruited from the neurology outpatient clinic. Patients were randomized to receive either hydrotherapy plus conventional pharmacological care (n = 20) or conventional medication only (n = 20). Hydrotherapy group received treatment with hot arm and foot bath (103°F to 110°F) and ice massage to head daily for 20 min for 45 days. Patients were assessed using headache impact test (HIT), visual analog scale for pain and cardiac autonomic function by heart rate variability (HRV) before and after intervention period. Results: There was a significant decrease in HIT score, frequency, and intensity of headaches following treatment in both the groups. However, it was more evident in add on hydrotherapy group compared to pharmacological treatment alone group. There was also significant improvement in the HRV parameters. In particular, there was a significant decrease in heart rate (P = 0.017), increase in high frequency (HF) (P = 0.014) and decrease in low frequency/HF ratio (P = 0.004) in add on hydrotherapy group. Conclusion: Our study shows that add on hydrotherapy enhanced the vagal tone in addition to reducing the frequency and intensity of headaches in migraine patients. PMID:26933356

  18. Voiding and Sexual Function after Autonomic-Nerve-Preserving Surgery for Rectal Cancer in Disease-Free Male Patients

    PubMed Central

    Lee, Dong Kil; Song, Kanghyon; Park, Jong Wook; Moon, Sun-Mi

    2010-01-01

    Purpose We evaluated the effects of surgery for rectal cancer on postoperative voiding and sexual function over the course of time. Materials and Methods Data from 28 patients who underwent autonomic nerve preserving rectal cancer surgery were retrospectively analyzed. Operations were performed between October 2005 and July 2007 and all patients were followed-up for more than 3 years. Preoperatively, all patients underwent urodynamic studies including uroflowmetry, and filled out the International Prostate Symptom Score (IPSS). The evaluation of sexual function consisted of Erectile Function domain score in International Index of Erectile Function (IIEF-EFD) and Ejaculation domain score in Male Sexual Health Questionnaire (MSHQ-EjD). Data from uroflowmetry and questionnaires were examined. Results At 3 years postoperatively the prostate volume was similar to the preoperative value (p=0.727). There were no statistically significant postoperative changes in the average maximum flow rate (15.9 ml/s vs. 16.2 ml/s, p=0.637) and post-void residual urine volume (34.7 ml vs. 36.8 ml, p=0.809). No statistically significant differences were observed in the IPSS (13.2 vs. 12.2, p=0.374). However, although pelvic autonomic nerve preservation have been performed, a significant proportion of rectal cancer patients suffer from sexual dysfunction and the average of IIEF-EFD and MSHQ-EjD scores was decreased postoperatively until 3 years (25.1 vs. 16.1 and 28.3 vs. 14.2 respectively, p<0.001). Conclusions Voiding function was not affected after autonomic nerve-preserving rectal cancer surgery, however sexual function was significantly aggravated. We recommend that the baseline genitourinary function should be evaluated before the treatment for male rectal cancer patients, and penile rehabilitation is necessary for their quality of life after treatment. PMID:21221207

  19. Cardiac Autonomic Effects of Acute Exposures to Airborne Particulates in Men and Women

    NASA Technical Reports Server (NTRS)

    Howarth, M. S.; Schlegel, T. T.; Knapp, C. F.; Patwardhan, A. R.; Jenkins, R. A.; Ilgner, R. H.; Evans, J. M.

    2007-01-01

    The aim of this research was to investigate cardiac autonomic changes associated with acute exposures to airborne particulates. Methods: High fidelity 12-lead ECG (CardioSoft, Houston, TX) was acquired from 19 (10 male / 9 female) non-smoking volunteers (age 33.6 +/- 6.6 yrs) during 10 minutes pre-exposure, exposure and post-exposure to environmental tobacco smoke (ETS), cooking oil fumes, wood smoke and sham (water vapor). To control exposure levels, noise, subject activity, and temperature, all studies were conducted inside an environmental chamber. Results: The short-term fractal scaling exponent (Alpha-1) and the ratio of low frequency to high frequency Heart Rate Variability (HRV) powers (LF/HF, a purported sympathetic index) were both higher in males (p<0.017 and p<0.05, respectively) whereas approximate entropy (ApEn) and HF/(LF+HF) (a purported parasympathetic index) were both lower in males (p<0.036, and p<0.044, respectively). Compared to pre-exposure (p<0.0002) and sham exposure (p<0.047), male heart rates were elevated during early ETS post-exposure. Our data suggest that, in addition to tonic HRV gender differences, cardiac responses to some acute airborne particulates are gender related.

  20. Pyridostigmine Restores Cardiac Autonomic Balance after Small Myocardial Infarction in Mice

    PubMed Central

    Durand, Marina T.; Becari, Christiane; de Oliveira, Mauro; do Carmo, Jussara M.; Aguiar Silva, Carlos Alberto; Prado, Cibele M.; Fazan, Rubens; Salgado, Helio C.

    2014-01-01

    The effect of pyridostigmine (PYR) - an acetylcholinesterase inhibitor - on hemodynamics and cardiac autonomic control, was never studied in conscious myocardial infarcted mice. Telemetry transmitters were implanted into the carotid artery under isoflurane anesthesia. Seven to ten days after recovery from the surgery, basal arterial pressure and heart rate were recorded, while parasympathetic and sympathetic tone (ΔHR) was evaluated by means of methyl atropine and propranolol. After the basal hemodynamic recording the mice were subjected to left coronary artery ligation for producing myocardial infarction (MI), or sham operation, and implantation of minipumps filled with PYR or saline. Separate groups of anesthetized (isoflurane) mice previously (4 weeks) subjected to MI, or sham coronary artery ligation, were submitted to cardiac function examination. The mice exhibited an infarct length of approximately 12%, no change in arterial pressure and increased heart rate only in the 1st week after MI. Vagal tone decreased in the 1st week, while the sympathetic tone was increased in the 1st and 4th week after MI. PYR prevented the increase in heart rate but did not affect the arterial pressure. Moreover, PYR prevented the increase in sympathetic tone throughout the 4 weeks. Concerning the parasympathetic tone, PYR not only impaired its attenuation in the 1st week, but enhanced it in the 4th week. MI decreased ejection fraction and increased diastolic and systolic volume. Therefore, the pharmacological increase of peripheral acetylcholine availability by means of PYR prevented tachycardia, increased parasympathetic and decreased sympathetic tone after MI in mice. PMID:25133392

  1. Anatomical basis and clinical research of pelvic autonomic nerve preservation with laparoscopic radical resection for rectal cancer.

    PubMed

    Liu, Yan; Lu, Xiao-ming; Tao, Kai-xiong; Ma, Jian-hua; Cai, Kai-lin; Wang, Lin-fang; Niu, Yan-feng; Wang, Guo-bin

    2016-04-01

    The clinical effect of laparoscopic rectal cancer curative excision with pelvic autonomic nerve preservation (PANP) was investigated. This study evaluated the frequency of urinary and sexual dysfunction of 149 male patients with middle and low rectal cancer who underwent laparoscopic or open total mesorectal excision with pelvic autonomic nerve preservation (PANP) from March 2011 to March 2013. Eighty-four patients were subjected to laparoscopic surgery, and 65 to open surgery respectively. The patients were followed up for 12 months, interviewed, and administered a standardized questionnaire about postoperative functional outcomes and quality of life. In the laparoscopic group, 13 patients (18.37%) presented transitory postoperative urinary dysfunction, and were medically treated. So did 12 patients (21.82%) in open group. Sexual desire was maintained by 52.86%, un-ability to engage in intercourse by 47.15%, and un-ability to achieve orgasm and ejaculation by 34.29% of the patients in the laparoscopic group. Sexual desire was maintained by 56.36%, un-ability to engage in intercourse by 43.63%, and un-ability to achieve orgasm and ejaculation by 33.73% of the patients in the open group. No significant differences in urinary and sexual dysfunction between the laparoscopic and open rectal resection groups were observed (P>0.05). It was concluded that laparoscopic rectal cancer radical excision with PANP did not aggravate or improve sexual and urinary dysfunction. PMID:27072964

  2. Detailed comparative anatomy of the extrinsic cardiac nerve plexus and postnatal reorganization of the cardiac position and innervation in the great apes: orangutans, gorillas, and chimpanzees.

    PubMed

    Kawashima, Tomokazu; Sato, Fumi

    2012-03-01

    To speculate how the extrinsic cardiac nerve plexus (ECNP) evolves phyletically and ontogenetically within the primate lineage, we conducted a comparative anatomical study of the ECNP, including an imaging examination in the great apes using 20 sides from 11 bodies from three species and a range of postnatal stages from newborns to mature adults. Although the position of the middle cervical ganglion (MG) in the great apes tended to be relatively lower than that in humans, the morphology of the ECNP in adult great apes was almost consistent with that in adult humans but essentially different from that in the lesser apes or gibbons. Therefore, the well-argued anatomical question of when did the MG acquire communicating branches with the spinal cervical nerves and appear constantly in all sympathetic cardiac nerves during primate evolution is clearly considered to be after the great apes and gibbons split. Moreover, a horizontal four-chambered heart and a lifted cardiac apex with a relatively large volume in newborn great apes rapidly changed its position downward, as seen in humans during postnatal growth and was associated with a reduction in the hepatic volume by imaging diagnosis and gross anatomy. In addition, our observation using a range of postnatal stages exhibits that two sympathetic ganglia, the middle cervical and cervicothoracic ganglia, differed between the early and later postnatal stages.

  3. Measuring Cardiac Autonomic Nervous System (ANS) Activity in Toddlers - Resting and Developmental Challenges.

    PubMed

    Bush, Nicole R; Caron, Zoe K; Blackburn, Katherine S; Alkon, Abbey

    2016-01-01

    The autonomic nervous system (ANS) consists of two branches, the parasympathetic and sympathetic nervous systems, and controls the function of internal organs (e.g., heart rate, respiration, digestion) and responds to everyday and adverse experiences (1). ANS measures in children have been found to be related to behavior problems, emotion regulation, and health (2-7). Therefore, understanding the factors that affect ANS development during early childhood is important. Both branches of the ANS affect young children's cardiovascular responses to stimuli and have been measured noninvasively, via external monitoring equipment, using valid and reliable measures of physiological change (8-11). However, there are few studies of very young children with simultaneous measures of the parasympathetic and sympathetic nervous systems, which limits understanding of the integrated functioning of the two systems. In addition, the majority of existing studies of young children report on infants' resting ANS measures or their reactivity to commonly used mother-child interaction paradigms, and less is known about ANS reactivity to other challenging conditions. We present a study design and standardized protocol for a non-invasive and rapid assessment of cardiac autonomic control in 18 month old children. We describe methods for continuous monitoring of the parasympathetic and sympathetic branches of the ANS under resting and challenge conditions during a home or laboratory visit and provide descriptive findings from our sample of 140 ethnically diverse toddlers using validated equipment and scoring software. Results revealed that this protocol can produce a range of physiological responses to both resting and developmentally challenging conditions, as indicated by changes in heart rate and indices of parasympathetic and sympathetic activity. Individuals demonstrated variability in resting levels, responses to challenges, and challenge reactivity, which provides additional evidence

  4. Is Baseline Cardiac Autonomic Modulation Related to Performance and Physiological Responses Following a Supramaximal Judo Test?

    PubMed Central

    Blasco-Lafarga, Cristina; Martínez-Navarro, Ignacio; Mateo-March, Manuel

    2013-01-01

    Little research exists concerning Heart Rate (HR) Variability (HRV) following supramaximal efforts focused on upper-body explosive strength-endurance. Since they may be very demanding, it seems of interest to analyse the relationship among performance, lactate and HR dynamics (i.e. HR, HRV and complexity) following them; as well as to know how baseline cardiac autonomic modulation mediates these relationships. The present study aimed to analyse associations between baseline and post-exercise HR dynamics following a supramaximal Judo test, and their relationship with lactate, in a sample of 22 highly-trained male judoists (20.70±4.56 years). A large association between the increase in HR from resting to exercise condition and performance suggests that individuals exerted a greater sympathetic response to achieve a better performance (Rating of Perceived Exertion: 20; post-exercise peak lactate: 11.57±2.24 mmol/L; 95.76±4.13 % of age-predicted HRmax). Athletes with higher vagal modulation and lower sympathetic modulation at rest achieved both a significant larger ∆HR and a faster post-exercise lactate removal. A enhanced resting parasympathetic modulation might be therefore related to a further usage of autonomic resources and a better immediate metabolic recovery during supramaximal exertions. Furthermore, analyses of variance displayed a persistent increase in α1 and a decrease in lnRMSSD along the 15 min of recovery, which are indicative of a diminished vagal modulation together with a sympathovagal balance leaning to sympathetic domination. Eventually, time-domain indices (lnRMSSD) showed no lactate correlations, while nonlinear indices (α1 and lnSaEn) appeared to be moderate to strongly correlated with it, thus pointing to shared mechanisms between neuroautonomic and metabolic regulation. PMID:24205273

  5. Autonomic regulation of circulation and cardiac contractility during a 14-month space flight

    NASA Astrophysics Data System (ADS)

    Baevsky, R. M.; Moser, M.; Nikulina, G. A.; Polyakov, V. V.; Funtova, I. I.; Chernikova, A. G.

    The space flight of physician cosmonaut V.V. Polyakov, the longest to date (438 days), has yielded new data about human adaptation to long-term weightlessness. Autonomic regulation of circulation and cardiac contractility were evaluated in three experiments entitled Pulstrans, Night, and Holter. In the Pulstrans experiment electrocardiographic (ECG), ballistocardiographic (BCG), seismocardiographic (SCG), and some other parameters were recorded. In the Night experiment, only the ballistocardiogram was recorded, but a special feature of this experiment is that the BCG records were obtained with a contactless method. This method has several advantages, the most important of which are the possibility of studying slow-wave variations in physiologic parameters (ultradian rhythms) on the basis of recordings made under standard conditions over a prolonged period. The Holter experiment (24-hour electrocardiographic monitoring) used a portable cardiorecorder (Spacelab, USA). The obtained electrocardiographic data were used to analyze heart rate variability. In the first 6 months of the 14-month flight, the dynamics of cardiovascular parameters in V.V.Polyakov was virtually the same as in the other cosmonauts. The data obtained after the first 6 months of Polyakov's sojourn in space are unique and mention should be made of at least three important aspects: (1) activation of a new, additional adaptive mechanism in the 8th-9th months of flight, as is evidenced by alterations in the periodicity and power of superslow wave oscillations (ultradian rhythms) reflecting the activity of the subcortical cardiovascular centers and of the higher levels of autonomic regulation; (2) growth of cardiac contractility accompanied by a decrease in heart rate during the last few months of flight; (3) a considerable increase in the daily average values of absolute power of heart rate's variability MF component, which reflects the activity of the vasomotor center. Specific mechanisms of

  6. Obesity Is A Modifier of Autonomic Cardiac Responses to Fine Metal Particulates

    PubMed Central

    Chen, Jiu-Chiuan; Cavallari, Jennifer M.; Stone, Peter H.; Christiani, David C.

    2007-01-01

    Background Increasing evidence suggests that obesity may impart greater susceptibility to adverse effects of air pollution. Particulate matter, especially PM2.5 (particulate matter with aero-dynamic diameter ≤2.5 μm), is associated with increased cardiac events and reduction of heart rate variability (HRV). Objectives Our goal was to investigate whether particle-mediated autonomic modulation is aggravated in obese individuals. Methods We examined PM2.5-mediated acute effects on HRV and heart rate (HR) using 10 24-hr and 13 48-hr ambulatory electrocardiogram recordings collected from 18 boilermakers (39.5 ± 9.1 years of age) exposed to high levels of metal particulates. Average HR and 5-min HRV [SDNN: standard deviation of normal-to-normal intervals (NN); rMSSD: square-root of mean squared-differences of successive NN intervals; HF: high-frequency power 0.15–0.4 Hz] and personal PM2.5 exposures were continuously monitored. Subjects with body mass index ≥ 30 kg/m2 were classified as obese. Mixed-effect models were used for statistical analyses. Results Half (50%) of the study subjects were obese. After adjustment for confounders, each 1-mg/m3 increase in 4-hr moving average PM2.5 was associated with HR increase of 5.9 bpm [95% confidence interval (CI), 4.2 to 7.7] and with 5-min HRV reduction by 6.5% (95% CI, 1.9 to 11.3%) for SDNN, 1.7% (95% CI, –4.9 to 8.4%) for rMSSD, and 8.8% (95% CI, –3.8 to 21.3%) for HF. Obese individuals had greater PM2.5-mediated HRV reductions (2- to 3-fold differences) than nonobese individuals, and had more PM2.5-mediated HR increases (9-bpm vs. 4-bpm increase in HR for each 1-mg/m3 increase in PM2.5; p < 0.001). Conclusions Our study revealed greater autonomic cardiac responses to metal particulates in obese workers, supporting the hypothesis that obesity may impart greater susceptibility to acute cardiovascular effects of fine particles. PMID:17637913

  7. Cardiac Organ Damage and Arterial Stiffness in Autonomic Failure: Comparison With Essential Hypertension.

    PubMed

    Milazzo, Valeria; Maule, Simona; Di Stefano, Cristina; Tosello, Francesco; Totaro, Silvia; Veglio, Franco; Milan, Alberto

    2015-12-01

    Autonomic failure (AF) is characterized by orthostatic hypotension, supine hypertension, and increased blood pressure (BP) variability. AF patients develop cardiac organ damage, similarly to essential hypertension (EH), and have higher arterial stiffness than healthy controls. Determinants of cardiovascular organ damage in AF are not well known: both BP variability and mean BP values may be involved. The aim of the study was to evaluate cardiac organ damage, arterial stiffness, and central hemodynamics in AF, compared with EH subjects with similar 24-hour BP and a group of healthy controls, and to evaluate determinants of target organ damage in patients with AF. Twenty-seven patients with primary AF were studied (mean age, 65.7±11.2 years) using transthoracic echocardiography, carotid-femoral pulse wave velocity, central hemodynamics, and 24-hour ambulatory BP monitoring. They were compared with 27 EH subjects matched for age, sex, and 24-hour mean BP and with 27 healthy controls. AF and EH had similar left ventricular mass (101.6±33.3 versus 97.7±28.1 g/m(2), P=0.59) and carotid-femoral pulse wave velocity (9.3±1.8 versus 9.2±3.0 m/s, P=0.93); both parameters were significantly lower in healthy controls (P<0.01). Compared with EH, AF patients had higher augmentation index (31.0±7.6% versus 26.1±9.2%, P=0.04) and central BP values. Nighttime systolic BP and 24-hour systolic BP predicted organ damage, independent of BP variability. AF patients develop hypertensive heart disease and increased arterial stiffness, similar to EH with comparable mean BP values. Twenty-four-hour and nighttime systolic BP were determinants of cardiovascular damage, independent of BP variability.

  8. Cardiac Autonomic Regulation in Autism and Fragile X Syndrome: A Review

    PubMed Central

    Klusek, Jessica; Roberts, Jane E.; Losh, Molly

    2014-01-01

    Despite the significance of efforts to understand the biological basis of autism, progress in this area has been hindered, in part, by the considerable heterogeneity in the disorder. Fragile X syndrome (FXS), a monogenic condition associated with high risk for autism, may pave the way for the dissection of biological heterogeneity within idiopathic autism. This paper adopts a cross-syndrome biomarker approach to evaluate potentially overlapping profiles of cardiac arousal dysregulation (and broader autonomic dysfunction) in autism and FXS. Approaches such as this, aimed at delineating shared mechanisms across genetic syndromes, hold great potential for improving diagnostic precision, promoting earlier identification, and uncovering key systems that can be targeted in pharmaceutical/behavioral interventions. Biomarker approaches may be vital to deconstructing complex psychiatric disorders, and are currently promoted as such by major research initiatives such as the NIMH Research Domain Criteria (RDoC). Evidence reviewed here supports physiological dysregulation in a subset of individuals with autism, as evidenced by patterns of hyperarousal and dampened parasympathetic vagal tone, which overlap with the well-documented physiological profile of FXS. Moreover, there is growing support for a link between aberrant cardiac activity and core deficits associated with autism, such as communication and social impairment. The delineation of physiological mechanisms common to autism and FXS could lend insight into relationships between genetic etiology and behavioral endstates, highlighting FMR1 as a potential candidate gene. Research gaps and potential pitfalls are discussed to inform timely, well-controlled biomarker research that will ultimately promote better diagnosis and treatment of autism and associated conditions. PMID:25420222

  9. Modulation of sphingosine receptors influences circadian pattern of cardiac autonomic regulation.

    PubMed

    Simula, Sakari; Laitinen, Tomi P; Laitinen, Tiina M; Hartikainen, Päivi; Hartikainen, Juha E K

    2016-09-01

    Fingolimod is an oral sphingosine-1-phospate (S1P) receptor modulator for the treatment of relapsing-remitting multiple sclerosis (RRMS). In addition to therapeutic effects on lymphoid and neural tissue, fingolimod influences cardiovascular system by specific S1P-receptor modulation. The effects of S1P-receptor modulation on the endogenous circadian pattern of cardiac autonomic regulation (CAR), however, are not known. We examined the effects of fingolimod on the circadian pattern of CAR Ambulatory 24-h ECG recordings were undertaken in 27 RRMS patients before fingolimod (baseline), at the day of fingolimod initiation (1D) and after 3 months of fingolimod treatment (3M). The mean time between two consecutive R-peaks (RR-interval) and mean values for measures of heart rate variability (HRV) in time- and frequency domain were calculated from ECG recording at daytime and nighttime. The mean night:day-ratio of RR-interval was 1.23 ± 0.12 at baseline, decreased temporarily at 1D (1.16 ± 0.12; P < 0.01) and was higher at 3M (1.32 ± 0.11; P < 0.001) than at baseline. The night:day-ratio of HRV parameters reflecting parasympathetic cardiac regulation (pNN50, rMSSD, HFnu) decreased at 1D but recovered back to baseline at 3M (P < 0.05 for all). On the other hand, the night:day-ratio of TP, a parameter reflecting overall HRV gradually decreased and was lower at 3M than at baseline (P < 0.05). Our findings suggest that physiological relation between the circadian pattern of RR-interval and overall HRV as well as parasympathetic cardiac regulation becomes uncoupled during fingolimod treatment. In addition, fingolimod shifts the circadian equilibrium of CAR toward greater daytime dominance of overall HRV Accordingly, S1P-receptor modulation influences circadian pattern of CAR. PMID:27624686

  10. Alteration of cardiac autonomic function in patients with newly diagnosed epilepsy.

    PubMed

    Goit, Rajesh K; Jha, Santosh K; Pant, Bhawana N

    2016-06-01

    The aim of the study was to determine if heart rate variability (HRV) showed any changes in patients with newly diagnosed epilepsy in comparison with controls. Sixty-five patients with epilepsy (38 males and 27 females), aged 30-50 years, who had never previously received treatment with antiepileptic drugs were eligible for inclusion in this study. Resting electrocardiogram (ECG) at spontaneous respiration was recorded for 5 min in supine position. Time-domain analysis, frequency-domain analysis, and Poincare plot of HRV were recorded from ECG In time-domain measures, the square root of the mean of the sum of the squares of differences between adjacent RR intervals (RMSSD) and percentage of consecutive RR intervals that differ by more than 50 msec (pNN50) were significantly less in patients with epilepsy. In frequency-domain measures, high frequency [(HF) msec(2)], HF (nu), and low frequency [LF (msec(2))] were significantly less in patients with epilepsy while LF (nu) and LF/HF were significantly high in patients with epilepsy. In Poincare plot, standard deviation perpendicular to line of Poincare plot (SD1) and standard deviation along the line of entity in Poincare plot (SD2) were significantly less in patients with epilepsy. Our results suggest that epileptic patients have an impact on the cardiac autonomic function as measured by HRV.

  11. Physiological, psychological and autonomic responses to pre-operative instructions for patients undergoing cardiac surgery.

    PubMed

    Liou, Huey-Ling; Chao, Yann-Fen C; Kuo, Terry B J; Chen, Hsing I

    2008-10-31

    Several studies have reported that the experience may induce emotional reactions before and after surgery. Various Studies have demonstrated that effective pre-operative information reduces stress and anxiety levels. However, little is known about the effect of pre-operative instruction on autonomic responses as measured by heart rate variability (HRV) before cardiac surgery. Ninety-one patients were randomly assigned to video-tape viewing and teaching booklet group. Electrocardiogram was monitored before and after pre-operative instruction. HRV was analyzed with spectral analysis of frequency domains of heart rate and categorized into low and high frequency (LF and HF). After pre-operative instruction, subjects completed a score of perceived stress and helpfulness. In this study, we found that pre-operative instruction with video-tape was similarly effective as teaching booklets on patients' perceived stress, perceived helpfulness and recovery outcomes. The decrease in HF% and increase in LF/HF ratio of HRV indicate a change in sympathovagal balance toward a lower parasympathetic activity after pre-operative instruction in subjects of both groups. However, the perceived helpfulness of pre-operative instruction may often be associated with a relatively less sympathetic activity. Further studies are needed to determine the optimal timing to enhance the positive effects on the sympathovagal balance after pre-operative instruction.

  12. Sequential modulation of cardiac autonomic control induced by cardiopulmonary and arterial baroreflex mechanisms

    NASA Technical Reports Server (NTRS)

    Furlan, R.; Jacob, G.; Palazzolo, L.; Rimoldi, A.; Diedrich, A.; Harris, P. A.; Porta, A.; Malliani, A.; Mosqueda-Garcia, R.; Robertson, D.

    2001-01-01

    BACKGROUND: Nonhypotensive lower body negative pressure (LBNP) induces a reflex increase in forearm vascular resistance and muscle sympathetic neural discharge without affecting mean heart rate. We tested the hypothesis that a reflex change of the autonomic modulation of heartbeat might arise during low intensity LBNP without changes of mean heart rate. METHODS AND RESULTS: Ten healthy volunteers underwent plasma catecholamine evaluation and a continuous recording of ECG, finger blood pressure, respiratory activity, and central venous pressure (CVP) during increasing levels of LBNP up to -40 mm Hg. Spectrum and cross-spectrum analyses assessed the changes in the spontaneous variability of R-R interval, respiration, systolic arterial pressure (SAP), and CVP and in the gain (alpha(LF)) of arterial baroreflex control of heart rate. Baroreceptor sensitivity was also evaluated by the SAP/R-R spontaneous sequences technique. LBNP began decreasing significantly: CVP at -10, R-R interval at -20, SAP at -40, and the indexes alpha(LF) and baroreceptor sensitivity at -30 and -20 mm Hg, compared with baseline conditions. Plasma norepinephrine increased significantly at -20 mm Hg. The normalized low-frequency component of R-R variability (LF(R-R)) progressively increased and was significantly higher than in the control condition at -15 mm Hg. CONCLUSIONS: Nonhypotensive LBNP elicits a reflex increase of cardiac sympathetic modulation, as evaluated by LF(R-R), which precedes the changes in the hemodynamics and in the indexes of arterial baroreflex control.

  13. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction

    PubMed Central

    Beaumont, Eric; Southerland, Elizabeth M.; Hardwick, Jean C.; Wright, Gary L.; Ryan, Shannon; Li, Ying; KenKnight, Bruce H.; Armour, J. Andrew

    2015-01-01

    This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions. PMID:26276818

  14. Effects of metabolic and myocardial microcirculatory abnormalities on the pathogenesis of cardiac autonomic neuropathy in type 2 diabetes mellitus: A prospective study in Japanese patients*

    PubMed Central

    Komori, Hiromi

    2005-01-01

    Background: In diabetic patients, cardiac autonomic neuropathy is an important factor affecting prognosis. Whether this condition in diabetic patients is caused directly by neurovisceral metabolic disorder and/or indirectly by micro circulation remains to be clarified. Objective: The aim of this study was to determine whether cardiac sympathetic nerve dysfunction can be detected using adenosine triphosphate (ATP) testing, while also investigating the effects of metabolic and/or myocardial microcirculatory abnormalities on the pathogenesis of cardiac autonomic nerve dysfunction in patients with type 2 diabetes mellitus (DM-2) in Japan. Methods: This prospective study was performed at the Division of Diabetology Department of Internal Medicine, Toho University, Ohashi Hospital, Tokyo, Japan. Patients aged ≥ 18 years with DM-2 with no abnormalities on electrocardiography (ECG) or echocardiography were enrolled. An ATP thallium (Tl)-201 myocardial scintigraphy test (ATP test) and iodine (I)-123 metaiodobenzylguanidine (MIBG) scintigraphy were performed. ATP was administered by continuous IV infusion over 6 minutes at 0.16 mg/kg · min. Five minutes after the ATP infusion was started, T1-201 111 MBq IV was administered. Single-photon emission computed tomography (SPECT) imaging was begun immediately after the end of ATP infusion and was completed 3 hours after stress to show washout from stress to rest. I-123 MIBG 111 MBq IV was administered. A planar image from the front side and a SPECT image (early phase) was obtained 15 to 30 minutes later. After 3 hours, a planar image from the front side and a SPECT image (late phase) were obtained to show washout from stress to rest. The mean TI washout rate (ATP-WR) and heart-to-mediastinum (H/M) ratio in the late-phase scintigraphic images and the washout rate of MIBG (MIBG-WR) in the left ventricle was determined. The correlations of these measurements with the mean values of glycosylated hemoglobin (HbA1c) and fasting

  15. Non-neuronal cardiac cholinergic system influences CNS via the vagus nerve to acquire a stress-refractory propensity.

    PubMed

    Oikawa, Shino; Kai, Yuko; Tsuda, Masayuki; Ohata, Hisayuki; Mano, Asuka; Mizoguchi, Naoko; Sugama, Shuei; Nemoto, Takahiro; Suzuki, Kenji; Kurabayashi, Atsushi; Muramoto, Kazuyo; Kaneda, Makoto; Kakinuma, Yoshihiko

    2016-11-01

    We previously developed cardiac ventricle-specific choline acetyltransferase (ChAT) gene-overexpressing transgenic mice (ChAT tgm), i.e. an in vivo model of the cardiac non-neuronal acetylcholine (NNA) system or non-neuronal cardiac cholinergic system (NNCCS). By using this murine model, we determined that this system was responsible for characteristics of resistance to ischaemia, or hypoxia, via the modulation of cellular energy metabolism and angiogenesis. In line with our previous study, neuronal ChAT-immunoreactivity in the ChAT tgm brains was not altered from that in the wild-type (WT) mice brains; in contrast, the ChAT tgm hearts were the organs with the highest expression of the ChAT transgene. ChAT tgm showed specific traits in a central nervous system (CNS) phenotype, including decreased response to restraint stress, less depressive-like and anxiety-like behaviours and anti-convulsive effects, all of which may benefit the heart. These phenotypes, induced by the activation of cardiac NNCCS, were dependent on the vagus nerve, because vagus nerve stimulation (VS) in WT mice also evoked phenotypes similar to those of ChAT tgm, which display higher vagus nerve discharge frequency; in contrast, lateral vagotomy attenuated these traits in ChAT tgm to levels observed in WT mice. Furthermore, ChAT tgm induced several biomarkers of VS responsible for anti-convulsive and anti-depressive-like effects. These results suggest that the augmentation of the NNCCS transduces an effective and beneficial signal to the afferent pathway, which mimics VS. Therefore, the present study supports our hypothesis that activation of the NNCCS modifies CNS to a more stress-resistant state through vagus nerve activity. PMID:27528769

  16. Prenatal Stress and Balance of the Child's Cardiac Autonomic Nervous System at Age 5-6 Years

    PubMed Central

    van Dijk, Aimée E.; van Eijsden, Manon; Stronks, Karien; Gemke, Reinoud J. B. J.; Vrijkotte, Tanja G. M.

    2012-01-01

    Objective Autonomic nervous system (ANS) misbalance is a potential causal factor in the development of cardiovascular disease. The ANS may be programmed during pregnancy due to various maternal factors. Our aim is to study maternal prenatal psychosocial stress as a potential disruptor of cardiac ANS balance in the child. Methods Mothers from a prospective birth cohort (ABCD study) filled out a questionnaire at gestational week 16 [IQR 12–20], that included validated instruments for state anxiety, depressive symptoms, pregnancy-related anxiety, parenting daily hassles and job strain. A cumulative stress score was also calculated (based on 80th percentiles). Indicators of cardiac ANS in the offspring at age 5–6 years are: pre-ejection period (PEP), heart rate (HR), respiratory sinus arrhythmia (RSA) and cardiac autonomic balance (CAB), measured with electrocardiography and impedance cardiography in resting supine and sitting positions. Results 2,624 mother-child pairs, only single births, were available for analysis. The stress scales were not significantly associated with HR, PEP, RSA and CAB (p≥0.17). Accumulation of maternal stress was also not associated with HR, PEP, RSA and CAB (p≥0.07). Conclusion Results did not support the hypothesis that prenatal maternal psychosocial stress deregulates cardiac ANS balance in the offspring, at least in rest, and at the age of five-six years. PMID:22272345

  17. Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure

    PubMed Central

    Marcus, Noah J; Rio, Rodrigo; Schultz, Evan P; Xia, Xiao-Hong; Schultz, Harold D

    2014-01-01

    ± 0.06), and was attenuated in CHF–CBD animals (0.59 ± 0.05) (P < 0.05 for all comparisons). Arrhythmia incidence was increased in CHF–sham and reduced in CHF–CBD animals (213 ± 58 events h–1 CHF, 108 ± 48 events h–1 CHF–CBD, P < 0.05). Furthermore, ventricular systolic (3.8 ± 0.7 vs. 6.3 ± 0.5 ml, P < 0.05) and diastolic (6.3 ± 1.0 vs. 9.1 ± 0.5 ml, P < 0.05) volumes were reduced, and ejection fraction preserved (41 ± 5% vs. 54 ± 2% reduction from pre-pace, P < 0.05) in CHF–CBD compared to CHF–sham rabbits. Similar patterns of changes were observed longitudinally within the CHF–CBD group before and after CBD. In conclusion, CBD is effective in reducing RSNA, SRC and arrhythmia incidence, while improving breathing stability and cardiac function in pacing-induced CHF rabbits. Key points A strong correlation between disordered breathing patterns, elevated sympathetic nerve activity and enhanced chemoreflex sensitivity exists in patients with heart failure. Evidence indicates that disordered breathing patterns and increased sympathetic nerve activity increases arrhythmia incidence in patients with heart failure. Enhanced coupling between sympathetic and respiratory neural drive underlies elevated sympathetic nerve activity in an animal model of sleep apnoea. We investigated the impact of carotid body chemoreceptor denervation on sympathetic nerve activity, disordered breathing and sympatho-respiratory coupling in an animal model of heart failure. Renal sympathetic nerve activity, apnoea/hypopnoea incidence, variability measures of tidal volume and respiratory rate and arrhythmia incidence were quantified during resting breathing in heart failure animals with and without carotid body ablation. Our results indicate that carotid body chemoreceptor denervation reduces sympathetic nerve activity, disordered breathing patterns, arrhythmia incidence and sympatho-respiratory coupling in

  18. Vasopressin, renin, and cortisol responses to hemorrhage during acute blockade of cardiac nerves in conscious dogs

    NASA Technical Reports Server (NTRS)

    O'Donnell, C. P.; Keil, L. C.; Thrasher, T. N.

    1993-01-01

    The effect of acute cardiac nerve blockade (CNB) on the increases in plasma renin activity (PRA), arginine vasopressin (AVP), and cortisol in response to a 30 ml/kg hemorrhage was determined in conscious dogs (n = 9). Procaine was infused into the pericardial space to produce acute reversible CNB, or saline was infused in the control hemorrhage. Blood was removed from the inferior vena cava at a rate of 1 ml.kg-1.min-1. In the control hemorrhage, plasma AVP increased from 1.8 +/- 0.3 to 219 +/- 66 pg/ml, PRA increased from 0.63 +/- 0.20 to 3.08 +/- 0.91 ng angiotensin I (ANG I).ml-1.3 h-1, and cortisol increased from 1.4 +/- 0.2 to 4.0 +/- 0.7 micrograms/dl. When the hemorrhage was repeated during acute CNB, plasma AVP increased from 2.8 +/- 1.6 to 185 +/- 59 pg/ml, PRA increased from 0.44 +/- 0.14 to 2.24 +/- 0.27 ng ANG I.ml-1.3 h-1, and cortisol increased from 1.9 +/- 0.3 to 5.4 +/- 0.6 micrograms/dl, and none of the increases differed significantly from the responses during the control hemorrhage. Left atrial pressure fell significantly after removal of 6 ml/kg of blood, but mean arterial pressure was maintained at control levels until blood loss reached 20 ml/kg during pericardial infusion of either saline or procaine. The declines in MAP at the 30 ml/kg level of hemorrhage in both treatments were similar. These results demonstrate that acutely blocking input from cardiac receptors does not reduce the increases in plasma AVP, cortisol, and PRA in response to a 30 ml/kg hemorrhage. The results of this study do not support the hypothesis that input from cardiac receptors is required for a normal AVP response to hemorrhage and suggest that other receptors, presumably arterial baroreceptors, can stimulate AVP and cortisol secretion in the absence of signals from the heart.

  19. Morphology of human intracardiac nerves: an electron microscope study

    PubMed Central

    PAUZIENE, NERINGA; PAUZA, DAINIUS H.; STROPUS, RIMVYDAS

    2000-01-01

    Since many human heart diseases involve both the intrinsic cardiac neurons and nerves, their detailed normal ultrastructure was examined in material from autopsy cases without cardiac complications obtained no more than 8 h after death. Many intracardiac nerves were covered by epineurium, the thickness of which was related to nerve diameter. The perineurial sheath varied from nerve to nerve and, depending on nerve diameter, contained up to 12 layers of perineurial cells. The sheaths of the intracardiac nerves therefore become progressively attenuated during their course in the heart. The intraneural capillaries of the human heart differ from those in animals in possessing an increased number of endothelial cells. A proportion of the intraneural capillaries were fenestrated. The number of unmyelinated axons within unmyelinated nerve fibres was related to nerve diameter, thin cardiac nerves possessing fewer axons. The most distinctive feature was the presence of stacks of laminated Schwann cell processes unassociated with axons that were more frequent in older subjects. Most unmyelinated and myelinated nerve fibres showed normal ultrastructure, although a number of profiles displayed a variety of different axoplasmic contents. Collectively, the data provide baseline information on the normal structure of intracardiac nerves in healthy humans which may be useful for assessing the degree of nerve damage both in autonomic and sensory neuropathies in the human heart. PMID:11117629

  20. On the vagal cardiac nerves, with special reference to the early evolution of the head-trunk interface.

    PubMed

    Higashiyama, Hiroki; Hirasawa, Tatsuya; Oisi, Yasuhiro; Sugahara, Fumiaki; Hyodo, Susumu; Kanai, Yoshiakira; Kuratani, Shigeru

    2016-09-01

    The vagus nerve, or the tenth cranial nerve, innervates the heart in addition to other visceral organs, including the posterior visceral arches. In amniotes, the anterior and posterior cardiac branches arise from the branchial and intestinal portions of the vagus nerve to innervate the arterial and venous poles of the heart, respectively. The evolution of this innervation pattern has yet to be elucidated, due mainly to the lack of morphological data on the vagus in basal vertebrates. To investigate this topic, we observed the vagus nerves of the lamprey (Lethenteron japonicum), elephant shark (Callorhinchus milii), and mouse (Mus musculus), focusing on the embryonic patterns of the vagal branches in the venous pole. In the lamprey, no vagus branch was found in the venous pole throughout development, whereas the arterial pole was innervated by a branch from the branchial portion. In contrast, the vagus innervated the arterial and venous poles in the mouse and elephant shark. Based on the morphological patterns of these branches, the venous vagal branches of the mouse and elephant shark appear to belong to the intestinal part of the vagus, implying that the cardiac nerve pattern is conserved among crown gnathostomes. Furthermore, we found a topographical shift of the structures adjacent to the venous pole (i.e., the hypoglossal nerve and pronephros) between the extant gnathostomes and lamprey. Phylogenetically, the lamprey morphology is likely to be the ancestral condition for vertebrates, suggesting that the evolution of the venous branch occurred early in the gnathostome lineage, in parallel with the remodeling of the head-trunk interfacial domain during the acquisition of the neck. J. Morphol. 277:1146-1158, 2016. © 2016 Wiley Periodicals, Inc. PMID:27216138

  1. Early-onset multisystem degeneration with central motor, autonomic and optic nerve disturbances: unusual Riley-Day syndrome or new clinical entity?

    PubMed

    Schnitzler, A; Witte, O W; Kunesch, E; Freund, H J; Benecke, R

    1998-02-01

    We report a 21-year-old woman presenting with a slowly progressive tetraparesis, optic nerve atrophy on both sides, and autonomic disturbances since early childhood. The patient has been carefully followed up for 5 years with clinical and ancillary investigations. The results and the time course strongly suggest an underlying degenerative syndrome affecting parts of three major systems: autonomic, motor and visual. Some symptoms resemble familial dysautonomia (FD, Riley-Day syndrome), however, hallmarks of FD, such as absence of fungiform papillae of the tongue, abnormal reaction on intradermal histamine injection, absent tendon reflexes, are missing, and central motor disturbances have not been described in FD. We consider this syndrome a slowly progressive multisystemic degeneration with two unusual hitherto unreported features: the combination of affected systems (autonomic and motor systems, optic nerves), and the early onset.

  2. Cardiomyocyte Circadian Oscillations Are Cell-Autonomous, Amplified by β-Adrenergic Signaling, and Synchronized in Cardiac Ventricle Tissue

    PubMed Central

    Welsh, David K.

    2016-01-01

    Circadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in culture. In the present study, we examined the relationship between intrinsic myocardial function and circadian rhythms in cultures from mouse heart. We cultured ventricular explants or dispersed cardiomyocytes from neonatal mice expressing a PER2::LUC bioluminescent reporter of circadian clock gene expression. We found that isoproterenol, a β-adrenoceptor agonist known to increase heart rate and contractility, also amplifies PER2 circadian rhythms in ventricular explants. We found robust, cell-autonomous PER2 circadian rhythms in dispersed cardiomyocytes. Single-cell rhythms were initially synchronized in ventricular explants but desynchronized in dispersed cells. In addition, we developed a method for long-term, simultaneous monitoring of clock gene expression, contraction rate, and basal intracellular Ca2+ level in cardiomyocytes using PER2::LUC in combination with GCaMP3, a genetically encoded fluorescent Ca2+ reporter. In contrast to robust PER2 circadian rhythms in cardiomyocytes, we detected no rhythms in contraction rate and only weak rhythms in basal Ca2+ level. In summary, we found that PER2 circadian rhythms of cardiomyocytes are cell-autonomous, amplified by adrenergic signaling, and synchronized by intercellular communication in ventricle explants, but we detected no robust circadian rhythms in contraction rate or basal Ca2+. PMID:27459195

  3. Mild-to-moderate intensity exercise improves cardiac autonomic drive in type 2 diabetes

    PubMed Central

    Goit, Rajesh Kumar; Paudel, Bishnu Hari; Khadka, Rita; Roy, Roshan Kumar; Shrewastwa, Mukesh Kumar

    2014-01-01

    Aims/Introduction The aim of the present study was to determine the effect of moderate aerobic exercise on cardiac autonomic function in type 2 diabetic patients. Materials and Methods Heart rate variability of 20 patients with type 2 diabetes was assessed. Resting electrocardiogram for the heart rate variability analysis at spontaneous respiration was recorded for 5 min in the supine position before and after 6 months of supervised aerobic training given three times per week. Results In time domain measures, the square root of the mean of the sum of the squares of differences between adjacent R-R intervals (RMSSD; 29.7 [26–34.5] vs 46.4 [29.8–52.2] ms, P = 0.023) and the percentage of consecutive RR intervals that differ by more than 50 ms (pNN50; 10.7 [5.5–12.7] vs 26.1 [6.6–37.2]%, P = 0.025] were significantly increased after exercise. In frequency domain measures, low frequency (62.4 [59.1–79.2] vs 37 [31.3–43.3] nu, P = 0.003) and low frequency/high frequency (1.67 [1.44–3.8] vs 0.58 [0.46–0.59]%, P = 0.009) were significantly decreased, whereas high frequency (95 [67–149] vs 229 [98–427] ms2, P = 0.006) and high frequency (37.6 [20.8–40.9] vs 63 [56.7–68.7] normalized units, P = 0.003) were significantly increased after exercise. In a Poincaré plot, standard deviation perpendicular to the line of the Poincaré plot (SD1; 21.3 [18.5–24.8]–33.1 [21.5–37.2] ms, P = 0.027) was significantly increased after exercise. Conclusions These data suggest that three times per week moderate intensity aerobic exercise for 6 months improves cardiac rhythm regulation as measured by heart rate variability in type 2 diabetic patients. PMID:25422774

  4. A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of R-R interval.

    PubMed

    Toichi, M; Sugiura, T; Murai, T; Sengoku, A

    1997-01-12

    A new non-linear method of assessing cardiac autonomic function was examined in a pharmacological experiment in ten healthy volunteers. The R-R interval data obtained under a control condition and in autonomic blockade by atropine and by propranolol were analyzed by each of the new methods employing Lorenz plot, spectral analysis and the coefficient of variation. With our method we derived two measures, the cardiac vagal index and the cardiac sympathetic index, which indicate vagal and sympathetic function separately. These two indices were found to be more reliable than those obtained by the other two methods. We anticipate that the non-invasive assessment of short-term cardiac autonomic function will come to be performed more reliably and conveniently by this method.

  5. Acute Auditory Stimulation with Different Styles of Music Influences Cardiac Autonomic Regulation in Men

    PubMed Central

    da Silva, Sheila Ap. F.; Guida, Heraldo L.; dos Santos Antonio, Ana Marcia; de Abreu, Luiz Carlos; Monteiro, Carlos B. M.; Ferreira, Celso; Ribeiro, Vivian F.; Barnabe, Viviani; Silva, Sidney B.; Fonseca, Fernando L. A.; Adami, Fernando; Petenusso, Marcio; Raimundo, Rodrigo D.; Valenti, Vitor E.

    2014-01-01

    Background: No clear evidence is available in the literature regarding the acute effect of different styles of music on cardiac autonomic control. Objectives: The present study aimed to evaluate the acute effects of classical baroque and heavy metal musical auditory stimulation on Heart Rate Variability (HRV) in healthy men. Patients and Methods: In this study, HRV was analyzed regarding time (SDNN, RMSSD, NN50, and pNN50) and frequency domain (LF, HF, and LF / HF) in 12 healthy men. HRV was recorded at seated rest for 10 minutes. Subsequently, the participants were exposed to classical baroque or heavy metal music for five minutes through an earphone at seated rest. After exposure to the first song, they remained at rest for five minutes and they were again exposed to classical baroque or heavy metal music. The music sequence was random for each individual. Standard statistical methods were used for calculation of means and standard deviations. Besides, ANOVA and Friedman test were used for parametric and non-parametric distributions, respectively. Results: While listening to heavy metal music, SDNN was reduced compared to the baseline (P = 0.023). In addition, the LF index (ms2 and nu) was reduced during exposure to both heavy metal and classical baroque musical auditory stimulation compared to the control condition (P = 0.010 and P = 0.048, respectively). However, the HF index (ms2) was reduced only during auditory stimulation with music heavy metal (P = 0.01). The LF/HF ratio on the other hand decreased during auditory stimulation with classical baroque music (P = 0.019). Conclusions: Acute auditory stimulation with the selected heavy metal musical auditory stimulation decreased the sympathetic and parasympathetic modulation on the heart, while exposure to a selected classical baroque music reduced sympathetic regulation on the heart. PMID:25177673

  6. The effects of different styles of musical auditory stimulation on cardiac autonomic regulation in healthy women.

    PubMed

    Roque, Adriano L; Valenti, Vitor E; Guida, Heraldo L; Campos, Mônica F; Knap, André; Vanderlei, Luiz Carlos M; Ferreira, Celso; de Abreu, Luiz Carlos

    2013-01-01

    The literature investigated the effects of chronic baroque music auditory stimulation on the cardiovascular system. However, it lacks in the literature the acute effects of different styles of music on cardiac autonomic regulation. To evaluate the acute effects of baroque and heavy metal music on heart rate variability (HRV) in women. The study was performed in 21 healthy women between 18 and 30 years old. We excluded persons with previous experience with music instrument and those who had affinity with the song styles. All procedures were performed in the same sound-proof room. We analyzed HRV in the time (standard deviation of normal-to-normal respiratory rate (RR) intervals, root-mean square of differences between adjacent normal RR intervals in a time interval, and the percentage of adjacent RR intervals with a difference of duration greater than 50 ms) and frequency (low frequency [LF], high frequency [HF], and LF/HF ratio) domains. HRV was recorded at rest for 10 min. Subsequently they were exposed to baroque or heavy metal music for 5 min through an earphone. After the first music exposure they remained at rest for more 5 min and them they were exposed again to baroque or heavy metal music. The sequence of songs was randomized for each individual. The power analysis provided a minimal number of 18 subjects. Shapiro-Wilk to verify normality of data and analysis of variance for repeated measures followed by the Bonferroni test for parametric variables and Friedman's followed by the Dunn's post-test for non-parametric distributions. During the analysis of the time-domain indices were not changed. In the frequency-domain analysis, the LF in absolute units was reduced during the heavy metal music stimulation compared to control. Acute exposure to heavy metal music affected the sympathetic activity in healthy women. PMID:23771427

  7. Enhancing Predictive Accuracy of Cardiac Autonomic Neuropathy Using Blood Biochemistry Features and Iterative Multitier Ensembles.

    PubMed

    Abawajy, Jemal; Kelarev, Andrei; Chowdhury, Morshed U; Jelinek, Herbert F

    2016-01-01

    Blood biochemistry attributes form an important class of tests, routinely collected several times per year for many patients with diabetes. The objective of this study is to investigate the role of blood biochemistry for improving the predictive accuracy of the diagnosis of cardiac autonomic neuropathy (CAN) progression. Blood biochemistry contributes to CAN, and so it is a causative factor that can provide additional power for the diagnosis of CAN especially in the absence of a complete set of Ewing tests. We introduce automated iterative multitier ensembles (AIME) and investigate their performance in comparison to base classifiers and standard ensemble classifiers for blood biochemistry attributes. AIME incorporate diverse ensembles into several tiers simultaneously and combine them into one automatically generated integrated system so that one ensemble acts as an integral part of another ensemble. We carried out extensive experimental analysis using large datasets from the diabetes screening research initiative (DiScRi) project. The results of our experiments show that several blood biochemistry attributes can be used to supplement the Ewing battery for the detection of CAN in situations where one or more of the Ewing tests cannot be completed because of the individual difficulties faced by each patient in performing the tests. The results show that AIME provide higher accuracy as a multitier CAN classification paradigm. The best predictive accuracy of 99.57% has been obtained by the AIME combining decorate on top tier with bagging on middle tier based on random forest. Practitioners can use these findings to increase the accuracy of CAN diagnosis.

  8. Cardiac autonomic response following high-intensity running work-to-rest interval manipulation.

    PubMed

    Cipryan, Lukas; Laursen, Paul B; Plews, Daniel J

    2016-10-01

    The cardiorespiratory, cardiac autonomic (via heart rate variability (HRV)) and plasma volume responses to varying sequences of high-intensity interval training (HIT) of consistent external work were investigated. Twelve moderately trained males underwent three HIT bouts and one control session. The HIT trials consisted of warm-up, followed by 12 min of 15 s, 30 s or 60 s work:relief HIT sequences at an exercise intensity of 100% of the individual velocity at [Formula: see text]O2max (v[Formula: see text]O2max), interspersed by relief intervals at 60% [Formula: see text]O2max (work/relief ratio = 1). HRV was evaluated via the square root of the mean sum of the squared differences between R-R intervals (rMSSD) before, 1 h, 3 h and 24 h after the exercise. Plasma volume was assessed before, immediately after, and 3 h and 24 h after. There were no substantial between-trial differences in acute cardiorespiratory responses. The rMSSD values remained decreased 1 h after the exercise cessation in all exercise groups. The rMSSD subsequently increased between 1 h and 3 h after exercise, with the most pronounced change in the 15/15 group. There were no relationships between HRV and plasma volume. All HIT protocols resulted in similar cardiorespiratory responses with slightly varying post-exercise HRV responses, with the 30/30 protocol eliciting the least disruption to post-exercise HRV. These post-exercise HRV findings suggest that the 30/30 sequence may be the preferable HIT prescription when the between-training period is limited.

  9. Cardiac autonomic recovery after a single session of resistance exercise with and without vascular occlusion.

    PubMed

    Okuno, Nilo M; Pedro, Rafael E; Leicht, Anthony S; de Paula Ramos, Solange; Nakamura, Fábio Y

    2014-04-01

    The aim of this study was to investigate the heart rate variability (HRV) after resistance training with and without vascular occlusion. It was hypothesized that low intensity (LI) with vascular occlusion (LIO) would elicit comparable postexercise HRV responses with that of high intensity (HI) without vascular occlusion. Nine subjects undertook 4 experimental sessions of leg press exercise on different days: (a) 1 repetition maximum (1RM) test, (b) 4 sets of 8 repetitions + 1 set until exhaustion at 80% of 1RM without vascular occlusion (HI), (c) 4 sets of 16 repetitions + 1 set until exhaustion at 40% of 1RM with vascular occlusion (LIO), and (d) 4 sets of 16 repetitions + 1 set with the number of repetitions equal to the last set of LIO but at 40% of 1RM without vascular occlusion (LI). Heart rate variability was analyzed 10 minutes, 20 minutes, 30 minutes, 1 hour, 5 hours, and 24 hours after the HI, LIO, and LI sessions. The HI session increased the heart rate (HR) and reduced the root mean square of the successive difference of R-R intervals (RMSSD) and log-transformed high-frequency (lnHF) power during prolonged recovery (HR = 5 hours; RMSSD = 30 minutes; lnHF = 1 hour) at a greater magnitude when compared with LIO and LI. Despite the same intensity of exercise for LIO and LI, the occlusion delayed the recovery of HR and HRV variables. Postexercise blood lactate concentration was moderate to strongly correlated with peak HR (r = 0.87), RMSSD (r = -0.64), and lnHF (r = -0.68). This study has demonstrated that LIO was able to reduce cardiac autonomic stress when compared with HI.

  10. Cardiac autonomic function and vascular profile in subclinical hypothyroidism: Increased beat-to-beat QT variability

    PubMed Central

    Kalra, Pramila; Yeragani, Vikram K.; Prasanna Kumar, K. M.

    2016-01-01

    Background: Patients with subclinical hypothyroidism (SH) may have higher incidence of coronary heart disease and autonomic dysfunction. Design of the Study: Prospective case control study. Aim and Objectives: To evaluate beat-to-beat QT variability and vascular stiffness in patients with SH compared to normal controls. Materials and Methods: We compared linear and nonlinear measures of cardiac repolarization liability using beat-to-beat QT intervals derived from the surface electrocardiogram during supine posture and vascular indices including pulse wave velocity and ankle-brachial index (ABI) during supine posture between female patients with SH and age- and sex-matched normal controls. Spectral analysis was done at very low frequency (LF) (0.003–0.04 Hz), Low frequency (LF) (0.04–0.15 Hz), and high frequency (HF) (0.15–0.4 Hz). The HF represents vagal regulation (parasympathetic) and LF represents both parasympathetic and sympathetic regulation. Results: We recruited 58 women with a mean age of 31.83 ± 8.9 years and 49 controls with mean age of 32.4 ± 9.9 years (P = NS). QT variability index (QTvi) was higher in cases compared to controls (P = 0.01). The ratio of LF/HF of R-R interval which is an index of sympathovagal tone was significantly more in cases compared to controls (P = 0.02). The difference in the left minus the right ABI was significant between cases and controls (P = 0.03). Conclusions: The cases had lower parasympathetic activity as compared to controls, and there was a predominance of sympathetic activity in cases. QTvi may be an important noninvasive tool in this group of patients to study the risk of cardiovascular mortality. PMID:27730068

  11. Decreased intracellular calcium mediates the histamine H3-receptor-induced attenuation of norepinephrine exocytosis from cardiac sympathetic nerve endings

    PubMed Central

    Silver, Randi B.; Poonwasi, Kumar S.; Seyedi, Nahid; Wilson, Sandy J.; Lovenberg, Timothy W.; Levi, Roberto

    2002-01-01

    Activation of presynatic histamine H3 receptors (H3R) down-regulates norepinephrine exocytosis from cardiac sympathetic nerve terminals, in both normal and ischemic conditions. Analogous to the effects of α2-adrenoceptors, which also act prejunctionally to inhibit norepinephrine release, H3R-mediated antiexocytotic effects could result from a decreased Ca2+ influx into nerve endings. We tested this hypothesis in sympathetic nerve terminals isolated from guinea pig heart (cardiac synaptosomes) and in a model human neuronal cell line (SH-SY5Y), which we stably transfected with human H3R cDNA (SH-SY5Y-H3). We found that reducing Ca2+ influx in response to membrane depolarization by inhibiting N-type Ca2+ channels with ω-conotoxin (ω-CTX) greatly attenuated the exocytosis of [3H]norepinephrine from both SH-SY5Y and SH-SY5Y-H3 cells, as well as the exocytosis of endogenous norepinephrine from cardiac synaptosomes. Similar to ω-CTX, activation of H3R with the selective H3R-agonist imetit also reduced both the rise in intracellular Ca2+ concentration (Cai) and norepinephrine exocytosis in response to membrane depolarization. The selective H3R antagonist thioperamide prevented this effect of imetit. In the parent SH-SY5Y cells lacking H3R, imetit affected neither the rise in Cai nor [3H]norepinephrine exocytosis, demonstrating that the presence of H3R is a prerequisite for a decrease in Cai in response to imetit and that H3R activation modulates norepinephrine exocytosis by limiting the magnitude of the increase in Cai. Inasmuch as excessive norepinephrine exocytosis is a leading cause of cardiac dysfunction and arrhythmias during acute myocardial ischemia, attenuation of norepinephrine release by H3R agonists may offer a novel therapeutic approach to this condition. PMID:11752397

  12. Examining the role of TRPA1 in air pollution-induced cardiac arrhythmias and autonomic imbalance

    EPA Science Inventory

    Here we describe how air pollution causes cardiac arrhythmogenesis through sensory irritation in the airways. Time-series studies show the risk of adverse cardiac events increases significantly in the hours to days after expos...

  13. Pelvic autonomic nerve preservation in radical rectal cancer surgery: changes in the past 3 decades

    PubMed Central

    Chew, Min-Hoe; Yeh, Yu-Ting; Lim, Evan; Seow-Choen, Francis

    2016-01-01

    The advent of total mesorectal excision (TME) together with minimally invasive techniques such as laparoscopic colorectal surgery and robotic surgery has improved surgical results. However, the incidence of bladder and sexual dysfunction remains high. This may be particularly distressing for the patient and troublesome to manage for the surgeon when it does occur. The increased use of neoadjuvant and adjuvant radiotherapy is also associated with poorer functional outcomes. In this review, we evaluate current understanding of the anatomy of pelvic nerves which are divided into the areas of the inferior mesenteric artery pedicle, the lateral pelvic wall and dissection around the urogenital organs. Surgical techniques in these areas are discussed. We also discuss the results in functional outcomes of the various techniques including open, laparoscopic and robotic over the last 30 years. PMID:27478196

  14. Short-term ECG recording for the identification of cardiac autonomic neuropathy in people with diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Jelinek, Herbert F.; Pham, Phuong; Struzik, Zbigniew R.; Spence, Ian

    2007-07-01

    Diabetes mellitus (DM) is a serious and increasing health problem worldwide. Compared to non-diabetics, patients experience an increased risk of all cardiovascular diseases, including dysfunctional neural control of the heart. Poor diagnoses of cardiac autonomic neuropathy (CAN) may result in increased incidence of silent myocardial infarction and ischaemia, which can lead to sudden death. Traditionally the Ewing battery of tests is used to identify CAN. The purpose of this study is to examine the usefulness of heart rate variability (HRV) analyses of short-term ECG recordings as a method for detecting CAN. HRV may be able to identify asymptomatic individuals, which the Ewing battery is not able to do. Several HRV parameters are assessed, including time and frequency domain, as well as nonlinear parameters. Eighteen out of thirty-eight individuals with diabetes were positive for two or more of the Ewing battery of tests indicating CAN. Approximate Entropy (ApEn), log normalized total power (LnTP) and log normalized high frequency (LnHF) power demonstrate a significant difference at p < 0.05 between CAN+ and CAN-. This indicates that nonlinear scaling parameters are able to identify people with cardiac autonomic neuropathy in short ECG recordings. Our study paves the way to assess the utility of nonlinear parameters in identifying asymptomatic CAN.

  15. Effects of psychological stress test on the cardiac response of public safety workers: alternative parameters to autonomic balance

    NASA Astrophysics Data System (ADS)

    Huerta-Franco, M. R.; Vargas-Luna, F. M.; Delgadillo-Holtfort, I.

    2015-01-01

    It is well known that public safety workers (PSW) face many stressful situations that yield them as high-risk population for suffering chronic stress diseases. In this multidisciplinary research the cardiac response to induced psychological stress by a short duration Stroop test was evaluated in 20 female and 19 male PSW, in order to compare traditionally used cardiac response parameters with alternative ones. Electrocardiograms have been recorded using the Eindhoven electrodes configuration for 1 min before, 3 min during and 1 min after the test. Signals analysis has been performed for the heart rate and the power spectra of its variability and of the variability of the amplitude of the R-wave, i.e. the highest peak of the electrocardiographic signal periodic sequence. The results demonstrated that the traditional autonomic balance index shows no significant differences between stages. In contrast, the median of the area of the power spectrum of the R-wave amplitude variability in the frequency region dominated by the autonomous nervous system (0.04-to-0.4 Hz) is the more sensitive parameter. Moreover, this parameter allows to identify gender differences consistent with those encountered in other studies.

  16. Exercise training associated with diet improves heart rate recovery and cardiac autonomic nervous system activity in obese children.

    PubMed

    Prado, D M; Silva, A G; Trombetta, I C; Ribeiro, M M; Guazzelli, I C; Matos, L N; Santos, M S; Nicolau, C M; Negrão, C E; Villares, S M

    2010-12-01

    The purpose of this study was to test the hypotheses that in obese children: 1) hypocaloric diet (D) improves both heart rate recovery at 1 min (Δ HRR1) cfter an exercise test, and cardiac autonomic nervous system activity (CANSA) in obese children; 2) Diet and exercise training (DET) combined leads to greater improvement in both Δ HRR1 after an exercise test and in CANSA, than D alone. Moreover, we examined the relationships among Δ HRR1, CANSA, cardiorespiratory fitness and anthropometric variables (AV) in obese children submitted to D and to DET. 33 obese children (10 ± 0.2 years; body mass index (BMI) >95 (th) percentile) were divided into 2 groups: D (n=15; BMI=31 ± 1 kg/m²)) and DET (n=18; 29 ± 1 kg/m²). All children performed a maximal cardiopulmonary exercise test on a treadmill. The Δ HRR1 or LF/HF ratio (P>0.05). In contrast, the DET group showed increased peak VO₂ ( P=0.01) and improved Δ HRR1 (Δ HRR1=37.3 ± 2.6; P=0.01) and LF/HF ratio ( P=0.001). The DET group demonstrated significant relationships among Δ HRR1, peak VO₂ and CANSA (P<0.05). In conclusion, DET, in contrast to D, promoted improved ÄΔ HRR1 and CANSA in obese children, suggesting a positive influence of increased levels of cardiorespiratory fitness by exercise training on cardiac autonomic activity.

  17. Assessment of cardiac autonomic functions by heart rate recovery, heart rate variability and QT dynamicity parameters in patients with acromegaly.

    PubMed

    Dural, Muhammet; Kabakcı, Giray; Cınar, Neşe; Erbaş, Tomris; Canpolat, Uğur; Gürses, Kadri Murat; Tokgözoğlu, Lale; Oto, Ali; Kaya, Ergün Barış; Yorgun, Hikmet; Sahiner, Levent; Dağdelen, Selçuk; Aytemir, Kudret

    2014-04-01

    Cardiovascular complications are the most common causes of morbidity and mortality in acromegaly. However, there is little data regarding cardiac autonomic functions in these patients. Herein, we aimed to investigate several parameters of cardiac autonomic functions in patients with acromegaly compared to healthy subjects. We enrolled 20 newly diagnosed acromegalic patients (55% female, age:45.7 ± 12.6 years) and 32 age- and gender-matched healthy subjects. All participants underwent 24 h Holter recording. Heart rate recovery (HRR) indices were calculated by subtracting 1st, 2nd and 3rd minute heart rates from maximal heart rate. All patients underwent heart rate variability (HRV) and QT dynamicity analysis. Baseline characteristics were similar except diabetes mellitus and hypertension among groups. Mean HRR1 (29.2 ± 12.3 vs 42.6 ± 6.5, p = 0.001), HRR2 (43.5 ± 15.6 vs 61.1 ± 10.8, p = 0.001) and HRR3 (46.4 ± 16.2 vs 65.8 ± 9.8, p = 0.001) values were significantly higher in control group. HRV parameters as, SDNN [standard deviation of all NN intervals] (p = 0.001), SDANN [SD of the 5 min mean RR intervals] (p = 0.001), RMSSD [root square of successive differences in RR interval] (p = 0.001), PNN50 [proportion of differences in successive NN intervals >50 ms] (p = 0.001) and high-frequency [HF] (p = 0.001) were significantly decreased in patients with acromegaly; but low frequency [LF] (p = 0.046) and LF/HF (p = 0.001) were significantly higher in acromegaly patients. QTec (p = 0.009), QTac/RR slope (p = 0.017) and QTec/RR slope (p = 0.01) were significantly higher in patients with acromegaly. Additionally, there were significant negative correlation of disease duration with HRR2, HRR3, SDNN, PNN50, RMSSD, variability index. Our study results suggest that cardiac autonomic functions are impaired in patients with acromegaly. Further large scale studies are needed to exhibit the prognostic significance of impaired autonomic functions in patients with

  18. Cardiac Innervation and Sudden Cardiac Death

    PubMed Central

    Fukuda, Keiichi; Kanazawa, Hideaki; Aizawa, Yoshiyasu; Ardell, Jeffrey L.; Shivkumar, Kalyanam

    2015-01-01

    Afferent and efferent cardiac neurotransmission via the cardiac nerves intricately modulates nearly all physiological functions of the heart (chronotropy, dromotropy, lusitropy and inotropy). Afferent information from the heart is transmitted to higher levels of the nervous system for processing (intrinsic cardiac nervous system, extracardiac-intrathoracic ganglia, spinal cord, brain stem and higher centers) which ultimately results in efferent cardiomotor neural impulses (via the sympathetic and parasympathetic nerves). This system forms interacting feedback loops that provide physiological stability for maintaining normal rhythm and life-sustaining circulation. This system also ensures that there is fine-tuned regulation of sympathetic-parasympathetic balance in the heart under normal and stressed states in the short (beat to beat), intermediate (minutes-hours) and long term (days-years). This important neurovisceral /autonomic nervous system also plays a major role in the pathophysiology and progression of heart disease, including heart failure and arrhythmias leading to sudden cardiac death (SCD). Transdifferentiation of neurons in heart failure, functional denervation, cardiac and extra-cardiac neural remodeling have also been identified and characterized during the progression of disease. Recent advances in understanding the cellular and molecular processes governing innervation and the functional control of the myocardium in health and disease provides a rational mechanistic basis for development of neuraxial therapies for preventing SCD and other arrhythmias. Advances in cellular, molecular, and bioengineering realms have underscored the emergence of this area as an important avenue of scientific inquiry and therapeutic intervention. PMID:26044253

  19. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study

    PubMed Central

    Janssens, Karin A. M.; Riese, Harriëtte; Van Roon, Arie M.; Hunfeld, Joke A. M.; Groot, Paul F. C.; Oldehinkel, Albertine J.; Rosmalen, Judith G. M.

    2016-01-01

    Objective Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS). However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous system (ANS) levels during a standardized stressful situation, and whether these associations are symptom-specific. Methods We examined 715 adolescents (16.1 years, 51.3% girls) from the Dutch cohort study Tracking Adolescents’ Individual Lives Sample during the Groningen Social Stress Test (GSST). FSS were assessed by the Youth Self-Report, and clustered into a cluster of overtiredness, dizziness and musculoskeletal pain and a cluster of headache and gastrointestinal symptoms. Perceived stress levels (i.e. unpleasantness and arousal) were assessed by the Self-Assessment Manikin, and cardiac ANS activity by assessing heart rate variability (HRV-HF) and pre-ejection period (PEP). Perceived stress and cardiac ANS levels before, during, and after the GSST were studied as well as cardiac ANS reactivity. Linear regression analyses were used to examine the associations. Results Perceived arousal levels during (beta = 0.09, p = 0.04) and after (beta = 0.07, p = 0.047) the GSST, and perceived unpleasantness levels before (beta = 0.07, p = 0.048) and during (beta = 0.12, p = 0.001) the GSST were related to FSS during the past couple of months. The association between perceived stress and FSS was stronger for the FSS cluster of overtiredness, dizziness and musculoskeletal pain than for the cluster of headache and gastrointestinal symptoms. Neither ANS activity levels before, during, and after the GSST, nor maximal HF-HRV and PEP reactivity were related to FSS. Conclusions This study suggests that perceived stress levels during social stress are related to FSS, whereas cardiac ANS activity and reactivity are not related to FSS. PMID:27089394

  20. Previous exposure to musical auditory stimulation immediately influences the cardiac autonomic responses to the postural change maneuver in women

    PubMed Central

    2013-01-01

    Background Chronic exposure to musical auditory stimulation has been reported to improve cardiac autonomic regulation. However, it is not clear if music acutely influences it in response to autonomic tests. We evaluated the acute effects of music on heart rate variability (HRV) responses to the postural change maneuver (PCM) in women. Method We evaluated 12 healthy women between 18 and 28 years old and HRV was analyzed in the time (SDNN, RMSSD, NN50 and pNN50) and frequency (LF, HF and LF/HF ratio) domains. In the control protocol, the women remained at seated rest for 10 minutes and quickly stood up within three seconds and remained standing still for 15 minutes. In the music protocol, the women remained at seated rest for 10 minutes, were exposed to music for 10 minutes and quickly stood up within three seconds and remained standing still for 15 minutes. HRV was recorded at the following time: rest, music (music protocol) 0–5, 5–10 and 10–15 min during standing. Results In the control protocol the SDNN, RMSSD and pNN50 indexes were reduced at 10–15 minutes after the volunteers stood up, while the LF (nu) index was increased at the same moment compared to seated rest. In the protocol with music, the indexes were not different from control but the RMSSD, pNN50 and LF (nu) were different from the music period. Conclusion Musical auditory stimulation attenuates the cardiac autonomic responses to the PCM. PMID:23941333

  1. Modulation of cardiac autonomic balance with adjuvant yoga therapy in patients with refractory epilepsy.

    PubMed

    Sathyaprabha, T N; Satishchandra, P; Pradhan, C; Sinha, S; Kaveri, B; Thennarasu, K; Murthy, B T C; Raju, T R

    2008-02-01

    The practice of yoga regulates body physiology through control of posture, breathing, and meditation. Effects of yoga on autonomic functions of patients with refractory epilepsy, as quantified by standardized autonomic function tests (AFTs), were determined. The yoga group (n=18) received supervised training in yoga, and the exercise group (n=16) practiced simple routine exercises. AFTs were repeated after 10 weeks of daily sessions. Data were compared with those of healthy volunteers (n=142). The yoga group showed significant improvement in parasympathetic parameters and a decrease in seizure frequency scores. There was no improvement in blood pressure parameters in either group. Two patients in the yoga group achieved normal autonomic functions at the end of 10 weeks of therapy, whereas there were no changes in the exercise group. The data suggest that yoga may have a role as an adjuvant therapy in the management of autonomic dysfunction in patients with refractory epilepsy.

  2. Noninvasive evaluation of the cardiac autonomic nervous system. Final progress report, December 24, 1993--February 28, 1994

    SciTech Connect

    Not Available

    1994-12-31

    During the first year of funding, C-11 hydroxyephedrine has been introduced as the first clinically usable norepinephrine analogue. Studies in normal volunteers and patients with various cardiac disorders indicated the feasibility of this tracer for further evaluation. Simultaneously, animal studies have been used to assess the use of these radiopharmaceuticals in ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threo-hydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, the authors are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve their ability to identify abnormalities. They are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. In addition, they are participating in the development of radiopharmaceuticals for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in their institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by preliminary PET data. A compilation of all publications funded by this grant is presented in this report.

  3. Role of cardiac output and the autonomic nervous system in the antinatriuretic response to acute constriction of the thoracic superior vena cava.

    NASA Technical Reports Server (NTRS)

    Schrier, R. W.; Humphreys, M. H.; Ufferman, R. C.

    1971-01-01

    Study of the differential characteristics of hepatic congestion and decreased cardiac output in terms of potential afferent stimuli in the antinatriuretic effect of acute thoracic inferior vena cava (TIVC) constriction. An attempt is made to see if the autonomic nervous system is involved in the antinatriuretic effect of acute TIVC or thoracic superior vena cava constriction.

  4. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents.

    PubMed

    Kanazawa, Hideaki; Ieda, Masaki; Kimura, Kensuke; Arai, Takahide; Kawaguchi-Manabe, Haruko; Matsuhashi, Tomohiro; Endo, Jin; Sano, Motoaki; Kawakami, Takashi; Kimura, Tokuhiro; Monkawa, Toshiaki; Hayashi, Matsuhiko; Iwanami, Akio; Okano, Hideyuki; Okada, Yasunori; Ishibashi-Ueda, Hatsue; Ogawa, Satoshi; Fukuda, Keiichi

    2010-02-01

    Although several cytokines and neurotrophic factors induce sympathetic neurons to transdifferentiate into cholinergic neurons in vitro, the physiological and pathophysiological roles of this remain unknown. During congestive heart failure (CHF), sympathetic neural tone is upregulated, but there is a paradoxical reduction in norepinephrine synthesis and reuptake in the cardiac sympathetic nervous system (SNS). Here we examined whether cholinergic transdifferentiation can occur in the cardiac SNS in rodent models of CHF and investigated the underlying molecular mechanism(s) using genetically modified mice. We used Dahl salt-sensitive rats to model CHF and found that, upon CHF induction, the cardiac SNS clearly acquired cholinergic characteristics. Of the various cholinergic differentiation factors, leukemia inhibitory factor (LIF) and cardiotrophin-1 were strongly upregulated in the ventricles of rats with CHF. Further, LIF and cardiotrophin-1 secreted from cultured failing rat cardiomyocytes induced cholinergic transdifferentiation in cultured sympathetic neurons, and this process was reversed by siRNAs targeting Lif and cardiotrophin-1. Consistent with the data in rats, heart-specific overexpression of LIF in mice caused cholinergic transdifferentiation in the cardiac SNS. Further, SNS-specific targeting of the gene encoding the gp130 subunit of the receptor for LIF and cardiotrophin-1 in mice prevented CHF-induced cholinergic transdifferentiation. Cholinergic transdifferentiation was also observed in the cardiac SNS of autopsied patients with CHF. Thus, CHF causes target-dependent cholinergic transdifferentiation of the cardiac SNS via gp130-signaling cytokines secreted from the failing myocardium.

  5. Chloride current in mammalian cardiac myocytes. Novel mechanism for autonomic regulation of action potential duration and resting membrane potential

    PubMed Central

    1990-01-01

    The properties of the autonomically regulated chloride current (ICl) were studied in isolated guinea pig ventricular myocytes. This current was elicited upon exposure to isoproterenol (ISO) and reversed upon concurrent exposure to acetylcholine (ACh). ICl was time independent and exhibited outward rectification. The responses to ISO and ACh could be blocked by propranolol and atropine, respectively, and ICl was also elicited by forskolin, 8-bromoadenosine 3',5'-cyclic monophosphate, and 3-isobutyl-l-methylxanthine, indicating that the current is regulated through a cAMP-dependent pathway. The reversal potential of the ISO- induced current followed the predicted chloride equilibrium potential, consistent with it being carried predominantly by Cl-. Activation of ICl produced changes in the resting membrane potential and action potential duration, which were Cl- gradient dependent. These results indicate that under physiological conditions ICl may play an important role in regulating action potential duration and resting membrane potential in mammalian cardiac myocytes. PMID:2165130

  6. Symptoms of anxiety and mood disturbance alter cardiac and peripheral autonomic control in patients with metabolic syndrome.

    PubMed

    Toschi-Dias, Edgar; Trombetta, Ivani C; da Silva, Valdo José Dias; Maki-Nunes, Cristiane; Alves, Maria Janieire N N; Angelo, Luciana F; Cepeda, Felipe X; Martinez, Daniel G; Negrão, Carlos Eduardo; Rondon, Maria Urbana P B

    2013-03-01

    Previous investigations show that metabolic syndrome (MetSyn) causes sympathetic hyperactivation. Symptoms of anxiety and mood disturbance (AMd) provoke sympatho-vagal imbalance. We hypothesized that AMd would alter even further the autonomic function in patients with MetSyn. Twenty-six never-treated patients with MetSyn (ATP-III) were allocated to two groups, according to the levels of anxiety and mood disturbance: (1) with AMd (MetSyn + AMd, n = 15), and (2) without AMd (MetSyn, n = 11). Ten healthy control subjects were also studied (C, n = 10). AMd was determined using quantitative questionnaires. Muscle sympathetic nerve activity (MSNA, microneurography), blood pressure (oscillometric beat-to-beat basis), and heart rate (ECG) were measured during a baseline 10-min period. Spectral analysis of RR interval and systolic arterial pressure were analyzed, and the power of low (LF) and high (HF) frequency bands were determined. Sympatho-vagal balance was obtained by LF/HF ratio. Spontaneous baroreflex sensitivity (BRS) was evaluated by calculation of α-index. MSNA was greater in patients with MetSyn + AMd compared with MetSyn and C. Patients with MetSyn + AMd showed higher LF and lower HF power compared with MetSyn and C. In addition, LF/HF balance was higher in MetSyn + AMd than in MetSyn and C groups. BRS was decreased in MetSyn + AMd compared with MetSyn and C groups. Anxiety and mood disturbance alter autonomic function in patients with MetSyn. This autonomic dysfunction may contribute to the increased cardiovascular risk observed in patients with mood alterations.

  7. Autonomic nervous system dysfunction in workers exposed to lead, zinc, and copper in relation to peripheral nerve conduction: a study of R-R interval variability

    SciTech Connect

    Murata, K.; Araki, S. )

    1991-01-01

    Quantitative assessment of the autonomic neurotoxicity due to lead was undertaken by measuring variability in the electrocardiographic R-R interval (CVRR) in 16 male workers exposed to lead, zinc, copper, and tin and in 16 unexposed control subjects. Two component coefficients of variation in the R-R interval, the C-CVRSA (respiratory sinus arrhythmia) and C-CVMWSA (Mayer wave related sinus arrhythmia), were examined; these indices are considered to reflect parasympathetic and sympathetic activities, respectively. Maximal motor and sensory conduction velocities (MCV and SCV) in the median nerve were also measured. In the 16 exposed workers, blood lead concentrations ranged from 16 to 60 (mean 34) micrograms/dl. The CVRR and C-CVRSA were found to be significantly reduced in the workers with elevated lead, zinc, and copper absorption as compared to unexposed control subjects; also, the MCV and SCV were significantly slowed. The C-CVMWSA was not significantly reduced, and was positively related to plasma zinc concentrations. No significant relationships were found between indicators of lead and copper absorption and these electrophysiological measurements. These data suggest that subclinical toxicity of lead occurs in the parasympathetic component of the autonomic nervous system as well as in the peripheral nerves. Zinc may antagonize the autonomic nervous dysfunction caused by lead.

  8. Cardiac autonomic functions and the emergence of violence in a highly realistic model of social conflict in humans

    PubMed Central

    Haller, Jozsef; Raczkevy-Deak, Gabriella; Gyimesine, Katalin P.; Szakmary, Andras; Farkas, Istvan; Vegh, Jozsef

    2014-01-01

    Among the multitude of factors that can transform human social interactions into violent conflicts, biological features received much attention in recent years as correlates of decision making and aggressiveness especially in critical situations. We present here a highly realistic new model of human aggression and violence, where genuine acts of aggression are readily performed and which at the same time allows the parallel recording of biological concomitants. Particularly, we studied police officers trained at the International Training Centre (Budapest, Hungary), who are prepared to perform operations under extreme conditions of stress. We found that aggressive arousal can transform a basically peaceful social encounter into a violent conflict. Autonomic recordings show that this change is accompanied by increased heart rates, which was associated earlier with reduced cognitive complexity of perceptions (“attentional myopia”) and promotes a bias toward hostile attributions and aggression. We also observed reduced heart rate variability in violent subjects, which is believed to signal a poor functioning of prefrontal-subcortical inhibitory circuits and reduces self-control. Importantly, these autonomic particularities were observed already at the beginning of social encounters i.e., before aggressive acts were initiated, suggesting that individual characteristics of the stress-response define the way in which social pressure affects social behavior, particularly the way in which this develops into violence. Taken together, these findings suggest that cardiac autonomic functions are valuable external symptoms of internal motivational states and decision making processes, and raise the possibility that behavior under social pressure can be predicted by the individual characteristics of stress responsiveness. PMID:25374519

  9. The effects of chewing versus caffeine on alertness, cognitive performance and cardiac autonomic activity during sleep deprivation.

    PubMed

    Kohler, Mark; Pavy, Alan; van den Heuvel, Cameron

    2006-12-01

    Chewing has been shown to alleviate feelings of sleepiness and improve cognitive performance during the day. This study investigated the effect of chewing on alertness and cognitive performance across one night without sleep as well as the possible mediating role of cardiac autonomic activity. Fourteen adults participated in a randomized, counterbalanced protocol employing a chewing, placebo and caffeine condition. Participants completed tasks assessing psychomotor vigilance, tracking, grammatical reasoning, alertness and sleepiness each hour across the night. All participants received either placebo or caffeine (200 mg), while the chewing condition also chewed on a tasteless and odorless substance for 15 min each hour. Heart rate (HR), root mean square of the successive differences in R-R intervals on the ECG (RMSSD), and preejection period (PEP) were simultaneously recorded. Alertness and cognitive performance amongst the chewing condition did not differ or were in fact worse when compared with placebo. Similarly, measures of HR and RMSSD remained the same between these two conditions; however, PEP was reduced in the later part of the night in the chewing condition compared with a relative increase for placebo. Caffeine led to improved speed and accuracy on cognitive tasks and increased alertness when compared with chewing. Relative increases in RMSSD and reductions in HR were demonstrated following caffeine; however, no change in PEP was seen. Strong associations between cardiac parasympathetic activity and complex cognitive tasks, as well as between subjective alertness and simpler cognitive tasks, suggest a differential process mediating complex versus simple cognitive performance during sleep deprivation.

  10. Effects of vegetable containing gamma-aminobutyric acid on the cardiac autonomic nervous system in healthy young people.

    PubMed

    Okita, Yoshimitsu; Nakamura, Harunobu; Kouda, Katsuyasu; Takahashi, Isao; Takaoka, Terumi; Kimura, Motohiko; Sugiura, Toshifumi

    2009-01-01

    The aim of this study was to investigate the effects of vegetable tablets containing Gamma-Aminobutyric Acid (GABA) intake on cardiovascular response and the autonomic nervous system in young adults. In a double-blind, randomized controlled trial, 7 healthy subjects were assigned to take vegetable tablets (10 g/trial) or control tablets (10 g/trial). We measured heart rate (HR), systolic and diastolic blood pressure, stroke volume, cardiac output, total peripheral resistance index, and the low- and high-frequency oscillatory components of heart rate variability (HRV). Two major spectral components were examined at low-frequency (LF: 0.04-0.15 Hz) and high-frequency (HF: 0.15-0.4 Hz) bands to indicate HRV. There were significant interactions in HR (p<0.01) and in LF/HF of HRV (p<0.05). HR increased after intake of control tablets, but not after that of vegetable tablets. LF/HF increased rapidly after intake of control tablets and rose slightly after vegetable tablet intake. There was no significant difference between the vegetable and control tablet trials in stroke volume, cardiac output, total peripheral resistance, systolic or diastolic blood pressure, HF, or LF. In conclusion, these results suggest the possibility that single administration of vegetable tablets containing GABA suppresses the sympathetic nervous activity leading to an elevation of blood pressure.

  11. Analysis of cardiac autonomic modulation of children with attention deficit hyperactivity disorder

    PubMed Central

    de Carvalho, Tatiana Dias; Wajnsztejn, Rubens; de Abreu, Luiz Carlos; Marques Vanderlei, Luiz Carlos; Godoy, Moacir Fernandes; Adami, Fernando; Valenti, Vitor E; Monteiro, Carlos B M; Leone, Claudio; da Cruz Martins, Karen Cristina; Ferreira, Celso

    2014-01-01

    Background Attention deficit hyperactivity disorder (ADHD) is characterized by decreased attention span, impulsiveness, and hyperactivity. Autonomic nervous system imbalance was previously described in this population. We aim to compare the autonomic function of children with ADHD and controls by analyzing heart rate variability (HRV). Methods Children rested in supine position with spontaneous breathing for 20 minutes. Heart rate was recorded beat by beat. HRV analysis was performed in the time and frequency domains and Poincaré plot. Results Twenty-eight children with ADHD (22 boys, aged 9.964 years) and 28 controls (15 boys, age 9.857 years) participated in this study. It was determined that the mean and standard deviation of indexes which indicate parasympathetic activity is higher in children with ADHD than in children without the disorder: high frequency in normalized units, 46.182 (14.159) versus 40.632 (12.247); root mean square of successive differences, 41.821 (17.834) versus 38.150 (18.357); differences between adjacent normal-to-normal intervals greater than 50 milliseconds, 199.75 (144.00) versus 127.46 (102.21) (P<0.05); percentage of differences between adjacent normal-to-normal intervals greater than 50 milliseconds, 23.957 (17.316) versus 16.211 (13.215); standard deviation of instantaneous beat-to-beat interval, 29.586 (12.622) versus 26.989 (12.983). Conclusion Comparison of the autonomic function by analyzing HRV suggests an increase in the activity of the parasympathetic autonomic nervous systems in children with ADHD in relation to the control group. PMID:24748797

  12. Autonomic Regulation Therapy in Heart Failure

    PubMed Central

    Buckley, Una; Shivkumar, Kalyanam; Ardell, Jeffrey L.

    2015-01-01

    Autonomic Regulation Therapy (ART) is a rapidly emerging therapy in the management of congestive heart failure secondary to systolic dysfunction. Modulation of the cardiac neuronal hierarchy can be achieved with bioelectronics modulation of the spinal cord, cervical vagus, baroreceptor, or renal nerve ablation. This review will discuss relevant preclinical and clinical research in ART for systolic heart failure. Understanding mechanistically what is being stimulated within the autonomic nervous system by such device-based therapy and how the system reacts to such stimuli is essential for optimizing stimulation parameters and for the future development of effective ART. PMID:26054327

  13. Reduced cardiac autonomic response to deep breathing: A heritable vulnerability trait in patients with schizophrenia and their healthy first-degree relatives.

    PubMed

    Liu, Yu-Wen; Tzeng, Nian-Sheng; Yeh, Chin-Bin; Kuo, Terry B J; Huang, San-Yuan; Chang, Chuan-Chia; Chang, Hsin-An

    2016-09-30

    Reduced resting heart rate variability (HRV) has been observed in patients with schizophrenia and their relatives, suggesting genetic predispositions. However, findings have not been consistent. We assessed cardiac autonomic response to deep breathing in first-degree relatives of patients with schizophrenia (n=45; 26 female; aged 39.69±14.82 years). Data were compared to healthy controls (n=45; 26 female; aged 38.27±9.79 years) matched for age, gender, body mass index and physical activity as well as to unmedicated patients with acute schizophrenia (n=45; 25 female; aged 37.31±12.65 years). Electrocardiograms were recorded under supine resting and deep-breathing conditions (10-12breaths/min). We measured HRV components including variance, low-frequency (LF) power, which may reflect baroreflex function, high-frequency (HF) power, which reflects cardiac parasympathetic activity, and LF/HF ratio, which may reflect sympatho-vagal balance. Patients rather than relatives exhibited lower resting-state HRV (variance, LF, and HF) than controls. As expected, deep breathing induced an increase in variance and HF-HRV in controls. However, such a response was significantly reduced in both patients and their relatives. In conclusion, the diminished cardiac autonomic reactivity to deep breathing seen in patients and their unaffected relatives indicates that this pattern of cardiac autonomic dysregulation may be regarded as a genetic trait marker for schizophrenia. PMID:27442977

  14. Reduced cardiac autonomic response to deep breathing: A heritable vulnerability trait in patients with schizophrenia and their healthy first-degree relatives.

    PubMed

    Liu, Yu-Wen; Tzeng, Nian-Sheng; Yeh, Chin-Bin; Kuo, Terry B J; Huang, San-Yuan; Chang, Chuan-Chia; Chang, Hsin-An

    2016-09-30

    Reduced resting heart rate variability (HRV) has been observed in patients with schizophrenia and their relatives, suggesting genetic predispositions. However, findings have not been consistent. We assessed cardiac autonomic response to deep breathing in first-degree relatives of patients with schizophrenia (n=45; 26 female; aged 39.69±14.82 years). Data were compared to healthy controls (n=45; 26 female; aged 38.27±9.79 years) matched for age, gender, body mass index and physical activity as well as to unmedicated patients with acute schizophrenia (n=45; 25 female; aged 37.31±12.65 years). Electrocardiograms were recorded under supine resting and deep-breathing conditions (10-12breaths/min). We measured HRV components including variance, low-frequency (LF) power, which may reflect baroreflex function, high-frequency (HF) power, which reflects cardiac parasympathetic activity, and LF/HF ratio, which may reflect sympatho-vagal balance. Patients rather than relatives exhibited lower resting-state HRV (variance, LF, and HF) than controls. As expected, deep breathing induced an increase in variance and HF-HRV in controls. However, such a response was significantly reduced in both patients and their relatives. In conclusion, the diminished cardiac autonomic reactivity to deep breathing seen in patients and their unaffected relatives indicates that this pattern of cardiac autonomic dysregulation may be regarded as a genetic trait marker for schizophrenia.

  15. Linking an Anxiety-Related Personality Trait to Cardiac Autonomic Regulation in Well-Defined Healthy Adults: Harm Avoidance and Resting Heart Rate Variability

    PubMed Central

    Kao, Lien-Cheng; Liu, Yu-Wen; Tzeng, Nian-Sheng; Kuo, Terry B. J.; Huang, San-Yuan

    2016-01-01

    Objective Anxiety trait, anxiety and depression states have all been reported to increase risks for cardiovascular disease (CVD), possibly through altering cardiac autonomic regulation. Our aim was to investigate whether the relationship between harm avoidance (HA, an anxiety-related personality trait) and cardiac autonomic regulation is independent of anxiety and depression states in healthy adults. Methods We recruited 535 physically and mentally healthy volunteers. Participants completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI) and Tri-dimensional Personality Questionnaire. Participants were divided into high or low HA groups as discriminated by the quartile value. Cardiac autonomic function was evaluated by measuring heart rate variability (HRV). We obtained the time and frequency-domain indices of HRV including variance (total HRV), the low-frequency power (LF; 0.05–0.15 Hz), which may reflect baroreflex function, the high-frequency power (HF; 0.15–0.40 Hz), which reflects cardiac parasympathetic activity, as well as the LF/HF ratio. Results The BDI and HA scores showed associations with HRV parameters. After adjustment for the BDI scores and other control variables, HA is still associated with reduced variance, LF and HF power. Compared with the participants with low HA, those with high HA displayed significant reductions in variance, LF and HF power and a significant increase in their LF/HF ratio. Conclusion This study highlights the independent role of HA in contributing to decreased autonomic cardiac regulation in healthy adults and provides a potential underlying mechanism for anxiety trait to confer increased risk for CVD. PMID:27482240

  16. Autonomic involvement in Parkinson's disease: pathology, pathophysiology, clinical features and possible peripheral biomarkers.

    PubMed

    Cersosimo, Maria G; Benarroch, Eduardo E

    2012-02-15

    Autonomic nervous system involvement occurs at early stages in both Parkinson's disease (PD) and incidental Lewy body disease (ILBD), and affects the sympathetic, parasympathetic, and enteric nervous systems (ENS). It has been proposed that alpha-synuclein (α-SYN) pathology in PD has a distal to proximal progression along autonomic pathways. The ENS is affected before the dorsal motor nucleus of the vagus (DMV), and distal axons of cardiac sympathetic nerves degenerate before there is loss of paravertebral sympathetic ganglion neurons. Consistent with neuropathological findings, some autonomic manifestations such as constipation or impaired cardiac uptake of norepinephrine precursors, occur at early stages of the disease even before the onset of motor symptoms. Biopsy of peripheral tissues may constitute a promising approach to detect α-SYN neuropathology in autonomic nerves and a useful early biomarker of PD.

  17. (Non-invasive evaluation of the cardiac autonomic nervous system by PET)

    SciTech Connect

    Not Available

    1991-01-01

    Our research efforts in the first funding year concentrated on animal and clinical studies validating {sup 11}C-hydroxyephedrine as a marker for norepinephrine uptake and storage in presynaptic sympathetic nerve terminals. In addition to kinetic studies in animals, the first clinical studies have been performed. {sup 11}C-hydroxyephedrine provides excellent image quality in the human heart with high myocardium to blood ratios. A canine model with transient intracoronary occlusion of the left anterior descending aorta was used to show decreased retention of tracer with ischemia. Clinical studies of patients with acute myocardial infarction showed an area of decreased retention of tracer exceeding the infarct territory as defined by {sup 82}Rb blood flow imaging. We are also developing tracers for the parasympathetic nervous system. It appears that methyl-TRB is a specific tracer for this system. Studies of {sup 11}C- or {sup 18}F-benzovesamicol as a potential tracer for parasympathetic presynaptic nerve terminals are under way. (MHB)

  18. Effect of Head-Down Bed Rest and Artificial Gravity Countermeasure on Cardiac Autonomic and Advanced Electrocardiographic Function

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Platts, S.; Stenger, M.; Ribeiro, C.; Natapoff, A.; Howarth, M.; Evans, J.

    2007-01-01

    To study the effects of 21 days of head-down bed rest (HDBR), with versus without an artificial gravity (AG) countermeasure, on cardiac autonomic and advanced electrocardiographic function. Fourteen healthy men participated in the study: seven experienced 21 days of HDBR alone ("HDBR controls") and seven the same degree and duration of HDBR but with approximately 1hr daily short-arm centrifugation as an AG countermeasure ("AG-treated"). Five minute supine high-fidelity 12-lead ECGs were obtained in all subjects: 1) 4 days before HDBR; 2) on the last day of HDBR; and 3) 7 days after HDBR. Besides conventional 12-lead ECG intervals and voltages, all of the following advanced ECG parameters were studied: 1) both stochastic (time and frequency domain) and deterministic heart rate variability (HRV); 2) beat-to-beat QT interval variability (QTV); 3) T-wave morphology, including signal-averaged T-wave residua (TWR) and principal component analysis ratios; 4) other SAECG-related parameters including high frequency QRS ECG and late potentials; and 5) several advanced ECG estimates of left ventricular (LV) mass. The most important results by repeated measures ANOVA were that: 1) Heart rates, Bazett-corrected QTc intervals, TWR, LF/HF power and the alpha 1 of HRV were significantly increased in both groups (i.e., by HDBR), but with no relevant HDBR*group differences; 2) All purely "vagally-mediated" parameters of HRV (e.g., RMSSD, HF power, Poincare SD1, etc.), PR intervals, and also several parameters of LV mass (Cornell and Sokolow-Lyon voltages, spatial ventricular activation times, ventricular gradients) were all significantly decreased in both groups (i.e., by HDBR), but again with no relevant HDBR*group differences); 3) All "generalized" or "vagal plus sympathetic" parameters of stochastic HRV (i.e., SDNN, total power, LF power) were significantly more decreased in the AG-treated group than in the HDBR-only group (i.e., here there was a relevant HDBR*group difference

  19. Cardiac Repolarization and Autonomic Regulation during Short-Term Cold Exposure in Hypertensive Men: An Experimental Study

    PubMed Central

    Hintsala, Heidi; Kenttä, Tuomas V.; Tulppo, Mikko; Kiviniemi, Antti; Huikuri, Heikki V.; Mäntysaari, Matti; Keinänen-Kiukaannemi, Sirkka; Bloigu, Risto; Herzig, Karl-Heinz; Antikainen, Riitta; Rintamäki, Hannu; Jaakkola, Jouni J. K.; Ikäheimo, Tiina M.

    2014-01-01

    Objectives The aim of our study was to assess the effect of short-term cold exposure, typical in subarctic climate, on cardiac electrical function among untreated middle-aged hypertensive men. Methods We conducted a population-based recruitment of 51 hypertensive men and a control group of 32 men without hypertension (age 55–65 years) who underwent whole-body cold exposure (15 min exposure to temperature −10°C, wind 3 m/s, winter clothes). Conduction times and amplitudes, vectorcardiography, arrhythmias, and heart rate variability (autonomic nervous function) were assessed. Results Short-term cold exposure increased T-peak to T-end interval from 67 to 72 ms (p<0.001) and 71 to 75 ms (p<0.001) and T-wave amplitude from 0.12 to 0.14 mV (p<0.001) and from 0.17 to 0.21 mV (p<0.001), while QTc interval was shortened from 408 to 398 ms (p<0.001) and from 410 to 401 ms (p<0.001) among hypertensive men and controls, respectively. Cold exposure increased both low (from 390 to 630 ms2 (p<0.001) and 380 to 700 ms2 (p<0.001), respectively) and high frequency heart rate variability (from 90 to 190 ms2 (p<0.001) and 150 to 300 ms2 (p<0.001), respectively), while low-to-high frequency-ratio was reduced. In addition, the frequency of ventricular ectopic beats increased slightly during cold exposure. The cold induced changes were similar between untreated hypertensive men and controls. Conclusions Short-term cold exposure with moderate facial and mild whole body cooling resulted in prolongation of T-peak to T-end interval and higher T-wave amplitude while QTc interval was shortened. These changes of ventricular repolarization may have resulted from altered cardiac autonomic regulation and were unaffected by untreated hypertension. Trial Registration ClinicalTrials.gov NCT02007031 PMID:24983379

  20. Cardiac autonomic activity has a circadian rhythm in summer but not in winter in non-lactating pregnant dairy cows.

    PubMed

    Kovács, Levente; Kézér, Fruzsina Luca; Ruff, Ferenc; Szenci, Ottó

    2016-03-01

    This investigation was conducted to examine circadian and seasonal rhythms of heart rate and heart rate variability (HRV) by means of hour-by-hour recordings over 24h in a large population of non-lactating Holstein-Friesian pregnant cows [N=56, summer (June-July); N=61, winter (November-December)]. Data were collected during a 5-day period from each animal. Besides parameters of cardiac autonomic function [the high-frequency (HF) component of HRV and the ratio between the low-frequency (LF) and the HF components (LF/HF ratio)], the RR triangular index and Lmax were calculated. A clear circadian profile was observed for every parameter in summer. Heart rate elevated gradually with the course of the day from 7:00 to 17:00 o'clock and then slightly decreased from 18:00 to 6:00. Sympathovagal balance shifted towards sympathetic dominance during the daytime (increased LF/HF ratio), whereas parasympathetic activity was predominant during the night (increased HF). Lmax reflected a chaotic behavior of heart rate fluctuations during the afternoon in summer. Decreased values of RR triangular index indicated a sensitive period for cows between 14:00 and 16:00 o'clock in summer. During winter, except for the RR triangular (RRtri) index reflecting a high overall variability in R-R intervals between 12:00 and 23:00 o'clock, heart rate and HRV showed no periodicity over the 24-h period. The results suggest an impaired cardiac autonomic function during daytime in summer. HF, Lmax and RRtri index showed seasonal differences for both daytime and nighttime. Heart rate was higher in summer than in winter during the daytime, whereas the LF/HF ratio was higher in winter during the nighttime. Circadian and seasonal rhythms of cardiovascular function are presumably related to the differing temperature, and animal activity associated with summer and winter. As all of the investigated parameters are commonly used in bovine HRV research, these findings have practical implications for

  1. Heart rate variability and the anxious client: cardiac autonomic and behavioral associations with therapeutic alliance.

    PubMed

    Stratford, Trisha; Meara, Alan; Psychotherapy, M Gestalt; Lal, Sara

    2014-08-01

    This exploratory study was designed to investigate the link between a client's heart rate variability (HRV) and the forming of a therapeutic alliance (TA) during psychotherapy. Change in HRV is associated with many psychological and physiological situations, including cardiac mortality. Cardiac effects were evaluated during therapy in 30 symptomatically anxious clients using HRV during six weekly 1-hour therapy sessions (S1-S6). Therapeutic index (TI), a measure of TA, was evaluated using skin conductance resonance between client and therapist. The Working Alliance Inventory provides a subjective measure of TA. State and trait anxiety and mood states were also assessed. Most HRV parameters were highest during S4. The sympathovagal balance was highest in S1 but stabilized after S2. In S4, TI was linked to high HRV parameters. Overall higher anxiety levels seem to be associated to lower HRV parameters. Conversely, in S4, high HRV parameters were linked to higher mood scores. This study found that a subjective measure of TA contradicted the physiological outcome. Results suggest that physiological data collected during therapy are a more accurate barometer of TA forming. These research findings suggest a need for further research identifying physiological markers in clients with a variety of mental health disorders over long-term therapy. PMID:25010104

  2. Intervention study on cardiac autonomic nervous effects of methylmercury from seafood.

    PubMed

    Yaginuma-Sakurai, Kozue; Murata, Katsuyuki; Shimada, Miyuki; Nakai, Kunihiko; Kurokawa, Naoyuki; Kameo, Satomi; Satoh, Hiroshi

    2010-01-01

    To scrutinize whether the provisional tolerable weekly intake (PTWI, 3.4 microg/kg body weight/week) of methylmercury in Japan is safe for adults, we conducted an intervention study using heart rate variability (HRV) that has been considered to reflect cardiac events. Fifty-four healthy volunteers were recruited and divided into experimental and control groups. The experimental group was exposed to methylmercury at the PTWI level through consumption of bigeye tuna and swordfish for 14 weeks, and HRV parameters were compared between the two groups. In the experimental group, mean hair mercury levels, determined before and after the dietary methylmercury exposure and after 15-week wash-out period following the cessation of exposure, were 2.30, 8.76 and 4.90 microg/g, respectively. The sympathovagal balance index of HRV was significantly elevated after the exposure, and decreased to the baseline level at the end of this study. Still, such changes in HRV parameters were not found in the control group with a mean hair mercury level of around 2.1 microg/g. In conclusion, the PTWI does not appear to be safe for adult health, because methylmercury exposure from fish consumption induced a temporary sympathodominant state. Rather, long-term exposure to methylmercury may pose a potential risk for cardiac events involving sympathovagal imbalance among fish-consuming populations. PMID:19732823

  3. Effect of overreaching on cognitive performance and related cardiac autonomic control.

    PubMed

    Dupuy, O; Lussier, M; Fraser, S; Bherer, L; Audiffren, M; Bosquet, L

    2014-02-01

    The purpose of this study was to characterize the effect of a 2-week overload period immediately followed by a 1-week taper period on different cognitive processes including executive and nonexecutive functions, and related heart rate variability. Eleven male endurance athletes increased their usual training volume by 100% for 2 weeks, and decreased it by 50% for 1 week. A maximal graded test, a constant speed test at 85% of peak treadmill speed, and a Stroop task with the measurement of heart rate variability were performed at each period. All participants were considered as overreached. We found a moderate increase in the overall reaction time to the three conditions of the Stroop task after the overload period (816 ± 83 vs 892 ± 117 ms, P = 0.03) followed by a return to baseline after the taper period (820 ± 119 ms, P = 0.013). We found no association between cognitive performance and cardiac parasympathetic control at baseline, and no association between changes in these measures. Our findings clearly underscore the relevance of cognitive performance in the monitoring of overreaching in endurance athletes. However, contrary to our hypothesis, we did not find any relationship between executive performance and cardiac parasympathetic control. PMID:22537000

  4. Effect of pioglitazone on systemic inflammation is independent of metabolic control and cardiac autonomic function in patients with type 2 diabetes.

    PubMed

    Nerla, Roberto; Pitocco, Dario; Zaccardi, Francesco; Scalone, Giancarla; Coviello, Ilaria; Mollo, Roberto; Ghirlanda, Giovanni; Lanza, Gaetano A; Crea, Filippo

    2010-12-01

    The aim of this article is to investigate the relation of the anti-inflammatory effect of pioglitazone with cardiac autonomic function and metabolic control in diabetic patients. In this prospective open label trial, 36 type 2 diabetic patients (age 60 ± 10, 20 M) without overt cardiovascular disease were randomized to add pioglitazone (30 mg) to their therapy or to continue standard therapy. C-reactive protein (CRP) serum levels, metabolic parameters and cardiac autonomic function (assessed by heart rate variability [HRV] on 24-h ECG Holter monitoring) were measured at baseline and after 3 months. Clinical and laboratory variables were similar in the two groups. No significant changes were observed after 3 months for metabolic and anthropometric parameters, except for a mild increase in HDL levels in the pioglitazone group only (P = 0.04 vs. controls). CRP levels decreased significantly at follow-up in the pioglitazone group (3.2 ± 1.97 vs. 2.37 ± 1.56 mg/l) but not in the control group (3.0 ± 1.92 vs. 3.93 ± 2.14 mg/l; P = 0.003). No differences were found in basal and follow-up HRV variables between the two groups. In type 2 diabetic patients pioglitazone exerts favourable effects on inflammation even after short-term therapy. This effect precedes those on metabolic and anthropometric parameters and is not associated with changes in cardiac autonomic function.

  5. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress

    PubMed Central

    Machi, Jacqueline Freire; Dias, Danielle da Silva; Freitas, Sarah Cristina; de Moraes, Oscar Albuquerque; da Silva, Maikon Barbosa; Cruz, Paula Lázara; Mostarda, Cristiano; Salemi, Vera M C; Morris, Mariana; De Angelis, Kátia; Irigoyen, Maria-Cláudia

    2016-01-01

    Objective The aim of this study was to evaluate the effects of aging on metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters after ovarian hormone deprivation (OVX). Methods Female Wistar rats (3 or 22 months old) were divided into: young controls, young ovariectomized, old controls, and old ovariectomized (bilateral ovaries removal). After a 9-week follow-up, physical capacity, metabolic parameters, and morphometric and cardiac functions were assessed. Subsequently, arterial pressure was recorded and cardiac autonomic control was evaluated. Oxidative stress was measured on the cardiac tissue, while inflammatory profile was assessed in the plasma. Results Aging or OVX caused an increase in body and fat weight and triglyceride concentration and a decrease in both insulin sensitivity and aerobic exercise capacity. Left ventricular diastolic dysfunction and increased cardiac overload (myocardial performance index) were reported in old groups when compared with young groups. Aging and OVX led to an increased sympathetic tonus, and vagal tonus was lower only for the old groups. Tumor necrosis factor-α and interleukin-6 were increased in old groups when compared with young groups. Glutathione redox balance (GSH/GSSG) was reduced in young ovariectomized, old controls, and old ovariectomized groups when compared with young controls, indicating an increased oxidative stress. A negative correlation was found between GSH/GSSG and tumor necrosis factor-α (r=−0.6, P<0.003). Correlations were found between interleukin-6 with adipose tissue (r=0.5, P<0.009) and vagal tonus (r=−0.7, P<0.0002); and among myocardial performance index with interleukin-6 (r=0.65, P<0.0002), sympathetic tonus (r=0.55, P<0.006), and physical capacity (r=−0.55, P<0.003). The findings in this trial showed that ovariectomy aggravated the impairment of cardiac and functional effects of aging in female rats, probably associated with exacerbated autonomic dysfunction

  6. Effort Deficits and Depression: The Influence of Anhedonic Depressive Symptoms on Cardiac Autonomic Activity During a Mental Challenge

    PubMed Central

    Silvia, Paul J.; Nusbaum, Emily C.; Eddington, Kari M.; Beaty, Roger E.; Kwapil, Thomas R.

    2014-01-01

    Motivational approaches to depression emphasize the role of dysfunctional motivational dynamics, particularly diminished reward and incentive processes associated with anhedonia. A study examined how anhedonic depressive symptoms, measured continuously across a wide range of severity, influenced the physiological mobilization of effort during a cognitive task. Using motivational intensity theory as a guide, we expected that the diminished incentive value associated with anhedonic depressive symptoms would reduce effort during a “do your best” challenge (also known as an unfixed or self-paced challenge), in which effort is a function of the value of achieving the task’s goal. Using impedance cardiography, two cardiac autonomic responses were assessed: pre-ejection period (PEP), a measure of sympathetic activity and our primary measure of interest, and respiratory sinus arrhythmia (RSA), a measure of parasympathetic activity. As expected, PEP slowed from baseline to task as anhedonic depressive symptoms increased (as measured with the DASS Depression scale), indicating diminished effort-related sympathetic activity. No significant effects appeared for RSA. The findings support motivational intensity theory as a translational model of effort processes in depression and clarify some inconsistent effects of depressive symptoms on effort-related physiology found in past work. PMID:25431505

  7. Timing of obstetrical assistance affects peripartal cardiac autonomic function and early maternal behavior of dairy cows.

    PubMed

    Kovács, Levente; Kézér, Fruzsina Luca; Ruff, Ferenc; Szenci, Ottó

    2016-10-15

    Peripartal autonomic nervous system function and early maternal behavior were investigated in 79 multiparous Holstein-Friesian cows. Animals were allocated into four groups based on the technology of calving management: 1) unassisted calving in a group pen (UCG; N=19), 2) unassisted calving in an individual pen (UCI; N=21), 3) assisted calving with appropriately timed obstetrical assistance (ACA; N=20), and 4) assisted calving with premature obstetrical assistance (ACP; N=19). Heart rate, the high frequency (HF) component of heart rate variability (HRV) as a measure of vagal activity and the ratio between the low frequency (LF) and HF components (LF/HF ratio) as a parameter of sympathetic nervous system activity were calculated. Heart rate and HRV parameters were presented as areas under the curves (AUC) for the following periods: 1) prepartum period (between 96h before the onset of calving restlessness and the onset of restlessness), 2) parturition (between the onset calving restlessness and delivery), and 3) postpartum period (during a 48-h period after delivery). Pain-related behaviors were recorded during parturition (i.e., the occurrence of vocalization and stretching the neck towards the abdomen) and during a 2-h observation period after calving (i.e., the occurrence of vocalization, stretching the neck towards the abdomen and the duration of standing with an arched back). Early maternal behavior was observed during the first 2h following calving as follows: 1) latency and duration of sniffing calf's head/body, and 2) latency and duration of licking calf's head/body. No difference was found across groups in autonomic function before the onset of calving restlessness. Area under the heart rate curve was higher in ACP cows during parturition (39.6±2.5beats/min×h) compared to UCG, UCI and ACA animals (AUC=13.1±0.9beats/min×h, AUC=22.3±1.4beats/min×h and AUC=25.0±2.1beats/min×h, respectively). Area under the heart rate curve did not differ across the UCG

  8. Effects of autonomic balance and fluid and electrolyte changes on cardiac function in infarcted rats: A serial study of sexual dimorphism.

    PubMed

    Souza, N S; Dos-Santos, R C; Silveira, Anderson Luiz Bezerra da; R, Sonoda-Côrtes; Gantus, Michel Alexandre Villani; Fortes, F S; Olivares, Emerson Lopes

    2016-04-01

    Premenopausal women are known to show lower incidence of cardiovascular disease than men. During myocardial infarction (MI), homeostatic responses are activated, including the sympathetic autonomic nervous system and the rennin-angiotensin-aldosterone system, which is related to the fluid and electrolyte balance, both aiming to maintain cardiac output. This study sought to perform a serial evaluation of sexual dimorphism in cardiac autonomic control and fluid and electrolyte balance during the development of MI-induced heart failure in rats. Experimental MI was induced in male (M) and female (F) adult (7-9 weeks of age) Wistar rats. The animals were placed in metabolic cages to assess fluid intake and urine volume 1 and 4 weeks after inducing MI (male myocardial infarction (MMI) and female myocardial infarction (FMI) groups). They subsequently underwent echocardiographic evaluation and spectral analysis of heart rate variability. After completing each protocol, the animals were killed for postmortem evaluation and histology. The MMI group showed earlier and more intense cardiac morphological and functional changes than the FMI group, although the extent of MI did not differ between groups (P > 0.05). The MMI group showed higher sympathetic modulation and sodium and water retention than the FMI group (P < 0.05), which may partly explain both the echocardiographic and pathological findings. Females subjected to infarction seem to show attenuation of sympathetic modulation, more favourable fluid and electrolyte balances, and better preserved cardiac function compared to males subjected to the same infarction model. PMID:26748814

  9. 4-[18F]fluoro-m-hydroxyphenethylguanidine: A Radiopharmaceutical for Quantifying Regional Cardiac Sympathetic Nerve Density with Positron Emission Tomography

    PubMed Central

    Jang, Keun Sam; Jung, Yong-Woon; Gu, Guie; Koeppe, Robert A.; Sherman, Phillip S.; Quesada, Carole A.; Raffel, David M.

    2013-01-01

    4-[18F]fluoro-m-hydroxyphenethylguanidine ([18F]4F-MHPG, [18F]1) is a new cardiac sympathetic nerve radiotracer with kinetic properties favorable for quantifying regional nerve density with PET and tracer kinetic analysis. An automated synthesis of [18F]1 was developed in which the intermediate 4-[18F]fluoro-m-tyramine ([18F]16) was prepared using a diaryliodonium salt precursor for nucleophilic aromatic [18F]fluorination. In PET imaging studies in rhesus macaque monkeys, [18F]1 demonstrated high quality cardiac images with low uptake in lungs and liver. Compartmental modeling of [18F]1 kinetics provided ‘net uptake rate’ constants Ki (mL/min/g wet) and Patlak graphical analysis of [18F]1 kinetics provided Patlak slopes Kp (mL/min/g). In pharmacological blocking studies with the norepinephrine transporter inhibitor desipramine (DMI), each of these quantitative measures declined in a dose-dependent manner with increasing DMI doses. These initial results strongly suggest that [18F]1 can provide quantitative measures of regional cardiac sympathetic nerve density in human hearts using PET. PMID:23965035

  10. Cardiac coherence, self-regulation, autonomic stability, and psychosocial well-being

    PubMed Central

    McCraty, Rollin; Zayas, Maria A.

    2014-01-01

    The ability to alter one’s emotional responses is central to overall well-being and to effectively meeting the demands of life. One of the chief symptoms of events such as trauma, that overwhelm our capacities to successfully handle and adapt to them, is a shift in our internal baseline reference such that there ensues a repetitive activation of the traumatic event. This can result in high vigilance and over-sensitivity to environmental signals which are reflected in inappropriate emotional responses and autonomic nervous system dynamics. In this article we discuss the perspective that one’s ability to self-regulate the quality of feeling and emotion of one’s moment-to-moment experience is intimately tied to our physiology, and the reciprocal interactions among physiological, cognitive, and emotional systems. These interactions form the basis of information processing networks in which communication between systems occurs through the generation and transmission of rhythms and patterns of activity. Our discussion emphasizes the communication pathways between the heart and brain, as well as how these are related to cognitive and emotional function and self-regulatory capacity. We discuss the hypothesis that self-induced positive emotions increase the coherence in bodily processes, which is reflected in the pattern of the heart’s rhythm. This shift in the heart rhythm in turn plays an important role in facilitating higher cognitive functions, creating emotional stability and facilitating states of calm. Over time, this establishes a new inner-baseline reference, a type of implicit memory that organizes perception, feelings, and behavior. Without establishing a new baseline reference, people are at risk of getting “stuck” in familiar, yet unhealthy emotional and behavioral patterns and living their lives through the automatic filters of past familiar or traumatic experience. PMID:25324802

  11. Physical therapy for airway clearance improves cardiac autonomic modulation in children with acute bronchiolitis

    PubMed Central

    Jacinto, Cynthia P.; Gastaldi, Ada C.; Aguiar, Daniela Y.; Maida, Karina D.; Souza, Hugo C. D.

    2013-01-01

    Background The effects of physical therapy on heart rate variability (HRV), especially in children, are still inconclusive. Objective We investigated the effects of conventional physical therapy (CPT) for airway clearance and nasotracheal suction on the HRV of pediatric patients with acute bronchiolitis. Method 24 children were divided into two groups: control group (CG, n=12) without respiratory diseases and acute bronchiolitis group (BG, n=12). The heart rate was recorded in the BG at four different moments: basal recording (30 minutes), 5 minutes after the CPT (10 minutes), 5 minutes after nasotracheal suction (10 minutes), and 40 minutes after nasotracheal suction (30 minutes). The CG was subjected to the same protocol, except for nasotracheal suction. To assess the HRV, we used spectrum analysis, which decomposes the heart rate oscillations into frequency bands: low frequency (LF=0.04-0.15Hz), which corresponds mainly to sympathetic modulation; and high frequency (HF=0.15-1.2Hz), corresponding to vagal modulation. Results Under baseline conditions, the BG showed higher values in LF oscillations, lower values in HF oscillations, and increased LF/HF ratio when compared to the CG. After CPT, the values for HRV in the BG were similar to those observed in the CG during basal recording. Five minutes after nasotracheal suction, the BG showed a decrease in LF and HF oscillations; however, after 40 minutes, the values were similar to those observed after application of CPT. Conclusions The CPT and nasotracheal suction, both used for airway clearance, promote improvement in autonomic modulation of HRV in children with acute bronchiolitis. PMID:24271093

  12. Timing of obstetrical assistance affects peripartal cardiac autonomic function and early maternal behavior of dairy cows.

    PubMed

    Kovács, Levente; Kézér, Fruzsina Luca; Ruff, Ferenc; Szenci, Ottó

    2016-10-15

    Peripartal autonomic nervous system function and early maternal behavior were investigated in 79 multiparous Holstein-Friesian cows. Animals were allocated into four groups based on the technology of calving management: 1) unassisted calving in a group pen (UCG; N=19), 2) unassisted calving in an individual pen (UCI; N=21), 3) assisted calving with appropriately timed obstetrical assistance (ACA; N=20), and 4) assisted calving with premature obstetrical assistance (ACP; N=19). Heart rate, the high frequency (HF) component of heart rate variability (HRV) as a measure of vagal activity and the ratio between the low frequency (LF) and HF components (LF/HF ratio) as a parameter of sympathetic nervous system activity were calculated. Heart rate and HRV parameters were presented as areas under the curves (AUC) for the following periods: 1) prepartum period (between 96h before the onset of calving restlessness and the onset of restlessness), 2) parturition (between the onset calving restlessness and delivery), and 3) postpartum period (during a 48-h period after delivery). Pain-related behaviors were recorded during parturition (i.e., the occurrence of vocalization and stretching the neck towards the abdomen) and during a 2-h observation period after calving (i.e., the occurrence of vocalization, stretching the neck towards the abdomen and the duration of standing with an arched back). Early maternal behavior was observed during the first 2h following calving as follows: 1) latency and duration of sniffing calf's head/body, and 2) latency and duration of licking calf's head/body. No difference was found across groups in autonomic function before the onset of calving restlessness. Area under the heart rate curve was higher in ACP cows during parturition (39.6±2.5beats/min×h) compared to UCG, UCI and ACA animals (AUC=13.1±0.9beats/min×h, AUC=22.3±1.4beats/min×h and AUC=25.0±2.1beats/min×h, respectively). Area under the heart rate curve did not differ across the UCG

  13. Comparing the accuracy of ES-BC, EIS-GS, and ES Oxi on body composition, autonomic nervous system activity, and cardiac output to standardized assessments

    PubMed Central

    Lewis, John E; Tannenbaum, Stacey L; Gao, Jinrun; Melillo, Angelica B; Long, Evan G; Alonso, Yaima; Konefal, Janet; Woolger, Judi M; Leonard, Susanna; Singh, Prabjot K; Chen, Lawrence; Tiozzo, Eduard

    2011-01-01

    Background and purpose The Electro Sensor Complex (ESC) is software that combines three devices using bioelectrical impedance, galvanic skin response, and spectrophotometry: (1) ES-BC (Electro Sensor-Body Composition; LD Technology, Miami, FL) to assess body composition, (2) EIS-GS (Electro Interstitial Scan-Galvanic Skin; LD Technology) to predict autonomic nervous system activity, and (3) ES Oxi (Electro Sensor Oxi; LD Technology) to assess cardiac output. The objective of this study was to compare each to a standardized assessment: ES-BC to dual-energy X-ray absorptiometry (DXA), EIS-GS to heart rate variability, and ES Oxi to BioZ Dx Diagnostic System (BioZ Dx; SonoSite Inc, Bothell, WA). Patients and methods The study was conducted in two waves. Fifty subjects were assessed for body composition and autonomic nervous system activity. Fifty-one subjects were assessed for cardiac output. Results We found adequate relative and absolute agreement between ES-BC and DXA for fat mass (r = 0.97, P < 0.001) with ES-BC overestimating fat mass by 0.1 kg and for body fat percentage (r = 0.92, P < 0.001) with overestimation of fat percentage by 0.4%. For autonomic nervous system activity, we found marginal relative agreement between EIS-GS and heart rate variability by using EIS-GS as the predictor in a linear regression equation (adjusted R2 = 0.56, P = 0.03). For cardiac output, adequate relative and absolute agreement was found between ES Oxi and BioZ Dx at baseline (r = 0.60, P < 0.001), after the first exercise stage (r = 0.79, P < 0.001), and after the second exercise stage (r = 0.86, P < 0.001). Absolute agreement was found at baseline and after both bouts of exercise; ES Oxi overestimated baseline and stage 1 exercise cardiac output by 0.3 L/minute and 0.1 L/minute, respectively, but exactly estimated stage 2 exercise cardiac output. Conclusion ES-BC and ES Oxi accurately assessed body composition and cardiac output compared to standardized instruments, whereas EIS

  14. The autonomic laboratory

    NASA Technical Reports Server (NTRS)

    Low, P. A.; Opfer-Gehrking, T. L.

    1999-01-01

    The autonomic nervous system can now be studied quantitatively, noninvasively, and reproducibly in a clinical autonomic laboratory. The approach at the Mayo Clinic is to study the postganglionic sympathetic nerve fibers of peripheral nerve (using the quantitative sudomotor axon reflex test [QSART]), the parasympathetic nerves to the heart (cardiovagal tests), and the regulation of blood pressure by the baroreflexes (adrenergic tests). Patient preparation is extremely important, since the state of the patient influences the results of autonomic function tests. The autonomic technologist in this evolving field needs to have a solid core of knowledge of autonomic physiology and autonomic function tests, followed by training in the performance of these tests in a standardized fashion. The range and utilization of tests of autonomic function will likely continue to evolve.

  15. Nerves projecting from the intrinsic cardiac ganglia of the pulmonary veins modulate sinoatrial node pacemaker function

    PubMed Central

    Zarzoso, Manuel; Rysevaite, Kristina; Milstein, Michelle L.; Calvo, Conrado J.; Kean, Adam C.; Atienza, Felipe; Pauza, Dainius H.; Jalife, José; Noujaim, Sami F.

    2013-01-01

    Aims Pulmonary vein ganglia (PVG) are targets for atrial fibrillation ablation. However, the functional relevance of PVG to the normal heart rhythm remains unclear. Our aim was to investigate whether PVG can modulate sinoatrial node (SAN) function. Methods and results Forty-nine C57BL and seven Connexin40+/EGFP mice were studied. We used tyrosine-hydroxylase (TH) and choline-acetyltransferase immunofluorescence labelling to characterize adrenergic and cholinergic neural elements. PVG projected postganglionic nerves to the SAN, which entered the SAN as an extensive, mesh-like neural network. PVG neurones were adrenergic, cholinergic, and biphenotypic. Histochemical characterization of two human embryonic hearts showed similarities between mouse and human neuroanatomy: direct neural communications between PVG and SAN. In Langendorff perfused mouse hearts, PVG were stimulated using 200–2000 ms trains of pulses (300 μs, 400 µA, 200 Hz). PVG stimulation caused an initial heart rate (HR) slowing (36 ± 9%) followed by acceleration. PVG stimulation in the presence of propranolol caused HR slowing (43 ± 13%) that was sustained over 20 beats. PVG stimulation with atropine progressively increased HR. Time-course effects were enhanced with 1000 and 2000 ms trains (P < 0.05 vs. 200 ms). In optical mapping, PVG stimulation shifted the origin of SAN discharges. In five paroxysmal AF patients undergoing pulmonary vein ablation, application of radiofrequency energy to the PVG area during sinus rhythm produced a decrease in HR similar to that observed in isolated mouse hearts. Conclusion PVG have functional and anatomical biphenotypic characteristics. They can have significant effects on the electrophysiological control of the SAN. PMID:23559611

  16. Role of endothelin-1 in mediating changes in cardiac sympathetic nerve activity in heart failure.

    PubMed

    Abukar, Yonis; May, Clive N; Ramchandra, Rohit

    2016-01-01

    Heart failure (HF) is associated with increased sympathetic nerve activity to the heart (CSNA), which is directly linked to mortality in HF patients. Previous studies indicate that HF is associated with high levels of plasma endothelin-1 (ET-1), which correlates with the severity of the disease. We hypothesized that blockade of endothelin receptors would decrease CSNA. The effects of intravenous tezosentan (a nonselective ETA and ETB receptor antagonist) (8 mg·kg(-1)·h(-1)) on resting levels of CSNA, arterial pressure, and heart rate were determined in conscious normal sheep (n = 6) and sheep with pacing-induced HF (n = 7). HF was associated with a significant decrease in ejection fraction (from 74 ± 2% to 38 ± 1%, P < 0.001) and a significant increase in resting levels of CSNA burst incidence (from 56 ± 11 to 87 ± 2 bursts/100 heartbeats, P < 0.01). Infusion of tezosentan for 60 min significantly decreased resting mean aterial pressure (MAP) in both normal and HF sheep (-8 ± 4 mmHg and -4 ± 3 mmHg, respectively; P < 0.05). This was associated with a significant decrease in CSNA (by 25 ± 26% of control) in normal sheep, but there was no change in CSNA in HF sheep. Calculation of spontaneous baroreflex gain indicated significant impairment of the baroreflex control of HR after intravenous tezosentan infusion in normal animals but no change in HF animals. These data suggest that endogenous levels of ET-1 contribute to the baseline levels of CSNA in normal animals, but this effect is absent in HF.

  17. Role of endothelin-1 in mediating changes in cardiac sympathetic nerve activity in heart failure.

    PubMed

    Abukar, Yonis; May, Clive N; Ramchandra, Rohit

    2016-01-01

    Heart failure (HF) is associated with increased sympathetic nerve activity to the heart (CSNA), which is directly linked to mortality in HF patients. Previous studies indicate that HF is associated with high levels of plasma endothelin-1 (ET-1), which correlates with the severity of the disease. We hypothesized that blockade of endothelin receptors would decrease CSNA. The effects of intravenous tezosentan (a nonselective ETA and ETB receptor antagonist) (8 mg·kg(-1)·h(-1)) on resting levels of CSNA, arterial pressure, and heart rate were determined in conscious normal sheep (n = 6) and sheep with pacing-induced HF (n = 7). HF was associated with a significant decrease in ejection fraction (from 74 ± 2% to 38 ± 1%, P < 0.001) and a significant increase in resting levels of CSNA burst incidence (from 56 ± 11 to 87 ± 2 bursts/100 heartbeats, P < 0.01). Infusion of tezosentan for 60 min significantly decreased resting mean aterial pressure (MAP) in both normal and HF sheep (-8 ± 4 mmHg and -4 ± 3 mmHg, respectively; P < 0.05). This was associated with a significant decrease in CSNA (by 25 ± 26% of control) in normal sheep, but there was no change in CSNA in HF sheep. Calculation of spontaneous baroreflex gain indicated significant impairment of the baroreflex control of HR after intravenous tezosentan infusion in normal animals but no change in HF animals. These data suggest that endogenous levels of ET-1 contribute to the baseline levels of CSNA in normal animals, but this effect is absent in HF. PMID:26468257

  18. Exposure to medium and high ambient levels of ozone causes adverse systemic inflammatory and cardiac autonomic effects.

    PubMed

    Arjomandi, Mehrdad; Wong, Hofer; Donde, Aneesh; Frelinger, Jessica; Dalton, Sarah; Ching, Wendy; Power, Karron; Balmes, John R

    2015-06-15

    Epidemiological evidence suggests that exposure to ozone increases cardiovascular morbidity. However, the specific biological mechanisms mediating ozone-associated cardiovascular effects are unknown. To determine whether short-term exposure to ambient levels of ozone causes changes in biomarkers of cardiovascular disease including heart rate variability (HRV), systemic inflammation, and coagulability, 26 subjects were exposed to 0, 100, and 200 ppb ozone in random order for 4 h with intermittent exercise. HRV was measured and blood samples were obtained immediately before (0 h), immediately after (4 h), and 20 h after (24 h) each exposure. Bronchoscopy with bronchoalveolar lavage (BAL) was performed 20 h after exposure. Regression modeling was used to examine dose-response trends between the endpoints and ozone exposure. Inhalation of ozone induced dose-dependent adverse changes in the frequency domains of HRV across exposures consistent with increased sympathetic tone [increase of (parameter estimate ± SE) 0.4 ± 0.2 and 0.3 ± 0.1 in low- to high-frequency domain HRV ratio per 100 ppb increase in ozone at 4 h and 24 h, respectively (P = 0.02 and P = 0.01)] and a dose-dependent increase in serum C-reactive protein (CRP) across exposures at 24 h [increase of 0.61 ± 0.24 mg/l in CRP per 100 ppb increase in ozone (P = 0.01)]. Changes in HRV and CRP did not correlate with ozone-induced local lung inflammatory responses (BAL granulocytes, IL-6, or IL-8), but changes in HRV and CRP were associated with each other after adjustment for age and ozone level. Inhalation of ozone causes adverse systemic inflammatory and cardiac autonomic effects that may contribute to the cardiovascular mortality associated with short-term exposure.

  19. An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Dobutamine Challenges in Heart Failure–Prone Rats

    PubMed Central

    Farraj, Aimen K.

    2013-01-01

    Cardiac disease exacerbation is associated with short-term exposure to vehicular emissions. Diesel exhaust (DE) might impair cardiac performance in part through perturbing efferent sympathetic and parasympathetic autonomic nervous system (ANS) input to the heart. We hypothesized that acute changes in ANS balance mediate decreased cardiac performance upon DE inhalation. Young adult heart failure–prone rats were implanted with radiotelemeters to measure heart rate (HR), HR variability (HRV), blood pressure (BP), core body temperature, and pre-ejection period (PEP, a contractility index). Animals pretreated with sympathetic antagonist (atenolol), parasympathetic antagonist (atropine), or saline were exposed to DE (500 µg/m3 fine particulate matter, 4h) or filtered air and then treadmill exercise challenged. At 1 day postexposure, separate rats were catheterized for left ventricular pressure (LVP), contractility, and lusitropy and assessed for autonomic influence using the sympathoagonist dobutamine and surgical vagotomy. During DE exposure, atenolol inhibited increases in HR, BP, and contractility, but not body temperature, suggesting a role for sympathetic dominance. During treadmill recovery at 4h post-DE exposure, HR and HRV indicated parasympathetic dominance in saline- and atenolol-pretreated groups that atropine inhibited. Conversely, at treadmill recovery 21h post-DE exposure, HRV and PEP indicated sympathetic dominance and subsequently diminished contractility that only atenolol inhibited. LVP at 1 day postexposure indicated that DE impaired contractility and lusitropy while abolishing parasympathetic-regulated cardiac responses to dobutamine. This is the first evidence that air pollutant inhalation both causes time-dependent oscillations between sympathetic and parasympathetic dominance and decreases cardiac performance via aberrant sympathetic dominance. PMID:23872579

  20. Prolongation of heart rate-corrected QT interval is a predictor of cardiac autonomic dysfunction in patients with systemic lupus erythematosus.

    PubMed

    Nomura, Atsushi; Kishimoto, Mitsumasa; Takahashi, Osamu; Deshpande, Gautam A; Yamaguchi, Kenichi; Okada, Masato

    2014-05-01

    Heart rate-corrected QT interval duration (QTc) has been shown to be related to cardiac autonomic dysfunction in patients with diabetes mellitus, although this association has not been previously described in patients with systemic lupus erythematosus (SLE). We retrospectively reviewed the medical records of 91 SLE patients and 144 non-SLE connective tissue disease patients visiting our clinic from November 2010 to April 2011. We compared ambulatory heart rate identified by pulse measured by automated machine in an outpatient waiting area versus resting heart rate identified on prior screening electrocardiogram. Heart rate differences were analyzed in relation to QTc interval and other characteristics. Ambulatory and resting heart rate differences were larger among SLE patients with QTc prolongation (QTc > 430 ms) than those without QTc prolongation (mean difference, 15.9 vs. 9.6, p = 0.001). In multivariate analysis, differences in heart rate were associated with QTc prolongation (OR 1.10, 95 % CI 1.01-1.21; p = 0.038), independent of age, duration of disease, immunosuppressant use, hydroxychloroquine use, diabetes mellitus, cardiac abnormality, anti-Ro/SS-A antibody positivity, or resting heart rate. Cardiac autonomic dysfunction is a common manifestation of SLE and may be related to QTc prolongation.

  1. [Changes in autonomic nerve function during the normal menstrual cycle measured by the coefficient of variation of R-R intervals].

    PubMed

    Kondo, M; Hirano, T; Okamura, Y

    1989-05-01

    The purpose of this study was to determine if there is a change in autonomic nerve function during the menstrual cycle. The subjects were 20 females (average age 26.1 years +/- 4.6) with a normal menstrual cycle. The coefficient of variation of R-R intervals (CV R.R) was measured to investigate autonomic function in the menstrual, follicular, ovulatory, luteal, and premenstrual phases. Average CV R-R for all phases was 5.2 +/- 1.9%. And the CV R-R tended to be lower in those in their 30s than in those in their 20s. And no noticeable difference was seen in the CV R-R among the 5 phases of the menstrual cycle. On the other hand, the CV R-R of 11 females with premenstrual syndrome was low in the ovulatory, luteal and premenstrual phases. These results, which provide basic data for clinical use, suggest the following. (1) The age of subjects should be taken into consideration. (2) Changes in the CV R-R during the menstrual cycle are negligible. (3) However, in those showing symptoms associated with the menstrual cycle such as premenstrual syndrome, changes during the menstrual cycle should be taken into account. At the same time psychological changes in the subjects were evaluated by the following tests: Cornell Medical Index, Taylor's manifest anxiety scale, and Zung's self-rating depression scale. The results of these tests did not vary significantly during the menstrual cycle.

  2. Profound Autonomic Instability Complicated by Multiple Episodes of Cardiac Asystole and Refractory Bradycardia in a Patient with Anti-NMDA Encephalitis

    PubMed Central

    Mehr, Stephanie R.; Neeley, Roy C.; Wiley, Melissa; Kumar, Avinash B.

    2016-01-01

    Anti-N-methyl-d-aspartate receptor encephalitis (anti-NMDARE) is autoimmune encephalitis primarily affecting young adults and children. First described about a decade ago, it frequently manifests as a syndrome that includes progressive behavioral changes, psychosis, central hypoventilation, seizures, and autonomic instability. Although cardiac arrhythmias often accompany anti-NMDARE, the need for long-term electrophysiological support is rare. We describe the case of NMDARE whose ICU course was complicated by progressively worsening episodes of tachyarrhythmia-bradyarrhythmia and episodes of asystole from which she was successfully resuscitated. Her life-threatening episodes of autonomic instability were successfully controlled only after the placement of a permanent pacemaker during her ICU stay. She made a clinical recovery and was discharged to a skilled nursing facility after a protracted hospital course. PMID:27190663

  3. IFATS collection: Human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function.

    PubMed

    Cai, Liying; Johnstone, Brian H; Cook, Todd G; Tan, Jian; Fishbein, Michael C; Chen, Peng-Sheng; March, Keith L

    2009-01-01

    The administration of therapeutic cell types, such as stem and progenitor cells, has gained much interest for the limitation or repair of tissue damage caused by a variety of insults. However, it is still uncertain whether the morphological and functional benefits are mediated predominantly via cell differentiation or paracrine mechanisms. Here, we assessed the extent and mechanisms of adipose-derived stromal/stem cells (ASC)-dependent tissue repair in the context of acute myocardial infarction. Human ASCs in saline or saline alone was injected into the peri-infarct region in athymic rats following left anterior descending (LAD) coronary artery ligation. Cardiac function and structure were evaluated by serial echocardiography and histology. ASC-treated rats consistently exhibited better cardiac function, by all measures, than control rats 1 month following LAD occlusion. Left ventricular (LV) ejection fraction and fractional shortening were improved in the ASC group, whereas LV remodeling and dilation were limited in the ASC group compared with the saline control group. Anterior wall thinning was also attenuated by ASC treatment, and post-mortem histological analysis demonstrated reduced fibrosis in ASC-treated hearts, as well as increased peri-infarct density of both arterioles and nerve sprouts. Human ASCs were persistent at 1 month in the peri-infarct region, but they were not observed to exhibit significant cardiomyocyte differentiation. Human ASCs preserve heart function and augment local angiogenesis and cardiac nerve sprouting following myocardial infarction predominantly by the provision of beneficial trophic factors. PMID:18772313

  4. Assessment of the cardiac autonomic neuropathy among the known diabetics and age-matched controls using noninvasive cardiovascular reflex tests in a South-Indian population: A case–control study

    PubMed Central

    Sukla, Pradeep; Shrivastava, Saurabh RamBihariLal; Shrivastava, Prateek Saurabh; Rao, Nambaru Lakshmana

    2016-01-01

    Aim: Diabetes mellitus is a chronic condition characterized by hyperglycemia. The objective of the study was to estimate the prevalence of cardiac autonomic neuropathy in a rural area of South India, among the known diabetics after comparing them with the age-matched healthy controls, utilizing noninvasive cardiac autonomic neuropathy reflex tests. Materials and Methods: A case–control study was conducted for 4 months (October 2014 to January 2015) at an Urban Health and Training Center (UHTC) of a Medical College located in Kancheepuram district, Tamil Nadu. The study was conducted among 126 diagnosed Type 2 diabetes patients and in 152 age- and sex-matched healthy controls to ensure comparability between the cases and controls and, thus, reduce variability due to demographic variables. All the study subjects (cases and controls) were selected from the patients attending UHTC during the study duration, provided they satisfied the inclusion and exclusion criteria. Study participants were subjected to undergo noninvasive cardiac autonomic neuropathy reflex tests. The associations were tested using paired t-test for the continuous (mean ± standard deviation) variables. Results: The overall prevalence of cardiac autonomic neuropathy among diabetic patients was found to be as 53.2% (67/126). On further classification, positive (abnormal) results were obtained in 56 (sympathetic – 44.4%) and 51 (parasympathetic – 40.5%) diabetic cases. Overall, heart rate variation during deep breathing was found to be the most sensitive test to detect parasympathetic autonomic neuropathy while the diastolic blood pressure response to sustained handgrip exercise was the most sensitive method to detect sympathetic neuropathy dysfunction. Conclusion: The overall prevalence of cardiac autonomic neuropathy among diabetic patients was found to be as 53.2%. Even though cardiac autonomic neuropathy can be detected by various invasive tests, noninvasive tests remain a key tool to detect

  5. Non-pharmacological modulation of the autonomic tone to treat heart failure.

    PubMed

    Singh, Jagmeet P; Kandala, Jagdesh; Camm, A John

    2014-01-01

    The autonomic nervous system has a significant role in the pathophysiology and progression of heart failure. The absence of any recent breakthrough advances in the medical therapy of heart failure has led to the evolution of innovative non-pharmacological interventions that can favourably modulate the cardiac autonomic tone. Several new therapeutic modalities that may act at different levels of the autonomic nervous system are being investigated for their role in the treatment of heart failure. The current review examines the role of renal denervation, vagal nerve stimulators, carotid baroreceptors, and spinal cord stimulators in the treatment of heart failure.

  6. Axonal necrosis of enteric autonomic nerves in continent ileal pouches. Possible implications for pathogenesis of Crohn's disease.

    PubMed Central

    Dvorak, A M; Onderdonk, A B; McLeod, R S; Monahan-Earley, R A; Cullen, J; Antonioli, D A; Blair, J E; Morgan, E S; Cisneros, R L; Estrella, P

    1993-01-01

    OBJECTIVE: Axonal necrosis was first described in samples of small intestine from patients with Crohn's disease (A.M. Dvorak et al. Hum Pathol 1980; 11:620-634). Clinically evident inflammation of continent ileal reservoirs (pouches) has clinical features that resemble Crohn's disease. Possible similarities in the pathogenesis of Crohn's disease and pouchitis were sought using ultrastructural and microbiologic tools to identify damaged enteric nerves and tissue bacteria. METHODS: An encoded ultrastructural and microbiologic study of replicate biopsies from 114 samples of human intestine was done. Biopsies from ileum, colon, conventional ileostomy or continent pouch were obtained from patients with ulcerative colitis, Crohn's disease, or familial polyposis and grouped into three clinical study groups (control, normal pouch, pouchitis), based on clinical and endoscopic criteria. Biopsies were prepared for electron microscopy with standard methods; replicate biopsy samples were washed extensively before preparing cultures designed to identify aerobic as well as facultative and obligate anaerobic bacteria (Onderdonk et al. J Clin Microbiol 1992; 30:312-317). The ultrastructural diagnosis of damaged enteric nerves was based on previously published criteria for axonal necrosis (A.M. Dvorak and W. Silen. Ann Surg 1985; 201:53-63). Intergroup comparisons were tested for significance using Chi-square analysis. RESULTS: The highest incidence of axonal necrosis was present in Crohn's disease control biopsies (53%), regardless of whether bacteria were present (or not) in cultures of replicate biopsies. Axonal necrosis also occurred in more ulcerative colitis and familial polyposis biopsies (regardless of biopsy site) that had positive bacterial cultures than in those that did not (p < 0.001). In addition, axonal necrosis was documented in 42% of the pouch biopsies from ulcerative colitis and familial polyposis patients, particularly in those pouches that were found to be

  7. Characterization of autonomic nerve markers and lymphocyte subsets in the ileal Peyer's patch of pigs infected experimentally with Brachyspira hyodysenteriae.

    PubMed

    Kaleczyc, J; Podlasz, P; Winnicka, A; Wasowicz, W; Sienkiewicz, W; Zmudzki, J; Lakomy, M

    2010-11-01

    The aim of the present study was to investigate potential interrelationships between immune and neural elements of Peyer's patches in normal pigs (n=8) and in pigs infected experimentally with Brachyspira hyodysenteriae and suffering from swine dysentery (n=8). Assessment of tissue concentration of neuropeptides by enzyme linked immunosorbent assay revealed increased levels of galanin (GAL) and substance P (SP) in samples from the infected animals. In contrast, concentrations of vasoactive intestinal polypeptide (VIP) and somatostatin (SOM) were similar in both groups. Immunohistochemistry demonstrated reactivity of nerve fibres with antibodies specific for dopamine β hydroxylase, vesicular acetylcholine transporter, SOM, GAL, VIP and SP in the interfollicular region and peripheral areas of the Peyer's patch lymphoid follicles. In the dysenteric pigs, the GAL-positive nerve fibres were more numerous and more intensely labelled than those in the normal animals. Flow cytometry revealed a decreased percentage of CD21(+) lymphocytes and lymphocytes expressing T-cell receptor (TCR)-γ, with or without CD8 (TCR-γ(+)CD8(-) and TCR-γ(+)CD8(+)), in the dysenteric pigs as compared with the normal animals. Percentages of other lymphocyte subsets (CD2(+), CD4(+), CD5(+), CD8(+), CD5(-)CD8(+)) were comparable between the groups. Immunohistochemical investigations generally correlated with results obtained by flow cytometry related to lymphocyte subpopulations. Swine dysentery can therefore affect neuroimmunomodulatory processes in the ileal Peyer's patch, in addition to the large intestine. GAL and SP may play a specific role in this neuroimmune cross-talk. PMID:20605161

  8. Acute toxicant exposure and cardiac autonomic dysfunction from smoking a single narghile waterpipe with tobacco and with a "healthy" tobacco-free alternative.

    PubMed

    Cobb, Caroline O; Sahmarani, Kamar; Eissenberg, Thomas; Shihadeh, Alan

    2012-11-23

    Tobacco smoking using a waterpipe (narghile, hookah, shisha) has become a global epidemic. Unlike cigarette smoking, little is known about the health effects of waterpipe use. One acute effect of cigarette smoke inhalation is dysfunction in autonomic regulation of the cardiac cycle, as indicated by reduction in heart rate variability (HRV). Reduced HRV is implicated in adverse cardiovascular health outcomes, and is associated with inhalation exposure-induced oxidative stress. Using a 32 participant cross-over study design, we investigated toxicant exposure and effects of waterpipe smoking on heart rate variability when, under controlled conditions, participants smoked a tobacco-based and a tobacco-free waterpipe product promoted as an alternative for "health-conscious" users. Outcome measures included HRV, exhaled breath carbon monoxide (CO), plasma nicotine, and puff topography, which were measured at times prior to, during, and after smoking. We found that waterpipe use acutely decreased HRV (p<0.01 for all measures), independent of product smoked. Plasma nicotine, blood pressure, and heart rate increased only with the tobacco-based product (p<0.01), while CO increased with both products (p<0.01). More smoke was inhaled during tobacco-free product use, potentially reflecting attempted regulation of nicotine intake. The data thus indicate that waterpipe smoking acutely compromises cardiac autonomic function, and does so through exposure to smoke constituents other than nicotine. PMID:23059956

  9. Acute toxicant exposure and cardiac autonomic dysfunction from smoking a single narghile waterpipe with tobacco and with a “healthy” tobacco-free alternative

    PubMed Central

    Cobb, Caroline O.; Sahmarani, Kamar; Eissenberg, Thomas; Shihadeh, Alan

    2012-01-01

    Tobacco smoking using a waterpipe (narghile, hookah, shisha) has become a global epidemic. Unlike cigarette smoking, little is known about the health effects of waterpipe use. One acute effect of cigarette smoke inhalation is dysfunction in autonomic regulation of the cardiac cycle, as indicated by reduction in heart rate variability (HRV). Reduced HRV is implicated in adverse cardiovascular health outcomes, and is associated with inhalation exposure-induced oxidative stress. Using a 32 participant cross-over study design, we investigated toxicant exposure and effects of waterpipe smoking on heart rate variability when, under controlled conditions, participants smoked a tobacco-based and a tobacco-free waterpipe product promoted as an alternative for “health-conscious” users. Outcome measures included HRV, exhaled breath carbon monoxide (CO), plasma nicotine, and puff topography, which were measured at times prior to, during, and after smoking. We found that waterpipe use acutely decreased HRV (p<0.01 for all measures), independent of product smoked. Plasma nicotine, blood pressure, and heart rate increased only with the tobacco-based product (p<0.01), while CO increased with both products (p<0.01). More smoke was inhaled during tobacco-free product use, potentially reflecting attempted regulation of nicotine intake. The data thus indicate that waterpipe smoking acutely compromises cardiac autonomic function, and does so through exposure to smoke constituents other than nicotine. PMID:23059956

  10. Heart-brain interactions in cardiac arrhythmia.

    PubMed

    Taggart, P; Critchley, H; Lambiase, P D

    2011-05-01

    This review examines current knowledge of the effects of higher brain centres and autonomic control loops on the heart with particular relevance to arrhythmogenesis. There is now substantial evidence that higher brain function (cortex), the brain stem and autonomic nerves affect cardiac electrophysiology and arrhythmia, and that these may function as an interactive system. The roles of mental stress and emotion in arrhythmogenesis and sudden cardiac death are no longer confined to the realms of anecdote. Advances in molecular cardiology have identified cardiac cellular ion channel mutations conferring vulnerability to arrhythmic death at the myocardial level. Indeed, specific channelopathies such as long QT syndrome and Brugada syndrome are selectively sensitive to either sympathetic or vagal stimulation. There is increasing evidence that afferent feedback from the heart to the higher centres may affect efferent input to the heart and modulate the cardiac electrophysiology. The new era of functional neuroimaging has identified the central neural circuitry in this brain-heart axis. Since precipitants of sudden fatal arrhythmia are frequently environmental and behavioural, central pathways translating stress into autonomic effects on the heart might be considered as therapeutic targets. These brain-heart interactions help explain the apparent randomness of sudden cardiac events and provide new insights into future novel therapies to prevent sudden death.

  11. Cardiac Sympathetic Afferent Denervation Attenuates Cardiac Remodeling and Improves Cardiovascular Dysfunction in Rats with Heart Failure

    PubMed Central

    Wang, Han-Jun; Wang, Wei; Cornish, Kurtis G.; Rozanski, George J.; Zucker, Irving H.

    2014-01-01

    The enhanced cardiac sympathetic afferent reflex (CSAR) contributes to the exaggerated sympatho-excitation in chronic heart failure (CHF). Increased sympatho-excitation is positively related to mortality in CHF patients. However, the potential beneficial effects of chronic CSAR deletion on cardiac and autonomic function in CHF have not been previously explored. Here we determined the effects of chronic CSAR deletion on cardiac remodeling and autonomic dysfunction in CHF. In order to selectively delete the transient receptor potential vanilloid 1 receptor (TRPV1) -expressing CSAR afferents, epicardial application of resiniferatoxin (RTX, 50 μg/ml), an ultrapotent analogue of capsaicin, was performed during myocardium infarction (MI) surgery in rats. This procedure largely abolished the enhanced CSAR, prevented the exaggerated renal and cardiac sympathetic nerve activity and improved baroreflex sensitivity in CHF rats. Most importantly, we found that epicardial application of RTX largely prevented the elevated LVEDP, lung edema and cardiac hypertrophy, partially reduced left ventricular dimensions in the failing heart and increased cardiac contractile reserve in response to β-adrenergic receptor stimulation with isoproterenol in CHF rats. Molecular evidence showed that RTX attenuated cardiac fibrosis and apoptosis and reduced expression of fibrotic markers and TGF β-receptor I in CHF rats. Pressure - volume loop analysis showed that RTX reduced the end diastolic pressure volume relations in CHF rats indicating improved cardiac compliance. In summary, cardiac sympathetic afferent deletion exhibits protective effects against deleterious cardiac remodeling and autonomic dysfunction in CHF. These data suggest a potential new paradigm and therapeutic potential in the management of CHF. PMID:24980663

  12. Maternal prepregnancy body mass index and their children's blood pressure and resting cardiac autonomic balance at age 5 to 6 years.

    PubMed

    Gademan, Maaike G J; van Eijsden, Manon; Roseboom, Tessa J; van der Post, Joris A M; Stronks, Karien; Vrijkotte, Tanja G M

    2013-09-01

    Adverse intrauterine conditions can program hypertension. Because one of the underlying mechanisms is thought to be cardiac autonomic balance, we investigated the association between prepregnancy body mass index (BMI) and blood pressure and indicators of the autonomic balance in the child at age 5 to 6 years. Also investigated was whether these associations were mediated by standardized birth weight and child BMI. Pregnant women (n=3074) participating in the Amsterdam Born Children and their Development study completed a questionnaire at gestational week 14. At age 5 to 6 years, offspring's sympathetic drive (pre-ejection period), parasympathetic drive (respiratory sinus arrhythmia), and heart rate were measured by electrocardiography and impedance cardiography at rest. Blood pressure was assessed simultaneously. After adjusting for possible maternal/offspring confounders, prepregnancy BMI was positively linearly associated with diastolic blood pressure (β=0.11 mm Hg; 95% confidence interval, 0.05-0.17), systolic blood pressure (β=0.14 mm Hg; 95% confidence interval, 0.07-0.21), but not with heart rate, sympathetic or parasympathetic drive. After adding birth weight and child BMI to the model, the independent effect size of prepregnancy body mass index on systolic blood pressure (β=0.07 mm Hg; 95% confidence interval, 0.00-0.14) and diastolic blood pressure (β=0.07 mm Hg; 95% confidence interval, 0.01-0.13) decreased by ≈50%. Birth weight did not mediate these relationships, but was independently and negatively associated with blood pressure. Child BMI was positively associated with blood pressure and partly mediated the association between prepregnancy BMI and blood pressure. In conclusion, higher prepregnancy BMI is associated with higher blood pressure in the child (aged 5-6 years) but does not seem to be attributable to early alterations in resting cardiac autonomic balance. Child BMI, but not birth weight, mediated the association between prepregnancy

  13. Autonomic Evaluation of Patients With Gastroparesis and Neurostimulation: Comparisons of Direct/Systemic and Indirect/Cardiac Measures

    PubMed Central

    Stocker, Abigail; Abell, Thomas L.; Rashed, Hani; Kedar, Archana; Boatright, Ben; Chen, Jiande

    2016-01-01

    Background Disorders of nausea, vomiting, abdominal pain, and related problems often are manifestations of gastrointestinal, neuromuscular, and/or autonomic dysfunction. Many of these patients respond to neurostimulation, either gastric electrical stimulation or electroacupuncture. Both of these therapeutic techniques appear to influence the autonomic nervous system which can be evaluated directly by traditional testing and indirectly by heart rate variability. Methods We studied patients undergoing gastric neuromodulation by both systemic autonomic testing (39 patients, six males and 33 females, mean age 38 years) and systemic autonomic testing and heart rate variability (35 patients, seven males and 28 females, mean age 37 years) testing before and after gastric neuromodulation. We also performed a pilot study using both systemic autonomic testing and heart rate variability in a small number of patients (five patients, all females, mean age 48.6 years) with diabetic gastroparesis at baseline to compare the two techniques at baseline. Systemic autonomic testing and heart rate variability were performed with standardized techniques and gastric electrical stimulation was performed as previously described with electrodes implanted serosally in the myenteric plexus. Results Both systemic autonomic testing and heart rate variability measures were often abnormal at baseline and showed changes after gastric neuromodulation therapy in two groups of symptomatic patients. Pilot data on a small group of similar patients with systemic automatic nervous measures and heart rate variability showed good concordance between the two techniques. Conclusions Both traditional direct autonomic measures and indirect measures such as heart rate variability were evaluated, including a pilot study of both methods in the same patient group. Both appear to be useful in evaluation of patients at baseline and after stimulation therapies; however, a future full head-to-head comparison is

  14. Arg16Gly and Gln27Glu β2 adrenergic polymorphisms influence cardiac autonomic modulation and baroreflex sensitivity in healthy young Brazilians

    PubMed Central

    Atala, Magda M; Goulart, Alessandra; Guerra, Grazia M; Mostarda, Cristiano; Rodrigues, Bruno; Mello, Priscila R; Casarine, Dulce E; Irigoyen, Maria-Claudia; Pereira, Alexandre C; Consolim-Colombo, Fernanda M

    2015-01-01

    The association between functional β2 adrenergic receptor (β2-AR) polymorphisms and cardiac autonomic modulation is still unclear. Thus, two common polymorphisms in the β2-AR gene (Gln27Glu β2 and Arg16Gly β2) were studied to determine whether they might affect tonic and reflex cardiac sympathetic activity in healthy young subjects. A total of 213 healthy young white subjects of both genders (53% female), aged 18-30 years (23.5±3.4 y), had their continuous blood pressure curves noninvasively recorded by Finometer at baseline, and other hemodynamic parameters, as cardiac autonomic modulation, baroreflex sensitivity, and allele, genotype, and diplotype frequencies calculated. Associations were made between Arg16Gly β2 and Gln27Glu β2 polymorphisms and between β2-AR diplotypes and all variables. The heart rate was significantly lower (P<0.001) in the presence of homozygous Arg/Arg alleles (60.9±1.5 bpm) than in that of Arg/Gly heterozygotes (65.9±1.0 bpm) or Gly/Gly homozygotes (66.3±1.2 bpm). Homozygous carriers of Arg16 allele had an alpha index (19.2±1.3) significantly higher (P<0.001) than that of the subjects with the Gly allele Gly/Gly (14.5±0.7) or Arg/Gly (14.6±0.7). Furthermore, the recessive Glu27Glu and the heterozygous Gln27Glu genotypes had a higher percentage of low-frequency components (LF%) than the homozygous Gln27Gln (15.1% vs. 16.0% vs. 8.2%, P=0.03, respectively). In healthy young subjects, the presence of β2-AR Arg16 allele in a recessive model was associated with higher baroreflex sensitivity, and increased parasympathetic modulation in studied individuals. PMID:25755837

  15. Exhaustive endurance training for 6-9 weeks did not induce changes in intrinsic heart rate and cardiac autonomic modulation in female athletes.

    PubMed

    Uusitalo, A L; Uusitalo, A J; Rusko, H K

    1998-11-01

    We investigated the effects of progressively increased training load and overtraining on resting and intrinsic heart rate (IHR) and cardiac autonomic modulation (CAM), and their relationships to performance variables. Nine athletes (ETG) increased training volume at 70-90% of maximal oxygen uptake (VO2max) by 130% (p<0.01) and training volume at <70% VO2max by 100% (p < 0.01) during 6-9 weeks. The corresponding increases in six female control athletes (CG) were 5 and 10%. Pharmacological blocking through atropine and propranolol and the Rosenblueth and Simeone model were used to calculate the sympathovagal balance index (Abal) and to measure IHR. The results were analysed using two-way analysis of variance. VO2max, IHR and Abal did not change. Resting heart rate had a tendency to decrease in the ETG and increase in the CG during the training period (interaction p < 0.01). Five ETG athletes demonstrated overtraining state (OA subgroup). Their VO2max (mean+/-SEM) decreased from 53.0+/-2.2 ml x kg(-1) x min(-1) to 50.2+/-2.3 ml x kg(-1) x min(-1) (p < 0.01), but no changes in resting HR, IHR and Abal were found. A significant correlation between the baseline values of VO2max and the parasympathetic activity index was found (r=-0.59, p < 0.05). In conclusion, progressively increased training load and overtraining did not induce significant changes in intrinsic heart rate or cardiac autonomic modulation in female endurance athletes. Resting heart rate rather decreased with heavy endurance training and overtraining. High maximal oxygen uptake was correlated with high cardiac parasympathetic modulation. PMID:9877144

  16. Influence of cigarette smoking on human autonomic function

    NASA Technical Reports Server (NTRS)

    Niedermaier, O. N.; Smith, M. L.; Beightol, L. A.; Zukowska-Grojec, Z.; Goldstein, D. S.; Eckberg, D. L.

    1993-01-01

    BACKGROUND. Although cigarette smoking is known to lead to widespread augmentation of sympathetic nervous system activity, little is known about the effects of smoking on directly measured human sympathetic activity and its reflex control. METHODS AND RESULTS. We studied the acute effects of smoking two research-grade cigarettes on muscle sympathetic nerve activity and on arterial baroreflex-mediated changes of sympathetic and vagal neural cardiovascular outflows in eight healthy habitual smokers. Measurements were made during frequency-controlled breathing, graded Valsalva maneuvers, and carotid baroreceptor stimulation with ramped sequences of neck pressure and suction. Smoking provoked the following changes: Arterial pressure increased significantly, and RR intervals, RR interval spectral power at the respiratory frequency, and muscle sympathetic nerve activity decreased. Plasma nicotine levels increased significantly, but plasma epinephrine, norepinephrine, and neuropeptide Y levels did not change. Peak sympathetic nerve activity during and systolic pressure overshoots after Valsalva straining increased significantly in proportion to increases of plasma nicotine levels. The average carotid baroreceptor-cardiac reflex relation shifted rightward and downward on arterial pressure and RR interval axes; average gain, operational point, and response range did not change. CONCLUSIONS. In habitual smokers, smoking acutely reduces baseline levels of vagal-cardiac nerve activity and completely resets vagally mediated arterial baroreceptor-cardiac reflex responses. Smoking also reduces muscle sympathetic nerve activity but augments increases of sympathetic activity triggered by brief arterial pressure reductions. This pattern of autonomic changes is likely to influence smokers' responses to acute arterial pressure reductions importantly.

  17. Subcutaneous nerve activity is more accurate than the heart rate variability in estimating cardiac sympathetic tone in ambulatory dogs with myocardial infarction

    PubMed Central

    Chan, Yi-Hsin; Tsai, Wei-Chung; Shen, Changyu; Han, Seongwook; Chen, Lan S.; Lin, Shien-Fong; Chen, Peng-Sheng

    2015-01-01

    Background We recently reported that subcutaneous nerve activity (SCNA) can be used to estimate sympathetic tone. Objectives To test the hypothesis that left thoracic SCNA is more accurate than heart rate variability (HRV) in estimating cardiac sympathetic tone in ambulatory dogs with myocardial infarction (MI). Methods We used an implanted radiotransmitter to study left stellate ganglion nerve activity (SGNA), vagal nerve activity (VNA), and thoracic SCNA in 9 dogs at baseline and up to 8 weeks after MI. HRV was determined based by time-domain, frequency-domain and non-linear analyses. Results The correlation coefficients between integrated SGNA and SCNA averaged 0.74 (95% confidence interval (CI), 0.41–1.06) at baseline and 0.82 (95% CI, 0.63–1.01) after MI (P<.05 for both). The absolute values of the correlation coefficients were significant larger than that between SGNA and HRV analysis based on time-domain, frequency-domain and non-linear analyses, respectively, at baseline (P<.05 for all) and after MI (P<.05 for all). There was a clear increment of SGNA and SCNA at 2, 4, 6 and 8 weeks after MI, while HRV parameters showed no significant changes. Significant circadian variations were noted in SCNA, SGNA and all HRV parameters at baseline and after MI, respectively. Atrial tachycardia (AT) episodes were invariably preceded by the SCNA and SGNA, which were progressively increased from 120th, 90th, 60th to 30th s before the AT onset. No such changes of HRV parameters were observed before AT onset. Conclusion SCNA is more accurate than HRV in estimating cardiac sympathetic tone in ambulatory dogs with MI. PMID:25778433

  18. The VITAH Trial—Vitamin D Supplementation and Cardiac Autonomic Tone in Patients with End-Stage Kidney Disease on Hemodialysis: A Blinded, Randomized Controlled Trial

    PubMed Central

    Mann, Michelle C.; Exner, Derek V.; Hemmelgarn, Brenda R.; Hanley, David A.; Turin, Tanvir C.; MacRae, Jennifer M.; Wheeler, David C.; Sola, Darlene Y.; Ramesh, Sharanya; Ahmed, Sofia B.

    2016-01-01

    End-stage kidney disease (ESKD) patients are at increased cardiovascular risk. Vitamin D deficiency is associated with depressed heart rate variability (HRV), a risk factor depicting poor cardiac autonomic tone and risk of cardiovascular death. Vitamin D deficiency and depressed HRV are highly prevalent in the ESKD population. We aimed to determine the effects of oral vitamin D supplementation on HRV ((low frequency (LF) to high frequency (HF) spectral ratio (LF:HF)) in ESKD patients on hemodialysis. Fifty-six subjects with ESKD requiring hemodialysis were recruited from January 2013–March 2015 and randomized 1:1 to either conventional (0.25 mcg alfacalcidol plus placebo 3×/week) or intensive (0.25 mcg alfacalcidol 3×/week plus 50,000 international units (IU) ergocalciferol 1×/week) vitamin D for six weeks. The primary outcome was the change in LF:HF. There was no difference in LF:HF from baseline to six weeks for either vitamin D treatment (conventional: p = 0.9 vs. baseline; intensive: p = 0.07 vs. baseline). However, participants who remained vitamin D-deficient (25-hydroxyvitamin D < 20 ng/mL) after treatment demonstrated an increase in LF:HF (conventional: n = 13, ∆LF:HF: 0.20 ± 0.06, p < 0.001 vs. insufficient and sufficient vitamin D groups; intensive: n = 8: ∆LF:HF: 0.15 ± 0.06, p < 0.001 vs. sufficient vitamin D group). Overall, six weeks of conventional or intensive vitamin D only augmented LF:HF in ESKD subjects who remained vitamin D-deficient after treatment. Our findings potentially suggest that while activated vitamin D, with or without additional nutritional vitamin D, does not appear to improve cardiac autonomic tone in hemodialysis patients with insufficient or sufficient baseline vitamin D levels, supplementation in patients with severe vitamin D deficiency may improve cardiac autonomic tone in this higher risk sub-population of ESKD. Trial Registration: ClinicalTrials.gov, NCT01774812. PMID:27690095

  19. A Review of Cardiac Autonomic Measures: Considerations for Examination of Physiological Response in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Benevides, Teal W.; Lane, Shelly J.

    2015-01-01

    The autonomic nervous system (ANS) is responsible for multiple physiological responses, and dysfunction of this system is often hypothesized as contributing to cognitive, affective, and behavioral responses in children. Research suggests that examination of ANS activity may provide insight into behavioral dysregulation in children with autism…

  20. Impact of traffic-related air pollution on acute changes in cardiac autonomic modulation during rest and physical activity: a cross-over study.

    PubMed

    Cole-Hunter, Tom; Weichenthal, Scott; Kubesch, Nadine; Foraster, Maria; Carrasco-Turigas, Glòria; Bouso, Laura; Martínez, David; Westerdahl, Dane; de Nazelle, Audrey; Nieuwenhuijsen, Mark

    2016-01-01

    People are often exposed to traffic-related air pollution (TRAP) during physical activity (PA), but it is not clear if PA modifies the impact of TRAP on cardiac autonomic modulation. We conducted a panel study among 28 healthy adults in Barcelona, Spain to examine how PA may modify the impact of TRAP on cardiac autonomic regulation. Participants completed four 2-h exposure scenarios that included either rest or intermittent exercise in high- and low-traffic environments. Time- and frequency-domain measures of heart rate variability (HRV) were monitored during each exposure period along with continuous measures of TRAP. Linear mixed-effects models were used to estimate the impact of TRAP on HRV as well as potential effect modification by PA. Exposure to TRAP was associated with consistent decreases in HRV; however, exposure-response relationships were not always linear over the broad range of exposures. For example, each 10 μg/m(3) increase in black carbon was associated with a 23% (95% CI: -31, -13) decrease in high frequency power at the low-traffic site, whereas no association was observed at the high-traffic site. PA modified the impact of TRAP on HRV at the high-traffic site and tended to weaken inverse associations with measures reflecting parasympathetic modulation (P ≤ 0.001). Evidence of effect modification at the low-traffic site was less consistent. The strength and direction of the relationship between TRAP and HRV may vary across exposure gradients. PA may modify the impact of TRAP on HRV, particularly at higher concentrations.

  1. Sleep Disordered Breathing in Children is Associated with Impairment of Sleep Stage Specific Shift of Cardiac Autonomic Modulation

    PubMed Central

    Liao, Duanping; Li, Xian; Vgontzas, Alexandros N.; Liu, Jiahao; Rodriguez-Colon, Sol; Calhoun, Susan; Bixler, Edward O.

    2009-01-01

    We examined the effects of sleep stages and sleep disordered breathing (SDB) on autonomic modulation in 700 children. Apnea Hypopnea Index (AHI) during one 9-hour nighttime polysomnography was used to define SDB. Sleep stage specific autonomic modulation was measured by heart rate variability (HRV) analysis of the first available 5-minute RR intervals from each sleep stage. The mean (SD) age was 112 (21) months (49% male and 25% non-Caucasian). The average AHI was 0.79 (SD=1.03)/hour, while 73.0%, 25.8%, and 1.2% of children had AHI < 1 (No-SDB), 1–5 (Mild-SDB), and ≥ 5 (Moderate-SDB), respectively. In no-SDB group, the HF and RMSSD significantly increased from wake to stage 2, and slow-wave sleep (SWS), and then decreased dramatically when shifting into REM sleep. In moderate-SDB group, the pattern of HRV shift is similar to that of no-SDB. However, the decreases in HF and RMSSD from SWS to REM were more pronounced in moderate-SDB children [between group differences in HF (−24% in moderate-SDB vs. −10% in no-SDB) and RMSSD (−27% vs. −12%) were significant (p < 0.05)]. The REM stage HF is significantly lower in moderate-SDB group compared to no-SDB group [mean (SE): 4.49 (0.43) vs. 5.80 (0.05) ms2, respectively, p < 0.05]. Conclusions: autonomic modulation significantly shifts towards higher parasympathetic modulation from wake to non-REM sleep, and reverses to a less parasympathetic modulation during REM sleep. However, the autonomic modulation is impaired among children with moderate-SDB in the directions of more reduction in parasympathetic modulation from SWS to REM sleep and significantly weaker parasympathetic modulation in REM sleep, which may lead to higher arrhythmia vulnerability, especially during REM sleep. PMID:20337904

  2. High-Intensity Resistance Exercise Promotes Postexercise Hypotension Greater than Moderate Intensity and Affects Cardiac Autonomic Responses in Women Who Are Hypertensive.

    PubMed

    de Freitas Brito, Aline; Brasileiro-Santos, Maria do S; Coutinho de Oliveira, Caio V; Sarmento da Nóbrega, Thereza K; Lúcia de Moraes Forjaz, Cláudia; da Cruz Santos, Amilton

    2015-12-01

    The purpose of this study was to evaluate the effect of high-intensity resistance exercise (RE) sessions on blood pressure (BP), heart rate (HR), cardiac autonomic modulation, and forearm blood flow (FBF). Sixteen trained hypertensive women (n = 16, 56 ± 3 years) completed the following 3 experimental sessions: control (CS), RE at 50% (EX50%), and RE at 80% (EX80%) of 1 repetition maximum (1RM). Both EX50% and EX80% comprised a set of 10 repetitions of 10 exercises, with an interval of 90 seconds between exercises. Measurements were taken preintervention and postintervention (at 10, 30, 50, 70, and 90 minutes of recovery). Reductions in systolic/diastolic BP after exercise were greater in EX80% (largest declines, -29 ± 4/-14 ± 5 mm Hg) than EX50% (largest declines, -18 ± 6/-8 ± 5 mm Hg, p ≤ 0.05). Heart rate and cardiac sympathovagal balance (LF/HF) increased more in relation to pre-exercise values in EX80% than EX50% (largest increases 96 ± 3 vs. 90 ± 4 b·min, LF/HF = 1.77 ± 0.25 vs. 1.40 ± 0.20, respectively, p ≤ 0.05). Increases in FBF and hyperemia was also higher in EX80% than EX50% compared with pre-exercise (4.97 ± 0.28 vs. 4.36 ± 0.27 ml·min·100 ml and 5.90 ± 0.20 vs. 5.38 ± 0.25 ml·min·100 ml; p ≤ 0.05, respectively). These results suggest that RE of higher intensity promoted greater postexercise hypotension accompanied by greater increases in FBF, vasodilator response, HR, and cardiac sympathovagal balance. PMID:25992658

  3. Identificaton of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one isolated from Lactobacillus pentosus strain S-PT84 culture supernatants as a compound that stimulates autonomic nerve activities in rats.

    PubMed

    Beppu, Yoshinori; Komura, Hajime; Izumo, Takayuki; Horii, Yuko; Shen, Jiao; Tanida, Mamoru; Nakashima, Toshihiro; Tsuruoka, Nobuo; Nagai, Katsuya

    2012-11-01

    Intestinal administration of various lactobacilli has been reported to affect autonomic neurotransmission, blood pressure, and body weight in rats. In this study, three molecules (peaks A, B, and C) were isolated from Lactobacillus pentosus strain S-PT84 (S-PT 84) culture supernatants. Intraduodenal (ID) injection of these molecules increased or inhibited renal sympathetic nerve activity (RSNA) in rats as follows: peak A, 134%; peak B, 40.1%; peak C, 408%. Furthermore, we identified peak C as 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). ID injection of DDMP increased brown adipose tissue sympathetic nerve activity (BAT-SNA; 118 ± 15.3%), whereas intraoral injection of DDMP increased the body temperature above the interscapular brown adipose tissue (BAT-T; 0.72 ± 0.13 °C) in rats. These data suggest that S-PT84 produces molecules that modulate autonomic nerve activity. In addition, DDMP increased BAT-SNA and BAT-T, and these changes in BAT-T may be caused by changes in BAT-SNA.

  4. Control of heart rate variability by cardiac parasympathetic nerve activity during voluntary static exercise in humans with tetraplegia.

    PubMed

    Takahashi, Makoto; Matsukawa, Kanji; Nakamoto, Tomoko; Tsuchimochi, Hirotsugu; Sakaguchi, Akihiro; Kawaguchi, Kotaro; Onari, Kiyoshi

    2007-11-01

    Heart rate (HR) is controlled solely by via cardiac parasympathetic outflow in tetraplegic individuals, who lack supraspinal control of sympathetic outflows and circulating catecholamines but have intact vagal pathways. A high-frequency component (HF; at 0.15-0.40 Hz) of the power spectrum of HR variability and its relative value against total power (HF/Total) were assessed using a wavelet transform to identify cardiac parasympathetic outflow. The relative contribution of cardiac parasympathetic and sympathetic outflows to controlling HR was estimated by comparing the HF/Total-HR relationship between age-matched tetraplegic and normal men. Six tetraplegic men with complete cervical spinal cord injury performed static arm exercise at 35% of the maximal voluntary contraction until exhaustion. Although resting cardiac output and arterial blood pressure were lower in tetraplegic than normal subjects, HR, HF, and HF/Total were not statistically different between the two groups. When tetraplegic subjects developed the same force during exercise as normal subjects, HF and HF/Total decreased to 67-90% of the preexercise control and gradually recovered 1.5 min after exercise. The amount and time course of the changes in HF/Total during and after exercise coincided well between both groups. In contrast, the increase in HR at the start of exercise was blunted in tetraplegic compared with normal subjects, and the HR recovery following exercise was also delayed. It is likely that, although the withdrawal response of cardiac parasympathetic outflow is preserved in tetraplegic subjects, sympathetic decentralization impairs the rapid acceleration of HR at the onset of exercise and the rapid deceleration following exercise. PMID:17761788

  5. Histamine H3-Receptor Signaling in Cardiac Sympathetic Nerves: Identification of a Novel MAPK-PLA2-COX-PGE2-EP3R Pathway

    PubMed Central

    Levi, Roberto; Seyedi, Nahid; Schaefer, Ulrich; Estephan, Rima; Mackins, Christina J.; Tyler, Eleanor; Silver, Randi B.

    2007-01-01

    We tested the hypothesis that the histamine H3-receptor (H3R)-mediated attenuation of norepinephrine (NE) exocytosis from cardiac sympathetic nerves results not only from a Gαi-mediated inhibition of the adenylyl cyclase-cAMP-PKA pathway, but also from a Gβγi-mediated activation of the MAPK-PLA2 cascade, culminating in formation of an arachidonate metabolite with anti-exocytotic characteristics (e.g., PGE2). We report in Langendorff-perfused guinea-pig hearts and isolated sympathetic nerve endings (cardiac synaptosomes), H3R-mediated attenuation of K+-induced NE exocytosis was prevented by MAPK and PLA2 inhibitors, and by cyclooxygenase and EP3-receptor (EP3R) antagonists. Moreover, H3R activation resulted in MAPK phosphorylation in H3R-transfected SH-SY5Y neuroblastoma cells, and in PLA2 activation and PGE2 production in cardiac synaptosomes; H3R-induced MAPK phosphorylation was prevented by an anti-βγ peptide. Synergism between H3R and EP3R agonists (i.e., imetit and sulprostone, respectively) suggested PGE2 may be a downstream effector of the anti-exocytotic effect of H3R activation. Furthermore, the anti-exocytotic effect of imetit and sulprostone was potentiated by the N-type Ca2+-channel antagonist ω-conotoxin GVIA, and prevented by an anti-Gβγ peptide. Our findings suggest an EP3R Gβγi-induced decrease in Ca2+ influx through N-type Ca2+-channels is involved in PGE2/EP3R-mediated attenuation of NE exocytosis elicited by H3R activation. Conceivably, activation of the Gβγi subunit of H3R and EP3R may also inhibit Ca2+ entry directly, independent of MAPK intervention. As heart failure, myocardial ischemia and arrhythmic dysfunction are associated with excessive local NE release, attenuation of NE release by H3R activation is cardioprotective. Thus, the uncovering of a novel H3R signaling pathway may ultimately bear therapeutic significance in hyper-adrenergic states. PMID:17266940

  6. Autonomic dysreflexia

    MedlinePlus

    Autonomic hyperreflexia; Spinal cord injury - autonomic dysreflexia; SCI - autonomic dysreflexia ... most common cause of autonomic dysreflexia (AD) is spinal cord injury. The nervous system of people with AD ...

  7. Search for a cardiac nociceptor: stimulation by bradykinin of sympathetic afferent nerve endings in the heart of the cat.

    PubMed Central

    Baker, D G; Coleridge, H M; Coleridge, J C; Nerdrum, T

    1980-01-01

    1. We have examined the effect of bradykinin on impulse traffic in sympathetic afferent fibres from the heart, great vessels and pleura, and have attempted to identify cardiac nociceptors that on the basis of their functional characteristics might have a role in the initiation of cardiac pain. 2. In anaesthetized cats, we recorded afferent impulses from 'single-fibre' slips of the left 2nd--5th thoracic rami communicantes and associated chain, and selected fibres arising from endings in the heart, great vessels, pericardium and pleura. We applied bradykinin solution (0 . 1--1 . 0 microgram/ml.) locally to the site of the ending; we also injected bradykinin (0 . 3--1 . 0 microgram/kg) into the left atrium. 3. Afferent endings excited by bradykinin (159 of 191 tested) were of two types. The larger group (140) were primarily mechanoreceptors with A delta of C fibres (mean conduction velocity, 7 . 5 +/- 0 . 6 m/sec). They were very sensitive to light touch. Those located in the heart, great vessels or overlying pleura had a cardiac rhythm of discharge and were stimulated by an increase in blood pressure or cardiac volume. 4. Bradykinin increased mechanoreceptor firing from 0 . 7 +/- to 5 . 0 +/- 0 . 3 (mean +/- S.E. of mean) impulses/sec. Some endings appeared to be stimulated directly by bradykinin, others sensitized by it so that they responded more vigorously to the pulsatile mechanical stimulation associated with the cardiac cycle. 5. The smaller group of eighteen endings, of which ten were in the left ventricle, were primarily chemosensitive. Most had C fibres, a few had A delta fibres (mean conduction velocity, 2 . 3 +/- 0 . 7 m/sec). They were insensitive to light touch. With one exception they never fired with a cardiac rhythm, and even large increases in aortic or left ventricular pressure had little effect on impulse frequency. 6. Chemosensitive endings were stimulated by bradykinin, impulse activity increasing from 0 . 6 to 15 . 6 +/- 1 . 3 impulses/sec and

  8. Autonomic adjustments to exercise in humans.

    PubMed

    Fisher, James P; Young, Colin N; Fadel, Paul J

    2015-04-01

    Autonomic nervous system adjustments to the heart and blood vessels are necessary for mediating the cardiovascular responses required to meet the metabolic demands of working skeletal muscle during exercise. These demands are met by precise exercise intensity-dependent alterations in sympathetic and parasympathetic nerve activity. The purpose of this review is to examine the contributions of the sympathetic and parasympathetic nervous systems in mediating specific cardiovascular and hemodynamic responses to exercise. These changes in autonomic outflow are regulated by several neural mechanisms working in concert, including central command (a feed forward mechanism originating from higher brain centers), the exercise pressor reflex (a feed-back mechanism originating from skeletal muscle), the arterial baroreflex (a negative feed-back mechanism originating from the carotid sinus and aortic arch), and cardiopulmonary baroreceptors (a feed-back mechanism from stretch receptors located in the heart and lungs). In addition, arterial chemoreceptors and phrenic afferents from respiratory muscles (i.e., respiratory metaboreflex) are also capable of modulating the autonomic responses to exercise. Our goal is to provide a detailed review of the parasympathetic and sympathetic changes that occur with exercise distinguishing between the onset of exercise and steady-state conditions, when appropriate. In addition, studies demonstrating the contributions of each of the aforementioned neural mechanisms to the autonomic changes and ensuing cardiac and/or vascular responses will be covered.

  9. Ontogeny of cardiac sympathetic innervation and its implications for cardiac disease.

    PubMed

    Vincentz, Joshua W; Rubart, Michael; Firulli, Anthony B

    2012-08-01

    The vertebrate heart is innervated by the sympathetic and parasympathetic components of the peripheral autonomic nervous system, which regulates its contractile rate and force. Understanding the mechanisms that control sympathetic neuronal growth, differentiation, and innervation of the heart may provide insight into the etiology of cardiac arrhythmogenesis. This review provides an overview of the cell signaling pathways and transcriptional effectors that regulate both the noradrenergic gene program during sympathetic neurogenesis and regional nerve density during cardiac innervation. Recent studies exploring transcriptional regulation of the bHLH transcription factor Hand1 in developing sympathetic neurons are explored, and how the Hand1 sympathetic neuron-specific cis-regulatory element may be used further to assess the contribution of altered sympathetic innervation to human cardiac disease is discussed.

  10. Spectral analysis of left ventricular area variability as a tool to improve the understanding of cardiac autonomic control.

    PubMed

    Akselrod, S; Amitayt, Y; Lang, R M; Mor-Avi, V; Keselbrener, L

    2000-05-01

    Spectral analysis of the fluctuations in heart rate (HR) or blood pressure (BP) has been extensively used as a tool for the noninvasive assessment of autonomic control of the heart. The recently developed echocardiographic acoustic quantification allows noninvasive continuous measurement of the left ventricular cross-sectional area (LVA) signal. In this study, we investigated whether the LVA signal, and more specifically its fluctuations, can be reliably subjected to spectral analysis, and whether the results of such analysis may improve the understanding of the cardiovascular control mechanisms. Our results show that the general pattern of power spectra of LVA fluctuations, as well as their reproducibility, is similar to the power spectra of HR and BP fluctuations. Analysis of LVA signals obtained in normal subjects at rest as well as under vagal blockade and under held respiration, and in patients with known autonomic dysfunction, showed significant differences between groups and states. The effects of age, related to the reduction in parasympathetic activity, were not evident in the spectral content of the LVA and BP signals. The high frequency LVA fluctuations are mainly of mechanical origin, since they were eliminated by breath-holding. We observed an increase in the high frequency LVA fluctuations under vagal blockade, indicating that under normal (control) conditions, these high frequency fluctuations are attenuated by parasympathetic activity. The enhancement in high frequency fluctuations in LVA observed in diabetic patients can thus be attributed to reduced parasympathetic activity. The analysis of LVA variability may be used as a tool for basic research and, possibly, as a quantitative clinical measure for specific disease states.

  11. Cross correlation of heart rate and respiration versus deep breathing. Assessment of new test of cardiac autonomic function in diabetes.

    PubMed

    Bernardi, L; Rossi, M; Soffiantino, F; Marti, G; Ricordi, L; Finardi, G; Fratino, P

    1989-05-01

    Cross correlation is a mathematical function whereby spectral analysis is used to describe the relationship between heart-rate fluctuations (256 R-R intervals) and respiration (simultaneously obtained by pneumotacograph). To assess its usefulness for testing autonomic integrity, cross correlation and deep breathing were compared in 141 diabetic subjects (aged 39 +/- 14 yr) and in 77 control subjects (aged 33 +/- 13 yr). To characterize patients, Valsalva maneuver, 30:15 ratio, tilt, and handgrip tests were performed in 96 of these patients; 23 had two or more abnormal tests (group A), 28 had one (group B), and 45 had none (group C). Sensitivity to parasympathetic withdrawal was compared in 9 control subjects (aged 26 +/- 4 yr) by four sequential 0.01-mg/kg i.v. atropine administrations. Reproducibility was compared in 11 control subjects (aged 25 +/- 2 yr) by repeating the tests four times for 2 consecutive days. Considering all 141 patients, cross correlation and deep breathing were less than 2SD of the mean of control subjects in 64 and 36 subjects, respectively. Considering patients who also performed other tests of autonomic function, cross correlation and deep breathing were less than 2SD of the mean of controls in 42 and 30 subjects, respectively (group A, 20 and 15; group B, 12 and 9; group C, 10 and 6). Cross correlation had better reproducibility than deep breathing (C.V. 10.3 vs. 30.6% at 6 breaths/min) and greater sensitivity to atropine (after the 1st injection, cross correlation and deep breathing decreased to 34.6 and 48.2% of baseline values, respectively; P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Cyclophosphamide-induced immunosuppression protects cardiac noradrenergic nerve terminals from damage by Trypanosoma cruzi infection in adult rats.

    PubMed

    Guerra, L B; Andrade, L O; Galvão, L M; Macedo, A M; Machado, C R

    2001-01-01

    Trypanosoma cruzi-infected juvenile rats develop severe cardiac sympathetic denervation in parallel with acute myocarditis. This aspect has not been studied in adult rats, thought to be resistant to this infection. The mechanism involved in T. cruzi-induced neuronal damage remains to be completely elucidated. In juvenile rats, the mortality during the acute phase depends on T. cruzi populations, ranging from 30% to 100%. Therefore, studies of mechanisms through hazardous procedures such as immunosuppression are restricted. The current paper shows that adult rats infected with T. cruzi (Y strain) develop severe acute myocarditis and cardiac sympathetic denervation, despite null mortality and virtual absence of patent parasitaemia followed by negative haemoculture. Recovery from the myocarditis and denervation occurred but PCR studies showed persistence of parasite DNA at least until day 111 post inoculation. Immunosuppression by cyclophosphamide treatment increased the parasitaemia, prevented the acute myocarditis and the sympathetic denervation without significant alteration of the myocardial parasitism. These results argue against a direct role for parasite-derived products and implicate the inflammatory cells in the denervation process. As previous studies in juvenile animals have discarded an essential role for radiosensitive cells, the macrophages remain as the possible effectors for the T. cruzi-induced neuronal damage.

  13. SOD1 Overexpression Preserves Baroreflex Control of Heart Rate with an Increase of Aortic Depressor Nerve Function

    PubMed Central

    Hatcher, Jeffrey; Gu, He; Cheng, Zixi (Jack)

    2016-01-01

    Overproduction of reactive oxygen species (ROS), such as the superoxide radical (O2∙−), is associated with diseases which compromise cardiac autonomic function. Overexpression of SOD1 may offer protection against ROS damage to the cardiac autonomic nervous system, but reductions of O2∙− may interfere with normal cellular functions. We have selected the C57B6SJL-Tg (SOD1)2 Gur/J mouse as a model to determine whether SOD1 overexpression alters cardiac autonomic function, as measured by baroreflex sensitivity (BRS) and aortic depressor nerve (ADN) recordings, as well as evaluation of baseline heart rate (HR) and mean arterial pressure (MAP). Under isoflurane anesthesia, C57 wild-type and SOD1 mice were catheterized with an arterial pressure transducer and measurements of HR and MAP were taken. After establishing a baseline, hypotension and hypertension were induced by injection of sodium nitroprusside (SNP) and phenylephrine (PE), respectively, and ΔHR versus ΔMAP were recorded as a measure of baroreflex sensitivity (BRS). SNP and PE treatment were administered sequentially after a recovery period to measure arterial baroreceptor activation by recording aortic depressor nerve activity. Our findings show that overexpression of SOD1 in C57B6SJL-Tg (SOD1)2 Gur/J mouse preserved the normal HR, MAP, and BRS but enhanced aortic depressor nerve function. PMID:26823951

  14. (123)I-meta-iodobenzylguanidine (MIBG) cardiac scintigraphy in α-synucleinopathies.

    PubMed

    Orimo, Satoshi; Yogo, Makiko; Nakamura, Tomohiko; Suzuki, Masahiko; Watanabe, Hirohisa

    2016-09-01

    Cardiac meta-iodobenzylguanidine (MIBG) uptake on (123)I-MIBG cardiac scintigraphy is reduced in patients with Lewy body disease such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and pure autonomic failure, and has been reported to be useful for differentiating PD from other parkinsonian syndromes, as well as DLB from Alzheimer disease (AD). Postmortem studies have shown that the number of tyrosine hydroxylase (TH)-immunoreactive nerve fibers of the heart was decreased in pathologically-confirmed Lewy body disease, supporting the findings of reduced cardiac MIBG uptake in Lewy body diseases. Now, reduced cardiac MIBG uptake can be a potential biomarker for the presence of Lewy bodies in the nervous system. (123)I-MIBG cardiac scintigraphy can allow us to determine the presence of Lewy bodies. PMID:26835846

  15. Cardiac Autonomic Dysfunction: Particulate Air Pollution Effects Are Modulated by Epigenetic Immunoregulation of Toll‐like Receptor 2 and Dietary Flavonoid Intake

    PubMed Central

    Zhong, Jia; Colicino, Elena; Lin, Xinyi; Mehta, Amar; Kloog, Itai; Zanobetti, Antonella; Byun, Hyang‐Min; Bind, Marie‐Abèle; Cantone, Laura; Prada, Diddier; Tarantini, Letizia; Trevisi, Letizia; Sparrow, David; Vokonas, Pantel; Schwartz, Joel; Baccarelli, Andrea A.

    2015-01-01

    Background Short‐term fine particles (PM2.5) exposure is associated with reduced heart rate variability, a strong predictor of cardiac mortality among older people. Identifying modifiable factors that confer susceptibility is essential for intervention. We evaluated whether Toll‐like receptor 2 (TLR2) methylation, a reversible immune‐epigenetic process, and its dietary modulation by flavonoids and methyl nutrients, modify susceptibility to heart rate variability effects following PM2.5 exposure. Methods and Results We measured heart rate variability and PM2.5 repeatedly over 11 years (1275 total observations) among 573 elderly men from the Normative Aging Study. Blood TLR2 methylation was analyzed using pyrosequencing. Daily flavonoid and methyl nutrients intakes were assessed through the Food Frequency Questionnaire (FFQ). Every 10 μg/m3 increase in 48‐hour PM2.5 moving average was associated with 7.74% (95% CI: −1.21% to 15.90%; P=0.09), 7.46% (95% CI: 0.99% to 13.50%; P=0.02), 14.18% (95% CI: 1.14% to 25.49%; P=0.03), and 12.94% (95% CI: −2.36% to 25.96%; P=0.09) reductions in root mean square of successive differences, standard deviation of normal‐to‐normal intervals, low‐frequency power, and high‐frequency power, respectively. Higher TLR2 methylation exacerbated the root mean square of successive differences, standard deviation of normal‐to‐normal intervals, low‐frequency, and high‐frequency reductions associated with heightened PM2.5 (Pinteraction=0.006, 0.03, 0.05, 0.04, respectively). Every interquartile‐range increase in flavonoid intake was associated with 5.09% reduction in mean TLR2 methylation (95% CI: 0.12% to 10.06%; P=0.05) and counteracted the effects of PM2.5 on low frequency (Pinteraction=0.05). No significant effect of methyl nutrients on TLR2 methylation was observed. Conclusions Higher TLR2 methylation may confer susceptibility to adverse cardiac autonomic effects of PM2.5 exposure in older individuals. Higher

  16. Vestibular influences on autonomic cardiovascular control in humans

    NASA Technical Reports Server (NTRS)

    Biaggioni, I.; Costa, F.; Kaufmann, H.; Robertson, D. (Principal Investigator)

    1998-01-01

    There is substantial evidence that anatomical connections exist between vestibular and autonomic nuclei. Animal studies have shown functional interactions between the vestibular and autonomic systems. The nature of these interactions, however, is complex and has not been fully defined. Vestibular stimulation has been consistently found to reduce blood pressure in animals. Given the potential interaction between vestibular and autonomic pathways this finding could be explained by a reduction in sympathetic activity. However, rather than sympathetic inhibition, vestibular stimulation has consistently been shown to increase sympathetic outflow in cardiac and splanchnic vascular beds in most experimental models. Several clinical observations suggest that a link between vestibular and autonomic systems may also exist in humans. However, direct evidence for vestibular/autonomic interactions in humans is sparse. Motion sickness has been found to induce forearm vasodilation and reduce baroreflex gain, and head down neck flexion induces transient forearm and calf vasoconstriction. On the other hand, studies using optokinetic stimulation have found either very small, variable, or inconsistent changes in heart rate and blood pressure, despite substantial symptoms of motion sickness. Furthermore, caloric stimulation severe enough to produce nystagmus, dizziness, and nausea had no effect on sympathetic nerve activity measured directly with microneurography. No effect was observed on heart rate, blood pressure, or plasma norepinephrine. Several factors may explain the apparent discordance of these results, but more research is needed before we can define the potential importance of vestibular input to cardiovascular regulation and orthostatic tolerance in humans.

  17. Comparative effects of long-acting and short-acting loop diuretics on cardiac sympathetic nerve activity in patients with chronic heart failure

    PubMed Central

    Matsuo, Yae; Kasama, Shu; Toyama, Takuji; Funada, Ryuichi; Takama, Noriaki; Koitabashi, Norimichi; Ichikawa, Shuichi; Suzuki, Yasuyuki; Matsumoto, Naoya; Sato, Yuichi; Kurabayashi, Masahiko

    2016-01-01

    Objective Short-acting loop diuretics are known to enhance cardiac sympathetic nerve activity (CSNA) in patients with chronic heart failure (CHF). The effects of two loop diuretics—long-acting azosemide and short-acting furosemide—on CSNA were evaluated using 123I-metaiodobenzylguanidine (MIBG) scintigraphy in patients with CHF. Methods The present study was a subanalysis of our previously published study, which had reported that serial 123I-MIBG studies were the most useful prognostic indicator in patients with CHF. Patients with CHF (n=208, left ventricular ejection fraction <45%) but no history of cardiac events for at least 5 months prior to the study were identified according to their histories of acute decompensated heart failure requiring hospitalisation. Patients underwent 123I-MIBG scintigraphy immediately before hospital discharge and at a 6-month follow-up. The delayed % denervation, delayed heart/mediastinum count (H/M) ratio and washout rate (WR) were determined using 123I-MIBG scintigraphy. A total of 108 patients were selected, and propensity score matching was used to compare patients treated with either oral azosemide (n=54) or furosemide (n=54). Results After treatment, 123I-MIBG scintigraphic parameters improved in both groups. However, the degree of change in % denervation was −13.8±10.5 in the azosemide group and −5.7±12.7 in the furosemide group (p<0.01), the change in H/M ratio was 0.20±0.16 in the azosemide group and 0.06±0.19 in the furosemide group (p<0.01), and the change in WR was −11.3±9.2% in the azosemide group and −3.0±12.7% in the furosemide group (p<0.01). Moreover, multivariate analysis showed an independent and significant positive relationship between furosemide and δ-WR from hospital discharge to 6 months after treatment in patients with CHF (p=0.001). Conclusions These findings indicate that azosemide suppresses CSNA compared with furosemide in patients with CHF. Trial registration number UMIN000000626

  18. Clinical features on nerve gas terrorism in Matsumoto.

    PubMed

    Okudera, Hiroshi

    2002-01-01

    Clinical features on the first unexpected nerve gas terrorism using sarin (isopropyl methylphosphonofluoridate) on citizens in the city of Matsumoto is described. The nerve gas terrorism occurred at midnight on 27 June, 1994. About 600 people including residents and rescue staff were exposed to sarin gas. Fifty-eight victims were admitted to hospitals and seven died. Theoretically, sarin inhibits systemic acetylcholinesterase and damages all the autonomic transmission at the muscarinic and nicotinic acetylcholine receptor. Miosis was the most common finding in the affected people. In cases with severe poisoning, organophosphate may affect the central nervous system and cause cardiomyopathy. A few of the victims complained of arrhythmia and showed a decreased cardiac contraction. Abnormal electroencephalograms were recorded in two patients. The clinical features and follow-up studies are discussed with reference to the Tokyo subway terrorism and related articles.

  19. Diabetic autonomic neuropathy.

    PubMed

    Clarke, B F; Ewing, D J; Campbell, I W

    1979-10-01

    This review attempts to outline the present understanding of diabetic autonomic neuropathy. The clinical features have been increasinly recognised but knowledge of the localization and morphology of the lesions and their pathogenesis remains fragmentary. A metabolic causation as postulated in somatic nerves accords best with clinical observations. Most bodily systems, particularly the cardiovascular, gastrointestinal and urogenital, are involved with added disturbances of thermoregulatory function and pupillary reflexes. Possible effects on neuroendocrine and peptidergic secretion and respiratory control await definition. Current interest centres around the development of a new generation of tests of autonomic nerve function that are simple, non-invasive, reproducible and allow precision in diagnosis and accurate quantitation. Most are based on cardiovascular reflexes and abnormality in them is assumed to reflect autonomic damage elsewhere. Probably no single test suffices and a battery of tests reflecting both parasympathetic and sympathetic function is preferable. Little is known of the natural history. The prevalence may be greater than previously suspected and although symptoms are mild in the majority, a few develop florid features. The relation of control and duration of diabetes to the onset and progression of autonomic neuropathy is not clearly established. Once tests of autonomic function become abnormal they usually remain abnormal. Symptomatic autonomic neuropathy carries a greatly increased mortality rate possibly due to indirect mechanisms such as renal failure and direct mechanisms such as cardio-resiratory arrest. Improved treatment of some of the more disabling symptoms has been possible in recent years. PMID:387501

  20. Potential effects of intrinsic heart pacemaker cell mechanisms on dysrhythmic cardiac action potential firing

    PubMed Central

    Yaniv, Yael; Tsutsui, Kenta; Lakatta, Edward G.

    2015-01-01

    The heart's regular electrical activity is initiated by specialized cardiac pacemaker cells residing in the sinoatrial node. The rate and rhythm of spontaneous action potential firing of sinoatrial node cells are regulated by stochastic mechanisms that determine the level of coupling of chemical to electrical clocks within cardiac pacemaker cells. This coupled-clock system is modulated by autonomic signaling from the brain via neurotransmitter release from the vagus and sympathetic nerves. Abnormalities in brain-heart clock connections or in any molecular clock activity within pacemaker cells lead to abnormalities in the beating rate and rhythm of the pacemaker tissue that initiates the cardiac impulse. Dysfunction of pacemaker tissue can lead to tachy-brady heart rate alternation or exit block that leads to long atrial pauses and increases susceptibility to other cardiac arrhythmia. Here we review evidence for the idea that disturbances in the intrinsic components of pacemaker cells may be implemented in arrhythmia induction in the heart. PMID:25755643

  1. Autonomous and Autonomic Swarms

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Truszkowski, Walter F.; Rouff, Christopher A.; Sterritt, Roy

    2005-01-01

    A watershed in systems engineering is represented by the advent of swarm-based systems that accomplish missions through cooperative action by a (large) group of autonomous individuals each having simple capabilities and no global knowledge of the group s objective. Such systems, with individuals capable of surviving in hostile environments, pose unprecedented challenges to system developers. Design and testing and verification at much higher levels will be required, together with the corresponding tools, to bring such systems to fruition. Concepts for possible future NASA space exploration missions include autonomous, autonomic swarms. Engineering swarm-based missions begins with understanding autonomy and autonomicity and how to design, test, and verify systems that have those properties and, simultaneously, the capability to accomplish prescribed mission goals. Formal methods-based technologies, both projected and in development, are described in terms of their potential utility to swarm-based system developers.

  2. Vagus Nerve Stimulation

    PubMed Central

    Howland, Robert H.

    2014-01-01

    The vagus nerve is a major component of the autonomic nervous system, has an important role in the regulation of metabolic homeostasis, and plays a key role in the neuroendocrine-immune axis to maintain homeostasis through its afferent and efferent pathways. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, including manual or electrical stimulation. Left cervical VNS is an approved therapy for refractory epilepsy and for treatment resistant depression. Right cervical VNS is effective for treating heart failure in preclinical studies and a phase II clinical trial. The effectiveness of various forms of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, and other conditions has not been investigated beyond small pilot studies. The relationship between depression, inflammation, metabolic syndrome, and heart disease might be mediated by the vagus nerve. VNS deserves further study for its potentially favorable effects on cardiovascular, cerebrovascular, metabolic, and other physiological biomarkers associated with depression morbidity and mortality. PMID:24834378

  3. Autonomic neural control of heart rate during dynamic exercise: revisited

    PubMed Central

    White, Daniel W; Raven, Peter B

    2014-01-01

    The accepted model of autonomic control of heart rate (HR) during dynamic exercise indicates that the initial increase is entirely attributable to the withdrawal of parasympathetic nervous system (PSNS) activity and that subsequent increases in HR are entirely attributable to increases in cardiac sympathetic activity. In the present review, we sought to re-evaluate the model of autonomic neural control of HR in humans during progressive increases in dynamic exercise workload. We analysed data from both new and previously published studies involving baroreflex stimulation and pharmacological blockade of the autonomic nervous system. Results indicate that the PSNS remains functionally active throughout exercise and that increases in HR from rest to maximal exercise result from an increasing workload-related transition from a 4 : 1 vagal–sympathetic balance to a 4 : 1 sympatho–vagal balance. Furthermore, the beat-to-beat autonomic reflex control of HR was found to be dependent on the ability of the PSNS to modulate the HR as it was progressively restrained by increasing workload-related sympathetic nerve activity. In conclusion: (i) increases in exercise workload-related HR are not caused by a total withdrawal of the PSNS followed by an increase in sympathetic tone; (ii) reciprocal antagonism is key to the transition from vagal to sympathetic dominance, and (iii) resetting of the arterial baroreflex causes immediate exercise-onset reflexive increases in HR, which are parasympathetically mediated, followed by slower increases in sympathetic tone as workloads are increased. PMID:24756637

  4. [Influence of beta block and autonomic nerve block on the recovery time of the sinus node in sick sinus syndrome and carotid sinus syndrome].

    PubMed

    Brignole, M; Sartore, B; Barra, M; Menozzi, C; Monducci, I; Bertulla, A

    1984-10-01

    In order to evaluate the relative role of the automatic nervus system and of the intrinsic electrophysiologic properties on the sinus node function, we measured the corrected sinus node recovery time before and after autonomic nervous system blockade in 24 patients. Fourteen had a sick sinus syndrome, five had a carotid sinus syncope, two had syncope of unknown origin associated with bradycardia. Beta blockade was obtained by infusing metoprolol intravenously at a dosage of 0.2 mg/kg; complete automatic blockade was achieved by further i.v. administration of atropine at a dosage of 0.04 mg/kg. After beta blockade, the corrected sinus node recovery time increased in patients with sick sinus syndrome and intrinsic slow heart rate, whereas it decreased in patients with carotid sinus syncope or with syncope and bradycardia. In patients with sick sinus syndrome and normal intrinsic heart rate the response was variable. A positive direct correlation was found between the changes of the corrected sinus node recovery time induced by beta blockade and those induced by autonomic blockade; that is, both either prolonged or shortened the corrected sinus node recovery time. The changes of the corrected sinus node recovery time after beta blockade alone were inversely correlated with the intrinsic heart rate. We conclude that patients with intrinsic depression of the sinus node have an increased sympathetic tone.

  5. Purinergic nerves and receptors.

    PubMed

    Burnstock, G

    1980-01-01

    The presence of a non-cholinergic, non-adrenergic component in the vertebrate autonomic nervous system is now well established. Evidence that ATP is the transmitter released from some of these nerves (called "purinergic') includes: (a) synthesis and storage of ATP in nerves: (b) release of ATP from the nerves when they are stimulated; (c) exogenously applied ATP mimicking the action of nerve-released transmitter; (d) the presence of ectoenzymes which inactivate ATP; (e) drugs which produce similar blocking or potentiating effects on the response to exogenously applied ATP and nerve stimulation. A basis for distinguishing two types of purinergic receptors has been proposed according to four criteria: relative potencies of agonists, competitive antagonists, changes in levels of cAMP and induction of prostaglandin synthesis. Thus P1 purinoceptors are most sensitive to adenosine, are competitively blocked by methylxanthines and their occupation leads to changes in cAMP accumulation; while P2 purinoceptors are most sensitive to ATP, are blocked (although not competitively) by quinidine, 2-substituted imidazolines, 2,2'-pyridylisatogen and apamin, and their occupation leads to production of prostaglandin. P2 purinoceptors mediate responses of smooth muscle to ATP released from purinergic nerves, while P1 purinoceptors mediate the presynaptic actions of adenosine on adrenergic, cholinergic and purinergic nerve terminals. PMID:6108568

  6. Atropine-resistant effects of the muscarinic agonists McN-A-343 and AHR 602 on cardiac performance and the release of noradrenaline from sympathetic nerves of the perfused rabbit heart

    PubMed Central

    Fozard, J.R.; Muscholl, E.

    1974-01-01

    1 The effects of 4-(m-chlorophenylcarbamoyloxy)-2-butynyltrimethylammonium chloride (McN-A-343) and N-benzyl-3-pyrrolidyl acetate methobromide (AHR 602) on cardiac performance and noradrenaline release from terminal sympathetic fibres were measured in isolated perfused hearts of rabbits. 2 In the presence of sufficient atropine to block muscarinic receptors, high concentrations of McN-A-343 and AHR 602 caused no cardiac stimulation and there was no increase in the resting output of noradrenaline into the perfusates. 3 McN-A-343 and AHR 602 increased both the mechanical responses and the transmitter overflow evoked by electrical stimulation of the sympathetic nerves (SNS) but inhibited both parameters during perfusion with 1,1-dimethyl-4-phenylpiperazinium (DMPP). The effects were atropine-resistant and qualitatively similar to those seen with cocaine. Hexamethonium inhibited DMPP, but affected neither SNS per se nor the facilitatory effects of McN-A-343 and AHR 602 on SNS. 4 McN-A-343, cocaine and desipramine (but not AHR 602 or hexamethonium) blocked the net cardiac noradrenaline uptake and increased the positive chronotropic effect of noradrenaline. 5 Prior perfusion with concentrations of cocaine and desipramine sufficient to block uptake reduced or abolished the facilitatory effects of both McN-A-343 and AHR 602 on SNS. 6 Cocaine, McN-A-343 and AHR 602 displayed local anaesthetic properties on the guinea-pig wheal and frog nerve plexus tests, and their relative potencies in this respect were similar to those for inhibition of DMPP-evoked transmitter overflow. Hexamethonium did not produce local anaesthesia. 7 The results indicate that the facilitated release of noradrenaline after SNS and the inhibition of release after DMPP produced by McN-A-343 and AHR 602 are the result of their combined local anaesthetic action and inhibition of amine uptake. PMID:4447857

  7. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  8. Respiratory modulation of human autonomic rhythms

    NASA Technical Reports Server (NTRS)

    Badra, L. J.; Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.

    2001-01-01

    We studied the influence of three types of breathing [spontaneous, frequency controlled (0.25 Hz), and hyperventilation with 100% oxygen] and apnea on R-R interval, photoplethysmographic arterial pressure, and muscle sympathetic rhythms in nine healthy young adults. We integrated fast Fourier transform power spectra over low (0.05-0.15 Hz) and respiratory (0.15-0.3 Hz) frequencies; estimated vagal baroreceptor-cardiac reflex gain at low frequencies with cross-spectral techniques; and used partial coherence analysis to remove the influence of breathing from the R-R interval, systolic pressure, and muscle sympathetic nerve spectra. Coherence among signals varied as functions of both frequency and time. Partialization abolished the coherence among these signals at respiratory but not at low frequencies. The mode of breathing did not influence low-frequency oscillations, and they persisted during apnea. Our study documents the independence of low-frequency rhythms from respiratory activity and suggests that the close correlations that may exist among arterial pressures, R-R intervals, and muscle sympathetic nerve activity at respiratory frequencies result from the influence of respiration on these measures rather than from arterial baroreflex physiology. Most importantly, our results indicate that correlations among autonomic and hemodynamic rhythms vary over time and frequency, and, thus, are facultative rather than fixed.

  9. Particles Alter Diesel Exhaust Gases-Induced Hypotension, Cardiac Arrhythmia,Conduction Disturbance, and Autonomic Imbalance in Heart Failure-Prone Rats

    EPA Science Inventory

    Epidemiologic studies indicate that acute exposures to vehicular traffic and particulate matter (PM) air pollution are key causes of fatal cardiac arrhythmia, especially in those with preexisting cardiovascular disease. Researchers point to electrophysiologic dysfunction and auto...

  10. Cardiac catheterization

    MedlinePlus

    Catheterization - cardiac; Heart catheterization; Angina - cardiac catheterization; CAD - cardiac catheterization; Coronary artery disease - cardiac catheterization; Heart valve - cardiac catheterization; Heart failure - ...

  11. Disorders of the lower cranial nerves

    PubMed Central

    Finsterer, Josef; Grisold, Wolfgang

    2015-01-01

    Lesions of the lower cranial nerves (LCN) are due to numerous causes, which need to be differentiated to optimize management and outcome. This review aims at summarizing and discussing diseases affecting LCN. Review of publications dealing with disorders of the LCN in humans. Affection of multiple LCN is much more frequent than the affection of a single LCN. LCN may be affected solely or together with more proximal cranial nerves, with central nervous system disease, or with nonneurological disorders. LCN lesions have to be suspected if there are typical symptoms or signs attributable to a LCN. Causes of LCN lesions can be classified as genetic, vascular, traumatic, iatrogenic, infectious, immunologic, metabolic, nutritional, degenerative, or neoplastic. Treatment of LCN lesions depends on the underlying cause. An effective treatment is available in the majority of the cases, but a prerequisite for complete recovery is the prompt and correct diagnosis. LCN lesions need to be considered in case of disturbed speech, swallowing, coughing, deglutition, sensory functions, taste, or autonomic functions, neuralgic pain, dysphagia, head, pharyngeal, or neck pain, cardiac or gastrointestinal compromise, or weakness of the trapezius, sternocleidomastoid, or the tongue muscles. To correctly assess manifestations of LCN lesions, precise knowledge of the anatomy and physiology of the area is required. PMID:26167022

  12. Seasonal variation in muscle sympathetic nerve activity.

    PubMed

    Cui, Jian; Muller, Matthew D; Blaha, Cheryl; Kunselman, Allen R; Sinoway, Lawrence I

    2015-08-01

    Epidemiologic data suggest there are seasonal variations in the incidence of severe cardiac events with peak levels being evident in the winter. Whether autonomic indices including muscle sympathetic nerve activity (MSNA) vary with season remains unclear. In this report, we tested the hypothesis that resting MSNA varies with the seasons of the year with peak levels evident in the winter. We analyzed the supine resting MSNA in 60 healthy subjects. Each subject was studied during two, three, or four seasons (total 237 visits). MSNA burst rate in the winter (21.0 ± 6.8 burst/min, mean ± SD) was significantly greater than in the summer (13.5 ± 5.8 burst/min, P < 0.001), the spring (17.1 ± 9.0 burst/min, P = 0.03), and the fall (17.9 ± 7.7 burst/min, P = 0.002). There was no significant difference in MSNA for other seasonal comparisons. The results suggest that resting sympathetic nerve activity varies along the seasons, with peak levels evident in the winter. We speculate that the seasonal changes in sympathetic activity may be a contribution to the previously observed seasonal variations in cardiovascular morbidity and mortality. PMID:26265752

  13. Seasonal variation in muscle sympathetic nerve activity

    PubMed Central

    Cui, Jian; Muller, Matthew D; Blaha, Cheryl; Kunselman, Allen R; Sinoway, Lawrence I

    2015-01-01

    Epidemiologic data suggest there are seasonal variations in the incidence of severe cardiac events with peak levels being evident in the winter. Whether autonomic indices including muscle sympathetic nerve activity (MSNA) vary with season remains unclear. In this report, we tested the hypothesis that resting MSNA varies with the seasons of the year with peak levels evident in the winter. We analyzed the supine resting MSNA in 60 healthy subjects. Each subject was studied during two, three, or four seasons (total 237 visits). MSNA burst rate in the winter (21.0 ± 6.8 burst/min, mean ± SD) was significantly greater than in the summer (13.5 ± 5.8 burst/min, P < 0.001), the spring (17.1 ± 9.0 burst/min, P = 0.03), and the fall (17.9 ± 7.7 burst/min, P = 0.002). There was no significant difference in MSNA for other seasonal comparisons. The results suggest that resting sympathetic nerve activity varies along the seasons, with peak levels evident in the winter. We speculate that the seasonal changes in sympathetic activity may be a contribution to the previously observed seasonal variations in cardiovascular morbidity and mortality. PMID:26265752

  14. Disorders of the lower cranial nerves.

    PubMed

    Finsterer, Josef; Grisold, Wolfgang

    2015-01-01

    Lesions of the lower cranial nerves (LCN) are due to numerous causes, which need to be differentiated to optimize management and outcome. This review aims at summarizing and discussing diseases affecting LCN. Review of publications dealing with disorders of the LCN in humans. Affection of multiple LCN is much more frequent than the affection of a single LCN. LCN may be affected solely or together with more proximal cranial nerves, with central nervous system disease, or with nonneurological disorders. LCN lesions have to be suspected if there are typical symptoms or signs attributable to a LCN. Causes of LCN lesions can be classified as genetic, vascular, traumatic, iatrogenic, infectious, immunologic, metabolic, nutritional, degenerative, or neoplastic. Treatment of LCN lesions depends on the underlying cause. An effective treatment is available in the majority of the cases, but a prerequisite for complete recovery is the prompt and correct diagnosis. LCN lesions need to be considered in case of disturbed speech, swallowing, coughing, deglutition, sensory functions, taste, or autonomic functions, neuralgic pain, dysphagia, head, pharyngeal, or neck pain, cardiac or gastrointestinal compromise, or weakness of the trapezius, sternocleidomastoid, or the tongue muscles. To correctly assess manifestations of LCN lesions, precise knowledge of the anatomy and physiology of the area is required.

  15. AUTONOMIC ASPECTS OF ARRHYTHMOGENESIS: THE ENDURING AND THE NEW

    PubMed Central

    Verrier, Richard L.; Antzelevitch, Charles

    2006-01-01

    Recent progress in our understanding of the role of the autonomic nervous system in the development of cardiac arrhythmias is reviewed. Our focus is on the translation of basic principles of neural control of heart rhythm that have emerged from experimental studies to clinical applications. Recent studies have made significant strides in defining the function of intrinsic cardiac innervation and the importance of nerve sprouting in electrical remodeling. A recurring theme is that heterogeneity of sympathetic innervation in response to injury is highly arrhythmogenic In addition, both sympathetic and parasympathetic influences on ion channel activity have been found accentuate electrical heterogeneities and thus to contribute to arrhythmogenesis in the long QT and Brugada syndromes. In the clinic, heart rate variability continues to be a useful tool in delineating pathophysiologic changes that result from the progression of heart disease and the impact of diabetic neuropathy. Heart rate turbulence, a noninvasive indicator of baroreceptor sensitivity has emerged as a simple, practical tool to assess risk for cardiovascular mortality in patients with ischemic heart disease and heart failure. Evidence of the proarrhythmic influence of behavioral stress has been further bolstered by defibrillator discharge studies and ambulatory ECG-based T-wave alternans measurement. In summary, the results of recent investigations underscore the importance of the autonomic influences as triggers of arrhythmia and provide important mechanistic insights into the ionic and cellular mechanisms involved. PMID:14688627

  16. [Cardiac amyloidosis].

    PubMed

    Hoyer, Caroline; Angermann, Christiane E; Knop, Stefan; Ertl, Georg; Störk, Stefan

    2008-03-15

    Amyloidoses are a heterogeneous group of multisystem disorders, which are characterized by an extracellular deposition of amyloid fibrils. Typically affected are the heart, liver, kidneys, and nervous system. More than half of the patients die due to cardiac involvement. Clinical signs of cardiac amyloidosis are edema of the lower limbs, hepatomegaly, ascites and elevated jugular vein pressure, frequently in combination with dyspnea. There can also be chest pain, probably due to microvessel disease. Dysfunction of the autonomous nervous system or arrhythmias may cause low blood pressure, dizziness, or recurrent syncope. The AL amyloidosis caused by the deposition of immunoglobulin light chains is the most common form. It can be performed by monoclonal gammopathy. The desirable treatment therapy consists of high-dose melphalan therapy twice followed by autologous stem cell transplantation. Due to the high peritransplantation mortality, selection of appropriate patients is mandatory. The ATTR amyloidosis is an autosomal dominant disorder caused by the amyloidogenic form of transthyretin, a plasmaprotein that is synthesized in the liver. Therefore, liver transplantation is the only curative therapy. The symptomatic treatment of cardiac amyloidosis is based on the current guidelines for chronic heart failure according to the patient's New York Heart Association (NYHA) state. Further types of amyloidosis with possible cardiac involvement comprise the senile systemic amyloidosis caused by the wild-type transthyretin, secondary amyloidosis after chronic systemic inflammation, and the beta(2)-microglobulin amyloidosis after long-term dialysis treatment. PMID:18344065

  17. [Autonomic disorders in persons with asthenic syndrome and their correction with citrulline malate].

    PubMed

    Fedorova, V I

    2000-01-01

    The paper presents the results of the investigation of psychoautonomic correlations in 15 patients with psychogenic asthenia. Spilberg's and Beck's tests as well as autonomic questionnaire were used for the psychologic testing. Sympathic-parasympathic correlations were investigated by means of cardiovascular tests, by evoked skin sympathetic potentials, variability of cardiac rhythm under conditions of different functional states. The patients had mild anxious-depressive and pronounced autonomic disorders with prevalence of cerebral sympathic-adrenal impacts, elevation of vagal influences in cardiovascular system, mediatory insufficiency of the sympathic sweating nerves and a decrease of the adaptive abilities of the regulatory systems. To correct the asthenic manifestations citrullin malate (stimol), a metabolic corrector produced by "Laboratories BIOCODEX" (France) was used. Stimol relieves psychoautonomic disorders by increasing both power capacities of the cells and synthesis of biologically active substances. PMID:10812668

  18. Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function

    PubMed Central

    Beaumont, Eric; Salavatian, Siamak; Southerland, E Marie; Vinet, Alain; Jacquemet, Vincent; Armour, J Andrew; Ardell, Jeffrey L

    2013-01-01

    The aims of the study were to determine how aggregates of intrinsic cardiac (IC) neurons transduce the cardiovascular milieu versus responding to changes in central neuronal drive and to determine IC network interactions subsequent to induced neural imbalances in the genesis of atrial fibrillation (AF). Activity from multiple IC neurons in the right atrial ganglionated plexus was recorded in eight anaesthetized canines using a 16-channel linear microelectrode array. Induced changes in IC neuronal activity were evaluated in response to: (1) focal cardiac mechanical distortion; (2) electrical activation of cervical vagi or stellate ganglia; (3) occlusion of the inferior vena cava or thoracic aorta; (4) transient ventricular ischaemia, and (5) neurally induced AF. Low level activity (ranging from 0 to 2.7 Hz) generated by 92 neurons was identified in basal states, activities that displayed functional interconnectivity. The majority (56%) of IC neurons so identified received indirect central inputs (vagus alone: 25%; stellate ganglion alone: 27%; both: 48%). Fifty per cent transduced the cardiac milieu responding to multimodal stressors applied to the great vessels or heart. Fifty per cent of IC neurons exhibited cardiac cycle periodicity, with activity occurring primarily in late diastole into isovolumetric contraction. Cardiac-related activity in IC neurons was primarily related to direct cardiac mechano-sensory inputs and indirect autonomic efferent inputs. In response to mediastinal nerve stimulation, most IC neurons became excessively activated; such network behaviour preceded and persisted throughout AF. It was concluded that stochastic interactions occur among IC local circuit neuronal populations in the control of regional cardiac function. Modulation of IC local circuit neuronal recruitment may represent a novel approach for the treatment of cardiac disease, including atrial arrhythmias. PMID:23818689

  19. Device therapy to modulate the autonomic nervous system to treat heart failure.

    PubMed

    Lopshire, John C; Zipes, Douglas P

    2012-10-01

    Heart failure is the final common pathway in many forms of heart disease, and is associated with excessive morbidity and mortality. Pathophysiologic alterations in the interaction between the heart and the autonomic nervous system in advanced heart failure have been noted for decades. Over the last decade, great advances have been made in the medical and surgical treatment of heart failure - and some of these modalities target the neuro-cardiac axis. Despite these advances, many patients progress to end-stage heart failure and death. Recently, device-based therapy targeting the neuro-cardiac axis with various forms of neuromodulatory stimuli has been shown to improve heart function in experimental heart failure models. These include spinal cord stimulation, vagal nerve stimulation, and baroreflex modulation. Human trials are now underway to evaluate the safety and efficacy of these device-based neuromodulatory modalities in the heart failure population.

  20. Nerve biopsy

    MedlinePlus

    ... Loss of axon tissue Metabolic neuropathies Necrotizing vasculitis Sarcoidosis Risks Allergic reaction to the local anesthetic Discomfort ... Neurosarcoidosis Peripheral neuropathy Primary amyloidosis Radial nerve dysfunction Sarcoidosis Tibial nerve dysfunction Update Date 6/1/2015 ...

  1. Autonomic neuropathies

    NASA Technical Reports Server (NTRS)

    Low, P. A.

    1998-01-01

    A limited autonomic neuropathy may underlie some unusual clinical syndromes, including the postural tachycardia syndrome, pseudo-obstruction syndrome, heat intolerance, and perhaps chronic fatigue syndrome. Antibodies to autonomic structures are common in diabetes, but their specificity is unknown. The presence of autonomic failure worsens prognosis in the diabetic state. Some autonomic neuropathies are treatable. Familial amyloid polyneuropathy may respond to liver transplantation. There are anecdotal reports of acute panautonomic neuropathy responding to intravenous gamma globulin. Orthostatic hypotension may respond to erythropoietin or midodrine.

  2. Whole and Particle-Free Diesel Exhausts Differentially Affect Cardiac Electrophysiology, Blood Pressure, and Autonomic Balance in Heart Failure–Prone Rats

    PubMed Central

    Farraj, Aimen K.

    2012-01-01

    Epidemiological studies strongly link short-term exposures to vehicular traffic and particulate matter (PM) air pollution with adverse cardiovascular (CV) events, especially in those with preexisting CV disease. Diesel engine exhaust is a key contributor to urban ambient PM and gaseous pollutants. To determine the role of gaseous and particulate components in diesel exhaust (DE) cardiotoxicity, we examined the effects of a 4-h inhalation of whole DE (wDE) (target PM concentration: 500 µg/m3) or particle-free filtered DE (fDE) on CV physiology and a range of markers of cardiopulmonary injury in hypertensive heart failure–prone rats. Arterial blood pressure (BP), electrocardiography, and heart rate variability (HRV), an index of autonomic balance, were monitored. Both fDE and wDE decreased BP and prolonged PR interval during exposure, with more effects from fDE, which additionally increased HRV triangular index and decreased T-wave amplitude. fDE increased QTc interval immediately after exposure, increased atrioventricular (AV) block Mobitz II arrhythmias shortly thereafter, and increased serum high-density lipoprotein 1 day later. wDE increased BP and decreased HRV root mean square of successive differences immediately postexposure. fDE and wDE decreased heart rate during the 4th hour of postexposure. Thus, DE gases slowed AV conduction and ventricular repolarization, decreased BP, increased HRV, and subsequently provoked arrhythmias, collectively suggesting parasympathetic activation; conversely, brief BP and HRV changes after exposure to particle-containing DE indicated a transient sympathetic excitation. Our findings suggest that whole- and particle-free DE differentially alter CV and autonomic physiology and may potentially increase risk through divergent pathways. PMID:22543275

  3. [Epicardial adipose tissue and its role in cardiac physiology and disease].

    PubMed

    Toczyłowski, Kacper; Gruca, Michał; Baranowski, Marcin

    2013-06-20

    Adipose tissue secretes a number of cytokines, referred to as adipokines. Intensive studies conducted over the last two decades showed that adipokines exert broad effects on cardiac metabolism and function. In addition, the available data strongly suggests that these cytokines play an important role in development of cardiovascular diseases. Epicardial adipose tissue (EAT) has special properties that distinguish it from other deposits of visceral fat. Overall, there appears to be a close functional and anatomic relationship between the EAT and the cardiac muscle. They share the same coronary blood supply, and there is no structure separating the adipose tissue from the myocardium or coronary arteries. The role of EAT in osierdziocardiac physiology remains unclear. Its putative functions include buffering coronary arteries against the torsion induced by the arterial pulse wave and cardiac contraction, regulating fatty acid homeostasis in the coronary microcirculation, thermogenesis, and neuroprotection of the cardiac autonomic ganglia and nerves. Obesity (particularly the abdominal phenotype) leads to elevated EAT content, and the available data suggests that high amount of this fat depot is associated with increased risk of ischemic heart disease, cardiac hypertrophy and diastolic dysfunction. The mass of EAT is small compared to other fat deposits in the body. Nevertheless, its close anatomic relationship to the heart suggests that this organ is highly exposed to EAT-derived adipokines which makes this tissue a very promising area of research. In this paper we review the current knowledge on the role of EAT in cardiac physiology and development of heart disease.

  4. The Association between Baseline Subjective Anxiety Rating and Changes in Cardiac Autonomic Nervous Activity in Response to Tryptophan Depletion in Healthy Volunteers.

    PubMed

    Hsiao, Chih Yin; Tsai, Hsin Chun; Chi, Mei Hung; Chen, Kao Chin; Chen, Po See; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang

    2016-05-01

    The aim of this study was to investigate the influence of serotonin on anxiety and autonomic nervous system (ANS) function; the correlation between subjective anxiety rating and changes of ANS function following tryptophan depletion (TD) in healthy volunteers was examined. Twenty-eight healthy participants, consisting of 15 females and 13 males, with an average age of 33.3 years, were recruited.Baseline Chinese Symptom Checklist-90-Revised and ANS function measurements were taken. TD was carried out on the testing day, and participants provided blood samples right before and 5 hours after TD. ANS function, somatic symptoms, and Visual Analogue Scales (VASs) were determined after TD. Wilcoxon signed rank test and Spearman ρ correlation were adapted for analyses of the results.The TD procedure reduced total and free plasma tryptophan effectively. After TD, the sympathetic nervous activity increased and parasympathetic nervous activity decreased. Baseline anxiety ratings positively correlated with post-TD changes in sympathetic nervous activity, VAS ratings, and physical symptoms. However, a negative correlation with post-TD changes in parasympathetic nervous activity was found.The change in ANS function after TD was associated with the severity of anxiety in healthy volunteers. This supports the fact that the effect of anxiety on heart rate variability is related to serotonin vulnerability. Furthermore, it also shows that the subjective anxiety rating has a biological basis related to serotonin.

  5. The Association between Baseline Subjective Anxiety Rating and Changes in Cardiac Autonomic Nervous Activity in Response to Tryptophan Depletion in Healthy Volunteers.

    PubMed

    Hsiao, Chih Yin; Tsai, Hsin Chun; Chi, Mei Hung; Chen, Kao Chin; Chen, Po See; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang

    2016-05-01

    The aim of this study was to investigate the influence of serotonin on anxiety and autonomic nervous system (ANS) function; the correlation between subjective anxiety rating and changes of ANS function following tryptophan depletion (TD) in healthy volunteers was examined. Twenty-eight healthy participants, consisting of 15 females and 13 males, with an average age of 33.3 years, were recruited.Baseline Chinese Symptom Checklist-90-Revised and ANS function measurements were taken. TD was carried out on the testing day, and participants provided blood samples right before and 5 hours after TD. ANS function, somatic symptoms, and Visual Analogue Scales (VASs) were determined after TD. Wilcoxon signed rank test and Spearman ρ correlation were adapted for analyses of the results.The TD procedure reduced total and free plasma tryptophan effectively. After TD, the sympathetic nervous activity increased and parasympathetic nervous activity decreased. Baseline anxiety ratings positively correlated with post-TD changes in sympathetic nervous activity, VAS ratings, and physical symptoms. However, a negative correlation with post-TD changes in parasympathetic nervous activity was found.The change in ANS function after TD was associated with the severity of anxiety in healthy volunteers. This supports the fact that the effect of anxiety on heart rate variability is related to serotonin vulnerability. Furthermore, it also shows that the subjective anxiety rating has a biological basis related to serotonin. PMID:27175645

  6. The Association between Baseline Subjective Anxiety Rating and Changes in Cardiac Autonomic Nervous Activity in Response to Tryptophan Depletion in Healthy Volunteers

    PubMed Central

    Hsiao, Chih Yin; Tsai, Hsin Chun; Chi, Mei Hung; Chen, Kao Chin; Chen, Po See; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang

    2016-01-01

    Abstract The aim of this study was to investigate the influence of serotonin on anxiety and autonomic nervous system (ANS) function; the correlation between subjective anxiety rating and changes of ANS function following tryptophan depletion (TD) in healthy volunteers was examined. Twenty-eight healthy participants, consisting of 15 females and 13 males, with an average age of 33.3 years, were recruited. Baseline Chinese Symptom Checklist-90-Revised and ANS function measurements were taken. TD was carried out on the testing day, and participants provided blood samples right before and 5 hours after TD. ANS function, somatic symptoms, and Visual Analogue Scales (VASs) were determined after TD. Wilcoxon signed rank test and Spearman ρ correlation were adapted for analyses of the results. The TD procedure reduced total and free plasma tryptophan effectively. After TD, the sympathetic nervous activity increased and parasympathetic nervous activity decreased. Baseline anxiety ratings positively correlated with post-TD changes in sympathetic nervous activity, VAS ratings, and physical symptoms. However, a negative correlation with post-TD changes in parasympathetic nervous activity was found. The change in ANS function after TD was associated with the severity of anxiety in healthy volunteers. This supports the fact that the effect of anxiety on heart rate variability is related to serotonin vulnerability. Furthermore, it also shows that the subjective anxiety rating has a biological basis related to serotonin. PMID:27175645

  7. Comparative anatomy of the autonomic nervous system.

    PubMed

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves.

  8. Neurophysiological approach to disorders of peripheral nerve.

    PubMed

    Crone, Clarissa; Krarup, Christian

    2013-01-01

    Disorders of the peripheral nerve system (PNS) are heterogeneous and may involve motor fibers, sensory fibers, small myelinated and unmyelinated fibers and autonomic nerve fibers, with variable anatomical distribution (single nerves, several different nerves, symmetrical affection of all nerves, plexus, or root lesions). Furthermore pathological processes may result in either demyelination, axonal degeneration or both. In order to reach an exact diagnosis of any neuropathy electrophysiological studies are crucial to obtain information about these variables. Conventional electrophysiological methods including nerve conduction studies and electromyography used in the study of patients suspected of having a neuropathy and the significance of the findings are discussed in detail and more novel and experimental methods are mentioned. Diagnostic considerations are based on a flow chart classifying neuropathies into eight categories based on mode of onset, distribution, and electrophysiological findings, and the electrophysiological characteristics in each type of neuropathy are discussed. PMID:23931776

  9. Altered autonomic regulation of cardiac function during head-up tilt after 28-day head-down bed-rest with counter-measures.

    PubMed

    Hughson, R L; Yamamoto, Y; Maillet, A; Fortrat, J O; Pavy-Le Traon, A; Butler, G C; Güell, A; Gharib, C

    1994-05-01

    The effects of 28 days continuous 6 degrees head-down tilt bed-rest on heart rate variability and the slope of the spontaneous arterial baroreflex were evaluated during supine rest and the first 10 min of 60 degrees head-up tilt. Twelve healthy men were assigned to either a no counter-measure (No-CM), or a counter-measure (CM) group so that there was no difference in maximal oxygen uptake. Counter-measures consisted of short-term, high resistance exercise for 6 days per week from days 7-28, and lower body negative pressure (-28 mmHg) for 15 min on days 16, 18, 20 and 22-28. In spite of balanced between-group fitness, mean RR-interval was different between the No-CM and the CM group prior to bed-rest, but neither this nor any other variables showed significant counter-measure by bed-rest interaction effects. Therefore, all data presented are from the main effects of bed-rest or tilt from the analysis of variance. RR-interval was reduced significantly by bed-rest and by tilt (P < 0.0001). Indicators from spectral analysis of heart-rate variability suggested reduced parasympathetic nervous system activity with bed-rest (P < 0.01) and head-up tilt (P < 0.05), and increased sympathetic nervous system activity after bed-rest (P < 0.01). An indicator of complexity of cardiovascular control mechanisms, taken from the slope (beta) of log spectral power vs. log frequency relationship, suggested reduced complexity with bed-rest (P < 0.05) and head-up tilt (P < 0.01). The spontaneous baroreflex slope was reduced significantly by bed-rest (P < 0.03) and by head-up tilt (P < 0.04). Taken together, these data support the concept of altered autonomic nervous system function in the aetiology of cardiovascular deconditioning with bed-rest or space travel; and it would appear that no benefit is derived from these specific counter-measures.

  10. Cardiac Rehabilitation

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Cardiac Rehabilitation? Cardiac rehabilitation (rehab) is a medically supervised program ... be designed to meet your needs. The Cardiac Rehabilitation Team Cardiac rehab involves a long-term commitment ...

  11. Lack of efficacy of an intradural somatic-to-autonomic nerve anastomosis (Xiao procedure) for bladder control in children with myelomeningocele and lipomyelomeningocele: results of a prospective, randomized, double-blind study.

    PubMed

    Tuite, Gerald F; Polsky, Ethan G; Homsy, Yves; Reilly, Margaret A; Carey, Carolyn M; Parrish Winesett, S; Rodriguez, Luis F; Storrs, Bruce B; Gaskill, Sarah J; Tetreault, Lisa L; Martinez, Denise G; Amankwah, Ernest K

    2016-08-01

    OBJECTIVE Xiao et al. and other investigators have studied an intradural somatic-to-autonomic (e.g., L-5 to S3-4) nerve transfer as a method to create a reflex arc to allow bladder emptying in response to cutaneous stimulation (the Xiao procedure). In previous clinical studies of patients with spinal dysraphism who underwent the Xiao procedure, high success rates (70%-85%) were reported for the establishment of a "skin-CNS-bladder" reflex arc that allows spontaneous, controlled voiding in children with neurogenic bladder dysfunction. However, many of these studies did not use blinded observers, did not have control groups, and/or featured only limited follow-up durations. METHODS A randomized, prospective, double-blind trial was initiated in March 2009, enrolling children with myelomeningocele (MM), lipomyelomeningocele (LMM), and neurogenic bladder dysfunction who were scheduled for spinal cord detethering (DT) for the usual indications. At the time of DT, patients were randomized between 2 arms of the study: half of the patients underwent a standard spinal cord DT procedure alone (DT group) and half underwent DT as well as the Xiao procedure (DT+X group). Patients, families, and study investigators, all of whom were blinded to the surgical details, analyzed the patients' strength, sensory function, mobility, voiding, and urodynamic bladder function before surgery and at regular intervals during the 3-year follow-up. RESULTS Twenty patients were enrolled in the study: 10 underwent only DT and the other 10 underwent DT+X. The addition of the Xiao procedure to spinal cord DT resulted in longer operative times (p = 0.024) and a greater chance of wound infection (p = 0.03). Patients in both treatment arms could intermittently void or dribble small amounts of urine (< 20% total bladder capacity) in response to scratching in dermatomes T-9 through S-2 using a standardized protocol, but the voiding was not reproducible and the volume voided was not clinically useful in

  12. Lack of efficacy of an intradural somatic-to-autonomic nerve anastomosis (Xiao procedure) for bladder control in children with myelomeningocele and lipomyelomeningocele: results of a prospective, randomized, double-blind study.

    PubMed

    Tuite, Gerald F; Polsky, Ethan G; Homsy, Yves; Reilly, Margaret A; Carey, Carolyn M; Parrish Winesett, S; Rodriguez, Luis F; Storrs, Bruce B; Gaskill, Sarah J; Tetreault, Lisa L; Martinez, Denise G; Amankwah, Ernest K

    2016-08-01

    OBJECTIVE Xiao et al. and other investigators have studied an intradural somatic-to-autonomic (e.g., L-5 to S3-4) nerve transfer as a method to create a reflex arc to allow bladder emptying in response to cutaneous stimulation (the Xiao procedure). In previous clinical studies of patients with spinal dysraphism who underwent the Xiao procedure, high success rates (70%-85%) were reported for the establishment of a "skin-CNS-bladder" reflex arc that allows spontaneous, controlled voiding in children with neurogenic bladder dysfunction. However, many of these studies did not use blinded observers, did not have control groups, and/or featured only limited follow-up durations. METHODS A randomized, prospective, double-blind trial was initiated in March 2009, enrolling children with myelomeningocele (MM), lipomyelomeningocele (LMM), and neurogenic bladder dysfunction who were scheduled for spinal cord detethering (DT) for the usual indications. At the time of DT, patients were randomized between 2 arms of the study: half of the patients underwent a standard spinal cord DT procedure alone (DT group) and half underwent DT as well as the Xiao procedure (DT+X group). Patients, families, and study investigators, all of whom were blinded to the surgical details, analyzed the patients' strength, sensory function, mobility, voiding, and urodynamic bladder function before surgery and at regular intervals during the 3-year follow-up. RESULTS Twenty patients were enrolled in the study: 10 underwent only DT and the other 10 underwent DT+X. The addition of the Xiao procedure to spinal cord DT resulted in longer operative times (p = 0.024) and a greater chance of wound infection (p = 0.03). Patients in both treatment arms could intermittently void or dribble small amounts of urine (< 20% total bladder capacity) in response to scratching in dermatomes T-9 through S-2 using a standardized protocol, but the voiding was not reproducible and the volume voided was not clinically useful in

  13. Nature's Autonomous Oscillators

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  14. Peripheral nerve hyperexcitability syndromes.

    PubMed

    Küçükali, Cem Ismail; Kürtüncü, Murat; Akçay, Halil İbrahim; Tüzün, Erdem; Öge, Ali Emre

    2015-01-01

    Peripheral nerve hyperexcitability (PNH) syndromes can be subclassified as primary and secondary. The main primary PNH syndromes are neuromyotonia, cramp-fasciculation syndrome (CFS), and Morvan's syndrome, which cause widespread symptoms and signs without the association of an evident peripheral nerve disease. Their major symptoms are muscle twitching and stiffness, which differ only in severity between neuromyotonia and CFS. Cramps, pseudomyotonia, hyperhidrosis, and some other autonomic abnormalities, as well as mild positive sensory phenomena, can be seen in several patients. Symptoms reflecting the involvement of the central nervous system occur in Morvan's syndrome. Secondary PNH syndromes are generally seen in patients with focal or diffuse diseases affecting the peripheral nervous system. The PNH-related symptoms and signs are generally found incidentally during clinical or electrodiagnostic examinations. The electrophysiological findings that are very useful in the diagnosis of PNH are myokymic and neuromyotonic discharges in needle electromyography along with some additional indicators of increased nerve fiber excitability. Based on clinicopathological and etiological associations, PNH syndromes can also be classified as immune mediated, genetic, and those caused by other miscellaneous factors. There has been an increasing awareness on the role of voltage-gated potassium channel complex autoimmunity in primary PNH pathogenesis. Then again, a long list of toxic compounds and genetic factors has also been implicated in development of PNH. The management of primary PNH syndromes comprises symptomatic treatment with anticonvulsant drugs, immune modulation if necessary, and treatment of possible associated dysimmune and/or malignant conditions. PMID:25719304

  15. Nerve conduction

    MedlinePlus

    ... fascicles) that contain hundreds of individual nerve fibers (neurons). Neurons consist of dendrites, axon, and cell body. The ... tree-like structures that receive signals from other neurons and from special sensory cells that sense the ...

  16. Cardiac Resynchronization Therapy Delivered Via a Multipolar Left Ventricular Lead is Associated with Reduced Mortality and Elimination of Phrenic Nerve Stimulation: Long‐Term Follow‐Up from a Multicenter Registry

    PubMed Central

    BEHAR, JONATHAN M.; BOSTOCK, JULIAN; ZHU LI, ADRIAN PO; CHIN, HUI MEN SELINA; JUBB, STEPHEN; LENT, EDWARD; GAMBLE, JAMES; FOLEY, PAUL W.X.; BETTS, TIM R.; RINALDI, CHRISTOPHER ALDO

    2015-01-01

    Lower Mortality and Eliminated PNS Associated with Quadripolar Leads Introduction Cardiac resynchronization therapy (CRT) using quadripolar left ventricular (LV) leads provides more pacing vectors compared to bipolar leads. This may avoid phrenic nerve stimulation (PNS) and allow optimal lead placement to maximize biventricular pacing. However, a long‐term improvement in patient outcome has yet to be demonstrated. Methods A total of 721 consecutive patients with conventional CRTD criteria implanted with quadripolar (n = 357) or bipolar (n = 364) LV leads were enrolled into a registry at 3 UK centers. Lead performance and mortality was analyzed over a 5‐year period. Results Patients receiving a quadripolar lead were of similar age and sex to those receiving a bipolar lead, although a lower proportion had ischemic heart disease (62.6% vs. 54.1%, P = 0.02). Both groups had similar rates of procedural success, although lead threshold, impedance, and procedural radiation dose were significantly lower in those receiving a quadripolar lead. PNS was more common in those with quadripolar leads (16.0% vs. 11.6%, P = 0.08), but was eliminated by switching pacing vector in all cases compared with 60% in the bipolar group (P < 0.001). Furthermore, LV lead displacement (1.7% vs. 4.6%, P = 0.03) and repositioning (2.0% vs. 5.2%, P = 0.03) occurred significantly less often in those with a quadripolar lead. All‐cause mortality was also significantly lower in the quadripolar compared to bipolar lead group in univariate and multivariate analysis (13.2% vs. 22.5%, P < 0.001). Conclusions In a large, multicenter experience, the use of quadripolar LV leads for CRT was associated with elimination of PNS and lower overall mortality. This has important implications for LV pacing lead choice. PMID:25631303

  17. Autonomic Modification of Intestinal Smooth Muscle Contractility

    ERIC Educational Resources Information Center

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  18. Autonomous Soaring

    NASA Technical Reports Server (NTRS)

    Lin, Victor P.

    2007-01-01

    This viewgraph presentation reviews the autonomous soaring flight of unmanned aerial vehicles (UAV). It reviews energy sources for UAVs, and two examples of UAV's that used alternative energy sources, and thermal currents for soaring. Examples of flight tests, plans, and results are given. Ultimately, the concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology.

  19. Alternative Quantitative Tools in the Assessment of Diabetic Peripheral and Autonomic Neuropathy.

    PubMed

    Vinik, A I; Casellini, C; Névoret, M-L

    2016-01-01

    Here we review some seldom-discussed presentations of diabetic neuropathy, including large fiber dysfunction and peripheral autonomic dysfunction, emphasizing the impact of sympathetic/parasympathetic imbalance. Diabetic neuropathy is the most common complication of diabetes and contributes additional risks in the aging adult. Loss of sensory perception, loss of muscle strength, and ataxia or incoordination lead to a risk of falling that is 17-fold greater in the older diabetic compared to their young nondiabetic counterparts. A fall is accompanied by lacerations, tears, fractures, and worst of all, traumatic brain injury, from which more than 60% do not recover. Autonomic neuropathy has been hailed as the "Prophet of Doom" for good reason. It is conducive to increased risk of myocardial infarction and sudden death. An imbalance in the autonomic nervous system occurs early in the evolution of diabetes, at a stage when active intervention can abrogate the otherwise relentless progression. In addition to hypotension, many newly recognized syndromes can be attributed to cardiac autonomic neuropathy such as orthostatic tachycardia and bradycardia. Ultimately, this constellation of features of neuropathy conspire to impede activities of daily living, especially in the patient with pain, anxiety, depression, and sleep disorders. The resulting reduction in quality of life may worsen prognosis and should be routinely evaluated and addressed. Early neuropathy detection can only be achieved by assessment of both large and small- nerve fibers. New noninvasive sudomotor function technologies may play an increasing role in identifying early peripheral and autonomic neuropathy, allowing rapid intervention and potentially reversal of small-fiber loss.

  20. Raman microspectroscopy for visualization of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Harada, Yoshinori; Koizumi, Noriaki; Takamatsu, Tetsuro

    2013-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery is essential for improving quality of life of patients. To preserve peripheral nerves, detection of ne peripheral nerves that cannot be identi ed by human eye or under white light imaging is necessary. In this study, we sought to provide a proof-of-principle demonstration of a label-free detection technique of peripheral nerve tissues against adjacent tissues that employs spontaneous Raman microspectroscopy. A line-illumination confocal Raman microscope was used for the experiment. A laser operating at the wavelength of 532 nm was used as an excitation laser light. We obtained Raman spectra of peripheral nerve, brous connective tissue, skeletal muscle, blood vessel, and adipose tissue of Wistar rats, and extracted speci c spectral features of peripheral nerves and adjacent tissues. By applying multivariate image analysis, peripheral nerves were clearly detected against adjacent tissues without any preprocessing neither xation nor staining. These results suggest the potential of the Raman spectroscopic observation for noninvasive and label-free nerve detection, and we expect this method could be a key technique for nerve-sparing surgery.

  1. Comparative anatomy and evolution of the cardiac innervation in New World monkeys (Platyrrhini, e. Geoffroy, 1812).

    PubMed

    Kawashima, Tomokazu; Thorington, Richard W; Whatton, James F

    2009-05-01

    The morphology of the autonomic cardiac nervous system (ACNS) was examined in 24 sides of 12 New World monkeys (Platyrrhini) of all four families to document the morphology systematically and to study the evolutionary changes of the ACNS in this primate lineage. We report the following: (1) Although several trivial intra- and inter-specific variations are present, a family-dependent morphology of the ACNS does not exist in New World monkeys. (2) The sympathetic ganglia in New World monkeys consist of the superior cervical, the middle cervical, and the cervicothoracic which is composed of the inferior cervical and first and second thoracic, and the thoracic ganglia starting with the third thoracic. The general cardiac nervous system is the sympathetic middle and inferior cardiac nerves and all parasympathetic vagal cardiac branches. (3) The morphology of the ACNS in the New World monkeys is almost consistent regardless of the number of vertebrae, the cardiac position and deviation (axis), and the great arterial branching pattern of the aortic arch, and it is very similar to that in the Old World monkeys, with only one difference: the superior cervical ganglion in the New World monkeys tends to be relatively smaller, higher, and provides a narrower contribution to the spinal nerves than in the Old World monkeys. The ACNS morphology exhibits significant evolutionary changes within the primate lineage from New and Old World monkeys to humans. The comparative morphology within the lineage is concordant with the phylogeny, suggesting that the primate ACNS preserves its evolutionary history in close alignment with phylogeny.

  2. Cardiac rehabilitation

    MedlinePlus

    ... Coronary artery disease - cardiac rehab; Angina - cardiac rehab; Heart failure - cardiac rehab ... have had: Heart attack Coronary heart disease (CHD) Heart failure Angina (chest pain) Heart or heart valve surgery ...

  3. Peripheral Nerve Disorders

    MedlinePlus

    ... spinal cord. Like static on a telephone line, peripheral nerve disorders distort or interrupt the messages between the brain ... body. There are more than 100 kinds of peripheral nerve disorders. They can affect one nerve or many nerves. ...

  4. Nerve biopsy (image)

    MedlinePlus

    Nerve biopsy is the removal of a small piece of nerve for examination. Through a small incision, a sample ... is removed and examined under a microscope. Nerve biopsy may be performed to identify nerve degeneration, identify ...

  5. Autonomous vehicles

    SciTech Connect

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  6. Surgical anatomy of the retroperitoneal spaces, Part IV: retroperitoneal nerves.

    PubMed

    Mirilas, Petros; Skandalakis, John E

    2010-03-01

    We present surgicoanatomical topographic relations of nerves and plexuses in the retroperitoneal space: 1) six named parietal nerves, branches of the lumbar plexus: iliohypogastric, ilioinguinal, genitofemoral, lateral femoral cutaneous, obturator, femoral. 2) The sacral plexus is formed by the lumbosacral trunk, ventral rami of S1-S3, and part of S4; the remainder of S4 joining the coccygeal plexus. From this plexus originate the superior gluteal nerve, which passes backward through the greater sciatic foramen above the piriformis muscle; the inferior gluteal nerve also courses through the greater sciatic foramen, but below the piriformis; 3) sympathetic trunks: right and left lumbar sympathetic trunks, which comprise four interconnected ganglia, and the pelvic chains; 4) greater, lesser, and least thoracic splanchnic nerves (sympathetic), which pass the diaphragm and join celiac ganglia; 5) four lumbar splanchnic nerves (sympathetic), which arise from lumbar sympathetic ganglia; 6) pelvic splanchnic nerves (nervi erigentes), providing parasympathetic innervation to the descending colon and pelvic splanchna; and 7) autonomic (prevertebral) plexuses, formed by the vagus nerves, splanchnic nerves, and ganglia (celiac, superior mesenteric, aorticorenal). They include sympathetic, parasympathetic, and sensory (mainly pain) fibers. The autonomic plexuses comprise named parts: aortic, superior mesenteric, inferior mesenteric, superior hypogastric, and inferior hypogastric (hypogastric nerves).

  7. Elevated HbA1c Levels Are Associated with the Blunted Autonomic Response Assessed by Heart Rate Variability during Blood Volume Reduction.

    PubMed

    Kamakura, Miho; Maruyama, Ryoko

    2016-01-01

    A high glycemic status increases the risk for autonomic dysfunction and cardiovascular failure. The aim of this study was to investigate time-dependent changes in the autonomic response and cardiovascular dynamics and the association between the level of hemoglobin A1c (HbA1c) and autonomic response during blood volume reduction. The study population consisted of 26 preoperative participants who were scheduled for autologous blood donation (200-400 mL of whole blood) for intraoperative or postoperative use. These participants without circulatory, respiratory, or brain disease and diabetes mellitus were grouped according to their HbA1c levels: < 6.5% (n = 18) and ≥ 6.5% (n = 8). We measured blood pressure (BP) and analyzed heart rate variability (HRV) to quantify cardiac autonomic regulation throughout blood donation. During blood volume reduction, which was about 10% of the circulating blood volume, the BP and heart rate varied within normal ranges in both groups. The high-frequency (HF) component, an index of parasympathetic nerve activity, and the ratio of low-frequency (LF) to HF components (LF/HF), an index of sympathetic nerve activity, significantly decreased and increased with the progression of blood volume reduction, respectively, in the HbA1c < 6.5% group. In contrast, in the HbA1c ≥ 6.5% group, the HF component did not significantly change, and the increase in the LF/HF ratio was delayed. Time-dependent changes in HRV were related to blood volume reduction only in the HbA1c < 6.5% group. Thus, elevated HbA1c levels are associated with the decrease in the autonomic response induced by blood volume reduction. PMID:27615262

  8. Autonomous control

    NASA Technical Reports Server (NTRS)

    Brown, Barbara

    1990-01-01

    KSC has been developing the Knowledge-Based Autonomous Test Engineer (KATE), which is a tool for performing automated monitoring, diagnosis, and control of electromechanical devices. KATE employs artificial intelligence computing techniques to perform these functions. The KATE system consists of a generic shell and a knowledge base. The KATE shell is the portion of the system which performs the monitoring, diagnosis, and control functions. It is generic in the sense that it is application independent. This means that the monitoring activity, for instance, will be performed with the same algorithms regardless of the particular physical device being used. The knowledge base is the portion of the system which contains specific functional and behavorial information about the physical device KATE is working with. Work is nearing completion on a project at KSC to interface a Texas Instruments Explorer running a LISP version of KATE with a Generic Checkout System (GCS) test-bed to control a physical simulation of a shuttle tanking system (humorously called the Red Wagon because of its color and mobility). The Autonomous Control System (ACS) project supplements and extends the KATE/GCS project by adding three other major activities. The activities include: porting KATE from the Texas Instruments Explorer machine to an Intel 80386-based UNIX workstation in the LISP language; rewriting KATE as necessary to run on the same 80386 workstation but in the Ada language; and investigating software and techniques to translate ANSI Standard Common LISP to Mil Standard Ada. Primary goals of this task are as follows: (1) establish the advantages of using expert systems to provide intelligent autonomous software for Space Station Freedom applications; (2) determine the feasibility of using Ada as the run-time environment for model-based expert systems; (3) provide insight into the advantages and disadvantagesof using LISP or Ada in the run-time environment for expert systems; and (4

  9. Pelvic autonomic neuromonitoring: present reality, future prospects.

    PubMed

    Skinner, Stanley A

    2014-08-01

    Currently, the means to assess the autonomic nervous system primarily depend on end organ functional measurement: intravesical pressure, skin resistance, and penile strain gauge tension, for example. None of these measures has been generally accepted in the operating room. Nevertheless, the segmental and peripheral pelvic autonomic nerve supply is placed at risk during both pelvic and lower spine surgery. In this difficult era of suboptimal post-prostatectomy outcomes, the urological literature does reveal the salutary development of safer dissection techniques about the peri-prostatic and cavernous plexus. Means of reliably specific nerve identification remain elusive. The need for actual nerve monitoring (not just identification) has only recently been proposed. Data from the animal lab reinforce an appreciation of the intimate and elegant interconnectedness of autonomic and somatic structures, particularly at the segmental level. Also, the biochemistry of erectile tissue engorgement (in both sexes) is very well understood (the electrophysiology increasingly so). Understanding these principles should permit parallel investigation and implementation of neurophysiological techniques which both identify and monitor pelvic autonomic function. The predicates for these proposed new approaches in the operating room are discussed in this review.

  10. Disorders of the Autonomic Nervous System after Hemispheric Cerebrovascular Disorders: An Update

    PubMed Central

    Al-Qudah, Zaid A.; Yacoub, Hussam A.; Souayah, Nizar

    2015-01-01

    Autonomic and cardiac dysfunction may occur after vascular brain injury without any evidence of primary heart disease. During acute stroke, autonomic dysfunction, for example, elevated arterial blood pressure, arrhythmia, and ischemic cardiac damage, has been reported, which may hinder the prognosis. Autonomic dysfunction after a stroke may involve the cardiovascular, respiratory, sudomotor, and sexual systems, but the exact mechanism is not fully understood. In this review paper, we will discuss the anatomy and physiology of the autonomic nervous system and discuss the mechanism(s) suggested to cause autonomic dysfunction after stroke. We will further elaborate on the different cerebral regions involved in autonomic dysfunction complications of stroke. Autonomic nervous system modulation is emerging as a new therapeutic target for stroke management. Understanding the pathogenesis and molecular mechanism(s) of parasympathetic and sympathetic dysfunction after stroke will facilitate the implementation of preventive and therapeutic strategies to antagonize the clinical manifestation of autonomic dysfunction and improve the outcome of stroke. PMID:26576215

  11. INL Autonomous Navigation System

    SciTech Connect

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  12. A Novel Internal Fixator Device for Peripheral Nerve Regeneration

    PubMed Central

    Chuang, Ting-Hsien; Wilson, Robin E.; Love, James M.; Fisher, John P.

    2013-01-01

    Recovery from peripheral nerve damage, especially for a transected nerve, is rarely complete, resulting in impaired motor function, sensory loss, and chronic pain with inappropriate autonomic responses that seriously impair quality of life. In consequence, strategies for enhancing peripheral nerve repair are of high clinical importance. Tension is a key determinant of neuronal growth and function. In vitro and in vivo experiments have shown that moderate levels of imposed tension (strain) can encourage axonal outgrowth; however, few strategies of peripheral nerve repair emphasize the mechanical environment of the injured nerve. Toward the development of more effective nerve regeneration strategies, we demonstrate the design, fabrication, and implementation of a novel, modular nerve-lengthening device, which allows the imposition of moderate tensile loads in parallel with existing scaffold-based tissue engineering strategies for nerve repair. This concept would enable nerve regeneration in two superposed regimes of nerve extension—traditional extension through axonal outgrowth into a scaffold and extension in intact regions of the proximal nerve, such as that occurring during growth or limb-lengthening. Self-sizing silicone nerve cuffs were fabricated to grip nerve stumps without slippage, and nerves were deformed by actuating a telescoping internal fixator. Poly(lactic co-glycolic) acid (PLGA) constructs mounted on the telescoping rods were apposed to the nerve stumps to guide axonal outgrowth. Neuronal cells were exposed to PLGA using direct contact and extract methods, and they exhibited no signs of cytotoxic effects in terms of cell morphology and viability. We confirmed the feasibility of implanting and actuating our device within a sciatic nerve gap and observed axonal outgrowth following device implantation. The successful fabrication and implementation of our device provides a novel method for examining mechanical influences on nerve regeneration. PMID

  13. Autonomic dysfunction independently predicts poor cardiovascular outcomes in asymptomatic individuals with type 2 diabetes in the DIAD study

    PubMed Central

    Wackers, Frans JTh; Inzucchi, Silvio E; Jose, Powell; Weiss, Curtis; Davey, Janice A; Heller, Gary V; Iskandrian, Ami E; Young, Lawrence H

    2015-01-01

    Objective: The primary aim of this secondary analysis was to determine whether cardiac autonomic neuropathy independently predicted adverse cardiac outcomes in asymptomatic individuals with type 2 diabetes. Additional aims include the determination of the correlation of standard autonomic testing measures and power spectral analysis of heart rate variability, and the association of diabetes-related and cardiac risk factors with cardiac autonomic neuropathy measures. Methods: Cardiac autonomic neuropathy was assessed at the study entry into the Detection of Ischemia in Asymptomatic Diabetics study, using autonomic heart rate and blood pressure testing, and power spectral analysis of heart rate variability. All participants were prospectively followed for the composite clinical outcome of cardiac death, acute coronary syndromes, heart failure, or coronary revascularization. Results: Over 5 years of follow-up, 94 of 1119 (8.4%) subjects developed symptomatic cardiac disease. In unadjusted bivariate analyses, abnormalities in several cardiac autonomic neuropathy tests, including lower Valsalva and Standing Heart Rate Ratios, higher resting Heart Rate, greater systolic blood pressure decrease on standing, and lower low-frequency power, were predictive of symptomatic disease. Independent predictors of poor cardiac outcome were a lower Valsalva Heart Rate Ratio, non-Black ethnicity, longer diabetes duration, higher glycated hemoglobin (HbA1c), insulin use, reported numbness in the extremities, higher pulse pressure, family history of coronary artery disease, and higher waist-to-hip ratio. Clinical factors independently associated with a lower Valsalva Heart Rate Ratio were insulin use, clinical proteinuria, higher pulse pressure, use of angiotensin-converting enzyme inhibitor and non-Black ethnicity. Conclusion: Cardiac autonomic neuropathy predicted adverse cardiac outcomes in asymptomatic type 2 diabetes without known cardiac disease. Clinical variables may help to

  14. Diabetic autonomic neuropathy.

    PubMed

    Freeman, Roy

    2014-01-01

    Diabetes mellitus is the commonest cause of an autonomic neuropathy in the developed world. Diabetic autonomic neuropathy causes a constellation of symptoms and signs affecting cardiovascular, urogenital, gastrointestinal, pupillomotor, thermoregulatory, and sudomotor systems. Several discrete syndromes associated with diabetes cause autonomic dysfunction. The most prevalent of these are: generalized diabetic autonomic neuropathy, autonomic neuropathy associated with the prediabetic state, treatment-induced painful and autonomic neuropathy, and transient hypoglycemia-associated autonomic neuropathy. These autonomic manifestations of diabetes are responsible for the most troublesome and disabling features of diabetic peripheral neuropathy and result in a significant proportion of the mortality and morbidity associated with the disease.

  15. Autonomic and cardiovascular responses to chemoreflex stress in apnoea divers.

    PubMed

    Steinback, Craig D; Breskovic, Toni; Banic, Ivana; Dujic, Zeljko; Shoemaker, J Kevin

    2010-08-25

    Sleep apnoea, with repeated periods of hypoxia, results in cardiovascular morbidity and concomitant autonomic dysregulation. Trained apnoea divers also perform prolonged apnoeas accompanied by large lung volumes, large reductions in cardiac output and severe hypoxia and hypercapnia. We tested the hypothesis that apnoea training would be associated with decreased cardiovagal and sympathetic baroreflex gains and reduced respiratory modulation of muscle sympathetic nerve activity (MSNA; microneurography). Six trained divers and six controls were studied at rest and during asphyxic rebreathing. Despite an elevated resting heart rate (70+/-14 vs. 56+/-10 bpm; p=0.038), divers had a similar cardiovagal baroreflex gain (-1.22+/-0.47 beats/mmHg) as controls (-1.29+/-0.61; NS). Similarly, though MSNA burst frequency was slightly higher in divers at rest (16+/-4 bursts/min vs. 10+/-5 bursts/min, p=0.03) there was no difference in baseline burst incidence, sympathetic baroreflex gain (-3.8+/-2.1%/mmHg vs. -4.7+/-1.7%/mmHg) or respiratory modulation of MSNA between groups. Resting total peripheral resistance (11.9+/-2.6 vs. 12.3+/-2.2 mmHg/L/min) and pulse wave velocity (5.82+/-0.55 vs. 6.10+/-0.51 m/s) also were similar between divers and controls, respectively. Further, the sympathetic response to asphyxic rebreathing was not different between controls and divers (-1.70+/-1.07 vs. -1.74+/-0.84 a.u./% desaturation). Thus, these data suggest that, unlike patients with sleep apnoea, apnoea training in otherwise healthy individuals does not produce detectable autonomic dysregulation or maladaption.

  16. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    PubMed

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. PMID:26371169

  17. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    PubMed

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases.

  18. The nature of the autonomic dysfunction in multiple system atrophy

    NASA Technical Reports Server (NTRS)

    Parikh, Samir M.; Diedrich, Andre; Biaggioni, Italo; Robertson, David

    2002-01-01

    The concept that multiple system atrophy (MSA, Shy-Drager syndrome) is a disorder of the autonomic nervous system is several decades old. While there has been renewed interest in the movement disorder associated with MSA, two recent consensus statements confirm the centrality of the autonomic disorder to the diagnosis. Here, we reexamine the autonomic pathophysiology in MSA. Whereas MSA is often thought of as "autonomic failure", new evidence indicates substantial persistence of functioning sympathetic and parasympathetic nerves even in clinically advanced disease. These findings help explain some of the previously poorly understood features of MSA. Recognition that MSA entails persistent, constitutive autonomic tone requires a significant revision of our concepts of its diagnosis and therapy. We will review recent evidence bearing on autonomic tone in MSA and discuss their therapeutic implications, particularly in terms of the possible development of a bionic baroreflex for better control of blood pressure.

  19. Regulation of muscle sympathetic nerve activity after bed rest deconditioning

    NASA Technical Reports Server (NTRS)

    Pawelczyk, J. A.; Zuckerman, J. H.; Blomqvist, C. G.; Levine, B. D.

    2001-01-01

    Cardiovascular deconditioning reduces orthostatic tolerance. To determine whether changes in autonomic function might produce this effect, we developed stimulus-response curves relating limb vascular resistance, muscle sympathetic nerve activity (MSNA), and pulmonary capillary wedge pressure (PCWP) with seven subjects before and after 18 days of -6 degrees head-down bed rest. Both lower body negative pressure (LBNP; -15 and -30 mmHg) and rapid saline infusion (15 and 30 ml/kg body wt) were used to produce a wide variation in PCWP. Orthostatic tolerance was assessed with graded LBNP to presyncope. Bed rest reduced LBNP tolerance from 23.9 +/- 2.1 to 21.2 +/- 1.5 min, respectively (means +/- SE, P = 0.02). The MSNA-PCWP relationship was unchanged after bed rest, though at any stage of the LBNP protocol PCWP was lower, and MSNA was greater. Thus bed rest deconditioning produced hypovolemia, causing a shift in operating point on the stimulus-response curve. The relationship between limb vascular resistance and MSNA was not significantly altered after bed rest. We conclude that bed rest deconditioning does not alter reflex control of MSNA, but may produce orthostatic intolerance through a combination of hypovolemia and cardiac atrophy.

  20. Cardiac arrest

    MedlinePlus

    ... Article.jsp. Accessed June 16, 2014. Myerburg RJ, Castellanos A. Approach to cardiac arrest and life-threatening ... PA: Elsevier Saunders; 2011:chap 63. Myerburg RJ, Castellanos A. Cardiac arrest and audden aardiac death. In: ...

  1. Nerve Impulses in Plants

    ERIC Educational Resources Information Center

    Blatt, F. J.

    1974-01-01

    Summarizes research done on the resting and action potential of nerve impulses, electrical excitation of nerve cells, electrical properties of Nitella, and temperature effects on action potential. (GS)

  2. The role of the autonomic ganglia in atrial fibrillation

    PubMed Central

    Stavrakis, Stavros; Nakagawa, Hiroshi; Po, Sunny S.; Scherlag, Benjamin J.; Lazzara, Ralph; Jackman, Warren M.

    2015-01-01

    Recent experimental and clinical studies have shown that the epicardial autonomic ganglia play an important role in the initiation and maintenance of atrial fibrillation (AF). In this review, we present the current data on the role of the autonomic ganglia in the pathogenesis of AF and discuss potential therapeutic implications. Experimental studies have demonstrated that acute autonomic remodeling may play a crucial role in AF maintenance in the very early stages. The benefit of adding ablation of the autonomic ganglia to the standard pulmonary vein (PV) isolation procedure for patients with paroxysmal AF is supported by both experimental and clinical data. The interruption of axons from these hyperactive autonomic ganglia to the PV myocardial sleeves may be an important factor in the success of PV isolation procedures. The vagus nerve exerts an inhibitory control over the autonomic ganglia and attenuation or loss of this control may allow these ganglia to become hyperactive. Autonomic neuromodulation using low-level vagus nerve stimulation inhibits the activity of the autonomic ganglia and reverses acute electrical atrial remodeling during rapid atrial pacing and may provide an alternative non-ablative approach for the treatment of AF, especially in the early stages. This notion is supported by a preliminary human study. Further studies are warranted to confirm these findings. PMID:26301262

  3. Diesel Exhaust Inhalation Increases Cardiac Output, Bradyarrhythmias, and Parasympathetic Tone in Aged Heart Failure-Prone Rats

    EPA Science Inventory

    Acute air pollutant inhalation is linked to adverse cardiac events and death, and hospitalizations for heart failure. Diesel exhaust (DE) is a major air pollutant suspected to exacerbate preexisting cardiac conditions, in part, through autonomic and electrophysiologic disturbance...

  4. Autonomic imbalance: prophet of doom or scope for hope?

    PubMed

    Vinik, A I; Maser, R E; Ziegler, D

    2011-06-01

    It has long been recognized that cardiac autonomic neuropathy increases morbidity and mortality in diabetes and may have greater predictive power than traditional risk factors for cardiovascular events. Significant morbidity and mortality can now be attributable to autonomic imbalance between the sympathetic and parasympathetic nervous system regulation of cardiovascular function. New and emerging syndromes include orthostatic tachycardia, orthostatic bradycardia and an inability to use heart rate as a guide to exercise intensity because of the resting tachycardia. Recent studies have shown that autonomic imbalance may be a predictor of risk of sudden death with intensification of glycaemic control. This review examines an association of autonomic dysregulation and the role of inflammatory cytokines and adipocytokines that promote cardiovascular risk. In addition, conditions of autonomic imbalance associated with cardiovascular risk are discussed. Potential treatment for restoration of autonomic balance is outlined.

  5. Autonomic nervous system and immune system interactions.

    PubMed

    Kenney, M J; Ganta, C K

    2014-07-01

    The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological, and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines, and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease

  6. Pupillary signs in diabetic autonomic neuropathy.

    PubMed Central

    Smith, S E; Smith, S A; Brown, P M; Fox, C; Sönksen, P H

    1978-01-01

    Pupillary function was investigated in 36 insulin-dependent diabetics and 36 controls matched for age and sex. About half of the diabetics had evidence of peripheral somatic or autonomic neuropathy, or both. The diabetic patients had abnormally small pupil diameters in the dark and less fluctuation in pupil size (hippus) during continuous illumination than the controls. They also had reduced reflex responses to light flashes of an intensity adjusted for individual retinal sensitivities. The pupillary findings were compared with results of five tests of cardiovascular function and five tests of peripheral sensory and motor nerve function. Almost all the patients with autonomic neuropathy had pupillary signs, which we therefore conclude are a common manifestation of diabetic autonomic neuropathy. PMID:709128

  7. Comparative anatomy of the autonomic nervous system.

    PubMed

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves. PMID:20444653

  8. Secondary optic nerve tumors.

    PubMed

    Christmas, N J; Mead, M D; Richardson, E P; Albert, D M

    1991-01-01

    Secondary tumors of the optic nerve are more common than primary optic nerve tumors. The involvement of the optic nerve may arise from direct invasion from intraocular malignancies, from hematopoietic malignancy, from meningeal carcinomatosis, or from distant primary tumors. Orbital tumors rarely invade the optic nerve, and brain tumors involve it only in their late stages.

  9. Treatment induced diabetic neuropathy– a reversible painful autonomic neuropathy

    PubMed Central

    Gibbons, Christopher H; Freeman, Roy

    2011-01-01

    Objective To describe the natural history, clinical, neurophysiological and histological features and outcomes of diabetic patients presenting with acute painful neuropathy associated with glycemic control, also referred to as ‘insulin neuritis’. Methods Sixteen subjects, presenting with acute painful neuropathy had neurological and retinal examinations, laboratory studies, autonomic testing and pain assessments over 18 months. Eight subjects had skin biopsies for evaluation of intra-epidermal nerve fiber density. Results All subjects developed severe pain within 8 weeks of intensive glucose control. There was a high prevalence of autonomic cardiovascular, gastrointestinal, genitourinary, and sudomotor symptoms in all subjects. Orthostatic hypotension and parasympathetic dysfunction were seen in 69% of subjects. Retinopathy worsened in all subjects. Reduced intra-epidermal nerve fiber density (IENFD) was seen in all tested subjects. After 18 months of glycemic control, there were substantial improvements in pain, autonomic symptoms, autonomic test results and IENFD. Greater improvements were seen after 18 months in type 1 vs. type 2 diabetic subjects in autonomic symptoms (cardiovascular p<0.01; gastrointestinal p<0.01; genitourinary p<0.01) and autonomic function tests (p<0.01, sympathetic and parasympathetic function tests). Interpretation Treatment induced neuropathy is characterized by acute, severe pain, peripheral nerve degeneration and autonomic dysfunction after intensive glycemic control. The neuropathy occurred in parallel with worsening diabetic retinopathy suggesting a common underlying pathophysiological mechanism. Clinical features and objective measures of small myelinated and unmyelinated nerve fibers can improve in these diabetic patients despite a prolonged history of poor glucose control, with greater improvement seen in patients with type 1 diabetes. PMID:20437589

  10. Ganglioneuromas involving the hypoglossal nerve and the vagus nerve in a child: Surgical difficulties.

    PubMed

    Bakshi, Jaimanti; Mohammed, Abdul Wadood; Lele, Saudamini; Nada, Ritambra

    2016-02-01

    Ganglioneuromas are benign tumors that arise from the Schwann cells of the autonomic nervous system. They are usually seen in the posterior mediastinum and the paraspinal retroperitoneum in relation to the sympathetic chain. In the head and neck, they are usually related to the cervical sympathetic ganglia or to the ganglion nodosum of the vagus nerve or the hypoglossal nerve. We describe what we believe is the first reported case of multiple ganglioneuromas of the parapharyngeal space in which two separate cranial nerves were involved. The patient was a 10-year-old girl who presented with a 2-year history of a painless and slowly progressive swelling on the left side of her neck and a 1-year history hoarseness. She had no history of relevant trauma or surgery. Intraoperatively, we found two tumors in the left parapharyngeal space-one that had arisen from the hypoglossal nerve and the other from the vagus nerve. Both ganglioneuromas were surgically removed, but the affected nerves had to be sacrificed. Postoperatively, the patient exhibited hypoglossal nerve and vocal fold palsy, but she was asymptomatic. In addition to the case description, we discuss the difficulties we faced during surgical excision. PMID:26930339

  11. Ganglioneuromas involving the hypoglossal nerve and the vagus nerve in a child: Surgical difficulties.

    PubMed

    Bakshi, Jaimanti; Mohammed, Abdul Wadood; Lele, Saudamini; Nada, Ritambra

    2016-02-01

    Ganglioneuromas are benign tumors that arise from the Schwann cells of the autonomic nervous system. They are usually seen in the posterior mediastinum and the paraspinal retroperitoneum in relation to the sympathetic chain. In the head and neck, they are usually related to the cervical sympathetic ganglia or to the ganglion nodosum of the vagus nerve or the hypoglossal nerve. We describe what we believe is the first reported case of multiple ganglioneuromas of the parapharyngeal space in which two separate cranial nerves were involved. The patient was a 10-year-old girl who presented with a 2-year history of a painless and slowly progressive swelling on the left side of her neck and a 1-year history hoarseness. She had no history of relevant trauma or surgery. Intraoperatively, we found two tumors in the left parapharyngeal space-one that had arisen from the hypoglossal nerve and the other from the vagus nerve. Both ganglioneuromas were surgically removed, but the affected nerves had to be sacrificed. Postoperatively, the patient exhibited hypoglossal nerve and vocal fold palsy, but she was asymptomatic. In addition to the case description, we discuss the difficulties we faced during surgical excision.

  12. The cranial nerve skywalk: A 3D tutorial of cranial nerves in a virtual platform.

    PubMed

    Richardson-Hatcher, April; Hazzard, Matthew; Ramirez-Yanez, German

    2014-01-01

    Visualization of the complex courses of the cranial nerves by students in the health-related professions is challenging through either diagrams in books or plastic models in the gross laboratory. Furthermore, dissection of the cranial nerves in the gross laboratory is an extremely meticulous task. Teaching and learning the cranial nerve pathways is difficult using two-dimensional (2D) illustrations alone. Three-dimensional (3D) models aid the teacher in describing intricate and complex anatomical structures and help students visualize them. The study of the cranial nerves can be supplemented with 3D, which permits the students to fully visualize their distribution within the craniofacial complex. This article describes the construction and usage of a virtual anatomy platform in Second Life™, which contains 3D models of the cranial nerves III, V, VII, and IX. The Cranial Nerve Skywalk features select cranial nerves and the associated autonomic pathways in an immersive online environment. This teaching supplement was introduced to groups of pre-healthcare professional students in gross anatomy courses at both institutions and student feedback is included.

  13. The cranial nerve skywalk: A 3D tutorial of cranial nerves in a virtual platform.

    PubMed

    Richardson-Hatcher, April; Hazzard, Matthew; Ramirez-Yanez, German

    2014-01-01

    Visualization of the complex courses of the cranial nerves by students in the health-related professions is challenging through either diagrams in books or plastic models in the gross laboratory. Furthermore, dissection of the cranial nerves in the gross laboratory is an extremely meticulous task. Teaching and learning the cranial nerve pathways is difficult using two-dimensional (2D) illustrations alone. Three-dimensional (3D) models aid the teacher in describing intricate and complex anatomical structures and help students visualize them. The study of the cranial nerves can be supplemented with 3D, which permits the students to fully visualize their distribution within the craniofacial complex. This article describes the construction and usage of a virtual anatomy platform in Second Life™, which contains 3D models of the cranial nerves III, V, VII, and IX. The Cranial Nerve Skywalk features select cranial nerves and the associated autonomic pathways in an immersive online environment. This teaching supplement was introduced to groups of pre-healthcare professional students in gross anatomy courses at both institutions and student feedback is included. PMID:24678025

  14. Implantable electrode for recording nerve signals in awake animals

    NASA Technical Reports Server (NTRS)

    Ninomiya, I.; Yonezawa, Y.; Wilson, M. F.

    1976-01-01

    An implantable electrode assembly consisting of collagen and metallic electrodes was constructed to measure simultaneously neural signals from the intact nerve and bioelectrical noises in awake animals. Mechanical artifacts, due to bodily movement, were negligibly small. The impedance of the collagen electrodes, measured in awake cats 6-7 days after implantation surgery, ranged from 39.8-11.5 k ohms at a frequency range of 20-5 kHz. Aortic nerve activity and renal nerve activity, measured in awake conditions using the collagen electrode, showed grouped activity synchronous with the cardiac cycle. Results indicate that most of the renal nerve activity was from postganglionic sympathetic fibers and was inhibited by the baroceptor reflex in the same cardiac cycle.

  15. Cardiac Sarcoidosis.

    PubMed

    Birnie, David; Ha, Andrew C T; Gula, Lorne J; Chakrabarti, Santabhanu; Beanlands, Rob S B; Nery, Pablo

    2015-12-01

    Studies suggest clinically manifest cardiac involvement occurs in 5% of patients with pulmonary/systemic sarcoidosis. The principal manifestations of cardiac sarcoidosis (CS) are conduction abnormalities, ventricular arrhythmias, and heart failure. Data indicate that an 20% to 25% of patients with pulmonary/systemic sarcoidosis have asymptomatic (clinically silent) cardiac involvement. An international guideline for the diagnosis and management of CS recommends that patients be screened for cardiac involvement. Most studies suggest a benign prognosis for patients with clinically silent CS. Immunosuppression therapy is advocated for clinically manifest CS. Device therapy, with implantable cardioverter defibrillators, is recommended for some patients.

  16. Autonomic Nervous System Disorders

    MedlinePlus

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  17. Autonomous Soaring Flight Results

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    A viewgraph presentation on autonomous soaring flight results for Unmanned Aerial Vehicles (UAV)'s is shown. The topics include: 1) Background; 2) Thermal Soaring Flight Results; 3) Autonomous Dolphin Soaring; and 4) Future Plans.

  18. Nerve Injuries in Athletes.

    PubMed

    Collins, K; Storey, M; Peterson, K; Nutter, P

    1988-01-01

    In brief: Nerve injuries in athletes may be serious and may delay or prevent an athlete's return to his or her sport. Over a two-year period, the authors evaluated the condition of 65 patients who had entrapments of a nerve or nerve root, documented with electromyography. They describe four case histories: Two patients had radial nerve entrapments, one caused by baseball pitching and the other by kayaking; one football player had combined suprascapular neuropathy and upper trunk brachial plexopathy; and one patient had carpal tunnel syndrome of a median nerve secondary to rowing. Sports-related peripheral nerve lesions of the lower extremity were not seen during the study period. Based on a literature review, the nerve injuries discussed represent the spectrum of nerve entrapments likely to be seen in US clinics. The authors conclude that peripheral nerve lesions should be considered in the differential diagnosis of sports injuries, particularly at the shoulder, elbow, and wrist.

  19. PHACE syndrome associated with congenital oculomotor nerve palsy.

    PubMed

    Murthy, Ramesh; Naik, Milind N; Desai, Savari; Honavar, Santosh G

    2009-01-01

    PHACE syndrome is a multisystem disorder presenting with facial hemangiomas, arterial anomalies, cardiac anomalies, posterior fossa malformations and eye abnormalities. The eye abnormalities include microphthalmos, cataracts, optic atrophy and iris hypoplasia. Amongst the neurological anomalies, posterior fossa malformations are common. Fourth nerve palsy has been reported with PHACE syndrome. We report a child presenting with a triad of congenital third nerve palsy, cerebellar hypoplasia and facial capillary hemangioma.

  20. [Trigeminal autonomic cephalgias].

    PubMed

    Maximova, M Yu; Piradov, M A; Suanova, E T; Sineva, N A

    2015-01-01

    Review of literature on the trigeminal autonomic cephalgias are presented. Trigeminal autonomic cephalgias are primary headaches with phenotype consisting of trigeminal pain with autonomic sign including lacrimation, rhinorrhea and miosis. Discussed are issues of classification, pathogenesis, clinical picture, diagnosis, differential diagnosis and treatment of this headache. Special attention is paid to cluster headache, paroxysmal hemicrania, SUNCT syndrome, hemicrania continua.

  1. Cardiac transplantation.

    PubMed

    Shanewise, Jack

    2004-12-01

    Cardiac transplantation is a proven, accepted mode of therapy for selected patients with end-stage heart failure, but the inadequate number of suitable donor hearts available ultimately limits its application. This chapter reviews adult cardiac transplantation, with an emphasis on the anesthetic considerations of the heart transplant operation itself.

  2. Cardiac metastases

    PubMed Central

    Bussani, R; De‐Giorgio, F; Abbate, A; Silvestri, F

    2007-01-01

    Tumours metastatic to the heart (cardiac metastases) are among the least known and highly debated issues in oncology, and few systematic studies are devoted to this topic. Although primary cardiac tumours are extremely uncommon (various postmortem studies report rates between 0.001% and 0.28%), secondary tumours are not, and at least in theory, the heart can be metastasised by any malignant neoplasm able to spread to distant sites. In general, cardiac metastases are considered to be rare; however, when sought for, the incidence seems to be not as low as expected, ranging from 2.3% and 18.3%. Although no malignant tumours are known that diffuse preferentially to the heart, some do involve the heart more often than others—for example, melanoma and mediastinal primary tumours. This paper attempts to review the pathophysiology of cardiac metastatic disease, epidemiology and clinical presentation of cardiac metastases, and pathological characterisation of the lesions. PMID:17098886

  3. Genetic autonomic disorders.

    PubMed

    Axelrod, Felicia B

    2013-03-01

    Genetic disorders affecting the autonomic nervous system can result in abnormal development of the nervous system or they can be caused by neurotransmitter imbalance, an ion-channel disturbance or by storage of deleterious material. The symptoms indicating autonomic dysfunction, however, will depend upon whether the genetic lesion has disrupted peripheral or central autonomic centers or both. Because the autonomic nervous system is pervasive and affects every organ system in the body, autonomic dysfunction will result in impaired homeostasis and symptoms will vary. The possibility of genetic confirmation by molecular testing for specific diagnosis is increasing but treatments tend to remain only supportive and directed toward particular symptoms. PMID:23465768

  4. Childhood Psychopathology and Autonomic Dysregulation: Exploring the Links Using Heart Rate Variability

    ERIC Educational Resources Information Center

    Srinivasan, Krishnamachari

    2007-01-01

    Changes in cardiovascular reactivity have been used as a psychophysiological marker of various emotional states in both children and adults. Recent decades have seen increasing use of heart rate variability as a non-invasive marker of cardiac autonomic function and of central processes involved in autonomic function regulation. Developmental…

  5. Activities of autonomic neurotransmitters in Meibomian gland tissues are associated with menopausal dry eye★

    PubMed Central

    Li, Lianxiang; Jin, Dongling; Gao, Jinsheng; Wang, Liguang; Liu, Xianjun; Wang, Jingzhang; Xu, Zhongxin

    2012-01-01

    The secretory activities of meibomian glands are regulated by the autonomic nervous system. The change in density and activity of autonomic nerves in meibomian glands during menopause play an important role in the pathogenesis of dry eye. In view of this, we established a dry eye rat model by removing the bilateral ovaries. We used neuropeptide Y and vasoactive intestinal polypeptide as markers of autonomic neurotransmitters. Our results showed that the concentration of estradiol in serum significantly decreased, the density of neuropeptide Y immunoreactivity in nerve fibers significantly increased, the density of vasoactive intestinal polypeptide immunoreactivity in nerve fibers significantly decreased, and the ratio of vasoactive intestinal polypeptide/neuropeptide Y positive staining significantly decreased. These results suggest that a decrease in ovary activity may lead to autonomic nervous system dysfunction, thereby affecting the secretory activity of the meibomian gland, which participates in sexual hormone imbalance-induced dry eye. PMID:25317125

  6. Activities of autonomic neurotransmitters in Meibomian gland tissues are associated with menopausal dry eye.

    PubMed

    Li, Lianxiang; Jin, Dongling; Gao, Jinsheng; Wang, Liguang; Liu, Xianjun; Wang, Jingzhang; Xu, Zhongxin

    2012-12-15

    The secretory activities of meibomian glands are regulated by the autonomic nervous system. The change in density and activity of autonomic nerves in meibomian glands during menopause play an important role in the pathogenesis of dry eye. In view of this, we established a dry eye rat model by removing the bilateral ovaries. We used neuropeptide Y and vasoactive intestinal polypeptide as markers of autonomic neurotransmitters. Our results showed that the concentration of estradiol in serum significantly decreased, the density of neuropeptide Y immunoreactivity in nerve fibers significantly increased, the density of vasoactive intestinal polypeptide immunoreactivity in nerve fibers significantly decreased, and the ratio of vasoactive intestinal polypeptide/neuropeptide Y positive staining significantly decreased. These results suggest that a decrease in ovary activity may lead to autonomic nervous system dysfunction, thereby affecting the secretory activity of the meibomian gland, which participates in sexual hormone imbalance-induced dry eye.

  7. Endocrine tumors associated with the vagus nerve.

    PubMed

    Varoquaux, Arthur; Kebebew, Electron; Sebag, Fréderic; Wolf, Katherine; Henry, Jean-François; Pacak, Karel; Taïeb, David

    2016-09-01

    The vagus nerve (cranial nerve X) is the main nerve of the parasympathetic division of the autonomic nervous system. Vagal paragangliomas (VPGLs) are a prime example of an endocrine tumor associated with the vagus nerve. This rare, neural crest tumor constitutes the second most common site of hereditary head and neck paragangliomas (HNPGLs), most often in relation to mutations in the succinate dehydrogenase complex subunit D (SDHD) gene. The treatment paradigm for VPGL has progressively shifted from surgery to abstention or therapeutic radiation with curative-like outcomes. Parathyroid tissue and parathyroid adenoma can also be found in close association with the vagus nerve in intra or paravagal situations. Vagal parathyroid adenoma can be identified with preoperative imaging or suspected intraoperatively by experienced surgeons. Vagal parathyroid adenomas located in the neck or superior mediastinum can be removed via initial cervicotomy, while those located in the aortopulmonary window require a thoracic approach. This review particularly emphasizes the embryology, molecular genetics, and modern imaging of these tumors. PMID:27406876

  8. Common peroneal nerve dysfunction

    MedlinePlus

    ... toe-out movements Tests of nerve activity include: Electromyography (EMG, a test of electrical activity in muscles) Nerve ... Peroneal neuropathy. In: Preston DC, Shapiro BE, eds. Electromyography and Neuromuscular Disorders . 3rd ed. Philadelphia, PA: Elsevier; ...

  9. Nerve conduction velocity

    MedlinePlus

    ... to measure the speed of the nerve signals. Electromyography (recording from needles placed into the muscles) is ... Often, the nerve conduction test is followed by electromyography (EMG). In this test, needles are placed into ...

  10. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  11. Nerve Injuries in Athletes.

    ERIC Educational Resources Information Center

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  12. Histochemical discrimination of fibers in regenerating rat infraorbital nerve

    NASA Technical Reports Server (NTRS)

    Wilke, R. A.; Riley, D. A.; Sanger, J. R.

    1992-01-01

    In rat dorsal root ganglia, histochemical staining of carbonic anhydrase (CA) and cholinesterase (CE) yields a reciprocal pattern of activity: Sensory processes are CA positive and CE negative, whereas motor processes are CA negative and CE positive. In rat infraorbital nerve (a sensory peripheral nerve), we saw extensive CA staining of nearly 100% of the myelinated axons. Although CE reactivity in myelinated axons was extremely rare, we did observe CE staining of unmyelinated autonomic fibers. Four weeks after transection of infraorbital nerves, CA-stained longitudinal sections of the proximal stump demonstrated 3 distinct morphological zones. A fraction of the viable axons retained CA activity to within 2 mm of the distal extent of the stump, and the stain is capable of resolving growth sprouts being regenerated from these fibers. Staining of unmyelinated autonomic fibers in serial sections shows that CE activity was not retained as far distally as is the CA sensory staining.

  13. Exercise and the autonomic nervous system.

    PubMed

    Fu, Qi; Levine, Benjamin D

    2013-01-01

    The autonomic nervous system plays a crucial role in the cardiovascular response to acute (dynamic) exercise in animals and humans. During exercise, oxygen uptake is a function of the triple-product of heart rate and stroke volume (i.e., cardiac output) and arterial-mixed venous oxygen difference (the Fick principle). The degree to which each of the variables can increase determines maximal oxygen uptake (V˙O2max). Both "central command" and "the exercise pressor reflex" are important in determining the cardiovascular response and the resetting of the arterial baroreflex during exercise to precisely match systemic oxygen delivery with metabolic demand. In general, patients with autonomic disorders have low levels of V˙O2max, indicating reduced physical fitness and exercise capacity. Moreover, the vast majority of the patients have blunted or abnormal cardiovascular response to exercise, especially during maximal exercise. There is now convincing evidence that some of the protective and therapeutic effects of chronic exercise training are related to the impact on the autonomic nervous system. Additionally, training induced improvement in vascular function, blood volume expansion, cardiac remodeling, insulin resistance and renal-adrenal function may also contribute to the protection and treatment of cardiovascular, metabolic and autonomic disorders. Exercise training also improves mental health, helps to prevent depression, and promotes or maintains positive self-esteem. Moderate-intensity exercise at least 30 minutes per day and at least 5 days per week is recommended for the vast majority of people. Supervised exercise training is preferable to maximize function capacity, and may be particularly important for patients with autonomic disorders. PMID:24095123

  14. Changes in autonomic function as determined by ECG R-R interval variability in sandal, shoe and leather workers exposed to n-hexane, xylene and toluene.

    PubMed

    Murata, K; Araki, S; Yokoyama, K; Yamashita, K; Okajima, F; Nakaaki, K

    1994-01-01

    To clarify if autonomic nervous system effects might be associated with exposure to organic solvents, 30 sandal, shoe and leather workers exposed to n-hexane, xylene, and toluene, and 25 unexposed controls were examined using the coefficient of variation in electrocardiographic R-R intervals (CVRR), combined with the distribution of nerve conduction velocities (DCV). The C-CVRSA and C-CVMWSA (two component CVs of the CVRR reflecting parasympathetic and sympathetic activities, respectively) were also computed from component spectral powers using autoregressive spectral and component analyses. Concentrations of the metabolites of the solvents in urine samples taken in the morning before work were 0-3.18 (mean 1.39) mg/l for 2,5-hexanedione, 0.10-0.43 (mean 0.19) g/g creatinine (Cn) for methylhippuric acid, and 0.05-2.53 (mean 0.41) g/g Cn for hippuric acid. In the solvent workers, the CVRR and C-CVRSA were reduced significantly when compared with the unexposed controls. The faster velocities of the DCV as well as the sensory median nerve conduction velocity (SCV) were significantly slowed in the solvent-exposed workers. The SCV was significantly correlated with the CVRR and C-CVMWSA among the solvent workers. These data suggest that chronic exposure to some organic solvents may affect cardiac autonomic function (mainly, parasympathetic activity) in addition to faster myelinated fibers of the peripheral nerves. However, the absence of significant dose-effect relations among the solvent workers makes it difficult to definitively attribute the differences to specific solvent exposures. PMID:7715857

  15. Distal nerve entrapment following nerve repair.

    PubMed

    Schoeller, T; Otto, A; Wechselberger, G; Pommer, B; Papp, C

    1998-04-01

    Failure of nerve repair or poor functional outcome after reconstruction can be influenced by various causes. Besides improper microsurgical technique, fascicular malalignment and unphysiologic tension, we found in our clinical series that a subclinical nerve compression distal to the repair site can seriously impair regeneration. We concluded that the injured nerve, whether from trauma or microsurgical intervention, could be more susceptible to distal entrapment in the regenerative stage because of its disturbed microcirculation, swelling and the increase of regenerating axons followed by increased nerve volume. In two cases we found the regenerating nerve entrapped at pre-existing anatomical sites of narrowing resulting in impaired functional recovery. In both cases the surgical therapy was decompression of the distal entrapped nerve and this was followed by continued regeneration. Thorough clinical and electrophysiologic follow-up is necessary to detect such adverse compression effects and to distinguish between the various causes of failed regeneration. Under certain circumstances primary preventive decompression may be beneficial if performed at the time of nerve coaptation.

  16. Cardiac amyloidosis

    MedlinePlus

    ... the way electrical signals move through the heart (conduction system). This can lead to abnormal heartbeats ( arrhythmias ) ... due to medicine) Sick sinus syndrome Symptomatic cardiac conduction system disease (arrhythmias related to abnormal conduction of ...

  17. Cardiac Sarcoidosis

    MedlinePlus

    ... is Cardiac Sarcoidosis? Sarcoidosis is a poorly understood disease that commonly affects the lungs. It can also involve the lymph nodes, liver, spleen, eyes, skin, bones, salivary glands and heart. ...

  18. Pediatric autonomic disorders.

    PubMed

    Axelrod, Felicia B; Chelimsky, Gisela G; Weese-Mayer, Debra E

    2006-07-01

    The scope of pediatric autonomic disorders is not well recognized. The goal of this review is to increase awareness of the expanding spectrum of pediatric autonomic disorders by providing an overview of the autonomic nervous system, including the roles of its various components and its pervasive influence, as well as its intimate relationship with sensory function. To illustrate further the breadth and complexities of autonomic dysfunction, some pediatric disorders are described, concentrating on those that present at birth or appear in early childhood. PMID:16818580

  19. A pharmacological investigation of the venom extract of the Australian box jellyfish, Chironex fleckeri, in cardiac and vascular tissues.

    PubMed

    Hughes, Richard J A; Angus, James A; Winkel, Kenneth D; Wright, Christine E

    2012-02-25

    The pharmacology of Australian box jellyfish, Chironex fleckeri, unpurified (crude) nematocyst venom extract (CVE) was investigated in rat isolated cardiac and vascular tissues and in anaesthetised rats. In small mesenteric arteries CVE (0.01-30 μg/ml) caused contractions (EC(50) 1.15±0.19 μg/ml) that were unaffected by prazosin (0.1 μM), bosentan (10 μM), CGRP(8-37) (1 μM) or tetrodotoxin (1 μM). Box jellyfish antivenom (5-92.6 units/ml) caused rightward shifts of the CVE concentration-response curve with no change in the maximum. In the presence of l-NAME (100 μM) the sensitivity and maximum response to CVE were increased, whilst MgSO(4) (6 mM) decreased both parameters. CVE (1-10 μg/ml) caused inhibition of the contractile response to electrical sympathetic nerve stimulation. Left atrial responses to CVE (0.001-30 μg/ml) were bi-phasic, composed of an initial positive inotropy followed by a marked negative inotropy and atrial standstill. CVE (0.3 μg/ml) elicited a marked decrease in right atrial rate followed by atrial standstill at 3 μg/ml. These responses were unaffected by 1 μM of propranolol, atropine or CGRP(8-37). Antivenom (54 and 73 units/ml) caused rightward shifts of the CVE concentration-response curve and prevented atrial standstill in left and right atria. The effects of CVE do not appear to involve autonomic nerves, post-synaptic α(1)- or β(1)-adrenoceptors, or muscarinic, endothelin or CGRP receptors, but may occur through direct effects on the cardiac and vascular muscle. Box jellyfish antivenom was effective in attenuating CVE-induced responses in isolated cardiac and vascular tissues. PMID:22154831

  20. Optimal Cardiac Resynchronization Therapy Pacing Rate in Non-Ischemic Heart Failure Patients: A Randomized Crossover Pilot Trial

    PubMed Central

    Ghotbi, Adam Ali; Sander, Mikael; Køber, Lars; Philbert, Berit Th.; Gustafsson, Finn; Hagemann, Christoffer; Kjær, Andreas; Jacobsen, Peter K.

    2015-01-01

    Background The optimal pacing rate during cardiac resynchronization therapy (CRT) is unknown. Therefore, we investigated the impact of changing basal pacing frequencies on autonomic nerve function, cardiopulmonary exercise capacity and self-perceived quality of life (QoL). Methods Twelve CRT patients with non-ischemic heart failure (NYHA class II–III) were enrolled in a randomized, double-blind, crossover trial, in which the basal pacing rate was set at DDD-60 and DDD-80 for 3 months (DDD-R for 2 patients). At baseline, 3 months and 6 months, we assessed sympathetic nerve activity by microneurography (MSNA), peak oxygen consumption (pVO2), N-terminal pro-brain natriuretic peptide (p-NT-proBNP), echocardiography and QoL. Results DDD-80 pacing for 3 months increased the mean heart rate from 77.3 to 86.1 (p = 0.001) and reduced sympathetic activity compared to DDD-60 (51±14 bursts/100 cardiac cycles vs. 64±14 bursts/100 cardiac cycles, p<0.05). The mean pVO2 increased non-significantly from 15.6±6 mL/min/kg during DDD-60 to 16.7±6 mL/min/kg during DDD-80, and p-NT-proBNP remained unchanged. The QoL score indicated that DDD-60 was better tolerated. Conclusion In CRT patients with non-ischemic heart failure, 3 months of DDD-80 pacing decreased sympathetic outflow (burst incidence only) compared to DDD-60 pacing. However, Qol scores were better during the lower pacing rate. Further and larger scale investigations are indicated. Trial Registration ClinicalTrials.gov NCT02258061 PMID:26382243

  1. Clinical and electrophysiologic attributes as predictors of results of autonomic function tests

    NASA Technical Reports Server (NTRS)

    Wu, C. L.; Denq, J. C.; Harper, C. M.; O'Brien, P. C.; Low, P. A.

    1998-01-01

    Autonomic dysfunction is a feature of some neuropathies and not others. It has been suggested that some clinical and electrophysiologic attributes are predictable of autonomic impairment detected using laboratory testing; however, dear guidelines are unavailable. We evaluated 138 relatively unselected patients with peripheral neuropathy who underwent neurologic evaluation, electromyography (EMG), nerve conduction studies, and autonomic function tests to determine which variables were predictive of laboratory findings of autonomic failure. The variables evaluated were 1) clinical somatic neuropathic findings, 2) clinical autonomic symptoms, and 3) electrophysiologic findings. Autonomic symptoms were strongly predictive (Rs = 0.40, p < 0.001) of autonomic failure. Among the non-autonomic indices, absent ankle reflexes were mildly predictive (Rs = 0.19, p = 0.022) of autonomic impairment, but all others were not (duration, clinical pattern, severity, weakness, sensory loss). Electrophysiologic changes of an axonal neuropathy predicted autonomic impairment while demyelinating neuropathy did not. We conclude that autonomic studies will most likely be abnormal in patients who have symptoms of autonomic involvement and those who have an axonal neuropathy.

  2. Sensory-autonomic interactions in health and disease.

    PubMed

    Drummond, Peter D

    2013-01-01

    Although sensory and autonomic nerve fibres generally do not interact directly, both may exert influences on blood flow during inflammation. For example, the sympathetic neurotransmitter noradrenaline/norepinephrine evokes axon reflexes, a response that involves release of vasoactive neuropeptides from the peripheral terminals of primary nociceptive afferent fibres. As well as boosting inflammation, this mechanism could play a role in normal renal function and heat dispersal from the skin. In certain disease states, aberrant communication between sensory and autonomic nerves might not only aggravate symptoms but also contribute to clinical deterioration by altering local circulatory dynamics. For example, in certain forms of neuropathic pain, an aberrant expression of α1-adrenoceptors on primary nociceptive afferents may provide a framework for cross-talk between sensory and autonomic nerve fibres. In addition to evoking pain and other unpleasant symptoms, this cross-talk could aggravate inflammation and disrupt nutritive perfusion of affected tissues. Finally, in disorders such as cluster headache, intense bursts of trigeminal nociceptive activity may trigger trigeminal-parasympathetic vasodilator reflexes which, in turn, provoke secondary vascular disturbances that amplify pain. A clearer understanding of sensory-autonomic interactions both in health and disease may provide a basis for new treatment approaches for conditions that respond poorly to conventional treatments.

  3. Innervation of the rabbit cardiac ventricles.

    PubMed

    Pauziene, Neringa; Alaburda, Paulius; Rysevaite-Kyguoliene, Kristina; Pauza, Audrys G; Inokaitis, Hermanas; Masaityte, Aiste; Rudokaite, Gabriele; Saburkina, Inga; Plisiene, Jurgita; Pauza, Dainius H

    2016-01-01

    The rabbit is widely used in experimental cardiac physiology, but the neuroanatomy of the rabbit heart remains insufficiently examined. This study aimed to ascertain the architecture of the intrinsic nerve plexus in the walls and septum of rabbit cardiac ventricles. In 51 rabbit hearts, a combined approach involving: (i) histochemical acetylcholinesterase staining of intrinsic neural structures in total cardiac ventricles; (ii) immunofluorescent labelling of intrinsic nerves, nerve fibres (NFs) and neuronal somata (NS); and (iii) transmission electron microscopy of intrinsic ventricular nerves and NFs was used. Mediastinal nerves access the ventral and lateral surfaces of both ventricles at a restricted site between the root of the ascending aorta and the pulmonary trunk. The dorsal surface of both ventricles is supplied by several epicardial nerves extending from the left dorsal ganglionated nerve subplexus on the dorsal left atrium. Ventral accessing nerves are thicker and more numerous than dorsal nerves. Intrinsic ventricular NS are rare on the conus arteriosus and the root of the pulmonary trunk. The number of ventricular NS ranged from 11 to 220 per heart. Four chemical phenotypes of NS within ventricular ganglia were identified, i.e. ganglionic cells positive for choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and biphenotypic, i.e. positive for both ChAT/nNOS and for ChAT/tyrosine hydroxylase. Clusters of small intensely fluorescent cells are distributed within or close to ganglia on the root of the pulmonary trunk, but not on the conus arteriosus. The largest and most numerous intrinsic nerves proceed within the epicardium. Scarce nerves were found near myocardial blood vessels, but the myocardium contained only a scarce meshwork of NFs. In the endocardium, large numbers of thin nerves and NFs proceed along the bundle of His and both its branches up to the apex of the ventricles. The endocardial meshwork of fine NFs was

  4. Autonomic dysfunction in early breast cancer: Incidence, clinical importance, and underlying mechanisms.

    PubMed

    Lakoski, Susan G; Jones, Lee W; Krone, Ronald J; Stein, Phyllis K; Scott, Jessica M

    2015-08-01

    Autonomic dysfunction represents a loss of normal autonomic control of the cardiovascular system associated with both sympathetic nervous system overdrive and reduced efficacy of the parasympathetic nervous system. Autonomic dysfunction is a strong predictor of future coronary heart disease, vascular disease, and sudden cardiac death. In the current review, we will discuss the clinical importance of autonomic dysfunction as a cardiovascular risk marker among breast cancer patients. We will review the effects of antineoplastic therapy on autonomic function, as well as discuss secondary exposures, such as psychological stress, sleep disturbances, weight gain/metabolic derangements, and loss of cardiorespiratory fitness, which may negatively impact autonomic function in breast cancer patients. Lastly, we review potential strategies to improve autonomic function in this population. The perspective can help guide new therapeutic interventions to promote longevity and cardiovascular health among breast cancer survivors. PMID:26299219

  5. Autonomic Dysfunction in Early Breast Cancer: Incidence, Clinical Importance, and Underlying Mechanisms

    PubMed Central

    Lakoski, Susan G.; Jones, Lee W.; Krone, Ronald J.; Stein, Phyllis K.; Scott, Jessica M.

    2015-01-01

    Autonomic dysfunction represents a loss of normal autonomic control of the cardiovascular system associated with both sympathetic nervous system overdrive and reduced efficacy of the parasympathetic nervous system. Autonomic dysfunction is a strong predictor of future coronary heart disease, vascular disease and sudden cardiac death. In the current review, we will discuss the clinical importance of autonomic dysfunction as a cardiovascular risk marker among breast cancer patients. We will review the effects of antineoplastic therapy on autonomic function, as well as discuss secondary exposures, such as psychological stress, sleep disturbances, weight gain/metabolic derangements, and loss of cardiorespiratory fitness which may negatively impact autonomic function in breast cancer patients. Lastly, we review potential strategies to improve autonomic function in this population. The perspective can help guide new therapeutic interventions to promote longevity and cardiovascular health among breast cancer survivors. PMID:26299219

  6. Cardiac Arrhythmias and Abnormal Electrocardiograms After Acute Stroke.

    PubMed

    Ruthirago, Doungporn; Julayanont, Parunyou; Tantrachoti, Pakpoom; Kim, Jongyeol; Nugent, Kenneth

    2016-01-01

    Cardiac arrhythmias and electrocardiogram (ECG) abnormalities occur frequently but are often underrecognized after strokes. Acute ischemic and hemorrhagic strokes in some particular area of brain can disrupt central autonomic control of the heart, precipitating cardiac arrhythmias, ECG abnormalities, myocardial injury and sometimes sudden death. Identification of high-risk patients after acute stroke is important to arrange appropriate cardiac monitoring and effective management of arrhythmias, and to prevent cardiac morbidity and mortality. More studies are needed to better clarify pathogenesis, localization of areas associated with arrhythmias and practical management of arrhythmias and abnormal ECGs after acute stroke.

  7. Sequential imaging of intraneural sciatic nerve endometriosis provides insight into symptoms of cyclical sciatica.

    PubMed

    Capek, Stepan; Amrami, Kimberly K; Howe, Benjamin M; Collins, Mark S; Sandroni, Paola; Cheville, John C; Spinner, Robert J

    2016-03-01

    Endometriosis of the nerve often remains an elusive diagnosis. We report the first case of intraneural lumbosacral plexus endometriosis with sequential imaging at different phases of the menstrual cycle: during the luteal phase and menstruation. Compared to the first examination, the examination performed during the patient's period revealed the lumbosacral plexus larger and hyperintense on T2-weighted imaging. The intraneural endometriosis cyst was also larger and showed recent hemorrhage. Additionally, this case represents another example of perineural spread of endometriosis from the uterus to the lumbosacral plexus along the autonomic nerves and then distally to the sciatic nerve and proximally to the spinal nerves.

  8. Ictal Cardiac Ryhthym Abnormalities

    PubMed Central

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic–clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  9. Ictal Cardiac Ryhthym Abnormalities.

    PubMed

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic-clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  10. The Furcal Nerve Revisited

    PubMed Central

    Dabke, Harshad V.

    2014-01-01

    Atypical sciatica and discrepancy between clinical presentation and imaging findings is a dilemma for treating surgeon in management of lumbar disc herniation. It also constitutes ground for failed back surgery and potential litigations thereof. Furcal nerve (Furcal = forked) is an independent nerve with its own ventral and dorsal branches (rootlets) and forms a link nerve that connects lumbar and sacral plexus. Its fibers branch out to be part of femoral and obturator nerves in-addition to the lumbosacral trunk. It is most commonly found at L4 level and is the most common cause of atypical presentation of radiculopathy/sciatica. Very little is published about the furcal nerve and many are unaware of its existence. This article summarizes all the existing evidence about furcal nerve in English literature in an attempt to create awareness and offer insight about this unique entity to fellow colleagues/professionals involved in spine care. PMID:25317309

  11. Vagal Nerve Stimulation Therapy: What Is Being Stimulated?

    PubMed Central

    Kember, Guy; Ardell, Jeffrey L.; Armour, John A.; Zamir, Mair

    2014-01-01

    Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity. PMID:25479368

  12. The "Laparoscopic Neuro-Navigation" -- LANN: from a functional cartography of the pelvic autonomous neurosystem to a new field of laparoscopic surgery.

    PubMed

    Possover; Rhiem; Chiantera

    2004-12-01

    It is the objective of this study to etablish the technique of laparoscopic exposure of all pelvic somatic and autonomous nerves. In all our patients who underwent a laparoscopic surgical approach of the retroperitoneum, exposure and assessment of the exposed nerves using laparoscopic neuro-navigation were performed. Laparoscopic surgery allows the surgical approach to all pelvic nerves, particularly to the sciatic nerve, the pudendal nerve and the splanchnic pelvic nerves. We describe a cartography of the functional anatomy of the pelvic plexus and elaborate on the concept of "laparoscopic pelvic functional surgery".

  13. MELANOPHORE BANDS AND AREAS DUE TO NERVE CUTTING, IN RELATION TO THE PROTRACTED ACTIVITY OF NERVES

    PubMed Central

    Parker, G. H.

    1941-01-01

    1. When appropriate chromatic nerves are cut caudal bands, cephalic areas, and the pelvic fins of the catfish Ameiurus darken. In pale fishes all these areas will sooner or later blanch. By recutting their nerves all such blanched areas will darken again. 2. These observations show that the darkening of caudal bands, areas, and fins on cutting their nerves is not due to paralysis (Brücke), to the obstruction of central influences such as inhibition (Zoond and Eyre), nor to vasomotor disturbances (Hogben), but to activities emanating from the cut itself. 3. The chief agents concerned with the color changes in Ameiurus are three: intermedin from the pituitary gland, acetylcholine from the dispersing nerves (cholinergic fibers), and adrenalin from the concentrating nerves (adrenergic fibers). The first two darken the fish; the third blanches it. In darkening the dispersing nerves appear to initiate the process and to be followed and substantially supplemented by intermedin. 4. Caudal bands blanch by lateral invasion, cephalic areas by lateral invasion and internal disintegration, and pelvic fins by a uniform process of general loss of tint equivalent to internal disintegration. 5. Adrenalin may be carried in such an oil as olive oil and may therefore act as a lipohumor; it is soluble in water and hence may act as a hydrohumor. In lateral invasion (caudal bands, cephalic areas) it probably acts as a lipohumor and in internal disintegration (cephalic areas, pelvic fins) it probably plays the part of a hydrohumor. 6. The duration of the activity of dispersing nerves after they had been cut was tested by means of the oscillograph, by anesthetizing blocks, and by cold-blocks. The nerves of Ameiurus proved to be unsatisfactory for oscillograph tests. An anesthetizing block, magnesium sulfate, is only partly satisfactory. A cold-block, 0°C., is successful to a limited degree. 7. By means of a cold-block it can be shown that dispersing autonomic nerve fibers in Ameiurus can

  14. Role of the Autonomic Nervous System in Atrial Fibrillation: Pathophysiology and Therapy

    PubMed Central

    Chen, Peng-Sheng; Chen, Lan S.; Fishbein, Michael C.; Lin, Shien-Fong; Nattel, Stanley

    2014-01-01

    Autonomic nervous system activation can induce significant and heterogeneous changes of atrial electrophysiology and induce atrial tachyarrhythmias, including atrial tachycardia (AT) and atrial fibrillation (AF). The importance of the autonomic nervous system in atrial arrhythmogenesis is also supported by circadian variation in the incidence of symptomatic AF in humans. Methods that reduce autonomic innervation or outflow have been shown to reduce the incidence of spontaneous or induced atrial arrhythmias, suggesting that neuromodulation may be helpful in controlling AF. In this review we focus on the relationship between the autonomic nervous system and the pathophysiology of AF, and the potential benefit and limitations of neuromodulation in the management of this arrhythmia. We conclude that autonomic nerve activity plays an important role in the initiation and maintenance of AF, and modulating autonomic nerve function may contribute to AF control. Potential therapeutic applications include ganglionated plexus ablation, renal sympathetic denervation, cervical vagal nerve stimulation, baroreflex stimulation, cutaneous stimulation, novel drug approaches and biological therapies. While the role of the autonomic nervous system has long been recognized, new science and new technologies promise exciting prospects for the future. PMID:24763467

  15. Abnormal autonomic cardiovascular control in ankylosing spondylitis

    PubMed Central

    Toussirot, E.; Bahjaoui-Bouhaddi, M.; Poncet, J.; Cappelle, S.; Henriet, M.; Wendling, D.; Regnard, J.

    1999-01-01

    OBJECTIVE—This study was aimed at assessing the contribution of the autonomic nervous system to adjustments of cardiovascular function in patients with ankylosing spondylitis (AS).
METHODS—In 18 AS patients (mean age: 34.9; mean disease duration: 6.4 years) and 13 healthy controls (mean age: 31.7) the changes of heart rate (HR) with deep breathing (E/I ratio) and standing up (30/15 ratio) were recorded. The slope of cardiac baroreflex, the times series of blood pressure and HR values upon lying and standing, and venous plasma concentrations of catecholamines were also analysed. Erythrocyte sedimentation rate (ESR), plasma C reactive protein (CRP) concentration and a clinical index (BASDAI score) were used to assess the degree of disease activity in patients.
RESULTS—In the standing patients, blood pressure was found to decrease progressively (p< 0.001). Furthermore, the patients with a BASDAI score > 5 had a higher heart rate than patients with a BASDAI score < 5 (p<0.02), and there was a trend for a similar difference when patients were classified according to their ESR and CRP. Plasma catecholamine concentrations and the E/I ratio were not different in patients from controls. The 30/15 ratio and the slope of the spontaneous baroreflex during standing were both lower in AS patients than controls (p< 0.01).
CONCLUSIONS—This study demonstrated a change in autonomic nervous system function of AS patients, with a decreased parasympathetic activity, as evidenced by higher HR and lower baroreflex slope. As these significant deviances were mainly observed in patients with more active (or more inflammatory) disease, the autonomic nervous system involvement could be related to the inflammatory process. This autonomic strain may be related to the cardiac involvement in AS patients.

 PMID:10419866

  16. Inferior alveolar nerve repositioning.

    PubMed

    Louis, P J

    2001-09-01

    Nerve repositioning is a viable alternative for patients with an atrophic edentulous posterior mandible. Patients, however, should be informed of the potential risks of neurosensory disturbance. Documentation of the patient's baseline neurosensory function should be performed with a two-point discrimination test or directional brush stroke test preoperatively and postoperatively. Recovery of nerve function should be expected in 3 to 6 months. The potential for mandibular fracture when combining nerve repositioning with implant placement also should be discussed with the patient. This can be avoided by minimizing the amount of buccal cortical plate removal during localization of the nerve and maintaining the integrity of the inferior cortex of the mandible. Additionally, avoid overseating the implant, thus avoiding stress along the inferior border of the mandible. The procedure does allow for the placement of longer implants, which should improve implant longevity. Patients undergoing this procedure have expressed overall satisfaction with the results. Nerve repositioning also can be used to preserve the inferior alveolar nerve during resection of benign tumors or cysts of the mandible. This procedure allows the surgeon to maintain nerve function in situations in which the nerve would otherwise have to be resected. PMID:11665379

  17. Cryotherapy and nerve palsy.

    PubMed

    Drez, D; Faust, D C; Evans, J P

    1981-01-01

    Ice application is one of the most extensively used treatments for athletic injuries. Frostbite is a recognized danger. Five cases of nerve palsy resulting from ice application are reported here. These palsies were temporary. They usually resolve spontaneously without any significant sequelae. This complication can be avoided by not using ice for more than 30 minutes and by guarding superficial nerves in the area.

  18. Imaging the cranial nerves.

    PubMed

    Parry, Andrew T; Volk, Holger A

    2011-01-01

    An understanding of the normal course of the cranial nerves (CN) is essential when interpreting images of patients with cranial neuropathies. CN foramina are depicted best using computed X-ray tomography, but the nerves are depicted best using magnetic resonance imaging. The function and anatomy of the CN in the dog are reviewed and selected examples of lesions affecting the CN are illustrated.

  19. [Sciatic nerve intraneural perineurioma].

    PubMed

    Bonhomme, Benjamin; Poussange, Nicolas; Le Collen, Philippe; Fabre, Thierry; Vital, Anne; Lepreux, Sébastien

    2015-12-01

    Intraneural perineurioma is a benign tumor developed from the perineurium and responsible for localized nerve hypertrophy. This uncommon tumor is characterized by a proliferation of perineural cells with a "pseudo-onion bulb" pattern. We report a sciatic nerve intraneural perineurioma in a 39-year-old patient. PMID:26586011

  20. Optic Nerve Decompression

    MedlinePlus

    ... canals). The optic nerve is the “nerve of vision” and extends from the brain, through your skull, and into your eye. A ... limited to, the following: loss of vision, double vision, inadequate ... leakage of brain fluid (CSF), meningitis, nasal bleeding, infection of the ...

  1. Autonomous surveillance for biosecurity.

    PubMed

    Jurdak, Raja; Elfes, Alberto; Kusy, Branislav; Tews, Ashley; Hu, Wen; Hernandez, Emili; Kottege, Navinda; Sikka, Pavan

    2015-04-01

    The global movement of people and goods has increased the risk of biosecurity threats and their potential to incur large economic, social, and environmental costs. Conventional manual biosecurity surveillance methods are limited by their scalability in space and time. This article focuses on autonomous surveillance systems, comprising sensor networks, robots, and intelligent algorithms, and their applicability to biosecurity threats. We discuss the spatial and temporal attributes of autonomous surveillance technologies and map them to three broad categories of biosecurity threat: (i) vector-borne diseases; (ii) plant pests; and (iii) aquatic pests. Our discussion reveals a broad range of opportunities to serve biosecurity needs through autonomous surveillance.

  2. Autonomous surveillance for biosecurity.

    PubMed

    Jurdak, Raja; Elfes, Alberto; Kusy, Branislav; Tews, Ashley; Hu, Wen; Hernandez, Emili; Kottege, Navinda; Sikka, Pavan

    2015-04-01

    The global movement of people and goods has increased the risk of biosecurity threats and their potential to incur large economic, social, and environmental costs. Conventional manual biosecurity surveillance methods are limited by their scalability in space and time. This article focuses on autonomous surveillance systems, comprising sensor networks, robots, and intelligent algorithms, and their applicability to biosecurity threats. We discuss the spatial and temporal attributes of autonomous surveillance technologies and map them to three broad categories of biosecurity threat: (i) vector-borne diseases; (ii) plant pests; and (iii) aquatic pests. Our discussion reveals a broad range of opportunities to serve biosecurity needs through autonomous surveillance. PMID:25744760

  3. [ELECTRIC STIMULATION OF VAGUS NERVE MODULATES A PROPAGATION OF OXYGEN EPILEPSY IN RABBITS].

    PubMed

    Zhilyaev, S Yu; Moskvin, A N; Platonova, T F; Demchenko, I T

    2015-11-01

    The activation of autonomic afferents (achieved through the vagus nerve (VN) electrical stimulation) on CNS O2 toxicity and cardiovascular function was investigated. In conscious rabbits at 5 ATA 02, prodromal signs of CNS O2 toxicity and convulsion latency were determined with and without vagus nerve (VN) stimulation. EEG, ECG and respiration were also recorded. In rabbits at 5 ATA, sympathetic overdrive and specific patterns on the EEG (synchronization of slow-waves), ECG (tachycardia) and respiration (respiratory minute volume increase) preceded motor convulsions. Vagus nerve stimulation increased parasympathetic component of autonomic drive and significantly delayed prodromal signs of oxygen toxicity and convulsion latency. Autonomic afferent input to the brain is a novel target for preventing CNS toxicity in HBO2. PMID:26995956

  4. Ulnar nerve tuberculoma.

    PubMed

    Ramesh Chandra, V V; Prasad, Bodapati Chandramowliswara; Varaprasad, Gangumolu

    2013-01-01

    The authors report a very rare case of tuberculoma involving the ulnar nerve. The patient, a 7-year-old girl, presented with swelling over the medial aspect of her right forearm just below the elbow joint, with features of ulnar nerve palsy, including paresthesias along the little and ring fingers and claw hand deformity. There was a history of trauma and contact with a contagious case of tuberculosis. There were no other signs of tuberculosis. At surgical exploration the ulnar nerve was found to be thickened, and on opening the sheath there was evidence of caseous material enclosed in a fibrous capsule compressing and displacing the nerve fibers. The lesion, along with the capsule, was subtotally removed using curettage, and a part of the capsule that was densely adherent to the nerve fibers was left in the patient. Histopathological examination of the specimen was consistent with tuberculoma. The patient received adequate antitubercular treatment and showed significant improvement.

  5. Peripheral nerve stimulation: definition.

    PubMed

    Abejón, David; Pérez-Cajaraville, Juan

    2011-01-01

    Recently, there has been a tremendous evolution in the field of neurostimulation, both from the technological point of view and from development of the new and different indications. In some areas, such as peripheral nerve stimulation, there has been a boom in recent years due to the variations in the surgical technique and the improved results documented by in multiple published papers. All this makes imperative the need to classify and define the different types of stimulation that are used today. The confusion arises when attempting to describe peripheral nerve stimulation and subcutaneous stimulation. Peripheral nerve stimulation, in its pure definition, involves implanting a lead on a nerve, with the aim to produce paresthesia along the entire trajectory of the stimulated nerve.

  6. Circulatory response and autonomic nervous activity during gum chewing.

    PubMed

    Hasegawa, Yoko; Sakagami, Joe; Ono, Takahiro; Hori, Kazuhiro; Zhang, Min; Maeda, Yoshinobu

    2009-08-01

    Mastication has been proven to enhance the systemic circulation, with circulatory responses seeming to be largely regulated by autonomic nervous activity via a more complex regulatory system than those of other activities. However, few studies have examined the relationships between changes in autonomic nervous activity and the systemic circulation that are induced by masticatory movement. We investigated changes in the systemic circulation and autonomic nervous activity during gum chewing to clarify the influence of mastication. Electrocardiograms, arterial blood pressure, and masseter electromyograms were taken while chewing gum continuously as indicators of systemic circulation in 10 healthy subjects with normal dentition. Cardiac sympathetic activity and vagus nervous activity, as well as vasomotor sympathetic nervous activity, were evaluated by fluctuation analysis of heart rate and blood pressure. Repeated analysis of variance and multiple comparisons were performed to determine chronological changes in each indicator during gum chewing. Gum chewing increased the heart rate and the mean arterial pressure. Although cardiac sympathetic activity and vagus nervous activity showed significant changes, vasomotor sympathetic nervous activity did not. These results suggest that changes in the autonomic nervous activity of the heart are mainly involved in the enhancement of systemic circulation with gum chewing. This explains some characteristics of autonomic nervous regulation in masticatory movement.

  7. Carotid Body Ablation Abrogates Hypertension and Autonomic Alterations Induced by Intermittent Hypoxia in Rats.

    PubMed

    Del Rio, Rodrigo; Andrade, David C; Lucero, Claudia; Arias, Paulina; Iturriaga, Rodrigo

    2016-08-01

    Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea, enhances carotid body (CB) chemosensory responses to hypoxia and produces autonomic dysfunction, cardiac arrhythmias, and hypertension. We tested whether autonomic alterations, arrhythmogenesis, and the progression of hypertension induced by CIH depend on the enhanced CB chemosensory drive, by ablation of the CB chemoreceptors. Male Sprague-Dawley rats were exposed to control (Sham) conditions for 7 days and then to CIH (5% O2, 12/h 8 h/d) for a total of 28 days. At 21 days of CIH exposure, rats underwent bilateral CB ablation and then exposed to CIH for 7 additional days. Arterial blood pressure and ventilatory chemoreflex response to hypoxia were measured in conscious rats. In addition, cardiac autonomic imbalance, cardiac baroreflex gain, and arrhythmia score were assessed during the length of the experiments. In separate experimental series, we measured extracellular matrix remodeling content in cardiac atrial tissue and systemic oxidative stress. CIH induced hypertension, enhanced ventilatory response to hypoxia, induced autonomic imbalance toward sympathetic preponderance, reduced baroreflex gain, and increased arrhythmias and atrial fibrosis. CB ablation normalized blood pressure, reduced ventilatory response to hypoxia, and restored cardiac autonomic and baroreflex function. In addition, CB ablation reduced the number of arrhythmias, but not extracellular matrix remodeling or systemic oxidative stress, suggesting that reductions in arrhythmia incidence during CIH were related to normalization of cardiac autonomic balance. Present results show that autonomic alterations induced by CIH are critically dependent on the CB and support a main role for the CB in the CIH-induced hypertension. PMID:27381902

  8. A comprehensive review with potential significance during skull base and neck operations, Part II: glossopharyngeal, vagus, accessory, and hypoglossal nerves and cervical spinal nerves 1-4.

    PubMed

    Shoja, Mohammadali M; Oyesiku, Nelson M; Shokouhi, Ghaffar; Griessenauer, Christoph J; Chern, Joshua J; Rizk, Elias B; Loukas, Marios; Miller, Joseph H; Tubbs, R Shane

    2014-01-01

    Knowledge of the possible neural interconnections found between the lower cranial and upper cervical nerves may prove useful to surgeons who operate on the skull base and upper neck regions in order to avoid inadvertent traction or transection. We review the literature regarding the anatomy, function, and clinical implications of the complex neural networks formed by interconnections between the lower cranial and upper cervical nerves. A review of germane anatomic and clinical literature was performed. The review is organized into two parts. Part I discusses the anastomoses between the trigeminal, facial, and vestibulocochlear nerves or their branches and other nerve trunks or branches in the vicinity. Part II deals with the anastomoses between the glossopharyngeal, vagus, accessory and hypoglossal nerves and their branches or between these nerves and the first four cervical spinal nerves; the contribution of the autonomic nervous system to these neural plexuses is also briefly reviewed. Part II is presented in this article. Extensive and variable neural anastomoses exist between the lower cranial nerves and between the upper cervical nerves in such a way that these nerves with their extra-axial communications can be collectively considered a plexus.

  9. Functional Imaging of Autonomic Regulation: Methods and Key Findings

    PubMed Central

    Macey, Paul M.; Ogren, Jennifer A.; Kumar, Rajesh; Harper, Ronald M.

    2016-01-01

    regions mediating postural and motoric actions, including respiration, and cardiac output. The study of pathological processes associated with autonomic disruption shows susceptibilities of different brain structures to altered timing of neural function, notably in sleep disordered breathing, such as obstructive sleep apnea and congenital central hypoventilation syndrome. The cerebellum, in particular, serves coordination roles for vestibular stimuli and blood pressure changes, and shows both injury and substantially altered timing of responses to pressor challenges in sleep-disordered breathing conditions. The insights into central autonomic processing provided by neuroimaging have assisted understanding of such regulation, and may lead to new treatment options for conditions with disrupted autonomic function. PMID:26858595

  10. Pathophysiological basis of orthostatic hypotension in autonomic failure

    PubMed Central

    Smit, Adrianus A J; Halliwill, John R; Low, Phillip A; Wieling, Wouter

    1999-01-01

    In patients with autonomic failure orthostatic hypotension results from an impaired capacity to increase vascular resistance during standing. This fundamental defect leads to increased downward pooling of venous blood and a consequent reduction in stroke volume and cardiac output that exaggerates the orthostatic fall in blood pressure. The location of excessive venous blood pooling has not been established so far, but present data suggest that the abdominal compartment and perhaps leg skin vasculature are the most likely candidates. To improve the orthostatic tolerance in patients with autonomic failure, protective measures that reduce excessive orthostatic blood pooling have been developed and evaluated. These measures include physical counter-manoeuvres and abdominal compression. PMID:10432334

  11. Highly Autonomous Systems Workshop

    NASA Technical Reports Server (NTRS)

    Doyle, R.; Rasmussen, R.; Man, G.; Patel, K.

    1998-01-01

    It is our aim by launching a series of workshops on the topic of highly autonomous systems to reach out to the larger community interested in technology development for remotely deployed systems, particularly those for exploration.

  12. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Simpson, James

    2010-01-01

    The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.

  13. Towards autonomous fuzzy control

    NASA Technical Reports Server (NTRS)

    Shenoi, Sujeet; Ramer, Arthur

    1993-01-01

    The efficient implementation of on-line adaptation in real time is an important research problem in fuzzy control. The goal is to develop autonomous self-organizing controllers employing system-independent control meta-knowledge which enables them to adjust their control policies depending on the systems they control and the environments in which they operate. An autonomous fuzzy controller would continuously observe system behavior while implementing its control actions and would use the outcomes of these actions to refine its control policy. It could be designed to lie dormant when its control actions give rise to adequate performance characteristics but could rapidly and autonomously initiate real-time adaptation whenever its performance degrades. Such an autonomous fuzzy controller would have immense practical value. It could accommodate individual variations in system characteristics and also compensate for degradations in system characteristics caused by wear and tear. It could also potentially deal with black-box systems and control scenarios. On-going research in autonomous fuzzy control is reported. The ultimate research objective is to develop robust and relatively inexpensive autonomous fuzzy control hardware suitable for use in real time environments.

  14. Spontaneous efferent activity in branches of the vagus nerve controlling heart rate and ventilation in the dogfish.

    PubMed

    Barrett, D J; Taylor, E W

    1985-07-01

    Efferent activity was recorded from cranial nerves in the decerebrate dogfish (Scyliorhinus canicula) before and after injection of paralysing drugs. The recordings were made from the mandibular (Vth) and glossopharyngeal (IXth) nerves and the branchial (respiratory) and cardiac branches of the vagus (Xth) nerve. All the respiratory branches (Vth, IXth and Xth) and both cardiac branches fired rhythmic bursts of activity, synchronous with ventilation, which continued (at a higher rate) following paralysis, indicating that they originated in the CNS rather than arising reflexly from stimulation of pharyngeal mechanoreceptors. A burst of activity in the Vth nerve was followed by a burst in the IXth then, after a 30-ms delay, simultaneous bursts in the three respiratory branches of the Xth. The bursts in the branchial cardiac branches had a fixed phase relationship with activity in the respiratory branches, the onset of each burst preceding that in the immediately adjacent branch (branchial III), whereas the bursts in the visceral cardiac branches had a variable phase relationship with all other branches. The branchial cardiac branches alone contained units which fired sporadically between the bursts and increased their rate of firing during hypoxia. Both the bursting and non-bursting units responded to mechanical stimulation of the gill area. Separate oscillatory inputs driving the Vth, IXth and Xth respiratory motoneurones and an excitatory input to the bursting cardiac vagal motoneurones from expiratory motoneurones or the respiratory rhythm generator are implied by these relationships. The sporadically firing units in the branchial cardiac nerves clearly receive non-oscillatory inputs.

  15. Cardiac Surgery

    PubMed Central

    Weisse, Allen B.

    2011-01-01

    Well into the first decades of the 20th century, medical opinion held that any surgical attempts to treat heart disease were not only misguided, but unethical. Despite such reservations, innovative surgeons showed that heart wounds could be successfully repaired. Then, extracardiac procedures were performed to correct patent ductus arteriosus, coarctation of the aorta, and tetralogy of Fallot. Direct surgery on the heart was accomplished with closed commissurotomy for mitral stenosis. The introduction of the heart-lung machine and cardiopulmonary bypass enabled the surgical treatment of other congenital and acquired heart diseases. Advances in aortic surgery paralleled these successes. The development of coronary artery bypass grafting greatly aided the treatment of coronary heart disease. Cardiac transplantation, attempts to use the total artificial heart, and the application of ventricular assist devices have brought us to the present day. Although progress in the field of cardiovascular surgery appears to have slowed when compared with the halcyon times of the past, substantial challenges still face cardiac surgeons. It can only be hoped that sufficient resources and incentive can carry the triumphs of the 20th century into the 21st. This review covers past developments and future opportunities in cardiac surgery. PMID:22163121

  16. Intraparotid facial nerve neurofibroma.

    PubMed

    Sullivan, M J; Babyak, J W; Kartush, J M

    1987-02-01

    Neurogenic neoplasms of the intraparotid facial nerve are uncommon and are usually diagnosed intraoperatively by tissue biopsy. Fifty-six cases of primary neurogenic neoplasms involving the facial nerve have been reported. The majority of these have been schwannomas. A case of a solitary neurofibroma involving the main trunk of the facial nerve is presented. Schwannomas and neurofibromas have distinct histological features which must be considered prior to the management of these tumors. The management of neurogenic tumors associated with normal facial function is a particularly difficult problem. A new approach for the diagnosis and management of neurogenic neoplasms is described utilizing electroneurography. PMID:3807626

  17. Radial Nerve Tendon Transfers.

    PubMed

    Cheah, Andre Eu-Jin; Etcheson, Jennifer; Yao, Jeffrey

    2016-08-01

    Radial nerve palsy typically occurs as a result of trauma or iatrogenic injury and leads to the loss of wrist extension, finger extension, thumb extension, and a reduction in grip strength. In the absence of nerve recovery, reconstruction of motor function involves tendon transfer surgery. The most common donor tendons include the pronator teres, wrist flexors, and finger flexors. The type of tendon transfer is classified based on the donor for the extensor digitorum communis. Good outcomes have been reported for most methods of radial nerve tendon transfers as is typical for positional tendon transfers not requiring significant power. PMID:27387076

  18. High Ulnar Nerve Injuries: Nerve Transfers to Restore Function.

    PubMed

    Patterson, Jennifer Megan M

    2016-05-01

    Peripheral nerve injuries are challenging problems. Nerve transfers are one of many options available to surgeons caring for these patients, although they do not replace tendon transfers, nerve graft, or primary repair in all patients. Distal nerve transfers for the treatment of high ulnar nerve injuries allow for a shorter reinnervation period and improved ulnar intrinsic recovery, which are critical to function of the hand. PMID:27094893

  19. Facial Nerve Neuroma Management

    PubMed Central

    Weber, Peter C.; Osguthorpe, J. David

    1998-01-01

    Three facial nerve neuromas were identified in the academic year 1994-1995. Each case illustrates different management dilemmas. One patient with a grade III facial nerve palsy had a small geniculate ganglion neuroma with the dilemma of decompression versus resection clear nerve section margins. The second patient underwent facial neuroma resection with cable graft reconstruction, but the permanent sections were positive. The last patient had a massive neuroma in which grafting versus other facial reconstructive options were considered. These three cases illustrate some of the major controversies in facial nerve neuroma management. We discuss our decision-making plan and report our results. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:17171043

  20. Diabetes and nerve damage

    MedlinePlus

    Diabetic neuropathy; Diabetes - neuropathy; Diabetes - peripheral neuropathy ... In people with diabetes, the body's nerves can be damaged by decreased blood flow and a high blood sugar level. This condition is ...

  1. Sacral nerve stimulation.

    PubMed

    Matzel, K E; Stadelmaier, U; Besendörfer, M

    2004-01-01

    The current concept of recruiting residual function of an inadequate pelvic organ by electrostimulation involves stimulation of the sacral spinal nerves at the level of the sacral canal. The rationale for applying SNS to fecal incontinence was based on clinical observations of its effect on bowel habits and anorectal continence function in urologic patients (increased anorectal angulation and anal canal closure pressure) and on anatomic considerations: dissection demonstrated a dual peripheral nerve supply of the striated pelvic floor muscles that govern these functions. Because the sacral spinal nerve site is the most distal common location of this dual nerve supply, stimulating here can elicit both functions. Since the first application of SNS in fecal incontinence in 1994, this technique has been improved, the patient selection process modified, and the spectrum of indications expanded. At present SNS has been applied in more than 1300 patients with fecal incontinence limited.

  2. Degenerative Nerve Diseases

    MedlinePlus

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many of these diseases are genetic. Sometimes the cause is a medical ...

  3. Damaged axillary nerve (image)

    MedlinePlus

    Conditions associated with axillary nerve dysfunction include fracture of the humerus (upper arm bone), pressure from casts or splints, and improper use of crutches. Other causes include systemic disorders that cause neuritis (inflammation of ...

  4. Iatrogenic accessory nerve injury.

    PubMed Central

    London, J.; London, N. J.; Kay, S. P.

    1996-01-01

    Accessory nerve injury produces considerable disability. The nerve is most frequently damaged as a complication of radical neck dissection, cervical lymph node biopsy and other surgical procedures. The problem is frequently compounded by a failure to recognise the error immediately after surgery when surgical repair has the greatest chance of success. We present cases which outline the risk of accessory nerve injury, the spectrum of clinical presentations and the problems produced by a failure to recognise the deficit. Regional anatomy, consequences of nerve damage and management options are discussed. Diagnostic biopsy of neck nodes should not be undertaken as a primary investigation and, when indicated, surgery in this region should be performed by suitably trained staff under well-defined conditions. Awareness of iatrogenic injury and its consequences would avoid delays in diagnosis and treatment. Images Figure 2 PMID:8678450

  5. Femoral nerve dysfunction

    MedlinePlus

    Neuropathy - femoral nerve; Femoral neuropathy ... Craig EJ, Clinchot DM. Femoral neuropathy. In: Frontera WR, Silver JK, Rizzo TD Jr, eds. Essentials of Physical Medicine and Rehabilitation: Musculoskeletal Disorders, Pain, and Rehabilitation . 3rd ...

  6. Diabetic Nerve Problems

    MedlinePlus

    ... the wrong times. This damage is called diabetic neuropathy. Over half of people with diabetes get it. ... change positions quickly Your doctor will diagnose diabetic neuropathy with a physical exam and nerve tests. Controlling ...

  7. Morphologic Characterization of Nerves in Whole-Mount Airway Biopsies

    PubMed Central

    Canning, Brendan J.; Merlo-Pich, Emilio; Woodcock, Ashley A.; Smith, Jaclyn A.

    2015-01-01

    Rationale: Neuroplasticity of bronchopulmonary afferent neurons that respond to mechanical and chemical stimuli may sensitize the cough reflex. Afferent drive in cough is carried by the vagus nerve, and vagal afferent nerve terminals have been well defined in animals. Yet, both unmyelinated C fibers and particularly the morphologically distinct, myelinated, nodose-derived mechanoreceptors described in animals are poorly characterized in humans. To date there are no distinctive molecular markers or detailed morphologies available for human bronchopulmonary afferent nerves. Objectives: Morphologic and neuromolecular characterization of the afferent nerves that are potentially involved in cough in humans. Methods: A whole-mount immunofluorescence approach, rarely used in human lung tissue, was used with antibodies specific to protein gene product 9.5 (PGP9.5) and, for the first time in human lung tissue, 200-kD neurofilament subunit. Measurements and Main Results: We have developed a robust technique to visualize fibers consistent with autonomic and C fibers and pulmonary neuroendocrine cells. A group of morphologically distinct, 200-kD neurofilament-immunopositive myelinated afferent fibers, a subpopulation of which did not express PGP9.5, was also identified. Conclusions: PGP9.5-immunonegative nerves are strikingly similar to myelinated airway afferents, the cough receptor, and smooth muscle–associated airway receptors described in rodents. These have never been described in humans. Full description of human airway nerves is critical to the translation of animal studies to the clinical setting. PMID:25906337

  8. Lower cranial nerves.

    PubMed

    Soldatos, Theodoros; Batra, Kiran; Blitz, Ari M; Chhabra, Avneesh

    2014-02-01

    Imaging evaluation of cranial neuropathies requires thorough knowledge of the anatomic, physiologic, and pathologic features of the cranial nerves, as well as detailed clinical information, which is necessary for tailoring the examinations, locating the abnormalities, and interpreting the imaging findings. This article provides clinical, anatomic, and radiological information on lower (7th to 12th) cranial nerves, along with high-resolution magnetic resonance images as a guide for optimal imaging technique, so as to improve the diagnosis of cranial neuropathy.

  9. Anastomoses between lower cranial and upper cervical nerves: a comprehensive review with potential significance during skull base and neck operations, part I: trigeminal, facial, and vestibulocochlear nerves.

    PubMed

    Shoja, Mohammadali M; Oyesiku, Nelson M; Griessenauer, Christoph J; Radcliff, Virginia; Loukas, Marios; Chern, Joshua J; Benninger, Brion; Rozzelle, Curtis J; Shokouhi, Ghaffar; Tubbs, R Shane

    2014-01-01

    Descriptions of the anatomy of the neural communications among the cranial nerves and their branches is lacking in the literature. Knowledge of the possible neural interconnections found among these nerves may prove useful to surgeons who operate in these regions to avoid inadvertent traction or transection. We review the literature regarding the anatomy, function, and clinical implications of the complex neural networks formed by interconnections among the lower cranial and upper cervical nerves. A review of germane anatomic and clinical literature was performed. The review is organized in two parts. Part I concerns the anastomoses between the trigeminal, facial, and vestibulocochlear nerves or their branches with any other nerve trunk or branch in the vicinity. Part II concerns the anastomoses among the glossopharyngeal, vagus, accessory and hypoglossal nerves and their branches or among these nerves and the first four cervical spinal nerves; the contribution of the autonomic nervous system to these neural plexuses is also briefly reviewed. Part I is presented in this article. An extensive anastomotic network exists among the lower cranial nerves. Knowledge of such neural intercommunications is important in diagnosing and treating patients with pathology of the skull base.

  10. Thinking Ahead: Autonomic Buildings

    SciTech Connect

    Brambley, Michael R. )

    2002-08-31

    The time has come for the commercial buildings industries to reconsider the very nature of the systems installed in facilities today and to establish a vision for future buildings that differs from anything in the history of human shelter. Drivers for this examination include reductions in building operation staffs; uncertain costs and reliability of electric power; growing interest in energy-efficient and resource-conserving?green? and?high-performance? commercial buildings; and a dramatic increase in security concerns since the tragic events of September 11. This paper introduces a new paradigm? autonomic buildings? which parallels the concept of autonomic computing, introduced by IBM as a fundamental change in the way computer networks work. Modeled after the human nervous system,?autonomic systems? themselves take responsibility for a large portion of their own operation and even maintenance. For commercial buildings, autonomic systems could provide environments that afford occupants greater opportunity to focus on the things we do in buildings rather than on operation of the building itself, while achieving higher performance levels, increased security, and better use of energy and other natural resources. The author uses the human body and computer networking to introduce and illustrate this new paradigm for high-performance commercial buildings. He provides a vision for the future of commercial buildings based on autonomicity, identifies current research that could contribute to this future, and highlights research and technological gaps. The paper concludes with a set of issues and needs that are key to converting this idealized future into reality.

  11. Dysfunctional penile cholinergic nerves in diabetic impotent men

    SciTech Connect

    Blanco, R.; Saenz de Tejada, I.; Goldstein, I.; Krane, R.J.; Wotiz, H.H.; Cohen, R.A. )

    1990-08-01

    Impotence in the diabetic man may be secondary to a neuropathic condition of the autonomic penile nerves. The relationship between autonomic neuropathy and impotence in diabetes was studied in human corporeal tissue obtained during implantation of a penile prosthesis in 19 impotent diabetic and 15 nondiabetic patients. The functional status of penile cholinergic nerves was assessed by determining their ability to accumulate tritiated choline (34), and synthesize (34) and release (19) tritiated-acetylcholine after incubation of corporeal tissue with tritiated-choline (34). Tritiated-choline accumulation, and tritiated-acetylcholine synthesis and release were significantly reduced in the corporeal tissue from diabetic patients compared to that from nondiabetic patients (p less than 0.05). The impairment in acetylcholine synthesis worsened with the duration of diabetes (p less than 0.025). No differences in the parameters measured were found between insulin-dependent (11) and noninsulin-dependent (8) diabetic patients. The ability of the cholinergic nerves to synthesize acetylcholine could not be predicted clinically with sensory vibration perception threshold testing. It is concluded that there is a functional penile neuropathic condition of the cholinergic nerves in the corpus cavernosum of diabetic impotent patients that may be responsible for the erectile dysfunction.

  12. Cardiac conduction system

    MedlinePlus

    The cardiac conduction system is a group of specialized cardiac muscle cells in the walls of the heart that send signals ... to contract. The main components of the cardiac conduction system are the SA node, AV node, bundle ...

  13. The distribution of galanin-immunoreactive nerve fibers in the rat pharynx.

    PubMed

    Suzuki, Toshihiko; Sato, Tadasu; Kano, Mitsuhiro; Ichikawa, Hiroyuki

    2013-08-01

    Galanin (GAL) consists of a chain of 29/30 amino acids which is widely distributed in the central and peripheral nervous systems. In this study, the distribution of GAL-immunoreactive (-IR) nerve fibers was examined in the rat pharynx and its adjacent regions. GAL-IR nerve fibers were located beneath the epithelium and taste bud-like structure of the pharynx, epiglottis, soft palate and larynx. These nerve fibers were abundant in the laryngeal part of the pharynx, and were rare in other regions. Mucous glands were mostly devoid of GAL-IR nerve fibers. In the musculature of pharyngeal constrictor muscles, many GAL-IR nerve fibers were also located around small blood vessels. However, intrinsic laryngeal muscles contained only a few GAL-IR nerve fibers. The double immunofluorescence method demonstrated that the distribution pattern of GAL-IR nerve fibers was partly similar to that of calcitonin gene-related peptide-IR nerve fibers in the pharyngeal mucosa and muscles. The present findings suggest that the pharynx is one of main targets of GAL-containing nerves in the upper digestive and respiratory systems. These nerves may have sensory and autonomic origins.

  14. Pituitary adenylatecyclase-activating polypeptide-immunoreactive nerve fibers in the rat epiglottis and pharynx.

    PubMed

    Kano, Mitsuhiro; Shimizu, Yoshinaka; Suzuki, Yujiro; Furukawa, Yusuke; Ishida, Hiroko; Oikawa, Miho; Kanetaka, Hiroyasu; Ichikawa, Hiroyuki; Suzuki, Toshihiko

    2011-12-20

    The distribution of pituitary adenylatecyclase-activating polypeptide-immunoreactive (PACAP-IR) nerve fibers was studied in the rat epiglottis and pharynx. PACAP-IR nerve fibers were located beneath the mucous epithelium, and occasionally penetrated the epithelium. These nerve fibers were abundant on the laryngeal side of the epiglottis and in the dorsal and lateral border region between naso-oral and laryngeal parts of the pharynx. PACAP-IR nerve fibers were also detected in taste buds within the epiglottis and pharynx. In addition, many PACAP-IR nerve fibers were found around acinar cells and blood vessels. The double immunofluorescence method demonstrated that distribution of PACAP-IR nerve fibers was similar to that in CGRP-IR nerve fibers in the epithelium and taste bud. However, distributions of PACAP-IR and CGRP-IR nerve fibers innervating mucous glands and blood vessels were different. The retrograde tracing method also demonstrated that PACAP and CGRP were co-expressed by vagal and glossopharyngeal sensory neurons innervating the pharynx. These findings suggest that PACAP-IR nerve fibers in the epithelium and taste bud of the epiglottis and pharynx which originate from the vagal and glossopharyngeal sensory ganglia include nociceptors and chemoreceptors. The origin of PACAP-IR nerve fibers which innervate mucous glands and blood vessels may be the autonomic ganglion.

  15. Cardiac sympathetic neuroimaging: summary of the First International Symposium

    PubMed Central

    Orimo, Satoshi

    2010-01-01

    The First International Symposium on Cardiac Sympathetic Neuroimaging brought together for the first time clinical and preclinical researchers evaluating autonomic and neurocardiologic disorders by this modality. The invited lectures and posters presented some uses of cardiac sympathetic neuroimaging for diagnosis, prognosis, and monitoring treatments. The Symposium also included a discussion about whether and how to expand the availability of cardiac sympathetic neuroimaging at medical centers in the United States. Here, we review the background for the Symposium, provide an annotated summary of the lectures and posters, discuss some of the take-home points from the roundtable discussion, and propose a plan of action for the future. PMID:19266158

  16. Introduction to cardiac neuronal imaging: a clinical perspective.

    PubMed

    Jacobson, Arnold F; Narula, Jagat

    2015-06-01

    Procedures for noninvasive and minimally invasive imaging of cardiac neurons and neuronal function using radiolabeled compounds were developed in the second half of the 20th century. The foundation for these procedures was several centuries of research that identified the structural components of the autonomic nervous system and explored the means by which neurotransmitters such as acetylcholine and norepinephrine contributed to neuronal control of target organ effector cells. This article provides a brief clinical overview of modern approaches to the assessment of cardiac neurons as an introduction to the in-depth articles on the current status of cardiac neuronal imaging presented in this supplement. PMID:26033903

  17. Autonomic dysfunction in multiple sclerosis.

    PubMed

    Racosta, Juan Manuel; Kimpinski, Kurt; Morrow, Sarah Anne; Kremenchutzky, Marcelo

    2015-12-01

    Autonomic dysfunction is a prevalent and significant cause of disability among patients with multiple sclerosis. Autonomic dysfunction in multiple sclerosis is usually explained by lesions within central nervous system regions responsible for autonomic regulation, but novel evidence suggests that other factors may be involved as well. Additionally, the interactions between the autonomic nervous system and the immune system have generated increased interest about the role of autonomic dysfunction in the pathogenesis of multiple sclerosis. In this paper we analyze systematically the most relevant signs and symptoms of autonomic dysfunction in MS, considering separately their potential causes and implications.

  18. Sudden cardiac death risk stratification.

    PubMed

    Deyell, Marc W; Krahn, Andrew D; Goldberger, Jeffrey J

    2015-06-01

    Arrhythmic sudden cardiac death (SCD) may be caused by ventricular tachycardia/fibrillation or pulseless electric activity/asystole. Effective risk stratification to identify patients at risk of arrhythmic SCD is essential for targeting our healthcare and research resources to tackle this important public health issue. Although our understanding of SCD because of pulseless electric activity/asystole is growing, the overwhelming majority of research in risk stratification has focused on SCD-ventricular tachycardia/ventricular fibrillation. This review focuses on existing and novel risk stratification tools for SCD-ventricular tachycardia/ventricular fibrillation. For patients with left ventricular dysfunction or myocardial infarction, advances in imaging, measures of cardiac autonomic function, and measures of repolarization have shown considerable promise in refining risk. Yet the majority of SCD-ventricular tachycardia/ventricular fibrillation occurs in patients without known cardiac disease. Biomarkers and novel imaging techniques may provide further risk stratification in the general population beyond traditional risk stratification for coronary artery disease alone. Despite these advances, significant challenges in risk stratification remain that must be overcome before a meaningful impact on SCD can be realized.

  19. Sudden Cardiac Death Risk Stratification

    PubMed Central

    Deyell, Marc W.; Krahn, Andrew D.; Goldberger, Jeffrey J.

    2015-01-01

    Arrhythmic sudden cardiac death (SCD) may be due to ventricular tachycardia/fibrillation (SCD-VT/VF) or pulseless electrical activity/asystole. Effective risk stratification to identify patients at risk of arrhythmic SCD is essential for targeting our health care and research resources to tackle this important public health issue. Although our understanding of SCD due to pulseless electrical activity/asystole is growing, the overwhelming majority of research in risk stratification has focused on SCD-VT/VF. This review focuses on existing and novel risk stratification tools for SCD-VT/VF. For patients with left ventricular dysfunction and/or myocardial infarction, advances in imaging, measures of cardiac autonomic function, and measures of repolarization have shown considerable promise in refining risk. Yet the majority of SCD-VT/VF occurs in patients without known cardiac disease. Biomarkers and novel imaging techniques may provide further risk stratification in the general population beyond traditional risk stratification for coronary artery disease alone. Despite these advances, significant challenges in risk stratification remain that must be overcome before a meaningful impact on SCD can be realized. PMID:26044247

  20. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1989-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  1. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1986-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  2. Evaluation of Autonomic Dysfunction in Obese and Non-Obese Hypertensive Subjects

    PubMed Central

    Ganai, Jyoti; Muthukrishnan, Shobitha; Kohli, Sunil

    2016-01-01

    Introduction Obesity and more specifically, visceral obesity, has been consistently associated with hypertension and increased cardiovascular risk. Epidemiological studies indicate that at least two-third of the prevalence of hypertension can be directly attributed to obesity. Studies also suggest that hypertensive patients have impaired cardiac autonomic function. Aim The objective of the study was to examine any added effects of obesity on cardiac autonomic dysfunction in hypertensive patients. Materials and Methods Hypertensive subjects (n=45) between 35-60 years of age were divided into two groups; Group A (n=30) consisted of non-obese hypertensive subjects and Group B (n=15) consisted of obese (BMI≥30kg/m2) hypertensive subjects. Cardiac autonomic function was assessed using four tests – Heart rate response to immediate standing (30:15 ratio), standing to lying ratio (S/L ratio), Blood pressure response to immediate standing and Cold Pressor Test (CPT). Results There were no significant differences for autonomic function tests between obese and non-obese hypertensive subjects (p >0.05). Conclusion The results showed that there are no significant differences in the cardiac autonomic function responses between obese and non-obese hypertensive subjects. PMID:27504394

  3. Gender and cardiac surgery.

    PubMed

    Koch, Colleen Gorman; Nussmeier, Nancy A

    2003-09-01

    The increased operative mortality and morbidity of women compared with men undergoing CABG surgery results from multiple differences in presentation, preoperative risk profile, and surgical factors. Investigators have found consistently that women present with a different preoperative risk profile than do men. Women more commonly have factors associated with increased short- and long-term mortality, such as less frequent use of IMA grafts. Differences in study design and patient population may contribute to variability in short- and long-term mortality among the various studies. The lack of representation of women in older clinical trials has hindered our understanding of the management of CAD in women; this situation must be remedied in future studies, [95]. Known physiologic and anatomic differences must be evaluated for their effects on outcomes. Further studies are needed to evaluate gender-related differences in autonomic responses to acute coronary occlusion, complications related to cardiopulmonary bypass, susceptibility to abnormalities in coagulation, and other factors that might account for discrepant outcomes in men versus women undergoing CABG [96]. Beyond these factors, specific pharmacologic and therapeutic considerations, such as the role of estrogen replacement therapy, need to be clarified. As further knowledge accumulates, it is hoped that gender-specific risk factors can be mitigated and protective factors exploited, thereby improving the outcomes for all cardiac surgery patients.

  4. Autonomous electrochromic assembly

    SciTech Connect

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  5. Cardiovascular autonomic neuropathy

    PubMed Central

    McCarty, Niamh

    2016-01-01

    Cardiovascular autonomic neuropathy often goes unrecognized. We present a case of a 22-year-old man with multiple manifestations of this disease, including weakness, dizziness, fatigue, tachycardia, abnormal QTc, and orthostasis, which occurred 2 years after his type 1 diabetes diagnosis. He exhibited parasympathetic denervation with resting tachycardia and exercise intolerance but also had evidence of orthostatic hypotension, which suggests sympathetic denervation. He did not have complete cardiovascular autonomic reflex testing, which would have been helpful, but improved with aggressive diabetes treatment and the increase of beta-blockade. It is important to identify these patients to understand their signs and symptoms and consider appropriate therapies. PMID:27034552

  6. Cardiovascular autonomic neuropathy.

    PubMed

    McCarty, Niamh; Silverman, Barry

    2016-04-01

    Cardiovascular autonomic neuropathy often goes unrecognized. We present a case of a 22-year-old man with multiple manifestations of this disease, including weakness, dizziness, fatigue, tachycardia, abnormal QTc, and orthostasis, which occurred 2 years after his type 1 diabetes diagnosis. He exhibited parasympathetic denervation with resting tachycardia and exercise intolerance but also had evidence of orthostatic hypotension, which suggests sympathetic denervation. He did not have complete cardiovascular autonomic reflex testing, which would have been helpful, but improved with aggressive diabetes treatment and the increase of beta-blockade. It is important to identify these patients to understand their signs and symptoms and consider appropriate therapies. PMID:27034552

  7. Communications Between the Facial Nerve and the Vestibulocochlear Nerve, the Glossopharyngeal Nerve, and the Cervical Plexus.

    PubMed

    Hwang, Kun; Song, Ju Sung; Yang, Su Cheol

    2015-10-01

    The aim of this review is to elucidate the communications between the facial nerves or facial nerve and neighboring nerves: the vestibulocochlear nerve, the glossopharyngeal nerve, and the cervical plexus.In a PubMed search, 832 articles were searched using the terms "facial nerve and communication." Sixty-two abstracts were read and 16 full-text articles were reviewed. Among them, 8 articles were analyzed.The frequency of communication between the facial nerve and the vestibulocochlear nerve was the highest (82.3%) and the frequency of communication between the facial nerve and the glossopharyngeal nerve was the lowest (20%). The frequency of communication between the facial nerve and the cervical plexus was 65.2 ± 43.5%. The frequency of communication between the cervical branch and the marginal mandibular branch of the facial nerve was 24.7 ± 1.7%.Surgeons should be aware of the nerve communications, which are important during clinical examinations and surgical procedures of the facial nerves such as those communications involved in facial reconstructive surgery, neck dissection, and various nerve transfer procedures.

  8. Macaque Cardiac Physiology Is Sensitive to the Valence of Passively Viewed Sensory Stimuli

    PubMed Central

    Bliss-Moreau, Eliza; Machado, Christopher J.; Amaral, David G.

    2013-01-01

    Autonomic nervous system activity is an important component of affective experience. We demonstrate in the rhesus monkey that both the sympathetic and parasympathetic branches of the autonomic nervous system respond differentially to the affective valence of passively viewed video stimuli. We recorded cardiac impedance and an electrocardiogram while adult macaques watched a series of 300 30-second videos that varied in their affective content. We found that sympathetic activity (as measured by cardiac pre-ejection period) increased and parasympathetic activity (as measured by respiratory sinus arrhythmia) decreased as video content changes from positive to negative. These findings parallel the relationship between autonomic nervous system responsivity and valence of stimuli in humans. Given the relationship between human cardiac physiology and affective processing, these findings suggest that macaque cardiac physiology may be an index of affect in nonverbal animals. PMID:23940712

  9. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    PubMed

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  10. Acellular Nerve Allografts in Peripheral Nerve Regeneration: A Comparative Study

    PubMed Central

    Moore, Amy M.; MacEwan, Matthew; Santosa, Katherine B.; Chenard, Kristofer E.; Ray, Wilson Z.; Hunter, Daniel A.; Mackinnon, Susan E.; Johnson, Philip J.

    2011-01-01

    Background Processed nerve allografts offer a promising alternative to nerve autografts in the surgical management of peripheral nerve injuries where short deficits exist. Methods Three established models of acellular nerve allograft (cold-preserved, detergent-processed, and AxoGen® -processed nerve allografts) were compared to nerve isografts and silicone nerve guidance conduits in a 14 mm rat sciatic nerve defect. Results All acellular nerve grafts were superior to silicone nerve conduits in support of nerve regeneration. Detergent-processed allografts were similar to isografts at 6 weeks post-operatively, while AxoGen®-processed and cold-preserved allografts supported significantly fewer regenerating nerve fibers. Measurement of muscle force confirmed that detergent-processed allografts promoted isograft-equivalent levels of motor recovery 16 weeks post-operatively. All acellular allografts promoted greater amounts of motor recovery compared to silicone conduits. Conclusions These findings provide evidence that differential processing for removal of cellular constituents in preparing acellular nerve allografts affects recovery in vivo. PMID:21660979

  11. Autonomic pain: features and methods of assessment

    SciTech Connect

    Gandhavadi, B.; Rosen, J.S.; Addison, R.G.

    1982-01-01

    The distribution of pain originating in the sympathetic nervous system does not match the somatic segmental sensory distribution at the postganglionic level. The two types of distribution are separate and different. At the preganglionic level, fibers show typical segmental sensory distribution, which resembles but is not identical to somatic segmental sensory distribution. Instead, sympathetic pain has its own distribution along the vascular supply and some peripheral nerves. It cannot be called atypical in terms of somatic segmental sensory distribution. Several techniques are available to assess autonomic function in cases of chronic pain. Infrared thermography is superior to any other physiologic or pharmacologic method to assess sympathetic function. Overactivity of sympathetic function in the area of pain is the probable cause of temperature reduction in that area. Accordingly it would appear that in cases in which thermography demonstrates decreased temperature, sympathetic block or sympathectomy would provide relief from the pain.

  12. Autonomic regulation of brown adipose tissue thermogenesis in health and disease: potential clinical applications for altering BAT thermogenesis

    PubMed Central

    Tupone, Domenico; Madden, Christopher J.; Morrison, Shaun F.

    2014-01-01

    From mouse to man, brown adipose tissue (BAT) is a significant source of thermogenesis contributing to the maintenance of the body temperature homeostasis during the challenge of low environmental temperature. In rodents, BAT thermogenesis also contributes to the febrile increase in core temperature during the immune response. BAT sympathetic nerve activity controlling BAT thermogenesis is regulated by CNS neural networks which respond reflexively to thermal afferent signals from cutaneous and body core thermoreceptors, as well as to alterations in the discharge of central neurons with intrinsic thermosensitivity. Superimposed on the core thermoregulatory circuit for the activation of BAT thermogenesis, is the permissive, modulatory influence of central neural networks controlling metabolic aspects of energy homeostasis. The recent confirmation of the presence of BAT in human and its function as an energy consuming organ have stimulated interest in the potential for the pharmacological activation of BAT to reduce adiposity in the obese. In contrast, the inhibition of BAT thermogenesis could facilitate the induction of therapeutic hypothermia for fever reduction or to improve outcomes in stroke or cardiac ischemia by reducing infarct size through a lowering of metabolic oxygen demand. This review summarizes the central circuits for the autonomic control of BAT thermogenesis and highlights the potential clinical relevance of the pharmacological inhibition or activation of BAT thermogenesis. PMID:24570653

  13. Developing Autonomous Learners.

    ERIC Educational Resources Information Center

    Mulcahy, Robert F.

    1991-01-01

    Defines the concept of autonomous learning. Presents the Strategies Program for Effective Learning/Thinking (SPELT), including its underlying assumptions, instructional model, teacher training procedures, research findings, and anticipated future development. Research results include implications for learning-disabled and gifted students. (KS)

  14. Learning for autonomous navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter.

  15. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, Oleg M.

    1997-01-01

    A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

  16. Autonomous staff selection teams.

    PubMed

    Mills, J; Oie, M

    1992-12-01

    Although some other organizations encourage staff input into employee selection, the advanced care department at Bellin Hospital in Green Bay, Wisconsin has taken this concept to a new level by implementing an autonomous interview team. This team is empowered to make hiring decisions for all positions within the department without management influence or interference.

  17. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, O.M.

    1997-03-25

    A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.

  18. Neuromuscular ultrasound of cranial nerves.

    PubMed

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S

    2015-04-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  19. Atrophic nerve fibers in regions of reduced MIBG uptake in doxorubicin cardiomyopathy

    SciTech Connect

    Takano, Hajime; Ozawa Hideyuki; Kobayashi, Isao

    1995-11-01

    A myocardial MIBG-SPECT examination was conducted 2 wk after doxorubicin chemotherapy on a 52-yr-old woman without cardiac symptoms. Despite normal {sup 201}Tl scintigraphy, reduced MIBG uptake was detected in the apical anterior, inferior and lateral segments of the left ventricle. The patient died of congestive heart failure due to doxorubicin-induced cardiomyopathy 10 mo later. At necropsy, the left ventricle was markedly dilated and the apical anterior, inferior and lateral walls were thin, stiff and whitish. Nerve fibers in the apical inferior wall were atrophic and markedly fibrotic where MIBG uptake was most reduced. Nerve fibers in the septum were normal where MIBG uptake had remained normal. The histologic findings correspond with the findings on the MIBG image. MIBG imaging may detect cardiac sympathetic denervation in doxorubicin-induced cardiomyopathy before cardiac symptoms are manifest and cardiac function deteriorates. 5 refs., 2 figs.

  20. Imaging of cardiac sarcoidosis.

    PubMed

    Erthal, Fernanda; Juneau, Daniel; Lim, Siok P; Dwivedi, Girish; Nery, Pablo B; Birnie, David; Beanlands, Rob S

    2016-09-01

    Sarcoidosis is a multisystem inflammatory disease. Cardiac involvement is described in up to 50% of the cases. The disease spectrum is wide and cardiac manifestations ranges from being asymptomatic to heart failure, arrhythmias and sudden cardiac death. The diagnosis of cardiac sarcoidosis can be challenging due to its non-specific nature and the focal involvement of the heart. In this review, we discuss the utility of a stepwise approach with multimodality cardiac imaging in the diagnosis and management of CS. PMID:27225318

  1. Autonomic Conditions in Tinnitus and Implications for Korean Medicine

    PubMed Central

    Choi, Eun Ji; Yun, Younghee; Yoo, Seungyeon; Kim, Kyu Seok; Park, Jeong-Su; Choi, Inhwa

    2013-01-01

    Tinnitus patients suffer from not only auditory sensations but also physical, mental, and social difficulties. Even though tinnitus is believed to be associated with the autonomic nervous system, changes in autonomic conditions in tinnitus patients are not receiving much research attention. The aims of this study were to investigate the autonomic condition of tinnitus patients and to consider Korean medicine in the treatment of tinnitus with an evidence-based approach. We performed a retrospective chart review and compared the heart rate variability (HRV) parameters of 40 tinnitus patients (19 acute and 21 chronic) and 40 healthy controls. In tinnitus patients, the power of the high frequency component and total power of the HRV significantly decreased (P < 0.05), and the low frequency to high frequency ratio significantly increased (P < 0.05). There was no significant difference between the acute and chronic patients. When comparing each group with the controls, there was a tendency that the longer the duration of tinnitus was, the larger the observed HRV change was. In conclusion, tinnitus patients have vagal withdrawal and sympathetic overactivity, and chronic tinnitus more strongly affects autonomic conditions than acute tinnitus. This study provides evidence for Korean medical treatments of tinnitus, such as acupuncture and Qi-training, that cause modulation of cardiac autonomic function. PMID:24023574

  2. Peripheral nerve response to injury.

    PubMed

    Steed, Martin B

    2011-03-01

    Oral and maxillofacial surgeons caring for patients who have sustained a nerve injury to a branch of the peripheral trigeminal nerve must possess a basic understanding of the response of the peripheral nerves to trauma. The series of events that subsequently take place are largely dependent on the injury type and severity. Regeneration of the peripheral nerve is possible in many instances and future manipulation of the regenerative microenvironment will lead to advances in the management of these difficult injuries.

  3. Ischemic Nerve Block.

    ERIC Educational Resources Information Center

    Williams, Ian D.

    This experiment investigated the capability for movement and muscle spindle function at successive stages during the development of ischemic nerve block (INB) by pressure cuff. Two male subjects were observed under six randomly ordered conditions. The duration of index finger oscillation to exhaustion, paced at 1.2Hz., was observed on separate…

  4. Optic Nerve Atrophy

    MedlinePlus

    ... with the occipital lobe (the part of the brain that interprets vision) like a cable wire. What is optic nerve ... nystagmus. In older patients, peripheral vision and color vision assessment ... around the brain and spinal cord (hydrocephalus) may prevent further optic ...

  5. Autonomic cardiovascular regulation and cortical tone.

    PubMed

    Duschek, Stefan; Wörsching, Jana; Reyes Del Paso, Gustavo A

    2015-09-01

    This study aimed to investigate interactions between tonic cortical arousal and features of autonomic cardiovascular regulation. In 50 healthy subjects, the power spectrum of the spontaneous EEG was obtained at resting state. Concurrently, respiratory sinus arrhythmia (RSA), baroreflex sensitivity (BRS) and R-wave to pulse interval (RPI) were recorded as indices of cardiovascular control. At the bivariate level, only a negative correlation between beta power recorded at frontal electrode positions and RPI was found. However, when common variance of BRS and RSA was controlled for in multiple regression analyses, a positive association between alpha power and RSA, and an inverse relationship with BRS, also arose. The findings concerning RPI and RSA are suggestive of a relationship between higher levels of cortical tone and increased sympathetic and reduced vagal cardiac influences. The inverse association between BRS and alpha activity may reflect bottom-up modulation of cortical arousal by baroreceptor afferents. PMID:25080269

  6. Exploring the autonomic correlates of personality.

    PubMed

    Shepherd, Daniel; Mulgrew, Joseph; Hautus, Michael J

    2015-12-01

    The aim of this study was to investigate the relationship between personality and resting heart rate variability (HRV) indices. Healthy volunteers (n=106) completed a 240-item Big Five personality inventory, the state/Trait Anxiety inventory, and a ten minute electrocardiographic recording. Time and frequency domain estimates of HRV were derived from the cardiac time series and related to the Big Five dimensions of personality, to personality types extracted from a cluster analysis, and to Trait Anxiety. Frequency domain measures of HRV (HRV-HF, LF/HF) were associated with specific dimensions of personality, but significance was not noted for the time domain measure (STD-RR). Furthermore, distressed personality types exhibited significantly greater autonomic imbalance (LF/HF) than other personality types. However, significance was not noted for the time domain measure (STD-RR). These results can be explained with reference to a contemporary model of neurovisceral integration.

  7. Conditioning of an autonomic response in Crustacea.

    PubMed

    Burnovicz, Ana; Hermitte, Gabriela

    2010-08-01

    Reports on experience-dependent changes in invertebrate autonomic function are few. In the crab Chasmagnathus, repeated presentations of a visual danger stimulus (VDS) elicit long-term cardiac adjustments. Although these changes can be explained in terms of an associative process, they do not necessarily indicate an anticipatory conditioned response. In the present work, we investigated anticipation of the cardio-inhibitory response (CIR) after classical conditioning. We found that an initially seemingly neutral stimulus, which could trigger only a brief CIR as part of an arousal/orienting response, following pairing with the unconditioned stimulus, 24 h after a second exposure, triggered a significantly stronger CIR response compared to controls. We propose that, as a result of training, the conditioned stimulus acquires a different biological meaning, allowing the crab to anticipate the aversive stimulus.

  8. Trigeminal autonomic cephalgias

    PubMed Central

    2012-01-01

    Summary points 1. Trigeminal autonomic cephalgias (TACs) are headaches/facial pains classified together based on:a suspected common pathophysiology involving the trigeminovascular system, the trigeminoparasympathetic reflex and centres controlling circadian rhythms;a similar clinical presentation of trigeminal pain, and autonomic activation. 2. There is much overlap in the diagnostic features of individual TACs. 3. In contrast, treatment response is relatively specific and aids in establishing a definitive diagnosis. 4. TACs are often presentations of underlying pathology; all patients should be imaged. 5. The aim of the article is to provide the reader with a broad introduction to, and an overview of, TACs. The reading list is extensive for the interested reader. PMID:26516482

  9. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.

    1990-01-01

    The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.

  10. Mobile Autonomous Humanoid Assistant

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Tyree, K. S.; Goza, S. M.; Huber, E. L.

    2004-01-01

    A mobile autonomous humanoid robot is assisting human co-workers at the Johnson Space Center with tool handling tasks. This robot combines the upper body of the National Aeronautics and Space Administration (NASA)/Defense Advanced Research Projects Agency (DARPA) Robonaut system with a Segway(TradeMark) Robotic Mobility Platform yielding a dexterous, maneuverable humanoid perfect for aiding human co-workers in a range of environments. This system uses stereo vision to locate human team mates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form human assistant behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.

  11. CARDIAC MUSCLE

    PubMed Central

    Sommer, Joachim R.; Johnson, Edward A.

    1968-01-01

    With light and electron microscopy a comparison has been made of the morphology of ventricular (V) and Purkinje (P) fibers of the hearts of guinea pig, rabbit, cat, dog, goat, and sheep. The criteria, previously established for the rabbit heart, that V fibers are distinguished from P fibers by the respective presence and absence of transverse tubules is shown to be true for all animals studied. No evidence was found of a permanent connection between the sarcoplasmic reticulum and the extracellular space. The sarcoplasmic reticulum (SR) of V fibers formed couplings with the sarcolemma of a transverse tubule (interior coupling) and with the peripheral sarcolemma (peripheral coupling), whereas in P fibers the SR formed only peripheral couplings. The forms of the couplings were identical. The significance, with respect to excitation-contraction coupling, of the difference in the form of the couplings in cardiac versus skeletal muscle is discussed together with the electrophysiological implications of the differing geometries of bundles of P fibers from different animals. PMID:5645545

  12. Autonomic dysfunction and microvascular damage in systemic sclerosis.

    PubMed

    Di Franco, Manuela; Paradiso, Michele; Riccieri, Valeria; Basili, Stefania; Mammarella, Antonio; Valesini, Guido

    2007-08-01

    Systemic sclerosis (SSc) is a connective tissue disease characterized by vascular damage and interstizial fibrosis of many organs. Our interest was focused on the evaluation of cardiac autonomic function by measurements of heart rate variability (HRV) and microvascular damage detected by nailfold capillaroscopy (NC) in SSc patients. We examined 25 consecutive outpatients affected by systemic sclerosis and 25 healthy controls. Exclusion criteria were the presence of cardiac disease, hypertension, diabetes mellitus, or neurological diseases. All subjects underwent 24-h ambulatory ECG Holter recording and NC examination. Heart rate variability was evaluated in the time domain, using appropriate software, computing the time series of all normal-to-normal (NN) QRS intervals throughout the 24-h recording period. A semiquantitative rating scale was adopted to score the NC abnormalities, as well as a rating system for avascular areas and morphological NC patterns. In SSc patients, HRV analysis showed significantly lower values of SDNN (standard deviation of all NN intervals) (p=0.009), SDANN (standard deviation of the averages of NN intervals in all 5-min segments of the entire recording) (p=0.01), and pNN50 (the percentage of adjacent NN intervals that differed by more than 50 ms) (p=0.02), compared to the control group. These parameters in SSc patients significantly decreased with the worsening of semiquantitative capillaroscopy score. In conclusion, an abnormal autonomic nervous control of the heart might contribute to identify subclinical cardiac involvement in SSc patients. The coexistence of autonomic dysfunction with a more severe microvascular damage could be considered a potential prognostic tool in the identification of those patients particularly at risk for cardiac mortality.

  13. [Central autonomic failures].

    PubMed

    Senard, Jean-Michel; Despas, Fabien; Pathak, Atul

    2012-11-01

    Autonomic nervous system (ANS) modulates the function of all body organs through both parasympathetic and sympathetic fibers. Orthostatic hypotension is frequently observed in the course of central nervous system diseases including cortical (stroke, epilepsy, dementias), neurodegenerative (Parkinson's disease, multisystem atrophies) and spinal cord diseases. In some cases, the mechanism of orthostatic hypotension associated with central nervous system diseases involves a dysfunction of peripheral ANS fibers.

  14. Higher sympathetic nerve activity during ventricular (VVI) than during dual-chamber (DDD) pacing

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Morillo, C. A.; Eckberg, D. L.; Ellenbogen, K. A.

    1996-01-01

    OBJECTIVES: We determined the short-term effects of single-chamber ventricular pacing and dual-chamber atrioventricular (AV) pacing on directly measured sympathetic nerve activity. BACKGROUND: Dual-chamber AV cardiac pacing results in greater cardiac output and lower systemic vascular resistance than does single-chamber ventricular pacing. However, it is unclear whether these hemodynamic advantages result in less sympathetic nervous system outflow. METHODS: In 13 patients with a dual-chamber pacemaker, we recorded the electrocardiogram, noninvasive arterial pressure (Finapres), respiration and muscle sympathetic nerve activity (microneurography) during 3 min of underlying basal heart rate and 3 min of ventricular and AV pacing at rates of 60 and 100 beats/min. RESULTS: Arterial pressure was lowest and muscle sympathetic nerve activity was highest at the underlying basal heart rate. Arterial pressure increased with cardiac pacing and was greater with AV than with ventricular pacing (change in mean blood pressure +/- SE: 10 +/- 3 vs. 2 +/- 2 mm Hg at 60 beats/min; 21 +/- 5 vs. 14 +/- 2 mm Hg at 100 beats/min; p < 0.05). Sympathetic nerve activity decreased with cardiac pacing and the decline was greater with AV than with ventricular pacing (60 beats/min -40 +/- 11% vs. -17 +/- 7%; 100 beats/min -60 +/- 9% vs. -48 +/- 10%; p < 0.05). Although most patients showed a strong inverse relation between arterial pressure and muscle sympathetic nerve activity, three patients with severe left ventricular dysfunction (ejection fraction < or = 30%) showed no relation between arterial pressure and sympathetic activity. CONCLUSIONS: Short-term AV pacing results in lower sympathetic nerve activity and higher arterial pressure than does ventricular pacing, indicating that cardiac pacing mode may influence sympathetic outflow simply through arterial baroreflex mechanisms. We speculate that the greater incidence of adverse outcomes in patients treated with single-chamber ventricular

  15. Trigeminal autonomic cephalalgias.

    PubMed

    Eller, M; Goadsby, P J

    2016-01-01

    The trigeminal autonomic cephalalgias (TACs) are a group of primary headache disorders characterised by lateralized symptoms: prominent headache and ipsilateral cranial autonomic features, such as conjunctival injection, lacrimation and rhinorrhea. The TACs are: cluster headache (CH), paroxysmal hemicrania (PH), short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing (SUNCT)/short-lasting neuralgiform headache attacks with cranial autonomic features (SUNA) and hemicrania continua (HC). Their diagnostic criteria are outlined in the International Classification of Headache Disorders, third edition-beta (ICHD-IIIb). These conditions are distinguished by their attack duration and frequency, as well as response to treatment. HC is continuous and by definition responsive to indomethacin. The main differential when considering this headache is chronic migraine. Other TACs are remarkable for their short duration and must be distinguished from other short-lasting painful conditions, such as trigeminal neuralgia and primary stabbing headache. Cluster headache is characterised by exquisitely painful attacks that occur in discrete episodes lasting 15-180 min a few times a day. In comparison, PH occurs more frequently and is of shorter duration, and like HC is responsive to indomethacin. SUNCT/SUNA is the shortest duration and highest frequency TAC; attacks can occur over a hundred times every day.

  16. Diesel Exhaust-Induced Cardiac Dysfunction Is Mediated by Sympathetic Dominance in Heart Failure-Prone Rats

    EPA Science Inventory

    Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) may provoke cardiac events through defective co-ordination of the two main autonomic nervous system (ANS) branches. We exposed heart failure-prone rats once to DE (500 g/m3 ...

  17. Interactions between developing nerves and salivary glands.

    PubMed

    Ferreira, João N; Hoffman, Matthew P

    2013-01-01

    Our aim is to provide a summary of the field of salivary gland development and regeneration from the perspective of what is known about the function of nerves during these processes. The primary function of adult salivary glands is to produce and secrete saliva. Neuronal control of adult salivary gland function has been a focus of research ever since Pavlov's seminal experiments on salivation in dogs. Less is known about salivary gland innervation during development and how the developing nerves influence gland organogenesis and regeneration. Here, we will review what is known about the communication between the autonomic nervous system and the epithelium of the salivary glands during organogenesis. An important emerging theme is the instructive role of the nervous system on the epithelial stem/progenitor cells during development as well as regeneration after damage. We will provide a brief overview of the neuroanatomy of the salivary glands and discuss recent literature that begins to integrate neurobiology with epithelial organogenesis, which may provide paradigms for exploring these interactions in other organ systems. PMID:23974175

  18. Autonomic control of the aging heart.

    PubMed

    Kaye, David M; Esler, Murray D

    2008-01-01

    Cardiovascular diseases including hypertension, myocardial infarction, stroke, and heart failure continue to account for the majority of deaths in the developed world. Whilst the incidence of these clinical disorders does increase with age, outcomes in affected patients tend to be disproportionately adverse with advancing years. In this context it is important to understand the various compensatory processes which become activated in cardiovascular disease. In particular, the autonomic nervous system is known to play a key pathogenic role in the cause and response to many of these conditions. The normal aging process is accompanied by a complex series of changes in the autonomic control of the cardiovascular system, favoring heightened cardiac sympathetic tone with parasympathetic withdrawal and blunted cardiovagal baroreflex sensitivity. Together these changes have the potential to further magnify the effects of concomitant cardiovascular disease. Attention to the mechanisms of these changes and the development of appropriate therapies may serve to reduce the added influence of age on outcome in patients experiencing cardiovascular disease.

  19. Promethazine affects autonomic cardiovascular mechanisms minimally

    NASA Technical Reports Server (NTRS)

    Brown, T. E.; Eckberg, D. L.

    1997-01-01

    Promethazine hydrochloride, Phenergan, is a phenothiazine derivative with antihistaminic (H1), sedative, antiemetic, anticholinergic, and antimotion sickness properties. These properties have made promethazine a candidate for use in environments such as microgravity, which provoke emesis and motion sickness. Recently, we evaluated carotid baroreceptor-cardiac reflex responses during two Space Shuttle missions 18 to 20 hr after the 50 mg intramuscular administration of promethazine. Because the effects of promethazine on autonomic cardiovascular mechanisms in general and baroreflex function in particular were not known, we were unable to exclude a possible influence of promethazine on our results. Our purpose was to determine the ground-based effects of promethazine on autonomic cardiovascular control. Because of promethazine's antihistaminic and anticholinergic properties, we expected that a 50-mg intramuscular injection of promethazine would affect sympathetically and vagally mediated cardiovascular mechanisms. Eight healthy young subjects, five men and three women, were studied at rest in recumbency. All reported drowsiness as a result of the promethazine injection; most also reported nervous excitation, dry mouth, and fatigue. Three subjects had significant reactions: two reported excessive anxiety and one reported dizziness. Measurements were performed immediately prior to injection and 3.1 +/- 0.1 and 19.5 +/- 0.4 hr postinjection. We found no significant effect of promethazine on resting mean R-R interval, arterial pressure, R-R interval power spectra, carotid baroreflex function, and venous plasma catecholamine levels.

  20. Forebrain organization representing baroreceptor gating of somatosensory afferents within the cortical autonomic network.

    PubMed

    Goswami, Ruma; Frances, Maria Fernanda; Steinback, Craig Douglas; Shoemaker, J Kevin

    2012-07-01

    Somatosensory afferents are represented within the cortical autonomic network (CAN). However, the representation of somatosensory afferents, and the consequent cardiovascular effects, may be modified by levels of baroreceptor input. Thus, we examined the cortical regions involved with processing somatosensory inputs during baroreceptor unloading. Neuroimaging sessions (functional magnetic resonance imaging [fMRI]) recorded brain activity during 30 mmHg lower-body negative pressure (LBNP) alone and combined with somatosensory stimulation (LBNP+SS) of the forearm (n = 14). Somatosensory processing was also assessed during increased sympathetic outflow via end-expiratory apnea. Heart rate (HR), blood pressure (BP), cardiac output (Q), and muscle sympathetic nerve activity (MSNA) were recorded during the same protocols in a separate laboratory session. SS alone had no effect on any cardiovascular or MSNA variable at rest. Measures of HR, BP, and Q during LBNP were not different compared with LBNP+SS. The rise in MSNA burst frequency was attenuated during LBNP+SS versus LBNP alone (8 vs. 12 bursts/min, respectively, P < 0.05). SS did not affect the change in MSNA during apnea. Activations within the insula and dorsal anterior cingulate cortex (ACC) observed during LBNP were not seen during LBNP+SS. Anterior insula and ACC activations occurring during apnea were not modified by SS. Thus, the absence of insular and dorsal ACC activity during LBNP+SS along with an attenuation of MSNA burst frequency suggest sympathoinhibitory effects of sensory stimulation during decreased baroreceptor input by a mechanism that includes conjoint insula-dorsal ACC regulation. These findings reveal that the level of baroreceptor input influences the forebrain organization of somatosensory afferents. PMID:22514285

  1. Nerve Growth Factor and Diabetic Neuropathy

    PubMed Central

    Vinik, Aaron

    2003-01-01

    Neuropathy is one of the most debilitating complications of both type 1 and type 2 diabetes, with estimates of prevalence between 50–90% depending on the means of detection. Diabetic neuropathies are heterogeneous and there is variable involvement of large myelinated fibers and small, thinly myelinated fibers. Many of the neuronal abnormalities in diabetes can be duplicated by experimental depletion of specific neurotrophic factors, their receptors or their binding proteins. In experimental models of diabetes there is a reduction in the availability of these growth factors, which may be a consequence of metabolic abnormalities, or may be independent of glycemic control. These neurotrophic factors are required for the maintenance of the neurons, the ability to resist apoptosis and regenerative capacity. The best studied of the neurotrophic factors is nerve growth factor (NGF) and the related members of the neurotrophin family of peptides. There is increasing evidence that there is a deficiency of NGF in diabetes, as well as the dependent neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) that may also contribute to the clinical symptoms resulting from small fiber dysfunction. Similarly, NT3 appears to be important for large fiber and IGFs for autonomic neuropathy. Whether the observed growth factor deficiencies are due to decreased synthesis, or functional, e.g. an inability to bind to their receptor, and/or abnormalities in nerve transport and processing, remains to be established. Although early studies in humans on the role of neurotrophic factors as a therapy for diabetic neuropathy have been unsuccessful, newer agents and the possibilities uncovered by further studies should fuel clinical trials for several generations. It seems reasonable to anticipate that neurotrophic factor therapy, specifically targeted at different nerve fiber populations, might enter the therapeutic armamentarium. PMID:14668049

  2. Ultrasound of Peripheral Nerves

    PubMed Central

    Suk, Jung Im; Walker, Francis O.; Cartwright, Michael S.

    2013-01-01

    Over the last decade, neuromuscular ultrasound has emerged as a useful tool for the diagnosis of peripheral nerve disorders. This article reviews sonographic findings of normal nerves including key quantitative ultrasound measurements that are helpful in the evaluation of focal and possibly generalized peripheral neuropathies. It also discusses several recent papers outlining the evidence base for the use of this technology, as well as new findings in compressive, traumatic, and generalized neuropathies. Ultrasound is well suited for use in electrodiagnostic laboratories where physicians, experienced in both the clinical evaluation of patients and the application of hands-on technology, can integrate findings from the patient’s history, physical examination, electrophysiological studies, and imaging for diagnosis and management. PMID:23314937

  3. Cranial Nerve II: Vision.

    PubMed

    Gillig, Paulette Marie; Sanders, Richard D

    2009-09-01

    This article contains a brief review of the anatomy of the visual system, a survey of diseases of the retina, optic nerve and lesions of the optic chiasm, and other visual field defects of special interest to the psychiatrist. It also includes a presentation of the corticothalamic mechanisms, differential diagnosis, and various manifestations of visual illusions, and simple and complex visual hallucinations, as well as the differential diagnoses of these various visual phenomena. PMID:19855858

  4. [Suprascapular nerve entrapment].

    PubMed

    Fansa, H; Schneider, W

    2003-03-01

    Isolated compression of the suprascapular nerve is a rare entity, that is seldom considered in differential diagnosis of shoulder pain. Usually atrophy of supraspinatus and infraspinatus muscles is present, resulting in weakened abduction and external rotation of the shoulder. Mostly the patients do not note the paresis, but complain about a dull and burning pain over the dorsal shoulder region. In a proximal lesion (at level of the superior transverse scapular ligament) electromyography reveals changes in both muscles, while in a distal lesion (spinoglenoidal notch) only the infraspinatus shows a pathology. From 1996 to 2001 we diagnosed an isolated suprascapular entrapment in nine patients. Seven patients were operated: The ligament was removed and the nerve was neurolysed. The average age was 36 years. All patients showed pathological findings in electrophysiological and clinical examination. Five patients had an atrophy of both scapula muscles, two showed only infraspinatus muscle atrophy (one with a ganglion in the distal course of the nerve). Six patients were followed up. All showed an improvement. Pain disappeared and all patients were able to return to work and sport activities. Electrophysiological examination one year after operation revealed normal nerve conduction velocity. The number of motor units, however, showed a reduction by half compared to the healthy side. Lesions without history of trauma are usually caused by repetitive motion or posture. Weight lifting, volley ball and tennis promote the entrapment. Rarely a lesion (either idiopathic or due to external compression) is described for patients who underwent surgery. Patients with a ganglion or a defined cause of compression should be operated, patients who present without a distinct reason for compression should firstly be treated conservatively. Physiotherapy, antiphlogistic medication and avoiding of the pain triggering motion can improve the symptoms. However, if muscle atrophy is evident

  5. Potential Autonomic Nervous System Effects of Statins in Heart Failure

    PubMed Central

    Horwich, Tamara; Middlekauff, Holly

    2008-01-01

    Synopsis Sympathetic nervous system activation in heart failure, as indexed by elevated norepinephrine levels, higher muscle sympathetic nerve activity and reduced heart rate variability, is associated with pathologic ventricular remodeling, increased arrhythmias, sudden death, and increased mortality. Recent evidence suggests that HMG-CoA reductase inhibitor (statin) therapy may provide survival benefit in heart failure of both ischemic and non-ischemic etiology, and one potential mechanism of benefit of statins in heart failure is modulation of the autonomic nervous system. Animal models of heart failure demonstrate reduced sympathetic activation and improved sympathovagal balance with statin therapy. Initial human studies have reported mixed results. Ongoing translational studies and outcomes trials will help delineate the potentially beneficial effects of statins on the autonomic nervous system in heart failure. PMID:18433696

  6. Optic nerve hypoplasia

    PubMed Central

    Kaur, Savleen; Jain, Sparshi; Sodhi, Harsimrat B. S.; Rastogi, Anju; Kamlesh

    2013-01-01

    Optic nerve hypoplasia (ONH) is a congenital anomaly of the optic disc that might result in moderate to severe vision loss in children. With a vast number of cases now being reported, the rarity of ONH is obviously now refuted. The major aspects of ophthalmic evaluation of an infant with possible ONH are visual assessment, fundus examination, and visual electrophysiology. Characteristically, the disc is small, there is a peripapillary double-ring sign, vascular tortuosity, and thinning of the nerve fiber layer. A patient with ONH should be assessed for presence of neurologic, radiologic, and endocrine associations. There may be maternal associations like premature births, fetal alcohol syndrome, maternal diabetes. Systemic associations in the child include endocrine abnormalities, developmental delay, cerebral palsy, and seizures. Besides the hypoplastic optic nerve and chiasm, neuroimaging shows abnormalities in ventricles or white- or gray-matter development, septo-optic dysplasia, hydrocephalus, and corpus callosum abnormalities. There is a greater incidence of clinical neurologic abnormalities in patients with bilateral ONH (65%) than patients with unilateral ONH. We present a review on the available literature on the same to urge caution in our clinical practice when dealing with patients with ONH. Fundus photography, ocular coherence tomography, visual field testing, color vision evaluation, neuroimaging, endocrinology consultation with or without genetic testing are helpful in the diagnosis and management of ONH. (Method of search: MEDLINE, PUBMED). PMID:24082663

  7. ATP as a cotransmitter in the autonomic nervous system.

    PubMed

    Kennedy, Charles

    2015-09-01

    The role of adenosine 5'-triphosphate (ATP) as a major intracellular energy source is well-established. In addition, ATP and related nucleotides have widespread extracellular actions via the ionotropic P2X (ligand-gated cation channels) and metabotropic P2Y (G protein-coupled) receptors. Numerous experimental techniques, including myography, electrophysiology and biochemical measurement of neurotransmitter release, have been used to show that ATP has several major roles as a neurotransmitter in peripheral nerves. When released from enteric nerves of the gastrointestinal tract it acts as an inhibitory neurotransmitter, mediating descending muscle relaxation during peristalsis. ATP is also an excitatory cotransmitter in autonomic nerves; 1) It is costored with noradrenaline in synaptic vesicles in postganglionic sympathetic nerves innervating smooth muscle preparations, such as the vas deferens and most arteries. When coreleased with noradrenaline, ATP acts at postjunctional P2X1 receptors to evoke depolarisation, Ca(2+) influx, Ca(2+) sensitisation and contraction. 2) ATP is also coreleased with acetylcholine from postganglionic parasympathetic nerves innervating the urinary bladder and again acts at postjunctional P2X1 receptors, and possibly also a P2X1+4 heteromer, to elicit smooth muscle contraction. In both cases the neurotransmitter actions of ATP are terminated by dephosphorylation by extracellular, membrane-bound enzymes and soluble nucleotidases released from postganglionic nerves. There are indications of an increased contribution of ATP to control of blood pressure in hypertension, but further research is needed to clarify this possibility. More promising is the upregulation of P2X receptors in dysfunctional bladder, including interstitial cystitis, idiopathic detrusor instability and overactive bladder syndrome. Consequently, these roles of ATP are of great therapeutic interest and are increasingly being targeted by pharmaceutical companies.

  8. Collaborating with Autonomous Agents

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Cross, Charles D.; Fan, Henry; Hempley, Lucas E.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc D.; Allen, B. Danette

    2015-01-01

    With the anticipated increase of small unmanned aircraft systems (sUAS) entering into the National Airspace System, it is highly likely that vehicle operators will be teaming with fleets of small autonomous vehicles. The small vehicles may consist of sUAS, which are 55 pounds or less that typically will y at altitudes 400 feet and below, and small ground vehicles typically operating in buildings or defined small campuses. Typically, the vehicle operators are not concerned with manual control of the vehicle; instead they are concerned with the overall mission. In order for this vision of high-level mission operators working with fleets of vehicles to come to fruition, many human factors related challenges must be investigated and solved. First, the interface between the human operator and the autonomous agent must be at a level that the operator needs and the agents can understand. This paper details the natural language human factors e orts that NASA Langley's Autonomy Incubator is focusing on. In particular these e orts focus on allowing the operator to interact with the system using speech and gestures rather than a mouse and keyboard. With this ability of the system to understand both speech and gestures, operators not familiar with the vehicle dynamics will be able to easily plan, initiate, and change missions using a language familiar to them rather than having to learn and converse in the vehicle's language. This will foster better teaming between the operator and the autonomous agent which will help lower workload, increase situation awareness, and improve performance of the system as a whole.

  9. Autonomous Space Shuttle

    NASA Technical Reports Server (NTRS)

    Siders, Jeffrey A.; Smith, Robert H.

    2004-01-01

    The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.

  10. Role of the autonomic nervous system in tumorigenesis and metastasis

    PubMed Central

    Magnon, Claire

    2015-01-01

    Convergence of multiple stromal cell types is required to develop a tumorigenic niche that nurtures the initial development of cancer and its dissemination. Although the immune and vascular systems have been shown to have strong influences on cancer, a growing body of evidence points to a role of the nervous system in promoting cancer development. This review discusses past and current research that shows the intriguing role of autonomic nerves, aided by neurotrophic growth factors and axon cues, in creating a favorable environment for the promotion of tumor formation and metastasis. PMID:27308436

  11. What Is Cardiac Rehabilitation?

    MedlinePlus

    ANSWERS by heart Treatments + Tests What Is Cardiac Rehabilitation? A cardiac rehabilitation (rehab) program takes place in a hospital or ... special help in making lifestyle changes. During your rehabilitation program you’ll… • Have a medical evaluation to ...

  12. Possible role of the histaminergic system in autonomic and cardiovascular responses to neuropeptide Y.

    PubMed

    Tanida, Mamoru; Shen, Jiao; Nagai, Katsuya

    2009-02-01

    Previous studies have demonstrated that neuropeptide Y (NPY) affects blood pressure (BP) in anesthetized rats. Here, we examined the effects of the third cerebral ventricular (3CV) injection of various doses of NPY on renal sympathetic nerve activity (RSNA) and BP in anesthetized rats. 3CV injection of NPY suppressed RSNA and BP in a dose-dependent manner. Moreover, suppressing effects of NPY on RSNA and BP were eliminated by lateral cerebral ventricular (LCV) preinjection of thioperamide, an antagonist of histaminergic H3-receptor, not diphenhydramine, an antagonist of histaminergic H1-receptor. In addition, 3CV injection of NPY accelerated gastric vagal nerve activity (GVNA) and inhibited brown adipose tissue sympathetic nerve activity (BAT-SNA) of anesthetized rats, and lowered brown adipose tissue temperature (BAT-T) of conscious rats. Thus, these evidences suggest that central NPY affects autonomic nerves containing RSNA, GVNA or BAT-SNA, and BP by mediating central histaminergic H3-receptors.

  13. Autonomous mobile robot teams

    NASA Technical Reports Server (NTRS)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  14. Toward autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  15. Autonomous interplanetary constellation design

    NASA Astrophysics Data System (ADS)

    Chow, Cornelius Channing, II

    According to NASA's integrated space technology roadmaps, space-based infrastructures are envisioned as necessary ingredients to a sustained effort in continuing space exploration. Whether it be for extra-terrestrial habitats, roving/cargo vehicles, or space tourism, autonomous space networks will provide a vital communications lifeline for both future robotic and human missions alike. Projecting that the Moon will be a bustling hub of activity within a few decades, a near-term opportunity for in-situ infrastructure development is within reach. This dissertation addresses the anticipated need for in-space infrastructure by investigating a general design methodology for autonomous interplanetary constellations; to illustrate the theory, this manuscript presents results from an application to the Earth-Moon neighborhood. The constellation design methodology is formulated as an optimization problem, involving a trajectory design step followed by a spacecraft placement sequence. Modeling the dynamics as a restricted 3-body problem, the investigated design space consists of families of periodic orbits which play host to the constellations, punctuated by arrangements of spacecraft autonomously guided by a navigation strategy called LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation). Instead of more traditional exhaustive search methods, a numerical continuation approach is implemented to map the admissible configuration space. In particular, Keller's pseudo-arclength technique is used to follow folding/bifurcating solution manifolds, which are otherwise inaccessible with other parameter continuation schemes. A succinct characterization of the underlying structure of the local, as well as global, extrema is thus achievable with little a priori intuition of the solution space. Furthermore, the proposed design methodology offers benefits in computation speed plus the ability to handle mildly stochastic systems. An application of the constellation design

  16. The role of the autonomic nervous system in Tourette Syndrome

    PubMed Central

    Hawksley, Jack; Cavanna, Andrea E.; Nagai, Yoko

    2015-01-01

    Tourette Syndrome (TS) is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics) and one or more vocal (phonic) tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist) is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus, the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS). Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an implanted device

  17. Creating a cardiac pacemaker by gene therapy.

    PubMed

    Anghel, Traian M; Pogwizd, Steven M

    2007-02-01

    While electronic cardiac pacing in its various modalities represents standard of care for treatment of symptomatic bradyarrhythmias and heart failure, it has limitations ranging from absent or rudimentary autonomic modulation to severe complications. This has prompted experimental studies to design and validate a biological pacemaker that could supplement or replace electronic pacemakers. Advances in cardiac gene therapy have resulted in a number of strategies focused on beta-adrenergic receptors as well as specific ion currents that contribute to pacemaker function. This article reviews basic pacemaker physiology, as well as studies in which gene transfer approaches to develop a biological pacemaker have been designed and validated in vivo. Additional requirements and refinements necessary for successful biopacemaker function by gene transfer are discussed. PMID:17139515

  18. Topohistology of sympathetic and parasympathetic nerve fibers in branches of the pelvic plexus: an immunohistochemical study using donated elderly cadavers

    PubMed Central

    Hieda, Keisuke; Sasaki, Hiromasa; Murakami, Gen; Abe, Shinichi; Matsubara, Akio; Miyake, Hideaki; Fujisawa, Masato

    2014-01-01

    Although the pelvic autonomic plexus may be considered a mixture of sympathetic and parasympathetic nerves, little information on its composite fibers is available. Using 10 donated elderly cadavers, we investigated in detail the topohistology of nerve fibers in the posterior part of the periprostatic region in males and the infero-anterior part of the paracolpium in females. Neuronal nitric oxide synthase (nNOS) and vasoactive intestinal polypeptide (VIP) were used as parasympathetic nerve markers, and tyrosine hydroxylase (TH) was used as a marker of sympathetic nerves. In the region examined, nNOS-positive nerves (containing nNOS-positive fibers) were consistently predominant numerically. All fibers positive for these markers appeared to be thin, unmyelinated fibers. Accordingly, the pelvic plexus branches were classified into 5 types: triple-positive mixed nerves (nNOS+, VIP+, TH+, thick myelinated fibers + or -); double-positive mixed nerves (nNOS+, VIP-, TH+, thick myelinated fibers + or -); nerves in arterial walls (nNOS-, VIP+, TH+, thick myelinated fibers-); non-parasympathetic nerves (nNOS-, VIP-, TH+, thick myelinated fibers + or -); (although rare) pure sensory nerve candidates (nNOS-, VIP-, TH-, thick myelinated fibers+). Triple-positive nerves were 5-6 times more numerous in the paracolpium than in the periprostatic region. Usually, the parasympathetic nerve fibers did not occupy a specific site in a nerve, and were intermingled with sympathetic fibers. This morphology might be the result of an "incidentally" adopted nerve fiber route, rather than a target-specific pathway. PMID:24693483

  19. Dermatological and immunological conditions due to nerve lesions

    PubMed Central

    Bove, Domenico; Lupoli, Amalia; Caccavale, Stefano; Piccolo, Vincenzo; Ruocco, Eleonora

    2013-01-01

    Summary Some syndromes are of interest to both neurologists and dermatologists, because cutaneous involvement may harbinger symptoms of a neurological disease. The aim of this review is to clarify this aspect. The skin, because of its relationships with the peripheral sensory nervous system, autonomic nervous system and central nervous system, constitutes a neuroimmunoendocrine organ. The skin contains numerous neuropeptides released from sensory nerves. Neuropeptides play a precise role in cutaneous physiology and pathophysiology, and in certain skin diseases. A complex dysregulation of neuropeptides is a feature of some diseases of both dermatological and neurological interest (e.g. cutaneous and nerve lesions following herpes zoster infection, cutaneous manifestations of carpal tunnel syndrome, trigeminal trophic syndrome). Dermatologists need to know when a patient should be referred to a neurologist and should consider this option in those presenting with syndromes of unclear etiology. PMID:24125557

  20. Neurophysiologic intraoperative monitoring of the glossopharyngeal and vagus nerves.

    PubMed

    Singh, Rajdeep; Husain, Aatif M

    2011-12-01

    Neurophysiologic intraoperative monitoring (NIOM) of the glossopharyngeal and vagus nerves (CN IX and X) is often used during surgeries involving the lower brain stem. Although both of these nerves contain sensory, autonomic, and motor fibers, it is the motor fibers that are most amenable to NIOM. CN IX supplies the stylopharyngeus muscle, and CN X supplies striated muscles in the soft palate, pharynx, and larynx. Monitoring of these CN can be performed by monitoring free running and stimulated electromyography (EMG) from the stylopharyngeus muscle (CN IX) and the vocal cords (CN X). Various surface and needle electrodes can be used to monitor these muscle groups. When CN IX is monitored, CN X should also be monitored, as it is often needed to differentiate when CN IX is selectively activated. Data are accumulating noting the use of monitoring these CN in tumor surgeries involving the lower brain stem. PMID:22146360

  1. [Electrical nerve stimulation for plexus and nerve blocks].

    PubMed

    Birnbaum, J; Klotz, E; Bogusch, G; Volk, T

    2007-11-01

    Despite the increasing use of ultrasound, electrical nerve stimulation is commonly used as the standard for both plexus and peripheral nerve blocks. Several recent randomized trials have contributed to a better understanding of physiological and clinical correlations. Traditionally used currents and impulse widths are better defined in relation to the distance between needle tip and nerves. Commercially available devices enable transcutaneous nerve stimulation and provide new opportunities for the detection of puncture sites and for training. The electrically ideal position of the needle usually is defined by motor responses which can not be interpreted without profound anatomical knowledge. For instance, interscalene blocks can be successful even after motor responses of deltoid or pectoral muscles. Infraclavicular blocks should be aimed at stimulation of the posterior fascicle (extension). In contrast to multiple single nerve blocks, axillary single-shot blocks more commonly result in incomplete anaesthesia. Blockade of the femoral nerve can be performed without any nerve stimulation if the fascia iliaca block is used. Independently of the various approaches to the sciatic nerve, inversion and plantar flexion are the best options for single-shot blocks. Further clinical trials are needed to define the advantages of stimulating catheters in continuous nerve blocks.

  2. Nerves and nerve endings in the skin of tropical cattle.

    PubMed

    Amakiri, S F; Ozoya, S E; Ogunnaike, P O

    1978-01-01

    The nerves and nerve endings in the skin of tropical cattle were studied using histological and histochemical techniques. Many nerve trunks and fibres were present in the reticular and papillary dermis in both hairy and non-hairy skin sites. In non-hairy skin locations such as the muzzle and lower lip, encapsulated endings akin to Krause and Ruffini end bulbs, which arise from myelinated nerve trunks situated lower down the dermis were observed at the upper papillary layer level. Some fibre trunks seen at this level extended upwards to terminate within dermal papillae as bulb-shaped longitudinally lamellated Pacinian-type endings, while other onion-shaped lamellated nerve structures were located either within dermal papillae or near the dermo-epidermal area. Intraepidermal free-ending nerve fibres, appearing non-myelinated were observed in areas with thick epidermis. Intraepidermal free-ending nerve fibres, appearing non-myelinated were observed in areas with thick epidermis. On hairy skin sites, however, organized nerve endings or intraepidermal nerve endings were not readily identifiable. PMID:76410

  3. Evaluation of Nerve Conduction Studies in Obese Children With Insulin Resistance or Impaired Glucose Tolerance.

    PubMed

    Ince, Hülya; Taşdemir, Haydar Ali; Aydin, Murat; Ozyürek, Hamit; Tilki, Hacer Erdem

    2015-07-01

    The aim of the study was to investigate nerve conduction studies in terms of neuropathic characteristics in obese patients who were in prediabetes stage and also to determine the abnormal findings. The study included 69 obese adolescent patients between April 2009 and December 2010. All patients and control group underwent motor (median, ulnar, tibial, and peroneal) and sensory (median, ulnar, sural, and medial plantar) nerve conduction studies and sympathetic skin response test. Sensory response amplitude of the medial plantar nerve was significantly lower in the patients with impaired glucose tolerance and insulin resistance. To our knowledge, the present study is the first study demonstrating the development of sensory and autonomic neuropathy due to metabolic complications of obesity in adolescent children even in the period without development of diabetes mellitus. We recommend that routine electrophysiological examinations be performed, using medial plantar nerve conduction studies and sympathetic skin response test. PMID:25342307

  4. Evaluation of Nerve Conduction Studies in Obese Children With Insulin Resistance or Impaired Glucose Tolerance.

    PubMed

    Ince, Hülya; Taşdemir, Haydar Ali; Aydin, Murat; Ozyürek, Hamit; Tilki, Hacer Erdem

    2015-07-01

    The aim of the study was to investigate nerve conduction studies in terms of neuropathic characteristics in obese patients who were in prediabetes stage and also to determine the abnormal findings. The study included 69 obese adolescent patients between April 2009 and December 2010. All patients and control group underwent motor (median, ulnar, tibial, and peroneal) and sensory (median, ulnar, sural, and medial plantar) nerve conduction studies and sympathetic skin response test. Sensory response amplitude of the medial plantar nerve was significantly lower in the patients with impaired glucose tolerance and insulin resistance. To our knowledge, the present study is the first study demonstrating the development of sensory and autonomic neuropathy due to metabolic complications of obesity in adolescent children even in the period without development of diabetes mellitus. We recommend that routine electrophysiological examinations be performed, using medial plantar nerve conduction studies and sympathetic skin response test.

  5. Treatment of a patient with small fiber pathology using nerve biopsy and grafting: a case report.

    PubMed

    Peled, Ziv M

    2013-10-01

    Small fiber pathology is a common clinical entity with a variable clinical presentation and etiology. Unfortunately, little has been described regarding its treatment because a majority of cases are idiopathic. Hence, treatment often consists of symptomatic management of pain and autonomic dysfunction. This report describes a patient who was presented with an undiagnosed pain syndrome thought to be affecting nerves within both lower extremities and causing significant pain. A sural nerve biopsy was performed for diagnostic purposes and nerve repair was performed using Avance nerve allograft (AxoGen Inc., Alachua, FL). Light microscopic evaluation was unremarkable, but electron microscopy revealed small fiber pathology. Postoperatively, the patient experienced a complete resolution of her pain on the involved extremity. These results suggest a potential, novel approach for treatment of such cases and possible mechanisms for the patient's clinical improvement are explored.

  6. Attenuated sympathetic nerve responses after 24 hours of bed rest

    NASA Technical Reports Server (NTRS)

    Khan, Mazhar H.; Kunselman, Allen R.; Leuenberger, Urs A.; Davidson, William R Jr; Ray, Chester A.; Gray, Kristen S.; Hogeman, Cynthia S.; Sinoway, Lawrence I.

    2002-01-01

    Bed rest reduces orthostatic tolerance. Despite decades of study, the cause of this phenomenon remains unclear. In this report we examined hemodynamic and sympathetic nerve responses to graded lower body negative pressure (LBNP) before and after 24 h of bed rest. LBNP allows for baroreceptor disengagement in a graded fashion. We measured heart rate (HR), cardiac output (HR x stroke volume obtained by echo Doppler), and muscle sympathetic nerve activity (MSNA) during a progressive and graded LBNP paradigm. Negative pressure was increased by 10 mmHg every 3 min until presyncope or completion of -60 mmHg. After bed rest, LBNP tolerance was reduced in 11 of 13 subjects (P <.023), HR was greater (P <.002), cardiac output was unchanged, and the ability to augment MSNA at high levels of LBNP was reduced (rate of rise for 30- to 60-mmHg LBNP before bed rest 0.073 bursts x min(-1) x mmHg(-1); after bed rest 0.035 bursts x min(-1) x mmHg(-1); P < 0.016). These findings suggest that 24 h of bed rest reduces sympathetic nerve responses to LBNP.

  7. Autonomic Responses to Microgravity

    NASA Technical Reports Server (NTRS)

    Toscano, W. B.; Cowings, P. S.; Miller, N. E.

    1994-01-01

    The purpose of this report is to describe how changes in autonomic nervous system responses may be used as an index of individual differences in adaptational capacity to space flight. During two separate Spacelab missions, six crewmembers wore an ambulatory monitoring system which enabled continuous recording of their physiological responses for up to twelve hours a day for 3 to 5 mission days. The responses recorded were electrocardiography, respiration wave form, skin conductance level, hand temperature, blood flow to the hands and triaxial accelerations of the head and upper body. Three of these subjects had been given training, before the mission, in voluntary control of these autonomic responses as a means of facilitating adaptation to space. Three of these subjects served as Controls, i.e., did not receive this training but took anti-motion sickness medication. Nearly 300 hours of flight data are summarized. These data were examined using time-series analyses, spectral analyses of heart rate variability, and analyses of variance. Information was obtained on responses to space motion sickness, inflight medications, circadian rhythm, workload and fatigue. Preliminary assessment was made on the effectiveness of self-regulation training as a means of facilitating adaptation, with recommendations for future flights.

  8. Nemesis Autonomous Test System

    NASA Technical Reports Server (NTRS)

    Barltrop, Kevin J.; Lee, Cin-Young; Horvath, Gregory A,; Clement, Bradley J.

    2012-01-01

    A generalized framework has been developed for systems validation that can be applied to both traditional and autonomous systems. The framework consists of an automated test case generation and execution system called Nemesis that rapidly and thoroughly identifies flaws or vulnerabilities within a system. By applying genetic optimization and goal-seeking algorithms on the test equipment side, a "war game" is conducted between a system and its complementary nemesis. The end result of the war games is a collection of scenarios that reveals any undesirable behaviors of the system under test. The software provides a reusable framework to evolve test scenarios using genetic algorithms using an operation model of the system under test. It can automatically generate and execute test cases that reveal flaws in behaviorally complex systems. Genetic algorithms focus the exploration of tests on the set of test cases that most effectively reveals the flaws and vulnerabilities of the system under test. It leverages advances in state- and model-based engineering, which are essential in defining the behavior of autonomous systems. It also uses goal networks to describe test scenarios.

  9. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  10. Autonomous wildfire surveillance

    NASA Astrophysics Data System (ADS)

    de Vries, Jan S.

    1993-11-01

    Until recently, problems resulting from fires in forests and natural areas were solved on a national rather than international level. This resulted in duplicating research efforts. The Commission of the European Communities (CEC) tries to enhance the cooperation between European countries to stimulate research on the causes and the technological developments for wildfire prevention, detection, and fighting. One result of these efforts has been the start of an international project on the development of a demonstration system that will be used to aid wild land managers and fire fighters in preventing and fighting wild fires. The system will consist of a decision support system and an autonomous wild fire detection system. The basic information that is used by the decision support system is on the one hand a database system with historical, topographical, logistic, meteorological and geographic information and on the other hand `real-time' data from automated cameras and weather sensors. Also, in other large countries outside Europe, such as Canada, the United States and Australia, technological approaches are being developed to reduce hazards as a result of wild fires. In this paper a summary is given on the various problems and solutions in the area of autonomous wild fire detection and surveillance in the CEC and some other parts of the world.

  11. Autonomous Formation Flight

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard S.; Cobleigh, Brent

    2004-01-01

    NASA's Strategic Plan for the Aerospace Technology Enterprise includes ambitious objectives focused on affordable air travel, reduced emissions, and expanded aviation-system capacity. NASA Dryden Flight Research Center, in cooperation with NASA Ames Research Center, the Boeing Company, and the University of California, Los Angeles, has embarked on an autonomous-formation-flight project that promises to make significant strides towards these goals. For millions of years, birds have taken advantage of the aerodynamic benefit of flying in formation. The traditional "V" formation flown by many species of birds (including gulls, pelicans, and geese) enables each of the trailing birds to fly in the upwash flow field that exists just outboard of the bird immediately ahead in the formation. The result for each trailing bird is a decrease in induced drag and thus a reduction in the energy needed to maintain a given speed. Hence, for migratory birds, formation flight extends the range of the system of birds over the range of birds flying solo. The Autonomous Formation Flight (AFF) Project is seeking to extend this symbiotic relationship to aircraft.

  12. Learning for Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  13. Autonomous mobile communication relays

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Everett, Hobart R.; Manouk, Narek; Verma, Ambrish

    2002-07-01

    Maintaining a solid radio communication link between a mobile robot entering a building and an external base station is a well-recognized problem. Modern digital radios, while affording high bandwidth and Internet-protocol-based automatic routing capabilities, tend to operate on line-of-sight links. The communication link degrades quickly as a robot penetrates deeper into the interior of a building. This project investigates the use of mobile autonomous communication relay nodes to extend the effective range of a mobile robot exploring a complex interior environment. Each relay node is a small mobile slave robot equipped with sonar, ladar, and 802.11b radio repeater. For demonstration purposes, four Pioneer 2-DX robots are used as autonomous mobile relays, with SSC-San Diego's ROBART III acting as the lead robot. The relay robots follow the lead robot into a building and are automatically deployed at various locations to maintain a networked communication link back to the remote operator. With their on-board external sensors, they also act as rearguards to secure areas already explored by the lead robot. As the lead robot advances and RF shortcuts are detected, relay nodes that become unnecessary will be reclaimed and reused, all transparent to the operator. This project takes advantage of recent research results from several DARPA-funded tasks at various institutions in the areas of robotic simulation, ad hoc wireless networking, route planning, and navigation. This paper describes the progress of the first six months of the project.

  14. Tapia's syndrome — a rare complication following cardiac surgery

    PubMed Central

    Nalladaru, Zubin; Wessels, Andre; DuPreez, Leon

    2012-01-01

    Tapia's syndrome is a rare complication following cardiac surgery. It includes the extracranial involvement of the recurrent laryngeal nerve and the hypoglossal nerve and results in ipsilateral paralysis of the vocal cord and the tongue. It is usually a complication related to anaesthesia and positioning of the head of the patient during surgery. We describe this rare complication which occurred at our institute. A 49-year old man developed Tapia's syndrome after an uneventful coronary artery bypass surgery. He complained of dysphonia, hoarseness of voice and an inability to swallow soon after extubation. The syndrome resolved completely over the following weeks with no neurological deficit. PMID:22108947

  15. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    PubMed Central

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  16. The role of the renal afferent and efferent nerve fibers in heart failure

    PubMed Central

    Booth, Lindsea C.; May, Clive N.; Yao, Song T.

    2015-01-01

    Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF. PMID:26483699

  17. Awareness and Responsibility in Autonomous Weapons Systems

    NASA Astrophysics Data System (ADS)

    Bhuta, Nehal; Rotolo, Antonino; Sartor, Giovanni

    The following sections are included: * Introduction * Why Computational Awareness is Important in Autonomous Weapons * Flying Drones and Other Autonomous Weapons * The Impact of Autonomous Weapons Systems * From Autonomy to Awareness: A Perspective from Science Fiction * Summary and Conclusions

  18. [Cardiovascular autonomic reflexes on the postural orthostatic tachycardia syndrome].

    PubMed

    Benjelloun, Ho; Benjelloun, Ha; Aboudrar, S; Coghlan, L; Benomar, M

    2009-02-01

    Postural orthostatic tachycardia syndrome (POTS) is an inadequately understood pathology because its diagnosis is not based on the conventional methods of investigation. The orthostatic test allows to make the diagnosis easily. The objective of this study is to determine cardiovascular autonomic reflexes of 70 patients having POTS. The tests of exploration of the autonomic nervous system practised are: deep breathing, hand grip, mental stress and orthostatic test. The analysis of orthostatic test showed that the increase of the cardiac frequency, relative to the state of "beta" peripheral sympathetic hyperactivity occurred before the 2nd minute in 80% of patients. The POTS was considered "florid" in 43% of patients and had complicated of a rough and severe fall of systolic blood pressure inferior to 70 mmHg in four patients, after the fifth minute of the test. The analysis of the different tests had shown vagal hyperactivity in 63% of patients on deep breathing, in 93% of patients on hand grip and in 100% on orthostatic test. The "alpha" central sympathetic activity was increased in 76% of the cases and "beta" central sympathetic activity was high in 83% of cases. The "alpha" peripheral hyperactivity was observed in 63% of patients on hand grip, and in 44% on orthostatic test. The analysis of cardiovascular autonomic reflexes in patients affected by POTS allowing the determination of their autonomic profile, will contribute probably to a better understanding of this pathology and to a better orientation of its care.

  19. Asteroid Exploration with Autonomic Systems

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike

    2004-01-01

    NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. The prospective ANTS (Autonomous Nano Technology Swarm) mission comprises autonomous agents including worker agents (small spacecra3) designed to cooperate in asteroid exploration under the overall authoriq of at least one ruler agent (a larger spacecraft) whose goal is to cause science data to be returned to Earth. The ANTS team (ruler plus workers and messenger agents), but not necessarily any individual on the team, will exhibit behaviors that qualify it as an autonomic system, where an autonomic system is defined as a system that self-reconfigures, self-optimizes, self-heals, and self-protects. Autonomic system concepts lead naturally to realistic, scalable architectures rich in capabilities and behaviors. In-depth consideration of a major mission like ANTS in terms of autonomic systems brings new insights into alternative definitions of autonomic behavior. This paper gives an overview of the ANTS mission and discusses the autonomic properties of the mission.

  20. Expanded Perspectives on Autonomous Learners

    ERIC Educational Resources Information Center

    Oxford, Rebecca L.

    2015-01-01

    This paper explores two general perspectives on autonomous learners: psychological and sociocultural. These perspectives introduce a range of theoretically grounded facets of autonomous learners, facets such as the self-regulated learner, the emotionally intelligent learner, the self-determined learner, the mediated learner, the socioculturally…

  1. Cardiac ion channels

    PubMed Central

    Priest, Birgit T; McDermott, Jeff S

    2015-01-01

    Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype. PMID:26556552

  2. [Imaging anatomy of cranial nerves].

    PubMed

    Hermier, M; Leal, P R L; Salaris, S F; Froment, J-C; Sindou, M

    2009-04-01

    Knowledge of the anatomy of the cranial nerves is mandatory for optimal radiological exploration and interpretation of the images in normal and pathological conditions. CT is the method of choice for the study of the skull base and its foramina. MRI explores the cranial nerves and their vascular relationships precisely. Because of their small size, it is essential to obtain images with high spatial resolution. The MRI sequences optimize contrast between nerves and surrounding structures (cerebrospinal fluid, fat, bone structures and vessels). This chapter discusses the radiological anatomy of the cranial nerves.

  3. Nerve-pulse interactions

    SciTech Connect

    Scott, A.C.

    1982-01-01

    Some recent experimental and theoretical results on mechanisms through which individual nerve pulses can interact are reviewed. Three modes of interactions are considered: (1) interaction of pulses as they travel along a single fiber which leads to velocity dispersion; (2) propagation of pairs of pulses through a branching region leading to quantum pulse code transformations; and (3) interaction of pulses on parallel fibers through which they may form a pulse assembly. This notion is analogous to Hebb's concept of a cell assembly, but on a lower level of the neural hierarchy.

  4. Cardiac gated ventilation

    SciTech Connect

    Hanson, C.W. III; Hoffman, E.A.

    1995-12-31

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart.

  5. Cardiac gated ventilation

    NASA Astrophysics Data System (ADS)

    Hanson, C. William, III; Hoffman, Eric A.

    1995-05-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. We evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50msec scan aperture. Multislice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. We observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a nonfailing model of the heart.

  6. Extra-cardiac stimulators: what do cardiologists need to know?

    PubMed

    Guinand, Alexandre; Noble, Stéphane; Frei, Angela; Renard, Julien; Tramer, Martin R; Burri, Haran

    2016-09-01

    For several decades, treating patients with pacemakers has been the privilege of cardiologists. However, in the last 30 years, researchers have found new targets for electrical stimulation in different clinical subspecialities, such as deep brain stimulation (for the treatment of Parkinson's disease, essential tremor, dystonia, and some psychiatric illnesses); spinal cord stimulation (for refractory angina, chronic pain, and peripheral artery disease); and sacral (for diverse urologic and proctologic conditions), vagal (for epilepsy), and phrenic nerve stimulation (for sleep apnoea). The purpose of this article is to familiarize cardiologists with these 'extra-cardiac pacemakers' and to discuss potential issues that must be addressed when these patients undergo cardiac procedures. PMID:27234870

  7. Following one's heart: cardiac rhythms gate central initiation of sympathetic reflexes.

    PubMed

    Gray, Marcus A; Rylander, Karin; Harrison, Neil A; Wallin, B Gunnar; Critchley, Hugo D

    2009-02-11

    Central nervous processing of environmental stimuli requires integration of sensory information with ongoing autonomic control of cardiovascular function. Rhythmic feedback of cardiac and baroreceptor activity contributes dynamically to homeostatic autonomic control. We examined how the processing of brief somatosensory stimuli is altered across the cardiac cycle to evoke differential changes in bodily state. Using functional magnetic resonance imaging of brain and noninvasive beat-to-beat cardiovascular monitoring, we show that stimuli presented before and during early cardiac systole elicited differential changes in neural activity within amygdala, anterior insula and pons, and engendered different effects on blood pressure. Stimulation delivered during early systole inhibited blood pressure increases. Individual differences in heart rate variability predicted magnitude of differential cardiac timing responses within periaqueductal gray, amygdala and insula. Our findings highlight integration of somatosensory and phasic baroreceptor information at cortical, limbic and brainstem levels, with relevance to mechanisms underlying pain control, hypertension and anxiety. PMID:19211888

  8. Neuroanatomical correlates of severe cardiac arrhythmias in acute ischemic stroke.

    PubMed

    Seifert, Frank; Kallmünzer, Bernd; Gutjahr, Isabell; Breuer, Lorenz; Winder, Klemens; Kaschka, Iris; Kloska, Stephan; Doerfler, Arnd; Hilz, Max-Josef; Schwab, Stefan; Köhrmann, Martin

    2015-05-01

    Neurocardiological interactions can cause severe cardiac arrhythmias in patients with acute ischemic stroke. The relationship between the lesion location in the brain and the occurrence of cardiac arrhythmias is still discussed controversially. The aim of the present study was to correlate the lesion location with the occurrence of cardiac arrhythmias in patients with acute ischemic stroke. Cardiac arrhythmias were systematically assessed in patients with acute ischemic stroke during the first 72 h after admission to a monitored stroke unit. Voxel-based lesion-symptom mapping (VLSM) was used to correlate the lesion location with the occurrence of clinically relevant severe arrhythmias. Overall 150 patients, 56 with right-hemispheric and 94 patients with a left-hemispheric lesion, were eligible to be included in the VLSM study. Severe cardiac arrhythmias were present in 49 of these 150 patients (32.7%). We found a significant association (FDR correction, q < 0.05) between lesions in the right insular, right frontal and right parietal cortex as well as the right amygdala, basal ganglia and thalamus and the occurrence of cardiac arrhythmias. Because left- and right-hemispheric lesions were analyzed separately, the significant findings rely on the 56 patients with right-hemispheric lesions. The data indicate that these areas are involved in central autonomic processing and that right-hemispheric lesions located to these areas are associated with an elevated risk for severe cardiac arrhythmias.

  9. Autonomous Flying Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2005-01-01

    The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.

  10. Autonomous Martian flying rover

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A remotely programmable, autonomous flying rover is proposed to extensively survey the Martian surface environment. A Mach .3, solar powered, modified flying wing could cover roughly a 2000 mile range during Martian daylight hours. Multiple craft launched from an orbiting mother ship could provide near-global coverage. Each craft is envisioned to fly at about 1 km above the surface and measure atmospheric composition, pressure and temperature, map surface topography, and remotely penetrate the near subsurface looking for water (ice) and perhaps evidence of life. Data collected are relayed to Earth via the orbiting mother ship. Near surface guidance and control capability is an adaptation of current cruise missile technology. A solar powered aircraft designed to fly in the low temperature, low density, carbon dioxide Martian atmosphere near the surface appears feasible.

  11. Autonomous attitude determination systems

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.

    1979-01-01

    A summary of autonomous attitude determination systems is presented by separating it into four areas: types of attitude determination systems which can be automated, a description of the attitude determination problem and its solution, specific types of sensors, and the processor requirements of two automated systems. The sensors used in attitude determination have been characteristically carried on-board the spacecraft in the past, so the major development requirement of automated systems is in the area of on-board processors. It is concluded that standardization of computers is not as beneficial as the standardization of computer architecture and the basic components which go into making them. It is also concluded that charge-coupled devices (CCD) or other solid state star tracking devices offer considerable advantages over the image-dissector type of