Science.gov

Sample records for cardiac imaging initial

  1. Cardiac biplane strain imaging: initial in vivo experience.

    PubMed

    Lopata, R G P; Nillesen, M M; Verrijp, C N; Singh, S K; Lammens, M M Y; van der Laak, J A W M; van Wetten, H B; Thijssen, J M; Kapusta, L; de Korte, C L

    2010-02-21

    In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to test the method in vivo. The proposed approach can serve as a framework to monitor the development of cardiac hypertrophy and fibrosis. A 2D strain estimation technique using radio frequency (RF) ultrasound data was applied. Biplane image acquisition was performed at a relatively low frame rate (<100 Hz) using a commercial platform with an RF interface. For testing the method in vivo, biplane image sequences of the heart were recorded during the cardiac cycle in four dogs with an aortic stenosis. Initial results reveal the feasibility of measuring large radial, circumferential and longitudinal cumulative strain (up to 70%) at a frame rate of 100 Hz. Mean radial strain curves of a manually segmented region-of-interest in the infero-lateral wall show excellent correlation between the measured strain curves acquired in two perpendicular planes. Furthermore, the results show the feasibility and reproducibility of assessing radial, circumferential and longitudinal strains simultaneously. In this preliminary study, three beagles developed an elevated pressure gradient over the aortic valve (Deltap: 100-200 mmHg) and myocardial hypertrophy. One dog did not develop any sign of hypertrophy (Deltap = 20 mmHg). Initial strain (rate) results showed that the maximum strain (rate) decreased with increasing valvular stenosis (-50%), which is in accordance with previous studies. Histological findings corroborated these results and showed an increase in fibrotic tissue for the hearts with larger pressure gradients (100, 200 mmHg), as well as lower strain and strain rate values.

  2. Cardiac biplane strain imaging: initial in vivo experience

    NASA Astrophysics Data System (ADS)

    Lopata, R. G. P.; Nillesen, M. M.; Verrijp, C. N.; Singh, S. K.; Lammens, M. M. Y.; van der Laak, J. A. W. M.; van Wetten, H. B.; Thijssen, J. M.; Kapusta, L.; de Korte, C. L.

    2010-02-01

    In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to test the method in vivo. The proposed approach can serve as a framework to monitor the development of cardiac hypertrophy and fibrosis. A 2D strain estimation technique using radio frequency (RF) ultrasound data was applied. Biplane image acquisition was performed at a relatively low frame rate (<100 Hz) using a commercial platform with an RF interface. For testing the method in vivo, biplane image sequences of the heart were recorded during the cardiac cycle in four dogs with an aortic stenosis. Initial results reveal the feasibility of measuring large radial, circumferential and longitudinal cumulative strain (up to 70%) at a frame rate of 100 Hz. Mean radial strain curves of a manually segmented region-of-interest in the infero-lateral wall show excellent correlation between the measured strain curves acquired in two perpendicular planes. Furthermore, the results show the feasibility and reproducibility of assessing radial, circumferential and longitudinal strains simultaneously. In this preliminary study, three beagles developed an elevated pressure gradient over the aortic valve (Δp: 100-200 mmHg) and myocardial hypertrophy. One dog did not develop any sign of hypertrophy (Δp = 20 mmHg). Initial strain (rate) results showed that the maximum strain (rate) decreased with increasing valvular stenosis (-50%), which is in accordance with previous studies. Histological findings corroborated these results and showed an increase in fibrotic tissue for the hearts with larger pressure gradients (100, 200 mmHg), as well as lower strain and strain rate values.

  3. Three-dimensional magnetic resonance cardiac imaging shows initial promise

    SciTech Connect

    Not Available

    1988-04-15

    Three-dimensional magnetic resonance imaging (3-D MRI) of the heart is already receiving encouraging reviews from heart surgeons, says Michael Vannier, MD, an associate professor of radiology at Washington University School of Medicine, St. Louis. In fact, the demand for his group's 3-D images is becoming overwhelming, Vannier says. So far, the group has used 3-D MRI to evaluate congenital heart disease. The advantage of the 3-D system is that, even to an untrained eye, anomalies are apparent and the images can even be animated. Many of the patients are infants, who are sedated while the images are acquired. When the information is combined, the averaged image produced represents a slice about 5 mm thick. The computer then stacks a number of those images together to make the 3-D image. Total scanning takes about one hour.

  4. Imaging of cardiac sarcoidosis.

    PubMed

    Erthal, Fernanda; Juneau, Daniel; Lim, Siok P; Dwivedi, Girish; Nery, Pablo B; Birnie, David; Beanlands, Rob S

    2016-09-01

    Sarcoidosis is a multisystem inflammatory disease. Cardiac involvement is described in up to 50% of the cases. The disease spectrum is wide and cardiac manifestations ranges from being asymptomatic to heart failure, arrhythmias and sudden cardiac death. The diagnosis of cardiac sarcoidosis can be challenging due to its non-specific nature and the focal involvement of the heart. In this review, we discuss the utility of a stepwise approach with multimodality cardiac imaging in the diagnosis and management of CS. PMID:27225318

  5. Comparative cardiac imaging

    SciTech Connect

    Brundage, B.H.

    1990-01-01

    This book is designed to compare all major cardiac imaging techniques. All major imaging techniques - including conventional angiography, digital angiography, echocardiography and Doppler imaging, conventional radioisotope techniques, computed tomography, and magnetic resonance imaging - are covered in this text as they apply to the major cardiovascular disorders. There is brief coverage of positron emission tomography and an extensive presentation of ultrafast computed tomography.

  6. Cardiac imaging in adults

    SciTech Connect

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  7. Cardiac action potential imaging

    NASA Astrophysics Data System (ADS)

    Tian, Qinghai; Lipp, Peter; Kaestner, Lars

    2013-06-01

    Action potentials in cardiac myocytes have durations in the order of magnitude of 100 milliseconds. In biomedical investigations the documentation of the occurrence of action potentials is often not sufficient, but a recording of the shape of an action potential allows a functional estimation of several molecular players. Therefore a temporal resolution of around 500 images per second is compulsory. In the past such measurements have been performed with photometric approaches limiting the measurement to one cell at a time. In contrast, imaging allows reading out several cells at a time with additional spatial information. Recent developments in camera technologies allow the acquisition with the required speed and sensitivity. We performed action potential imaging on isolated adult cardiomyocytes of guinea pigs utilizing the fluorescent membrane potential sensor di-8-ANEPPS and latest electron-multiplication CCD as well as scientific CMOS cameras of several manufacturers. Furthermore, we characterized the signal to noise ratio of action potential signals of varying sets of cameras, dye concentrations and objective lenses. We ensured that di-8-ANEPPS itself did not alter action potentials by avoiding concentrations above 5 μM. Based on these results we can conclude that imaging is a reliable method to read out action potentials. Compared to conventional current-clamp experiments, this optical approach allows a much higher throughput and due to its contact free concept leaving the cell to a much higher degree undisturbed. Action potential imaging based on isolated adult cardiomyocytes can be utilized in pharmacological cardiac safety screens bearing numerous advantages over approaches based on heterologous expression of hERG channels in cell lines.

  8. Cardiac Imaging System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Although not available to all patients with narrowed arteries, balloon angioplasty has expanded dramatically since its introduction with an estimated further growth to 562,000 procedures in the U.S. alone by 1992. Growth has fueled demand for higher quality imaging systems that allow the cardiologist to be more accurate and increase the chances of a successful procedure. A major advance is the Digital Cardiac Imaging (DCI) System designed by Philips Medical Systems International, Best, The Netherlands and marketed in the U.S. by Philips Medical Systems North America Company. The key benefit is significantly improved real-time imaging and the ability to employ image enhancement techniques to bring out added details. Using a cordless control unit, the cardiologist can manipulate images to make immediate assessment, compare live x-ray and roadmap images by placing them side-by-side on monitor screens, or compare pre-procedure and post procedure conditions. The Philips DCI improves the cardiologist's precision by expanding the information available to him.

  9. Cardiac 4D Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    D'hooge, Jan

    Volumetric cardiac ultrasound imaging has steadily evolved over the last 20 years from an electrocardiography (ECC) gated imaging technique to a true real-time imaging modality. Although the clinical use of echocardiography is still to a large extent based on conventional 2D ultrasound imaging it can be anticipated that the further developments in image quality, data visualization and interaction and image quantification of three-dimensional cardiac ultrasound will gradually make volumetric ultrasound the modality of choice. In this chapter, an overview is given of the technological developments that allow for volumetric imaging of the beating heart by ultrasound.

  10. Dual gated nuclear cardiac images

    SciTech Connect

    Zubal, I.G.; Bennett, G.W.; Bizais, Y.; Brill, A.B.

    1984-02-01

    A data acquisition system has been developed to collect camera events simultaneously with continually digitized electrocardiograph signals and respiratory flow measurements. Software processing of the list mode data creates more precisely gated cardiac frames. Additionally, motion blur due to heart movement during breathing is reduced by selecting events within a specific respiratory phase. Thallium myocardium images of a healthy volunteer show increased definition. This technique of combined cardiac and respiratory gating has the potential of improving the detectability of small lesions, and the characterization of cardiac wall motion.

  11. Cardiac Imaging In Athletes.

    PubMed

    Khan, Asaad A; Safi, Lucy; Wood, Malissa

    2016-01-01

    Athletic heart syndrome refers to the physiological and morphological changes that occur in a human heart after repetitive strenuous physical exercise. Examples of exercise-induced changes in the heart include increases in heart cavity dimensions, augmentation of cardiac output, and increases in heart muscle mass. These cardiac adaptations vary based on the type of exercise performed and are often referred to as sport-specific cardiac remodeling. The hemodynamic effects of endurance and strength training exercise lead to these adaptations. Any abnormalities in chamber dilatation and left ventricular function usually normalize with cessation of exercise. Athletic heart syndrome is rare and should be differentiated from pathologic conditions such as hypertrophic cardiomyopathy, left ventricular noncompaction, and arrhythmogenic right ventricular dysplasia when assessing a patient for athletic heart syndrome. This paper describes specific adaptations that occur in athletic heart syndrome and tools to distinguish between healthy alterations versus underlying pathology. PMID:27486490

  12. Cardiac Imaging In Athletes

    PubMed Central

    Khan, Asaad A.; Safi, Lucy; Wood, Malissa

    2016-01-01

    Athletic heart syndrome refers to the physiological and morphological changes that occur in a human heart after repetitive strenuous physical exercise. Examples of exercise-induced changes in the heart include increases in heart cavity dimensions, augmentation of cardiac output, and increases in heart muscle mass. These cardiac adaptations vary based on the type of exercise performed and are often referred to as sport-specific cardiac remodeling. The hemodynamic effects of endurance and strength training exercise lead to these adaptations. Any abnormalities in chamber dilatation and left ventricular function usually normalize with cessation of exercise. Athletic heart syndrome is rare and should be differentiated from pathologic conditions such as hypertrophic cardiomyopathy, left ventricular noncompaction, and arrhythmogenic right ventricular dysplasia when assessing a patient for athletic heart syndrome. This paper describes specific adaptations that occur in athletic heart syndrome and tools to distinguish between healthy alterations versus underlying pathology. PMID:27486490

  13. MR imaging of cardiac tumors.

    PubMed

    Sparrow, Patrick J; Kurian, John B; Jones, Tim R; Sivananthan, Mohan U

    2005-01-01

    Magnetic resonance (MR) imaging is an important tool in the evaluation of cardiac neoplasms. T1-weighted, T2-weighted, and gadolinium-enhanced sequences are used for anatomic definition and tissue characterization, whereas cine gradient-echo imaging is used to assess functional effects. Recent improvements in pulse sequences for cardiac MR imaging have led to superior image quality, with reduced motion artifact and improved signal-to-noise ratio and tissue contrast. Although there is some overlap in the MR imaging appearances of cardiac tumors, particularly of primary malignancies, differences in characteristic locations and features should allow confident differentiation between benign and malignant tumors. Indicators of malignancy at MR imaging are invasive behavior, involvement of the right side of the heart or the pericardium, tissue inhomogeneity, diameter greater than 5 cm, and enhancement after administration of gadolinium contrast material (as a result of higher tissue vascularity). Concomitant pericardial or pleural effusions are rare in benign processes but occur in about 50% of cases of malignant tumors. MR imaging offers improved resolution, a larger field of view, and superior soft-tissue contrast compared with those of echocardiography, suggesting that knowledge of the MR imaging features of cardiac neoplasms is important for accurate diagnosis and management. PMID:16160110

  14. Cardiac arrest during dipyridamole imaging

    SciTech Connect

    Blumenthal, M.S.; McCauley, C.S.

    1988-05-01

    A case of cardiac arrest and subsequent acute myocardial infarction occurring during thallium-201 imaging with oral dipyridamole augmentation is presented. Previous reports emphasizing the safety of this procedure are briefly reviewed and a recommendation for close hemodynamic and arrhythmia monitoring during the study is made. Large doses of oral dipyridamole may be contraindicated in patients with unstable angina.

  15. Lithium iodide cardiac pacemakers: initial clinical experience.

    PubMed Central

    Burr, L. H.

    1976-01-01

    A new long-life cardiac pacemaker pulse generator powered by a lithium iodide fuel cell was introduced in Canada in 1973. The compact, hermetically sealed unit is easily implanted and reliable, has excellent patient acceptance and has an anticipated battery life of almost 14 years. Among 105 patients who received a lithium iodide pacemaker, complications occurred in 18. The lithium iodide pacemaker represents a significant advance in pacemaker generator technology and is recommended for long-term cardiac pacing; the manufacturer guarantees the pulse generator for 6 years. Images FIG. 1 PMID:974965

  16. Cardiac imaging: does radiation matter?

    PubMed Central

    Einstein, Andrew J.; Knuuti, Juhani

    2012-01-01

    The use of ionizing radiation in cardiovascular imaging has generated considerable discussion. Radiation should not be considered in isolation, but rather in the context of a careful examination of the benefits, risks, and costs of cardiovascular imaging. Such consideration requires an understanding of some fundamental aspects of the biology, physics, epidemiology, and terminology germane to radiation, as well as principles of radiological protection. This paper offers a concise, contemporary perspective on these areas by addressing pertinent questions relating to radiation and its application to cardiac imaging. PMID:21828062

  17. Mechanisms for initiation of cardiac discordant alternans

    NASA Astrophysics Data System (ADS)

    Echebarria, B.; Karma, A.

    2007-07-01

    Electrical alternans, defined as a beat-to-beat change in the duration of the excited phase of cardiac cells, is among the known precursors of sudden cardiac death. It may appear as concordant (all the tissue presenting the same phase of oscillation) or discordant (with out-of-phase regions distributed among tissue). Spatially discordant alternans can lead to unidirectional block that initiates reentry and ventricular fibrillation. The role played by tissue heterogeneities and heart rate changes in their initiation remains, however, unclear. We study the mechanisms for initiation of spatially discordant alternans by numerical simulations of an ionic model spatially distributed in a one-dimensional cable and in an anatomical model of the rabbit heart. The effects of CV-restitution, ectopic beats, and the role of spatial gradients of electrical restitution properties are investigated. In homogeneous tissue, the origin of discordant alternans may be dynamical, through CV-restitution, or due to a localized change in the pacing period. We also find that a sudden change of stimulation rate can initiate discordant alternans in the presence of a spatial gradient of APD-restitution without necessitating CV-restitution. The mechanism of, and the conditions for, initiation are determined based on an iterated map analysis of beat to beat changes of APD. This analysis leads to the definition of a vulnerable window for initiation of discordant alternans. Moreover, the pattern of spatially discordant alternans is found to change slowly over several beats following initiation, as reflected in ECG recordings.

  18. Real time cardiac radionuclide imaging

    SciTech Connect

    Jarkewicz, G.G.

    1986-04-29

    A data acquisition system is described for use in radionuclide cardiac imaging of a patient having been administered a myocardium specific radionuclide, comprising: (a) means for monitoring the electrical activity of the heart; (b) first temporary storage means for accumulating respective pages of data corresponding to nuclear events during each cardiac cycle; (c) means, responsive to the means for monitoring, for determining the time duration of each successive cardiac cycle; (d) means for comparing each determined duration of a cardiac cycle with a preselected time duration range; (e) second temporary storage means; and (f) means for conditionally transferring pages of data from the first temporary storage means to the second temporary storage means if the measured duration associated with each page has predetermined correspondence with the preselected duration range, whereby pages of data having the predetermined correspondence may be collated into a quasi-real time study, while pages of data having different correspondence with the preselected time duration range are discarded from the study.

  19. Image based physiological monitoring of cardiac function

    NASA Astrophysics Data System (ADS)

    Maier, Corinna S.; Bock, Michael; Semmler, Wolfhard; Lorenz, Christine H.

    2008-03-01

    A new framework for image based physiological cardiac monitoring is proposed based on repeated imaging of critical slice locations in an interventional MRI environment. The aim of this work is to provide a method of detecting pathological changes in the left ventricular (LV) myocardial wall motion where the standard ECG methods are not possible due to distortions by the magnetic field. First MRI LV short axis images are acquired for different phases of the cardiac cycle over RR intervals. Then LV contours are detected based on an established segmentation algorithm. The contour's Fourier Descriptors are calculated to classify myocardial wall into two classes: contracted or not contracted. The classifier is trained during an initial observation period before a pathological change might occur during an intervention. A contour rejected by the classifier using the unconditional, predictive probability of the contour's observation vector as confidence measure is interpreted as a probably pathologic change in the LV myocardial wall motion. To evaluate the performance of the classifier a simple model is introduced for simulating the contours of a pathological, ischemic, LV myocardial wall. The overall performance of the classifier on 516 samples based on healthy volunteer images and 3096 simulated ischemic samples yielded a mean classification error for supervised training of 5.7% and for unsupervised training of 8.7%.

  20. Calcium handling precedes cardiac differentiation to initiate the first heartbeat

    PubMed Central

    Tyser, Richard CV; Miranda, Antonio MA; Chen, Chiann-mun; Davidson, Sean M

    2016-01-01

    The mammalian heartbeat is thought to begin just prior to the linear heart tube stage of development. How the initial contractions are established and the downstream consequences of the earliest contractile function on cardiac differentiation and morphogenesis have not been described. Using high-resolution live imaging of mouse embryos, we observed randomly distributed spontaneous asynchronous Ca2+-oscillations (SACOs) in the forming cardiac crescent (stage E7.75) prior to overt beating. Nascent contraction initiated at around E8.0 and was associated with sarcomeric assembly and rapid Ca2+ transients, underpinned by sequential expression of the Na+-Ca2+ exchanger (NCX1) and L-type Ca2+ channel (LTCC). Pharmacological inhibition of NCX1 and LTCC revealed rapid development of Ca2+ handling in the early heart and an essential early role for NCX1 in establishing SACOs through to the initiation of beating. NCX1 blockade impacted on CaMKII signalling to down-regulate cardiac gene expression, leading to impaired differentiation and failed crescent maturation. DOI: http://dx.doi.org/10.7554/eLife.17113.001 PMID:27725084

  1. Achieving high-value cardiac imaging: challenges and opportunities.

    PubMed

    Wiener, David H

    2014-01-01

    Cardiac imaging is under intense scrutiny as a contributor to health care costs, with multiple initiatives under way to reduce and eliminate inappropriate testing. Appropriate use criteria are valuable guides to selecting imaging studies but until recently have focused on the test rather than the patient. Patient-centered means are needed to define the true value of imaging for patients in specific clinical situations. This article provides a definition of high-value cardiac imaging. A paradigm to judge the efficacy of echocardiography in the absence of randomized controlled trials is presented. Candidate clinical scenarios are proposed in which echocardiography constitutes high-value imaging, as well as stratagems to increase the likelihood that high-value cardiac imaging takes place in those circumstances.

  2. Ultrasound Imaging in Teaching Cardiac Physiology

    ERIC Educational Resources Information Center

    Johnson, Christopher D.; Montgomery, Laura E. A.; Quinn, Joe G.; Roe, Sean M.; Stewart, Michael T.; Tansey, Etain A.

    2016-01-01

    This laboratory session provides hands-on experience for students to visualize the beating human heart with ultrasound imaging. Simple views are obtained from which students can directly measure important cardiac dimensions in systole and diastole. This allows students to derive, from first principles, important measures of cardiac function, such…

  3. Cardiac nuclear imaging - Principles, instrumentation and pitfalls

    SciTech Connect

    Strauss, H.W.; Mckusick, K.A.; Bingham, J.B.

    1980-12-18

    Nuclear methods of cardiac imaging require a radiolabeled tracer, a collimator to assure interaction of photons from specific areas of the heart with the imaging device, equipment which converts gamma photon energy into an electrical signal which can be displayed, and a computer to record and quantify the data. Nuclear imaging is based on the averaging of many cardiac cycles, while nuclear probes supply information which can be analyzed only on a beat-by-beat basis imaging data can be reviewed visually and quantitatively. It is concluded that nuclear cardiac imaging can detect abnormal functions at rest or after interventions, and can be used both for outpatients and acutely ill persons in intensive care units.

  4. Emergency cardiac imaging: state of the art.

    PubMed

    Kuo, Dick; Dilsizian, Vasken; Prasad, Rajnish; White, Charles S

    2006-02-01

    Multiple strategies and testing modalities are available to evaluate patients presenting to the emergency department with cardiac complaints. Many provide anatomic and prognostic information about coronary stenosis and long-term out-comes. Although nuclear and stress echo imaging have the ability to predict outcomes in patients in the emergency department population, the newer modalities of cardiac imaging (EBCT, MDCT,and CMR) continue to show promising results and may soon be incorporated into emergency department chest pain centers. Protocols can be developed within an institution to meet the needs of the patient population while minimizing risk and improving outcomes for all patients. PMID:16326256

  5. Video imaging of cardiac transmembrane activity

    NASA Astrophysics Data System (ADS)

    Baxter, William T.; Davidenko, Jorge; Cabo, Candido; Jalife, Jose

    1994-05-01

    High resolution movies of transmembrane electrical activity in thin (0.5 mm) slices of sheep epicardial muscle were recorded by optical imaging with voltage-sensitive dyes and a CCD video camera. Activity was monitored at approximately 65,000 picture elements per 2 cm2 tissue for several seconds at a 16 msec sampling rate. Simple image processing operations permitted visualization and analysis of the optical signal, while isochrome maps depicted complex patterns of propagation. Maps of action potential duration and regional intermittent conduction block showed that even these small preparations may exhibit considerable spatial heterogeneity. Self-sustaining reentrant activity in the form of spiral waves was consistently initiated and observed either drifting across the tissue or anchored to small heterogeneities. The current limitations of video optical mappings are a low signal-to- noise ratio and low temporal resolution. The advantages include high spatial resolution and direct correlation of electrical activity with anatomy. Video optical mapping permits the analysis of the electrophysiological properties of any region of the preparation during both regular stimulation and reentrant activation, providing a useful tool for studying cardiac arrhythmias.

  6. Cardiac imaging using gated magnetic resonance

    SciTech Connect

    Lanzer, P.; Botvinick, E.H.; Schiller, N.B.

    1984-01-01

    To overcome the limitations of magnetic resonance (MR) cardiac imaging using nongated data acquisition, three methods for acquiring a gating signal, which could be applied in the presence of a magnetic field, were tested; an air-filled plethysmograph, a laser-Doppler capillary perfusion flowmeter, and an electrocardiographic gating device. The gating signal was used for timing of MR imaging sequences (IS). Application of each gating method yielded significant improvements in structural MR image resolution of the beating heart, although with both plethysmography and laser-Doppler velocimetry it was difficult to obtain cardiac images from the early portion of the cardiac cycle due to an intrinsic delay between the ECG R wave and peripheral detection of the gating signal. Variations in the temporal relationship between the R wave and plethysmographic and laser-Doppler signals produced inconsistencies in the timing of IS. Since the ECG signal is virtually free of these problems, the preferable gating technique is IS synchronization with an electrocardiogram. The gated images acquired with this method provide sharp definition of internal cardiac morphology and can be temporarily referenced to end diastole and end systole or intermediate points.

  7. Cardiac-state-driven CT image reconstruction algorithm for cardiac imaging

    NASA Astrophysics Data System (ADS)

    Cesmeli, Erdogan; Edic, Peter M.; Iatrou, Maria; Hsieh, Jiang; Gupta, Rajiv; Pfoh, Armin H.

    2002-05-01

    Multi-slice CT scanners use EKG gating to predict the cardiac phase during slice reconstruction from projection data. Cardiac phase is generally defined with respect to the RR interval. The implicit assumption made is that the duration of events in a RR interval scales linearly when the heart rate changes. Using a more detailed EKG analysis, we evaluate the impact of relaxing this assumption on image quality. We developed a reconstruction algorithm that analyzes the associated EKG waveform to extract the natural cardiac states. A wavelet transform was used to decompose each RR-interval into P, QRS, and T waves. Subsequently, cardiac phase was defined with respect to these waves instead of a percentage or time delay from the beginning or the end of RR intervals. The projection data was then tagged with the cardiac phase and processed using temporal weights that are function of their cardiac phases. Finally, the tagged projection data were combined from multiple cardiac cycles using a multi-sector algorithm to reconstruct images. The new algorithm was applied to clinical data, collected on a 4-slice (GE LightSpeed Qx/i) and 8-slice CT scanner (GE LightSpeed Plus), with heart rates of 40 to 80 bpm. The quality of reconstruction is assessed by the visualization of the major arteries, e.g. RCA, LAD, LC in the reformat 3D images. Preliminary results indicate that Cardiac State Driven reconstruction algorithm offers better image quality than their RR-based counterparts.

  8. Imaging techniques in cardiac resynchronization therapy

    PubMed Central

    Sá, Maria Isabel; de Roos, Albert; Westenberg, Jos J. M.

    2007-01-01

    Cardiac resynchronization therapy is a high cost therapeutic option with proven efficacy on improving symptoms of ventricular failure and for reducing both hospitalization and mortality. However, a significant number of patients do not respond to cardiac resynchronization therapy that is due to various reasons. Identification of the optimal pacing site is crucial to obtain the best therapeutic result that necessitates careful patient selection. Currently, using echocardiography for mechanical dyssynchrony assessment performs patient selection. Multi-Detector-Row Computed Tomography (MDCT) and Magnetic Resonance Imaging (MRI) are new imaging techniques that may assist the cardiologist in patient selection. These new imaging techniques have the potential to improve the success rate of cardiac resynchronization therapy, due to pre-interventional evaluation of the venous coronary anatomy, to evaluation of the presence of scar tissue, and to improved evaluation of mechanical dyssynchrony. In conclusion, clinical issues associated with heart failure in potential candidates for cardiac resynchronization therapy, and the information regarding this therapy that can be provided by the imaging techniques echocardiography, MDCT, and MRI, are reviewed. PMID:17503216

  9. Ultrasound imaging in teaching cardiac physiology.

    PubMed

    Johnson, Christopher D; Montgomery, Laura E A; Quinn, Joe G; Roe, Sean M; Stewart, Michael T; Tansey, Etain A

    2016-09-01

    This laboratory session provides hands-on experience for students to visualize the beating human heart with ultrasound imaging. Simple views are obtained from which students can directly measure important cardiac dimensions in systole and diastole. This allows students to derive, from first principles, important measures of cardiac function, such as stroke volume, ejection fraction, and cardiac output. By repeating the measurements from a subject after a brief exercise period, an increase in stroke volume and ejection fraction are easily demonstrable, potentially with or without an increase in left ventricular end-diastolic volume (which indicates preload). Thus, factors that affect cardiac performance can readily be discussed. This activity may be performed as a practical demonstration and visualized using an overhead projector or networked computers, concentrating on using the ultrasound images to teach basic physiological principles. This has proved to be highly popular with students, who reported a significant improvement in their understanding of Frank-Starling's law of the heart with ultrasound imaging. PMID:27445285

  10. Simulating cardiac ultrasound image based on MR diffusion tensor imaging

    PubMed Central

    Qin, Xulei; Wang, Silun; Shen, Ming; Lu, Guolan; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei

    2015-01-01

    Purpose: Cardiac ultrasound simulation can have important applications in the design of ultrasound systems, understanding the interaction effect between ultrasound and tissue and setting the ground truth for validating quantification methods. Current ultrasound simulation methods fail to simulate the myocardial intensity anisotropies. New simulation methods are needed in order to simulate realistic ultrasound images of the heart. Methods: The proposed cardiac ultrasound image simulation method is based on diffusion tensor imaging (DTI) data of the heart. The method utilizes both the cardiac geometry and the fiber orientation information to simulate the anisotropic intensities in B-mode ultrasound images. Before the simulation procedure, the geometry and fiber orientations of the heart are obtained from high-resolution structural MRI and DTI data, respectively. The simulation includes two important steps. First, the backscatter coefficients of the point scatterers inside the myocardium are processed according to the fiber orientations using an anisotropic model. Second, the cardiac ultrasound images are simulated with anisotropic myocardial intensities. The proposed method was also compared with two other nonanisotropic intensity methods using 50 B-mode ultrasound image volumes of five different rat hearts. The simulated images were also compared with the ultrasound images of a diseased rat heart in vivo. A new segmental evaluation method is proposed to validate the simulation results. The average relative errors (AREs) of five parameters, i.e., mean intensity, Rayleigh distribution parameter σ, and first, second, and third quartiles, were utilized as the evaluation metrics. The simulated images were quantitatively compared with real ultrasound images in both ex vivo and in vivo experiments. Results: The proposed ultrasound image simulation method can realistically simulate cardiac ultrasound images of the heart using high-resolution MR-DTI data. The AREs of their

  11. Cardiac imaging in valvular heart disease

    PubMed Central

    Choo, W S; Steeds, R P

    2011-01-01

    The aim of this article is to provide a perspective on the relative importance and contribution of different imaging modalities in patients with valvular heart disease. Valvular heart disease is increasing in prevalence across Europe, at a time when the clinical ability of physicians to diagnose and assess severity is declining. Increasing reliance is placed on echocardiography, which is the mainstay of cardiac imaging in valvular heart disease. This article outlines the techniques used in this context and their limitations, identifying areas in which dynamic imaging with cardiovascular magnetic resonance and multislice CT are expanding. PMID:22723532

  12. Cardiac phase detection in intravascular ultrasound images

    NASA Astrophysics Data System (ADS)

    Matsumoto, Monica M. S.; Lemos, Pedro Alves; Yoneyama, Takashi; Furuie, Sergio Shiguemi

    2008-03-01

    Image gating is related to image modalities that involve quasi-periodic moving organs. Therefore, during intravascular ultrasound (IVUS) examination, there is cardiac movement interference. In this paper, we aim to obtain IVUS gated images based on the images themselves. This would allow the reconstruction of 3D coronaries with temporal accuracy for any cardiac phase, which is an advantage over the ECG-gated acquisition that shows a single one. It is also important for retrospective studies, as in existing IVUS databases there are no additional reference signals (ECG). From the images, we calculated signals based on average intensity (AI), and, from consecutive frames, average intensity difference (AID), cross-correlation coefficient (CC) and mutual information (MI). The process includes a wavelet-based filter step and ascendant zero-cross detection in order to obtain the phase information. Firstly, we tested 90 simulated sequences with 1025 frames each. Our method was able to achieve more than 95.0% of true positives and less than 2.3% of false positives ratio, for all signals. Afterwards, we tested in a real examination, with 897 frames and ECG as gold-standard. We achieved 97.4% of true positives (CC and MI), and 2.5% of false positives. For future works, methodology should be tested in wider range of IVUS examinations.

  13. Imaging techniques for cardiac strain and deformation: comparison of echocardiography, cardiac magnetic resonance and cardiac computed tomography.

    PubMed

    Tee, Michael; Noble, J Alison; Bluemke, David A

    2013-02-01

    Myocardial function assessment is essential for determining the health of the myocardium. Global assessment of myocardial function is widely performed (by estimating the ejection fraction), but many common cardiac diseases initially affect the myocardium on a regional, rather than global basis. Regional myocardial wall motion can be quantified using myocardial strain analysis (a normalized measure of deformation). Myocardial strain can be measured in terms of three normal strains (longitudinal strain, radial strain and circumferential) and six shear strains. Cardiac MRI (cMRI) is usually considered the reference standard for measurement of myocardial strain. The most common cMRI method, termed tagged cMRI, allows full, 3D assessment of regional strain. However, due to its complexity and lengthy times for analysis, tagged cMRI is not usually used outside of academic centers. Tagged cMRI is also primarily used only in research studies. Echocardiography combined with tissue Doppler imaging or a speckle tracking technique is now widely available in the clinical setting. Myocardial strain measurement by echocardiography shows reasonable agreement with cMRI. Limited standardization and differences between vendors represent current limitations of the technique. Cardiac computed tomography (CCT) is the newest and most rapidly growing modality for noninvasive imaging of the heart. While CCT studies are most commonly applied to assess the coronary arteries, CCT is easily adapted to provide functional information for both the left and right ventricles. New methods for CCT assessment of regional myocardial function are being developed. This review outlines the current literature on imaging techniques related to cardiac strain analysis and discusses the strengths and weaknesses of various methods for myocardial strain analysis.

  14. Cardiac image segmentation using spatiotemporal clustering

    NASA Astrophysics Data System (ADS)

    Galic, Sasa; Loncaric, Sven

    2001-07-01

    Image segmentation is an important and challenging problem in image analysis. Segmentation of moving objects in image sequences is even more difficult and computationally expensive. In this work we propose a technique for spatio- temporal segmentation of medical sequences based on K-mean clustering in the feature vector space. The motivation for spatio-temporalsegmentation approach comes from the fact that motion is a useful clue for object segmentation. Two- dimensional feature vector has been used for clustering in the feature space. In this paper we apply the proposed technique to segmentation of cardiac images. The first feature used in this particular application is image brightness, which reveals the structure of interest in the image. The second feature is the Euclidean norm of the optical flow vector. The third feature is the three- dimensional optical flow vector, which consists of computed motion in all three dimensions. The optical flow itself is computed using Horn-Schunck algorithm. The fourth feature is the mean brightness of the input image in a local neighborhood. By applying the clustering algorithm it is possible to detect moving object in the image sequence. The experiment has been conducted using a sequence of ECG-gated magnetic resonance (MR) images of a beating heart taken as in time so in the space.

  15. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal

  16. Cardiac Imaging Techniques for Physicians: Late Enhancement

    PubMed Central

    Kellman, Peter; Arai, Andrew E.

    2012-01-01

    Late enhancement imaging is used to diagnose and characterize a wide range of ischemic and non-ischemic cardiomyopathies, and its use has become ubiquitous in the cardiac MR exam. As the use of late enhancement imaging has matured and the span of applications has widened, the demands on image quality have grown. The characterization of sub-endocardial MI now includes the accurate quantification of scar size, shape, and characterization of borders which have been shown to have prognostic significance. More diverse patterns of late enhancement including patchy, mid-wall, sub-epicardial, or diffuse enhancement are of interest in diagnosing non-ischemic cardiomyopathies. As clinicians are examining late enhancement images for more subtle indication of fibrosis, the demand for lower artifacts has increased. A range of new techniques have emerged to improve the speed and quality of late enhancement imaging including: methods for acquisition during free breathing, and fat water separated imaging for characterizing fibro-fatty infiltration and reduction of artifacts related to the presence of fat. Methods for quantification of T1 and extracellular volume fraction are emerging to tackle the issue of discriminating globally diffuse fibrosis from normal healthy tissue which is challenging using conventional late enhancement methods. The aim of this review will be to describe the current state of the art and to provide a guide to various clinical protocols that are commonly used. PMID:22903654

  17. [Cardiac magnetic resonance imaging and cardiac computed tomography in clinical practice].

    PubMed

    Barone-Rochette, G; Jankowski, A; Rodiere, M

    2014-11-01

    Technological advances have enabled the rapid development of cardiovascular imaging techniques. Cardiac computed tomography (CT) and cardiac magnetic resonance imaging (MRI) have become diagnostic and prognostic tools for the management of patients in routine clinical practice. This review gives the main indications and describes the performance of both techniques.

  18. Bioluminescence imaging: a shining future for cardiac regeneration

    PubMed Central

    Roura, Santiago; Gálvez-Montón, Carolina; Bayes-Genis, Antoni

    2013-01-01

    Advances in bioanalytical techniques have become crucial for both basic research and medical practice. One example, bioluminescence imaging (BLI), is based on the application of natural reactants with light-emitting capabilities (photoproteins and luciferases) isolated from a widespread group of organisms. The main challenges in cardiac regeneration remain unresolved, but a vast number of studies have harnessed BLI with the discovery of aequorin and green fluorescent proteins. First described in the luminous hydromedusan Aequorea victoria in the early 1960s, bioluminescent proteins have greatly contributed to the design and initiation of ongoing cell-based clinical trials on cardiovascular diseases. In conjunction with advances in reporter gene technology, BLI provides valuable information about the location and functional status of regenerative cells implanted into numerous animal models of disease. The purpose of this review was to present the great potential of BLI, among other existing imaging modalities, to refine effectiveness and underlying mechanisms of cardiac cell therapy. We recount the first discovery of natural primary compounds with light-emitting capabilities, and follow their applications to bioanalysis. We also illustrate insights and perspectives on BLI to illuminate current efforts in cardiac regeneration, where the future is bright. PMID:23402217

  19. Ultrasound image guidance of cardiac interventions

    NASA Astrophysics Data System (ADS)

    Peters, Terry M.; Pace, Danielle F.; Lang, Pencilla; Guiraudon, Gérard M.; Jones, Douglas L.; Linte, Cristian A.

    2011-03-01

    Surgical procedures often have the unfortunate side-effect of causing the patient significant trauma while accessing the target site. Indeed, in some cases the trauma inflicted on the patient during access to the target greatly exceeds that caused by performing the therapy. Heart disease has traditionally been treated surgically using open chest techniques with the patient being placed "on pump" - i.e. their circulation being maintained by a cardio-pulmonary bypass or "heart-lung" machine. Recently, techniques have been developed for performing minimally invasive interventions on the heart, obviating the formerly invasive procedures. These new approaches rely on pre-operative images, combined with real-time images acquired during the procedure. Our approach is to register intra-operative images to the patient, and use a navigation system that combines intra-operative ultrasound with virtual models of instrumentation that has been introduced into the chamber through the heart wall. This paper illustrates the problems associated with traditional ultrasound guidance, and reviews the state of the art in real-time 3D cardiac ultrasound technology. In addition, it discusses the implementation of an image-guided intervention platform that integrates real-time ultrasound with a virtual reality environment, bringing together the pre-operative anatomy derived from MRI or CT, representations of tracked instrumentation inside the heart chamber, and the intra-operatively acquired ultrasound images.

  20. Magnetic resonance imaging in cardiac amyloidosis

    SciTech Connect

    O'Donnell, J.K.; Go, R.T.; Bott-Silverman, C.; Feiglin, D.H.; Salcedo, E.; MacIntyre, W.J.

    1984-01-01

    Primary amyloidosis (AL) involves the myocardium in 90% of cases and may present as apparent ischemia, vascular disease, or congestive heart failure. Two-dimensional echocardiography (echo) has proven useful in the diagnosis, particularly in differentiating AL from constrictive pericarditis. The findings of thickened RV and LV myocardium, normal LV cavity dimension, and a diffuse hyperrefractile ''granular sparkling'' appearance are virtually diagnostic. Magnetic resonance (MR) imaging may improve the resolution of anatomic changes seen in cardiac AL and has the potential to provide more specific information based on biochemical tissue alterations. In this preliminary study, the authors obtained both MR and echo images in six patients with AL and biopsy-proven myocardial involvement. 5/6 patients also had Tc-99 PYP myocardial studies including emission tomography (SPECT). MR studies utilized a 0.6 Tesla superconductive magnet. End diastolic gated images were obtained with TE=30msec and TR=R-R interval on the ECG. 6/6 pts. showed LV wall thickening which was concentric and included the septum. Papillary muscles were identified in all and were enlarged in 3/6. 4/6 pts. showed RV wall thickening but to a lesser degree than LV. Pericardial effusions were present in 4 cases. These findings correlated well with the results of echo although MR gave better RV free wall resolution. PYP scans were positive in 3 pts. but there was no correlation with degree of LV thickening. The authors conclude that there are no identifiable MR findings in patients with cardiac AL which encourage further attempts to characterize myocardial involvement by measurement of MR relaxation times in vivo.

  1. Biophotonic Modelling of Cardiac Optical Imaging.

    PubMed

    Bishop, Martin J; Plank, Gernot

    2015-01-01

    Computational models have been recently applied to simulate and better understand the nature of fluorescent photon scattering and optical signal distortion during cardiac optical imaging. The goal of such models is both to provide a useful post-processing tool to facilitate a more accurate and faithful comparison between computational simulations of electrical activity and experiments, as well as providing essential insight into the mechanisms underlying this distortion, suggesting ways in which it may be controlled or indeed utilised to maximise the information derived from the recorded fluorescent signal. Here, we present different modelling methodologies developed and used in the field to simulate both the explicit processes involved in optical signal synthesis and the resulting consequences of the effects of photon scattering within the myocardium upon the optically-detected signal. We focus our attentions to two main types of modelling approaches used to simulate light transport in cardiac tissue, specifically continuous (reaction-diffusion) and discrete stochastic (Monte Carlo) methods. For each method, we provide both a summary of the necessary methodological details of such models, in addition to brief reviews of relevant application studies which have sought to apply these methods to elucidate important information regarding experimentally-recorded optical signals under different circumstances.

  2. Advances in imaging for diagnosis and management of cardiac sarcoidosis.

    PubMed

    Aggarwal, Niti R; Snipelisky, David; Young, Phillip M; Gersh, Bernard J; Cooper, Leslie T; Chareonthaitawee, Panithaya

    2015-09-01

    Sarcoidosis is a multisystem granulomatous disorder with a high prevalence of cardiac involvement. Cardiac sarcoidosis (CS) may be life threatening due to end-stage cardiomyopathy and sudden cardiac death. The frequent absence of specific symptoms and lack of a diagnostic 'gold standard' pose challenges in the diagnosis of CS. Endomyocardial biopsy, although specific, has an unacceptably low sensitivity. Non-invasive cardiac imaging has a huge role in the assessment of patients with known or suspected CS. This comprehensive review compares the diagnostic accuracy, along with advantages and disadvantages, of established and emerging imaging modalities for CS.

  3. Cardiac BMIPP imaging in acute myocardial infarction.

    PubMed

    Nakata, T; Hashimoto, A; Eguchi, M

    1999-02-01

    Fatty acid metabolism functions as a major energy-producing system under aerobic conditions, but it is impaired immediately after myocardial ischaemia. This imaging can provide intracellular information which cannot be obtained by angiographical, perfusional or functional analysis. 123I-BMIPP and perfusion imagings in patients with acute myocardial infarction have demonstrated three different correlations between myocardial perfusion and fatty acid metabolism: concordant defects of perfusion and BMIPP which represent scar or non-viable tissue; lower BMIPP uptake relative to perfusion (perfusion-BMIPP mismatch) which implicates metabolically damaged, often dysynergic, but viable myocardium; and equivalently normal uptakes of perfusion and BMIPP in completely salvaged myocardium. Identification of these perfusion-metabolism correlations contributes to the detection of ischaemia-related myocardial injury in viable and non-viable myocardium, to the prediction of post-ischaemic or post-interventional functional recovery and to the identification of patients who have myocardium at ischaemic risk. Further clinical investigations might reveal more clearly the pathophysiological and prognostic implications of cardiac BMIPP imaging in patients with acute myocardial infarction.

  4. Pediatric defibrillation after cardiac arrest: initial response and outcome

    PubMed Central

    Rodríguez-Núñez, Antonio; López-Herce, Jesús; García, Cristina; Domínguez, Pedro; Carrillo, Angel; Bellón, Jose María

    2006-01-01

    Introduction Shockable rhythms are rare in pediatric cardiac arrest and the results of defibrillation are uncertain. The objective of this study was to analyze the results of cardiopulmonary resuscitation that included defibrillation in children. Methods Forty-four out of 241 children (18.2%) who were resuscitated from inhospital or out-of-hospital cardiac arrest had been treated with manual defibrillation. Data were recorded according to the Utstein style. Outcome variables were a sustained return of spontaneous circulation (ROSC) and one-year survival. Characteristics of patients and of resuscitation were evaluated. Results Cardiac disease was the major cause of arrest in this group. Ventricular fibrillation (VF) or pulseless ventricular tachycardia (PVT) was the first documented electrocardiogram rhythm in 19 patients (43.2%). A shockable rhythm developed during resuscitation in 25 patients (56.8%). The first shock (dose, 2 J/kg) terminated VF or PVT in eight patients (18.1%). Seventeen children (38.6%) needed more than three shocks to solve VF or PVT. ROSC was achieved in 28 cases (63.6%) and it was sustained in 19 patients (43.2%). Only three patients (6.8%), however, survived at 1-year follow-up. Children with VF or PVT as the first documented rhythm had better ROSC, better initial survival and better final survival than children with subsequent VF or PVT. Children who survived were older than the finally dead patients. No significant differences in response rate were observed when first and second shocks were compared. The survival rate was higher in patients treated with a second shock dose of 2 J/kg than in those who received higher doses. Outcome was not related to the cause or the location of arrest. The survival rate was inversely related to the duration of cardiopulmonary resuscitation. Conclusion Defibrillation is necessary in 18% of children who suffer cardiac arrest. Termination of VF or PVT after the first defibrillation dose is achieved in a low

  5. Cardiac Physiology for Radiologists: Review of Relevant Physiology for Interpretation of Cardiac MR Imaging and CT.

    PubMed

    Sheth, Pooja J; Danton, Gary H; Siegel, Yoel; Kardon, Richard E; Infante, Juan C; Ghersin, Eduard; Fishman, Joel E

    2015-01-01

    Cardiac computed tomography (CT) and magnetic resonance (MR) imaging provide clinicians with important insights into cardiac physiology and pathology. However, not all radiologists understand the language and concepts of cardiac physiology that are used daily by cardiologists. This review article covers basic cardiac physiology as it relates to cardiac CT and MR imaging. Topics include a review of the cardiac cycle and left ventricular pressure-volume loops as they relate to different pathologic states, evaluation of cardiac function, and calculation of key parameters such as left ventricular volumes and the ejection fraction. The hemodynamics of cardiac shunts are covered, with an emphasis on factors important to cardiologists, including the ratio of pulmonary flow to systemic flow. Additionally, valvular physiologic function is reexamined, with a focus on understanding pressure gradients within the heart and also the changes associated with valvular pathologic conditions, including measurement of regurgitant fractions in patients with valvular insufficiency. Understanding these basic concepts will help radiologists tailor the reporting of cardiac studies to clinically relevant information.

  6. Multimodality Imaging in Cardiac Sarcoidosis: Is There a Winner?

    PubMed

    Perez, Irving E; Garcia, Mario J; Taub, Cynthia C

    2016-01-01

    Sarcoidosis is a multisystem granulomatous disease of unknown cause that can affect the heart. Cardiac sarcoidosis may be present in as many as 25% of patients with systemic sarcoidosis, and it is frequently underdiagnosed. The early and accurate diagnosis of myocardial involvement is challenging. Advanced imaging techniques play important roles in the diagnosis and management of patients with cardiac sarcoidosis.

  7. Quantitative image quality evaluation for cardiac CT reconstructions

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.; Balhorn, William; Okerlund, Darin R.

    2016-03-01

    Maintaining image quality in the presence of motion is always desirable and challenging in clinical Cardiac CT imaging. Different image-reconstruction algorithms are available on current commercial CT systems that attempt to achieve this goal. It is widely accepted that image-quality assessment should be task-based and involve specific tasks, observers, and associated figures of merits. In this work, we developed an observer model that performed the task of estimating the percentage of plaque in a vessel from CT images. We compared task performance of Cardiac CT image data reconstructed using a conventional FBP reconstruction algorithm and the SnapShot Freeze (SSF) algorithm, each at default and optimal reconstruction cardiac phases. The purpose of this work is to design an approach for quantitative image-quality evaluation of temporal resolution for Cardiac CT systems. To simulate heart motion, a moving coronary type phantom synchronized with an ECG signal was used. Three different percentage plaques embedded in a 3 mm vessel phantom were imaged multiple times under motion free, 60 bpm, and 80 bpm heart rates. Static (motion free) images of this phantom were taken as reference images for image template generation. Independent ROIs from the 60 bpm and 80 bpm images were generated by vessel tracking. The observer performed estimation tasks using these ROIs. Ensemble mean square error (EMSE) was used as the figure of merit. Results suggest that the quality of SSF images is superior to the quality of FBP images in higher heart-rate scans.

  8. High-resolution breath-hold cardiac magnetic resonance imaging

    SciTech Connect

    Liu, Yu.

    1993-01-01

    This dissertation work is composed of investigations of three methods for fast cardiac magnetic resonance imaging (MRI). These methods include (1) 2D breath-hold magnetization prepared gradient echo and fast spin-echo (FSE) cardiac imaging, (2) 3D breath-hold magnetization prepared gradient echo cardiac imaging, and (3) real-time monitoring, feedback, and triggering for breath-hold MRI. The hypothesis of this work is that high resolution 2D and 3D magnetic resonance data sets for the heart can be acquired with the combination of magnetization prepared blood suppression for gradient echo techniques and accurate breath-holding methods. The 2D method included development of magnetic resonance data acquisition for cardiac imaging. The acquisition time is within a single breath-hold of 16 seconds (assuming heart 60/min). The data acquisition is synchronized with the electrocardiogram signal. Based on consistent observations of specific small cardiac structures like the papillary muscle, trabeculae, moderator band, and coronary vessels in studies of normal volunteers, the image quality represents a significant improvement over that obtained with fast imaging methods previously. To further improve the image quality provided by the 2D method, the first 3D cardiac MRI technique was developed. This method provides even better spatial resolution for cardiac images, with a voxel size of 1.09 [times] 2.19 [times] 4 mm[sup 3]. A 3D acquisition is completed in 8 breath-holds. The data acquisition for 3D cardiac imaging requires a consistent breath-hold position to avoid respiratory artifacts. To improve the reliability of the 3DFT acquisition, a new technique called MR breath-hold feedback was developed to provide reproducible breathholding. The diaphragm location is used as the index for breath-hold reproducibility measurement. The range of the diaphragm displacement in different breath-hold is reduced from 8.3 mm without the technique, to 1.3 mm with the technique.

  9. Accelerating Dynamic Cardiac MR Imaging Using Structured Sparse Representation

    PubMed Central

    Cai, Nian; Wang, Shengru; Zhu, Shasha

    2013-01-01

    Compressed sensing (CS) has produced promising results on dynamic cardiac MR imaging by exploiting the sparsity in image series. In this paper, we propose a new method to improve the CS reconstruction for dynamic cardiac MRI based on the theory of structured sparse representation. The proposed method user the PCA subdictionaries for adaptive sparse representation and suppresses the sparse coding noise to obtain good reconstructions. An accelerated iterative shrinkage algorithm is used to solve the optimization problem and achieve a fast convergence rate. Experimental results demonstrate that the proposed method improves the reconstruction quality of dynamic cardiac cine MRI over the state-of-the-art CS method. PMID:24454528

  10. Introduction to cardiac neuronal imaging: a clinical perspective.

    PubMed

    Jacobson, Arnold F; Narula, Jagat

    2015-06-01

    Procedures for noninvasive and minimally invasive imaging of cardiac neurons and neuronal function using radiolabeled compounds were developed in the second half of the 20th century. The foundation for these procedures was several centuries of research that identified the structural components of the autonomic nervous system and explored the means by which neurotransmitters such as acetylcholine and norepinephrine contributed to neuronal control of target organ effector cells. This article provides a brief clinical overview of modern approaches to the assessment of cardiac neurons as an introduction to the in-depth articles on the current status of cardiac neuronal imaging presented in this supplement. PMID:26033903

  11. Constrain static target kinetic iterative image reconstruction for 4D cardiac CT imaging

    NASA Astrophysics Data System (ADS)

    Alessio, Adam M.; La Riviere, Patrick J.

    2011-03-01

    Iterative image reconstruction offers improved signal to noise properties for CT imaging. A primary challenge with iterative methods is the substantial computation time. This computation time is even more prohibitive in 4D imaging applications, such as cardiac gated or dynamic acquisition sequences. In this work, we propose only updating the time-varying elements of a 4D image sequence while constraining the static elements to be fixed or slowly varying in time. We test the method with simulations of 4D acquisitions based on measured cardiac patient data from a) a retrospective cardiac-gated CT acquisition and b) a dynamic perfusion CT acquisition. We target the kinetic elements with one of two methods: 1) position a circular ROI on the heart, assuming area outside ROI is essentially static throughout imaging time; and 2) select varying elements from the coefficient of variation image formed from fast analytic reconstruction of all time frames. Targeted kinetic elements are updated with each iteration, while static elements remain fixed at initial image values formed from the reconstruction of data from all time frames. Results confirm that the computation time is proportional to the number of targeted elements; our simulations suggest that <30% of elements need to be updated in each frame leading to >3 times reductions in reconstruction time. The images reconstructed with the proposed method have matched mean square error with full 4D reconstruction. The proposed method is amenable to most optimization algorithms and offers the potential for significant computation improvements, which could be traded off for more sophisticated system models or penalty terms.

  12. Bayesian learning for cardiac SPECT image interpretation.

    PubMed

    Sacha, Jarosław P; Goodenday, Lucy S; Cios, Krzysztof J

    2002-01-01

    In this paper, we describe a system for automating the diagnosis of myocardial perfusion from single-photon emission computerized tomography (SPECT) images of male and female hearts. Initially we had several thousand of SPECT images, other clinical data and physician-interpreter's descriptions of the images. The images were divided into segments based on the Yale system. Each segment was described by the physician as showing one of the following conditions: normal perfusion, reversible perfusion defect, partially reversible perfusion defect, fixed perfusion defect, defect showing reverse redistribution, equivocal defect or artifact. The physician's diagnosis of overall left ventricular (LV) perfusion, based on the above descriptions, categorizes a study as showing one or more of eight possible conditions: normal, ischemia, infarct and ischemia, infarct, reverse redistribution, equivocal, artifact or LV dysfunction. Because of the complexity of the task, we decided to use the knowledge discovery approach, consisting of these steps: problem understanding, data understanding, data preparation, data mining, evaluating the discovered knowledge and its implementation. After going through the data preparation step, in which we constructed normal gender-specific models of the LV and image registration, we ended up with 728 patients for whom we had both SPECT images and corresponding diagnoses. Another major contribution of the paper is the data mining step, in which we used several new Bayesian learning classification methods. The approach we have taken, namely the six-step knowledge discovery process has proven to be very successful in this complex data mining task and as such the process can be extended to other medical data mining projects.

  13. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging

    SciTech Connect

    Lamare, F. Fernandez, P.; Le Maitre, A.; Visvikis, D.; Dawood, M.; Schäfers, K. P.; Rimoldi, O. E.

    2014-07-15

    Purpose: Cardiac imaging suffers from both respiratory and cardiac motion. One of the proposed solutions involves double gated acquisitions. Although such an approach may lead to both respiratory and cardiac motion compensation there are issues associated with (a) the combination of data from cardiac and respiratory motion bins, and (b) poor statistical quality images as a result of using only part of the acquired data. The main objective of this work was to evaluate different schemes of combining binned data in order to identify the best strategy to reconstruct motion free cardiac images from dual gated positron emission tomography (PET) acquisitions. Methods: A digital phantom study as well as seven human studies were used in this evaluation. PET data were acquired in list mode (LM). A real-time position management system and an electrocardiogram device were used to provide the respiratory and cardiac motion triggers registered within the LM file. Acquired data were subsequently binned considering four and six cardiac gates, or the diastole only in combination with eight respiratory amplitude gates. PET images were corrected for attenuation, but no randoms nor scatter corrections were included. Reconstructed images from each of the bins considered above were subsequently used in combination with an affine or an elastic registration algorithm to derive transformation parameters allowing the combination of all acquired data in a particular position in the cardiac and respiratory cycles. Images were assessed in terms of signal-to-noise ratio (SNR), contrast, image profile, coefficient-of-variation (COV), and relative difference of the recovered activity concentration. Results: Regardless of the considered motion compensation strategy, the nonrigid motion model performed better than the affine model, leading to higher SNR and contrast combined with a lower COV. Nevertheless, when compensating for respiration only, no statistically significant differences were

  14. Multimodality 3-Dimensional Image Integration for Congenital Cardiac Catheterization

    PubMed Central

    2014-01-01

    Cardiac catheterization procedures for patients with congenital and structural heart disease are becoming more complex. New imaging strategies involving integration of 3-dimensional images from rotational angiography, magnetic resonance imaging (MRI), computerized tomography (CT), and transesophageal echocardiography (TEE) are employed to facilitate these procedures. We discuss the current use of these new 3D imaging technologies and their advantages and challenges when used to guide complex diagnostic and interventional catheterization procedures in patients with congenital heart disease. PMID:25114757

  15. Unsupervised segmentation of cardiac PET transmission images for automatic heart volume extraction.

    PubMed

    Juslin, Anu; Tohka, Jussi

    2006-01-01

    In this study, we propose an automatic method to extract the heart volume from the cardiac positron emission tomography (PET) transmission images. The method combines the automatic 3D segmentation of the transmission image using Markov random fields (MRFs) to surface extraction using deformable models. Deformable models were automatically initialized using the MRFs segmentation result. The extraction of the heart region is needed e.g. in independent component analysis (ICA). The volume of the heart can be used to mask the emission image corresponding to the transmission image, so that only the cardiac region is used for the analysis. The masking restricts the number of independent components and reduces the computation time. In addition, the MRF segmentation result could be used for attenuation correction. The method was tested with 25 patient images. The MRF segmentation results were of good quality in all cases and we were able to extract the heart volume from all the images. PMID:17946020

  16. [Update on cardiac imaging techniques. Echocardiography, cardiac magnetic resonance and multidetector computed tomography].

    PubMed

    de Vinuesa, Pastora Gallego García; del Castillo, Sonia Velasco; Torres, Río Aguilar; Bardera, Juan C Paré

    2008-02-01

    This review of progress in cardiac imaging techniques summarizes the most significant development reported in the last year on different echocardiographic techniques and their application in a range of settings, from the treatment of heart failure to their use in intraoperative monitoring and guiding interventional procedures. Large sections are devoted to recent developments in three-dimensional imaging and, because of its clinical importance, to magnetic resonance imaging. Finally, there is a comprehensive update on the use of multidetector computed tomography in cardiology.

  17. Optimizing cardiac MR imaging: practical remedies for artifacts.

    PubMed

    Saremi, Farhood; Grizzard, John D; Kim, Raymond J

    2008-01-01

    With ongoing technical advances in magnetic resonance (MR) imaging, the clinical demand for cardiac MR evaluations has been increasing. Cardiac MR imaging techniques have evolved from traditional spin-echo sequences to breath-hold spoiled gradient-echo and balanced steady-state free precession sequences. The most recently developed techniques allow evaluation of myocardial function, perfusion, and viability; coronary angiography; flow quantification; and standard morphologic assessments. However, even with the most sophisticated acquisition techniques, artifacts commonly occur at cardiac MR imaging. Knowledge of the origin, imaging appearance, and significance of these artifacts is essential to avoid misinterpreting them as true lesions. Some artifacts are caused by simple errors in positioning of the patient, coil, or electrocardiographic leads; radiofrequency interference from nearby electronic equipment; or metallic objects within the magnetic field. Others are directly related to a specific MR imaging sequence or technique. Accelerated imaging techniques such as parallel imaging, which are used to shorten acquisition and breath-hold times in cardiac evaluations, are particularly vulnerable to artifacts. If an artifact severely degrades image quality, the acquisition should be repeated with appropriate adjustments to decrease or eliminate the problem.

  18. Assessment of Cardiac Sarcoidosis with Advanced Imaging Modalities

    PubMed Central

    Akasaka, Takashi

    2014-01-01

    Sarcoidosis is a chronic systemic disease of unknown etiology that is characterized by the presence of noncaseating epithelioid granulomas, usually in multiple organs. Several studies have shown that sarcoidosis might be the result of an exaggerated granulomatous reaction after exposure to unidentified antigens in genetically susceptible individuals. Cardiac involvement may occur and lead to an adverse outcome: the heart mechanics will be affected and that causes ventricular failure, and the cardiac electrical system will be disrupted and lead to third degree atrioventricular block, malignant ventricular tachycardia, and sudden cardiac death. Thus, early diagnosis and treatment of this potentially devastating disease is critically important. However, sensitive and accurate imaging modalities have not been established. Recent studies have demonstrated the promising potential of cardiac magnetic resonance imaging (MRI) and 18F-fluoro-2-deoxyglucose positron emission tomography (18F-FDG PET) in the diagnosis and assessment of cardiac sarcoidosis (CS). In this review, we discuss the epidemiology, etiology, histological findings, and clinical features of sarcoidosis. We also introduce advanced imaging including 18F-FDG PET and cardiac MRI as more reliable diagnostic modalities for CS. PMID:25250336

  19. Specialized Initiatives - Cancer Imaging Program

    Cancer.gov

    CIP has sponsored a number of programs for specific purposes, using set-aside funds. Among these are Phase 2 N01 ProgramIn-Vivo Cellular & Molecular Imaging Centers (ICMICs) Quantitative Imaging for Evaluation of Responses to Cancer Therapies (QIN) Network for Translational Research (NTR): Optical Imaging in Multimodal Platforms Small Animal Imaging Resource Program (SAIRP) Development of Preclinical Drugs and Enhancers (DCIDE) program.

  20. Functional imaging as an indicator of diagnostic information in cardiac magnetic-resonance images

    NASA Astrophysics Data System (ADS)

    Klingler, Joseph W.; Andrews, Lee T.; Begeman, Michael S.; Zeiss, Jacob; Leighton, Richard F.

    1990-08-01

    Magnetic Resonance (MR) images of the human heart provide three dimensional geometric information about the location of cardiac structures throughout the cardiac cycle. Analysis of this four dimensional data set allows detection of abnormal cardiac function related to the presence of coronary artery disease. To assist in this analysis, quantitative measurements of cardiac performance are made from the MR data including ejection fractions, regional wall motion and myocardial wall thickening. Analysis of cardiac performance provided by quantitative analysis of MR data can be aided by computer graphics presentation techniques. Two and three dimensional functional images are computed to indicate regions of abnormality based on the previous methods. The two dimensional images are created using color graphics overlays on the original MR image to represent performance. Polygon surface modeling techniques are used to represent data which is three dimensional, such as blood pool volumes. The surface of these images are color encoded by regional ejection fraction, wall motion or wall thickening. A functional image sequence is constructed at each phase of the cardiac cycle and displayed as a movie loop for review by the physician. Selection of a region on the functional image allows visual interpretation of the original MR images, graphical plots of cardiac function and tabular results. Color encoding is based on absolute measurements and comparison to standard normal templates of cardiac performance.

  1. Accelerating dual cardiac phase images using undersampled radial phase encoding trajectories.

    PubMed

    Letelier, Karis; Urbina, Jesus; Andía, Marcelo; Tejos, Cristián; Irarrazaval, Pablo; Prieto, Claudia; Uribe, Sergio

    2016-09-01

    A three-dimensional dual-cardiac-phase (3D-DCP) scan has been proposed to acquire two data sets of the whole heart and great vessels during the end-diastolic and end-systolic cardiac phases in a single free-breathing scan. This method has shown accurate assessment of cardiac anatomy and function but is limited by long acquisition times. This work proposes to accelerate the acquisition and reconstruction of 3D-DCP scans by exploiting redundant information of the outer k-space regions of both cardiac phases. This is achieved using a modified radial-phase-encoding trajectory and gridding reconstruction with uniform coil combination. The end-diastolic acquisition trajectory was angularly shifted with respect to the end-systolic phase. Initially, a fully-sampled 3D-DCP scan was acquired to determine the optimal percentage of the outer k-space data that can be combined between cardiac phases. Thereafter, prospectively undersampled data were reconstructed based on this percentage. As gold standard images, the undersampled data were also reconstructed using iterative SENSE. To validate the method, image quality assessments and a cardiac volume analysis were performed. The proposed method was tested in thirteen healthy volunteers (mean age, 30years). Prospectively undersampled data (R=4) reconstructed with 50% combination led high quality images. There were no significant differences in the image quality and in the cardiac volume analysis between our method and iterative SENSE. In addition, the proposed approach reduced the reconstruction time from 40min to 1min. In conclusion, the proposed method obtains 3D-DCP scans with an image quality comparable to those reconstructed with iterative SENSE, and within a clinically acceptable reconstruction time. PMID:27067473

  2. Cardiac Sarcoidosis: Clinical Manifestations, Imaging Characteristics, and Therapeutic Approach

    PubMed Central

    Houston, Brian A; Mukherjee, Monica

    2014-01-01

    Sarcoidosis is a multi-system disease pathologically characterized by the accumulation of T-lymphocytes and mononuclear phagocytes into the sine qua non pathologic structure of the noncaseating granuloma. Cardiac involvement remains a key source of morbidity and mortality in sarcoidosis. Definitive diagnosis of cardiac sarcoidosis, particularly early enough in the disease course to provide maximal therapeutic impact, has proven a particularly difficult challenge. However, major advancements in imaging techniques have been made in the last decade. Advancements in imaging modalities including echocardiography, nuclear spectroscopy, positron emission tomography, and magnetic resonance imaging all have improved our ability to diagnose cardiac sarcoidosis, and in many cases to provide a more accurate prognosis and thus targeted therapy. Likewise, therapy for cardiac sarcoidosis is beginning to advance past a “steroids-only” approach, as novel immunosuppressant agents provide effective steroid-sparing options. The following focused review will provide a brief discussion of the epidemiology and clinical presentation of cardiac sarcoidosis followed by a discussion of up-to-date imaging modalities employed in its assessment and therapeutic approaches. PMID:25452702

  3. Mapping cardiac surface mechanics with structured light imaging

    PubMed Central

    Laughner, Jacob I.; Zhang, Song; Li, Hao; Shao, Connie C.

    2012-01-01

    Cardiovascular disease often manifests as a combination of pathological electrical and structural heart remodeling. The relationship between mechanics and electrophysiology is crucial to our understanding of mechanisms of cardiac arrhythmias and the treatment of cardiac disease. While several technologies exist for describing whole heart electrophysiology, studies of cardiac mechanics are often limited to rhythmic patterns or small sections of tissue. Here, we present a comprehensive system based on ultrafast three-dimensional (3-D) structured light imaging to map surface dynamics of whole heart cardiac motion. Additionally, we introduce a novel nonrigid motion-tracking algorithm based on an isometry-maximizing optimization framework that forms correspondences between consecutive 3-D frames without the use of any fiducial markers. By combining our 3-D imaging system with nonrigid surface registration, we are able to measure cardiac surface mechanics at unprecedented spatial and temporal resolution. In conclusion, we demonstrate accurate cardiac deformation at over 200,000 surface points of a rabbit heart recorded at 200 frames/s and validate our results on highly contrasting heart motions during normal sinus rhythm, ventricular pacing, and ventricular fibrillation. PMID:22796539

  4. Overview of left ventricular outpouchings on cardiac magnetic resonance imaging

    PubMed Central

    Kumar, Sanjeev

    2015-01-01

    Left ventricular outpouchings commonly include aneurysm, pseudoaneurysm, and diverticulum and are now being increasingly detected on imaging. Distinction between these entities is of prime importance to guide proper management as outcomes for these entities differ substantially. Chest radiograph is usually nonspecific in their diagnosis. Echocardiography, multi-detector computed tomography evaluation and angiography are helpful in the diagnosis with their inherit limitations. Cardiac magnetic resonance imaging (MRI) is emerging as a very useful tool that allows simultaneous anatomical and functional evaluation along with tissue characterization, which has diagnostic, theraputic and prognostic implications. This article gives an overview of left ventricular outpouchings with special emphasis on their differentiation using cardiac MRI. PMID:26675616

  5. Biomechanically Constrained Multiframe Estimation of Nonrigid Cardiac Kinematics from Medical Image Sequence

    NASA Astrophysics Data System (ADS)

    Liu, Huafeng; Shi, Pengcheng

    2003-04-01

    Noninvasive estimation of soft tissue kinematics properties from medical image sequences has many important clinical and physiological implications, such as the diagnosis of heart diseases and the understanding of cardiac mechanics. In this paper, we present a biomechanics based strategy, framed as a priori constraints for the ill-posed motion recovery problems, that performs multi-frame estimation of the cardiac motion and deformation parameters. Constructing the heart dynamics system equations from biomechanics principles, we rely on techniques from statistical estimation theory and use a Kalman filter framework to generate smooth estimates of heart kinematics throughout the cardiac cycle. We will demonstrate the application of the strategy to estimate displacements and strains from in vivo left ventricular magnetic resonance image sequence, which provides initial displacement measures at the boundaries.

  6. Image artefact propagation in motion estimation and reconstruction in interventional cardiac C-arm CT.

    PubMed

    Müller, K; Maier, A K; Schwemmer, C; Lauritsch, G; De Buck, S; Wielandts, J-Y; Hornegger, J; Fahrig, R

    2014-06-21

    The acquisition of data for cardiac imaging using a C-arm computed tomography system requires several seconds and multiple heartbeats. Hence, incorporation of motion correction in the reconstruction step may improve the resulting image quality. Cardiac motion can be estimated by deformable three-dimensional (3D)/3D registration performed on initial 3D images of different heart phases. This motion information can be used for a motion-compensated reconstruction allowing the use of all acquired data for image reconstruction. However, the result of the registration procedure and hence the estimated deformations are influenced by the quality of the initial 3D images. In this paper, the sensitivity of the 3D/3D registration step to the image quality of the initial images is studied. Different reconstruction algorithms are evaluated for a recently proposed cardiac C-arm CT acquisition protocol. The initial 3D images are all based on retrospective electrocardiogram (ECG)-gated data. ECG-gating of data from a single C-arm rotation provides only a few projections per heart phase for image reconstruction. This view sparsity leads to prominent streak artefacts and a poor signal to noise ratio. Five different initial image reconstructions are evaluated: (1) cone beam filtered-backprojection (FDK), (2) cone beam filtered-backprojection and an additional bilateral filter (FFDK), (3) removal of the shadow of dense objects (catheter, pacing electrode, etc) before reconstruction with a cone beam filtered-backprojection (cathFDK), (4) removal of the shadow of dense objects before reconstruction with a cone beam filtered-backprojection and a bilateral filter (cathFFDK). The last method (5) is an iterative few-view reconstruction (FV), the prior image constrained compressed sensing combined with the improved total variation algorithm. All reconstructions are investigated with respect to the final motion-compensated reconstruction quality. The algorithms were tested on a mathematical

  7. Image artefact propagation in motion estimation and reconstruction in interventional cardiac C-arm CT

    NASA Astrophysics Data System (ADS)

    Müller, K.; Maier, A. K.; Schwemmer, C.; Lauritsch, G.; De Buck, S.; Wielandts, J.-Y.; Hornegger, J.; Fahrig, R.

    2014-06-01

    The acquisition of data for cardiac imaging using a C-arm computed tomography system requires several seconds and multiple heartbeats. Hence, incorporation of motion correction in the reconstruction step may improve the resulting image quality. Cardiac motion can be estimated by deformable three-dimensional (3D)/3D registration performed on initial 3D images of different heart phases. This motion information can be used for a motion-compensated reconstruction allowing the use of all acquired data for image reconstruction. However, the result of the registration procedure and hence the estimated deformations are influenced by the quality of the initial 3D images. In this paper, the sensitivity of the 3D/3D registration step to the image quality of the initial images is studied. Different reconstruction algorithms are evaluated for a recently proposed cardiac C-arm CT acquisition protocol. The initial 3D images are all based on retrospective electrocardiogram (ECG)-gated data. ECG-gating of data from a single C-arm rotation provides only a few projections per heart phase for image reconstruction. This view sparsity leads to prominent streak artefacts and a poor signal to noise ratio. Five different initial image reconstructions are evaluated: (1) cone beam filtered-backprojection (FDK), (2) cone beam filtered-backprojection and an additional bilateral filter (FFDK), (3) removal of the shadow of dense objects (catheter, pacing electrode, etc) before reconstruction with a cone beam filtered-backprojection (cathFDK), (4) removal of the shadow of dense objects before reconstruction with a cone beam filtered-backprojection and a bilateral filter (cathFFDK). The last method (5) is an iterative few-view reconstruction (FV), the prior image constrained compressed sensing combined with the improved total variation algorithm. All reconstructions are investigated with respect to the final motion-compensated reconstruction quality. The algorithms were tested on a mathematical

  8. Role of radionuclide cardiac imaging in coronary artery bypass surgery

    SciTech Connect

    Iskandrian, A.S.; Heo, J.; Mostel, E.

    1987-01-01

    The main applications of cardiac nuclear imaging in coronary artery bypass surgery include: patient selection, prediction of improvement in resting LV function after revascularization, diagnosis of perioperative myocardial infarction, assessment of the results of revascularization, evaluation of new or recurrent symptoms, and in risk stratification. Proper understanding of which test to be used, when, and why may be important to optimize patient management.

  9. Towards Depth-Resolved Optical Imaging of Cardiac Electrical Activity.

    PubMed

    Walton, Richard D; Bernus, Olivier

    2015-01-01

    The spatiotemporal dynamics of arrhythmias are likely to be complex three-dimensional phenomena. Yet, the lack of high-resolution three-dimensional imaging techniques, both in the clinic and the experimental lab, limits our ability to better understand the mechanisms of such arrhythmias. Optical mapping using voltage-sensitive dyes is a widely used tool in experimental electrophysiology. It has been known for decades that even in its most basic application, epi-fluorescence, the optical signal contains information from within a certain intramural volume. Understanding of this fundamental property of optical signals has paved the way towards novel three-dimensional optical imaging techniques. Here, we review our current understanding of the three-dimensional nature of optical signals; how penetration depths of cardiac optical imaging can be improved by using novel imaging modalities and finally, we highlight new techniques inspired from optical tomography and aiming at full depth-resolved optical mapping of cardiac electrical activity. PMID:26238062

  10. Intraocular lymphoma after cardiac transplantation: magnetic resonance imaging findings.

    PubMed

    Kim, Yi Kyung; Kim, Hyung-Jin; Woo, Kyung In; Kim, Yoon-Duck

    2013-01-01

    We report a case of intraocular lymphoma in a 65-year-old man, 15 months after cardiac transplantation. On Magnetic Resonance (MR) images, the iris and the anterior chamber of the right eye were found to be involved with an enhancing soft-tissue lesion. To our knowledge, this is the first case of post-transplantation intraocular lymphoma evaluated with MR imaging. PMID:23323042

  11. New methods for image guidance and visualization for cardiac procedures

    NASA Astrophysics Data System (ADS)

    Guttman, Michael A.; McVeigh, Elliot R.

    2007-03-01

    Interventional cardiac MRI has been undergoing rapid development because of the availability of MRI compatible interventional catheters, and the increased performance of the MRI systems. Intravascular techniques do not require an open access scanner, and hence higher imaging performance during procedures can be achieved. Now, with the availability of a short, relatively open cylindrical bore scanner high imaging performance is also available to guide direct surgical procedures.

  12. Gated magnetic resonance imaging of congenital cardiac malformations

    SciTech Connect

    Fletcher, B.D.; Jocobstein, M.D.; Nelson, A.D.; Riemenschneider, T.A.; Alfidi, R.J.

    1984-01-01

    Magnetic resonance (MR) images of a variety of cardiac malformations in 19 patients aged 1 week to 33 years were obtained using pulse plethysmographic- or ECG-gated spin echo pulse sequences. Coronal, axial, and sagittal images displaying intracardiac structures with excellent spatial and contrast resolution were acquired during systole or diastole. It is concluded that MR will be a valuable noninvasive method of diagnosing congenital heart disease.

  13. Temporal resolution improvement using PICCS in MDCT cardiac imaging.

    PubMed

    Chen, Guang-Hong; Tang, Jie; Hsieh, Jiang

    2009-06-01

    The current paradigm for temporal resolution improvement is to add more source-detector units and/or increase the gantry rotation speed. The purpose of this article is to present an innovative alternative method to potentially improve temporal resolution by approximately a factor of 2 for all MDCT scanners without requiring hardware modification. The central enabling technology is a most recently developed image reconstruction method: Prior image constrained compressed sensing (PICCS). Using the method, cardiac CT images can be accurately reconstructed using the projection data acquired in an angular range of about 120 degrees, which is roughly 50% of the standard short-scan angular range (approximately 240 degrees for an MDCT scanner). As a result, the temporal resolution of MDCT cardiac imaging can be universally improved by approximately a factor of 2. In order to validate the proposed method, two in vivo animal experiments were conducted using a state-of-the-art 64-slice CT scanner (GE Healthcare, Waukesha, WI) at different gantry rotation times and different heart rates. One animal was scanned at heart rate of 83 beats per minute (bpm) using 400 ms gantry rotation time and the second animal was scanned at 94 bpm using 350 ms gantry rotation time, respectively. Cardiac coronary CT imaging can be successfully performed at high heart rates using a single-source MDCT scanner and projection data from a single heart beat with gantry rotation times of 400 and 350 ms. Using the proposed PICCS method, the temporal resolution of cardiac CT imaging can be effectively improved by approximately a factor of 2 without modifying any scanner hardware. This potentially provides a new method for single-source MDCT scanners to achieve reliable coronary CT imaging for patients at higher heart rates than the current heart rate limit of 70 bpm without using the well-known multisegment FBP reconstruction algorithm. This method also enables dual-source MDCT scanner to achieve higher

  14. Images as drivers of progress in cardiac computational modelling

    PubMed Central

    Lamata, Pablo; Casero, Ramón; Carapella, Valentina; Niederer, Steve A.; Bishop, Martin J.; Schneider, Jürgen E.; Kohl, Peter; Grau, Vicente

    2014-01-01

    Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved. PMID:25117497

  15. Diagnosing cardiac disease during pregnancy: imaging modalities.

    PubMed

    Ntusi, Ntobeko A; Samuels, Petronella; Moosa, Sulaiman; Mocumbi, Ana O

    2016-01-01

    Pregnant women with known or suspected cardiovascular disease (CVD) often require cardiovascular imaging during pregnancy. The accepted maximum limit of ionising radiation exposure to the foetus during pregnancy is a cumulative dose of 5 rad. Concerns related to imaging modalities that involve ionising radiation include teratogenesis, mutagenesis and childhood malignancy. Importantly, no single imaging study approaches this cautionary dose of 5 rad (50 mSv or 50 mGy). Diagnostic imaging procedures that may be used in pregnancy include chest radiography, fluoroscopy, echocardiography, invasive angiography, cardiovascular computed tomography, computed tomographic pulmonary angiography, cardiovascular magnetic resonance (CMR) and nuclear techniques. Echocardiography and CMR appear to be completely safe in pregnancy and are not associated with any adverse foetal effects, provided there are no general contra-indications to MR imaging. Concerns related to safety of imaging tests must be balanced against the importance of accurate diagnosis and thorough assessment of the pathological condition. Decisions about imaging in pregnancy are premised on understanding the physiology of pregnancy, understanding basic concepts of ionising radiation, the clinical manifestations of existent CVD in pregnancy and features of new CVD. The cardiologist/physician must understand the indications for and limitations of, and the potential harmful effects of each test during pregnancy. Current evidence suggests that a single cardiovascular radiological study during pregnancy is safe and should be undertaken at all times when clinically justified. In this article, the different imaging modalities are reviewed in terms of how they work, how safe they are and what their clinical utility in pregnancy is. Furthermore, the safety of contrast agents in pregnancy is also reviewed. PMID:27213857

  16. An efficient method for accurate segmentation of LV in contrast-enhanced cardiac MR images

    NASA Astrophysics Data System (ADS)

    Suryanarayana K., Venkata; Mitra, Abhishek; Srikrishnan, V.; Jo, Hyun Hee; Bidesi, Anup

    2016-03-01

    Segmentation of left ventricle (LV) in contrast-enhanced cardiac MR images is a challenging task because of high variability in the image intensity. This is due to a) wash-in and wash-out of the contrast agent over time and b) poor contrast around the epicardium (outer wall) region. Current approaches for segmentation of the endocardium (inner wall) usually involve application of a threshold within the region of interest, followed by refinement techniques like active contours. A limitation of this method is under-segmentation of the inner wall because of gradual loss of contrast at the wall boundary. On the other hand, the challenge in outer wall segmentation is the lack of reliable boundaries because of poor contrast. There are four main contributions in this paper to address the aforementioned issues. First, a seed image is selected using variance based approach on 4D time-frame images over which initial endocardium and epicardium is segmented. Secondly, we propose a patch based feature which overcomes the problem of gradual contrast loss for LV endocardium segmentation. Third, we propose a novel Iterative-Edge-Refinement (IER) technique for epicardium segmentation. Fourth, we propose a greedy search algorithm for propagating the initial contour segmented on seed-image across other time frame images. We have experimented our technique on five contrast-enhanced cardiac MR Datasets (4D) having a total of 1097 images. The segmentation results for all 1097 images have been visually inspected by a clinical expert and have shown good accuracy.

  17. Automatic detection of cardiac contours on MR images using fuzzy logic and dynamic programming.

    PubMed

    Lalande, A; Legrand, L; Walker, P M; Jaulent, M C; Guy, F; Cottin, Y; Brunotte, F

    1997-01-01

    This paper deals with the use of fuzzy logic and dynamic programming in the detection of cardiac contours in MR Images. The definition of two parameters for each pixel allows the construction of the fuzzy set of the cardiac contour points. The first parameter takes into account the grey level, and the second the presence of an edge. A corresponding fuzzy matrix is derived from the initial image. Finally, a dynamic programming with graph searching is performed on this fuzzy matrix. The method has been tested on several MR images and the results of the contouring were validated by an expert in the domain. This preliminary work clearly demonstrates the interest of this method, although a formal evaluation has to be done.

  18. Multimodality cardiac imaging in Turner syndrome.

    PubMed

    Mortensen, Kristian H; Gopalan, Deepa; Nørgaard, Bjarne L; Andersen, Niels H; Gravholt, Claus H

    2016-06-01

    Congenital and acquired cardiovascular diseases contribute significantly to the threefold elevated risk of premature death in Turner syndrome. A multitude of cardiovascular anomalies and disorders, many of which deleteriously impact morbidity and mortality, is frequently left undetected and untreated because of poor adherence to screening programmes and complex clinical presentations. Imaging is essential for timely and effective primary and secondary disease prophylaxis that may alleviate the severe impact of cardiovascular disease in Turner syndrome. This review illustrates how cardiovascular disease in Turner syndrome manifests in a complex manner that ranges in severity from incidental findings to potentially fatal anomalies. Recommendations regarding the use of imaging for screening and surveillance of cardiovascular disease in Turner syndrome are made, emphasising the key role of non-invasive and invasive cardiovascular imaging to the management of all patients with Turner syndrome.

  19. Cardiac anisotropy: is it negligible regarding noninvasive activation time imaging?

    PubMed

    Modre, Robert; Seger, Michael; Fischer, Gerald; Hintermüller, Christoph; Hayn, Dieter; Pfeifer, Bernhard; Hanser, Friedrich; Schreier, Günter; Tilg, Bernhard

    2006-04-01

    The aim of this study was to quantify the effect of cardiac anisotropy in the activation-based inverse problem of electrocardiography. Differences of the patterns of simulated body surface potential maps for isotropic and anisotropic conditions were investigated with regard to activation time (AT) imaging of ventricular depolarization. AT maps were estimated by solving the nonlinear inverse ill-posed problem employing spatio-temporal regularization. Four different reference AT maps (sinus rhythm, right-ventricular and septal pacing, accessory pathway) were calculated with a bidomain theory based anisotropic finite-element heart model in combination with a cellular automaton. In this heart model a realistic fiber architecture and conduction system was implemented. Although the anisotropy has some effects on forward solutions, effects on inverse solutions are small indicating that cardiac anisotropy might be negligible for some clinical applications (e.g., imaging of focal events) of our AT imaging approach. The main characteristic events of the AT maps were estimated despite neglected electrical anisotropy in the inverse formulation. The worst correlation coefficient of the estimated AT maps was 0.810 in case of sinus rhythm. However, all characteristic events of the activation pattern were found. The results of this study confirm our clinical validation studies of noninvasive AT imaging in which cardiac anisotropy was neglected.

  20. Automated Pointing of Cardiac Imaging Catheters

    PubMed Central

    Loschak, Paul M.; Brattain, Laura J.; Howe, Robert D.

    2013-01-01

    Intracardiac echocardiography (ICE) catheters enable high-quality ultrasound imaging within the heart, but their use in guiding procedures is limited due to the difficulty of manually pointing them at structures of interest. This paper presents the design and testing of a catheter steering model for robotic control of commercial ICE catheters. The four actuated degrees of freedom (4-DOF) are two catheter handle knobs to produce bi-directional bending in combination with rotation and translation of the handle. An extra degree of freedom in the system allows the imaging plane (dependent on orientation) to be directed at an object of interest. A closed form solution for forward and inverse kinematics enables control of the catheter tip position and the imaging plane orientation. The proposed algorithms were validated with a robotic test bed using electromagnetic sensor tracking of the catheter tip. The ability to automatically acquire imaging targets in the heart may improve the efficiency and effectiveness of intracardiac catheter interventions by allowing visualization of soft tissue structures that are not visible using standard fluoroscopic guidance. Although the system has been developed and tested for manipulating ICE catheters, the methods described here are applicable to any long thin tendon-driven tool (with single or bi-directional bending) requiring accurate tip position and orientation control. PMID:24683501

  1. Automated Pointing of Cardiac Imaging Catheters.

    PubMed

    Loschak, Paul M; Brattain, Laura J; Howe, Robert D

    2013-12-31

    Intracardiac echocardiography (ICE) catheters enable high-quality ultrasound imaging within the heart, but their use in guiding procedures is limited due to the difficulty of manually pointing them at structures of interest. This paper presents the design and testing of a catheter steering model for robotic control of commercial ICE catheters. The four actuated degrees of freedom (4-DOF) are two catheter handle knobs to produce bi-directional bending in combination with rotation and translation of the handle. An extra degree of freedom in the system allows the imaging plane (dependent on orientation) to be directed at an object of interest. A closed form solution for forward and inverse kinematics enables control of the catheter tip position and the imaging plane orientation. The proposed algorithms were validated with a robotic test bed using electromagnetic sensor tracking of the catheter tip. The ability to automatically acquire imaging targets in the heart may improve the efficiency and effectiveness of intracardiac catheter interventions by allowing visualization of soft tissue structures that are not visible using standard fluoroscopic guidance. Although the system has been developed and tested for manipulating ICE catheters, the methods described here are applicable to any long thin tendon-driven tool (with single or bi-directional bending) requiring accurate tip position and orientation control.

  2. Translational Paradigms in Scientific and Clinical Imaging of Cardiac Development

    PubMed Central

    Gregg, Chelsea L.; Butcher, Jonathan T.

    2015-01-01

    Congenital heart defects (CHD) are the most prevalent congenital disease with 45% of deaths resulting from a congenital defect are due to a cardiac malformation. Clinically significant CHD permit survival upon birth but may become immediately life threatening. Advances in surgical intervention have significantly reduced perinatal mortality, but the outcome for many malformations is bleak. Furthermore, patients living while tolerating a CHD often acquire additional complications due to the long-term systemic blood flow changes caused by even subtle anatomical abnormalities. Accurate diagnosis of defects during fetal development is critical for interventional planning and improving patient outcomes. Advances in quantitative, multi-dimensional imaging is necessary to uncover the basic scientific and clinically relevant morphogenetic changes and associated hemodynamic consequences influencing normal and abnormal heart development. Ultrasound is the most widely used clinical imaging technology for assessing fetal cardiac development. Ultrasound-based fetal assessment modalities include M-mode, 2D, and 3D/4D imaging. These datasets can be combined with computational fluid dynamics analysis to yield quantitative, volumetric and physiological data. Additional imaging modalities, however are available to study basic mechanisms of cardiogenesis, including optical coherence tomography, micro-computed tomography, and magnetic resonance imaging. Each imaging technology has its advantages and disadvantages regarding resolution, depth of penetration, soft tissue contrast considerations, and cost. In this review, we analyze the current clinical and scientific imaging technologies, research studies utilizing them, and appropriate animal models reflecting clinically relevant cardiogenesis and cardiac malformations. We conclude with discussing the translational impact and future opportunities for cardiovascular development imaging research. PMID:23897595

  3. Automatic image-based cardiac and respiratory cycle synchronization and gating of image sequences.

    PubMed

    Sundar, Hari; Khamene, Ali; Yatziv, Liron; Xu, Chenyang

    2009-01-01

    We propose a novel method to detect the current state of the quasi-periodic system from image sequences which in turn will enable us to synchronize/gate the image sequences to obtain images of the organ system at similar configurations. The method uses the cumulated phase shift in the spectral domain of successive image frames as a measure of the net motion of objects in the scene. The proposed method is applicable to 2D and 3D time varying sequences and is not specific to the imaging modality. We demonstrate its effectiveness on X-Ray Angiographic and Cardiac and Liver Ultrasound sequences. Knowledge of the current (cardiac or respiratory) phase of the system, opens up the possibility for a purely image based cardiac and respiratory gating scheme for interventional and radiotherapy procedures.

  4. Cardiac imaging in evaluating patients prone to sudden death

    PubMed Central

    Tamene, Ashenafi; Tholakanahalli, Venkatakrishna N.; Chandrashekhar, Y.

    2014-01-01

    Identifying subjects who are at risk for SCD and stratifying them correctly into low or high-risk groups is the holy grail of Cardiology. While imaging shows a lot of promise, it is plagued by the fact that most SCD occurs in relatively healthy subjects, a massive group who would not ordinarily be subjected to imaging. Left ventricular ejection fraction (LVEF) currently is our primary parameter for risk stratification for sudden cardiac death but is a poor marker with low sensitivity and specificity. Current data shows that sophisticated imaging with techniques, mainly Cardiac magnetic resonance Imaging (CMR), have the potential to identify novel high-risk markers underlying SCD, beyond ejection fraction. Imaging seems to further refine risk in patients with low LVEF as well as in those with normal EF; this is a major strength of advanced imaging. Clinical application has been slow and not fully prime time. It is important to remember that while promising, imaging techniques including CMR, have not been tested in rigorous prospective studies and thus have not as yet replaced EF as the gatekeeper to ICD implantation. PMID:24568832

  5. An integrated platform for image-guided cardiac resynchronization therapy

    NASA Astrophysics Data System (ADS)

    Ma, Ying Liang; Shetty, Anoop K.; Duckett, Simon; Etyngier, Patrick; Gijsbers, Geert; Bullens, Roland; Schaeffter, Tobias; Razavi, Reza; Rinaldi, Christopher A.; Rhode, Kawal S.

    2012-05-01

    Cardiac resynchronization therapy (CRT) is an effective procedure for patients with heart failure but 30% of patients do not respond. This may be due to sub-optimal placement of the left ventricular (LV) lead. It is hypothesized that the use of cardiac anatomy, myocardial scar distribution and dyssynchrony information, derived from cardiac magnetic resonance imaging (MRI), may improve outcome by guiding the physician for optimal LV lead positioning. Whole heart MR data can be processed to yield detailed anatomical models including the coronary veins. Cine MR data can be used to measure the motion of the LV to determine which regions are late-activating. Finally, delayed Gadolinium enhancement imaging can be used to detect regions of scarring. This paper presents a complete platform for the guidance of CRT using pre-procedural MR data combined with live x-ray fluoroscopy. The platform was used for 21 patients undergoing CRT in a standard catheterization laboratory. The patients underwent cardiac MRI prior to their procedure. For each patient, a MRI-derived cardiac model, showing the LV lead targets, was registered to x-ray fluoroscopy using multiple views of a catheter looped in the right atrium. Registration was maintained throughout the procedure by a combination of C-arm/x-ray table tracking and respiratory motion compensation. Validation of the registration between the three-dimensional (3D) roadmap and the 2D x-ray images was performed using balloon occlusion coronary venograms. A 2D registration error of 1.2 ± 0.7 mm was achieved. In addition, a novel navigation technique was developed, called Cardiac Unfold, where an entire cardiac chamber is unfolded from 3D to 2D along with all relevant anatomical and functional information and coupled to real-time device detection. This allowed more intuitive navigation as the entire 3D scene was displayed simultaneously on a 2D plot. The accuracy of the unfold navigation was assessed off-line using 13 patient data sets

  6. [Recommendations for training in cross-sectional cardiac imaging].

    PubMed

    Joffre, F; Boyer, L; Dacher, J-N; Gilard, M; Douek, P; Gueret, P

    2009-09-01

    The recent and future advancements that are known in the field of cardiac imaging imply an optimal training of the operators. This training concerns medical specialists whether originating from radiology or cardiology. The training of the medical specialists in cardiac imaging entitles 3 main essential steps: The basic training taking place within each specialty, allowing the fellow to get acquainted with the clinical and technical basics. The specialized training, delivered principally in post-residency. This training must include an upgrading of each specialty in the domain that does not concern it (a technical base for the cardiologist, a physio-pathological and clinical base for the radiologist). It must include a specific theoretical training covering all aspects of cardiac imaging as well as practical training in a certified training centre. The continuous medical training and maintenance of skills that allow a sustained activity in the field and the obligation to regularly participate in the actions of specific validated training. The different aspects of these rules are exposed in this chapter.

  7. Cardiac Magnetic Resonance Imaging in Ischemic Heart Disease

    PubMed Central

    Florian, A.; Jurcut, R.; Ginghina, C.; Bogaert, J.

    2011-01-01

    Cardiac magnetic resonance imaging (MRI) has emerged as a prime player in the clinical and preclinical detection of ischemic heart disease (IHD) as well in the prognosis assessment by offering a comprehensive approach for all spectrums of coronary artery disease (CAD) patients. The aim of this review is to provide the reader a state–of–the art on how the newest cardiac MRI techniques can be used to study IHD patients. In patients with suspected/stable CAD, functional and perfusion imaging both at rest and during vasodilatatory stress (adenosine, dypiridamole)/dobutamine stress can accurately depict ischemic myocardium secondary to significant coronary artery stenosis. In patients with acute MI, MRI is a robust tool for differentiating and sizing the jeopardized and the infarcted myocardium by using a combination of functional, edema, perfusion and Gd contrast imaging. Moreover, important prognostic factors like myocardial salvage, the presence of microvascular obstruction (MVO), post reperfusion myocardial hemorrhage, RV involvement and infarct related complications can be assessed in the same examination. In patients with chronic ischemic cardiomyopathy, the role of the MRI extends from diagnosis by means of Gadolinium contrast scar imaging to therapy and prognosis by functional assessment and viability testing with rest and dobutamine stress imaging. In all the circumstances mentioned, MRI derived information has been proven valuable in every day clinical decision making and prognosis assessment. Thus, MRI is becoming more and more an accepted alternative to other imaging modalities both in the acute and chronic setting. PMID:22514564

  8. The risks of inappropriateness in cardiac imaging.

    PubMed

    Picano, Eugenio

    2009-05-01

    The immense clinical and scientific benefits of cardiovascular imaging are well-established, but are also true that 30 to 50% of all examinations are partially or totally inappropriate. Marketing messages, high patient demand and defensive medicine, lead to the vicious circle of the so-called Ulysses syndrome. Mr. Ulysses, a typical middle-aged "worried-well" asymptomatic subject with an A-type coronary personality, a heavy (opium) smoker, leading a stressful life, would be advised to have a cardiological check-up after 10 years of war. After a long journey across imaging laboratories, he will have stress echo, myocardial perfusion scintigraphy, PET-CT, 64-slice CT, and adenosine-MRI performed, with a cumulative cost of >100 times a simple exercise-electrocardiography test and a cumulative radiation dose of >4,000 chest x-rays, with a cancer risk of 1 in 100. Ulysses is tired of useless examinations, exorbitant costs. unaffordable even by the richest society, and unacceptable risks. PMID:19543412

  9. The risks of inappropriateness in cardiac imaging.

    PubMed

    Picano, Eugenio

    2009-05-01

    The immense clinical and scientific benefits of cardiovascular imaging are well-established, but are also true that 30 to 50% of all examinations are partially or totally inappropriate. Marketing messages, high patient demand and defensive medicine, lead to the vicious circle of the so-called Ulysses syndrome. Mr. Ulysses, a typical middle-aged "worried-well" asymptomatic subject with an A-type coronary personality, a heavy (opium) smoker, leading a stressful life, would be advised to have a cardiological check-up after 10 years of war. After a long journey across imaging laboratories, he will have stress echo, myocardial perfusion scintigraphy, PET-CT, 64-slice CT, and adenosine-MRI performed, with a cumulative cost of >100 times a simple exercise-electrocardiography test and a cumulative radiation dose of >4,000 chest x-rays, with a cancer risk of 1 in 100. Ulysses is tired of useless examinations, exorbitant costs. unaffordable even by the richest society, and unacceptable risks.

  10. Nuclear magnetic resonance imaging in patients with cardiac pacing devices.

    PubMed

    Buendía, Francisco; Sánchez-Gómez, Juan M; Sancho-Tello, María J; Olagüe, José; Osca, Joaquín; Cano, Oscar; Arnau, Miguel A; Igual, Begoña

    2010-06-01

    Currently, nuclear magnetic resonance imaging is contraindicated in patients with a pacemaker or implantable cardioverter-defibrillator. This study was carried out because the potential risks in this situation need to be clearly defined. This prospective study evaluated clinical and electrical parameters before and after magnetic resonance imaging was performed in 33 patients (five with implantable cardioverter-defibrillators and 28 with pacemakers). In these patients, magnetic resonance imaging was considered clinically essential. There were no clinical complications. There was a temporary communication failure in two cases, sensing errors during imaging in two cases, and a safety signal was generated in one pacemaker at the maximum magnetic resonance frequency and output level. There were no technical restrictions on imaging nor were there any permanent changes in the performance of the cardiac pacing device. PMID:20515632

  11. Imaging cardiac activation sequence during ventricular tachycardia in a canine model of nonischemic heart failure.

    PubMed

    Han, Chengzong; Pogwizd, Steven M; Yu, Long; Zhou, Zhaoye; Killingsworth, Cheryl R; He, Bin

    2015-01-15

    Noninvasive cardiac activation imaging of ventricular tachycardia (VT) is important in the clinical diagnosis and treatment of arrhythmias in heart failure (HF) patients. This study investigated the ability of the three-dimensional cardiac electrical imaging (3DCEI) technique for characterizing the activation patterns of spontaneously occurring and norepinephrine (NE)-induced VTs in a newly developed arrhythmogenic canine model of nonischemic HF. HF was induced by aortic insufficiency followed by aortic constriction in three canines. Up to 128 body-surface ECGs were measured simultaneously with bipolar recordings from up to 232 intramural sites in a closed-chest condition. Data analysis was performed on the spontaneously occurring VTs (n=4) and the NE-induced nonsustained VTs (n=8) in HF canines. Both spontaneously occurring and NE-induced nonsustained VTs initiated by a focal mechanism primarily from the subendocardium, but occasionally from the subepicardium of left ventricle. Most focal initiation sites were located at apex, right ventricular outflow tract, and left lateral wall. The NE-induced VTs were longer, more rapid, and had more focal sites than the spontaneously occurring VTs. Good correlation was obtained between imaged activation sequence and direct measurements (averaged correlation coefficient of ∼0.70 over 135 VT beats). The reconstructed initiation sites were ∼10 mm from measured initiation sites, suggesting good localization in such a large animal model with cardiac size similar to a human. Both spontaneously occurring and NE-induced nonsustained VTs had focal initiation in this canine model of nonischemic HF. 3DCEI is feasible to image the activation sequence and help define arrhythmia mechanism of nonischemic HF-associated VTs. PMID:25416188

  12. Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion

    DOEpatents

    Boutchko, Rostyslav; Balakrishnan, Karthikayan; Gullberg, Grant T; O& #x27; Neil, James P

    2013-09-17

    A human torso phantom and its construction, wherein the phantom mimics respiratory and cardiac cycles in a human allowing acquisition of medical imaging data under conditions simulating patient cardiac and respiratory motion.

  13. Optical Imaging of Voltage and Calcium in Cardiac Cells & Tissues

    PubMed Central

    Herron, Todd J.; Lee, Peter; Jalife, José

    2012-01-01

    Cardiac optical mapping has proven to be a powerful technology for studying cardiovascular function and disease. The development and scientific impact of this methodology are well documented. Because of its relevance in cardiac research, this imaging technology advances at a rapid pace. Here we review technological and scientific developments during the past several years and look also towards the future. First we explore key components of a modern optical mapping setup, focusing on 1) new camera technologies, 2) powerful light-emitting-diodes (from ultraviolet to red) for illumination, 3) improved optical filter technology, 4) new synthetic and optogenetic fluorescent probes, 5) optical mapping with motion and contraction, 6) new multi-parametric optical mapping techniques and 7) photon scattering effects in thick tissue preparations. We then look at recent optical mapping studies in single cells, cardiomyocyte monolayers, atria and whole hearts. Finally, we briefly look into the possible future roles of optical mapping in the development of regenerative cardiac research, cardiac cell therapies, and molecular genetic advances. PMID:22343556

  14. Color Doppler Imaging of Cardiac Catheters Using Vibrating Motors

    PubMed Central

    Reddy, Kalyan E.; Light, Edward D.; Rivera, Danny J.; Kisslo, Joseph A.; Smith, Stephen W.

    2010-01-01

    We attached a miniature motor rotating at 11,000 rpm onto the proximal end of cardiac electrophysiological (EP) catheters in order to produce vibrations at the tip which were then visualized by color Doppler on ultrasound scanners. We imaged the catheter tip within a vascular graft submerged in a water tank using the Volumetrics Medical Imaging 3D scanner, the Siemens Sonoline Antares 2D scanner, and the Philips ie33 3D ultrasound scanner with TEE probe. The vibrating catheter tip was visualized in each case though results varied with the color Doppler properties of the individual scanner. PMID:19514134

  15. Autopsy imaging for cardiac tamponade in a Thoroughbred foal

    PubMed Central

    YAMADA, Kazutaka; SATO, Fumio; HORIUCHI, Noriyuki; HIGUCHI, Tohru; KOBAYASHI, Yoshiyasu; SASAKI, Naoki; NAMBO, Yasuo

    2016-01-01

    ABSTRACT Autopsy imaging (Ai), postmortem imaging before necropsy, is used in human forensic medicine. Ai was performed using computed tomography (CT) for a 1-month-old Thoroughbred foal cadaver found in a pasture. CT revealed pericardial effusion, collapse of the aorta, bleeding in the lung lobe, gas in the ventricles and liver parenchyma, and distension of the digestive tract. Rupture in the left auricle was confirmed by necropsy; however, it was not depicted on CT. Therefore, Ai and conventional necropsy are considered to complement each other. The cause of death was determined to be traumatic cardiac tamponade. In conclusion, Ai is an additional option for determining cause of death. PMID:27703406

  16. Gated cardiac scanning using limited-angle image reconstruction technique and information in the neighboring phases

    SciTech Connect

    Tam, K.C.; MacDonald, B.; Perez-Mendez, V.

    1984-02-01

    It is known that there are gaps in scan angle in gated cardiac scanning due to lack of synchronization between heart beat and CT machine rotation. The missing projections in these gaps result in artifacts in the reconstructed images. In a previous paper an iterative limited-angle reconstruction technique was employed to fill in the missing projections to remove the artifacts. It was found there that the root-mean-square errors of the limited-angle images were reduced to a level comparable to those of reconstructions using complete-angle information. In the present paper the results are further improved by using the scans of a neighboring portion of the cardiac cycle as a first estimate of the missing scans in the phase of interest when initializing the iterations. Such a modification provides a better starting point for the iterations.

  17. Cardiac image modelling: Breadth and depth in heart disease.

    PubMed

    Suinesiaputra, Avan; McCulloch, Andrew D; Nash, Martyn P; Pontre, Beau; Young, Alistair A

    2016-10-01

    With the advent of large-scale imaging studies and big health data, and the corresponding growth in analytics, machine learning and computational image analysis methods, there are now exciting opportunities for deepening our understanding of the mechanisms and characteristics of heart disease. Two emerging fields are computational analysis of cardiac remodelling (shape and motion changes due to disease) and computational analysis of physiology and mechanics to estimate biophysical properties from non-invasive imaging. Many large cohort studies now underway around the world have been specifically designed based on non-invasive imaging technologies in order to gain new information about the development of heart disease from asymptomatic to clinical manifestations. These give an unprecedented breadth to the quantification of population variation and disease development. Also, for the individual patient, it is now possible to determine biophysical properties of myocardial tissue in health and disease by interpreting detailed imaging data using computational modelling. For these population and patient-specific computational modelling methods to develop further, we need open benchmarks for algorithm comparison and validation, open sharing of data and algorithms, and demonstration of clinical efficacy in patient management and care. The combination of population and patient-specific modelling will give new insights into the mechanisms of cardiac disease, in particular the development of heart failure, congenital heart disease, myocardial infarction, contractile dysfunction and diastolic dysfunction.

  18. Following one's heart: cardiac rhythms gate central initiation of sympathetic reflexes.

    PubMed

    Gray, Marcus A; Rylander, Karin; Harrison, Neil A; Wallin, B Gunnar; Critchley, Hugo D

    2009-02-11

    Central nervous processing of environmental stimuli requires integration of sensory information with ongoing autonomic control of cardiovascular function. Rhythmic feedback of cardiac and baroreceptor activity contributes dynamically to homeostatic autonomic control. We examined how the processing of brief somatosensory stimuli is altered across the cardiac cycle to evoke differential changes in bodily state. Using functional magnetic resonance imaging of brain and noninvasive beat-to-beat cardiovascular monitoring, we show that stimuli presented before and during early cardiac systole elicited differential changes in neural activity within amygdala, anterior insula and pons, and engendered different effects on blood pressure. Stimulation delivered during early systole inhibited blood pressure increases. Individual differences in heart rate variability predicted magnitude of differential cardiac timing responses within periaqueductal gray, amygdala and insula. Our findings highlight integration of somatosensory and phasic baroreceptor information at cortical, limbic and brainstem levels, with relevance to mechanisms underlying pain control, hypertension and anxiety. PMID:19211888

  19. Cardiac gating with a pulse oximeter for dual-energy imaging

    NASA Astrophysics Data System (ADS)

    Shkumat, N. A.; Siewerdsen, J. H.; Dhanantwari, A. C.; Williams, D. B.; Paul, N. S.; Yorkston, J.; Van Metter, R.

    2008-11-01

    The development and evaluation of a prototype cardiac gating system for double-shot dual-energy (DE) imaging is described. By acquiring both low- and high-kVp images during the resting phase of the cardiac cycle (diastole), heart misalignment between images can be reduced, thereby decreasing the magnitude of cardiac motion artifacts. For this initial implementation, a fingertip pulse oximeter was employed to measure the peripheral pulse waveform ('plethysmogram'), offering potential logistic, cost and workflow advantages compared to an electrocardiogram. A gating method was developed that accommodates temporal delays due to physiological pulse propagation, oximeter waveform processing and the imaging system (software, filter-wheel, anti-scatter Bucky-grid and flat-panel detector). Modeling the diastolic period allowed the calculation of an implemented delay, timp, required to trigger correctly during diastole at any patient heart rate (HR). The model suggests a triggering scheme characterized by two HR regimes, separated by a threshold, HRthresh. For rates at or below HRthresh, sufficient time exists to expose on the same heartbeat as the plethysmogram pulse [timp(HR) = 0]. Above HRthresh, a characteristic timp(HR) delays exposure to the subsequent heartbeat, accounting for all fixed and variable system delays. Performance was evaluated in terms of accuracy and precision of diastole-trigger coincidence and quantitative evaluation of artifact severity in gated and ungated DE images. Initial implementation indicated 85% accuracy in diastole-trigger coincidence. Through the identification of an improved HR estimation method (modified temporal smoothing of the oximeter waveform), trigger accuracy of 100% could be achieved with improved precision. To quantify the effect of the gating system on DE image quality, human observer tests were conducted to measure the magnitude of cardiac artifact under conditions of successful and unsuccessful diastolic gating. Six observers

  20. Cardiac MR imaging: current status and future direction

    PubMed Central

    Van, Tu Anh; Krug, Roland; Hetts, Steven W.; Wilson, Mark W.

    2015-01-01

    Coronary artery disease is currently a worldwide epidemic with increasing impact on healthcare systems. Magnetic resonance imaging (MRI) sequences give complementary information on LV function, regional perfusion, angiogenesis, myocardial viability and orientations of myocytes. T2-weighted short-tau inversion recovery (T2-STIR), fat suppression and black blood sequences have been frequently used for detecting edematous area at risk (AAR) of infarction. T2 mapping, however, indicated that the edematous reaction in acute myocardial infarct (AMI) is not stable and warranted the use of edematous area in evaluating therapies. On the other hand, cine MRI demonstrated reproducible data on LV function in healthy volunteers and LV remodeling in patients. Noninvasive first pass perfusion, using exogenous tracer (gadolinium-based contrast media) and arterial spin labeling MRI, using endogenous tracer (water), are sensitive and useful techniques for evaluating myocardial perfusion and angiogenesis. Recently, new strategies have been developed to quantify myocardial viability using T1-mapping and equilibrium contrast enhanced MR techniques because existing delayed contrast enhancement MRI (DE-MRI) sequences are limited in detecting patchy microinfarct and diffuse fibrosis. These new techniques were successfully used for characterizing diffuse myocardial fibrosis associated with myocarditis, amyloidosis, sarcoidosis heart failure, aortic hypertrophic cardiomyopathy, congenital heart disease, restrictive cardiomyopathy, arrhythmogenic right ventricular dysplasia and hypertension). Diffusion MRI provides information regarding microscopic tissue structure, while diffusion tensor imaging (DTI) helps to characterize the myocardium and monitor the process of LV remodeling after AMI. Novel trends in hybrid imaging, such as cardiac positron emission tomography (PET)/MRI and optical imaging/MRI, are recently under intensive investigation. With the promise of higher spatial

  1. High-performance web viewer for cardiac images

    NASA Astrophysics Data System (ADS)

    dos Santos, Marcelo; Furuie, Sergio S.

    2004-04-01

    With the advent of the digital devices for medical diagnosis the use of the regular films in radiology has decreased. Thus, the management and handling of medical images in digital format has become an important and critical task. In Cardiology, for example, the main difficulty is to display dynamic images with the appropriated color palette and frame rate used on acquisition process by Cath, Angio and Echo systems. In addition, other difficulty is handling large images in memory by any existing personal computer, including thin clients. In this work we present a web-based application that carries out these tasks with robustness and excellent performance, without burdening the server and network. This application provides near-diagnostic quality display of cardiac images stored as DICOM 3.0 files via a web browser and provides a set of resources that allows the viewing of still and dynamic images. It can access image files from the local disks, or network connection. Its features include: allows real-time playback, dynamic thumbnails image viewing during loading, access to patient database information, image processing tools, linear and angular measurements, on-screen annotations, image printing and exporting DICOM images to other image formats, and many others, all characterized by a pleasant user-friendly interface, inside a Web browser by means of a Java application. This approach offers some advantages over the most of medical images viewers, such as: facility of installation, integration with other systems by means of public and standardized interfaces, platform independence, efficient manipulation and display of medical images, all with high performance.

  2. Rapid Circular Tomography System Suitable For Cardiac Imaging

    NASA Astrophysics Data System (ADS)

    Kruger, R. A.; Sorensor, J. A.; Boye, J. R.; Conrad, J.; Ric, S. P. D.; Yih, B. C.; Liu, P.

    1985-06-01

    Tomographic DSA (digital subtraction angiography) can be used to improve the image quality that results from intravenous angiographic studies of relatively stationary arterial anatomy. While DSA removes much of the non-opacified anatomy, tomographic blurring reduces both the severity of patient motion artefacts and the confusion introduced by overlapping vascular anatomy. For this purpose a conventional longitudinal tomography device to which an image intensifier and television has been added can be used. However, such an apparatus is inadequate for cardiac imaging due to the slow speed of the tomographic motion. A tomographic system consisting of a rotating focal spot x-ray tube and an image intensifier, modified to allow electronic image scanning, is proposed. After this device is constructed it will be possible to acquire tomographic images of the beating heart in as little as .005-.010 seconds. When combined with image subtraction it is anticipated that the quality of intravenous coronary angiograms will be improved in much the same way that tomographic DSA improves image quality in many of the other arteries of the body.

  3. Myocardial Infarct Segmentation from Magnetic Resonance Images for Personalized Modeling of Cardiac Electrophysiology

    PubMed Central

    Ukwatta, Eranga; Arevalo, Hermenegild; Li, Kristina; Yuan, Jing; Qiu, Wu; Malamas, Peter; Wu, Katherine C.

    2016-01-01

    Accurate representation of myocardial infarct geometry is crucial to patient-specific computational modeling of the heart in ischemic cardiomyopathy. We have developed a methodology for segmentation of left ventricular (LV) infarct from clinically acquired, two-dimensional (2D), late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) images, for personalized modeling of ventricular electrophysiology. The infarct segmentation was expressed as a continuous min-cut optimization problem, which was solved using its dual formulation, the continuous max-flow (CMF). The optimization objective comprised of a smoothness term, and a data term that quantified the similarity between image intensity histograms of segmented regions and those of a set of training images. A manual segmentation of the LV myocardium was used to initialize and constrain the developed method. The three-dimensional geometry of infarct was reconstructed from its segmentation using an implicit, shape-based interpolation method. The proposed methodology was extensively evaluated using metrics based on geometry, and outcomes of individualized electrophysiological simulations of cardiac dys(function). Several existing LV infarct segmentation approaches were implemented, and compared with the proposed method. Our results demonstrated that the CMF method was more accurate than the existing approaches in reproducing expert manual LV infarct segmentations, and in electrophysiological simulations. The infarct segmentation method we have developed and comprehensively evaluated in this study constitutes an important step in advancing clinical applications of personalized simulations of cardiac electrophysiology. PMID:26731693

  4. Myocardial Infarct Segmentation From Magnetic Resonance Images for Personalized Modeling of Cardiac Electrophysiology.

    PubMed

    Ukwatta, Eranga; Arevalo, Hermenegild; Li, Kristina; Yuan, Jing; Qiu, Wu; Malamas, Peter; Wu, Katherine C; Trayanova, Natalia A; Vadakkumpadan, Fijoy

    2016-06-01

    Accurate representation of myocardial infarct geometry is crucial to patient-specific computational modeling of the heart in ischemic cardiomyopathy. We have developed a methodology for segmentation of left ventricular (LV) infarct from clinically acquired, two-dimensional (2D), late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) images, for personalized modeling of ventricular electrophysiology. The infarct segmentation was expressed as a continuous min-cut optimization problem, which was solved using its dual formulation, the continuous max-flow (CMF). The optimization objective comprised of a smoothness term, and a data term that quantified the similarity between image intensity histograms of segmented regions and those of a set of training images. A manual segmentation of the LV myocardium was used to initialize and constrain the developed method. The three-dimensional geometry of infarct was reconstructed from its segmentation using an implicit, shape-based interpolation method. The proposed methodology was extensively evaluated using metrics based on geometry, and outcomes of individualized electrophysiological simulations of cardiac dys(function). Several existing LV infarct segmentation approaches were implemented, and compared with the proposed method. Our results demonstrated that the CMF method was more accurate than the existing approaches in reproducing expert manual LV infarct segmentations, and in electrophysiological simulations. The infarct segmentation method we have developed and comprehensively evaluated in this study constitutes an important step in advancing clinical applications of personalized simulations of cardiac electrophysiology. PMID:26731693

  5. Towards robust specularity detection and inpainting in cardiac images

    NASA Astrophysics Data System (ADS)

    Alsaleh, Samar M.; Aviles, Angelica I.; Sobrevilla, Pilar; Casals, Alicia; Hahn, James

    2016-03-01

    Computer-assisted cardiac surgeries had major advances throughout the years and are gaining more popularity over conventional cardiac procedures as they offer many benefits to both patients and surgeons. One obvious advantage is that they enable surgeons to perform delicate tasks on the heart while it is still beating, avoiding the risks associated with cardiac arrest. Consequently, the surgical system needs to accurately compensate the physiological motion of the heart which is a very challenging task in medical robotics since there exist different sources of disturbances. One of which is the bright light reflections, known as specular highlights, that appear on the glossy surface of the heart and partially occlude the field of view. This work is focused on developing a robust approach that accurately detects and removes those highlights to reduce their disturbance to the surgeon and the motion compensation algorithm. As a first step, we exploit both color attributes and Fuzzy edge detector to identify specular regions in each acquired image frame. These two techniques together work as restricted thresholding and are able to accurately identify specular regions. Then, in order to eliminate the specularity artifact and give the surgeon a better perception of the heart, the second part of our solution is dedicated to correct the detected regions using inpainting to propagate and smooth the results. Our experimental results, which we carry out in realistic datasets, reveal how efficient and precise the proposed solution is, as well as demonstrate its robustness and real-time performance.

  6. Wide coverage by volume CT: benefits for cardiac imaging

    NASA Astrophysics Data System (ADS)

    Sablayrolles, Jean-Louis; Cesmeli, Erdogan; Mintandjian, Laura; Adda, Olivier; Dessalles-Martin, Diane

    2005-04-01

    With the development of new technologies, computed tomography (CT) is becoming a strong candidate for non-invasive imaging based tool for cardiac disease assessment. One of the challenges of cardiac CT is that a typical scan involves a breath hold period consisting of several heartbeats, about 20 sec with scanners having a longitudinal coverage of 2 cm, and causing the image quality (IQ) to be negatively impacted since beat to beat variation is high likely to occur without any medication, e.g. beta blockers. Because of this and the preference for shorter breath hold durations, a CT scanner with a wide coverage without the compromise in the spatial and temporal resolution of great clinical value. In this study, we aimed at determining the optimum scan duration and the delay relative to beginning of breath hold, to achieve high IQ. We acquired EKG data from 91 consecutive patients (77 M, 14 F; Age: 57 +/- 14) undergoing cardiac CT exams with contrast, performed on LightSpeed 16 and LightSpeed Pro16. As an IQ metric, we adopted the standard deviation of "beat-to-beat variation" (stdBBV) within a virtual scan period. Two radiologists evaluated images by assigning a score of 1 (worst) to 4 best). We validated stdBBV with the radiologist scores, which resulted in a population distribution of 9.5, 9.5, 31, and 50% for the score groups 1, 2, 3, and 4, respectively. Based on the scores, we defined a threshold for stdBBV and identified an optimum combination of virtual scan period and a delay. With the assumption that the relationship between the stdBBV and diagnosable scan IQ holds, our analysis suggested that the success rate can be improved to 100% with scan durations equal or less than 5 sec with a delay of 1 - 2 sec. We confirmed the suggested conclusion with LightSpeed VCT (GE Healthcare Technologies, Waukesha, WI), which has a wide longitudinal coverage, fine isotropic spatial resolution, and high temporal resolution, e.g. 40 mm coverage per rotation of 0.35 sec

  7. Dose optimization in cardiac x-ray imaging

    SciTech Connect

    Gislason-Lee, Amber J.; McMillan, Catherine; Cowen, Arnold R.; Davies, Andrew G.

    2013-09-15

    Purpose: The aim of this research was to optimize x-ray image quality to dose ratios in the cardiac catheterization laboratory. This study examined independently the effects of peak x-ray tube voltage (kVp), copper (Cu), and gadolinium (Gd) x-ray beam filtration on the image quality to radiation dose balance for adult patient sizes.Methods: Image sequences of polymethyl methacrylate (PMMA) phantoms representing two adult patient sizes were captured using a modern flat panel detector based x-ray imaging system. Tin and copper test details were used to simulate iodine-based contrast medium and stents/guide wires respectively, which are used in clinical procedures. Noise measurement for a flat field image and test detail contrast were used to calculate the contrast to noise ratio (CNR). Entrance surface dose (ESD) and effective dose measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose. This FOM determined the dose efficiency of x-ray spectra investigated. Images were captured with 0.0, 0.1, 0.25, 0.4, and 0.9 mm Cu filtration and with a range of gadolinium oxysulphide (Gd{sub 2}O{sub 2}S) filtration.Results: Optimum x-ray spectra were the same for the tin and copper test details. Lower peak tube voltages were generally favored. For the 20 cm phantom, using 2 Lanex Fast Back Gd{sub 2}O{sub 2}S screens as x-ray filtration at 65 kVp provided the highest FOM considering ESD and effective dose. Considering ESD, this FOM was only marginally larger than that from using 0.4 mm Cu at 65 kVp. For the 30 cm phantom, using 0.25 mm copper filtration at 80 kVp was most optimal; considering effective dose the FOM was highest with no filtration at 65 kVp.Conclusions: These settings, adjusted for x-ray tube loading limits and clinically acceptable image quality, should provide a useful option for optimizing patient dose to image quality in cardiac x-ray imaging. The same optimal x-ray beam spectra were found for both the tin and copper details, suggesting

  8. Dual-Phase Cardiac Diffusion Tensor Imaging with Strain Correction

    PubMed Central

    Stoeck, Christian T.; Kalinowska, Aleksandra; von Deuster, Constantin; Harmer, Jack; Chan, Rachel W.; Niemann, Markus; Manka, Robert; Atkinson, David; Sosnovik, David E.; Mekkaoui, Choukri; Kozerke, Sebastian

    2014-01-01

    Purpose In this work we present a dual-phase diffusion tensor imaging (DTI) technique that incorporates a correction scheme for the cardiac material strain, based on 3D myocardial tagging. Methods In vivo dual-phase cardiac DTI with a stimulated echo approach and 3D tagging was performed in 10 healthy volunteers. The time course of material strain was estimated from the tagging data and used to correct for strain effects in the diffusion weighted acquisition. Mean diffusivity, fractional anisotropy, helix, transverse and sheet angles were calculated and compared between systole and diastole, with and without strain correction. Data acquired at the systolic sweet spot, where the effects of strain are eliminated, served as a reference. Results The impact of strain correction on helix angle was small. However, large differences were observed in the transverse and sheet angle values, with and without strain correction. The standard deviation of systolic transverse angles was significantly reduced from 35.9±3.9° to 27.8°±3.5° (p<0.001) upon strain-correction indicating more coherent fiber tracks after correction. Myocyte aggregate structure was aligned more longitudinally in systole compared to diastole as reflected by an increased transmural range of helix angles (71.8°±3.9° systole vs. 55.6°±5.6°, p<0.001 diastole). While diastolic sheet angle histograms had dominant counts at high sheet angle values, systolic histograms showed lower sheet angle values indicating a reorientation of myocyte sheets during contraction. Conclusion An approach for dual-phase cardiac DTI with correction for material strain has been successfully implemented. This technique allows assessing dynamic changes in myofiber architecture between systole and diastole, and emphasizes the need for strain correction when sheet architecture in the heart is imaged with a stimulated echo approach. PMID:25191900

  9. Initial Experience With a Miniaturized Multiplane Transesophageal Probe in Small Infants Undergoing Cardiac Operations

    PubMed Central

    Zyblewski, Sinai C.; Shirali, Girish S.; Forbus, Geoffrey A.; Hsia, Tain-Yen; Bradley, Scott M.; Atz, Andrew M.; Cohen, Meryl S.; Graham, Eric M.

    2015-01-01

    Purpose There has been reluctance to use intraoperative transesophageal echocardiography (TEE) in small infants. We assessed the utility and safety of a new miniaturized multiplane micro-TEE probe in small infants undergoing cardiac operations. Description Hemodynamic and ventilation variables were prospectively recorded before and after micro-TEE insertion and removal in infants weighing 5 kg or less undergoing cardiac operations. Evaluation The study included 42 patients with a mean weight of 3.6 ± 0.9 kg (range, 1.7 to 5 kg). All probe insertions were successful. There were no complications or clinically significant changes in hemodynamic or ventilation variables. Information provided by TEE resulted in surgical revision in 6 of the 42 patients. Conclusions The micro-TEE provides high quality, useful diagnostic images without hemodynamic or ventilation compromise in small infants undergoing cardiac operations. This advance is important with the growing trend towards complete repair of complex structural heart disease in small infants. PMID:20494062

  10. Imaging system for cardiac planar imaging using a dedicated dual-head gamma camera

    SciTech Connect

    Majewski, Stanislaw; Umeno, Marc M.

    2011-09-13

    A cardiac imaging system employing dual gamma imaging heads co-registered with one another to provide two dynamic simultaneous views of the heart sector of a patient torso. A first gamma imaging head is positioned in a first orientation with respect to the heart sector and a second gamma imaging head is positioned in a second orientation with respect to the heart sector. An adjustment arrangement is capable of adjusting the distance between the separate imaging heads and the angle between the heads. With the angle between the imaging heads set to 180 degrees and operating in a range of 140-159 keV and at a rate of up to 500kHz, the imaging heads are co-registered to produce simultaneous dynamic recording of two stereotactic views of the heart. The use of co-registered imaging heads maximizes the uniformity of detection sensitivity of blood flow in and around the heart over the whole heart volume and minimizes radiation absorption effects. A normalization/image fusion technique is implemented pixel-by-corresponding pixel to increase signal for any cardiac region viewed in two images obtained from the two opposed detector heads for the same time bin. The imaging system is capable of producing enhanced first pass studies, bloodpool studies including planar, gated and non-gated EKG studies, planar EKG perfusion studies, and planar hot spot imaging.

  11. Stress cardiac MR imaging: the role of stress functional assessment and perfusion imaging in the evaluation of ischemic heart disease.

    PubMed

    Al Sayari, Saeed; Kopp, Sebastien; Bremerich, Jens

    2015-03-01

    Stress cardiac magnetic resonance imaging can provide valuable information for the diagnosis and management of ischemic heart disease (IHD). It plays an important role in the initial diagnosis in patients with acute chest pain, in the diagnosis of complications post myocardial infarction (MI), in the assessment of the right ventricle after an acute MI, to detect complications due to or after interventions, in prediction of myocardial recovery, to detect inducible ischemia in patients with known IHD, in differentiating ischemic from non-ischemic dilated cardiomyopathy, and in risk stratification.

  12. Stress cardiac MR imaging: the role of stress functional assessment and perfusion imaging in the evaluation of ischemic heart disease.

    PubMed

    Al Sayari, Saeed; Kopp, Sebastien; Bremerich, Jens

    2015-03-01

    Stress cardiac magnetic resonance imaging can provide valuable information for the diagnosis and management of ischemic heart disease (IHD). It plays an important role in the initial diagnosis in patients with acute chest pain, in the diagnosis of complications post myocardial infarction (MI), in the assessment of the right ventricle after an acute MI, to detect complications due to or after interventions, in prediction of myocardial recovery, to detect inducible ischemia in patients with known IHD, in differentiating ischemic from non-ischemic dilated cardiomyopathy, and in risk stratification. PMID:25727000

  13. New developments in paediatric cardiac functional ultrasound imaging.

    PubMed

    de Korte, Chris L; Nillesen, Maartje M; Saris, Anne E C M; Lopata, Richard G P; Thijssen, Johan M; Kapusta, Livia

    2014-07-01

    Ultrasound imaging can be used to estimate the morphology as well as the motion and deformation of tissues. If the interrogated tissue is actively deforming, this deformation is directly related to its function and quantification of this deformation is normally referred as 'strain imaging'. Tissue can also be deformed by applying an internal or external force and the resulting, induced deformation is a function of the mechanical tissue characteristics. In combination with the load applied, these strain maps can be used to estimate or reconstruct the mechanical properties of tissue. This technique was named 'elastography' by Ophir et al. in 1991. Elastography can be used for atherosclerotic plaque characterisation, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. Rather than using the conventional video format (DICOM) image information, radio frequency (RF)-based ultrasound methods enable estimation of the deformation at higher resolution and with higher precision than commercial methods using Doppler (tissue Doppler imaging) or video image data (2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so it has to be considered a 1D technique. Recently, this method has been extended to multiple directions and precision further improved by using spatial compounding of data acquired at multiple beam steered angles. Using similar techniques, the blood velocity and flow can be determined. RF-based techniques are also beneficial for automated segmentation of the ventricular cavities. In this paper, new developments in different techniques of quantifying cardiac function by strain imaging, automated segmentation, and methods of performing blood flow imaging are reviewed and their application in paediatric cardiology is discussed. PMID:27277901

  14. Initial Observations of the Effects of Calcium Chloride Infusions in Pediatric Patients with Low Cardiac Output.

    PubMed

    Averin, Konstantin; Villa, Chet; Krawczeski, Catherine D; Pratt, Jesse; King, Eileen; Jefferies, John L; Nelson, David P; Cooper, David S; Ryan, Thomas D; Sawyer, Jaclyn; Towbin, Jeffrey A; Lorts, Angela

    2016-03-01

    Myocardial contractility and relaxation are highly dependent on calcium homeostasis. Immature myocardium, as in pediatric patients, is thought to be more dependent on extracellular calcium for optimal function. For this reason, intravenous calcium chloride infusions may improve myocardial function in the pediatric patient. The objectives of this study were to report the hemodynamic changes seen after administration of continuous calcium chloride to critically ill children. We retrospectively identified pediatric patients (newborn to 17 years old) with hemodynamic instability admitted to the cardiac ICU between May 2011 and May 2012 who received a continuous infusion of calcium chloride. The primary outcome was improvement in cardiac output, assessed by arterial-mixed venous oxygen saturation (A-V) difference. Sixty-eight patients, mean age 0.87 ± 2.67 years, received a total of 116 calcium infusions. Calcium chloride infusions resulted in significant improvements in primary and secondary measures of cardiac output at 2 and 6 h. Six hours after calcium initiation, A-V oxygen saturation difference decreased by 7.4 % (32.6 ± 2.1 to 25.2 ± 2.0 %, p < 0.001), rSO2 increased by 5.5 % (63.1 vs 68.6 %, p < 0.001), and serum lactate decreased by 0.9 mmol/l (3.3 vs 2.4 mmol/l, p < 0.001) with no change in HR (149.1 vs 145.6 bpm p = 0.07). Urine output increased 0.66 ml/kg/h in the 8-h period after calcium initiation when compared to pre-initiation (p = 0.003). Neonates had the strongest evidence of effectiveness with other age groups trending toward significance. Calcium chloride infusions improve markers of cardiac output in a heterogenous group of pediatric patients in a cardiac ICU. Neonates appear to derive the most benefit from utilization of these infusions.

  15. Cardiac magnetic resonance imaging safety following percutaneous coronary intervention.

    PubMed

    Curtis, Jason W; Lesniak, Donna C; Wible, James H; Woodard, Pamela K

    2013-10-01

    In the first 8 weeks after percutaneous coronary intervention (PCI), possible negative interactions exist between the cardiac magnetic resonance (CMR) imaging environment and the weakly ferromagnetic material in coronary stents. There are circumstances when CMR would be indicated shortly following PCI, such as acute myocardial infarction (AMI). The purpose of this study is to demonstrate CMR safety shortly following stent PCI in AMI patients. We performed a retrospective analysis of safety data in AMI patients with recently placed coronary artery stents enrolled in a multi-center phase II trial for gadoversetamide. Patients underwent 1.5 T CMR within 16 days of PCI. Vital signs (blood pressure, heart rate, respiratory rate, and body temperature) and ECGs were taken pre-CMR, 1, 2, and 24 h post-CMR. Any major adverse cardiac event (MACE) or other serious adverse events in the first 24 h after MRI were recorded. There were 258 stents in 211 AMI patients. The mean delay to CMR following PCI was 6.5 ± 4 days, with 62 patients (29 %) receiving CMR within 3 days and 132 patients (63 %) within 1 week. Patients showed no significant vital sign changes following CMR. Ten patients (4.7 %) showed mild, transient ECG changes. Within the 24-h follow-up group, 4 patients (1.9 %) had moderate to severe events, including chest pain (1) and elevated cardiac enzymes (1), resolving in 24 h; heart failure (1) and ischemic stroke (1). There were no deaths. This study demonstrates fewer MACE in AMI patients undergoing 1.5 T CMR within 16 days of stent placement in comparison to post-stent event rate reported in the literature. This study adds to the CMR after stent PCI safety profile suggested by previous studies and is the largest and first study that uses multicenter data to assess stent safety following CMR examination.

  16. MR-Based Cardiac and Respiratory Motion-Compensation Techniques for PET-MR Imaging.

    PubMed

    Munoz, Camila; Kolbitsch, Christoph; Reader, Andrew J; Marsden, Paul; Schaeffter, Tobias; Prieto, Claudia

    2016-04-01

    Cardiac and respiratory motion cause image quality degradation in PET imaging, affecting diagnostic accuracy of the images. Whole-body simultaneous PET-MR scanners allow for using motion information estimated from MR images to correct PET data and produce motion-compensated PET images. This article reviews methods that have been proposed to estimate motion from MR images and different techniques to include this information in PET reconstruction, in order to overcome the problem of cardiac and respiratory motion in PET-MR imaging. MR-based motion correction techniques significantly increase lesion detectability and contrast, and also improve accuracy of uptake values in PET images.

  17. Utility of Magnetic Resonance Imaging in Cardiac Venous Anatomic Variants

    SciTech Connect

    Eckart, Robert E. Leitch, W. Shad; Shry, Eric A.; Krasuski, Richard A.; Lane, Michael J.; Leclerc, Kenneth M.

    2003-06-15

    The incidence of persistent left superior venacava (PLSVC) is approximately 0.5% in the general population; however,the coexistent absence of the right SVC has a reported incidence in tertiary centers of 0.1%. The vast majority of reports are limited to pediatric cardiology. Likewise, sinus of Valsalva aneurysm is a rare congenital anomaly, with a reported incidence of 0.1-3.5% of all congenital heart defects. We present a 71-year-old patient undergoing preoperative evaluation for incidental finding of aortic root aneurysm,and found to have all three in coexistence. Suggestive findings were demonstrated on cardiac catheterization and definitive diagnosis was made by magnetic resonance imaging. The use of MRI for the diagnosis of asymptomatic adult congenital heart disease will be reviewed.

  18. Multi-Echo Segmented k-space Imaging: An Optimized Hybrid Sequence for Ultrafast Cardiac Imaging

    PubMed Central

    Reeder, Scott B.; Atalar, Ergin; Faranesh, Anthony Z.; McVeigh, Elliot R.

    2007-01-01

    Cardiac magnetic resonance imaging requires high temporal resolution to resolve motion and contrast uptake with low total scan times to avoid breathing artifacts. While spoiled gradient echo (SPGR) imaging is robust and reproducible, it is relatively inefficient and requires long breath-holds to acquire high time resolution movies of the heart. Echo planar imaging (EPI) is highly efficient with excellent signal-to-noise ratio (SNR) behavior; however, it is particularly difficult to use in the heart because of its sensitivity to chemical shift, susceptibility, and motion. EPI may also require reference scans, which are used to measure hardware delays and phase offsets that cause ghosting artifacts; these reference scans are more difficult and less reliable in the heart. Consequently, a hybrid EPI/SPGR sequence is proposed for application to rapid cardiac imaging. A detailed optimization of SNR and echo train length for multi-echo sequences is presented. It is shown that significant reductions in total scan time are possible while maintaining good image quality. This will allow complete motion sampling of the entire heart in one to three breath-holds, necessary for MR cardiac dobutamine stress testing. Improved speed performance also permits sampling of three to six slices every heartbeat for bolus injection perfusion studies. PMID:10080287

  19. Motion estimation in cardiac fluorescence imaging with scale-space landmarks and optical flow: a comparative study.

    PubMed

    Rodriguez, M P; Nygren, A

    2015-02-01

    Motion artifacts are a major disadvantage of cardiac optical mapping studies. Pixel misalignment due to contraction is a main cause of the presence of gross motion artifacts in action potential recordings. This study is focused on methods for identifying landmarks and tracking the motion of cardiac tissue for preparations in optical mapping recordings. This is a first step toward our long-term goal to implement a landmark-based image registration technique to correct for pixel misalignment in cardiac optical mapping fluorescence videos and, hence, for gross motion artifacts. Preliminary results for the registration step are presented as an initial proof of concept. The characteristics of the optical mapping images are challenging, since their lack of contrast and well-defined features impose a limitation on the techniques than can be used for landmark selection and motion tracking. This paper compares results of motion estimation of the cardiac surface with two approaches that do not rely on high-contrast features: 1) Scale-invariant feature transform (SIFT) detected "keypoints," to be used as landmarks for motion tracking, as well as 2) a classical global optical flow (OF) algorithm. Both are applied to low-contrast and low-resolution cardiac fluorescence images. We demonstrate that the performance of SIFT is superior to that of OF for pixel motion tracking in cardiac optical mapping images with simulated motion. Results for action potential recovery and action potential duration calculation after landmark-based image registration show that SIFT landmark-based registration yields superior performance in this regard as well.

  20. A multiresolution restoration method for cardiac SPECT imaging.

    PubMed

    Franquiz, J M; Shukla, S

    1998-12-01

    In this study we present a multiresolution based method for restoring cardiac SPECT projections. Original projections were decomposed into a set of sub-band frequency images by using analyzing functions localized in both the space and frequency domain. This representation allows a simple denoising and restoration procedure by discarding high-frequency channels and performing inversion only in low frequencies. The method was evaluated in bull's eye reconstructions of a realistic cardiac chest phantom with a custom-made liver insert and 99mTc liver-to-heart activity ratios (LHAR) of 0:1, 1.5:1, 2.5:1, and 3.5:1. The cardiac phantom in free air was used as the reference standard. Reconstructions were performed by filtered backprojection using (1) no correction; (2) restoration without attenuation correction; (3) attenuation correction without restoration; and (4) restoration and attenuation correction. The attenuation correction was carried out with the Chang's method for one iteration. Results were compared with those obtained using an optimized prereconstruction Metz filter. Quantitative analysis was performed by calculating the normalized chi-square measure and mean +/- s.d. of bull's eye counts. In reconstructions with high liver activity (LHAR > 2), attenuation correction without restoration severely distorted the polar maps due to the spill-over of liver activity into the inferior myocardial wall. Both restoration methods when combined with an attenuation correction compensated this artifact and yielded uniform polar maps similar to that of the standard reference. There was no visual or quantitative difference between the performance of Metz filtering and multiresolution restoration. However, the main advantage of the multiresolution method is that it states a more concise and straightforward approach to the restoration problem. Multiresolution based methods does not require information about the object image or optimization processes, such as in conventional

  1. How much image noise can be added in cardiac x-ray imaging without loss in perceived image quality?

    NASA Astrophysics Data System (ADS)

    Gislason-Lee, Amber J.; Kumcu, Asli; Kengyelics, Stephen M.; Rhodes, Laura A.; Davies, Andrew G.

    2015-03-01

    Dynamic X-ray imaging systems are used for interventional cardiac procedures to treat coronary heart disease. X-ray settings are controlled automatically by specially-designed X-ray dose control mechanisms whose role is to ensure an adequate level of image quality is maintained with an acceptable radiation dose to the patient. Current commonplace dose control designs quantify image quality by performing a simple technical measurement directly from the image. However, the utility of cardiac X-ray images is in their interpretation by a cardiologist during an interventional procedure, rather than in a technical measurement. With the long term goal of devising a clinically-relevant image quality metric for an intelligent dose control system, we aim to investigate the relationship of image noise with clinical professionals' perception of dynamic image sequences. Computer-generated noise was added, in incremental amounts, to angiograms of five different patients selected to represent the range of adult cardiac patient sizes. A two alternative forced choice staircase experiment was used to determine the amount of noise which can be added to a patient image sequences without changing image quality as perceived by clinical professionals. Twenty-five viewing sessions (five for each patient) were completed by thirteen observers. Results demonstrated scope to increase the noise of cardiac X-ray images by up to 21% +/- 8% before it is noticeable by clinical professionals. This indicates a potential for 21% radiation dose reduction since X-ray image noise and radiation dose are directly related; this would be beneficial to both patients and personnel.

  2. Evaluation of an adaptive filtering algorithm for CT cardiac imaging with EKG modulated tube current

    NASA Astrophysics Data System (ADS)

    Li, Jianying; Hsieh, Jiang; Mohr, Kelly; Okerlund, Darin

    2005-04-01

    We have developed an adaptive filtering algorithm for cardiac CT scans with EKG-modulated tube current to optimize resolution and noise for different cardiac phases and to provide safety net for cases where end-systole phase is used for coronary imaging. This algorithm has been evaluated using patient cardiac CT scans where lower tube currents are used for the systolic phases. In this paper, we present the evaluation results. The results demonstrated that with the use of the proposed algorithm, we could improve image quality for all cardiac phases, while providing greater noise and streak artifact reduction for systole phases where lower CT dose were used.

  3. Computational Chemical Imaging for Cardiovascular Pathology: Chemical Microscopic Imaging Accurately Determines Cardiac Transplant Rejection

    PubMed Central

    Tiwari, Saumya; Reddy, Vijaya B.; Bhargava, Rohit; Raman, Jaishankar

    2015-01-01

    Rejection is a common problem after cardiac transplants leading to significant number of adverse events and deaths, particularly in the first year of transplantation. The gold standard to identify rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR) spectroscopic imaging to identify different components of cardiac tissue by their chemical and molecular basis aided by computer recognition, rather than by visual examination using optical microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in an example of complex cardiovascular pathology. We recorded data from human cardiac transplant patients’ biopsies, used a Bayesian classification protocol and developed a visualization scheme to observe chemical differences without the need of stains or human supervision. Using receiver operating characteristic curves, we observed probabilities of detection greater than 95% for four out of five histological classes at 10% probability of false alarm at the cellular level while correctly identifying samples with the hallmarks of the immune response in all cases. The efficacy of manual examination can be significantly increased by observing the inherent biochemical changes in tissues, which enables us to achieve greater diagnostic confidence in an automated, label-free manner. We developed a computational pathology system that gives high contrast images and seems superior to traditional staining procedures. This study is a prelude to the development of real time in situ imaging systems, which can assist interventionists and surgeons actively during procedures. PMID:25932912

  4. Impact of cardiac magnet resonance imaging on management of ventricular septal rupture after acute myocardial infarction

    PubMed Central

    Gassenmaier, Tobias; Gorski, Armin; Aleksic, Ivan; Deubner, Nikolas; Weidemann, Frank; Beer, Meinrad

    2013-01-01

    A 74-year-old man was admitted to the cardiac catheterization laboratory with acute myocardial infarction. After successful angioplasty and stent implantation into the right coronary artery, he developed cardiogenic shock the following day. Echocardiography showed ventricular septal rupture. Cardiac magnet resonance imaging (MRI) was performed on the critically ill patient and provided detailed information on size and localization of the ruptured septum by the use of fast MRI sequences. Moreover, the MRI revealed that the ventricular septal rupture was within the myocardial infarction area, which was substantially larger than the rupture. As the patient’s condition worsened, he was intubated and had intra-aortic balloon pump implanted, and extracorporeal membrane oxygenation was initiated. During the following days, the patient’s situation improved, and surgical correction of the ventricular septal defect could successfully be performed. To the best of our knowledge, this case report is the first description of postinfarction ventricular septal rupture by the use of cardiac MRI in an intensive care patient with cardiogenic shock and subsequent successful surgical repair. PMID:23710303

  5. Mechanistic molecular imaging of cardiac cell therapy for ischemic heart disease.

    PubMed

    Yu, Qiujun; Fan, Weiwei; Cao, Feng

    2013-10-01

    Cell-based myocardial regeneration has emerged as a promising therapeutic option for ischemic heart disease, though not yet at the level of routine clinical utility. Despite the encouraging results from initial preclinical studies that have demonstrated improved function and reduced infarct size of the ischemic myocardium following several candidate cell transplantation, the beneficial effects and molecular mechanisms of cardiac cell therapy are still unclear in clinical applications to date, and much remains to be optimized. To improve engraftment, accurate methods are required for tracking cell fate and quantifying functional outcome. In the present review, we summarized the current status and challenges of cardiac cell therapy for ischemic heart disease and discussed the strengths and limitations of currently available in vivo imaging techniques with special focus on the newly developed multimodality approaches for assessing the efficacy of engrafted donor cells. We also addressed the hurdles these imaging modalities are facing, including issues regarding immunogenicity and tumorigenicity of transplanted stem cells, and provided some the future perspectives on stem cell imaging.

  6. Dose optimization in pediatric cardiac x-ray imaging

    SciTech Connect

    Gislason, Amber J.; Davies, Andrew G.; Cowen, Arnold R.

    2010-10-15

    Purpose: The aim of this research was to explore x-ray beam parameters with intent to optimize pediatric x-ray settings in the cardiac catheterization laboratory. This study examined the effects of peak x-ray tube voltage (kVp) and of copper (Cu) x-ray beam filtration independently on the image quality to dose balance for pediatric patient sizes. The impact of antiscatter grid removal on the image quality to dose balance was also investigated. Methods: Image sequences of polymethyl methacrylate phantoms approximating chest sizes typical of pediatric patients were captured using a modern flat-panel receptor based x-ray imaging system. Tin was used to simulate iodine-based contrast medium used in clinical procedures. Measurements of tin detail contrast and flat field image noise provided the contrast to noise ratio. Entrance surface dose (ESD) and effective dose (E) measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose, which evaluated the dose efficiency of the x-ray parameters investigated. The kVp, tube current (mA), and pulse duration were set manually by overriding the system's automatic dose control mechanisms. Images were captured with 0, 0.1, 0.25, 0.4, and 0.9 mm added Cu filtration, for 50, 55, 60, 65, and 70 kVp with the antiscatter grid in place, and then with it removed. Results: For a given phantom thickness, as the Cu filter thickness was increased, lower kVp was favored. Examining kVp alone, lower values were generally favored, more so for thinner phantoms. Considering ESD, the 8.5 cm phantom had the highest FOM at 50 kVp using 0.4 mm of Cu filtration. The 12 cm phantom had the highest FOM at 55 kVp using 0.9 mm Cu, and the 16 cm phantom had highest FOM at 55 kVp using 0.4 mm Cu. With regard to E, the 8.5 and 12 cm phantoms had the highest FOM at 50 kVp using 0.4 mm of Cu filtration, and the 16 cm phantom had the highest FOM at 50 kVp using 0.25 mm Cu. Antiscatter grid removal improved the FOM for a given set of x

  7. Machine vision image quality measurement in cardiac x-ray imaging

    NASA Astrophysics Data System (ADS)

    Kengyelics, Stephen M.; Gislason-Lee, Amber; Keeble, Claire; Magee, Derek; Davies, Andrew G.

    2015-03-01

    The purpose of this work is to report on a machine vision approach for the automated measurement of x-ray image contrast of coronary arteries filled with iodine contrast media during interventional cardiac procedures. A machine vision algorithm was developed that creates a binary mask of the principal vessels of the coronary artery tree by thresholding a standard deviation map of the direction image of the cardiac scene derived using a Frangi filter. Using the mask, average contrast is calculated by fitting a Gaussian model to the greyscale profile orthogonal to the vessel centre line at a number of points along the vessel. The algorithm was applied to sections of single image frames from 30 left and 30 right coronary artery image sequences from different patients. Manual measurements of average contrast were also performed on the same images. A Bland-Altman analysis indicates good agreement between the two methods with 95% confidence intervals -0.046 to +0.048 with a mean bias of 0.001. The machine vision algorithm has the potential of providing real-time context sensitive information so that radiographic imaging control parameters could be adjusted on the basis of clinically relevant image content.

  8. Antimyosin antibody cardiac imaging: Its role in the diagnosis of myocarditis

    SciTech Connect

    Dec, G.W.; Palacios, I.; Yasuda, T.; Fallon, J.T.; Khaw, B.A.; Strauss, H.W.; Haber, E. )

    1990-07-01

    Right ventricular endomyocardial biopsy currently remains the procedure of choice for identifying patients with symptomatic heart failure due to myocarditis from the larger population with idiopathic dilated cardiomyopathy. Despite its specificity, the sensitivity of right ventricular biopsy remains uncertain because of the focal or multifocal nature of the disease. Because myocyte necrosis is an obligate component of myocarditis, the use of indium-111 antimyosin imaging was evaluated in 82 patients with suspected myocarditis. Seventy-four patients had dilated cardiomyopathy of less than 1 year's duration (mean left ventricular ejection fraction 0.30 +/- 0.02); eight patients had normal left ventricular function (mean ejection fraction 0.59 +/- 0.03). Symptoms at presentation included congestive heart failure (92%), chest pain mimicking myocardial infarction (6%) and life-threatening ventricular tachyarrhythmias (2%). All patients underwent planar and single photon emission computed tomographic (SPECT) cardiac imaging after injection of indium-111-labeled antimyosin antibody fragments and right ventricular biopsy within 48 h of imaging. Antimyosin images were interpreted as either abnormal or normal and correlated with biopsy results. On the basis of the right ventricular histologic examination, the sensitivity of antimyosin imaging was 83%, specificity 53% and predictive value of a normal scan 92%. Improvement in left ventricular function occurred within 6 months of treatment in 54% of patients with an abnormal antimyosin scan compared with 18% of those with a normal scan (p less than 0.01). Antimyosin cardiac imaging may be useful for the initial evaluation of patients with dilated and nondilated cardiomyopathy and clinically suspected myocarditis.

  9. Cardiac sarcoidosis demonstrated by Tl-201 and Ga-67 SPECT imaging

    SciTech Connect

    Taki, J.; Nakajima, K.; Bunko, H.; Ohguchi, M.; Tonami, N.; Hisada, K. )

    1990-09-01

    Ga-67 and Tl-201 SPECT was performed to evaluate cardiac sarcoidosis in a 15-year-old boy. Tl-201 SPECT imaging showed decreased uptake in the inferior to lateral wall and Ga-67 accumulation in the area of decreased Tl-201 uptake. These findings suggested cardiac sarcoidosis, and cardiac biopsy confirmed this diagnosis. After corticosteroid therapy, myocardial uptake of Ga-67 disappeared and myocardial TI-201 uptake became more homogeneous.

  10. Giant coronary artery aneurysm mimicking a compressive cardiac tumor Imaging features and operative strategy.

    PubMed

    Grandmougin, Daniel; Croisille, Pierre; Robin, Christophe; Péoc'h, Michel; Barral, Xavier

    2005-01-01

    Giant atheromatous coronary aneurysms mimicking a cardiac tumor remain exceptional. We report the case of a patient who experienced a severe inferior myocardial infarction related to a giant thrombosed coronary aneurysm masquerading a cardiac tumor and compressing right cardiac cavities with mechanical detrimental consequences on tricuspid, mitral and aortic valvular competence. The contribution of imaging was essential to assess diagnosis, understand the physiopathogeny of myocardial and valvular consequences and plan the optimal surgical strategy. PMID:16168902

  11. Multimodal Imaging after Sudden Cardiac Arrest in an 18-Year-Old Athlete

    PubMed Central

    Rehman, Mobeen Ur; Atalay, Michael K.; Broderick, Ryan J.

    2015-01-01

    We report the case of a previously healthy 18-year-old male athlete who twice presented with sudden cardiac arrest. Our use of electrocardiography, echocardiography, cardiac magnetic resonance, coronary angiography, coronary computed tomographic angiography, and nuclear stress testing enabled the diagnoses of apical hypertrophic cardiomyopathy and anomalous origin of the right coronary artery. We discuss the patient's treatment and note the useful role of multiple cardiovascular imaging methods in cases of sudden cardiac arrest. PMID:26664308

  12. Evaluation of a robotic arm for echocardiography to X-ray image registration during cardiac catheterization procedures.

    PubMed

    Ma, Yingliang; Penney, Graeme P; Bos, Dennis; Frissen, Peter; de Fockert, George; King, Andy; Gao, Gang; Yao, Cheng; Totman, John; Ginks, Matthew; Rinaldi, C; Razavi, Reza; Rhode, Kawal S

    2009-01-01

    We present an initial evaluation of a robotic arm for positioning a 3D echo probe during cardiac catheterization procedures. By tracking the robotic arm, X-ray table and X-ray C-arm, we are able to register the 3D echo images with live 2D X-ray images. In addition, we can also use tracking data from the robotic arm combined with system calibrations to create extended field of view 3D echo images. Both these features can be used for roadmapping to guide cardiac catheterization procedures. We have carried out a validation experiment of our registration method using a cross-wire phantom. Results show our method to be accurate to 3.5 mm. We have successfully demonstrated the creation of the extended field of view data on 2 healthy volunteers and the registration of echo and X-ray data on 1 patient undergoing a pacing study. PMID:19964867

  13. Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation.

    PubMed

    Bao, L J; Zhu, Y M; Liu, W Y; Croisille, P; Pu, Z B; Robini, M; Magnin, I E

    2009-03-21

    Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures. PMID:19218737

  14. Automated classification of LV regional wall motion based on spatio-temporal profiles from cardiac cine magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Mantilla, Juan; Garreau, Mireille; Bellanger, Jean-Jacques; Paredes, José Luis

    2013-11-01

    Assessment of the cardiac Left Ventricle (LV) wall motion is generally based on visual inspection or quantitative analysis of 2D+t sequences acquired in short-axis cardiac cine-Magnetic Resonance Imaging (MRI). Most often, cardiac dynamic is globally analized from two particular phases of the cardiac cycle. In this paper, we propose an automated method to classify regional wall motion in LV function based on spatio-temporal pro les and Support Vector Machines (SVM). This approach allows to obtain a binary classi cation between normal and abnormal motion, without the need of pre-processing and by exploiting all the images of the cardiac cycle. In each short- axis MRI slice level (basal, median, and apical), the spatio-temporal pro les are extracted from the selection of a subset of diametrical lines crossing opposites LV segments. Initialized at end-diastole phase, the pro les are concatenated with their corresponding projections into the succesive temporal phases of the cardiac cycle. These pro les are associated to di erent types of information that derive from the image (gray levels), Fourier, Wavelet or Curvelet domains. The approach has been tested on a set of 14 abnormal and 6 healthy patients by using a leave-one-out cross validation and two kernel functions for SVM classi er. The best classi cation performance is yielded by using four-level db4 wavelet transform and SVM with a linear kernel. At each slice level the results provided a classi cation rate of 87.14% in apical level, 95.48% in median level and 93.65% in basal level.

  15. Cardiac tamponade as the initial presentation of malignancy: is it as rare as previously supposed?

    PubMed Central

    Muir, K. W.; Rodger, J. C.

    1994-01-01

    Advanced malignant disease frequently involves the heart and pericardium, and pericardial effusion is a common postmortem finding in such patients. Identification of pericardial effusions in life is uncommon, however, even when symptomatic. Cardiac tamponade occurring as the first presentation of malignancy appears to be uncommon. We present five cases of cardiac tamponade due to undiagnosed malignancy which presented to a general medical unit over 18 months. The availability of echocardiography was an important factor in correct diagnosis, since clinical features were non-specific. Bronchial adenocarcinoma was the cause in three of the five cases. Review of the literature confirms adenocarcinomas of the bronchus as the most common cause of this complication. The majority of cases have presented with large volume, haemorrhagic effusions, and cytology (with or without carcinoembryonic antigen measurement) was diagnostic in most patients. Immediate treatment with subxiphoid pericardiotomy is recommended; the role of balloon catheter pericardiotomy remains to be established. Combined chemotherapy and radiotherapy appears to extend survival, which in some cases may be prolonged. We recommend that early echocardiography should be obtained in all patients presenting with apparent cardiac failure, since early treatment of malignant effusions provides symptomatic relief. Images Figure 1 PMID:7831164

  16. Cardiac Motion Tracking Using CINE Harmonic Phase (HARP) Magnetic Resonance Imaging

    PubMed Central

    Osman, Nael F.; Kerwin, William S.; McVeigh, Elliot R.; Prince, Jerry L.

    2007-01-01

    This article introduces a new image processing technique for rapid analysis of tagged cardiac magnetic resonance image sequences. The method uses isolated spectral peaks in SPAMM-tagged magnetic resonance images, which contain information about cardiac motion. The inverse Fourier transform of a spectral peak is a complex image whose calculated angle is called a harmonic phase (HARP) image. It is shown how two HARP image sequences can be used to automatically and accurately track material points through time. A rapid, semiautomated procedure to calculate circumferential and radial Lagrangian strain from tracked points is described. This new computational approach permits rapid analysis and visualization of myocardial strain within 5-10 min after the scan is complete. Its performance is demonstrated on MR image sequences reflecting both normal and abnormal cardiac motion. Results from the new method are shown to compare very well with a previously validated tracking algorithm. PMID:10571926

  17. Current cardiac imaging techniques for detection of left ventricular mass

    PubMed Central

    2010-01-01

    Estimation of left ventricular (LV) mass has both prognostic and therapeutic value independent of traditional risk factors. Unfortunately, LV mass evaluation has been underestimated in clinical practice. Assessment of LV mass can be performed by a number of imaging modalities. Despite inherent limitations, conventional echocardiography has fundamentally been established as most widely used diagnostic tool. 3-dimensional echocardiography (3DE) is now feasible, fast and accurate for LV mass evaluation. 3DE is also superior to conventional echocardiography in terms of LV mass assessment, especially in patients with abnormal LV geometry. Cardiovascular magnetic resonance (CMR) and cardiovascular computed tomography (CCT) are currently performed for LV mass assessment and also do not depend on cardiac geometry and display 3-dimensional data, as well. Therefore, CMR is being increasingly employed and is at the present standard of reference in the clinical setting. Although each method demonstrates advantages over another, there are also disadvantages to receive attention. Diagnostic accuracy of methods will also be increased with the introduction of more advanced systems. It is also likely that in the coming years new and more accurate diagnostic tests will become available. In particular, CMR and CCT have been intersecting hot topic between cardiology and radiology clinics. Thus, good communication and collaboration between two specialties is required for selection of an appropriate test. PMID:20515461

  18. Spatiotemporal processing of gated cardiac SPECT images using deformable mesh modeling

    SciTech Connect

    Brankov, Jovan G.; Yang Yongyi; Wernick, Miles N.

    2005-09-15

    In this paper we present a spatiotemporal processing approach, based on deformable mesh modeling, for noise reduction in gated cardiac single-photon emission computed tomography images. Because of the partial volume effect (PVE), clinical cardiac-gated perfusion images exhibit a phenomenon known as brightening--the myocardium appears to become brighter as the heart wall thickens. Although brightening is an artifact, it serves as an important diagnostic feature for assessment of wall thickening in clinical practice. Our proposed processing algorithm aims to preserve this important diagnostic feature while reducing the noise level in the images. The proposed algorithm is based on the use of a deformable mesh for modeling the cardiac motion in a gated cardiac sequence, based on which the images are processed by smoothing along space-time trajectories of object points while taking into account the PVE. Our experiments demonstrate that the proposed algorithm can yield significantly more-accurate results than several existing methods.

  19. Reduction of blooming artifacts in cardiac CT images by blind deconvolution and anisotropic diffusion filtering

    NASA Astrophysics Data System (ADS)

    Castillo-Amor, Angélica M.; Navarro-Navia, Cristian A.; Cadena-Bonfanti, Alberto J.; Contreras-Ortiz, Sonia H.

    2015-12-01

    Even though CT is an imaging technique that offers high quality images, limitations on its spatial resolution cause blurring in small objects with high contrast. This phenomenon is known as blooming artifact and affects cardiac images with small calcifications and stents. This paper describes an approach to reduce the blooming artifact and improve resolution in cardiac images using blind deconvolution and anisotropic diffusion filtering. Deconvolution increases resolution but reduces signal-to-noise ratio, and the anisotropic diffusion filter counteracts this effect without affecting the edges in the image.

  20. Monitoring radiation use in cardiac fluoroscopy imaging procedures

    SciTech Connect

    Stevens, Nathaniel T.; Steiner, Stefan H.; Smith, Ian R.; MacKay, R. Jock

    2011-01-15

    Purpose: Timely identification of systematic changes in radiation delivery of an imaging system can lead to a reduction in risk for the patients involved. However, existing quality assurance programs involving the routine testing of equipment performance using phantoms are limited in their ability to effectively carry out this task. To address this issue, the authors propose the implementation of an ongoing monitoring process that utilizes procedural data to identify unexpected large or small radiation exposures for individual patients, as well as to detect persistent changes in the radiation output of imaging platforms. Methods: Data used in this study were obtained from records routinely collected during procedures performed in the cardiac catheterization imaging facility at St. Andrew's War Memorial Hospital, Brisbane, Australia, over the period January 2008-March 2010. A two stage monitoring process employing individual and exponentially weighted moving average (EWMA) control charts was developed and used to identify unexpectedly high or low radiation exposure levels for individual patients, as well as detect persistent changes in the radiation output delivered by the imaging systems. To increase sensitivity of the charts, we account for variation in dose area product (DAP) values due to other measured factors (patient weight, fluoroscopy time, and digital acquisition frame count) using multiple linear regression. Control charts are then constructed using the residual values from this linear regression. The proposed monitoring process was evaluated using simulation to model the performance of the process under known conditions. Results: Retrospective application of this technique to actual clinical data identified a number of cases in which the DAP result could be considered unexpected. Most of these, upon review, were attributed to data entry errors. The charts monitoring the overall system radiation output trends demonstrated changes in equipment performance

  1. Effect of isosorbide dinitrate on cardiac output in severe cardiac failure: relation to initial hemodynamics, ventricular volume, and the preload reserve mechanism.

    PubMed

    Lewis, B S; Hardoff, R; Halon, D A

    1989-09-01

    Isosorbide dinitrate (ISDN) improves the clinical and hemodynamic state of patients with heart failure, but may cause dizziness and syncope. To characterize patients in whom cardiac output falls with high-dose nitrate therapy and to examine further the pathophysiology of the fall in cardiac output in these patients, we studies the effect of sublingual ISDN on forward cardiac output in 14 patients with severe cardiac failure (New York Heart Association grades 3-4). We examined systolic and diastolic left ventricular (LV) function from pressure and volume analyses of LV function. After administration of 15 mg ISDN, cardiac output was either unaltered or increased in 7 patients (Group 1) (11 +/- 12%, mean +/- SD), and decreased in 7 (Group 2) (-13 +/- 10%) (Group 1 vs. 2, p less than 0.002). Initial systemic arterial pressure, LV ejection fraction, wedge and LV transmural filling pressures were similar in both groups, but Group 2 patients had a lower systemic vascular resistance (p = 0.07) and tended to have a larger initial LV end-diastolic volume and increased end-diastolic compliance; following ISDN the decrease in LV filling pressure and end-diastolic volume was larger and the product of the changes greater (p less than 0.02). Thus ISDN decreases filling pressure and improves forward cardiac output in some patients with congestive heart failure, but large doses may decrease cardiac output in a subset of patients who have a lower systemic vascular resistance and a larger more compliant ventricle, maintaining forward blood flow predominantly by a preload reserve mechanism.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2791373

  2. Human error in medicine: change in cardiac operating rooms through the FOCUS initiative.

    PubMed

    Spiess, Bruce D

    2011-03-01

    Human error in medicine is a significant cause of patient mortality. While there has been increased attention to safety in medicine since the Institute of Medicine publication To Err is Human, the profession at large has not progressed to the same degree as other highly complex industries such as aviation and nuclear power. The Flawless Operative Cardiovascular Unified Systems initiative (FOCUS) is a multi-year study/intervention to learn about and to improve human error in cardiac surgery. FOCUS has developed into an ongoing re-focusing through prospective interventional research schemes designed to effect positive change for improved patient care in cardiac surgery. The program was developed in conjunction with the Johns Hopkins University Quality and Safety Research Group using an approach termed locating errors through network surveillance (LENS). The LENS process was undertaken at Johns Hopkins University and another five centers where three major areas were examined observationally: interactions (communication) between operating room cardiac team members, clinical performance of known quality and safety dependent processes, and ergonomics/safety or human-machine interfaces. While collected data is currently being analyzed, preliminary results reveal over 800 human errors noted in the 40 cases observed. The errors observed are being categorized and taxonomy of errors is being created. Categories used in the FOCUS analysis include: teamwork and communication, compliance with existing protocols, knowledge or supervision, vigilance or situational awareness, equipment failure/design, poor operating room design/ergonomics, handoffs and transport problems, lack of professionalism, and ambiguity of responsibility. FOCUS is an initiative to change practice driven by science. Interventions based upon the observations already underway include efforts to decrease infection, adoption of the aviation concept of the "sterile cockpit", briefing and debriefing, reduction of

  3. An active contour framework based on the Hermite transform for shape segmentation of cardiac MR images

    NASA Astrophysics Data System (ADS)

    Barba-J, Leiner; Escalante-Ramírez, Boris

    2016-04-01

    Early detection of cardiac affections is fundamental to address a correct treatment that allows preserving the patient's life. Since heart disease is one of the main causes of death in most countries, analysis of cardiac images is of great value for cardiac assessment. Cardiac MR has become essential for heart evaluation. In this work we present a segmentation framework for shape analysis in cardiac magnetic resonance (MR) images. The method consists of an active contour model which is guided by the spectral coefficients obtained from the Hermite transform (HT) of the data. The HT is used as model to code image features of the analyzed images. Region and boundary based energies are coded using the zero and first order coefficients. An additional shape constraint based on an elliptical function is used for controlling the active contour deformations. The proposed framework is applied to the segmentation of the endocardial and epicardial boundaries of the left ventricle using MR images with short axis view. The segmentation is sequential for both regions: the endocardium is segmented followed by the epicardium. The algorithm is evaluated with several MR images at different phases of the cardiac cycle demonstrating the effectiveness of the proposed method. Several metrics are used for performance evaluation.

  4. Patient-Centered Imaging: Shared Decision Making for Cardiac Imaging Procedures with Exposure to Ionizing Radiation

    PubMed Central

    Einstein, Andrew J.; Berman, Daniel S.; Min, James K.; Hendel, Robert C.; Gerber, Thomas C.; Carr, J. Jeffrey; Cerqueira, Manuel D.; Cullom, S. James; DeKemp, Robert; Dickert, Neal; Dorbala, Sharmila; Garcia, Ernest V.; Gibbons, Raymond J.; Halliburton, Sandra S.; Hausleiter, Jörg; Heller, Gary V.; Jerome, Scott; Lesser, John R.; Fazel, Reza; Raff, Gilbert L.; Tilkemeier, Peter; Williams, Kim A.; Shaw, Leslee J.

    2014-01-01

    Objective To identify key components of a radiation accountability framework fostering patient-centered imaging and shared decision-making in cardiac imaging. Background An NIH-NHLBI/NCI-sponsored symposium was held in November 2012 to address these issues. Methods Symposium participants, working in three tracks, identified key components of a framework to target critical radiation safety issues for the patient, the laboratory, and the larger population of patients with known or suspected cardiovascular disease. Results Use of ionizing radiation during an imaging procedure should be disclosed to all patients by the ordering provider at the time of ordering, and reinforced by the performing provider team. An imaging protocol with effective dose ≤3mSv is considered very low risk, not warranting extensive discussion or written consent. However, a protocol effective dose <20mSv was proposed as a level requiring particular attention in terms of shared decision-making and either formal discussion or written informed consent. Laboratory reporting of radiation dosimetry is a critical component of creating a quality laboratory fostering a patient-centered environment with transparent procedural methodology. Efforts should be directed to avoiding testing involving radiation, in patients with inappropriate indications. Standardized reporting and diagnostic reference levels for computed tomography and nuclear cardiology are important for the goal of public reporting of laboratory radiation dose levels in conjunction with diagnostic performance. Conclusions The development of cardiac imaging technologies revolutionized cardiology practice by allowing routine, noninvasive assessment of myocardial perfusion and anatomy. It is now incumbent upon the imaging community to create an accountability framework to safely drive appropriate imaging utilization. PMID:24530677

  5. Highly accelerated cardiac MRI using iterative SENSE reconstruction: initial clinical experience.

    PubMed

    Allen, Bradley D; Carr, Maria; Botelho, Marcos P F; Rahsepar, Amir Ali; Markl, Michael; Zenge, Michael O; Schmidt, Michaela; Nadar, Mariappan S; Spottiswoode, Bruce; Collins, Jeremy D; Carr, James C

    2016-06-01

    To evaluate the qualitative and quantitative performance of an accelerated cardiovascular MRI (CMR) protocol that features iterative SENSE reconstruction and spatio-temporal L1-regularization (IS SENSE). Twenty consecutively recruited patients and 9 healthy volunteers were included. 2D steady state free precession cine images including 3-chamber, 4-chamber, and short axis slices were acquired using standard parallel imaging (GRAPPA, acceleration factor = 2), spatio-temporal undersampled TSENSE (acceleration factor = 4), and IS SENSE techniques (acceleration factor = 4). Acquisition times, quantitative cardiac functional parameters, wall motion abnormalities (WMA), and qualitative performance (scale: 1-poor to 5-excellent for overall image quality, noise, and artifact) were compared. Breath-hold times for IS SENSE (3.0 ± 0.6 s) and TSENSE (3.3 ± 0.6) were both reduced relative to GRAPPA (8.4 ± 1.7 s, p < 0.001). No difference in quantitative cardiac function was present between the three techniques (p = 0.89 for ejection fraction). GRAPPA and IS SENSE had similar image quality (4.7 ± 0.4 vs. 4.5 ± 0.6, p = 0.09) while, both techniques were superior to TSENSE (quality: 4.1 ± 0.7, p < 0.001). GRAPPA WMA agreement with IS SENSE was good (κ > 0.60, p < 0.001), while agreement with TSENSE was poor (κ < 0.40, p < 0.001). IS SENSE is a viable clinical CMR acceleration approach to reduce acquisition times while maintaining satisfactory qualitative and quantitative performance. PMID:26894256

  6. Stress Cardiac Magnetic Resonance Imaging With Observation Unit Care Reduces Cost for Patients With Emergent Chest Pain: A Randomized Trial

    PubMed Central

    Miller, Chadwick D.; Hwang, Wenke; Hoekstra, James W.; Case, Doug; Lefebvre, Cedric; Blumstein, Howard; Hiestand, Brian; Diercks, Deborah B.; Hamilton, Craig A.; Harper, Erin N.; Hundley, W. Gregory

    2013-01-01

    Study objective We determine whether imaging with cardiac magnetic resonance imaging (MRI) in an observation unit would reduce medical costs among patients with emergent non-low-risk chest pain who otherwise would be managed with an inpatient care strategy. Methods Emergency department patients (n=110) at intermediate or high probability for acute coronary syndrome without electrocardiographic or biomarker evidence of a myocardial infarction provided consent and were randomized to stress cardiac MRI in an observation unit versus standard inpatient care. The primary outcome was direct hospital cost calculated as the sum of hospital and provider costs. Estimated median cost differences (Hodges-Lehmann) and distribution-free 95% confidence intervals (Moses) were used to compare groups. Results There were 110 participants with 53 randomized to cardiac MRI and 57 to inpatient care; 8 of 110 (7%) experienced acute coronary syndrome. In the MRI pathway, 49 of 53 underwent stress cardiac MRI, 11 of 53 were admitted, 1 left against medical advice, 41 were discharged, and 2 had acute coronary syndrome. In the inpatient care pathway, 39 of 57 patients initially received stress testing, 54 of 57 were admitted, 3 left against medical advice, and 6 had acute coronary syndrome. At 30 days, no subjects in either group experienced acute coronary syndrome after discharge. The cardiac MRI group had a reduced median hospitalization cost (Hodges-Lehmann estimate $588; 95% confidence interval $336 to $811); 79% were managed without hospital admission. Conclusion Compared with inpatient care, an observation unit strategy involving stress cardiac MRI reduced incident cost without any cases of missed acute coronary syndrome in patients with emergent chest pain. PMID:20554078

  7. Improved image quality and computation reduction in 4-D reconstruction of cardiac-gated SPECT images.

    PubMed

    Narayanan, M V; King, M A; Wernick, M N; Byrne, C L; Soares, E J; Pretorius, P H

    2000-05-01

    Spatiotemporal reconstruction of cardiac-gated SPECT images permits us to obtain valuable information related to cardiac function. However, the task of reconstructing this four-dimensional (4-D) data set is computation intensive. Typically, these studies are reconstructed frame-by-frame: a nonoptimal approach because temporal correlations in the signal are not accounted for. In this work, we show that the compression and signal decorrelation properties of the Karhunen-Loève (KL) transform may be used to greatly simplify the spatiotemporal reconstruction problem. The gated projections are first KL transformed in the temporal direction. This results in a sequence of KL-transformed projection images for which the signal components are uncorrelated along the time axis. As a result, the 4-D reconstruction task is simplified to a series of three-dimensional (3-D) reconstructions in the KL domain. The reconstructed KL components are subsequently inverse KL transformed to obtain the entire spatiotemporal reconstruction set. Our simulation and clinical results indicate that KL processing provides image sequences that are less noisy than are conventional frame-by-frame reconstructions. Additionally, by discarding high-order KL components that are dominated by noise, we can achieve savings in computation time because fewer reconstructions are needed in comparison to conventional frame-by-frame reconstructions.

  8. Fast automatic delineation of cardiac volume of interest in MSCT images

    NASA Astrophysics Data System (ADS)

    Lorenz, Cristian; Lessick, Jonathan; Lavi, Guy; Bulow, Thomas; Renisch, Steffen

    2004-05-01

    Computed Tomography Angiography (CTA) is an emerging modality for assessing cardiac anatomy. The delineation of the cardiac volume of interest (VOI) is a pre-processing step for subsequent visualization or image processing. It serves the suppression of anatomic structures being not in the primary focus of the cardiac application, such as sternum, ribs, spinal column, descending aorta and pulmonary vasculature. These structures obliterate standard visualizations such as direct volume renderings or maximum intensity projections. In addition, outcome and performance of post-processing steps such as ventricle suppression, coronary artery segmentation or the detection of short and long axes of the heart can be improved. The structures being part of the cardiac VOI (coronary arteries and veins, myocardium, ventricles and atria) differ tremendously in appearance. In addition, there is no clear image feature associated with the contour (or better cut-surface) distinguishing between cardiac VOI and surrounding tissue making the automatic delineation of the cardiac VOI a difficult task. The presented approach locates in a first step chest wall and descending aorta in all image slices giving a rough estimate of the location of the heart. In a second step, a Fourier based active contour approach delineates slice-wise the border of the cardiac VOI. The algorithm has been evaluated on 41 multi-slice CT data-sets including cases with coronary stents and venous and arterial bypasses. The typical processing time amounts to 5-10s on a 1GHz P3 PC.

  9. Feasibility of using respiration-averaged MR images for attenuation correction of cardiac PET/MR imaging.

    PubMed

    Ai, Hua; Pan, Tinsu

    2015-01-01

    Cardiac imaging is a promising application for combined PET/MR imaging. However, current MR imaging protocols for whole-body attenuation correction can produce spatial mismatch between PET and MR-derived attenuation data owing to a disparity between the two modalities' imaging speeds. We assessed the feasibility of using a respiration-averaged MR (AMR) method for attenuation correction of cardiac PET data in PET/MR images. First, to demonstrate the feasibility of motion imaging with MR, we used a 3T MR system and a two-dimensional fast spoiled gradient-recalled echo (SPGR) sequence to obtain AMR images ofa moving phantom. Then, we used the same sequence to obtain AMR images of a patient's thorax under free-breathing conditions. MR images were converted into PET attenuation maps using a three-class tissue segmentation method with two sets of predetermined CT numbers, one calculated from the patient-specific (PS) CT images and the other from a reference group (RG) containing 54 patient CT datasets. The MR-derived attenuation images were then used for attenuation correction of the cardiac PET data, which were compared to the PET data corrected with average CT (ACT) images. In the myocardium, the voxel-by-voxel differences and the differences in mean slice activity between the AMR-corrected PET data and the ACT-corrected PET data were found to be small (less than 7%). The use of AMR-derived attenuation images in place of ACT images for attenuation correction did not affect the summed stress score. These results demonstrate the feasibility of using the proposed SPGR-based MR imaging protocol to obtain patient AMR images and using those images for cardiac PET attenuation correction. Additional studies with more clinical data are warranted to further evaluate the method. PMID:26218995

  10. Challenges of cardiac image analysis in large-scale population-based studies.

    PubMed

    Medrano-Gracia, Pau; Cowan, Brett R; Suinesiaputra, Avan; Young, Alistair A

    2015-03-01

    Large-scale population-based imaging studies of preclinical and clinical heart disease are becoming possible due to the advent of standardized robust non-invasive imaging methods and infrastructure for big data analysis. This gives an exciting opportunity to gain new information about the development and progression of heart disease across population groups. However, the large amount of image data and prohibitive time required for image analysis present challenges for obtaining useful derived data from the images. Automated analysis tools for cardiac image analysis are only now becoming available. This paper reviews the challenges and possible solutions to the analysis of big imaging data in population studies. We also highlight the potential of recent large epidemiological studies using cardiac imaging to discover new knowledge on heart health and well-being.

  11. Comparison of magnetic resonance imaging and echocardiography in determination of cardiac dimensions in normal subjects.

    PubMed

    Friedman, B J; Waters, J; Kwan, O L; DeMaria, A N

    1985-06-01

    No data exist regarding the ability of magnetic resonance imaging to assess cardiac size and performance in human beings. Therefore, measurements of cardiac dimensions by magnetic resonance imaging were compared with those obtained by two-dimensional echocardiography in 21 normal subjects. Magnetic resonance transverse cardiac sections were obtained during electrocardiographic gating using a spin echo pulse sequence. In normal subjects, magnetic resonance imaging yielded a range of values for cardiac dimensions having a similar standard deviation as that of two-dimensional echocardiography. Diastolic measurements of the aorta, left atrium, left ventricle and septum obtained by magnetic resonance imaging correlated well with those obtained by two-dimensional echocardiography (r = 0.82, 0.78, 0.81 and 0.75, respectively). The correlation coefficient of r = 0.35 observed for the posterior wall thickness was not surprising in view of the narrow range of normal values. Only a general correlation (r = 0.53) existed for the right ventricular diastolic dimension; this was probably related to the difficulty in obtaining representative measurements due to the complex geometry of this chamber. Failure of systolic dimension measurements by magnetic resonance imaging to correlate with those obtained by echocardiography is probably related to limitations of electrocardiographic gating, especially of determining the exact end-systolic frame. Although technically complex at present, magnetic resonance imaging does provide an additional noninvasive technique for measurement of cardiac size.

  12. Pictorial review: electron beam computed tomography and multislice spiral computed tomography for cardiac imaging.

    PubMed

    Lembcke, Alexander; Hein, Patrick A; Dohmen, Pascal M; Klessen, Christian; Wiese, Till H; Hoffmann, Udo; Hamm, Bernd; Enzweiler, Christian N H

    2006-03-01

    Electron beam computed tomography (EBCT) revolutionized cardiac imaging by combining a constant high temporal resolution with prospective ECG triggering. For years, EBCT was the primary technique for some non-invasive diagnostic cardiac procedures such as calcium scoring and non-invasive angiography of the coronary arteries. Multislice spiral computed tomography (MSCT) on the other hand significantly advanced cardiac imaging through high volume coverage, improved spatial resolution and retrospective ECG gating. This pictorial review will illustrate the basic differences between both modalities with special emphasis to their image quality. Several experimental and clinical examples demonstrate the strengths and limitations of both imaging modalities in an intraindividual comparison for a broad range of diagnostic applications such as coronary artery calcium scoring, coronary angiography including stent visualization as well as functional assessment of the cardiac ventricles and valves. In general, our examples indicate that EBCT suffers from a number of shortcomings such as limited spatial resolution and a low contrast-to-noise ratio. Thus, EBCT should now only be used in selected cases where a constant high temporal resolution is a crucial issue, such as dynamic (cine) imaging. Due to isotropic submillimeter spatial resolution and retrospective data selection MSCT seems to be the non-invasive method of choice for cardiac imaging in general, and for assessment of the coronary arteries in particular. However, technical developments are still needed to further improve the temporal resolution in MSCT and to reduce the substantial radiation exposure. PMID:16427236

  13. Lasting alterations of the sodium current by short-term hyperlipidemia as a mechanism for initiation of cardiac remodeling.

    PubMed

    Biet, M; Morin, N; Benrezzak, O; Naimi, F; Bellanger, S; Baillargeon, J P; Chouinard, L; Gallo-Payet, N; Carpentier, A C; Dumaine, R

    2014-01-15

    Clinical and animal studies indicate that increased fatty acid delivery to lean tissues induces cardiac electrical remodeling and alterations of cellular calcium homeostasis. Since this may represent a mechanism initiating cardiac dysfunction during establishment of insulin resistance and diabetes or anaerobic cardiac metabolism (ischemia), we sought to determine if short-term exposure to high plasma concentration of fatty acid in vivo was sufficient to alter the cardiac sodium current (INa) in dog ventricular myocytes. Our results show that delivery of triglycerides and nonesterified fatty acids by infusion of Intralipid + heparin (IH) for 8 h increased the amplitude of INa by 43% and shifted its activation threshold by -5 mV, closer to the resting membrane potential. Steady-state inactivation (availability) of the channels was reduced by IH with no changes in recovery from inactivation. As a consequence, INa "window" current, a strong determinant of intracellular Na+ and Ca2+ concentrations, was significantly increased. The results indicate that increased circulating fatty acids alter INa gating in manners consistent with an increased cardiac excitability and augmentation of intracellular calcium. Moreover, these changes could still be measured after the dogs were left to recover for 12 h after IH perfusion, suggesting lasting changes in INa. Our results indicate that fatty acids rapidly induce cardiac remodeling and suggest that this process may be involved in the development of cardiac dysfunctions associated to insulin resistance and diabetes. PMID:24240869

  14. SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications

    SciTech Connect

    Fetterly, K

    2014-06-01

    Purpose: Diagnosis and treatment of cardiovascular disease in the cardiac catheterization laboratory is often aided by a multitude of imaging technologies. The purpose of this work is to highlight the contributions to patient care offered by the various imaging systems used during cardiovascular interventional procedures. Methods: Imaging technologies used in the cardiac catheterization lab were characterized by their fundamental technology and by the clinical applications for which they are used. Whether the modality is external to the patient, intravascular, or intracavity was specified. Specific clinical procedures for which multiple modalities are routinely used will be highlighted. Results: X-ray imaging modalities include fluoroscopy/angiography and angiography CT. Ultrasound imaging is performed with external, trans-esophageal echocardiography (TEE), and intravascular (IVUS) transducers. Intravascular infrared optical coherence tomography (IVOCT) is used to assess vessel endothelium. Relatively large (>0.5 mm) anatomical structures are imaged with x-ray and ultrasound. IVUS and IVOCT provide high resolution images of vessel walls. Cardiac CT and MRI images are used to plan complex cardiovascular interventions. Advanced applications are used to spatially and temporally merge images from different technologies. Diagnosis and treatment of coronary artery disease frequently utilizes angiography and intra-vascular imaging, and treatment of complex structural heart conditions routinely includes use of multiple imaging modalities. Conclusion: There are several imaging modalities which are routinely used in the cardiac catheterization laboratory to diagnose and treat both coronary artery and structural heart disease. Multiple modalities are frequently used to enhance the quality and safety of procedures. The cardiac catheterization laboratory includes many opportunities for medical physicists to contribute substantially toward advancing patient care.

  15. Automated segmentation of cardiac visceral fat in low-dose non-contrast chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Liang, Mingzhu; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2015-03-01

    Cardiac visceral fat was segmented from low-dose non-contrast chest CT images using a fully automated method. Cardiac visceral fat is defined as the fatty tissues surrounding the heart region, enclosed by the lungs and posterior to the sternum. It is measured by constraining the heart region with an Anatomy Label Map that contains robust segmentations of the lungs and other major organs and estimating the fatty tissue within this region. The algorithm was evaluated on 124 low-dose and 223 standard-dose non-contrast chest CT scans from two public datasets. Based on visual inspection, 343 cases had good cardiac visceral fat segmentation. For quantitative evaluation, manual markings of cardiac visceral fat regions were made in 3 image slices for 45 low-dose scans and the Dice similarity coefficient (DSC) was computed. The automated algorithm achieved an average DSC of 0.93. Cardiac visceral fat volume (CVFV), heart region volume (HRV) and their ratio were computed for each case. The correlation between cardiac visceral fat measurement and coronary artery and aortic calcification was also evaluated. Results indicated the automated algorithm for measuring cardiac visceral fat volume may be an alternative method to the traditional manual assessment of thoracic region fat content in the assessment of cardiovascular disease risk.

  16. Carbon tube electrodes for electrocardiography-gated cardiac multimodality imaging in mice.

    PubMed

    Choquet, Philippe; Goetz, Christian; Aubertin, Gaelle; Hubele, Fabrice; Sannié, Sébastien; Constantinesco, André

    2011-01-01

    This report describes a simple design of noninvasive carbon tube electrodes that facilitates electrocardiography (ECG) in mice during cardiac multimodality preclinical imaging. Both forepaws and the left hindpaw, covered by conductive gel, of mice were placed into the openings of small carbon tubes. Cardiac ECG-gated single-photon emission CT, X-ray CT, and MRI were tested (n = 60) in 20 mice. For all applications, electrodes were used in a warmed multimodality imaging cell. A heart rate of 563 ± 48 bpm was recorded from anesthetized mice regardless of the imaging technique used, with acquisition times ranging from 1 to 2 h.

  17. Accuracy and Robustness Improvements of Echocardiographic Particle Image Velocimetry for Routine Clinical Cardiac Evaluation

    NASA Astrophysics Data System (ADS)

    Meyers, Brett; Vlachos, Pavlos; Charonko, John; Giarra, Matthew; Goergen, Craig

    2015-11-01

    Echo Particle Image Velocimetry (echoPIV) is a recent development in flow visualization that provides improved spatial resolution with high temporal resolution in cardiac flow measurement. Despite increased interest a limited number of published echoPIV studies are clinical, demonstrating that the method is not broadly accepted within the medical community. This is due to the fact that use of contrast agents are typically reserved for subjects whose initial evaluation produced very low quality recordings. Thus high background noise and low contrast levels characterize most scans, which hinders echoPIV from producing accurate measurements. To achieve clinical acceptance it is necessary to develop processing strategies that improve accuracy and robustness. We hypothesize that using a short-time moving window ensemble (MWE) correlation can improve echoPIV flow measurements on low image quality clinical scans. To explore the potential of the short-time MWE correlation, evaluation of artificial ultrasound images was performed. Subsequently, a clinical cohort of patients with diastolic dysfunction was evaluated. Qualitative and quantitative comparisons between echoPIV measurements and Color M-mode scans were carried out to assess the improvements delivered by the proposed methodology.

  18. Routine initial exercise stress testing for treatment stratification in comprehensive cardiac rehabilitation.

    PubMed

    Salzwedel, Annett; Rieck, Angelika; Reibis, Rona K; Völler, Heinz

    2015-12-01

    There is evidence of substantial benefit of cardiac rehabilitation (CR) for patients with low exercise capacity at admission. Nevertheless, some patients are not able to perform an initial exercise stress test (EST). We aimed to describe this group using data of 1094 consecutive patients after a cardiac event (71±7 years, 78% men) enrolled in nine centres for inpatient CR. We analysed sociodemographic and clinical variables (e.g. cardiovascular risk factors, comorbidities, complications at admission), amount of therapy (e.g. exercise training, nursing care) and the results of the initial and the final 6-min walking test (6MWT) with respect to the application of an EST. Fifteen per cent of patients did not undergo an EST (non-EST group). In multivariable analysis, the probability of obtaining an EST was higher for men [odds ratio (OR) 1.89, P=0.01], a 6MWT (per 10 m, OR 1.07, P<0.01) and lower for patients with diabetes mellitus (OR 0.48, P<0.01), NYHA-class III/IV (OR 0.27, P<0.01), osteoarthritis (OR 0.39, P<0.01) and a longer hospital stay (per 5 days, OR 0.87, P=0.02). The non-EST group received fewer therapy units of exercise training, but more units of nursing care and physiotherapy than the EST group. However, there were no significant differences between both groups in the increase of the 6MWT during CR (123 vs. 108 m, P=0.122). The present study confirms the feasibility of an EST at the start of CR as an indicator of disease severity. Nevertheless, patients without EST benefit from CR even if exercising less. Thus, there is a justified need for individualized, comprehensive and interdisciplinary CR.

  19. Robust segmentation of 4D cardiac MRI-tagged images via spatio-temporal propagation

    NASA Astrophysics Data System (ADS)

    Qian, Zhen; Huang, Xiaolei; Metaxas, Dimitris N.; Axel, Leon

    2005-04-01

    In this paper we present a robust method for segmenting and tracking cardiac contours and tags in 4D cardiac MRI tagged images via spatio-temporal propagation. Our method is based on two main techniques: the Metamorphs Segmentation for robust boundary estimation, and the tunable Gabor filter bank for tagging lines enhancement, removal and myocardium tracking. We have developed a prototype system based on the integration of these two techniques, and achieved efficient, robust segmentation and tracking with minimal human interaction.

  20. Improved Subspace Estimation for Low-Rank Model-Based Accelerated Cardiac Imaging

    PubMed Central

    Hitchens, T. Kevin; Wu, Yijen L.; Ho, Chien; Liang, Zhi-Pei

    2014-01-01

    Sparse sampling methods have emerged as effective tools to accelerate cardiac magnetic resonance imaging (MRI). Low-rank model-based cardiac imaging uses a pre-determined temporal subspace for image reconstruction from highly under-sampled (k, t)-space data and has been demonstrated effective for high-speed cardiac MRI. The accuracy of the temporal subspace is a key factor in these methods, yet little work has been published on data acquisition strategies to improve subspace estimation. This paper investigates the use of non-Cartesian k-space trajectories to replace the Cartesian trajectories which are omnipresent but are highly sensitive to readout direction. We also propose “self-navigated” pulse sequences which collect both navigator data (for determining the temporal subspace) and imaging data after every RF pulse, allowing for even greater acceleration. We investigate subspace estimation strategies through analysis of phantom images and demonstrate in vivo cardiac imaging in rats and mice without the use of ECG or respiratory gating. The proposed methods achieved 3-D imaging of wall motion, first-pass myocardial perfusion, and late gadolinium enhancement in rats at 74 frames per second (fps), as well as 2-D imaging of wall motion in mice at 97 fps. PMID:24801352

  1. When, where and how to initiate hypothermia after adult cardiac arrest.

    PubMed

    Taccone, F S; Donadello, K; Beumier, M; Scolletta, S

    2011-09-01

    Therapeutich hypothermia (TH) has been shown to improve neurological outcome and survival after witnessed cardiac arrest (CA) that is due to ventricular fibrillation. Although TH is widely used following witnessed CA as well as all forms of initial rhythm, the mortality rate after CA remains unacceptably high, and additional study is needed to understand when and how to implement hypothermia in the post-resuscitation phase. Experimental studies have emphasized the importance of initiating cooling soon after the return of spontaneous circulation (ROSC) or even during cardiopulmonary resuscitation (CPR). Clinical studies have shown that pre-hospital induction of hypothermia is feasible and has no major adverse events-even when used intra-arrest-and may provide some additional benefits compared to delayed in-hospital cooling. Thus, hypothermia use should not be limited to the Intensive Care Unit but can be initiated in the field/ambulance or in the Emergency Department, then continued after hospital admission- even during specific procedures such as coronary angiography-as part of the global management of CA patients. Various methods (both non-invasive and invasive) are available to achieve and maintain the target temperature; however, only some of these methods-which include cold fluids, ice packs, iced pads and helmet and trans-nasal cooling- are easily deployed in the pre-hospital setting. PMID:21878875

  2. Effects of Radiation Exposure From Cardiac Imaging: How Good Are the Data?

    PubMed Central

    Einstein, Andrew J.

    2012-01-01

    Concerns about medical exposure to ionizing radiation have become heightened in recent years due to rapid growth in procedure volumes and the high radiation doses incurred from some procedures. This article summarizes the evidence base undergirding concerns about radiation exposure in cardiac imaging. After classifying radiation effects, explaining terminology used to quantify the radiation received by patients, and describing typical doses from cardiac imaging procedures, I address the major epidemiological studies having bearing on radiation effects at doses comparable to those received by patients undergoing cardiac imaging. These include studies of atomic bomb survivors, nuclear industry workers, and children exposed in utero to x-rays, all of which have evidenced increased cancer risks at low doses. Additional higher dose epidemiological studies of cohorts exposed to radiation in the context of medical treatment are described and found to be generally compatible with these cardiac-dose-level studies, albeit with exceptions. Using risk projection models developed by the US National Academies that incorporate these data and reflect several evidence-based assumptions, cancer risk from cardiac imaging can be estimated and compared to benefits from imaging. Several ongoing epidemiological studies will provide better understanding of radiation-associated cancer risks. PMID:22300689

  3. Initial Results of Ultraviolet Imager on AKATSUKI

    NASA Astrophysics Data System (ADS)

    Yamazaki, Atsushi; Yamada, Manabu; Watanabe, Shigeto; Imamura, Takeshi

    2016-10-01

    The UV images of the Venusian cloud top were obtained by several Venus spacecrafts such as Mariner 10 [Bruce et al., 1974], Pioneer Venus [Travis et al., 1979; Rossow et al., 1980], Galileo [Belton et al., 1991], Venus Express [Markiewicz et al., 2007; Titov et al., 2008]. Those previous instruments have taken images at the wavelength around 365-nm, but what material distribution reflects the contrasting density has been unknown yet. There is the SO2 absorption band around the 283-nm wavelength, and the 283-nm images clarify the distribution of SO2. The ultraviolet imager (UVI) on the AKATUSKI satellite takes ultraviolet images of the solar radiation scattered at the Venusian cloud top level at the both 283- and 365-nm wavelengths. There are absorption bands of SO2 and unknown absorber in these wavelength regions. The UVI carries out the measurements of the SO2 and the unknown absorber distributions, and the sequential images lead to understand the velocity vector of the wind at the cloud top altitude. The UVI is equipped with fast off-axial catadioptric optics, two bandpass filters and a diffuser installed in a filter wheel moving with a stepping motor, and a high-sensitive CCD devise with a UV coating. The UVI takes images of the ultraviolet solar radiation scattered from the Venusian cloud top in two wavelength ranges at the center of 283nm and 365nm with bandpass of 15 nm. A back illuminated type of a frame-transfer CCD with a UV sensitive coating is adopted. Its effective area is 1024 x 1024 pixels. UVI has 12-deg field-of-view, so the angular resolution is 0.012 deg/pix. The nominal exposure time is 125 msec and 46 msec at the observations of the 283- and 365-nm wavelengths, respectively. CCD has no mechanical shutter, so a smear noise in transferring from the image area to the storage area degrades the signal-to-noise ratio of the signal image especially in the short exposure operation. The images have a signal-to-noise ratio of over 100 after desmearing of

  4. Cardiac Magnetic Resonance Imaging Findings in 20-year Survivors of Mediastinal Radiotherapy for Hodgkin's Disease

    SciTech Connect

    Machann, Wolfram; Beer, Meinrad; Breunig, Margret; Stoerk, Stefan; Angermann, Christiane; Seufert, Ines; Schwab, Franz; Koelbl, Oliver; Flentje, Michael; Vordermark, Dirk

    2011-03-15

    Purpose: The recognition of the true prevalence of cardiac toxicity after mediastinal radiotherapy requires very long follow-up and a precise diagnostic procedure. Cardiac magnetic resonance imaging (MRI) permits excellent quantification of cardiac function and identification of localized myocardial defects and has now been applied to a group of 20-year Hodgkin's disease survivors. Methods and materials: Of 143 patients treated with anterior mediastinal radiotherapy (cobalt-60, median prescribed dose 40 Gy) for Hodgkin's disease between 1978 and 1985, all 53 survivors were invited for cardiac MRI. Of those, 36 patients (68%) presented for MRI, and in 31 patients (58%) MRI could be performed 20-28 years (median, 24) after radiotherapy. The following sequences were acquired on a 1.5-T MRI: transversal T1-weighted TSE and T2-weighted half-fourier acquisition single-shot turbo-spin-echo sequences, a steady-state free precession (SSFP) cine sequence in the short heart axis and in the four-chamber view, SSFP perfusion sequences under rest and adenosine stress, and a SSFP inversion recovery sequence for late enhancement. The MRI findings were correlated with previously reconstructed doses to cardiac structures. Results: Clinical characteristics and reconstructed doses were not significantly different between survivors undergoing and not undergoing MRI. Pathologic findings were reduced left ventricular function (ejection fraction <55%) in 7 (23%) patients, hemodynamically relevant valvular dysfunction in 13 (42%), late myocardial enhancement in 9 (29%), and any perfusion deficit in 21 (68%). An association of regional pathologic changes and reconstructed dose to cardiac structures could not be established. Conclusions: In 20-year survivors of Hodgkin's disease, cardiac MRI detects pathologic findings in approximately 70% of patients. Cardiac MRI has a potential role in cardiac imaging of Hodgkin's disease patients after mediastinal radiotherapy.

  5. Usefulness of Cardiac Sympathetic Nerve Imaging Using (123)Iodine-Metaiodobenzylguanidine Scintigraphy for Predicting Sudden Cardiac Death in Patients With Heart Failure.

    PubMed

    Kasama, Shu; Toyama, Takuji; Kurabayashi, Masahiko

    2016-01-01

    The autonomic nervous system plays an important role in the human heart. Activation of the cardiac sympathetic nervous system is a cardinal pathophysiological abnormality associated with the failing human heart. Myocardial imaging using (123)I-metaiodobenzylguanidine (MIBG), an analog of norepinephrine, can be used to investigate the activity of norepinephrine, the predominant neurotransmitter of the sympathetic nervous system. Many clinical trials have demonstrated that (123)I-MIBG scintigraphic parameters predict cardiac adverse events, especially sudden cardiac death, in patients with heart failure. In this review, we summarize results from published studies that have focused on the use of cardiac sympathetic nerve imaging using (123)I-MIBG scintigraphy for risk stratification of sudden cardiac death in patients with heart failure.

  6. Virtual and augmented medical imaging environments: enabling technology for minimally invasive cardiac interventional guidance.

    PubMed

    Linte, Cristian A; White, James; Eagleson, Roy; Guiraudon, Gérard M; Peters, Terry M

    2010-01-01

    Virtual and augmented reality environments have been adopted in medicine as a means to enhance the clinician's view of the anatomy and facilitate the performance of minimally invasive procedures. Their value is truly appreciated during interventions where the surgeon cannot directly visualize the targets to be treated, such as during cardiac procedures performed on the beating heart. These environments must accurately represent the real surgical field and require seamless integration of pre- and intra-operative imaging, surgical tracking, and visualization technology in a common framework centered around the patient. This review begins with an overview of minimally invasive cardiac interventions, describes the architecture of a typical surgical guidance platform including imaging, tracking, registration and visualization, highlights both clinical and engineering accuracy limitations in cardiac image guidance, and discusses the translation of the work from the laboratory into the operating room together with typically encountered challenges. PMID:22275200

  7. Noninvasive detection of human cardiac transplant rejection with indium-111 antimyosin (Fab) imaging

    SciTech Connect

    Frist, W.; Yasuda, T.; Segall, G.; Khaw, B.A.; Strauss, H.W.; Gold, H.; Stinson, E.; Oyer, P.; Baldwin, J.; Billingham, M.

    1987-11-01

    Diagnosis of rejection after cardiac transplantation is currently made by right ventricular endomyocardial biopsy. To evaluate antimyosin imaging as a noninvasive means of detecting human cardiac rejection, the Fab fragment of murine monoclonal antimyosin antibodies was labeled with indium-111 and given intravenously to 18 patients (age 45 +/- 12 years) in 20 studies 7 days to 9 years after transplantation. Endomyocardial biopsy specimens were obtained at the time of each imaging study. Eight patients had positive scans confirmed by biopsy as rejection, and eight patients had negative scans and no evidence of rejection on biopsy. Discordance was observed in four studies, two with positive scans and no rejection on biopsy and two with negative scans and positive biopsy. The sensitivity, specificity, and overall accuracy of the technique were each 80%. Imaging with radiolabeled antimyosin antibody Fab fragments may be of value in the noninvasive identification of rejection in the cardiac transplant recipient.

  8. Tag removal in cardiac tagged MRI images using coupled dictionary learning.

    PubMed

    Makram, Abram W; Rushdi, Muhammad A; Khalifa, Ayman M; El-Wakad, Mohamed T

    2015-01-01

    Tagged Magnetic Resonance Imaging (tMRI) is considered to be the gold standard for quantitative assessment of the cardiac local functions. However, the tagging patterns and low myocardium-to-blood-pool contrast of tagged images bring great challenges to cardiac image processing and analysis tasks such as myocardium segmentation and tracking. Hence, there has been growing interest in techniques for removing tagging lines. In this work, a method for removing tagging patterns in tagged MR images using a coupled dictionary learning (CDL) model is proposed. In this model, identical sparse representations are assumed for image patches in the tagged MRI and corresponding cine MRI image spaces. First, we learn a dictionary for the tagged MRI image space. Then, we compute a dictionary for the cine MRI image space so that corresponding tagged and cine patches have the same sparse codes in terms of their respective dictionaries. Finally, in order to produce the de-tagged (cine version) of a test tagged image, the sparse codes of the tagged patches and the trained cine dictionary are used together to construct the de-tagged patches. We have tested this tag removal method on a dataset of tagged cardiac MR images. Our experimental results compared favorably with a recently proposed tag removal method that removes tags in the frequency domain using an optimal band-stop filter of harmonic peaks.

  9. A Voluntary Breath-Hold Treatment Technique for the Left Breast With Unfavorable Cardiac Anatomy Using Surface Imaging

    SciTech Connect

    Gierga, David P.; Turcotte, Julie C.; Sharp, Gregory C.; Sedlacek, Daniel E.; Cotter, Christopher R.; Taghian, Alphonse G.

    2012-12-01

    Purpose: Breath-hold (BH) treatments can be used to reduce cardiac dose for patients with left-sided breast cancer and unfavorable cardiac anatomy. A surface imaging technique was developed for accurate patient setup and reproducible real-time BH positioning. Methods and Materials: Three-dimensional surface images were obtained for 20 patients. Surface imaging was used to correct the daily setup for each patient. Initial setup data were recorded for 443 fractions and were analyzed to assess random and systematic errors. Real time monitoring was used to verify surface placement during BH. The radiation beam was not turned on if the BH position difference was greater than 5 mm. Real-time surface data were analyzed for 2398 BHs and 363 treatment fractions. The mean and maximum differences were calculated. The percentage of BHs greater than tolerance was calculated. Results: The mean shifts for initial patient setup were 2.0 mm, 1.2 mm, and 0.3 mm in the vertical, longitudinal, and lateral directions, respectively. The mean 3-dimensional vector shift was 7.8 mm. Random and systematic errors were less than 4 mm. Real-time surface monitoring data indicated that 22% of the BHs were outside the 5-mm tolerance (range, 7%-41%), and there was a correlation with breast volume. The mean difference between the treated and reference BH positions was 2 mm in each direction. For out-of-tolerance BHs, the average difference in the BH position was 6.3 mm, and the average maximum difference was 8.8 mm. Conclusions: Daily real-time surface imaging ensures accurate and reproducible positioning for BH treatment of left-sided breast cancer patients with unfavorable cardiac anatomy.

  10. Fully 4D motion-compensated reconstruction of cardiac SPECT images

    NASA Astrophysics Data System (ADS)

    Gravier, Erwan; Yang, Yongyi; King, Michael A.; Jin, Mingwu

    2006-09-01

    In this paper, we investigate the benefits of a spatiotemporal approach for reconstruction of image sequences. In the proposed approach, we introduce a temporal prior in the form of motion compensation to account for the statistical correlations among the frames in a sequence, and reconstruct all the frames collectively as a single function of space and time. The reconstruction algorithm is derived based on the maximum a posteriori estimate, for which the one-step late expectation-maximization algorithm is used. We demonstrated the method in our experiments using simulated single photon emission computed tomography (SPECT) cardiac perfusion images. The four-dimensional (4D) gated mathematical cardiac-torso phantom was used for simulation of gated SPECT perfusion imaging with Tc-99m-sestamibi. In addition to bias-variance analysis and time activity curves, we also used a channelized Hotelling observer to evaluate the detectability of perfusion defects in the reconstructed images. Our experimental results demonstrated that the incorporation of temporal regularization into image reconstruction could significantly improve the accuracy of cardiac images without causing any significant cross-frame blurring that may arise from the cardiac motion. This could lead to not only improved detection of perfusion defects, but also improved reconstruction of the heart wall which is important for functional assessment of the myocardium. This work was supported in part by the National Institutes of Health under grant no HL65425.

  11. A Quadricuspid Aortic Valve as Seen by Cardiac Magnetic Resonance Imaging.

    PubMed

    Jones, James; Liotta, Robert; Hood, Maureen; Bustamante, Alexander

    2016-09-01

    We report a case of a 35-year-old active duty male with a rare quadricuspid aortic valve identified via transthoracic echocardiography following the detection of an incidental grade I/VI diastolic murmur. Further characterization of the anatomical findings and aortic valve flow dynamics were evaluated with cardiac magnetic resonance imaging. Accurate assessment of the various valve morphologies is essential, as it guides surgical treatment options to correct the defect. Our case highlights the complimentary role of cardiac magnetic resonance imaging in defining the anatomy and functional consequences of a quadricuspid aortic valve. PMID:27612379

  12. Positron emission tomographic imaging of cardiac sympathetic innervation and function

    SciTech Connect

    Goldstein, D.S.; Chang, P.C.; Eisenhofer, G.; Miletich, R.; Finn, R.; Bacher, J.; Kirk, K.L.; Bacharach, S.; Kopin, I.J. )

    1990-05-01

    Sites of uptake, storage, and metabolism of ({sup 18}F)fluorodopamine and excretion of ({sup 18}F)fluorodopamine and its metabolites were visualized using positron emission tomographic (PET) scanning after intravenous injection of the tracer into anesthetized dogs. Radioactivity was concentrated in the renal pelvis, heart, liver, spleen, salivary glands, and gall bladder. Uptake of 18F by the heart resulted in striking delineation of the left ventricular myocardium. Pretreatment with desipramine markedly decreased cardiac positron emission, consistent with dependence of the heart on neuronal uptake (uptake-1) for removal of circulating catecholamines. In reserpinized animals, cardiac positron emission was absent within 30 minutes after injection of ({sup 18}F)-6-fluorodopamine, demonstrating that the emission in untreated animals was from radioactive labeling of the sympathetic storage vesicles. Decreased positron emission from denervated salivary glands confirmed that the tracer was concentrated in sympathetic neurons. Radioactivity in the gall bladder and urinary system depicted the hepatic and renal excretion of the tracer and its metabolites. Administration of tyramine or nitroprusside increased and ganglionic blockade with trimethaphan decreased the rate of loss of myocardial radioactivity. The results show that PET scanning after administration of ({sup 18}F)fluorodopamine can be used to visualize sites of sympathetic innervation, follow the metabolism and renal and hepatic excretion of catecholamines, and examine cardiac sympathetic function.

  13. The development and initial evaluation of a realistic simulated SPECT dataset with simultaneous respiratory and cardiac motion for gated myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Tsui, Benjamin M. W.

    2015-02-01

    We developed a realistic simulation dataset for simultaneous respiratory and cardiac (R&C) gated SPECT/CT using the 4D NURBS-based Cardiac-Torso (NCAT) Phantom and Monte Carlo simulation methods, and evaluated it for a sample application study. The 4D NCAT phantom included realistic respiratory motion and beating heart motion based on respiratory gated CT and cardiac tagged MRI data of normal human subjects. To model the respiratory motion, a set of 24 separate 3D NCAT phantoms excluding the heart was generated over a respiratory cycle. The beating heart motion was modeled separately with 48 frames per cardiac cycle for each of the 24 respiratory phases. The resultant set of 24  ×  48 3D NCAT phantoms provides a realistic model of a normal human subject at different phases of combined R&C motions. An almost noise-free SPECT projection dataset for each of the 1152 3D NCAT phantoms was generated using Monte Carlo simulation techniques and the radioactivity uptake distribution of 99mTc sestamibi in different organs. By grouping and summing the separate projection datasets, separate or simultaneous R&C gated acquired data with different gating schemes could be simulated. In the initial evaluation, we combined the projection datasets into ungated, 6 respiratory-gates only, 8 cardiac-gates only, and combined 6 respiratory-gates & 8 cardiac-gates projection datasets. Each dataset was reconstructed using 3D OS-EM without and with attenuation correction using the averaged and respiratory-gated attenuation maps, and the resulting reconstructed images were compared. These results were used to demonstrate the effects of R&C motions and the reduction of image artifact due to R&C motions by gating and attenuation corrections. We concluded that the realistic 4D NCAT phantom and Monte Carlo simulated SPECT projection datasets with R&C motions are powerful tools in the study of the effects of R&C motions, as well as in the development of R&C gating schemes and motion

  14. The Development and Initial Evaluation of a Realistic Simulated SPECT Dataset with Simultaneous Respiratory and Cardiac Motion for Gated Myocardial Perfusion SPECT

    PubMed Central

    Lee, Taek-Soo; Tsui, Benjamin M. W.

    2015-01-01

    We developed a realistic simulation dataset for simultaneous respiratory and cardiac (R&C) gated SPECT/CT using the 4D NURBS-based Cardiac-Torso (NCAT) Phantom and Monte Carlo simulation methods, and evaluated it for a sample application study. The 4D NCAT phantom included realistic respiratory motion and beating heart motion based on respiratory gated CT and cardiac tagged MRI data of normal human subjects. To model the respiratory motion, a set of 24 separate 3D NCAT phantoms excluding the heart was generated over a respiratory cycle. The beating heart motion was modelled separately with 48 frames per cardiac cycle for each of the 24 respiratory phases. The resultant set of 24×48 3D NCAT phantoms provides a realistic model of a normal human subject at different phases of combined R&C motions. An almost noise-free SPECT projection dataset for each of the 1,152 3D NCAT phantoms was generated using Monte Carlo simulation techniques and the radioactivity uptake distribution of 99mTc sestamibi in different organs. By grouping and summing the separate projection datasets, separate or simultaneous R&C gated acquired data with different gating schemes could be simulated. In the initial evaluation, we combined the projection datasets into no gating, 6 respiratory-gates only, 8 cardiac-gates only, and combined 6 respiratory-gates & 8 cardiac-gates projection datasets. Each dataset was reconstructed using 3D OS-EM without and with attenuation correction using the averaged and respiratory-gated attenuation maps, and the resulting reconstructed images were compared. These results were used to demonstrate the effects of R&C motions and the reduction of image artifact due to R&C motions by gating and attenuation corrections. We concluded that the realistic 4D NCAT phantom and Monte Carlo simulated SPECT projection datasets with R&C motions are powerful tools in the study of the effects of R&C motions, as well as in the development of R&C gating schemes and motion correction

  15. The development and initial evaluation of a realistic simulated SPECT dataset with simultaneous respiratory and cardiac motion for gated myocardial perfusion SPECT.

    PubMed

    Lee, Taek-Soo; Tsui, Benjamin M W

    2015-02-21

    We developed a realistic simulation dataset for simultaneous respiratory and cardiac (R&C) gated SPECT/CT using the 4D NURBS-based Cardiac-Torso (NCAT) Phantom and Monte Carlo simulation methods, and evaluated it for a sample application study. The 4D NCAT phantom included realistic respiratory motion and beating heart motion based on respiratory gated CT and cardiac tagged MRI data of normal human subjects. To model the respiratory motion, a set of 24 separate 3D NCAT phantoms excluding the heart was generated over a respiratory cycle. The beating heart motion was modeled separately with 48 frames per cardiac cycle for each of the 24 respiratory phases. The resultant set of 24  ×  48 3D NCAT phantoms provides a realistic model of a normal human subject at different phases of combined R&C motions. An almost noise-free SPECT projection dataset for each of the 1152 3D NCAT phantoms was generated using Monte Carlo simulation techniques and the radioactivity uptake distribution of (99m)Tc sestamibi in different organs. By grouping and summing the separate projection datasets, separate or simultaneous R&C gated acquired data with different gating schemes could be simulated. In the initial evaluation, we combined the projection datasets into ungated, 6 respiratory-gates only, 8 cardiac-gates only, and combined 6 respiratory-gates & 8 cardiac-gates projection datasets. Each dataset was reconstructed using 3D OS-EM without and with attenuation correction using the averaged and respiratory-gated attenuation maps, and the resulting reconstructed images were compared. These results were used to demonstrate the effects of R&C motions and the reduction of image artifact due to R&C motions by gating and attenuation corrections. We concluded that the realistic 4D NCAT phantom and Monte Carlo simulated SPECT projection datasets with R&C motions are powerful tools in the study of the effects of R&C motions, as well as in the development of R&C gating schemes and motion

  16. Registration of fast cine cardiac MR slices to 3D preprocedural images: toward real-time registration for MRI-guided procedures

    NASA Astrophysics Data System (ADS)

    Smolikova, Renata; Wachowiak, Mark P.; Drangova, Maria

    2004-05-01

    Interventional cardiac magnetic resonance (MR) procedures are the subject of an increasing number of research studies. Typically, during the procedure only two-dimensional images of oblique slices can be presented to the interventionalist in real time. There is a clear benefit to being able to register the real-time 2D slices to a previously acquired 3D computed tomography (CT) or MR image of the heart. Results from a study of the accuracy of registration of 2D cardiac images of an anesthetized pig to a 3D volume obtained in diastole are presented. Fast cine MR images representing twenty phases of the cardiac cycle were obtained of a 2D slice in a known oblique orientation. The 2D images were initially mis-oriented at distances ranging from 2 to 20 mm, and rotations of +/-10 degrees about all three axes. Images from all 20 cardiac phases were registered to examine the effect of timing between the 2D image and the 3D pre-procedural image. Linear registration using mutual information computed with 64 histogram bins yielded the highest accuracy. For the diastolic phases, mean translation and rotation errors ranged between 0.91 and 1.32 mm and between 1.73 and 2.10 degrees. Scans acquired at other phases also had high accuracy. These results are promising for the use of real time MR in image-guided cardiac interventions, and demonstrate the feasibility of registering 2D oblique MR slices to previously acquired single-phase volumes without preprocessing.

  17. The effect of gravitational acceleration on cardiac diastolic function: a biofluid mechanical perspective with initial results.

    PubMed

    Pantalos, George M; Bennett, Thomas E; Sharp, M Keith; Woodruff, Stewart J; O'Leary, Sean D; Gillars, Kevin J; Schurfranz, Thomas; Everett, Scott D; Lemon, Mark; Schwartz, John

    2005-08-01

    Echocardiographic measurements of astronaut cardiac function have documented an initial increase, followed by a progressive reduction in both left ventricular end-diastolic volume index and stroke volume with entry into microgravity (micro-G). The investigators hypothesize that the observed reduction in cardiac filling may, in part, be due to the absence of a gravitational acceleration dependent, intraventricular hydrostatic pressure difference in micro-G that exists in the ventricle in normal gravity (1-G) due to its size and anatomic orientation. This acceleration-dependent pressure difference, DeltaP(LV), between the base and the apex of the heart for the upright posture can be estimated to be 6660 dynes/cm(2) ( approximately 5 mm Hg) on Earth. DeltaP(LV) promotes cardiac diastolic filling on Earth, but is absent in micro-G. If the proposed hypothesis is correct, cardiac pumping performance would be diminished in micro-G. To test this hypothesis, ventricular function experiments were conducted in the 1-G environment using an artificial ventricle pumping on a mock circulation system with the longitudinal axis anatomically oriented for the upright posture at 45 degrees to the horizon. Additional measurements were made with the ventricle horizontally oriented to null DeltaP(LV)along the apex-base axis of the heart as would be the case for the supine posture, but resulting in a lesser hydrostatic pressure difference along the minor (anterior-posterior) axis. Comparative experiments were also conducted in the micro-G environment of orbital space flight on board the Space Shuttle. This paper reviews the use of an automated cardiovascular simulator flown on STS-85 and STS-95 as a Get Away Special payload to test this hypothesis. The simulator consisted of a pneumatically actuated, artificial ventricle connected to a closed-loop, fluid circuit with adjustable compliance and resistance elements to create physiologic pressure and flow conditions. Ventricular

  18. A statistical method for retrospective cardiac and respiratory motion gating of interventional cardiac x-ray images

    SciTech Connect

    Panayiotou, Maria King, Andrew P.; Housden, R. James; Ma, YingLiang; Rhode, Kawal S.; Cooklin, Michael; O'Neill, Mark; Gill, Jaswinder; Rinaldi, C. Aldo

    2014-07-15

    Purpose: Image-guided cardiac interventions involve the use of fluoroscopic images to guide the insertion and movement of interventional devices. Cardiorespiratory gating can be useful for 3D reconstruction from multiple x-ray views and for reducing misalignments between 3D anatomical models overlaid onto fluoroscopy. Methods: The authors propose a novel and potentially clinically useful retrospective cardiorespiratory gating technique. The principal component analysis (PCA) statistical method is used in combination with other image processing operations to make our proposed masked-PCA technique suitable for cardiorespiratory gating. Unlike many previously proposed techniques, our technique is robust to varying image-content, thus it does not require specific catheters or any other optically opaque structures to be visible. Therefore, it works without any knowledge of catheter geometry. The authors demonstrate the application of our technique for the purposes of retrospective cardiorespiratory gating of normal and very low dose x-ray fluoroscopy images. Results: For normal dose x-ray images, the algorithm was validated using 28 clinical electrophysiology x-ray fluoroscopy sequences (2168 frames), from patients who underwent radiofrequency ablation (RFA) procedures for the treatment of atrial fibrillation and cardiac resynchronization therapy procedures for heart failure. The authors established end-systole, end-expiration, and end-inspiration success rates of 97.0%, 97.9%, and 97.0%, respectively. For very low dose applications, the technique was tested on ten x-ray sequences from the RFA procedures with added noise at signal to noise ratio (SNR) values of√(5)0, √(1)0, √(8), √(6), √(5), √(2), and √(1) to simulate the image quality of increasingly lower dose x-ray images. Even at the low SNR value of √(2), representing a dose reduction of more than 25 times, gating success rates of 89.1%, 88.8%, and 86.8% were established. Conclusions: The proposed

  19. Dynamic real-time 4D cardiac MDCT image display using GPU-accelerated volume rendering.

    PubMed

    Zhang, Qi; Eagleson, Roy; Peters, Terry M

    2009-09-01

    Intraoperative cardiac monitoring, accurate preoperative diagnosis, and surgical planning are important components of minimally-invasive cardiac therapy. Retrospective, electrocardiographically (ECG) gated, multidetector computed tomographical (MDCT), four-dimensional (3D + time), real-time, cardiac image visualization is an important tool for the surgeon in such procedure, particularly if the dynamic volumetric image can be registered to, and fused with the actual patient anatomy. The addition of stereoscopic imaging provides a more intuitive environment by adding binocular vision and depth cues to structures within the beating heart. In this paper, we describe the design and implementation of a comprehensive stereoscopic 4D cardiac image visualization and manipulation platform, based on the opacity density radiation model, which exploits the power of modern graphics processing units (GPUs) in the rendering pipeline. In addition, we present a new algorithm to synchronize the phases of the dynamic heart to clinical ECG signals, and to calculate and compensate for latencies in the visualization pipeline. A dynamic multiresolution display is implemented to enable the interactive selection and emphasis of volume of interest (VOI) within the entire contextual cardiac volume and to enhance performance, and a novel color and opacity adjustment algorithm is designed to increase the uniformity of the rendered multiresolution image of heart. Our system provides a visualization environment superior to noninteractive software-based implementations, but with a rendering speed that is comparable to traditional, but inferior quality, volume rendering approaches based on texture mapping. This retrospective ECG-gated dynamic cardiac display system can provide real-time feedback regarding the suspected pathology, function, and structural defects, as well as anatomical information such as chamber volume and morphology.

  20. Wild-Type Transthyretin Cardiac Amyloidosis: Novel Insights From Advanced Imaging.

    PubMed

    Narotsky, David L; Castano, Adam; Weinsaft, Jonathan W; Bokhari, Sabahat; Maurer, Mathew S

    2016-09-01

    Amyloidosis is caused by extracellular deposition of abnormal protein fibrils, resulting in destruction of tissue architecture and impairment of organ function. The most common forms of systemic amyloidosis are light-chain and transthyretin-related (ATTR). ATTR can result from an autosomal dominant hereditary transmission of mutated genes in the transthyretin or from a wild-type form of disease (ATTRwt), previously known as senile cardiac amyloidosis. With the aging of the worldwide population, ATTRwt will emerge as the most common type of cardiac amyloidosis that clinicians encounter. Diagnosis of systemic amyloidosis is often delayed, either because of the false assumption that it is a rare disease, or because of misdiagnosis as a result of mistaking it with other conditions. Clinicians must integrate clinical clues from history, physical examination, and common diagnostic tests to raise suspicion for ATTRwt. The historical gold standard for diagnosis of cardiac amyloid is endomyocardial biopsy analysis with pathological distinction of precursor protein type, but this method often results in delayed diagnosis because of the limited availability of expertise to perform and interpret the endomyocardial biopsy specimen. Emerging noninvasive imaging modalities provide easier, accurate screening for ATTRwt. These modalities include advanced echocardiography, using strain imaging and the myocardial contraction fraction; nuclear scintigraphy, which can differentiate between ATTR and light-chain cardiac amyloid; and cardiac magnetic resonance imaging, using extracellular volume measurement, late gadolinium enhancement, and distinct T1 mapping. These novel approaches reveal insights into the prevalence, clinical course, morphological effects, and prognosis of ATTRwt. PMID:27568874

  1. A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging.

    PubMed

    Peng, Peng; Lekadir, Karim; Gooya, Ali; Shao, Ling; Petersen, Steffen E; Frangi, Alejandro F

    2016-04-01

    Cardiovascular magnetic resonance (CMR) has become a key imaging modality in clinical cardiology practice due to its unique capabilities for non-invasive imaging of the cardiac chambers and great vessels. A wide range of CMR sequences have been developed to assess various aspects of cardiac structure and function, and significant advances have also been made in terms of imaging quality and acquisition times. A lot of research has been dedicated to the development of global and regional quantitative CMR indices that help the distinction between health and pathology. The goal of this review paper is to discuss the structural and functional CMR indices that have been proposed thus far for clinical assessment of the cardiac chambers. We include indices definitions, the requirements for the calculations, exemplar applications in cardiovascular diseases, and the corresponding normal ranges. Furthermore, we review the most recent state-of-the art techniques for the automatic segmentation of the cardiac boundaries, which are necessary for the calculation of the CMR indices. Finally, we provide a detailed discussion of the existing literature and of the future challenges that need to be addressed to enable a more robust and comprehensive assessment of the cardiac chambers in clinical practice.

  2. Low b-Value Diffusion-Weighted Cardiac Magnetic Resonance Imaging

    PubMed Central

    Rapacchi, Stanislas; Wen, Han; Viallon, Magalie; Grenier, Denis; Kellman, Peter; Croisille, Pierre; Pai, Vinay M.

    2012-01-01

    Objectives Diffusion-weighted imaging (DWI) using low b-values permits imaging of intravoxel incoherent motion in tissues. However, low b-value DWI of the human heart has been considered too challenging because of additional signal loss due to physiological motion, which reduces both signal intensity and the signal-to-noise ratio (SNR). We address these signal loss concerns by analyzing cardiac motion during a heartbeat to determine the time-window during which cardiac bulk motion is minimal. Using this information to optimize the acquisition of DWI data and combining it with a dedicated image processing approach has enabled us to develop a novel low b-value diffusion-weighted cardiac magnetic resonance imaging approach, which significantly reduces intravoxel incoherent motion measurement bias introduced by motion. Materials and Methods Simulations from displacement encoded motion data sets permitted the delineation of an optimal time-window with minimal cardiac motion. A number of single-shot repetitions of low b-value DWI cardiac magnetic resonance imaging data were acquired during this time-window under free-breathing conditions with bulk physiological motion corrected for by using nonrigid registration. Principal component analysis (PCA) was performed on the registered images to improve the SNR, and temporal maximum intensity projection (TMIP) was applied to recover signal intensity from time-fluctuant motion-induced signal loss. This PCATMIP method was validated with experimental data, and its benefits were evaluated in volunteers before being applied to patients. Results Optimal time-window cardiac DWI in combination with PCATMIP postprocessing yielded significant benefits for signal recovery, contrast-to-noise ratio, and SNR in the presence of bulk motion for both numerical simulations and human volunteer studies. Analysis of mean apparent diffusion coefficient (ADC) maps showed homogeneous values among volunteers and good reproducibility between free

  3. Automatic image-driven segmentation of cardiac ventricles in cine anatomical MRI

    NASA Astrophysics Data System (ADS)

    Cocosco, Chris A.; Niessen, Wiro J.; Netsch, Thomas; Vonken, Evert-jan P. A.; Viergever, Max A.

    2005-08-01

    The automatic segmentation of the heart's two ventricles from dynamic ("cine") cardiac anatomical images, such as 3D+time short-axis MRI, is of significant clinical importance. Previously published automated methods have various disadvantages for routine clinical use. This work reports about a novel automatic segmentation method that is very fast, and robust against anatomical variability and image contrast variations. The method is mostly image-driven: it fully exploits the information provided by modern 4D (3D+time) balanced Fast Field Echo (bFFE) cardiac anatomical MRI, and makes only few and plausible assumptions about the images and the imaged heart. Specifically, the method does not need any geometrical shape models nor complex gray-level appearance models. The method simply uses the two ventricles' contraction-expansion cycle, as well as the ventricles' spatial coherence along the time dimension. The performance of the cardiac ventricles segmentation method was demonstrated through a qualitative visual validation on 32 clinical exams: no gross failures for the left-ventricle (right-ventricle) on 32 (30) of the exams were found. Also, a clinical validation of resulting quantitative cardiac functional parameters was performed against a manual quantification of 18 exams; the automatically computed Ejection Fraction (EF) correlated well to the manually computed one: linear regression with RMS=3.7% (RMS expressed in EF units).

  4. Imaging of cardiac allograft rejection in dogs using indium-111 monoclonal antimyosin Fab

    SciTech Connect

    Addonizio, L.J.; Michler, R.E.; Marboe, C.; Esser, P.E.; Johnson, L.L.; Seldin, D.W.; Gersony, W.M.; Alderson, P.O.; Rose, E.A.; Cannon, P.J.

    1987-03-01

    The acute rejection of cardiac allografts is currently diagnosed by the presence of myocyte necrosis on endomyocardial biopsy. We evaluated the efficacy of noninvasive scintigraphic imaging with indium-111-labeled anticardiac myosin Fab fragments (indium-111 antimyosin) to detect and quantify cardiac allograft rejection. Six dogs that had intrathoracic heterotopic cardiac allograft transplantation were injected with indium-111 antimyosin and planar and single photon emission computed tomographic (SPECT) images were obtained in various stages of acute and subacute rejection. Four dogs had an allograft older than 8 months and had been on long-term immunosuppressive therapy; two dogs had an allograft less than 2 weeks old and were not on immunosuppressive therapy. Count ratios comparing heterotopic with native hearts were calculated from both SPECT images and in vitro scans of excised and sectioned hearts and were compared with the degree of rejection scored by an independent histopathologic review. Indium-111 antimyosin uptake was not visible in planar or SPECT images of native hearts. Faint diffuse uptake was apparent in cardiac allografts during long-term immunosuppression and intense radioactivity was present in hearts with electrocardiographic evidence of rejection. The heterotopic to native heart count ratios in SPECT images correlated significantly with the count ratios in the excised hearts (r = 0.93) and with the histopathologic rejection score (r = 0.97). The distribution of indium-111 antimyosin activity in right and left ventricles corresponded to areas of histopathologic abnormalities.

  5. Algebraic Reconstruction Technique (ART) for parallel imaging reconstruction of undersampled radial data: Application to cardiac cine

    PubMed Central

    Li, Shu; Chan, Cheong; Stockmann, Jason P.; Tagare, Hemant; Adluru, Ganesh; Tam, Leo K.; Galiana, Gigi; Constable, R. Todd; Kozerke, Sebastian; Peters, Dana C.

    2014-01-01

    Purpose To investigate algebraic reconstruction technique (ART) for parallel imaging reconstruction of radial data, applied to accelerated cardiac cine. Methods A GPU-accelerated ART reconstruction was implemented and applied to simulations, point spread functions (PSF) and in twelve subjects imaged with radial cardiac cine acquisitions. Cine images were reconstructed with radial ART at multiple undersampling levels (192 Nr x Np = 96 to 16). Images were qualitatively and quantitatively analyzed for sharpness and artifacts, and compared to filtered back-projection (FBP), and conjugate gradient SENSE (CG SENSE). Results Radial ART provided reduced artifacts and mainly preserved spatial resolution, for both simulations and in vivo data. Artifacts were qualitatively and quantitatively less with ART than FBP using 48, 32, and 24 Np, although FBP provided quantitatively sharper images at undersampling levels of 48-24 Np (all p<0.05). Use of undersampled radial data for generating auto-calibrated coil-sensitivity profiles resulted in slightly reduced quality. ART was comparable to CG SENSE. GPU-acceleration increased ART reconstruction speed 15-fold, with little impact on the images. Conclusion GPU-accelerated ART is an alternative approach to image reconstruction for parallel radial MR imaging, providing reduced artifacts while mainly maintaining sharpness compared to FBP, as shown by its first application in cardiac studies. PMID:24753213

  6. Automatic localization of the left ventricle in cardiac MRI images using deep learning.

    PubMed

    Emad, Omar; Yassine, Inas A; Fahmy, Ahmed S

    2015-08-01

    Automatic localization of the left ventricle (LV) in cardiac MRI images is an essential step for automatic segmentation, functional analysis, and content based retrieval of cardiac images. In this paper, we introduce a new approach based on deep Convolutional Neural Network (CNN) to localize the LV in cardiac MRI in short axis views. A six-layer CNN with different kernel sizes was employed for feature extraction, followed by Softmax fully connected layer for classification. The pyramids of scales analysis was introduced in order to take account of the different sizes of the heart. A publically-available database of 33 patients was used for learning and testing. The proposed method was able it localize the LV with 98.66%, 83.91% and 99.07% for accuracy, sensitivity and specificity respectively. PMID:26736354

  7. Molecular imaging of macrophage enzyme activity in cardiac inflammation

    PubMed Central

    Ali, Muhammad; Pulli, Benjamin; Chen, John W.

    2014-01-01

    Molecular imaging is highly advantageous as various insidious inflammatory events can be imaged in a serial and quantitative fashion. Combined with the conventional imaging modalities like computed tomography (CT), magnetic resonance (MR) and nuclear imaging, it helps us resolve the extent of ongoing pathology, quantify inflammation and predict outcome. Macrophages are increasingly gaining importance as an imaging biomarker in inflammatory cardiovascular diseases. Macrophages, recruited to the site of injury, internalize necrotic or foreign material. Along with phagocytosis, activated macrophages release proteolytic enzymes like matrix metalloproteinases (MMPs) and cathepsins into the extracellular environment. Pro-inflammatory monocytes and macrophages also induce tissue oxidative damage through the inflammatory enzyme myeloperoxidase (MPO). In this review we will highlight recent advances in molecular macrophage imaging. Particular stress will be given to macrophage functional and enzymatic activity imaging which targets phagocytosis, proteolysis and myeloperoxidase activity imaging. PMID:24729833

  8. Cardiac Sarcoidosis or Giant Cell Myocarditis? On Treatment Improvement of Fulminant Myocarditis as Demonstrated by Cardiovascular Magnetic Resonance Imaging

    PubMed Central

    Bogabathina, Hari; Olson, Peter; Rathi, Vikas K.; Biederman, Robert W. W.

    2012-01-01

    Giant cell myocarditis, but not cardiac sarcoidosis, is known to cause fulminant myocarditis resulting in severe heart failure. However, giant cell myocarditis and cardiac sarcoidosis are pathologically similar, and attempts at pathological differentiation between the two remain difficult. We are presenting a case of fulminant myocarditis that has pathological features suggestive of cardiac sarcoidosis, but clinically mimicking giant cell myocarditis. This patient was treated with cyclosporine and prednisone and recovered well. This case we believe challenges our current understanding of these intertwined conditions. By obtaining a sense of severity of cardiac involvement via delayed hyperenhancement of cardiac magnetic resonance imaging, we were more inclined to treat this patient as giant cell myocarditis with cyclosporine. This resulted in excellent improvement of patient's cardiac function as shown by delayed hyperenhancement images, early perfusion images, and SSFP videos. PMID:24826266

  9. 3D X-ray imaging methods in support catheter ablations of cardiac arrhythmias.

    PubMed

    Stárek, Zdeněk; Lehar, František; Jež, Jiří; Wolf, Jiří; Novák, Miroslav

    2014-10-01

    Cardiac arrhythmias are a very frequent illness. Pharmacotherapy is not very effective in persistent arrhythmias and brings along a number of risks. Catheter ablation has became an effective and curative treatment method over the past 20 years. To support complex arrhythmia ablations, the 3D X-ray cardiac cavities imaging is used, most frequently the 3D reconstruction of CT images. The 3D cardiac rotational angiography (3DRA) represents a modern method enabling to create CT like 3D images on a standard X-ray machine equipped with special software. Its advantage lies in the possibility to obtain images during the procedure, decreased radiation dose and reduction of amount of the contrast agent. The left atrium model is the one most frequently used for complex atrial arrhythmia ablations, particularly for atrial fibrillation. CT data allow for creation and segmentation of 3D models of all cardiac cavities. Recently, a research has been made proving the use of 3DRA to create 3D models of other cardiac (right ventricle, left ventricle, aorta) and non-cardiac structures (oesophagus). They can be used during catheter ablation of complex arrhythmias to improve orientation during the construction of 3D electroanatomic maps, directly fused with 3D electroanatomic systems and/or fused with fluoroscopy. An intensive development in the 3D model creation and use has taken place over the past years and they became routinely used during catheter ablations of arrhythmias, mainly atrial fibrillation ablation procedures. Further development may be anticipated in the future in both the creation and use of these models.

  10. Optimal Magnetic Sensor Vests for Cardiac Source Imaging.

    PubMed

    Lau, Stephan; Petković, Bojana; Haueisen, Jens

    2016-01-01

    Magnetocardiography (MCG) non-invasively provides functional information about the heart. New room-temperature magnetic field sensors, specifically magnetoresistive and optically pumped magnetometers, have reached sensitivities in the ultra-low range of cardiac fields while allowing for free placement around the human torso. Our aim is to optimize positions and orientations of such magnetic sensors in a vest-like arrangement for robust reconstruction of the electric current distributions in the heart. We optimized a set of 32 sensors on the surface of a torso model with respect to a 13-dipole cardiac source model under noise-free conditions. The reconstruction robustness was estimated by the condition of the lead field matrix. Optimization improved the condition of the lead field matrix by approximately two orders of magnitude compared to a regular array at the front of the torso. Optimized setups exhibited distributions of sensors over the whole torso with denser sampling above the heart at the front and back of the torso. Sensors close to the heart were arranged predominantly tangential to the body surface. The optimized sensor setup could facilitate the definition of a standard for sensor placement in MCG and the development of a wearable MCG vest for clinical diagnostics. PMID:27231910

  11. Optimal Magnetic Sensor Vests for Cardiac Source Imaging

    PubMed Central

    Lau, Stephan; Petković, Bojana; Haueisen, Jens

    2016-01-01

    Magnetocardiography (MCG) non-invasively provides functional information about the heart. New room-temperature magnetic field sensors, specifically magnetoresistive and optically pumped magnetometers, have reached sensitivities in the ultra-low range of cardiac fields while allowing for free placement around the human torso. Our aim is to optimize positions and orientations of such magnetic sensors in a vest-like arrangement for robust reconstruction of the electric current distributions in the heart. We optimized a set of 32 sensors on the surface of a torso model with respect to a 13-dipole cardiac source model under noise-free conditions. The reconstruction robustness was estimated by the condition of the lead field matrix. Optimization improved the condition of the lead field matrix by approximately two orders of magnitude compared to a regular array at the front of the torso. Optimized setups exhibited distributions of sensors over the whole torso with denser sampling above the heart at the front and back of the torso. Sensors close to the heart were arranged predominantly tangential to the body surface. The optimized sensor setup could facilitate the definition of a standard for sensor placement in MCG and the development of a wearable MCG vest for clinical diagnostics. PMID:27231910

  12. ICA based automatic segmentation of dynamic H(2)(15)O cardiac PET images.

    PubMed

    Margadán-Méndez, Margarita; Juslin, Anu; Nesterov, Sergey V; Kalliokoski, Kari; Knuuti, Juhani; Ruotsalainen, Ulla

    2010-05-01

    In this study, we applied an iterative independent component analysis (ICA) method for the separation of cardiac tissue components (myocardium, right, and left ventricle) from dynamic positron emission tomography (PET) images. Previous phantom and animal studies have shown that ICA separation extracts the cardiac structures accurately. Our goal in this study was to investigate the methodology with human studies. The ICA separated cardiac structures were used to calculate the myocardial perfusion in two different cases: 1) the regions of interest were drawn manually on the ICA separated component images and 2) the volumes of interest (VOI) were automatically segmented from the component images. For the whole myocardium, the perfusion values of 25 rest and six drug-induced stress studies obtained with these methods were compared to the values from the manually drawn regions of interest on differential images. The separation of the rest and stress studies using ICA-based methods was successful in all cases. The visualization of the cardiac structures from H (2) (15) O PET studies was improved with the ICA separation. Also, the automatic segmentation of the VOI seemed to be feasible. PMID:19273031

  13. Image-based models of cardiac structure in health and disease

    PubMed Central

    Vadakkumpadan, Fijoy; Arevalo, Hermenegild; Prassl, Anton J.; Chen, Junjie; Kickinger, Ferdinand; Kohl, Peter; Plank, Gernot; Trayanova, Natalia

    2010-01-01

    Computational approaches to investigating the electromechanics of healthy and diseased hearts are becoming essential for the comprehensive understanding of cardiac function. In this article, we first present a brief review of existing image-based computational models of cardiac structure. We then provide a detailed explanation of a processing pipeline which we have recently developed for constructing realistic computational models of the heart from high resolution structural and diffusion tensor (DT) magnetic resonance (MR) images acquired ex vivo. The presentation of the pipeline incorporates a review of the methodologies that can be used to reconstruct models of cardiac structure. In this pipeline, the structural image is segmented to reconstruct the ventricles, normal myocardium, and infarct. A finite element mesh is generated from the segmented structural image, and fiber orientations are assigned to the elements based on DTMR data. The methods were applied to construct seven different models of healthy and diseased hearts. These models contain millions of elements, with spatial resolutions in the order of hundreds of microns, providing unprecedented detail in the representation of cardiac structure for simulation studies. PMID:20582162

  14. Cardiac magnetic resonance imaging and computed tomography in ischemic cardiomyopathy: an update*

    PubMed Central

    Assunção, Fernanda Boldrini; de Oliveira, Diogo Costa Leandro; Souza, Vitor Frauches; Nacif, Marcelo Souto

    2016-01-01

    Ischemic cardiomyopathy is one of the major health problems worldwide, representing a significant part of mortality in the general population nowadays. Cardiac magnetic resonance imaging (CMRI) and cardiac computed tomography (CCT) are noninvasive imaging methods that serve as useful tools in the diagnosis of coronary artery disease and may also help in screening individuals with risk factors for developing this illness. Technological developments of CMRI and CCT have contributed to the rise of several clinical indications of these imaging methods complementarily to other investigation methods, particularly in cases where they are inconclusive. In terms of accuracy, CMRI and CCT are similar to the other imaging methods, with few absolute contraindications and minimal risks of adverse side-effects. This fact strengthens these methods as powerful and safe tools in the management of patients. The present study is aimed at describing the role played by CMRI and CCT in the diagnosis of ischemic cardiomyopathies. PMID:26929458

  15. Cardiac magnetic resonance imaging and computed tomography in ischemic cardiomyopathy: an update.

    PubMed

    Assunção, Fernanda Boldrini; de Oliveira, Diogo Costa Leandro; Souza, Vitor Frauches; Nacif, Marcelo Souto

    2016-01-01

    Ischemic cardiomyopathy is one of the major health problems worldwide, representing a significant part of mortality in the general population nowadays. Cardiac magnetic resonance imaging (CMRI) and cardiac computed tomography (CCT) are noninvasive imaging methods that serve as useful tools in the diagnosis of coronary artery disease and may also help in screening individuals with risk factors for developing this illness. Technological developments of CMRI and CCT have contributed to the rise of several clinical indications of these imaging methods complementarily to other investigation methods, particularly in cases where they are inconclusive. In terms of accuracy, CMRI and CCT are similar to the other imaging methods, with few absolute contraindications and minimal risks of adverse side-effects. This fact strengthens these methods as powerful and safe tools in the management of patients. The present study is aimed at describing the role played by CMRI and CCT in the diagnosis of ischemic cardiomyopathies. PMID:26929458

  16. Cardiac magnetic resonance imaging and computed tomography in ischemic cardiomyopathy: an update.

    PubMed

    Assunção, Fernanda Boldrini; de Oliveira, Diogo Costa Leandro; Souza, Vitor Frauches; Nacif, Marcelo Souto

    2016-01-01

    Ischemic cardiomyopathy is one of the major health problems worldwide, representing a significant part of mortality in the general population nowadays. Cardiac magnetic resonance imaging (CMRI) and cardiac computed tomography (CCT) are noninvasive imaging methods that serve as useful tools in the diagnosis of coronary artery disease and may also help in screening individuals with risk factors for developing this illness. Technological developments of CMRI and CCT have contributed to the rise of several clinical indications of these imaging methods complementarily to other investigation methods, particularly in cases where they are inconclusive. In terms of accuracy, CMRI and CCT are similar to the other imaging methods, with few absolute contraindications and minimal risks of adverse side-effects. This fact strengthens these methods as powerful and safe tools in the management of patients. The present study is aimed at describing the role played by CMRI and CCT in the diagnosis of ischemic cardiomyopathies.

  17. Novel reconstruction algorithm for multiphasic cardiac imaging using multislice helical CT

    NASA Astrophysics Data System (ADS)

    Cesmeli, Erdogan; Edic, Peter M.; Iatrou, Maria; Pfoh, Armin H.

    2001-06-01

    Cardiac imaging is still a challenge to CT reconstruction algorithms due to the dynamic nature of the heart. We have developed a new reconstruction technique, called the Flexible Algorithm, which achieves high temporal resolution while it is robust to heart-rate variations. The Flexible Algorithm, first, retrospectively tags helical CT views with corresponding cardiac phases obtained from associated EKG. Next, it determines a set of views for each slice, a stack of which covers the entire heart. Subsequently, the algorithm selects an optimum subset of views to achieve the highest temporal resolution for the desired cardiac phase. Finally, it spatiotemporally filters the views in the selected subsets to reconstruct slices. We tested the performance of our algorithm using both a dynamic analytical phantom and clinical data. Preliminary results indicate that the Flexible Algorithm obtains improved spatiotemporal resolution for a large range of heart rates and variations than standard algorithms do. By providing improved image quality at any desired cardiac phase, and robustness to heart rate variations, the Flexible Algorithm enables cardiac applications in CT, including those that benefit from multiphase information.

  18. Detectability of perfusion defect in five-dimensional gated-dynamic cardiac SPECT images

    PubMed Central

    Niu, Xiaofeng; Yang, Yongyi; King, Michael A.; Wernick, Miles N.

    2010-01-01

    Purpose: In previous work, the authors developed and demonstrated the concept of an image reconstruction procedure aimed to unify gated and dynamic nuclear cardiac imaging, which the authors have termed five-dimensional (5D) SPECT. Gated imaging permits the clinician to evaluate wall motion and, through the use of stress and rest scans, allows perfusion defects to be observed. Dynamic imaging depicts kinetics in the myocardium, which can be used to evaluate perfusion, but traditional dynamic images are motionless and do not depict wall motion. In this article, the authors investigate the degree to which perfusion defects can be detected from the dynamic information conveyed by 5D images, a problem that is particularly challenging in the absence of multiple fast camera rotations. Methods: The authors first demonstrate the usefulness of dynamic reconstructed images for perfusion detection by using linear discriminant analyses (Fisher linear discriminant analysis and principal component analysis) and a numerical channelized Hotelling observer. The authors then derive three types of discriminant metrics for characterizing the temporal kinetic information in reconstructed dynamic images for differentiating perfusion defects from normal cardiac perfusion, which are the Fisher linear discriminant map, temporal derivative map, and kinetic parametric images. Results: Results are based on the NURBS-based cardiac-torso phantom with simulation of Tc99m-teboroxime as the imaging agent. The derived metric maps and quantitative contrast-to-noise ratio results demonstrate that the reconstructed dynamic images could yield higher detectability of the perfusion defect than conventional gated reconstruction while providing wall motion information simultaneously. Conclusions: The proposed metrics can be used to produce new types of visualizations, showing wall motion and perfusion information, that may potentially be useful for clinical evaluation. Since 5D imaging permits wall motion

  19. Internet-based transfer of cardiac ultrasound images

    NASA Technical Reports Server (NTRS)

    Firstenberg, M. S.; Greenberg, N. L.; Garcia, M. J.; Morehead, A. J.; Cardon, L. A.; Klein, A. L.; Thomas, J. D.

    2000-01-01

    A drawback to large-scale multicentre studies is the time required for the centralized evaluation of diagnostic images. We evaluated the feasibility of digital transfer of echocardiographic images to a central laboratory for rapid and accurate interpretation. Ten patients undergoing trans-oesophageal echocardiographic scanning at three sites had representative single images and multiframe loops stored digitally. The images were analysed in the ordinary way. All images were then transferred via the Internet to a central laboratory and reanalysed by a different observer. The file sizes were 1.5-72 MByte and the transfer rates achieved were 0.6-4.8 Mbit/min. Quantitative measurements were similar between most on-site and central laboratory measurements (all P > 0.25), although measurements differed for left atrial width and pulmonary venous systolic velocities (both P < 0.05). Digital transfer of echocardiographic images and data to a central laboratory may be useful for multicentre trials.

  20. Evaluation of optical imaging and spectroscopy approaches for cardiac tissue depth assessment

    SciTech Connect

    Lin, B; Matthews, D; Chernomordik, V; Gandjbakhche, A; Lane, S; Demos, S G

    2008-02-13

    NIR light scattering from ex vivo porcine cardiac tissue was investigated to understand how imaging or point measurement approaches may assist development of methods for tissue depth assessment. Our results indicate an increase of average image intensity as thickness increases up to approximately 2 mm. In a dual fiber spectroscopy configuration, sensitivity up to approximately 3 mm with an increase to 6 mm when spectral ratio between selected wavelengths was obtained. Preliminary Monte Carlo results provided reasonable fit to the experimental data.

  1. An Interactive Computer Session to Initiate Physical Activity in Sedentary Cardiac Patients: Randomized Controlled Trial

    PubMed Central

    Smith-Ray, Renae L; Dzewaltowski, David A; Glasgow, Russell E; Lee, Rebecca E; Thomas, Deborah SK; Xu, Stanley; Estabrooks, Paul A

    2015-01-01

    Background Physical activity (PA) improves many facets of health. Despite this, the majority of American adults are insufficiently active. Adults who visit a physician complaining of chest pain and related cardiovascular symptoms are often referred for further testing. However, when this testing does not reveal an underlying disease or pathology, patients typically receive no additional standard care services. A PA intervention delivered within the clinic setting may be an effective strategy for improving the health of this population at a time when they may be motivated to take preventive action. Objective Our aim was to determine the effectiveness of a tailored, computer-based, interactive personal action planning session to initiate PA among a group of sedentary cardiac patients following exercise treadmill testing (ETT). Methods This study was part of a larger 2x2 randomized controlled trial to determine the impact of environmental and social-cognitive intervention approaches on the initiation and maintenance of weekly PA for patients post ETT. Participants who were referred to an ETT center but had a negative-test (ie, stress tests results indicated no apparent cardiac issues) were randomized to one of four treatment arms: (1) increased environmental accessibility to PA resources via the provision of a free voucher to a fitness facility in close proximity to their home or workplace (ENV), (2) a tailored social cognitive intervention (SC) using a “5 As”-based (ask, advise, assess, assist, and arrange) personal action planning tool, (3) combined intervention of both ENV and SC approaches (COMBO), or (4) a matched contact nutrition control (CON). Each intervention was delivered using a computer-based interactive session. A general linear model for repeated measures was conducted with change in PA behavior from baseline to 1-month post interactive computer session as the primary outcome. Results Sedentary participants (n=452; 34.7% participation rate) without

  2. Assessment of Myocardial Infarction by Cardiac Magnetic Resonance Imaging and Long-Term Mortality

    PubMed Central

    Petriz, João Luiz Fernandes; Gomes, Bruno Ferraz de Oliveira; Rua, Braulio Santos; Azevedo, Clério Francisco; Hadlich, Marcelo Souza; Mussi, Henrique Thadeu Periard; Taets, Gunnar de Cunto; do Nascimento, Emília Matos; Pereira, Basílio de Bragança; e Silva, Nelson Albuquerque de Souza

    2015-01-01

    Background Cardiac magnetic resonance imaging provides detailed anatomical information on infarction. However, few studies have investigated the association of these data with mortality after acute myocardial infarction. Objective To study the association between data regarding infarct size and anatomy, as obtained from cardiac magnetic resonance imaging after acute myocardial infarction, and long-term mortality. Methods A total of 1959 reports of “infarct size” were identified in 7119 cardiac magnetic resonance imaging studies, of which 420 had clinical and laboratory confirmation of previous myocardial infarction. The variables studied were the classic risk factors – left ventricular ejection fraction, categorized ventricular function, and location of acute myocardial infarction. Infarct size and acute myocardial infarction extent and transmurality were analyzed alone and together, using the variable named “MET-AMI”. The statistical analysis was carried out using the elastic net regularization, with the Cox model and survival trees. Results The mean age was 62.3 ± 12 years, and 77.3% were males. During the mean follow-up of 6.4 ± 2.9 years, there were 76 deaths (18.1%). Serum creatinine, diabetes mellitus and previous myocardial infarction were independently associated with mortality. Age was the main explanatory factor. The cardiac magnetic resonance imaging variables independently associated with mortality were transmurality of acute myocardial infarction (p = 0.047), ventricular dysfunction (p = 0.0005) and infarcted size (p = 0.0005); the latter was the main explanatory variable for ischemic heart disease death. The MET-AMI variable was the most strongly associated with risk of ischemic heart disease death (HR: 16.04; 95%CI: 2.64-97.5; p = 0.003). Conclusion The anatomical data of infarction, obtained from cardiac magnetic resonance imaging after acute myocardial infarction, were independently associated with long-term mortality, especially for

  3. Free-breathing 3D cardiac MRI using iterative image-based respiratory motion correction.

    PubMed

    Moghari, Mehdi H; Roujol, Sébastien; Chan, Raymond H; Hong, Susie N; Bello, Natalie; Henningsson, Markus; Ngo, Long H; Goddu, Beth; Goepfert, Lois; Kissinger, Kraig V; Manning, Warren J; Nezafat, Reza

    2013-10-01

    Respiratory motion compensation using diaphragmatic navigator gating with a 5 mm gating window is conventionally used for free-breathing cardiac MRI. Because of the narrow gating window, scan efficiency is low resulting in long scan times, especially for patients with irregular breathing patterns. In this work, a new retrospective motion compensation algorithm is presented to reduce the scan time for free-breathing cardiac MRI that increasing the gating window to 15 mm without compromising image quality. The proposed algorithm iteratively corrects for respiratory-induced cardiac motion by optimizing the sharpness of the heart. To evaluate this technique, two coronary MRI datasets with 1.3 mm(3) resolution were acquired from 11 healthy subjects (seven females, 25 ± 9 years); one using a navigator with a 5 mm gating window acquired in 12.0 ± 2.0 min and one with a 15 mm gating window acquired in 7.1 ± 1.0 min. The images acquired with a 15 mm gating window were corrected using the proposed algorithm and compared to the uncorrected images acquired with the 5 and 15 mm gating windows. The image quality score, sharpness, and length of the three major coronary arteries were equivalent between the corrected images and the images acquired with a 5 mm gating window (P-value > 0.05), while the scan time was reduced by a factor of 1.7. PMID:23132549

  4. Radionuclide imaging of cardiac sympathetic innervation in heart failure: unlocking untapped potential.

    PubMed

    Gupta, Shuchita; Amanullah, Aman

    2015-03-01

    Heart failure (HF) is associated with sympathetic overactivity, which contributes to disease progression and arrhythmia development. Cardiac sympathetic innervation imaging can be performed using radiotracers that are taken up in the presynaptic nerve terminal of sympathetic nerves. The commonly used radiotracers are (123)I-metaiodobenzylguanidine ((123)I-mIBG) for planar and single-photon emission computed tomography imaging, and (11)C-hydroxyephedrine for positron emission tomography imaging. Sympathetic innervation imaging has been used in assessing prognosis, response to treatment, risk of ventricular arrhythmias and sudden death and prediction of response to cardiac resynchronization therapy in patients with HF. Other potential applications of these techniques are in patients with chemotherapy-induced cardiomyopathy, predicting myocardial recovery in patients with left ventricular assist devices, and assessing reinnervation following cardiac transplantation. There is a lack of standardization with respect to technique of (123)I-mIBG imaging that needs to be overcome for the imaging modality to gain popularity in clinical practice.

  5. 18F-NaF PET/CT Images of Cardiac Metastasis From Osteosarcoma.

    PubMed

    Chou, Yi-Hsien; Ko, Kuan-Yin; Cheng, Mei-Fang; Chen, Wei-Wu; Yen, Ruoh-Fang

    2016-09-01

    Osteosarcomas are aggressive with a high incidence of recurrence and metastasis. Cardiac osteosarcoma metastasis is rare. We described a 17-year-old boy who had right distal femoral osteosarcoma with lung metastases. During follow-up, right ventricular (RV) metastasis was noted and confirmed by histopathological examination of the surgical specimen. F-NaF PET/CT was then arranged 1 month after debulking surgery for residual tumor survey. The images showed intense F-NaF uptake at RV region, suggestive of residual cardiac metastases.

  6. MRI and FDG PET/CT imaging manifestations of cardiac sarcoidosis.

    PubMed

    Lu, Yang; Sweiss, Nadera J

    2015-12-01

    A 52-year-old man had biopsy-proven sarcoidosis of mediastinal lymph nodes. Cardiac sarcoidosis was confirmed on cardiac MRI with typical imaging features as delayed gadolinium enhancement. Follow-up FDG PET/CT with a 3-day pretest diet modification showed suppression of overall myocardial uptake of FDG but with multifocal abnormal FDG uptake in the myocardium regions corresponding to the previous MRI findings. Additional noncardiac active sarcoidosis involving multiple organ and lymph nodes were also visualized on FDG PET/CT. PMID:26544904

  7. 18F-NaF PET/CT Images of Cardiac Metastasis From Osteosarcoma.

    PubMed

    Chou, Yi-Hsien; Ko, Kuan-Yin; Cheng, Mei-Fang; Chen, Wei-Wu; Yen, Ruoh-Fang

    2016-09-01

    Osteosarcomas are aggressive with a high incidence of recurrence and metastasis. Cardiac osteosarcoma metastasis is rare. We described a 17-year-old boy who had right distal femoral osteosarcoma with lung metastases. During follow-up, right ventricular (RV) metastasis was noted and confirmed by histopathological examination of the surgical specimen. F-NaF PET/CT was then arranged 1 month after debulking surgery for residual tumor survey. The images showed intense F-NaF uptake at RV region, suggestive of residual cardiac metastases. PMID:27405028

  8. Influence of x-ray pulse parameters on the image quality for moving objects in digital cardiac imaging.

    PubMed

    Guibelalde, Eduardo; Vano, Eliseo; Vaquero, Francisco; González, Luciano

    2004-10-01

    The image quality of a single frame in a modern cardiac imaging x-ray facility can be improved by adjusting the automatic pulse exposure parameters. The effects of acquisition rate on patient dose and the detectability of moving objects have been fully described in scientific literature. However, the influence of automatic pulse exposure parameters is still to be determined. Images of a moving wheel (with lead wires) were acquired using an H5000 Philips Integris cardiac x-ray system. Poly(methylmethacrylate) plastic samples 20 and 30 cm thick were employed as the build-up phantom to simulate a patient. The images were obtained using preset clinical parameters for cardiac imaging procedures. The signal detectability and motion blur of a contrast bar at a transversal speed in the range of 100-150 mm/s were evaluated with a cine pulse width of 3, 5, 7, and 10 ms under automatic mA kV regulation. Two levels of exposure at the image intensifier entrance were included in this study. Signal detectability was analyzed in terms of the signal-to-noise ratio (SNR) and the value of SNR2/entrance surface dose. The blurring was modeled as a Gaussian-shaped blurring function, and the motion blur was expressed in terms of the peak full width at half maximum and amplitude (apparent contrast) of the resolution functions. A contrast bar simulating a vessel in motion at the maximum velocities of typical cardiac structures was exposed. Severe loss of image quality occurred at pulse widths > or =7 ms. It is also shown that below 5 ms static nonlinearities, likely caused by the need to use a large focus for cine acquisition, dominate the blurring process.

  9. Influence of x-ray pulse parameters on the image quality for moving objects in digital cardiac imaging

    SciTech Connect

    Guibelalde, Eduardo; Vano, Eliseo; Vaquero, Francisco; Gonzalez, Luciano

    2004-10-01

    The image quality of a single frame in a modern cardiac imaging x-ray facility can be improved by adjusting the automatic pulse exposure parameters. The effects of acquisition rate on patient dose and the detectability of moving objects have been fully described in scientific literature. However, the influence of automatic pulse exposure parameters is still to be determined. Images of a moving wheel (with lead wires) were acquired using an H5000 Philips Integris cardiac x-ray system. Poly(methylmethacrylate) plastic samples 20 and 30 cm thick were employed as the build-up phantom to simulate a patient. The images were obtained using preset clinical parameters for cardiac imaging procedures. The signal detectability and motion blur of a contrast bar at a transversal speed in the range of 100-150 mm/s were evaluated with a cine pulse width of 3, 5, 7, and 10 ms under automatic mA kV regulation. Two levels of exposure at the image intensifier entrance were included in this study. Signal detectability was analyzed in terms of the signal-to-noise ratio (SNR) and the value of SNR{sup 2}/entrance surface dose. The blurring was modeled as a Gaussian-shaped blurring function, and the motion blur was expressed in terms of the peak full width at half maximum and amplitude (apparent contrast) of the resolution functions. A contrast bar simulating a vessel in motion at the maximum velocities of typical cardiac structures was exposed. Severe loss of image quality occurred at pulse widths {>=}7 ms. It is also shown that below 5 ms static nonlinearities, likely caused by the need to use a large focus for cine acquisition, dominate the blurring process.

  10. Semi-automated scar detection in delayed enhanced cardiac magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Morisi, Rita; Donini, Bruno; Lanconelli, Nico; Rosengarden, James; Morgan, John; Harden, Stephen; Curzen, Nick

    2015-06-01

    Late enhancement cardiac magnetic resonance images (MRI) has the ability to precisely delineate myocardial scars. We present a semi-automated method for detecting scars in cardiac MRI. This model has the potential to improve routine clinical practice since quantification is not currently offered due to time constraints. A first segmentation step was developed for extracting the target regions for potential scar and determining pre-candidate objects. Pattern recognition methods are then applied to the segmented images in order to detect the position of the myocardial scar. The database of late gadolinium enhancement (LE) cardiac MR images consists of 111 blocks of images acquired from 63 patients at the University Hospital Southampton NHS Foundation Trust (UK). At least one scar was present for each patient, and all the scars were manually annotated by an expert. A group of images (around one third of the entire set) was used for training the system which was subsequently tested on all the remaining images. Four different classifiers were trained (Support Vector Machine (SVM), k-nearest neighbor (KNN), Bayesian and feed-forward neural network) and their performance was evaluated by using Free response Receiver Operating Characteristic (FROC) analysis. Feature selection was implemented for analyzing the importance of the various features. The segmentation method proposed allowed the region affected by the scar to be extracted correctly in 96% of the blocks of images. The SVM was shown to be the best classifier for our task, and our system reached an overall sensitivity of 80% with less than 7 false positives per patient. The method we present provides an effective tool for detection of scars on cardiac MRI. This may be of value in clinical practice by permitting routine reporting of scar quantification.

  11. Non-rigid dual respiratory and cardiac motion correction methods after, during, and before image reconstruction for 4D cardiac PET

    NASA Astrophysics Data System (ADS)

    Feng, Tao; Wang, Jizhe; Fung, George; Tsui, Benjamin

    2016-01-01

    Respiratory motion (RM) and cardiac motion (CM) degrade the quality and resolution in cardiac PET scans. We have developed non-rigid motion estimation methods to estimate both RM and CM based on 4D cardiac gated PET data alone, and compensate the dual respiratory and cardiac (R&C) motions after (MCAR), during (MCDR), and before (MCBR) image reconstruction. In all three R&C motion correction methods, attenuation-activity mismatch effect was modeled by using transformed attenuation maps using the estimated RM. The difference of using activity preserving and non-activity preserving models in R&C correction was also studied. Realistic Monte Carlo simulated 4D cardiac PET data using the 4D XCAT phantom and accurate models of the scanner design parameters and performance characteristics at different noise levels were employed as the known truth and for method development and evaluation. Results from the simulation study suggested that all three dual R&C motion correction methods provide substantial improvement in the quality of 4D cardiac gated PET images as compared with no motion correction. Specifically, the MCDR method yields the best performance for all different noise levels compared with the MCAR and MCBR methods. While MCBR reduces computational time dramatically but the resultant 4D cardiac gated PET images has overall inferior image quality when compared to that from the MCAR and MCDR approaches in the ‘almost’ noise free case. Also, the MCBR method has better noise handling properties when compared with MCAR and provides better quantitative results in high noise cases. When the goal is to reduce scan time or patient radiation dose, MCDR and MCBR provide a good compromise between image quality and computational times.

  12. Non-rigid dual respiratory and cardiac motion correction methods after, during, and before image reconstruction for 4D cardiac PET.

    PubMed

    Feng, Tao; Wang, Jizhe; Fung, George; Tsui, Benjamin

    2016-01-01

    Respiratory motion (RM) and cardiac motion (CM) degrade the quality and resolution in cardiac PET scans. We have developed non-rigid motion estimation methods to estimate both RM and CM based on 4D cardiac gated PET data alone, and compensate the dual respiratory and cardiac (R&C) motions after (MCAR), during (MCDR), and before (MCBR) image reconstruction. In all three R&C motion correction methods, attenuation-activity mismatch effect was modeled by using transformed attenuation maps using the estimated RM. The difference of using activity preserving and non-activity preserving models in R&C correction was also studied. Realistic Monte Carlo simulated 4D cardiac PET data using the 4D XCAT phantom and accurate models of the scanner design parameters and performance characteristics at different noise levels were employed as the known truth and for method development and evaluation. Results from the simulation study suggested that all three dual R&C motion correction methods provide substantial improvement in the quality of 4D cardiac gated PET images as compared with no motion correction. Specifically, the MCDR method yields the best performance for all different noise levels compared with the MCAR and MCBR methods. While MCBR reduces computational time dramatically but the resultant 4D cardiac gated PET images has overall inferior image quality when compared to that from the MCAR and MCDR approaches in the 'almost' noise free case. Also, the MCBR method has better noise handling properties when compared with MCAR and provides better quantitative results in high noise cases. When the goal is to reduce scan time or patient radiation dose, MCDR and MCBR provide a good compromise between image quality and computational times.

  13. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    NASA Astrophysics Data System (ADS)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  14. Quantitative imaging of intact cardiac tissue using remote focusing microscopy

    NASA Astrophysics Data System (ADS)

    Corbett, A. D.; Burton, R. A. B.; Bub, G.; Wilson, T.

    2015-03-01

    Remote focussing microscopy offers many advantages when acquiring volumetric data from living tissue. The all-optical means of refocussing does not agitate the specimen by moving either the stage or imaging objective. Aberrationcompensated imaging extends over volumes as large as 450 μm x 450 μm x 200 μm (X, Y and Z) allowing data to be collected from hundreds of cells. The speed with which refocussing can be achieved is limited only by the mechanical movement of a small (2 mm diameter) mirror. Using a pair of oblique imaging planes to rapidly acquire (<200ms) depth information temporally freezes residual tissue motion in the arrested heart. This paper discusses the progress of remote focussing microscopy from a novel imaging technique to a reliable tool in the life sciences. Specifically, we describe recent efforts to achieve the accurate calibration of both distance and orientation within the imaging volume. Using a laser machined fluorescent specimen it is possible to identify, with high sensitivity, small (<1%) depth-dependent magnification changes which are a linear function of axial misalignment of the imaging objective. The sensitivity of the calibration procedure limits distortion to <1 μm over the entire imaging volume. This work finds direct application in identifying the microscopic effects of chronic disease in the living heart.

  15. Toward time resolved 4D cardiac CT imaging with patient dose reduction: estimating the global heart motion

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuyuki; Segars, W. Paul; Fung, George S. K.; Tsui, Benjamin M. W.

    2006-03-01

    Coronary artery imaging with multi-slice helical computed tomography is a promising noninvasive imaging technique. The current major issues include the insufficient temporal resolution and large patient dose. We propose an image reconstruction method which provides a solution to both of the problems. The method uses an iterative approach repeating the following four steps until the difference between the two projection data sets falls below a certain criteria in step-4: 1) estimating or updating the cardiac motion vectors, 2) reconstructing the time-resolved 4D dynamic volume images using the motion vectors, 3) calculating the projection data from the current 4D images, 4) comparing them with the measured ones. In this study, we obtain the first estimate of the motion vector. We use the 4D NCAT phantom, a realistic computer model for the human anatomy and cardiac motions, to generate the dynamic fan-beam projection data sets as well to provide a known truth for the motion. Then, the halfscan reconstruction with the sliding time-window technique is used to generate cine images: f(t, r r). Here, we use one heart beat for each position r so that the time information is retained. Next, the magnitude of the first derivative of f(t, r r) with respect to time, i.e., |df/dt|, is calculated and summed over a region-of-interest (ROI), which is called the mean-absolute difference (MAD). The initial estimation of the vector field are obtained using MAD for each ROI. Results of the preliminary study are presented.

  16. Findings of Cardiac Magnetic Resonance Imaging in Hypertrophic Cardiomyopathy after 16 Years

    PubMed Central

    Kim, Gee-Hee; Jang, Bo-Hyun; Lee, Hyeong-Han; Hong, Solim; Eum, Sang-Hoon; Jeon, Howook; Moon, Donggyu

    2016-01-01

    A 58-year-old man had been diagnosed with non-obstructive hypertrophic cardiomyopathy (HCMP) according to echocardiography findings 16 years ago. Echocardiography showed ischemic cardiomyopathy (CMP)-like features with decreased systolic function but a non-dilated chamber. Coronary angiography was performed but showed a normal coronary artery. Cardiac magnetic resonance imaging (MRI) revealed multifocal transmural and subepicardial delayed-enhancing areas at the anteroseptal, septal, and inferoseptal left ventricular (LV) wall, and wall thinning and decreased motion of the anteroseptal LV wall. Findings of ischemic CMP-like features by echocardiography suggested microvascular dysfunction. This late stage of HCMP carries a high risk of sudden death. Cardiac MRI evaluation may be necessary in cases of ischemic CMP-like features in HCMP. In this case, the diagnosis of end-stage HCMP with microvascular dysfunction was confirmed by using cardiac MRI after a follow-up period of more than 16 years. PMID:27721955

  17. Cardiac Motion Analysis Using High-Speed Video Images in a Rat Model for Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Ishii, Idaku; Okuda, Toshikazu; Nie, Yuman; Takaki, Takeshi; Orito, Kensuke; Tanaka, Akane; Matsuda, Hiroshi

    In this study, we performed a cardiac motion analysis by using 1000-frames per second (fps) stereo images to capture the three-dimensional motion of small color markers in a rat heart. This method of recording cardiac motion could quantify the rate of change in the myocardial area, which indicated localized myocardial activity of rhythmic expansion and contraction. We analyzed the three-dimensional motion distributions in a rat model for myocardial infarction, in which the heart rate was 4 times/s or more. In the analysis, we spatiotemporally quantified the characteristic cardiac motion in ischemic heart diseases and found that infarction due to ischemia in the rat heart was spread around the left ventricle.

  18. Intravital imaging of cardiac function at the single-cell level

    PubMed Central

    Aguirre, Aaron D.; Vinegoni, Claudio; Sebas, Matt; Weissleder, Ralph

    2014-01-01

    Knowledge of cardiomyocyte biology is limited by the lack of methods to interrogate single-cell physiology in vivo. Here we show that contracting myocytes can indeed be imaged with optical microscopy at high temporal and spatial resolution in the beating murine heart, allowing visualization of individual sarcomeres and measurement of the single cardiomyocyte contractile cycle. Collectively, this has been enabled by efficient tissue stabilization, a prospective real-time cardiac gating approach, an image processing algorithm for motion-artifact-free imaging throughout the cardiac cycle, and a fluorescent membrane staining protocol. Quantification of cardiomyocyte contractile function in vivo opens many possibilities for investigating myocardial disease and therapeutic intervention at the cellular level. PMID:25053815

  19. Calibration free beam hardening correction for cardiac CT perfusion imaging

    NASA Astrophysics Data System (ADS)

    Levi, Jacob; Fahmi, Rachid; Eck, Brendan L.; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) and coronary CTA have the potential to make CT an ideal noninvasive gate-keeper for invasive coronary angiography. However, beam hardening artifacts (BHA) prevent accurate blood flow calculation in MPI-CT. BH Correction (BHC) methods require either energy-sensitive CT, not widely available, or typically a calibration-based method. We developed a calibration-free, automatic BHC (ABHC) method suitable for MPI-CT. The algorithm works with any BHC method and iteratively determines model parameters using proposed BHA-specific cost function. In this work, we use the polynomial BHC extended to three materials. The image is segmented into soft tissue, bone, and iodine images, based on mean HU and temporal enhancement. Forward projections of bone and iodine images are obtained, and in each iteration polynomial correction is applied. Corrections are then back projected and combined to obtain the current iteration's BHC image. This process is iterated until cost is minimized. We evaluate the algorithm on simulated and physical phantom images and on preclinical MPI-CT data. The scans were obtained on a prototype spectral detector CT (SDCT) scanner (Philips Healthcare). Mono-energetic reconstructed images were used as the reference. In the simulated phantom, BH streak artifacts were reduced from 12+/-2HU to 1+/-1HU and cupping was reduced by 81%. Similarly, in physical phantom, BH streak artifacts were reduced from 48+/-6HU to 1+/-5HU and cupping was reduced by 86%. In preclinical MPI-CT images, BHA was reduced from 28+/-6 HU to less than 4+/-4HU at peak enhancement. Results suggest that the algorithm can be used to reduce BHA in conventional CT and improve MPI-CT accuracy.

  20. Automatic quantitative analysis of cardiac MR perfusion images

    NASA Astrophysics Data System (ADS)

    Breeuwer, Marcel M.; Spreeuwers, Luuk J.; Quist, Marcel J.

    2001-07-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and accurate image analysis methods. This paper focuses on the evaluation of blood perfusion in the myocardium (the heart muscle) from MR images, using contrast-enhanced ECG-triggered MRI. We have developed an automatic quantitative analysis method, which works as follows. First, image registration is used to compensate for translation and rotation of the myocardium over time. Next, the boundaries of the myocardium are detected and for each position within the myocardium a time-intensity profile is constructed. The time interval during which the contrast agent passes for the first time through the left ventricle and the myocardium is detected and various parameters are measured from the time-intensity profiles in this interval. The measured parameters are visualized as color overlays on the original images. Analysis results are stored, so that they can later on be compared for different stress levels of the heart. The method is described in detail in this paper and preliminary validation results are presented.

  1. In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy.

    PubMed

    Weber, Michael; Huisken, Jan

    2015-01-01

    Detailed studies of heart development and function are crucial for our understanding of cardiac failures and pave the way for better diagnostics and treatment. However, the constant motion and close incorporation into the cardiovascular system prevent in vivo studies of the living, unperturbed heart. The complementary strengths of the zebrafish model and light sheet microscopy provide a useful platform to fill this gap. High-resolution images of the embryonic vertebrate heart are now recorded from within the living animal: deep inside the unperturbed heart we can follow cardiac contractions and measure action potentials and calcium transients. Three-dimensional reconstructions of the entire beating heart with cellular resolution give new insights into its ever-changing morphology and facilitate studies into how individual cells form the complex cardiac network. In addition, cardiac dynamics and robustness are now examined with targeted optical manipulation. Overall, the combination of zebrafish and light sheet microscopy represents a promising addition for cardiac research and opens the door to a better understanding of heart function and development.

  2. Effects of cardiac pulsation in diffusion tensor imaging of the rat brain

    PubMed Central

    Kim, Sungheon; Pickup, Stephen; Poptani, Harish

    2010-01-01

    The purpose of this study was to investigate the effects of cardiac pulsation in diffusion tensor imaging (DTI) of the rat brain. DTI data were acquired either with or without different cardiac gating delays. For each case, two sets of identical DTI data were acquired for a bootstrap analysis to measure the uncertainty in estimating mean diffusivity (MD), fractional anisotropy (FA) and the primary eigenvector direction. The 95% confidence interval of the primary eigenvectors was substantially reduced (21 ~ 25 %) when cardiac gating with triggering delay of 70 ms (~ half of R-R peak duration) was used in comparison to studies without gating or when gating with a triggering delay of 0 ms was used. Standard deviations of MD and FA estimates were also reduced by 12 – 26 % and 13 – 24 %, respectively. For voxels with mean FA values larger than 0.15 and smaller than 0.95, the decrease in CI and standard deviations of MD and FA by cardiac gating with triggering delay of 70 ms were significant (p < 0.05). These results demonstrate the importance of cardiac gating in acquisition of in vivo high resolution DTI data. PMID:20951164

  3. Cardiac sarcoidosis mimicking hypertrophic cardiomyopathy: clinical utility of radionuclide imaging for differential diagnosis.

    PubMed

    Yazaki, Y; Isobe, M; Hayasaka, M; Tanaka, M; Fujii, T; Sekiguchi, M

    1998-06-01

    A 62-year-old woman with skin sarcoidosis was admitted to our hospital to ascertain whether she had cardiac involvement. Although she displayed no cardiac signs or symptoms, the electrocardiogram showed first-degree atrioventricular block, right bundle branch block with left anterior fascicular block, and giant negative T waves in the V3 lead. Echocardiography revealed marked hypertrophy localized in the basal portion of the interventricular septum (IVS) without systolic dysfunction, mimicking hypertrophic cardiomyopathy (HCM). Exercise thallium-201 myocardial imaging revealed redistribution in the anteroseptal region. Both gallium-67 (67Ga) and technetium-99m pyrophosphate (99mTc-PYP) scintigraphy revealed abnormal uptake in the myocardium. These findings disappeared after 2 months of steroid treatment. Reports of cardiac sarcoidosis mimicking HCM are rare. However, hypertrophy in the basal portion of the IVS is an important sign of early cardiac involvement in sarcoidosis. 67Ga and 99mTc-PYP scintigraphy were useful and necessary to differentiate this type of cardiac sarcoidosis from HCM.

  4. A visible light imaging device for cardiac rate detection with reduced effect of body movement

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaotian; Liu, Ming; Zhao, Yuejin

    2014-09-01

    A visible light imaging system to detect human cardiac rate is proposed in this paper. A color camera and several LEDs, acting as lighting source, were used to avoid the interference of ambient light. From people's forehead, the cardiac rate could be acquired based on photoplethysmography (PPG) theory. The template matching method was used after the capture of video. The video signal was discomposed into three signal channels (RGB) and the region of interest was chosen to take the average gray value. The green channel signal could provide an excellent waveform of pulse wave on the account of green lights' absorptive characteristics of blood. Through the fast Fourier transform, the cardiac rate was exactly achieved. But the research goal was not just to achieve the cardiac rate accurately. With the template matching method, the effects of body movement are reduced to a large extent, therefore the pulse wave can be detected even while people are in the moving state and the waveform is largely optimized. Several experiments are conducted on volunteers, and the results are compared with the ones gained by a finger clamped pulse oximeter. The contrast results between these two ways are exactly agreeable. This method to detect the cardiac rate and the pulse wave largely reduces the effects of body movement and can probably be widely used in the future.

  5. In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy.

    PubMed

    Weber, Michael; Huisken, Jan

    2015-01-01

    Detailed studies of heart development and function are crucial for our understanding of cardiac failures and pave the way for better diagnostics and treatment. However, the constant motion and close incorporation into the cardiovascular system prevent in vivo studies of the living, unperturbed heart. The complementary strengths of the zebrafish model and light sheet microscopy provide a useful platform to fill this gap. High-resolution images of the embryonic vertebrate heart are now recorded from within the living animal: deep inside the unperturbed heart we can follow cardiac contractions and measure action potentials and calcium transients. Three-dimensional reconstructions of the entire beating heart with cellular resolution give new insights into its ever-changing morphology and facilitate studies into how individual cells form the complex cardiac network. In addition, cardiac dynamics and robustness are now examined with targeted optical manipulation. Overall, the combination of zebrafish and light sheet microscopy represents a promising addition for cardiac research and opens the door to a better understanding of heart function and development. PMID:26700795

  6. An event-driven distributed processing architecture for image-guided cardiac ablation therapy.

    PubMed

    Rettmann, M E; Holmes, D R; Cameron, B M; Robb, R A

    2009-08-01

    Medical imaging data is becoming increasing valuable in interventional medicine, not only for preoperative planning, but also for real-time guidance during clinical procedures. Three key components necessary for image-guided intervention are real-time tracking of the surgical instrument, aligning the real-world patient space with image-space, and creating a meaningful display that integrates the tracked instrument and patient data. Issues to consider when developing image-guided intervention systems include the communication scheme, the ability to distribute CPU intensive tasks, and flexibility to allow for new technologies. In this work, we have designed a communication architecture for use in image-guided catheter ablation therapy. Communication between the system components is through a database which contains an event queue and auxiliary data tables. The communication scheme is unique in that each system component is responsible for querying and responding to relevant events from the centralized database queue. An advantage of the architecture is the flexibility to add new system components without affecting existing software code. In addition, the architecture is intrinsically distributed, in that components can run on different CPU boxes, and even different operating systems. We refer to this Framework for Image-Guided Navigation using a Distributed Event-Driven Database in Real-Time as the FINDER architecture. This architecture has been implemented for the specific application of image-guided cardiac ablation therapy. We describe our prototype image-guidance system and demonstrate its functionality by emulating a cardiac ablation procedure with a patient-specific phantom. The proposed architecture, designed to be modular, flexible, and intuitive, is a key step towards our goal of developing a complete system for visualization and targeting in image-guided cardiac ablation procedures.

  7. Determining velocity displacement field from cardiac image sequence

    NASA Astrophysics Data System (ADS)

    Meyering, Wietske I.; Gutierrez, Marco A.; Robilotta, Cecil C.; Furuie, Sergio S.

    2002-04-01

    Estimation of left ventricle motion and deformation from series of images has been an area of attention in the medical image analysis and still remains an open and challenging problem. Left ventricle contractile abnormalities can be an important manifestation of coronary artery disease. The proper motion tracking of left ventricle wall can contribute to isolate the location and extent of ischemic or infarcted myocardium and constitutes a fundamental goal of image modalities, such as Nuclear Medicine. This work describes a method to automatically estimate the velocity vector field for a beating heart based on the study of variation in frequency content in a series of 2D images as time varies. The frequency analysis is performed by computing the Wigner-Ville and the Choi-Williams distributions to each image pixel, yielding the corresponding 3D-frequency spectrum. From this 3D spectrum the local velocity of each pixel is calculated by employing a multiple linear regression model. Experimental validation was carried out using synthetic phantoms that simulate translation and rotation between successive frames. Results obtained from gated SPECT perfusion studies are also presented.

  8. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    SciTech Connect

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl; Flohr, Thomas

    2013-03-15

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phase (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum

  9. Cardiac Multidetector Computed Tomography: Basic Physics of Image Acquisition and Clinical Applications

    PubMed Central

    Bardo, Dianna M.E; Brown, Paul

    2008-01-01

    Cardiac MDCT is here to stay. And, it is more than just imaging coronary arteries. Understanding the differences in and the benefits of one CT scanner from another will help you to optimize the capabilities of the scanner, but requires a basic understanding of the MDCT imaging physics. This review provides key information needed to understand the differences in the types of MDCT scanners, from 64 – 320 detectors, flat panels, single and dual source configurations, step and shoot prospective and retrospective gating, and how each factor influences radiation dose, spatial and temporal resolution, and image noise. PMID:19936200

  10. Nanoparticles as magnetic resonance imaging contrast agents for vascular and cardiac diseases

    PubMed Central

    Chen, Wei; Cormode, David P.; Fayad, Zahi A.; Mulder, Willem J. M.

    2011-01-01

    Advances in nanoparticle contrast agents for molecular imaging have made magnetic resonance imaging a promising modality for noninvasive visualization and assessment of vascular and cardiac disease processes. This review provides a description of the various nanoparticles exploited for imaging cardiovascular targets. Nanoparticle probes detecting inflammation, apoptosis, extracellular matrix, and angiogenesis may provide tools for assessing the risk of progressive vascular dysfunction and heart failure. The utility of nanoparticles as multimodal probes and/or theranostic agents has also been investigated. Although clinical application of these nanoparticles is largely unexplored, the potential for enhancing disease diagnosis and treatment is considerable. PMID:20967875

  11. Cardiac imaging of congenital heart diseases during interventional procedures continues to evolve: Pros and cons of the main techniques.

    PubMed

    Hascoët, Sebastien; Warin-Fresse, Karine; Baruteau, Alban-Elouen; Hadeed, Khaled; Karsenty, Clement; Petit, Jérôme; Guérin, Patrice; Fraisse, Alain; Acar, Philippe

    2016-02-01

    Cardiac catheterization has contributed to the progress made in the management of patients with congenital heart disease (CHD). First, it allowed clarification of the diagnostic assessment of CHD, by offering a better understanding of normal cardiac physiology and the pathophysiology and anatomy of complex malformations. Then, it became an alternative to surgery and a major component of the therapeutic approach for some CHD lesions. Nowadays, techniques have evolved and cardiac catheterization is widely used to percutaneously close intracardiac shunts, to relieve obstructive valvar or vessel lesions, and for transcatheter valve replacement. Accurate imaging is mandatory to guide these procedures. Cardiac imaging during catheterization of CHD must provide accurate images of lesions, surrounding cardiac structures, medical devices and tools used to deliver them. Cardiac imaging has to be 'real-time' with an excellent temporal resolution to ensure 'eyes-hands' synchronization and 'device-target area' accurate positioning. In this comprehensive review, we provide an overview of conventional cardiac imaging tools used in the catheterization laboratory in daily practice, as well as the effect of recent evolution and future imaging modalities. PMID:26858142

  12. Higher-Order Motion-Compensation for In Vivo Cardiac Diffusion Tensor Imaging in Rats

    PubMed Central

    Welsh, Christopher L.; DiBella, Edward V. R.; Hsu, Edward W.

    2015-01-01

    Motion of the heart has complicated in vivo applications of cardiac diffusion MRI and diffusion tensor imaging (DTI), especially in small animals such as rats where ultra-high-performance gradient sets are currently not available. Even with velocity compensation via, for example, bipolar encoding pulses, the variable shot-to-shot residual motion-induced spin phase can still give rise to pronounced artifacts. This study presents diffusion-encoding schemes that are designed to compensate for higher-order motion components, including acceleration and jerk, which also have the desirable practical features of minimal TEs and high achievable b-values. The effectiveness of these schemes was verified numerically on a realistic beating heart phantom, and demonstrated empirically with in vivo cardiac diffusion MRI in rats. Compensation for acceleration, and lower motion components, was found to be both necessary and sufficient for obtaining diffusion-weighted images of acceptable quality and SNR, which yielded the first in vivo cardiac DTI demonstrated in the rat. These findings suggest that compensation for higher order motion, particularly acceleration, can be an effective alternative solution to high-performance gradient hardware for improving in vivo cardiac DTI. PMID:25775486

  13. Current artefacts in cardiac and chest magnetic resonance imaging: tips and tricks.

    PubMed

    Alfudhili, Khalid; Masci, Pier G; Delacoste, Jean; Ledoux, Jean-B; Berchier, Grégoire; Dunet, Vincent; Qanadli, Salah D; Schwitter, Juerg; Beigelman-Aubry, Catherine

    2016-06-01

    Currently MRI is extensively used for the evaluation of cardiovascular and thoracic disorders because of the well-established advantages that include use of non-ionizing radiation, good contrast and high spatial resolution. Despite the advantages of this technique, numerous categories of artefacts are frequently encountered. They may be related to the scanner hardware or software functionalities, environmental factors or the human body itself. In particular, some artefacts may be exacerbated with high-field-strength MR machines (e.g. 3 T). Cardiac imaging poses specific challenges with respect to breath-holding and cardiac motion. In addition, new cardiac MR-conditional devices may also be responsible for peculiar artefacts. The image quality may thus be impaired and give rise to a misdiagnosis. Knowledge of acquisition and reconstruction techniques is required to understand and recognize the nature of these artefacts. This article will focus on the origin and appearance of the most common artefacts encountered in cardiac and chest MRI along with possible correcting methods to avoid or reduce them. PMID:26986460

  14. The clinical utility of new cardiac imaging modalities in Australasian clinical practice.

    PubMed

    Hamilton-Craig, Christian; Chan, Jonathan

    2016-08-01

    Cardiac imaging is a rapidly evolving field, with improvements in the diagnostic capabilities of non-invasive cardiac assessment. We review the two main emerging technologies in cardiac imaging: computed tomography coronary angiography (CTCA) to evaluate chest symptoms and to exclude coronary artery disease; and cardiovascular magnetic resonance (CMR) for evaluating cardiac morphology, function and presence of scar. CTCA is an excellent "rule out" test, with a negative predictive value approaching 100%. Radiation exposure is no longer a concern for CTCA, with doses routinely < 5 mSv, and as low as < 1 mSv in selected patients. CTCA is useful for excluding coronary artery disease, investigating the anatomy of coronary anomalies or fistulae, and for the patency of coronary bypass grafts. CMR is the reference test for the accurate quantitation of left ventricular and right ventricular size and function. CMR has no ionising radiation, making it particularly suitable for patients with heart failure or congenital heart disease who require longitudinal follow-up. Evaluation of cardiomyopathies (hypertrophic, ischaemic, infiltrative, myocarditis, iron overload or idiopathic) is a unique strength of CMR. Stress perfusion CMR has a strong evidence base and improved spatial and temporal resolution compared with nuclear single-photon emission computed tomography. PMID:27465770

  15. The clinical utility of new cardiac imaging modalities in Australasian clinical practice.

    PubMed

    Hamilton-Craig, Christian; Chan, Jonathan

    2016-08-01

    Cardiac imaging is a rapidly evolving field, with improvements in the diagnostic capabilities of non-invasive cardiac assessment. We review the two main emerging technologies in cardiac imaging: computed tomography coronary angiography (CTCA) to evaluate chest symptoms and to exclude coronary artery disease; and cardiovascular magnetic resonance (CMR) for evaluating cardiac morphology, function and presence of scar. CTCA is an excellent "rule out" test, with a negative predictive value approaching 100%. Radiation exposure is no longer a concern for CTCA, with doses routinely < 5 mSv, and as low as < 1 mSv in selected patients. CTCA is useful for excluding coronary artery disease, investigating the anatomy of coronary anomalies or fistulae, and for the patency of coronary bypass grafts. CMR is the reference test for the accurate quantitation of left ventricular and right ventricular size and function. CMR has no ionising radiation, making it particularly suitable for patients with heart failure or congenital heart disease who require longitudinal follow-up. Evaluation of cardiomyopathies (hypertrophic, ischaemic, infiltrative, myocarditis, iron overload or idiopathic) is a unique strength of CMR. Stress perfusion CMR has a strong evidence base and improved spatial and temporal resolution compared with nuclear single-photon emission computed tomography.

  16. Do imaging studies performed in physician offices increase downstream utilization? An empiric analysis of cardiac stress testing with imaging

    PubMed Central

    Chen, Jersey; Fazel, Reza; Ross, Joseph S.; McNamara, Robert L.; Einstein, Andrew J.; Al-Mallah, Mouaz; Krumholz, Harlan M.; Nallamothu, Brahmajee K.

    2012-01-01

    Objective To compare patterns of downstream testing and procedures after stress testing with imaging performed at physician offices versus at hospital-outpatient facilities. Background Stress testing with imaging has grown dramatically in recent years, but whether the location of where the test is performed correlates with different patterns for subsequent cardiac testing and procedures is unknown. Methods We identified 82,178 adults with private health insurance from 2005–2007 who underwent ambulatory myocardial perfusion imaging (MPI) or stress echocardiography (SE). Subsequent MPI, SE, cardiac catheterization or revascularization within 6 months were compared between physician office and hospital-outpatient settings. Results Overall, 84.5% of MPI and 84.9% of SE were performed in physician offices. The proportion of patients who underwent subsequent MPI, SE or cardiac catheterization was not statistically different between physician office and hospital-outpatient settings for MPI (14.2% v 14.1%, p=0.80) or SE (7.9% v 8.6%, p=0.21). However, patients with physician-office imaging had slightly higher rates of repeat MPI within 6 months compared with hospital-outpatient imaging for both index MPI (3.5% v 2.0%, p<0.001) and SE (3.4% v 2.1%, p<0.001), and slightly lower rates of cardiac catheterization after index MPI (11.5% v 12.3, p=0.01) and SE (4.5% v 7.0%, p<0.001). Differences in 6-month utilization were observed across the 5 healthcare markets after index MPI but not after index SE. Conclusions Physician office imaging is associated with slightly higher repeat MPI and fewer cardiac catheterizations than hospital outpatient imaging, but no overall difference in the proportion of patients undergoing additional further testing or procedures. While regional variation exists, especially for MPI, the relationship between physician-office location of stress testing with imaging and greater downstream resource utilization appears modest. PMID:21679898

  17. Comparison of simultaneous and sequential SPECT imaging for discrimination tasks in assessment of cardiac defects

    NASA Astrophysics Data System (ADS)

    Trott, C. M.; Ouyang, J.; El Fakhri, G.

    2010-11-01

    Simultaneous rest perfusion/fatty-acid metabolism studies have the potential to replace sequential rest/stress perfusion studies for the assessment of cardiac function. Simultaneous acquisition has the benefits of increased signal and lack of need for patient stress, but is complicated by cross-talk between the two radionuclide signals. We consider a simultaneous rest 99mTc-sestamibi/123I-BMIPP imaging protocol in place of the commonly used sequential rest/stress 99mTc-sestamibi protocol. The theoretical precision with which the severity of a cardiac defect and the transmural extent of infarct can be measured is computed for simultaneous and sequential SPECT imaging, and their performance is compared for discriminating (1) degrees of defect severity and (2) sub-endocardial from transmural defects. We consider cardiac infarcts for which reduced perfusion and metabolism are observed. From an information perspective, simultaneous imaging is found to yield comparable or improved performance compared with sequential imaging for discriminating both severity of defect and transmural extent of infarct, for three defects of differing location and size.

  18. Fully automated segmentation of left ventricle using dual dynamic programming in cardiac cine MR images

    NASA Astrophysics Data System (ADS)

    Jiang, Luan; Ling, Shan; Li, Qiang

    2016-03-01

    Cardiovascular diseases are becoming a leading cause of death all over the world. The cardiac function could be evaluated by global and regional parameters of left ventricle (LV) of the heart. The purpose of this study is to develop and evaluate a fully automated scheme for segmentation of LV in short axis cardiac cine MR images. Our fully automated method consists of three major steps, i.e., LV localization, LV segmentation at end-diastolic phase, and LV segmentation propagation to the other phases. First, the maximum intensity projection image along the time phases of the midventricular slice, located at the center of the image, was calculated to locate the region of interest of LV. Based on the mean intensity of the roughly segmented blood pool in the midventricular slice at each phase, end-diastolic (ED) and end-systolic (ES) phases were determined. Second, the endocardial and epicardial boundaries of LV of each slice at ED phase were synchronously delineated by use of a dual dynamic programming technique. The external costs of the endocardial and epicardial boundaries were defined with the gradient values obtained from the original and enhanced images, respectively. Finally, with the advantages of the continuity of the boundaries of LV across adjacent phases, we propagated the LV segmentation from the ED phase to the other phases by use of dual dynamic programming technique. The preliminary results on 9 clinical cardiac cine MR cases show that the proposed method can obtain accurate segmentation of LV based on subjective evaluation.

  19. Imaging Techniques in Percutaneous Cardiac Structural Interventions: Atrial Septal Defect Closure and Left Atrial Appendage Occlusion.

    PubMed

    Rodríguez Fernández, Antonio; Bethencourt González, Armando

    2016-08-01

    Because of advances in cardiac structural interventional procedures, imaging techniques are playing an increasingly important role. Imaging studies show sufficient anatomic detail of the heart structure to achieve an excellent outcome in interventional procedures. Up to 98% of atrial septal defects at the ostium secundum can be closed successfully with a percutaneous procedure. Candidates for this type of procedure can be identified through a systematic assessment of atrial septum anatomy, locating and measuring the size and shape of all defects, their rims, and the degree and direction of shunting. Three dimensional echocardiography has significantly improved anatomic assessments and the end result itself. In the future, when combined with other imaging techniques such as cardiac computed tomography and fluoroscopy, 3-dimensional echocardiography will be particularly useful for procedure guidance. Percutaneous closure of the left atrial appendage offers an alternative for treating patients with atrial fibrillation and contraindication for oral anticoagulants. In the future, the clinical focus may well turn to stroke prevention in selected patients. Percutaneous closure is effective and safe; device implantation is successful in 94% to 99% of procedures. However, the procedure requires an experienced cardiac structural interventional team. At present, 3-dimensional echocardiography is the most appropriate imaging technique to assess anatomy suitability, select device type and size, guide the procedure alongside fluoroscopy, and to follow-up the patient afterwards.

  20. Imaging Techniques in Percutaneous Cardiac Structural Interventions: Atrial Septal Defect Closure and Left Atrial Appendage Occlusion.

    PubMed

    Rodríguez Fernández, Antonio; Bethencourt González, Armando

    2016-08-01

    Because of advances in cardiac structural interventional procedures, imaging techniques are playing an increasingly important role. Imaging studies show sufficient anatomic detail of the heart structure to achieve an excellent outcome in interventional procedures. Up to 98% of atrial septal defects at the ostium secundum can be closed successfully with a percutaneous procedure. Candidates for this type of procedure can be identified through a systematic assessment of atrial septum anatomy, locating and measuring the size and shape of all defects, their rims, and the degree and direction of shunting. Three dimensional echocardiography has significantly improved anatomic assessments and the end result itself. In the future, when combined with other imaging techniques such as cardiac computed tomography and fluoroscopy, 3-dimensional echocardiography will be particularly useful for procedure guidance. Percutaneous closure of the left atrial appendage offers an alternative for treating patients with atrial fibrillation and contraindication for oral anticoagulants. In the future, the clinical focus may well turn to stroke prevention in selected patients. Percutaneous closure is effective and safe; device implantation is successful in 94% to 99% of procedures. However, the procedure requires an experienced cardiac structural interventional team. At present, 3-dimensional echocardiography is the most appropriate imaging technique to assess anatomy suitability, select device type and size, guide the procedure alongside fluoroscopy, and to follow-up the patient afterwards. PMID:27354151

  1. Four-dimensional modeling of the heart for image guidance of minimally invasive cardiac surgeries

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Marcin; Drangova, Maria; Guiraudon, Gerard; Peters, Terry

    2004-05-01

    Minimally invasive surgery of the beating heart can be associated with two major limitations: selecting port locations for optimal target coverage from x-rays and angiograms, and navigating instruments in a dynamic and confined 3D environment using only an endoscope. To supplement the current surgery planning and guidance strategies, we continue developing VCSP - a virtual reality, patient-specific, thoracic cavity model derived from 3D pre-procedural images. In this work, we apply elastic image registration to 4D cardiac images to model the dynamic heart. Our method is validated on two image modalities, and for different parts of the cardiac anatomy. In a helical CT dataset of an excised heart phantom, we found that the artificial motion of the epicardial surface can be extracted to within 0.93 +/- 0.33 mm. For an MR dataset of a human volunteer, the error for different heart structures such as the myocardium, right and left atria, right ventricle, aorta, vena cava, and pulmonary artery, ranged from 1.08 +/- 0.18 mm to 1.14 +/- 0.22 mm. These results indicate that our method of modeling the motion of the heart is not only easily adaptable but also sufficiently accurate to meet the requirements for reliable cardiac surgery training, planning, and guidance.

  2. Initial outcome following invasive cardiac electrophysiologic studies and radiofrequency ablation of atrial fibrillation

    PubMed Central

    Uwanuruochi, Kelechukwu; Saravanan, Sabari; Ganasekar, Anita; Solomon, Benjamin S; Murugesan, Ravikumar; Shah, Ruchit A; Krishnamoorthy, Jaishankar; Pandurangi, Ulhas M

    2016-01-01

    Background: Cardiac electrophysiologic study and radiofrequency ablation (RFA) have become an established mode of treatment for patients with refractory arrhythmias. These procedures are carried out regularly at the cardiac catheterization laboratory of Madras Medical Mission India. Objective: The purpose of this study was to evaluate our experience with cardiac electrophysiologic studies (EPS) and RFA catheter of atrial fibrillation (AF). Materials and Methods: This was a retrospective study carried out in the Cardiac Electrophysiology Department of the Institute of Cardiovascular Diseases, Madras Medical Mission, India. All cases diagnosed to have AF following cardiac EPS between January 2010 and April 2014 was selected for the study. The records, which were obtained from the Cardiac Electrophysiology Clinical Research Office of Madras Medical Mission, were reviewed. Forty-nine cases were chosen for analysis, using SPSS statistical software version 15. Results: There were 49 patients, 23 males and 26 females. The mean age was 57.53 years. Commonly associated diseases were diabetes mellitus 8 (16.3%), hypertension 18 (36.7%), and coronary heart disease 14 (28.5%). The ventricular rate was rapid most cases (91.2%). AF was diagnosed as being paroxysmal in 40 (81.6%), persistent in 5 (10.2%), chronic in 3 (6.1%), and lone in 1 (2.0%). Ablation was carried out in 28 (57.1%), the success rate being 90% for pulmonary vein isolation, and 90.9% for atrioventricular node ablation. Complication rate was 2.04%. Conclusions: Treatment of AF by RFA is highly effective and safe. PMID:27127736

  3. Cardiac SPECT/CCTA hybrid imaging : One answer to two questions?

    PubMed

    Kaufmann, P A; Buechel, R R

    2016-08-01

    Noninvasive cardiac imaging has witnessed tremendous advances in the recent past, particularly with regard to coronary computed tomography angiography (CCTA) where substantial improvements in image quality have been achieved while at the same time patients' radiation dose exposure has been reduced to the sub-millisievert range. Similarly, for single-photon emission computed tomography (SPECT) the introduction of novel cadmium-zinc-telluride-based semiconductor detectors has significantly improved system sensitivity and image quality, enabling fast image acquisition within less than 2-3 min or reduction of radiation dose exposure to less than 5 mSv. However, neither imaging modality alone is able to fully cover the two aspects of coronary artery disease (CAD), that is, morphology and function. Both modalities have distinct advantages and shortcomings: While CCTA may prove a superb modality for excluding CAD through its excellent negative predictive value, it does not allow for assessment of hemodynamic relevance if obstructive coronary lesions are detected. Conversely, SPECT myocardial perfusion imaging cannot provide any information on the presence or absence of subclinical coronary atherosclerosis. This article aims to highlight the great potential of cardiac hybrid imaging that allows for a comprehensive evaluation of CAD through combination of both morphological and functional information by fusing SPECT with CCTA. PMID:27286848

  4. Murine cardiac images obtained with focusing pinhole SPECT are barely influenced by extra-cardiac activity

    NASA Astrophysics Data System (ADS)

    Branderhorst, Woutjan; van der Have, Frans; Vastenhouw, Brendan; Viergever, Max A.; Beekman, Freek J.

    2012-02-01

    Ultra-high-resolution SPECT images can be obtained with focused multipinhole collimators. Here we investigate the influence of unwanted high tracer uptake outside the scan volume on reconstructed tracer distributions inside the scan volume, for 99mTc-tetrofosmin myocardial perfusion scanning in mice. Simulated projections of a digital mouse phantom (MOBY) in a focusing multipinhole SPECT system (U-SPECT-II, MILabs, The Netherlands) were generated. With this system differently sized user-defined scan volumes can be selected, by translating the animal in 3D through the focusing collimators. Scan volume selections were set to (i) a minimal volume containing just the heart, acquired without translating the animal during scanning, (ii) a slightly larger scan volume as is typically applied for the heart, requiring only small XYZ translations during scanning, (iii) same as (ii), but extended further transaxially, and (iv) same as (ii), but extended transaxially to cover the full thorax width (gold standard). Despite an overall negative bias that is significant for the minimal scan volume, all selected volumes resulted in visually similar images. Quantitative differences in the reconstructed myocardium between gold standard and the results from the smaller scan volume selections were small; the 17 standardized myocardial segments of a bull's eye plot, normalized to the myocardial mean of the gold standard, deviated on average 6.0%, 2.5% and 1.9% for respectively the minimal, the typical and the extended scan volume, while maximum absolute deviations were respectively 18.6%, 9.0% and 5.2%. Averaged over ten low-count noisy simulations, the mean absolute deviations were respectively 7.9%, 3.2% and 1.9%. In low-count noisy simulations, the mean and maximum absolute deviations for the minimal scan volume could be reduced to respectively 4.2% and 12.5% by performing a short survey scan of the exterior activity and focusing the remaining scan time at the organ of interest. We

  5. Delayed Myocardial Enhancement in Cardiac Magnetic Resonance Imaging

    PubMed Central

    Franco, Arie; Javidi, Saeed; Ruehm, Stefan G

    2015-01-01

    Delayed myocardial enhancement MRI is a highly valuable but non-specific imaging technique that is ancillary in the diagnosis of a variety of diseases including myocardial viability, cardiomyopathy, myocarditis and other infiltrative myocardial processes. The lack of specificity stems from the wide variety of differential diagnoses that may present with overlapping patterns of delayed enhancement. Many of these differential diagnoses have been presented and discussed in this article. PMID:26622933

  6. Nuclear cardiac imaging for the assessment of myocardial viability

    PubMed Central

    Slart, R.H.J.A.; Bax, J.J.; van der Wall, E.E.; van Veldhuisen, D.J.; Jager, P.L.; Dierckx, R.A.

    2005-01-01

    An important aspect of the diagnostic and prognostic work-up of patients with ischaemic cardiomyopathy is the assessment of myocardial viability. Patients with left ventricular dysfunction who have viable myocardium are the patients at highest risk because of the potential for ischaemia but at the same time benefit most from revascularisation. It is important to identify viable myocardium in these patients, and radionuclide myocardial scintigraphy is an excellent tool for this. Single-photon emission computed tomography perfusion scintigraphy (SPECT), whether using 201thallium, 99mTc-sestamibi, or 99mTc- tetrofosmin, in stress and/or rest protocols, has consistently been shown to be an effective modality for identifying myocardial viability and guiding appropriate management. Metabolic and perfusion imaging with positron emission tomography radiotracers frequently adds additional information and is a powerful tool for predicting which patients will have an improved outcome from revascularisation. New techniques in the nuclear cardiology field, such as attenuation corrected SPECT, dual isotope simultaneous acquisition (DISA) SPECT and gated FDG PET are promising and will further improve the detection of myocardial viability. Also the combination of multislice computed tomography scanners with PET opens possibilities of adding coronary calcium scoring and noninvasive coronary angiography to myocardial perfusion imaging and quantification. ImagesFigure 1Figure 2Figure 3 PMID:25696432

  7. Intraoperative IR imaging in the cardiac operating room

    NASA Astrophysics Data System (ADS)

    Szabo, Tamas; Fazekas, Levente; Horkay, Ferenc; Geller, Laslu; Gyongy, Tibor; Juhasz-Nagy, Alexander

    1999-07-01

    The high blood flow rate and the considerable metabolic activity render the myocardium a possible candidate for IR imaging. The study was aimed to test cardiothermography in evaluating arterial bypass graft patency and in assessing myocardial protection during open-heart surgery. Ten patients underwent arterial bypass grafting. Thermograms were obtained immediately before and after opening the grafts. As the bypasses were opened in hypothermia the warmer blood coming from the extracorporeal circulation readily delineated graft and coronary anatomy. By the end of the 5 min observation period, the revascularized area exhibited a temperature increase of 5.9 +/- 0.7 degrees C. The affectivity of antegrade cardioplegia was monitored in 38 patients undergoing either valve implantations or aorto- coronary bypass surgery. Thermographic imags were taken after sternotomy, before aortic cross-clamping and after administrating the 4 degrees C cardioplegic solution. Most of the patients displayed adequate myocardial cooling, moreover the bypass-group exhibited a more profound temperature-decrease. In conclusion, cardiothermography can visualize arterial grafts, recipient coronaries and collaterals seconds after opening by bypass, thus it properly evaluated arterial bypass graft patency. The obtained images could easily be analyzed for qualitative flow- and quantitative temperature changes. Myocardial protection could also be safely assessed with thermography.

  8. Kalman filter techniques for accelerated Cartesian dynamic cardiac imaging.

    PubMed

    Feng, Xue; Salerno, Michael; Kramer, Christopher M; Meyer, Craig H

    2013-05-01

    In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome, and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and signal-to-noise ratio. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view-sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction.

  9. The pulsatility volume index: an indicator of cerebrovascular compliance based on fast magnetic resonance imaging of cardiac and respiratory pulsatility.

    PubMed

    Bianciardi, Marta; Toschi, Nicola; Polimeni, Jonathan R; Evans, Karleyton C; Bhat, Himanshu; Keil, Boris; Rosen, Bruce R; Boas, David A; Wald, Lawrence L

    2016-05-13

    The influence of cardiac activity on the viscoelastic properties of intracranial tissue is one of the mechanisms through which brain-heart interactions take place, and is implicated in cerebrovascular disease. Cerebrovascular disease risk is not fully explained by current risk factors, including arterial compliance. Cerebrovascular compliance is currently estimated indirectly through Doppler sonography and magnetic resonance imaging (MRI) measures of blood velocity changes. In order to meet the need for novel cerebrovascular disease risk factors, we aimed to design and validate an MRI indicator of cerebrovascular compliance based on direct endogenous measures of blood volume changes. We implemented a fast non-gated two-dimensional MRI pulse sequence based on echo-planar imaging (EPI) with ultra-short repetition time (approx. 30-50 ms), which stepped through slices every approximately 20 s. We constrained the solution of the Bloch equations for spins moving faster than a critical speed to produce an endogenous contrast primarily dependent on spin volume changes, and an approximately sixfold signal gain compared with Ernst angle acquisitions achieved by the use of a 90° flip angle. Using cardiac and respiratory peaks detected on physiological recordings, average cardiac and respiratory MRI pulse waveforms in several brain compartments were obtained at 7 Tesla, and used to derive a compliance indicator, the pulsatility volume index (pVI). The pVI, evaluated in larger cerebral arteries, displayed significant variation within and across vessels. Multi-echo EPI showed the presence of significant pulsatility effects in both S0 and [Formula: see text] signals, compatible with blood volume changes. Lastly, the pVI dynamically varied during breath-holding compared with normal breathing, as expected for a compliance indicator. In summary, we characterized and performed an initial validation of a novel MRI indicator of cerebrovascular compliance, which might prove useful

  10. The pulsatility volume index: an indicator of cerebrovascular compliance based on fast magnetic resonance imaging of cardiac and respiratory pulsatility.

    PubMed

    Bianciardi, Marta; Toschi, Nicola; Polimeni, Jonathan R; Evans, Karleyton C; Bhat, Himanshu; Keil, Boris; Rosen, Bruce R; Boas, David A; Wald, Lawrence L

    2016-05-13

    The influence of cardiac activity on the viscoelastic properties of intracranial tissue is one of the mechanisms through which brain-heart interactions take place, and is implicated in cerebrovascular disease. Cerebrovascular disease risk is not fully explained by current risk factors, including arterial compliance. Cerebrovascular compliance is currently estimated indirectly through Doppler sonography and magnetic resonance imaging (MRI) measures of blood velocity changes. In order to meet the need for novel cerebrovascular disease risk factors, we aimed to design and validate an MRI indicator of cerebrovascular compliance based on direct endogenous measures of blood volume changes. We implemented a fast non-gated two-dimensional MRI pulse sequence based on echo-planar imaging (EPI) with ultra-short repetition time (approx. 30-50 ms), which stepped through slices every approximately 20 s. We constrained the solution of the Bloch equations for spins moving faster than a critical speed to produce an endogenous contrast primarily dependent on spin volume changes, and an approximately sixfold signal gain compared with Ernst angle acquisitions achieved by the use of a 90° flip angle. Using cardiac and respiratory peaks detected on physiological recordings, average cardiac and respiratory MRI pulse waveforms in several brain compartments were obtained at 7 Tesla, and used to derive a compliance indicator, the pulsatility volume index (pVI). The pVI, evaluated in larger cerebral arteries, displayed significant variation within and across vessels. Multi-echo EPI showed the presence of significant pulsatility effects in both S0 and [Formula: see text] signals, compatible with blood volume changes. Lastly, the pVI dynamically varied during breath-holding compared with normal breathing, as expected for a compliance indicator. In summary, we characterized and performed an initial validation of a novel MRI indicator of cerebrovascular compliance, which might prove useful

  11. Myocardial Infarct Imaging of Antibodies to Canine Cardiac Myosin with Indium-111-Diethylenetriamine Pentaacetic Acid

    NASA Astrophysics Data System (ADS)

    Khaw, Ban An; Fallon, John T.; Strauss, H. William; Haber, Edgar

    1980-07-01

    Antibodies, by virtue of marked selectivity and affinity, may lend themselves to identification of structures of unique antigenic specificity in vivo. In experimental myocardial infarction in dogs, F(ab')2 fragments of antibodies to cardiac myosin that had been labeled with iodine-131 were shown to localize within the lesion. Because the energy characteristics of iodine isotopes are not ideal for imaging with a gamma camera, a new method for labeling antibody fragments with divalent or polyvalent radionuclides was developed. A bifunctional chelating agent, diethylenetriamine pentaacetic acid was covalently coupled, by an amide bond, to Fab fragments of antibodies to canine cardiac myosin. A stable chelate was then formed with indium-111, a nuclide that has appropriate half-life and energy characteristics for gamma imaging. Antibodies treated in this way retain their antigen-binding activity and are useful in locating myocardial infarcts in vivo.

  12. Myocardial infarct imaging of antibodies to canine cardiac myosin with indium-111-diethylenetriamine pentaacetic acid.

    PubMed

    Khaw, B A; Fallon, F T; Strauss, H W; Haber, E

    1980-07-11

    Antibodies, by virtue of marked selectivity and affinity, may lend themselves to identification of structures of unique antigenic specificity in vivo. In experimental myocardial infarction in dogs, F(ab')2 fragments of antibodies to cardiac myosin that had been labeled with iodine-131 were shown to localize within the lesion. Because the energy characteristics of iodine isotopes are not ideal for imaging with a gamma camera, a new method for labeling antibody fragments with divalent or polyvalent radionuclides was developed. A bifunctional chelating agent, diethylenetriamine pentaacetic acid was covalently coupled, by an amide bond, to Fab fragments of antibodies to canine cardiac myosin. A stable chelate was then formed with indium-111, a nuclide that has appropriate half-life and energy characteristics for gamma imaging. Antibodies treated in this way retain their antigen-binding activity and are useful in locating myocardial infarcts in vivo. PMID:7384803

  13. Four-dimensional B-spline-based motion analysis of tagged cardiac MR images

    NASA Astrophysics Data System (ADS)

    Ozturk, Cengizhan; McVeigh, Elliot R.

    1999-05-01

    In recent years, with development of new MRI techniques, noninvasive evaluation of global and regional cardiac function is becoming a reality. One of the methods used for this purpose is MRI tagging. In tagging, spatially encoded magnetic saturation planes, tags, are created within tissues. These act as temporary markers and move with the tissue. In cardiac tagging, tag deformation pattern provides useful qualitative and quantitative information about the functional properties of underlying myocardium. The measured deformation of a single tag plane contains only unidirectional information of the past motion. In order to track the motion of a cardiac material point, this sparse, single dimensional data has to be combined with similar information gathered from other tag sets and all time frames. Previously, several methods have been developed which rely on the specific geometry of the chambers. Here, we employ an image plane based, simple cartesian coordinate system and provide a stepwise method to describe the heart motion using a four-dimensional tensor product of B-splines. The proposed displacement and forward motion fields exhibited sub-pixel accuracy. Since our motion fields are parametric and based on an image plane based coordinate system, trajectories or other derived values (velocity, acceleration, strains...) can be calculated for any desired point on the MRI images. This method is sufficiently general so that the motion of any tagged structure can be tracked.

  14. Cardiac diffusion tensor imaging based on compressed sensing using joint sparsity and low-rank approximation.

    PubMed

    Huang, Jianping; Wang, Lihui; Chu, Chunyu; Zhang, Yanli; Liu, Wanyu; Zhu, Yuemin

    2016-04-29

    Diffusion tensor magnetic resonance (DTMR) imaging and diffusion tensor imaging (DTI) have been widely used to probe noninvasively biological tissue structures. However, DTI suffers from long acquisition times, which limit its practical and clinical applications. This paper proposes a new Compressed Sensing (CS) reconstruction method that employs joint sparsity and rank deficiency to reconstruct cardiac DTMR images from undersampled k-space data. Diffusion-weighted images acquired in different diffusion directions were firstly stacked as columns to form the matrix. The matrix was row sparse in the transform domain and had a low rank. These two properties were then incorporated into the CS reconstruction framework. The underlying constrained optimization problem was finally solved by the first-order fast method. Experiments were carried out on both simulation and real human cardiac DTMR images. The results demonstrated that the proposed approach had lower reconstruction errors for DTI indices, including fractional anisotropy (FA) and mean diffusivities (MD), compared to the existing CS-DTMR image reconstruction techniques. PMID:27163322

  15. First pass cable artefact correction for cardiac C-arm CT imaging.

    PubMed

    Haase, C; Schäfer, D; Kim, M; Chen, S J; Carroll, J D; Eshuis, P; Dössel, O; Grass, M

    2014-07-21

    Cardiac C-arm CT imaging delivers a tomographic region-of-interest reconstruction of the patient's heart during image guided catheter interventions. Due to the limited size of the flat detector a volume image is reconstructed, which is truncated in the cone-beam (along the patient axis) and the fan-beam (in the transaxial plane) direction. To practically address this local tomography problem correction methods, like projection extension, are available for first pass image reconstruction. For second pass correction methods, like metal artefact reduction, alternative correction schemes are required when the field of view is limited to a region-of-interest of the patient. In classical CT imaging metal artefacts are corrected by metal identification in a first volume reconstruction and generation of a corrected projection data set followed by a second reconstruction. This approach fails when the metal structures are located outside the reconstruction field of view. When a C-arm CT is performed during a cardiac intervention pacing leads and other cables are frequently positioned on the patients skin, which results in propagating streak artefacts in the reconstruction volume. A first pass approach to reduce this type of artefact is introduced and evaluated here. It makes use of the fact that the projected position of objects outside the reconstruction volume changes with the projection perspective. It is shown that projection based identification, tracking and removal of high contrast structures like cables, only detected in a subset of the projections, delivers a more consistent reconstruction volume with reduced artefact level. The method is quantitatively evaluated based on 50 simulations using cardiac CT data sets with variable cable positioning. These data sets are forward projected using a C-arm CT system geometry and generate artefacts comparable to those observed in clinical cardiac C-arm CT acquisitions. A C-arm CT simulation of every cardiac CT data set without

  16. First pass cable artefact correction for cardiac C-arm CT imaging

    NASA Astrophysics Data System (ADS)

    Haase, C.; Schäfer, D.; Kim, M.; Chen, S. J.; Carroll, J. D.; Eshuis, P.; Dössel, O.; Grass, M.

    2014-07-01

    Cardiac C-arm CT imaging delivers a tomographic region-of-interest reconstruction of the patient's heart during image guided catheter interventions. Due to the limited size of the flat detector a volume image is reconstructed, which is truncated in the cone-beam (along the patient axis) and the fan-beam (in the transaxial plane) direction. To practically address this local tomography problem correction methods, like projection extension, are available for first pass image reconstruction. For second pass correction methods, like metal artefact reduction, alternative correction schemes are required when the field of view is limited to a region-of-interest of the patient. In classical CT imaging metal artefacts are corrected by metal identification in a first volume reconstruction and generation of a corrected projection data set followed by a second reconstruction. This approach fails when the metal structures are located outside the reconstruction field of view. When a C-arm CT is performed during a cardiac intervention pacing leads and other cables are frequently positioned on the patients skin, which results in propagating streak artefacts in the reconstruction volume. A first pass approach to reduce this type of artefact is introduced and evaluated here. It makes use of the fact that the projected position of objects outside the reconstruction volume changes with the projection perspective. It is shown that projection based identification, tracking and removal of high contrast structures like cables, only detected in a subset of the projections, delivers a more consistent reconstruction volume with reduced artefact level. The method is quantitatively evaluated based on 50 simulations using cardiac CT data sets with variable cable positioning. These data sets are forward projected using a C-arm CT system geometry and generate artefacts comparable to those observed in clinical cardiac C-arm CT acquisitions. A C-arm CT simulation of every cardiac CT data set without

  17. First pass cable artefact correction for cardiac C-arm CT imaging.

    PubMed

    Haase, C; Schäfer, D; Kim, M; Chen, S J; Carroll, J D; Eshuis, P; Dössel, O; Grass, M

    2014-07-21

    Cardiac C-arm CT imaging delivers a tomographic region-of-interest reconstruction of the patient's heart during image guided catheter interventions. Due to the limited size of the flat detector a volume image is reconstructed, which is truncated in the cone-beam (along the patient axis) and the fan-beam (in the transaxial plane) direction. To practically address this local tomography problem correction methods, like projection extension, are available for first pass image reconstruction. For second pass correction methods, like metal artefact reduction, alternative correction schemes are required when the field of view is limited to a region-of-interest of the patient. In classical CT imaging metal artefacts are corrected by metal identification in a first volume reconstruction and generation of a corrected projection data set followed by a second reconstruction. This approach fails when the metal structures are located outside the reconstruction field of view. When a C-arm CT is performed during a cardiac intervention pacing leads and other cables are frequently positioned on the patients skin, which results in propagating streak artefacts in the reconstruction volume. A first pass approach to reduce this type of artefact is introduced and evaluated here. It makes use of the fact that the projected position of objects outside the reconstruction volume changes with the projection perspective. It is shown that projection based identification, tracking and removal of high contrast structures like cables, only detected in a subset of the projections, delivers a more consistent reconstruction volume with reduced artefact level. The method is quantitatively evaluated based on 50 simulations using cardiac CT data sets with variable cable positioning. These data sets are forward projected using a C-arm CT system geometry and generate artefacts comparable to those observed in clinical cardiac C-arm CT acquisitions. A C-arm CT simulation of every cardiac CT data set without

  18. The British Library Initiatives for Access Seminar: Digital Imaging.

    ERIC Educational Resources Information Center

    Alexander, Michael

    1996-01-01

    Provides an overview of the British Library's Initiatives for Access program which uses digital imaging. Highlights include digitization of microfilm, the electronic "Beowulf", electronic photographic viewing system, computer software that uses neural networks and fuzzy matching to provide links to search terms, and international projects. (LRW)

  19. Evaluation of the use of multimodality skin markers for the registration of pre-procedure cardiac MR images and intra-procedure x-ray fluoroscopy images for image guided cardiac electrophysiology procedures

    NASA Astrophysics Data System (ADS)

    Rhode, Kawal; Ma, Yingliang; Chandrasena, Angela; King, Andrew; Gao, Gang; Chinchapatnam, Phani; Sermesant, Maxime; Hawkes, David; Schaeffter, Tobias; Gill, Jaswinder; Razavi, Reza

    2008-03-01

    This paper presents the evaluation of the use of multimodality skin markers for the registration of cardiac magnetic resonance (MR) image data to x-ray fluoroscopy data for the guidance of cardiac electrophysiology procedures. The approach was validated using a phantom study and 3 patients undergoing pulmonary vein (PV) isolation for the treatment of paroxysmal atrial fibrillation. In the patient study, skin markers were affixed to the patients' chest and used to register pre-procedure cardiac MR image data to intra-procedure fluoroscopy data. Registration errors were assessed using contrast angiograms of the left atrium that were available in 2 out of 3 cases. A clinical expert generated "gold standard" registrations by adjusting the registration manually. Target registration errors (TREs) were computed using points on the PV ostia. Ablation locations were computed using biplane x-ray imaging. Registration errors were further assessed by computing the distances of the ablation points to the registered left atrial surface for all 3 patients. The TREs were 6.0 & 3.1mm for patients 1 & 2. The mean ablation point errors were 6.2, 3.8, & 3.0mm for patients 1, 2, & 3. These results are encouraging in the context of a 5mm clinical accuracy requirement for this type of procedure. We conclude that multimodality skin markers have the potential to provide anatomical image integration for x-ray guided cardiac electrophysiology procedures, especially if coupled with an accurate respiratory motion compensation strategy.

  20. Intermediate-term evaluation of a pratical chelation protocol based on stratification of thalassemic patients by serum ferritin and magnetic resonance imaging cardiac t2*.

    PubMed

    Ha, Shau-Yin; Mok, Amanda Sio-Peng; Chu, Winnie Chiu-Wing; Rasalkar, Darshana Dattatray; Cheuk, Daniel Ka-Leung; Chiang, Alan Kwok-Shing; Ho, Marco Hok-Kung; Chan, Godfrey Chi-Fung

    2011-01-01

    A standardized chelation protocol was applied by stratifying transfusion-dependent thalassemic patients into three groups, namely well chelated group (A), inadequately chelated group without (B) or with (C) risk of cardiac complications based on serum ferritin (SF) levels and magnetic resonance imaging (MRI) cardiac T2* measurements. Group A patients were advised to continue with deferoxamine (DFO) (Regimen Ic). Group B patients were given options of either intensification of DFO alone (Regimen Ii), deferiprone (L1) alone (Regimen II) or combined therapy with L1 and DFO (Regimen III). Group C patients were advised to take either Regimen Ii or Regimen III. The 1-year result showed that the combined therapy (Regimen III) significantly reduced SF level, cardiac and liver iron in the groups of inadequately chelated patients. The same set of outcome parameters was repeated at 2.5 years of treatment so as to evaluate the intermediate-term effects of this risk stratified chelation protocol. The number of patients with cardiac T2* <20 ms decreased from 34 (60%) at baseline to 17 (30%) of the whole cohort of 57 patients at the end of the study. There were further improvements in SF, cardiac and liver T2* in Group C patients. Significant improvement in left ventricular ejection fraction (LVEF) was demonstrated after 2.5 years of the combined therapy group in which the change was not initially apparent after the first year of assessment.

  1. Pseudo‐projection–driven, self‐gated cardiac cine imaging using cartesian golden step phase encoding

    PubMed Central

    Guo, Liheng; Derbyshire, J. Andrew

    2015-01-01

    Purpose To develop and evaluate a novel two‐dimensional self‐gated imaging technique for free‐breathing cardiac cine MRI that is free of motion‐detection overhead and requires minimal planning for motion tracking. Methods Motion along the readout direction was extracted solely from normal Cartesian imaging readouts near ky = 0. During imaging, the readouts below a certain |ky| threshold were scaled in magnitude and filtered in time to form “pseudo‐projections,” enabling projection‐based motion tracking along readout without frequently acquiring the central phase encode. A discrete golden step phase encode scheme allowed the |ky| threshold to be freely set after the scan while maintaining uniform motion sampling. Results The pseudo‐projections stream displayed sufficient spatiotemporal resolution for both cardiac and respiratory tracking, allowing retrospective reconstruction of free‐breathing non‐electrocardiogram (ECG) cines. The technique was tested on healthy subjects, and the resultant image quality, measured by blood‐myocardium boundary sharpness, myocardial mass, and single‐slice ejection fraction was found to be comparable to standard breath‐hold ECG‐gated cines. Conclusion The use of pseudo‐projections for motion tracking was found feasible for cardiorespiratory self‐gated imaging. Despite some sensitivity to flow and eddy currents, the simplicity of acquisition makes the proposed technique a valuable tool for self‐gated cardiac imaging. Magn Reson Med 76:417–429, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. PMID

  2. Fourier transform infrared spectroscopic imaging of cardiac tissue to detect collagen deposition after myocardial infarction

    NASA Astrophysics Data System (ADS)

    Cheheltani, Rabee; Rosano, Jenna M.; Wang, Bin; Sabri, Abdel Karim; Pleshko, Nancy; Kiani, Mohammad F.

    2012-05-01

    Myocardial infarction often leads to an increase in deposition of fibrillar collagen. Detection and characterization of this cardiac fibrosis is of great interest to investigators and clinicians. Motivated by the significant limitations of conventional staining techniques to visualize collagen deposition in cardiac tissue sections, we have developed a Fourier transform infrared imaging spectroscopy (FT-IRIS) methodology for collagen assessment. The infrared absorbance band centered at 1338 cm-1, which arises from collagen amino acid side chain vibrations, was used to map collagen deposition across heart tissue sections of a rat model of myocardial infarction, and was compared to conventional staining techniques. Comparison of the size of the collagen scar in heart tissue sections as measured with this methodology and that of trichrome staining showed a strong correlation (R=0.93). A Pearson correlation model between local intensity values in FT-IRIS and immuno-histochemical staining of collagen type I also showed a strong correlation (R=0.86). We demonstrate that FT-IRIS methodology can be utilized to visualize cardiac collagen deposition. In addition, given that vibrational spectroscopic data on proteins reflect molecular features, it also has the potential to provide additional information about the molecular structure of cardiac extracellular matrix proteins and their alterations.

  3. Serum Lipidomics Meets Cardiac Magnetic Resonance Imaging: Profiling of Subjects at Risk of Dilated Cardiomyopathy

    PubMed Central

    Sysi-Aho, Marko; Koikkalainen, Juha; Seppänen-Laakso, Tuulikki; Kaartinen, Maija; Kuusisto, Johanna; Peuhkurinen, Keijo; Kärkkäinen, Satu; Antila, Margareta; Lauerma, Kirsi; Reissell, Eeva; Jurkko, Raija; Lötjönen, Jyrki; Heliö, Tiina; Orešič, Matej

    2011-01-01

    Dilated cardiomyopathy (DCM), characterized by left ventricular dilatation and systolic dysfunction, constitutes a significant cause for heart failure, sudden cardiac death or need for heart transplantation. Lamin A/C gene (LMNA) on chromosome 1p12 is the most significant disease gene causing DCM and has been reported to cause 7–9% of DCM leading to cardiac transplantation. We have previously performed cardiac magnetic resonance imaging (MRI) to LMNA carriers to describe the early phenotype. Clinically, early recognition of subjects at risk of developing DCM would be important but is often difficult. Thus we have earlier used the MRI findings of these LMNA carriers for creating a model by which LMNA carriers could be identified from the controls at an asymptomatic stage. Some LMNA mutations may cause lipodystrophy. To characterize possible effects of LMNA mutations on lipid profile, we set out to apply global serum lipidomics using Ultra Performance Liquid Chromatography coupled to mass spectrometry in the same LMNA carriers, DCM patients without LMNA mutation and controls. All DCM patients, with or without LMNA mutation, differed from controls in regard to distinct serum lipidomic profile dominated by diminished odd-chain triglycerides and lipid ratios related to desaturation. Furthermore, we introduce a novel approach to identify associations between the molecular lipids from serum and the MR images from the LMNA carriers. The association analysis using dependency network and regression approaches also helped us to obtain novel insights into how the affected lipids might relate to cardiac shape and volume changes. Our study provides a framework for linking serum derived molecular markers not only with clinical endpoints, but also with the more subtle intermediate phenotypes, as derived from medical imaging, of potential pathophysiological relevance. PMID:21283746

  4. Serum lipidomics meets cardiac magnetic resonance imaging: profiling of subjects at risk of dilated cardiomyopathy.

    PubMed

    Sysi-Aho, Marko; Koikkalainen, Juha; Seppänen-Laakso, Tuulikki; Kaartinen, Maija; Kuusisto, Johanna; Peuhkurinen, Keijo; Kärkkäinen, Satu; Antila, Margareta; Lauerma, Kirsi; Reissell, Eeva; Jurkko, Raija; Lötjönen, Jyrki; Heliö, Tiina; Orešič, Matej

    2011-01-20

    Dilated cardiomyopathy (DCM), characterized by left ventricular dilatation and systolic dysfunction, constitutes a significant cause for heart failure, sudden cardiac death or need for heart transplantation. Lamin A/C gene (LMNA) on chromosome 1p12 is the most significant disease gene causing DCM and has been reported to cause 7-9% of DCM leading to cardiac transplantation. We have previously performed cardiac magnetic resonance imaging (MRI) to LMNA carriers to describe the early phenotype. Clinically, early recognition of subjects at risk of developing DCM would be important but is often difficult. Thus we have earlier used the MRI findings of these LMNA carriers for creating a model by which LMNA carriers could be identified from the controls at an asymptomatic stage. Some LMNA mutations may cause lipodystrophy. To characterize possible effects of LMNA mutations on lipid profile, we set out to apply global serum lipidomics using Ultra Performance Liquid Chromatography coupled to mass spectrometry in the same LMNA carriers, DCM patients without LMNA mutation and controls. All DCM patients, with or without LMNA mutation, differed from controls in regard to distinct serum lipidomic profile dominated by diminished odd-chain triglycerides and lipid ratios related to desaturation. Furthermore, we introduce a novel approach to identify associations between the molecular lipids from serum and the MR images from the LMNA carriers. The association analysis using dependency network and regression approaches also helped us to obtain novel insights into how the affected lipids might relate to cardiac shape and volume changes. Our study provides a framework for linking serum derived molecular markers not only with clinical endpoints, but also with the more subtle intermediate phenotypes, as derived from medical imaging, of potential pathophysiological relevance.

  5. Serum lipidomics meets cardiac magnetic resonance imaging: profiling of subjects at risk of dilated cardiomyopathy.

    PubMed

    Sysi-Aho, Marko; Koikkalainen, Juha; Seppänen-Laakso, Tuulikki; Kaartinen, Maija; Kuusisto, Johanna; Peuhkurinen, Keijo; Kärkkäinen, Satu; Antila, Margareta; Lauerma, Kirsi; Reissell, Eeva; Jurkko, Raija; Lötjönen, Jyrki; Heliö, Tiina; Orešič, Matej

    2011-01-01

    Dilated cardiomyopathy (DCM), characterized by left ventricular dilatation and systolic dysfunction, constitutes a significant cause for heart failure, sudden cardiac death or need for heart transplantation. Lamin A/C gene (LMNA) on chromosome 1p12 is the most significant disease gene causing DCM and has been reported to cause 7-9% of DCM leading to cardiac transplantation. We have previously performed cardiac magnetic resonance imaging (MRI) to LMNA carriers to describe the early phenotype. Clinically, early recognition of subjects at risk of developing DCM would be important but is often difficult. Thus we have earlier used the MRI findings of these LMNA carriers for creating a model by which LMNA carriers could be identified from the controls at an asymptomatic stage. Some LMNA mutations may cause lipodystrophy. To characterize possible effects of LMNA mutations on lipid profile, we set out to apply global serum lipidomics using Ultra Performance Liquid Chromatography coupled to mass spectrometry in the same LMNA carriers, DCM patients without LMNA mutation and controls. All DCM patients, with or without LMNA mutation, differed from controls in regard to distinct serum lipidomic profile dominated by diminished odd-chain triglycerides and lipid ratios related to desaturation. Furthermore, we introduce a novel approach to identify associations between the molecular lipids from serum and the MR images from the LMNA carriers. The association analysis using dependency network and regression approaches also helped us to obtain novel insights into how the affected lipids might relate to cardiac shape and volume changes. Our study provides a framework for linking serum derived molecular markers not only with clinical endpoints, but also with the more subtle intermediate phenotypes, as derived from medical imaging, of potential pathophysiological relevance. PMID:21283746

  6. Segmented k-space fast cardiac imaging using an echo-train readout.

    PubMed

    Epstein, F H; Wolff, S D; Arai, A E

    1999-03-01

    A segmented k-space fast gradient-echo pulse sequence with an echo-train readout (FGRE-ET) was developed for high-quality cine imaging of the heart in reduced scan times. Using segmented FGRE-ET, cine images of the heart can be acquired in as few as 1-5 heart beats and do not display the geometric distortion and flow-related artifacts typically associated with cardiac echoplanar imaging (EPI). Segmented FGRE-ET was compared with conventional segmented FGRE and with conventional multi-phase EPI in normal volunteers. Segmented FGRE-ET was found to have reduced temporal blurring compared with segmented FGRE for cine imaging in 4 heart beats (P<0.05). Also, segmented FGRE-ET did not display geometric distortion characteristic of conventional EPI (P<0.05). Segmented FGRE-ET may be particularly applicable to functional cardiac stress testing because it allows versatile cine imaging in very short breath-holds.

  7. Image-Based Structural Modeling of the Cardiac Purkinje Network

    PubMed Central

    Liu, Benjamin R.; Cherry, Elizabeth M.

    2015-01-01

    The Purkinje network is a specialized conduction system within the heart that ensures the proper activation of the ventricles to produce effective contraction. Its role during ventricular arrhythmias is less clear, but some experimental studies have suggested that the Purkinje network may significantly affect the genesis and maintenance of ventricular arrhythmias. Despite its importance, few structural models of the Purkinje network have been developed, primarily because current physical limitations prevent examination of the intact Purkinje network. In previous modeling efforts Purkinje-like structures have been developed through either automated or hand-drawn procedures, but these networks have been created according to general principles rather than based on real networks. To allow for greater realism in Purkinje structural models, we present a method for creating three-dimensional Purkinje networks based directly on imaging data. Our approach uses Purkinje network structures extracted from photographs of dissected ventricles and projects these flat networks onto realistic endocardial surfaces. Using this method, we create models for the combined ventricle-Purkinje system that can fully activate the ventricles through a stimulus delivered to the Purkinje network and can produce simulated activation sequences that match experimental observations. The combined models have the potential to help elucidate Purkinje network contributions during ventricular arrhythmias. PMID:26583120

  8. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    SciTech Connect

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom

    2015-05-15

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  9. Cardiac and vascular imaging with labeled platelets and leukocytes

    SciTech Connect

    Dewanjee, M.K.

    1984-07-01

    The contribution of platelets in atherosclerosis and thrombosis in animal models and in clinical studies has been quantified with 111In-platelet scintigraphy. New in vitro quantitative techniques have been developed using 111In-labeled platelets to determine the number of adherent platelets on deendothelialized surfaces of damaged vessel walls and synthetic vascular grafts. In vivo imaging techniques are semi-quantitative in nature; in these studies 111In radioactivity on thrombotic vessels or graft surfaces of iliac, femoral, or popliteal arteries is compared with contralateral vessels. Background 111In radioactivity in the circulating blood pool of venous and capillary networks and radioactivity in marrow decreases the sensitivity of these techniques. Subtraction of blood pool radioactivity with 99mTc-labeled autologous red cells and calculation of 111In radioactivity associated with platelet thrombus on vessel walls also have been performed for coronary, carotid, and femoral arteries. Although platelet concentrates are used frequently after open heart surgery (one to six per patient), consumption of platelets in the artificial lung or oxygenator, lysis of platelets during pumping, and suction of blood only recently have been quantified with the use of 111In-labeled platelets. These studies also demonstrated far less trauma to platelets with the use of a membrane rather than a bubble oxygenator. Further reduction in platelet consumption and trauma was observed with the use of prostacyclin, a short-acting drug with significant beneficial effect on platelet thrombus reduction and disaggregation of aggregated platelets. The role of polymorphonuclear leukocytes in inflammation, infection and myocardial infarction, and in vivo evaluation with 111In-leukocyte scintigraphy in animals and humans has been described.

  10. Reference Values for Cardiac and Aortic Magnetic Resonance Imaging in Healthy, Young Caucasian Adults

    PubMed Central

    Eikendal, Anouk L. M.; Bots, Michiel L.; Haaring, Cees; Saam, Tobias; van der Geest, Rob J.; Westenberg, Jos J. M.; den Ruijter, Hester M.; Hoefer, Imo E.; Leiner, Tim

    2016-01-01

    Background Reference values for morphological and functional parameters of the cardiovascular system in early life are relevant since they may help to identify young adults who fall outside the physiological range of arterial and cardiac ageing. This study provides age and sex specific reference values for aortic wall characteristics, cardiac function parameters and aortic pulse wave velocity (PWV) in a population-based sample of healthy, young adults using magnetic resonance (MR) imaging. Materials and Methods In 131 randomly selected healthy, young adults aged between 25 and 35 years (mean age 31.8 years, 63 men) of the general-population based Atherosclerosis-Monitoring-and-Biomarker-measurements-In-The-YOuNg (AMBITYON) study, descending thoracic aortic dimensions and wall thickness, thoracic aortic PWV and cardiac function parameters were measured using a 3.0T MR-system. Age and sex specific reference values were generated using dedicated software. Differences in reference values between two age groups (25–30 and 30–35 years) and both sexes were tested. Results Aortic diameters and areas were higher in the older age group (all p<0.007). Moreover, aortic dimensions, left ventricular mass, left and right ventricular volumes and cardiac output were lower in women than in men (all p<0.001). For mean and maximum aortic wall thickness, left and right ejection fraction and aortic PWV we did not observe a significant age or sex effect. Conclusion This study provides age and sex specific reference values for cardiovascular MR parameters in healthy, young Caucasian adults. These may aid in MR guided pre-clinical identification of young adults who fall outside the physiological range of arterial and cardiac ageing. PMID:27732640

  11. Rotating and semi-stationary multi-beamline architecture study for cardiac CT imaging

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Fitzgerald, Paul; Gao, Hewei; Jin, Yannan; Wang, Ge; De Man, Bruno

    2014-03-01

    Over the past decade, there has been abundant research on future cardiac CT architectures and corresponding reconstruction algorithms. Multiple cardiac CT concepts have been published, including third-generation single-source CT with wide-cone coverage, dual-source CT, and electron-beam CT, etc. In this paper, we apply a Radon space analysis method to two multi-beamline architectures: triple-source CT and semi-stationary ring-source CT. In our studies, we have considered more than thirty cardiac CT architectures and triple-source CT was identified as a promising solution, offering approximately a three-fold advantage in temporal resolution, which can significantly reduce motion artifacts due to the moving heart and lungs. In this work, we describe a triple-source CT architecture with all three beamlines (i.e. source-detector pairs) limited to the cardiac field of view in order to eliminate the radiation dose outside the cardiac region. We also demonstrate the capability of performing full field of view imaging when desired, by shifting the detectors. Ring-source dual-rotating-detector CT is another architecture of interest, which offers the opportunity to provide high temporal resolution using a full-ring stationary source. With this semi-stationary architecture, we found that the azimuthal blur effect can be greater than in a fully-rotating CT system. We therefore propose novel scanning modes to reduce the azimuthal blur in ring-source rotating detector CT. Radon space analysis method proves to be a useful method in CT system architecture study.

  12. Contrast agents and cardiac MR imaging of myocardial ischemia: from bench to bedside.

    PubMed

    Croisille, Pierre; Revel, Didier; Saeed, Maythem

    2006-09-01

    This review paper presents, in the first part, the different classes of contrast media that are already used or are in development for cardiac magnetic resonance imaging. A classification of the different types of contrast media is proposed based on the distribution of the compounds in the body, their type of relaxivity and their potential affinity to particular molecules. In the second part, the different uses of the extracellular type of T1-enhancing contrast agent for myocardial imaging is covered from the detection of stable coronary artery disease to the detection and characterization of chronic infarction. A particular emphasis is placed on the clinical use of gadolinium-chelates, which are the universally used type of MRI contrast agent in the clinical routine. Both approaches, first-pass magnetic resonance imaging (FP-MRI) as well as delayed-enhanced magnetic resonance imaging (DE-MRI), are covered in the different situations of acute and chronic myocardial infarction. PMID:16633792

  13. Live dynamic imaging and analysis of developmental cardiac defects in mouse models with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Garcia, Monica; Valladolid, Christian; Larin, Kirill V.; Larina, Irina V.

    2015-03-01

    Understanding mouse embryonic development is an invaluable resource for our interpretation of normal human embryology and congenital defects. Our research focuses on developing methods for live imaging and dynamic characterization of early embryonic development in mouse models of human diseases. Using multidisciplinary methods: optical coherence tomography (OCT), live mouse embryo manipulations and static embryo culture, molecular biology, advanced image processing and computational modeling we aim to understand developmental processes. We have developed an OCT based approach to image live early mouse embryos (E8.5 - E9.5) cultured on an imaging stage and visualize developmental events with a spatial resolution of a few micrometers (less than the size of an individual cell) and a frame rate of up to hundreds of frames per second and reconstruct cardiodynamics in 4D (3D+time). We are now using these methods to study how specific embryonic lethal mutations affect cardiac morphology and function during early development.

  14. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  15. Bimodal biophotonic imaging of the structure-function relationship in cardiac tissue

    PubMed Central

    Hucker, William J.; Ripplinger, Crystal M.; Fleming, Christine P.; Fedorov, Vadim V.; Rollins, Andrew M.; Efimov, Igor R.

    2009-01-01

    The development of systems physiology is hampered by the limited ability to relate tissue structure and function in intact organs in vivo or in vitro. Here, we show the application of a bimodal biophotonic imaging approach that employs optical coherence tomography and fluorescent imaging to investigate the structure-function relationship at the tissue level in the heart. Reconstruction of cardiac excitation and structure was limited by the depth penetration of bimodal imaging to ∼2 mm in atrial tissue, and ∼1 mm in ventricular myocardium. The subcellular resolution of optical coherence tomography clearly demonstrated that microscopic fiber orientation governs the pattern of wave propagation in functionally characterized rabbit sinoatrial and atrioventricular nodal preparations and revealed structural heterogeneities contributing to ventricular arrhythmias. The combination of this bimodal biophotonic imaging approach with histology and/or immunohistochemistry can span multiple scales of resolution for the investigation of the molecular and structural determinants of intact tissue physiology. PMID:19021392

  16. Iterative Image Reconstruction for Limited-Angle CT Using Optimized Initial Image

    PubMed Central

    Guo, Jingyu; Qi, Hongliang; Xu, Yuan; Chen, Zijia; Li, Shulong; Zhou, Linghong

    2016-01-01

    Limited-angle computed tomography (CT) has great impact in some clinical applications. Existing iterative reconstruction algorithms could not reconstruct high-quality images, leading to severe artifacts nearby edges. Optimal selection of initial image would influence the iterative reconstruction performance but has not been studied deeply yet. In this work, we proposed to generate optimized initial image followed by total variation (TV) based iterative reconstruction considering the feature of image symmetry. The simulated data and real data reconstruction results indicate that the proposed method effectively removes the artifacts nearby edges. PMID:27066107

  17. An infant with diaphragmatic hernia, anophthalmia and cardiac defect: evaluation by magnetic resonance imaging autopsy.

    PubMed

    Ceylaner, S; Gozer, H E; Ceylaner, G; Ertas, I E; Kizilates, S U; Edguer, T

    2006-01-01

    We present an infant with diaphragmatic hernia, anophthalmia and cardiac defect evaluated by magnetic resonance imaging (MRI) autopsy. This female infant was born at 39th weeks by vaginal delivery and presented with diaphragmatic hernia, anophthalmia, cardiac defect and died due to respiratory problems at 28th hours of life. MRI autopsy showed internal organ abnormalities including congenital hernia of the left diaphragm, secondary hypoplasia of the left lung, atrial and ventricular septal defect, dilatation of calices of the kidneys, bilateral anophthalmia, hypoplasia of the optic nerves, hyperintensity of pituitary gland possibly due to bleeding and a cyst of the septum pellucidum. This article shows that MRI autopsy is a valuable method for the evaluation of cases with congenital anomalies if autopsy is not possible.

  18. Identifying Model Inaccuracies and Solution Uncertainties in Non-Invasive Activation-Based Imaging of Cardiac Excitation using Convex Relaxation

    PubMed Central

    Erem, Burak; van Dam, Peter M.; Brooks, Dana H.

    2014-01-01

    Noninvasive imaging of cardiac electrical function has begun to move towards clinical adoption. Here we consider one common formulation of the problem, in which the goal is to estimate the spatial distribution of electrical activation times during a cardiac cycle. We address the challenge of understanding the robustness and uncertainty of solutions to this formulation. This formulation poses a non-convex, non-linear least squares optimization problem. We show that it can be relaxed to be convex, at the cost of some degree of physiological realism of the solution set, and that this relaxation can be used as a framework to study model inaccuracy and solution uncertainty. We present two examples, one using data from a healthy human subject and the other synthesized with the ECGSIM software package. In the first case, we consider uncertainty in the initial guess and regularization parameter. In the second case, we mimic the presence of an ischemic zone in the heart in a way which violates a model assumption. We show that the convex relaxation allows understanding of spatial distribution of parameter sensitivity in the first case, and identification of model violation in the second. PMID:24710159

  19. Three-dimensional Content-Based Cardiac Image Retrieval using global and local descriptors

    PubMed Central

    Bergamasco, Leila C. C.; Nunes, Fátima L. S.

    2015-01-01

    The increase in volume of medical images generated and stored has created difficulties in accurate image retrieval. An alternative is to generate three-dimensional (3D) models from such medical images and use them in the search. Some of the main cardiac illnesses, such as Congestive Heart Failure (CHF), have deformation in the heart’s shape as one of the main symptoms, which can be identified faster in a 3D object than in slices. This article presents techniques developed to retrieve 3D cardiac models using global and local descriptors within a content-based image retrieval system. These techniques were applied in pre-classified 3D models with and without the CHF disease and they were evaluated by using Precision vs. Recall metric. We observed that local descriptors achieved better results than a global descriptor, reaching 85% of accuracy. The results confirmed the potential of using 3D models retrieval in the medical context to aid in the diagnosis. PMID:26958280

  20. Three-dimensional Content-Based Cardiac Image Retrieval using global and local descriptors.

    PubMed

    Bergamasco, Leila C C; Nunes, Fátima L S

    2015-01-01

    The increase in volume of medical images generated and stored has created difficulties in accurate image retrieval. An alternative is to generate three-dimensional (3D) models from such medical images and use them in the search. Some of the main cardiac illnesses, such as Congestive Heart Failure (CHF), have deformation in the heart's shape as one of the main symptoms, which can be identified faster in a 3D object than in slices. This article presents techniques developed to retrieve 3D cardiac models using global and local descriptors within a content-based image retrieval system. These techniques were applied in pre-classified 3D models with and without the CHF disease and they were evaluated by using Precision vs. Recall metric. We observed that local descriptors achieved better results than a global descriptor, reaching 85% of accuracy. The results confirmed the potential of using 3D models retrieval in the medical context to aid in the diagnosis. PMID:26958280

  1. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation

    NASA Astrophysics Data System (ADS)

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-03-01

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images.

  2. A framework of whole heart extracellular volume fraction estimation for low dose cardiac CT images

    NASA Astrophysics Data System (ADS)

    Chen, Xinjian; Summers, Ronald M.; Nacif, Marcelo Souto; Liu, Songtao; Bluemke, David A.; Yao, Jianhua

    2012-02-01

    Cardiac magnetic resonance imaging (CMRI) has been well validated and allows quantification of myocardial fibrosis in comparison to overall mass of the myocardium. Unfortunately, CMRI is relatively expensive and is contraindicated in patients with intracardiac devices. Cardiac CT (CCT) is widely available and has been validated for detection of scar and myocardial stress/rest perfusion. In this paper, we sought to evaluate the potential of low dose CCT for the measurement of myocardial whole heart extracellular volume (ECV) fraction. A novel framework was proposed for CCT whole heart ECV estimation, which consists of three main steps. First, a shape constrained graph cut (GC) method was proposed for myocardium and blood pool segmentation for post-contrast image. Second, the symmetric Demons deformable registrations method was applied to register pre-contrast to post-contrast images. Finally, the whole heart ECV value was computed. The proposed method was tested on 7 clinical low dose CCT datasets with pre-contrast and post-contrast images. The preliminary results demonstrated the feasibility and efficiency of the proposed method.

  3. Two-Photon Imaging within the Murine Thorax without Respiratory and Cardiac Motion Artifact

    PubMed Central

    Presson, Robert G.; Brown, Mary Beth; Fisher, Amanda J.; Sandoval, Ruben M.; Dunn, Kenneth W.; Lorenz, Kevin S.; Delp, Edward J.; Salama, Paul; Molitoris, Bruce A.; Petrache, Irina

    2011-01-01

    Intravital microscopy has been recognized for its ability to make physiological measurements at cellular and subcellular levels while maintaining the complex natural microenvironment. Two-photon microscopy (TPM), using longer wavelengths than single-photon excitation, has extended intravital imaging deeper into tissues, with minimal phototoxicity. However, due to a relatively slow acquisition rate, TPM is especially sensitive to motion artifact, which presents a challenge when imaging tissues subject to respiratory and cardiac movement. Thoracoabdominal organs that cannot be exteriorized or immobilized during TPM have generally required the use of isolated, pump-perfused preparations. However, this approach entails significant alteration of normal physiology, such as a lack of neural inputs, increased vascular resistance, and leukocyte activation. We adapted techniques of intravital microscopy that permitted TPM of organs maintained within the thoracoabdominal cavity of living, breathing rats or mice. We obtained extended intravital TPM imaging of the intact lung, arguably the organ most susceptible to both respiratory and cardiac motion. Intravital TPM detected the development of lung microvascular endothelial activation manifested as increased leukocyte adhesion and plasma extravasation in response to oxidative stress inducers PMA or soluble cigarette smoke extract. The pulmonary microvasculature and alveoli in the intact animal were imaged with comparable detail and fidelity to those in pump-perfused animals, opening the possibility for TPM of other thoracoabdominal organs under physiological and pathophysiological conditions. PMID:21703395

  4. Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes.

    PubMed Central

    Eng, J; Lynch, R M; Balaban, R S

    1989-01-01

    Nicotinamide adenine dinucleotide (NADH) plays a critical role in oxidative phosphorylation as the primary source of reducing equivalents to the respiratory chain. Using a modified fluorescence microscope, we have obtained spectra and images of the blue autofluorescence from single rat cardiac myocytes. The optical setup permitted rapid acquisition of fluorescence emission spectra (390-595 nm) or intensified digital video images of individual myocytes. The spectra showed a broad fluorescence centered at 447 +/- 0.2 nm, consistent with mitochondrial NADH. Addition of cyanide resulted in a 100 +/- 10% increase in fluorescence, while the uncoupler FCCP resulted in a 82 +/- 4% decrease. These two transitions were consistent with mitochondrial NADH and implied that the myocytes were 44 +/- 6% reduced under the resting control conditions. Intracellular fluorescent structures were observed that correlated with the distribution of a mitochondrial selective fluorescent probe (DASPMI), the mitochondrial distribution seen in published electron micrographs, and a metabolic digital subtraction image of the cyanide fluorescence transition. These data are consistent with the notion that the blue autofluorescence of rat cardiac myocytes originates from mitochondrial NADH. Images FIGURE 9 FIGURE 10 FIGURE 2 FIGURE 3 FIGURE 8 FIGURE 11 PMID:2720061

  5. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation

    PubMed Central

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-01-01

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images. PMID:26980176

  6. Image-based estimation of ventricular fiber orientations for personalized modeling of cardiac electrophysiology.

    PubMed

    Vadakkumpadan, Fijoy; Arevalo, Hermenegild; Ceritoglu, Can; Miller, Michael; Trayanova, Natalia

    2012-05-01

    Technological limitations pose a major challenge to acquisition of myocardial fiber orientations for patient-specific modeling of cardiac (dys)function and assessment of therapy. The objective of this project was to develop a methodology to estimate cardiac fiber orientations from in vivo images of patient heart geometries. An accurate representation of ventricular geometry and fiber orientations was reconstructed, respectively, from high-resolution ex vivo structural magnetic resonance (MR) and diffusion tensor (DT) MR images of a normal human heart, referred to as the atlas. Ventricular geometry of a patient heart was extracted, via semiautomatic segmentation, from an in vivo computed tomography (CT) image. Using image transformation algorithms, the atlas ventricular geometry was deformed to match that of the patient. Finally, the deformation field was applied to the atlas fiber orientations to obtain an estimate of patient fiber orientations. The accuracy of the fiber estimates was assessed using six normal and three failing canine hearts. The mean absolute difference between inclination angles of acquired and estimated fiber orientations was 15.4°. Computational simulations of ventricular activation maps and pseudo-ECGs in sinus rhythm and ventricular tachycardia indicated that there are no significant differences between estimated and acquired fiber orientations at a clinically observable level. PMID:22271833

  7. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation.

    PubMed

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-03-16

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images.

  8. Lossy cardiac x-ray image compression based on acquisition noise

    NASA Astrophysics Data System (ADS)

    de Bruijn, Frederik J.; Slump, Cornelis H.

    1997-05-01

    In lossy medical image compression, the requirements for the preservation of diagnostic integrity cannot be easily formulated in terms of a perceptual model. Especially since, in reality, human visual perception is dependent on numerous factors such as the viewing conditions and psycho-visual factors. Therefore, we investigate the possibility to develop alternative measures for data loss, based on the characteristics of the acquisition system, in our case, a digital cardiac imaging system. In general, due to the low exposure, cardiac x-ray images tend to be relatively noisy. The main noise contributions are quantum noise and electrical noise. The electrical noise is not correlated with the signal. In addition, the signal can be transformed such that the correlated Poisson-distributed quantum noise is transformed into an additional zero-mean Gaussian noise source which is uncorrelated with the signal. Furthermore, the systems modulation transfer function imposes a known spatial-frequency limitation to the output signal. In the assumption that noise which is not correlated with the signal contains no diagnostic information, we have derived a compression measure based on the acquisition parameters of a digital cardiac imaging system. The measure is used for bit- assignment and quantization of transform coefficients. We present a blockwise-DCT compression algorithm which is based on the conventional JPEG-standard. However, the bit- assignment to the transform coefficients is now determined by an assumed noise variance for each coefficient, for a given set of acquisition parameters. Experiments with the algorithm indicate that a bit rate of 0.6 bit/pixel is feasible, without apparent loss of clinical information.

  9. Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging.

    PubMed

    Helm, Patrick; Beg, Mirza Faisal; Miller, Michael I; Winslow, Raimond L

    2005-06-01

    The ventricular myocardium is known to exhibit a complex spatial organization, with fiber orientation varying as a function of transmural location. It is now well established that diffusion tensor magnetic resonance imaging (DTMRI) may be used to measure this fiber orientation at high spatial resolution. Cardiac fibers are also known to be organized in sheets with surface orientation varying throughout the ventricles. This article reviews results on use of DTMRI for measuring ventricular fiber orientation, as well as presents new results providing strong evidence that the tertiary eigenvector of the diffusion tensor is aligned locally with the cardiac sheet surface normal. Considered together, these data indicate that DTMRI may be used to reconstruct both ventricular fiber and sheet organization. This article also presents the large deformation diffeomorphic metric mapping (LDDMM) algorithm and shows that this algorithm may be used to bring ensembles of imaged and reconstructed hearts into correspondence (e.g., registration) so that variability of ventricular geometry, fiber, and sheet orientation may be quantified. Ventricular geometry and fiber structure is known to be remodeled in a range of disease processes; however, descriptions of this remodeling have remained subjective and qualitative. We anticipate that use of DTMRI for reconstruction of ventricular anatomy coupled with application of the LDDMM method for image volume registration will enable the detection and quantification of changes in cardiac anatomy that are characteristic of specific disease processes in the heart. Finally, we show that epicardial electrical mapping and DTMRI imaging may be performed in the same hearts. The anatomic data may then be used to simulate electrical conduction in a computational model of the very same heart that was mapped electrically. This facilitates direct comparison and testing of model versus experimental results and opens the door to quantitative measurement

  10. Noninvasive Three-dimensional Cardiac Activation Imaging from Body Surface Potential Maps: A Computational and Experimental Study on a Rabbit Model

    PubMed Central

    Han, Chengzong; Liu, Zhongming; Zhang, Xin; Pogwizd, Steven; He, Bin

    2009-01-01

    Three-dimensional (3-D) cardiac activation imaging (3-DCAI) is a recently developed technique that aims at imaging the activation sequence throughout the 3-D volume of myocardium. 3-DCAI entails the modeling and estimation of the cardiac equivalent current density (ECD) distribution from which the local activation time within myocardium is determined as the time point with the peak amplitude of local ECD estimates. In this paper, we report, for the first time, an experimental study of the performance and applicability of 3-DCAI as judged by measured 3-D cardiac activation sequence using 3-D intra-cardiac mapping, in a group of 4 healthy rabbits during ventricular pacing. During the experiments, the body surface potentials and the intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition to allow for a rigorous evaluation of the noninvasive 3-DCAI algorithm using the intra-cardiac mapping. The ventricular activation sequence non-invasively imaged from the body surface measurements by using 3-DCAI was generally in agreement with that obtained from the invasive intra-cardiac recordings. The overall difference between them, quantified as the root mean square (RMS) error, was 7.42±0.61 ms, and the normalized difference, quantified as the relative error (RE), was 0.24±0.03. The distance from the reconstructed site of initial activation to the actual pacing site, defined as the localization error (LE), was 5.47±1.57 mm. In addition, computer simulations were conducted to provide additional assessment of the performance of the 3-DCAI algorithm using a realistic-geometry rabbit heart-torso model. Averaged over 9 pacing sites, the RE and LE were 0.20±0.07 and 4.56±1.12 mm, respectively, for single-pacing, when 20 μV Gaussian white noise was added to the body surface potentials at 53 body surface locations. Averaged over 8 pairs of dual pacing, the RE was 0.25±0.06 for 20 μV additive noise. The present results obtained through

  11. Diminishing the impact of the partial volume effect in cardiac SPECT perfusion imaging.

    PubMed

    Pretorius, P Hendrik; King, Michael A

    2009-01-01

    The partial volume effect (PVE) significantly restricts the absolute quantification of regional myocardial uptake and thereby limits the accuracy of absolute measurement of blood flow and coronary flow reserve by SPECT. The template-projection-reconstruction method has been previously developed for PVE compensation. This method assumes the availability of coregistered high-spatial resolution anatomical information as is now becoming available with commercial dual-modality imaging systems such as SPECT/CTs. The objective of this investigation was to determine the extent to which the impact of the PVE on cardiac perfusion SPECT imaging can be diminished if coregistered high-spatial resolution anatomical information is available. For this investigation the authors introduced an additional parameter into the template-projection-reconstruction compensation equation called the voxel filling fraction (F). This parameter specifies the extent to which structure edge voxels in the emission reconstruction are filled by the structure in question as determined by the higher spatial-resolution imaging modality and the fractional presence of the structure at different states of physiological motion as in combining phases of cardiac motion. During correction the removal of spillover to the cardiac region from the surrounding structures is performed first by using reconstructed templates of neighboring structures (liver, blood pool, lungs) to calculate spillover fractions. This is followed by determining recovery coefficients for all voxels within the heart wall from the reconstruction of the template projections of the left and right ventricles (LV and RV). The emission data are subsequently divided by these recovery coefficients taking into account the filling fraction F. The mathematical cardiac torso phantom was used for investigation correction of PVE for a normal LV distribution, a defect in the inferior wall, and a defect in the anterior wall. PVE correction resulted in a

  12. Watermarked cardiac CT image segmentation using deformable models and the Hermite transform

    NASA Astrophysics Data System (ADS)

    Gomez-Coronel, Sandra L.; Moya-Albor, Ernesto; Escalante-Ramírez, Boris; Brieva, Jorge

    2015-01-01

    Medical image watermarking is an open area for research and is a solution for the protection of copyright and intellectual property. One of the main challenges of this problem is that the marked images should not differ perceptually from the original images allowing a correct diagnosis and authentication. Furthermore, we also aim at obtaining watermarked images with very little numerical distortion so that computer vision tasks such as segmentation of important anatomical structures do not be impaired or affected. We propose a preliminary watermarking application in cardiac CT images based on a perceptive approach that includes a brightness model to generate a perceptive mask and identify the image regions where the watermark detection becomes a difficult task for the human eye. We propose a normalization scheme of the image in order to improve robustness against geometric attacks. We follow a spread spectrum technique to insert an alphanumeric code, such as patient's information, within the watermark. The watermark scheme is based on the Hermite transform as a bio-inspired image representation model. In order to evaluate the numerical integrity of the image data after watermarking, we perform a segmentation task based on deformable models. The segmentation technique is based on a vector-value level sets method such that, given a curve in a specific image, and subject to some constraints, the curve can evolve in order to detect objects. In order to stimulate the curve evolution we introduce simultaneously some image features like the gray level and the steered Hermite coefficients as texture descriptors. Segmentation performance was assessed by means of the Dice index and the Hausdorff distance. We tested different mark sizes and different insertion schemes on images that were later segmented either automatic or manual by physicians.

  13. Role of Cardiac Magnetic Resonance Imaging in the Management and Treatment of Ventricular Tachycardia in Patients With Structural Heart Disease.

    PubMed

    Mehrotra, Amit K; Callans, David

    2015-01-01

    Treatment for ventricular tachycardia (VT) generally includes 1 or more of the following options: antiarrhythmic therapy, an implantable cardioverter-defibrillator and/or catheter ablation. Catheter ablation is performed with an electroanatomic mapping system to define the heart's 3D anatomy, as well as regions of scar. Radiofrequency energy is then applied to areas of abnormal substrate within which are located channels critical to the VT circuit. Cardiac magnetic resonance (CMR) imaging is a non-invasive modality that provides high-resolution images of cardiac structure and function. CMR has become a very useful tool for sudden cardiac death risk stratification and to facilitate successful radiofrequency ablation of VT in patients with abnormal cardiac substrate. The role of CMR in the management and treatment of VT in patients with structural heart disease is reviewed.

  14. Magnetic resonance imaging in patients with cardiac pacemakers: era of "MR Conditional" designs

    PubMed Central

    2011-01-01

    Advances in cardiac device technology have led to the first generation of magnetic resonance imaging (MRI) conditional devices, providing more diagnostic imaging options for patients with these devices, but also new controversies. Prior studies of pacemakers in patients undergoing MRI procedures have provided groundwork for design improvements. Factors related to magnetic field interactions and transfer of electromagnetic energy led to specific design changes. Ferromagnetic content was minimized. Reed switches were modified. Leads were redesigned to reduce induced currents/heating. Circuitry filters and shielding were implemented to impede or limit the transfer of certain unwanted electromagnetic effects. Prospective multicenter clinical trials to assess the safety and efficacy of the first generation of MR conditional cardiac pacemakers demonstrated no significant alterations in pacing parameters compared to controls. There were no reported complications through the one month visit including no arrhythmias, electrical reset, inhibition of generator output, or adverse sensations. The safe implementation of these new technologies requires an understanding of the well-defined patient and MR system conditions. Although scanning a patient with an MR conditional device following the strictly defined patient and MR system conditions appears straightforward, issues related to patients with pre-existing devices remain complex. Until MR conditional devices are the routine platform for all of these devices, there will still be challenging decisions regarding imaging patients with pre-existing devices where MRI is required to diagnose and manage a potentially life threatening or serious scenario. A range of other devices including ICDs, biventricular devices, and implantable physiologic monitors as well as guidance of medical procedures using MRI technology will require further biomedical device design changes and testing. The development and implementation of cardiac MR

  15. Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging.

    PubMed

    Teh, Irvin; McClymont, Darryl; Burton, Rebecca A B; Maguire, Mahon L; Whittington, Hannah J; Lygate, Craig A; Kohl, Peter; Schneider, Jürgen E

    2016-01-01

    Cardiac architecture is fundamental to cardiac function and can be assessed non-invasively with diffusion tensor imaging (DTI). Here, we aimed to overcome technical challenges in ex vivo DTI in order to extract fine anatomical details and to provide novel insights in the 3D structure of the heart. An integrated set of methods was implemented in ex vivo rat hearts, including dynamic receiver gain adjustment, gradient system scaling calibration, prospective adjustment of diffusion gradients, and interleaving of diffusion-weighted and non-diffusion-weighted scans. Together, these methods enhanced SNR and spatial resolution, minimised orientation bias in diffusion-weighting, and reduced temperature variation, enabling detection of tissue structures such as cell alignment in atria, valves and vessels at an unprecedented level of detail. Improved confidence in eigenvector reproducibility enabled tracking of myolaminar structures as a basis for segmentation of functional groups of cardiomyocytes. Ex vivo DTI facilitates acquisition of high quality structural data that complements readily available in vivo cardiac functional and anatomical MRI. The improvements presented here will facilitate next generation virtual models integrating micro-structural and electro-mechanical properties of the heart. PMID:27466029

  16. Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging

    PubMed Central

    Teh, Irvin; McClymont, Darryl; Burton, Rebecca A. B.; Maguire, Mahon L.; Whittington, Hannah J.; Lygate, Craig A.; Kohl, Peter; Schneider, Jürgen E.

    2016-01-01

    Cardiac architecture is fundamental to cardiac function and can be assessed non-invasively with diffusion tensor imaging (DTI). Here, we aimed to overcome technical challenges in ex vivo DTI in order to extract fine anatomical details and to provide novel insights in the 3D structure of the heart. An integrated set of methods was implemented in ex vivo rat hearts, including dynamic receiver gain adjustment, gradient system scaling calibration, prospective adjustment of diffusion gradients, and interleaving of diffusion-weighted and non-diffusion-weighted scans. Together, these methods enhanced SNR and spatial resolution, minimised orientation bias in diffusion-weighting, and reduced temperature variation, enabling detection of tissue structures such as cell alignment in atria, valves and vessels at an unprecedented level of detail. Improved confidence in eigenvector reproducibility enabled tracking of myolaminar structures as a basis for segmentation of functional groups of cardiomyocytes. Ex vivo DTI facilitates acquisition of high quality structural data that complements readily available in vivo cardiac functional and anatomical MRI. The improvements presented here will facilitate next generation virtual models integrating micro-structural and electro-mechanical properties of the heart. PMID:27466029

  17. Myocardial Fibrosis and Left Ventricular Dysfunction in Duchenne Muscular Dystrophy Carriers Using Cardiac Magnetic Resonance Imaging.

    PubMed

    Lang, Sean M; Shugh, Svetlana; Mazur, Wojciech; Sticka, Joshua J; Rattan, Mantosh S; Jefferies, John L; Taylor, Michael D

    2015-10-01

    The goal of our study was to characterize the degree of myocardial fibrosis and left ventricular dysfunction in our cohort of Duchenne muscular dystrophy (DMD) carriers using cardiac magnetic resonance imaging (CMR). Seventy percent of males with DMD have mothers who are carriers of the Xp21 mutation. Carrier phenotypic characteristics range from asymptomatic to left ventricular (LV) dysfunction and cardiomyopathy. The true prevalence of cardiac involvement in DMD carriers is unknown. We performed a retrospective observational study. All female DMD carriers who underwent clinical CMR studies at Cincinnati Children's Hospital Medical Center from December 6, 2006, to August 28, 2013, were evaluated. Patients underwent standard CMR assessment with LV function assessment and late gadolinium enhancement (LGE). In addition, offline feature tracking strain analysis was performed on the basal, mid, and apical short axis. Twenty-two patients were studied, of which 20 underwent adequate testing for myocardial LGE. Four of 22 patients (18 %) were found to have LV dysfunction (ejection fraction <55 %). Seven of 20 DMD carriers (35 %) were found to have LGE. The patients with evidence of LGE had an overall trend to lower absolute deformation parameters; however, this did not meet statistical significance when correcting for multiple comparisons. Our study demonstrates a high rate of LGE as well as LV dysfunction in DMD carriers. Cardiovascular and musculoskeletal symptoms were not statistically different between those with and without cardiac involvement. This study demonstrates the importance of surveillance CMR evaluation of DMD carriers. PMID:25976773

  18. LBM-EP: Lattice-Boltzmann method for fast cardiac electrophysiology simulation from 3D images.

    PubMed

    Rapaka, S; Mansi, T; Georgescu, B; Pop, M; Wright, G A; Kamen, A; Comaniciu, Dorin

    2012-01-01

    Current treatments of heart rhythm troubles require careful planning and guidance for optimal outcomes. Computational models of cardiac electrophysiology are being proposed for therapy planning but current approaches are either too simplified or too computationally intensive for patient-specific simulations in clinical practice. This paper presents a novel approach, LBM-EP, to solve any type of mono-domain cardiac electrophysiology models at near real-time that is especially tailored for patient-specific simulations. The domain is discretized on a Cartesian grid with a level-set representation of patient's heart geometry, previously estimated from images automatically. The cell model is calculated node-wise, while the transmembrane potential is diffused using Lattice-Boltzmann method within the domain defined by the level-set. Experiments on synthetic cases, on a data set from CESC'10 and on one patient with myocardium scar showed that LBM-EP provides results comparable to an FEM implementation, while being 10 - 45 times faster. Fast, accurate, scalable and requiring no specific meshing, LBM-EP paves the way to efficient and detailed models of cardiac electrophysiology for therapy planning. PMID:23286029

  19. X-ray and magnetic resonance imaging fusion for cardiac resynchronization therapy.

    PubMed

    Choi, Jinwoo; Radau, Perry; Xu, Robert; Wright, Graham A

    2016-07-01

    Cardiac Resynchronization Therapy (CRT) can effectively treat left ventricle (LV) driven Heart Failure (HF). However, 30% of the CRT recipients do not experience symptomatic benefit. Recent studies show that the CRT response rate can reach 95% when the LV pacing lead is placed at an optimal site at a region of maximal LV dyssynchrony and away from myocardial scars. Cardiac Magnetic Resonance (CMR) can identify the optimal site in three dimensions (3D). 3D CMR data can be registered to clinical standard x-ray fluoroscopy to achieve an optimal pacing of the LV. We have developed a 3D CMR to 2D x-ray image registration method for CRT procedures. We have employed the LV pacing lead on x-ray images and coronary sinus on MR data as landmarks. The registration method makes use of a guidewire simulation algorithm, edge based image registration technique and x-ray C-arm tracking to register the coronary sinus and pacing lead landmarks. PMID:27025953

  20. Important advances in technology and unique applications related to cardiac magnetic resonance imaging.

    PubMed

    Ghosn, Mohamad G; Shah, Dipan J

    2014-01-01

    Cardiac magnetic resonance has become a well-established imaging modality and is considered the gold standard for myocardial tissue viability assessment and ventricular volumes quantification. Recent technological hardware and software advancements in magnetic resonance imaging technology have allowed the development of new methods that can improve clinical cardiovascular diagnosis and prognosis. The advent of a new generation of higher magnetic field scanners can be beneficial to various clinical applications. Also, the development of faster acquisition techniques have allowed mapping of the magnetic relaxation properties T1, T2, and T2* in the myocardium that can be used to quantify myocardial diffuse fibrosis, determine the presence of edema or inflammation, and measure iron within the myocardium, respectively. Another recent major advancement in CMR has been the introduction of three-dimension (3D) phase contrast imaging, also known as 4D flow. The following review discusses key advances in cardiac magnetic resonance technology and their potential to improve clinical cardiovascular diagnosis and outcomes. PMID:25574343

  1. Important advances in technology and unique applications related to cardiac magnetic resonance imaging.

    PubMed

    Ghosn, Mohamad G; Shah, Dipan J

    2014-01-01

    Cardiac magnetic resonance has become a well-established imaging modality and is considered the gold standard for myocardial tissue viability assessment and ventricular volumes quantification. Recent technological hardware and software advancements in magnetic resonance imaging technology have allowed the development of new methods that can improve clinical cardiovascular diagnosis and prognosis. The advent of a new generation of higher magnetic field scanners can be beneficial to various clinical applications. Also, the development of faster acquisition techniques have allowed mapping of the magnetic relaxation properties T1, T2, and T2* in the myocardium that can be used to quantify myocardial diffuse fibrosis, determine the presence of edema or inflammation, and measure iron within the myocardium, respectively. Another recent major advancement in CMR has been the introduction of three-dimension (3D) phase contrast imaging, also known as 4D flow. The following review discusses key advances in cardiac magnetic resonance technology and their potential to improve clinical cardiovascular diagnosis and outcomes.

  2. Automated detection of the left ventricular region in gated nuclear cardiac imaging.

    PubMed

    Boudraa, A E; Arzi, M; Sau, J; Champier, J; Hadj-Moussa, S; Besson, J E; Sappey-Marinier, D; Itti, R; Mallet, J J

    1996-04-01

    An approach to automated outlining the left ventricular contour and its bounded area in gated isotopic ventriculography is proposed. Its purpose is to determine the ejection fraction (EF), an important parameter for measuring cardiac function. The method uses a modified version of the fuzzy C-means (MFCM) algorithm and a labeling technique. The MFCM algorithm is applied to the end diastolic (ED) frame and then the (FCM) is applied to the remaining images in a "box" of interest. The MFCM generates a number of fuzzy clusters. Each cluster is a substructure of the heart (left ventricle,...). A cluster validity index to estimate the optimum clusters number present in image data point is used. This index takes account of the homogeneity in each cluster and is connected to the geometrical property of data set. The labeling is only performed to achieve the detection process in the ED frame. Since the left ventricle (LV) cluster has the greatest area of the cardiac images sequence in ED phase, a framing operation is performed to obtain, automatically, the "box" enclosing the LV cluster. THe EF assessed in 50 patients by the proposed method and a semi-automatic one, routinely used, are presented. A good correlation between the two methods EF values is obtained (R = 0.93). The LV contour found has been judged very satisfactory by a team of trained clinicians. PMID:8626193

  3. An initial investigation of radiologist eye movements in vascular imaging

    NASA Astrophysics Data System (ADS)

    Toomey, R. J.; Hodgins, S.; Evanoff, M. E.; Rainford, L. A.

    2013-03-01

    Eye tracking has been used by many researchers to try to shed light on the perceptual processes involved in medical image perception. Despite a large volume of data having been published regarding radiologist viewing patterns for static images, and more recently for stacked imaging modalities, little has been produced concerning angiographic images, which commonly have substantially different characteristics. A study was performed in which 7 expert radiologists viewed a range of digital subtraction angiograms of the peripheral vascular system. Initial results are presented. The observers were free to control the rate at which they viewed the images. Eye position data was recorded for each participant using Tobii TX300 eyetrackers. Analysis was performed in Tobii Studio software and included qualitative analysis of gaze pattern and analysis of metrics including first and total fixation duration etc. for areas of clinical interest. Early results indicate that experts briefly fixate on lesions but do not dwell in the area, rather continuing to inspect the more distal vascular segments before returning. Some individual variation was noted. Further research is required and ongoing.

  4. Improved myocardial strain measured by strain-encoded magnetic resonance imaging in a patient with cardiac sarcoidosis.

    PubMed

    Nakano, Shintaro; Kimura, Fumiko; Osman, Nael; Sugi, Keiki; Tanno, Jun; Uchida, Yoshitaka; Shiono, Ayako; Senbonmatsu, Takaaki; Nishimura, Shigeyuki

    2013-11-01

    A woman aged 64 years with cardiac sarcoidosis responded favourably to corticosteroid therapy in terms of recovered longitudinal myocardial strain, as evaluated by strain-encoded magnetic resonance imaging (SENC-MRI). In contrast, circumferential myocardial strain and late gadolinium enhancement demonstrated minimal improvement, suggesting relatively advanced pathology of the myocardial middle layer. We propose SENC-MRI as a marker of disease at an early stage of cardiac sarcoidosis.

  5. Cardiac Amyloidosis: Typical Imaging Findings and Diffuse Myocardial Damage Demonstrated by Delayed Contrast-Enhanced MRI

    SciTech Connect

    Sueyoshi, Eijun Sakamoto, Ichiro; Okimoto, Tomoaki; Hayashi, Kuniaki; Tanaka, Kyouei; Toda, Genji

    2006-08-15

    Amyloidosis is a rare systemic disease. However, involvement of the heart is a common finding and is the most frequent cause of death in amyloidosis. We report the sonographic, scintigraphic, and MRI features of a pathologically proven case of cardiac amyloidosis. Delayed contrast-enhanced MR images, using an inversion recovery prepped gradient-echo sequence, revealed diffuse enhancement in the wall of both left and right ventricles. This enhancement suggested expansion of the extracellular space of the myocardium caused by diffuse myocardial necrosis secondary to deposition of amyloid.

  6. Cardiac imaging: New technologies and clinical applications. Vol. 17, No. 1

    SciTech Connect

    Kotler, M.N.; Steiner, R.M.

    1986-01-01

    Imaging of the cardiovascular system has made much progress during the past several years. This book addresses the issues surrounding development and clinical utilization of techniques for diagnosis in valvular, coronary artery, and congenital heart disease. Included among the evaluation modalities are Doppler ultrasound, contrast 2-D echocardiography, thallium scintigraphy, nuclear magnetic resonance and emission tomography (CT, ECT, SPECT, PET). Advantages and disadvantages of these modes are discussed, and compared to each other and to older methods such as cardiac catheterization and angiography. Consideration is given to the use of the computer as an aid to the cardiologist.

  7. Functional Cardiac Magnetic Resonance Imaging (MRI) in the Assessment of Myocardial Viability and Perfusion

    PubMed Central

    2003-01-01

    Executive Summary Objective The objective of this health technology policy assessment was to determine the effectiveness safety and cost-effectiveness of using functional cardiac magnetic resonance imaging (MRI) for the assessment of myocardial viability and perfusion in patients with coronary artery disease and left ventricular dysfunction. Results Functional MRI has become increasingly investigated as a noninvasive method for assessing myocardial viability and perfusion. Most patients in the published literature have mild to moderate impaired LV function. It is possible that the severity of LV dysfunction may be an important factor that can alter the diagnostic accuracy of imaging techniques. There is some evidence of comparable or better performance of functional cardiac MRI for the assessment of myocardial viability and perfusion compared with other imaging techniques. However limitations to most of the studies included: Functional cardiac MRI studies that assess myocardial viability and perfusion have had small sample sizes. Some studies assessed myocardial viability/perfusion in patients who had already undergone revascularization, or excluded patients with a prior MI (Schwitter et al., 2001). Lack of explicit detail of patient recruitment. Patients with LVEF >35%. Interstudy variability in post MI imaging time(including acute or chronic MI), when patients with a prior MI were included. Poor interobserver agreement (kappa statistic) in the interpretation of the results. Traditionally, 0.80 is considered “good”. Cardiac MRI measurement of myocardial perfusion to as an adjunct tool to help diagnose CAD (prior to a definitive coronary angiography) has also been examined in some studies, with methodological limitations, yielding comparable results. Many studies examining myocardial viability and perfusion report on the accuracy of imaging methods with limited data on long-term patient outcome and management. Kim et al. (2000) revealed that the transmural

  8. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    PubMed Central

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-01-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases. PMID:26855466

  9. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  10. The application of the principle of conserved myocardium volume in guiding automated chamber estimation in mouse cardiac imaging

    NASA Astrophysics Data System (ADS)

    Garson, Christopher D.; Li, Bing; Hossack, John A.

    2007-03-01

    Active contours have been used in a wide variety of image processing applications due to their ability to effectively distinguish image boundaries with limited user input. In this paper, we consider 3D gradient vector field (GVF) active surfaces and their application in the determination of the volume of the mouse heart left ventricle. The accuracy and efficacy of a 3D active surface is strongly dependent upon the selection of several parameters, corresponding to the tension and rigidity of the active surface and the weight of the GVF. However, selection of these parameters is often subjective and iterative. We observe that the volume of the cardiac muscle is, to a good approximation, conserved through the cardiac cycle. Therefore, we propose using the degree of conservation of heart muscle volume as a metric for assessing optimality of a particular set of active surface parameters. A synthetic dataset consisting of nested ellipsoids of known volume was constructed. The outer ellipsoid contracted over time to imitate a heart cycle, and the inner ellipsoid compensated to maintain constant volume. The segmentation algorithm was also investigated in vivo using B-mode data sets obtained by scanning the hearts of three separate mice. Active surfaces were initialized using a broad range of values for each of the parameters under consideration. Conservation of volume was a useful predictor of the efficacy of the model for the range of values tested for the GVF weighting parameter, though it was less effective at predicting the efficacy of the active surface tension and rigidity parameters.

  11. Magnetic Imaging of Applied and Propagating Action Currents in Cardiac Tissue Slices: Determination of Anisotropic Electrical Conductivities in a Two-Dimensional Bidomain.

    NASA Astrophysics Data System (ADS)

    Staton, Daniel Joseph

    We describe the first, high-resolution magnetic images of applied currents and propagating action currents in slices of canine cardiac tissue. This tissue was maintained in vitro at 37^circC. Our main conclusions are summarized as follows: the action currents produce magnetic fields which are measurable; during the initial stages of the propagating action potential, small, expanding, quatrefoil loops of current develop; the magnetic fields produced by repolarization currents are larger than previously anticipated. Most of the current associated with the propagating action potential is confined within the wavefront and should be magnetically silent; however, differences in the intracellular and extracellular electrical conductivities, in both the longitudinal and transverse fiber directions, are great enough that expanding quatrefoil current densities are associated with the wavefront and produce measurable magnetic fields. Since action currents are affected by the electrical conductivities, it is of interest to determine their values, which depend not only upon the tissue characteristics, but also on the mathematical model used to interpret the measured data. In our analysis of current injection, we use the anisotropic bidomain model which incorporates a passive, linear membrane. We introduce theoretical techniques to calculate the anisotropic conductivities of a two-dimensional bidomain. To apply these techniques to magnetic fields resulting from current injection into cardiac tissue slices, we need to improve the higher spatial frequency content of our present measurements. This may be done by measuring the magnetic field closer to the cardiac slice (presently 2.5 mm), decreasing the sampling interval of the measurement, and increasing the sampling area of the field. Magnetic fields are produced by propagating action currents, which are in turn the result of the propagating action potential. From the magnetic field, we directly image isochronal transmembrane

  12. Super-resolution fluorescence imaging to study cardiac biophysics: α-actinin distribution and Z-disk topologies in optically thick cardiac tissue slices.

    PubMed

    Hou, Yufeng; Crossman, David J; Rajagopal, Vijay; Baddeley, David; Jayasinghe, Isuru; Soeller, Christian

    2014-08-01

    A major motivation for the use of super-resolution imaging methods in the investigation of cardiac biophysics has been the insight from biophysical considerations and detailed mathematical modeling that the spatial structure and protein organisation at the scale of nanometres can have enormous implications for calcium signalling in cardiac muscle. We illustrate the use of dSTORM based super-resolution in optically thick (∼10 μm) tissue slices of rat ventricular tissue to visualize proteins at the cardiac Z-disk and compare those images with confocal (diffraction-limited) as well as electron microscopy (EM) data which still provides a benchmark in terms of resolution. α-actinin is an abundant protein target that effectively defines the Z-disk in striated muscle and provides a reference structure for other proteins at the Z-line and the transverse tubules. Using super-resolution imaging α-actinin labelling provides very detailed outlines of the contractile machinery which we have used to study the properties of Z-disks and the distribution of α-actinin itself. We determined the local diameters of the myo-fibrillar and non-myofibrillar space using α-actinin labelling. Comparison between confocal and super-resolution based myofibrillar masks suggested that super-resolution data was able to segment myofibrils accurately while confocal approaches were not always able to distinguish neighbouring myofibrillar bundles which resulted in overestimated diameters. The increased resolution of super-resolution methods provides qualitatively new information to improve our understanding of cardiac biophysics. Nevertheless, conventional diffraction-limited imaging still has an important role to play which we illustrate with correlative confocal and super-resolution data.

  13. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  14. Detection of Left Ventricular Regional Dysfunction and Myocardial Abnormalities Using Complementary Cardiac Magnetic Resonance Imaging in Patients with Systemic Sclerosis without Cardiac Symptoms: A Pilot Study.

    PubMed

    Kobayashi, Yasuyuki; Kobayashi, Hitomi; T Giles, Jon; Yokoe, Isamu; Hirano, Masaharu; Nakajima, Yasuo; Takei, Masami

    2016-01-01

    Objective We sought to detect the presence of left ventricular regional dysfunction and myocardial abnormalities in systemic sclerosis (SSc) patients without cardiac symptoms using a complementary cardiac magnetic resonance (CMR) imaging approach. Methods Consecutive patients with SSc without cardiac symptoms and healthy controls underwent CMR on a 1.5 T scanner. The peak systolic regional function in the circumferential and radial strain (Ecc, % and Err, %) were calculated using a feature tracking analysis on the mid-left ventricular slices obtained with cine MRI. In addition, we investigated the myocardial characteristics by contrast MRI. Pharmacological stress and rest perfusion scans were performed to assess perfusion defect (PD) due to micro- or macrovascular impairment, and late gadolinium enhancement (LGE) images were obtained for the assessment of myocarditis and/or fibrosis. Results We compared 15 SSc patients with 10 healthy controls. No statistically significant differences were observed in the baseline characteristics between the patients and healthy controls. The mean peak Err and Ecc of all segments was significantly lower in the patients than the controls (p=0.011 and p=0.003, respectively). Four patients with LGE (28.6%) and seven patients with PD (50.0%) were observed. PD was significantly associated with digital ulcers (p=0.005). Utilizing a linear regression model, the presence of myocardial LGE was significantly associated with the peak Ecc (p=0.024). After adjusting for age, the association between myocardial LGE and the peak Ecc was strengthened. Conclusion A subclinical myocardial involvement, as detected by CMR, was prevalent in the SSc patients without cardiac symptoms. Regional dysfunction might predict the myocardial abnormalities observed in SSc patients without cardiac symptoms.

  15. Cardiac involvement in hemochromatosis.

    PubMed

    Gulati, Vinay; Harikrishnan, Prakash; Palaniswamy, Chandrasekar; Aronow, Wilbert S; Jain, Diwakar; Frishman, William H

    2014-01-01

    Cardiac hemochromatosis or primary iron-overload cardiomyopathy is an important and potentially preventable cause of heart failure. This is initially characterized by diastolic dysfunction and arrhythmias and in later stages by dilated cardiomyopathy. Diagnosis of iron overload is established by elevated transferrin saturation (>55%) and elevated serum ferritin (>300 ng/mL). Genetic testing for mutations in the HFE (high iron) gene and other proteins, such as hemojuvelin, transferrin receptor, and ferroportin, should be performed if secondary causes of iron overload are ruled out. Patients should undergo comprehensive 2D and Doppler echocardiography to evaluate their systolic and diastolic function. Newer modalities like strain imaging and speckle-tracking echocardiography hold promise for earlier detection of cardiac involvement. Cardiac magnetic resonance imaging with measurement of T2* relaxation times can help quantify myocardial iron overload. In addition to its value in diagnosis of cardiac iron overload, response to iron reduction therapy can be assessed by serial imaging. Therapeutic phlebotomy and iron chelation are the cornerstones of therapy. The average survival is less than a year in untreated patients with severe cardiac impairment. However, if treated early and aggressively, the survival rate approaches that of the regular heart failure population.

  16. Improving low-dose cardiac CT images using 3D sparse representation based processing

    NASA Astrophysics Data System (ADS)

    Shi, Luyao; Chen, Yang; Luo, Limin

    2015-03-01

    Cardiac computed tomography (CCT) has been widely used in diagnoses of coronary artery diseases due to the continuously improving temporal and spatial resolution. When helical CT with a lower pitch scanning mode is used, the effective radiation dose can be significant when compared to other radiological exams. Many methods have been developed to reduce radiation dose in coronary CT exams including high pitch scans using dual source CT scanners and step-and-shot scanning mode for both single source and dual source CT scanners. Additionally, software methods have also been proposed to reduce noise in the reconstructed CT images and thus offering the opportunity to reduce radiation dose while maintaining the desired diagnostic performance of a certain imaging task. In this paper, we propose that low-dose scans should be considered in order to avoid the harm from accumulating unnecessary X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. Accordingly, in this paper, a 3D dictionary representation based image processing method is proposed to reduce CT image noise. Information on both spatial and temporal structure continuity is utilized in sparse representation to improve the performance of the image processing method. Clinical cases were used to validate the proposed method.

  17. Value of blood-pool subtraction in cardiac indium-111-labeled platelet imaging

    SciTech Connect

    Machac, J.; Vallabhajosula, S.; Goldman, M.E.; Goldsmith, S.J.; Palestro, C.; Strashun, A.; Vaquer, R.; Phillips, R.A.; Fuster, V. )

    1989-09-01

    Blood-pool subtraction has been proposed to enhance {sup 111}In-labeled platelet imaging of intracardiac thrombi. We tested the accuracy of labeled platelet imaging, with and without blood-pool subtraction, in ten subjects with cardiac thrombi of varying age, eight with endocarditis being treated with antimicrobial therapy and ten normal controls. Imaging was performed early after labeled platelet injection (24 hr or less) and late (48 hr or more). Blood-pool subtraction was carried out. All images were graded subjectively by four experienced, blinded readers. Detection accuracy was measured by the sensitivity at three fixed levels of specificity estimated from receiver operator characteristic curve analysis and tested by three-way analysis of variance. Detection accuracy was generally improved on delayed images. Blood-pool subtraction did not improve accuracy. Although blood-pool subtraction increased detection sensitivity, this was offset by decreased specificity. For this population studied, blood-pool subtraction did not improve subjective detection of abnormal platelet deposition by 111In platelet imaging.

  18. The Effect of Acute Coronary Perfusion Change on Cardiac Function measured by Shear Wave Elasticity Imaging

    PubMed Central

    Vejdani-Jahromi, Maryam; Kiplagat, Annette; Trahey, Gregg E.; Wolf, Patrick D.

    2016-01-01

    The possibility of measuring cardiac function noninvasively has generated wide interest in elastography imaging techniques. Shear Wave Elasticity Imaging (SWEI) is an ultrasound-based elastography technique used to measure stiffness of tissues. While this technique has been studied extensively in static homogenous tissues such as liver, breast or prostate, there is still a significant need to study its capabilities to measure cardiac stiffness and function. In this research, we have studied the potential of SWEI to evaluate the coronary perfusion pressure effect on systolic and diastolic stiffness referred to as elastance and compliance of the heart. Five isolated rabbit hearts were used in this study in a Langendorff preparation. SWEI measurements of stiffness were recorded in two steps. In the first step, coronary perfusion was set to normal and then was reduced to half-normal. After 40 minutes of half-normal perfusion, it was returned to normal perfusion for the second step. SWEI velocity decreased from 6.003 m/s to 4.713 m/s in systole and from 1.948 m/s to 1.507 m/s in diastole in the first step. During the second step raising the perfusion to normal, SWEI stiffness showed an increase from 3.760 m/s to 5.468 m/s in systole and from 1.678 m/s to 2.156 m/s during diastole. Our results show that SWEI measurements of stiffness can characterize the cross talk between coronary perfusion and cardiac stiffness and also has the potential to measure compliance and elastance of the heart in systole and diastole. PMID:25571133

  19. Correlation-based discrimination between cardiac tissue and blood for segmentation of 3D echocardiographic images

    NASA Astrophysics Data System (ADS)

    Saris, Anne E. C. M.; Nillesen, Maartje M.; Lopata, Richard G. P.; de Korte, Chris L.

    2013-03-01

    Automated segmentation of 3D echocardiographic images in patients with congenital heart disease is challenging, because the boundary between blood and cardiac tissue is poorly defined in some regions. Cardiologists mentally incorporate movement of the heart, using temporal coherence of structures to resolve ambiguities. Therefore, we investigated the merit of temporal cross-correlation for automated segmentation over the entire cardiac cycle. Optimal settings for maximum cross-correlation (MCC) calculation, based on a 3D cross-correlation based displacement estimation algorithm, were determined to obtain the best contrast between blood and myocardial tissue over the entire cardiac cycle. Resulting envelope-based as well as RF-based MCC values were used as additional external force in a deformable model approach, to segment the left-ventricular cavity in entire systolic phase. MCC values were tested against, and combined with, adaptive filtered, demodulated RF-data. Segmentation results were compared with manually segmented volumes using a 3D Dice Similarity Index (3DSI). Results in 3D pediatric echocardiographic images sequences (n = 4) demonstrate that incorporation of temporal information improves segmentation. The use of MCC values, either alone or in combination with adaptive filtered, demodulated RF-data, resulted in an increase of the 3DSI in 75% of the cases (average 3DSI increase: 0.71 to 0.82). Results might be further improved by optimizing MCC-contrast locally, in regions with low blood-tissue contrast. Reducing underestimation of the endocardial volume due to MCC processing scheme (choice of window size) and consequential border-misalignment, could also lead to more accurate segmentations. Furthermore, increasing the frame rate will also increase MCC-contrast and thus improve segmentation.

  20. Cardiac Magnetic Resonance Scar Imaging for Sudden Cardiac Death Risk Stratification in Patients with Non-Ischemic Cardiomyopathy

    PubMed Central

    Kim, Eun Kyoung; Chattranukulchai, Pairoj

    2015-01-01

    In patients with non-ischemic cardiomyopathy (NICM), risk stratification for sudden cardiac death (SCD) and selection of patients who would benefit from prophylactic implantable cardioverter-defibrillators remains challenging. We aim to discuss the evidence of cardiac magnetic resonance (CMR)-derived myocardial scar for the prediction of adverse cardiovascular outcomes in NICM. From the 15 studies analyzed, with a total of 2747 patients, the average prevalence of myocardial scar was 41%. In patients with myocardial scar, the risk for adverse cardiac events was more than 3-fold higher, and risk for arrhythmic events 5-fold higher, as compared to patients without scar. Based on the available observational, single center studies, CMR scar assessment may be a promising new tool for SCD risk stratification, which merits further investigation. PMID:26175568

  1. Spatiotemporal non-rigid image registration for 3D ultrasound cardiac motion estimation

    NASA Astrophysics Data System (ADS)

    Loeckx, D.; Ector, J.; Maes, F.; D'hooge, J.; Vandermeulen, D.; Voigt, J.-U.; Heidbüchel, H.; Suetens, P.

    2007-03-01

    We present a new method to evaluate 4D (3D + time) cardiac ultrasound data sets by nonrigid spatio-temporal image registration. First, a frame-to-frame registration is performed that yields a dense deformation field. The deformation field is used to calculate local spatiotemporal properties of the myocardium, such as the velocity, strain and strain rate. The field is also used to propagate particular points and surfaces, representing e.g. the endo-cardial surface over the different frames. As such, the 4D path of these point is obtained, which can be used to calculate the velocity by which the wall moves and the evolution of the local surface area over time. The wall velocity is not angle-dependent as in classical Doppler imaging, since the 4D data allows calculating the true 3D motion. Similarly, all 3D myocardium strain components can be estimated. Combined they result in local surface area or volume changes which van be color-coded as a measure of local contractability. A diagnostic method that strongly benefits from this technique is cardiac motion and deformation analysis, which is an important aid to quantify the mechanical properties of the myocardium.

  2. In vivo validation of cardiac output assessment in non-standard 3D echocardiographic images

    NASA Astrophysics Data System (ADS)

    Nillesen, M. M.; Lopata, R. G. P.; de Boode, W. P.; Gerrits, I. H.; Huisman, H. J.; Thijssen, J. M.; Kapusta, L.; de Korte, C. L.

    2009-04-01

    Automatic segmentation of the endocardial surface in three-dimensional (3D) echocardiographic images is an important tool to assess left ventricular (LV) geometry and cardiac output (CO). The presence of speckle noise as well as the nonisotropic characteristics of the myocardium impose strong demands on the segmentation algorithm. In the analysis of normal heart geometries of standardized (apical) views, it is advantageous to incorporate a priori knowledge about the shape and appearance of the heart. In contrast, when analyzing abnormal heart geometries, for example in children with congenital malformations, this a priori knowledge about the shape and anatomy of the LV might induce erroneous segmentation results. This study describes a fully automated segmentation method for the analysis of non-standard echocardiographic images, without making strong assumptions on the shape and appearance of the heart. The method was validated in vivo in a piglet model. Real-time 3D echocardiographic image sequences of five piglets were acquired in radiofrequency (rf) format. These ECG-gated full volume images were acquired intra-operatively in a non-standard view. Cardiac blood flow was measured simultaneously by an ultrasound transit time flow probe positioned around the common pulmonary artery. Three-dimensional adaptive filtering using the characteristics of speckle was performed on the demodulated rf data to reduce the influence of speckle noise and to optimize the distinction between blood and myocardium. A gradient-based 3D deformable simplex mesh was then used to segment the endocardial surface. A gradient and a speed force were included as external forces of the model. To balance data fitting and mesh regularity, one fixed set of weighting parameters of internal, gradient and speed forces was used for all data sets. End-diastolic and end-systolic volumes were computed from the segmented endocardial surface. The cardiac output derived from this automatic segmentation was

  3. Cerebral ischemia initiates an immediate innate immune response in neonates during cardiac surgery

    PubMed Central

    2013-01-01

    Background A robust inflammatory response occurs in the hours and days following cerebral ischemia. However, little is known about the immediate innate immune response in the first minutes after an ischemic insult in humans. We utilized the use of circulatory arrest during cardiac surgery to assess this. Methods Twelve neonates diagnosed with an aortic arch obstruction underwent cardiac surgery with cardiopulmonary bypass and approximately 30 minutes of deep hypothermic circulatory arrest (DHCA, representing cerebral ischemia). Blood samples were drawn from the vena cava superior immediately after DHCA and at various other time points from preoperatively to 24 hours after surgery. The innate immune response was assessed by neutrophil and monocyte count and phenotype using FACS, and concentrations of cytokines IL-1β, IL-6, IL-8, IL-10, TNFα, sVCAM-1 and MCP-1 were assessed using multiplex immunoassay. Results were compared to a simultaneously drawn sample from the arterial cannula. Twelve other neonates were randomly allocated to undergo the same procedure but with continuous antegrade cerebral perfusion (ACP). Results Immediately after cerebral ischemia (DHCA), neutrophil and monocyte counts were higher in venous blood than arterial (P = 0.03 and P = 0.02 respectively). The phenotypes of these cells showed an activated state (both P <0.01). Most striking was the increase in the ‘non-classical’ monocyte subpopulations (CD16intermediate; arterial 6.6% vs. venous 14%; CD16+ 13% vs. 22%, both P <0.01). Also, higher IL-6 and lower sVCAM-1 concentrations were found in venous blood (both P = 0.03). In contrast, in the ACP group, all inflammatory parameters remained stable. Conclusions In neonates, approximately 30 minutes of cerebral ischemia during deep hypothermia elicits an immediate innate immune response, especially of the monocyte compartment. This phenomenon may hold important clues for the understanding of the inflammatory response to stroke and its

  4. Live dynamic OCT imaging of cardiac structure and function in mouse embryos with 43 Hz direct volumetric data acquisition

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Singh, Manmohan; Lopez, Andrew L.; Wu, Chen; Raghunathan, Raksha; Schill, Alexander; Li, Jiasong; Larin, Kirill V.; Larina, Irina V.

    2016-03-01

    Efficient phenotyping of cardiac dynamics in live mouse embryos has significant implications on understanding of early mammalian heart development and congenital cardiac defects. Recent studies established optical coherence tomography (OCT) as a powerful tool for live embryonic heart imaging in various animal models. However, current four-dimensional (4D) OCT imaging of the beating embryonic heart largely relies on gated data acquisition or postacquisition synchronization, which brings errors when cardiac cycles lack perfect periodicity and is time consuming and computationally expensive. Here, we report direct 4D OCT imaging of the structure and function of cardiac dynamics in live mouse embryos achieved by employing a Fourier domain mode-locking swept laser source that enables ~1.5 MHz A-line rate. Through utilizing both forward and backward scans of a resonant mirror, we obtained a ~6.4 kHz frame rate, which allows for a direct volumetric data acquisition speed of ~43 Hz, around 20 times of the early-stage mouse embryonic heart rate. Our experiments were performed on mouse embryos at embryonic day 9.5. Time-resolved 3D cardiodynamics clearly shows the heart structure in motion. We present analysis of cardiac wall movement and its velocity from the primitive atrium and ventricle. Our results suggest that the combination of ultrahigh-speed OCT imaging with live embryo culture could be a useful embryonic heart phenotyping approach for mouse mutants modeling human congenital heart diseases.

  5. Impact of cardiac magnetic resonance imaging in non-ischemic cardiomyopathies

    PubMed Central

    Kalisz, Kevin; Rajiah, Prabhakar

    2016-01-01

    Non-ischemic cardiomyopathies include a wide spectrum of disease states afflicting the heart, whether a primary process or secondary to a systemic condition. Cardiac magnetic resonance imaging (CMR) has established itself as an important imaging modality in the evaluation of non-ischemic cardiomyopathies. CMR is useful in the diagnosis of cardiomyopathy, quantification of ventricular function, establishing etiology, determining prognosis and risk stratification. Technical advances and extensive research over the last decade have resulted in the accumulation of a tremendous amount of data with regards to the utility of CMR in these cardiomyopathies. In this article, we review CMR findings of various non-ischemic cardiomyopathies and focus on current literature investigating the clinical impact of CMR on risk stratification, treatment, and prognosis. PMID:26981210

  6. Imaging longitudinal cardiac strain on short-axis images using 3D HARP

    NASA Astrophysics Data System (ADS)

    Osman, Nael F.; Sampath, Smita; Prince, Jerry L.

    2000-04-01

    This paper presents a new method for measuring longitudinal strain of the heart using harmonic phase magnetic resonance imaging (HARP-MRI). The heart is tagged using 1-1 SPAMM at end-diastole with tagging surfaces parallel to the imaging plane. Two image sequences are acquired for a short-axis slice with two different encodings in the direction orthogonal to the imaging plane. A method to compute a sequence of longitudinal strain estimates from this data is described.

  7. Intraoperative 3D stereo visualization for image-guided cardiac ablation

    NASA Astrophysics Data System (ADS)

    Azizian, Mahdi; Patel, Rajni

    2011-03-01

    There are commercial products which provide 3D rendered volumes, reconstructed from electro-anatomical mapping and/or pre-operative CT/MR images of a patient's heart with tools for highlighting target locations for cardiac ablation applications. However, it is not possible to update the three-dimensional (3D) volume intraoperatively to provide the interventional cardiologist with more up-to-date feedback at each instant of time. In this paper, we describe the system we have developed for real-time three-dimensional stereo visualization for cardiac ablation. A 4D ultrasound probe is used to acquire and update a 3D image volume. A magnetic tracking device is used to track the distal part of the ablation catheter in real time and a master-slave robot-assisted system is developed for actuation of a steerable catheter. Three-dimensional ultrasound image volumes go through some processing to make the heart tissue and the catheter more visible. The rendered volume is shown in a virtual environment. The catheter can also be added as a virtual tool to this environment to achieve a higher update rate on the catheter's position. The ultrasound probe is also equipped with an EM tracker which is used for online registration of the ultrasound images and the catheter tracking data. The whole augmented reality scene can be shown stereoscopically to enhance depth perception for the user. We have used transthoracic echocardiography (TTE) instead of the conventional transoesophageal (TEE) or intracardiac (ICE) echocardiogram. A beating heart model has been used to perform the experiments. This method can be used both for diagnostic and therapeutic applications as well as training interventional cardiologists.

  8. Usefulness of cardiac meta-iodobenzylguanidine imaging to identify patients with chronic heart failure and left ventricular ejection fraction <35% at low risk for sudden cardiac death.

    PubMed

    Kawai, Tsutomu; Yamada, Takahisa; Tamaki, Shunsuke; Morita, Takashi; Furukawa, Yoshio; Iwasaki, Yusuke; Kawasaki, Masato; Kikuchi, Atsushi; Kondo, Takumi; Takahashi, Satoshi; Ishimi, Masashi; Hakui, Hideyuki; Ozaki, Tatsuhisa; Sato, Yoshihiro; Seo, Masahiro; Sakata, Yasushi; Fukunami, Masatake

    2015-06-01

    Patients with chronic heart failure (CHF) at risk of sudden cardiac death (SCD) are often treated with implantable cardiac defibrillators (ICDs). However, current criteria for device use that is based largely on left ventricular ejection fraction (LVEF) lead to many patients receiving ICDs that never deliver therapy. It is of clinical significance to identify patients who do not require ICDs. Although cardiac I-123 meta-iodobenzylguanidine (MIBG) imaging provides prognostic information about CHF, whether it can identify patients with CHF who do not require an ICD remains unclear. We studied 81 patients with CHF and LVEF <35%, assessed by cardiac MIBG imaging at enrollment. The heart-to-mediastinal ratio (H/M) in delayed images and washout rates were divided into 6 grades from 0 to 5, according to the degree of deviation from control values. The study patients were classified into 3 groups: low (1 to 4), intermediate (5 to 7), and high (8 to 10), according to the MIBG scores defined as the sum of the H/M and washout rate scores. Sixteen patients died of SCD during a follow-up period. Patients with low MIBG score had a significantly lower risk of SCD than those with intermediate and high scores (low [n = 19], 0%; intermediate [n = 37], 19%; high [n = 25], 36%; p = 0.001). The positive predictive value of low MIBG score for identifying patients without SCD was 100%. In conclusion, the MIBG score can identify patients with CHF and LVEF <35% who have low risk of developing SCD. PMID:25851796

  9. Three-dimensional magnetic resonance imaging overlay to assist with percutaneous transhepatic access at the time of cardiac catheterization.

    PubMed

    Whiteside, Wendy; Christensen, Jason; Zampi, Jeffrey D

    2015-01-01

    Multimodality image overlay is increasingly used for complex interventional procedures in the cardiac catheterization lab. We report a case in which three-dimensional magnetic resonance imaging (3D MRI) overlay onto live fluoroscopic imaging was utilized to safely obtain transhepatic access in a 12-year-old patient with prune belly syndrome, complex and distorted abdominal anatomy, and a vascular mass within the liver.

  10. Multivariate clinical models and quantitative dipyridamole-thallium imaging to predict cardiac morbidity and death after vascular reconstruction

    SciTech Connect

    Lette, J.; Waters, D.; Lassonde, J.; Rene, P.; Picard, M.; Laurendeau, F.; Levy, R.; Cerino, M.; Nattel, S. )

    1991-08-01

    Patients with peripheral vascular disease have a high prevalence of coronary artery disease and are at increased risk for cardiac morbidity and death after vascular reconstruction. The present study was undertaken to assess the value of 18 clinical parameters, of 7 clinical scoring systems, and of quantitative dipyridamole-thallium imaging for predicting the occurrence of postoperative myocardial infarction or cardiac death. Vascular surgery was performed in 125 patients. Thirteen postoperative cardiac events occurred, including 10 cardiac deaths and 3 nonfatal infarctions. Clinical parameters were not useful in predicting postoperative outcome. All 63 patients with normal scan results or fixed perfusion defects underwent surgery uneventfully, whereas 21% (13/62) of patients with reversible defects had a postoperative cardiac complication. By use of quantitative scintigraphic indexes we found that patients with reversible defects could be stratified into intermediate and high-risk subgroups with postoperative event rates of 5% (2/47) and 85% (11/13), respectively, despite intensive postoperative monitoring and antianginal medication. Thus in patients unable to complete a standard exercise stress test, postoperative outcome cannot be predicted clinically, whereas dipyridamole-thallium imaging successfully identified all patients who had a postoperative cardiac event. By use of quantification we found that patients with reversible defects can be stratified into an intermediate risk subgroup that can undergo surgery with minimal complication rate and a high-risk subgroup that requires coronary angiography.

  11. A Motion and Flow Insensitive Adiabatic T2-Preparation Module for Cardiac MR Imaging at 3 Tesla

    PubMed Central

    Jenista, Elizabeth R.; Rehwald, Wolfgang G.; Chen, Enn-Ling; Kim, Han W.; Klem, Igor; Parker, Michele A.; Kim, Raymond J.

    2014-01-01

    A versatile method for generating T2-weighting is a T2-preparation (T2-prep) module, which has been used successfully for cardiac imaging at 1.5T. Although it has been applied at 3T, higher fields (B0 ≥ 3T) can degrade B0 and B1 homogeneity and result in non-uniform magnetization preparation. For cardiac imaging, blood flow and cardiac motion may further impair magnetization preparation. In this study, a novel T2-prep module containing multiple adiabatic B1-insensitive refocusing (BIREF-1) pulses is introduced and compared with three previously described modules (a: composite MLEV4, b: modified BIR-4 (mBIR-4), and c: Silver-Hoult–pair). In the static phantom, the proposed module provided similar or better B0 and B1 insensitivity than the other modules. In human subjects (n=21), quantitative measurement of image signal coefficient of variation (CV), reflecting overall image inhomogeneity, was lower for the proposed module (0.10) than for MLEV4 (0.15, p<0.0001), mBIR-4 (0.27, p<0.0001), and Silver-Hoult–pair (0.14, p=0.001) modules. Similarly, qualitative analysis revealed that the proposed module had the best image quality scores and ranking (both, p<0.0001). In conclusion, we present a new T2-preparation module, which is shown to be robust for cardiac imaging at 3T in comparison with existing methods. PMID:23213005

  12. Initial feasibility testing of limited field of view magnetic resonance thermometry using a local cardiac radiofrequency coil.

    PubMed

    Volland, Nelly A; Kholmovski, Eugene G; Parker, Dennis L; Hadley, J Rock

    2013-10-01

    The visualization of lesion formation in real time is one potential benefit of carrying out radiofrequency ablation under magnetic resonance (MR) guidance in the treatment of atrial fibrillation. MR thermometry has the potential to detect such lesions. However, performing MR thermometry during cardiac radiofrequency ablation requires high temporal and spatial resolution and a high signal-to-noise ratio. In this study, a local MR coil (2-cm diameter) was developed to investigate the feasibility of performing limited field of view MR thermometry with high accuracy and speed. The local MR coil allowed high-resolution (1 × 1 × 3 mm(3)) image acquisitions in 76.3 ms with a field of view 64 × 32 mm(2) during an open-chest animal experiment. This represents a 4-fold image acquisition acceleration and an 18-fold field of view reduction compared to that achieved using external MR coils. The signal sensitivity achieved using the local coil was over 20 times greater than that achievable using external coils with the same scan parameters. The local coil configuration provided fewer artifacts and sharper and more stable images. These results demonstrate that MR thermometry can be performed in the heart wall and that lesion formation can be observed during radiofrequency ablation procedures in a canine model.

  13. The Gemini Planet Imager Exoplanet Survey (GPIES) Campaign Initial Results

    NASA Astrophysics Data System (ADS)

    Patience, Jennifer; Macintosh, Bruce; Graham, James R.; Barman, Travis; De Rosa, Robert; Konopacky, Quinn; Marley, Mark; Marois, Christian; Nielsen, Eric Ludwig; Pueyo, Laurent; Rajan, Abhijith; Rameau, Julien; Saumon, Didier; Wang, Jason

    2015-12-01

    The Gemini Planet Imager (GPI) is a next-generation coronagraphic integral field unit with the sensitivity and resolution to detect planetary companions with separations of 0”.2 to 1”.0 around a large set of stars. An 890-hour GPI survey of 600 young, nearby stars commenced in late-2014, and approximately 100 stars have been observed thus far. The central aims of the program are: (1) the discovery of a population of giant planets with orbital radii of 5-50 AU comparable to Solar System gas giant orbits, (2) the characterization of the atmospheric properties of young planetary companions, and (3) the exploration of planet-disk interactions. Initial results from GPI exoplanet observations include the discovery of a new planetary companion to a young F-star; the planet spectrum shows a strong signature of methane absorption, indicating a cooler temperature than previously imaged young planets. An overview of the survey scope, current detection limits, and initial results will be presented.

  14. Knee osteoarthritis image registration: data from the Osteoarthritis Initiative

    NASA Astrophysics Data System (ADS)

    Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Treviño, Victor; Tamez-Peña, José G.

    2015-03-01

    Knee osteoarthritis is a very common disease, in early stages, changes in joint structures are shown, some of the most common symptoms are; formation of osteophytes, cartilage degradation and joint space reduction, among others. Based on a joint space reduction measurement, Kellgren-Lawrence grading scale, is a very extensive used tool to asses radiological OA knee x-ray images, based on information obtained from these assessments, the objective of this work is to correlate the Kellgren-Lawrence score to the bilateral asymmetry between knees. Using public data from the Osteoarthritis initiative (OAI), a set of images with different Kellgren-Lawrencescores were used to determine a relationship of Kellgren-Lawrence score and the bilateral asymmetry, in order to measure the asymmetry between the knees, the right knee was registered to match the left knee, then a series of similarity metrics, mutual information, correlation, and mean squared error where computed to correlate the deformation (mismatch) of the knees to the Kellgren-Lawrence score. Radiological information was evaluated and scored by OAI radiologist groups. The results of the study suggest an association between Radiological Kellgren-Lawrence score and image registration metrics, mutual information and correlation is higher in the early stages, and mean squared error is higher in advanced stages. This association can be helpful to develop a computer aided grading tool.

  15. Initial results of a positron tomograph for prostate imaging

    SciTech Connect

    Huber, J.S.; Choong, W.S.; Moses, W.W.; Qi, J.; Hu, J.; Wang,G.C.; Wilson, D.; Oh, S.; Huesman, R.H.; Derenzo, S.E.; Budinger, T.F.

    2004-11-29

    We present the status and initial images of a positrontomograph for prostate imaging that centers a patient between a pair ofexternal curved detector banks (ellipse: 45 cm minor, 70 cm major axis).The distance between detector banks adjusts to allow patient access andto position the detectors as closely as possible for maximum sensitivitywith patients of various sizes. Each bank is composed of two axial rowsof 20 CTI PET Systems HR+ block detectors for a total of 80 modules inthe camera. Compared to an ECAT HR PET system operating in 3D mode, ourcamera uses about one-quarter the number of detectors and hasapproximately the same sensitivity for a central point source, becauseour detectors are close to the patient. The individual detectors areangled in the plane to point towards the prostate to minimize resolutiondegradation in that region. The detectors are read out by modified CTIdata acquisition electronics. We have completed construction of thegantry and electronics, have developed detector calibration and dataacquisition software, and are taking coincidence data. We demonstratethat we can clearly visualize a "prostate" in a simple phantom.Reconstructed images of two phantoms are shown.

  16. Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration

    NASA Astrophysics Data System (ADS)

    Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-11-01

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.

  17. Image Reconstruction in Higher Dimensions: Myocardial Perfusion Imaging of Tracer Dynamics with Cardiac Motion Due to Deformation and Respiration

    PubMed Central

    Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-01-01

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases due to redistribution of the counts over the cardiac-respiratory gates. However, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images. PMID:26450115

  18. Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration

    DOE PAGES

    Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-10-09

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variationmore » of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. We find these results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.« less

  19. Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration

    SciTech Connect

    Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-10-09

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. We find these results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.

  20. Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration.

    PubMed

    Shrestha, Uttam M; Seo, Youngho; Botvinick, Elias H; Gullberg, Grant T

    2015-11-01

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images. PMID:26450115

  1. Estimation of cardiac reserve by peak power: validation and initial application of a simplified index

    PubMed Central

    Armstrong, G; Carlier, S; Fukamachi, K; Thomas, J; Marwick, T

    1999-01-01

    better than ejection fraction or rate-pressure product.


Keywords: stress echocardiography; oxygen consumption; left ventricular function; cardiac power output PMID:10455090

  2. Subject-specific patch-based denoising for contrast-enhanced cardiac MR images

    NASA Astrophysics Data System (ADS)

    Ma, Lorraine; Ebrahimi, Mehran; Pop, Mihaela

    2016-03-01

    Many patch-based techniques in imaging, e.g., Non-local means denoising, require tuning parameters to yield optimal results. In real-world applications, e.g., denoising of MR images, ground truth is not generally available and the process of choosing an appropriate set of parameters is a challenge. Recently, Zhu et al. proposed a method to define an image quality measure, called Q, that does not require ground truth. In this manuscript, we evaluate the effect of various parameters of the NL-means denoising on this quality metric Q. Our experiments are based on the late-gadolinium enhancement (LGE) cardiac MR images that are inherently noisy. Our described exhaustive evaluation approach can be used in tuning parameters of patch-based schemes. Even in the case that an estimation of optimal parameters is provided using another existing approach, our described method can be used as a secondary validation step. Our preliminary results suggest that denoising parameters should be case-specific rather than generic.

  3. Collaborative Initiative in Biomedical Imaging to Study Complex Diseases

    SciTech Connect

    Lin, Weili; Fiddy, Michael A.

    2012-03-31

    The work reported addressed these topics: Fluorescence imaging; Optical coherence tomography; X-ray interferometer/phase imaging system; Quantitative imaging from scattered fields, Terahertz imaging and spectroscopy; and Multiphoton and Raman microscopy.

  4. The effects of gantry tilt on breast dose and image noise in cardiac CT

    SciTech Connect

    Hoppe, Michael E.; Gandhi, Diksha; Schmidt, Taly Gilat; Stevens, Grant M.; Foley, W. Dennis

    2013-12-15

    Purpose: This study investigated the effects of tilted-gantry acquisition on image noise and glandular breast dose in females during cardiac computed tomography (CT) scans. Reducing the dose to glandular breast tissue is important due to its high radiosensitivity and limited diagnostic significance in cardiac CT scans.Methods: Tilted-gantry acquisition was investigated through computer simulations and experimental measurements. Upon IRB approval, eight voxelized phantoms were constructed from previously acquired cardiac CT datasets. Monte Carlo simulations quantified the dose deposited in glandular breast tissue over a range of tilt angles. The effects of tilted-gantry acquisition on breast dose were measured on a clinical CT scanner (CT750HD, GE Healthcare) using an anthropomorphic phantom with MOSFET dosimeters in the breast regions. In both simulations and experiments, scans were performed at gantry tilt angles of 0°–30°, in 5° increments. The percent change in breast dose was calculated relative to the nontilted scan for all tilt angles. The percent change in noise standard deviation due to gantry tilt was calculated in all reconstructed simulated and experimental images.Results: Tilting the gantry reduced the breast dose in all simulated and experimental phantoms, with generally greater dose reduction at increased gantry tilts. For example, at 30° gantry tilt, the dosimeters located in the superior, middle, and inferior breast regions measured dose reductions of 74%, 61%, and 9%, respectively. The simulations estimated 0%–30% total breast dose reduction across the eight phantoms and range of tilt angles. However, tilted-gantry acquisition also increased the noise standard deviation in the simulated phantoms by 2%–50% due to increased pathlength through the iodine-filled heart. The experimental phantom, which did not contain iodine in the blood, demonstrated decreased breast dose and decreased noise at all gantry tilt angles.Conclusions: Tilting the

  5. Cardiac imaging in diagnostic VCT using multi-sector data acquisition and image reconstruction: step-and-shoot scan vs. helical scan

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Hsieh, Jiang; Seamans, John L.; Dong, Fang; Okerlund, Darin

    2008-03-01

    Since the advent of multi-slice CT, helical scan has played an increasingly important role in cardiac imaging. With the availability of diagnostic volumetric CT, step-and-shoot scan has been becoming popular recently. Step-and-shoot scan decouples patient table motion from heart beating, and thus the temporal window for data acquisition and image reconstruction can be optimized, resulting in significantly reduced radiation dose, improved tolerance to heart beat rate variation and inter-cycle cardiac motion inconsistency. Multi-sector data acquisition and image reconstruction have been utilized in helical cardiac imaging to improve temporal resolution, but suffers from the coupling of heart beating and patient table motion. Recognizing the clinical demands, the multi-sector data acquisition scheme for step-and-shoot scan is investigated in this paper. The most outstanding feature of the multi-sector data acquisition combined with the stepand- shoot scan is the decoupling of patient table proceeding from heart beating, which offers the opportunities of employing prospective ECG-gating to improve dose efficiency and fine adjusting cardiac imaging phase to suppress artifacts caused by inter-cycle cardiac motion inconsistency. The improvement in temporal resolution and the resultant suppression of motion artifacts are evaluated via motion phantoms driven by artificial ECG signals. Both theoretical analysis and experimental evaluation show promising results for multi-sector data acquisition scheme to be employed with the step-and-shoot scan. With the ever-increasing gantry rotation speed and detector longitudinal coverage in stateof- the-art VCT scanners, it is expected that the step-and-shoot scan with multi-sector data acquisition scheme would play an increasingly important role in cardiac imaging using diagnostic VCT scanners.

  6. Early administration of epinephrine (adrenaline) in patients with cardiac arrest with initial shockable rhythm in hospital: propensity score matched analysis

    PubMed Central

    Andersen, Lars W; Kurth, Tobias; Chase, Maureen; Berg, Katherine M; Cocchi, Michael N; Callaway, Clifton

    2016-01-01

    Objectives To evaluate whether patients who experience cardiac arrest in hospital receive epinephrine (adrenaline) within the two minutes after the first defibrillation (contrary to American Heart Association guidelines) and to evaluate the association between early administration of epinephrine and outcomes in this population. Design Prospective observational cohort study. Setting Analysis of data from the Get With The Guidelines-Resuscitation registry, which includes data from more than 300 hospitals in the United States. Participants Adults in hospital who experienced cardiac arrest with an initial shockable rhythm, including patients who had a first defibrillation within two minutes of the cardiac arrest and who remained in a shockable rhythm after defibrillation. Intervention Epinephrine given within two minutes after the first defibrillation. Main outcome measures Survival to hospital discharge. Secondary outcomes included return of spontaneous circulation and survival to hospital discharge with a good functional outcome. A propensity score was calculated for the receipt of epinephrine within two minutes after the first defibrillation, based on multiple characteristics of patients, events, and hospitals. Patients who received epinephrine at either zero, one, or two minutes after the first defibrillation were then matched on the propensity score with patients who were “at risk” of receiving epinephrine within the same minute but who did not receive it. Results 2978patients were matched on the propensity score, and the groups were well balanced. 1510 (51%) patients received epinephrine within two minutes after the first defibrillation, which is contrary to current American Heart Association guidelines. Epinephrine given within the first two minutes after the first defibrillation was associated with decreased odds of survival in the propensity score matched analysis (odds ratio 0.70, 95% confidence interval 0.59 to 0.82; P<0.001). Early epinephrine

  7. Examination of Optical Depth Effects on Fluorescence Imaging of Cardiac Propagation

    PubMed Central

    Bray, Mark-Anthony; Wikswo, John P.

    2003-01-01

    Optical mapping with voltage-sensitive dyes provides a high-resolution technique to observe cardiac electrodynamic behavior. Although most studies assume that the fluorescent signal is emitted from the surface layer of cells, the effects of signal attenuation with depth on signal interpretation are still unclear. This simulation study examines the effects of a depth-weighted signal on epicardial activation patterns and filament localization. We simulated filament behavior using a detailed cardiac model, and compared the signal obtained from the top (epicardial) layer of the spatial domain with the calculated weighted signal. General observations included a prolongation of the action upstroke duration, early upstroke initiation, and reduction in signal amplitude in the weighted signal. A shallow filament was found to produce a dual-humped action potential morphology consistent with previously reported observations. Simulated scroll wave breakup exhibited effects such as the false appearance of graded potentials, apparent supramaximal conduction velocities, and a spatially blurred signal with the local amplitude dependent upon the immediate subepicardial activity; the combination of these effects produced a corresponding change in the accuracy of filament localization. Our results indicate that the depth-dependent optical signal has significant consequences on the interpretation of epicardial activation dynamics. PMID:14645100

  8. The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart

    PubMed Central

    Fonseca, Carissa G.; Backhaus, Michael; Bluemke, David A.; Britten, Randall D.; Chung, Jae Do; Cowan, Brett R.; Dinov, Ivo D.; Finn, J. Paul; Hunter, Peter J.; Kadish, Alan H.; Lee, Daniel C.; Lima, Joao A. C.; Medrano−Gracia, Pau; Shivkumar, Kalyanam; Suinesiaputra, Avan; Tao, Wenchao; Young, Alistair A.

    2011-01-01

    Motivation: Integrative mathematical and statistical models of cardiac anatomy and physiology can play a vital role in understanding cardiac disease phenotype and planning therapeutic strategies. However, the accuracy and predictive power of such models is dependent upon the breadth and depth of noninvasive imaging datasets. The Cardiac Atlas Project (CAP) has established a large-scale database of cardiac imaging examinations and associated clinical data in order to develop a shareable, web-accessible, structural and functional atlas of the normal and pathological heart for clinical, research and educational purposes. A goal of CAP is to facilitate collaborative statistical analysis of regional heart shape and wall motion and characterize cardiac function among and within population groups. Results: Three main open-source software components were developed: (i) a database with web-interface; (ii) a modeling client for 3D + time visualization and parametric description of shape and motion; and (iii) open data formats for semantic characterization of models and annotations. The database was implemented using a three-tier architecture utilizing MySQL, JBoss and Dcm4chee, in compliance with the DICOM standard to provide compatibility with existing clinical networks and devices. Parts of Dcm4chee were extended to access image specific attributes as search parameters. To date, approximately 3000 de-identified cardiac imaging examinations are available in the database. All software components developed by the CAP are open source and are freely available under the Mozilla Public License Version 1.1 (http://www.mozilla.org/MPL/MPL-1.1.txt). Availability: http://www.cardiacatlas.org Contact: a.young@auckland.ac.nz Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21737439

  9. Noninvasive functional cardiac electrical source imaging: combining MRI and ECG mapping for imaging electrical function

    NASA Astrophysics Data System (ADS)

    Tilg, Bernhard; Modre, Robert; Fischer, Gerald; Hanser, Friedrich; Messnarz, Bernd; Schocke, Michael F. H.; Kremser, Christian; Roithinger, Franz

    2002-04-01

    Inverse electrocardiography has been developing for several years. By coupling electrocardiographic mapping and 3D+time anatomical data, the electrical excitation sequence can be imaged completely noninvasively in the human heart. In this study, a bidomain theory based surface heart model activation time imaging approach was applied to single beat data of atrial and ventricular depolarization. For sinus and paced rhythms, the sites of early activation and the areas with late activation were estimated with sufficient accuracy. In particular for focal arrhythmias, this model-based imaging approach might allow the guidance and evaluation of antiarrhythmic interventions, for instance, in case of catheter ablation or drug therapy.

  10. Precise reconstruction of fast moving cardiac valve in high frame rate synthetic transmit aperture ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Suzuki, Mayumi; Ikeda, Teiichiro; Ishihara, Chizue; Takano, Shinta; Masuzawa, Hiroshi

    2016-04-01

    To diagnose heart valve incompetence, i.e., one of the most serious cardiac dysfunctions, it is essential to obtain images of fast-moving valves at high spatial and temporal resolution. Ultrasound synthetic transmit aperture (STA) imaging has the potential to achieve high spatial resolution by synthesizing multiple pre-beamformed images obtained with corresponding multiple transmissions. However, applying STA to fast-moving targets is difficult due to serious target deformation. We propose a high-frame-rate STA (fast STA) imaging method that uses a reduced number of transmission events needed for each image. Fast STA is expected to suppress deformation of moving targets; however, it may result in deteriorated spatial resolution. In this study, we conducted a simulation study to evaluate fast STA. We quantitatively evaluated the reduction in deformation and deterioration of spatial resolution with a model involving a radially moving valve at the maximum speed of 0.5 m/s. The simulated raw channel data of the valve phantom was processed with offline beamforming programs. We compared B-mode images obtained through single received-line in a transmission (SRT) method, STA, and fast STA. The results show that fast STA with four-times-reduced events is superior in reconstructing the original shape of the moving valve to other methods. The accuracy of valve location is 97 and 100% better than those with SRT and STA, respectively. The resolution deterioration was found to be below the annoyance threshold considering the improved performance of the shape reconstruction. The obtained results are promising for providing more precise diagnostic information on cardiovascular diseases.

  11. Myocardial Extracellular Volume Fraction with Dual-Energy Equilibrium Contrast-enhanced Cardiac CT in Nonischemic Cardiomyopathy: A Prospective Comparison with Cardiac MR Imaging.

    PubMed

    Lee, Hye-Jeong; Im, Dong Jin; Youn, Jong-Chan; Chang, Suyon; Suh, Young Joo; Hong, Yoo Jin; Kim, Young Jin; Hur, Jin; Choi, Byoung Wook

    2016-07-01

    Purpose To evaluate the feasibility of equilibrium contrast material-enhanced dual-energy cardiac computed tomography (CT) to determine extracellular volume fraction (ECV) in nonischemic cardiomyopathy (CMP) compared with magnetic resonance (MR) imaging. Materials and Methods This study was approved by the institutional review board; informed consent was obtained. Seven healthy subjects and 23 patients (six with hypertrophic CMP, nine with dilated CMP, four with amyloidosis, and four with sarcoidosis) (mean age ± standard deviation, 57.33 years ± 14.82; 19 male participants [63.3%]) were prospectively enrolled. Twelve minutes after contrast material injection (1.8 mL/kg at 3 mL/sec), dual-energy cardiac CT was performed. ECV was measured by two observers independently. Hematocrit levels were compared between healthy subjects and patients with the Mann-Whitney U test. In per-subject analysis, interobserver agreement for CT was assessed with the intraclass correlation coefficient (ICC), and intertest agreement between MR imaging and CT was assessed with Bland-Altman analysis. In per-segment analysis, Student t tests in the linear mixed model were used to compare ECV on CT images between healthy subjects and patients. Results Hematocrit level was 43.44% ± 1.80 for healthy subjects and 41.23% ± 5.61 for patients with MR imaging (P = .16) and 43.50% ± 1.92 for healthy subjects and 41.35% ± 5.92 for patients with CT (P = .15). For observer 1 in per-subject analysis, ECV was 34.18% ± 8.98 for MR imaging and 34.48% ± 8.97 for CT. For observer 2, myocardial ECV was 34.42% ± 9.03 for MR imaging and 33.98% ± 9.05 for CT. Interobserver agreement for ECV at CT was excellent (ICC = 0.987). Bland-Altman analysis between MR imaging and CT showed a small bias (-0.06%), with 95% limits of agreement of -1.19 and 1.79. Compared with healthy subjects, patients with hypertrophic CMP, dilated CMP, amyloidosis, and sarcoidosis had significantly higher myocardial ECV at dual

  12. Myocardial Extracellular Volume Fraction with Dual-Energy Equilibrium Contrast-enhanced Cardiac CT in Nonischemic Cardiomyopathy: A Prospective Comparison with Cardiac MR Imaging.

    PubMed

    Lee, Hye-Jeong; Im, Dong Jin; Youn, Jong-Chan; Chang, Suyon; Suh, Young Joo; Hong, Yoo Jin; Kim, Young Jin; Hur, Jin; Choi, Byoung Wook

    2016-07-01

    Purpose To evaluate the feasibility of equilibrium contrast material-enhanced dual-energy cardiac computed tomography (CT) to determine extracellular volume fraction (ECV) in nonischemic cardiomyopathy (CMP) compared with magnetic resonance (MR) imaging. Materials and Methods This study was approved by the institutional review board; informed consent was obtained. Seven healthy subjects and 23 patients (six with hypertrophic CMP, nine with dilated CMP, four with amyloidosis, and four with sarcoidosis) (mean age ± standard deviation, 57.33 years ± 14.82; 19 male participants [63.3%]) were prospectively enrolled. Twelve minutes after contrast material injection (1.8 mL/kg at 3 mL/sec), dual-energy cardiac CT was performed. ECV was measured by two observers independently. Hematocrit levels were compared between healthy subjects and patients with the Mann-Whitney U test. In per-subject analysis, interobserver agreement for CT was assessed with the intraclass correlation coefficient (ICC), and intertest agreement between MR imaging and CT was assessed with Bland-Altman analysis. In per-segment analysis, Student t tests in the linear mixed model were used to compare ECV on CT images between healthy subjects and patients. Results Hematocrit level was 43.44% ± 1.80 for healthy subjects and 41.23% ± 5.61 for patients with MR imaging (P = .16) and 43.50% ± 1.92 for healthy subjects and 41.35% ± 5.92 for patients with CT (P = .15). For observer 1 in per-subject analysis, ECV was 34.18% ± 8.98 for MR imaging and 34.48% ± 8.97 for CT. For observer 2, myocardial ECV was 34.42% ± 9.03 for MR imaging and 33.98% ± 9.05 for CT. Interobserver agreement for ECV at CT was excellent (ICC = 0.987). Bland-Altman analysis between MR imaging and CT showed a small bias (-0.06%), with 95% limits of agreement of -1.19 and 1.79. Compared with healthy subjects, patients with hypertrophic CMP, dilated CMP, amyloidosis, and sarcoidosis had significantly higher myocardial ECV at dual

  13. Thallium-201 perfusion imaging with atrial pacing or dipyridamole stress testing for evaluation of cardiac risk prior to nonvascular surgery

    SciTech Connect

    Stratmann, H.G.; Mark, A.L.; Williams, G.A. )

    1990-09-01

    Preoperative assessment of cardiac risk using thallium-201 scintigraphy and atrial pacing (n = 42) or dipyridamole stress testing (n = 35) was performed in 77 patients (mean age 65 +/- 7 years), who subsequently underwent elective nonvascular surgery. All patients were at low cardiac risk by clinical criteria; none could perform exercise stress testing due to physical limitations. ST depression consistent with ischemia occurred in 11 patients during atrial pacing and in 1 patient during dipyridamole stress testing (p less than 0.01). Nine patients had reversible perfusion defects with atrial pacing, and 10 patients with dipyridamole stress testing; fixed defects were present in 15 and 8 patients, respectively. Only one patient (fixed perfusion defect with atrial pacing, left main disease on coronary angiography) underwent preoperative coronary revascularization. Two patients subsequently had postoperative cardiac events. One patient (reversible perfusion defect with dipyridamole stress testing) experienced sudden death after a nonvascular procedure, while a second patient (normal thallium images with dipyridamole testing) had a nonfatal myocardial infarction. In patients having atrial pacing or dipyridamole stress testing, thallium-201 scans that are normal or show only a fixed perfusion defect confirm a low risk of cardiac complications following nonvascular surgery. The presence of a reversible perfusion defect does not preclude a postoperative course free of cardiac complications in patients at low cardiac risk by clinical criteria.

  14. Three-dimensional representation of integration of functional coronary angiograms and nuclear cardiac imaging

    NASA Astrophysics Data System (ADS)

    Spruijt, Hugo J.; Wahle, Andreas; Marques, Koen M. J.; Westerhof, Nico; Heethaar, Robert M.; Bronzwaer, Jean G.; Visser, Frans C.

    2002-04-01

    The combination of quantitative coronary analysis and flow reserve measurements enables the clinician to determine whether a coronary artery stenosis is significant and therefore has to be treated. 2-D SPECT polar diagrams are made to get information on cardiac perfusion. However, no real 3-D comparison between the anatomical coronary angiography data and the perfusion information can be made. In this feasibility study a first approach is made to create fusion images in 3-D of angiograms and SPECT data. From biplane coronary arteriograms (CAGs), both left and right coronary arteries of five patients have been reconstructed as 3-D models. The reconstruction output was automatically converted into Virtual Reality Markup Language (VRML) scenes. The 2-D polar SPECT data were mapped onto a half-ellipsoid and added to the VRML scene. Registration of the three models was performed interactively using VRML and common Internet browsers.

  15. Ex Vivo 3D Diffusion Tensor Imaging and Quantification of Cardiac Laminar Structure

    PubMed Central

    Helm, Patrick A.; Tseng, Hsiang-Jer; Younes, Laurent; McVeigh, Elliot R.; Winslow, Raimond L.

    2007-01-01

    A three-dimensional (3D) diffusion-weighted imaging (DWI) method for measuring cardiac fiber structure at high spatial resolution is presented. The method was applied to the ex vivo reconstruction of the fiber architecture of seven canine hearts. A novel hypothesis-testing method was developed and used to show that distinct populations of secondary and tertiary eigenvalues may be distinguished at reasonable confidence levels (P ≤ 0.01) within the canine ventricle. Fiber inclination and sheet angles are reported as a function of transmural depth through the anterior, lateral, and posterior left ventricle (LV) free wall. Within anisotropic regions, two consistent and dominant orientations were identified, supporting published results from histological studies and providing strong evidence that the tertiary eigenvector of the diffusion tensor (DT) defines the sheet normal. PMID:16149057

  16. Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure.

    PubMed

    Helm, Patrick A; Tseng, Hsiang-Jer; Younes, Laurent; McVeigh, Elliot R; Winslow, Raimond L

    2005-10-01

    A three-dimensional (3D) diffusion-weighted imaging (DWI) method for measuring cardiac fiber structure at high spatial resolution is presented. The method was applied to the ex vivo reconstruction of the fiber architecture of seven canine hearts. A novel hypothesis-testing method was developed and used to show that distinct populations of secondary and tertiary eigenvalues may be distinguished at reasonable confidence levels (P < or = 0.01) within the canine ventricle. Fiber inclination and sheet angles are reported as a function of transmural depth through the anterior, lateral, and posterior left ventricle (LV) free wall. Within anisotropic regions, two consistent and dominant orientations were identified, supporting published results from histological studies and providing strong evidence that the tertiary eigenvector of the diffusion tensor (DT) defines the sheet normal.

  17. RF interference suppression in a cardiac synchronization system operating in a high magnetic field NMR imaging system

    SciTech Connect

    Damji, A.A.; Snyder, R.E.; Ellinger, D.C.; Witkowski, F.X.; Allen, P.S.

    1988-11-01

    An electrocardiographic (ECG) unit suitable for cardiac-synchronized nuclear magnetic resonance imaging in high magnetic fields is presented. The unit includes lossy transmission lines as ECG leads in order to suppress radio frequency (RF) interference in the electrocardiogram. The unit's immunity to RF interference is demonstrated.

  18. Eikonal-based initiation of fibrillatory activity in thin-walled cardiac propagation models

    NASA Astrophysics Data System (ADS)

    Herlin, Antoine; Jacquemet, Vincent

    2011-12-01

    Reentrant arrhythmias can be simulated in electrophysiological models of electrical impulse propagation governed by a reaction-diffusion system. To facilitate the initiation of a large number of independent episodes of simulated arrhythmias with controllable level of complexity, a new approach is proposed for thin-walled geometries in which depolarization wave dynamics is essentially two-dimensional. Points representing phase singularities are first randomly distributed over the epicardial surface and are assigned a topological charge (direction of rotation). A qualitatively-correct phase map is then reconstructed on the whole surface by interpolation. The eikonal-diffusion equation is used to iteratively regularize the phase map based on a priori information on wavefront propagation. An initial condition for the reaction-diffusion model is created from the resulting phase map with multiple functional/anatomical reentries. Results in an atrial model demonstrate the ability to generate statistical realizations of the same dynamics and to vary the level of complexity measured by the number of phase singularities. A library of 100 simulations with an average number of phase singularities ranging from 1 to 10 is created. An extension to volumetric patient-specific atrial models including fiber orientation and a fast conducting system is presented to illustrate possible applications.

  19. Improved cardiac motion detection from ultrasound images using TDIOF: a combined B-mode/ tissue Doppler approach

    NASA Astrophysics Data System (ADS)

    Tavakoli, Vahid; Stoddard, Marcus F.; Amini, Amir A.

    2013-03-01

    Quantitative motion analysis of echocardiographic images helps clinicians with the diagnosis and therapy of patients suffering from cardiac disease. Quantitative analysis is usually based on TDI (Tissue Doppler Imaging) or speckle tracking. These methods are based on two independent techniques - the Doppler Effect and image registration, respectively. In order to increase the accuracy of the speckle tracking technique and cope with the angle dependency of TDI, herein, a combined approach dubbed TDIOF (Tissue Doppler Imaging Optical Flow) is proposed. TDIOF is formulated based on the combination of B-mode and Doppler energy terms in an optical flow framework and minimized using algebraic equations. In this paper, we report on validations with simulated, physical cardiac phantom, and in-vivo patient data. It is shown that the additional Doppler term is able to increase the accuracy of speckle tracking, the basis for several commercially available echocardiography analysis techniques.

  20. Automatic cable artifact removal for cardiac C-arm CT imaging

    NASA Astrophysics Data System (ADS)

    Haase, C.; Schäfer, D.; Kim, M.; Chen, S. J.; Carroll, J.; Eshuis, P.; Dössel, O.; Grass, M.

    2014-03-01

    Cardiac C-arm computed tomography (CT) imaging using interventional C-arm systems can be applied in various areas of interventional cardiology ranging from structural heart disease and electrophysiology interventions to valve procedures in hybrid operating rooms. In contrast to conventional CT systems, the reconstruction field of view (FOV) of C-arm systems is limited to a region of interest in cone-beam (along the patient axis) and fan-beam (in the transaxial plane) direction. Hence, highly X-ray opaque objects (e.g. cables from the interventional setup) outside the reconstruction field of view, yield streak artifacts in the reconstruction volume. To decrease the impact of these streaks a cable tracking approach on the 2D projection sequences with subsequent interpolation is applied. The proposed approach uses the fact that the projected position of objects outside the reconstruction volume depends strongly on the projection perspective. By tracking candidate points over multiple projections only objects outside the reconstruction volume are segmented in the projections. The method is quantitatively evaluated based on 30 simulated CT data sets. The 3D root mean square deviation to a reference image could be reduced for all cases by an average of 50 % (min 16 %, max 76 %). Image quality improvement is shown for clinical whole heart data sets acquired on an interventional C-arm system.

  1. Multi-oriented windowed harmonic phase reconstruction for robust cardiac strain imaging.

    PubMed

    Cordero-Grande, Lucilio; Royuela-del-Val, Javier; Sanz-Estébanez, Santiago; Martín-Fernández, Marcos; Alberola-López, Carlos

    2016-04-01

    The purpose of this paper is to develop a method for direct estimation of the cardiac strain tensor by extending the harmonic phase reconstruction on tagged magnetic resonance images to obtain more precise and robust measurements. The extension relies on the reconstruction of the local phase of the image by means of the windowed Fourier transform and the acquisition of an overdetermined set of stripe orientations in order to avoid the phase interferences from structures outside the myocardium and the instabilities arising from the application of a gradient operator. Results have shown that increasing the number of acquired orientations provides a significant improvement in the reproducibility of the strain measurements and that the acquisition of an extended set of orientations also improves the reproducibility when compared with acquiring repeated samples from a smaller set of orientations. Additionally, biases in local phase estimation when using the original harmonic phase formulation are greatly diminished by the one here proposed. The ideas here presented allow the design of new methods for motion sensitive magnetic resonance imaging, which could simultaneously improve the resolution, robustness and accuracy of motion estimates.

  2. Fluoroscopy-based method to determine heart geometry for functional imaging of cardiac electrical activity

    NASA Astrophysics Data System (ADS)

    Ghanem, Raja N.; Ramanathan, Charulatha; Jia, Ping; Rudy, Yoram

    2003-05-01

    A fluoroscopy based method for determining heart surface geometry has been developed and validated in phantom and human studies. Biplane fluoroscopic projections were calibrated independently. The heart contour was segmented in each projection and corresponding contour points were matched using epipolar geometry. Points in 3D were reconstructed from the corresponding contour points using point reconstruction. B-splines were approximated from the reconstructed points and meshed to form the heart surface. The fluoroscopy-reconstructed heart was validated in a phantom and human study by comparison to CT imaging. Mean, minimum, maximum and standard deviation of the absolute distance errors were computed for the fluoroscopy-reconstructed heart relative to the CT heart. The mean absolute distance error for the phantom was 4mm. The mean absolute distance error for the human subject was 10 mm. In addition to validating the geometry, we also evaluated in the human subject the feasibility of noninvasive imaging of normal cardiac electrical activity on the fluoroscopy-reconstructed heart by comparing the results to those obtained on the CT heart. Noninvasive images on the fluoroscopy-reconstructed heart by showed close correlation with those obtained on the CT heart (CC=0.70).

  3. Multi-oriented windowed harmonic phase reconstruction for robust cardiac strain imaging.

    PubMed

    Cordero-Grande, Lucilio; Royuela-del-Val, Javier; Sanz-Estébanez, Santiago; Martín-Fernández, Marcos; Alberola-López, Carlos

    2016-04-01

    The purpose of this paper is to develop a method for direct estimation of the cardiac strain tensor by extending the harmonic phase reconstruction on tagged magnetic resonance images to obtain more precise and robust measurements. The extension relies on the reconstruction of the local phase of the image by means of the windowed Fourier transform and the acquisition of an overdetermined set of stripe orientations in order to avoid the phase interferences from structures outside the myocardium and the instabilities arising from the application of a gradient operator. Results have shown that increasing the number of acquired orientations provides a significant improvement in the reproducibility of the strain measurements and that the acquisition of an extended set of orientations also improves the reproducibility when compared with acquiring repeated samples from a smaller set of orientations. Additionally, biases in local phase estimation when using the original harmonic phase formulation are greatly diminished by the one here proposed. The ideas here presented allow the design of new methods for motion sensitive magnetic resonance imaging, which could simultaneously improve the resolution, robustness and accuracy of motion estimates. PMID:26745763

  4. Cardiac function and perfusion dynamics measured on a beat-by-beat basis in the live mouse using ultra-fast 4D optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel

    2015-03-01

    The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.

  5. Cardiac catheterization

    MedlinePlus

    Catheterization - cardiac; Heart catheterization; Angina - cardiac catheterization; CAD - cardiac catheterization; Coronary artery disease - cardiac catheterization; Heart valve - cardiac catheterization; Heart failure - ...

  6. [Role of echocardiography in monitoring of cardiac toxicity of cancer pharmacotherapy. Expert consensus statement of the Polish Clinical Forum for Cardiovascular Imaging].

    PubMed

    Piotrowski, Grzegorz; Gawor, Rafał; Gawor, Zenon; Szmit, Sebastian; Kasprzak, Jarosław D; Miśkiewicz, Zbigniew; Opolski, Grzegorz; Torbicki, Adam; Krzakowski, Maciej; Filipiak, Krzysztof J; Szyszka, Andrzej; Płońska-Gościniak, Edyta

    2014-01-01

    Recent oncology development results in significant reduction of morbidity and mortality of several kinds of cancer. Such great achievements are at the cost of frequent cardiotoxicity, which predominantly is manifested as cardiomyopathy, cardiac dysfunction and heart failure (HF). Cardiotoxicity may manifest early - during treatment or late - after treatment completion. There are type 1 - anthracycline-related and type 2 - trastuzumab-related cardiotoxicity. Early detection of cardiotoxicity is crucial for preventing late heart dysfunction and HF. Baseline echocardiographic assessment should be performed in every patient before initiation of cancer treatment and serial monitoring of cardiac safety by means of echocardiography is recommended. The most widely used for this purpose is left ventricular ejection fraction (LVEF) calculated by Simpson's method with 2 dimensional transthoracic echocardiography. LVEF has numerous limitations, among which significant inter- and intraobserver variability, late decrease of LVEF with its often irreversibility are the most important. Noncontrast 3 dimesional echocardiography is the most reproducible technique for LVEF measurement. Newer echocardiographic technique - myocardial strain imaging has the potential to detect early subclinical cardiac dysfunction due to cardiotoxicity and may be used for the prediction of LV dysfunction. The role of other echocardiographic parameters, particularly of LV diastolic function has not been exactly defined in literature. The decision on discontinuation or modification of cancer therapy should be based on 2 improper, separate measurements of particular echocardiographic parameter or better more than 1 improper parameter should be taken into account. After completion of cancer treatment, echocardiography follow-up is recommended to detect late cardiotoxicity. PMID:24961458

  7. Assessment of cardiac function using myocardial perfusion imaging technique on SPECT with 99mTc sestamibi

    NASA Astrophysics Data System (ADS)

    Gani, M. R. A.; Nazir, F.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    Suspicion on coronary heart disease can be confirmed by observing the function of left ventricle cardiac muscle with Myocardial Perfusion Imaging techniques. The function perfusion itself is indicated by the uptake of radiopharmaceutical tracer. The 31 patients were studied undergoing the MPI examination on Gatot Soebroto Hospital using 99mTc-sestamibi radiopharmaceutical with stress and rest conditions. Stress was stimulated by physical exercise or pharmacological agent. After two hours, the patient did rest condition on the same day. The difference of uptake percentage between stress and rest conditions will be used to determine the malfunction of perfusion due to ischemic or infarct. Degradation of cardiac function was determined based on the image-based assessment of five segments of left ventricle cardiac. As a result, 8 (25.8%) patients had normal myocardial perfusion and 11 (35.5%) patients suspected for having partial ischemia. Total ischemia occurred to 8 (25.8%) patients with reversible and irreversible ischemia and the remaining 4 (12.9%) patients for partial infarct with characteristic the percentage of perfusion ≤50%. It is concluded that MPI technique of image-based assessment on uptake percentage difference between stress and rest conditions can be employed to predict abnormal perfusion as complementary information to diagnose the cardiac function.

  8. Utility of cardiac magnetic resonance imaging, echocardiography and electrocardiography for the prediction of clinical response and long-term survival following cardiac resynchronisation therapy.

    PubMed

    Ellims, Andris H; Pfluger, Heinz; Elsik, Maros; Butler, Michelle J; Hare, James L; Taylor, Andrew J

    2013-08-01

    Cardiac resynchronisation therapy (CRT) can reduce symptoms, hospitalisations, and mortality in patients with severe left ventricular (LV) systolic dysfunction and electro-mechanical dyssynchrony. Unfortunately, approximately 30 % of eligible patients fail to respond to CRT. This study prospectively compared electrocardiography (ECG), echocardiography, and cardiac magnetic resonance (CMR) imaging for the prediction of response to CRT. We performed ECG, echocardiography and CMR on 46 patients prior to planned CRT implantation. Patients were divided into predicted responder and non-responder groups using previously described criteria for each modality. Changes in indicators of CRT response were recorded 6 months post-implantation, and later for transplant-free survival. Less dyspnoea, lower levels of N-terminal pro-brain natriuretic peptide, more LV reverse remodelling, and longer transplant-free survival were observed in predicted responders compared to predicted non-responders using each of the three modalities (p < 0.05 for each comparison). Additionally, for patients with QRS duration <150 ms and/or non-left bundle branch block (non-LBBB) QRS morphology, CMR predicted both clinical response and improved longer term transplant-free survival (80 % transplant-free survival in predicted responders vs. 20 % in predicted non-responders, p = 0.04). ECG and cardiac imaging techniques predict improvements in markers of response following CRT with similar accuracy. However, for CRT candidates with shorter, non-LBBB QRS complexes, a subgroup known to derive less benefit from CRT, CMR may predict those who are more likely to gain both symptomatic and survival benefits.

  9. Assessment of Left Ventricular Function in Cardiac MSCT Imaging by a 4D Hierarchical Surface-Volume Matching Process

    PubMed Central

    Simon, Antoine; Boulmier, Dominique; Coatrieux, Jean-Louis; Le Breton, Hervé

    2006-01-01

    Multislice computed tomography (MSCT) scanners offer new perspectives for cardiac kinetics evaluation with 4D dynamic sequences of high contrast and spatiotemporal resolutions. A new method is proposed for cardiac motion extraction in multislice CT. Based on a 4D hierarchical surface-volume matching process, it provides the detection of the heart left cavities along the acquired sequence and the estimation of their 3D surface velocity fields. A Markov random field model is defined to find, according to topological descriptors, the best correspondences between a 3D mesh describing the left endocardium at one time and the 3D acquired volume at the following time. The global optimization of the correspondences is realized with a multiresolution process. Results obtained on simulated and real data show the capabilities to extract clinically relevant global and local motion parameters and highlight new perspectives in cardiac computed tomography imaging. PMID:23165027

  10. Investigations on the efficiency of cardiac-gated methods for the acquisition of diffusion-weighted images

    NASA Astrophysics Data System (ADS)

    Nunes, Rita G.; Jezzard, Peter; Clare, Stuart

    2005-11-01

    Diffusion-weighted images are inherently very sensitive to motion. Pulsatile motion of the brain can give rise to artifactual signal attenuation leading to over-estimation of the apparent diffusion coefficients, even with snapshot echo planar imaging. Such miscalculations can result in erroneous estimates of the principal diffusion directions. Cardiac gating can be performed to confine acquisition to the quiet portion of the cycle. Although effective, this approach leads to significantly longer acquisition times. On the other hand, it has been demonstrated that pulsatile motion is not significant in regions above the corpus callosum. To reduce acquisition times and improve the efficiency of whole brain cardiac-gated acquisitions, the upper slices of the brain can be imaged during systole, reserving diastole for those slices most affected by pulsatile motion. The merits and disadvantages of this optimized approach are investigated here, in comparison to a more standard gating method and to the non-gated approach.

  11. CMR Imaging With Rapid Visual T1 Assessment Predicts Mortality in Patients Suspected of Cardiac Amyloidosis

    PubMed Central

    White, James A.; Kim, Han W.; Shah, Dipan; Fine, Nowell; Kim, Ki-Young; Wendell, David C.; Al-Jaroudi, Wael; Parker, Michele; Patel, Manesh; Gwadry-Sridhar, Femida; Judd, Robert M.; Kim, Raymond J.

    2014-01-01

    OBJECTIVES This study tested the diagnostic and prognostic utility of a rapid, visual T1 assessment method for identification of cardiac amyloidosis (CA) in a “real-life” referral population undergoing cardiac magnetic resonance for suspected CA. BACKGROUND In patients with confirmed CA, delayed-enhancement cardiac magnetic resonance (DE-CMR) frequently shows a diffuse, global hyperenhancement (HE) pattern. However, imaging is often technically challenging, and the prognostic significance of diffuse HE is unclear. METHODS Ninety consecutive patients referred for suspected CA and 64 hypertensive patients with left ventricular hypertrophy (LVH) were prospectively enrolled and underwent a modified DE-CMR protocol. After gadolinium administration a method for rapid, visual T1 assessment was used to identify the presence of diffuse HE during the scan, allowing immediate optimization of settings for the conventional DE-CMR that followed. The primary endpoint was all-cause mortality. RESULTS Among patients with suspected CA, 66% (59 of 90) demonstrated HE, with 81% (48 of 59) of these meeting pre-specified visual T1 assessment criteria for diffuse HE. Among hypertensive LVH patients, 6% (4 of 64) had HE, with none having diffuse HE. During 29 months of follow-up (interquartile range: 12 to 44 months), there were 50 (56%) deaths in patients with suspected CA and 4 (6%) in patients with hypertensive LVH. Multivariable analysis demonstrated that the presence of diffuse HE was the most important predictor of death in the group with suspected CA (hazard ratio: 5.5, 95% confidence interval: 2.7 to 11.0; p < 0.0001) and in the population as a whole (hazard ratio: 6.0, 95% confidence interval 3.0 to 12.1; p < 0.0001). Among 25 patients with myocardial histology obtained during follow-up, the sensitivity, specificity, and accuracy of diffuse HE in the diagnosis of CA were 93%, 70%, and 84%, respectively. CONCLUSIONS Among patients suspected of CA, the presence of diffuse HE by

  12. Evaluation of cardiac functions of cirrhotic children using serum brain natriuretic peptide and tissue Doppler imaging

    PubMed Central

    Fattouh, Aya M; El-Shabrawi, Mortada H; Mahmoud, Enas H; Ahmed, Wafaa O

    2016-01-01

    Background: Cirrhotic cardiomyopathy (CCM) is described as the presence of cardiac dysfunction in cirrhotic patients. In children with chronic liver disease, CCM has been very rarely investigated. The Aim of the Study: Is to evaluate the cardiac function of cirrhotic children to identify those with CCM. Patients and Methods: Fifty-two cirrhotic patients and 53 age and sex matched controls were assessed using serum brain-type natriuretic peptide (BNP), conventional echocardiography, and tissue Doppler imaging. Results: Patients’ mean ages were 7.66 ± 4.16 years (vs. 6.88 ± 3.04 years for the controls). The study included 27 males and 25 females (28 and 25 respectively for the controls). Patients had larger left atrium and right ventricle (RV) (P value 0.05) and increased LV posterior wall thickness than controls (P value 0.04). They had higher late atrial diastolic filling velocity (A) of tricuspid valve (TV) inflow (0.59 ± 0.17 vs. 0.5 ± 0.1 m/s, P < 0.001) and lower ratios between the early diastolic filling velocity (E) and A wave velocity (E/A) of both mitral valve and TV inflow (1.7 ± 0.35 vs. 1.87 ± 0.34 and 1.3 ± 0.3 vs. 1.5 ± 0.3, P < 0.005 and 0.0008, respectively). Patients had significantly longer isovolumic relaxation time of LV (45.5 ± 11.1 vs. 40.5 ± 7.7 ms P 0.008), higher late diastolic peak myocardial velocity (A’) (11.8 ± 3.6 vs. 9.5 ± 2.7 ms, P 0.0003) and systolic velocity (S’) of the RV (14.5 ± 2.7 vs. 13.2 ± 2.9, P 0.01) and significantly higher myocardial performance index of both LV and RV (P 0.001 and 0.01). BNP levels were significantly higher in cases than controls (5.25 ng/l vs. 3.75 ng/l, P < 0.04) and was correlated with the E wave velocity of the TV (r 0.004) and the E/E’ ratio of the RV (r 0.001). None of the clinical or laboratory data were correlated with the BNP level. Conclusion Cirrhotic children have cardiac dysfunction mainly in the form of diastolic dysfunction. There is a need that CCM be more accurately

  13. Laser-initiated Coulomb explosion imaging of small molecules

    NASA Astrophysics Data System (ADS)

    Brichta, Jean-Paul

    Momentum vectors of fragment ions produced by the Coulomb explosion of COz+2 (z = 3 - 6) and CSz+2 (z = 3 - 13) in an intense laser field (˜50 fs, 1 x 1015 W/cm2) are determined by the triple coincidence imaging technique. The molecular structure from symmetric and asymmetric explosion channels is reconstructed from the measured momentum vectors using a novel simplex algorithm that can be extended to study larger molecules. Physical parameters such as bend angle and bond lengths are extracted from the data and are qualitatively described using an enhanced ionization model that predicts the laser intensity required for ionization as a function of bond length using classical, over the barrier arguments. As a way of going beyond the classical model, molecular ionization is examined using a quantum-mechanical, wave function modified ADK method. The ADK model is used to calculate the ionization rates of H2, N 2 and CO2 as a function of initial vibrational level of the molecules. A strong increase in the ionization rate, with vibrational level, is found for H2, while N2 and CO2 show a lesser increase. The prospects for using ionization rates as a diagnostic for vibrational level population are assessed.

  14. Fluorescent magnetic iron oxide nanoparticles for cardiac precursor cell selection from stromal vascular fraction and optimization for magnetic resonance imaging

    PubMed Central

    Verma, Vinod Kumar; Kamaraju, Suguna Ratnakar; Kancherla, Ravindranath; Kona, Lakshmi K; Beevi, Syed Sultan; Debnath, Tanya; Usha, Shalini P; Vadapalli, Rammohan; Arbab, Ali Syed; Chelluri, Lakshmi Kiran

    2015-01-01

    Fluorescent magnetic iron oxide nanoparticles have been used to label cells for imaging as well as for therapeutic purposes. The purpose of this study was to modify the approach to develop a nanoprobe for cell selection and imaging with a direct therapeutic translational focus. The approach involves physical coincubation and adsorption of superparamagnetic iron oxide nanoparticle-polyethylene glycol (SPION-PEG) complexes with a monoclonal antibody (mAb) or a set of antibodies. Flow cytometry, confocal laser scanning microscopy, transmission electron microscopy, iron staining, and magnetic resonance imaging were used to assess cell viability, function, and labeling efficiency. This process has been validated by selecting adipose tissue-derived cardiac progenitor cells from the stromal vascular fraction using signal regulatory protein alpha (SIRPA)/kinase domain receptor (KDR) mAbs. These markers were chosen because of their sustained expression during cardiomyocyte differentiation. Sorting of cells positive for SIRPA and KDR allowed the enrichment of cardiac progenitors with 90% troponin-I positivity in differentiation cultures. SPION labeled cardiac progenitor cells (1×105 cells) was mixed with gel and used for 3T magnetic resonance imaging at a concentration, as low as 12.5 μg of iron. The toxicity assays, at cellular and molecular levels, did not show any detrimental effects of SPION. Our study has the potential to achieve moderate to high specific cell selection for the dual purpose of imaging and therapy. PMID:25653519

  15. Combining short-axis and long-axis cardiac MR images by applying a super-resolution reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Rahman, Sami u.; Wesarg, Stefan

    2010-03-01

    In cardiac MR images the slice thickness is normally greater than the pixel size within the slices. In general, better segmentation and analysis results can be expected for isotropic high-resolution (HR) data sets. If two orthogonal data sets, e. g. short-axis (SA) and long-axis (LA) volumes are combined, an increase in resolution can be obtained. In this work we employ a super-resolution reconstruction (SRR) algorithm for computing high-resolution data sets from two orthogonal SA and LA volumes. In contrast to a simple averaging of both data in the overlapping region, we apply a maximum a posteriori approach. There, an observation model is employed for estimating an HR image that best reproduces the two low-resolution input data sets. For testing the SRR approach, we use clinical MRI data with an in-plane resolution of 1.5 mm×1.5 mm and a slice thickness of 8 mm. We show that the results obtained with our approach are superior to currently used averaging techniques. Due to the fact that the heart deforms over the cardiac cycle, we investigate further, how the replacement of a rigid registration by a deformable registration as preprocessing step improves the quality of the final HR image data. We conclude that image quality is dramatically enhanced by applying an SRR technique especially for cardiac MR images where the resolution in slice-selection direction is about five times lower than within the slices.

  16. Aorta segmentation in non-contrast cardiac CT images using an entropy-based cost function

    NASA Astrophysics Data System (ADS)

    Avila-Montes, Olga C.; Kukure, Uday; Kakadiaris, Ioannis A.

    2010-03-01

    Studies have shown that aortic calcification is associated with increased risk of cardiovascular disease. Furthermore, aortic calcium assessment can be performed on standard cardiac calcium scoring Computed Tomography scans, which may help to avoid additional imaging studies. In this paper, we present an entropy-based, narrow band restricted, iterative method for segmentation of the ascending aorta in non-contrast CT images, as a step towards aortic calcification detection and pericardial fat quantitation. First, an estimate of the aorta center and radius is obtained by applying dynamic programming in Hough space. In the second step, these estimates serve to reduce the aorta boundary search area to within a narrow band, and the contour is updated iteratively using dynamic programming methods. Our algorithm is able to overcome the limitations of previous approaches in characterizing (i) the boundary edge features and (ii) non-circular shape at aortic root. The results from the proposed method compare favorably with the manually traced aorta boundaries and outperform other approaches in terms of boundary distance and volume overlap.

  17. Robust image-based estimation of cardiac tissue parameters and their uncertainty from noisy data.

    PubMed

    Neumann, Dominik; Mansi, Tommaso; Georgescu, Bogdan; Kamen, Ali; Kayvanpour, Elham; Amr, Ali; Sedaghat-Hamedani, Farbod; Haas, Jan; Katus, Hugo; Meder, Benjamin; Hornegger, Joachim; Comaniciu, Dorin

    2014-01-01

    Clinical applications of computational cardiac models require precise personalization, i.e. fitting model parameters to capture patient's physiology. However, due to parameter non-identifiability, limited data, uncertainty in the clinical measurements, and modeling assumptions, various combinations of parameter values may exist that yield the same quality of fit. Hence, there is a need for quantifying the uncertainty in estimated parameters and to ascertain the uniqueness of the found solution. This paper presents a stochastic method to estimate the parameters of an image-based electromechanical model of the heart and their uncertainty due to noise in measurements. First, Bayesian inference is applied to fully estimate the posterior probability density function (PDF) of the model. To that end, Markov Chain Monte Carlo sampling is used, which is made computationally tractable by employing a fast surrogate model based on Polynomial Chaos Expansion, instead of the true forward model. Then, we use the mean-shift algorithm to automatically find the modes of the PDF and select the most likely one while being robust to noise. The approach is used to estimate global active stress and passive stiffness from invasive pressure and image-based volume quantification. Experiments on eight patients showed that not only our approach yielded goodness of fits equivalent to a well-established deterministic method, but we could also demonstrate the non-uniqueness of the problem and report uncertainty estimates, crucial information for subsequent clinical assessments of the personalized models. PMID:25485357

  18. Quality of myocardial perfusion single-photon emission tomography imaging: multicentre evaluation with a cardiac phantom.

    PubMed

    Heikkinen, J; Ahonen, A; Kuikka, J T; Rautio, P

    1999-10-01

    The aim of the study was to evaluate quality of myocardial perfusion single-photon emission tomography (SPET) imaging in Finnish hospitals. Nineteen nuclear medicine departments participated in the study. A myocardial phantom simulating clinical stress and rest conditions was filled with routinely used isotope solution (technetium-99m or thallium-201). The cardiac insert included three reversible defects (simulating ischaemia): 30x30x14 mm(3) septal (90% recovery at rest), 30x20x14 mm(3) posterobasal (full recovery) and 20x20x14 mm(3) lateral (full recovery). There were two fixed defects (simulating infarct): 30x20x14 mm(3) postero-apical and 10x10x6 mm(3) apical. The phantom was imaged and interpreted as a myocardial perfusion patient. Reconstruction, printout and reporting were performed according to the clinical routine of each centre. Three nuclear medicine specialists anonymously evaluated the quality of the image sets. The visual scores of the experts were ranked from 1 to 5. Additionally, points from 0 to 8 were given to research reports according to how well perfusion defects were detected. Quantitative points were calculated by comparing background-subtracted and -normalized counts from 12 regions of interest between stress and rest images. Results for technetium studies (12 departments) were better than those for thallium (7 departments). The average visual scores of the experts were 3.7+/-0. 9 for all image sets, 3.2+/-0.5 for thallium users and 3.9+/-0.6 for technetium users (P=0.003). Five laboratories received a low score which, according to the specialists, is barely sufficient for limited clinical use. Average points for the reports were 5.6+/-2.1, 4.9+/-1.5 and 6.5+/-1.7 (P=0.051), and for the quantitation 8.2+/-1. 0, 7.9+/-0.4 and 8.4+/-1.1 (P=0.185), respectively. Seven out of 22 interpreters did not detect the lateral 20x20x14 mm(3) defect; five of them used thallium. This study demonstrated the heterogeneity of myocardial perfusion SPET in

  19. Imaging of cardiac perfusion of free-breathing small animals using dynamic phase-correlated micro-CT

    SciTech Connect

    Sawall, Stefan; Kuntz, Jan; Socher, Michaela; Knaup, Michael; Hess, Andreas; Bartling, Soenke; Kachelriess, Marc

    2012-12-15

    Purpose:Mouse models of cardiac diseases have proven to be a valuable tool in preclinical research. The high cardiac and respiratory rates of free breathing mice prohibit conventional in vivo cardiac perfusion studies using computed tomography even if gating methods are applied. This makes a sacrification of the animals unavoidable and only allows for the application of ex vivo methods. Methods: To overcome this issue the authors propose a low dose scan protocol and an associated reconstruction algorithm that allows for in vivo imaging of cardiac perfusion and associated processes that are retrospectively synchronized to the respiratory and cardiac motion of the animal. The scan protocol consists of repetitive injections of contrast media within several consecutive scans while the ECG, respiratory motion, and timestamp of contrast injection are recorded and synchronized to the acquired projections. The iterative reconstruction algorithm employs a six-dimensional edge-preserving filter to provide low-noise, motion artifact-free images of the animal examined using the authors' low dose scan protocol. Results: The reconstructions obtained show that the complete temporal bolus evolution can be visualized and quantified in any desired combination of cardiac and respiratory phase including reperfusion phases. The proposed reconstruction method thereby keeps the administered radiation dose at a minimum and thus reduces metabolic inference to the animal allowing for longitudinal studies. Conclusions: The authors' low dose scan protocol and phase-correlated dynamic reconstruction algorithm allow for an easy and effective way to visualize phase-correlated perfusion processes in routine laboratory studies using free-breathing mice.

  20. Comparison of cancer risk associated with low-dose ionizing radiation from cardiac imaging and therapeutic procedures after acute myocardial infarction in women versus men.

    PubMed

    Lawler, Patrick R; Afilalo, Jonathan; Eisenberg, Mark J; Pilote, Louise

    2013-11-15

    Patients with cardiovascular disease are increasingly exposed to low-dose ionizing radiation (LDIR) from diagnostic and therapeutic procedures. Previous studies have suggested that the malignancy risk associated with LDIR may be greatest in women and in young patients. We sought to compare the effect of LDIR on incident cancer across gender and age strata in a population-based cohort of patients with myocardial infarction (MI). All initially cancer-free patients with MI from 1996 to 2006 were identified in a province-wide administrative database. Procedure-specific LDIR dose estimates were used to generate a cumulative cardiac LDIR exposure variable. Time-dependent multivariate Cox regression was used to determine the relation between cardiac LDIR and incident cancer. A time-lag covariate of 3 years was used wherein a de novo cancer could only be attributed to LDIR incurred at least 3 years earlier. The effect of age and gender on LDIR-associated risk of cancer was evaluated with stratified models and the addition of interaction terms. The study cohort consisted of 56,606 men and 26,255 women. For each millisievert of cardiac LDIR, women were more likely to develop a cancer (hazard ratio 1.005, 95% confidence interval 1.002 to 1.008) than men (hazard ratio 1.002, 95% confidence interval 1.001 to 1.004) after adjusting for age, noncardiac LDIR, and covariates (p for interaction = 0.014). Contrarily, over the range studied (predominantly patients aged >50 years), age was not a determinant of LDIR-associated risk of cancer. In conclusion, women exposed to LDIR from cardiac imaging and therapeutic procedures after MI are at a greater risk of incident cancer compared with men after similar exposure. The extrapolated absolute risk from LDIR exposure would nonetheless be expected to be low.

  1. Contour definition and tracking in cardiac imaging through the integration of knowledge and image evidence.

    PubMed

    Baroni, Maurizio; Barletta, Giuseppe

    2004-05-01

    The main contribution of this paper is the use of simple processing techniques, incorporated in a new multistage approach, to automatically delineate left ventricle contours. Another contribution is the proposal of the centerline distances for contour comparison, which promises a more accurate measurement than the common method, based on the distance to the closest point. Edges are detected by Gaussian filtering at coarse and fine scale. The region of interest is defined as a binary map where coarse edges are extracted throughout image sequence. A contour template is matched against the gradient of the first image. Candidate boundary points are instantiated by scanning the coarse edge map perpendicularly to the matched template. A candidate contour is estimated from these points by maximizing an edge likelihood function. A region growing algorithm gives another candidate contour. Both edge and region candidate contours are then integrated with the edge map computed at fine scale by maximizing another likelihood function. Evaluation was carried out on 12 echocardiographic and 4 angiocardiographic sequences (for a total of 289 frames). Distances between computer-generated contours and the contours traced by three experts were within interobserver variability, unlike the results obtained by Acoustic Quantification and by a general-purpose deformable model.

  2. Individual sarcomere length determination from isolated cardiac cells using high-resolution optical microscopy and digital image processing.

    PubMed Central

    Roos, K P; Brady, A J

    1982-01-01

    Discrete sarcomere lengths have been determined from dynamically contracting isolated cardiac cells with a high-speed, high-resolution direct optical imaging system. Calcium-tolerant cardiac cells from the rat are isolated by perfusion with collagenase and hyaluronidase. Individual sarcomere lengths can be determined by directly imaging the cell's striation pattern onto a solid-state charge-coupled device (CCD) detector interfaced with a digital computer. The precision of detection in a real light microscopic optical system is discussed in relation to the type of image detector, optical contract enhancement techniques, and digital image processing. The optical performance of the direct striation pattern image apparatus has been determined empirically with test grids under standard bright-field and Nomarski-differential interference contrast (DIC) conditions for application to real muscle imaging. Discrete striation positions of isolated cells have been detected and followed with high precision during phasic contraction-relaxation cycles down to average sarcomere lengths as short as 1.43 +/- 0.053 microns. The maximum rates of contraction and relaxation are rapid and synchronous in time course along the length of the cell. These results indicate that direct optical imaging can provide an accurate means to monitor discrete striations and sarcomere lengths along the length of Ca2+-tolerant heart cells. Images FIGURE 1 FIGURE 4 PMID:7183337

  3. Automatic computation of left ventricular volume changes over a cardiac cycle from echocardiography images by nonlinear dimensionality reduction.

    PubMed

    Alizadeh Sani, Zahra; Shalbaf, Ahmad; Behnam, Hamid; Shalbaf, Reza

    2015-02-01

    Curve of left ventricular (LV) volume changes throughout the cardiac cycle is a fundamental parameter for clinical evaluation of various cardiovascular diseases. Currently, this evaluation is often performed manually which is tedious and time consuming and suffers from significant interobserver and intraobserver variability. This paper introduces a new automatic method, based on nonlinear dimensionality reduction (NLDR) for extracting the curve of the LV volume changes over a cardiac cycle from two-dimensional (2-D) echocardiography images. Isometric feature mapping (Isomap) is one of the most popular NLDR algorithms. In this study, a modified version of Isomap algorithm, where image to image distance metric is computed using nonrigid registration, is applied on 2-D echocardiography images of one cycle of heart. Using this approach, the nonlinear information of these images is embedded in a 2-D manifold and each image is characterized by a symbol on the constructed manifold. This new representation visualizes the relationship between these images based on LV volume changes and allows extracting the curve of the LV volume changes automatically. Our method in comparison to the traditional segmentation algorithms does not need any LV myocardial segmentation and tracking, particularly difficult in the echocardiography images. Moreover, a large data set under various diseases for training is not required. The results obtained by our method are quantitatively evaluated to those obtained manually by the highly experienced echocardiographer on ten healthy volunteers and six patients which depict the usefulness of the presented method.

  4. Locally homogenized and de-noised vector fields for cardiac fiber tracking in DT-MRI images

    NASA Astrophysics Data System (ADS)

    Akhbardeh, Alireza; Vadakkumpadan, Fijoy; Bayer, Jason; Trayanova, Natalia A.

    2009-02-01

    In this study we develop a methodology to accurately extract and visualize cardiac microstructure from experimental Diffusion Tensor (DT) data. First, a test model was constructed using an image-based model generation technique on Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) data. These images were derived from a dataset having 122x122x500 um3 voxel resolution. De-noising and image enhancement was applied to this high-resolution dataset to clearly define anatomical boundaries within the images. The myocardial tissue was segmented from structural images using edge detection, region growing, and level set thresholding. The primary eigenvector of the diffusion tensor for each voxel, which represents the longitudinal direction of the fiber, was calculated to generate a vector field. Then an advanced locally regularizing nonlinear anisotropic filter, termed Perona-Malik (PEM), was used to regularize this vector field to eliminate imaging artifacts inherent to DT-MRI from volume averaging of the tissue with the surrounding medium. Finally, the vector field was streamlined to visualize fibers within the segmented myocardial tissue to compare the results with unfiltered data. With this technique, we were able to recover locally regularized (homogenized) fibers with a high accuracy by applying the PEM regularization technique, particularly on anatomical surfaces where imaging artifacts were most apparent. This approach not only aides in the visualization of noisy complex 3D vector fields obtained from DT-MRI, but also eliminates volume averaging artifacts to provide a realistic cardiac microstructure for use in electrophysiological modeling studies.

  5. Quantitative MR imaging in fracture dating--Initial results.

    PubMed

    Baron, Katharina; Neumayer, Bernhard; Widek, Thomas; Schick, Fritz; Scheicher, Sylvia; Hassler, Eva; Scheurer, Eva

    2016-04-01

    For exact age determinations of bone fractures in a forensic context (e.g. in cases of child abuse) improved knowledge of the time course of the healing process and use of non-invasive modern imaging technology is of high importance. To date, fracture dating is based on radiographic methods by determining the callus status and thereby relying on an expert's experience. As a novel approach, this study aims to investigate the applicability of magnetic resonance imaging (MRI) for bone fracture dating by systematically investigating time-resolved changes in quantitative MR characteristics after a fracture event. Prior to investigating fracture healing in children, adults were examined for this study in order to test the methodology for this application. Altogether, 31 MR examinations in 17 subjects (♀: 11 ♂: 6; median age 34 ± 15 y, scanned 1-5 times over a period of up to 200 days after the fracture event) were performed on a clinical 3T MR scanner (TimTrio, Siemens AG, Germany). All subjects were treated conservatively for a fracture in either a long bone or in the collar bone. Both, qualitative and quantitative MR measurements were performed in all subjects. MR sequences for a quantitative measurement of relaxation times T1 and T2 in the fracture gap and musculature were applied. Maps of quantitative MR parameters T1, T2, and magnetisation transfer ratio (MTR) were calculated and evaluated by investigating changes over time in the fractured area by defined ROIs. Additionally, muscle areas were examined as reference regions to validate this approach. Quantitative evaluation of 23 MR data sets (12 test subjects, ♀: 7 ♂: 5) showed an initial peak in T1 values in the fractured area (T1=1895 ± 607 ms), which decreased over time to a value of 1094 ± 182 ms (200 days after the fracture event). T2 values also peaked for early-stage fractures (T2=115 ± 80 ms) and decreased to 73 ± 33 ms within 21 days after the fracture event. After that time point, no

  6. Quantitative MR imaging in fracture dating--Initial results.

    PubMed

    Baron, Katharina; Neumayer, Bernhard; Widek, Thomas; Schick, Fritz; Scheicher, Sylvia; Hassler, Eva; Scheurer, Eva

    2016-04-01

    For exact age determinations of bone fractures in a forensic context (e.g. in cases of child abuse) improved knowledge of the time course of the healing process and use of non-invasive modern imaging technology is of high importance. To date, fracture dating is based on radiographic methods by determining the callus status and thereby relying on an expert's experience. As a novel approach, this study aims to investigate the applicability of magnetic resonance imaging (MRI) for bone fracture dating by systematically investigating time-resolved changes in quantitative MR characteristics after a fracture event. Prior to investigating fracture healing in children, adults were examined for this study in order to test the methodology for this application. Altogether, 31 MR examinations in 17 subjects (♀: 11 ♂: 6; median age 34 ± 15 y, scanned 1-5 times over a period of up to 200 days after the fracture event) were performed on a clinical 3T MR scanner (TimTrio, Siemens AG, Germany). All subjects were treated conservatively for a fracture in either a long bone or in the collar bone. Both, qualitative and quantitative MR measurements were performed in all subjects. MR sequences for a quantitative measurement of relaxation times T1 and T2 in the fracture gap and musculature were applied. Maps of quantitative MR parameters T1, T2, and magnetisation transfer ratio (MTR) were calculated and evaluated by investigating changes over time in the fractured area by defined ROIs. Additionally, muscle areas were examined as reference regions to validate this approach. Quantitative evaluation of 23 MR data sets (12 test subjects, ♀: 7 ♂: 5) showed an initial peak in T1 values in the fractured area (T1=1895 ± 607 ms), which decreased over time to a value of 1094 ± 182 ms (200 days after the fracture event). T2 values also peaked for early-stage fractures (T2=115 ± 80 ms) and decreased to 73 ± 33 ms within 21 days after the fracture event. After that time point, no

  7. 3D Multi-Object Segmentation of Cardiac MSCT Imaging by using a Multi-Agent Approach

    PubMed Central

    Fleureau, Julien; Garreau, Mireille; Boulmier, Dominique; Hernandez, Alfredo

    2007-01-01

    We propose a new technique for general purpose, semi-interactive and multi-object segmentation in N-dimensional images, applied to the extraction of cardiac structures in MultiSlice Computed Tomography (MSCT) imaging. The proposed approach makes use of a multi-agent scheme combined with a supervised classification methodology allowing the introduction of a priori information and presenting fast computing times. The multi-agent system is organised around a communicating agent which manages a population of situated agents which segment the image through cooperative and competitive interactions. The proposed technique has been tested on several patient data sets. Some typical results are finally presented and discussed. PMID:18003382

  8. Comparative Performance Of A Standard And High Line Rate Video Imaging System In A Cardiac Catherization Laboratory

    NASA Astrophysics Data System (ADS)

    Rossi, Raymond P.; Ahrens, Charles; Groves, Bertron M.

    1985-09-01

    The performance of a new high line rate (1023) video imaging system (VHR) installed in the cardiac catherization laboratory at the University of Colorado Health Sciences Center is compared to the previously installed standard line rate (525) video imaging system (pre-VHR). Comparative performance was assessed both quantitatively using a standardized evaluation protocol and qualitatively based on analysis of data collected during the observation of clinical procedures for which the cardiologists were asked to rank the quality of the fluoroscopic image. The results of this comparative study are presented and suggest that the performance of the high line rate system is significantly improved over the standard line rate system.

  9. Cardiac arrhythmias as the initial manifestation of adult primary Sjögren's syndrome: a case report and literature review.

    PubMed

    Liang, Minrui; Bao, Liwen; Xiong, Nanqing; Jin, Bo; Ni, Huanchun; Zhang, Jinjin; Zou, Hejian; Luo, Xinping; Li, Jian

    2015-09-01

    Two middle-aged female patients presenting with heart palpitation and electrocardiogram revealed complex cardiac arrhythmias. A review of systems was positive for dry mouth and transient arthralgia, while laboratory and instrumental tests enabled us to make the diagnosis of primary Sjögren's syndrome (pSS). Cardiac electrophysiology revealed atrioventricular node dysfunction and impaired intraventricular conduction. Prednisone therapy induced a significant improvement in symptoms and electrocardiographic readings. The diagnosis of pSS should be considered in a patient presenting with complex cardiac arrhythmias.

  10. Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part II. In Vivo Imaging of Bone Marrow Stromal Cells in Swine with PET/CT and MR Imaging.

    PubMed

    Parashurama, Natesh; Ahn, Byeong-Cheol; Ziv, Keren; Ito, Ken; Paulmurugan, Ramasamy; Willmann, Jürgen K; Chung, Jaehoon; Ikeno, Fumiaki; Swanson, Julia C; Merk, Denis R; Lyons, Jennifer K; Yerushalmi, David; Teramoto, Tomohiko; Kosuge, Hisanori; Dao, Catherine N; Ray, Pritha; Patel, Manishkumar; Chang, Ya-Fang; Mahmoudi, Morteza; Cohen, Jeff Eric; Goldstone, Andrew Brooks; Habte, Frezghi; Bhaumik, Srabani; Yaghoubi, Shahriar; Robbins, Robert C; Dash, Rajesh; Yang, Phillip C; Brinton, Todd J; Yock, Paul G; McConnell, Michael V; Gambhir, Sanjiv S

    2016-09-01

    Purpose To quantitatively determine the limit of detection of marrow stromal cells (MSC) after cardiac cell therapy (CCT) in swine by using clinical positron emission tomography (PET) reporter gene imaging and magnetic resonance (MR) imaging with cell prelabeling. Materials and Methods Animal studies were approved by the institutional administrative panel on laboratory animal care. Seven swine received 23 intracardiac cell injections that contained control MSC and cell mixtures of MSC expressing a multimodality triple fusion (TF) reporter gene (MSC-TF) and bearing superparamagnetic iron oxide nanoparticles (NP) (MSC-TF-NP) or NP alone. Clinical MR imaging and PET reporter gene molecular imaging were performed after intravenous injection of the radiotracer fluorine 18-radiolabeled 9-[4-fluoro-3-(hydroxyl methyl) butyl] guanine ((18)F-FHBG). Linear regression analysis of both MR imaging and PET data and nonlinear regression analysis of PET data were performed, accounting for multiple injections per animal. Results MR imaging showed a positive correlation between MSC-TF-NP cell number and dephasing (dark) signal (R(2) = 0.72, P = .0001) and a lower detection limit of at least approximately 1.5 × 10(7) cells. PET reporter gene imaging demonstrated a significant positive correlation between MSC-TF and target-to-background ratio with the linear model (R(2) = 0.88, P = .0001, root mean square error = 0.523) and the nonlinear model (R(2) = 0.99, P = .0001, root mean square error = 0.273) and a lower detection limit of 2.5 × 10(8) cells. Conclusion The authors quantitatively determined the limit of detection of MSC after CCT in swine by using clinical PET reporter gene imaging and clinical MR imaging with cell prelabeling. (©) RSNA, 2016 Online supplemental material is available for this article. PMID:27332865

  11. Feasibility study to demonstrate cardiac imaging using fast kVp switching dual-energy computed tomography: phantom study

    NASA Astrophysics Data System (ADS)

    Madhav, Priti; Imai, Yasuhiro; Narayanan, Suresh; Dutta, Sandeep; Chandra, Naveen; Hsieh, Jiang

    2012-03-01

    Dual-energy computed tomography is a novel imaging tool that has the potential to reduce beam hardening artifacts and enhance material separation over conventional imaging techniques. Dual-energy acquisitions can be performed by using a fast kVp technology to switch between acquiring adjacent projections at two distinct x-ray spectra (80 and 140 kVp). These datasets can be used to further compute material density and monochromatic images for better material separation and beam hardening reduction by virtue of the projection domain process. The purpose of this study was to evaluate the feasibility of using dual-energy in cardiac imaging for myocardial perfusion detection and coronary artery lumen visualization. Data was acquired on a heart phantom, which consisted of the chambers and aorta filled with Iodine density solution (500 HU @ 120 kVp), a defect region between the aorta and chamber (40 HU @ 120 kVp), two Iodinefilled vessels (400 HU @ 120 kVp) of different diameters with high attenuation (hydroxyapatite) plaques (HAP), and with a 30-cm water equivalent body ring around the phantom. Prospective ECG-gated single-energy and prospective ECG-gated dual-energy imaging was performed. Results showed that the generated monochromatic images had minimal beam hardening artifacts which improved the accuracy and detection of the myocardial defect region. Material density images were useful in differentiating and quantifying the actual size of the plaque and coronary artery lumen. Overall, this study shows that dual-energy cardiac imaging will be a valuable tool for cardiac applications.

  12. Adenosine-stress cardiac magnetic resonance imaging in suspected coronary artery disease: a net cost analysis and reimbursement implications.

    PubMed

    Pilz, Guenter; Patel, Pankaj A; Fell, Ulrich; Ladapo, Joseph A; Rizzo, John A; Fang, Hai; Gunnarsson, Candace; Heer, Tobias; Hoefling, Berthold

    2011-01-01

    The health and economic implications of new imaging technologies are increasingly relevant policy issues. Cardiac magnetic resonance imaging (CMR) is currently not or not sufficiently reimbursed in a number of countries including Germany, presumably because of a limited evidence base. It is unknown, however, whether it can be effectively used to facilitate medical decision-making and reduce costs by serving as a gatekeeper to invasive coronary angiography. We investigated whether the application of CMR in patients suspected of having coronary artery disease (CAD) reduces costs by averting referrals to cardiac catheterization. We used propensity score methods to match 218 patients from a CMR registry to a previously studied cohort in which CMR was demonstrated to reliably identify patients who were low-risk for major cardiac events. Covariates over which patients were matched included comorbidity profiles, demographics, CAD-related symptoms, and CAD risk as measured by Morise scores. We determined the proportion of patients for whom cardiac catheterization was deferred based upon CMR findings. We then calculated the economic effects of practice pattern changes using data on cardiac catheterization and CMR costs. CMR reduced the utilization of cardiac catheterization by 62.4%. Based on estimated catheterization costs of € 619, the utilization of CMR as a gatekeeper reduced per-patient costs by a mean of € 90. Savings were realized until CMR costs exceeded € 386. Cost savings were greatest for patients at low-risk for CAD, as measured by baseline Morise scores, but were present for all Morise subgroups with the exception of patients at the highest risk of CAD. CMR significantly reduces the utilization of cardiac catheterization in patients suspected of having CAD. Per-patient savings range from € 323 in patients at lowest risk of CAD to € 58 in patients at high-risk but not in the highest risk stratum. Because a negative CMR evaluation has high negative

  13. Application of the Karhunen-Loeve transform temporal image filter to reduce noise in real-time cardiac cine MRI

    NASA Astrophysics Data System (ADS)

    Ding, Yu; Chung, Yiu-Cho; Raman, Subha V.; Simonetti, Orlando P.

    2009-06-01

    Real-time dynamic magnetic resonance imaging (MRI) typically sacrifices the signal-to-noise ratio (SNR) to achieve higher spatial and temporal resolution. Spatial and/or temporal filtering (e.g., low-pass filtering or averaging) of dynamic images improves the SNR at the expense of edge sharpness. We describe the application of a temporal filter for dynamic MR image series based on the Karhunen-Loeve transform (KLT) to remove random noise without blurring stationary or moving edges and requiring no training data. In this paper, we present several properties of this filter and their effects on filter performance, and propose an automatic way to find the filter cutoff based on the autocorrelation of the eigenimages. Numerical simulation and in vivo real-time cardiac cine MR image series spanning multiple cardiac cycles acquired using multi-channel sensitivity-encoded MRI, i.e., parallel imaging, are used to validate and demonstrate these properties. We found that in this application, the noise standard deviation was reduced to 42% of the original with no apparent image blurring by using the proposed filter cutoff. Greater noise reduction can be achieved by increasing the length of the image series. This advantage of KLT filtering provides flexibility in the form of another scan parameter to trade for SNR.

  14. A three-dimensional model-based partial volume correction strategy for gated cardiac mouse PET imaging

    NASA Astrophysics Data System (ADS)

    Dumouchel, Tyler; Thorn, Stephanie; Kordos, Myra; DaSilva, Jean; Beanlands, Rob S. B.; deKemp, Robert A.

    2012-07-01

    Quantification in cardiac mouse positron emission tomography (PET) imaging is limited by the imaging spatial resolution. Spillover of left ventricle (LV) myocardial activity into adjacent organs results in partial volume (PV) losses leading to underestimation of myocardial activity. A PV correction method was developed to restore accuracy of the activity distribution for FDG mouse imaging. The PV correction model was based on convolving an LV image estimate with a 3D point spread function. The LV model was described regionally by a five-parameter profile including myocardial, background and blood activities which were separated into three compartments by the endocardial radius and myocardium wall thickness. The PV correction was tested with digital simulations and a physical 3D mouse LV phantom. In vivo cardiac FDG mouse PET imaging was also performed. Following imaging, the mice were sacrificed and the tracer biodistribution in the LV and liver tissue was measured using a gamma-counter. The PV correction algorithm improved recovery from 50% to within 5% of the truth for the simulated and measured phantom data and image uniformity by 5-13%. The PV correction algorithm improved the mean myocardial LV recovery from 0.56 (0.54) to 1.13 (1.10) without (with) scatter and attenuation corrections. The mean image uniformity was improved from 26% (26%) to 17% (16%) without (with) scatter and attenuation corrections applied. Scatter and attenuation corrections were not observed to significantly impact PV-corrected myocardial recovery or image uniformity. Image-based PV correction algorithm can increase the accuracy of PET image activity and improve the uniformity of the activity distribution in normal mice. The algorithm may be applied using different tracers, in transgenic models that affect myocardial uptake, or in different species provided there is sufficient image quality and similar contrast between the myocardium and surrounding structures.

  15. Evolution of cardiac imaging according to the number of scientific articles in medical journals: a long and fruitful journey.

    PubMed

    Garcia-Fernandez, Miguel Angel

    2014-11-01

    The use of cardiac imaging techniques as a diagnostic method in the understanding of physiopathology, as well as in cardiology research has been one of the most important revolutions in the management of cardiac patients, our understanding of physiopathology, and basic research in almost all heart diseases. This article analyzes the literature on echocardiography, cardiovascular magnetic resonance imaging, computed tomography, and nuclear medicine during the last 60 years and provides an overview of how these techniques have developed and how their introduction into daily practice has changed attitudes among cardiologists. The literature not only shows that the implementation of these techniques in daily practice requires an immense amount of research and effort by many working groups throughout the scientific world, but also that techniques that once seemed promising may finally be discarded.

  16. Cardiac imaging using clinical 1.5 t MRI scanners in a murine ischemia/reperfusion model.

    PubMed

    Voelkl, Jakob G J; Haubner, Bernhard J; Kremser, Christian; Mayr, Agnes; Klug, Gert; Loizides, Alexander; Müller, Silvana; Pachinger, Otmar; Schocke, Michael; Metzler, Bernhard

    2011-01-01

    To perform cardiac imaging in mice without having to invest in expensive dedicated equipment, we adapted a clinical 1.5 Tesla (T) magnetic resonance imaging (MRI) scanner for use in a murine ischemia/reperfusion model. Phase-sensitive inversion recovery (PSIR) sequence facilitated the determination of infarct sizes in vivo by late gadolinium enhancement. Results were compared to histological infarct areas in mice after ischemia/reperfusion procedure with a good correlation (r = 0.807, P < .001). In addition, fractional area change (FAC) was assessed with single slice cine MRI and was matched to infarct size (r = -0.837) and fractional shortening (FS) measured with echocardiography (r = 0.860); both P < .001. Here, we demonstrate the use of clinical 1.5 MRI scanners as a feasible method for basic phenotyping in mice. These widely available scanners are capable of investigating in vivo infarct dimensions as well as assessment of cardiac functional parameters in mice with reasonable throughput.

  17. Iron Deposition following Chronic Myocardial Infarction as a Substrate for Cardiac Electrical Anomalies: Initial Findings in a Canine Model

    PubMed Central

    Wang, Xunzhang; Yang, Hsin-Jung; Tang, Richard L. Q.; Thajudeen, Anees; Shehata, Michael; Amorn, Allen M.; Liu, Enzhao; Stewart, Brian; Bennett, Nathan; Harlev, Doron; Tsaftaris, Sotirios A.; Jackman, Warren M.; Chugh, Sumeet S.; Dharmakumar, Rohan

    2013-01-01

    Purpose Iron deposition has been shown to occur following myocardial infarction (MI). We investigated whether such focal iron deposition within chronic MI lead to electrical anomalies. Methods Two groups of dogs (ex-vivo (n = 12) and in-vivo (n = 10)) were studied at 16 weeks post MI. Hearts of animals from ex-vivo group were explanted and sectioned into infarcted and non-infarcted segments. Impedance spectroscopy was used to derive electrical permittivity () and conductivity (). Mass spectrometry was used to classify and characterize tissue sections with (IRON+) and without (IRON-) iron. Animals from in-vivo group underwent cardiac magnetic resonance imaging (CMR) for estimation of scar volume (late-gadolinium enhancement, LGE) and iron deposition (T2*) relative to left-ventricular volume. 24-hour electrocardiogram recordings were obtained and used to examine Heart Rate (HR), QT interval (QT), QT corrected for HR (QTc) and QTc dispersion (QTcd). In a fraction of these animals (n = 5), ultra-high resolution electroanatomical mapping (EAM) was performed, co-registered with LGE and T2* CMR and were used to characterize the spatial locations of isolated late potentials (ILPs). Results Compared to IRON- sections, IRON+ sections had higher, but no difference in. A linear relationship was found between iron content and (p<0.001), but not (p = 0.34). Among two groups of animals (Iron (<1.5%) and Iron (>1.5%)) with similar scar volumes (7.28%±1.02% (Iron (<1.5%)) vs 8.35%±2.98% (Iron (>1.5%)), p = 0.51) but markedly different iron volumes (1.12%±0.64% (Iron (<1.5%)) vs 2.47%±0.64% (Iron (>1.5%)), p = 0.02), QT and QTc were elevated and QTcd was decreased in the group with the higher iron volume during the day, night and 24-hour period (p<0.05). EAMs co-registered with CMR images showed a greater tendency for ILPs to emerge from scar regions with iron versus without iron. Conclusion The electrical behavior of infarcted hearts with iron appears to

  18. Four-dimensional superquadric-based cardiac phantom for Monte Carlo simulation of radiological imaging systems

    SciTech Connect

    Peter, J.; Gilland, D.R.; Jaszczak, R.J.; Coleman, R.E.

    1999-12-01

    A four-dimensional (x, y, z, t) composite superquadric-based object model of the human heart for Monte Carlo simulation of radiological imaging systems has been developed. The phantom models the real temporal geometric conditions of a beating heart for frame rates up to 32 per cardiac cycle. Phantom objects are described by boolean combinations of superquadric ellipsoid sections.Moving spherical coordinate systems are chosen to model wall movement whereby points of the ventricle and atria walls are assumed to move towards a moving center-of-gravity point. Due to the non-static coordinate systems, the atrial/ventricular valve plane of the mathematical heart phantom moves up and down along the left ventricular long axis resulting in reciprocal emptying and filling of atria and ventricles. Compared to the base movement, the epicardial apex as well as the superior atria area are almost fixed in space. Since geometric parameters of the objects are directly applied on intersection calculations of the photon ray with object boundaries during Monte Carlo simulation, no phantom discretization artifacts are involved.

  19. Automatic localization of landmark sets in head CT images with regression forests for image registration initialization

    NASA Astrophysics Data System (ADS)

    Zhang, Dongqing; Liu, Yuan; Noble, Jack H.; Dawant, Benoit M.

    2016-03-01

    Cochlear Implants (CIs) are electrode arrays that are surgically inserted into the cochlea. Individual contacts stimulate frequency-mapped nerve endings thus replacing the natural electro-mechanical transduction mechanism. CIs are programmed post-operatively by audiologists but this is currently done using behavioral tests without imaging information that permits relating electrode position to inner ear anatomy. We have recently developed a series of image processing steps that permit the segmentation of the inner ear anatomy and the localization of individual contacts. We have proposed a new programming strategy that uses this information and we have shown in a study with 68 participants that 78% of long term recipients preferred the programming parameters determined with this new strategy. A limiting factor to the large scale evaluation and deployment of our technique is the amount of user interaction still required in some of the steps used in our sequence of image processing algorithms. One such step is the rough registration of an atlas to target volumes prior to the use of automated intensity-based algorithms when the target volumes have very different fields of view and orientations. In this paper we propose a solution to this problem. It relies on a random forest-based approach to automatically localize a series of landmarks. Our results obtained from 83 images with 132 registration tasks show that automatic initialization of an intensity-based algorithm proves to be a reliable technique to replace the manual step.

  20. Evaluation of a real-time hybrid three-dimensional echo and X-ray imaging system for guidance of cardiac catheterisation procedures.

    PubMed

    Housden, R J; Arujuna, A; Ma, Y; Nijhof, N; Gijsbers, G; Bullens, R; O'Neill, M; Cooklin, M; Rinaldi, C A; Gill, J; Kapetanakis, S; Hancock, J; Thomas, M; Razavi, R; Rhode, K S

    2012-01-01

    Minimally invasive cardiac surgery is made possible by image guidance technology. X-ray fluoroscopy provides high contrast images of catheters and devices, whereas 3D ultrasound is better for visualising cardiac anatomy. We present a system in which the two modalities are combined, with a trans-esophageal echo volume registered to and overlaid on an X-ray projection image in real-time. We evaluate the accuracy of the system in terms of both temporal synchronisation errors and overlay registration errors. The temporal synchronisation error was found to be 10% of the typical cardiac cycle length. In 11 clinical data sets, we found an average alignment error of 2.9 mm. We conclude that the accuracy result is very encouraging and sufficient for guiding many types of cardiac interventions. The combined information is clinically useful for placing the echo image in a familiar coordinate system and for more easily identifying catheters in the echo volume.

  1. Cardiac and Hepatic T2*-Weighted Magnetic Resonance Imaging in Transfusion Dependent Hemoglobinopathy in North West of Iran

    PubMed Central

    Valizadeh, N; Alinejad, V; Hejazi, S; Noroozi, M; Hashemi, A; Rahimi, B; Nateghi, Sh

    2015-01-01

    Background Iron overload is the main transfusion related side effects in patients with transfusion dependent hemoglobinopathies. Severe iron deposition in tissues leads to organ dysfunction. Many organs can be affected such as heart, liver, and endocrine organs. Cardiac failure and liver fibrosis are the consequent of Iron overload in transfusion dependent hemoglobinopathy. Magnetic Resonance Imaging (MRI) is a safe, noninvasive, and accurate method for the assessment of iron deposition in different tissues. This study assessed iron levels in liver and heart of the patients with transfusion dependent hemoglobinopathies. Materials and Methods The studied population consisted of 12 patients (7 male and 5 female) with transfusion dependent hemoglobinopathies, aged between 10-18 years old. Then, Cardiac and liver T2*- weighted magnetic resonance imaging (MRI) were obtained. Results In current study, 1patient (8.33%) had severe, 2 patients (16.66%) had moderate and 2(16.66%) had mild cardiac iron deposition. Out of 12 patients, 1 had severe iron deposition in liver (8.33%), 5(41.66%) and 4(33.33%) had moderate and mild hepatic iron deposition, respectively. Differences between Hepatic and cardiac iron levels were not significant between males and females (p>0.05). Conclusion Since cardiac and liver iron levels were higher than normal in most of the study group, checking ferritin level and liver function test and also echocardiography in shorter intervals (each 3 months) in involved group is suggested instead of checking routinely in 6 month intervals in patients with transfusion dependent hemoglobinopathies. PMID:26985353

  2. Cardiac Light-Sheet Fluorescent Microscopy for Multi-Scale and Rapid Imaging of Architecture and Function

    PubMed Central

    Fei, Peng; Lee, Juhyun; Packard, René R. Sevag; Sereti, Konstantina-Ioanna; Xu, Hao; Ma, Jianguo; Ding, Yichen; Kang, Hanul; Chen, Harrison; Sung, Kevin; Kulkarni, Rajan; Ardehali, Reza; Kuo, C.-C. Jay; Xu, Xiaolei; Ho, Chih-Ming; Hsiai, Tzung K.

    2016-01-01

    Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases. PMID:26935567

  3. Cardiac Light-Sheet Fluorescent Microscopy for Multi-Scale and Rapid Imaging of Architecture and Function.

    PubMed

    Fei, Peng; Lee, Juhyun; Packard, René R Sevag; Sereti, Konstantina-Ioanna; Xu, Hao; Ma, Jianguo; Ding, Yichen; Kang, Hanul; Chen, Harrison; Sung, Kevin; Kulkarni, Rajan; Ardehali, Reza; Kuo, C-C Jay; Xu, Xiaolei; Ho, Chih-Ming; Hsiai, Tzung K

    2016-01-01

    Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases. PMID:26935567

  4. Cardiac Light-Sheet Fluorescent Microscopy for Multi-Scale and Rapid Imaging of Architecture and Function

    NASA Astrophysics Data System (ADS)

    Fei, Peng; Lee, Juhyun; Packard, René R. Sevag; Sereti, Konstantina-Ioanna; Xu, Hao; Ma, Jianguo; Ding, Yichen; Kang, Hanul; Chen, Harrison; Sung, Kevin; Kulkarni, Rajan; Ardehali, Reza; Kuo, C.-C. Jay; Xu, Xiaolei; Ho, Chih-Ming; Hsiai, Tzung K.

    2016-03-01

    Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases.

  5. A system for seismocardiography-based identification of quiescent heart phases: implications for cardiac imaging.

    PubMed

    Wick, Carson A; Su, Jin-Jyh; McClellan, James H; Brand, Oliver; Bhatti, Pamela T; Buice, Ashley L; Stillman, Arthur E; Tang, Xiangyang; Tridandapani, Srini

    2012-09-01

    Seismocardiography (SCG), a representation of mechanical heart motion, may more accurately determine periods of cardiac quiescence within a cardiac cycle than the electrically derived electrocardiogram (EKG) and, thus, may have implications for gating in cardiac computed tomography. We designed and implemented a system to synchronously acquire echocardiography, EKG, and SCG data. The device was used to study the variability between EKG and SCG and characterize the relationship between the mechanical and electrical activity of the heart. For each cardiac cycle, the feature of the SCG indicating Aortic Valve Closure was identified and its time position with respect to the EKG was observed. This position was found to vary for different heart rates and between two human subjects. A color map showing the magnitude of the SCG acceleration and computed velocity was derived, allowing for direct visualization of quiescent phases of the cardiac cycle with respect to heart rate. PMID:22581141

  6. [18F]-NaF PET/CT imaging in cardiac amyloidosis.

    PubMed

    Van Der Gucht, Axel; Galat, Arnault; Rosso, Jean; Guellich, Aziz; Garot, Jérôme; Bodez, Diane; Plante-Bordeneuve, Violaine; Hittinger, Luc; Dubois-Randé, Jean-Luc; Evangelista, Eva; Sasanelli, Myriam; Chalaye, Julia; Meignan, Michel; Itti, Emmanuel; Damy, Thibaud

    2016-08-01

    Cardiac amyloidosis (CA) is recognized as a common cause of restrictive cardiomyopathy and heart failure due to the deposition of insoluble proteins in the myocardial interstitium. We emphasize the role of [18F]-sodium fluoride (NaF) PET/CT as a potential noninvasive tool to identify and differentiate the transthyretin-related cardiac amyloidosis from the light-chain cardiac amyloidosis. We report cases of a 73-year-old man and a 75-year-old woman followed in our center for congestive heart failure with marked alteration of the left ventricular ejection fraction due to familial transthyretin Val122Ile cardiac amyloidosis and light-chain cardiac amyloidosis, respectively, confirmed on endomyocardial biopsy.

  7. A System for Seismocardiography-Based Identification of Quiescent Heart Phases: Implications for Cardiac Imaging

    PubMed Central

    Wick, Carson A.; Su, Jin-Jyh; McClellan, James H.; Brand, Oliver; Bhatti, Pamela T.; Buice, Ashley L.; Stillman, Arthur E.; Tang, Xiangyang; Tridandapani, Srini

    2013-01-01

    Seismocardiography (SCG), a representation of mechanical heart motion, may more accurately determine periods of cardiac quiescence within a cardiac cycle than the electrically derived electrocardiogram (EKG) and, thus, may have implications for gating in cardiac computed tomography. We designed and implemented a system to synchronously acquire echocardiography, EKG, and SCG data. The device was used to study the variability between EKG and SCG and characterize the relationship between the mechanical and electrical activity of the heart. For each cardiac cycle, the feature of the SCG indicating Aortic Valve Closure was identified and its time position with respect to the EKG was observed. This position was found to vary for different heart rates and between two human subjects. A color map showing the magnitude of the SCG acceleration and computed velocity was derived, allowing for direct visualization of quiescent phases of the cardiac cycle with respect to heart rate. PMID:22581141

  8. Appropriate Use of Cardiac Stress Testing with Imaging: A Systematic Review and Meta-Analysis

    PubMed Central

    Ladapo, Joseph A.; Blecker, Saul; O'Donnell, Michael; Jumkhawala, Saahil A.; Douglas, Pamela S.

    2016-01-01

    Background Appropriate use criteria (AUC) for cardiac stress tests address concerns about utilization growth and patient safety. We systematically reviewed studies of appropriateness, including within physician specialties; evaluated trends over time and in response to AUC updates; and characterized leading indications for inappropriate/rarely appropriate testing. Methods We searched PubMed (2005–2015) for English-language articles reporting stress echocardiography or myocardial perfusion imaging (MPI) appropriateness. Data were pooled using random-effects meta-analysis and meta-regression. Results Thirty-four publications of 41,578 patients were included, primarily from academic centers. Stress echocardiography appropriate testing rates were 53.0% (95% CI, 45.3%–60.7%) and 50.9% (42.6%–59.2%) and inappropriate/rarely appropriate rates were 19.1% (11.4%–26.8%) and 28.4% (23.9%–32.8%) using 2008 and 2011 AUC, respectively. Stress MPI appropriate testing rates were 71.1% (64.5%–77.7%) and 72.0% (67.6%–76.3%) and inappropriate/rarely appropriate rates were 10.7% (7.2%–14.2%) and 15.7% (12.4%–19.1%) using 2005 and 2009 AUC, respectively. There was no significant temporal trend toward rising rates of appropriateness for stress echocardiography or MPI. Unclassified stress echocardiograms fell by 79% (p = 0.04) with updated AUC. There were no differences between cardiac specialists and internists. Conclusions Rates of appropriate use tend to be lower for stress echocardiography compared to MPI, and updated AUC reduced unclassified stress echocardiograms. There is no conclusive evidence that AUC improved appropriate use over time. Further research is needed to determine if integration of appropriateness guidelines in academic and community settings is an effective approach to optimizing inappropriate/rarely appropriate use of stress testing and its associated costs and patient harms. PMID:27536775

  9. Acute Radiation Effects on Cardiac Function Detected by Strain Rate Imaging in Breast Cancer Patients

    SciTech Connect

    Erven, Katrien; Jurcut, Ruxandra; Weltens, Caroline; Giusca, Sorin; Ector, Joris; Wildiers, Hans; Van den Bogaert, Walter; Voigt, Jens-Uwe

    2011-04-01

    Purpose: To investigate the occurrence of early radiation-induced changes in regional cardiac function using strain rate imaging (SRI) by tissue Doppler echocardiography. Methods and Materials: We included 20 left-sided and 10 right-sided breast cancer patients receiving radiotherapy (RT) to the breast or chest wall. Standard echocardiography and SRI were performed before RT (baseline), immediately after RT (post-RT), and at 2 months follow-up (FUP) after RT. Regional strain (S) and strain rate (SR) values were obtained from all 18 left ventricular (LV) segments. Data were compared to the regional radiation dose. Results: A reduction in S was observed post-RT and at FUP in left-sided patients (S{sub post-RT}: -17.6 {+-} 1.5%, and S{sub FUP}: -17.4 {+-} 2.3%, vs. S{sub baseline}: -19.5 {+-} 2.1%, p < 0.001) but not in right-sided patients. Within the left-sided patient group, S and SR were significantly reduced after RT in apical LV segments (S{sub post-RT}: -15.3 {+-} 2.5%, and S{sub FUP}: -14.3 {+-} 3.7%, vs. S{sub baseline}: -19.3 {+-} 3.0%, p < 0.01; and SR{sub post-RT}: -1.06 {+-} 0.15 s {sup -1}, and SR{sub FUP}: -1.16 {+-} 0.28 s {sup -1}, vs. SR{sub baseline}: -1.29 {+-} 0.27s {sup -1}, p = 0.01), but not in mid- or basal segments. Furthermore, we observed that segments exposed to more than 3 Gy showed a significant decrease in S after RT (S{sub post-RT}: -16.1 {+-} 1.6%, and S{sub FUP}: -15.8 {+-} 3.4%, vs. S{sub baseline}: -18.9 {+-} 2.6%, p < 0.001). This could not be observed in segments receiving less than 3 Gy. Conclusions: SRI shows a dose-related regional decrease in myocardial function after RT. It might be a useful tool in the evaluation of modern RT techniques, with respect to cardiac toxicity.

  10. Initial results of finger imaging using photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    van Es, Peter; Biswas, Samir K.; Moens, Hein J. Bernelot; Steenbergen, Wiendelt; Manohar, Srirang

    2014-06-01

    We present a photoacoustic computed tomography investigation on a healthy human finger, to image blood vessels with a focus on vascularity across the interphalangeal joints. The cross-sectional images were acquired using an imager specifically developed for this purpose. The images show rich detail of the digital blood vessels with diameters between 100 μm and 1.5 mm in various orientations and at various depths. Different vascular layers in the skin including the subpapillary plexus could also be visualized. Acoustic reflections on the finger bone of photoacoustic signals from skin were visible in sequential slice images along the finger except at the location of the joint gaps. Not unexpectedly, the healthy synovial membrane at the joint gaps was not detected due to its small size and normal vascularization. Future research will concentrate on studying digits afflicted with rheumatoid arthritis to detect the inflamed synovium with its heightened vascularization, whose characteristics are potential markers for disease activity.

  11. A rare case of primary cardiac lymphoma.

    PubMed

    Khan-Kheil, Ayisha Mehtab; Mustafa, Hanif Muhammad; Anand, Dhakshinamurthy Vijay; Banerjee, Prithwish

    2015-01-01

    A 71-year-old man presented with shortness of breath and tachycardia along with systemic symptoms of weight loss and lethargy. A pulmonary embolus was the initial suspected diagnosis but through extensive investigations a rarer cause of his symptoms was identified. This case demonstrates the importance of cardiac imaging in the assessment and non-invasive tissue characterisation of a suspected cardiac tumour; in our case, this was subsequently confirmed by careful histological/immunocytochemical evaluation of the pericardial effusion as a primary cardiac B-cell non-Hodgkin's lymphoma, thus enabling appropriate management leading to an excellent clinical outcome. PMID:26538249

  12. Myocardial Blood Flow Quantification for Evaluation of Coronary Artery Disease by Positron Emission Tomography, Cardiac Magnetic Resonance Imaging, and Computed Tomography

    PubMed Central

    Waller, Alfonso H.; Blankstein, Ron; Kwong, Raymond Y.; Di Carli, Marcelo F.

    2014-01-01

    The noninvasive detection of the presence and functional significance of coronary artery stenosis is important in the diagnosis, risk assessment, and management of patients with known or suspected coronary artery disease. Quantitative assessment of myocardial perfusion can provide an objective and reproducible estimate of myocardial ischemia and risk prediction. Positron emission tomography, cardiac magnetic resonance, and cardiac computed tomography perfusion are modalities capable of measuring myocardial blood flow and coronary flow reserve. In this review, we will discuss the technical aspects of quantitative myocardial perfusion imaging with positron emission tomography, cardiac magnetic resonance imaging and computed tomography, and its emerging clinical applications. PMID:24718671

  13. Early detection of cardiac dysfunction in the type 1 diabetic heart using speckle-tracking based strain imaging.

    PubMed

    Shepherd, Danielle L; Nichols, Cody E; Croston, Tara L; McLaughlin, Sarah L; Petrone, Ashley B; Lewis, Sara E; Thapa, Dharendra; Long, Dustin M; Dick, Gregory M; Hollander, John M

    2016-01-01

    Enhanced sensitivity in echocardiographic analyses may allow for early detection of changes in cardiac function beyond the detection limits of conventional echocardiographic analyses, particularly in a small animal model. The goal of this study was to compare conventional echocardiographic measurements and speckle-tracking based strain imaging analyses in a small animal model of type 1 diabetes mellitus. Conventional analyses revealed differences in ejection fraction, fractional shortening, cardiac output, and stroke volume in diabetic animals relative to controls at 6-weeks post-diabetic onset. In contrast, when assessing short- and long-axis speckle-tracking based strain analyses, diabetic mice showed changes in average systolic radial strain, radial strain rate, radial displacement, and radial velocity, as well as decreased circumferential and longitudinal strain rate, as early as 1-week post-diabetic onset and persisting throughout the diabetic study. Further, we performed regional analyses for the LV and found that the free wall region was affected in both the short- and long-axis when assessing radial dimension parameters. These changes began 1-week post-diabetic onset and remained throughout the progression of the disease. These findings demonstrate the use of speckle-tracking based strain as an approach to elucidate cardiac dysfunction from a global perspective, identifying left ventricular cardiac regions affected during the progression of type 1 diabetes mellitus earlier than contractile changes detected by conventional echocardiographic measurements.

  14. [Cardiac sarcoidosis - clinical manifestation and diagnosis].

    PubMed

    Błaut-Jurkowska, Justyna; Podolec, Piotr; Olszowska, Maria

    2016-08-01

    Sarcoidosis is a multisystem inflammatory disease defined histologically by the formation of noncaseating granulomas. The etiology of sarcoidosis remains unknown. Heart involvement in the course of sarcoidosis concerns about 5% of patients. The most common manifestation of cardiac sarcoidosis are conduction abnormalities, arrhythmias and heart failure. The diagnostic algorithm includes performing a clinical history, a 12-lead electrocardiogram (ECG) and an echocardiogram. If any of the initial screening investigations yields an abnormality, diagnostics should be continue using advanced imaging techniques: cardiovascular magnetic resonance (CMR) or fluorodeoxyglucose positron emission tomography (FDG-PET). Nowadays endomyocardial biopsy is not performed routinely.The clinical picture of cardiac sarcoidosis is highly variable. Screening for cardiac sarcoidosis should be performed in all patients diagnosed with extracardiac sarcoidosis. Cardiac sarcoidosis should also be suspected in young patients without a diagnosis of sarcoidosis who present with conduction abnormalities of unknown etiology, because cardiac sarcoidosis may be the first or the only manifestation of the disease. PMID:27591449

  15. [Cardiac sarcoidosis - clinical manifestation and diagnosis].

    PubMed

    Błaut-Jurkowska, Justyna; Podolec, Piotr; Olszowska, Maria

    2016-07-01

    Sarcoidosis is a multisystem inflammatory disease defined histologically by the formation of noncaseating granulomas. The etiology of sarcoidosis remains unknown. Heart involvement in the course of sarcoidosis concerns about 5% of patients. The most common manifestation of cardiac sarcoidosis are conduction abnormalities, arrhythmias and heart failure. The diagnostic algorithm includes performing a clinical history, a 12-lead electrocardiogram (ECG) and an echocardiogram. If any of the initial screening investigations yields an abnormality, diagnostics should be continue using advanced imaging techniques: cardiovascular magnetic resonance (CMR) or fluorodeoxyglucose positron emission tomography (FDG-PET). Nowadays endomyocardial biopsy is not performed routinely.The clinical picture of cardiac sarcoidosis is highly variable. Screening for cardiac sarcoidosis should be performed in all patients diagnosed with extracardiac sarcoidosis. Cardiac sarcoidosis should also be suspected in young patients without a diagnosis of sarcoidosis who present with conduction abnormalities of unknown etiology, because cardiac sarcoidosis may be the first or the only manifestation of the disease. PMID:27590654

  16. Cardiovascular magnetic resonance in pregnancy: Insights from the cardiac hemodynamic imaging and remodeling in pregnancy (CHIRP) study

    PubMed Central

    2014-01-01

    Background Cardiovascular disease in pregnancy is the leading cause of maternal mortality in North America. Although transthoracic echocardiography (TTE) is the most widely used imaging modality for the assessment of cardiovascular function during pregnancy, little is known on the role of cardiovascular magnetic resonance (CMR). The objective of the Cardiac Hemodynamic Imaging and Remodeling in Pregnancy (CHIRP) study was to compare TTE and CMR in the non-invasive assessment of maternal cardiac remodeling during the peripartum period. Methods Between 2010–2012, healthy pregnant women aged 18 to 35 years were prospectively enrolled. All women underwent TTE and CMR during the third trimester and at least 3 months postpartum (surrogate for non-pregnant state). Results The study population included a total of 34 women (mean age 29 ± 3 years). During the third trimester, TTE and CMR demonstrated an increase in left ventricular end-diastolic volume from 95 ± 11 mL to 115 ± 14 mL and 98 ± 6 mL to 125 ± 5 mL, respectively (p < 0.05). By TTE and CMR, there was also an increase in left ventricular (LV) mass during pregnancy from 111 ± 10 g to 163 ± 11 g and 121 ± 5 g to 179 ± 5 g, respectively (p < 0.05). Although there was good correlation between both imaging modalities for LV mass, stroke volume, and cardiac output, the values were consistently underestimated by TTE. Conclusion This CMR study provides reference values for cardiac indices during normal pregnancy and the postpartum state. PMID:24387349

  17. An investigation of flat panel equipment variables on image quality with a dedicated cardiac phantom

    NASA Astrophysics Data System (ADS)

    Dragusin, O.; Bosmans, H.; Pappas, C.; Desmet, W.

    2008-09-01

    Image quality (IQ) evaluation plays a key role in the process of optimization of new x-ray systems. Ideally, this process should be supported by real clinical images, but ethical issues and differences in anatomy and pathology of patients make it impossible. Phantom studies might overcome these issues. This paper presents the IQ evaluation of 30 cineangiographic films acquired with a cardiac flat panel system. The phantom used simulates the anatomy of the heart and allows the circulation of contrast agent boluses through coronary arteries. Variables investigated with influence on IQ and radiation dose are: tube potential, detector dose, added Copper filters, dynamic density optimization (DDO) and viewing angle. The IQ evaluation consisted of scoring 4 simulated calcified lesions located on different coronary artery segments in terms of degree of visualization. Eight cardiologists rated the lesions using a five-point scale ((1) lesion not visible to (5) very good visibility). Radiation doses associated to the angiograms are expressed in terms of incident air kerma (IAK) and effective dose that has been calculated with PCXMX software (STUK, Finland) from the exposure settings assuming a standard sized patient of 70 Kg. Mean IQ scores ranged from 1.68 to 4.88. The highest IQ scores were obtained for the angiograms acquired with tube potential 80 kVp, no added Cu filters, DDO 60%, RAO and LAO views and the highest entrance detector dose that has been used in the present study, namely 0.17 μGy/im. Radiation doses (IAK ~40 mGy and effective dose of 1 mSv) were estimated for angiograms acquired at 15 frames s-1, detector field-of-view 20 cm, and a length of 5 s. The following parameters improved the IQ factor significantly: a change in tube potential from 96 to 80 kVp, detector dose from 0.10 μGy/im to 0.17 μGy/im, the absence of Copper filtration. DDO variable which is a post-processing parameter should be carefully evaluated because it alters the quality of the

  18. Breast imaging with SoftVue: initial clinical evaluation

    NASA Astrophysics Data System (ADS)

    Duric, Neb; Littrup, Peter; Li, Cuiping; Roy, Olivier; Schmidt, Steven; Cheng, Xiaoyang; Seamans, John; Wallen, Andrea; Bey-Knight, Lisa

    2014-03-01

    We describe the clinical performance of SoftVue, a breast imaging device based on the principles of ultrasound tomography. Participants were enrolled in an IRB-approved study at Wayne State University, Detroit, MI. The main research findings indicate that SoftVue is able to image the whole uncompressed breast up to cup size H. Masses can be imaged in even the densest breasts with the ability to discern margins and mass shapes. Additionally, it is demonstrated that multi-focal disease can also be imaged. The system was also tested in its research mode for additional imaging capabilities. These tests demonstrated the potential for generating tissue stiffness information for the entire breast using through-transmission data. This research capability differentiates SoftVue from the other whole breast systems on the market. It is also shown that MRI-like images can be generated using alternative processing of the echo data. Ongoing research is focused on validating and quantifying these findings in a larger sample of study participants and quantifying SoftVue's ability to differentiate benign masses from cancer.

  19. Sci—Thur PM: Imaging — 01: Position-sensitive noise characteristics in multi-pinhole cardiac SPECT imaging

    SciTech Connect

    Cuddy-Walsh, SG; Wells, RG

    2014-08-15

    Myocardial perfusion imaging (MPI) with Single Photon Emission Computed Tomography (SPECT) is invaluable in the diagnosis and management of heart disease. It provides essential information on myocardial blood flow and ischemia. Multi-pinhole dedicated cardiac-SPECT cameras offer improved count sensitivity, and spatial and energy resolutions over parallel-hole camera designs however variable sensitivity across the field-of-view (FOV) can lead to position-dependent noise variations. Since MPI evaluates differences in the signal-to-noise ratio, noise variations in the camera could significantly impact the sensitivity of the test for ischemia. We evaluated the noise characteristics of GE Healthcare's Discovery NM530c camera with a goal of optimizing the accuracy of our patient assessment and thereby improving outcomes. Theoretical sensitivity maps of the camera FOV, including attenuation effects, were estimated analytically based on the distance and angle between the spatial position of a given voxel and each pinhole. The standard deviation in counts, σ was inferred for each voxel position from the square root of the sensitivity mapped at that position. Noise was measured experimentally from repeated (N=16) acquisitions of a uniform spherical Tc-99m-water phantom. The mean (μ) and standard deviation (σ) were calculated for each voxel position in the reconstructed FOV. Noise increased ∼2.1× across a 12 cm sphere. A correlation of 0.53 is seen when experimental noise is compared with theory suggesting that ∼53% of the noise is attributed to the combined effects of attenuation and the multi-pinhole geometry. Further investigations are warranted to determine the clinical impact of the position-dependent noise variation.

  20. Wideband Arrhythmia-Insensitive-Rapid (AIR) Pulse Sequence for Cardiac T1 mapping without Image Artifacts induced by ICD

    PubMed Central

    Hong, KyungPyo; Jeong, Eun-Kee; Wall, T. Scott; Drakos, Stavros G.; Kim, Daniel

    2015-01-01

    Purpose To develop and evaluate a wideband arrhythmia-insensitive-rapid (AIR) pulse sequence for cardiac T1 mapping without image artifacts induced by implantable-cardioverter-defibrillator (ICD). Methods We developed a wideband AIR pulse sequence by incorporating a saturation pulse with wide frequency bandwidth (8.9 kHz), in order to achieve uniform T1 weighting in the heart with ICD. We tested the performance of original and “wideband” AIR cardiac T1 mapping pulse sequences in phantom and human experiments at 1.5T. Results In 5 phantoms representing native myocardium and blood and post-contrast blood/tissue T1 values, compared with the control T1 values measured with an inversion-recovery pulse sequence without ICD, T1 values measured with original AIR with ICD were considerably lower (absolute percent error >29%), whereas T1 values measured with wideband AIR with ICD were similar (absolute percent error <5%). Similarly, in 11 human subjects, compared with the control T1 values measured with original AIR without ICD, T1 measured with original AIR with ICD was significantly lower (absolute percent error >10.1%), whereas T1 measured with wideband AIR with ICD was similar (absolute percent error <2.0%). Conclusion This study demonstrates the feasibility of a wideband pulse sequence for cardiac T1 mapping without significant image artifacts induced by ICD. PMID:25975192

  1. Browsing through rapid-fire imaging: requirements and industry initiatives

    NASA Astrophysics Data System (ADS)

    Wittenburg, Kent; Chiyoda, Carlos; Heinrichs, Michael; Lanning, Tom

    1999-12-01

    It is well established that humans possess cognitive abilities to process images extremely rapidly. At GTE Laboratories we have been experimenting with Web-based browsing interfaces that take advantage of this human facility. We have prototyped a number of browsing applications in different domains that offer the advantages of high interactivity and visual engagement. Our hypothesis, confirmed by user evaluations and a pilot experiment, is that many users will be drawn to interfaces that provide rapid presentation of images for browsing tasks in many contexts, among them online shopping, multimedia title selection, and people directories. In this paper we present our application prototypes using a system called PolyNav and discuss the imaging requirements for applications like these. We also raise the suggestion that if the Web industry at large standardized on an XML for meta-content that included images, then the possibility exist that rapid-fire image browsing could become a standard part of the Web experience for content selection in a variety of domains.

  2. Interventional C-arm tomosynthesis for vascular imaging: initial results

    NASA Astrophysics Data System (ADS)

    Langan, David A.; Claus, Bernhard E. H.; Al Assad, Omar; Trousset, Yves; Riddell, Cyril; Avignon, Gregoire; Solomon, Stephen B.; Lai, Hao; Wang, Xin

    2015-03-01

    As percutaneous endovascular procedures address more complex and broader disease states, there is an increasing need for intra-procedure 3D vascular imaging. In this paper, we investigate C-Arm 2-axis tomosynthesis ("Tomo") as an alternative to C-Arm Cone Beam Computed Tomography (CBCT) for workflow situations in which the CBCT acquisition may be inconvenient or prohibited. We report on our experience in performing tomosynthesis acquisitions with a digital angiographic imaging system (GE Healthcare Innova 4100 Angiographic Imaging System, Milwaukee, WI). During a tomo acquisition the detector and tube each orbit on a plane above and below the table respectively. The tomo orbit may be circular or elliptical, and the tomographic half-angle in our studies varied from approximately 16 to 28 degrees as a function of orbit period. The trajectory, geometric calibration, and gantry performance are presented. We overview a multi-resolution iterative reconstruction employing compressed sensing techniques to mitigate artifacts associated with incomplete data reconstructions. In this work, we focus on the reconstruction of small high contrast objects such as iodinated vasculature and interventional devices. We evaluate the overall performance of the acquisition and reconstruction through phantom acquisitions and a swine study. Both tomo and comparable CBCT acquisitions were performed during the swine study thereby enabling the use of CBCT as a reference in the evaluation of tomo vascular imaging. We close with a discussion of potential clinical applications for tomo, reflecting on the imaging and workflow results achieved.

  3. Cardiac imaging with multi-sector data acquisition in volumetric CT: variation of effective temporal resolution and its potential clinical consequences

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Hsieh, Jiang; Taha, Basel H.; Vass, Melissa L.; Seamans, John L.; Okerlund, Darin R.

    2009-02-01

    With increasing longitudinal detector dimension available in diagnostic volumetric CT, step-and-shoot scan is becoming popular for cardiac imaging. In comparison to helical scan, step-and-shoot scan decouples patient table movement from cardiac gating/triggering, which facilitates the cardiac imaging via multi-sector data acquisition, as well as the administration of inter-cycle heart beat variation (arrhythmia) and radiation dose efficiency. Ideally, a multi-sector data acquisition can improve temporal resolution at a factor the same as the number of sectors (best scenario). In reality, however, the effective temporal resolution is jointly determined by gantry rotation speed and patient heart beat rate, which may significantly lower than the ideal or no improvement (worst scenario). Hence, it is clinically relevant to investigate the behavior of effective temporal resolution in cardiac imaging with multi-sector data acquisition. In this study, a 5-second cine scan of a porcine heart, which cascades 6 porcine cardiac cycles, is acquired. In addition to theoretical analysis and motion phantom study, the clinical consequences due to the effective temporal resolution variation are evaluated qualitative or quantitatively. By employing a 2-sector image reconstruction strategy, a total of 15 (the permutation of P(6, 2)) cases between the best and worst scenarios are studied, providing informative guidance for the design and optimization of CT cardiac imaging in volumetric CT with multi-sector data acquisition.

  4. Unrecognized Myocardial Infarction Assessed by Cardiac Magnetic Resonance Imaging – Prognostic Implications

    PubMed Central

    Ahlström, Håkan; Bjerner, Tomas; Duvernoy, Olov; Eggers, Kai M.; Fröbert, Ole; Hadziosmanovic, Nermin

    2016-01-01

    Background Clinically unrecognized myocardial infarctions (UMI) are not uncommon and may be associated with adverse outcome. The aims of this study were to determine the prognostic implication of UMI in patients with stable suspected coronary artery disease (CAD) and to investigate the associations of UMI with the presence of CAD. Methods and Findings In total 235 patients late gadolinium enhancement cardiovascular magnetic resonance (LGE-CMR) imaging and coronary angiography were performed. For each patient with UMI, the stenosis grade of the coronary branch supplying the infarcted area was determined. UMIs were present in 25% of the patients and 67% of the UMIs were located in an area supplied by a coronary artery with a stenosis grade ≥70%. In an age- and gender-adjusted model, UMI independently predicted the primary endpoint (composite of death, myocardial infarction, resuscitated cardiac arrest, hospitalization for unstable angina pectoris or heart failure within 2 years of follow-up) with an odds ratio of 2.9; 95% confidence interval 1.1–7.9. However, this association was abrogated after adjustment for age and presence of significant coronary disease. There was no difference in the primary endpoint rates between UMI patients with or without a significant stenosis in the corresponding coronary artery. Conclusions The presence of UMI was associated with a threefold increased risk of adverse events during follow up. However, the difference was no longer statistically significant after adjustments for age and severity of CAD. Thus, the results do not support that patients with suspicion of CAD should be routinely investigated by LGE-CMR for UMI. However, coronary angiography should be considered in patients with UMI detected by LGE-CMR. Trial Registration ClinicalTrials.gov NTC01257282 PMID:26885831

  5. Can emergency physicians reliably interpret cardiac CT images? A prospective observational study

    PubMed Central

    Kwon, Joon-myoung; Kim, Joonghee; Kim, Kyuseok; Kim, Taeyun; Jo, You Hwan; Lee, Jin Hee; Lee, Jae Hyuk; Kim, Yu Jin; Jung, Jae Yun

    2015-01-01

    Objective Cardiac computed tomography (CCT) is useful for evaluation of acute chest pain in the emergency department (ED). Though the test needs proper interpretation by someone with expertise in cardiovascular imaging, the critical nature of the information the test provides frequently lead emergency physicians (EPs) to act on their own interpretation. We performed this study to assess how often EPs’ interpretations are in agreement with radiologists’. Methods This study is a prospective observational study. The target population was patients assessed with CCT for acute chest pain or discomfort. EPs with at least one year CCT experience underwent a one-hour training session before study participation. The most significant lesion, if any, in each arterial segment was assessed for coronary stenosis and plaque calcification. The agreement between EPs’ and radiologists’ interpretation was assessed with Cohen’s kappa and Gwet’s AC1. Results One hundred and three patients were enrolled and 412 segments were analyzed. Stenosis grading was identical in 363 segments (88.1%) and the interrater agreement was good (kappa=0.6439, AC1=0.8810). Similarly, the plaque calcification grading was identical in 354 segments (86.6%) and the kappa and AC1 values were 0.5660 and 0.8501, respectively. EPs classified 6 of the 17 arterial segments with significant stenosis reported by radiologists as non-significant stenosis (n=5) or clear (n=2), all of which were proved to be significant by following subsequent invasive coronary angiography. Conclusion There was substantial discordance of CCT interpretation between EPs and radiologists. For now, EPs need more education prior to independent CCT reading.

  6. Defining myocardial tissue abnormalities in end-stage renal failure with cardiac magnetic resonance imaging using native T1 mapping.

    PubMed

    Rutherford, Elaine; Talle, Mohammed A; Mangion, Kenneth; Bell, Elizabeth; Rauhalammi, Samuli M; Roditi, Giles; McComb, Christie; Radjenovic, Aleksandra; Welsh, Paul; Woodward, Rosemary; Struthers, Allan D; Jardine, Alan G; Patel, Rajan K; Berry, Colin; Mark, Patrick B

    2016-10-01

    Noninvasive quantification of myocardial fibrosis in end-stage renal disease is challenging. Gadolinium contrast agents previously used for cardiac magnetic resonance imaging (MRI) are contraindicated because of an association with nephrogenic systemic fibrosis. In other populations, increased myocardial native T1 times on cardiac MRI have been shown to be a surrogate marker of myocardial fibrosis. We applied this method to 33 incident hemodialysis patients and 28 age- and sex-matched healthy volunteers who underwent MRI at 3.0T. Native T1 relaxation times and feature tracking-derived global longitudinal strain as potential markers of fibrosis were compared and associated with cardiac biomarkers. Left ventricular mass indices were higher in the hemodialysis than the control group. Global, Septal and midseptal T1 times were all significantly higher in the hemodialysis group (global T1 hemodialysis 1171 ± 27 ms vs. 1154 ± 32 ms; septal T1 hemodialysis 1184 ± 29 ms vs. 1163 ± 30 ms; and midseptal T1 hemodialysis 1184 ± 34 ms vs. 1161 ± 29 ms). In the hemodialysis group, T1 times correlated with left ventricular mass indices. Septal T1 times correlated with troponin and electrocardiogram-corrected QT interval. The peak global longitudinal strain was significantly reduced in the hemodialysis group (hemodialysis -17.7±5.3% vs. -21.8±6.2%). For hemodialysis patients, the peak global longitudinal strain significantly correlated with left ventricular mass indices (R = 0.426), and a trend was seen for correlation with galectin-3, a biomarker of cardiac fibrosis. Thus, cardiac tissue properties of hemodialysis patients consistent with myocardial fibrosis can be determined noninvasively and associated with multiple structural and functional abnormalities.

  7. Application of Micro-Computed Tomography with Iodine Staining to Cardiac Imaging, Segmentation and Computational Model Development

    PubMed Central

    Aslanidi, OV; Nikolaidou, T; Zhao, J; Smaill, BH; Gilbert, SH; Holden, AV; Lowe, T; Withers, PJ; Jarvis, JC; Stephenson, RS; Hart, G; Hancox, JC; Boyett, MR; Zhang, H

    2012-01-01

    Micro-computed tomography (micro-CT) has been widely used to generate high-resolution 3D tissue images from small animals non-destructively, especially for mineralized skeletal tissues. However, its application to the analysis of soft cardiovascular tissues has been limited by poor inter-tissue contrast. Recent ex vivo studies have shown that contrast between muscular and connective tissue in micro-CT images can be enhanced by staining with iodine. In the present study, we apply this novel technique for imaging of cardiovascular structures in canine hearts. We optimize the method to obtain high resolution X-ray micro-CT images of the canine atria and its distinctive regions - including the Bachmann’s bundle, atrioventricular node, pulmonary arteries and veins - with clear inter-tissue contrast. The imaging results are used to reconstruct and segment the detailed 3D geometry of the atria. Structure tensor analysis shows that the arrangement of atrial fibres can also be characterised using the enhanced micro-CT images, as iodine preferentially accumulates within the muscular fibres rather than in connective tissues. This novel technique can be particularly useful in non-destructive imaging of 3D cardiac architectures from large animals and humans, due to the combination of relatively high speed (~1 hour/scan of a large canine heart) and high voxel resolution (36 μm) provided. In summary, contrast micro-CT facilitates fast and non-destructive imaging and segmenting of detailed 3D cardiovascular geometries, as well as measuring fibre orientation, which are crucial in constructing biophysically detailed computational cardiac models. PMID:22829390

  8. MRI Mode Programming for Safe Magnetic Resonance Imaging in Patients With a Magnetic Resonance Conditional Cardiac Device.

    PubMed

    Nakai, Toshiko; Kurokawa, Sayaka; Ikeya, Yukitoshi; Iso, Kazuki; Takahashi, Keiko; Sasaki, Naoko; Ashino, Sonoko; Okubo, Kimie; Okumura, Yasuo; Kunimoto, Satoshi; Watanabe, Ichiro; Hirayama, Atsushi

    2016-01-01

    Although diagnostically indispensable, magnetic resonance imaging (MRI) has been, until recently, contraindicated in patients with an implantable cardiac device. MR conditional cardiac devices are now widely used, but the mode programming needed for safe MRI has yet to be established. We reviewed the details of 41 MRI examinations of patients with a MR conditional device. There were no associated adverse events. However, in 3 cases, paced beats competed with the patient's own beats during the MRI examination. We describe 2 of the 3 specific cases because they illustrate these potentially risky situations: a case in which the intrinsic heart rate increased and another in which atrial fibrillation occurred. Safe MRI in patients with an MR conditional device necessitates detailed MRI mode programming. The MRI pacing mode should be carefully and individually selected.

  9. The role and regulation of cardiac angiotensin-converting enzyme for noninvasive molecular imaging in heart failure.

    PubMed

    Aras, Omer; Messina, Steven A; Shirani, Jamshid; Eckelman, William C; Dilsizian, Vasken

    2007-04-01

    Congestive heart failure is a pathologic condition characterized by progressive decrease in left ventricular contractility and consequent decline of cardiac output. There is convincing clinical and experimental evidence that the renin-angiotensin system (RAS) and its primary effector peptide, angiotensin II, are linked to the pathophysiology of interstitial fibrosis, cardiac remodeling, and heart failure. In addition to the traditional endocrine or circulating RAS, an active tissue RAS has been characterized. Tissue angiotensin-converting enzyme and locally synthesized angiotensin II, for example, by chymase, exert local trophic effects that modulate gene expression, which regulates growth and proliferation in both myocytes and nonmyocytes. The existence of the tissue RAS offers an opportunity for targeted imaging, which may be of considerable value for guiding medical therapy. PMID:17430683

  10. Prospective-gated cardiac micro-CT imaging of free-breathing mice using carbon nanotube field emission x-ray

    SciTech Connect

    Cao Guohua; Burk, Laurel M.; Lee, Yueh Z.; Calderon-Colon, Xiomara; Sultana, Shabana; Lu Jianping; Zhou, Otto

    2010-10-15

    Purpose: Carbon nanotube (CNT) based field emission x-ray source technology has recently been investigated for diagnostic imaging applications because of its attractive characteristics including electronic programmability, fast switching, distributed source, and multiplexing. The purpose of this article is to demonstrate the potential of this technology for high-resolution prospective-gated cardiac micro-CT imaging. Methods: A dynamic cone-beam micro-CT scanner was constructed using a rotating gantry, a stationary mouse bed, a flat-panel detector, and a sealed CNT based microfocus x-ray source. The compact single-beam CNT x-ray source was operated at 50 KVp and 2 mA anode current with 100 {mu}mx100 {mu}m effective focal spot size. Using an intravenously administered iodinated blood-pool contrast agent, prospective cardiac and respiratory-gated micro-CT images of beating mouse hearts were obtained from ten anesthetized free-breathing mice in their natural position. Four-dimensional cardiac images were also obtained by gating the image acquisition to different phases in the cardiac cycle. Results: High-resolution CT images of beating mouse hearts were obtained at 15 ms temporal resolution and 6.2 lp/mm spatial resolution at 10% of system MTF. The images were reconstructed at 76 {mu}m isotropic voxel size. The data acquisition time for two cardiac phases was 44{+-}9 min. The CT values observed within the ventricles and the ventricle wall were 455{+-}49 and 120{+-}48 HU, respectively. The entrance dose for the acquisition of a single phase of the cardiac cycle was 0.10 Gy. Conclusions: A high-resolution dynamic micro-CT scanner was developed from a compact CNT microfocus x-ray source and its feasibility for prospective-gated cardiac micro-CT imaging of free-breathing mice under their natural position was demonstrated.

  11. Acquisition and automated 3-D segmentation of respiratory/cardiac-gated PET transmission images

    SciTech Connect

    Reutter, B.W.; Klein, G.J.; Brennan, K.M.; Huesman, R.H. |

    1996-12-31

    To evaluate the impact of respiratory motion on attenuation correction of cardiac PET data, we acquired and automatically segmented gated transmission data for a dog breathing on its own under gas anesthesia. Data were acquired for 20 min on a CTI/Siemens ECAT EXACT HR (47-slice) scanner configured for 12 gates in a static study, Two respiratory gates were obtained using data from a pneumatic bellows placed around the dog`s chest, in conjunction with 6 cardiac gates from standard EKG gating. Both signals were directed to a LabVIEW-controlled Macintosh, which translated them into one of 12 gate addresses. The respiratory gating threshold was placed near end-expiration to acquire 6 cardiac-gated datasets at end-expiration and 6 cardiac-gated datasets during breaths. Breaths occurred about once every 10 sec and lasted about 1-1.5 sec. For each respiratory gate, data were summed over cardiac gates and torso and lung surfaces were segmented automatically using a differential 3-D edge detection algorithm. Three-dimensional visualizations showed that lung surfaces adjacent to the heart translated 9 mm inferiorly during breaths. Our results suggest that respiration-compensated attenuation correction is feasible with a modest amount of gated transmission data and is necessary for accurate quantitation of high-resolution gated cardiac PET data.

  12. Risk stratification of patients with chronic heart failure using cardiac iodine‐123 metaiodobenzylguanidine imaging: incremental prognostic value over right ventricular ejection fraction

    PubMed Central

    Yamada, Takahisa; Morita, Takashi; Furukawa, Yoshio; Iwasaki, Yusuke; Kawasaki, Masato; Kikuchi, Atsushi; Kondo, Takumi; Kawai, Tsutomu; Takahashi, Satoshi; Ishimi, Masashi; Hakui, Hideyuki; Ozaki, Tatsuhisa; Sato, Yoshihiro; Seo, Masahiro; Sakata, Yasushi; Fukunami, Masatake

    2015-01-01

    Abstract Aims Right ventricular (RV) systolic dysfunction has been shown to be an independent predictor of clinical outcome in patients with chronic heart failure (CHF), and cardiac metaiodobenzylguanidine (MIBG) imaging also provides prognostic information. We aimed to evaluate the long‐term predictive value of combining RV systolic dysfunction and abnormal findings of cardiac MIBG imaging on outcome in CHF patients. Methods and results We enrolled 63 CHF outpatients with left ventricular ejection fraction (EF) <40% in a prospective cohort study. At entry, RVEF was measured by radionuclide angiography. Furthermore, cardiac MIBG imaging was performed, and the cardiac MIBG washout rate (WR) was calculated. Reduced RVEF was defined as ≤37%, and abnormal WR was defined as >27%. The study endpoint was unplanned hospitalization for worsening heart failure (WHF) and cardiac death. During a follow‐up period of 8.9 ± 4.3 years, 19 of 63 patients had unplanned hospitalization for WHF, and 19 of 63 patients had cardiac death. In multivariate analysis, both WR and RVEF were independent predictors of unplanned WHF hospitalization, while WR was also an independent predictor of cardiac death. A risk‐stratification model based on independent predictors of unplanned WHF hospitalization separated the patients into those with low (absence of the predictors), intermediate (one of the predictors), and high (two or more of the predictors) risk of unplanned WHF hospitalization (P < 0.0001) or cardiac death (P = 0.0113). Conclusions Cardiac MIBG imaging provides incremental value when it is used along with RV systolic dysfunction to predict clinical outcome in patients with CHF.

  13. Usefulness of Multidetector Row Computed Tomography for Predicting Cardiac Events in Asymptomatic Chronic Kidney Disease Patients at the Initiation of Renal Replacement Therapy

    PubMed Central

    Lee, Jung Eun; Lee, Yong Kyu; Choi, Eun Jeong; Nam, Ji Sun; Choi, Byoung Wook

    2013-01-01

    Background. The prevalence of coronary artery stenosis (CAS) at the initiation of renal replacement therapy (RRT) in chronic kidney disease (CKD) patients has not been fully elucidated. Although coronary angiography is the gold standard in diagnosing CAS its invasiveness and economic burden lead to searching for a noninvasive alternative method. In this study, we evaluated the prevalence of CAS by multidetector row computed tomography (MDCT) and related risk factor to articulate the usefulness of MDCT. Method. Seventy-four asymptomatic CKD patients who began dialysis were evaluated with echocardiography and MDCT. The patients were stratified into two groups according to CAS and coronary artery calcification score (CACS) by MDCT to detect silent CAS and evaluate its predictability for cardiac events. Results. CAS was seen in 24 (32.4%) of 74 asymptomatic CKD patients on MDCT. Both groups showed increasing frequencies of CAS with age (P < 0.01), presence of diabetes (P < 0.05), uric acid level (P < 0.01), and calcium score (P < 0.01). Multiple regression analysis revealed that age and uric acid level were independent risk factors for CAS and high CACS in asymptomatic CKD patients at the initiation of dialysis. Patients with both CAS and high CACS were presented with higher cardiac events rates compared to those without any of them. In Cox regression model, age and the presence of CAS and high CACS on MDCT were an independent risk factor for cardiac events in these patients. Conclusion. We showed that CAS was highly seen in asymptomatic CKD patients starting dialysis. Moreover, both high CACS and CAS on MDCT might predict cardiac events in these patients and MDCT can be a useful screening tool for evaluating coronary artery disease and predicting cardiovascular mortality noninvasively. PMID:24363626

  14. A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion.

    PubMed

    Bai, Wenjia; Shi, Wenzhe; de Marvao, Antonio; Dawes, Timothy J W; O'Regan, Declan P; Cook, Stuart A; Rueckert, Daniel

    2015-12-01

    Atlases encode valuable anatomical and functional information from a population. In this work, a bi-ventricular cardiac atlas was built from a unique data set, which consists of high resolution cardiac MR images of 1000+ normal subjects. Based on the atlas, statistical methods were used to study the variation of cardiac shapes and the distribution of cardiac motion across the spatio-temporal domain. We have shown how statistical parametric mapping (SPM) can be combined with a general linear model to study the impact of gender and age on regional myocardial wall thickness. Finally, we have also investigated the influence of the population size on atlas construction and atlas-based analysis. The high resolution atlas, the statistical models and the SPM method will benefit more studies on cardiac anatomy and function analysis in the future.

  15. Feasibility Study on Prenatal Cardiac Screening Using Four-Dimensional Ultrasound with Spatiotemporal Image Correlation: A Multicenter Study

    PubMed Central

    Chen, Sun; Ren, Yunyun; Chen, Ping; Niu, Jianmei; Li, Cao; Sun, Kun

    2016-01-01

    Objective This study aimed at investigating the feasibility of using the spatiotemporal image correlation (STIC) technology for prenatal cardiac screening, finding factors that influence the offline evaluation of reconstructed fetal heart, and establishing an optimal acquisition scheme. Methods The study included 452 gravidae presenting for routine screening at 3 maternity centers at 20–38 gestational weeks. The factors influencing the quality of STIC volume data were evaluated using t test, chi-square test, and logistic regression analysis. The predictive power was evaluated using the receiver operating characteristic (ROC) curve. Results Among the 452 fetuses enrolled, 353 (78.1%) were identified as successful and 99 (21.9%) as failure of evaluation of the reconstructed fetal heart. The total success rate of qualified STIC images was 78.1%. The display rates of reconstructed cardiac views were 86.5% (four-chamber view), 92.5% (left ventricular outflow tract view), 92.7% (right ventricular outflow tract view), 89.9% (three-vessel trachea view), 63.9% (aortic arch view), 81.4% (ductal arch view), 81% (short-axis view of great vessels), 80.1% (long-cava view), and 86.9% (abdominal view). A logistic regression analysis showed that more than 28 gestational weeks [OR = 0.39 (CI 95% 0.16, 0.19), P = 0.035], frequent fetal movements [OR = 0.37 (CI 95% 0.16, 0.87), P = 0.022], shadowing [OR = 0.36 (CI 95% 0.19, 0.72), P = 0.004], spine location at 10–2 o’clock [OR = 0.08 (CI 95% 0.02, 0.27), P = 0.0], and original cardiac view [OR = 0.51 (0.25, 0.89), P = 0.019] had a significant impact on the quality of STIC. The area under the ROC curve was 0.775. Conclusions Fetal cardiac-STIC seems a feasible tool for prenatal screening of congenital heart diseases. The influence factors on the quality of STIC images included the intensity of training, gestational age, fetal conditions and parameter settings. The optimal acquisition scheme may improve the application and

  16. Noninvasive cardiac risk stratification of diabetic and nondiabetic uremic renal allograft candidates using dipyridamole-thallium-201 imaging and radionuclide ventriculography

    SciTech Connect

    Brown, K.A.; Rimmer, J.; Haisch, C. )

    1989-11-01

    The ability of noninvasive risk stratification using dipyridamole-thallium-201 (Tl-201) imaging and radionuclide ventriculography to predict perioperative and long-term cardiac events (myocardial infarction or cardiac death) was evaluated in 36 uremic diabetic and 29 nondiabetic candidates for renal allograft surgery. Of the 35 patients who underwent renal allograft surgery 8 +/- 7 months after the study, none had transient Tl-201 defects (although 13 had depressed left ventricular ejection fraction) and none developed perioperative cardiac events. During a mean follow-up of 23 +/- 11 months, 6 (9%) patients developed cardiac events. Logistic regression analysis was used to compare the predictive value of clinical data (including age, sex, diabetes, chest pain history, allograft recipient) and radionuclide data. Presence of transient Tl-201 defect and left ventricular ejection fraction were the only significant predictors of future cardiac events (p less than 0.01). No other patient variables, including diabetes or receiving a renal allograft, had either univariate or multivariate predictive value. All 3 patients with transient Tl-201 defects had cardiac events compared with only 3 of 62 (5%) patients without transient Tl-201 defect (p less than 0.0001). Mean left ventricular ejection fraction was lower in patients with cardiac events (44 +/- 13%) compared with patients without cardiac events (57 +/- 9%, p less than 0.005). Overall, 5 of 6 patients with cardiac events had either transient Tl-201 defects or depressed left ventricular ejection fraction. Dipyridamole-Tl-201 imaging and radionuclide ventriculography may be helpful in identifying uremic candidates for renal allograft surgery who are at low risk for perioperative and long-term cardiac events.

  17. Fast surface alignment for cardiac spatio-temporal modeling: application to Ischemic cardiac shape modeling

    NASA Astrophysics Data System (ADS)

    Huang, Heng; Shen, Li; Zhang, Rong; Makedon, Fillia; Hettleman, Bruce; Pearlman, Justin

    2006-03-01

    The visualization and comparison of local deformation from 3D image sequences is of critical importance in understanding the etiology of Ischemic cardiac disease. In this paper we describe a framework to combine our previous fast spherical harmonic surface alignment algorithm with a new local special surface reconstruction method to reconstruct the surface of LV with Ischaemic cardiac disease. Our new surface computational model allows people to extract the valuable ischemic tissues behavior from the dynamic shape. We have demonstrated our approaches by the experiments on cardiac MRI. A brief description of motivation is put forth, as well as an overview of the approaches and some initial results are described.

  18. Human cardiac telocytes: 3D imaging by FIB-SEM tomography.

    PubMed

    Cretoiu, D; Hummel, E; Zimmermann, H; Gherghiceanu, M; Popescu, L M

    2014-11-01

    Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs' three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type.

  19. Cassini Imaging Science: initial results on Saturn's atmosphere.

    PubMed

    Porco, C C; Baker, E; Barbara, J; Beurle, K; Brahic, A; Burns, J A; Charnoz, S; Cooper, N; Dawson, D D; Del Genio, A D; Denk, T; Dones, L; Dyudina, U; Evans, M W; Giese, B; Grazier, K; Helfenstein, P; Ingersoll, A P; Jacobson, R A; Johnson, T V; McEwen, A; Murray, C D; Neukum, G; Owen, W M; Perry, J; Roatsch, T; Spitale, J; Squyres, S; Thomas, P; Tiscareno, M; Turtle, E; Vasavada, A R; Veverka, J; Wagner, R; West, R

    2005-02-25

    The Cassini Imaging Science Subsystem (ISS) began observing Saturn in early February 2004. From analysis of cloud motions through early October 2004, we report vertical wind shear in Saturn's equatorial jet and a maximum wind speed of approximately 375 meters per second, a value that differs from both Hubble Space Telescope and Voyager values. We also report a particularly active narrow southern mid-latitude region in which dark ovals are observed both to merge with each other and to arise from the eruptions of large, bright storms. Bright storm eruptions are correlated with Saturn's electrostatic discharges, which are thought to originate from lightning. PMID:15731441

  20. Impacts of nicorandil on infarct myocardium in comparison with nitrate: assessed by cardiac magnetic resonance imaging.

    PubMed

    Yamada, Kiyoyasu; Isobe, Satoshi; Ishii, Hideki; Yokouchi, Kazuhiko; Iwata, Hirokazu; Sawada, Ken; Murohara, Toyoaki

    2016-09-01

    In this pilot study, we compared the infarct and edema size in acute myocardial infarction (MI) patients treated by nicorandil with those treated by nitrate, using cardiac magnetic resonance (CMR) imaging. Fifty-two acute MI patients who underwent emergency percutaneous coronary intervention (PCI) were enrolled, and were assigned to receive nicorandil or nitrate at random just before reperfusion. For the assessment of infarct and edema areas, short-axis delayed enhancement (DE) and T2-weight (T2w) CMR images were acquired 6.1 ± 2.4 days after the onset of MI. A significant correlation was observed between the peak creatinine kinase (CK) level and the infarct size on DE CMR (r = 0.62, p < 0.05), as well as the edema size on T2w CMR (r = 0.70, p < 0.05) in patients treated by nicorandil (28 patients). A similar correlation was seen between the peak CK level and the infarct size on DE CMR (r = 0.84, p < 0.05), as well as the edema size on T2w CMR (r = 0.84, p < 0.05) in patients treated by nitrate (24 patients). The maximum CK level was significantly lower in patients treated by nicorandil rather than nitrate (1991 ± 1402, 2785 ± 2121 IU/L, respectively, p = 0.03). Both the edema size on T2w CMR and the infarct size on DE CMR were significantly smaller in patients treated by nicorandil rather than nitrate (17.7 ± 9.9, 21.9 ± 13.7 %; p = 0.03, 10.3 ± 6.0, 12.7 ± 6.9 %, p = 0.03, respectively). The presence and amount of microvascular obstruction were significantly smaller in patients treated by nicorandil rather than nitrate (39.2, 64.7 %; p = 0.03; 2.2 ± 1.3, 3.4 ± 1.5 cm(2); p = 0.02, respectively). Using CMR imaging, we demonstrated that the complementary use of intravenously and intracoronary administered nicorandil during PCI favorably acts more on the damaged myocardium after MI than nitrate. We need a further powered prospective study on the use of nicorandil. PMID:26531829

  1. Initial performance of the Wire Imaging Synchrotron Radiation Detector

    SciTech Connect

    Von Zanthier, C.; Gomez Cadenas, J.J.; Kent, J.; King, M.; Watson, S. ); Briggs, D.D.; Rouse, F.; Tinsman, J. )

    1990-01-01

    This paper describes the initial performance of a novel detector that measures the positions of intense synchrotron-radiation beams with high precision. Two detectors of this kind are used for the precision energy spectrometers of the Stanford Linear Collider (SLC). The detectors accurately determine the distance between pairs of intense synchrotron beams of typically 1 MeV photons, which are emitted by the primary electron and positron beams of the SLC. The detectors intercept the synchrotron beams with arrays of fine wires. The ejection of Compton-recoil electrons leaves positive charges on the wires, enabling a determination of beam positions. 6 refs., 6 figs.

  2. Magnetic resonance imaging of the female pelvis: initial experience

    SciTech Connect

    Hricak, H.; Alpers, C.; Crooks, L.E.; Sheldon, P.E.

    1983-12-01

    The potential of magnetic resonance imaging (MRI) was evaluated in 21 female subjects: seven volunteers, 12 patients scanned for reasons unrelated to the lower genitourinary tract, and two patients referred with gynecologic disease. The uterus at several stages was examined; the premenarcheal uterus (one patient), the uterus of reproductive age (12 patients), the postmenopausal uterus (two patients), and in an 8 week pregnancy (one patient). The myometrium and cyclic endometrium in the reproductive age separated by a low-intensity line (probably stratum basale), which allows recognition of changes in thickness of the cyclic endometrium during the menstrual cycle. The corpus uteri can be distinguished from the cervix by the transitional zone of the isthmus. The anatomic relation of the uterus to bladder and rectum is easily outlined. The vagina can be distinguished from the cervix, and the anatomic display of the closely apposed bladder, vagina, and rectum is clear on axial and coronal images. The ovary is identified; the signal intensity from the ovary depends on the acquisition parameter used. Uterine leiomyoma, endometriosis, and dermoid cyst were depicted, but further experience is needed to ascertain the specificity of the findings.

  3. Volumetric imaging of the auroral ionosphere: Initial results from PFISR

    NASA Astrophysics Data System (ADS)

    Semeter, Joshua; Butler, Thomas; Heinselman, Craig; Nicolls, Michael; Kelly, John; Hampton, Donald

    2009-05-01

    The Poker Flat Incoherent Scatter Radar (PFISR) is the first dedicated ISR built with an electronically steerable array. This paper demonstrates the capabilities of PFISR for producing three-dimensional volumetric images of E-region ionization patterns produced by the aurora. The phase table was configured to cycle through 121 beam positions arranged in an 11×11 grid. A 13-baud Barker coded pulse was used, which provided ~1.5-km range resolution out to a maximum range of 250 km. Backscattered power was converted to electron density by correcting for path loss and applying the Buneman approximation assuming equal electron and ion temperatures. The results were then interpolated onto a three-dimensional cartesian grid. Volumetric images are presented at 5-min, 1-min, and 14.6-s integration times (corresponding to 960, 192, and 48 pulses-per-position, respectively) to illustrate the tradeoff between spatio-temporal resolution and data quality. At 14.6 s cadence, variability in plasma density within the volume appears to be fully resolved in space and time, a result that is supported by both observational evidence and theoretical predictions of ionospheric response times. Some potential applications of this mode for studying magnetosphere-ionosphere interactions in the auroral zone are discussed.

  4. Correlation-based discrimination between cardiac tissue and blood for segmentation of the left ventricle in 3-D echocardiographic images.

    PubMed

    Saris, Anne E C M; Nillesen, Maartje M; Lopata, Richard G P; de Korte, Chris L

    2014-03-01

    For automated segmentation of 3-D echocardiographic images, incorporation of temporal information may be helpful. In this study, optimal settings for calculation of temporal cross-correlations between subsequent time frames were determined, to obtain the maximum cross-correlation (MCC) values that provided the best contrast between blood and cardiac tissue over the entire cardiac cycle. Both contrast and boundary gradient quality measures were assessed to optimize MCC values with respect to signal choice (radiofrequency or envelope data) and axial window size. Optimal MCC values were incorporated into a deformable model to automatically segment the left ventricular cavity. MCC values were tested against, and combined with, filtered, demodulated radiofrequency data. Results reveal that using envelope data in combination with a relatively small axial window (0.7-1.25 mm) at fine scale results in optimal contrast and boundary gradient between the two tissues over the entire cardiac cycle. Preliminary segmentation results indicate that incorporation of MCC values has additional value for automated segmentation of the left ventricle. PMID:24412178

  5. Right ventricular failure predicted from right bundle branch block: cardiac magnetic resonance imaging validation

    PubMed Central

    Arora, Sameer; Ahmad, Ali; Sood, Mike; El Sergany, Amaar; Sacchi, Terrence; Saul, Barry; Gaglani, Rahul; Heitner, John

    2016-01-01

    Background Right ventricular (RV) failure has proven to be independently associated with adverse outcomes. Electrocardiographic parameters assessing RV function are largely unknown, making echocardiography the first line for RV function assessment. It is however, limited by geometrical assumptions and is inferior to cardiac magnetic resonance imaging (CMRI) which is widely regarded as the most accurate tool for assessing RV function. Methods We seek to determine the correlation of ECG parameters of right bundle branch block (RBBB) with RV ejection fraction (EF) and RV dimensions using the CMRI. QRS duration, R amplitude and R’ duration were obtained from precordial lead V1; S duration and amplitude were obtained from lead I and AVL. RV systolic dysfunction was defined as RV EF <40%. RV systolic dysfunction group (mean EF of 24±10%) were compared with normal RV systolic function group which acted as control (mean EF of 48±8%). CMRI and ECG parameters were compared between the two groups. Rank correlations and scatter diagrams between individual CMRI parameters and ECG parameters were done using medcalc for windows, version 12.5. Sensitivity, specificity and area under the curve (AUC) were calculated. Results RV systolic dysfunction group was found to have larger RV end systolic volumes (90±42 vs. 59±40 mL, P=0.02). ECG evaluation of RV dysfunction group revealed longer R’ duration (103±22 vs. 84±18 msec, P=0.005) as compared to the control group. The specificity of R’ duration >100 msec to detect RV systolic dysfunction was found to be 93%. R’ duration was found to have an inverse correlation with RV EF (r=−0.49, P=0.007). Conclusions Larger RV end systolic volumes seen with RV dysfunction can affect the latter part of right bundle branch leading to prolonged R’ duration. We here found prolonged R’ duration in lead V1 to have a highly specific inverse correlation to RV systolic function. ECG can be used as an inexpensive tool for RV function

  6. Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging Post-robotic Radiosurgical Pulmonary Vein Isolation (RRPVI): First Case in the World

    PubMed Central

    Azpiri, Jose; De La Peña, Cuauhtémoc; Cardona, Carlos; Hinojosa, Miguel; Zamarripa, Rafael; Assad, Jose

    2016-01-01

    Pulmonary vein isolation using robotic radiosurgery system CyberKnife is a new non-invasive treatment of atrial fibrillation, currently in clinical phase. Robotic radiosurgical pulmonary vein isolation (RRPVI) uses stereotactic, non-invasive (painless) pinpoint radiation energy delivery to a small, precise area to accomplish ablation. The purpose of this report is to describe the finding of an increase in the enhancement of the left atrium demonstrated with the use of cardiac magnetic resonance imaging using late gadolinium enhancement (LGE-CMR) as a result of RRPVI in the first case in the world in humans using CyberKnife as a treatment for paroxysmal atrial fibrillation (PAF). PMID:27660737

  7. Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging Post-robotic Radiosurgical Pulmonary Vein Isolation (RRPVI): First Case in the World.

    PubMed

    Monroy, Edgar; Azpiri, Jose; De La Peña, Cuauhtémoc; Cardona, Carlos; Hinojosa, Miguel; Zamarripa, Rafael; Assad, Jose

    2016-01-01

    Pulmonary vein isolation using robotic radiosurgery system CyberKnife is a new non-invasive treatment of atrial fibrillation, currently in clinical phase. Robotic radiosurgical pulmonary vein isolation (RRPVI) uses stereotactic, non-invasive (painless) pinpoint radiation energy delivery to a small, precise area to accomplish ablation. The purpose of this report is to describe the finding of an increase in the enhancement of the left atrium demonstrated with the use of cardiac magnetic resonance imaging using late gadolinium enhancement (LGE-CMR) as a result of RRPVI in the first case in the world in humans using CyberKnife as a treatment for paroxysmal atrial fibrillation (PAF). PMID:27660737

  8. Cardiac Magnetic Resonance Imaging Might Complement Two-Dimensional Echocardiography in the Detection of a Reversible Nonischemic Cardiomyopathy

    PubMed Central

    Madanieh, Raef; Mathew, Shawn; Shah, Pratik; Vatti, Satya K.; Madanieh, Abed; Kosmas, Constantine E.; Vittorio, Timothy J.

    2015-01-01

    We report a case of reversible nonischemic dilated cardiomyopathy in a male in his 60s who presented with an acute heart failure syndrome. Both conventional two-dimensional echocardiography and cardiac magnetic resonance imaging (cMRI) demonstrated severe left ventricular systolic dysfunction; however, both modalities were devoid of significant valvular heart disease as well as the presence of fibrosis, infiltration, inflammation, and scar. After six months of aggressive neurohumoral modulation, there was complete reverse remodeling and normalization of left ventricular function, which highlights the role of cMRI as an adjunct to two-dimensional echocardiography in the detection of a potentially reversible nonischemic cardiomyopathy. PMID:26740746

  9. Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging Post-robotic Radiosurgical Pulmonary Vein Isolation (RRPVI): First Case in the World

    PubMed Central

    Azpiri, Jose; De La Peña, Cuauhtémoc; Cardona, Carlos; Hinojosa, Miguel; Zamarripa, Rafael; Assad, Jose

    2016-01-01

    Pulmonary vein isolation using robotic radiosurgery system CyberKnife is a new non-invasive treatment of atrial fibrillation, currently in clinical phase. Robotic radiosurgical pulmonary vein isolation (RRPVI) uses stereotactic, non-invasive (painless) pinpoint radiation energy delivery to a small, precise area to accomplish ablation. The purpose of this report is to describe the finding of an increase in the enhancement of the left atrium demonstrated with the use of cardiac magnetic resonance imaging using late gadolinium enhancement (LGE-CMR) as a result of RRPVI in the first case in the world in humans using CyberKnife as a treatment for paroxysmal atrial fibrillation (PAF).

  10. Cardiac gated ventilation

    SciTech Connect

    Hanson, C.W. III; Hoffman, E.A.

    1995-12-31

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart.

  11. Cardiac gated ventilation

    NASA Astrophysics Data System (ADS)

    Hanson, C. William, III; Hoffman, Eric A.

    1995-05-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. We evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50msec scan aperture. Multislice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. We observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a nonfailing model of the heart.

  12. Development and application of image processing, data processing, database, and data query tools to study post-infarction cardiac remodeling in man

    NASA Astrophysics Data System (ADS)

    Rumberger, John A.; Reed, Judd E.; Behrenbeck, Thomas; Davitt, Patrick J.; Sheedy, Patrick F., II

    1994-05-01

    In the latter 1970s, largely due to the development of echocardiography and the ready availability of invasive contrast ventriculography, clinicians noted that distinct and serial changes occurred in the heart after infarction where cardiac enlargement could progress long after completion of scarring in the infarct region. Similar changes have also been observed in the non-infarcted or non-ischemic myocardial regions commencing within days of infarction. This process, which involves both viable and infarcted heart muscle, has been termed `post- infarction cardiac remodeling.' A major obstacle to further comprehension of post-infarction cardiac remodeling in man has been related to limitations in applications of conventional cardiac imaging methods and conventional cardiac image processing. Electron beam computed tomography (EBCT) has emerged recently as an alternative means to image the heart and has been extensively validated for studies of ventricular volumes, function, muscle mass, shape, characterization of regional mechanics, and affords 3-D image registration. A research investigation was designed which involved a total of 55 patients entered prospectively following an index myocardial infarction. Each was imaged using EBCT at hospital discharge, six-weeks, six-months and one-year after the event.

  13. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    NASA Astrophysics Data System (ADS)

    Willey, T. M.; Champley, K.; Hodgin, R.; Lauderbach, L.; Bagge-Hansen, M.; May, C.; Sanchez, N.; Jensen, B. J.; Iverson, A.; van Buuren, T.

    2016-06-01

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. This work outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ˜80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst, the 2nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.

  14. Prospective Evaluation of Dual-Energy Imaging in Patients Undergoing Image Guided Radiation Therapy for Lung Cancer: Initial Clinical Results

    SciTech Connect

    Sherertz, Tracy; Hoggarth, Mark; Luce, Jason; Block, Alec M.; Nagda, Suneel; Harkenrider, Matthew M.; Emami, Bahman; Roeske, John C.

    2014-07-01

    Purpose: A prospective feasibility study was conducted to investigate the utility of dual-energy (DE) imaging compared to conventional x-ray imaging for patients undergoing kV-based image guided radiation therapy (IGRT) for lung cancer. Methods and Materials: An institutional review board-approved feasibility study enrolled patients with lung cancer undergoing IGRT and was initiated in September 2011. During daily setup, 2 sequential respiration-gated x-ray images were obtained using an on-board imager. Imaging was composed of 1 standard x-ray image at 120 kVp (1 mAs) and a second image obtained at 60 kVp (4 mAs). Weighted logarithmic subtraction of the 2 images was performed offline to create a soft tissue-selective DE image. Conventional and DE images were evaluated by measuring relative contrast and contrast-to-noise ratios (CNR) and also by comparing spatial localization, using both approaches. Imaging dose was assessed using a calibrated ion chamber. Results: To date, 10 patients with stage IA to IIIA lung cancer were enrolled and 57 DE images were analyzed. DE subtraction resulted in complete suppression of overlying bone in all 57 DE images, with an average improvement in relative contrast of 4.7 ± 3.3 over that of 120 kVp x-ray images (P<.0002). The improvement in relative contrast with DE imaging was seen for both smaller (gross tumor volume [GTV] ≤5 cc) and larger tumors (GTV >5 cc), with average relative contrast improvement ratios of 3.4 ± 4.1 and 5.4 ± 3.6, respectively. Moreover, the GTV was reliably localized in 95% of the DE images versus 74% of the single energy (SE images, (P=.004). Mean skin dose per DE image set was 0.44 ± 0.03 mGy versus 0.43 ± 0.03 mGy, using conventional kV imaging parameters. Conclusions: Initial results of this feasibility study suggest that DE thoracic imaging may enhance tumor localization in lung cancer patients receiving kV-based IGRT without increasing imaging dose.

  15. Susac's Syndrome: A Case with Unusual Cardiac Vestibular and Imaging Manifestations

    PubMed Central

    River, Yaron; Shupak, Avi; Tiosano, Beatrice; Danilov, Vika; Braverman, Itzhak

    2015-01-01

    Susac's syndrome (SS) is a disease of the microvasculature of the retina, brain, and inner ear. We describe a patient with unusual manifestations of SS with possible involvement of the brainstem, cardiac arrhythmia, and MRI findings lacking the characteristic lesions found in Susac's syndrome. PMID:26688762

  16. D-Dimer Levels Predict Myocardial Injury in ST-Segment Elevation Myocardial Infarction: A Cardiac Magnetic Resonance Imaging Study

    PubMed Central

    Song, Young Bin; Lima, Joao A. C.; Guallar, Eliseo; Choe, Yeon Hyeon; Hwang, Jin Kyung; Kim, Eun Kyoung; Yang, Jeong Hoon; Hahn, Joo-Yong; Choi, Seung-Hyuk; Lee, Sang-Chol; Lee, Sang Hoon; Gwon, Hyeon-Cheol

    2016-01-01

    Objectives Elevated D-dimer levels on admission predict prognosis in patients undergoing primary percutaneous coronary intervention (PCI) for ST-segment elevation myocardial infarction (STEMI), but the association of D-dimer levels with structural markers of myocardial injury in these patients is unknown. Methods We performed cardiac magnetic resonance (CMR) imaging in 208 patients treated with primary PCI for STEMI. CMR was performed a median of 3 days after the index procedure. Of the 208 patients studied, 75 patients had D-dimer levels above the normal range on admission (>0.5 μg/mL; high D-dimer group) while 133 had normal levels (≤0.5 μg/mL; low D-dimer group). The primary outcome was myocardial infarct size assessed by CMR. Secondary outcomes included area at risk (AAR), microvascular obstruction (MVO) area, and myocardial salvage index (MSI). Results In CMR analysis, myocardial infarct size was larger in the high D-dimer group than in the low D-dimer group (22.3% [16.2–30.5] versus 18.8% [10.7–26.7]; p = 0.02). Compared to the low D-dimer group, the high D-dimer group also had a larger AAR (38.1% [31.7–46.9] versus 35.8% [24.2–45.3]; p = 0.04) and a smaller MSI (37.7 [28.2–46.9] versus 47.1 [33.2–57.0]; p = 0.01). In multivariate analysis, high D-dimer levels were significantly associated with larger myocardial infarct (OR 2.59; 95% CI 1.37–4.87; p<0.01) and lower MSI (OR 2.62; 95% CI 1.44–4.78; p<0.01). Conclusions In STEMI patients undergoing primary PCI, high D-dimer levels on admission were associated with a larger myocardial infarct size, a greater extent of AAR, and lower MSI, as assessed by CMR data. Elevated initial D-dimer level may be a marker of advanced myocardial injury in patients treated with primary PCI for STEMI. PMID:27513758

  17. The multi-modality cardiac imaging approach to the Athlete's heart: an expert consensus of the European Association of Cardiovascular Imaging.

    PubMed

    Galderisi, Maurizio; Cardim, Nuno; D'Andrea, Antonello; Bruder, Oliver; Cosyns, Bernard; Davin, Laurent; Donal, Erwan; Edvardsen, Thor; Freitas, Antonio; Habib, Gilbert; Kitsiou, Anastasia; Plein, Sven; Petersen, Steffen E; Popescu, Bogdan A; Schroeder, Stephen; Burgstahler, Christof; Lancellotti, Patrizio

    2015-04-01

    The term 'athlete's heart' refers to a clinical picture characterized by a slow heart rate and enlargement of the heart. A multi-modality imaging approach to the athlete's heart aims to differentiate physiological changes due to intensive training in the athlete's heart from serious cardiac diseases with similar morphological features. Imaging assessment of the athlete's heart should begin with a thorough echocardiographic examination.Left ventricular (LV) wall thickness by echocardiography can contribute to the distinction between athlete's LV hypertrophy and hypertrophic cardiomyopathy (HCM). LV end-diastolic diameter becomes larger (>55 mm) than the normal limits only in end-stage HCM patients when the LV ejection fraction is <50%. Patients with HCM also show early impairment of LV diastolic function, whereas athletes have normal diastolic function.When echocardiography cannot provide a clear differential diagnosis, cardiac magnetic resonance (CMR) imaging should be performed.With CMR, accurate morphological and functional assessment can be made. Tissue characterization by late gadolinium enhancement may show a distinctive, non-ischaemic pattern in HCM and a variety of other myocardial conditions such as idiopathic dilated cardiomyopathy or myocarditis. The work-up of athletes with suspected coronary artery disease should start with an exercise ECG. In athletes with inconclusive exercise ECG results, exercise stress echocardiography should be considered. Nuclear cardiology techniques, coronary cardiac tomography (CCT) and/or CMR may be performed in selected cases. Owing to radiation exposure and the young age of most athletes, the use of CCT and nuclear cardiology techniques should be restricted to athletes with unclear stress echocardiography or CMR. PMID:25681828

  18. Echocardiography and Alternative Cardiac Imaging Strategies for Long-Term Cardiotoxicity Surveillance of Cancer Survivors Treated with Chemotherapy and/or Radiation Exposure.

    PubMed

    Garg, Vinisha; Vorobiof, Gabriel

    2016-08-01

    Cardiotoxicity from chemotherapy is a leading cause of morbidity and mortality in cancer survivors. Cardiotoxic effects include left ventricular systolic dysfunction, coronary artery disease, hypertension, bradycardia, arrhythmias, pericardial disease, valvular disease, and radiation-induced restrictive cardiomyopathy. Noninvasive cardiac imaging has been at the forefront of detecting cardiotoxicity in patients receiving chemotherapeutic agents known to adversely affect cardiac structure and function. Regimens for cardiotoxicity surveillance prior to and during chemotherapy administration have been proposed; however, optimal screening for and treatment of long-term cancer survivors have yet to be clarified. This review focuses on the most common imaging modalities for assessing cardiac dysfunction along with newer imaging technologies, and reviews suggested long-term surveillance strategies in cancer survivors following chemotherapy and radiation therapy.

  19. High-precision γ -ray spectroscopy of the cardiac PET imaging isotope 82Rb and its impact on dosimetry

    NASA Astrophysics Data System (ADS)

    Nino, M. N.; McCutchan, E. A.; Smith, S. V.; Lister, C. J.; Greene, J. P.; Carpenter, M. P.; Muench, L.; Sonzogni, A. A.; Zhu, S.

    2016-02-01

    82Rb is a positron-emitting isotope used in cardiac positron emission tomography (PET) imaging which has been reported to deliver a significantly lower effective radiation dose than analogous imaging isotopes like 201Tl and 99 mTc sestamibi. High-quality β -decay data are essential to accurately appraise the total dose received by the patients. A source of 82Sr was produced at the Brookhaven Linac Isotope Producer (BLIP), transported to Argonne National Laboratory, and studied with the Gammasphere facility. Significant revisions have been made to the level scheme of 82Kr including 12 new levels, 50 new γ -ray transitions, and the determination of many new spin assignments through angular correlations. These new high-quality data allow a precise reappraisal of the β -decay strength function and thus the consequent dose received by patients.

  20. Cardiac AAV9 Gene Delivery Strategies in Adult Canines: Assessment by Long-term Serial SPECT Imaging of Sodium Iodide Symporter Expression

    PubMed Central

    Moulay, Gilles; Ohtani, Tomohito; Ogut, Ozgur; Guenzel, Adam; Behfar, Atta; Zakeri, Rosita; Haines, Philip; Storlie, Jimmy; Bowen, Lorna; Pham, Linh; Kaye, David; Sandhu, Gurpreet; O'Connor, Michael; Russell, Stephen; Redfield, Margaret

    2015-01-01

    Heart failure is a leading cause of morbidity and mortality, and cardiac gene delivery has the potential to provide novel therapeutic approaches. Adeno-associated virus serotype 9 (AAV9) transduces the rodent heart efficiently, but cardiotropism, immune tolerance, and optimal delivery strategies in large animals are unclear. In this study, an AAV9 vector encoding canine sodium iodide symporter (NIS) was administered to adult immunocompetent dogs via epicardial injection, coronary infusion without and with cardiac recirculation, or endocardial injection via a novel catheter with curved needle and both end- and side-holes. As NIS mediates cellular uptake of clinical radioisotopes, expression was tracked by single-photon emission computerized tomography (SPECT) imaging in addition to Western blot and immunohistochemistry. Direct epicardial or endocardial injection resulted in strong cardiac expression, whereas expression after intracoronary infusion or cardiac recirculation was undetectable. A threshold myocardial injection dose that provides robust nonimmunogenic expression was identified. The extent of transmural myocardial expression was greater with the novel catheter versus straight end-hole needle delivery. Furthermore, the authors demonstrate that cardiac NIS reporter gene expression and duration can be quantified using serial noninvasive SPECT imaging up to 1 year after vector administration. These data are relevant to efforts to develop cardiac gene delivery as heart failure therapy. PMID:25915925

  1. Cardiac AAV9 Gene Delivery Strategies in Adult Canines: Assessment by Long-term Serial SPECT Imaging of Sodium Iodide Symporter Expression.

    PubMed

    Moulay, Gilles; Ohtani, Tomohito; Ogut, Ozgur; Guenzel, Adam; Behfar, Atta; Zakeri, Rosita; Haines, Philip; Storlie, Jimmy; Bowen, Lorna; Pham, Linh; Kaye, David; Sandhu, Gurpreet; O'Connor, Michael; Russell, Stephen; Redfield, Margaret

    2015-07-01

    Heart failure is a leading cause of morbidity and mortality, and cardiac gene delivery has the potential to provide novel therapeutic approaches. Adeno-associated virus serotype 9 (AAV9) transduces the rodent heart efficiently, but cardiotropism, immune tolerance, and optimal delivery strategies in large animals are unclear. In this study, an AAV9 vector encoding canine sodium iodide symporter (NIS) was administered to adult immunocompetent dogs via epicardial injection, coronary infusion without and with cardiac recirculation, or endocardial injection via a novel catheter with curved needle and both end- and side-holes. As NIS mediates cellular uptake of clinical radioisotopes, expression was tracked by single-photon emission computerized tomography (SPECT) imaging in addition to Western blot and immunohistochemistry. Direct epicardial or endocardial injection resulted in strong cardiac expression, whereas expression after intracoronary infusion or cardiac recirculation was undetectable. A threshold myocardial injection dose that provides robust nonimmunogenic expression was identified. The extent of transmural myocardial expression was greater with the novel catheter versus straight end-hole needle delivery. Furthermore, the authors demonstrate that cardiac NIS reporter gene expression and duration can be quantified using serial noninvasive SPECT imaging up to 1 year after vector administration. These data are relevant to efforts to develop cardiac gene delivery as heart failure therapy. PMID:25915925

  2. Impact of imaging landmark on the risk of MRI-related heating near implanted medical devices like cardiac pacemaker leads.

    PubMed

    Nordbeck, Peter; Ritter, Oliver; Weiss, Ingo; Warmuth, Marcus; Gensler, Daniel; Burkard, Natalie; Herold, Volker; Jakob, Peter M; Ertl, Georg; Ladd, Mark E; Quick, Harald H; Bauer, Wolfgang R

    2011-01-01

    Implanted medical devices such as cardiac pacemakers pose a potential hazard in magnetic resonance imaging. Electromagnetic fields have been shown to cause severe radio frequency-induced tissue heating in some cases. Imaging exclusion zones have been proposed as an instrument to reduce patient risk. The purpose of this study was to further assess the impact of the imaging landmark on the risk for unintended implant heating by measuring the radio frequency-induced electric fields in a body phantom under several imaging conditions at 1.5T. The results show that global radio frequency-induced coupling is highest with the torso centered along the superior-inferior direction of the transmit coil. The induced E-fields inside the body shift when changing body positioning, reducing both global and local radio frequency coupling if body and/or conductive implant are moved out from the transmit coil center along the z-direction. Adequate selection of magnetic resonance imaging landmark can significantly reduce potential hazards in patients with implanted medical devices.

  3. Cardiac Rehabilitation

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Cardiac Rehabilitation? Cardiac rehabilitation (rehab) is a medically supervised program ... be designed to meet your needs. The Cardiac Rehabilitation Team Cardiac rehab involves a long-term commitment ...

  4. Real-time Ca ion wave imaging in living rat cardiac muscle cells by a confocal multiphoton microscope with a microlens-pinhole array scanner

    NASA Astrophysics Data System (ADS)

    Fujita, Katsumasa; Kaneko, Tomoyuki; Nakamura, Osamu; Oyamada, Masahito; Takamatsu, Tetsuro; Kawata, Satoshi

    2000-04-01

    A real-time confocal multiphoton fluorescence microscope was developed to observe Ca2+ dynamics in living rat- cardiac muscle cells. The real-time imaging was achieved by multifocu