Kanaan, Georges N; Ichim, Bianca; Gharibeh, Lara; Maharsy, Wael; Patten, David A; Xuan, Jian Ying; Reunov, Arkadiy; Marshall, Philip; Veinot, John; Menzies, Keir; Nemer, Mona; Harper, Mary-Ellen
2018-04-01
Glutaredoxin 2 (GRX2), a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC) to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
MitoQ administration prevents endotoxin-induced cardiac dysfunction
Murphy, M. P.; Callahan, L. A.
2009-01-01
Sepsis elicits severe alterations in cardiac function, impairing cardiac mitochondrial and pressure-generating capacity. Currently, there are no therapies to prevent sepsis-induced cardiac dysfunction. We tested the hypothesis that administration of a mitochondrially targeted antioxidant, 10-(6′-ubiquinonyl)-decyltriphenylphosphonium (MitoQ), would prevent endotoxin-induced reductions in cardiac mitochondrial and contractile function. Studies were performed on adult rodents (n = 52) given either saline, endotoxin (8 mg·kg−1·day−1), saline + MitoQ (500 μM), or both endotoxin and MitoQ. At 48 h animals were killed and hearts were removed for determination of either cardiac mitochondrial function (using polarography) or cardiac pressure generation (using the Langendorf technique). We found that endotoxin induced reductions in mitochondrial state 3 respiration rates, the respiratory control ratio, and ATP generation. Moreover, MitoQ administration prevented each of these endotoxin-induced abnormalities, P < 0.001. We also found that endotoxin produced reductions in cardiac pressure-generating capacity, reducing the systolic pressure-diastolic relationship. MitoQ also prevented endotoxin-induced reductions in cardiac pressure generation, P < 0.01. One potential link between mitochondrial and contractile dysfunction is caspase activation; we found that endotoxin increased cardiac levels of active caspases 9 and 3 (P < 0.001), while MitoQ prevented this increase (P < 0.01). These data demonstrate that MitoQ is a potent inhibitor of endotoxin-induced mitochondrial and cardiac abnormalities. We speculate that this agent may prove a novel therapy for sepsis-induced cardiac dysfunction. PMID:19657095
MitoQ administration prevents endotoxin-induced cardiac dysfunction.
Supinski, G S; Murphy, M P; Callahan, L A
2009-10-01
Sepsis elicits severe alterations in cardiac function, impairing cardiac mitochondrial and pressure-generating capacity. Currently, there are no therapies to prevent sepsis-induced cardiac dysfunction. We tested the hypothesis that administration of a mitochondrially targeted antioxidant, 10-(6'-ubiquinonyl)-decyltriphenylphosphonium (MitoQ), would prevent endotoxin-induced reductions in cardiac mitochondrial and contractile function. Studies were performed on adult rodents (n = 52) given either saline, endotoxin (8 mg x kg(-1) x day(-1)), saline + MitoQ (500 microM), or both endotoxin and MitoQ. At 48 h animals were killed and hearts were removed for determination of either cardiac mitochondrial function (using polarography) or cardiac pressure generation (using the Langendorf technique). We found that endotoxin induced reductions in mitochondrial state 3 respiration rates, the respiratory control ratio, and ATP generation. Moreover, MitoQ administration prevented each of these endotoxin-induced abnormalities, P < 0.001. We also found that endotoxin produced reductions in cardiac pressure-generating capacity, reducing the systolic pressure-diastolic relationship. MitoQ also prevented endotoxin-induced reductions in cardiac pressure generation, P < 0.01. One potential link between mitochondrial and contractile dysfunction is caspase activation; we found that endotoxin increased cardiac levels of active caspases 9 and 3 (P < 0.001), while MitoQ prevented this increase (P < 0.01). These data demonstrate that MitoQ is a potent inhibitor of endotoxin-induced mitochondrial and cardiac abnormalities. We speculate that this agent may prove a novel therapy for sepsis-induced cardiac dysfunction.
GPER mediates the effects of 17β-estradiol in cardiac mitochondrial biogenesis and function.
Sbert-Roig, Miquel; Bauzá-Thorbrügge, Marco; Galmés-Pascual, Bel M; Capllonch-Amer, Gabriela; García-Palmer, Francisco J; Lladó, Isabel; Proenza, Ana M; Gianotti, Magdalena
2016-01-15
Considering the sexual dimorphism described in cardiac mitochondrial function and oxidative stress, we aimed to investigate the role of 17β-estradiol (E2) in these sex differences and the contribution of E2 receptors to these effects. As a model of chronic deprivation of ovarian hormones, we used ovariectomized (OVX) rats, half of which were treated with E2. Ovariectomy decreased markers of cardiac mitochondrial biogenesis and function and also increased oxidative stress, whereas E2 counteracted these effects. In H9c2 cardiomyocytes we observed that G-protein coupled estrogen receptor (GPER) agonist mimicked the effects of E2 in enhancing mitochondrial function and biogenesis, whereas GPER inhibitor neutralized them. These data suggest that E2 enhances mitochondrial function and decreases oxidative stress in cardiac muscle, thus it could be responsible for the sexual dimorphism observed in mitochondrial biogenesis and function in this tissue. These effects seem to be mediated through GPER stimulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L
2017-10-01
Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix elasticity regulates basal mitochondrial function, whereas both matrix elasticity and tissue alignment regulate mitochondrial stress responses. Copyright © 2017 the American Physiological Society.
Calcineurin Regulates Myocardial Function during Acute Endotoxemia
Joshi, Mandar S.; Julian, Mark W.; Huff, Jennifer E.; Bauer, John A.; Xia, Yong; Crouser, Elliott D.
2006-01-01
Rationale: Cyclosporin A (CsA) is known to preserve cardiac contractile function during endotoxemia, but the mechanism is unclear. Increased nitric oxide (NO) production and altered mitochondrial function are implicated as mechanisms contributing to sepsis-induced cardiac dysfunction, and CsA has the capacity to reduce NO production and inhibit mitochondrial dysfunction relating to the mitochondrial permeability transition (MPT). Objectives: We hypothesized that CsA would protect against endotoxin-mediated cardiac contractile dysfunction by attenuating NO production and preserving mitochondrial function. Methods: Left ventricular function was measured continuously over 4 h in cats assigned as follows: control animals (n = 7); LPS alone (3 mg/kg, n = 8); and CsA (6 mg/kg, n = 7), a calcineurin inhibitor that blocks the MPT, or tacrolimus (FK506, 0.1 mg/kg, n = 7), a calcineurin inhibitor lacking MPT activity, followed in 30 min by LPS. Myocardial tissue was then analyzed for NO synthase-2 expression, tissue nitration, protein carbonylation, and mitochondrial morphology and function. Measurements and Main Results: LPS treatment resulted in impaired left ventricular contractility, altered mitochondrial morphology and function, and increased protein nitration. As hypothesized, CsA pretreatment normalized cardiac performance and mitochondrial respiration and reduced myocardial protein nitration. Unexpectedly, FK506 pretreatment had similar effects, normalizing both cardiac and mitochondrial parameters. However, CsA and FK506 pretreatments markedly increased protein carbonylation in the myocardium despite elevated manganese superoxide dismutase activity during endotoxemia. Conclusions: Our data indicate that calcineurin is a critical regulator of mitochondrial respiration, tissue nitration, protein carbonylation, and contractile function in the heart during acute endotoxemia. PMID:16424445
Guo, Yongzheng; Wang, Zhen; Qin, Xinghua; Xu, Jie; Hou, Zuoxu; Yang, Hongyan; Mao, Xuechao; Xing, Wenjuan; Li, Xiaoliang; Zhang, Xing; Gao, Feng
2018-06-01
Heart failure (HF) is characterized by reduced fatty acid (FA) utilization associated with mitochondrial dysfunction. Recent evidence has shown that enhancing FA utilization may provide cardioprotection against HF. Our aim was to investigate the effects and the underlying mechanisms of cardiac FA utilization on cardiac function in response to pressure overload. Transverse aortic constriction (TAC) was used in C57 mice to establish pressure overload-induced HF. TAC mice fed on a high fat diet (HFD) exhibited increased cardiac FA utilization and improved cardiac function and survival compared with those on control diet. Such cardioprotection could also be provided by cardiac-specific overexpression of CD36. Notably, both HFD and CD36 overexpression attenuated mitochondrial fragmentation and improved mitochondrial function in the failing heart. Pressure overload decreased ATP-dependent metalloprotease (YME1L) expression and induced the proteolytic cleavage of the dynamin-like guanosine triphosphatase OPA1 as a result of suppressed FA utilization. Enhancing FA utilization upregulated YME1L expression and subsequently rebalanced OPA1 processing, resulting in restoration of mitochondrial morphology in the failing heart. In addition, cardiac-specific overexpression of YME1L exerted similar cardioprotective effects against HF to those provided by HFD or CD36 overexpression. These findings demonstrate that enhancing FA utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing OPA1 processing in pressure overload-induced HF, suggesting a unique metabolic intervention approach to improving cardiac functions in HF.
Grassi, Bruno; Majerczak, Joanna; Bardi, Eleonora; Buso, Alessia; Comelli, Marina; Chlopicki, Stefan; Guzik, Magdalena; Mavelli, Irene; Nieckarz, Zenon; Salvadego, Desy; Tyrankiewicz, Urszula; Skórka, Tomasz; Bottinelli, Roberto; Zoladz, Jerzy A; Pellegrino, Maria Antonietta
2017-08-01
Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgα q *44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgα q *44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgα q *44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance. NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed in transgenic chronic heart failure mice, evaluated in the critical period between the occurrence of an impairment of cardiac function and the terminal stage of the disease. Exercise training improved exercise performance and cardiac function, but it did not affect the impaired mitochondrial respiration. Factors "upstream" of mitochondria, including an enhanced cardiovascular O 2 delivery, were mainly responsible for the functional improvement. Copyright © 2017 the American Physiological Society.
Mitochondrial Dynamics in Diabetic Cardiomyopathy
Galloway, Chad A.
2015-01-01
Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID:25738230
Molecular identity of cardiac mitochondrial chloride intracellular channel proteins.
Ponnalagu, Devasena; Gururaja Rao, Shubha; Farber, Jason; Xin, Wenyu; Hussain, Ahmed Tafsirul; Shah, Kajol; Tanda, Soichi; Berryman, Mark; Edwards, John C; Singh, Harpreet
2016-03-01
Emerging evidences demonstrate significance of chloride channels in cardiac function and cardioprotection from ischemia-reperfusion (IR) injury. Unlike mitochondrial potassium channels sensitive to calcium (BKCa) and ATP (KATP), molecular identity of majority of cardiac mitochondrial chloride channels located at the inner membrane is not known. In this study, we report the presence of unique dimorphic chloride intracellular channel (CLIC) proteins namely CLIC1, CLIC4 and CLIC5 as abundant CLICs in the rodent heart. Further, CLIC4, CLIC5, and an ortholog present in Drosophila (DmCLIC) localize to adult cardiac mitochondria. We found that CLIC4 is enriched in the outer mitochondrial membrane, whereas CLIC5 is present in the inner mitochondrial membrane. Also, CLIC5 plays a direct role in regulating mitochondrial reactive oxygen species (ROS) generation. Our study highlights that CLIC5 is localized to the cardiac mitochondria and directly modulates mitochondrial function. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Apaijai, Nattayaporn; Pintana, Hiranya; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2013-01-01
Background and Purpose Long-term high-fat diet (HFD) consumption has been shown to cause insulin resistance, which is characterized by hyperinsulinaemia with metabolic inflexibility. Insulin resistance is associated with cardiac sympathovagal imbalance, cardiac dysfunction and cardiac mitochondrial dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors, vildagliptin and sitagliptin, are oral anti-diabetic drugs often prescribed in patients with cardiovascular disease. Therefore, in this study, we sought to determine the effects of vildagliptin and sitagliptin in a murine model of insulin resistance. Experimental Approach Male Wistar rats weighing 180–200 g, were fed either a normal diet (20% energy from fat) or a HFD (59% energy from fat) for 12 weeks. These rats were then divided into three subgroups to receive vildagliptin (3 mg·kg−1·day−1), sitagliptin (30 mg·kg−1·day−1) or vehicle for another 21 days. Metabolic parameters, oxidative stress, heart rate variability (HRV), cardiac function and cardiac mitochondrial function were determined. Key Results Rats that received HFD developed insulin resistance characterized by increased body weight, plasma insulin, total cholesterol and oxidative stress levels along with a decreased high-density lipoprotein (HDL) level. Moreover, cardiac dysfunction, depressed HRV, cardiac mitochondrial dysfunction and cardiac mitochondrial morphology changes were observed in HFD rats. Both vildagliptin and sitagliptin decreased plasma insulin, total cholesterol and oxidative stress as well as increased HDL level. Furthermore, vildagliptin and sitagliptin attenuated cardiac dysfunction, prevented cardiac mitochondrial dysfunction and completely restored HRV. Conclusions and Implications Both vildagliptin and sitagliptin share similar efficacy in cardioprotection in obese insulin-resistant rats. PMID:23488656
Rana, Santanu; Datta, Ritwik; Chaudhuri, Ratul Datta; Chatterjee, Emeli; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha
2018-05-09
Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac function, thereby, opening up a potential avenue for cardiac tissue engineering during hypertrophic cardiac pathophysiology.
Thioredoxin-2 Inhibits Mitochondrial ROS Generation and ASK1 Activity to Maintain Cardiac Function
Huang, Qunhua; Zhou, Huanjiao Jenny; Zhang, Haifeng; Huang, Yan; Hinojosa-Kirschenbaum, Ford; Fan, Peidong; Yao, Lina; Belardinelli, Luiz; Tellides, George; Giordano, Frank J.; Budas, Grant R.; Min, Wang
2015-01-01
Background Thioredoxin 2 (Trx2) is a key mitochondrial protein which regulates cellular redox and survival by suppressing mitochondrial ROS generation and by inhibiting apoptosis stress kinase-1 (ASK1)-dependent apoptotic signaling. To date, the role of the mitochondrial Trx2 system in heart failure pathogenesis has not been investigated. Methods and Results Western blot and histological analysis revealed that Trx2 protein expression levels were reduced in hearts from patients with dilated cardiomyopathy (DCM), with a concomitant increase in increased ASK1 phosphorylation/activity. Cardiac-specific Trx2 knockout mice (Trx2-cKO). Trx2-cKO mice develop spontaneous DCM at 1 month of age with increased heart size, reduced ventricular wall thickness, and a progressive decline in left ventricular (LV) contractile function, resulting in mortality due to heart failure by ~4 months of age. The progressive decline in cardiac function observed in Trx2-cKO mice was accompanied by disruption of mitochondrial ultrastructure, mitochondrial membrane depolarization, increased mitochondrial ROS generation and reduced ATP production, correlating with increased ASK1 signaling and increased cardiomyocyte apoptosis. Chronic administration of a highly selective ASK1 inhibitor improved cardiac phenotype and reduced maladaptive LV remodeling with significant reductions in oxidative stress, apoptosis, fibrosis and cardiac failure. Cellular data from Trx2-deficient cardiomyocytes demonstrated that ASK1 inhibition reduced apoptosis and reduced mitochondrial ROS generation. Conclusions Our data support an essential role for mitochondrial Trx2 in preserving cardiac function by suppressing mitochondrial ROS production and ASK1-dependent apoptosis. Inhibition of ASK1 represents a promising therapeutic strategy for the treatment of dilated cardiomyopathy and heart failure. PMID:25628390
Sharp, Willard W.; Beiser, David G.; Fang, Yong Hu; Han, Mei; Piao, Lin; Varughese, Justin; Archer, Stephen L.
2015-01-01
Objectives Survival following sudden cardiac arrest is poor despite advances in cardiopulmonary resuscitation (CPR) and the use of therapeutic hypothermia. Dynamin related protein 1 (Drp1), a regulator of mitochondrial fission, is an important determinant of reactive oxygen species generation, myocardial necrosis, and left ventricular function following ischemia/reperfusion injury, but its role in cardiac arrest is unknown. We hypothesized that Drp1 inhibition would improve survival, cardiac hemodynamics, and mitochondrial function in an in vivo model of cardiac arrest. Design Laboratory investigation. Setting University laboratory Interventions Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent an 8-min KCl induced cardiac arrest followed by 90 seconds of CPR. Mice were then blindly randomized to a single intravenous injection of Mdivi-1 (0.24 mg/kg), a small molecule Drp1 inhibitor or vehicle (DMSO). Measurements and Main Results Following resuscitation from cardiac arrest, mitochondrial fission was evidenced by Drp1 translocation to the mitochondrial membrane and a decrease in mitochondrial size. Mitochondrial fission was associated with increased lactate and evidence of oxidative damage. Mdivi-1 administration during CPR inhibited Drp1 activation, preserved mitochondrial morphology, and decreased oxidative damage. Mdivi-1 also reduced the time to return of spontaneous circulation (ROSC) 116±4 vs. 143±7 sec (p<. 001) during CPR and enhanced myocardial performance post-ROSC. These improvements were associated with significant increases in survival (65% vs. 33%) and improved neurological scores up to 72 hours post cardiac arrest. Conclusions Post cardiac arrest inhibition of Drp1 improves time to ROSC and myocardial hemodynamics resulting in improved survival and neurological outcomes in a murine model of cardiac arrest. Pharmacological targeting of mitochondrial fission may be a promising therapy for cardiac arrest. PMID:25599491
Matsuura, Timothy R; Bartos, Jason A; Tsangaris, Adamantios; Shekar, Kadambari Chandra; Olson, Matthew D; Riess, Matthias L; Bienengraeber, Martin; Aufderheide, Tom P; Neumar, Robert W; Rees, Jennifer N; McKnite, Scott H; Dikalova, Anna E; Dikalov, Sergey I; Douglas, Hunter F; Yannopoulos, Demetris
2017-07-01
Out-of-hospital cardiac arrest (CA) is a prevalent medical crisis resulting in severe injury to the heart and brain and an overall survival of less than 10%. Mitochondrial dysfunction is predicted to be a key determinant of poor outcomes following prolonged CA. However, the onset and severity of mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) is not fully understood. Ischemic postconditioning (IPC), controlled pauses during the initiation of CPR, has been shown to improve cardiac function and neurologically favorable outcomes after 15min of CA. We tested the hypothesis that mitochondrial dysfunction develops during prolonged CA and can be rescued with IPC during CPR (IPC-CPR). A total of 63 swine were randomized to no ischemia (Naïve), 19min of ventricular fibrillation (VF) CA without CPR (Untreated VF), or 15min of CA with 4min of reperfusion with either standard CPR (S-CPR) or IPC-CPR. Mitochondria were isolated from the heart and brain to quantify respiration, rate of ATP synthesis, and calcium retention capacity (CRC). Reactive oxygen species (ROS) production was quantified from fresh frozen heart and brain tissue. Compared to Naïve, Untreated VF induced cardiac and brain ROS overproduction concurrent with decreased mitochondrial respiratory coupling and CRC, as well as decreased cardiac ATP synthesis. Compared to Untreated VF, S-CPR attenuated brain ROS overproduction but had no other effect on mitochondrial function in the heart or brain. Compared to Untreated VF, IPC-CPR improved cardiac mitochondrial respiratory coupling and rate of ATP synthesis, and decreased ROS overproduction in the heart and brain. Fifteen minutes of VF CA results in diminished mitochondrial respiration, ATP synthesis, CRC, and increased ROS production in the heart and brain. IPC-CPR attenuates cardiac mitochondrial dysfunction caused by prolonged VF CA after only 4min of reperfusion, suggesting that IPC-CPR is an effective intervention to reduce cardiac injury. However, reperfusion with both CPR methods had limited effect on mitochondrial function in the brain, emphasizing an important physiological divergence in post-arrest recovery between those two vital organs. Copyright © 2017 Elsevier B.V. All rights reserved.
Thapa, Dharendra; Shepherd, Danielle L.
2014-01-01
Cardiac tissue contains discrete pools of mitochondria that are characterized by their subcellular spatial arrangement. Subsarcolemmal mitochondria (SSM) exist below the cell membrane, interfibrillar mitochondria (IFM) reside in rows between the myofibrils, and perinuclear mitochondria are situated at the nuclear poles. Microstructural imaging of heart tissue coupled with the development of differential isolation techniques designed to sequentially separate spatially distinct mitochondrial subpopulations have revealed differences in morphological features including shape, absolute size, and internal cristae arrangement. These findings have been complemented by functional studies indicating differences in biochemical parameters and, potentially, functional roles for the ATP generated, based upon subcellular location. Consequently, mitochondrial subpopulations appear to be influenced differently during cardiac pathologies including ischemia/reperfusion, heart failure, aging, exercise, and diabetes mellitus. These influences may be the result of specific structural and functional disparities between mitochondrial subpopulations such that the stress elicited by a given cardiac insult differentially impacts subcellular locales and the mitochondria contained within. The goal of this review is to highlight some of the inherent structural and functional differences that exist between spatially distinct cardiac mitochondrial subpopulations as well as provide an overview of the differential impact of various cardiac pathologies on spatially distinct mitochondrial subpopulations. As an outcome, we will instill a basis for incorporating subcellular spatial location when evaluating the impact of cardiac pathologies on the mitochondrion. Incorporation of subcellular spatial location may offer the greatest potential for delineating the influence of cardiac pathology on this critical organelle. PMID:24778166
Substrate- and isoform-specific proteome stability in normal and stressed cardiac mitochondria.
Lau, Edward; Wang, Ding; Zhang, Jun; Yu, Hongxiu; Lam, Maggie P Y; Liang, Xiangbo; Zong, Nobel; Kim, Tae-Young; Ping, Peipei
2012-04-27
Mitochondrial protein homeostasis is an essential component of the functions and oxidative stress responses of the heart. To determine the specificity and efficiency of proteome turnover of the cardiac mitochondria by endogenous and exogenous proteolytic mechanisms. Proteolytic degradation of the murine cardiac mitochondria was assessed by 2-dimensional differential gel electrophoresis and liquid chromatography-tandem mass spectrometry. Mitochondrial proteases demonstrated a substrate preference for basic protein variants, which indicates a possible recognition mechanism based on protein modifications. Endogenous mitochondrial proteases and the cytosolic 20S proteasome exhibited different substrate specificities. The cardiac mitochondrial proteome contains low amounts of proteases and is remarkably stable in isolation. Oxidative damage lowers the proteolytic capacity of cardiac mitochondria and reduces substrate availability for mitochondrial proteases. The 20S proteasome preferentially degrades specific substrates in the mitochondria and may contribute to cardiac mitochondrial proteostasis.
Colom, Bartomeu; Oliver, Jordi; Garcia-Palmer, Francisco J
2015-11-01
The incidence of cardiac disease is age and sex dependent, but the mechanisms governing these associations remain poorly understood. Mitochondria are the organelles in charge of producing energy for the cells, and their malfunction has been linked to cardiovascular disease and heart failure. Interestingly, heart mitochondrial content and functionality are also age and sex dependent. Here we investigated the combinatory effects of age and sex in mitochondrial bioenergetics that could help to understand their role on cardiac disease. Cardiac mitochondria from 6- and 24-month-old male and female Wistar rats were isolated, and the enzymatic activities of the oxidative-phosphorylative complexes I, III, and IV and ATPase, as well as the protein levels of complex IV, β-ATPase, and mitochondrial transcription factor A (TFAM), were measured. Furthermore, heart DNA content, citrate synthase activity, mitochondrial protein content, oxygen consumption, and H2O2 generation were also determined. Results showed a reduction in heart mitochondrial mass and functionality with age that correlated with increased H2O2 generation. Moreover, sex-dependent differences were found in several of these parameters. In particular, old females exhibited a significant loss of mitochondrial function and increased relative H2O2 production compared with their male counterparts. The results demonstrate a sex dimorphism in the age-associated defects on cardiac mitochondrial function. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sridharan, Vijayalakshmi; Tripathi, Preeti; Aykin-Burns, Nukhet; Krager, Kimberly J; Sharma, Sunil K.; Moros, Eduardo G.; Melnyk, Stepan B.; Pavliv, Oleksandra; Hauer-Jensen, Martin; Boerma, Marjan
2015-01-01
Radiation-induced heart disease (RIHD) is a common and sometimes severe late side effect of radiation therapy for intrathoracic and chest wall tumors. We have previously shown that local heart irradiation in a rat model caused prolonged changes in mitochondrial respiration and increased susceptibility to mitochondrial permeability transition pore (mPTP) opening. Because tocotrienols are known to protect against oxidative stress-induced mitochondrial dysfunction, in this study, we examined the effects of tocotrienols on radiation-induced alterations in mitochondria, and structural and functional manifestations of RIHD. Male Sprague-Dawley rats received image-guided localized X irradiation to the heart to a total dose of 21 Gy. Twenty-four hours before irradiation, rats received a tocotrienol-enriched formulation or vehicle by oral gavage. Mitochondrial function and mitochondrial membrane parameters were studied at 2 weeks and 28 weeks after irradiation. In addition, cardiac function and histology were examined at 28 weeks. A single oral dose of the tocotrienol-enriched formulation preserved Bax/Bcl2 ratios and prevented mPTP opening and radiation-induced alterations in succinate-driven mitochondrial respiration. Nevertheless, the late effects of local heart irradiation pertaining to myocardial function and structure were not modified. Our studies suggest that a single dose of tocotrienols protects against radiation-induced mitochondrial changes, but these effects are not sufficient against long-term alterations in cardiac function or remodeling. PMID:25710576
Sridharan, Vijayalakshmi; Tripathi, Preeti; Aykin-Burns, Nukhet; Krager, Kimberly J; Sharma, Sunil K; Moros, Eduardo G; Melnyk, Stepan B; Pavliv, Oleksandra; Hauer-Jensen, Martin; Boerma, Marjan
2015-03-01
Radiation-induced heart disease (RIHD) is a common and sometimes severe late side effect of radiation therapy for intrathoracic and chest wall tumors. We have previously shown that local heart irradiation in a rat model caused prolonged changes in mitochondrial respiration and increased susceptibility to mitochondrial permeability transition pore (mPTP) opening. Because tocotrienols are known to protect against oxidative stress-induced mitochondrial dysfunction, in this study, we examined the effects of tocotrienols on radiation-induced alterations in mitochondria, and structural and functional manifestations of RIHD. Male Sprague-Dawley rats received image-guided localized X irradiation to the heart to a total dose of 21 Gy. Twenty-four hours before irradiation, rats received a tocotrienol-enriched formulation or vehicle by oral gavage. Mitochondrial function and mitochondrial membrane parameters were studied at 2 weeks and 28 weeks after irradiation. In addition, cardiac function and histology were examined at 28 weeks. A single oral dose of the tocotrienol-enriched formulation preserved Bax/Bcl2 ratios and prevented mPTP opening and radiation-induced alterations in succinate-driven mitochondrial respiration. Nevertheless, the late effects of local heart irradiation pertaining to myocardial function and structure were not modified. Our studies suggest that a single dose of tocotrienols protects against radiation-induced mitochondrial changes, but these effects are not sufficient against long-term alterations in cardiac function or remodeling.
Desmin Cytoskeleton Linked to Muscle Mitochondrial Distribution and Respiratory Function
Milner, Derek J.; Mavroidis, Manolis; Weisleder, Noah; Capetanaki, Yassemi
2000-01-01
Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (K m) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant role in mitochondrial positioning and respiratory function in cardiac and skeletal muscle. PMID:10995435
Metabolic Dysfunction Consistent with Premature Aging Results from Deletion of Pim Kinases
Din, Shabana; Konstandin, Mathias H; Johnson, Bevan; Emathinger, Jacqueline; Völkers, Mirko; Toko, Haruhiro; Collins, Brett; Ormachea, Lucy; Samse, Kaitlen; Kubli, Dieter A; De La Torre, Andrea; Kraft, Andrew S; Gustafsson, Asa B; Kelly, Daniel P; Sussman, Mark A
2014-01-01
Rationale The senescent cardiac phenotype is accompanied by changes in mitochondrial function and biogenesis causing impairment in energy provision. The relationship between myocardial senescence and Pim kinases deserves attention since Pim-1 kinase is cardioprotective, in part, by preservation of mitochondrial integrity. Study of the pathological effects resulting from genetic deletion of all Pim kinase family members could provide important insight regarding cardiac mitochondrial biology and the aging phenotype. Objective Demonstrate myocardial senescence is promoted by loss of Pim leading to premature aging and aberrant mitochondrial function. Methods and Results Cardiac myocyte senescence was evident at three months of age in Pim Triple KnockOut (PTKO) mice, where all three isoforms of Pim kinase family members are genetically deleted. Cellular hypertrophic remodeling and fetal gene program activation was followed by heart failure at six months in PTKO mice. Metabolic dysfunction is an underlying cause of cardiac senescence and instigates a decline in cardiac function. Altered mitochondrial morphology is evident consequential to Pim deletion together with decreased ATP levels and increased phosphorylated AMPK, exposing an energy deficiency in PTKO mice. Expression of the genes encoding master regulators of mitochondrial biogenesis, PPARγ coactivator-1 (PGC-1) α and β were diminished in PTKO hearts, as were downstream targets included in mitochondrial energy transduction, including fatty acid oxidation. Reversal of the dysregulated metabolic phenotype was observed by overexpressing c-Myc, a downstream target of Pim kinases. Conclusion Pim kinases prevent premature cardiac aging and maintain a healthy pool of functional mitochondria leading to efficient cellular energetics. PMID:24916111
Hypoxia signaling controls postnatal changes in cardiac mitochondrial morphology and function
Neary, Marianne T.; Ng, Keat-Eng; Ludtmann, Marthe H.R.; Hall, Andrew R.; Piotrowska, Izabela; Ong, Sang-Bing; Hausenloy, Derek J.; Mohun, Timothy J.; Abramov, Andrey Y.; Breckenridge, Ross A.
2014-01-01
Fetal cardiomyocyte adaptation to low levels of oxygen in utero is incompletely understood, and is of interest as hypoxia tolerance is lost after birth, leading to vulnerability of adult cardiomyocytes. It is known that cardiac mitochondrial morphology, number and function change significantly following birth, although the underlying molecular mechanisms and physiological stimuli are undefined. Here we show that the decrease in cardiomyocyte HIF-signaling in cardiomyocytes immediately after birth acts as a physiological switch driving mitochondrial fusion and increased postnatal mitochondrial biogenesis. We also investigated mechanisms of ATP generation in embryonic cardiac mitochondria. We found that embryonic cardiac cardiomyocytes rely on both glycolysis and the tricarboxylic acid cycle to generate ATP, and that the balance between these two metabolic pathways in the heart is controlled around birth by the reduction in HIF signaling. We therefore propose that the increase in ambient oxygen encountered by the neonate at birth acts as a key physiological stimulus to cardiac mitochondrial adaptation. PMID:24984146
Vergeade, Aurélia; Mulder, Paul; Vendeville-Dehaudt, Cathy; Estour, François; Fortin, Dominique; Ventura-Clapier, Renée; Thuillez, Christian; Monteil, Christelle
2010-09-01
The goal of this study was to assess mitochondrial function and ROS production in an experimental model of cocaine-induced cardiac dysfunction. We hypothesized that cocaine abuse may lead to altered mitochondrial function that in turn may cause left ventricular dysfunction. Seven days of cocaine administration to rats led to an increased oxygen consumption detected in cardiac fibers, specifically through complex I and complex III. ROS levels were increased, specifically in interfibrillar mitochondria. In parallel there was a decrease in ATP synthesis, whereas no difference was observed in subsarcolemmal mitochondria. This uncoupling effect on oxidative phosphorylation was not detectable after short-term exposure to cocaine, suggesting that these mitochondrial abnormalities were a late rather than a primary event in the pathological response to cocaine. MitoQ, a mitochondrial-targeted antioxidant, was shown to completely prevent these mitochondrial abnormalities as well as cardiac dysfunction characterized here by a diastolic dysfunction studied with a conductance catheter to obtain pressure-volume data. Taken together, these results extend previous studies and demonstrate that cocaine-induced cardiac dysfunction may be due to a mitochondrial defect. Copyright 2010 Elsevier Inc. All rights reserved.
Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function
McDermott-Roe, Chris; Ye, Junmei; Ahmed, Rizwan; Sun, Xi-Ming; Serafín, Anna; Ware, James; Bottolo, Leonardo; Muckett, Phil; Cañas, Xavier; Zhang, Jisheng; Rowe, Glenn C.; Buchan, Rachel; Lu, Han; Braithwaite, Adam; Mancini, Massimiliano; Hauton, David; Martí, Ramon; García-Arumí, Elena; Hubner, Norbert; Jacob, Howard; Serikawa, Tadao; Zidek, Vaclav; Papousek, Frantisek; Kolar, Frantisek; Cardona, Maria; Ruiz-Meana, Marisol; García-Dorado, David; Comella, Joan X; Felkin, Leanne E; Barton, Paul JR; Arany, Zoltan; Pravenec, Michal; Petretto, Enrico; Sanchis, Daniel; Cook, Stuart A.
2011-01-01
Left ventricular mass (LVM) is a highly heritable trait1 and an independent risk factor for all-cause mortality2. To date, genome-wide association studies (GWASs) have not identified the genetic factors underlying LVM variation3 and the regulatory mechanisms for blood pressure (BP)-independent cardiac hypertrophy remain poorly understood4,5. Unbiased systems-genetics approaches in the rat6,7 now provide a powerful complementary tool to GWAS and we applied integrative genomics to dissect a highly replicated, BP-independent LVM locus on rat chromosome 3p. We identified endonuclease G (Endog), previously implicated in apoptosis8 but not hypertrophy, as the gene at the locus and demonstrated loss-of-function mutation in Endog associated with increased LVM and impaired cardiac function. Inhibition of Endog in cultured cardiomyocytes resulted in an increase in cell size and hypertrophic biomarkers in the absence of pro-hypertrophic stimulation. Genome-wide network analysis unexpectedly inferred ENDOG in fundamental mitochondrial processes unrelated to apoptosis. We showed direct regulation of ENDOG by ERRα and PGC1α, master regulators of mitochondrial and cardiac function9,10,11, interaction of ENDOG with the mitochondrial genome and ENDOG-mediated regulation of mitochondrial mass. At baseline, Endog deleted mouse heart had depleted mitochondria, mitochondrial dysfunction and elevated reactive oxygen species (ROS), which was associated with enlarged and steatotic cardiomyocytes. Our studies establish further the link between mitochondrial dysfunction, ROS and heart disease and demonstrate a new role for Endog in maladaptive cardiac hypertrophy. PMID:21979051
He, Quan; Harris, Nicole; Ren, Jun; Han, Xianlin
2014-01-01
Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress. PMID:25247053
Wang, Jiaxing; Lu, Songhe; Zheng, Qijun; Hu, Nan; Yu, Wenjun; Li, Na; Liu, Min; Gao, Beilei; Zhang, Guoyong; Zhang, Yingmei; Wang, Haichang
2016-07-01
Paraquat (1,1'-dim ethyl-4-4'-bipyridinium dichloride), a highly toxic quaternary ammonium herbicide widely used in agriculture, exerts potent toxic prooxidant effects resulting in multi-organ failure including the lung and heart although the underlying mechanism remains elusive. Recent evidence suggests possible involvement of endothelin system in paraquat-induced acute lung injury. This study was designed to examine the role of endothelin receptor A (ETA) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type (WT) and cardiac-specific ETA receptor knockout mice were challenged to paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties, as well as apoptosis and mitochondrial damage. Levels of the mitochondrial proteins for biogenesis and oxidative phosphorylation including UCP2, HSP90 and PGC1α were evaluated. Our results revealed that paraquat elicited cardiac enlargement, mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic and end-diastolic diameters as well as reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, overt apoptosis and mitochondrial damage. ETA receptor knockout itself failed to affect myocardial function, apoptosis, mitochondrial integrity and mitochondrial protein expression. However, ETA receptor knockout ablated or significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) defect, apoptosis and mitochondrial damage. Taken together, these findings revealed that endothelin system in particular the ETA receptor may be involved in paraquat-induced toxic myocardial contractile anomalies possibly related to apoptosis and mitochondrial damage.
Pathological presentation of cardiac mitochondria in a rat model for chronic kidney disease.
Bigelman, Einat; Cohen, Lena; Aharon-Hananel, Genya; Levy, Ran; Rozenbaum, Zach; Saada, Ann; Keren, Gad; Entin-Meer, Michal
2018-01-01
Mitochondria hold crucial importance in organs with high energy demand especially the heart. We investigated whether chronic kidney disease (CKD), which eventually culminates in cardiorenal syndrome, could affect cardiac mitochondria and assessed the potential involvement of angiotensin II (AngII) in the process. Male Lewis rats underwent 5/6 nephrectomy allowing CKD development for eight months or for eleven weeks. Short-term CKD rats were administered with AngII receptor blocker (ARB). Cardiac function was assessed by echocardiography and cardiac sections were evaluated for interstitial fibrosis and cardiomyocytes' hypertrophy. Electron microscopy was used to explore the spatial organization of the cardiomyocytes. Expression levels of mitochondrial content and activity markers were tested in order to delineate the underlying mechanisms for mitochondrial pathology in the CKD setting with or without ARB administration. CKD per-se resulted in induced cardiac interstitial fibrosis and cardiomyocytes' hypertrophy combined with a marked disruption of the mitochondrial structure. Moreover, CKD led to enhanced cytochrome C leakage to the cytosol and to enhanced PARP-1 cleavage which are associated with cellular apoptosis. ARB treatment did not improve kidney function but markedly reduced left ventricular mass, cardiomyocytes' hypertrophy and interstitial fibrosis. Interestingly, ARB administration improved the spatial organization of cardiac mitochondria and reduced their increased volume compared to untreated CKD animals. Nevertheless, ARB did not improve mitochondrial content, mitochondrial biogenesis or the respiratory enzyme activity. ARB mildly upregulated protein levels of mitochondrial fusion-related proteins. CKD results in cardiac pathological changes combined with mitochondrial damage and elevated apoptotic markers. We anticipate that the increased mitochondrial volume mainly represents mitochondrial swelling that occurs during the pathological process of cardiac hypertrophy. Chronic administration of ARB may improve the pathological appearance of the heart. Further recognition of the molecular pathways leading to mitochondrial insult and appropriate intervention is of crucial importance.
Ma, Sai; Feng, Jing; Zhang, Ran; Chen, Jiangwei; Han, Dong; Li, Xiang; Yang, Bo; Li, Xiujuan; Fan, Miaomiao; Li, Congye; Tian, Zuhong; Wang, Yabin; Cao, Feng
2017-01-01
Diabetic cardiomyopathy (DCM) is a major threat for diabetic patients. Silent information regulator 1 (SIRT1) has a regulatory effect on mitochondrial dynamics, which is associated with DCM pathological changes. Our study aims to investigate whether resveratrol, a SRIT1 activator, could exert a protective effect against DCM. Cardiac-specific SIRT1 knockout (SIRT1 KO ) mice were generated using Cre-loxP system. SIRT1 KO mice displayed symptoms of DCM, including cardiac hypertrophy and dysfunction, insulin resistance, and abnormal glucose metabolism. DCM and SIRT1 KO hearts showed impaired mitochondrial biogenesis and function, while SIRT1 activation by resveratrol reversed this in DCM mice. High glucose caused increased apoptosis, impaired mitochondrial biogenesis, and function in cardiomyocytes, which was alleviated by resveratrol. SIRT1 deletion by both SIRT1 KO and shRNA abolished the beneficial effects of resveratrol. Furthermore, the function of SIRT1 is mediated via the deacetylation effect on peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), thus inducing increased expression of nuclear respiratory factor 1 (NRF-1), NRF-2, estrogen-related receptor-α (ERR-α), and mitochondrial transcription factor A (TFAM). Cardiac deletion of SIRT1 caused phenotypes resembling DCM. Activation of SIRT1 by resveratrol ameliorated cardiac injuries in DCM through PGC-1α-mediated mitochondrial regulation. Collectively, SIRT1 may serve as a potential therapeutic target for DCM.
Shepherd, Danielle L; Hathaway, Quincy A; Nichols, Cody E; Durr, Andrya J; Pinti, Mark V; Hughes, Kristen M; Kunovac, Amina; Stine, Seth M; Hollander, John M
2018-06-01
>99% of the mitochondrial proteome is nuclear-encoded. The mitochondrion relies on a coordinated multi-complex process for nuclear genome-encoded mitochondrial protein import. Mitochondrial heat shock protein 70 (mtHsp70) is a key component of this process and a central constituent of the protein import motor. Type 2 diabetes mellitus (T2DM) disrupts mitochondrial proteomic signature which is associated with decreased protein import efficiency. The goal of this study was to manipulate the mitochondrial protein import process through targeted restoration of mtHsp70, in an effort to restore proteomic signature and mitochondrial function in the T2DM heart. A novel line of cardiac-specific mtHsp70 transgenic mice on the db/db background were generated and cardiac mitochondrial subpopulations were isolated with proteomic evaluation and mitochondrial function assessed. MicroRNA and epigenetic regulation of the mtHsp70 gene during T2DM were also evaluated. MtHsp70 overexpression restored cardiac function and nuclear-encoded mitochondrial protein import, contributing to a beneficial impact on proteome signature and enhanced mitochondrial function during T2DM. Further, transcriptional repression at the mtHsp70 genomic locus through increased localization of H3K27me3 during T2DM insult was observed. Our results suggest that restoration of a key protein import constituent, mtHsp70, provides therapeutic benefit through attenuation of mitochondrial and contractile dysfunction in T2DM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Snf1-related kinase improves cardiac mitochondrial efficiency and decreases mitochondrial uncoupling
Rines, Amy K.; Chang, Hsiang-Chun; Wu, Rongxue; Sato, Tatsuya; Khechaduri, Arineh; Kouzu, Hidemichi; Shapiro, Jason; Shang, Meng; Burke, Michael A.; Abdelwahid, Eltyeb; Jiang, Xinghang; Chen, Chunlei; Rawlings, Tenley A.; Lopaschuk, Gary D.; Schumacker, Paul T.; Abel, E. Dale; Ardehali, Hossein
2017-01-01
Ischaemic heart disease limits oxygen and metabolic substrate availability to the heart, resulting in tissue death. Here, we demonstrate that the AMP-activated protein kinase (AMPK)-related protein Snf1-related kinase (SNRK) decreases cardiac metabolic substrate usage and mitochondrial uncoupling, and protects against ischaemia/reperfusion. Hearts from transgenic mice overexpressing SNRK have decreased glucose and palmitate metabolism and oxygen consumption, but maintained power and function. They also exhibit decreased uncoupling protein 3 (UCP3) and mitochondrial uncoupling. Conversely, Snrk knockout mouse hearts have increased glucose and palmitate oxidation and UCP3. SNRK knockdown in cardiac cells decreases mitochondrial efficiency, which is abolished with UCP3 knockdown. We show that Tribbles homologue 3 (Trib3) binds to SNRK, and downregulates UCP3 through PPARα. Finally, SNRK is increased in cardiomyopathy patients, and SNRK reduces infarct size after ischaemia/reperfusion. SNRK also decreases cardiac cell death in a UCP3-dependent manner. Our results suggest that SNRK improves cardiac mitochondrial efficiency and ischaemic protection. PMID:28117339
Sridharan, Vijayalakshmi; Seawright, John W.; Antonawich, Francis J.; Garnett, Merrill; Cao, Maohua; Singh, Preeti; Boerma, Marjan
2017-01-01
Exposure of the heart to ionizing radiation can cause adverse myocardial remodeling. In small animal models, local heart irradiation causes persistent alterations in cardiac mitochondrial function and swelling. POLY-MVA is a dietary supplement that contains a palladium lipoic acid complex that targets mitochondrial complex I and has been demonstrated to have greater redox potential than lipoic acid alone. POLY-MVA improves mitochondrial function and anti-oxidant enzyme activity in the aged rat heart. In this study, we tested whether POLY-MVA can mitigate cardiac effects of ionizing radiation. Adult male rats were exposed to local heart X rays with a daily dose of 9 Gy for 5 consecutive days. Eighteen weeks after irradiation, POLY-MVA was administered orally at 1 ml/kg bodyweight per day during weekdays, for 6 weeks. Alterations in cardiac function as measured with echocardiography coincided with enhanced mitochondrial swelling, a reduction in mitochondrial expression of complex II, manifestations of adverse remodeling such as a reduction in myocardial microvessel density and an increase in collagen deposition and mast cell numbers. POLY-MVA enhanced left ventricular expression of superoxide dismutase 2, but only in sham-irradiated animals. In irradiated animals, POLY-MVA caused a reduction in markers of inflammatory infiltration, CD2 and CD68. Moreover, POLY-MVA mitigated the effects of radiation on mitochondria. Nonetheless, POLY-MVA did not mitigate adverse cardiac remodeling, suggesting that this tissue remodeling may not be alleviated by altering cardiac mitochondria alone. However, we cannot exclude the possibility that an earlier onset of POLY-MVA administration may have more profound effects on radiation-induced cardiac remodeling. PMID:28231026
Sun, Dan; Yang, Fei
2017-04-29
To investigate whether metformin can improve the cardiac function through improving the mitochondrial function in model of heart failure after myocardial infarction. Male C57/BL6 mice aged about 8 weeks were selected and the anterior descending branch was ligatured to establish the heart failure model after myocardial infarction. The cardiac function was evaluated via ultrasound after 3 days to determine the modeling was successful, and the mice were randomly divided into two groups. Saline group (Saline) received the intragastric administration of normal saline for 4 weeks, and metformin group (Met) received the intragastric administration of metformin for 4 weeks. At the same time, Shame group (Sham) was set up. Changes in cardiac function in mice were detected at 4 weeks after operation. Hearts were taken from mice after 4 weeks, and cell apoptosis in myocardial tissue was detected using TUNEL method; fresh mitochondria were taken and changes in oxygen consumption rate (OCR) and respiratory control rate (RCR) of mitochondria in each group were detected using bio-energy metabolism tester, and change in mitochondrial membrane potential (MMP) of myocardial tissue was detected via JC-1 staining; the expressions and changes in Bcl-2, Bax, Sirt3, PGC-1α and acetylated PGC-1α in myocardial tissue were detected by Western blot. RT-PCR was used to detect mRNA levels in Sirt3 in myocardial tissues. Metformin improved the systolic function of heart failure model rats after myocardial infarction and reduced the apoptosis of myocardial cells after myocardial infarction. Myocardial mitochondrial respiratory function and membrane potential were decreased after myocardial infarction, and metformin treatment significantly improved the mitochondrial respiratory function and mitochondrial membrane potential; Metformin up-regulated the expression of Sirt3 and the activity of PGC-1α in myocardial tissue of heart failure after myocardial infarction. Metformin decreases the acetylation level of PGC-1α through up-regulating Sirt3, mitigates the damage to mitochondrial membrane potential of model of heart failure after myocardial infarction and improves the respiratory function of mitochondria, thus improving the cardiac function of mice. Copyright © 2017. Published by Elsevier Inc.
Zhang, Ran; Chen, Jiangwei; Li, Xiang; Yang, Bo; Li, Xiujuan; Fan, Miaomiao; Li, Congye; Tian, Zuhong
2017-01-01
Background Diabetic cardiomyopathy (DCM) is a major threat for diabetic patients. Silent information regulator 1 (SIRT1) has a regulatory effect on mitochondrial dynamics, which is associated with DCM pathological changes. Our study aims to investigate whether resveratrol, a SRIT1 activator, could exert a protective effect against DCM. Methods and Results Cardiac-specific SIRT1 knockout (SIRT1KO) mice were generated using Cre-loxP system. SIRT1KO mice displayed symptoms of DCM, including cardiac hypertrophy and dysfunction, insulin resistance, and abnormal glucose metabolism. DCM and SIRT1KO hearts showed impaired mitochondrial biogenesis and function, while SIRT1 activation by resveratrol reversed this in DCM mice. High glucose caused increased apoptosis, impaired mitochondrial biogenesis, and function in cardiomyocytes, which was alleviated by resveratrol. SIRT1 deletion by both SIRT1KO and shRNA abolished the beneficial effects of resveratrol. Furthermore, the function of SIRT1 is mediated via the deacetylation effect on peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), thus inducing increased expression of nuclear respiratory factor 1 (NRF-1), NRF-2, estrogen-related receptor-α (ERR-α), and mitochondrial transcription factor A (TFAM). Conclusions Cardiac deletion of SIRT1 caused phenotypes resembling DCM. Activation of SIRT1 by resveratrol ameliorated cardiac injuries in DCM through PGC-1α-mediated mitochondrial regulation. Collectively, SIRT1 may serve as a potential therapeutic target for DCM. PMID:28883902
Villeneuve, Christelle; Guilbeau-Frugier, Céline; Sicard, Pierre; Lairez, Olivier; Ordener, Catherine; Duparc, Thibaut; De Paulis, Damien; Couderc, Bettina; Spreux-Varoquaux, Odile; Tortosa, Florence; Garnier, Anne; Knauf, Claude; Valet, Philippe; Borchi, Elisabetta; Nediani, Chiara; Gharib, Abdallah; Ovize, Michel; Delisle, Marie-Bernadette; Mialet-Perez, Jeanne
2013-01-01
Abstract Aims: Oxidative stress and mitochondrial dysfunction participate together in the development of heart failure (HF). mRNA levels of monoamine oxidase-A (MAO-A), a mitochondrial enzyme that produces hydrogen peroxide (H2O2), increase in several models of cardiomyopathies. Therefore, we hypothesized that an increase in cardiac MAO-A could cause oxidative stress and mitochondrial damage, leading to cardiac dysfunction. In the present study, we evaluated the consequences of cardiac MAO-A augmentation on chronic oxidative damage, cardiomyocyte survival, and heart function, and identified the intracellular pathways involved. Results: We generated transgenic (Tg) mice with cardiac-specific MAO-A overexpression. Tg mice displayed cardiac MAO-A activity levels similar to those found in HF and aging. As expected, Tg mice showed a significant decrease in the cardiac amounts of the MAO-A substrates serotonin and norepinephrine. This was associated with enhanced H2O2 generation in situ and mitochondrial DNA oxidation. As a consequence, MAO-A Tg mice demonstrated progressive loss of cardiomyocytes by necrosis and ventricular failure, which were prevented by chronic treatment with the MAO-A inhibitor clorgyline and the antioxidant N-acetyl-cystein. Interestingly, Tg hearts exhibited p53 accumulation and downregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial function. This was concomitant with cardiac mitochondrial ultrastructural defects and ATP depletion. In vitro, MAO-A adenovirus transduction of neonatal cardiomyocytes mimicked the results in MAO-A Tg mice, triggering oxidative stress-dependent p53 activation, leading to PGC-1α downregulation, mitochondrial impairment, and cardiomyocyte necrosis. Innovation and Conclusion: We provide the first evidence that MAO-A upregulation in the heart causes oxidative mitochondrial damage, p53-dependent repression of PGC-1α, cardiomyocyte necrosis, and chronic ventricular dysfunction. Antioxid. Redox Signal. 18, 5–18. PMID:22738191
Gomes, Katia M.S.; Bechara, Luiz R.G.; Lima, Vanessa M.; Ribeiro, Márcio A.C.; Campos, Juliane C.; Dourado, Paulo M.; Kowaltowski, Alicia J.; Mochly-Rosen, Daria; Ferreira, Julio C.B.
2015-01-01
Background/Objectives We previously demonstrated that reducing cardiac aldehydic load by aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme responsible for metabolizing the major lipid peroxidation product, protects against acute ischemia/reperfusion injury and chronic heart failure. However, time-dependent changes in ALDH2 profile, aldehydic load and mitochondrial bioenergetics during progression of post-myocardial infarction (post-MI) cardiomyopathy is unknown and should be established to determine the optimal time window for drug treatment. Methods Here we characterized cardiac ALDH2 activity and expression, lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE) adduct formation, glutathione pool and mitochondrial energy metabolism and H2O2 release during the 4 weeks after permanent left anterior descending (LAD) coronary artery occlusion in rats. Results We observed a sustained disruption of cardiac mitochondrial function during the progression of post-MI cardiomyopathy, characterized by >50% reduced mitochondrial respiratory control ratios and up to 2 fold increase in H2O2 release. Mitochondrial dysfunction was accompanied by accumulation of cardiac and circulating lipid peroxides and 4-HNE protein adducts and down-regulation of electron transport chain complexes I and V. Moreover, increased aldehydic load was associated with a 90% reduction in cardiac ALDH2 activity and increased glutathione pool. Further supporting an ALDH2 mechanism, sustained Alda-1 treatment (starting 24hrs after permanent LAD occlusion surgery) prevented aldehydic overload, mitochondrial dysfunction and improved ventricular function in post-MI cardiomyopathy rats. Conclusion Taken together, our findings demonstrate a disrupted mitochondrial metabolism along with an insufficient cardiac ALDH2-mediated aldehyde clearance during the progression of ventricular dysfunction, suggesting a potential therapeutic value of ALDH2 activators during the progression of post-myocardial infarction cardiomyopathy. PMID:25464432
Pu, Jun; Yuan, Ancai; Shan, Peiren; Gao, Erhe; Wang, Xiaoliang; Wang, Yajing; Lau, Wayne Bond; Koch, Walter; Ma, Xin-Liang; He, Ben
2013-01-01
Aims Emerging evidence indicates that nuclear receptors play a critical regulatory role in cardiovascular physiology/pathology. Recently, farnesoid-X-receptor (FXR), a member of the metabolic nuclear receptor superfamily, has been demonstrated to be expressed in vascular cells, with important roles in vascular physiology/pathology. However, the potential cardiac function of FXR remains unclear. We investigated the cardiac expression and biological function of FXR. Methods and results Farnesoid-X-receptor was detected in both isolated neonatal rat cardiac myocytes and fibroblasts. Natural and synthetic FXR agonists upregulated cardiac FXR expression, stimulated myocyte apoptosis, and reduced myocyte viability dose- and time-dependently. Mechanistic studies demonstrated that FXR agonists disrupted mitochondria, characterized by mitochondrial permeability transition pores activation, mitochondrial potential dissipation, cytochrome c release, and both caspase-9 and -3 activation. Such mitochondrial apoptotic responses were abolished by siRNA-mediated silencing of endogenous FXR or pharmacological inhibition of mitochondrial death signalling. Furthermore, low levels of FXR were detected in the adult mouse heart, with significant (∼2.0-fold) upregulation after myocardial ischaemia/reperfusion (MI/R). Pharmacological inhibition or genetic ablation of FXR significantly reduced myocardial apoptosis by 29.0–53.4%, decreased infarct size by 23.4–49.7%, and improved cardiac function in ischaemic/reperfused myocardium. Conclusion These results demonstrate that nuclear receptor FXR acts as a novel functional receptor in cardiac tissue, regulates apoptosis in cardiomyocytes, and contributes to MI/R injury. PMID:22307460
Fillmore, N; Mori, J; Lopaschuk, G D
2014-01-01
Heart disease is a leading cause of death worldwide. In many forms of heart disease, including heart failure, ischaemic heart disease and diabetic cardiomyopathies, changes in cardiac mitochondrial energy metabolism contribute to contractile dysfunction and to a decrease in cardiac efficiency. Specific metabolic changes include a relative increase in cardiac fatty acid oxidation rates and an uncoupling of glycolysis from glucose oxidation. In heart failure, overall mitochondrial oxidative metabolism can be impaired while, in ischaemic heart disease, energy production is impaired due to a limitation of oxygen supply. In both of these conditions, residual mitochondrial fatty acid oxidation dominates over mitochondrial glucose oxidation. In diabetes, the ratio of cardiac fatty acid oxidation to glucose oxidation also increases, although primarily due to an increase in fatty acid oxidation and an inhibition of glucose oxidation. Recent evidence suggests that therapeutically regulating cardiac energy metabolism by reducing fatty acid oxidation and/or increasing glucose oxidation can improve cardiac function of the ischaemic heart, the failing heart and in diabetic cardiomyopathies. In this article, we review the cardiac mitochondrial energy metabolic changes that occur in these forms of heart disease, what role alterations in mitochondrial fatty acid oxidation have in contributing to cardiac dysfunction and the potential for targeting fatty acid oxidation to treat these forms of heart disease. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24147975
Spitler, Kathryn M.; Ponce, Jessica M.; Oudit, Gavin Y.; Hall, Duane D.
2017-01-01
The mediator complex, a multisubunit nuclear complex, plays an integral role in regulating gene expression by acting as a bridge between transcription factors and RNA polymerase II. Genetic deletion of mediator subunit 1 (Med1) results in embryonic lethality, due in large part to impaired cardiac development. We first established that Med1 is dynamically expressed in cardiac development and disease, with marked upregulation of Med1 in both human and murine failing hearts. To determine if Med1 deficiency protects against cardiac stress, we generated two cardiac-specific Med1 knockout mouse models in which Med1 is conditionally deleted (Med1cKO mice) or inducibly deleted in adult mice (Med1cKO-MCM mice). In both models, cardiac deletion of Med1 resulted in early lethality accompanied by pronounced changes in cardiac function, including left ventricular dilation, decreased ejection fraction, and pathological structural remodeling. We next defined how Med1 deficiency alters the cardiac transcriptional profile using RNA-sequencing analysis. Med1cKO mice demonstrated significant dysregulation of genes related to cardiac metabolism, in particular genes that are coordinated by the transcription factors Pgc1α, Pparα, and Errα. Consistent with the roles of these transcription factors in regulation of mitochondrial genes, we observed significant alterations in mitochondrial size, mitochondrial gene expression, complex activity, and electron transport chain expression under Med1 deficiency. Taken together, these data identify Med1 as an important regulator of vital cardiac gene expression and maintenance of normal heart function. NEW & NOTEWORTHY Disruption of transcriptional gene expression is a hallmark of dilated cardiomyopathy; however, its etiology is not well understood. Cardiac-specific deletion of the transcriptional coactivator mediator subunit 1 (Med1) results in dilated cardiomyopathy, decreased cardiac function, and lethality. Med1 deletion disrupted cardiac mitochondrial and metabolic gene expression patterns. PMID:28159809
Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?
Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S
2014-08-01
Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g(-1)·min(-1), P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P < 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.
Protecting Mitochondrial Bioenergetic Function during Resuscitation from Cardiac Arrest
Gazmuri, Raúl J.; Radhakrishnan, Jeejabai
2012-01-01
Synopsis Successful resuscitation from cardiac arrest requires reestablishment of aerobic metabolism by reperfusion with oxygenated blood of tissues that have been deprived of oxygen for variables periods of time. However, reperfusion concomitantly activates pathogenic mechanisms known as “reperfusion injury.” At the core of reperfusion injury are mitochondria, playing a critical role as effectors and targets of such injury. Mitochondrial injury compromises oxidative phosphorylation and also prompts release of cytochrome c to the cytosol and bloodstream where it correlates with severity of injury. Main drivers of such injury include Ca2+ overload and oxidative stress. Preclinical work shows that limiting myocardial cytosolic Na+ overload at the time of reperfusion attenuates mitochondrial Ca2+ overload and maintains oxidative phosphorylation yielding functional myocardial benefits that include preservation of left ventricular distensibility. Preservation of left ventricular distensibility enables hemodynamically more effective chest compression. Similar myocardial effect have been reported using erythropoietin hypothesized to protect mitochondrial bioenergetic function presumably through activation of pathways similar to those activated during preconditioning. Incorporation of novel and clinical relevant strategies to protect mitochondrial bioenergetic function are expected to attenuate injury at the time of reperfusion and enhance organ viability ultimately improving resuscitation and survival from cardiac arrest. PMID:22433486
Schneeberger, Stefan; Amberger, Albert; Mandl, Julia; Hautz, Theresa; Renz, Oliver; Obrist, Peter; Meusburger, Hugo; Brandacher, Gerald; Mark, Walter; Strobl, Daniela; Troppmair, Jakob; Pratschke, Johann; Margreiter, Raimund; Kuznetsov, Andrey V
2010-12-01
Chronic rejection (CR) remains an unsolved hurdle for long-term heart transplant survival. The effect of cold ischemia (CI) on progression of CR and the mechanisms resulting in functional deficit were investigated by studying gene expression, mitochondrial function, and enzymatic activity. Allogeneic (Lew→F344) and syngeneic (Lew→Lew) heart transplantations were performed with or without 10 h of CI. After evaluation of myocardial contraction, hearts were excised at 2, 10, 40, and 60 days for investigation of vasculopathy, gene expression, enzymatic activities, and mitochondrial respiration. Gene expression studies identified a gene cluster coding for subunits of the mitochondrial electron transport chain regulated in response to CI and CR. Myocardial performance, mitochondrial function, and mitochondrial marker enzyme activities declined in all allografts with time after transplantation. These declines were more rapid and severe in CI allografts (CR-CI) and correlated well with progression of vasculopathy and fibrosis. Mitochondria related gene expression and mitochondrial function are substantially compromised with the progression of CR and show that CI impacts on progression, gene profile, and mitochondrial function of CR. Monitoring mitochondrial function and enzyme activity might allow for earlier detection of CR and cardiac allograft dysfunction. © 2010 The Authors. Journal compilation © 2010 European Society for Organ Transplantation.
Zhang, Yingmei; Yuan, Ming; Bradley, Katherine M.; Dong, Feng; Anversa, Piero; Ren, Jun
2012-01-01
Obesity is often associated with reduced plasma IGF-1 levels, oxidative stress, mitochondrial damage and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high fat diet-induced oxidative, myocardial, geometric and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low (10%) or high fat (45%) diet to induce obesity. High fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin-6, insulin and triglyceride as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end systolic and diastolic diameter, increased wall thickness, and cardiac hypertrophy in high fat-fed FVB mice. High fat diet promoted ROS generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca2+ dysregulation, including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor, post-receptor signaling molecules IRS-1 (tyrosine/serine phosphorylation), Akt, GSK3β, Foxo3a, mTOR, as well as downregulated expression of mitochondrial proteins PPARγ coactivator 1α (PGC1α) and UCP-2. Intriguingly, IGF-1 mitigated high fat diet feeding-induced alterations in ROS, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca2+ handling and insulin signaling, but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly due to preserved cell survival, mitochondrial function and insulin signaling. PMID:22275536
Nazem, Shima; Rabiee, Farzaneh; Ghaedi, Kamran; Babashah, Sadegh; Sadeghizadeh, Majid; Nasr-Esfahani, Mohammad Hossein
2018-06-01
Fibronectin type III domain-containing 5 protein (Fndc5) is a glycosylated protein with elevated expression in high energy demanded tissues as heart, brain, and muscle. It has been shown that upregulation of Fndc5 is regulated by peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α), which is known as a master regulator of mitochondrial function and biogenesis. Also, our group indicated that Fndc5 expression increases gradually during cardiac differentiation of mouse embryonic stem cells (mESCs). In this paper, to clarify the importance of Fndc5 in cardiac differentiation, we south to knock down Fndc5 expression by generation a stably transduced mESC line that derives the expression of a short hairpin RNA (shRNA) against Fndc5 gene following doxycycline (Dox) induction. Knock-down of Fndc5 demonstrated a considerable decrease in expression of cardiac progenitor and cardiomyocyte markers. Considering the fact that mitochondria play a crucial role in cardiac differentiation of ESCs, we investigated the role of Fndc5, as a downstream target of PGC1-α, on mitochondrial indices. Results showed that expression of nuclear encoded mitochondrial genes including PGC1-α, Atp5b, Ndufb5, and SOD2 significantly decreased. Moreover, mitochondrial membrane potential (ΔΨm) and relative ATP content of cardiomyocytes decreased markedly with relative ROS level increase. Together, our results suggest that Fndc5 attenuates process of cardiac differentiation of mESCs which is associated with modulation of mitochondrial function and gene expression. © 2017 Wiley Periodicals, Inc.
Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy
Abel, E. Dale; Doenst, Torsten
2011-01-01
Cardiac hypertrophy is a stereotypic response of the heart to increased workload. The nature of the workload increase may vary depending on the stimulus (repetitive, chronic, pressure, or volume overload). If the heart fully adapts to the new loading condition, the hypertrophic response is considered physiological. If the hypertrophic response is associated with the ultimate development of contractile dysfunction and heart failure, the response is considered pathological. Although divergent signalling mechanisms may lead to these distinct patterns of hypertrophy, there is some overlap. Given the close relationship between workload and energy demand, any form of cardiac hypertrophy will impact the energy generation by mitochondria, which are the key organelles for cellular ATP production. Significant changes in the expression of nuclear and mitochondrially encoded transcripts that impact mitochondrial function as well as altered mitochondrial proteome composition and mitochondrial energetics have been described in various forms of cardiac hypertrophy. Here, we review mitochondrial alterations in pathological and physiological hypertrophy. We suggest that mitochondrial adaptations to pathological and physiological hypertrophy are distinct, and we shall review potential mechanisms that might account for these differences. PMID:21257612
Meyer, A; Charles, A L; Singh, F; Zoll, J; Talha, S; Enache, I; Chaarloux, A; Inser-Horobeti, M E; Geny, B
2016-01-01
Cardiac muscle cryopreservation is a challenge for both diagnostic procedure requiring viable tissues and therapeutic advance in regenerative medicine. Mitochondria are targets of both direct and indirect damages, secondary to congelation per se and/or to cryoprotectant's toxic effects, which participate to diminution of viability and/or functioning of cells after freezing. At the cardiac muscle level, only one study had investigated mitochondrial respiration after cryopreservation. To determine the effect of cryopreservation on mitochondrial respiration of cardiac muscle. We recorded mitochondrial respiration through complexes I, II, III and IV along with mitochondrial coupling in fresh and cryopreserved rat left ventricles samples and assessed difference of the means, correlation and agreement between the measures in all samples. Mitochondrial respiration was partly maintained up to 70% in cryopreserved samples whatever the substrate. A significant correlation was observed between fresh and cryopreserved samples (r = 0.71, p < 0.0001). However, mitochondrial coupling significantly decreased after cryopreservation (- 1.44 ± 0.15; p < 0.005) suggesting that mitochondrial intactness was not totally preserved by cryopreservation. Further, the fluctuations around the mean difference were wide (-14.06, +5.08 µmol/min/g), increasing with respiration rates (p < 0.0001). Thus, fresh samples extemporaneous analysis should be preferred when available despite the fact that cryopreservation using DMSO partly protect cardiac mitochondrial respiration and coupling. These data support the interest to further refine cryopreservation methods.
Amirtharaj, G Jayakumar; Natarajan, Sathish Kumar; Pulimood, Anna; Balasubramanian, K A; Venkatraman, Aparna; Ramachandran, Anup
2017-04-01
Thioacetamide (TAA) administration is widely used for induction of liver cirrhosis in rats, where reactive oxygen radicals (ROS) and nitric oxide (NO) participate in development of liver damage. Cardiac dysfunction is an important complication of liver cirrhosis, but the role of ROS or NO in cardiac abnormalities during liver cirrhosis is not well understood. This was investigated in animals after TAA-induced liver cirrhosis and temporal changes in oxidative stress, NO and mitochondrial function in the heart evaluated. TAA induced elevation in cardiac levels of nitrate before development of frank liver cirrhosis, without gross histological alterations. This was accompanied by an early induction of P38 MAP kinase, which is influenced by ROS and plays an important signaling role for induction of iNOS. Increased nitrotyrosine, protein oxidation and lipid peroxidation in the heart and cardiac mitochondria, suggestive of oxidative stress, also preceded frank liver cirrhosis. However, compromised cardiac mitochondrial function with a decrease in respiratory control ratio and increased mitochondrial swelling was seen later, when cirrhosis was evident. In conclusion, TAA induces elevations in ROS and NO in the heart in parallel to early liver damage. This leads to later development of functional deficits in cardiac mitochondria after development of liver cirrhosis.
Veeranki, Sudhakar; Givvimani, Srikanth; Kundu, Sourav; Metreveli, Naira; Pushpakumar, Sathnur; Tyagi, Suresh C
2016-03-01
Although the cardiovascular benefits of exercise are well known, exercise induced effects and mechanisms in prevention of cardiomyopathy are less clear during obesity associated type-2 diabetes. The current study assessed the impact of moderate intensity exercise on diabetic cardiomyopathy by examining cardiac function and structure and mitochondrial function. Obese-diabetic (db/db), and lean control (db/+) mice, were subjected to a 5 week, 300 m run on a tread-mill for 5 days/week at the speeds of 10-11 m/min. Various physiological parameters were recorded and the heart function was evaluated with M-mode echocardiography. Contraction parameters and calcium transits were examined on isolated cardiomyocytes. At the molecular level: connexin 43 and 37 (Cx43 and 37) levels, mitochondrial biogenesis regulators: Mfn2 and Drp-1 levels, mitochondrial trans-membrane potential and cytochrome c leakage were assessed through western blotting immunohistochemistry and flow cytometry. Ability of exercise to reverse oxygen consumption rate (OCR), tissue ATP levels, and cardiac fibrosis were also determined. The exercise regimen was able to prevent diabetic cardiac functional deficiencies: ejection fraction (EF) and fractional shortening (FS). Improvements in contraction velocity and contraction maximum were noted with the isolated cardiomyocytes. Restoration of interstitial and micro-vessels associated Cx43 levels and improved gap junction intercellular communication (GJIC) were observed. The decline in the Mfn2/Drp-1 ratio in the db/db mice hearts was prevented after exercise. The exercise regimen further attenuated transmembrane potential decline and cytochrome c leakage. These corrections further led to improvements in OCR and tissue ATP levels and reduction in cardiac fibrosis. Moderate intensity exercise produced significant cardiovascular benefits by improving mitochondrial function through restoration of Cx43 networks and mitochondrial trans-membrane potential and prevention of excessive mitochondrial fission. Copyright © 2016 Elsevier Ltd. All rights reserved.
VALSARTAN REGULATES MYOCARDIAL AUTOPHAGY AND MITOCHONDRIAL TURNOVER IN EXPERIMENTAL HYPERTENSION
Zhang, Xin; Li, Zi-Lun; Crane, John A.; Jordan, Kyra L.; Pawar, Aditya S.; Textor, Stephen C.; Lerman, Amir; Lerman, Lilach O.
2014-01-01
Renovascular hypertension alters cardiac structure and function. Autophagy is activated during left ventricular hypertrophy and linked to adverse cardiac function. The Angiotensin II receptor blocker Valsartan lowers blood pressure and is cardioprotective, but whether it modulates autophagy in the myocardium is unclear. We hypothesized that Valsartan would alleviate autophagy and improve left ventricular myocardial mitochondrial turnover in swine renovascular hypertension. Domestic pigs were randomized to control, unilateral renovascular hypertension, and renovascular hypertension treated with Valsartan (320 mg/day) or conventional triple therapy (Reserpine+hydralazine+hydrochlorothiazide) for 4 weeks post 6-weeks of renovascular hypertension (n=7 each group). Left ventricular remodeling, function and myocardial oxygenation and microcirculation were assessed by multi-detector computer tomography, blood-oxygen-level-dependent magnetic resonance imaging and microcomputer tomography. Myocardial autophagy, markers for mitochondrial degradation and biogenesis, and mitochondrial respiratory-chain proteins were examined ex vivo. Renovascular hypertension induced left ventricular hypertrophy and myocardial hypoxia, enhanced cellular autophagy and mitochondrial degradation, and suppressed mitochondrial biogenesis. Valsartan and triple therapy similarly decreased blood pressure, but Valsartan solely alleviated left ventricular hypertrophy, ameliorated myocardial autophagy and mitophagy, and increased mitochondrial biogenesis. In contrast, triple therapy only slightly attenuated autophagy and preserved mitochondrial proteins, but elicited no improvement in mitophagy. These data suggest a novel potential role of Valsartan in modulating myocardial autophagy and mitochondrial turnover in renovascular hypertension-induced hypertensive heart disease, which may possibly bolster cardiac repair via a blood pressure-independent manner. PMID:24752430
Mitochondria and heart failure.
Murray, Andrew J; Edwards, Lindsay M; Clarke, Kieran
2007-11-01
Energetic abnormalities in cardiac and skeletal muscle occur in heart failure and correlate with clinical symptoms and mortality. It is likely that the cellular mechanism leading to energetic failure involves mitochondrial dysfunction. Therefore, it is crucial to elucidate the causes of mitochondrial myopathy, in order to improve cardiac and skeletal muscle function, and hence quality of life, in heart failure patients. Recent studies identified several potential stresses that lead to mitochondrial dysfunction in heart failure. Chronically elevated plasma free fatty acid levels in heart failure are associated with decreased metabolic efficiency and cellular insulin resistance. Tissue hypoxia, resulting from low cardiac output and endothelial impairment, can lead to oxidative stress and mitochondrial DNA damage, which in turn causes dysfunction and loss of mitochondrial mass. Therapies aimed at protecting mitochondrial function have shown promise in patients and animal models with heart failure. Despite current therapies, which provide substantial benefit to patients, heart failure remains a relentlessly progressive disease, and new approaches to treatment are necessary. Novel pharmacological agents are needed that optimize substrate metabolism and maintain mitochondrial integrity, improve oxidative capacity in heart and skeletal muscle, and alleviate many of the clinical symptoms associated with heart failure.
Vildagliptin and caloric restriction for cardioprotection in pre-diabetic rats.
Tanajak, Pongpan; Pintana, Hiranya; Siri-Angkul, Natthaphat; Khamseekaew, Juthamas; Apaijai, Nattayaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2017-02-01
Long-term high-fat diet (HFD) consumption causes cardiac dysfunction. Although calorie restriction (CR) has been shown to be useful in obesity, we hypothesized that combined CR with dipeptidyl peptidase-4 (DPP-4) inhibitor provides greater efficacy than monotherapy in attenuating cardiac dysfunction and metabolic impairment in HFD-induced obese-insulin resistant rats. Thirty male Wistar rats were divided into 2 groups to be fed on either a normal diet (ND, n = 6) or a HFD (n = 24) for 12 weeks. Then, HFD rats were divided into 4 subgroups (n = 6/subgroup) to receive just the vehicle, CR diet (60% of mean energy intake and changed to ND), vildagliptin (3 mg/kg/day) or combined CR and vildagliptin for 4 weeks. Metabolic parameters, heart rate variability (HRV), cardiac mitochondrial function, left ventricular (LV) and fibroblast growth factor (FGF) 21 signaling pathway were determined. Rats on a HFD developed insulin and FGF21 resistance, oxidative stress, cardiac mitochondrial dysfunction and impaired LV function. Rats on CR alone showed both decreased body weight and visceral fat accumulation, whereas vildagliptin did not alter these parameters. Rats in CR, vildagliptin and CR plus vildagliptin subgroups had improved insulin sensitivity and oxidative stress. However, vildagliptin improved heart rate variability (HRV), cardiac mitochondrial function and LV function better than the CR. Chronic HFD consumption leads to obese-insulin resistance and FGF21 resistance. Although CR is effective in improving metabolic regulation, vildagliptin provides greater efficacy in preventing cardiac dysfunction by improving anti-apoptosis and FGF21 signaling pathways and attenuating cardiac mitochondrial dysfunction in obese-insulin-resistant rats. © 2017 Society for Endocrinology.
Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William
2007-03-01
Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.
Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William
2007-01-01
Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372
Fu, Yue; Xu, Wen; Jiang, Longyuan; Huang, Zitong
2014-01-01
Postcardiac arrest brain injury significantly contributes to mortality and morbidity in patients suffering from cardiac arrest (CA). Evidence that shows that mitochondrial dysfunction appears to be a key factor in tissue damage after ischemia/reperfusion is accumulating. However, limited data are available regarding the cerebral mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) and its relationship to the alterations of high-energy phosphate. Here, we sought to identify alterations of mitochondrial morphology and oxidative phosphorylation function as well as high-energy phosphates during CA and CPR in a rat model of ventricular fibrillation (VF). We found that impairment of mitochondrial respiration and partial depletion of adenosine triphosphate (ATP) and phosphocreatine (PCr) developed in the cerebral cortex and hippocampus following a prolonged cardiac arrest. Optimal CPR might ameliorate the deranged phosphorus metabolism and preserve mitochondrial function. No obvious ultrastructural abnormalities of mitochondria have been found during CA. We conclude that CA causes cerebral mitochondrial dysfunction along with decay of high-energy phosphates, which would be mitigated with CPR. This study may broaden our understanding of the pathogenic processes underlying global cerebral ischemic injury and provide a potential therapeutic strategy that aimed at preserving cerebral mitochondrial function during CA. PMID:24696844
Li, Yong-Guang; Dong, Zhi-Feng; Chen, Kan-Kai; He, Ya-Ping; Dai, Xiao-Yan; Li, Shuai; Li, Jing-Bo; Zhu, Wei; Wei, Meng
2017-11-04
Insulin is involved in the development of diabetic heart disease and is important in the activities of mitochondrial complex I. However, the effect of insulin on cardiac mitochondrial nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) 1 subunit of retinoic-interferon-induced mortality 19 (GRIM-19) has not been characterized. The aim of this study was to investigate the effect of insulin on the mitochondrial GRIM-19 in the hearts of rats with streptozotocin (STZ)-induced type 1 diabetes. Protein changes of GRIM-19 were evaluated by western blotting and reverse transcription-quantitative polymerase chain reaction. Furthermore, the effects of insulin on mitochondrial complex I were detected in HeLa cells and H9C2 cardiac myocytes. During the development of diabetic heart disease, the cardiac function did not change within the 8 weeks, but the mitochondrial morphology was altered. The hearts from the rats with STZ-induced diabetes exhibited reduced expression of GRIM-19. Prior to the overt cardiac dilatation, mitochondrial alterations were already present. Following subcutaneous insulin injection, it was demonstrated that GRIM-19 protein was altered, as well as the mitochondrial morphology. The phosphoinositide 3-kinase inhibitor LY294002 had an effect on insulin signaling in H9C2 cardiacmyocytes, and decreased the level of GRIM-19 by half compared with that in the insulin group. The results indicate that insulin is essential for the control of cardiac mitochondrial morphology and the GRIM-19 expression partly via PI3K/AKT signaling pathways. Copyright © 2017. Published by Elsevier Inc.
Zhang, Mingming; Wang, Chen; Hu, Jianqiang; Lin, Jie; Zhao, Zhijing; Shen, Min; Gao, Haokao; Li, Na; Liu, Min; Zheng, Pengfei; Qiu, Cuiting; Gao, Erhe; Wang, Haichang; Sun, Dongdong
2015-09-01
Oncostatin M (OSM) exhibits many unique biological activities by activating the Oβ receptor. However, its role in myocardial ischemia/reperfusion injury (I/R injury) in mice remains unknown. We investigated whether Notch3/Akt signaling is involved in the regulation of OSM-induced protection against cardiac I/R injury. The effects of OSM were assessed in mice that underwent myocardial I/R injury by OSM treatment or by genetic deficiency of the OSM receptor Oβ. We investigated its effects on cardiomyocyte apoptosis and mitochondrial biogenesis and whether Notch3/Akt signaling was involved in the regulation of OSM-induced protection against cardiac I/R injury. The mice underwent 30 min of ischemia followed by 3 h of reperfusion and were randomized to be treated with Notch3 siRNA (siNotch3) or lentivirus carrying Notch3 cDNA (Notch3) 72 h before coronary artery ligation. Myocardial infarct size, cardiac function, cardiomyocyte apoptosis and mitochondria morphology in mice that underwent cardiac I/R injury were compared between groups. OSM alleviated cardiac I/R injury by inhibiting cardiomyocyte apoptosis through promotion of Notch3 production, thus activating the PI3K/Akt pathway. OSM enhanced mitochondrial biogenesis and mitochondrial function in mice subjected to cardiac I/R injury. In contrast, OSM receptor Oβ knock out exacerbated cardiac I/R injury, decreased Notch3 production, enhanced cardiomyocyte apoptosis, and impaired mitochondrial biogenesis in cardiac I/R injured mice. The mechanism of OSM on cardiac I/R injury is partly mediated by the Notch3/Akt pathway. These results suggest a novel role of Notch3/Akt signaling that contributes to OSM-induced protection against cardiac I/R injury.
Ma, Junfeng; Liu, Ting; Wei, An-Chi; Banerjee, Partha; O'Rourke, Brian; Hart, Gerald W.
2015-01-01
Dynamic cycling of O-linked β-N-acetylglucosamine (O-GlcNAc) on nucleocytoplasmic proteins serves as a nutrient sensor to regulate numerous biological processes. However, mitochondrial protein O-GlcNAcylation and its effects on function are largely unexplored. In this study, we performed a comparative analysis of the proteome and O-GlcNAcome of cardiac mitochondria from rats acutely (12 h) treated without or with thiamet-G (TMG), a potent and specific inhibitor of O-GlcNAcase. We then determined the functional consequences in mitochondria isolated from the two groups. O-GlcNAcomic profiling finds that over 88 mitochondrial proteins are O-GlcNAcylated, with the oxidative phosphorylation system as a major target. Moreover, in comparison with controls, cardiac mitochondria from TMG-treated rats did not exhibit altered protein abundance but showed overall elevated O-GlcNAcylation of many proteins. However, O-GlcNAc was unexpectedly down-regulated at certain sites of specific proteins. Concomitantly, TMG treatment resulted in significantly increased mitochondrial oxygen consumption rates, ATP production rates, and enhanced threshold for permeability transition pore opening by Ca2+. Our data reveal widespread and dynamic mitochondrial protein O-GlcNAcylation, serving as a regulator to their function. PMID:26446791
Sverdlov, Aaron L.; Elezaby, Aly; Behring, Jessica B.; Bachschmid, Markus M.; Luptak, Ivan; Tu, Vivian H.; Siwik, Deborah A.; Miller, Edward J.; Liesa, Marc; Shirihai, Orian S; Pimentel, David R.; Cohen, Richard A.; Colucci, Wilson S.
2014-01-01
Background Diet-induced obesity leads to metabolic heart disease (MHD) characterized by increased oxidative stress that may cause oxidative post-translational modifications (OPTM) of cardiac mitochondrial proteins. The functional consequences of OPTM of cardiac mitochondrial proteins in MHD are unknown. Our objective was to determine whether cardiac mitochondrial dysfunction in MHD due to diet-induced obesity is associated with cysteine OPTM. Methods and results Male C57Bl/6J mice were fed either a high-fat, high-sucrose (HFHS) or control diet for 8 months. Cardiac mitochondria from HFHS-fed mice (vs. control diet) had an increased rate of H2O2 production, a decreased GSH/GSSG ratio, a decreased rate of complex II substrate-driven ATP synthesis and decreased complex II activity. Complex II substrate-driven ATP synthesis and complex II activity were partially restored ex-vivo by reducing conditions. A biotin switch assay showed that HFHS feeding increased cysteine OPTM in complex II subunits A (SDHA) and B (SDHB). Using iodo-TMT multiplex tags we found that HFHS feeding is associated with reversible oxidation of cysteines 89 and 231 in SDHA, and 100, 103 and 115 in SDHB. Conclusions MHD due to consumption of a HFHS “Western” diet causes increased H2O2 production and oxidative stress in cardiac mitochondria associated with decreased ATP synthesis and decreased complex II activity. Impaired complex II activity and ATP production are associated with reversible cysteine OPTM of complex II. Possible sites of reversible cysteine OPTM in SDHA and SDHB were identified by iodo-TMT tag labeling. Mitochondrial ROS may contribute to the pathophysiology of MHD by impairing the function of complex II. PMID:25109264
Mitochondrial oxidative stress and cardiac ageing.
Martín-Fernández, Beatriz; Gredilla, Ricardo
According with different international organizations, cardiovascular diseases are becoming the first cause of death in western countries. Although exposure to different risk factors, particularly those related to lifestyle, contribute to the etiopathogenesis of cardiac disorders, the increase in average lifespan and aging are considered major determinants of cardiac diseases events. Mitochondria and oxidative stress have been pointed out as relevant factors both in heart aging and in the development of cardiac diseases such as heart failure, cardiac hypertrophy and diabetic cardiomyopathy. During aging, cellular processes related with mitochondrial function, such as bioenergetics, apoptosis and inflammation are altered leading to cardiac dysfunction. Increasing our knowledge about the mitochondrial mechanisms related with the aging process, will provide new strategies in order to improve this process, particularly the cardiovascular ones. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.
Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?
Park, Song-Young; Gifford, Jayson R.; Andtbacka, Robert H. I.; Trinity, Joel D.; Hyngstrom, John R.; Garten, Ryan S.; Diakos, Nikolaos A.; Ives, Stephen J.; Dela, Flemming; Larsen, Steen; Drakos, Stavros
2014-01-01
Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s−1·mg−1, P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g−1·min−1, P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s−1·mg−1, P < 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production. PMID:24906913
Mitochondria and Cardiovascular Aging
Dai, Dao-Fu; Ungvari, Zoltan
2013-01-01
Old age is a major risk factor for cardiovascular diseases. Several lines of evidence in experimental animal models have indicated the central role of mitochondria both in lifespan determination and cardiovascular aging. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and biogenesis as well as the crosstalk between mitochondria and cellular signaling in cardiac and vascular aging. Intrinsic cardiac aging in the murine model closely recapitulates age-related cardiac changes in humans (left ventricular hypertrophy, fibrosis and diastolic dysfunction), while the phenotype of vascular aging include endothelial dysfunction, reduced vascular elasticity and chronic vascular inflammation. Both cardiac and vascular aging involve neurohormonal signaling (e.g. renin-angiotensin, adrenergic, insulin-IGF1 signaling) and cell-autonomous mechanisms. The potential therapeutic strategies to improve mitochondrial function in aging and cardiovascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants, calorie restriction, calorie restriction mimetics and exercise training. PMID:22499901
Musman, Julien; Paradis, Stéphanie; Panel, Mathieu; Pons, Sandrine; Barau, Caroline; Caccia, Claudio; Leoni, Valerio; Ghaleh, Bijan; Morin, Didier
2017-10-15
A major cause of cell death during myocardial ischemia-reperfusion is mitochondrial dysfunction. We previously showed that the reperfusion of an ischemic myocardium was associated with an accumulation of cholesterol into mitochondria and a concomitant strong generation of auto-oxidized oxysterols. The inhibition of mitochondrial accumulation of cholesterol abolished the formation of oxysterols and prevented mitochondrial injury at reperfusion. The aim of this study was to investigate the impact of hypercholesterolemia on sterol and oxysterol accumulation in rat cardiac cytosols and mitochondria and to analyse the effect of the translocator protein ligand 4'-chlorodiazepam on this accumulation and mitochondrial function. Hypercholesterolemic ZDF fa/fa rats or normocholesterolemic lean rats were submitted to 30min of coronary artery occlusion followed by 15min reperfusion where cardiac cytosols and mitochondria were isolated. Hypercholesterolemia increased the cellular cardiac concentrations of cholesterol, cholesterol precursors and oxysterols both in cytosol and mitochondria in non-ischemic conditions. It also amplified the accumulation of all these compounds in cardiac cells and the alteration of mitochondrial function with ischemia-reperfusion. Administration of 4'-chlorodiazepam to ZDF fa/fa rats had no effect on the enhancement of sterols and oxysterols observed in the cytosols but inhibited cholesterol transfer to the mitochondria. It also alleviated the mitochondrial accumulation of all the investigated sterols and oxysterols. This was associated with a restoration of oxidative phosphorylation and a prevention of mitochondrial transition pore opening. The inhibition of cholesterol accumulation with TSPO ligands represents an interesting strategy to protect the mitochondria during ischemia-reperfusion in hypercholesterolemic conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
Spatial and temporal dynamics of the cardiac mitochondrial proteome.
Lau, Edward; Huang, Derrick; Cao, Quan; Dincer, T Umut; Black, Caitie M; Lin, Amanda J; Lee, Jessica M; Wang, Ding; Liem, David A; Lam, Maggie P Y; Ping, Peipei
2015-04-01
Mitochondrial proteins alter in their composition and quantity drastically through time and space in correspondence to changing energy demands and cellular signaling events. The integrity and permutations of this dynamism are increasingly recognized to impact the functions of the cardiac proteome in health and disease. This article provides an overview on recent advances in defining the spatial and temporal dynamics of mitochondrial proteins in the heart. Proteomics techniques to characterize dynamics on a proteome scale are reviewed and the physiological consequences of altered mitochondrial protein dynamics are discussed. Lastly, we offer our perspectives on the unmet challenges in translating mitochondrial dynamics markers into the clinic.
Lu, Gang; Ren, Shuxun; Korge, Paavo; Choi, Jayoung; Dong, Yuan; Weiss, James; Koehler, Carla; Chen, Jau-nian; Wang, Yibin
2007-01-01
Mitochondria play a central role in the regulation of programmed cell death signaling. Here, we report the finding of a mitochondrial matrix-targeted protein phosphatase 2C family member (PP2Cm) that regulates mitochondrial membrane permeability transition pore (MPTP) opening and is essential for cell survival, embryonic development, and cardiac function. PP2Cm is highly conserved among vertebrates, with the highest expression levels detected in the heart and brain. Small hairpin RNA (shRNA)-mediated knockdown of PP2Cm resulted in cell death associated with loss of mitochondrial membrane potential in cultured cardiac mycoytes and an induction of hepatocyte apoptosis in vivo. PP2Cm-deficient mitochondria showed elevated susceptibility to calcium-induced MPTP opening, whereas mitochondrial oxidative phosphorylation activities were not affected. Finally, inactivation of PP2Cm in developing zebrafish embryos caused abnormal cardiac and neural development as well as heart failure associated with induced apoptosis. These data suggest that PP2Cm is a novel mitochondrial protein phosphatase that has a critical function in cell death and survival, and may play a role in regulating the MPTP opening. PMID:17374715
FOXO3a regulates BNIP3 and modulates mitochondrial calcium, dynamics, and function in cardiac stress
Kohlbrenner, Erik; Gamb, Scott I.; Guenzel, Adam J.; Klaus, Katherine; Fayyaz, Ahmed U.; Nair, K. Sreekumaran; Hajjar, Roger J.
2016-01-01
The forkhead box O3a (FOXO3a) transcription factor has been shown to regulate glucose metabolism, muscle atrophy, and cell death in postmitotic cells. Its role in regulation of mitochondrial and myocardial function is not well studied. Based on previous work, we hypothesized that FOXO3a, through BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3), modulates mitochondrial morphology and function in heart failure (HF). We modulated the FOXO3a-BNIP3 pathway in normal and phenylephrine (PE)-stressed adult cardiomyocytes (ACM) in vitro and developed a cardiotropic adeno-associated virus serotype 9 encoding dominant-negative FOXO3a (AAV9.dn-FX3a) for gene delivery in a rat model of HF with preserved ejection fraction (HFpEF). We found that FOXO3a upregulates BNIP3 expression in normal and PE-stressed ACM, with subsequent increases in mitochondrial Ca2+, leading to decreased mitochondrial membrane potential, mitochondrial fragmentation, and apoptosis. Whereas dn-FX3a attenuated the increase in BNIP3 expression and its consequences in PE-stressed ACM, AAV9.dn-FX3a delivery in an experimental model of HFpEF decreased BNIP3 expression, reversed adverse left ventricular remodeling, and improved left ventricular systolic and, particularly, diastolic function, with improvements in mitochondrial structure and function. Moreover, AAV9.dn-FX3a restored phospholamban phosphorylation at S16 and enhanced dynamin-related protein 1 phosphorylation at S637. Furthermore, FOXO3a upregulates maladaptive genes involved in mitochondrial apoptosis, autophagy, and cardiac atrophy. We conclude that FOXO3a activation in cardiac stress is maladaptive, in that it modulates Ca2+ cycling, Ca2+ homeostasis, and mitochondrial dynamics and function. Our results suggest an important role of FOXO3a in HF, making it an attractive potential therapeutic target. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/role-of-foxo3a-in-heart-failure/. PMID:27694219
Hom, Jennifer R.; Quintanilla, Rodrigo A.; Hoffman, David L.; Karen L., de Mesy Bentley; Molkentin, Jeffery D.; Sheu, Shey-Shing; Porter, George A.
2011-01-01
SUMMARY Although mature myocytes rely on mitochondria as the primary source of energy, the role of mitochondria in the developing heart is not well known. Here, we find closure of the mitochondrial permeability transition pore (mPTP) drives maturation of mitochondrial structure and function and myocyte differentiation. Cardiomyocytes at embryonic day (E) 9.5, when compared to E13.5, displayed fragmented mitochondria with few cristae, a less polarized mitochondrial membrane potential, higher reactive oxygen species (ROS) levels, and an open mPTP. Pharmacologic and genetic closing of the mPTP yielded maturation of mitochondrial structure and function, lowered ROS, and increased myocyte differentiation (measured by counting Z-bands). Furthermore, myocyte differentiation was inhibited and enhanced with oxidant and antioxidant treatment, respectively, suggesting that redox signaling pathways lie downstream of mitochondria to regulate cardiac myocyte differentiation. PMID:21920313
Grose, Julianne H; Langston, Kelsey; Wang, Xiaohui; Squires, Shayne; Mustafi, Soumyajit Banerjee; Hayes, Whitney; Neubert, Jonathan; Fischer, Susan K; Fasano, Matthew; Saunders, Gina Moore; Dai, Qiang; Christians, Elisabeth; Lewandowski, E Douglas; Ping, Peipei; Benjamin, Ivor J
2015-01-01
Small Heat Shock Proteins (sHSPs) are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues. Herein, we set out to comprehensively characterize the cardiac-restricted Heat Shock Protein B-2 (HspB2), which exhibited ischemic cardioprotection in transgenic overexpressing mice including reduced infarct size and maintenance of ATP levels. Global yeast two-hybrid analysis using HspB2 (bait) and a human cardiac library (prey) coupled with co-immunoprecipitation studies for mitochondrial target validation revealed the first HspB2 "cardiac interactome" to contain many myofibril and mitochondrial-binding partners consistent with the overexpression phenotype. This interactome has been submitted to the Biological General Repository for Interaction Datasets (BioGRID). A related sHSP chaperone HspB5 had only partially overlapping binding partners, supporting specificity of the interactome as well as non-redundant roles reported for these sHSPs. Evidence that the cardiac yeast two-hybrid HspB2 interactome targets resident mitochondrial client proteins is consistent with the role of HspB2 in maintaining ATP levels and suggests new chaperone-dependent functions for metabolic homeostasis. One of the HspB2 targets, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), has reported roles in HspB2 associated phenotypes including cardiac ATP production, mitochondrial function, and apoptosis, and was validated as a potential client protein of HspB2 through chaperone assays. From the clientele and phenotypes identified herein, it is tempting to speculate that small molecule activators of HspB2 might be deployed to mitigate mitochondrial related diseases such as cardiomyopathy and neurodegenerative disease.
Dynamic changes in cardiac mitochondrial metabolism during warm acclimation in rainbow trout.
Pichaud, Nicolas; Ekström, Andreas; Hellgren, Kim; Sandblom, Erik
2017-05-01
Although the mitochondrial metabolism responses to warm acclimation have been widely studied in fish, the time course of this process is less understood. Here, we characterized the changes of rainbow trout ( Oncorhynchus mykiss ) cardiac mitochondrial metabolism during acute warming from 10 to 16°C, and during the subsequent warm acclimation for 39 days. We repeatedly measured mitochondrial oxygen consumption in cardiac permeabilized fibers and the functional integrity of mitochondria (i.e. mitochondrial coupling and cytochrome c effect) at two assay temperatures (10 and 16°C), as well as the activities of citrate synthase (CS) and lactate dehydrogenase (LDH) at room temperature. LDH and CS activities significantly increased between day 0 (10°C acclimated fish) and day 1 (acute warming to 16°C) while mitochondrial oxygen consumption measured at respective in vivo temperatures did not change. Enzymatic activities and mitochondrial oxygen consumption rates significantly decreased by day 2, and remained stable during warm acclimation (days 2-39). The decrease in rates of oxygen between day 0 and day 1 coincided with an increased cytochrome c effect and a decreased mitochondrial coupling, suggesting a structural/functional impairment of mitochondria during acute warming. We suggest that after 2 days of warm acclimation, a new homeostasis is reached, which may involve the removal of dysfunctional mitochondria. Interestingly, from day 2 onwards, there was a lack of differences in mitochondrial oxygen consumption rates between the assay temperatures, suggesting that warm acclimation reduces the acute thermal sensitivity of mitochondria. This study provides significant knowledge on the thermal sensitivity of cardiac mitochondria that is essential to delineate the contribution of cellular processes to warm acclimation. © 2017. Published by The Company of Biologists Ltd.
Sverdlov, Aaron L; Elezaby, Aly; Behring, Jessica B; Bachschmid, Markus M; Luptak, Ivan; Tu, Vivian H; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Colucci, Wilson S
2015-01-01
Diet-induced obesity leads to metabolic heart disease (MHD) characterized by increased oxidative stress that may cause oxidative post-translational modifications (OPTM) of cardiac mitochondrial proteins. The functional consequences of OPTM of cardiac mitochondrial proteins in MHD are unknown. Our objective was to determine whether cardiac mitochondrial dysfunction in MHD due to diet-induced obesity is associated with cysteine OPTM. Male C57BL/6J mice were fed either a high-fat, high-sucrose (HFHS) or control diet for 8months. Cardiac mitochondria from HFHS-fed mice (vs. control diet) had an increased rate of H2O2 production, a decreased GSH/GSSG ratio, a decreased rate of complex II substrate-driven ATP synthesis and decreased complex II activity. Complex II substrate-driven ATP synthesis and complex II activity were partially restored ex-vivo by reducing conditions. A biotin switch assay showed that HFHS feeding increased cysteine OPTM in complex II subunits A (SDHA) and B (SDHB). Using iodo-TMT multiplex tags we found that HFHS feeding is associated with reversible oxidation of cysteines 89 and 231 in SDHA, and 100, 103 and 115 in SDHB. MHD due to consumption of a HFHS "Western" diet causes increased H2O2 production and oxidative stress in cardiac mitochondria associated with decreased ATP synthesis and decreased complex II activity. Impaired complex II activity and ATP production are associated with reversible cysteine OPTM of complex II. Possible sites of reversible cysteine OPTM in SDHA and SDHB were identified by iodo-TMT tag labeling. Mitochondrial ROS may contribute to the pathophysiology of MHD by impairing the function of complex II. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease". Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhao, Y; Miriyala, S; Miao, L; Mitov, M; Schnell, D; Dhar, S K; Cai, J; Klein, J B; Sultana, R; Butterfield, D A; Vore, M; Batinic-Haberle, I; Bondada, S; St Clair, D K
2014-07-01
Doxorubicin (DOX), one of the most effective anticancer drugs, is known to generate progressive cardiac damage, which is due, in part, to DOX-induced reactive oxygen species (ROS). The elevated ROS often induce oxidative protein modifications that result in alteration of protein functions. This study demonstrates that the level of proteins adducted by 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product, is significantly increased in mouse heart mitochondria after DOX treatment. A redox proteomics method involving two-dimensional electrophoresis followed by mass spectrometry and investigation of protein databases identified several HNE-modified mitochondrial proteins, which were verified by HNE-specific immunoprecipitation in cardiac mitochondria from the DOX-treated mice. The majority of the identified proteins are related to mitochondrial energy metabolism. These include proteins in the citric acid cycle and electron transport chain. The enzymatic activities of the HNE-adducted proteins were significantly reduced in DOX-treated mice. Consistent with the decline in the function of the HNE-adducted proteins, the respiratory function of cardiac mitochondria as determined by oxygen consumption rate was also significantly reduced after DOX treatment. Treatment with Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, an SOD mimic, averted the doxorubicin-induced mitochondrial dysfunctions as well as the HNE-protein adductions. Together, the results demonstrate that free radical-mediated alteration of energy metabolism is an important mechanism mediating DOX-induced cardiac injury, suggesting that metabolic intervention may represent a novel approach to preventing cardiac injury after chemotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.
Dezfulian, Cameron; Shiva, Sruti; Alekseyenko, Aleksey; Pendyal, Akshay; Beiser, DG; Munasinghe, Jeeva P.; Anderson, Stasia A.; Chesley, Christopher F.; Hoek, TL Vanden; Gladwin, Mark T.
2009-01-01
Background Three-fourths of cardiac arrest survivors die prior to hospital discharge or suffer significant neurological injury. Excepting therapeutic hypothermia and revascularization, no novel therapies have been developed that improve survival or cardiac and neurological function after resuscitation. Nitrite (NO2−) increases cellular resilience to focal ischemia-reperfusion injury in multiple organs. We hypothesized that nitrite therapy may improve outcomes after the unique global ischemia-reperfusion insult of cardiopulmonary arrest. Methods and Results We developed a mouse model of cardiac arrest characterized by 12-minutes of normothermic asystole and a high cardiopulmonary resuscitation (CPR) rate. In this model, global ischemia and CPR was associated with blood and organ nitrite depletion, reversible myocardial dysfunction, impaired alveolar gas exchange, neurological injury and an approximate 50% mortality. A single low dose of intravenous nitrite (50 nmol=1.85 μmol/kg=0.13 mg/kg) compared to blinded saline placebo given at CPR initiation with epinephrine improved cardiac function, survival and neurological outcomes. From a mechanistic standpoint, nitrite treatment restored intracardiac nitrite and increased S-nitrosothiol levels, decreased pathological cardiac mitochondrial oxygen consumption due to reactive oxygen species formation and prevented oxidative enzymatic injury via reversible specific inhibition of respiratory chain complex I. Conclusion Nitrite therapy after resuscitation from 12-minutes of asystole rapidly and reversibly modulated mitochondrial reactive oxygen species generation during early reperfusion, limiting acute cardiac dysfunction and death, as well as neurological impairment in survivors. PMID:19704094
Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál
2015-01-06
Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.
Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál
2015-01-01
Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX’s cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury. PMID:25569804
Functional deficiencies of subsarcolemmal mitochondria in the type 2 diabetic human heart
Croston, Tara L.; Thapa, Dharendra; Holden, Anthony A.; Tveter, Kevin J.; Lewis, Sara E.; Shepherd, Danielle L.; Nichols, Cody E.; Long, Dustin M.; Olfert, I. Mark; Jagannathan, Rajaganapathi
2014-01-01
The mitochondrion has been implicated in the development of diabetic cardiomyopathy. Examination of cardiac mitochondria is complicated by the existence of spatially distinct subpopulations including subsarcolemmal (SSM) and interfibrillar (IFM). Dysfunction to cardiac SSM has been reported in murine models of type 2 diabetes mellitus; however, subpopulation-based mitochondrial analyses have not been explored in type 2 diabetic human heart. The goal of this study was to determine the impact of type 2 diabetes mellitus on cardiac mitochondrial function in the human patient. Mitochondrial subpopulations from atrial appendages of patients with and without type 2 diabetes were examined. Complex I- and fatty acid-mediated mitochondrial respiration rates were decreased in diabetic SSM compared with nondiabetic (P ≤ 0.05 for both), with no change in IFM. Electron transport chain (ETC) complexes I and IV activities were decreased in diabetic SSM compared with nondiabetic (P ≤ 0.05 for both), with a concomitant decline in their levels (P ≤ 0.05 for both). Regression analyses comparing comorbidities determined that diabetes mellitus was the primary factor accounting for mitochondrial dysfunction. Linear spline models examining correlative risk for mitochondrial dysfunction indicated that patients with diabetes display the same degree of state 3 and electron transport chain complex I dysfunction in SSM regardless of the extent of glycated hemoglobin (HbA1c) and hyperglycemia. Overall, the results suggest that independent of other pathologies, mitochondrial dysfunction is present in cardiac SSM of patients with type 2 diabetes and the degree of dysfunction is consistent regardless of the extent of elevated HbA1c or blood glucose levels. PMID:24778174
Dodd, Michael S; Atherton, Helen J; Carr, Carolyn A; Stuckey, Daniel J; West, James A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Heather, Lisa C; Tyler, Damian J
2014-11-01
Myocardial infarction (MI) is one of the leading causes of heart failure. An increasing body of evidence links alterations in cardiac metabolism and mitochondrial function with the progression of heart disease. The aim of this work was to, therefore, follow the in vivo mitochondrial metabolic alterations caused by MI, thereby allowing a greater understanding of the interplay between metabolic and functional abnormalities. Using hyperpolarized carbon-13 ((13)C)-magnetic resonance spectroscopy, in vivo alterations in mitochondrial metabolism were assessed for 22 weeks after surgically induced MI with reperfusion in female Wister rats. One week after MI, there were no detectable alterations in in vivo cardiac mitochondrial metabolism over the range of ejection fractions observed (from 28% to 84%). At 6 weeks after MI, in vivo mitochondrial Krebs cycle activity was impaired, with decreased (13)C-label flux into citrate, glutamate, and acetylcarnitine, which correlated with the degree of cardiac dysfunction. These changes were independent of alterations in pyruvate dehydrogenase flux. By 22 weeks, alterations were also seen in pyruvate dehydrogenase flux, which decreased at lower ejection fractions. These results were confirmed using in vitro analysis of enzyme activities and metabolomic profiles of key intermediates. The in vivo decrease in Krebs cycle activity in the 6-week post-MI heart may represent an early maladaptive phase in the metabolic alterations after MI in which reductions in Krebs cycle activity precede a reduction in pyruvate dehydrogenase flux. Changes in mitochondrial metabolism in heart disease are progressive and proportional to the degree of cardiac impairment. © 2014 American Heart Association, Inc.
Carr, Carolyn A.; Stuckey, Daniel J.; West, James A.; Griffin, Julian L.; Radda, George K.; Clarke, Kieran; Heather, Lisa C.; Tyler, Damian J.
2015-01-01
Background Myocardial infarction (MI) is one of the leading causes of heart failure. An increasing body of evidence links alterations in cardiac metabolism and mitochondrial function with the progression of heart disease. The aim of this work was to, therefore, follow the in vivo mitochondrial metabolic alterations caused by MI, thereby allowing a greater understanding of the interplay between metabolic and functional abnormalities. Methods and Results Using hyperpolarized carbon-13 (13C)-magnetic resonance spectroscopy, in vivo alterations in mitochondrial metabolism were assessed for 22 weeks after surgically induced MI with reperfusion in female Wister rats. One week after MI, there were no detectable alterations in in vivo cardiac mitochondrial metabolism over the range of ejection fractions observed (from 28% to 84%). At 6 weeks after MI, in vivo mitochondrial Krebs cycle activity was impaired, with decreased 13C-label flux into citrate, glutamate, and acetylcarnitine, which correlated with the degree of cardiac dysfunction. These changes were independent of alterations in pyruvate dehydrogenase flux. By 22 weeks, alterations were also seen in pyruvate dehydrogenase flux, which decreased at lower ejection fractions. These results were confirmed using in vitro analysis of enzyme activities and metabolomic profiles of key intermediates. Conclusions The in vivo decrease in Krebs cycle activity in the 6-week post-MI heart may represent an early maladaptive phase in the metabolic alterations after MI in which reductions in Krebs cycle activity precede a reduction in pyruvate dehydrogenase flux. Changes in mitochondrial metabolism in heart disease are progressive and proportional to the degree of cardiac impairment. PMID:25201905
Essop, M Faadiel; Razeghi, Peter; McLeod, Chris; Young, Martin E; Taegtmeyer, Heinrich; Sack, Michael N
2004-02-06
Mitochondrial uncoupling proteins 2 and 3 (UCP2 and UCP3) are postulated to contribute to antioxidant defense, nutrient partitioning, and energy efficiency in the heart. To distinguish isotype function in response to metabolic stress we measured cardiac mitochondrial function and cardiac UCP gene expression following chronic hypobaric hypoxia. Isolated mitochondrial O(2) consumption and ATP synthesis rate were reduced but respiratory coupling was unchanged compared to normoxic groups. Concurrently, left ventricular UCP3 mRNA levels were significantly decreased with hypoxia (p<0.05) while UCP2 levels remained unchanged versus controls. Diminished UCP3 expression was associated with coordinate regulation of counter-regulatory metabolic genes. From these data, we propose a role for UCP3 in the regulation of fatty acid oxidation in the heart as opposed to uncoupling of mitochondria. Moreover, the divergent hypoxia-induced regulation of UCP2 and UCP3 supports distinct mitochondrial regulatory functions of these inner mitochondrial membrane proteins in the heart in response to metabolic stress.
Bouitbir, Jamal; Charles, Anne-Laure; Echaniz-Laguna, Andoni; Kindo, Michel; Daussin, Frédéric; Auwerx, Johan; Piquard, François; Geny, Bernard; Zoll, Joffrey
2012-01-01
Aims Statins protect against cardiovascular-related mortality but induce skeletal muscle toxicity. To investigate mechanisms of statins, we tested the hypothesis that statins optimized cardiac mitochondrial function but impaired vulnerable skeletal muscle by inducing different level of reactive oxygen species (ROS). Methods and results In atrium of patients treated with statins, ROS production was decreased and oxidative capacities were enhanced together with an extensive augmentation of mRNAs expression of peroxisome proliferator-activated receptor gamma co-activator (PGC-1) family. However, in deltoid biopsies from patients with statin-induced muscular myopathy, oxidative capacities were decreased together with ROS increase and a collapse of PGC-1 mRNA expression. Several animal and cell culture experiments were conducted and showed by using ROS scavengers that ROS production was the triggering factor responsible of atorvastatin-induced activation of mitochondrial biogenesis pathway and improvement of antioxidant capacities in heart. Conversely, in skeletal muscle, the large augmentation of ROS production following treatment induced mitochondrial impairments, and reduced mitochondrial biogenesis mechanisms. Quercetin, an antioxidant molecule, was able to counteract skeletal muscle deleterious effects of atorvastatin in rat. Conclusion Our findings identify statins as a new activating factor of cardiac mitochondrial biogenesis and antioxidant capacities, and suggest the importance of ROS/PGC-1 signalling pathway as a key element in regulation of mitochondrial function in cardiac as well as skeletal muscles. PMID:21775390
Sudden Cardiac Death Due to Deficiency of the Mitochondrial Inorganic Pyrophosphatase PPA2.
Kennedy, Hannah; Haack, Tobias B; Hartill, Verity; Mataković, Lavinija; Baumgartner, E Regula; Potter, Howard; Mackay, Richard; Alston, Charlotte L; O'Sullivan, Siobhan; McFarland, Robert; Connolly, Grainne; Gannon, Caroline; King, Richard; Mead, Scott; Crozier, Ian; Chan, Wandy; Florkowski, Chris M; Sage, Martin; Höfken, Thomas; Alhaddad, Bader; Kremer, Laura S; Kopajtich, Robert; Feichtinger, René G; Sperl, Wolfgang; Rodenburg, Richard J; Minet, Jean Claude; Dobbie, Angus; Strom, Tim M; Meitinger, Thomas; George, Peter M; Johnson, Colin A; Taylor, Robert W; Prokisch, Holger; Doudney, Kit; Mayr, Johannes A
2016-09-01
We have used whole-exome sequencing in ten individuals from four unrelated pedigrees to identify biallelic missense mutations in the nuclear-encoded mitochondrial inorganic pyrophosphatase (PPA2) that are associated with mitochondrial disease. These individuals show a range of severity, indicating that PPA2 mutations may cause a spectrum of mitochondrial disease phenotypes. Severe symptoms include seizures, lactic acidosis, cardiac arrhythmia, and death within days of birth. In the index family, presentation was milder and manifested as cardiac fibrosis and an exquisite sensitivity to alcohol, leading to sudden arrhythmic cardiac death in the second decade of life. Comparison of normal and mutant PPA2-containing mitochondria from fibroblasts showed that the activity of inorganic pyrophosphatase was significantly reduced in affected individuals. Recombinant PPA2 enzymes modeling hypomorphic missense mutations had decreased activity that correlated with disease severity. These findings confirm the pathogenicity of PPA2 mutations and suggest that PPA2 is a cardiomyopathy-associated protein, which has a greater physiological importance in mitochondrial function than previously recognized. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Ferguson, Michael A; Sutton, Robert M; Karlsson, Michael; Sjövall, Fredrik; Becker, Lance B; Berg, Robert A; Margulies, Susan S; Kilbaugh, Todd J
2016-06-01
Cardiac arrest (CA) results in a sepsis-like syndrome with activation of the innate immune system and increased mitochondrial bioenergetics. To determine if platelet mitochondrial respiration increases following CA in a porcine pediatric model of asphyxia-associated ventricular fibrillation (VF) CA, and if this readily obtained biomarker is associated with decreased brain mitochondrial respiration. CA protocol: 7 min of asphyxia, followed by VF, protocolized titration of compression depth to systolic blood pressure of 90 mmHg and vasopressor administration to a coronary perfusion pressure greater than 20 mmHg. platelet integrated mitochondrial electron transport system (ETS) function evaluated pre- and post-CA/ROSC four hours after return of spontaneous circulation (ROSC). Secondary outcome: correlation of platelet mitochondrial bioenergetics to cerebral bioenergetic function. Platelet maximal oxidative phosphorylation (OXPHOSCI+CII), P < 0.02, and maximal respiratory capacity (ETSCI+CII), P < 0.04, were both significantly increased compared to pre-arrest values. This was primarily due to a significant increase in succinate-supported respiration through Complex II (OXPHOSCII, P < 0.02 and ETSCII, P < 0.03). Higher respiration was not due to uncoupling, as the LEAKCI + CII respiration (mitochondrial respiration independent of ATP-production) was unchanged after CA/ROSC. Larger increases in platelet mitochondrial respiratory control ratio (RCR) compared to pre-CA RCR were significantly correlated with lower RCRs in the cortex (P < 0.03) and hippocampus (P < 0.04) compared to sham respiration. Platelet mitochondrial respiration is significantly increased four hours after ROSC. Future studies will identify mechanistic relationships between this serum biomarker and altered cerebral bioenergetics function following cardiac arrest.
Sun, Dongdong; Li, Shuang; Wu, Hao; Zhang, Mingming; Zhang, Xiaotian; Wei, Liping; Qin, Xing; Gao, Erhe
2015-06-01
Oncostatin M (OSM) exhibits many unique biological activities by activating Oβ receptor. However, its role in myocardial I/R injury in diabetic mice remains unknown. The involvement of OSM was assessed in diabetic mice which underwent myocardial I/R injury by OSM treatment or genetic deficiency of OSM receptor Oβ. Its mechanism on cardiomyocyte apoptosis, mitochondrial biogenesis and insulin sensitivity were further studied. OSM alleviated cardiac I/R injury by inhibiting cardiomyocyte apoptosis through inhibition of inositol pyrophosphate 7 (IP7) production, thus activating PI3K/Akt/BAD pathway, decreasing Bax expression while up-regulating Bcl-2 expression and decreasing the ratio of Bax to Bcl-2 in db/db mice. OSM enhanced mitochondrial biogenesis and mitochondrial function in db/db mice subjected to cardiac I/R injury. On the contrary, OSM receptor Oβ knockout exacerbated cardiac I/R injury, increased IP7 production, enhanced cardiomyocyte apoptosis, impaired mitochondrial biogenesis, glucose homoeostasis and insulin sensitivity in cardiac I/R injured diabetic mice. Inhibition of IP7 production by TNP (IP6K inhibitor) exerted similar effects of OSM. The mechanism of OSM on cardiac I/R injury in diabetic mice is partly associated with IP7/Akt and adenine mononucleotide protein kinase/PGC-1α pathway. OSM protects against cardiac I/R Injury by regulating apoptosis, insulin sensitivity and mitochondrial biogenesis in diabetic mice through inhibition of IP7 production. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Distinct Functional Roles of Cardiac Mitochondrial Subpopulations Revealed by a 3D Simulation Model
Hatano, Asuka; Okada, Jun-ichi; Washio, Takumi; Hisada, Toshiaki; Sugiura, Seiryo
2015-01-01
Experimental characterization of two cardiac mitochondrial subpopulations, namely, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), has been hampered by technical difficulties, and an alternative approach is eagerly awaited. We previously developed a three-dimensional computational cardiomyocyte model that integrates electrophysiology, metabolism, and mechanics with subcellular structure. In this study, we further developed our model to include intracellular oxygen diffusion, and determined whether mitochondrial localization or intrinsic properties cause functional variations. For this purpose, we created two models: one with equal SSM and IFM properties and one with IFM having higher activity levels. Using these two models to compare the SSM and IFM responses of [Ca2+], tricarboxylic acid cycle activity, [NADH], and mitochondrial inner membrane potential to abrupt changes in pacing frequency (0.25–2 Hz), we found that the reported functional differences between these subpopulations appear to be mostly related to local [Ca2+] heterogeneity, and variations in intrinsic properties only serve to augment these differences. We also examined the effect of hypoxia on mitochondrial function. Under normoxic conditions, intracellular oxygen is much higher throughout the cell than the half-saturation concentration for oxidative phosphorylation. However, under limited oxygen supply, oxygen is mostly exhausted in SSM, leaving the core region in an anoxic condition. Reflecting this heterogeneous oxygen environment, the inner membrane potential continues to decrease in IFM, whereas it is maintained to nearly normal levels in SSM, thereby ensuring ATP supply to this region. Our simulation results provide clues to understanding the origin of functional variations in two cardiac mitochondrial subpopulations and their differential roles in maintaining cardiomyocyte function as a whole. PMID:26039174
Pereira, Gonçalo C; Pereira, Susana P; Pereira, Claudia V; Lumini, José A; Magalhães, José; Ascensão, António; Santos, Maria S; Moreno, António J; Oliveira, Paulo J
2012-01-01
Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent, persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model, with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically (7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection, respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional alterations.
Pereira, Gonçalo C.; Pereira, Susana P.; Pereira, Claudia V.; Lumini, José A.; Magalhães, José; Ascensão, António; Santos, Maria S.; Moreno, António J.; Oliveira, Paulo J.
2012-01-01
Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent, persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model, with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically (7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection, respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional alterations. PMID:22745682
Mechanistic Role of Thioredoxin 2 in Heart Failure.
Chen, Chaofei; Chen, Haixuan; Zhou, Huanjiao Jenny; Ji, Weidong; Min, Wang
2017-01-01
Thioredoxin 2 (Trx2) is a pivotal mitochondrial protein that regulates redox signaling. The mitochondrial Trx2 is expressed ubiquitously, but it is found at the highest levels in metabolically active tissues like the heart. Global gene knockout of Trx2 results in embryonic lethality, likely due to the increased cellular oxidative stress. Moreover, mice with cardiac-specific Trx2 deletion develop spontaneous dilated cardiomyopathy (DCM), correlating with increased apoptosis stress kinase-1 (ASK1) signaling and increased cardiomyocyte apoptosis. Cardiomyocyte apoptosis is a common mechanism in the pathogenesis of heart failure. Our results show that Trx2 is essential for maintaining cardiac function. In this chapter, we summarize the key mechanistic role of Trx2 in preserving cardiac function by suppressing mitochondrial reactive oxygen species (ROS) generation and by inhibiting ASK1-dependent apoptosis in heart failure. Trx2 and ASK1 represent promising targets to develop therapeutic strategies for the treatment of DCM and heart failure.
Clandinin, M T
1978-02-01
To evaluate the effect of dietary rapeseed oils on cardiac mitochondrial function and metabolic conservation of energy, male weanling rats derived from the Sprague-Dawley strain were fed three rations containing either 15% (w/w) soybean oil, low erucic acid rapeseed oil or a high erucic acid rapeseed oil. Cardiac mitochondria were isolated for measurement of mitochondrial respiratory functions. Pyruvate and malate plus malonate or succinate plus amytal, or alpha-ketoglutarate and malate plus malonate were utilized as substrates for oxidative phosphorylation. Net rates of state 3 oxygen uptake and therefore ATP synthesis were found to decline with chronic feeding of the 15% (w/w) oil containing diets. Significantly reduced ADP/O ratios were observed for groups fed high erucic acid rapeseed oil containing diets for 11 days. Decreased ADP/O ratios were also observed for groups fed high or low erucic acid rapeseed oils for 112 days. When pyruvate and malate plus malonate were utilized as substrates, reduced rates of ATP synthesis were observed after chronic feeding of high erucic acid rapeseed oil diets. Only prolonged feeding of low erucic acid rapeseed oils resulted in significant alterations in the efficiency of oxidative phosphorylation.
Monoamine Oxidase B Prompts Mitochondrial and Cardiac Dysfunction in Pressure Overloaded Hearts
Kaludercic, Nina; Carpi, Andrea; Nagayama, Takahiro; Sivakumaran, Vidhya; Zhu, Guangshuo; Lai, Edwin W.; Bedja, Djahida; De Mario, Agnese; Chen, Kevin; Gabrielson, Kathleen L.; Lindsey, Merry L.; Pacak, Karel; Takimoto, Eiki; Shih, Jean C.; Kass, David A.; Di Lisa, Fabio
2014-01-01
Abstract Aims: Monoamine oxidases (MAOs) are mitochondrial flavoenzymes responsible for neurotransmitter and biogenic amines catabolism. MAO-A contributes to heart failure progression via enhanced norepinephrine catabolism and oxidative stress. The potential pathogenetic role of the isoenzyme MAO-B in cardiac diseases is currently unknown. Moreover, it is has not been determined yet whether MAO activation can directly affect mitochondrial function. Results: In wild type mice, pressure overload induced by transverse aortic constriction (TAC) resulted in enhanced dopamine catabolism, left ventricular (LV) remodeling, and dysfunction. Conversely, mice lacking MAO-B (MAO-B−/−) subjected to TAC maintained concentric hypertrophy accompanied by extracellular signal regulated kinase (ERK)1/2 activation, and preserved LV function, both at early (3 weeks) and late stages (9 weeks). Enhanced MAO activation triggered oxidative stress, and dropped mitochondrial membrane potential in the presence of ATP synthase inhibitor oligomycin both in neonatal and adult cardiomyocytes. The MAO-B inhibitor pargyline completely offset this change, suggesting that MAO activation induces a latent mitochondrial dysfunction, causing these organelles to hydrolyze ATP. Moreover, MAO-dependent aldehyde formation due to inhibition of aldehyde dehydrogenase 2 activity also contributed to alter mitochondrial bioenergetics. Innovation: Our study unravels a novel role for MAO-B in the pathogenesis of heart failure, showing that both MAO-driven reactive oxygen species production and impaired aldehyde metabolism affect mitochondrial function. Conclusion: Under conditions of chronic hemodynamic stress, enhanced MAO-B activity is a major determinant of cardiac structural and functional disarrangement. Both increased oxidative stress and the accumulation of aldehyde intermediates are likely liable for these adverse morphological and mechanical changes by directly targeting mitochondria. Antioxid. Redox Signal. 20, 267–280. PMID:23581564
Zhang, Jun; Li, Xiaohai; Mueller, Michael; Wang, Yueju; Zong, Chenggong; Deng, Ning; Vondriska, Thomas M.; Liem, David A.; Yang, Jeong-In; Korge, Paavo; Honda, Henry; Weiss, James N.; Apweiler, Rolf; Ping, Peipei
2009-01-01
Mitochondria play essential roles in cardiac pathophysiology and the murine model has been extensively used to investigate cardiovascular diseases. In the present study, we characterized murine cardiac mitochondria using an LC/MS/MS approach. We extracted and purified cardiac mitochondria; validated their functionality to ensure the final preparation contains necessary components to sustain their normal function; and subjected these validated organelles to LC/MS/MS-based protein identification. A total of 940 distinct proteins were identified from murine cardiac mitochondria, among which, 480 proteins were not previously identified by major proteomic profiling studies. The 940 proteins consist of functional clusters known to support oxidative phosphorylation, metabolism and biogenesis. In addition, there are several other clusters--including proteolysis, protein folding, and reduction/oxidation signaling-which ostensibly represent previously under-appreciated tasks of cardiac mitochondria. Moreover, many identified proteins were found to occupy other subcellular locations, including cytoplasm, ER, and golgi, in addition to their presence in the mitochondria. These results provide a comprehensive picture of the murine cardiac mitochondrial proteome and underscore tissue- and species-specification. Moreover, the use of functionally intact mitochondria insures that the proteomic observations in this organelle are relevant to its normal biology and facilitates decoding the interplay between mitochondria and other organelles. PMID:18348319
Testai, Lara; Barrese, Vincenzo; Soldovieri, Maria Virginia; Ambrosino, Paolo; Martelli, Alma; Vinciguerra, Iolanda; Miceli, Francesco; Greenwood, Iain Andrew; Curtis, Michael John; Breschi, Maria Cristina; Sisalli, Maria Josè; Scorziello, Antonella; Canduela, Miren Josune; Grandes, Pedro; Calderone, Vincenzo; Taglialatela, Maurizio
2016-05-01
Plasmalemmal Kv7.1 (KCNQ1) channels are critical players in cardiac excitability; however, little is known on the functional role of additional Kv7 family members (Kv7.2-5) in cardiac cells. In this work, the expression, function, cellular and subcellular localization, and potential cardioprotective role against anoxic-ischaemic cardiac injury of Kv7.4 channels have been investigated. Expression of Kv7.1 and Kv7.4 transcripts was found in rat heart tissue by quantitative polymerase chain reaction. Western blots detected Kv7.4 subunits in mitochondria from Kv7.4-transfected cells, H9c2 cardiomyoblasts, freshly isolated adult cardiomyocytes, and whole hearts. Immunofluorescence experiments revealed that Kv7.4 subunits co-localized with mitochondrial markers in cardiac cells, with ∼ 30-40% of cardiac mitochondria being labelled by Kv7.4 antibodies, a result also confirmed by immunogold electron microscopy experiments. In isolated cardiac (but not liver) mitochondria, retigabine (1-30 µM) and flupirtine (30 µM), two selective Kv7 activators, increased Tl(+) influx, depolarized the membrane potential, and inhibited calcium uptake; all these effects were antagonized by the Kv7 blocker XE991. In intact H9c2 cells, reducing Kv7.4 expression by RNA interference blunted retigabine-induced mitochondrial membrane depolarization; in these cells, retigabine decreased mitochondrial Ca(2+) levels and increased radical oxygen species production, both effects prevented by XE991. Finally, retigabine reduced cellular damage in H9c2 cells exposed to anoxia/re-oxygenation and largely prevented the functional and morphological changes triggered by global ischaemia/reperfusion (I/R) in Langendorff-perfused rat hearts. Kv7.4 channels are present and functional in cardiac mitochondria; their activation exerts a significant cardioprotective role, making them potential therapeutic targets against I/R-induced cardiac injury. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Wang, Hui; Bei, Yihua; Lu, Yan; Sun, Wei; Liu, Qi; Wang, Yalong; Cao, Yujie; Chen, Ping; Xiao, Junjie; Kong, Xiangqing
2015-01-01
Diabetic cardiomyopathy (DCM) represents the major cause of morbidity and mortality among diabetics. Exercise has been reported to be effective to protect the heart from cardiac injury during the development of DCM. However, the potential cardioprotective effect of exercise in advanced DCM remains unclear. Seven-week old male C57BL/6 wild-type or db/db mice were either subjected to a running exercise program for 15 weeks or kept sedentary. Cardiac function, myocardial apoptosis and fibrosis, and mitochondrial biogenesis were examined for evaluation of cardiac injury. A reduction in ejection fraction and fractional shortening in db/db mice was significantly reversed by exercise training. DCM induced remarkable cardiomyocyte apoptosis and increased ratio of Bax/Bcl-2 at the protein level. Meanwhile, DCM caused slightly myocardial fibrosis with elevated mRNA levels of collagen I and collagen III. Also, DCM resulted in a reduction of mitochondrial DNA (mtDNA) replication and transcription, together with reduced mtDNA content and impaired mitochondrial ultrastructure. All of these changes could be abolished by exercise training. Furthermore, DCM-associated inhibition of PGC-1α and Akt signaling was significantly activated by exercise, indicating that exercise-induced activation of PGC-1α and Akt signaling might be responsible for mediating cardioprotective effect of exercise in DCM. Exercise preserves cardiac function, prevents myocardial apoptosis and fibrosis, and improves mitochondrial biogenesis in the late stage of DCM. Exercise-induced activation of PGC-1α and Akt signaling might be promising therapeutic targets for advanced DCM. © 2015 S. Karger AG, Basel.
Zang, Qun S; Sadek, Hesham; Maass, David L; Martinez, Bobbie; Ma, Lisha; Kilgore, Jessica A; Williams, Noelle S; Frantz, Doug E; Wigginton, Jane G; Nwariaku, Fiemu E; Wolf, Steven E; Minei, Joseph P
2012-05-01
Using a mitochondria-targeted vitamin E (Mito-Vit-E) in a rat pneumonia-related sepsis model, we examined the role of mitochondrial reactive oxygen species in sepsis-mediated myocardial inflammation and subsequent cardiac contractile dysfunction. Sepsis was produced in adult male Sprague-Dawley rats via intratracheal injection of S. pneumonia (4 × 10(6) colony formation units per rat). A single dose of Mito-Vit-E, vitamin E, or control vehicle, at 21.5 μmol/kg, was administered 30 min postinoculation. Blood was collected, and heart tissue was harvested at various time points. Mito-Vit-E in vivo distribution was confirmed by mass spectrometry. In cardiac mitochondria, Mito-Vit-E improved total antioxidant capacity and suppressed H(2)O(2) generation, whereas vitamin E offered little effect. In cytosol, both antioxidants decreased H(2)O(2) levels, but only vitamin E strengthened antioxidant capacity. Mito-Vit-E protected mitochondrial structure and function in the heart during sepsis, demonstrated by reduction in lipid and protein oxidation, preservation of mitochondrial membrane integrity, and recovery of respiratory function. While both Mito-Vit-E and vitamin E suppressed sepsis-induced peripheral and myocardial production of proinflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), Mito-Vit-E exhibited significantly higher efficacy (P < 0.05). Stronger anti-inflammatory action of Mito-Vit-E was further shown by its near-complete inhibition of sepsis-induced myeloperoxidase accumulation in myocardium, suggesting its effect on neutrophil infiltration. Echocardiography analysis indicated that Mito-Vit-E ameliorated cardiac contractility of sepsis animals, shown by improved fractional shortening and ejection fraction. Together, our data suggest that targeted scavenging of mitochondrial reactive oxygen species protects mitochondrial function, attenuates tissue-level inflammation, and improves whole organ activities in the heart during sepsis.
Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun
2015-03-18
Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Zhang, Yingmei; Xia, Zhi; La Cour, Karissa H; Ren, Jun
2011-11-01
The present study was designed to examine the impact of chronic Akt activation on endoplasmic reticulum (ER) stress-induced cardiac mechanical anomalies, if any, and the underlying mechanism involved. Wild-type and transgenic mice with cardiac-specific overexpression of the active mutant of Akt (Myr-Akt) were subjected to the ER stress inducer tunicamycin (1 or 3 mg/kg). ER stress led to compromised echocardiographic (elevated left ventricular end-systolic diameter and reduced fractional shortening) and cardiomyocyte contractile function, intracellular Ca(2+) mishandling, and cell survival in wild-type mice associated with mitochondrial damage. In vitro ER stress induction in murine cardiomyocytes upregulated the ER stress proteins Gadd153, GRP78, and phospho-eIF2α, and promoted reactive oxygen species production, carbonyl formation, apoptosis, mitochondrial membrane potential loss, and mitochondrial permeation pore (mPTP) opening associated with overtly impaired cardiomyocyte contractile and intracellular Ca(2+) properties. Interestingly, these anomalies were mitigated by chronic Akt activation or the ER chaperon tauroursodeoxycholic acid (TUDCA). Treatment with tunicamycin also dephosphorylated Akt and its downstream signal glycogen synthase kinase 3β (GSK3β) (leading to activation of GSK3β), the effect of which was abrogated by Akt activation and TUDCA. The ER stress-induced cardiomyocyte contractile and mitochondrial anomalies were obliterated by the mPTP inhibitor cyclosporin A, GSK3β inhibitor SB216763, and ER stress inhibitor TUDCA. This research reported the direct relationship between ER stress and cardiomyocyte contractile and mitochondrial anomalies for the first time. Taken together, these data suggest that ER stress may compromise cardiac contractile and intracellular Ca(2+) properties, possibly through the Akt/GSK3β-dependent impairment of mitochondrial integrity.
Birkedal, R; Gesser, H
2004-04-01
In skinned rat cardiac fibres, mitochondrial affinity for endogenous ADP generated by creatine kinase and Ca2+-activated ATPases is higher than for exogenous ADP added to the surrounding medium, suggesting that mitochondria are functionally coupled to creatine kinase and ATPases. Such a coupling may be weaker or absent in ectothermic vertebrate cardiac cells, because they typically have less elaborate intracellular membrane structures, higher glycolytic capacity and lower working temperature. Therefore, we examined skinned cardiac fibres from rainbow trout at 10 degrees C. The apparent mitochondrial affinity for endogenous ADP was obtained by stimulation with ATP and recording of the release of ADP into the surrounding medium. The apparent affinity for endogenous ADP was much higher than for exogenous ADP suggesting a functional coupling between mitochondria and ATPases. The apparent affinity for exogenous ADP and ATP was increased by creatine or an increase in Ca2+-activity, which should increase intrafibrillar turnover of ATP to ADP. In conclusion, ADP seems to be channelled from creatine kinase and ATPases to mitochondria without being released to the surrounding medium. Thus, despite difference in structure, temperature and metabolic capacity, trout myocardium resembles that of rat with regard to the regulation of mitochondrial respiration. Copyright 2004 Springer-Verlag
Dadson, Keith; Hauck, Ludger; Hao, Zhenyue; Grothe, Daniela; Rao, Vivek; Mak, Tak W; Billia, Filio
2017-02-02
Cardiac homeostasis requires proper control of protein turnover. Protein degradation is principally controlled by the Ubiquitin-Proteasome System. Mule is an E3 ubiquitin ligase that regulates cellular growth, DNA repair and apoptosis to maintain normal tissue architecture. However, Mule's function in the heart has yet to be described. In a screen, we found reduced Mule expression in left ventricular samples from end-stage heart failure patients. Consequently, we generated conditional cardiac-specific Mule knockout (Mule fl/fl(y) ;mcm) mice. Mule ablation in adult Mule fl/fl(y) ;mcm mice prevented myocardial c-Myc polyubiquitination, leading to c-Myc accumulation and subsequent reduced expression of Pgc-1α, Pink1, and mitochondrial complex proteins. Furthermore, these mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction, and early mortality. Co-deletion of Mule and c-Myc rescued this phenotype. Our data supports an indispensable role for Mule in cardiac homeostasis through the regulation of mitochondrial function via maintenance of Pgc-1α and Pink1 expression and persistent negative regulation of c-Myc.
Sultana, Md Razia; Bagul, Pankaj K; Katare, Parameshwar B; Anwar Mohammed, Soheb; Padiya, Raju; Banerjee, Sanjay K
2016-11-01
Cardiac complications are major contributor in the mortality of diabetic people. Mitochondrial dysfunctioning is a crucial contributor for the cardiac complications in diabetes, and SIRT-3 remains the major mitochondrial deacetylase. We hypothesized whether garlic has any role on SIRT-3 to prevent mitochondrial dysfunction in diabetic heart. Rats with developed hyperglycemia after STZ injection were divided into two groups; diabetic (Dia) and diabetic+garlic (Dia+Garl). Garlic was administered at a dose of 250mg/kg/day, orally for four weeks. An additional group was maintained to evaluate the effect of raw garlic administration on control rat heart. We have observed altered functioning of cardiac mitochondrial enzymes involved in metabolic pathways, and increased levels of cardiac ROS with decreased activity of catalase and SOD in diabetic rats. Cardiac mRNA expression of TFAM, PGC-1α, and CO1 was also altered in diabetes. In addition, reduced levels of electron transport chain complexes that observed in Dia group were normalized with garlic administration. This indicates the presence of increased oxidative stress with mitochondrial dysfunctioning in diabetic heart. We have observed reduced activity of SIRT3 and increased acetylation of MnSOD. Silencing SIRT-3 in cells also revealed the same. However, administration of garlic improved the SIRT-3 and MnSOD activity, by deacetylating MnSOD. Increased SOD activity was correlated with reduced levels of ROS in garlic-administered rat hearts. Collectively, our results provide an insight into garlic's protection to T1DM heart through activation of SIRT3-MnSOD pathway. Copyright © 2016 Elsevier Inc. All rights reserved.
Wu, Shengnan; Lu, Qiulun; Wang, Qilong; Ding, Ye; Ma, Zejun; Mao, Xiaoxiang; Huang, Kai; Xie, Zhonglin; Zou, Ming-Hui
2017-12-05
FUN14 domain containing 1 (FUNDC1) is a highly conserved outer mitochondrial membrane protein. The aim of this study is to examine whether FUNDC1 modulates the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), mitochondrial morphology, and function in cardiomyocytes and intact hearts. The impacts of FUNDC1 on MAMs formation and cardiac functions were studied in mouse neonatal cardiomyocytes, in mice with cardiomyocyte-specific Fundc1 gene knockout ( Fundc1 f/Y /Cre αMyHC+/- ), and in the cardiac tissues of the patients with heart failure. In mouse neonatal cardiomyocytes and intact hearts, FUNDC1 was localized in MAMs by binding to ER-resided inositol 1,4,5-trisphosphate type 2 receptor (IP 3 R2). Fundc1 ablation disrupted MAMs and reduced the levels of IP 3 R2 and Ca 2+ in both mitochondria and cytosol, whereas overexpression of Fundc1 increased the levels of IP 3 R2 and Ca 2+ in both mitochondria and cytosol. Consistently, Fundc1 ablation increased Ca 2+ levels in ER, whereas Fundc1 overexpression lowered ER Ca 2+ levels. Further, Fundc1 ablation in cardiomyocytes elongated mitochondria and compromised mitochondrial functions. Mechanistically, we found that Fundc1 ablation-induced reduction of intracellular Ca 2+ levels suppressed mitochondrial fission 1 protein ( Fis1 ) expression and mitochondrial fission by reducing the binding of the cAMP response element binding protein (CREB) in the Fis1 promoter. Fundc1 f/Y /Cre αMyHC+/- mice but not their littermate control mice ( Fundc1 wt/Y /Cre αMyHC+/- ) exhibited cardiac dysfunction. The ligation of the left ventricle artery of Fundc1 f/Y /Cre αMyHC+/- mice caused more severe cardiac dysfunction than those in sham-treated Fundc1 f/Y /Cre αMyHC+/- mice. Finally, we found that the FUNDC1/MAMs/CREB/Fis1 signaling axis was significantly suppressed in patients with heart failure. We conclude that FUNDC1 binds to IP 3 R2 to modulate ER Ca 2+ release into mitochondria and cytosol. Further, a disruption of the FUNDC1 and IP 3 R2 interaction lowers the levels of Ca 2+ in mitochondria and cytosol, both of which instigate aberrant mitochondrial fission, mitochondrial dysfunction, cardiac dysfunction, and heart failure. © 2017 American Heart Association, Inc.
Dynamin-Related Protein 1 as a therapeutic target in cardiac arrest
Sharp, Willard W.
2015-01-01
Despite improvements in cardiopulmonary resuscitation (CPR) quality, defibrillation technologies, and implementation of therapeutic hypothermia, less than 10% of out-of-hospital cardiac arrest (OHCA) victims survive to hospital discharge. New resuscitation therapies have been slow to develop, in part, because the pathophysiologic mechanisms critical for resuscitation are not understood. During cardiac arrest, systemic cessation of blood flow results in whole body ischemia. CPR, and the restoration of spontaneous circulation (ROSC), both result in immediate reperfusion injury of the heart that is characterized by severe contractile dysfunction. Unlike diseases of localized ischemia/reperfusion (IR) injury (myocardial infarction and stroke), global IR injury of organs results in profound organ dysfunction with far shorter ischemic times. The two most commonly injured organs following cardiac arrest resuscitation, the heart and brain, are critically dependent on mitochondrial function. New insights into mitochondrial dynamics and the role of the mitochondrial fission protein Dynamin-related protein 1 (Drp1) in apoptosis have made targeting these mechanisms attractive for IR therapy. In animal models, inhibiting Drp1 following IR injury or cardiac arrest confers protection to both the heart and brain. In this review, the relationship of the major mitochondrial fission protein Drp1 to ischemic changes in the heart and its targeting as a new therapeutic target following cardiac arrest are discussed. PMID:25659608
Barra, Nicole G; Lisyansky, Maria; Vanduzer, Taylor A; Raha, Sandeep; Holloway, Alison C; Hardy, Daniel B
2017-12-01
Smoking throughout pregnancy can lead to complications during gestation, parturition and neonatal development. Thus, nicotine replacement therapies are a popular alternative thought to be safer than cigarettes. However, recent studies in rodents suggest that fetal and neonatal nicotine exposure alone results in cardiac dysfunction and high blood pressure. While it is well known that perinatal nicotine exposure causes increased congenital abnormalities, the mechanisms underlying longer-term deficits in cardiac function are not completely understood. Recently, our laboratory demonstrated that nicotine impairs placental protein disulfide isomerase (PDI) triggering an increase in endoplasmic reticulum stress, leading us to hypothesize that this may also occur in the heart. At 3 months of age, nicotine-exposed offspring had 45% decreased PDI levels in the absence of endoplasmic reticulum stress. Given the association of PDI and superoxide dismutase enzymes, we further observed that antioxidant superoxide dismutase-2 levels were reduced by 32% in these offspring concomitant with a 26-49% decrease in mitochondrial complex proteins (I, II, IV and V) and tissue inhibitor of metalloproteinase-4, a critical matrix metalloprotease for cardiac contractility and health. Collectively, this study suggests that perinatal nicotine exposure decreases PDI, which can promote oxidative damage and mitochondrial damage, associated with a premature decline in cardiac function. Copyright © 2017 John Wiley & Sons, Ltd.
Creatine kinase and mitochondrial respiration in hearts of trout, cod and freshwater turtle.
Birkedal, R; Gesser, H
2003-08-01
The importance of the creatine kinase system in the cardiac muscle of ectothermic vertebrates is unclear. Mammalian cardiac muscle seems to be structurally organized in a manner that compartmentalizes the intracellular environment as evidenced by the substantially higher mitochondrial apparent Km for ADP in skinned fibres compared to isolated mitochondria. A mitochondrial fraction of creatine kinase is functionally coupled to the mitochondrial respiration, and the transport of phosphocreatine and creatine as energy equivalents of ATP and ADP, respectively, increases the mitochondrial apparent ADP affinity, i.e. lowers the Km. This function of creatine kinase seems to be absent in hearts of frog species. To find out whether this applies to hearts of ectothermic vertebrate species in general, we investigated the effect of creatine on the mitochondrial respiration of saponin-skinned fibres from the ventricle of rainbow trout, Atlantic cod and freshwater turtle. For all three species, the apparent Km for ADP appeared to be substantially higher than for isolated mitochondria. Creatine lowered this Km in trout and turtle, thus indicating a functional coupling between mitochondrial creatine kinase and respiration. However, creatine had no effect on Km in cod ventricle. In conclusion, the creatine kinase-system in trout and turtle hearts seems to fulfil the same functions as in the mammalian heart, i.e. facilitating energy transport and communication between cellular compartments. In cod heart, however, this does not seem to be the case.
Lam, Maggie P Y; Scruggs, Sarah B; Kim, Tae-Young; Zong, Chenggong; Lau, Edward; Wang, Ding; Ryan, Christopher M; Faull, Kym F; Ping, Peipei
2012-08-03
The regulation of mitochondrial function is essential for cardiomyocyte adaptation to cellular stress. While it has long been understood that phosphorylation regulates flux through metabolic pathways, novel phosphorylation sites are continually being discovered in all functionally distinct areas of the mitochondrial proteome. Extracting biologically meaningful information from these phosphorylation sites requires an adaptable, sensitive, specific and robust method for their quantification. Here we report a multiple reaction monitoring-based mass spectrometric workflow for quantifying site-specific phosphorylation of mitochondrial proteins. Specifically, chromatographic and mass spectrometric conditions for 68 transitions derived from 23 murine and human phosphopeptides, and their corresponding unmodified peptides, were optimized. These methods enabled the quantification of endogenous phosphopeptides from the outer mitochondrial membrane protein VDAC, and the inner membrane proteins ANT and ETC complexes I, III and V. The development of this quantitative workflow is a pivotal step for advancing our knowledge and understanding of the regulatory effects of mitochondrial protein phosphorylation in cardiac physiology and pathophysiology. This article is part of a Special Issue entitled: Translational Proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.
Li, Fang-Hui; Li, Tao; Ai, Jing-Yi; Sun, Lei; Min, Zhu; Duan, Rui; Zhu, Ling; Liu, Yan-ying; Liu, Timon Cheng-Yi
2018-01-01
The effects of high-intensity interval (HIIT) and moderate-intensity continuous training (MICT) on basal autophagy and mitochondrial function in cardiac and skeletal muscle and plasma metabolic phenotypes have not been clearly characterized. Here, we investigated how 10-weeks HIIT and MICT differentially modify basal autophagy and mitochondrial markers in cardiac and skeletal muscle and conducted an untargeted metabolomics study with proton nuclear magnetic resonance (1H NMR) spectroscopy and multivariate statistical analysis of plasma metabolic phenotypes. Male Sprague–Dawley rats were separated into three groups: sedentary control (SED), MICT, and HIIT. Rats underwent evaluation of exercise performance, including exercise tolerance and grip strength, and blood lactate levels were measured immediately after an incremental exercise test. Plasma samples were analyzed by 1H NMR. The expression of autophagy and mitochondrial markers and autophagic flux (LC3II/LC3-I ratio) in cardiac, rectus femoris, and soleus muscle were analyzed by western blotting. Time to exhaustion and grip strength increased significantly following HIIT compared with that in both SED and MICT groups. Compared with those in the SED group, blood lactate level, and the expression of SDH, COX-IV, and SIRT3 significantly increased in rectus femoris and soleus muscle of both HIIT and MICT groups. Meanwhile, SDH and COX-IV content of cardiac muscle and COX-IV and SIRT3 content of rectus femoris and soleus muscle increased significantly following HIIT compared with that following MICT. The expression of LC3-II, ATG-3, and Beclin-1 and LC3II/LC3-I ratio were significantly increased only in soleus and cardiac muscle following HIIT. These data indicate that HIIT was more effective for improving physical performance and facilitating cardiac and skeletal muscle adaptations that increase mitochondrial function and basal autophagic activities. Moreover, 1H NMR spectroscopy and multivariate statistical analysis identified 11 metabolites in plasma, among which fine significantly and similarly changed after both HIIT and MICT, while BCAAs isoleucine, leucine, and valine and glutamine were changed only after HIIT. Together, these data indicate distinct differences in specific metabolites and autophagy and mitochondrial markers following HIIT vs. MICT and highlight the value of metabolomic analysis in providing more detailed insight into the metabolic adaptations to exercise training. PMID:29875683
Li, Fang-Hui; Li, Tao; Ai, Jing-Yi; Sun, Lei; Min, Zhu; Duan, Rui; Zhu, Ling; Liu, Yan-Ying; Liu, Timon Cheng-Yi
2018-01-01
The effects of high-intensity interval (HIIT) and moderate-intensity continuous training (MICT) on basal autophagy and mitochondrial function in cardiac and skeletal muscle and plasma metabolic phenotypes have not been clearly characterized. Here, we investigated how 10-weeks HIIT and MICT differentially modify basal autophagy and mitochondrial markers in cardiac and skeletal muscle and conducted an untargeted metabolomics study with proton nuclear magnetic resonance ( 1 H NMR) spectroscopy and multivariate statistical analysis of plasma metabolic phenotypes. Male Sprague-Dawley rats were separated into three groups: sedentary control (SED), MICT, and HIIT. Rats underwent evaluation of exercise performance, including exercise tolerance and grip strength, and blood lactate levels were measured immediately after an incremental exercise test. Plasma samples were analyzed by 1 H NMR. The expression of autophagy and mitochondrial markers and autophagic flux (LC3II/LC3-I ratio) in cardiac, rectus femoris, and soleus muscle were analyzed by western blotting. Time to exhaustion and grip strength increased significantly following HIIT compared with that in both SED and MICT groups. Compared with those in the SED group, blood lactate level, and the expression of SDH, COX-IV, and SIRT3 significantly increased in rectus femoris and soleus muscle of both HIIT and MICT groups. Meanwhile, SDH and COX-IV content of cardiac muscle and COX-IV and SIRT3 content of rectus femoris and soleus muscle increased significantly following HIIT compared with that following MICT. The expression of LC3-II, ATG-3, and Beclin-1 and LC3II/LC3-I ratio were significantly increased only in soleus and cardiac muscle following HIIT. These data indicate that HIIT was more effective for improving physical performance and facilitating cardiac and skeletal muscle adaptations that increase mitochondrial function and basal autophagic activities. Moreover, 1 H NMR spectroscopy and multivariate statistical analysis identified 11 metabolites in plasma, among which fine significantly and similarly changed after both HIIT and MICT, while BCAAs isoleucine, leucine, and valine and glutamine were changed only after HIIT. Together, these data indicate distinct differences in specific metabolites and autophagy and mitochondrial markers following HIIT vs. MICT and highlight the value of metabolomic analysis in providing more detailed insight into the metabolic adaptations to exercise training.
Vildagliptin reduces cardiac ischemic-reperfusion injury in obese orchiectomized rats.
Pongkan, Wanpitak; Pintana, Hiranya; Jaiwongkam, Thidarat; Kredphoo, Sasiwan; Sivasinprasasn, Sivaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2016-10-01
Obesity and testosterone deprivation are associated with coronary artery disease. Testosterone and vildagliptin (dipeptidyl peptidase-4 inhibitors) exert cardioprotection during ischemic-reperfusion (I/R) injury. However, the effect of these drugs on I/R heart in a testosterone-deprived, obese, insulin-resistant model is unclear. This study investigated the effects of testosterone and vildagliptin on cardiac function, arrhythmias and the infarct size in I/R heart of testosterone-deprived rats with obese insulin resistance. Orchiectomized (O) or sham operated (S) male Wistar rats were divided into 2 groups to receive normal diet (ND) or high-fat diet (HFD) for 12 weeks. Orchiectomized rats in each diet were divided to receive testosterone (2 mg/kg), vildagliptin (3 mg/kg) or the vehicle daily for 4 weeks. Then, I/R was performed by a 30-min left anterior descending coronary artery ligation, followed by a 120-min reperfusion. LV function, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. HFD groups developed insulin resistance at week 12. At week 16, cardiac function was impaired in NDO, HFO and HFS rats, but was restored in all testosterone- and vildagliptin-treated rats. During I/R injury, arrhythmia scores, infarct size and cardiac mitochondrial dysfunction were prominently increased in NDO, HFO and HFS rats, compared with those in NDS rats. Treatment with either testosterone or vildagliptin similarly attenuated these impairments during I/R injury. These finding suggest that both testosterone replacement and vildagliptin share similar efficacy for cardioprotection during I/R injury by decreasing the infarct size and attenuating cardiac mitochondrial dysfunction caused by I/R injury in testosterone-deprived rats with obese insulin resistance. © 2016 Society for Endocrinology.
Taneike, Manabu; Nishida, Kazuhiko; Omiya, Shigemiki; Zarrinpashneh, Elham; Misaka, Tomofumi; Kitazume-Taneike, Rika; Austin, Ruth; Takaoka, Minoru; Yamaguchi, Osamu; Gambello, Michael J.; Shah, Ajay M.; Otsu, Kinya
2016-01-01
Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell growth, proliferation and metabolism. mTORC1 regulates protein synthesis positively and autophagy negatively. Autophagy is a major system to manage bulk degradation and recycling of cytoplasmic components and organelles. Tuberous sclerosis complex (TSC) 1 and 2 form a heterodimeric complex and inactivate Ras homolog enriched in brain, resulting in inhibition of mTORC1. Here, we investigated the effects of hyperactivation of mTORC1 on cardiac function and structure using cardiac-specific TSC2-deficient (TSC2-/-) mice. TSC2-/- mice were born normally at the expected Mendelian ratio. However, the median life span of TSC2-/- mice was approximately 10 months and significantly shorter than that of control mice. TSC2-/- mice showed cardiac dysfunction and cardiomyocyte hypertrophy without considerable fibrosis, cell infiltration or apoptotic cardiomyocyte death. Ultrastructural analysis of TSC2-/- hearts revealed misalignment, aggregation and a decrease in the size and an increase in the number of mitochondria, but the mitochondrial function was maintained. Autophagic flux was inhibited, while the phosphorylation level of S6 or eukaryotic initiation factor 4E -binding protein 1, downstream of mTORC1, was increased. The upregulation of autophagic flux by trehalose treatment attenuated the cardiac phenotypes such as cardiac dysfunction and structural abnormalities of mitochondria in TSC2-/- hearts. The results suggest that autophagy via the TSC2-mTORC1 signaling pathway plays an important role in maintenance of cardiac function and mitochondrial quantity and size in the heart and could be a therapeutic target to maintain mitochondrial homeostasis in failing hearts. PMID:27023784
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamendi, Harriet, E-mail: harriet_kamendi@kandih.com; Zhou, Ying, E-mail: yingzhou526@gmail.com; Crosby, Meredith, E-mail: Meredith.crosby@astrazeneca.com
Doxorubicin (DOX) is a potent and effective broad-spectrum anthracycline antitumor agent, but its clinical usefulness is restricted by cardiotoxicity. This study compared pharmacokinetic, functional, structural and biochemical effects of single dose DOX bolus or 3-h continuous iv infusion (3-h iv) in the Han–Wistar rat to characterize possible treatment-related differences in drug safety over a 72 h observation period. Both DOX dosing paradigms significantly altered blood pressure, core body temperature and QA interval (indirect measure of cardiac contractility); however, there was no recovery observed in the bolus iv treatment group. Following the 3-h iv treatment, blood pressures and QA interval normalizedmore » by 36 h then rose above baseline levels over 72 h. Both treatments induced biphasic changes in heart rate with initial increases followed by sustained decreases. Cardiac injury biomarkers in plasma were elevated only in the bolus iv treatment group. Tissue cardiac injury biomarkers, cardiac mitochondrial complexes I, III and V and cardiac mitochondrial sphingolipids were decreased only in the bolus iv treatment group. Results indicate that each DOX dosing paradigm deregulates sinus rhythm. However, slowing the rate of infusion allows for functional compensation of blood pressure and may decrease the likelihood of cardiac myocyte necrosis via a mechanism associated with reduced mitochondrial damage. - Highlights: • Despite damaging cardiomyocytes, continuous iv doxorubicin improves cardiovascular outcomes. • This study supports administration of doxorubicin via slow continuous iv infusion limits acute cardio-toxicity. • This study supports use of metabolomic-derived lipid biomarkers for improved quantification of cardiovascular risk. • This study supports systems-based physiological approach to generate a data that can greatly inform risk assessments.« less
Sahafi, Ehtramolsadat; Peeri, Maghsoud; Hosseini, Mir-Jamal; Azarbyjani, Mohammad Ali
2018-01-01
Early life stress (ELS) is known as a risk factor for the development of depression and its associated comorbidities, such as cardiomyopathy in depressed patients. Mitochondrial dysfunction plays a critical role in the pathophysiology of depression and cardiovascular diseases. Evidence indicates that regular physical activity has therapeutic effects on both mood and cardiovascular disorders. Therefore, the voluntary running wheel exercise (RW) during adolescence may be able to attenuate the negative impact of maternal separation stress (MS) as a valid animal model of depression on the behavior and cardiac mitochondrial function of adult rats. To do this, we applied MS to rat pups by separating them from their mothers for 180min during the postnatal day (PND) 2 to PND 14. Next, the animals were randomly divided into different treatment groups (fluoxetine [FLX] and RW) and received the treatments during adolescence, between PND 28 to PND 60. Then, we evaluated the effects of MS on the rat behaviors test, and finally, we assessed reactive oxygen species, mitochondrial glutathione, ATP and cytochrome c release in the cardiac tissue of animals. Our results showed that depressive-like behaviors following MS in adult male rats were associated with oxidative stress in cardiac tissue. Further, we found that treating animals with chronic FLX or RW during adolescence improved animal's behavior as well as cardiac mitochondrial function. The results of this study highlight the importance of adolescence as a period during which treating animals with non-pharmacological agents has significant protective effects against the negative influence of ELS on mood and cardiac energy hemostasis. Copyright © 2017 Elsevier Inc. All rights reserved.
Jhun, Bong Sook; Xu, Shangcheng; Hurst, Stephen; Raffaello, Anna; Liu, Xiaoyun; Yi, Bing; Zhang, Huiliang; Gross, Polina; Mishra, Jyotsna; Ainbinder, Alina; Kettlewell, Sarah; Smith, Godfrey L.; Dirksen, Robert T.; Wang, Wang; Rizzuto, Rosario
2014-01-01
Abstract Aims: Mitochondrial Ca2+ homeostasis is crucial for balancing cell survival and death. The recent discovery of the molecular identity of the mitochondrial Ca2+ uniporter pore (MCU) opens new possibilities for applying genetic approaches to study mitochondrial Ca2+ regulation in various cell types, including cardiac myocytes. Basal tyrosine phosphorylation of MCU was reported from mass spectroscopy of human and mouse tissues, but the signaling pathways that regulate mitochondrial Ca2+ entry through posttranslational modifications of MCU are completely unknown. Therefore, we investigated α1-adrenergic-mediated signal transduction of MCU posttranslational modification and function in cardiac cells. Results: α1-adrenoceptor (α1-AR) signaling translocated activated proline-rich tyrosine kinase 2 (Pyk2) from the cytosol to mitochondrial matrix and accelerates mitochondrial Ca2+ uptake via Pyk2-dependent MCU phosphorylation and tetrametric MCU channel pore formation. Moreover, we found that α1-AR stimulation increases reactive oxygen species production at mitochondria, mitochondrial permeability transition pore activity, and initiates apoptotic signaling via Pyk2-dependent MCU activation and mitochondrial Ca2+ overload. Innovation: Our data indicate that inhibition of α1-AR-Pyk2-MCU signaling represents a potential novel therapeutic target to limit or prevent mitochondrial Ca2+ overload, oxidative stress, mitochondrial injury, and myocardial death during pathophysiological conditions, where chronic adrenergic stimulation is present. Conclusion: The α1-AR-Pyk2-dependent tyrosine phosphorylation of the MCU regulates mitochondrial Ca2+ entry and apoptosis in cardiac cells. Antioxid. Redox Signal. 21, 863–879. PMID:24800979
Normalization of NAD+ Redox Balance as a Therapy for Heart Failure.
Lee, Chi Fung; Chavez, Juan D; Garcia-Menendez, Lorena; Choi, Yongseon; Roe, Nathan D; Chiao, Ying Ann; Edgar, John S; Goo, Young Ah; Goodlett, David R; Bruce, James E; Tian, Rong
2016-09-20
Impairments of mitochondrial function in the heart are linked intricately to the development of heart failure, but there is no therapy for mitochondrial dysfunction. We assessed the reduced/oxidized ratio of nicotinamide adenine dinucleotide (NADH/NAD(+) ratio) and protein acetylation in the failing heart. Proteome and acetylome analyses were followed by docking calculation, mutagenesis, and mitochondrial calcium uptake assays to determine the functional role of specific acetylation sites. The therapeutic effects of normalizing mitochondrial protein acetylation by expanding the NAD(+) pool also were tested. Increased NADH/NAD(+) and protein hyperacetylation, previously observed in genetic models of defective mitochondrial function, also are present in human failing hearts as well as in mouse hearts with pathologic hypertrophy. Elevation of NAD(+) levels by stimulating the NAD(+) salvage pathway suppressed mitochondrial protein hyperacetylation and cardiac hypertrophy, and improved cardiac function in responses to stresses. Acetylome analysis identified a subpopulation of mitochondrial proteins that was sensitive to changes in the NADH/NAD(+) ratio. Hyperacetylation of mitochondrial malate-aspartate shuttle proteins impaired the transport and oxidation of cytosolic NADH in the mitochondria, resulting in altered cytosolic redox state and energy deficiency. Furthermore, acetylation of oligomycin-sensitive conferring protein at lysine-70 in adenosine triphosphate synthase complex promoted its interaction with cyclophilin D, and sensitized the opening of mitochondrial permeability transition pore. Both could be alleviated by normalizing the NAD(+) redox balance either genetically or pharmacologically. We show that mitochondrial protein hyperacetylation due to NAD(+) redox imbalance contributes to the pathologic remodeling of the heart via 2 distinct mechanisms. Our preclinical data demonstrate a clear benefit of normalizing NADH/NAD(+) imbalance in the failing hearts. These findings have a high translational potential as the pharmacologic strategy of increasing NAD(+) precursors are feasible in humans. © 2016 American Heart Association, Inc.
Zeng, Heng; Vaka, Venkata Ramana; He, Xiaochen; Booz, George W; Chen, Jian-Xiong
2015-08-01
Mitochondrial dysfunction plays an important role in obesity-induced cardiac impairment. SIRT3 is a mitochondrial protein associated with increased human life span and metabolism. This study investigated the functional role of SIRT3 in obesity-induced cardiac dysfunction. Wild-type (WT) and SIRT3 knockout (KO) mice were fed a normal diet (ND) or high-fat diet (HFD) for 16 weeks. Body weight, fasting glucose levels, reactive oxygen species (ROS) levels, myocardial capillary density, cardiac function and expression of hypoxia-inducible factor (HIF)-1α/-2α were assessed. HFD resulted in a significant reduction in SIRT3 expression in the heart. Both HFD and SIRT3 KO mice showed increased ROS formation, impaired HIF signalling and reduced capillary density in the heart. HFD induced cardiac hypertrophy and impaired cardiac function. SIRT3 KO mice fed HFD showed greater ROS production and a further reduction in cardiac function compared to SIRT3 KO mice on ND. Thus, the adverse effects of HFD on cardiac function were not attributable to SIRT3 loss alone. However, HFD did not further reduce capillary density in SIRT3 KO hearts, implicating SIRT3 loss in HFD-induced capillary rarefaction. Our study demonstrates the importance of SIRT3 in preserving heart function and capillary density in the setting of obesity. Thus, SIRT3 may be a potential therapeutic target for obesity-induced heart failure. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Viola, Helena; Johnstone, Victoria; Cserne Szappanos, Henrietta; Richman, Tara; Tsoutsman, Tatiana; Filipovska, Aleksandra; Semsarian, Christopher
2016-01-01
Key points Genetic mutations in cardiac troponin I (cTnI) are associated with development of hypertrophic cardiomyopathy characterized by myocyte remodelling, disorganization of cytoskeletal proteins and altered energy metabolism.The L‐type Ca2+ channel is the main route for calcium influx and is crucial to cardiac excitation and contraction. The channel also regulates mitochondrial function in the heart by a functional communication between the channel and mitochondria via the cytoskeletal network.We find that L‐type Ca2+ channel kinetics are altered in cTnI‐G203S cardiac myocytes and that activation of the channel causes a significantly greater increase in mitochondrial membrane potential and metabolic activity in cTnI‐G203S cardiac myocytes.These responses occur as a result of impaired communication between the L‐type Ca2+ channel and cytoskeletal protein F‐actin, involving decreased movement of actin–myosin and block of the mitochondrial voltage‐dependent anion channel, resulting in a ‘hypermetabolic’ mitochondrial state.We propose that L‐type Ca2+ channel antagonists, such as diltiazem, might be effective in reducing the cardiomyopathy by normalizing mitochondrial metabolic activity. Abstract Genetic mutations in cardiac troponin I (cTnI) account for 5% of families with hypertrophic cardiomyopathy. Hypertrophic cardiomyopathy is associated with disorganization of cytoskeletal proteins and altered energy metabolism. The L‐type Ca2+ channel (ICa‐L) plays an important role in regulating mitochondrial function. This involves a functional communication between the channel and mitochondria via the cytoskeletal network. We investigate the role of ICa‐L in regulating mitochondrial function in 25‐ to 30‐week‐old cardiomyopathic mice expressing the human disease‐causing mutation Gly203Ser in cTnI (cTnI‐G203S). The inactivation rate of ICa‐L is significantly faster in cTnI‐G203S myocytes [cTnI‐G203S: τ1 = 40.68 ± 3.22, n = 10 vs. wild‐type (wt): τ1 = 59.05 ± 6.40, n = 6, P < 0.05]. Activation of ICa‐L caused a greater increase in mitochondrial membrane potential (Ψm, 29.19 ± 1.85%, n = 15 vs. wt: 18.84 ± 2.01%, n = 10, P < 0.05) and metabolic activity (24.40 ± 6.46%, n = 8 vs. wt: 9.98 ± 1.57%, n = 9, P < 0.05). The responses occurred because of impaired communication between ICa‐L and F‐actin, involving lack of dynamic movement of actin–myosin and block of the mitochondrial voltage‐dependent anion channel. Similar responses were observed in precardiomyopathic mice. ICa‐L antagonists nisoldipine and diltiazem decreased Ψm to basal levels. We conclude that the Gly203Ser mutation leads to impaired functional communication between ICa‐L and mitochondria, resulting in a ‘hypermetabolic’ state. This might contribute to development of cTnI‐G203S cardiomyopathy because the response is present in young precardiomyopathic mice. ICa‐L antagonists might be effective in reducing the cardiomyopathy by altering mitochondrial function. PMID:27062056
Martin, Ola J; Lai, Ling; Soundarapandian, Mangala M; Leone, Teresa C; Zorzano, Antonio; Keller, Mark P; Attie, Alan D; Muoio, Deborah M; Kelly, Daniel P
2014-02-14
Increasing evidence has shown that proper control of mitochondrial dynamics (fusion and fission) is required for high-capacity ATP production in the heart. Transcriptional coactivators, peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) α and PGC-1β, have been shown to regulate mitochondrial biogenesis in the heart at the time of birth. The function of PGC-1 coactivators in the heart after birth has been incompletely understood. Our aim was to assess the role of PGC-1 coactivators during postnatal cardiac development and in adult hearts in mice. Conditional gene targeting was used in mice to explore the role of PGC-1 coactivators during postnatal cardiac development and in adult hearts. Marked mitochondrial structural derangements were observed in hearts of PGC-1α/β-deficient mice during postnatal growth, including fragmentation and elongation, associated with the development of a lethal cardiomyopathy. The expression of genes involved in mitochondrial fusion (Mfn1, Opa1) and fission (Drp1, Fis1) was altered in the hearts of PGC-1α/β-deficient mice. PGC-lα was shown to directly regulate Mfn1 gene transcription by coactivating the estrogen-related receptor α on a conserved DNA element. Surprisingly, PGC-1α/β deficiency in the adult heart did not result in evidence of abnormal mitochondrial dynamics or heart failure. However, transcriptional profiling demonstrated that PGC-1 coactivators are required for high-level expression of nuclear- and mitochondrial-encoded genes involved in mitochondrial dynamics and energy transduction in the adult heart. These results reveal distinct developmental stage-specific programs involved in cardiac mitochondrial dynamics.
Transition from metabolic adaptation to maladaptation of the heart in obesity: role of apelin.
Alfarano, C; Foussal, C; Lairez, O; Calise, D; Attané, C; Anesia, R; Daviaud, D; Wanecq, E; Parini, A; Valet, P; Kunduzova, O
2015-02-01
Impaired energy metabolism is the defining characteristic of obesity-related heart failure. The adipocyte-derived peptide apelin has a role in the regulation of cardiovascular and metabolic homeostasis and may contribute to the link between obesity, energy metabolism and cardiac function. Here we investigate the role of apelin in the transition from metabolic adaptation to maladaptation of the heart in obese state. Adult male C57BL/6J, apelin knock-out (KO) or wild-type mice were fed a high-fat diet (HFD) for 18 weeks. To induce heart failure, mice were subjected to pressure overload after 18 weeks of HFD. Long-term effects of apelin on fatty acid (FA) oxidation, glucose metabolism, cardiac function and mitochondrial changes were evaluated in HFD-fed mice after 4 weeks of pressure overload. Cardiomyocytes from HFD-fed mice were isolated for analysis of metabolic responses. In HFD-fed mice, pressure overload-induced transition from hypertrophy to heart failure is associated with reduced FA utilization (P<0.05), accelerated glucose oxidation (P<0.05) and mitochondrial damage. Treatment of HFD-fed mice with apelin for 4 weeks prevented pressure overload-induced decline in FA metabolism (P<0.05) and mitochondrial defects. Furthermore, apelin treatment lowered fasting plasma glucose (P<0.01), improved glucose tolerance (P<0.05) and preserved cardiac function (P<0.05) in HFD-fed mice subjected to pressure overload. In apelin KO HFD-fed mice, spontaneous cardiac dysfunction is associated with reduced FA oxidation (P<0.001) and increased glucose oxidation (P<0.05). In isolated cardiomyocytes, apelin stimulated FA oxidation in a dose-dependent manner and this effect was prevented by small interfering RNA sirtuin 3 knockdown. These data suggest that obesity-related decline in cardiac function is associated with defective myocardial energy metabolism and mitochondrial abnormalities. Furthermore, our work points for therapeutic potential of apelin to prevent myocardial metabolic abnormalities in heart failure paired with obesity.
Fiber-type differences in muscle mitochondrial profiles.
Leary, S C; Lyons, C N; Rosenberger, A G; Ballantyne, J S; Stillman, J; Moyes, C D
2003-10-01
Although striated muscles differ in mitochondrial content, the extent of fiber-type specific mitochondrial specializations is not well known. To address this issue, we compared mitochondrial structural and functional properties in red muscle (RM), white muscle (WM), and cardiac muscle of rainbow trout. Overall preservation of the basic relationships between oxidative phosphorylation complexes among fiber types was confirmed by kinetic analyses, immunoblotting of native holoproteins, and spectroscopic measurements of cytochrome content. Fiber-type differences in mitochondrial properties were apparent when parameters were expressed per milligram mitochondrial protein. However, the differences diminished when expressed relative to cytochrome oxidase (COX), possibly a more meaningful denominator than mitochondrial protein. Expressed relative to COX, there were no differences in oxidative phosphorylation enzyme activities, pyruvate-based respiratory rates, H2O2 production, or state 4 proton leak respiration. These data suggest most mitochondrial qualitative properties are conserved across fiber types. However, there remained modest differences ( approximately 50%) in stoichiometries of selected enzymes of the Krebs cycle, beta-oxidation, and antioxidant enzymes. There were clear differences in membrane fluidity (RM > cardiac, WM) and proton conductance (H+/min/mV/U COX: WM > RM > cardiac). The pronounced differences in mitochondrial content between fiber types could be attributed to a combination of differences in myonuclear domain and modest effects on the expression of nuclear- and mitochondrially encoded respiratory genes. Collectively, these studies suggest constitutive pathways that transcend fiber types are primarily responsible for determining most quantitative and qualitative properties of mitochondria.
Guo, Rui; Ren, Jun
2010-01-18
Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF. Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.
Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure
Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G
2016-01-01
High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism. PMID:27326395
Papanicolaou, Kyriakos N.; Phillippo, Matthew M.
2012-01-01
Mitofusins (Mfn-1 and Mfn-2) are transmembrane proteins that bind and hydrolyze guanosine 5′-triphosphate to bring about the merging of adjacent mitochondrial membranes. This event is necessary for mitochondrial fusion, a biological process that is critical for organelle function. The broad effects of mitochondrial fusion on cell bioenergetics have been extensively studied, whereas the local effects of mitofusin activity on the structure and integrity of the fusing mitochondrial membranes have received relatively little attention. From the study of fusogenic proteins, theoretical models, and simulations, it has been noted that the fusion of biological membranes is associated with local perturbations on the integrity of the membrane that present in the form of lipidic holes which open on the opposing bilayers. These lipidic holes represent obligate intermediates that make the fusion process thermodynamically more favorable and at the same time induce leakage to the fusing membranes. In this perspectives article we present the relevant evidence selected from a spectrum of membrane fusion/leakage models and attempt to couple this information with observations conducted with cardiac myocytes or mitochondria deficient in Mfn-1 and Mfn-2. More specifically, we argue in favor of a situation whereby mitochondrial fusion in cardiac myocytes is coupled with outer mitochondrial membrane destabilization that is opportunistically employed during the process of mitochondrial permeability transition. We hope that these insights will initiate research on this new hypothesis of mitochondrial permeability transition regulation, a poorly understood mitochondrial function with significant consequences on myocyte survival. PMID:22636681
RATIONALE: Erythropoietin (EPO) is often administered to cardiac patients with anemia, particularly from chronic kidney disease, and stimulation of erythropoiesis may stabilize left ventricular and renal function by recruiting protective effects beyond the correction of anemia. O...
Amelioration of High Fructose-Induced Cardiac Hypertrophy by Naringin.
Park, Jung Hyun; Ku, Hyeong Jun; Kim, Jae Kyeom; Park, Jeen-Woo; Lee, Jin Hyup
2018-06-21
Heart failure is a frequent unfavorable outcome of pathological cardiac hypertrophy. Recent increase in dietary fructose consumption mirrors the rise in prevalence of cardiovascular diseases such as cardiac hypertrophy leading to concerns raised by public health experts. Mitochondria, comprising 30% of cardiomyocyte volume, play a central role in modulating redox-dependent cellular processes such as metabolism and apoptosis. Furthermore, mitochondrial dysfunction is a key cause of pathogenesis of fructose-induced cardiac hypertrophy. Naringin, a major flavanone glycoside in citrus species, has displayed strong antioxidant potential in models of oxidative stress. In this study, we evaluated protective effects of naringin against fructose-induced cardiac hypertrophy and associated mechanisms of action, using in vitro and in vivo models. We found that naringin suppressed mitochondrial ROS production and mitochondrial dysfunction in cardiomyocytes exposed to fructose and consequently reduced cardiomyocyte hypertrophy by regulating AMPK-mTOR signaling axis. Furthermore, naringin counteracted fructose-induced cardiomyocyte apoptosis, and this function of naringin was linked to its ability to inhibit ROS-dependent ATM-mediated p53 signaling. This result was supported by observations in in vivo mouse model of cardiac hypertrophy. These findings indicate a novel role for naringin in protecting against fructose-induced cardiac hypertrophy and suggest unique therapeutic strategies for prevention of cardiovascular diseases.
Heinonen, J A; Schramko, A A; Skrifvars, M B; Litonius, E; Backman, J T; Mervaala, E; Rosenberg, P H
2017-04-01
Local anesthetic toxicity is thought to be mediated partly by inhibition of cardiac mitochondrial function. Intravenous (i.v.) lipid emulsion may overcome this energy depletion, but doses larger than currently recommended may be needed for rescue effect. In this randomized study with anesthetized pigs, we compared the effect of a large dose, 4 mL/kg, of i.v. 20% Intralipid ® ( n = 7) with Ringer's acetate ( n = 6) on cardiovascular recovery after a cardiotoxic dose of bupivacaine. We also examined mitochondrial respiratory function in myocardial cell homogenates analyzed promptly after needle biopsies from the animals. Bupivacaine plasma concentrations were quantified from plasma samples. Arterial blood pressure recovered faster and systemic vascular resistance rose more rapidly after Intralipid than Ringer's acetate administration ( p < 0.0001), but Intralipid did not increase cardiac index or left ventricular ejection fraction. The lipid-based mitochondrial respiration was stimulated by approximately 30% after Intralipid ( p < 0.05) but unaffected by Ringer's acetate. The mean (standard deviation) area under the concentration-time curve (AUC) of total bupivacaine was greater after Intralipid (105.2 (13.6) mg·min/L) than after Ringer's acetate (88.1 (7.1) mg·min/L) ( p = 0.019). After Intralipid, the AUC of the lipid-un-entrapped bupivacaine portion (97.0 (14.5) mg·min/L) was 8% lower than that of total bupivacaine ( p < 0.0001). To conclude, 4 mL/kg of Intralipid expedited cardiovascular recovery from bupivacaine cardiotoxicity mainly by increasing systemic vascular resistance. The increased myocardial mitochondrial respiration and bupivacaine entrapment after Intralipid did not improve cardiac function.
Reilly, Beau D; Hickey, Anthony J R; Cramp, Rebecca L; Franklin, Craig E
2014-04-01
Suppression of disuse-induced muscle atrophy has been associated with altered mitochondrial reactive oxygen species (ROS) production in mammals. However, despite extended hindlimb immobility, aestivating animals exhibit little skeletal muscle atrophy compared with artificially immobilised mammalian models. Therefore, we studied mitochondrial respiration and ROS (H2O2) production in permeabilised muscle fibres of the green-striped burrowing frog, Cyclorana alboguttata. Mitochondrial respiration within saponin-permeabilised skeletal and cardiac muscle fibres was measured concurrently with ROS production using high-resolution respirometry coupled to custom-made fluorometers. After 4 months of aestivation, C. alboguttata had significantly depressed whole-body metabolism by ~70% relative to control (active) frogs, and mitochondrial respiration in saponin-permeabilised skeletal muscle fibres decreased by almost 50% both in the absence of ADP and during oxidative phosphorylation. Mitochondrial ROS production showed up to an 88% depression in aestivating skeletal muscle when malate, succinate and pyruvate were present at concentrations likely to reflect those in vivo. The percentage ROS released per O2 molecule consumed was also ~94% less at these concentrations, indicating an intrinsic difference in ROS production capacities during aestivation. We also examined mitochondrial respiration and ROS production in permeabilised cardiac muscle fibres and found that aestivating frogs maintained respiratory flux and ROS production at control levels. These results show that aestivating C. alboguttata has the capacity to independently regulate mitochondrial function in skeletal and cardiac muscles. Furthermore, this work indicates that ROS production can be suppressed in the disused skeletal muscle of aestivating frogs, which may in turn protect against potential oxidative damage and preserve skeletal muscle structure during aestivation and following arousal.
Sudheesh, N P; Ajith, T A; Janardhanan, K K
2013-04-30
Decreased mitochondrial function has been suggested to be one of the important pathological events in isoproterenol (ISO)-induced cardiotoxicity. In this communication, we have evaluated the protective effect of Ganoderma lucidum against ISO induced cardiac toxicity and mitochondrial dysfunction. Cardiac toxicity was assessed by determining the activities of creatine kinase (CK) and lactate dehydrogenases (LDH) after subcutaneous injection of ISO (85 mg/kg) at an interval of 24h for 2 days. The animals were sacrificed 24h after last ISO administration. G. lucidum (100 and 250 mg/kg, p.o.) was given to the rats once daily for 15 days prior to the ISO challenge. Similarly, α-Tocopherol (100mg/kg, p.o) was kept as the standard. To assess the extent of cardiac mitochondrial damage, the activities of Krebs cycle dehydrogenases and mitochondrial complexes I, II, III, and IV as well as the level of ROS and mitochondrial membrane potential (ΔΨmt) were evaluated. Administration of G. lucidum and α-tocopherol significantly protected the elevated activities of CK and LDH. Further, the activities of mitochondrial enzymes and the level of ΔΨmt were significantly enhanced and the level of ROS was significantly declined in the G. lucidum and α-tocopherol treatments. The present study concluded that the cardiac mitochondrial enzymes are markedly declined by the ISO challenge and the administration G. lucidum and α-Tocopherol significantly protected mitochondria by preventing the decline of antioxidant status and ΔΨmt or by directly scavenging the free radicals. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Wang, ER; Jarrah, AA; Benard, L; Chen, J; Schwarzkopf, M; Hadri, L; Tarzami, ST
2014-01-01
Altered alpha- and beta-adrenergic receptor signaling is associated with cardiac hypertrophy and failure. Stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 have been reported to mediate cardioprotection after injury through the mobilization of stem cells into injured tissue. However, little is known regarding whether SDF-1/CXCR4 induces acute protection following pathological hypertrophy and if so, by what molecular mechanism. We have previously reported that CXCR4 physically interacts with the beta-2 adrenergic receptor and modulates its down stream signaling. Here we have shown that CXCR4 expression prevents beta-adrenergic receptor induced hypertrophy. Cardiac beta-adrenergic receptors were stimulated with the implantation of a subcutaneous osmotic pump administrating isoproterenol and CXCR4 expression was selectively abrogated in cardiomyocytes using Cre-loxP-mediated gene recombination. CXCR4 knockout mice showed worsened fractional shortening and ejection fraction. CXCR4 ablation increased susceptibility to isoproterenol-induced heart failure, by upregulating apoptotic markers and reducing mitochondrial function; cardiac function decreases while fibrosis increases. Additionally, CXCR4 expression was rescued with the use of cardiotropic Adeno-associated viral-9 (AAV9) vectors. CXCR4 gene transfer reduced cardiac apoptotic signaling, improved mitochondrial function and resulted in a recovered cardiac function. Our results represent the first evidence that SDF-1/CXCR4 signaling mediates acute cardioprotection through modulating beta-adrenergic receptor signaling in vivo. PMID:24646609
Zhou, Hao; Zhang, Ying; Hu, Shunying; Shi, Chen; Zhu, Pingjun; Ma, Qiang; Jin, Qinhua; Cao, Feng; Tian, Feng; Chen, Yundai
2017-08-01
The cardiac microvascular system, which is primarily composed of monolayer endothelial cells, is the site of blood supply and nutrient exchange to cardiomyocytes. However, microvascular ischemia/reperfusion injury (IRI) following percutaneous coronary intervention is a woefully neglected topic, and few strategies are available to reverse such pathologies. Here, we studied the effects of melatonin on microcirculation IRI and elucidated the underlying mechanism. Melatonin markedly reduced infarcted area, improved cardiac function, restored blood flow, and lower microcirculation perfusion defects. Histological analysis showed that cardiac microcirculation endothelial cells (CMEC) in melatonin-treated mice had an unbroken endothelial barrier, increased endothelial nitric oxide synthase expression, unobstructed lumen, reduced inflammatory cell infiltration, and less endothelial damage. In contrast, AMP-activated protein kinase α (AMPKα) deficiency abolished the beneficial effects of melatonin on microvasculature. In vitro, IRI activated dynamin-related protein 1 (Drp1)-dependent mitochondrial fission, which subsequently induced voltage-dependent anion channel 1 (VDAC1) oligomerization, hexokinase 2 (HK2) liberation, mitochondrial permeability transition pore (mPTP) opening, PINK1/Parkin upregulation, and ultimately mitophagy-mediated CMEC death. However, melatonin strengthened CMEC survival via activation of AMPKα, followed by p-Drp1 S616 downregulation and p-Drp1 S37 upregulation, which blunted Drp1-dependent mitochondrial fission. Suppression of mitochondrial fission by melatonin recovered VDAC1-HK2 interaction that prevented mPTP opening and PINK1/Parkin activation, eventually blocking mitophagy-mediated cellular death. In summary, this study confirmed that melatonin protects cardiac microvasculature against IRI. The underlying mechanism may be attributed to the inhibitory effects of melatonin on mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis via activation of AMPKα. © 2017 The Authors. Journal of Pineal Research Published by John Wiley & Sons Ltd.
Characterization, design, and function of the mitochondrial proteome: from organs to organisms.
Lotz, Christopher; Lin, Amanda J; Black, Caitlin M; Zhang, Jun; Lau, Edward; Deng, Ning; Wang, Yueju; Zong, Nobel C; Choi, Jeong H; Xu, Tao; Liem, David A; Korge, Paavo; Weiss, James N; Hermjakob, Henning; Yates, John R; Apweiler, Rolf; Ping, Peipei
2014-02-07
Mitochondria are a common energy source for organs and organisms; their diverse functions are specialized according to the unique phenotypes of their hosting environment. Perturbation of mitochondrial homeostasis accompanies significant pathological phenotypes. However, the connections between mitochondrial proteome properties and function remain to be experimentally established on a systematic level. This uncertainty impedes the contextualization and translation of proteomic data to the molecular derivations of mitochondrial diseases. We present a collection of mitochondrial features and functions from four model systems, including two cardiac mitochondrial proteomes from distinct genomes (human and mouse), two unique organ mitochondrial proteomes from identical genetic codons (mouse heart and mouse liver), as well as a relevant metazoan out-group (drosophila). The data, composed of mitochondrial protein abundance and their biochemical activities, capture the core functionalities of these mitochondria. This investigation allowed us to redefine the core mitochondrial proteome from organs and organisms, as well as the relevant contributions from genetic information and hosting milieu. Our study has identified significant enrichment of disease-associated genes and their products. Furthermore, correlational analyses suggest that mitochondrial proteome design is primarily driven by cellular environment. Taken together, these results connect proteome feature with mitochondrial function, providing a prospective resource for mitochondrial pathophysiology and developing novel therapeutic targets in medicine.
Matyas, Csaba; Varga, Zoltan V.; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T.; Nan, Mintong; Hasko, Gyorgy; Gao, Bin
2016-01-01
Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative/nitrative stress, impaired mitochondrial function and biogenesis, and enhanced cardiac steatosis. PMID:27106042
Matyas, Csaba; Varga, Zoltan V; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T; Nan, Mintong; Hasko, Gyorgy; Gao, Bin; Pacher, Pal
2016-06-01
Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative/nitrative stress, impaired mitochondrial function and biogenesis, and enhanced cardiac steatosis. Copyright © 2016 the American Physiological Society.
Zepeda, Ramiro; Kuzmicic, Jovan; Parra, Valentina; Troncoso, Rodrigo; Pennanen, Christian; Riquelme, Jaime A; Pedrozo, Zully; Chiong, Mario; Sánchez, Gina; Lavandero, Sergio
2014-06-01
Mitochondria are key organelles for ATP production in cardiomyocytes, which is regulated by processes of fission and fusion. We hypothesized that the mitochondria fusion protein dynamin-related protein 1 (Drp1) inhibition, attenuates ischemia-reperfusion (I/R) injury through modifications in mitochondrial metabolism. Rats were subjected to I/R through coronary artery ligation, and isolated cardiomyocytes were treated with an ischemia-mimicking solution. In vivo, cardiac function, myocardial infarction area, and mitochondrial morphology were determined, whereas in vitro, viability, mitochondrial membrane potential, intracellular ATP levels, and oxygen consumption rate (OCR) were assessed. In both models, an adenovirus expressing Drp1 dominant-negative K38A (Drp1K38A) was used to induce Drp1 loss-of-function. Our results showed that I/R stimulated mitochondrial fission. Myocardial infarction size and cell death induced by I/R were significantly reduced, whereas cardiac function after I/R was improved in Drp1K38A-treated rats compared with controls. Drp1K38A-transduced cardiomyocytes showed lower OCR with no decrease in intracellular ATP levels, and on I/R, a larger decrease in OCR with a smaller reduction in intracellular ATP level was observed. However, proton leak-associated oxygen consumption was comparatively higher in Drp1K38A-treated cardiomyocytes, suggesting a protective mitochondrial uncoupling effect against I/R. Collectively, our results show that Drp1 inhibition triggers cardioprotection by reducing mitochondrial metabolism during I/R.
Could thermal sensitivity of mitochondria determine species distribution in a changing climate?
Iftikar, Fathima I; MacDonald, Julia R; Baker, Daniel W; Renshaw, Gillian M C; Hickey, Anthony J R
2014-07-01
For many aquatic species, the upper thermal limit (Tmax) and the heart failure temperature (THF) are only a few degrees away from the species' current environmental temperatures. While the mechanisms mediating temperature-induced heart failure (HF) remain unresolved, energy flow and/or oxygen supply disruptions to cardiac mitochondria may be impacted by heat stress. Recent work using a New Zealand wrasse (Notolabrus celidotus) found that ATP synthesis capacity of cardiac mitochondria collapses prior to T(HF). However, whether this effect is limited to one species from one thermal habitat remains unknown. The present study confirmed that cardiac mitochondrial dysfunction contributes to heat stress-induced HF in two additional wrasses that occupy cold temperate (Notolabrus fucicola) and tropical (Thalassoma lunare) habitats. With exposure to heat stress, T. lunare had the least scope to maintain heart function with increasing temperature. Heat-exposed fish of all species showed elevated plasma succinate, and the heart mitochondria from the cold temperate N. fucicola showed decreased phosphorylation efficiencies (depressed respiratory control ratio, RCR), cytochrome c oxidase (CCO) flux and electron transport system (ETS) flux. In situ assays conducted across a range of temperatures using naive tissues showed depressed complex II (CII) and CCO capacity, limited ETS reserve capacities and lowered efficiencies of pyruvate uptake in T. lunare and N. celidotus. Notably, alterations of mitochondrial function were detectable at saturating oxygen levels, indicating that cardiac mitochondrial insufficiency can occur prior to HF without oxygen limitation. Our data support the view that species distribution may be related to the thermal limits of mitochondrial stability and function, which will be important as oceans continue to warm. © 2014. Published by The Company of Biologists Ltd.
Ren, Jun; Yang, Lifang; Zhu, Li; Xu, Xihui; Ceylan, Asli F; Guo, Wei; Yang, Jian; Zhang, Yingmei
2017-10-01
Aging is accompanied with unfavorable geometric and functional changes in the heart involving dysregulation of Akt and autophagy. This study examined the impact of Akt2 ablation on life span and cardiac aging as well as the mechanisms involved with a focus on autophagy and mitochondrial integrity. Cardiac geometry, contractile, and intracellular Ca 2+ properties were evaluated using echocardiography, IonOptix ® edge-detection and fura-2 techniques. Levels of Sirt1, mitochondrial integrity, autophagy, and mitophagy markers were evaluated using Western blot. Our results revealed that Akt2 ablation prolonged life span (by 9.1%) and alleviated aging (24 months)-induced unfavorable changes in myocardial function and intracellular Ca 2+ handling (SERCA2a oxidation) albeit with more pronounced cardiac hypertrophy (58.1%, 47.8%, and 14.5% rises in heart weight, wall thickness, and cardiomyocyte cross-sectional area). Aging downregulated levels of Sirt1, increased phosphorylation of Akt, and the nuclear transcriptional factor Foxo1, as well as facilitated acetylation of Foxo1, the effects of which (except Sirt1 and Foxo1 acetylation) were significantly attenuated or negated by Akt2 ablation. Advanced aging disturbed autophagy, mitophagy, and mitochondrial integrity as evidenced by increased p62, decreased levels of beclin-1, Atg7, LC3B, BNIP3, PTEN-induced putative kinase 1 (PINK1), Parkin, UCP-2, PGC-1α, and aconitase activity, the effects of which were reversed by Akt2 ablation. Aging-induced cardiomyocyte contractile dysfunction and loss of mitophagy were improved by rapamycin and the Sirt1 activator SRT1720. Activation of Akt using insulin or Parkin deficiency prevented SRT1720-induced beneficial effects against aging. In conclusion, our data indicate that Akt2 ablation protects against cardiac aging through restored Foxo1-related autophagy and mitochondrial integrity. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Coenzyme Q supplementation in pulmonary arterial hypertension
Sharp, Jacqueline; Farha, Samar; Park, Margaret M.; Comhair, Suzy A.; Lundgrin, Erika L.; Tang, W.H. Wilson; Bongard, Robert D.; Merker, Marilyn P.; Erzurum, Serpil C.
2014-01-01
Mitochondrial dysfunction is a fundamental abnormality in the vascular endothelium and smooth muscle of patients with pulmonary arterial hypertension (PAH). Because coenzyme Q (CoQ) is essential for mitochondrial function and efficient oxygen utilization as the electron carrier in the inner mitochondrial membrane, we hypothesized that CoQ would improve mitochondrial function and benefit PAH patients. To test this, oxidized and reduced levels of CoQ, cardiac function by echocardiogram, mitochondrial functions of heme synthesis and cellular metabolism were evaluated in PAH patients (N=8) in comparison to healthy controls (N=7), at baseline and after 12 weeks oral CoQ supplementation. CoQ levels were similar among PAH and control individuals, and increased in all subjects with CoQ supplementation. PAH patients had higher CoQ levels than controls with supplementation, and a tendency to a higher reduced-to-oxidized CoQ ratio. Cardiac parameters improved with CoQ supplementation, although 6-minute walk distances and BNP levels did not significantly change. Consistent with improved mitochondrial synthetic function, hemoglobin increased and red cell distribution width (RDW) decreased in PAH patients with CoQ, while hemoglobin declined slightly and RDW did not change in healthy controls. In contrast, metabolic and redox parameters, including lactate, pyruvate and reduced or oxidized gluthathione, did not change in PAH patients with CoQ. In summary, CoQ improved hemoglobin and red cell maturation in PAH, but longer studies and/or higher doses with a randomized placebo-controlled controlled design are necessary to evaluate the clinical benefit of this simple nutritional supplement. PMID:25180165
Tomasek, Milan; Misak, Anton; Grman, Marian; Tomaskova, Zuzana
2017-08-01
Recently, it has been discovered that isoforms of intracellular chloride channels (CLIC) are present in cardiac mitochondria. By reconstituting rat cardiac mitochondrial chloride channels into bilayer lipid membranes, we detected three equally separated subconductance states with conductance increment of 45 pS and < 2% occupancy. The observed rare events of channel decomposition into substates, accompanied by disrupted gating, provide an insight into channel quaternary structure. Our findings suggest that the observed channels work as four functionally coupled subunits with synchronized gating. We discuss the putative connection of channel activity from native mitochondria with the recombinant CLIC channels. However, conclusive evidence is needed to prove this connection. © 2017 Federation of European Biochemical Societies.
Sverdlov, Aaron L; Elezaby, Aly; Qin, Fuzhong; Behring, Jessica B; Luptak, Ivan; Calamaras, Timothy D; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Bachschmid, Markus M; Colucci, Wilson S
2016-01-11
Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD. Mice fed a high-fat high-sucrose (HFHS) diet develop MHD with cardiac diastolic and mitochondrial dysfunction that is associated with oxidative posttranslational modifications of cardiac mitochondrial proteins. Transgenic mice that express catalase in mitochondria and wild-type mice were fed an HFHS or control diet for 4 months. Cardiac mitochondria from HFHS-fed wild-type mice had a 3-fold greater rate of H2O2 production (P=0.001 versus control diet fed), a 30% decrease in complex II substrate-driven oxygen consumption (P=0.006), 21% to 23% decreases in complex I and II substrate-driven ATP synthesis (P=0.01), and a 62% decrease in complex II activity (P=0.002). In transgenic mice that express catalase in mitochondria, all HFHS diet-induced mitochondrial abnormalities were ameliorated, as were left ventricular hypertrophy and diastolic dysfunction. In HFHS-fed wild-type mice complex II substrate-driven ATP synthesis and activity were restored ex vivo by dithiothreitol (5 mmol/L), suggesting a role for reversible cysteine oxidative posttranslational modifications. In vitro site-directed mutation of complex II subunit B Cys100 or Cys103 to redox-insensitive serines prevented complex II dysfunction induced by ROS or high glucose/high palmitate in the medium. Mitochondrial ROS are pathogenic in MHD and contribute to mitochondrial dysfunction, at least in part, by causing oxidative posttranslational modifications of complex I and II proteins including reversible oxidative posttranslational modifications of complex II subunit B Cys100 and Cys103. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload.
Ribeiro Junior, Rogério Faustino; Dabkowski, Erinne Rose; Shekar, Kadambari Chandra; O Connell, Kelly A; Hecker, Peter A; Murphy, Michael P
2018-03-01
Heart failure remains a major public-health problem with an increase in the number of patients worsening from this disease. Despite current medical therapy, the condition still has a poor prognosis. Heart failure is complex but mitochondrial dysfunction seems to be an important target to improve cardiac function directly. Our goal was to analyze the effects of MitoQ (100 µM in drinking water) on the development and progression of heart failure induced by pressure overload after 14 weeks. The main findings are that pressure overload-induced heart failure in rats decreased cardiac function in vivo that was not altered by MitoQ. However, we observed a reduction in right ventricular hypertrophy and lung congestion in heart failure animals treated with MitoQ. Heart failure also decreased total mitochondrial protein content, mitochondrial membrane potential in the intermyofibrillar mitochondria. MitoQ restored membrane potential in IFM but did not restore mitochondrial protein content. These alterations are associated with the impairment of basal and stimulated mitochondrial respiration in IFM and SSM induced by heart failure. Moreover, MitoQ restored mitochondrial respiration in heart failure induced by pressure overload. We also detected higher levels of hydrogen peroxide production in heart failure and MitoQ restored the increase in ROS production. MitoQ was also able to improve mitochondrial calcium retention capacity, mainly in the SSM whereas in the IFM we observed a small alteration. In summary, MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload, by decreasing hydrogen peroxide formation, improving mitochondrial respiration and improving mPTP opening. Published by Elsevier Inc.
Morphological dynamics of mitochondria--a special emphasis on cardiac muscle cells.
Hom, Jennifer; Sheu, Shey-Shing
2009-06-01
Mitochondria play a critical role in cellular energy metabolism, Ca(2+) homeostasis, reactive oxygen species generation, apoptosis, aging, and development. Many recent publications have shown that a continuous balance of fusion and fission of these organelles is important in maintaining their proper function. Therefore, there is a steep correlation between the form and function of mitochondria. Many major proteins involved in mitochondrial fusion and fission have been identified in different cell types, including heart. However, the functional role of mitochondrial dynamics in the heart remains, for the most part, unexplored. In this review we will cover the recent field of mitochondrial dynamics and its physiological and pathological implications, with a particular emphasis on the experimental and theoretical basis of mitochondrial dynamics in the heart.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montaigne, David; Marechal, Xavier; Baccouch, Riadh
2010-05-01
The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solutionmore » containing 1 muM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt{sub max} of 105 +- 8 mN/s in control hearts vs. 49 +- 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 +- 0.2 in control hearts vs. 2.2 +- 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 +- 1 muM cytochrome c/min/mg in control hearts vs. 14 +- 3 muM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.« less
The Mitochondria in Diabetic Heart Failure: From Pathogenesis to Therapeutic Promise
2015-01-01
Abstract Significance: Diabetes is an important risk factor for the development of heart failure (HF). Given the increasing prevalence of diabetes in the population, strategies are needed to reduce the burden of HF in these patients. Recent Advances: Diabetes is associated with several pathologic findings in the heart including dysregulated metabolism, lipid accumulation, oxidative stress, and inflammation. Emerging evidence suggests that mitochondrial dysfunction may be a central mediator of these pathologic responses. The development of therapeutic approaches targeting mitochondrial biology holds promise for the management of HF in diabetic patients. Critical Issues: Despite significant data implicating mitochondrial pathology in diabetic cardiomyopathy, the optimal pharmacologic approach to improve mitochondrial function remains undefined. Future Directions: Detailed mechanistic studies coupled with more robust clinical phenotyping will be necessary to develop novel approaches to improve cardiac function in diabetes. Moreover, understanding the interplay between diabetes and other cardiac stressors (hypertension, ischemia, and valvular disease) will be of the utmost importance for clinical translation of scientific discoveries made in this field. Antioxid. Redox Signal. 22, 1515–1526. PMID:25761843
UCP3 Ablation Exacerbates High-Salt Induced Cardiac Hypertrophy and Cardiac Dysfunction.
Lang, Hongmei; Xiang, Yang; Ai, Zhihua; You, Zhiqing; Jin, Xiaolan; Wan, Yong; Yang, Yongjian
2018-04-20
Excessive salt intake and left ventricular hypertrophy (LVH) are both critical for the development of hypertension and heart failure. The uncoupling protein 3 (UCP3) plays a cardio-protective role in early heart failure development. However, the potential role for UCP3 in salt intake and LVH is unclear. UCP3-/- and C57BL/6 mice were placed on either a normal-salt (NS, 0.5%) or a high-salt (HS, 8%) diet for 24 weeks. The cardiac function, endurance capacity, energy expenditure, and mitochondrial functional capacity were measured in each group. Elevated blood pressure was only observed in HS-fed UCP3-/- mice. High salt induced cardiac hypertrophy and dysfunction were observed in both C57BL/6 and UCP3-/- mice. However, the cardiac lesions were more profound in HS-fed UCP3-/- mice. Furthermore, HS-fed UCP3-/-mice experienced more severe mitochondrial respiratory dysfunction compared with HS-fed C57BL/6 mice, represented by the decreased volume of oxygen consumption and heat production at the whole-body level. UCP3 protein was involved in the incidence of high-salt induced hypertension and the progression of cardiac dysfunction in the early stages of heart failure. UCP3 ablation exacerbated high-salt-induced cardiac hypertrophy and cardiac dysfunction. © 2018 The Author(s). Published by S. Karger AG, Basel.
Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology.
Lopez-Crisosto, Camila; Pennanen, Christian; Vasquez-Trincado, Cesar; Morales, Pablo E; Bravo-Sagua, Roberto; Quest, Andrew F G; Chiong, Mario; Lavandero, Sergio
2017-06-01
Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum-mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum-mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.
Whittington, Hannah J; Ostrowski, Philip J; McAndrew, Debra J; Cao, Fang; Shaw, Andrew; Eykyn, Thomas R; Lake, Hannah; Tyler, Jack; Schneider, Jurgen E; Neubauer, Stefan; Zervou, Sevasti; Lygate, Craig A
2018-03-02
Mitochondrial creatine kinase (MtCK) couples ATP production via oxidative phosphorylation to phosphocreatine in the cytosol, which acts as a mobile energy store available for regeneration of ATP at times of high demand. We hypothesised that elevating MtCK would be beneficial in ischaemia-reperfusion (I/R) injury. Mice were created overexpressing the sarcomeric MtCK gene with αMHC promoter at the Rosa26 locus (MtCK-OE) and compared with wild-type (WT) littermates. MtCK activity was 27% higher than WT, with no change in other CK isoenzymes or creatine levels. Electron microscopy confirmed normal mitochondrial cell density and mitochondrial localisation of transgenic protein. Respiration in isolated mitochondria was unaltered and metabolomic analysis by 1H-NMR suggests that cellular metabolism was not grossly affected by transgene expression. There were no significant differences in cardiac structure or function under baseline conditions by cine-MRI or LV haemodynamics. In Langendorff-perfused hearts subjected to 20min ischaemia and 30 min reperfusion, MtCK-OE exhibited less ischaemic contracture and improved functional recovery (Rate pressure product 58% above WT; P < 0.001). These hearts had reduced myocardial infarct size, which was confirmed in vivo: 55±4% in WT vs 29±4% in MtCK-OE; P < 0.0001). Isolated cardiomyocytes from MtCK-OE hearts exhibited delayed opening of the mitochondrial permeability transition pore (mPTP) compared to WT, which was confirmed by reduced mitochondrial swelling in response to calcium. There was no detectable change in the structural integrity of the mitochondrial membrane. Modest elevation of MtCK activity in the heart does not adversely affect cellular metabolism, mitochondrial or in vivo cardiac function, but modifies mPTP opening to protect against I/R injury and improve functional recovery. Our findings support MtCK as a prime therapeutic target in myocardial ischaemia.
Mitochondrial function as a therapeutic target in heart failure
Brown, David A.; Perry, Justin B.; Allen, Mitchell E.; Sabbah, Hani N.; Stauffer, Brian L.; Shaikh, Saame Raza; Cleland, John G. F.; Colucci, Wilson S.; Butler, Javed; Voors, Adriaan A.; Anker, Stefan D.; Pitt, Bertram; Pieske, Burkert; Filippatos, Gerasimos; Greene, Stephen J.; Gheorghiade, Mihai
2017-01-01
Heart failure is a pressing worldwide public-health problem with millions of patients having worsening heart failure. Despite all the available therapies, the condition carries a very poor prognosis. Existing therapies provide symptomatic and clinical benefit, but do not fully address molecular abnormalities that occur in cardiomyocytes. This shortcoming is particularly important given that most patients with heart failure have viable dysfunctional myocardium, in which an improvement or normalization of function might be possible. Although the pathophysiology of heart failure is complex, mitochondrial dysfunction seems to be an important target for therapy to improve cardiac function directly. Mitochondrial abnormalities include impaired mitochondrial electron transport chain activity, increased formation of reactive oxygen species, shifted metabolic substrate utilization, aberrant mitochondrial dynamics, and altered ion homeostasis. In this Consensus Statement, insights into the mechanisms of mitochondrial dysfunction in heart failure are presented, along with an overview of emerging treatments with the potential to improve the function of the failing heart by targeting mitochondria. PMID:28004807
Parra, Valentina; Bravo-Sagua, Roberto; Norambuena-Soto, Ignacio; Hernández-Fuentes, Carolina P; Gómez-Contreras, Andrés G; Verdejo, Hugo E; Mellado, Rosemarie; Chiong, Mario; Lavandero, Sergio; Castro, Pablo F
2017-11-01
Chronic hypoxia exacerbates proliferation of pulmonary arterial smooth muscle cells (PASMC), thereby reducing the lumen of pulmonary arteries. This leads to poor blood oxygenation and cardiac work overload, which are the basis of diseases such as pulmonary artery hypertension (PAH). Recent studies revealed an emerging role of mitochondria in PAH pathogenesis, as key regulators of cell survival and metabolism. In this work, we assessed whether hypoxia-induced mitochondrial fragmentation contributes to the alterations of both PASMC death and proliferation. In previous work in cardiac myocytes, we showed that trimetazidine (TMZ), a partial inhibitor of lipid oxidation, stimulates mitochondrial fusion and preserves mitochondrial function. Thus, here we evaluated whether TMZ-induced mitochondrial fusion can prevent human PASMC proliferation in an in vitro hypoxic model. Using confocal fluorescence microscopy, we showed that prolonged hypoxia (48h) induces mitochondrial fragmentation along with higher levels of the mitochondrial fission protein DRP1. Concomitantly, both mitochondrial potential and respiratory rates decreased, indicative of mitochondrial dysfunction. In accordance with a metabolic shift towards non-mitochondrial ATP generation, mRNA levels of glycolytic markers HK2, PFKFB2 and GLUT1 increased during hypoxia. Incubation of PASMC with TMZ, prior to hypoxia, prevented all these changes and precluded the increase in PASMC proliferation. These findings were also observed using Mdivi-1 (a pharmacological DRP1 inhibitor) or a dominant negative DRP1 K38A as pre-treatments. Altogether, our data indicate that TMZ exerts a protective role against hypoxia-induced PASMC proliferation, by preserving mitochondrial function, thus highlighting DRP1-dependent morphology as a novel therapeutic approach for diseases such as PAH. Copyright © 2017 Elsevier B.V. All rights reserved.
p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content.
Park, Joon-Young; Wang, Ping-Yuan; Matsumoto, Takumi; Sung, Ho Joong; Ma, Wenzhe; Choi, Jeong W; Anderson, Stasia A; Leary, Scot C; Balaban, Robert S; Kang, Ju-Gyeong; Hwang, Paul M
2009-09-25
Exercise capacity is a physiological characteristic associated with protection from both cardiovascular and all-cause mortality. p53 regulates mitochondrial function and its deletion markedly diminishes exercise capacity, but the underlying genetic mechanism orchestrating this is unclear. Understanding the biology of how p53 improves exercise capacity may provide useful insights for improving both cardiovascular as well as general health. The purpose of this study was to understand the genetic mechanism by which p53 regulates aerobic exercise capacity. Using a variety of physiological, metabolic, and molecular techniques, we further characterized maximum exercise capacity and the effects of training, measured various nonmitochondrial and mitochondrial determinants of exercise capacity, and examined putative regulators of mitochondrial biogenesis. As p53 did not affect baseline cardiac function or inotropic reserve, we focused on the involvement of skeletal muscle and now report a wider role for p53 in modulating skeletal muscle mitochondrial function. p53 interacts with Mitochondrial Transcription Factor A (TFAM), a nuclear-encoded gene important for mitochondrial DNA (mtDNA) transcription and maintenance, and regulates mtDNA content. The increased mtDNA in p53(+/+) compared to p53(-/-) mice was more marked in aerobic versus glycolytic skeletal muscle groups with no significant changes in cardiac tissue. These in vivo observations were further supported by in vitro studies showing overexpression of p53 in mouse myoblasts increases both TFAM and mtDNA levels whereas depletion of TFAM by shRNA decreases mtDNA content. Our current findings indicate that p53 promotes aerobic metabolism and exercise capacity by using different mitochondrial genes and mechanisms in a tissue-specific manner.
Liu, Ting; Takimoto, Eiki; Dimaano, Veronica L; DeMazumder, Deeptankar; Kettlewell, Sarah; Smith, Godfrey; Sidor, Agnieszka; Abraham, Theodore P; O'Rourke, Brian
2014-06-20
In cardiomyocytes from failing hearts, insufficient mitochondrial Ca(2+) accumulation secondary to cytoplasmic Na(+) overload decreases NAD(P)H/NAD(P)(+) redox potential and increases oxidative stress when workload increases. These effects are abolished by enhancing mitochondrial Ca(2+) with acute treatment with CGP-37157 (CGP), an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger. Our aim was to determine whether chronic CGP treatment mitigates contractile dysfunction and arrhythmias in an animal model of heart failure (HF) and sudden cardiac death (SCD). Here, we describe a novel guinea pig HF/SCD model using aortic constriction combined with daily β-adrenergic receptor stimulation (ACi) and show that chronic CGP treatment (ACi plus CGP) attenuates cardiac hypertrophic remodeling, pulmonary edema, and interstitial fibrosis and prevents cardiac dysfunction and SCD. In the ACi group 4 weeks after pressure overload, fractional shortening and the rate of left ventricular pressure development decreased by 36% and 32%, respectively, compared with sham-operated controls; in contrast, cardiac function was completely preserved in the ACi plus CGP group. CGP treatment also significantly reduced the incidence of premature ventricular beats and prevented fatal episodes of ventricular fibrillation, but did not prevent QT prolongation. Without CGP treatment, mortality was 61% in the ACi group <4 weeks of aortic constriction, whereas the death rate in the ACi plus CGP group was not different from sham-operated animals. The findings demonstrate the critical role played by altered mitochondrial Ca(2+) dynamics in the development of HF and HF-associated SCD; moreover, they reveal a novel strategy for treating SCD and cardiac decompensation in HF. © 2014 American Heart Association, Inc.
Liu, Qinlong; Rehman, Hasibur; Krishnasamy, Yasodha; Schnellmann, Rick G; Lemasters, John J; Zhong, Zhi
2015-07-01
Inclusion of liver grafts from cardiac death donors (CDD) would increase the availability of donor livers but is hampered by a higher risk of primary non-function. Here, we seek to determine mechanisms that contribute to primary non-function of liver grafts from CDD with the goal to develop strategies for improved function and outcome, focusing on c-Jun-N-terminal kinase (JNK) activation and mitochondrial depolarization, two known mediators of graft failure. Livers explanted from wild-type, inducible nitric oxide synthase knockout (iNOS(-/-)), JNK1(-/-) or JNK2(-/-) mice after 45-min aorta clamping were implanted into wild-type recipients. Mitochondrial depolarization was detected by intravital confocal microscopy in living recipients. After transplantation of wild-type CDD livers, graft iNOS expression and 3-nitrotyrosine adducts increased, but hepatic endothelial NOS expression was unchanged. Graft injury and dysfunction were substantially higher in CDD grafts than in non-CDD grafts. iNOS deficiency and inhibition attenuated injury and improved function and survival of CDD grafts. JNK1/2 and apoptosis signal-regulating kinase-1 activation increased markedly in wild-type CDD grafts, which was blunted by iNOS deficiency. JNK inhibition and JNK2 deficiency, but not JNK1 deficiency, decreased injury and improved function and survival of CDD grafts. Mitochondrial depolarization and binding of phospho-JNK2 to Sab, a mitochondrial protein linked to the mitochondrial permeability transition, were higher in CDD than in non-CDD grafts. iNOS deficiency, JNK inhibition and JNK2 deficiency all decreased mitochondrial depolarization and blunted ATP depletion in CDD grafts. JNK inhibition and deficiency did not decrease 3-nitrotyrosine adducts in CDD grafts. The iNOS-JNK2-Sab pathway promotes CDD graft failure via increased mitochondrial depolarization, and is an attractive target to improve liver function and survival in CDD liver transplantation recipients. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases
Hershberger, Kathleen A.; Martin, Angelical S.; Hirschey, Matthew D.
2017-01-01
The coenzyme nicotinamide adenine dinucleotide (NAD+) has key roles in the regulation of redox status and energy metabolism. NAD+ depletion is emerging as a major contributor to the pathogenesis of cardiac and renal diseases and NAD+ repletion strategies have shown therapeutic potential as a means to restore healthy metabolism and physiological function. The pleotropic roles of NAD+ enable several possible avenues by which repletion of this coenzyme could have therapeutic efficacy. In particular, NAD+ functions as a co-substrate in deacylation reactions carried out by the sirtuin family of enzymes. These NAD+-dependent deacylases control several aspects of metabolism and a wealth of data suggests that boosting sirtuin activity via NAD+ supplementation might be a promising therapy for cardiac and renal pathologies. This Review summarizes the role of NAD+ metabolism in the heart and kidney, and highlights the mitochondrial sirtuins as mediators of some of the beneficial effects of NAD+-boosting therapies in preclinical animal models. We surmise that modulating the NAD+–sirtuin axis is a clinically relevant approach to develop new therapies for cardiac and renal diseases. PMID:28163307
Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases.
Hershberger, Kathleen A; Martin, Angelical S; Hirschey, Matthew D
2017-04-01
The coenzyme nicotinamide adenine dinucleotide (NAD + ) has key roles in the regulation of redox status and energy metabolism. NAD + depletion is emerging as a major contributor to the pathogenesis of cardiac and renal diseases and NAD + repletion strategies have shown therapeutic potential as a means to restore healthy metabolism and physiological function. The pleotropic roles of NAD + enable several possible avenues by which repletion of this coenzyme could have therapeutic efficacy. In particular, NAD + functions as a co-substrate in deacylation reactions carried out by the sirtuin family of enzymes. These NAD + -dependent deacylases control several aspects of metabolism and a wealth of data suggests that boosting sirtuin activity via NAD + supplementation might be a promising therapy for cardiac and renal pathologies. This Review summarizes the role of NAD + metabolism in the heart and kidney, and highlights the mitochondrial sirtuins as mediators of some of the beneficial effects of NAD + -boosting therapies in preclinical animal models. We surmise that modulating the NAD + -sirtuin axis is a clinically relevant approach to develop new therapies for cardiac and renal diseases.
Loss of Akap1 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure.
Schiattarella, Gabriele G; Boccella, Nicola; Paolillo, Roberta; Cattaneo, Fabio; Trimarco, Valentina; Franzone, Anna; D'Apice, Stefania; Giugliano, Giuseppe; Rinaldi, Laura; Borzacchiello, Domenica; Gentile, Alessandra; Lombardi, Assunta; Feliciello, Antonio; Esposito, Giovanni; Perrino, Cinzia
2018-01-01
Left ventricular hypertrophy (LVH) is a major contributor to the development of heart failure (HF). Alterations in cyclic adenosine monophosphate (cAMP)-dependent signaling pathways participate in cardiomyocyte hypertrophy and mitochondrial dysfunction occurring in LVH and HF. cAMP signals are received and integrated by a family of cAMP-dependent protein kinase A (PKA) anchor proteins (AKAPs), tethering PKA to discrete cellular locations. AKAPs encoded by the Akap1 gene (mitoAKAPs) promote PKA mitochondrial targeting, regulating mitochondrial structure and function, reactive oxygen species production, and cell survival. To determine the role of mitoAKAPs in LVH development, in the present investigation, mice with global genetic deletion of Akap1 ( Akap1 -/- ), Akap1 heterozygous ( Akap1 +/- ), and their wild-type ( wt ) littermates underwent transverse aortic constriction (TAC) or SHAM procedure for 1 week. In wt mice, pressure overload induced the downregulation of AKAP121, the major cardiac mitoAKAP. Compared to wt, Akap1 -/- mice did not display basal alterations in cardiac structure or function and cardiomyocyte size or fibrosis. However, loss of Akap1 exacerbated LVH and cardiomyocyte hypertrophy induced by pressure overload and accelerated the progression toward HF in TAC mice, and these changes were not observed upon prevention of AKAP121 degradation in seven in absentia homolog 2 ( Siah2 ) knockout mice ( Siah2 -/- ). Loss of Akap1 was also associated to a significant increase in cardiac apoptosis as well as lack of activation of Akt signaling after pressure overload. Taken together, these results demonstrate that in vivo genetic deletion of Akap1 enhances LVH development and accelerates pressure overload-induced cardiac dysfunction, pointing at Akap1 as a novel repressor of pathological LVH. These results confirm and extend the important role of mitoAKAPs in cardiac response to stress.
Morphological Dynamics of Mitochondria – A Special Emphasis on Cardiac Muscle Cells
Hom, Jennifer; Sheu, Shey-Shing
2010-01-01
Mitochondria play a critical role in cellular energy metabolism, Ca2+ homeostasis, reactive oxygen species generation, apoptosis, aging, and development. Many recent publications have shown that a continuous balance of fusion and fission of these organelles is important in maintaining their proper function. Therefore, there is a steep correlation between the form and function of mitochondria. Many major proteins involved in mitochondrial fusion and fission have been identified in different cell types, including heart. However, the functional role of mitochondrial dynamics in the heart remains, for the most part, unexplored. In this review we will cover the recent field of mitochondrial dynamics and its physiological and pathological implications, with a particular emphasis on the experimental and theoretical basis of mitochondrial dynamics in the heart. PMID:19281816
Shinoda, Yasuharu; Tagashira, Hideaki; Bhuiyan, Md Shenuarin; Hasegawa, Hideyuki; Kanai, Hiroshi; Fukunaga, Kohji
2016-07-01
Haloperidol is an antipsychotic drug that inhibits the dopamine D2 receptor among others. Haloperidol also binds the sigma-1 receptor (σ1R) and inhibits it irreversibly. A serious outcome of haloperidol treatment of schizophrenia patients is death due to sudden cardiac failure. Although the cause remains unclear, we hypothesized that these effects were mediated by chronic haloperidol inhibition of cardiac σ1R. To test this, we treated neonatal rat cardiomyocytes with haloperidol, exposed them to angiotensin II and assessed hypertrophy, σ1R expression, mitochondrial Ca(2+) transport and ATP levels. In this context, haloperidol treatment altered mitochondrial Ca(2+) transport resulting in decreased ATP content by inactivating cardiac σ1R and/or reducing its expression. We also performed transverse aortic constriction (TAC) and then treated mice with haloperidol. After two weeks, haloperidol-treated mice showed enhanced heart failure marked by deteriorated cardiac function, reduced ATP production and increasing mortality relative to TAC only mice. ATP supplementation via sodium pyruvate rescued phenotypes seen in haloperidol-treated TAC mice. We conclude that σ1R inactivation or downregulation in response to haloperidol treatment impairs mitochondrial Ca(2+) mobilization, depleting ATP depletion from cardiomyocytes. These findings suggest a novel approach to mitigate haloperidol-related adverse effects in schizophrenia patients by ATP supplementation. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Increase in Cardiac Ischemia-Reperfusion Injuries in Opa1+/- Mouse Model
Fauconnier, Jérémy; Cellier, Laura; Tamareille, Sophie; Gharib, Abdallah; Chevrollier, Arnaud; Loufrani, Laurent; Grenier, Céline; Kamel, Rima; Sarzi, Emmanuelle; Lacampagne, Alain; Ovize, Michel; Henrion, Daniel; Reynier, Pascal; Lenaers, Guy; Mirebeau-Prunier, Delphine
2016-01-01
Background Recent data suggests the involvement of mitochondrial dynamics in cardiac ischemia/reperfusion (I/R) injuries. Whilst excessive mitochondrial fission has been described as detrimental, the role of fusion proteins in this context remains uncertain. Objectives To investigate whether Opa1 (protein involved in mitochondrial inner-membrane fusion) deficiency affects I/R injuries. Methods and Results We examined mice exhibiting Opa1delTTAG mutations (Opa1+/-), showing 70% Opa1 protein expression in the myocardium as compared to their wild-type (WT) littermates. Cardiac left-ventricular systolic function assessed by means of echocardiography was observed to be similar in 3-month-old WT and Opa1+/- mice. After subjection to I/R, infarct size was significantly greater in Opa1+/- than in WTs both in vivo (43.2±4.1% vs. 28.4±3.5%, respectively; p<0.01) and ex vivo (71.1±3.2% vs. 59.6±8.5%, respectively; p<0.05). No difference was observed in the expression of other main fission/fusion protein, oxidative phosphorylation, apoptotic markers, or mitochondrial permeability transition pore (mPTP) function. Analysis of calcium transients in isolated ventricular cardiomyocytes demonstrated a lower sarcoplasmic reticulum Ca2+ uptake, whereas cytosolic Ca2+ removal from the Na+/Ca2+ exchanger (NCX) was increased, whilst SERCA2a, phospholamban, and NCX protein expression levels were unaffected in Opa1+/- compared to WT mice. Simultaneous whole-cell patch-clamp recordings of mitochondrial Ca2+ movements and ventricular action potential (AP) showed impairment of dynamic mitochondrial Ca2+ uptake and a marked increase in the AP late repolarization phase in conjunction with greater occurrence of arrhythmia in Opa1+/- mice. Conclusion Opa1 deficiency was associated with increased sensitivity to I/R, imbalance in dynamic mitochondrial Ca2+ uptake, and subsequent increase in NCX activity. PMID:27723783
Telomeres and Mitochondria in the Aging Heart
Moslehi, Javid; DePinho, Ronald A.; Sahin, Ergün
2013-01-01
Studies in humans and in mice have highlighted the importance of short telomeres and impaired mitochondrial function in driving age-related functional decline in the heart. Although telomere and mitochondrial dysfunction have been viewed mainly in isolation, recent studies in telomerase-deficient mice have provided evidence for an intimate link between these two processes. Telomere dysfunction induces a profound p53-dependent repression of the master regulators of mitochondrial biogenesis and function, peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and PGC-1β in the heart, which leads to bioenergetic compromise due to impaired oxidative phosphorylation and ATP generation. This telomere-p53-PGC mitochondrial/metabolic axis integrates many factors linked to heart aging including increased DNA damage, p53 activation, mitochondrial, and metabolic dysfunction and provides a molecular basis of how dysfunctional telomeres can compromise cardiomyocytes and stem cell compartments in the heart to precipitate cardiac aging. PMID:22539756
Pottecher, Julien; Santelmo, Nicola; Noll, Eric; Charles, Anne-Laure; Benahmed, Malika; Canuet, Matthieu; Frossard, Nelly; Namer, Izzie J; Geny, Bernard; Massard, Gilbert; Diemunsch, Pierre
2013-10-01
The aim of this study was to assess the functional preservation of the lung graft with anterograde lung perfusion in a model of donation after cardiac death. Thirty minutes after cardiac arrest, in situ anterograde selective pulmonary cold perfusion was started in six swine. The alveolo-capillary membrane was challenged at 3, 6, and 8 h with measurements of the mean pulmonary arterial pressure (mPAP), the pulmonary vascular resistance (PVR), the PaO2 /FiO2 ratio, the transpulmonary oxygen output (tpVO2 ), and the transpulmonary CO2 clearance (tpCO2 ). Mitochondrial homeostasis was investigated by measuring maximal oxidative capacity (Vmax ) and the coupling of phosphorylation to oxidation (ACR, acceptor control ratio) in lung biopsies. Inflammation and induction of primary immune response were assessed by measurement of tumor necrosis factor alpha (TNFα), interleukine-6 (IL-6) and receptor for advanced glycation endproducts (RAGE) in bronchoalveolar lavage fluid. Data were compared using repeated measures Anova. Pulmonary hemodynamics (mPAP: P = 0.69; PVR: P = 0.46), oxygenation (PaO2 /FiO2 : P = 0.56; tpVO2 : P = 0.46), CO2 diffusion (tpCO2 : P = 0.24), mitochondrial homeostasis (Vmax : P = 0.42; ACR: P = 0.8), and RAGE concentrations (P = 0.24) did not significantly change up to 8 h after cardiac arrest. TNFα and IL-6 were undetectable. Unaffected pulmonary hemodynamics, sustained oxygen and carbon dioxide diffusion, preserved mitochondrial homeostasis, and lack of inflammation suggest a long-lasting functional preservation of the graft with selective anterograde in situ pulmonary perfusion. © 2013 Steunstichting ESOT. Published by John Wiley & Sons Ltd.
Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation
Hasumi, Yukiko; Baba, Masaya; Hasumi, Hisashi; Huang, Ying; Lang, Martin; Reindorf, Rachel; Oh, Hyoung-bin; Sciarretta, Sebastiano; Nagashima, Kunio; Haines, Diana C.; Schneider, Michael D.; Adelstein, Robert S.; Schmidt, Laura S.; Sadoshima, Junichi; Marston Linehan, W.
2014-01-01
Cardiac hypertrophy, an adaptive process that responds to increased wall stress, is characterized by the enlargement of cardiomyocytes and structural remodeling. It is stimulated by various growth signals, of which the mTORC1 pathway is a well-recognized source. Here, we show that loss of Flcn, a novel AMPK–mTOR interacting molecule, causes severe cardiac hypertrophy with deregulated energy homeostasis leading to dilated cardiomyopathy in mice. We found that mTORC1 activity was upregulated in Flcn-deficient hearts, and that rapamycin treatment significantly reduced heart mass and ameliorated cardiac dysfunction. Phospho-AMP-activated protein kinase (AMPK)-alpha (T172) was reduced in Flcn-deficient hearts and nonresponsive to various stimulations including metformin and AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide). ATP levels were elevated and mitochondrial function was increased in Flcn-deficient hearts, suggesting that excess energy resulting from up-regulated mitochondrial metabolism under Flcn deficiency might attenuate AMPK activation. Expression of Ppargc1a, a central molecule for mitochondrial metabolism, was increased in Flcn-deficient hearts and indeed, inactivation of Ppargc1a in Flcn-deficient hearts significantly reduced heart mass and prolonged survival. Ppargc1a inactivation restored phospho-AMPK-alpha levels and suppressed mTORC1 activity in Flcn-deficient hearts, suggesting that up-regulated Ppargc1a confers increased mitochondrial metabolism and excess energy, leading to inactivation of AMPK and activation of mTORC1. Rapamycin treatment did not affect the heart size of Flcn/Ppargc1a doubly inactivated hearts, further supporting the idea that Ppargc1a is the critical element leading to deregulation of the AMPK–mTOR-axis and resulting in cardiac hypertrophy under Flcn deficiency. These data support an important role for Flcn in cardiac homeostasis in the murine model. PMID:24908670
NAD+ : A big player in cardiac and skeletal muscle remodeling and aging.
Chaturvedi, Pankaj; Tyagi, Suresh C
2018-03-01
In the past decade, NAD+ has gained importance for its beneficial effects as antioxidant and anti-aging molecule. A paper in science by Zhang et al. () has described that NAD+ when replenished, ameliorates muscle dystrophy in mice by improving mitochondrial function. NAD+ was also demonstrated by the authors to improve the life span of mice. Cox et al. () demonstrated the cardiac effects of NAD+ which mitigated chronic heart failure via mitochondrial redox state mechanism. Cox et al. () also demonstrated that NAD+ is provided in the drinking water, it improves cardiac relaxation in volume overload model of heart failure. Although NAD+ has a profound anti-aging and anti-oxidant effects, its effect on humans and use as a dietary supplement needs more exploration. © 2017 Wiley Periodicals, Inc.
MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis.
Hsu, Ying-Han R; Yogasundaram, Haran; Parajuli, Nirmal; Valtuille, Lucas; Sergi, Consolato; Oudit, Gavin Y
2016-01-01
Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders.
Liang, Feng; Li, Xiaoyu; Wang, Li; Yang, Caihong; Yan, Zi; Zhang, Suli; Liu, Huirong
2013-01-01
Autophagy is important in cells for removing damaged organelles, such as mitochondria. Insufficient autophagy plays a critical role in tissue injury and organ dysfunction under a variety of pathological conditions. However, the role of autophagy in nonlethal traumatic cardiac damage remains unclear. The aims of the present study were to investigate whether nonlethal mechanical trauma may result in the change of cardiomyocyte autophagy, and if so, to determine whether the changed myocardial autophagy may contribute to delayed cardiac dysfunction. Male adult rats were subjected to nonlethal traumatic injury, and cardiomyocyte autophagy, cardiac mitochondrial function, and cardiac function in isolated perfused hearts were detected. Direct mechanical traumatic injury was not observed in the heart within 24 h after trauma. However, cardiomyocyte autophagy gradually decreased and reached a minimal level 6 h after trauma. Cardiac mitochondrial dysfunction was observed by cardiac radionuclide imaging 6 h after trauma, and cardiac dysfunction was observed 24 h after trauma in the isolated perfused heart. These were reversed when autophagy was induced by administration of the autophagy inducer rapamycin 30 min before trauma. Our present study demonstrated for the first time that nonlethal traumatic injury caused decreased autophagy, and decreased autophagy may contribute to post-traumatic organ dysfunction. Though our study has some limitations, it strongly suggests that cardiac damage induced by nonlethal mechanical trauma can be detected by noninvasive radionuclide imaging, and induction of autophagy may be a novel strategy for reducing posttrauma multiple organ failure. PMID:23977036
Characterization of mitochondrial injury after cardiac arrest (COMICA).
Donnino, Michael W; Liu, Xiaowen; Andersen, Lars W; Rittenberger, Jon C; Abella, Benjamin S; Gaieski, David F; Ornato, Joseph P; Gazmuri, Raúl J; Grossestreuer, Anne V; Cocchi, Michael N; Abbate, Antonio; Uber, Amy; Clore, John; Peberdy, Mary Anne; Callaway, Clifton W
2017-04-01
Mitochondrial injury post-cardiac arrest has been described in pre-clinical settings but the extent to which this injury occurs in humans remains largely unknown. We hypothesized that increased levels of mitochondrial biomarkers would be associated with mortality and neurological morbidity in post-cardiac arrest subjects. We performed a prospective multicenter study of post-cardiac arrest subjects. Inclusion criteria were comatose adults who suffered an out-of-hospital cardiac arrest. Mitochondrial biomarkers were measured at 0, 12, 24, 36 and 48h after return of spontaneous circulation as well as in healthy controls. Out of 111 subjects enrolled, 102 had evaluable samples at 0h. Cardiac arrest subjects had higher baseline cytochrome c levels compared to controls (2.18ng/mL [0.74, 7.74] vs. 0.16ng/mL [0.03, 0.91], p<0.001), and subjects who died had higher 0h cytochrome c levels compared to survivors (3.66ng/mL [1.40, 14.9] vs. 1.27ng/mL [0.16, 2.37], p<0.001). There were significantly higher Ribonuclease P (RNaseP) (3.3 [1.2, 5.7] vs. 1.2 [0.8, 1.2], p<0.001) and Beta-2microglobulin (B2M) (12.0 [1.0, 22.9], vs. 0.6 [0.6, 1.3], p<0.001) levels in cardiac arrest subjects at baseline compared to the control subjects. There were no differences between survivors and non-survivors for mitochondrial DNA, nuclear DNA, or cell free DNA. Cytochrome c was increased in post- cardiac arrest subjects compared to controls, and in post-cardiac arrest non-survivors compared to survivors. Nuclear DNA and cell free DNA was increased in plasma of post-cardiac arrest subjects. There were no differences in mitochondrial DNA, nuclear DNA, or cell free DNA between survivors and non-survivors. Mitochondrial injury markers showed mixed results in the post-cardiac arrest period. Future research needs to investigate these differences. Copyright © 2017 Elsevier B.V. All rights reserved.
Rindler, Paul M; Cacciola, Angela; Kinter, Michael; Szweda, Luke I
2016-11-01
We have recently demonstrated that catalase content in mouse cardiac mitochondria is selectively elevated in response to high dietary fat, a nutritional state associated with oxidative stress and loss in insulin signaling. Catalase and various isoforms of glutathione peroxidase and peroxiredoxin each catalyze the consumption of H 2 O 2 Catalase, located primarily within peroxisomes and to a lesser extent mitochondria, has a low binding affinity for H 2 O 2 relative to glutathione peroxidase and peroxiredoxin. As such, the contribution of catalase to mitochondrial H 2 O 2 consumption is not well understood. In the current study, using highly purified cardiac mitochondria challenged with micromolar concentrations of H 2 O 2 , we found that catalase contributes significantly to mitochondrial H 2 O 2 consumption. In addition, catalase is solely responsible for removal of H 2 O 2 in nonrespiring or structurally disrupted mitochondria. Finally, in mice fed a high-fat diet, mitochondrial-derived H 2 O 2 is responsible for diminished insulin signaling in the heart as evidenced by reduced insulin-stimulated Akt phosphorylation. While elevated mitochondrial catalase content (∼50%) enhanced the capacity of mitochondria to consume H 2 O 2 in response to high dietary fat, the selective increase in catalase did not prevent H 2 O 2 -induced loss in cardiac insulin signaling. Taken together, our results indicate that mitochondrial catalase likely functions to preclude the formation of high levels of H 2 O 2 without perturbing redox-dependent signaling. Copyright © 2016 the American Physiological Society.
Mancuso, David J; Sims, Harold F; Han, Xianlin; Jenkins, Christopher M; Guan, Shao Ping; Yang, Kui; Moon, Sung Ho; Pietka, Terri; Abumrad, Nada A; Schlesinger, Paul H; Gross, Richard W
2007-11-30
Previously, we identified a novel calcium-independent phospholipase, designated calcium-independent phospholipase A(2) gamma (iPLA(2)gamma), which possesses dual mitochondrial and peroxisomal subcellular localization signals. To identify the roles of iPLA(2)gamma in cellular bioenergetics, we generated mice null for the iPLA(2)gamma gene by eliminating the active site of the enzyme through homologous recombination. Mice null for iPLA(2)gamma display multiple bioenergetic dysfunctional phenotypes, including 1) growth retardation, 2) cold intolerance, 3) reduced exercise endurance, 4) greatly increased mortality from cardiac stress after transverse aortic constriction, 5) abnormal mitochondrial function with a 65% decrease in ascorbate-induced Complex IV-mediated oxygen consumption, and 6) a reduction in myocardial cardiolipin content accompanied by an altered cardiolipin molecular species composition. We conclude that iPLA(2)gamma is essential for maintaining efficient bioenergetic mitochondrial function through tailoring mitochondrial membrane lipid metabolism and composition.
Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases.
Nakayama, Hiroyuki; Otsu, Kinya
2018-03-06
Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection - termed sterile inflammation - is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP-AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases. © 2018 The Author(s).
Parra, Valentina; Verdejo, Hugo E; Iglewski, Myriam; Del Campo, Andrea; Troncoso, Rodrigo; Jones, Deborah; Zhu, Yi; Kuzmicic, Jovan; Pennanen, Christian; Lopez-Crisosto, Camila; Jaña, Fabián; Ferreira, Jorge; Noguera, Eduard; Chiong, Mario; Bernlohr, David A; Klip, Amira; Hill, Joseph A; Rothermel, Beverly A; Abel, Evan Dale; Zorzano, Antonio; Lavandero, Sergio
2014-01-01
Insulin regulates heart metabolism through the regulation of insulin-stimulated glucose uptake. Studies have indicated that insulin can also regulate mitochondrial function. Relevant to this idea, mitochondrial function is impaired in diabetic individuals. Furthermore, the expression of Opa-1 and mitofusins, proteins of the mitochondrial fusion machinery, is dramatically altered in obese and insulin-resistant patients. Given the role of insulin in the control of cardiac energetics, the goal of this study was to investigate whether insulin affects mitochondrial dynamics in cardiomyocytes. Confocal microscopy and the mitochondrial dye MitoTracker Green were used to obtain three-dimensional images of the mitochondrial network in cardiomyocytes and L6 skeletal muscle cells in culture. Three hours of insulin treatment increased Opa-1 protein levels, promoted mitochondrial fusion, increased mitochondrial membrane potential, and elevated both intracellular ATP levels and oxygen consumption in cardiomyocytes in vitro and in vivo. Consequently, the silencing of Opa-1 or Mfn2 prevented all the metabolic effects triggered by insulin. We also provide evidence indicating that insulin increases mitochondrial function in cardiomyocytes through the Akt-mTOR-NFκB signaling pathway. These data demonstrate for the first time in our knowledge that insulin acutely regulates mitochondrial metabolism in cardiomyocytes through a mechanism that depends on increased mitochondrial fusion, Opa-1, and the Akt-mTOR-NFκB pathway.
Parra, Valentina; Verdejo, Hugo E.; Iglewski, Myriam; del Campo, Andrea; Troncoso, Rodrigo; Jones, Deborah; Zhu, Yi; Kuzmicic, Jovan; Pennanen, Christian; Lopez‑Crisosto, Camila; Jaña, Fabián; Ferreira, Jorge; Noguera, Eduard; Chiong, Mario; Bernlohr, David A.; Klip, Amira; Hill, Joseph A.; Rothermel, Beverly A.; Abel, Evan Dale; Zorzano, Antonio; Lavandero, Sergio
2014-01-01
Insulin regulates heart metabolism through the regulation of insulin-stimulated glucose uptake. Studies have indicated that insulin can also regulate mitochondrial function. Relevant to this idea, mitochondrial function is impaired in diabetic individuals. Furthermore, the expression of Opa-1 and mitofusins, proteins of the mitochondrial fusion machinery, is dramatically altered in obese and insulin-resistant patients. Given the role of insulin in the control of cardiac energetics, the goal of this study was to investigate whether insulin affects mitochondrial dynamics in cardiomyocytes. Confocal microscopy and the mitochondrial dye MitoTracker Green were used to obtain three-dimensional images of the mitochondrial network in cardiomyocytes and L6 skeletal muscle cells in culture. Three hours of insulin treatment increased Opa-1 protein levels, promoted mitochondrial fusion, increased mitochondrial membrane potential, and elevated both intracellular ATP levels and oxygen consumption in cardiomyocytes in vitro and in vivo. Consequently, the silencing of Opa-1 or Mfn2 prevented all the metabolic effects triggered by insulin. We also provide evidence indicating that insulin increases mitochondrial function in cardiomyocytes through the Akt-mTOR-NFκB signaling pathway. These data demonstrate for the first time in our knowledge that insulin acutely regulates mitochondrial metabolism in cardiomyocytes through a mechanism that depends on increased mitochondrial fusion, Opa-1, and the Akt-mTOR-NFκB pathway. PMID:24009260
Aguilar, Miguel; Rodríguez, Jorge; Carrasco-Pozo, Catalina; Cañas, Daniel; García-Herrera, Claudio; Herrera, Emilio A.
2018-01-01
More than 140 million people live and works (in a chronic or intermittent form) above 2500 m worldwide and 35 million live in the Andean Mountains. Furthermore, in Chile, it is estimated that 55,000 persons work in high altitude shifts, where stays at lowlands and interspersed with working stays at highlands. Acute exposure to high altitude has been shown to induce oxidative stress in healthy human lowlanders, due to an increase in free radical formation and a decrease in antioxidant capacity. However, in animal models, intermittent hypoxia (IH) induce preconditioning, like responses and cardioprotection. Here, we aimed to describe in a rat model the responses on cardiac and vascular function to 4 cycles of intermittent hypobaric hypoxia (IHH). Twelve adult Wistar rats were randomly divided into two equal groups, a four-cycle of IHH, and a normobaric hypoxic control. Intermittent hypoxia was induced in a hypobaric chamber in four continuous cycles (1 cycle = 4 days hypoxia + 4 days normoxia), reaching a barometric pressure equivalent to 4600 m of altitude (428 Torr). At the end of the first and fourth cycle, cardiac structural, and functional variables were determined by echocardiography. Thereafter, ex vivo vascular function and biomechanical properties were determined in femoral arteries by wire myography. We further measured cardiac oxidative stress biomarkers (4-Hydroxy-nonenal, HNE; nytrotirosine, NT), reactive oxygen species (ROS) sources (NADPH and mitochondrial), and antioxidant enzymes activity (catalase, CAT; glutathione peroxidase, GPx, and superoxide dismutase, SOD). Our results show a higher ejection and shortening fraction of the left ventricle function by the end of the 4th cycle. Further, femoral vessels showed an improvement of vasodilator capacity and diminished stiffening. Cardiac tissue presented a higher expression of antioxidant enzymes and mitochondrial ROS formation in IHH, as compared with normobaric hypoxic controls. IHH exposure determines a preconditioning effect on the heart and femoral artery, both at structural and functional levels, associated with the induction of antioxidant defence mechanisms. However, mitochondrial ROS generation was increased in cardiac tissue. These findings suggest that initial states of IHH are beneficial for cardiovascular function and protection. PMID:29373484
Cheng, Ying; Ren, Mingming; Niu, Yanyan; Qiao, Jianhua; Aneba, S; Chorvat, D; Chorvatova, A
2009-12-01
The primary function of cardiac mitochondria is the production of ATP to support heart contraction. Examination of the mitochondrial redox state is therefore crucially important to sensitively detect early signs of mitochondrial function in pathophysiological conditions, such as ischemia, diabetes and heart failure. We study fingerprinting of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H, the principal electron donor in mitochondrial respiration responsible for vital ATP supply. Here NAD(P)H is studied as a marker for non-invasive fluorescent probing of the mitochondrial function. NAD(P) H fluorescence is recorded in cardiac cells following excitation with 375nm UV-light and detection by spectrally-resolved time-correlated single photon counting (TCSPC), based on the simultaneous measurement of the fluorescence spectra and fluorescence lifetimes. Modulation of NADH production and/or mitochondrial respiration is tested to study dynamic characteristics of NAD(P) H fluorescence decay. Our results show that at least a 3-exponential decay model, with 0.4-0.7ns, 1.2-1.9ns and 8.0-13. Ons lifetime pools is necessary to describe cardiomyocyte autofluorescence (AF) within 420-560nm spectral range. Increased mitochondrial NADH production by ketone bodies enhanced the fluorescence intensity, without significant change in fluorescent lifetimes. Rotenone, the inhibitor of Complex I of the mitochondrial respiratory chain, increased AF intensity and shortened the average fluorescence lifetime. Dinitrophenol (DNP), an uncoupling agent of the mitochondrial oxidative phosphorylation, lowered AF intensity, broadened the spectral shoulder at 520 nm and increased the average fluorescence lifetime. These effects are comparable to the study of NADH fluorescence decay in vitro. In the present contribution we demonstrated that spectrally-resolved fluorescence lifetime technique provides promising new tool for analysis of mitochondrial NAD(P) H fluorescence with good reproducibility in living cardiomyocytes. This approach will enhance our knowledge about cardiomyocyte oxidative metabolism and/or its dysfunction at a cellular level. In the future, this approach can prove helpful in the clinical diagnosis and treatment of mitochondrial disorder.
Fearon, Ian M
2006-03-01
To examine the mechanisms underlying oxidised LDL- (oxLDL)-induced alterations in Ca(2+) currents, an effect which underlies altered vascular contractility and cardiac myocyte function. Ca(2+) currents (I(Ca)) were recorded by whole-cell patch-clamp in HEK293 cells expressing L-type Ca(2+) channel alpha(1C) subunits or isolated rat ventricular myocytes. oxLDL (but not native LDL) significantly enhanced recombinant I(Ca), an effect mimicked by 1 microM lysophosphatidylcholine (LPC). LPC failed to enhance I(Ca) either in mitochondrial electron transport chain-depleted rho(0) cells, or in the presence of rotenone (1 microM), or MPP(+) (10 microM). The LPC response was similarly ablated by ascorbate (200 microM) or TROLOX (500 microM) and by the mitochondria-targeted antioxidant, MitoQ (250 nM). In myocytes, enhancement of I(Ca) due to LPC was similarly abrogated with rotenone and MitoQ. These data suggest that LPC enhanced recombinant Ca(2+) currents due to increased mitochondrial ROS production. In support with this, LPC enhanced fluorescence in HEK293 cells and cardiac myocytes loaded with a ROS-sensitive mitochondrial dye, reduced mitotracker red. LPC up-regulates L-type Ca(2+) currents due to altered mitochondrial ROS production, an effect which mediates the response of the native I(Ca) in cardiac myocytes to oxLDL.
Symington, Burger; Mapanga, Rudo F.; Norton, Gavin R.
2017-01-01
Since the early 1990s human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) emerged as a global health pandemic, with sub-Saharan Africa the hardest hit. While the successful roll-out of antiretroviral (ARV) therapy provided significant relief to HIV-positive individuals, such treatment can also elicit damaging side-effects. Here especially HIV protease inhibitors (PIs) are implicated in the onset of cardio-metabolic complications such as type-2 diabetes and coronary heart disease. As there is a paucity of data regarding suitable co-treatments within this context, this preclinical study investigated whether resveratrol (RSV), aspirin (ASP) or vitamin C (VitC) co-treatment is able to blunt side-effects in a rat model of chronic PI exposure (Lopinavir/Ritonavir treatment for 4 months). Body weights and weight gain, blood metabolite levels (total cholesterol, HDL, LDL, triglycerides), echocardiography and cardiac mitochondrial respiration were assessed in PI-treated rats ± various co-treatments. Our data reveal that PI treatment significantly lowered body weight and cardiac respiratory function while no significant changes were found for heart function and blood metabolite levels. Moreover, all co-treatments ameliorated the PI-induced decrease in body weight after 4 months of PI treatment, while RSV co-treatment enhanced cardiac mitochondrial respiratory capacity in PI-treated rats. This pilot study therefore provides novel hypotheses regarding RSV co-treatment that should be further assessed in greater detail. PMID:28107484
Wang, Ting; McDonald, Caitlin; Petrenko, Nataliya B.; Leblanc, Mathias; Wang, Tao; Giguere, Vincent; Evans, Ronald M.; Patel, Vickas V.
2015-01-01
Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function. PMID:25624346
Optogenetic control of mitochondrial metabolism and Ca2+ signaling by mitochondria-targeted opsins.
Tkatch, Tatiana; Greotti, Elisa; Baranauskas, Gytis; Pendin, Diana; Roy, Soumitra; Nita, Luliaoana I; Wettmarshausen, Jennifer; Prigge, Matthias; Yizhar, Ofer; Shirihai, Orian S; Fishman, Daniel; Hershfinkel, Michal; Fleidervish, Ilya A; Perocchi, Fabiana; Pozzan, Tullio; Sekler, Israel
2017-06-27
Key mitochondrial functions such as ATP production, Ca 2+ uptake and release, and substrate accumulation depend on the proton electrochemical gradient (ΔμH + ) across the inner membrane. Although several drugs can modulate ΔμH + , their effects are hardly reversible, and lack cellular specificity and spatial resolution. Although channelrhodopsins are widely used to modulate the plasma membrane potential of excitable cells, mitochondria have thus far eluded optogenetic control. Here we describe a toolkit of optometabolic constructs based on selective targeting of channelrhodopsins with distinct functional properties to the inner mitochondrial membrane of intact cells. We show that our strategy enables a light-dependent control of the mitochondrial membrane potential (Δψ m ) and coupled mitochondrial functions such as ATP synthesis by oxidative phosphorylation, Ca 2+ dynamics, and respiratory metabolism. By directly modulating Δψ m , the mitochondria-targeted opsins were used to control complex physiological processes such as spontaneous beats in cardiac myocytes and glucose-dependent ATP increase in pancreatic β-cells. Furthermore, our optometabolic tools allow modulation of mitochondrial functions in single cells and defined cell regions.
Characterization of Mitochondrial Injury after Cardiac Arrest (COMICA)
Donnino, Michael W.; Liu, Xiaowen; Andersen, Lars W.; Rittenberger, Jon C.; Abella, Benjamin S.; Gaieski, David F.; Ornato, Joseph P.; Gazmuri, Raúl J.; Grossestreur, Anne V.; Cocchi, Michaen N.; Abbate, Antonio; Uber, Amy; Clore, John; Peberdy, Mary Anne; Callaway, Clifton
2017-01-01
Introduction Mitochondrial injury post-cardiac arrest has been described in pre-clinical settings but the extent to which this injury occurs in humans remains largely unknown. We hypothesized that increased levels of mitochondrial biomarkers would be associated with mortality and neurological morbidity in post-cardiac arrest subjects. Methods We performed a prospective multicenter study of post-cardiac arrest subjects. Inclusion criteria were comatose adults who suffered an out-of-hospital cardiac arrest. Mitochondrial biomarkers were measured at 0, 12, 24, 36 and 48 hours after return of spontaneous circulation as well as in healthy controls. Results Out of 111 subjects enrolled, 102 had evaluable samples at 0 hours. Cardiac arrest subjects had higher baseline cytochrome c levels compared to controls (2.18 ng/mL [0.74, 7.74] vs. 0.16 ng/mL [0.03, 0.91], p<0.001), and subjects who died had higher 0 hours cytochrome c levels compared to survivors (3.66 ng/mL [1.40, 14.9] vs. 1.27 ng/mL [0.16, 2.37], p<0.001). There were significantly higher RNAase P (3.3 [1.2, 5.7] vs. 1.2 [0.8, 1.2], p<0.001) and B2M (12.0 [1.0, 22.9], vs. 0.6 [0.6, 1.3], p<0.001) levels in cardiac arrest subjects at baseline compared to the control subjects. There were no differences between survivors and non-survivors for mitochondrial DNA, nuclear DNA, or cell free DNA. Conclusions Cytochrome C was increased in post-cardiac arrest subjects compared to controls, and in post-cardiac arrest non-survivors compared to survivors. Nuclear DNA and cell free DNA was increased in plasma of post-cardiac arrest subjects. There were no differences in mitochondrial DNA, nuclear DNA, or cell free DNA between survivors and non-survivors. Mitochondrial injury markers showed mixed results in post-arrest period. Future research needs to investigate these differences. PMID:28126408
Sridharan, Vijayalakshmi; Thomas, Chanice J.; Cao, Maohua; Melnyk, Stepan B.; Pavliv, Oleksandra; Joseph, Jacob; Singh, Sharda P.; Sharma, Sunil; Moros, Eduardo G.; Boerma, Marjan
2016-01-01
Background and Purpose Thoracic (chemo)radiation therapy is increasingly administered with tyrosine kinase inhibitors (TKI). While TKI have adverse effects on the heart, it is unknown whether combination with other cancer therapies causes enhanced toxicity. We used an animal model to investigate whether radiation and sunitinib interact in their effects on the heart. Material and Methods Male Sprague-Dawley rats received local heart irradiation (9 Gy per day, 5 days). Oral sunitinib (8 or 15 mg/kg bodyweight per day) started on day 1 of irradiation and continued for 2 weeks. Cardiac function was examined with echocardiography. Cardiac remodeling, cell death, left ventricular (LV) oxidative stress markers, mitochondrial morphology and membrane permeability transition pore (mPTP) opening were assessed. Results Cardiac diameter, stroke volume, and LV volume, mass and anterior wall thickness increased in time, but only in the vehicle group. Sunitinib reduced LV inner diameter and volume in systole, which were counteracted by radiation. Sunitinib and radiation showed enhanced effects on mitochondrial morphology and mPTP opening, but not on cardiac troponin I, mast cell numbers or markers of oxidative stress. Conclusions This study found no early enhanced effects of radiation and sunitinib on cardiac function or structure. Long-term effects remain to be determined. PMID:27072940
O'Farrell, Alice C; Evans, Rhys; Silvola, Johanna M U; Miller, Ian S; Conroy, Emer; Hector, Suzanne; Cary, Maurice; Murray, David W; Jarzabek, Monika A; Maratha, Ashwini; Alamanou, Marina; Udupi, Girish Mallya; Shiels, Liam; Pallaud, Celine; Saraste, Antti; Liljenbäck, Heidi; Jauhiainen, Matti; Oikonen, Vesa; Ducret, Axel; Cutler, Paul; McAuliffe, Fionnuala M; Rousseau, Jacques A; Lecomte, Roger; Gascon, Suzanne; Arany, Zoltan; Ky, Bonnie; Force, Thomas; Knuuti, Juhani; Gallagher, William M; Roivainen, Anne; Byrne, Annette T
2017-01-01
Sunitinib is a tyrosine kinase inhibitor approved for the treatment of multiple solid tumors. However, cardiotoxicity is of increasing concern, with a need to develop rational mechanism driven approaches for the early detection of cardiac dysfunction. We sought to interrogate changes in cardiac energy substrate usage during sunitinib treatment, hypothesising that these changes could represent a strategy for the early detection of cardiotoxicity. Balb/CJ mice or Sprague-Dawley rats were treated orally for 4 weeks with 40 or 20 mg/kg/day sunitinib. Cardiac positron emission tomography (PET) was implemented to investigate alterations in myocardial glucose and oxidative metabolism. Following treatment, blood pressure increased, and left ventricular ejection fraction decreased. Cardiac [18F]-fluorodeoxyglucose (FDG)-PET revealed increased glucose uptake after 48 hours. [11C]Acetate-PET showed decreased myocardial perfusion following treatment. Electron microscopy revealed significant lipid accumulation in the myocardium. Proteomic analyses indicated that oxidative metabolism, fatty acid β-oxidation and mitochondrial dysfunction were among the top myocardial signalling pathways perturbed. Sunitinib treatment results in an increased reliance on glycolysis, increased myocardial lipid deposition and perturbed mitochondrial function, indicative of a fundamental energy crisis resulting in compromised myocardial energy metabolism and function. Our findings suggest that a cardiac PET strategy may represent a rational approach to non-invasively monitor metabolic pathway remodeling following sunitinib treatment.
Silvola, Johanna M. U.; Miller, Ian S.; Conroy, Emer; Hector, Suzanne; Cary, Maurice; Murray, David W.; Jarzabek, Monika A.; Maratha, Ashwini; Alamanou, Marina; Udupi, Girish Mallya; Shiels, Liam; Pallaud, Celine; Saraste, Antti; Liljenbäck, Heidi; Jauhiainen, Matti; Oikonen, Vesa; Ducret, Axel; Cutler, Paul; McAuliffe, Fionnuala M.; Rousseau, Jacques A.; Lecomte, Roger; Gascon, Suzanne; Arany, Zoltan; Ky, Bonnie; Force, Thomas; Knuuti, Juhani; Gallagher, William M.; Roivainen, Anne; Byrne, Annette T.
2017-01-01
Sunitinib is a tyrosine kinase inhibitor approved for the treatment of multiple solid tumors. However, cardiotoxicity is of increasing concern, with a need to develop rational mechanism driven approaches for the early detection of cardiac dysfunction. We sought to interrogate changes in cardiac energy substrate usage during sunitinib treatment, hypothesising that these changes could represent a strategy for the early detection of cardiotoxicity. Balb/CJ mice or Sprague-Dawley rats were treated orally for 4 weeks with 40 or 20 mg/kg/day sunitinib. Cardiac positron emission tomography (PET) was implemented to investigate alterations in myocardial glucose and oxidative metabolism. Following treatment, blood pressure increased, and left ventricular ejection fraction decreased. Cardiac [18F]-fluorodeoxyglucose (FDG)-PET revealed increased glucose uptake after 48 hours. [11C]Acetate-PET showed decreased myocardial perfusion following treatment. Electron microscopy revealed significant lipid accumulation in the myocardium. Proteomic analyses indicated that oxidative metabolism, fatty acid β-oxidation and mitochondrial dysfunction were among the top myocardial signalling pathways perturbed. Sunitinib treatment results in an increased reliance on glycolysis, increased myocardial lipid deposition and perturbed mitochondrial function, indicative of a fundamental energy crisis resulting in compromised myocardial energy metabolism and function. Our findings suggest that a cardiac PET strategy may represent a rational approach to non-invasively monitor metabolic pathway remodeling following sunitinib treatment. PMID:28129334
Roy, Soumya Sinha; Biswas, Swati; Ray, Manju; Ray, Subhankar
2003-01-01
Previous publications from our laboratory have shown that methylglyoxal inhibits mitochondrial respiration of malignant and cardiac cells, but it has no effect on mitochondrial respiration of other normal cells [Biswas, Ray, Misra, Dutta and Ray (1997) Biochem. J. 323, 343-348; Ray, Biswas and Ray (1997) Mol. Cell. Biochem. 171, 95-103]. However, this inhibitory effect of methylglyoxal is not significant in cardiac tissue slices. Moreover, post-mitochondrial supernatant (PMS) of cardiac cells could almost completely protect the mitochondrial respiration against the inhibitory effect of methylglyoxal. A systematic search indicated that creatine present in cardiac cells is responsible for this protective effect. Glutathione has also some protective effect. However, creatine phosphate, creatinine, urea, glutathione disulphide and beta-mercaptoethanol have no protective effect. The inhibitory and protective effects of methylglyoxal and creatine respectively on cardiac mitochondrial respiration were studied with various concentrations of both methylglyoxal and creatine. Interestingly, neither creatine nor glutathione have any protective effect on the inhibition by methylglyoxal on the mitochondrial respiration of Ehrlich ascites carcinoma cells. The creatine and glutathione contents of several PMS, which were tested for the possible protective effect, were measured. The activities of two important enzymes, namely glyoxalase I and creatine kinase, which act upon glutathione plus methylglyoxal and creatine respectively, were also measured in different PMS. Whether mitochondrial creatine kinase had any role in the protective effect of creatine had also been investigated using 1-fluoro-2,4-dinitrobenzene, an inhibitor of creatine kinase. The differential effect of creatine on mitochondria of cardiac and malignant cells has been discussed with reference to the therapeutic potential of methylglyoxal. PMID:12605598
Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart.
Gómez, Luis A; Monette, Jeffrey S; Chavez, Juan D; Maier, Claudia S; Hagen, Tory M
2009-10-01
Accumulation of mitochondrial electron transport chain (ETC) defects is a recognized hallmark of the age-associated decline in cardiac bioenergetics; however, the molecular events involved are only poorly understood. In the present work, we hypothesized that age-related ETC deterioration stemmed partly from disassociation of large solid-state macromolecular assemblies termed "supercomplexes". Mitochondrial proteins from young and old rat hearts were separated by blue native-PAGE, protein bands analyzed by LC-MALDI-MS/MS, and protein levels quantified by densitometry. Results showed that supercomplexes comprised of various stoichiometries of complexes I, III and IV were observed, and declined significantly (p<0.05, n=4) with age. Supercomplexes displaying the highest molecular masses were the most severely affected. Considering that certain diseases (e.g. Barth Syndrome) display similar supercomplex destabilization as our results for aging, the deterioration in ETC supercomplexes may be an important underlying factor for both impaired mitochondrial function and loss of cardiac bioenergetics with age.
Sproule, Douglas M; Kaufmann, Petra
2008-10-01
Since the initial description almost 25 years ago, the syndrome of mitochondrial encephalopathy, lactic acidosis, and strokelike episodes (MELAS) has been a useful model to study the complex interplay of factors that define mitochondrial disease. This syndrome, most commonly caused by an A-to-G transition mutation at position 3243 of the mitochondrial genome, is typified by characteristic neurological manifestations including seizures, encephalopathy, and strokelike episodes, as well as other frequent secondary manifestations including short stature, cognitive impairment, migraines, depression, cardiomyopathy, cardiac conduction defects, and diabetes mellitus. In this review, we discuss the history, pathogenesis, clinical features, and diagnostic and management strategies of mitochondrial disease in general and of MELAS in particular. We explore features of mitochondrial genetics, including the concepts of heteroplasmy, mitotic segregation, and threshold effect, as a basis for understanding the variability and complicated inheritance patterns seen with this group of diseases. We also describe systemic manifestations of MELAS-associated mutations, including cardiac, renal, endocrine, gastrointestinal, and endothelial abnormalities and pathology, as well as the hypothetical role of derangements to COX enzymatic function in driving the unique pathology and clinical manifestations of MELAS. Although therapeutic options for MELAS and other mitochondrial diseases remain limited, and recent trials have been disappointing, we also consider current and potential therapeutic modalities.
Tigchelaar, Wardit; Yu, Hongjuan; de Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Silljé, Herman H W
2015-01-15
Recently, a locus at the mitochondrial exo/endonuclease EXOG gene, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and hypertrophy in cardiomyocytes. Depletion of EXOG in primary neonatal rat ventricular cardiomyocytes (NRVCs) induced a marked increase in cardiomyocyte hypertrophy. Depletion of EXOG, however, did not result in loss of mitochondrial DNA integrity. Although EXOG depletion did not induce fetal gene expression and common hypertrophy pathways were not activated, a clear increase in ribosomal S6 phosphorylation was observed, which readily explains increased protein synthesis. With the use of a Seahorse flux analyzer, it was shown that the mitochondrial oxidative consumption rate (OCR) was increased 2.4-fold in EXOG-depleted NRVCs. Moreover, ATP-linked OCR was 5.2-fold higher. This increase was not explained by mitochondrial biogenesis or alterations in mitochondrial membrane potential. Western blotting confirmed normal levels of the oxidative phosphorylation (OXPHOS) complexes. The increased OCR was accompanied by a 5.4-fold increase in mitochondrial ROS levels. These increased ROS levels could be normalized with specific mitochondrial ROS scavengers (MitoTEMPO, mnSOD). Remarkably, scavenging of excess ROS strongly attenuated the hypertrophic response. In conclusion, loss of EXOG affects normal mitochondrial function resulting in increased mitochondrial respiration, excess ROS production, and cardiomyocyte hypertrophy. Copyright © 2015 the American Physiological Society.
Wüst, Rob C I; Stienen, Ger J M
2018-04-01
The rate of oxidative phosphorylation depends on the contractile activity of the heart. Cardiac mitochondrial oxidative phosphorylation is determined by free ADP concentration, mitochondrial Ca 2+ accumulation, mitochondrial enzyme activities, and Krebs cycle intermediates. The purpose of the present study was to examine the factors that limit oxidative phosphorylation upon rapid changes in contractile activity in cardiac muscle. We tested the hypotheses that prior contractile performance enhances the changes in NAD(P)H and FAD concentration upon an increase in contractile activity and that this mitochondrial "priming" depends on pyruvate dehydrogenase activity. Intact rat cardiac trabeculae were electrically stimulated at 0.5 Hz for at least 30 min. Thereafter, two equal bouts at elevated stimulation frequency of 1, 2, or 3 Hz were applied for 3 min with 3 min of 0.5-Hz stimulation in between. No discernible time delay was observed in the changes in NAD(P)H and FAD fluorescence upon rapid changes in contractile activity. The amplitudes of the rapid changes in fluorescence upon an increase in stimulation frequency (the on-transients) were smaller than upon a decrease in stimulation frequency (the off-transients). A first bout in glucose-containing superfusion solution resulted, during the second bout, in an increase in the amplitudes of the on-transients, but the off-transients remained the same. No such priming effect was observed after addition of 10 mM pyruvate. These results indicate that mitochondrial priming can be observed in cardiac muscle in situ and that pyruvate dehydrogenase activity is critically involved in the mitochondrial adaptation to increases in contractile performance. NEW & NOTEWORTHY Mitochondrial respiration increases with increased cardiac contractile activity. Similar to mitochondrial "priming" in skeletal muscle, we hypothesized that cardiac mitochondrial activity is altered upon successive bouts of contractions and depends on pyruvate dehydrogenase activity. We found altered bioenergetics upon repeated contractile periods, indicative of mitochondrial priming in rat myocardium. No effect was seen when pyruvate was added to the perfusate. As such, pyruvate dehydrogenase activity is involved in the mitochondrial adaptation to increased contractile performance.
A novel fission-independent role of dynamin-related protein 1 in cardiac mitochondrial respiration
Zhang, Huiliang; Wang, Pei; Bisetto, Sara; Yoon, Yisang; Chen, Quan; Sheu, Shey-Shing; Wang, Wang
2017-01-01
Aims Mitochondria in adult cardiomyocytes exhibit static morphology and infrequent dynamic changes, despite the high abundance of fission and fusion regulatory proteins in the heart. Previous reports have indicated that fusion proteins may bear functions beyond morphology regulation. Here, we investigated the role of fission protein, dynamin-related protein 1 (DRP1), on mitochondrial respiration regulation in adult cardiomyocytes. Methods and results By using genetic or pharmacological approaches, we manipulated the activity or protein level of fission and fusion proteins and found they mildly influenced mitochondrial morphology in adult rodent cardiomyocytes, which is in contrast to their significant effect in H9C2 cardiac myoblasts. Intriguingly, inhibiting endogenous DRP1 by dominant-negative DRP1 mutation (K38A), shRNA, or Mdivi-1 suppressed maximal respiration and respiratory control ratio in isolated mitochondria from adult mouse heart or in adult cardiomyocytes from rat. Meanwhile, basal respiration was increased due to increased proton leak. Facilitating mitofusin-mediated fusion by S3 compound, however, failed to inhibit mitochondrial respiration in adult cardiomyocytes. Mechanistically, DRP1 inhibition did not affect the maximal activity of individual respiratory chain complexes or the assembly of supercomplexes. Knocking out cyclophilin D, a regulator of mitochondrial permeability transition pore (mPTP), abolished the effect of DRP1 inhibition on respiration. Finally, DRP1 inhibition decreased transient mPTP-mediated mitochondrial flashes, delayed laser-induced mPTP opening and suppressed mitochondrial reactive oxygen species (ROS). Conclusion These results uncover a novel non-canonical function of the fission protein, DRP1 in maintaining or positively stimulating mitochondrial respiration, bioenergetics and ROS signalling in adult cardiomyocyte, which is likely independent of morphological changes. PMID:27794519
A novel fission-independent role of dynamin-related protein 1 in cardiac mitochondrial respiration.
Zhang, Huiliang; Wang, Pei; Bisetto, Sara; Yoon, Yisang; Chen, Quan; Sheu, Shey-Shing; Wang, Wang
2017-02-01
Mitochondria in adult cardiomyocytes exhibit static morphology and infrequent dynamic changes, despite the high abundance of fission and fusion regulatory proteins in the heart. Previous reports have indicated that fusion proteins may bear functions beyond morphology regulation. Here, we investigated the role of fission protein, dynamin-related protein 1 (DRP1), on mitochondrial respiration regulation in adult cardiomyocytes. By using genetic or pharmacological approaches, we manipulated the activity or protein level of fission and fusion proteins and found they mildly influenced mitochondrial morphology in adult rodent cardiomyocytes, which is in contrast to their significant effect in H9C2 cardiac myoblasts. Intriguingly, inhibiting endogenous DRP1 by dominant-negative DRP1 mutation (K38A), shRNA, or Mdivi-1 suppressed maximal respiration and respiratory control ratio in isolated mitochondria from adult mouse heart or in adult cardiomyocytes from rat. Meanwhile, basal respiration was increased due to increased proton leak. Facilitating mitofusin-mediated fusion by S3 compound, however, failed to inhibit mitochondrial respiration in adult cardiomyocytes. Mechanistically, DRP1 inhibition did not affect the maximal activity of individual respiratory chain complexes or the assembly of supercomplexes. Knocking out cyclophilin D, a regulator of mitochondrial permeability transition pore (mPTP), abolished the effect of DRP1 inhibition on respiration. Finally, DRP1 inhibition decreased transient mPTP-mediated mitochondrial flashes, delayed laser-induced mPTP opening and suppressed mitochondrial reactive oxygen species (ROS). These results uncover a novel non-canonical function of the fission protein, DRP1 in maintaining or positively stimulating mitochondrial respiration, bioenergetics and ROS signalling in adult cardiomyocyte, which is likely independent of morphological changes. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.
Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle*
De La Fuente, Sergio; Fernandez-Sanz, Celia; Vail, Caitlin; Agra, Elorm J.; Holmstrom, Kira; Sun, Junhui; Mishra, Jyotsna; Williams, Dewight; Finkel, Toren; Murphy, Elizabeth; Joseph, Suresh K.; Sheu, Shey-Shing; Csordás, György
2016-01-01
Control of myocardial energetics by Ca2+ signal propagation to the mitochondrial matrix includes local Ca2+ delivery from sarcoplasmic reticulum (SR) ryanodine receptors (RyR2) to the inner mitochondrial membrane (IMM) Ca2+ uniporter (mtCU). mtCU activity in cardiac mitochondria is relatively low, whereas the IMM surface is large, due to extensive cristae folding. Hence, stochastically distributed mtCU may not suffice to support local Ca2+ transfer. We hypothesized that mtCU concentrated at mitochondria-SR associations would promote the effective Ca2+ transfer. mtCU distribution was determined by tracking MCU and EMRE, the proteins essential for channel formation. Both proteins were enriched in the IMM-outer mitochondrial membrane (OMM) contact point submitochondrial fraction and, as super-resolution microscopy revealed, located more to the mitochondrial periphery (inner boundary membrane) than inside the cristae, indicating high accessibility to cytosol-derived Ca2+ inputs. Furthermore, MCU immunofluorescence distribution was biased toward the mitochondria-SR interface (RyR2), and this bias was promoted by Ca2+ signaling activity in intact cardiomyocytes. The SR fraction of heart homogenate contains mitochondria with extensive SR associations, and these mitochondria are highly enriched in EMRE. Size exclusion chromatography suggested for EMRE- and MCU-containing complexes a wide size range and also revealed MCU-containing complexes devoid of EMRE (thus disabled) in the mitochondrial but not the SR fraction. Functional measurements suggested more effective mtCU-mediated Ca2+ uptake activity by the mitochondria of the SR than of the mitochondrial fraction. Thus, mtCU “hot spots” can be formed at the cardiac muscle mitochondria-SR associations via localization and assembly bias, serving local Ca2+ signaling and the excitation-energetics coupling. PMID:27637331
Xue, Run-Qing; Xu, Man; Yu, Xiao-Jiang; Liu, Long-Zhu; Zang, Wei-Jin
2017-10-25
Ischemic heart disease (IHD) is the life-threatening cardiovascular disease. Mitochondria have emerged as key participants and regulators of cellular energy demands and signal transduction. Mitochondrial quality is controlled by a number of coordinated mechanisms including mitochondrial fission, fusion and mitophagy, which plays an important role in maintaining healthy mitochondria and cardiac function. Recently, dysfunction of each process in mitochondrial quality control has been observed in the ischemic hearts. This review describes the mechanism of mitochondrial dynamics and mitophagy as well as its performance linked to myocardial ischemia. Moreover, in combination with our study, we will discuss the effect of vagal nerve on mitochondria in cardio-protection.
Mutations in the mitochondrial thioredoxin reductase gene TXNRD2 cause dilated cardiomyopathy.
Sibbing, Dirk; Pfeufer, Arne; Perisic, Tamara; Mannes, Alexander M; Fritz-Wolf, Karin; Unwin, Sarah; Sinner, Moritz F; Gieger, Christian; Gloeckner, Christian Johannes; Wichmann, Heinz-Erich; Kremmer, Elisabeth; Schäfer, Zasie; Walch, Axel; Hinterseer, Martin; Näbauer, Michael; Kääb, Stefan; Kastrati, Adnan; Schömig, Albert; Meitinger, Thomas; Bornkamm, Georg W; Conrad, Marcus; von Beckerath, Nicolas
2011-05-01
Cardiac energy requirement is met to a large extent by oxidative phosphorylation in mitochondria that are highly abundant in cardiac myocytes. Human mitochondrial thioredoxin reductase (TXNRD2) is a selenocysteine-containing enzyme essential for mitochondrial oxygen radical scavenging. Cardiac-specific deletion of Txnrd2 in mice results in dilated cardiomyopathy (DCM). The aim of this study was to investigate whether TXNRD2 mutations explain a fraction of monogenic DCM cases. Sequencing and subsequent genotyping of TXNRD2 in patients diagnosed with DCM (n = 227) and in DCM-free (n = 683) individuals from the general population sample KORA S4 was performed. The functional impact of observed mutations on Txnrd2 function was tested in mouse fibroblasts. We identified two novel amino acid residue-altering TXNRD2 mutations [175G > A (Ala59Thr) and 1124G > A (Gly375Arg)] in three heterozygous carriers among 227 patients that were not observed in the 683 DCM-free individuals. Both DCM-associated mutations result in amino acid substitutions of highly conserved residues in helices contributing to the flavin-adenine dinucleotide (FAD)-binding domain of TXNRD2. Functional analysis of both mutations in Txnrd2(-/-) mouse fibroblasts revealed that contrasting to wild-type (wt) Txnrd2, neither mutant did restore Txnrd2 function. Mutants even impaired the survival of Txnrd2 wt cells under oxidative stress by a dominant-negative mechanism. For the first time, we describe mutations in DCM patients in a gene involved in the regulation of cellular redox state. TXNRD2 mutations may explain a fraction of human DCM disease burden.
Wang, Qiurong; Yang, Lifang; Hua, Yinan; Nair, Sreejayan; Xu, Xihui; Ren, Jun
2014-01-01
Aim: Paraquat, a quaternary nitrogen herbicide, is a highly toxic prooxidant resulting in multi-organ failure including the heart although the underlying mechanism still remains elusive. This study was designed to examine the role of the cellular fuel sensor AMP-activated protein kinase (AMPK) in paraquat-induced cardiac contractile and mitochondrial injury. Results: Wild-type and transgenic mice with overexpression of a mutant AMPK α2 subunit (kinase dead, KD), with reduced activity in both α1 and α2 subunits, were administered with paraquat (45 mg/kg) for 48 h. Paraquat elicited cardiac mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic diameter and reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca2+ handling, reduced cell survival, and overt mitochondrial damage (loss in mitochondrial membrane potential). In addition, paraquat treatment promoted phosphorylation of AMPK and autophagy. Interestingly, deficiency in AMPK attenuated paraquat-induced cardiac contractile and intracellular Ca2+ derangement. The beneficial effect of AMPK inhibition was associated with inhibition of the AMPK-TSC-mTOR-ULK1 signaling cascade. In vitro study revealed that inhibitors for AMPK and autophagy attenuated paraquat-induced cardiomyocyte contractile dysfunction. Conclusion: Taken together, our findings revealed that AMPK may mediate paraquat-induced myocardial anomalies possibly by regulating the AMPK/mTOR-dependent autophagy. PMID:25092649
Liu, Ting; Takimoto, Eiki; Dimaano, Veronica L.; DeMazumder, Deeptankar; Kettlewell, Sarah; Smith, Godfrey; Sidor, Agnieszka; Abraham, Theodore P.; O’Rourke, Brian
2014-01-01
Rationale In cardiomyocytes from failing hearts, insufficient mitochondrial Ca2+ ([Ca2+]m) accumulation secondary to cytoplasmic Na+ overload decreases NAD(P)H/NAD(P)+ redox potential and increases oxidative stress when workload increases. These effects are abolished by enhancing [Ca2+]m with acute treatment with CGP-37157 (CGP), an inhibitor of the mitochondrial Na+/Ca2+ exchanger. Objective To determine if chronic CGP treatment mitigates contractile dysfunction and arrhythmias in an animal model of heart failure (HF) and sudden cardiac death (SCD). Methods and Results Here, we describe a novel guinea-pig HF/SCD model employing aortic constriction combined with daily β-adrenergic receptor stimulation (ACi) and show that chronic CGP treatment (ACi+CGP) attenuates cardiac hypertrophic remodeling, pulmonary edema, and interstitial fibrosis and prevents cardiac dysfunction and SCD. In the ACi group 4 weeks after pressure-overload, fractional shortening and the rate of left ventricular pressure development decreased by 36% and 32%, respectively, compared to sham-operated controls; in contrast, cardiac function was completely preserved in the ACi+CGP group. CGP treatment also significantly reduced the incidence of premature ventricular beats and prevented fatal episodes of ventricular fibrillation, but did not prevent QT prolongation. Without CGP treatment, mortality was 61% in the ACi group within 4 weeks of aortic constriction, while the death rate in the ACi+CGP group was not different from sham-operated animals. Conclusions The findings demonstrate the critical role played by altered mitochondrial Ca2+ dynamics in the development of HF and HF-associated SCD; moreover, they reveal a novel strategy for treating SCD and cardiac decompensation in HF. PMID:24780171
Kain, Vasundhara; Sawant, Mithila A; Dasgupta, Aparajita; Jaiswal, Gaurav; Vyas, Alok; Padhye, Subhash; Sitasawad, Sandhya L
2016-03-01
A key contributor to the pathophysiology of diabetic cardiomyopathy, mitochondrial superoxide can be adequately countered by Mn-superoxide dismutase, which constitutes the first line of defense against mitochondrial oxidative stress. Our group has recently synthesized low molecular weight SOD mimics, demonstrating superior protection against oxidative damages to kidney cells. In the current study, we sought to evaluate the protective effect of the SOD mimic ML1 against high glucose induced cardiomyopathy in diabetes. Mechanistic studies using rat cardiac myoblast H9c2 showed that ML1 markedly inhibited High Glucose (HG) induced cytotoxicity. This was associated with increased Mn-SOD expression along with decreased mitochondrial [Formula: see text], ONOO- and Ca 2+ accumulation, unveiling its anti-oxidant potentials. ML1 also attenuated HG-induced loss of mitochondrial membrane potential (Δ Ψ m ) and release of cytochrome c, suggesting that ML1 effectuates its cytoprotective action via the preservation of mitochondrial function. In an ex-vivo model normal adult rat ventricular myocytes (ARVMs) were isolated and cultured in either normal glucose (5.5 mmol/l glucose) or HG (25.5 mmol/l glucose) conditions and the efficiency of ML-1 was analyzed by studying contractile function and calcium indices. Mechanical properties were assessed using a high-speed video-edge detection system, and intracellular Ca 2+ transients were recorded in fura-2-loaded myocytes. Pretreatment of myocytes with ML1 (10 nM) ameliorated HG induced abnormalities in relaxation including depressed peak shortening, prolonged time to 90% relenghthening, and slower Ca 2+ transient decay. Thus, ML1 exhibits significant cardio protection against oxidative damage, perhaps through its potent antioxidant action via activation of Mn-SOD.
Promoting PGC-1α-driven mitochondrial biogenesis is detrimental in pressure-overloaded mouse hearts
Karamanlidis, Georgios; Garcia-Menendez, Lorena; Kolwicz, Stephen C.; Lee, Chi Fung
2014-01-01
Mitochondrial dysfunction in animal models of heart failure is associated with downregulation of the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α pathway. To test whether PGC-1α is an appropriate therapeutic target for increasing mitochondrial biogenesis and improving function in heart failure, we used a transgenic (TG) mouse model of moderate overexpression of PGC-1α (∼3-fold) in the heart. TG mice had small increases in citrate synthase activity and mitochondria size in the heart without alterations in myocardial energetics or cardiac function at baseline. In vivo dobutamine stress increased fractional shortening in wild-type mice, but this increase was attenuated in TG mice, whereas ex vivo isolated perfused TG hearts demonstrated normal functional and energetic response to high workload challenge. When subjected to pressure overload by transverse aortic constriction (TAC), TG mice displayed a significantly greater acute mortality for both male and female mice; however, long-term survival up to 8 wk was similar between the two groups. TG mice also showed a greater decrease in fractional shortening and a greater increase in left ventricular chamber dimension in response to TAC. Mitochondrial gene expression and citrate synthase activity were mildly increased in TG mice compared with wild-type mice, and this difference was also maintained after TAC. Our data suggest that a moderate level of PGC-1α overexpression in the heart compromises acute survival and does not improve cardiac function during chronic pressure overload in mice. PMID:25172896
Zhou, Lufang; Cortassa, Sonia; Wei, An-Chi; Aon, Miguel A; Winslow, Raimond L; O'Rourke, Brian
2009-10-07
Ischemia-induced shortening of the cardiac action potential and its heterogeneous recovery upon reperfusion are thought to set the stage for reentrant arrhythmias and sudden cardiac death. We have recently reported that the collapse of mitochondrial membrane potential (DeltaPsi(m)) through a mechanism triggered by reactive oxygen species (ROS), coupled to the opening of sarcolemmal ATP-sensitive potassium (K(ATP)) channels, contributes to electrical dysfunction during ischemia-reperfusion. Here we present a computational model of excitation-contraction coupling linked to mitochondrial bioenergetics that incorporates mitochondrial ROS-induced ROS release with coupling between the mitochondrial energy state and electrical excitability mediated by the sarcolemmal K(ATP) current (I(K,ATP)). Whole-cell model simulations demonstrate that increasing the fraction of oxygen diverted from the respiratory chain to ROS production triggers limit-cycle oscillations of DeltaPsi(m), redox potential, and mitochondrial respiration through the activation of a ROS-sensitive inner membrane anion channel. The periods of transient mitochondrial uncoupling decrease the cytosolic ATP/ADP ratio and activate I(K,ATP), consequently shortening the cellular action potential duration and ultimately suppressing electrical excitability. The model simulates emergent behavior observed in cardiomyocytes subjected to metabolic stress and provides a new tool for examining how alterations in mitochondrial oxidative phosphorylation will impact the electrophysiological, contractile, and Ca(2+) handling properties of the cardiac cell. Moreover, the model is an important step toward building multiscale models that will permit investigation of the role of spatiotemporal heterogeneity of mitochondrial metabolism in the mechanisms of arrhythmogenesis and contractile dysfunction in cardiac muscle.
De Giusti, V. C.; Caldiz, C. I.; Ennis, I. L.; Pérez, N. G.; Cingolani, H. E.; Aiello, E. A.
2013-01-01
Mitochondria represent major sources of basal reactive oxygen species (ROS) production of the cardiomyocyte. The role of ROS as signaling molecules that mediate different intracellular pathways has gained increasing interest among physiologists in the last years. In our lab, we have been studying the participation of mitochondrial ROS in the intracellular pathways triggered by the renin-angiotensin II-aldosterone system (RAAS) in the myocardium during the past few years. We have demonstrated that acute activation of cardiac RAAS induces mitochondrial ATP-dependent potassium channel (mitoKATP) opening with the consequent enhanced production of mitochondrial ROS. These oxidant molecules, in turn, activate membrane transporters, as sodium/hydrogen exchanger (NHE-1) and sodium/bicarbonate cotransporter (NBC) via the stimulation of the ROS-sensitive MAPK cascade. The stimulation of such effectors leads to an increase in cardiac contractility. In addition, it is feasible to suggest that a sustained enhanced production of mitochondrial ROS induced by chronic cardiac RAAS, and hence, chronic NHE-1 and NBC stimulation, would also result in the development of cardiac hypertrophy. PMID:23755021
De Giusti, V C; Caldiz, C I; Ennis, I L; Pérez, N G; Cingolani, H E; Aiello, E A
2013-01-01
Mitochondria represent major sources of basal reactive oxygen species (ROS) production of the cardiomyocyte. The role of ROS as signaling molecules that mediate different intracellular pathways has gained increasing interest among physiologists in the last years. In our lab, we have been studying the participation of mitochondrial ROS in the intracellular pathways triggered by the renin-angiotensin II-aldosterone system (RAAS) in the myocardium during the past few years. We have demonstrated that acute activation of cardiac RAAS induces mitochondrial ATP-dependent potassium channel (mitoKATP) opening with the consequent enhanced production of mitochondrial ROS. These oxidant molecules, in turn, activate membrane transporters, as sodium/hydrogen exchanger (NHE-1) and sodium/bicarbonate cotransporter (NBC) via the stimulation of the ROS-sensitive MAPK cascade. The stimulation of such effectors leads to an increase in cardiac contractility. In addition, it is feasible to suggest that a sustained enhanced production of mitochondrial ROS induced by chronic cardiac RAAS, and hence, chronic NHE-1 and NBC stimulation, would also result in the development of cardiac hypertrophy.
Exercise training improves vascular mitochondrial function
Park, Song-Young; Rossman, Matthew J.; Gifford, Jayson R.; Bharath, Leena P.; Bauersachs, Johann; Richardson, Russell S.; Abel, E. Dale; Symons, J. David
2016-01-01
Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1, isocitrate dehydrogenase (Idh) 2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser1177), and suppressed reactive oxygen species generation (all P < 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function. PMID:26825520
Yang, Long; Xie, Peng; Wu, Jianjiang; Yu, Jin; Yu, Tian; Wang, Haiying; Wang, Jiang; Xia, Zhengyuan; Zheng, Hong
2016-01-01
Background: Sevoflurane postconditioning (SPostC) can exert myocardial protective effects similar to ischemic preconditioning. However, the exact myocardial protection mechanism by SPostC is unclear. Studies indicate that hypoxia-inducible factor-1 (HIF-1) maintains cellular respiration homeostasis by regulating mitochondrial respiratory chain enzyme activity under hypoxic conditions. This study investigated whether SPostC could regulate the expression of myocardial HIF-1α and to improve mitochondrial respiratory function, thereby relieving myocardial ischemia-reperfusion injury in rats. Methods: The myocardial ischemia-reperfusion rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, postconditioning was performed using sevoflurane alone or in combination with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). The changes in hemodynamic parameters, HIF-1α protein expression levels, mitochondrial respiratory function and enzyme activity, mitochondrial reactive oxygen species (ROS) production rates, and mitochondrial ultrastructure were measured or observed. Results: Compared to the ischemia-reperfusion (I/R) group, HIF-1α expression in the SPostC group was significantly up-regulated. Additionally, cardiac function indicators, mitochondrial state 3 respiratory rate, respiratory control ratio (RCR), cytochrome C oxidase (CcO), NADH oxidase (NADHO), and succinate oxidase (SUCO) activities, mitochondrial ROS production rate, and mitochondrial ultrastructure were significantly better than those in the I/R group. However, these advantages were completely reversed by the HIF-1α specific inhibitor 2ME2 (P<0.05). Conclusion: The myocardial protective function of SPostC might be associated with the improvement of mitochondrial respiratory function after up-regulation of HIF-1α expression. PMID:27830025
Yang, Long; Xie, Peng; Wu, Jianjiang; Yu, Jin; Yu, Tian; Wang, Haiying; Wang, Jiang; Xia, Zhengyuan; Zheng, Hong
2016-01-01
Sevoflurane postconditioning (SPostC) can exert myocardial protective effects similar to ischemic preconditioning. However, the exact myocardial protection mechanism by SPostC is unclear. Studies indicate that hypoxia-inducible factor-1 (HIF-1) maintains cellular respiration homeostasis by regulating mitochondrial respiratory chain enzyme activity under hypoxic conditions. This study investigated whether SPostC could regulate the expression of myocardial HIF-1α and to improve mitochondrial respiratory function, thereby relieving myocardial ischemia-reperfusion injury in rats. The myocardial ischemia-reperfusion rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, postconditioning was performed using sevoflurane alone or in combination with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). The changes in hemodynamic parameters, HIF-1α protein expression levels, mitochondrial respiratory function and enzyme activity, mitochondrial reactive oxygen species (ROS) production rates, and mitochondrial ultrastructure were measured or observed. Compared to the ischemia-reperfusion (I/R) group, HIF-1α expression in the SPostC group was significantly up-regulated. Additionally, cardiac function indicators, mitochondrial state 3 respiratory rate, respiratory control ratio (RCR), cytochrome C oxidase (C c O), NADH oxidase (NADHO), and succinate oxidase (SUCO) activities, mitochondrial ROS production rate, and mitochondrial ultrastructure were significantly better than those in the I/R group. However, these advantages were completely reversed by the HIF-1α specific inhibitor 2ME2 ( P <0.05). The myocardial protective function of SPostC might be associated with the improvement of mitochondrial respiratory function after up-regulation of HIF-1α expression.
[Anesthetic management for patients with mitochondrial disease].
Imai, Yousuke; Yamada, Yoshitsugu
2014-01-01
Mitochondrial diseases are caused by a decrease in ATP production due to mutations of mitochondrial or mitochondria-related nuclear DNA. Their effects are likely to appear in tissues with a high energy demand, including skeletal muscle, nervous, and cardiovascular systems. Cardiac manifestations of mitochondrial diseases can be divided into cardiomyopathies, which are primarily hypertrophic and dilated cardiomyopathies, and electropathies, which are primarily conduction system disease and ventricular pre-excitation. The first principle of anesthesia for patients with mitochondrial diseases is to avoid any additional burden on the already declined metabolic functions. Appropriate oxygenation, minimization of the oxygen demand, stable cardiovascular management, maintenance of a normal blood glucose level and body temperature, and effective perioperative pain control are of importance. Most anesthetics have been reported to reduce mitochondrial functions, and although enhancement of the sensitivity and prolongation of the duration of action have been reported, they are clinically used with no major problems. Detailed preoperative evaluation of the disease condition and careful intraoperative monitoring are important for the prevention of perioperative complications.
Moon, Sung Ho; Mancuso, David J.; Sims, Harold F.; Liu, Xinping; Nguyen, Annie L.; Yang, Kui; Guan, Shaoping; Dilthey, Beverly Gibson; Jenkins, Christopher M.; Weinheimer, Carla J.; Kovacs, Attila; Abendschein, Dana; Gross, Richard W.
2016-01-01
Calcium-independent phospholipase A2γ (iPLA2γ) is a mitochondrial enzyme that produces lipid second messengers that facilitate opening of the mitochondrial permeability transition pore (mPTP) and contribute to the production of oxidized fatty acids in myocardium. To specifically identify the roles of iPLA2γ in cardiac myocytes, we generated cardiac myocyte-specific iPLA2γ knock-out (CMiPLA2γKO) mice by removing the exon encoding the active site serine (Ser-477). Hearts of CMiPLA2γKO mice exhibited normal hemodynamic function, glycerophospholipid molecular species composition, and normal rates of mitochondrial respiration and ATP production. In contrast, CMiPLA2γKO mice demonstrated attenuated Ca2+-induced mPTP opening that could be rapidly restored by the addition of palmitate and substantially reduced production of oxidized polyunsaturated fatty acids (PUFAs). Furthermore, myocardial ischemia/reperfusion (I/R) in CMiPLA2γKO mice (30 min of ischemia followed by 30 min of reperfusion in vivo) dramatically decreased oxidized fatty acid production in the ischemic border zones. Moreover, CMiPLA2γKO mice subjected to 30 min of ischemia followed by 24 h of reperfusion in vivo developed substantially less cardiac necrosis in the area-at-risk in comparison with their WT littermates. Furthermore, we found that membrane depolarization in murine heart mitochondria was sensitized to Ca2+ by the presence of oxidized PUFAs. Because mitochondrial membrane depolarization and calcium are known to activate iPLA2γ, these results are consistent with salvage of myocardium after I/R by iPLA2γ loss of function through decreasing mPTP opening, diminishing production of proinflammatory oxidized fatty acids, and attenuating the deleterious effects of abrupt increases in calcium ion on membrane potential during reperfusion. PMID:27453526
Sullivan, E Madison; Pennington, Edward Ross; Green, William D; Beck, Melinda A; Brown, David A; Shaikh, Saame Raza
2018-05-01
Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.
Nakamura, Tomoe Y; Nakao, Shu; Wakabayashi, Shigeo
2016-10-01
Identification of the molecules involved in cell death/survival pathways is important for understanding the mechanisms of cell loss in cardiac disease, and thus is clinically relevant. Ca 2+ -dependent signals are often involved in these pathways. Here, we found that neuronal Ca 2+ -sensor-1 (NCS-1), a Ca 2+ -binding protein, has an important role in cardiac survival during stress. Cardiomyocytes derived from NCS-1-deficient (Ncs1 -/- ) mice were more susceptible to oxidative and metabolic stress than wild-type (WT) myocytes. Cellular ATP levels and mitochondrial respiration rates, as well as the levels of mitochondrial marker proteins, were lower in Ncs1 -/- myocytes. Although oxidative stress elevated mitochondrial proton leak, which exerts a protective effect by inhibiting the production of reactive oxygen species in WT myocytes, this response was considerably diminished in Ncs1 -/- cardiomyocytes, and this would be a major reason for cell death. Consistently, H 2 O 2 -induced loss of mitochondrial membrane potential, a critical early event in cell death, was accelerated in Ncs1 -/- myocytes. Furthermore, NCS-1 was upregulated in hearts subjected to ischemia-reperfusion, and ischemia-reperfusion injury was more severe in Ncs1 -/- hearts. Activation of stress-induced Ca 2+ -dependent survival pathways, such as Akt and PGC-1α (which promotes mitochondrial biogenesis and function), was diminished in Ncs1 -/- hearts. Overall, these data demonstrate that NCS-1 contributes to stress tolerance in cardiomyocytes at least in part by activating certain Ca 2+ -dependent survival pathways that promote mitochondrial biosynthesis/function and detoxification pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.
Götz, Alexandra; Tyynismaa, Henna; Euro, Liliya; Ellonen, Pekka; Hyötyläinen, Tuulia; Ojala, Tiina; Hämäläinen, Riikka H.; Tommiska, Johanna; Raivio, Taneli; Oresic, Matej; Karikoski, Riitta; Tammela, Outi; Simola, Kalle O.J.; Paetau, Anders; Tyni, Tiina; Suomalainen, Anu
2011-01-01
Infantile cardiomyopathies are devastating fatal disorders of the neonatal period or the first year of life. Mitochondrial dysfunction is a common cause of this group of diseases, but the underlying gene defects have been characterized in only a minority of cases, because tissue specificity of the manifestation hampers functional cloning and the heterogeneity of causative factors hinders collection of informative family materials. We sequenced the exome of a patient who died at the age of 10 months of hypertrophic mitochondrial cardiomyopathy with combined cardiac respiratory chain complex I and IV deficiency. Rigorous data analysis allowed us to identify a homozygous missense mutation in AARS2, which we showed to encode the mitochondrial alanyl-tRNA synthetase (mtAlaRS). Two siblings from another family, both of whom died perinatally of hypertrophic cardiomyopathy, had the same mutation, compound heterozygous with another missense mutation. Protein structure modeling of mtAlaRS suggested that one of the mutations affected a unique tRNA recognition site in the editing domain, leading to incorrect tRNA aminoacylation, whereas the second mutation severely disturbed the catalytic function, preventing tRNA aminoacylation. We show here that mutations in AARS2 cause perinatal or infantile cardiomyopathy with near-total combined mitochondrial respiratory chain deficiency in the heart. Our results indicate that exome sequencing is a powerful tool for identifying mutations in single patients and allows recognition of the genetic background in single-gene disorders of variable clinical manifestation and tissue-specific disease. Furthermore, we show that mitochondrial disorders extend to prenatal life and are an important cause of early infantile cardiac failure. PMID:21549344
Muravyeva, Maria; Sedlic, Filip; Dolan, Nicholas; Bosnjak, Zeljko J; Stadnicka, Anna
2013-01-01
Cardiac mitochondria and the sarcolemmal (sarc)KATP channels contribute to cardioprotective signaling of anesthetic-induced preconditioning (APC). Changes in mitochondrial bioenergetics influence the sarcKATP channel function, but whether this channel has impacts on mitochondria is uncertain. We used the mouse model with deleted pore-forming Kir6.2 subunit of sarcKATP channel (Kir6.2 KO) to investigate whether the functional sarcKATP channels are necessary for isoflurane activation of mitochondrial protective mechanisms. Ventricular cardiomyocytes were isolated from C57Bl6 wild type (WT) and Kir6.2 KO mouse hearts. Flavoprotein autofluorescence, mitochondrial ROS production and mitochondrial membrane potential were monitored by laser-scanning confocal microscopy in intact cardiomyocytes. Cell survival was assessed using H2O2-induced stress. Isoflurane (0.5 mM) increased flavoprotein fluorescence to 180±14% and 190±15% and ROS production to 118±2% and 124±6% of baseline in WT and Kir6.2 KO myocytes, respectively. TMRE fluorescence decreased to 84±6% in WT and to 86±4% in Kir6.2 KO myocytes. This effect was abolished by 5HD. Pretreatment with isoflurane decreased the stress-induced cell death from 31±1% to 21±1% in WT and from 44±2% to 35±2% in Kir6.2 KO myocytes. In conclusion, Kir6.2 deletion increases sensitivity of intact cardiomyocytes t o oxidative stress, but does not alter the isoflurane-elicited protective mitochondrial mechanisms, suggesting independent roles for cardiac mitochondria and sarcKATP channels in APC by isoflurane. PMID:23318991
Wang, Shuyi; Wang, Cong; Turdi, Subat; Richmond, Kacy L; Zhang, Yingmei; Ren, Jun
2018-06-01
Uncorrected obesity contributes to cardiac remodeling and contractile dysfunction although the underlying mechanism remains poorly understood. Mitochondrial aldehyde dehydrogenase (ALDH2) is a mitochondrial enzyme with some promises in a number of cardiovascular diseases. This study was designed to evaluate the impact of ALDH2 on cardiac remodeling and contractile property in high fat diet-induced obesity. Wild-type (WT) and ALDH2 transgenic mice were fed low (10% calorie from fat) or high (45% calorie from fat) fat diet for 5 months prior to the assessment of cardiac geometry and function using echocardiography, IonOptix system, Lectin, and Masson Trichrome staining. Western blot analysis was employed to evaluate autophagy, CaM kinase II, PGC-1α, histone H3K9 methyltransferase SUV39H, and Sirt-1. Our data revealed that high fat diet intake promoted weight gain, cardiac remodeling (hypertrophy and interstitial fibrosis, p < 0.0001) and contractile dysfunction (reduced fractional shortening (p < 0.0001), cardiomyocyte function (p < 0.0001), and intracellular Ca 2+ handling (p = 0.0346)), mitochondrial injury (elevated O 2 - levels, suppressed PGC-1α, and enhanced PGC-1α acetylation, p < 0.0001), elevated SUV39H, suppressed Sirt1, autophagy and phosphorylation of AMPK and CaM kinase II, the effects of which were negated by ALDH2 (p ≤ 0.0162). In vitro incubation of the ALDH2 activator Alda-1 rescued against palmitic acid-induced changes in cardiomyocyte function, the effect of which was nullified by the Sirt-1 inhibitor nicotinamide and the CaM kinase II inhibitor KN-93 (p < 0.0001). The SUV39H inhibitor chaetocin mimicked Alda-1-induced protection again palmitic acid (p < 0.0001). Examination in overweight human revealed an inverse correlation between diastolic cardiac function and ALDH2 gene mutation (p < 0.05). Taken together, these data suggest that ALDH2 serves as an indispensable factor against cardiac anomalies in diet-induced obesity through a mechanism related to autophagy regulation and facilitation of the SUV39H-Sirt1-dependent PGC-1α deacetylation.
Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury.
Kaludercic, Nina; Carpi, Andrea; Menabò, Roberta; Di Lisa, Fabio; Paolocci, Nazareno
2011-07-01
Recent evidence highlights monoamine oxidases (MAO) as another prominent source of oxidative stress. MAO are a class of enzymes located in the outer mitochondrial membrane, deputed to the oxidative breakdown of key neurotransmitters such as norepinephrine, epinephrine and dopamine, and in the process generate H(2)O(2). All these monoamines are endowed with potent modulatory effects on myocardial function. Thus, when the heart is subjected to chronic neuro-hormonal and/or peripheral hemodynamic stress, the abundance of circulating/tissue monoamines can make MAO-derived H(2)O(2) production particularly prominent. This is the case of acute cardiac damage due to ischemia/reperfusion injury or, on a more chronic stand, of the transition from compensated hypertrophy to overt ventricular dilation/pump failure. Here, we will first briefly discuss mitochondrial status and contribution to acute and chronic cardiac disorders. We will illustrate possible mechanisms by which MAO activity affects cardiac biology and function, along with a discussion as to their role as a prominent source of reactive oxygen species. Finally, we will speculate on why MAO inhibition might have a therapeutic value for treating cardiac affections of ischemic and non-ischemic origin. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection. Copyright © 2010 Elsevier B.V. All rights reserved.
SR and mitochondria: calcium cross-talk between kissing cousins.
Dorn, Gerald W; Maack, Christoph
2013-02-01
The processes of excitation-contraction coupling in cardiac myocytes require enormous amounts of energy in the form of ATP, which is produced by oxidative phosphorylation in mitochondria. Due to the constantly varying workloads of the heart, efficient matching of energy supply to demand is a requisite for proper heart function. Ca(2+) is taken up by mitochondria via the mitochondrial Ca(2+) uniporter (MCU) where it stimulates key dehydrogenases of the Krebs cycle to match regeneration of NADH to its oxidation by the respiratory chain. The kinetics of mitochondrial Ca(2+) uptake, however, remain controversial due to the low Ca(2+) sensitivity of the MCU. Here, we review the evidence for the existence of a "mitochondrial Ca(2+) microdomain", in which the close association of the sarcoplasmic reticulum (SR) to mitochondria provides "hot spots" of very high Ca(2+) concentrations in the vicinity of mitochondria, sufficient to overcome the low Ca(2+) affinity of the MCU. Mitofusins 1 and 2 play redundant roles in regulating mitochondrial dynamics by controlling fusion of mitochondria with each other. Recent work revealed a unique role for mitofusin 2 in tethering mitochondria to the sarco-/endoplasmic reticulum in various cell types, including cardiac myocytes. Disruption of SR-mitochondrial Ca(2+) cross talk in heart failure through spatial and ionic alterations may give rise to energetic deficit and oxidative stress, two factors believed to play causal roles in the progression of the disease. On the other hand, excessive mitochondrial Ca(2+) uptake can trigger programmed necrosis, substantiating the ambiguity of the close interplay between these cousin organelles in health and disease. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism". Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhao, Yichao; Xu, Longwei; Qiao, Zhiqing; Gao, Lingchen; Ding, Song; Ying, Xiaoying; Su, Yuanyuan; Lin, Nan; He, Ben; Pu, Jun
2016-03-11
Positive evidence from clinical trials has fueled growing acceptance of traditional Chinese medicine (TCM) for the treatment of cardiac diseases; however, little is known about the underlying mechanisms. Here, we investigated the nature and underlying mechanisms of the effects of YiXin-Shu (YXS), an antioxidant-enriched TCM formula, on myocardial ischemia/reperfusion (MI/R) injury. YXS pretreatment significantly reduced infarct size and improved viable myocardium metabolism and cardiac function in hypercholesterolemic mice. Mechanistically, YXS attenuated myocardial apoptosis by inhibiting the mitochondrial mediated apoptosis pathway (as reflected by inhibition of mitochondrial swelling, cytochrome c release and caspase-9 activity, and normalization of Bcl-2 and Bax levels) without altering the death receptor and endoplasmic reticulum-stress death pathways. Moreover, YXS reduced oxidative/nitrative stress (as reflected by decreased superoxide and nitrotyrosine content and normalized pro- and anti-oxidant enzyme levels). Interestingly, YXS upregulated endogenous nuclear receptors including LXRα, PPARα, PPARβ and ERα, and in-vivo knockdown of cardiac-specific LXRα significantly blunted the cardio-protective effects of YXS. Collectively, these data show that YXS is effective in mitigating MI/R injury by suppressing mitochondrial mediated apoptosis and oxidative stress and by upregulating LXRα, thereby providing a rationale for future clinical trials and clinical applications.
Activation of mitochondrial calpain and increased cardiac injury: beyond AIF release
Thompson, Jeremy; Hu, Ying; Lesnefsky, Edward J.
2015-01-01
Calpain 1 (CPN1) is a ubiquitous cysteine protease that exists in both cytosol and cardiac mitochondria. Mitochondrial CPN1 (mit-CPN1) is located in the intermembrane space and matrix. Activation of mit-CPN1 within the intermembrane space increases cardiac injury by releasing apoptosis-inducing factor from mitochondria during ischemia-reperfusion (IR). We asked if activation of mit-CPN1 is involved in mitochondrial injury during IR. MDL-28170 (MDL) was used to inhibit CPN1 in buffer-perfused hearts following 25-min ischemia and 30-min reperfusion. MDL treatment decreased the release of lactate dehydrogenase into coronary effluent compared with untreated hearts, indicating that inhibition of CPN1 decreases cardiac injury. MDL also prevented the cleavage of spectrin (a substrate of CPN1) in cytosol during IR, supporting that MDL treatment decreased cytosolic calpain activation. In addition, MDL markedly improved calcium retention capacity compared with untreated heart, suggesting that MDL treatment decreases mitochondrial permeability transition pore opening. In addition, we found that IR led to decreased complex I activity, whereas inhibition of mit-CPN1 using MDL protected complex I. Pyruvate dehydrogenase content was decreased following IR. However, pyruvate dehydrogenase content was preserved in MDL-treated mitochondria. Taken together, MDL treatment decreased cardiac injury during IR by inhibiting both cytosolic and mit-CPN1. Activation of mit-CPN1 increases cardiac injury during IR by sensitizing mitochondrial permeability transition pore opening and impairing mitochondrial metabolism through damage of complex I. PMID:26637561
Fritah, Asmaà; Steel, Jennifer H; Nichol, Donna; Parker, Nadeene; Williams, Sharron; Price, Anthony; Strauss, Leena; Ryder, Timothy A; Mobberley, Margaret A; Poutanen, Matti; Parker, Malcolm; White, Roger
2010-06-01
Receptor-interacting protein 140 (RIP140) is a ligand-dependent cofactor for nuclear receptors that regulate networks of genes involved in cellular processes, including metabolism. An important role for RIP140 in metabolic control has been identified in RIP140 null mice, whose phenotypes include derepression of genes involved in energy mobilization or catabolism in adipocytes and a switch to more oxidative fibres in skeletal muscle. We hypothesized that ubiquitous expression of RIP140 would suppress metabolic processes, leading to defects in development or cellular function. The primary effect of exogenous expression of RIP140 mRNA (real-time PCR) and protein (western blotting) in transgenic mice is impaired postnatal heart function. There was rapid onset of cardiac hypertrophy and ventricular fibrosis, detected microscopically, in male RIP140 transgenic mice from 4 weeks of age, resulting in 25% mortality by 5 months. RIP140 exogenous expression in the heart leads to decreased mitochondria state III and state IV membrane potential and oxygen consumption. Quantitative PCR showed more than 50% reduced expression of genes involved in mitochondrial activity and fatty acid metabolism, including mitochondrial transcription factor A, cytochrome oxidase VIIa, cytochrome XII, CD36, medium-chain acyl dehydrogenase, and fatty acid transport protein, many of which are known targets for nuclear receptors, including peroxisome proliferator-activated receptors PPARalpha and PPARdelta and oestrogen-related receptors ERRalpha and ERRgamma. This study demonstrates that RIP140 is an important cofactor in postnatal cardiac function and that inhibition of the action of RIP140 may provide a model system to investigate specific interventions designed to prevent or delay the onset of cardiac disease.
Guzun, Rita; Saks, Valdur
2010-03-08
The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener's cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener's cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures - intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of cytosolic ADP, Pi and Cr/PCr ensures metabolic stability necessary for normal function of cardiac cells.
Marín-Royo, Gema; Gallardo, Isabel; Martínez-Martínez, Ernesto; Gutiérrez, Beatriz; Jurado-López, Raquel; López-Andrés, Natalia; Gutiérrez-Tenorio, Josué; Rial, Eduardo; Bartolomé, Marı A Visitación; Nieto, María Luisa; Cachofeiro, Victoria
2018-02-05
Obesity is accompanied by metabolic alterations characterized by insulin resistance and cardiac lipotoxicity. Galectin-3 (Gal-3) induces cardiac inflammation and fibrosis in the context of obesity; however, its role in the metabolic consequences of obesity is not totally established. We have investigated the potential role of Gal-3 in the cardiac metabolic disturbances associated with obesity. In addition, we have explored whether this participation is, at least partially, acting on mitochondrial damage. Gal-3 inhibition in rats that were fed a high-fat diet (HFD) for 6 weeks with modified citrus pectin (MCP; 100 mg/kg/day) attenuated the increase in cardiac levels of total triglyceride (TG). MCP treatment also prevented the increase in cardiac protein levels of carnitine palmitoyl transferase IA, mitofusin 1, and mitochondrial complexes I and II, reactive oxygen species accumulation and decrease in those of complex V but did not affect the reduction in 18 F-fluorodeoxyglucose uptake observed in HFD rats. The exposure of cardiac myoblasts (H9c2) to palmitic acid increased the rate of respiration, mainly due to an increase in the proton leak, glycolysis, oxidative stress, β-oxidation and reduced mitochondrial membrane potential. Inhibition of Gal-3 activity was unable to affect these changes. Our findings indicate that Gal-3 inhibition attenuates some of the consequences of cardiac lipotoxicity induced by a HFD since it reduced TG and lysophosphatidyl choline (LPC) levels. These reductions were accompanied by amelioration of the mitochondrial damage observed in HFD rats, although no improvement was observed regarding insulin resistance. These findings increase the interest for Gal-3 as a potential new target for therapeutic intervention to prevent obesity-associated cardiac lipotoxicity and subsequent mitochondrial dysfunction . © 2018. Published by The Company of Biologists Ltd.
Marín-Royo, Gema; Gallardo, Isabel; Martínez-Martínez, Ernesto; Gutiérrez, Beatriz; Jurado-López, Raquel; López-Andrés, Natalia; Gutiérrez-Tenorio, Josué; Rial, Eduardo; Bartolomé, María Visitación; Nieto, María Luisa
2018-01-01
ABSTRACT Obesity is accompanied by metabolic alterations characterized by insulin resistance and cardiac lipotoxicity. Galectin-3 (Gal-3) induces cardiac inflammation and fibrosis in the context of obesity; however, its role in the metabolic consequences of obesity is not totally established. We have investigated the potential role of Gal-3 in the cardiac metabolic disturbances associated with obesity. In addition, we have explored whether this participation is, at least partially, acting on mitochondrial damage. Gal-3 inhibition in rats that were fed a high-fat diet (HFD) for 6 weeks with modified citrus pectin (MCP; 100 mg/kg/day) attenuated the increase in cardiac levels of total triglyceride (TG). MCP treatment also prevented the increase in cardiac protein levels of carnitine palmitoyl transferase IA, mitofusin 1, and mitochondrial complexes I and II, reactive oxygen species accumulation and decrease in those of complex V but did not affect the reduction in 18F-fluorodeoxyglucose uptake observed in HFD rats. The exposure of cardiac myoblasts (H9c2) to palmitic acid increased the rate of respiration, mainly due to an increase in the proton leak, glycolysis, oxidative stress, β-oxidation and reduced mitochondrial membrane potential. Inhibition of Gal-3 activity was unable to affect these changes. Our findings indicate that Gal-3 inhibition attenuates some of the consequences of cardiac lipotoxicity induced by a HFD since it reduced TG and lysophosphatidyl choline (LPC) levels. These reductions were accompanied by amelioration of the mitochondrial damage observed in HFD rats, although no improvement was observed regarding insulin resistance. These findings increase the interest for Gal-3 as a potential new target for therapeutic intervention to prevent obesity-associated cardiac lipotoxicity and subsequent mitochondrial dysfunction. PMID:29361517
Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins
Yao, Chunxiang; Behring, Jessica B.; Shao, Di; Sverdlov, Aaron L.; Whelan, Stephen A.; Elezaby, Aly; Yin, Xiaoyan; Siwik, Deborah A.; Seta, Francesca; Costello, Catherine E.; Cohen, Richard A.; Matsui, Reiko; Colucci, Wilson S.; McComb, Mark E.; Bachschmid, Markus M.
2015-01-01
Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2), react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat), an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a ‘Tandem Mass Tag’ (TMT) labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg) mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation. PMID:26642319
Mailloux, Ryan J; Xuan, Jian Ying; McBride, Skye; Maharsy, Wael; Thorn, Stephanie; Holterman, Chet E; Kennedy, Christopher R J; Rippstein, Peter; deKemp, Robert; da Silva, Jean; Nemer, Mona; Lou, Marjorie; Harper, Mary-Ellen
2014-05-23
Glutaredoxin-2 (Grx2) modulates the activity of several mitochondrial proteins in cardiac tissue by catalyzing deglutathionylation reactions. However, it remains uncertain whether Grx2 is required to control mitochondrial ATP output in heart. Here, we report that Grx2 plays a vital role modulating mitochondrial energetics and heart physiology by mediating the deglutathionylation of mitochondrial proteins. Deletion of Grx2 (Grx2(-/-)) decreased ATP production by complex I-linked substrates to half that in wild type (WT) mitochondria. Decreased respiration was associated with increased complex I glutathionylation diminishing its activity. Tissue glucose uptake was concomitantly increased. Mitochondrial ATP output and complex I activity could be recovered by restoring the redox environment to that favoring the deglutathionylated states of proteins. Grx2(-/-) hearts also developed left ventricular hypertrophy and fibrosis, and mice became hypertensive. Mitochondrial energetics from Grx2 heterozygotes (Grx2(+/-)) were also dysfunctional, and hearts were hypertrophic. Intriguingly, Grx2(+/-) mice were far less hypertensive than Grx2(-/-) mice. Thus, Grx2 plays a vital role in modulating mitochondrial metabolism in cardiac muscle, and Grx2 deficiency leads to pathology. As mitochondrial ATP production was restored by the addition of reductants, these findings may be relevant to novel redox-related therapies in cardiac disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Stanely Mainzen Prince, P
2013-03-01
Cardiac mitochondrial damage plays an important role in the pathology of myocardial infarction. The protective effects of (-) epicatechin on cardiac mitochondrial damage in isoproterenol induced myocardial infarction were evaluated in rats. Rats were pretreated with (-) epicatechin (20 mg/kg body weight) daily for a period of 21 days. After the pretreatment period, isoproterenol (100 mg/kg body weight) was injected subcutaneously into rats twice at an interval of 24 h to induce myocardial infarction. Isoproterenol induced myocardial infarcted rats showed a significant increase in the levels of cardiac diagnostic markers, heart mitochondrial lipid peroxidation, calcium, and a significant decrease in the activities/levels of heart mitochondrial glutathione peroxidase, glutathione reductase, reduced glutathione, isocitrate, succinate, malate, α-ketoglutarate and NADH-dehydrogenases, cytochrome-C-oxidase and adenosine triphosphate. (-) Epicatechin pretreatment showed significant protective effects on all the biochemical parameters evaluated. The in vitro study revealed the superoxide and hydroxyl radical scavenging activity of (-) epicatechin. The possible mechanisms for the beneficial effects of (-) epicatechin on cardiac mitochondria could be attributed to scavenging of free radicals, decreasing calcium, increasing multi-enzymes (antioxidant, tricarboxylic acid cycle and respiratory chain enzymes), reduced glutathione and adenosine triphosphate. Thus, (-) epicatechin attenuated mitochondrial damage in isoproterenol induced myocardial infarcted rats. Copyright © 2012 Elsevier Ltd. All rights reserved.
Abdolghaffari, Amir Hossein; Baghaei, Amir; Solgi, Reza; Gooshe, Maziar; Baeeri, Maryam; Navaei-Nigjeh, Mona; Hassani, Shokoufeh; Jafari, Abbas; Rezayat, Seyed Mehdi; Dehpour, Ahmad Reza; Mehr, Shahram Ejtemaei; Abdollahi, Mohammad
2015-10-15
Aluminum phosphide (AlP) is a widely used fumigant and rodenticide. While AlP ingestion leads to high mortality, its exact mechanism of action is unclear. There are ample evidences suggesting cardioprotective effects of triiodothyronine (T3). In this study, we aimed to examine the potential of T3 in the protection of a rat model of AlP induced cardiotoxicity. In order to induce AlP intoxication animals were intoxicated with AlP (12 mg/kg; LD50) by gavage. In treatment groups, T3 (1, 2 and 3 μg/kg) was administered intra-peritoneally 30 min after AlP administration. Animals were connected to the electronic cardiovascular monitoring device simultaneously after T3 administration. Then, electrocardiogram (ECG), blood pressure (BP), and heart rate (HR) were monitored for 180 min. Additionally, 24h after AlP intoxication, rats were deceased and the hearts were dissected out for evaluation of oxidative stress, cardiac mitochondrial function (complexes I, II and IV), ATP/ADP ratio, caspases 3 & 9, and apoptosis by flow cytometry. The results demonstrated that AlP intoxication causes cardiac toxicity presenting with changes in ECG patterns such as decrement of HR, BP and abnormal QRS complexes, QTc and ST height. T3 at a dose of 3 μg/kg significantly improved ECG and also oxidative stress parameters. Furthermore, T3 administration could increase mitochondrial function and ATP levels within the cardiac cells. In addition, administration of T3 showed a reduction in apoptosis through diminishing the caspase activities and improving cell viability. Overall, the present data demonstrate the beneficial effects of T3 in cardiotoxicity of AlP. Copyright © 2015 Elsevier Inc. All rights reserved.
Partownavid, Parisa; Umar, Soban; Li, Jingyuan; Rahman, Siamak; Eghbali, Mansoureh
2012-08-01
Lipid emulsion has been shown to be effective in resuscitating bupivacaine-induced cardiac arrest but its mechanism of action is not clear. Here we investigated whether fatty-acid oxidation is required for rescue of bupivacaine-induced cardiotoxicity by lipid emulsion in rats. We also compared the mitochondrial function and calcium threshold for triggering of mitochondrial permeability transition pore opening in bupivacaine-induced cardiac arrest before and after resuscitation with lipid emulsion. Prospective, randomized animal study. University research laboratory. Adult male Sprague-Dawley rats. Asystole was achieved with a single dose of bupivacaine (10 mg/kg over 20 secs, intravenously) and 20% lipid emulsion infusion (5 mL/kg bolus, and 0.5 mL/kg/min maintenance), and cardiac massage started immediately. The rats in CVT-4325 (CVT) group were pretreated with a single dose of fatty-acid oxidation inhibitor CVT (0.5, 0.25, 0.125, or 0.0625 mg/kg bolus intravenously) 5 mins prior to inducing asystole by bupivacaine overdose. Heart rate, ejection fraction, fractional shortening, the threshold for opening of mitochondrial permeability transition pore, oxygen consumption, and membrane potential were measured. The values are mean ± SEM. Administration of bupivacaine resulted in asystole. Lipid Emulsion infusion improved the cardiac function gradually as the ejection fraction was fully recovered within 5 mins (ejection fraction=64±4% and fractional shortening=36±3%, n=6) and heart rate increased to 239±9 beats/min (71% recovery, n=6) within 10 mins. Lipid emulsion was only able to rescue rats pretreated with low dose of CVT (0.0625 mg/kg; heart rate~181±11 beats/min at 10 mins, recovery of 56%; ejection fraction=50±1%; fractional shortening=26±0.6% at 5 mins, n=3), but was unable to resuscitate rats pretreated with higher doses of CVT (0.5, 0.25, or 0.125 mg/kg). The calcium-retention capacity in response to Ca²⁺ overload was significantly higher in cardiac mitochondria isolated from rats resuscitated with 20% lipid emulsion compared to the group that did not receive Lipid Emulsion after bupivacaine overdose (330±42 nmol/mg vs. 180±8.2 nmol/mg of mitochondrial protein, p<.05, n=3 in each group). The mitochondrial oxidative rate and membrane potential were similar in the bupivacaine group before and after resuscitation with lipid emulsion infusion. Fatty-acid oxidation is required for successful rescue of bupivacaine-induced cardiotoxicity by lipid emulsion. This rescue action is associated with inhibition of mitochondrial permeability transition pore opening.
Kim, Junhwan; Perales Villarroel, José Paul; Zhang, Wei; Yin, Tai; Shinozaki, Koichiro; Hong, Angela; Lampe, Joshua W.; Becker, Lance B.
2016-01-01
Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest. PMID:26770657
Kim, Junhwan; Villarroel, José Paul Perales; Zhang, Wei; Yin, Tai; Shinozaki, Koichiro; Hong, Angela; Lampe, Joshua W; Becker, Lance B
2016-01-01
Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest.
A simulation study on the constancy of cardiac energy metabolites during workload transition.
Saito, Ryuta; Takeuchi, Ayako; Himeno, Yukiko; Inagaki, Nobuya; Matsuoka, Satoshi
2016-12-01
The cardiac energy metabolites such as ATP, phosphocreatine, ADP and NADH are kept relatively constant during physiological cardiac workload transition. How this is accomplished is not yet clarified, though Ca 2+ has been suggested to be one of the possible mechanisms. We constructed a detailed mathematical model of cardiac mitochondria based on experimental data and studied whether known Ca 2+ -dependent regulation mechanisms play roles in the metabolite constancy. Model simulations revealed that the Ca 2+ -dependent regulation mechanisms have important roles under the in vitro condition of isolated mitochondria where malate and glutamate were mitochondrial substrates, while they have only a minor role and the composition of substrates has marked influence on the metabolite constancy during workload transition under the simulated in vivo condition where many substrates exist. These results help us understand the regulation mechanisms of cardiac energy metabolism during physiological cardiac workload transition. The cardiac energy metabolites such as ATP, phosphocreatine, ADP and NADH are kept relatively constant over a wide range of cardiac workload, though the mechanisms are not yet clarified. One possible regulator of mitochondrial metabolism is Ca 2+ , because it activates several mitochondrial enzymes and transporters. Here we constructed a mathematical model of cardiac mitochondria, including oxidative phosphorylation, substrate metabolism and ion/substrate transporters, based on experimental data, and studied whether the Ca 2+ -dependent activation mechanisms play roles in metabolite constancy. Under the in vitro condition of isolated mitochondria, where malate and glutamate were used as mitochondrial substrates, the model well reproduced the Ca 2+ and inorganic phosphate (P i ) dependences of oxygen consumption, NADH level and mitochondrial membrane potential. The Ca 2+ -dependent activations of the aspartate/glutamate carrier and the F 1 F o -ATPase, and the P i -dependent activation of Complex III were key factors in reproducing the experimental data. When the mitochondrial model was implemented in a simple cardiac cell model, simulation of workload transition revealed that cytoplasmic Ca 2+ concentration ([Ca 2+ ] cyt ) within the physiological range markedly increased NADH level. However, the addition of pyruvate or citrate attenuated the Ca 2+ dependence of NADH during the workload transition. Under the simulated in vivo condition where malate, glutamate, pyruvate, citrate and 2-oxoglutarate were used as mitochondrial substrates, the energy metabolites were more stable during the workload transition and NADH level was almost insensitive to [Ca 2+ ] cyt . It was revealed that mitochondrial substrates have a significant influence on metabolite constancy during cardiac workload transition, and Ca 2+ has only a minor role under physiological conditions. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Crossley, Janna; Elsey, Ruth M.; Dzialowski, Edward M.; Shiels, Holly A.; Crossley, Dane A.
2016-01-01
The effect of hypoxia on cellular metabolism is well documented in adult vertebrates, but information is entirely lacking for embryonic organisms. The effect of hypoxia on embryonic physiology is particularly interesting, as metabolic responses during development may have life-long consequences, due to developmental plasticity. To this end, we investigated the effects of chronic developmental hypoxia on cardiac mitochondrial function in embryonic and juvenile American alligators (Alligator mississippiensis). Alligator eggs were incubated in 21% or 10% oxygen from 20 to 90% of embryonic development. Embryos were either harvested at 90% development or allowed to hatch and then reared in 21% oxygen for 3 yr. Ventricular mitochondria were isolated from embryonic/juvenile alligator hearts. Mitochondrial respiration and enzymatic activities of electron transport chain complexes were measured with a microrespirometer and spectrophotometer, respectively. Developmental hypoxia induced growth restriction and increased relative heart mass, and this phenotype persisted into juvenile life. Embryonic mitochondrial function was not affected by developmental hypoxia, but at the juvenile life stage, animals from hypoxic incubations had lower levels of Leak respiration and higher respiratory control ratios, which is indicative of enhanced mitochondrial efficiency. Our results suggest developmental hypoxia can have life-long consequences for alligator morphology and metabolic function. Further investigations are necessary to reveal the adaptive significance of the enhanced mitochondrial efficiency in the hypoxic phenotype. PMID:27707718
ZHANG, XINLIANG; DONG, SHIMIN; QIN, YANJUN; BIAN, XIAOHUA
2015-01-01
The aim of this study was to investigate the protective effect of erythropoietin (EPO) against acute myocardial injury and its underlying mechanisms. Mice (n=146) were randomly divided in a double-blind manner into four groups, sham, Rocephin, EPO and sepsis, and mortality was observed on the seventh day after cecal ligation and puncture. In addition, a total of 252 rats were randomly divided into three groups, sham, EPO and sepsis, and indicators of cardiac function, inflammatory mediators and serum creatine kinase levels were assessed. Mitochondrial membrane potential, cell apoptosis and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) p65 expression levels were detected using flow cytometry. Following intervention with EPO, the mortality rate in mice with sepsis was significantly reduced and the cardiac function of septic rats was significantly improved. In addition, the levels of inflammatory mediators, serum creatine kinase and apoptosis and the myocardial mitochondrial membrane potential and expression of NF-κB p65 in cardiac tissue were all improved following EPO treatment, and the differences between the results for the sepsis and EPO groups were statistically significant (P<0.05). These findings suggest that EPO reduces the myocardial inflammatory response in septic rats, attenuates the reduction in mitochondrial membrane potential and inhibits myocardial cell apoptosis by reducing NF-κB p65 expression, and therefore exerts a protective effect in the myocardium. PMID:25572660
Khalifa, Abdel Rahman M; Abdel-Rahman, Engy A; Mahmoud, Ali M; Ali, Mohamed H; Noureldin, Maha; Saber, Saber H; Mohsen, Mahmoud; Ali, Sameh S
2017-03-01
Sex-specific differences in mitochondrial function and free radical homeostasis are reported in the context of aging but not well-established in pathogeneses occurring early in life. Here, we examine if sex disparity in mitochondria function, morphology, and redox status starts early and hence can be implicated in sexual dimorphism in cardiac as well as neurological disorders prevalent at young age. Although mitochondrial activity in the heart did not significantly vary between sexes, female brain exhibited enhanced respiration and higher reserve capacity. This was associated with lower H 2 O 2 production in female cardiac and brain tissues. Using transmission electron microscopy, we found that the number of female cardiac mitochondria is moderately greater (117 ± 3%, P = 0.049, N = 4) than male's, which increased significantly for cortical mitochondria (134 ± 4%, P = 0.001, N = 4). However, male's cardiac mitochondria exhibited fragmented, circular, and smaller mitochondria relative to female's mitochondria, while no morphologic sex-dependent differences were observed in cortical mitochondria. No sex differences were detected in Nox2 and Nox4 proteins or O 2 -consuming/H 2 O 2 -producing activities in brain homogenate or synaptosomes. However, a strong trend of increased EPR-detected NOX superoxide in male synaptosomes hinted at higher superoxide dismutase activity in female brains, which was confirmed by two independent protocols. We also provide direct evidence that respiring mitochondria generally produce an order-of-magnitude lower reactive oxygen species (ROS) proportions than currently estimated. Our results indicate that sex differences in mitochondrial biogenesis, bioenergetics, and morphology may start at young age and that sex-dependent SOD capacity may be responsible for differences in ROS homeostasis in heart and brain. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Khorsandi, Shirin Elizabeth; Salehi, Siamak; Cortes, Miriam; Vilca-Melendez, Hector; Menon, Krishna; Srinivasan, Parthi; Prachalias, Andreas; Jassem, Wayel; Heaton, Nigel
2018-02-15
Mitochondria have their own genomic, transcriptomic and proteomic machinery but are unable to be autonomous, needing both nuclear and mitochondrial genomes. The aim of this work was to use computational biology to explore the involvement of Mitochondrial microRNAs (MitomiRs) and their interactions with the mitochondrial proteome in a clinical model of primary non function (PNF) of the donor after cardiac death (DCD) liver. Archival array data on the differential expression of miRNA in DCD PNF was re-analyzed using a number of publically available computational algorithms. 10 MitomiRs were identified of importance in DCD PNF, 7 with predicted interaction of their seed sequence with the mitochondrial transcriptome that included both coding, and non coding areas of the hypervariability region 1 (HVR1) and control region. Considering miRNA regulation of the nuclear encoded mitochondrial proteome, 7 hypothetical small proteins were identified with homolog function that ranged from co-factor for formation of ATP Synthase, REDOX balance and an importin/exportin protein. In silico, unconventional seed interactions, both non canonical and alternative seed sites, appear to be of greater importance in MitomiR regulation of the mitochondrial genome. Additionally, a number of novel small proteins of relevance in transplantation have been identified which need further characterization.
Partownavid, Parisa; Umar, Soban; Li, Jingyuan; Rahman, Siamak; Eghbali, Mansoureh
2012-01-01
OBJECTIVES Lipid Emulsion (LE) has been shown to be effective in resuscitating bupivacaine-induced cardiac arrest but its mechanism of action is not clear. Here we investigated whether fatty acid oxidation is required for rescue of bupivacaine induced cardiotoxicity by LE in rats. We also compared the mitochondrial function and calcium threshold for triggering of mitochondrial permeability transition pore (mPTP) opening in bupivacaine-induced cardiac arrest before and after resuscitation with LE. DESIGN Prospective, randomized, animal study. SETTING University Research Laboratory. SUBJECTS Adult male Sprague-Dawley rats. INTERVENTIONS Asystole was achieved with a single dose of bupivacaine (10mg/kg over 20seconds, i.v.) and 20% LE infusion (5ml/kg bolus, and 0.5ml/kg/min maintenance) with cardiac massage started immediately. The rats in CVT group were pretreated with a single dose of fatty acid oxidation inhibitor CVT (0.5, 0.25, 0.125 or 0.0625mg/kg bolus i.v.) 5min prior to inducing asystole by bupivacaine overdose. Heart rate (HR), ejection fraction (EF), fractional shortening (FS), the threshold for opening of mPTP, oxygen consumption and membrane potential were measured. The values are Mean±SEM. MEASUREMENTS AND MAIN RESULTS Administration of bupivacaine resulted in asystole. ILP infusion improved the cardiac function gradually as the EF was fully recovered within 5min (EF=64±4% and FS=36±3%, n=6) and heart rate increased to 239±9 beats/min (71% recovery, n=6) within 10min. LE was only able to rescue rats pretreated with low dose of CVT (0.0625mg/kg) (HR=~181±11 beats/min at 10 min, recovery of 56%; EF=50±1%; FS=26±0.6% at 5min, n=3) but was unable to resuscitate rats pretreated with higher doses of CVT (0.5, 0.25 or 0.125mg/kg). The calcium retention capacity in response to Ca2+ overload was significantly higher in cardiac mitochondria isolated from rats resuscitated with 20% LE compared to the group that did not receive ILP after bupivacaine-overdose (330±42 vs. 180±8.2 nmol/mg-mitochondrial protein, p<0.05, n=3 in each group). The mitochondrial oxidative rate and membrane potential were similar in bupivacaine group before and after resuscitation with LE infusion. CONCLUSIONS Fatty acid oxidation is required for successful rescue of bupivacaine induced cardiotoxicity by LE. This rescue action is associated with inhibition of mitochondrial permeability transition pore opening. PMID:22647409
Ashmore, Tom; Fernandez, Bernadette O; Branco-Price, Cristina; West, James A; Cowburn, Andrew S; Heather, Lisa C; Griffin, Julian L; Johnson, Randall S; Feelisch, Martin; Murray, Andrew J
2014-01-01
Hypoxic exposure is associated with impaired cardiac energetics in humans and altered mitochondrial function, with suppressed complex I-supported respiration, in rat heart. This response might limit reactive oxygen species generation, but at the cost of impaired electron transport chain (ETC) activity. Dietary nitrate supplementation improves mitochondrial efficiency and can promote tissue oxygenation by enhancing blood flow. We therefore hypothesised that ETC dysfunction, impaired energetics and oxidative damage in the hearts of rats exposed to chronic hypoxia could be alleviated by sustained administration of a moderate dose of dietary nitrate. Male Wistar rats (n = 40) were given water supplemented with 0.7 mmol l−1 NaCl (as control) or 0.7 mmol l−1 NaNO3, elevating plasma nitrate levels by 80%, and were exposed to 13% O2 (hypoxia) or normoxia (n = 10 per group) for 14 days. Respiration rates, ETC protein levels, mitochondrial density, ATP content and protein carbonylation were measured in cardiac muscle. Complex I respiration rates and protein levels were 33% lower in hypoxic/NaCl rats compared with normoxic/NaCl controls. Protein carbonylation was 65% higher in hearts of hypoxic rats compared with controls, indicating increased oxidative stress, whilst ATP levels were 62% lower. Respiration rates, complex I protein and activity, protein carbonylation and ATP levels were all fully protected in the hearts of nitrate-supplemented hypoxic rats. Both in normoxia and hypoxia, dietary nitrate suppressed cardiac arginase expression and activity and markedly elevated cardiac l-arginine concentrations, unmasking a novel mechanism of action by which nitrate enhances tissue NO bioavailability. Dietary nitrate therefore alleviates metabolic abnormalities in the hypoxic heart, improving myocardial energetics. PMID:25172947
Wu, Jianjiang; Yu, Jin; Xie, Peng; Maimaitili, Yiliyaer; Wang, Jiang; Yang, Long; Ma, Haiping; Zhang, Xing; Yang, Yining
2017-01-01
Background Sevoflurane postconditioning (S-post) has similar cardioprotective effects as ischemic preconditioning. However, the underlying mechanism of S-post has not been fully elucidated. Janus kinase signaling transduction/transcription activator (JAK2–STAT3) plays an important role in cardioprotection. The purpose of this study was to determine whether the cardioprotective effects of S-post are associated with activation of the JAK2–STAT3 signal pathway. Methods An adult male Sprague–Dawley (SD) rat model of myocardial ischemia/reperfusion (I/R) injury was established using the Langendorff isolated heart perfusion apparatus. At the beginning of reperfusion, 2.4% sevoflurane alone or in combination with AG490 (a JAK2 selective inhibitor) was used as a postconditioning treatment. The cardiac function indicators, myocardial infarct size, lactic dehydrogenase (LDH) release, mitochondrial ultrastructure, mitochondrial reactive oxygen species (ROS) generation rates, ATP content, protein expression of p-JAK, p-STAT3, Bcl-2 and Bax were measured. Results Compared with the I/R group, S-post significantly increased the expression of p-JAK, p-STAT3 and Bcl-2 and reduced the protein expression of Bax, which markedly decreased the myocardial infarction areas, improved the cardiac function indicators and the mitochondrial ultrastructure, decreased the mitochondrial ROS and increased the ATP content. However, the cardioprotective effects of S-post were abolished by treatment with a JAK2 selective inhibitor (p < 0.05). Conclusion This study demonstrates that the cardioprotective effects of S-post are associated with the activation of JAK2–STAT3. The mechanism may be related to an increased expression of p-JAK2 and p-STAT3 after S-post, which reduced mitochondrial ROS generation and increased mitochondrial ATP content, thereby reducing apoptosis and myocardial infarct size. PMID:28392989
Wüst, Rob C. I.; Helmes, Michiel; Martin, Jody L.; van der Wardt, Thomas J. T.; Musters, René J. P.; van der Velden, Jolanda
2017-01-01
Key points Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle.The magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiac myocytes are largely unknown.Rapid stimulation frequency‐dependent increases but relatively slow decreases in free mitochondrial calcium concentration were observed in rat cardiac myocytes. This asymmetry caused a rise in the mitochondrial calcium concentration with stimulation frequency.These results provide insight into the mechanisms of mitochondrial calcium uptake and release that are important in healthy and diseased myocardium. Abstract Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle. Little is known about the magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiomyocytes. Using adenoviral infection, a ratiometric mitochondrially targeted Förster resonance energy transfer (FRET)‐based calcium indicator (4mtD3cpv, MitoCam) was expressed in cultured adult rat cardiomyocytes and the free mitochondrial calcium concentration ([Ca2+]m) was measured at different stimulation frequencies (0.1–4 Hz) and external calcium concentrations (1.8–3.6 mm) at 37°C. Cytosolic calcium concentrations were assessed under the same experimental conditions in separate experiments using Fura‐4AM. The increases in [Ca2+]m during electrical stimulation at 0.1 Hz were rapid (rise time = 49 ± 2 ms), while the decreases in [Ca2+]m occurred more slowly (decay half time = 1.17 ± 0.07 s). Model calculations confirmed that this asymmetry caused the rise in [Ca2+]m during diastole observed at elevated stimulation frequencies. Inhibition of the mitochondrial sodium–calcium exchanger (mNCE) resulted in a rise in [Ca2+]m at baseline and, paradoxically, in an acceleration of Ca2+ release. In conclusion: rapid increases in [Ca2+]m allow for fast adjustment of mitochondrial ATP production to increases in myocardial demand on a beat‐to‐beat basis and mitochondrial calcium release depends on mNCE activity and mitochondrial calcium buffering. PMID:28028811
Involvement of the Warburg effect in non-tumor diseases processes.
Chen, Zhe; Liu, Meiqing; Li, Lanfang; Chen, Linxi
2018-04-01
Warburg effect, as an energy shift from mitochondrial oxidative phosphorylation to aerobic glycolysis, is extensively found in various cancers. Interestingly, increasing researchers show that Warburg effect plays a crucial role in non-tumor diseases. For instance, inhibition of Warburg effect can alleviate pulmonary vascular remodeling in the process of pulmonary hypertension (PH). Interference of Warburg effect improves mitochondrial function and cardiac function in the process of cardiac hypertrophy and heart failure. Additionally, the Warburg effect induces vascular smooth muscle cell proliferation and contributes to atherosclerosis. Warburg effect may also involve in axonal damage and neuronal death, which are related with multiple sclerosis. Furthermore, Warburg effect significantly promotes cell proliferation and cyst expansion in polycystic kidney disease (PKD). Besides, Warburg effect relieves amyloid β-mediated cell death in Alzheimer's disease. And Warburg effect also improves the mycobacterium tuberculosis infection. Finally, we also introduce some glycolytic agonists. This review focuses on the newest researches about the role of Warburg effect in non-tumor diseases, including PH, tuberculosis, idiopathic pulmonary fibrosis (IPF), failing heart, cardiac hypertrophy, atherosclerosis, Alzheimer's diseases, multiple sclerosis, and PKD. Obviously, Warburg effect may be a potential therapeutic target for those non-tumor diseases. © 2017 Wiley Periodicals, Inc.
Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth
Gibb, Andrew A.; Epstein, Paul N.; Uchida, Shizuka; Zheng, Yuting; McNally, Lindsey A.; Obal, Detlef; Katragadda, Kartik; Trainor, Patrick; Conklin, Daniel J.; Brittian, Kenneth R.; Tseng, Michael T.; Wang, Jianxun; Jones, Steven P.; Bhatnagar, Aruni
2017-01-01
Background: Exercise promotes metabolic remodeling in the heart, which is associated with physiological cardiac growth; however, it is not known whether or how physical activity–induced changes in cardiac metabolism cause myocardial remodeling. In this study, we tested whether exercise-mediated changes in cardiomyocyte glucose metabolism are important for physiological cardiac growth. Methods: We used radiometric, immunologic, metabolomic, and biochemical assays to measure changes in myocardial glucose metabolism in mice subjected to acute and chronic treadmill exercise. To assess the relevance of changes in glycolytic activity, we determined how cardiac-specific expression of mutant forms of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase affect cardiac structure, function, metabolism, and gene programs relevant to cardiac remodeling. Metabolomic and transcriptomic screenings were used to identify metabolic pathways and gene sets regulated by glycolytic activity in the heart. Results: Exercise acutely decreased glucose utilization via glycolysis by modulating circulating substrates and reducing phosphofructokinase activity; however, in the recovered state following exercise adaptation, there was an increase in myocardial phosphofructokinase activity and glycolysis. In mice, cardiac-specific expression of a kinase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase transgene (GlycoLo mice) lowered glycolytic rate and regulated the expression of genes known to promote cardiac growth. Hearts of GlycoLo mice had larger myocytes, enhanced cardiac function, and higher capillary-to-myocyte ratios. Expression of phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in the heart (GlycoHi mice) increased glucose utilization and promoted a more pathological form of hypertrophy devoid of transcriptional activation of the physiological cardiac growth program. Modulation of phosphofructokinase activity was sufficient to regulate the glucose–fatty acid cycle in the heart; however, metabolic inflexibility caused by invariantly low or high phosphofructokinase activity caused modest mitochondrial damage. Transcriptomic analyses showed that glycolysis regulates the expression of key genes involved in cardiac metabolism and remodeling. Conclusions: Exercise-induced decreases in glycolytic activity stimulate physiological cardiac remodeling, and metabolic flexibility is important for maintaining mitochondrial health in the heart. PMID:28860122
Smith, Charles O; Wang, Yves T; Nadtochiy, Sergiy M; Miller, James H; Jonas, Elizabeth A; Dirksen, Robert T; Nehrke, Keith; Brookes, Paul S
2018-06-04
Controversy surrounds the molecular identity of mitochondrial K + channels that are important for protection against cardiac ischemia-reperfusion injury. Although K Na 1.2 (sodium-activated potassium channel encoded by Kcn2) is necessary for cardioprotection by volatile anesthetics, electrophysiological evidence for a channel of this type in mitochondria is lacking. The endogenous physiological role of a potential mito-K Na 1.2 channel is also unclear. In this study, single channel patch-clamp of 27 independent cardiac mitochondrial inner membrane (mitoplast) preparations from wild-type (WT) mice yielded 6 channels matching the known ion sensitivity, ion selectivity, pharmacology, and conductance properties of K Na 1.2 (slope conductance, 138 ± 1 pS). However, similar experiments on 40 preparations from Kcnt2 -/- mice yielded no such channels. The K Na opener bithionol uncoupled respiration in WT but not Kcnt2 -/- cardiomyocytes. Furthermore, when oxidizing only fat as substrate, Kcnt2 -/- cardiomyocytes and hearts were less responsive to increases in energetic demand. Kcnt2 -/- mice also had elevated body fat, but no baseline differences in the cardiac metabolome. These data support the existence of a cardiac mitochondrial K Na 1.2 channel, and a role for cardiac K Na 1.2 in regulating metabolism under conditions of high energetic demand.-Smith, C. O., Wang, Y. T., Nadtochiy, S. M., Miller, J. H., Jonas, E. A., Dirksen, R. T., Nehrke, K., Brookes, P. S. Cardiac metabolic effects of K Na 1.2 channel deletion and evidence for its mitochondrial localization.
Alteration in mitochondrial Ca(2+) uptake disrupts insulin signaling in hypertrophic cardiomyocytes.
Gutiérrez, Tomás; Parra, Valentina; Troncoso, Rodrigo; Pennanen, Christian; Contreras-Ferrat, Ariel; Vasquez-Trincado, César; Morales, Pablo E; Lopez-Crisosto, Camila; Sotomayor-Flores, Cristian; Chiong, Mario; Rothermel, Beverly A; Lavandero, Sergio
2014-11-07
Cardiac hypertrophy is characterized by alterations in both cardiac bioenergetics and insulin sensitivity. Insulin promotes glucose uptake by cardiomyocytes and its use as a substrate for glycolysis and mitochondrial oxidation in order to maintain the high cardiac energy demands. Insulin stimulates Ca(2+) release from the endoplasmic reticulum, however, how this translates to changes in mitochondrial metabolism in either healthy or hypertrophic cardiomyocytes is not fully understood. In the present study we investigated insulin-dependent mitochondrial Ca(2+) signaling in normal and norepinephrine or insulin like growth factor-1-induced hypertrophic cardiomyocytes. Using mitochondrion-selective Ca(2+)-fluorescent probes we showed that insulin increases mitochondrial Ca(2+) levels. This signal was inhibited by the pharmacological blockade of either the inositol 1,4,5-triphosphate receptor or the mitochondrial Ca(2+) uniporter, as well as by siRNA-dependent mitochondrial Ca(2+) uniporter knockdown. Norepinephrine-stimulated cardiomyocytes showed a significant decrease in endoplasmic reticulum-mitochondrial contacts compared to either control or insulin like growth factor-1-stimulated cells. This resulted in a reduction in mitochondrial Ca(2+) uptake, Akt activation, glucose uptake and oxygen consumption in response to insulin. Blocking mitochondrial Ca(2+) uptake was sufficient to mimic the effect of norepinephrine-induced cardiomyocyte hypertrophy on insulin signaling. Mitochondrial Ca(2+) uptake is a key event in insulin signaling and metabolism in cardiomyocytes.
Yilmaz, Ali; Gdynia, Hans-Jürgen; Ponfick, Matthias; Rösch, Sabine; Lindner, Alfred; Ludolph, Albert C; Sechtem, Udo
2012-04-01
Mitochondrial myopathy comprises various clinical subforms of neuromuscular disorders that are characterised by impaired mitochondrial energy metabolism due to dysfunction of the mitochondrial respiratory chain. No comprehensive and targeted cardiovascular magnetic resonance (CMR) studies have been performed so far in patients with mitochondrial disorders. The present study aimed at characterising cardiac disease manifestations in patients with mitochondrial myopathy and elucidating the in vivo cardiac damage pattern of patients with different subforms of mitochondrial disease by CMR studies. In a prospective study, 37 patients with mitochondrial myopathy underwent comprehensive neurological and cardiac evaluations including physical examination, resting ECG and CMR. The CMR studies comprised cine-CMR, T2-weighted "edema" imaging and T1-weighted late-gadolinium-enhancement (LGE) imaging. Various patterns and degrees of skeletal myopathy were present in the participants of this study, whereas clinical symptoms such as chest pain symptoms (in eight (22%) patients) and various degrees of dyspnea (in 16 (43%) patients) were less frequent. Pathological ECG findings were documented in eight (22%) patients. T2-weighted "edema" imaging was positive in one (3%) patient with MELAS (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes) only. LGE imaging demonstrated the presence of non-ischemic LGE in 12 (32%) patients: 10 out of 24 (42%) patients with CPEO (chronic progressive external ophthalmoplegia) or KSS (Kearns-Sayre syndrome) and 2 of 3 (67%) patients with MELAS were LGE positive. All 10 LGE-positive patients with CPEO or KSS demonstrated a potentially typical pattern of diffuse intramural LGE in the left-ventricular (LV) inferolateral segments. Cardiac involvement is a frequent finding in patients with mitochondrial myopathy. A potentially characteristic pattern of diffuse intramural LGE in the LV inferolateral segments was identified in patients suffering from the subforms CPEO or KSS.
Itraconazole decreases left ventricular contractility in isolated rabbit heart: Mechanism of action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Yusheng, E-mail: yqu@amgen.com; Fang, Mei; Gao, BaoXi
Itraconazole (ITZ) is an approved antifungal agent that carries a “black box warning” in its label regarding a risk of negative cardiac inotropy based on clinical findings. Since the mechanism of the negative inotropic effect is unknown, we performed a variety of preclinical and mechanistic studies to explore the pharmacological profile of ITZ and understand the negative inotropic mechanism. ITZ was evaluated in: (1) an isolated rabbit heart (IRH) preparation using Langendorff retrograde perfusion; (2) ion channel studies; (3) a rat heart mitochondrial function profiling screen; (4) a mitochondrial membrane potential (MMP) assay; (5) in vitro pharmacology profiling assays (148more » receptors, ion channels, transporters, and enzymes); and (6) a kinase selectivity panel (451 kinases). In the IRH, ITZ decreased cardiac contractility (> 30%) at 0.3 μM, with increasing effect at higher concentrations, which indicated a direct negative inotropic effect upon the heart. It also decreased heart rate and coronary flow (≥ 1 μM) and prolonged PR/QRS intervals (3 μM). In mechanistic studies, ITZ inhibited the cardiac NaV channel (IC{sub 50}: 4.2 μM) and was devoid of any functional inhibitory effect at the remaining pharmacological targets. Lastly, ITZ did not affect MMP, nor interfere with mitochondrial enzymes or processes involved with fuel substrate utilization or energy formation. Overall, the cardiovascular and mechanistic data suggest that ITZ-induced negative inotropy is a direct effect on the heart, in addition, the potential involvement of mitochondria function and L-type Ca{sup 2+} channels are eliminated. The exact mechanism underlying the negative inotropy is uncertain, and requires further study. - Highlights: ► Effect of itraconazole (ITZ) was assessed in the isolated rabbit heart (IRH) assay. ► ITZ decreased ventricular contractility in IRH, indicating a direct effect. ► IC{sub 50} of ITZ on L-type I{sub Ca} was greater than 30 μM, on I{sub Na} was 4.2 μM. ► ITZ had minimal effects on mitochondrial functions. ► ITZ had minimal hits in pharmacology profiling and kinase selectivity panel.« less
Paraoxonase 2 prevents the development of heart failure.
Li, Wei; Kennedy, David; Shao, Zhili; Wang, Xi; Kamdar, Andre Klaassen; Weber, Malory; Mislick, Kayla; Kiefer, Kathryn; Morales, Rommel; Agatisa-Boyle, Brendan; Shih, Diana M; Reddy, Srinivasa T; Moravec, Christine S; Tang, W H Wilson
2018-05-02
Mitochondrial oxidation is a major source of reactive oxygen species (ROS) and mitochondrial dysfunction plays a central role in development of heart failure (HF). Paraoxonase 2 deficient (PON2-def) mitochondria are impaired in function. In this study, we tested whether PON2-def aggravates HF progression. Using qPCR, immunoblotting and lactonase activity assay, we demonstrate that PON2 activity was significantly decreased in failing hearts despite increased PON2 expression. To determine the cardiac-specific function of PON2, we performed heart transplantations in which PON2-def and wild type (WT) donor hearts were implanted into WT recipient mice. Beating scores of the donor hearts, assessed at 4 weeks post-transplantation, were significantly decreased in PON2-def hearts when compared to WT donor hearts. By using a transverse aortic constriction (TAC) model, we found PON2 deficiency significantly exacerbated left ventricular remodeling and cardiac fibrosis post-TAC. We further demonstrated PON2 deficiency significantly enhanced ROS generation in heart tissues post-TAC. ROS generation was measured through dihydroethidium (DHE) using high-pressure liquid chromatography (HPLC) with a fluorescent detector. By using neonatal cardiomyocytes treated with CoCl 2 to mimic hypoxia, we found PON2 deficiency dramatically increased ROS generation in the cardiomyocytes upon CoCl 2 treatment. In response to a short CoCl 2 exposure, cell viability and succinate dehydrogenase (SDH) activity assessed by MTT assay were significantly diminished in PON2-def cardiomyocytes compared to those in WT cardiomyocytes. PON2-def cardiomyocytes also had lower baseline SDH activity. By using adult mouse cardiomyocytes and mitochondrial ToxGlo assay, we found impaired cellular ATP generation in PON2-def cells compared to that in WT cells, suggesting that PON2 is necessary for proper mitochondrial function. Our study suggests a cardioprotective role for PON2 in both experimental and human heart failure, which may be associated with the ability of PON2 to improve mitochondrial function and diminish ROS generation. Copyright © 2018 Elsevier Inc. All rights reserved.
Cellular Mechanisms of Myocardial Depression in Porcine Septic Shock.
Jarkovska, Dagmar; Markova, Michaela; Horak, Jan; Nalos, Lukas; Benes, Jan; Al-Obeidallah, Mahmoud; Tuma, Zdenek; Sviglerova, Jitka; Kuncova, Jitka; Matejovic, Martin; Stengl, Milan
2018-01-01
The complex pathogenesis of sepsis and septic shock involves myocardial depression, the pathophysiology of which, however, remains unclear. In this study, cellular mechanisms of myocardial depression were addressed in a clinically relevant, large animal (porcine) model of sepsis and septic shock. Sepsis was induced by fecal peritonitis in eight anesthetized, mechanically ventilated, and instrumented pigs of both sexes and continued for 24 h. In eight control pigs, an identical experiment but without sepsis induction was performed. In vitro analysis of cardiac function included measurements of action potentials and contractions in the right ventricle trabeculae, measurements of sarcomeric contractions, calcium transients and calcium current in isolated cardiac myocytes, and analysis of mitochondrial respiration by ultrasensitive oxygraphy. Increased values of modified sequential organ failure assessment score and serum lactate levels documented the development of sepsis/septic shock, accompanied by hyperdynamic circulation with high heart rate, increased cardiac output, peripheral vasodilation, and decreased stroke volume. In septic trabeculae, action potential duration was shortened and contraction force reduced. In septic cardiac myocytes, sarcomeric contractions, calcium transients, and L-type calcium current were all suppressed. Similar relaxation trajectory of the intracellular calcium-cell length phase-plane diagram indicated unchanged calcium responsiveness of myofilaments. Mitochondrial respiration was diminished through inhibition of Complex II and Complex IV. Defective calcium handling with reduced calcium current and transients, together with inhibition of mitochondrial respiration, appears to represent the dominant cellular mechanisms of myocardial depression in porcine septic shock.
Mitochondrial Approaches to Protect Against Cardiac Ischemia and Reperfusion Injury
Camara, Amadou K. S.; Bienengraeber, Martin; Stowe, David F.
2011-01-01
The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g., ischemic heart disease), alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury. PMID:21559063
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Aijun; Department of Anesthesiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030; Szczepanek, Karol
Highlights: •Blockade of electron transport prevents the loss of AIF from mitochondria during IR. •Blockade of electron transport decreases caspase-independent cell death during IR. •Mitochondrial AIF content is down-regulated in Harlequin mice. •Blockade of electron transport protects Harlequin mouse hearts during IR. •Amobarbital protection is partially dependent on mitochondrial AIF content. -- Abstract: The transient, reversible blockade of electron transport (BET) during ischemia or at the onset of reperfusion protects mitochondria and decreases cardiac injury. Apoptosis inducing factor (AIF) is located within the mitochondrial intermembrane space. A release of AIF from mitochondria into cytosol and nucleus triggers caspase-independent cell death.more » We asked if BET prevents the loss of AIF from mitochondria as a mechanism of protection in the buffer perfused heart. BET during ischemia with amobarbital, a rapidly reversible inhibitor of mitochondrial complex I, attenuated a release of AIF from mitochondria into cytosol, in turn decreasing the formation of cleaved and activated PARP-1. These results suggest that BET-mediated protection may occur through prevention of the loss of AIF from mitochondria during ischemia–reperfusion. In order to further clarify the role of mitochondrial AIF in BET-mediated protection, Harlequin (Hq) mice, a genetic model with mitochondrial AIF deficiency, were used to test whether BET could still decrease cell injury in Hq mouse hearts during reperfusion. BET during ischemia protected Hq mouse hearts against ischemia–reperfusion injury and improved mitochondrial function in these hearts during reperfusion. Thus, cardiac injury can still be decreased in the presence of down-regulated mitochondrial AIF content. Taken together, BET during ischemia protects both hearts with normal mitochondrial AIF content and hearts with mitochondrial AIF deficiency. Although preservation of mitochondrial AIF content plays a key role in reducing cell injury during reperfusion, the protection derived from the BET is not fully dependent on AIF-driven mechanisms.« less
Koczor, Christopher A; Jiao, Zhe; Fields, Earl; Russ, Rodney; Ludaway, Tomika; Lewis, William
2015-10-01
Mitochondrial dysfunction causes oxidative stress and cardiomyopathy. Oxidative stress also is a side effect of dideoxynucleoside antiretrovirals (NRTI) and is observed in NRTI-induced cardiomyopathy. We show here that treatment with the NRTI AZT {1-[(2R,4S,5S)-4-azido-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione} modulates cardiac gene expression epigenetically through production of mitochondrially derived reactive oxygen species. Transgenic mice with ubiquitous expression of mitochondrially targeted catalase (MCAT) and C57Bl/6 wild-type mice littermates (WT) were administered AZT (0.22 mg/day po, 35 days), and cardiac DNA and mRNA were isolated. In AZT-treated WT, 95 cardiac genes were differentially expressed compared with vehicle-treated WTs. When MCAT mice were treated with AZT, each of those 95 genes reverted toward the expression of vehicle-treated WTs. In AZT-treated WT hearts, Mthfr [5,10-methylenetetrahydrofolate reductase; a critical enzyme in synthesis of methionine cycle intermediates including S-adenosylmethionine (SAM)], was overexpressed. Steady-state abundance of SAM in cardiac extracts from AZT-treated MCAT mice increased 60% above that of vehicle-treated MCAT. No such change occurred in WT. AZT caused hypermethylation (47%) and hypomethylation (53%) of differentially methylated DNA regions in WT cardiac DNA. AZT-treated MCAT heart DNA exhibited greater hypermethylation (91%) and less hypomethylation (9%) compared with vehicle-treated MCAT controls. The gene encoding protein kinase C-α displayed multifocal epigenetic regulation caused by oxidative stress. Results show that mitochondrially derived oxidative stress in the heart hinders cardiac DNA methylation, alters steady-state abundance of SAM, alters cardiac gene expression, and promotes characteristic pathophysiological changes of cardiomyopathy. This mechanism for NRTI toxicity offers insight into long-term side effects from these commonly used antiviral agents. Copyright © 2015 the American Physiological Society.
Biphasic Effect of Nitric Oxide on the Cardiac Voltage-dependent Anion Channel
Cheng, Qunli; Sedlic, Filip; Pravdic, Danijel; Bosnjak, Zeljko J.; Kwok, Wai-Meng
2010-01-01
Nitric oxide (NO˙) effects on the cardiac mitochondrial voltage-dependent anion channel (VDAC) are unknown. The effects of exogenous NO˙ on VDAC purified from rat hearts were investigated in this study. When incorporated into lipid bilayers, VDAC was inhibited directly by an NO˙ donor, PAPA NONOate, in a concentration-dependent biphasic manner. This was prevented by an NO˙ scavenger, PTIO. The effect paralleled that of NO˙ in delaying the opening of the mitochondrial permeability transition (PT) pore. These biphasic effects on the cardiac VDAC and the PT pore reveal a tandem impact of NO˙ on the two mitochondrial entities. PMID:21156174
TRPM2 Channels Protect against Cardiac Ischemia-Reperfusion Injury
Miller, Barbara A.; Hoffman, Nicholas E.; Merali, Salim; Zhang, Xue-Qian; Wang, JuFang; Rajan, Sudarsan; Shanmughapriya, Santhanam; Gao, Erhe; Barrero, Carlos A.; Mallilankaraman, Karthik; Song, Jianliang; Gu, Tongda; Hirschler-Laszkiewicz, Iwona; Koch, Walter J.; Feldman, Arthur M.; Madesh, Muniswamy; Cheung, Joseph Y.
2014-01-01
Cardiac TRPM2 channels were activated by intracellular adenosine diphosphate-ribose and blocked by flufenamic acid. In adult cardiac myocytes the ratio of GCa to GNa of TRPM2 channels was 0.56 ± 0.02. To explore the cellular mechanisms by which TRPM2 channels protect against cardiac ischemia/reperfusion (I/R) injury, we analyzed proteomes from WT and TRPM2 KO hearts subjected to I/R. The canonical pathways that exhibited the largest difference between WT-I/R and KO-I/R hearts were mitochondrial dysfunction and the tricarboxylic acid cycle. Complexes I, III, and IV were down-regulated, whereas complexes II and V were up-regulated in KO-I/R compared with WT-I/R hearts. Western blots confirmed reduced expression of the Complex I subunit and other mitochondria-associated proteins in KO-I/R hearts. Bioenergetic analyses revealed that KO myocytes had a lower mitochondrial membrane potential, mitochondrial Ca2+ uptake, ATP levels, and O2 consumption but higher mitochondrial superoxide levels. Additionally, mitochondrial Ca2+ uniporter (MCU) currents were lower in KO myocytes, indicating reduced mitochondrial Ca2+ uptake was likely due to both lower ψm and MCU activity. Similar to isolated myocytes, O2 consumption and ATP levels were also reduced in KO hearts. Under a simulated I/R model, aberrant mitochondrial bioenergetics was exacerbated in KO myocytes. Reactive oxygen species levels were also significantly higher in KO-I/R compared with WT-I/R heart slices, consistent with mitochondrial dysfunction in KO-I/R hearts. We conclude that TRPM2 channels protect the heart from I/R injury by ameliorating mitochondrial dysfunction and reducing reactive oxygen species levels. PMID:24492610
Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells
Carreira, Raquel S.; Lee, Youngil; Ghochani, Mariam; Gustafsson, Åsa B.; Gottlieb, Roberta A.
2013-01-01
Autophagy is a highly regulated intracellular degradation process by which cells remove cytosolic long-lived proteins and damaged organelles. The mitochondrial permeability transition (MPT) results in mitochondrial depolarization and increased reactive oxygen species production, which can trigger autophagy. Therefore, we hypothesized that the MPT may have a role in signaling autophagy in cardiac cells. Mitochondrial membrane potential was lower in HL-1 cells subjected to starvation compared to cells maintained in full medium. Mitochondrial membrane potential was preserved in starved cells treated with cyclosporin A (CsA), suggesting the MPT pore is associated with starvation-induced depolarization. Starvation-induced autophagy in HL-1 cells, neonatal rat cardiomyocytes and adult mouse cardiomyocytes was inhibited by CsA. Starvation failed to induce autophagy in CypD-deficient murine cardiomyocytes, whereas in myocytes from mice overexpressing CypD the levels of autophagy were enhanced even under fed conditions. Collectively, these results demonstrate a role for CypD and the MPT in the initiation of autophagy. We also analyzed the role of the MPT in the degradation of mitochondria by biochemical analysis and electron microscopy. HL-1 cells subjected to starvation in the presence of CsA had higher levels of mitochondrial proteins (by Western blot), more mitochondria and less autophagosomes (by electron microscopy) then cells starved in the absence of CsA. Our results suggest a physiologic function for CypD and the MPT in the regulation of starvation-induced autophagy. Starvation-induced autophagy regulated by CypD and the MPT may represent a homeostatic mechanism for cellular and mitochondrial quality control. PMID:20364102
Ojo, Babajide; Simenson, Ashley J; O'Hara, Crystal; Wu, Lei; Gou, Xin; Peterson, Sandra K; Lin, Daniel; Smith, Brenda J; Lucas, Edralin A
2017-08-01
Obesity is strongly associated with insulin resistance (IR), along with mitochondrial dysfunction to metabolically active tissues and increased production of reactive O2 species (ROS). Foods rich in antioxidants such as wheat germ (WG), protect tissues from damage due to ROS and modulate some negative effects of obesity. This study examined the effects of WG supplementation on markers of IR, mitochondrial substrate metabolism and innate antioxidant markers in two metabolically active tissues (i.e. liver and heart) of C57BL/6 mice fed a high-fat-high-sucrose (HFS) diet. Male C57BL/6 mice, 6-week-old, were randomised into four dietary treatment groups (n 12 mice/group): control (C, 10 % fat kcal), C+10 % WG, HFS (60 % fat kcal) or HFS+10 % WG (HFS+WG). After 12 weeks of treatment, HFS+WG mice had significantly less visceral fat (-16 %, P=0·006) compared with the HFS group. WG significantly reduced serum insulin (P=0·009), the insulinotropic hormone, gastric inhibitory peptide (P=0·0003), and the surrogate measure of IR, homoeostatic model assessment of IR (P=0·006). HFS diet significantly elevated (45 %, P=0·02) cardiac complex 2 mitochondrial VO2, suggesting increased metabolic stress, whereas WG stabilised this effect to the level of control. Consequently, genes which mediate antioxidant defense and mitochondrial biogenesis (superoxide dismutase 2 (Sod2) and PPARγ coactivator 1-α (Pgc1a), respectively) were significantly reduced (P<0·05) in the heart of the HFS group, whereas WG supplementation tended to up-regulate both genes. WG significantly increased hepatic gene expression of Sod2 (P=0·048) but not Pgc1a. Together, these results showed that WG supplementation in HFS diet, reduced IR and improved cardiac mitochondrial metabolic functions.
Heme oxygenase-1 regulates mitochondrial quality control in the heart
Hull, Travis D.; Boddu, Ravindra; Guo, Lingling; Tisher, Cornelia C.; Traylor, Amie M.; Patel, Bindiya; Joseph, Reny; Prabhu, Sumanth D.; Suliman, Hagir B.; Piantadosi, Claude A.; George, James F.
2016-01-01
The cardioprotective inducible enzyme heme oxygenase-1 (HO-1) degrades prooxidant heme into equimolar quantities of carbon monoxide, biliverdin, and iron. We hypothesized that HO-1 mediates cardiac protection, at least in part, by regulating mitochondrial quality control. We treated WT and HO-1 transgenic mice with the known mitochondrial toxin, doxorubicin (DOX). Relative to WT mice, mice globally overexpressing human HO-1 were protected from DOX-induced dilated cardiomyopathy, cardiac cytoarchitectural derangement, and infiltration of CD11b+ mononuclear phagocytes. Cardiac-specific overexpression of HO-1 ameliorated DOX-mediated dilation of the sarcoplasmic reticulum as well as mitochondrial disorganization in the form of mitochondrial fragmentation and increased numbers of damaged mitochondria in autophagic vacuoles. HO-1 overexpression promotes mitochondrial biogenesis by upregulating protein expression of NRF1, PGC1α, and TFAM, which was inhibited in WT animals treated with DOX. Concomitantly, HO-1 overexpression inhibited the upregulation of the mitochondrial fission mediator Fis1 and resulted in increased expression of the fusion mediators, Mfn1 and Mfn2. It also prevented dynamic changes in the levels of key mediators of the mitophagy pathway, PINK1 and parkin. Therefore, these findings suggest that HO-1 has a novel role in protecting the heart from oxidative injury by regulating mitochondrial quality control. PMID:27110594
Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress
Koncsos, Gábor; Varga, Zoltán V.; Boengler, Kerstin; Rohrbach, Susanne; Li, Ling; Schlüter, Klaus-Dieter; Schreckenberg, Rolf; Radovits, Tamás; Oláh, Attila; Mátyás, Csaba; Lux, Árpád; Al-Khrasani, Mahmoud; Komlódi, Tímea; Bukosza, Nóra; Máthé, Domokos; Deres, László; Barteková, Monika; Rajtík, Tomáš; Adameová, Adriana; Szigeti, Krisztián; Helyes, Zsuzsanna; Tretter, László; Pacher, Pál; Merkely, Béla; Schulz, Rainer; Ferdinandy, Péter
2016-01-01
Although incidence and prevalence of prediabetes are increasing, little is known about its cardiac effects. Therefore, our aim was to investigate the effect of prediabetes on cardiac function and to characterize parameters and pathways associated with deteriorated cardiac performance. Long-Evans rats were fed with either control or high-fat chow for 21 wk and treated with a single low dose (20 mg/kg) of streptozotocin at week 4. High-fat and streptozotocin treatment induced prediabetes as characterized by slightly elevated fasting blood glucose, impaired glucose and insulin tolerance, increased visceral adipose tissue and plasma leptin levels, as well as sensory neuropathy. In prediabetic animals, a mild diastolic dysfunction was observed, the number of myocardial lipid droplets increased, and left ventricular mass and wall thickness were elevated; however, no molecular sign of fibrosis or cardiac hypertrophy was shown. In prediabetes, production of reactive oxygen species was elevated in subsarcolemmal mitochondria. Expression of mitofusin-2 was increased, while the phosphorylation of phospholamban and expression of Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3, a marker of mitophagy) decreased. However, expression of other markers of cardiac auto- and mitophagy, mitochondrial dynamics, inflammation, heat shock proteins, Ca2+/calmodulin-dependent protein kinase II, mammalian target of rapamycin, or apoptotic pathways were unchanged in prediabetes. This is the first comprehensive analysis of cardiac effects of prediabetes indicating that mild diastolic dysfunction and cardiac hypertrophy are multifactorial phenomena that are associated with early changes in mitophagy, cardiac lipid accumulation, and elevated oxidative stress and that prediabetes-induced oxidative stress originates from the subsarcolemmal mitochondria. PMID:27521417
Nelskylä, Annika; Nurmi, Jouni; Jousi, Milla; Schramko, Alexey; Mervaala, Eero; Ristagno, Giuseppe; Skrifvars, Markus B
2017-07-01
We hypothesised that the use of 50% compared to 100% oxygen maintains cerebral oxygenation and ameliorates the disturbance of cardiac mitochondrial respiration during cardiopulmonary resuscitation (CPR). Ventricular fibrillation (VF) was induced electrically in anaesthetised healthy adult pigs and left untreated for seven minutes followed by randomisation to manual ventilation with 50% or 100% oxygen and mechanical chest compressions (LUCAS ® ). Defibrillation was performed at thirteen minutes and repeated if necessary every two minutes with 1mg intravenous adrenaline. Cerebral oxygenation was measured with near-infrared spectroscopy (rSO 2 , INVOS™5100C Cerebral Oximeter) and with a probe (NEUROVENT-PTO, RAUMEDIC) in the frontal brain cortex (PbO 2 ). Heart biopsies were obtained 20min after the return of spontaneous circulation (ROSC) with an analysis of mitochondrial respiration (OROBOROS Instruments Corp., Innsbruck, Austria), and compared to four control animals without VF and CPR. Brain rSO 2 and PbO 2 were log transformed and analysed with a mixed linear model and mitochondrial respiration with an analysis of variance. Of the twenty pigs, one had a breach of protocol and was excluded, leaving nine pigs in the 50% group and ten in the 100% group. Return of spontaneous circulation (ROSC) was achieved in six pigs in the 50% group and eight in the 100% group. The rSO 2 (p=0.007) was lower with FiO 2 50%, but the PbO 2 was not (p=0.93). After ROSC there were significant interactions between time and FiO 2 regarding both rSO 2 (p=0.001) and PbO 2 (p=0.004). Compared to the controls, mitochondrial respiration was decreased, with adenosine diphosphate (ADP) levels of 57 (17)pmols -1 mg -1 compared to 92 (23)pmols -1 mg -1 (p=0.008), but there was no difference between different oxygen fractions (p=0.79). The use of 50% oxygen during CPR results in lower cerebral oximetry values compared to 100% oxygen but there is no difference in brain tissue oxygen. Cardiac arrest disturbs cardiac mitochondrial respiration, but it is not alleviated with the use of 50% compared to 100% oxygen (Ethical and hospital approvals ESAVI/1077/04.10.07/2016 and HUS/215/2016, §7 30.3.2016, Funding Helsinki University and others). Copyright © 2017 Elsevier B.V. All rights reserved.
Asemu, Girma; O'Connell, Kelly A.; Cox, James W.; Dabkowski, Erinne R.; Xu, Wenhong; Ribeiro, Rogerio F.; Shekar, Kadambari C.; Hecker, Peter A.; Rastogi, Sharad; Sabbah, Hani N.; Hoppel, Charles L.
2013-01-01
Functional differences between subsarcolemmal and interfibrillar cardiac mitochondria (SSM and IFM) have been observed with aging and pathological conditions in rodents. Results are contradictory, and there is little information from large animal models. We assessed the respiratory function and resistance to mitochondrial permeability transition (MPT) in SSM and IFM from healthy young (1 yr) and old (8 yr) female beagles and in old beagles with hypertension and left ventricular (LV) wall thickening induced by 16 wk of aldosterone infusion. MPT was assessed in SSM and IFM by Ca2+ retention and swelling. Healthy young and old beagles had similar mitochondrial structure, respiratory function, and Ca2+-induced MPT within SSM and IFM subpopulations. On the other hand, oxidative capacity and resistance to Ca2+-induced MPT were significantly greater in IFM compared with SSM in all groups. Old beagles treated with aldosterone had greater LV wall thickness and worse diastolic filling but normal LV chamber volume and systolic function. Treatment with aldosterone did not alter mitochondrial respiratory function but accelerated Ca2+-induced MPT in SSM, but not IFM, compared with healthy old and young beagles. In conclusion, in a large animal model, oxidative capacity and resistance to MPT were greater in IFM than in SSM. Furthermore, aldosterone infusion increased susceptibility to MPT in SSM, but not IFM. Together this suggests that SSM are less resilient to acute stress than IFM in the healthy heart and are more susceptible to the development of pathology with chronic stress. PMID:23241318
Asemu, Girma; O'Connell, Kelly A; Cox, James W; Dabkowski, Erinne R; Xu, Wenhong; Ribeiro, Rogerio F; Shekar, Kadambari C; Hecker, Peter A; Rastogi, Sharad; Sabbah, Hani N; Hoppel, Charles L; Stanley, William C
2013-02-15
Functional differences between subsarcolemmal and interfibrillar cardiac mitochondria (SSM and IFM) have been observed with aging and pathological conditions in rodents. Results are contradictory, and there is little information from large animal models. We assessed the respiratory function and resistance to mitochondrial permeability transition (MPT) in SSM and IFM from healthy young (1 yr) and old (8 yr) female beagles and in old beagles with hypertension and left ventricular (LV) wall thickening induced by 16 wk of aldosterone infusion. MPT was assessed in SSM and IFM by Ca(2+) retention and swelling. Healthy young and old beagles had similar mitochondrial structure, respiratory function, and Ca(2+)-induced MPT within SSM and IFM subpopulations. On the other hand, oxidative capacity and resistance to Ca(2+)-induced MPT were significantly greater in IFM compared with SSM in all groups. Old beagles treated with aldosterone had greater LV wall thickness and worse diastolic filling but normal LV chamber volume and systolic function. Treatment with aldosterone did not alter mitochondrial respiratory function but accelerated Ca(2+)-induced MPT in SSM, but not IFM, compared with healthy old and young beagles. In conclusion, in a large animal model, oxidative capacity and resistance to MPT were greater in IFM than in SSM. Furthermore, aldosterone infusion increased susceptibility to MPT in SSM, but not IFM. Together this suggests that SSM are less resilient to acute stress than IFM in the healthy heart and are more susceptible to the development of pathology with chronic stress.
The complex interplay between mitochondrial dynamics and cardiac metabolism
Parra, Valentina; Verdejo, Hugo; del Campo, Andrea; Pennanen, Christian; Kuzmicic, Jovan; Iglewski, Myriam; Hill, Joseph A.; Rothermel, Beverly A.
2012-01-01
Mitochondria are highly dynamic organelles, capable of undergoing constant fission and fusion events, forming networks. These dynamic events allow the transmission of chemical and physical messengers and the exchange of metabolites within the cell. In this article we review the signaling mechanisms controlling mitochondrial fission and fusion, and its relationship with cell bioenergetics, especially in the heart. Furthermore we also discuss how defects in mitochondrial dynamics might be involved in the pathogenesis of metabolic cardiac diseases. PMID:21258852
Chen, Zhe; Jin, Zhousheng; Xia, Yun; Zhao, Shishi; Xu, Xuzhong; Papadimos, Thomas J; Wang, Quanguang
2017-11-01
Lipid emulsion (LE) has been shown to be effective in the resuscitation of bupivacaine-induced cardiac arrest, but the precise mechanism of this action has not been fully elucidated. Pursuant to this lack of information on the mechanism in which LE protects the myocardium during bupivacaine-induced toxicity, we explored mitochondrial function and cell apoptosis. H9C2 cardiomyocytes were used in study. Cells were randomly divided in different groups and were cultivated 6 h, 12 h, and 24 h. The mitochondria were extracted and mitochondrial ATP content was measured, as was mitochondrial membrane potential, the concentration of calcium ion (Ca2+), and the activity of Ca2+-ATP enzyme (Ca2+-ATPase). Cells from groups Bup1000, LE group, and Bup1000LE were collected to determine cell viability, cell apoptosis, and electron microscopy scanning of mitochondrial ultrastructure (after 24 h). We found that LE can reverse the inhibition of the mitochondrial function induced by bupivacaine, regulate the concentration of calcium ion in mitochondria, resulting in the protection of myocardial cells from toxicity induced by bupivacaine.
Guzun, Rita; Saks, Valdur
2010-01-01
The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener’s cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener’s cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures – intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of cytosolic ADP, Pi and Cr/PCr ensures metabolic stability necessary for normal function of cardiac cells. PMID:20479996
In female rat heart mitochondria, oophorectomy results in loss of oxidative phosphorylation.
Pavón, Natalia; Cabrera-Orefice, Alfredo; Gallardo-Pérez, Juan Carlos; Uribe-Alvarez, Cristina; Rivero-Segura, Nadia A; Vazquez-Martínez, Edgar Ricardo; Cerbón, Marco; Martínez-Abundis, Eduardo; Torres-Narvaez, Juan Carlos; Martínez-Memije, Raúl; Roldán-Gómez, Francisco-Javier; Uribe-Carvajal, Salvador
2017-02-01
Oophorectomy in adult rats affected cardiac mitochondrial function. Progression of mitochondrial alterations was assessed at one, two and three months after surgery: at one month, very slight changes were observed, which increased at two and three months. Gradual effects included decrease in the rates of oxygen consumption and in respiratory uncoupling in the presence of complex I substrates, as well as compromised Ca 2+ buffering ability. Malondialdehyde concentration increased, whereas the ROS-detoxifying enzyme Mn 2+ superoxide dismutase (MnSOD) and aconitase lost activity. In the mitochondrial respiratory chain, the concentration and activity of complex I and complex IV decreased. Among other mitochondrial enzymes and transporters, adenine nucleotide carrier and glutaminase decreased. 2-Oxoglutarate dehydrogenase and pyruvate dehydrogenase also decreased. Data strongly suggest that in the female rat heart, estrogen depletion leads to progressive, severe mitochondrial dysfunction. © 2017 Society for Endocrinology.
Yang, MeiYing; Camara, Amadou K.S.; Aldakkak, Mohammed; Kwok, Wai-Meng; Stowe, David F.
2017-01-01
We provide evidence for location and function of a small conductance, Ca2+-activated K+ (SKCa) channel isoform 3 (SK3) in mitochondria (m) of guinea pig, rat and human ventricular myocytes. SKCa agonists protected isolated hearts and mitochondria against ischemia/reperfusion (IR) injury; SKCa antagonists worsened IR injury. Intravenous infusion of a SKCa channel agonist/antagonist, respectively, in intact rats was effective in reducing/enhancing regional infarct size induced by coronary artery occlusion. Localization of SK3 in mitochondria was evidenced by Western blot of inner mitochondrial membrane, immunocytochemical staining of cardiomyocytes, and immunogold labeling of isolated mitochondria. We identified a SK3 splice variant in guinea pig (SK3.1, aka SK3a) and human ventricular cells (SK3.2) by amplifying mRNA, and show mitochondrial expression in mouse atrial tumor cells (HL-1) by transfection with full length and truncated SK3.1 protein. We found that the Nterminus is not required for mitochondrial trafficking but the C-terminus beyond the Ca2+ calmodulin binding domain is required for Ca2+ sensing to induce mK+ influx and/or promote mitochondrial localization. In isolated guinea pig mitochondria and in SK3 overexpressed HL-1 cells, mK+ influx was driven by adding CaCl2. Moreover, there was a greater fall in membrane potential (ΔΨm), and enhanced cell death with simulated cell injury after silencing SK3.1 with siRNA. Although SKCa channel opening protects the heart and mitochondria against IR injury, the mechanism for favorable bioenergetics effects resulting from SKCa channel opening remains unclear. SKCa channels could play an essential role in restraining cardiac mitochondria from inducing oxidative stress-induced injury resulting from mCa2+ overload. PMID:28342809
Zhang, Donghui; Li, Yifei; Heims-Waldron, Danielle; Bezzerides, Vassilios; Guatimosim, Silvia; Guo, Yuxuan; Gu, Fei; Zhou, Pingzhu; Lin, Zhiqiang; Ma, Qing; Liu, Jianming; Wang, Da-Zhi; Pu, William T
2018-01-05
Although mitochondrial diseases often cause abnormal myocardial development, the mechanisms by which mitochondria influence heart growth and function are poorly understood. To investigate these disease mechanisms, we studied a genetic model of mitochondrial dysfunction caused by inactivation of Tfam (transcription factor A, mitochondrial), a nuclear-encoded gene that is essential for mitochondrial gene transcription and mitochondrial DNA replication. Tfam inactivation by Nkx2.5 Cre caused mitochondrial dysfunction and embryonic lethal myocardial hypoplasia. Tfam inactivation was accompanied by elevated production of reactive oxygen species (ROS) and reduced cardiomyocyte proliferation. Mosaic embryonic Tfam inactivation confirmed that the block to cardiomyocyte proliferation was cell autonomous. Transcriptional profiling by RNA-seq demonstrated the activation of the DNA damage pathway. Pharmacological inhibition of ROS or the DNA damage response pathway restored cardiomyocyte proliferation in cultured fetal cardiomyocytes. Neonatal Tfam inactivation by AAV9-cTnT-Cre caused progressive, lethal dilated cardiomyopathy. Remarkably, postnatal Tfam inactivation and disruption of mitochondrial function did not impair cardiomyocyte maturation. Rather, it elevated ROS production, activated the DNA damage response pathway, and decreased cardiomyocyte proliferation. We identified a transient window during the first postnatal week when inhibition of ROS or the DNA damage response pathway ameliorated the detrimental effect of Tfam inactivation. Mitochondrial dysfunction caused by Tfam inactivation induced ROS production, activated the DNA damage response, and caused cardiomyocyte cell cycle arrest, ultimately resulting in lethal cardiomyopathy. Normal mitochondrial function was not required for cardiomyocyte maturation. Pharmacological inhibition of ROS or DNA damage response pathways is a potential strategy to prevent cardiac dysfunction caused by some forms of mitochondrial dysfunction. © 2017 American Heart Association, Inc.
Wijnker, Paul J M; Sequeira, Vasco; Kuster, Diederik W D; Velden, Jolanda van der
2018-04-11
Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction, and myocardial disarray. Disease onset occurs between 20 and 50 years of age, thus affecting patients in the prime of their life. HCM is caused by mutations in sarcomere proteins, the contractile building blocks of the heart. Despite increased knowledge of causal mutations, the exact path from genetic defect leading to cardiomyopathy is complex and involves additional disease hits. Recent Advances: Laboratory-based studies indicate that HCM development not only depends on the primary sarcomere impairment caused by the mutation but also on secondary disease-related alterations in the heart. Here we propose a vicious mutation-induced disease cycle, in which a mutation-induced energy depletion alters cellular metabolism with increased mitochondrial work, which triggers secondary disease modifiers that will worsen disease and ultimately lead to end-stage HCM. Evidence shows excessive cellular reactive oxygen species (ROS) in HCM patients and HCM animal models. Oxidative stress markers are increased in the heart (oxidized proteins, DNA, and lipids) and serum of HCM patients. In addition, increased mitochondrial ROS production and changes in endogenous antioxidants are reported in HCM. Mutant sarcomeric protein may drive excessive levels of cardiac ROS via changes in cardiac efficiency and metabolism, mitochondrial activation and/or dysfunction, impaired protein quality control, and microvascular dysfunction. Interventions restoring metabolism, mitochondrial function, and improved ROS balance may be promising therapeutic approaches. We discuss the effects of current HCM pharmacological therapies and potential future therapies to prevent and reverse HCM. Antioxid. Redox Signal. 00, 000-000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Files, Matthew D.; Kajimoto, Masaki; Priddy, Colleen M.
2014-03-20
Extracorporeal membrane oxygenation (ECMO) provides a bridge to recovery after myocardial injury in infants and children, yet morbidity and mortality remain high. Weaning from the circuit requires adequate cardiac contractile function, which can be impaired by metabolic disturbances induced either by ischemia-reperfusion and / or by ECMO.
Leo, Elettra; Kunz, Kristina L; Schmidt, Matthias; Storch, Daniela; Pörtner, Hans-O; Mark, Felix C
2017-01-01
Ocean acidification and warming are happening fast in the Arctic but little is known about the effects of ocean acidification and warming on the physiological performance and survival of Arctic fish. In this study we investigated the metabolic background of performance through analyses of cardiac mitochondrial function in response to control and elevated water temperatures and P CO 2 of two gadoid fish species, Polar cod ( Boreogadus saida ), an endemic Arctic species, and Atlantic cod ( Gadus morhua ), which is a temperate to cold eurytherm and currently expanding into Arctic waters in the wake of ocean warming. We studied their responses to the above-mentioned drivers and their acclimation potential through analysing the cardiac mitochondrial function in permeabilised cardiac muscle fibres after 4 months of incubation at different temperatures (Polar cod: 0, 3, 6, 8 °C and Atlantic cod: 3, 8, 12, 16 °C), combined with exposure to present (400μatm) and year 2100 (1170μatm) levels of CO 2 . OXPHOS, proton leak and ATP production efficiency in Polar cod were similar in the groups acclimated at 400μatm and 1170μatm of CO 2 , while incubation at 8 °C evoked increased proton leak resulting in decreased ATP production efficiency and decreased Complex IV capacity. In contrast, OXPHOS of Atlantic cod increased with temperature without compromising the ATP production efficiency, whereas the combination of high temperature and high P CO 2 depressed OXPHOS and ATP production efficiency. Polar cod mitochondrial efficiency decreased at 8 °C while Atlantic cod mitochondria were more resilient to elevated temperature; however, this resilience was constrained by high P CO 2 . In line with its lower habitat temperature and higher degree of stenothermy, Polar cod has a lower acclimation potential to warming than Atlantic cod.
Zhang, Yingmei; Li, Linlin; Hua, Yinan; Nunn, Jennifer M.; Dong, Feng; Yanagisawa, Masashi; Ren, Jun
2012-01-01
Cold exposure is associated with oxidative stress and cardiac dysfunction. The endothelin (ET) system, which plays a key role in myocardial homeostasis, may participate in cold exposure-induced cardiovascular dysfunction. This study was designed to examine the role of ET-1 in cold stress-induced cardiac geometric and contractile responses. Wild-type (WT) and ETA receptor knockout (ETAKO) mice were assigned to normal or cold exposure (4°C) environment for 2 and 5 weeks prior to evaluation of cardiac geometry, contractile, and intracellular Ca2+ properties. Levels of the temperature sensor transient receptor potential vanilloid (TRPV1), mitochondrial proteins for biogenesis and oxidative phosphorylation, including UCP2, HSP90, and PGC1α were evaluated. Cold stress triggered cardiac hypertrophy, depressed myocardial contractile capacity, including fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, reduced intracellular Ca2+ release, prolonged intracellular Ca2+ decay and relengthening duration, generation of ROS and superoxide, as well as apoptosis, the effects of which were blunted by ETAKO. Western blotting revealed downregulated TRPV1 and PGC1α as well as upregulated UCP2 and activation of GSK3β, GATA4, and CREB in cold-stressed WT mouse hearts, which were obliterated by ETAKO. Levels of HSP90, an essential regulator for thermotolerance, were unchanged. The TRPV1 agonist SA13353 attenuated whereas TRPV1 antagonist capsazepine mimicked cold stress- or ET-1-induced cardiac anomalies. The GSK3β inhibitor SB216763 ablated cold stress-induced cardiac contractile (but not remodeling) changes and ET-1-induced TRPV1 downregulation. These data suggest that ETAKO protects against cold exposure-induced cardiac remodeling and dysfunction mediated through TRPV1 and mitochondrial function. PMID:22442497
Ma, Huijie; Huang, Xinli; Li, Qian; Guan, Yue; Yuan, Fang; Zhang, Yi
2011-07-01
Previous studies have confirmed that tea polyphenols possess a broad spectrum of biological functions such as anti-oxidative, anti-bacterial, anti-tumor, anti-inflammatory, anti-viral and cardiovascular protection activities, as well as anti-cerebral ischemia-reperfusion injury properties. But the effect of tea polyphenols on ischemia/reperfusion heart has not been well elucidated. The aim of this study was to investigate the protective effect of theaflavin (TF1) and its underlying mechanism. Young male Sprague-Dawley (SD) rats were randomly divided into five groups: (1) the control group; (2) TF1 group; (3) glibenclamide + TF1 group; (4) 5-hydroxydecanoate (5-HD) + TF1 group; and (5) atractyloside + TF1 group. The Langendorff technique was used to record cardiac function in isolated rat heart before and after 30 min of global ischemia followed by 60 min of reperfusion. The parameters of cardiac function, including left ventricular developing pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), maximal differentials of LVDP (± LVdP/dt (max)) and coronary flow (CF), were measured. The results showed: (1) compared with the control group, TF1 (10, 20, 40 μmol/l) displayed a better recovery of cardiac function after ischemia/reperfusion in a concentration-dependent manner. At 60 min of reperfusion, LVDP, ± LVdP/dt (max) and CF in the TF1 group were much higher than those in the control group, whereas left ventricular end-diastolic pressure (LVEDP) in the TF1 group was lower than that in the control group (P < 0.01). (2) Pretreatment with glibenclamide (10 μmol/l), a K(ATP) antagonist, completely abolished the cardioprotective effects of TF1 (20 μmol/l). Also, most of the effects of TF1 (20 μmol/l) on cardiac function after 60 min of reperfusion were reversed by 5-HD (100 μmol/l), a selective mitochondria K(ATP) antagonist. (3) Atractyloside (20 μmol/l), a mitochondrial permeability transition pore (mPTP) opener, administered at the beginning of 15 min of reperfusion completely abolished the cardioprotection of TF1 (20 μmol/l). The results indicate that TF1 protects the rat heart against ischemia/reperfusion injury through the opening of K(ATP) channels, particularly on the mitochondrial membrane, and inhibits mPTP opening.
Gao, Si; Li, Hong; Feng, Xiao-jun; Li, Min; Liu, Zhi-ping; Cai, Yi; Lu, Jing; Huang, Xiao-yang; Wang, Jiao-jiao; Li, Qin; Chen, Shao-rui; Ye, Jian-tao; Liu, Pei-qing
2015-02-01
α-Enolase is a glycolytic enzyme with "second jobs" beyond its catalytic activity. However, its possible contribution to cardiac dysfunction remains to be determined. The present study aimed to investigate the role of α-enolase in doxorubicin (Dox)-induced cardiomyopathy as well as the underlying mechanisms. The expression of α-enolase was detected in rat hearts and primary cultured rat cardiomyocytes with or without Dox administration. An adenovirus carrying short-hairpin interfering RNA targeting α-enolase was constructed and transduced specifically into the heart by intramyocardial injection. Heart function, cell apoptosis and mitochondrial function were measured following Dox administration. In addition, by using gain- and loss-of-function approaches to regulate α-enolase expression in primary cultured rat cardiomyocytes, we investigated the role of endogenous, wide type and catalytically inactive mutant α-enolase in cardiomyocyte apoptosis and ATP generation. Furthermore, the involvement of α-enolase in AMPK phosphorylation was also studied. The mRNA and protein expression of cardiac α-enolase was significantly upregulated by Dox. Genetic silencing of α-enolase in rat hearts and cultured cardiomyocytes attenuated Dox-induced apoptosis and mitochondrial dysfunction. In contrast, overexpression of wide-type or catalytically inactive α-enolase in cardiomyocytes mimicked the detrimental role of Dox in inducing apoptosis and ATP reduction. AMPK dephosphorylation was further demonstrated to be involved in the proapoptotic and ATP-depriving effects of α-enolase. Our findings provided the evidence that α-enolase has a catalytically independent role in inducing cardiomyocyte apoptosis and mitochondrial dysfunction, which could be at least partially contributed to the inhibition of AMPK phosphorylation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Perspectives on the Role and Relevance of Copper in Cardiac Disease.
Medeiros, Denis M
2017-03-01
Cardiac hypertrophy as a result of dietary copper deficiency has been studied for 40 plus years and is the subject of this review. While connective tissue anomalies occur, a hallmark pathology is cardiac hypertrophy, increased mitochondrial biogenesis, with disruptive cristae, vacuolization of mitochondria, and deposition of lipid droplets. Electrocardiogram abnormalities have been demonstrated along with biochemical changes especially as it relates to the copper-containing enzyme cytochrome c oxidase. The master controller of mitochondrial biogenesis, PGC1-α expression and protein, along with other proteins and transcriptional factors that play a role are upregulated. Nitric oxide, vascular endothelial growth factor, and cytochrome c oxidase all may enhance the upregulation of mitochondrial biogenesis. Marginal copper intakes reveal similar pathologies in the absence of cardiac hypertrophy. Reversibility of the copper-deficient rat heart with a copper-replete diet has resulted in mixed results, depending on both the animal model used and temporal relationships. New information has revealed that copper supplementation may rescue cardiac hypertrophy induced by pressure overload.
Givvimani, Srikanth; Munjal, Charu; Tyagi, Neetu; Sen, Utpal; Metreveli, Naira; Tyagi, Suresh C.
2012-01-01
Background We have previously reported the role of anti-angiogenic factors in inducing the transition from compensatory cardiac hypertrophy to heart failure and the significance of MMP-9 and TIMP-3 in promoting this process during pressure overload hemodynamic stress. Several studies reported the evidence of cardiac autophagy, involving removal of cellular organelles like mitochondria (mitophagy), peroxisomes etc., in the pathogenesis of heart failure. However, little is known regarding the therapeutic role of mitochondrial division inhibitor (Mdivi) in the pressure overload induced heart failure. We hypothesize that treatment with mitochondrial division inhibitor (Mdivi) inhibits abnormal mitophagy in a pressure overload heart and thus ameliorates heart failure condition. Materials and Methods To verify this, ascending aortic banding was done in wild type mice to create pressure overload induced heart failure and then treated with Mdivi and compared with vehicle treated controls. Results Expression of MMP-2, vascular endothelial growth factor, CD31, was increased, while expression of anti angiogenic factors like endostatin and angiostatin along with MMP-9, TIMP-3 was reduced in Mdivi treated AB 8 weeks mice compared to vehicle treated controls. Expression of mitophagy markers like LC3 and p62 was decreased in Mdivi treated mice compared to controls. Cardiac functional status assessed by echocardiography showed improvement and there is also a decrease in the deposition of fibrosis in Mdivi treated mice compared to controls. Conclusion Above results suggest that Mdivi inhibits the abnormal cardiac mitophagy response during sustained pressure overload stress and propose the novel therapeutic role of Mdivi in ameliorating heart failure. PMID:22479323
Jia, Yuzhi; Chang, Hsiang-Chun; Schipma, Matthew J; Liu, Jing; Shete, Varsha; Liu, Ning; Sato, Tatsuya; Thorp, Edward B; Barger, Philip M; Zhu, Yi-Jun; Viswakarma, Navin; Kanwar, Yashpal S; Ardehali, Hossein; Thimmapaya, Bayar; Reddy, Janardan K
2016-01-01
Mediator, an evolutionarily conserved multi-protein complex consisting of about 30 subunits, is a key component of the polymerase II mediated gene transcription. Germline deletion of the Mediator subunit 1 (Med1) of the Mediator in mice results in mid-gestational embryonic lethality with developmental impairment of multiple organs including heart. Here we show that cardiomyocyte-specific deletion of Med1 in mice (csMed1-/-) during late gestational and early postnatal development by intercrossing Med1fl/fl mice to α-MyHC-Cre transgenic mice results in lethality within 10 days after weaning due to dilated cardiomyopathy-related ventricular dilation and heart failure. The csMed1-/- mouse heart manifests mitochondrial damage, increased apoptosis and interstitial fibrosis. Global gene expression analysis revealed that loss of Med1 in heart down-regulates more than 200 genes including Acadm, Cacna1s, Atp2a2, Ryr2, Pde1c, Pln, PGC1α, and PGC1β that are critical for calcium signaling, cardiac muscle contraction, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy and peroxisome proliferator-activated receptor regulated energy metabolism. Many genes essential for oxidative phosphorylation and proper mitochondrial function such as genes coding for the succinate dehydrogenase subunits of the mitochondrial complex II are also down-regulated in csMed1-/- heart contributing to myocardial injury. Data also showed up-regulation of about 180 genes including Tgfb2, Ace, Atf3, Ctgf, Angpt14, Col9a2, Wisp2, Nppa, Nppb, and Actn1 that are linked to cardiac muscle contraction, cardiac hypertrophy, cardiac fibrosis and myocardial injury. Furthermore, we demonstrate that cardiac specific deletion of Med1 in adult mice using tamoxifen-inducible Cre approach (TmcsMed1-/-), results in rapid development of cardiomyopathy and death within 4 weeks. We found that the key findings of the csMed1-/- studies described above are highly reproducible in TmcsMed1-/- mouse heart. Collectively, these observations suggest that Med1 plays a critical role in the maintenance of heart function impacting on multiple metabolic, compensatory and reparative pathways with a likely therapeutic potential in the management of heart failure.
Abdurrachim, Desiree; Nabben, Miranda; Hoerr, Verena; Kuhlmann, Michael T; Bovenkamp, Philipp; Ciapaite, Jolita; Geraets, Ilvy M E; Coumans, Will; Luiken, Joost J F P; Glatz, Jan F C; Schäfers, Michael; Nicolay, Klaas; Faber, Cornelius; Hermann, Sven; Prompers, Jeanine J
2017-08-01
Heart failure is associated with altered myocardial substrate metabolism and impaired cardiac energetics. Comorbidities like diabetes may influence the metabolic adaptations during heart failure development. We quantified to what extent changes in substrate preference, lipid accumulation, and energy status predict the longitudinal development of hypertrophy and failure in the non-diabetic and the diabetic heart. Transverse aortic constriction (TAC) was performed in non-diabetic (db/+) and diabetic (db/db) mice to induce pressure overload. Magnetic resonance imaging, 31P magnetic resonance spectroscopy (MRS), 1H MRS, and 18F-fluorodeoxyglucose-positron emission tomography (PET) were applied to measure cardiac function, energy status, lipid content, and glucose uptake, respectively. In vivo measurements were complemented with ex vivo techniques of high-resolution respirometry, proteomics, and western blotting to elucidate the underlying molecular pathways. In non-diabetic mice, TAC induced progressive cardiac hypertrophy and dysfunction, which correlated with increased protein kinase D-1 (PKD1) phosphorylation and increased glucose uptake. These changes in glucose utilization preceded a reduction in cardiac energy status. At baseline, compared with non-diabetic mice, diabetic mice showed normal cardiac function, higher lipid content and mitochondrial capacity for fatty acid oxidation, and lower PKD1 phosphorylation, glucose uptake, and energetics. Interestingly, TAC affected cardiac function only mildly in diabetic mice, which was accompanied by normalization of phosphorylated PKD1, glucose uptake, and cardiac energy status. The cardiac metabolic adaptations in diabetic mice seem to prevent the heart from failing upon pressure overload, suggesting that restoring the balance between glucose and fatty acid utilization is beneficial for cardiac function. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.
Bayat, Gholamreza; Javan, Mohammad; Safari, Fatemeh; Khalili, Azadeh; Shokri, Saeed; Goudarzvand, Mahdi; Salimi, Mehdi; Hajizadeh, Sohrab
2016-03-01
ATP-sensitive potassium channels are supposed to have a substantial role in improvement of cardiac performance. This study was performed to evaluate whether nandrolone decanoate (ND) and (or) exercise training could affect the expression of cardiac K(ATP) channel subunits. Thirty-five male albino Wistar rats were randomly divided into 5 groups, including sedentary control (SC), sedentary vehicle (SV), sedentary ND (SND), exercise control (EC), and exercise and ND (E+ND). Exercise training was performed on a treadmill 5 times per week. ND was injected (10 mg/kg/week, i.m.) to the rats in the SND and E+ND groups. Following cardiac isolation, the expression of both sarcolemmal and mitochondrial subunits of K(ATP) channel was measured using Western blot method. The expression of sarcolemmal, but not mitochondrial, subunits of K(ATP) channel (Kir6.2 and SUR2) of EC group was significantly higher compared with SC group while ND administration (SND group) did not show any change in their expression. In the E+ND group, ND administration led to decrease of the over-expression of sarcolemmal Kir6.2 and SUR2 which was previously induced by exercise. There was no significant association between the mitochondrial expression of either Kir6.2 or SUR2 proteins and administration of ND or exercise. Supra-physiological dosage of ND negatively reverses the effects of exercise on the cardiac muscle expression of sarcolemmal, but not mitochondrial, K(ATP) channel subunits.
Daicho, Takuya; Yagi, Tatsuya; Abe, Yohei; Ohara, Meiko; Marunouchi, Tetsuro; Takeo, Satoshi; Tanonaka, Kouichi
2009-09-01
The present study was undertaken to explore the possible involvement of alterations in the mitochondrial energy-producing ability in the development of the right ventricular failure in monocrotaline-administered rats. The rats at the 6th week after subcutaneous injection of 60 mg/kg monocrotaline revealed marked myocardial hypertrophy and fibrosis, that is, severe cardiac remodeling. The time-course study on the cardiac hemodynamics of the monocrotaline-administered rat by the cannula and echocardiographic methods showed a reduction in cardiac double product, a decrease in cardiac output index, and an increase in the right ventricular Tei index, suggesting that the right ventricular failure was induced at the 6th week after monocrotaline administration in rats. The mitochondrial oxygen consumption rate of the right ventricular muscle isolated from the monocrotaline-administered animal was decreased, which was associated with a reduction in myocardial high-energy phosphates. Furthermore, the decrease in mitochondrial oxygen consumption rate was inversely related to the increase in the right ventricular Tei index of the monocrotaline-administered rats. These results suggest that impairment of the mitochondrial energy-producing ability is involved in the development of the right ventricular failure in monocrotaline-induced pulmonary hypertensive rats.
Schweitzer, Maria K; Wilting, Fabiola; Sedej, Simon; Dreizehnter, Lisa; Dupper, Nathan J; Tian, Qinghai; Moretti, Alessandra; My, Ilaria; Kwon, Ohyun; Priori, Silvia G; Laugwitz, Karl-Ludwig; Storch, Ursula; Lipp, Peter; Breit, Andreas; Mederos Y Schnitzler, Michael; Gudermann, Thomas; Schredelseker, Johann
2017-12-01
Cardiovascular disease-related deaths frequently arise from arrhythmias, but treatment options are limited due to perilous side effects of commonly used antiarrhythmic drugs. Cardiac rhythmicity strongly depends on cardiomyocyte Ca 2+ handling and prevalent cardiac diseases are causally associated with perturbations in intracellular Ca 2+ handling. Therefore, intracellular Ca 2+ transporters are lead candidate structures for novel and safer antiarrhythmic therapies. Mitochondria and mitochondrial Ca 2+ transport proteins are important regulators of cardiac Ca 2+ handling. Here we evaluated the potential of pharmacological activation of mitochondrial Ca 2+ uptake for the treatment of cardiac arrhythmia. To this aim,we tested substances that enhance mitochondrial Ca 2+ uptake for their ability to suppress arrhythmia in a murine model for ryanodine receptor 2 (RyR2)-mediated catecholaminergic polymorphic ventricular tachycardia (CPVT) in vitro and in vivo and in induced pluripotent stem cell-derived cardiomyocytes from a CPVT patient. In freshly isolated cardiomyocytes of RyR2 R4496C/WT mice efsevin, a synthetic agonist of the voltage-dependent anion channel 2 (VDAC2) in the outer mitochondrial membrane, prevented the formation of diastolic Ca 2+ waves and spontaneous action potentials. The antiarrhythmic effect of efsevin was abolished by blockade of the mitochondrial Ca 2+ uniporter (MCU), but could be reproduced using the natural MCU activator kaempferol. Both mitochondrial Ca 2+ uptake enhancers (MiCUps), efsevin and kaempferol, significantly reduced episodes of stress-induced ventricular tachycardia in RyR2 R4496C/WT mice in vivo and abolished diastolic, arrhythmogenic Ca 2+ events in human iPSC-derived cardiomyocytes.
Hiemstra, Jessica A.; Gutiérrez‐Aguilar, Manuel; Marshall, Kurt D.; McCommis, Kyle S.; Zgoda, Pamela J.; Cruz‐Rivera, Noelany; Jenkins, Nathan T.; Krenz, Maike; Domeier, Timothy L.; Baines, Christopher P.; Emter, Craig A.
2014-01-01
Abstract We recently developed a clinically relevant mini‐swine model of heart failure with preserved ejection fraction (HFpEF), in which diastolic dysfunction was associated with increased mitochondrial permeability transition (MPT). Early diastolic function is ATP and Ca2+‐dependent, thus, we hypothesized chronic low doses of cyclosporine (CsA) would preserve mitochondrial function via inhibition of MPT and subsequently maintain normal cardiomyocyte Ca2+ handling and contractile characteristics. Left ventricular cardiomyocytes were isolated from aortic‐banded Yucatan mini‐swine divided into three groups; control nonbanded (CON), HFpEF nontreated (HF), and HFpEF treated with CsA (HF‐CsA). CsA mitigated the deterioration of mitochondrial function observed in HF animals, including functional uncoupling of Complex I‐dependent mitochondrial respiration and increased susceptibility to MPT. Attenuation of mitochondrial dysfunction in the HF‐CsA group was not associated with commensurate improvement in cardiomyocyte Ca2+ handling or contractility. Ca2+ transient amplitude was reduced and transient time to peak and recovery (tau) prolonged in HF and HF‐CsA groups compared to CON. Alterations in Ca2+ transient parameters observed in the HF and HF‐CsA groups were associated with decreased cardiomyocyte shortening and shortening rate. Cellular function was consistent with impaired in vivo systolic and diastolic whole heart function. A significant systemic hypertensive response to CsA was observed in HF‐CsA animals, and may have played a role in the accelerated the development of heart failure at both the whole heart and cellular levels. Given the significant detriment to cardiac function observed in response to CsA, our findings suggest chronic CsA treatment is not a viable therapeutic option for HFpEF. PMID:24963034
Fetterman, Jessica L.; Zelickson, Blake R.; Johnson, Larry W.; Moellering, Douglas R.; Westbrook, David G.; Pompilius, Melissa; Sammy, Melissa J.; Johnson, Michelle; Dunham-Snary, Kimberly J.; Cao, Xuemei; Bradley, Wayne E.; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G.; Kesterson, Robert A.; Dell’Italia, Louis J.; Darley-Usmar, Victor M.; Welch, Danny R.; Ballinger, Scott W.
2013-01-01
Synopsis Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mitochondrial DNA (mtDNA) sequence variation contributes to disease susceptibility. In this study we present a novel animal model of mtDNA polymorphisms, the mitochondrial nuclear exchange mouse (MNX), in which the mtDNA from C3H/HeN mouse has been inserted onto the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harboring the C57/BL6J mtDNA generate more reactive oxygen species (ROS) and have a higher mitochondrial membrane potential relative to those having the C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the “mitochondrial paradigm” for the development of disease susceptibility, and show that the mtDNA modulates, cellular bioenergetics, mitochondrial reactive oxygen species generation and susceptibility to cardiac stress. PMID:23924350
Zhao, J; Yin, M; Deng, H; Jin, F Q; Xu, S; Lu, Y; Mastrangelo, M A; Luo, H; Jin, Z G
2016-01-01
A vital step in the development of heart failure is the transition from compensatory cardiac hypertrophy to decompensated dilated cardiomyopathy (DCM) during cardiac remodeling under mechanical or pathological stress. However, the molecular mechanisms underlying the development of DCM and heart failure remain incompletely understood. In the present study, we investigate whether Gab1, a scaffolding adaptor protein, protects against hemodynamic stress-induced DCM and heat failure. We first observed that the protein levels of Gab1 were markedly reduced in hearts from human patients with DCM and from mice with experimental viral myocarditis in which DCM developed. Next, we generated cardiac-specific Gab1 knockout mice (Gab1-cKO) and found that Gab-cKO mice developed DCM in hemodynamic stress-dependent and age-dependent manners. Under transverse aorta constriction (TAC), Gab1-cKO mice rapidly developed decompensated DCM and heart failure, whereas Gab1 wild-type littermates exhibited adaptive left ventricular hypertrophy without changes in cardiac function. Mechanistically, we showed that Gab1-cKO mouse hearts displayed severe mitochondrial damages and increased cardiomyocyte apoptosis. Loss of cardiac Gab1 in mice impaired Gab1 downstream MAPK signaling pathways in the heart under TAC. Gene profiles further revealed that ablation of Gab1 in heart disrupts the balance of anti- and pro-apoptotic genes in cardiomyocytes. These results demonstrate that cardiomyocyte Gab1 is a critical regulator of the compensatory cardiac response to aging and hemodynamic stress. These findings may provide new mechanistic insights and potential therapeutic target for DCM and heart failure. PMID:26517531
Lai, Ling; Leone, Teresa C.; Zechner, Christoph; Schaeffer, Paul J.; Kelly, Sean M.; Flanagan, Daniel P.; Medeiros, Denis M.; Kovacs, Attila; Kelly, Daniel P.
2008-01-01
Oxidative tissues such as heart undergo a dramatic perinatal mitochondrial biogenesis to meet the high-energy demands after birth. PPARγ coactivator-1 (PGC-1) α and β have been implicated in the transcriptional control of cellular energy metabolism. Mice with combined deficiency of PGC-1α and PGC-1β (PGC-1αβ−/− mice) were generated to investigate the convergence of their functions in vivo. The phenotype of PGC-1β−/− mice was minimal under nonstressed conditions, including normal heart function, similar to that of PGC-1α−/− mice generated previously. In striking contrast to the singly deficient PGC-1 lines, PGC-1αβ−/− mice died shortly after birth with small hearts, bradycardia, intermittent heart block, and a markedly reduced cardiac output. Cardiac-specific ablation of the PGC-1β gene on a PGC-1α-deficient background phenocopied the generalized PGC-1αβ−/− mice. The hearts of the PGC-1αβ−/− mice exhibited signatures of a maturational defect including reduced growth, a late fetal arrest in mitochondrial biogenesis, and persistence of a fetal pattern of gene expression. Brown adipose tissue (BAT) of PGC-1αβ−/− mice also exhibited a severe abnormality in function and mitochondrial density. We conclude that PGC-1α and PGC-1β share roles that collectively are necessary for the postnatal metabolic and functional maturation of heart and BAT. PMID:18628400
Ramírez-Sánchez, Israel; Rodríguez, Alonso; Moreno-Ulloa, Aldo; Ceballos, Guillermo; Villarreal, Francisco
2016-05-01
(-)-Epicatechin increases indicators associated with mitochondrial biogenesis in endothelial cells and myocardium. We investigated endothelial nitric oxide synthase involvement on (-)-epicatechin-induced increases in indicators associated with mitochondrial biogenesis in human coronary artery endothelial cells cultured in normal-glucose and high-glucose media, as well as to restore indicators of cardiac mitochondria from the effects of simulated diabetes. Here, we demonstrate the role of endothelial nitric oxide synthase on (-)-epicatechin-induced increases in mitochondrial proteins, transcription factors and sirtuin 1 under normal-glucose conditions. In simulated diabetes endothelial nitric oxide synthase function, mitochondrial function-associated and biogenesis-associated indicators were adversely impacted by high glucose, effects that were reverted by (-)-epicatechin. As an animal model of type 2 diabetes, 2-month old C57BL/6 mice were fed a high-fat diet for 16 weeks. Fasting and fed blood glucose levels were increased and NO plasma levels decreased. High-fat-diet-fed mice myocardium revealed endothelial nitric oxide synthase dysfunction, reduced mitochondrial activity and markers of mitochondrial biogenesis. The administration of 1 mg/kg (-)-epicatechin for 15 days by oral gavage shifted these endpoints towards control mice values. Results suggest that endothelial nitric oxide synthase mediates (-)-epicatechin-induced increases of indicators associated with mitochondrial biogenesis in endothelial cells. (-)-Epicatechin also counteracts the negative effects that high glucose or simulated type 2 diabetes has on endothelial nitric oxide synthase function. © The Author(s) 2016.
Boovarahan, Sri Rahavi; Kurian, Gino A
2018-01-18
Air pollution has become an environmental burden with regard to non-communicable diseases, particularly heart disease. It has been reported that air pollution can accelerate the development of heart failure and atrial fibrillation. Air pollutants encompass various particulate matters (PMs), which change the blood composition and heart rate and eventually leads to cardiac failure by triggering atherosclerotic plaque ruptures or by developing irreversible ischemia. A series of major epidemiological and observational studies have established the noxious effect of air pollutants on cardiovascular diseases (CVD), but the underlying molecular mechanisms of its susceptibility and the pathological disease events remain largely elusive and are predicted to be initiated in the cell organelle. The basis of this belief is that mitochondria are one of the major targets of environmental toxicants that can damage mitochondrial morphology, function and its DNA (manifested in non-communicable diseases). In this article, we review the literature related to air pollutants that adversely affect the progression of CVD and that target mitochondrial morphological and functional activities and how mitochondrial DNA (mtDNA) copy number variation, which reflects the airborne oxidant-induced cell damage, correlates with heart failure. We conclude that environmental health assessment should focus on the cellular/circulatory mitochondrial functional copy number status, which can predict the outcome of CVD.
Masuzawa, Akihiro; Black, Kendra M.; Pacak, Christina A.; Ericsson, Maria; Barnett, Reanne J.; Drumm, Ciara; Seth, Pankaj; Bloch, Donald B.; Levitsky, Sidney; Cowan, Douglas B.
2013-01-01
Mitochondrial damage and dysfunction occur during ischemia and modulate cardiac function and cell survival significantly during reperfusion. We hypothesized that transplantation of autologously derived mitochondria immediately prior to reperfusion would ameliorate these effects. New Zealand White rabbits were used for regional ischemia (RI), which was achieved by temporarily snaring the left anterior descending artery for 30 min. Following 29 min of RI, autologously derived mitochondria (RI-mitochondria; 9.7 ± 1.7 × 106/ml) or vehicle alone (RI-vehicle) were injected directly into the RI zone, and the hearts were allowed to recover for 4 wk. Mitochondrial transplantation decreased (P < 0.05) creatine kinase MB, cardiac troponin-I, and apoptosis significantly in the RI zone. Infarct size following 4 wk of recovery was decreased significantly in RI-mitochondria (7.9 ± 2.9%) compared with RI-vehicle (34.2 ± 3.3%, P < 0.05). Serial echocardiograms showed that RI-mitochondria hearts returned to normal contraction within 10 min after reperfusion was started; however, RI-vehicle hearts showed persistent hypokinesia in the RI zone at 4 wk of recovery. Electrocardiogram and optical mapping studies showed that no arrhythmia was associated with autologously derived mitochondrial transplantation. In vivo and in vitro studies show that the transplanted mitochondria are evident in the interstitial spaces and are internalized by cardiomyocytes 2–8 h after transplantation. The transplanted mitochondria enhanced oxygen consumption, high-energy phosphate synthesis, and the induction of cytokine mediators and proteomic pathways that are important in preserving myocardial energetics, cell viability, and enhanced post-infarct cardiac function. Transplantation of autologously derived mitochondria provides a novel technique to protect the heart from ischemia-reperfusion injury. PMID:23355340
Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress.
Koncsos, Gábor; Varga, Zoltán V; Baranyai, Tamás; Boengler, Kerstin; Rohrbach, Susanne; Li, Ling; Schlüter, Klaus-Dieter; Schreckenberg, Rolf; Radovits, Tamás; Oláh, Attila; Mátyás, Csaba; Lux, Árpád; Al-Khrasani, Mahmoud; Komlódi, Tímea; Bukosza, Nóra; Máthé, Domokos; Deres, László; Barteková, Monika; Rajtík, Tomáš; Adameová, Adriana; Szigeti, Krisztián; Hamar, Péter; Helyes, Zsuzsanna; Tretter, László; Pacher, Pál; Merkely, Béla; Giricz, Zoltán; Schulz, Rainer; Ferdinandy, Péter
2016-10-01
Although incidence and prevalence of prediabetes are increasing, little is known about its cardiac effects. Therefore, our aim was to investigate the effect of prediabetes on cardiac function and to characterize parameters and pathways associated with deteriorated cardiac performance. Long-Evans rats were fed with either control or high-fat chow for 21 wk and treated with a single low dose (20 mg/kg) of streptozotocin at week 4 High-fat and streptozotocin treatment induced prediabetes as characterized by slightly elevated fasting blood glucose, impaired glucose and insulin tolerance, increased visceral adipose tissue and plasma leptin levels, as well as sensory neuropathy. In prediabetic animals, a mild diastolic dysfunction was observed, the number of myocardial lipid droplets increased, and left ventricular mass and wall thickness were elevated; however, no molecular sign of fibrosis or cardiac hypertrophy was shown. In prediabetes, production of reactive oxygen species was elevated in subsarcolemmal mitochondria. Expression of mitofusin-2 was increased, while the phosphorylation of phospholamban and expression of Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3, a marker of mitophagy) decreased. However, expression of other markers of cardiac auto- and mitophagy, mitochondrial dynamics, inflammation, heat shock proteins, Ca 2+ /calmodulin-dependent protein kinase II, mammalian target of rapamycin, or apoptotic pathways were unchanged in prediabetes. This is the first comprehensive analysis of cardiac effects of prediabetes indicating that mild diastolic dysfunction and cardiac hypertrophy are multifactorial phenomena that are associated with early changes in mitophagy, cardiac lipid accumulation, and elevated oxidative stress and that prediabetes-induced oxidative stress originates from the subsarcolemmal mitochondria. Copyright © 2016 the American Physiological Society.
Chen, Zhidan; Li, Yang; Wang, Ying; Qian, Juying; Ma, Hong; Wang, Xiang; Jiang, Guoliang; Liu, Ming; An, Yanpeng; Ma, Leilei; Kang, Le; Jia, Jianguo; Yang, Chunjie; Zhang, Guoping; Chen, Ying; Gao, Wei; Fu, Mingqiang; Huang, Zheyong; Tang, Huiru; Zhu, Yichun; Ge, Junbo; Gong, Hui; Zou, Yunzeng
2018-01-01
Low density lipoprotein receptor-related protein 6 (LRP6), a wnt co-receptor, regulates multiple functions in various organs. However, the roles of LRP6 in the adult heart are not well understood. Methods: We observed LRP6 expression in heart with end-stage dilated cardiomyopathy (DCM) by western blot. Tamoxifen-inducible cardiac-specific LRP6 knockout mouse was constructed. Hemodynamic and echocardiographic analyses were performed to these mice. Results: Cardiac LRP6 expression was dramatically decreased in patients with end-stage dilated cardiomyopathy (DCM) compared to control group. Tamoxifen-inducible cardiac-specific LRP6 knockout mice developed acute heart failure and mitochondrial dysfunction with reduced survival. Proteomic analysis suggests the fatty acid metabolism disorder involving peroxisome proliferator-activated receptors (PPARs) signaling in the LRP6 deficient heart. Accumulation of mitochondrial targeting to autophagosomes and lipid droplet were observed in LRP6 deletion hearts. Further analysis revealed cardiac LRP6 deletion suppressed autophagic degradation and fatty acid utilization, coinciding with activation of dynamin-related protein 1 (Drp1) and downregulation of nuclear TFEB (Transcription factor EB). Injection of Mdivi-1, a Drp1 inhibitor, not only promoted nuclear translocation of TFEB, but also partially rescued autophagic degradation, improved PPARs signaling, and attenuated cardiac dysfunction induced by cardiac specific LRP6 deletion. Conclusions: Cardiac LRP6 deficiency greatly suppressed autophagic degradation and fatty acid utilization, and subsequently leads to lethal dilated cardiomyopathy and cardiac dysfunction through activation of Drp1 signaling. It suggests that heart failure progression may be attenuated by therapeutic modulation of LRP6 expression. PMID:29344294
Mitochondrial Metabolism in Aging Heart
Lesnefsky, Edward J.; Chen, Qun; Hoppel, Charles L.
2016-01-01
Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area there is an approximate 50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction. PMID:27174952
Zhou, Huanyu; Dickson, Matthew E.; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N.
2015-01-01
Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique. PMID:26354121
Calcium Signaling and Reactive Oxygen Species in Mitochondria.
Bertero, Edoardo; Maack, Christoph
2018-05-11
In heart failure, alterations of Na + and Ca 2+ handling, energetic deficit, and oxidative stress in cardiac myocytes are important pathophysiological hallmarks. Mitochondria are central to these processes because they are the main source for ATP, but also reactive oxygen species (ROS), and their function is critically controlled by Ca 2+ During physiological variations of workload, mitochondrial Ca 2+ uptake is required to match energy supply to demand but also to keep the antioxidative capacity in a reduced state to prevent excessive emission of ROS. Mitochondria take up Ca 2+ via the mitochondrial Ca 2+ uniporter, which exists in a multiprotein complex whose molecular components were identified only recently. In heart failure, deterioration of cytosolic Ca 2+ and Na + handling hampers mitochondrial Ca 2+ uptake and the ensuing Krebs cycle-induced regeneration of the reduced forms of NADH (nicotinamide adenine dinucleotide) and NADPH (nicotinamide adenine dinucleotide phosphate), giving rise to energetic deficit and oxidative stress. ROS emission from mitochondria can trigger further ROS release from neighboring mitochondria termed ROS-induced ROS release, and cross talk between different ROS sources provides a spatially confined cellular network of redox signaling. Although low levels of ROS may serve physiological roles, higher levels interfere with excitation-contraction coupling, induce maladaptive cardiac remodeling through redox-sensitive kinases, and cell death through mitochondrial permeability transition. Targeting the dysregulated interplay between excitation-contraction coupling and mitochondrial energetics may ameliorate the progression of heart failure. © 2018 American Heart Association, Inc.
Taub, Pam R.; Ramirez‐Sanchez, Israel; Ciaraldi, Theodore P.; Perkins, Guy; Murphy, Anne N.; Naviaux, Robert; Hogan, Michael; Maisel, Alan S.; Henry, Robert R.; Ceballos, Guillermo
2012-01-01
Abstract (‐)‐Epicatechin (Epi), a flavanol in cacao stimulates mitochondrial volume and cristae density and protein markers of skeletal muscle (SkM) mitochondrial biogenesis in mice. Type 2 diabetes mellitus (DM2) and heart failure (HF) are diseases associated with defects in SkM mitochondrial structure/function. A study was implemented to assess perturbations and to determine the effects of Epi‐rich cocoa in SkM mitochondrial structure and mediators of biogenesis. Five patients with DM2 and stage II/III HF consumed dark chocolate and a beverage containing approximately 100 mg of Epi per day for 3 months. We assessed changes in protein and/or activity levels of oxidative phosphorylation proteins, porin, mitofilin, nNOS, nitric oxide, cGMP, SIRT1, PGC1α, Tfam, and mitochondria volume and cristae abundance by electron microscopy from SkM. Apparent major losses in normal mitochondria structure were observed before treatment. Epi‐rich cocoa increased protein and/or activity of mediators of biogenesis and cristae abundance while not changing mitochondrial volume density. Epi‐rich cocoa treatment improves SkM mitochondrial structure and in an orchestrated manner, increases molecular markers of mitochondrial biogenesis resulting in enhanced cristae density. Future controlled studies are warranted using Epi‐rich cocoa (or pure Epi) to translate improved mitochondrial structure into enhanced cardiac and/or SkM muscle function. Clin Trans Sci 2012; Volume 5: 43–47 PMID:22376256
Ilkun, Olesya; Boudina, Sihem
2013-01-01
The metabolic syndrome (MetS) is a cluster of risk factors including obesity, insulin resistance, dyslipidemia, elevated blood pressure and glucose intolerance. The MetS increases the risk for cardiovascular disease (CVD) and type 2 diabetes. Each component of the MetS causes cardiac dysfunction and their combination carries additional risk. The mechanisms underlying cardiac dysfunction in the MetS are complex and might include lipid accumulation, increased fibrosis and stiffness, altered calcium homeostasis, abnormal autophagy, altered substrate utilization, mitochondrial dysfunction and increased oxidative stress. Mitochondrial and extra-mitochondrial sources of reactive oxygen species (ROS) and reduced antioxidant defense mechanisms characterize the myocardium of humans and animals with the MetS. The mechanisms for increased cardiac oxidative stress in the MetS are not fully understood but include increased fatty acid oxidation, mitochondrial dysfunction and enhanced NADPH oxidase activity. Therapies aimed to reduce oxidative stress and enhance antioxidant defense have been employed to reduce cardiac dysfunction in the MetS in animals. In contrast, large scale clinical trials using antioxidants therapies for the treatment of CVD have been disappointing because of the lack of efficacy and undesired side effects. The focus of this review is to summarize the current knowledge about the mechanisms underlying cardiac dysfunction in the MetS with a special interest in the role of oxidative stress. Finally, we will update the reader on the results obtained with natural antioxidant and mitochondria-targeted antioxidant therapies for the treatment of CVD in the MetS. PMID:23323621
Cardiac mitochondrial matrix and respiratory complex protein phosphorylation
Covian, Raul
2012-01-01
It has become appreciated over the last several years that protein phosphorylation within the cardiac mitochondrial matrix and respiratory complexes is extensive. Given the importance of oxidative phosphorylation and the balance of energy metabolism in the heart, the potential regulatory effect of these classical signaling events on mitochondrial function is of interest. However, the functional impact of protein phosphorylation and the kinase/phosphatase system responsible for it are relatively unknown. Exceptions include the well-characterized pyruvate dehydrogenase and branched chain α-ketoacid dehydrogenase regulatory system. The first task of this review is to update the current status of protein phosphorylation detection primarily in the matrix and evaluate evidence linking these events with enzymatic function or protein processing. To manage the scope of this effort, we have focused on the pathways involved in energy metabolism. The high sensitivity of modern methods of detecting protein phosphorylation and the low specificity of many kinases suggests that detection of protein phosphorylation sites without information on the mole fraction of phosphorylation is difficult to interpret, especially in metabolic enzymes, and is likely irrelevant to function. However, several systems including protein translocation, adenine nucleotide translocase, cytochrome c, and complex IV protein phosphorylation have been well correlated with enzymatic function along with the classical dehydrogenase systems. The second task is to review the current understanding of the kinase/phosphatase system within the matrix. Though it is clear that protein phosphorylation occurs within the matrix, based on 32P incorporation and quantitative mass spectrometry measures, the kinase/phosphatase system responsible for this process is ill-defined. An argument is presented that remnants of the much more labile bacterial protein phosphoryl transfer system may be present in the matrix and that the evaluation of this possibility will require the application of approaches developed for bacterial cell signaling to the mitochondria. PMID:22886415
Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes.
Belmonte, Steve; Morad, Martin
2008-03-01
Cardiac myocyte contraction occurs when Ca2+ influx through voltage-gated L-type Ca2+ channels causes Ca2+ release from ryanodine receptors of the sarcoplasmic reticulum (SR). Although mitochondria occupy about 35% of the cell volume in rat cardiac myocytes, and are thought to be located <300 nm from the junctional SR, their role in the beat-to-beat regulation of cardiac Ca2+ signaling remains unclear. We have recently shown that rapid ( approximately 20 ms) application of shear fluid forces ( approximately 25 dynes/cm2) to rat cardiac myocytes triggers slowly ( approximately 300 ms) developing Cai transients that were independent of activation of all transmembrane Ca2+ transporting pathways, but were suppressed by FCCP, CCCP, and Ru360, all of which are known to disrupt mitochondrial function. We have here used rapid 2-D confocal microscopy to monitor fluctuations in mitochondrial Ca2+ levels ([Ca2+]m) and mitochondrial membrane potential (Delta Psi m) in rat cardiac myocytes loaded either with rhod-2 AM or tetramethylrhodamine methyl ester (TMRM), respectively. Freshly isolated intact rat cardiac myocytes were plated on glass coverslips and incubated in 5 mM Ca2+ containing Tyrode's solution and 40 mM 2,3-butanedione monoxime (BDM) to inhibit cell contraction. Alternatively, myocytes were permeabilized with 10 microM digitonin and perfused with an "intracellular" solution containing 10 microM free [Ca2+], 5 mM EGTA, and 15 mM BDM. Direct [Ca2+]m measurements showed transient mitochondrial Ca2+ accumulation after exposure to 10 mM caffeine, as revealed by a 66% increase in the rhod-2 fluorescence intensity. Shear fluid forces, however, produced a 12% decrease in signal, suggesting that application of a mechanical force releases Ca2+ from the mitochondria. In addition, caffeine and CCCP or FCCP strongly reduced Delta Psi m, while application of a pressurized solution produced a transient Delta Psi m hyperpolarization in intact ventricular myocytes loaded with TMRM. The close proximity of mitochondria to ryanodine receptors and large [Ca2+] that develop in microdomains following calcium release are likely to play a critical role in regulating cytosolic Ca2+ signaling. We suggest that mitochondria may accumulate and release Ca2+ in response to mechanical forces generated by blood flow, independent of surface membrane-regulated CICR. The extent to which such a signaling mechanism contributes to stretch-induced increase in myocardial force and pathogenesis of arrhythmias remains to be assessed.
ElZarrad, M. Khair; Mukhopadhyay, Partha; Mohan, Nishant; Hao, Enkui; Dokmanovic, Milos; Hirsch, Dianne S.; Shen, Yi; Pacher, Pal; Wu, Wen Jin
2013-01-01
Treatment with trastuzumab, a humanized monoclonal antibody directed against the extracellular domain of Human Epidermal Growth Factor Receptor 2 (HER2), very successfully improves outcomes for women with HER2-positive breast cancer. However, trastuzumab treatment was recently linked to potentially irreversible serious cardiotoxicity, the mechanisms of which are largely elusive. This study reports that trastuzumab significantly alters the expression of myocardial genes essential for DNA repair, cardiac and mitochondrial functions, which is associated with impaired left ventricular performance in mice coupled with significant ultrastructural alterations in cardiomyocytes revealed by electron microscopy. Furthermore, trastuzumab treatment also promotes oxidative stress and apoptosis in myocardium of mice, and elevates serum levels of cardiac troponin-I (cTnI) and cardiac myosin light chain-1 (cMLC1). The elevated serum levels of cMLC1 in mice treated with trastuzumab highlights the potential that cMLC1 could be a useful biomarker for trastuzumab-induced cardiotoxicity. PMID:24255707
Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure.
Guo, Cathy A; Guo, Shaodong
2017-06-01
The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin-angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function. © 2017 Society for Endocrinology.
A Time to Reap, a Time to Sow: Mitophagy and Biogenesis in Cardiac Pathophysiology
Andres, Allen M.; Stotland, Aleksandr; Queliconi, Bruno B.; Gottlieb, Roberta A.
2014-01-01
Balancing mitophagy and mitochondrial biogenesis is essential for maintaining a healthy population of mitochondria and cellular homeostasis. Coordinated interplay between these two forces that govern mitochondrial turnover plays an important role as an adaptive response against various cellular stresses that can compromise cell survival. Failure to maintain the critical balance between mitophagy and mitochondrial biogenesis or homeostatic turnover of mitochondria results in a population of dysfunctional mitochondria that contribute to various disease processes. In this review we outline the mechanics and relationships between mitophagy and mitochondrial biogenesis, and discuss the implications of a disrupted balance between these two forces, with an emphasis on cardiac physiology. PMID:25444712
Sosnowska, Danuta; Richardson, Chris; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan; Ridgway, Iain
2014-12-01
Study of negligibly senescent animals may provide clues that lead to better understanding of the cardiac aging process. To elucidate mechanisms of successful cardiac aging, we investigated age-related changes in proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in the heart of the ocean quahog Arctica islandica, the longest-lived noncolonial animal (maximum life span potential: 508 years). We found that in the heart of A. islandica the level of oxidatively damaged proteins did not change significantly up to 120 years of age. No significant aging-induced changes were observed in caspase-like and trypsin-like proteasome activity. Chymotrypsin-like proteasome activity showed a significant early-life decline, then it remained stable for up to 182 years. No significant relationship was observed between the extent of protein ubiquitination and age. In the heart of A. islandica, an early-life decline in expression of HSP90 and five mitochondrial electron transport chain complexes was observed. We found significant age-related increases in the expression of three cytokine-like mediators (interleukin-6, interleukin-1β, and tumor necrosis factor-α) in the heart of A. islandica. Collectively, in extremely long-lived molluscs, maintenance of protein homeostasis likely contributes to the preservation of cardiac function. Our data also support the concept that low-grade chronic inflammation in the cardiovascular system is a universal feature of the aging process, which is also manifest in invertebrates. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes.
Kolwicz, Stephen C; Purohit, Suneet; Tian, Rong
2013-08-16
The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP-producing and non-ATP-producing end points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies used as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed.
Cardiac Metabolism and Its Interactions with Contraction, Growth, and Survival of the Cardiomyocte
Kolwicz, Stephen C.; Purohit, Suneet; Tian, Rong
2013-01-01
The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP producing and non-ATP producing end-points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies employed as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed. PMID:23948585
Knockout of Eva1a leads to rapid development of heart failure by impairing autophagy
Zhang, Shu; Lin, Xin; Li, Ge; Shen, Xue; Niu, Di; Lu, Guang; Fu, Xin; Chen, Yingyu; Cui, Ming; Bai, Yun
2017-01-01
EVA1A (Eva-1 homologue A) is a novel lysosome and endoplasmic reticulum-associated protein that can regulate cell autophagy and apoptosis. Eva1a is expressed in the myocardium, but its function in myocytes has not yet been investigated. Therefore, we generated inducible, cardiomyocyte-specific Eva1a knockout mice with an aim to determine the role of Eva1a in cardiac remodelling in the adult heart. Data from experiments showed that loss of Eva1a in the adult heart increased cardiac fibrosis, promoted cardiac hypertrophy, and led to cardiomyopathy and death. Further investigation suggested that this effect was associated with impaired autophagy and increased apoptosis in Eva1a knockout hearts. Moreover, knockout of Eva1a activated Mtor signalling and the subsequent inhibition of autophagy. In addition, Eva1a knockout hearts showed disorganized sarcomere structure and mitochondrial misalignment and aggregation, leading to the lack of ATP generation. Collectively, these data demonstrated that Eva1a improves cardiac function and inhibits cardiac hypertrophy and fibrosis by increasing autophagy. In conclusion, our results demonstrated that Eva1a may have an important role in maintaining cardiac homeostasis. PMID:28151473
Nagoor Meeran, M F; Jagadeesh, G S; Selvaraj, P
2016-01-25
Mitochondrial dysfunction has been suggested to be one of the important pathological events in isoproterenol (ISO), a synthetic catecholamine and β-adrenergic agonist induced myocardial infarction (MI). In this context, we have evaluated the impact of thymol against ISO induced oxidative stress and calcium uniporter malfunction involved in the pathology of mitochondrial dysfunction in rats. Male albino Wistar rats were pre and co-treated with thymol (7.5 mg/kg body weight) daily for 7 days. Isoproterenol (100 mg/kg body weight) was subcutaneously injected into rats on 6th and 7th day to induce MI. To explore the extent of cardiac mitochondrial damage, the activities/levels of cardiac marker enzymes, mitochondrial lipid peroxidation products, antioxidants, lipids, calcium, adenosine triphosphate and multi marker enzymes were evaluated. Isoproterenol induced myocardial infarcted rats showed a significant increase in the activities of cardiac diagnostic markers, heart mitochondrial lipid peroxidation, lipids, calcium, and a significant decrease in the activities/levels of heart mitochondrial superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, isocitrate, malate, α-ketoglutarate and NADH-dehydrogenases, cytochrome-C-oxidase, and adenosine triphosphate. Thymol pre and co-treatment showed near normalized effects on all the biochemical parameters studied. Transmission electron microscopic findings and mitochondrial swelling studies confirmed our biochemical findings. The in vitro study also revealed the potent free-radical scavenging activity of thymol. Thus, thymol attenuates the involvement of ISO against oxidative stress and calcium uniporter malfunction associated with mitochondrial dysfunction in rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Fetterman, Jessica L; Zelickson, Blake R; Johnson, Larry W; Moellering, Douglas R; Westbrook, David G; Pompilius, Melissa; Sammy, Melissa J; Johnson, Michelle; Dunham-Snary, Kimberly J; Cao, Xuemei; Bradley, Wayne E; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G; Kesterson, Robert A; Dell'italia, Louis J; Darley-Usmar, Victor M; Welch, Danny R; Ballinger, Scott W
2013-10-15
Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mtDNA sequence variation contributes to disease susceptibility. In the present study we show a novel animal model of mtDNA polymorphisms, the MNX (mitochondrial-nuclear exchange) mouse, in which the mtDNA from the C3H/HeN mouse has been inserted on to the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harbouring the C57/BL6J mtDNA generate more ROS (reactive oxygen species) and have a higher mitochondrial membrane potential relative to those with C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the 'mitochondrial paradigm' for the development of disease susceptibility, and show that the mtDNA modulates cellular bioenergetics, mitochondrial ROS generation and susceptibility to cardiac stress.
Mitochondrial oxidative stress in aging and healthspan
2014-01-01
The free radical theory of aging proposes that reactive oxygen species (ROS)-induced accumulation of damage to cellular macromolecules is a primary driving force of aging and a major determinant of lifespan. Although this theory is one of the most popular explanations for the cause of aging, several experimental rodent models of antioxidant manipulation have failed to affect lifespan. Moreover, antioxidant supplementation clinical trials have been largely disappointing. The mitochondrial theory of aging specifies more particularly that mitochondria are both the primary sources of ROS and the primary targets of ROS damage. In addition to effects on lifespan and aging, mitochondrial ROS have been shown to play a central role in healthspan of many vital organ systems. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and dysfunction in aging and healthspan, including cardiac aging, age-dependent cardiovascular diseases, skeletal muscle aging, neurodegenerative diseases, insulin resistance and diabetes as well as age-related cancers. The crosstalk of mitochondrial ROS, redox, and other cellular signaling is briefly presented. Potential therapeutic strategies to improve mitochondrial function in aging and healthspan are reviewed, with a focus on mitochondrial protective drugs, such as the mitochondrial antioxidants MitoQ, SkQ1, and the mitochondrial protective peptide SS-31. PMID:24860647
The mitochondrial uniporter controls fight or flight heart rate increases.
Wu, Yuejin; Rasmussen, Tyler P; Koval, Olha M; Joiner, Mei-Ling A; Hall, Duane D; Chen, Biyi; Luczak, Elizabeth D; Wang, Qiongling; Rokita, Adam G; Wehrens, Xander H T; Song, Long-Sheng; Anderson, Mark E
2015-01-20
Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant-negative (DN) MCU. Here, we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found that MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU-enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment before each heartbeat. Our findings show that MCU is necessary for complete physiological heart rate acceleration and suggest that MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate.
Cathepsin K knockout alleviates aging-induced cardiac dysfunction
Hua, Yinan; Robinson, Timothy J; Cao, Yongtao; Shi, Guo-Ping; Ren, Jun; Nair, Sreejayan
2015-01-01
Aging is a major risk factor for cardiovascular disease. It has previously been shown that protein levels of cathepsin K, a lysosomal cysteine protease, are elevated in the failing heart and that genetic ablation of cathepsin K protects against pressure overload-induced cardiac hypertrophy and contractile dysfunction. Here we test the hypothesis that cathepsin K knockout alleviates age-dependent decline in cardiac function. Cardiac geometry, contractile function, intracellular Ca2+ properties, and cardiomyocyte apoptosis were evaluated using echocardiography, fura-2 technique, immunohistochemistry, Western blot and TUNEL staining, respectively. Aged (24-month-old) mice exhibited significant cardiac remodeling (enlarged chamber size, wall thickness, myocyte cross-sectional area, and fibrosis), decreased cardiac contractility, prolonged relengthening along with compromised intracellular Ca2+ release compared to young (6-month-old) mice, which were attenuated in the cathepsin K knockout mice. Cellular markers of senescence, including cardiac lipofuscin, p21 and p16, were lower in the aged-cathepsin K knockout mice compared to their wild-type counterpart. Mechanistically, cathepsin K knockout mice attenuated an age-induced increase in cardiomyocyte apoptosis and nuclear translocation of mitochondrial apoptosis-inducing factor (AIF). In cultured H9c2 cells, doxorubicin stimulated premature senescence and apoptosis. Silencing of cathepsin K blocked the doxorubicin-induced translocation of AIF from the mitochondria to the nuclei. Collectively, these results suggest that cathepsin K knockout attenuates age-related decline in cardiac function via suppressing caspase-dependent and caspase-independent apoptosis. PMID:25692548
Giannoni, Alberto; Aimo, Alberto; Mancuso, Michelangelo; Piepoli, Massimo Francesco; Orsucci, Daniele; Aquaro, Giovanni Donato; Barison, Andrea; De Marchi, Daniele; Taddei, Claudia; Cameli, Matteo; Raglianti, Valentina; Siciliano, Gabriele; Passino, Claudio; Emdin, Michele
2017-12-01
Mitochondrial disease (MD) is a genetic disorder affecting skeletal muscles, with possible myocardial disease. The ergoreflex, sensitive to skeletal muscle work, regulates ventilatory and autonomic responses to exercise. We hypothesized the presence of an increased ergoreflex sensitivity in MD patients, its association with abnormal ventilatory and autonomic responses, and possibly with subclinical cardiac involvement. Twenty-five MD patients (aged 46 ± 3 years, 32% male) with skeletal myopathy but without known cardiac disease, underwent a thorough evaluation including BNPs, galectin-3, soluble suppression of tumorigenesis 2 (sST2), high sensitivity troponin T/I, catecholamines, ECG, 24-h ECG recording, cardiopulmonary exercise testing, echocardiography, cardiac/muscle magnetic resonance (C/MMR), and ergoreflex assessment. Thirteen age- and sex-matched healthy controls were chosen. Among these myopathic patients, subclinical cardiac damage was detected in up to 80%, with 44% showing fibrosis at CMR. Ergoreflex sensitivity was markedly higher in patients than in controls (64% vs. 37%, P < 0.001), and correlated with muscle fat to water ratio and extracellular volume at MMR (both P < 0.05). Among patients, ergoreflex sensitivity was higher in those with cardiac involvement (P = 0.034). Patients showed a lower peak oxygen consumption (VO 2 /kg) than controls (P < 0.001), as well as ventilatory inefficiency (P = 0.024). Ergoreflex sensitivity correlated with reduced workload and peak VO 2 /kg (both P < 0.001), and several indicators of autonomic imbalance (P < 0.05). Plasma norepinephrine was the unique predictor of myocardial fibrosis at univariate analysis (P < 0.05). Skeletal myopathy in MD is characterized by enhanced ergoreflex sensitivity, which is associated with a higher incidence of cardiac involvement, exercise intolerance, and sympathetic activation. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.
Ginsenoside Rg3 improves cardiac mitochondrial population quality: Mimetic exercise training
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Mengwei; Huang, Chenglin; Wang, Cheng
Highlights: •Rg3 is an ergogenic aid. •Rg3 improves mitochondrial antioxidant capacity. •Rg3 regulates mitochondria dynamic remodeling. •Rg3 alone matches some the benefits of aerobic exercise. -- Abstract: Emerging evidence indicates exercise training could mediate mitochondrial quality control through the improvement of mitochondrial dynamics. Ginsenoside Rg3 (Rg3), one of the active ingredients in Panax ginseng, is well known in herbal medicine as a tonic and restorative agent. However, the molecular mechanism underlying the beneficial effects of Rg3 has been elusive. In the present study, we compared the effects of Rg3 administration with aerobic exercise on mitochondrial adaptation in cardiac muscle tissuemore » of Sprague–Dawley (SD) rats. Three groups of SD rats were studied: (1) sedentary control, (2) Rg3-treated and (3) aerobic exercise trained. Both aerobic exercise training and Rg3 supplementation enhanced peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α) and nuclear factor-E2-related factor 2 (Nrf2) protein levels in cardiac muscle. The activation of PGC-1α led to increased mRNA levels of mitochondrial transcription factor A (Tfam) and nuclear related factor 1(Nrf1), these changes were accompanied by increases in mitochondrial DNA copy number and complex protein levels, while activation of Nrf2 increased levels of phase II detoxifying enzymes, including nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1(NQO1), superoxide dismutase (MnSOD) and catalase. Aerobic exercise also enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of beclin1 and autophagy-related protein 7 (ATG7), these effects of aerobic exercise are comparable to that of Rg3. These results demonstrate that Rg3 mimics improved cardiac adaptations to exercise by regulating mitochondria dynamic remodeling and enhancing the quantity and quality of mitochondria.« less
Zhou, Jin; Chong, Shu Yun; Lim, Andrea; Singh, Brijesh K; Sinha, Rohit A; Salmon, Adam B; Yen, Paul M
2017-02-26
Aging causes a general decline in cellular metabolic activity, and function in different tissues and whole body homeostasis. However, the understanding about the metabolomic and autophagy changes in skeletal muscle and heart during aging is still limited. We thus examined markers for macroautophagy, chaperone-mediated autophagy (CMA), mitochondrial quality control, as well as cellular metabolites in skeletal and cardiac muscle from young (5 months old) and aged (27 months old) mice. We found decreased autophagic degradation of p62 and increased ubiquitinated proteins in both tissues from aged mice, suggesting a decline in macroautophagy during aging. In skeletal muscle from aged mice, there also was a decline in LC3B-I conjugation to phosphatidylethanolamine (PE) possibly due to decreased protein levels of ATG3 and ATG12-ATG5. The CMA markers, LAMP-2A and Hsc70, and mitochondrial turnover markers, Drp1, PINK1 and PGC1α also were decreased. Metabolomics analysis showed impaired β-oxidation in heart of aged mice, whereas increased branched-chain amino acids (BCAAs) and ceramide levels were found in skeletal muscle of aged mice that in turn, may contribute to insulin resistance in muscle. Taken together, our studies showed similar declines in macroautophagy but distinct effects on CMA, mitochondrial turnover, and metabolic dysfunction in muscle vs. heart during aging.
Zhou, Jin; Yun Chong, Shu; Lim, Andrea; Singh, Brijesh K.; Sinha, Rohit A.; Salmon, Adam B.; Yen, Paul M.
2017-01-01
Aging causes a general decline in cellular metabolic activity, and function in different tissues and whole body homeostasis. However, the understanding about the metabolomic and autophagy changes in skeletal muscle and heart during aging is still limited. We thus examined markers for macroautophagy, chaperone-mediated autophagy (CMA), mitochondrial quality control, as well as cellular metabolites in skeletal and cardiac muscle from young (5 months old) and aged (27 months old) mice. We found decreased autophagic degradation of p62 and increased ubiquitinated proteins in both tissues from aged mice, suggesting a decline in macroautophagy during aging. In skeletal muscle from aged mice, there also was a decline in LC3B-I conjugation to phosphatidylethanolamine (PE) possibly due to decreased protein levels of ATG3 and ATG12-ATG5. The CMA markers, LAMP-2A and Hsc70, and mitochondrial turnover markers, Drp1, PINK1 and PGC1α also were decreased. Metabolomics analysis showed impaired β-oxidation in heart of aged mice, whereas increased branched-chain amino acids (BCAAs) and ceramide levels were found in skeletal muscle of aged mice that in turn, may contribute to insulin resistance in muscle. Taken together, our studies showed similar declines in macroautophagy but distinct effects on CMA, mitochondrial turnover, and metabolic dysfunction in muscle vs. heart during aging. PMID:28238968
Cardiac-specific inactivation of LPP3 in mice leads to myocardial dysfunction and heart failure.
Chandra, Mini; Escalante-Alcalde, Diana; Bhuiyan, Md Shenuarin; Orr, Anthony Wayne; Kevil, Christopher; Morris, Andrew J; Nam, Hyung; Dominic, Paari; McCarthy, Kevin J; Miriyala, Sumitra; Panchatcharam, Manikandan
2018-04-01
Lipid Phosphate phosphatase 3 (LPP3), encoded by the Plpp3 gene, is an enzyme that dephosphorylates the bioactive lipid mediator lysophosphatidic acid (LPA). To study the role of LPP3 in the myocardium, we generated a cardiac specific Plpp3 deficient mouse strain. Although these mice were viable at birth in contrast to global Plpp3 knockout mice, they showed increased mortality ~ 8 months. LPP3 deficient mice had enlarged hearts with reduced left ventricular performance as seen by echocardiography. Cardiac specific Plpp3 deficient mice had longer ventricular effective refractory periods compared to their Plpp3 littermates. We observed that lack of Lpp3 enhanced cardiomyocyte hypertrophy based on analysis of cell surface area. We found that lack of Lpp3 signaling was mediated through the activation of Rho and phospho-ERK pathways. There are increased levels of fetal genes Natriuretic Peptide A and B (Nppa and Nppb) expression indicating myocardial dysfunction. These mice also demonstrate mitochondrial dysfunction as evidenced by a significant decrease (P < 0.001) in the basal oxygen consumption rate, mitochondrial ATP production, and spare respiratory capacity as measured through mitochondrial bioenergetics. Histology and transmission electron microscopy of these hearts showed disrupted sarcomere organization and intercalated disc, with a prominent disruption of the cristae and vacuole formation in the mitochondria. Our findings suggest that LPA/LPP3-signaling nexus plays an important role in normal function of cardiomyocytes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Geetha, Rajagopalan; Sathiya Priya, Chandrasekaran; Anuradha, Carani Venkatraman
2017-12-25
Mitochondrial oxidative stress plays a major role in the pathogenesis of myocardial apoptosis in metabolic syndrome (MS) patients. In this study, we investigated the effect of troxerutin (TX), an antioxidant on mitochondrial oxidative stress and apoptotic markers in heart of mice fed fat and fructose-rich diet. Adult male Mus musculus mice were fed either control diet or high fat, high fructose diet (HFFD) for 60 days to induce MS. Mice from each dietary group were divided into two on the 16th day and were either treated or untreated with TX (150 mg/kg bw, p.o) for the next 45 days. At the end of the study, mitochondrial reactive oxygen species (ROS) generation, oxidative stress markers, levels of intracellular calcium, cardiolipin content, cytochrome c release and apoptotic markers were examined in the myocardium. HFFD-feeding resulted in diminution of antioxidants and increased ROS production, lipid peroxidation and oxidatively modified adducts of 8-OHG, 4-HNE and 3-NT. Further increase in Ca 2+ levels, low levels of calcium transporters and decrease in cardiolipin content were noted. Changes in the mitochondrial structure were observed by electron microscopy. Furthermore, cytochrome c release, increase in proapoptotic proteins (APAF-1, BAX, caspases-9 and-3) and decrease in antiapoptotic protein (BCL-2) in HFFD-fed mice suggest myocardial apoptosis. These changes were significantly restored by TX supplementation. TX administration effectively attenuated cardiac apoptosis and exerted a protective role by increasing antioxidant potential and by improving mitochondrial function. Thus, TX could be a promising therapeutic candidate for treating cardiac disease in MS patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Rajagopalan, Geetha; Chandrasekaran, Sathiya Priya; Carani Venkatraman, Anuradha
2017-01-01
Mitochondrial abnormality is thought to play a key role in cardiac disease originating from the metabolic syndrome (MS). We evaluated the effect of troxerutin (TX), a semi-synthetic derivative of the natural bioflavanoid rutin, on the respiratory chain complex activity, oxidative stress, mitochondrial biogenesis and dynamics in heart of high fat, high fructose diet (HFFD) -induced mouse model of MS. Adult male Mus musculus mice of body weight 25-30 g were fed either control diet or HFFD for 60 days. Mice from each dietary regimen were divided into two groups on the 16th day and were treated or untreated with TX (150 mg/kg body weight [bw], per oral) for the next 45 days. At the end of experimental period, respiratory chain complex activity, uncoupling proteins (UCP)-2 and -3, mtDNA content, mitochondrial biogenesis and dynamics, oxidative stress markers and reactive oxygen species (ROS) generation were analyzed. Reduced mtDNA abundance with alterations in the expression of genes related to mitochondrial biogenesis and fission and fusion processes were observed in HFFD-fed mice. Disorganized and smaller mitochondria, reduction in complexes I, III and IV activities (by about 55%) and protein levels of UCP-2 (52%) and UCP-3 (46%) were noted in these mice. TX administration suppressed oxidative stress, improved the oxidative capacity and biogenesis and restored fission/fusion imbalance in the cardiac mitochondria of HFFD-fed mice. TX protects the myocardium by modulating the putative molecules of mitochondrial biogenesis and dynamics and by its anti-oxidant function in a mouse model of MS. © 2016 John Wiley & Sons Australia, Ltd.
Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1
Tanner, Colby B.; Madsen, Steven R.; Hallowell, David M.; Goring, Darren M. J.; Moore, Timothy M.; Hardman, Shalene E.; Heninger, Megan R.; Atwood, Daniel R.
2013-01-01
LKB1 and its downstream targets of the AMP-activated protein kinase family are important regulators of many aspects of skeletal muscle cell function, including control of mitochondrial content and capillarity. LKB1 deficiency in skeletal and cardiac muscle (mLKB1-KO) greatly impairs exercise capacity. However, cardiac dysfunction in that genetic model prevents a clear assessment of the role of skeletal muscle LKB1 in the observed effects. Our purposes here were to determine whether skeletal muscle-specific knockout of LKB1 (skmLKB1-KO) decreases exercise capacity and mitochondrial protein content, impairs accretion of mitochondrial proteins after exercise training, and attenuates improvement in running performance after exercise training. We found that treadmill and voluntary wheel running capacity was reduced in skmLKB1-KO vs. control (CON) mice. Citrate synthase activity, succinate dehydrogenase activity, and pyruvate dehydrogenase kinase content were lower in KO vs. CON muscles. Three weeks of treadmill training resulted in significantly increased treadmill running performance in both CON and skmLKB1-KO mice. Citrate synthase activity increased significantly with training in both genotypes, but protein content and activity for components of the mitochondrial electron transport chain increased only in CON mice. Capillarity and VEGF protein was lower in skmLKB1-KO vs. CON muscles, but VEGF increased with training only in skmLKB1-KO. Three hours after an acute bout of muscle contractions, PGC-1α, cytochrome c, and VEGF gene expression all increased in CON but not skmLKB1-KO muscles. Our findings indicate that skeletal muscle LKB1 is required for accretion of some mitochondrial proteins but not for early exercise capacity improvements with exercise training. PMID:23982155
Wang, Wang; Fernandez-Sanz, Celia; Sheu, Shey-Shing
2018-05-01
Recent advancement in mitochondrial research has significantly extended our knowledge on the role and regulation of mitochondria in health and disease. One important breakthrough is the delineation of how mitochondrial morphological changes, termed mitochondrial dynamics, are coupled to the bioenergetics and signaling functions of mitochondria. In general, it is believed that fusion leads to an increased mitochondrial respiration efficiency and resistance to stress-induced dysfunction while fission does the contrary. This concept seems not applicable to adult cardiomyocytes. The mitochondria in adult cardiomyocytes exhibit fragmented morphology (tilted towards fission) and show less networking and movement as compared to other cell types. However, being the most energy-demanding cells, cardiomyocytes in the adult heart possess vast number of mitochondria, high level of energy flow, and abundant mitochondrial dynamics proteins. This apparent discrepancy could be explained by recently identified new functions of the mitochondrial dynamics proteins. These "non-canonical" roles of mitochondrial dynamics proteins range from controlling inter-organelle communication to regulating cell viability and survival under metabolic stresses. Here, we summarize the newly identified non-canonical roles of mitochondrial dynamics proteins. We focus on how these fission and fusion independent roles of dynamics proteins regulate mitochondrial bioenergetics. We also discuss potential molecular mechanisms, unique intracellular location, and the cardiovascular disease relevance of these non-canonical roles of the dynamics proteins. We propose that future studies are warranted to differentiate the canonical and non-canonical roles of dynamics proteins and to identify new approaches for the treatment of heart diseases. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers. Copyright © 2017 Elsevier B.V. All rights reserved.
The Citrus Flavanone Naringenin Protects Myocardial Cells against Age-Associated Damage
Costa, Barbara; Cavallini, Chiara; Testai, Lara; Martelli, Alma; Calderone, Vincenzo; Martini, Claudia
2017-01-01
In recent years, the health-promoting effects of the citrus flavanone naringenin have been examined. The results have provided evidence for the modulation of some key mechanisms involved in cellular damage by this compound. In particular, naringenin has been revealed to have protective properties such as an antioxidant effect in cardiometabolic disorders. Very recently, beneficial effects of naringenin have been demonstrated in old rats. Because aging has been demonstrated to be directly related to the occurrence of cardiac disorders, in the present study, the ability of naringenin to prevent cardiac cell senescence was investigated. For this purpose, a cellular model of senescent myocardial cells was set up and evaluated using colorimetric, fluorimetric, and immunometric techniques. Relevant cellular senescence markers, such as X-gal staining, cell cycle regulator levels, and the percentage of cell cycle-arrested cells, were found to be reduced in the presence of naringenin. In addition, cardiac markers of aging-induced damage, including radical oxidative species levels, mitochondrial metabolic activity, mitochondrial calcium buffer capacity, and estrogenic signaling functions, were also modulated by the compound. These results suggested that naringenin has antiaging effects on myocardial cells. PMID:28386313
Uncoupling of oxidative phosphorylation and ATP synthase reversal within the hyperthermic heart
Power, Amelia; Pearson, Nicholas; Pham, Toan; Cheung, Carlos; Phillips, Anthony; Hickey, Anthony
2014-01-01
Abstract Heart failure is a common cause of death with hyperthermia, and the exact cause of hyperthermic heart failure appears elusive. We hypothesize that the energy supply (ATP) of the heart may become impaired due to increased inner‐mitochondrial membrane permeability and inefficient oxidative phosphorylation (OXPHOS). Therefore, we assessed isolated working heart and mitochondrial function. Ex vivo working rat hearts were perfused between 37 and 43.5°C and showed break points in all functional parameters at ~40.5°C. Mitochondrial high‐resolution respirometry coupled to fluorometry was employed to determine the effects of hyperthermia on OXPHOS and mitochondrial membrane potential (ΔΨ) in vitro using a comprehensive metabolic substrate complement with isolated mitochondria. Relative to 37 and 40°C, 43°C elevated Leak O2 flux and depressed OXPHOS O2 flux and ∆Ψ. Measurement of steady‐state ATP production from mitochondria revealed decreased ATP synthesis capacity, and a negative steady‐state P:O ratio at 43°C. This approach offers a more powerful analysis of the effects of temperature on OXPHOS that cannot be measured using simple measures such as the traditional respiratory control ratio (RCR) or P:O ratio, which, respectively, can only approach 1 or 0 with inner‐membrane failure. At 40°C there was only a slight enhancement of the Leak O2 flux and this did not significantly affect ATP production rate. Therefore, during mild hyperthermia (40°C) there is no enhancement of ATP supply by mitochondria, to accompany increasing cardiac energy demands, while between this and critical hyperthermia (43°C), mitochondria become net consumers of ATP. This consumption may contribute to cardiac failure or permanent damage during severe hyperthermia. PMID:25263202
Metabolic adaptation to chronic hypoxia in cardiac mitochondria.
Heather, Lisa C; Cole, Mark A; Tan, Jun-Jie; Ambrose, Lucy J A; Pope, Simon; Abd-Jamil, Amira H; Carter, Emma E; Dodd, Michael S; Yeoh, Kar Kheng; Schofield, Christopher J; Clarke, Kieran
2012-05-01
Chronic hypoxia decreases cardiomyocyte respiration, yet the mitochondrial mechanisms remain largely unknown. We investigated the mitochondrial metabolic pathways and enzymes that were decreased following in vivo hypoxia, and questioned whether hypoxic adaptation was protective for the mitochondria. Wistar rats were housed in hypoxia (7 days acclimatisation and 14 days at 11% oxygen), while control rats were housed in normoxia. Chronic exposure to physiological hypoxia increased haematocrit and cardiac vascular endothelial growth factor, in the absence of weight loss and changes in cardiac mass. In both subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria isolated from hypoxic hearts, state 3 respiration rates with fatty acid were decreased by 17-18%, and with pyruvate were decreased by 29-15%, respectively. State 3 respiration rates with electron transport chain (ETC) substrates were decreased only in hypoxic SSM, not in hypoxic IFM. SSM from hypoxic hearts had decreased activities of ETC complexes I, II and IV, which were associated with decreased reactive oxygen species generation and protection against mitochondrial permeability transition pore (MPTP) opening. In contrast, IFM from hypoxic hearts had decreased activity of the Krebs cycle enzyme, aconitase, which did not modify ROS production or MPTP opening. In conclusion, cardiac mitochondrial respiration was decreased following chronic hypoxia, associated with downregulation of different pathways in the two mitochondrial populations, determined by their subcellular location. Hypoxic adaptation was not deleterious for the mitochondria, in fact, SSM acquired increased protection against oxidative damage under the oxygen-limited conditions.
Spiekerkoetter, Ute; Mueller, Martina; Cloppenburg, Eva; Motz, Reinald; Mayatepek, Ertan; Bueltmann, Burkhard; Korenke, Christoph
2008-08-01
Because of a switch in energy-producing substrate utilization from glucose in the fetal period to fatty acids postnatally, intrauterine morbidity of fatty acid oxidation defects has widely been denied. We report the intrauterine development of severe cardiomyopathy in a child with mitochondrial trifunctional protein deficiency after 27 weeks of gestation. The child was born at 31 weeks of gestation and died on day 3 of life. Severe cardiac mitochondrial proliferation was observed. Molecular analysis of both TFP genes was performed and confirmed a homozygous mutation in the TFP alpha-subunit introducing a stop codon at amino acid position 256 (g.871C>T, p.R256X). Despite severe intrauterine decompensation in our patient, no HELLP-syndrome or acute fatty liver of pregnancy was observed in the mother. In the pathogenesis of maternal HELLP-syndrome, toxic effects of accumulating long-chain hydroxy-acyl-CoAs or long-chain hydroxy-acylcarnitines are suspected. In our patient, acylcarnitine analysis on day 2 of life during severest metabolic decompensation did not reveal massive accumulation of long-chain hydroxy-acylcarnitines in blood, suggesting other pathogenic factors than toxic effects. The most important pathogenic mechanism for the development of intrauterine cardiomyopathy appears to be significant cardiac energy deficiency. In conclusion, our report implicates that fatty acid oxidation does play a significant role during intrauterine development with special regard to the heart. Severe cardiac mitochondrial proliferation in TFP deficiency suggests pathophysiologically relevant energy deficiency in this condition.
Kumar, Vikas; Aneesh, Kumar A; Kshemada, K; Ajith, Kumar G S; Binil, Raj S S; Deora, Neha; Sanjay, G; Jaleel, A; Muraleedharan, T S; Anandan, E M; Mony, R S; Valiathan, M S; Santhosh, Kumar T R; Kartha, C C
2017-08-17
We evaluated the cardioprotective effect of Amalaki Rasayana (AR), a rejuvenating Ayurvedic drug prepared from Phyllanthus emblica fruits in the reversal of remodeling changes in pressure overload left ventricular cardiac hypertrophy (LVH) and age-associated cardiac dysfunction in male Wistar rats. Six groups (aging groups) of 3 months old animals were given either AR or ghee and honey (GH) orally; seventh group was untreated. Ascending aorta was constricted using titanium clips in 3 months old rats (N = 24; AC groups) and after 6 months, AR or GH was given for further 12 months to two groups; one group was untreated. Histology, gene and protein expression analysis were done in heart tissues. Chemical composition of AR was analyzed by HPLC, HPTLC and LC-MS. AR intake improved (P < 0.05) cardiac function in aging rats and decreased LVH (P < 0.05) in AC rats as well as increased (P < 0.05) fatigue time in treadmill exercise in both groups. In heart tissues of AR administered rats of both the groups, SERCA2, CaM, Myh11, antioxidant, autophagy, oxidative phosphorylation and TCA cycle proteins were up regulated. ADRB1/2 and pCREB expression were increased; pAMPK, NF-kB were decreased. AR has thus a beneficial effect on myocardial energetics, muscle contractile function and exercise tolerance capacity.
Li, Chun-jun; Lv, Lin; Li, Hui; Yu, De-min
2012-06-19
Alpha-lipoic acid (ALA), a naturally occurring compound, exerts powerful protective effects in various cardiovascular disease models. However, its role in protecting against diabetic cardiomyopathy (DCM) has not been elucidated. In this study, we have investigated the effects of ALA on cardiac dysfunction, mitochondrial oxidative stress (MOS), extracellular matrix (ECM) remodeling and interrelated signaling pathways in a diabetic rat model. Diabetes was induced in rats by I.V. injection of streptozotocin (STZ) at 45 mg/kg. The animals were randomly divided into 4 groups: normal groups with or without ALA treatment, and diabetes groups with or without ALA treatment. All studies were carried out 11 weeks after induction of diabetes. Cardiac catheterization was performed to evaluate cardiac function. Mitochondrial oxidative biochemical parameters were measured by spectophotometeric assays. Extracellular matrix content (total collagen, type I and III collagen) was assessed by staining with Sirius Red. Gelatinolytic activity of Pro- and active matrix metalloproteinase-2 (MMP-2) levels were analyzed by a zymogram. Cardiac fibroblasts differentiation to myofibroblasts was evaluated by Western blot measuring smooth muscle actin (α-SMA) and transforming growth factor-β (TGF-β). Key components of underlying signaling pathways including the phosphorylation of c-Jun N-terminal kinase (JNK), p38 MAPK and ERK were also assayed by Western blot. DCM was successfully induced by the injection of STZ as evidenced by abnormal heart mass and cardiac function, as well as the imbalance of ECM homeostasis. After administration of ALA, left ventricular dysfunction greatly improved; interstitial fibrosis also notably ameliorated indicated by decreased collagen deposition, ECM synthesis as well as enhanced ECM degradation. To further assess the underlying mechanism of improved DCM by ALA, redox status and cardiac remodeling associated signaling pathway components were evaluated. It was shown that redox homeostasis was disturbed and MAPK signaling pathway components activated in STZ-induced DCM animals. While ALA treatment favorably shifted redox homeostasis and suppressed JNK and p38 MAPK activation. These results, coupled with the excellent safety and tolerability profile of ALA in humans, demonstrate that ALA may have therapeutic potential in the treatment of DCM by attenuating MOS, ECM remodeling and JNK, p38 MAPK activation.
Monoamine oxidases as sources of oxidants in the heart
Kaludercic, Nina; Mialet-Perez, Jeanne; Paolocci, Nazareno; Parini, Angelo; Di Lisa, Fabio
2014-01-01
Oxidative stress can be generated at several sites within the mitochondria. Among these, monoamine oxidases (MAO) have been described as a prominent source. MAO are mitochondrial flavoenzymes responsible for the oxidative deamination of catecholamines, serotonin and biogenic amines, and during this process they generate H2O2 and aldehyde intermediates. The role of MAO in cardiovascular pathophysiology has only recently gathered some attention since it has been demonstrated that both H2O2 and aldehydes may target mitochondrial function and consequently affect function and viability of the myocardium. In the present review, we will discuss the role of MAO in catecholamine and serotonin clearance and cycling in relation to cardiac structure and function. The relevant contribution of each MAO isoform (MAO-A or -B) will be discussed in relation to mitochondrial dysfunction and myocardial injury. Finally, we will examine both beneficial effects of their pharmacological or genetic inhibition along with potential adverse effects observed at baseline in MAO knockout mice, as well as the deleterious effects following their over-expression specifically at cardiomyocyte level. PMID:24412580
Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro
2015-01-01
The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr -/- and in utero TCDD-exposed Ahr +/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr -/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816
Neviere, Remi; Yu, Yichi; Wang, Lei; Tessier, Frederic; Boulanger, Eric
2016-08-01
Advanced glycation end products (AGEs) play an important role for the development and/or progression of cardiovascular diseases, mainly through induction of oxidative stress and inflammation. AGEs are a heterogeneous group of molecules formed by non-enzymatic reaction of reducing sugars with amino acids of proteins, lipids and nucleic acids. AGEs are mainly formed endogenously, while recent studies suggest that diet constitutes an important exogenous source of AGEs. The presence and accumulation of AGEs in various cardiac cell types affect extracellular and intracellular structure and function. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE). Activation of RAGE by AGEs causes up regulation of the transcription factor nuclear factor-κB and its target genes. of the RAGE engagement stimulates oxidative stress, evokes inflammatory and fibrotic reactions, which all contribute to the development and progression of devastating cardiovascular disorders. This review discusses potential targets of glycation in cardiac cells, and underlying mechanisms that lead to heart failure with special interest on AGE-induced mitochondrial dysfunction in the myocardium.
Early Postnatal Cardiomyocyte Proliferation Requires High Oxidative Energy Metabolism.
de Carvalho, Ana Elisa Teófilo Saturi; Bassaneze, Vinícius; Forni, Maria Fernanda; Keusseyan, Aline Alfonso; Kowaltowski, Alicia Juliana; Krieger, José Eduardo
2017-11-13
Cardiac energy metabolism must cope with early postnatal changes in tissue oxygen tensions, hemodynamics, and cell proliferation to sustain development. Here, we tested the hypothesis that proliferating neonatal cardiomyocytes are dependent on high oxidative energy metabolism. We show that energy-related gene expression does not correlate with functional oxidative measurements in the developing heart. Gene expression analysis suggests a gradual overall upregulation of oxidative-related genes and pathways, whereas functional assessment in both cardiac tissue and cultured cardiomyocytes indicated that oxidative metabolism decreases between the first and seventh days after birth. Cardiomyocyte extracellular flux analysis indicated that the decrease in oxidative metabolism between the first and seventh days after birth was mostly related to lower rates of ATP-linked mitochondrial respiration, suggesting that overall energetic demands decrease during this period. In parallel, the proliferation rate was higher for early cardiomyocytes. Furthermore, in vitro nonlethal chemical inhibition of mitochondrial respiration reduced the proliferative capacity of early cardiomyocytes, indicating a high energy demand to sustain cardiomyocyte proliferation. Altogether, we provide evidence that early postnatal cardiomyocyte proliferative capacity correlates with high oxidative energy metabolism. The energy requirement decreases as the proliferation ceases in the following days, and both oxidative-dependent metabolism and anaerobic glycolysis subside.
The mTOR inhibitor sirolimus suppresses renal, hepatic, and cardiac tissue cellular respiration.
Albawardi, Alia; Almarzooqi, Saeeda; Saraswathiamma, Dhanya; Abdul-Kader, Hidaya Mohammed; Souid, Abdul-Kader; Alfazari, Ali S
2015-01-01
The purpose of this in vitro study was to develop a useful biomarker (e.g., cellular respiration, or mitochondrial O2 consumption) for measuring activities of mTOR inhibitors. It measured the effects of commonly used immunosuppressants (sirolimus-rapamycin, tacrolimus, and cyclosporine) on cellular respiration in target tissues (kidney, liver, and heart) from C57BL/6 mice. The mammalian target of rapamycin (mTOR), a serine/ threonine kinase that supports nutrient-dependent cell growth and survival, is known to control energy conversion processes within the mitochondria. Consistently, inhibitors of mTOR (e.g., rapamycin, also known as sirolimus or Rapamune®) have been shown to impair mitochondrial function. Inhibitors of the calcium-dependent serine/threonine phosphatase calcineurin (e.g., tacrolimus and cyclosporine), on the other hand, strictly prevent lymphokine production leading to a reduced T-cell function. Sirolimus (10 μM) inhibited renal (22%, P=0.002), hepatic (39%, P<0.001), and cardiac (42%, P=0.005) cellular respiration. Tacrolimus and cyclosporine had no or minimum effects on cellular respiration in these tissues. Thus, these results clearly demonstrate that impaired cellular respiration (bioenergetics) is a sensitive biomarker of the immunosuppressants that target mTOR.
Nederlof, Rianne; Xie, Chaoqin; Eerbeek, Otto; Koeman, Anneke; Milstein, Dan MJ; Hollmann, Markus W; Mik, Egbert G; Warley, Alice; Southworth, Richard; Akar, Fadi G.; Zuurbier, Coert J
2013-01-01
Rationale We have shown that partial dissociation of HKII from mitochondria in the intact heart using low dose (200 nM) TAT-HKII prevents the cardioprotective effects of ischemic preconditioning (IPC) whereas high-dose (10 μM) TAT-HKII administration results in rapid myocardial dysfunction, mitochondrial depolarization and disintegration. In this issue of Circulation Research, Pasdois et al argue that the deleterious effects of TAT-HKII administration on cardiac function are likely due to vasoconstriction and ensuing ischemia. Objective To investigate whether altered vascular function and ensuing ischemia recapitulate the deleterious effects of TAT-HKII in intact myocardium. Methods and Results Using a variety of complementary techniques, including mitochondrial membrane potential (ΔΨm) imaging, high-resolution optical action potential (AP) mapping, analysis of lactate production, NADH epifluorescence, lactate dehydrogenase (LDH) release, and electron microscopy, we provide direct evidence that refutes the notion that acute myocardial dysfunction by high-dose TAT-HKII peptide administration is a consequence of impaired vascular function. Moreover, we demonstrate that low-dose TAT-HKII treatment, which abrogates the protective effects of IPC, is not associated with ischemia or ischemic-injury. Conclusions Our findings challenge the notion that the effects of TAT-HKII are attributable to impaired vascular function and ensuing ischemia; thereby, lending further credence to the role of mitochondria bound HKII as a critical regulator of cardiac function, ischemia-reperfusion (IR) injury, and cardioprotection by IPC. PMID:23329797
Saric, Ana; Andreau, Karine; Armand, Anne-Sophie; Møller, Ian M.; Petit, Patrice X.
2016-01-01
Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a “heart-on-chip” assay to model the pathophysiology in vitro, to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants. PMID:26834781
Hauck, Ludger; Stanley-Hasnain, Shanna; Fung, Amelia; Grothe, Daniela; Rao, Vivek; Mak, Tak W.
2017-01-01
The maintenance of normal heart function requires proper control of protein turnover. The ubiquitin-proteasome system is a principal regulator of protein degradation. Mdm2 is the main E3 ubiquitin ligase for p53 in mitotic cells thereby regulating cellular growth, DNA repair, oxidative stress and apoptosis. However, which of these Mdm2-related activities are preserved in differentiated cardiomyocytes has yet to be determined. We sought to elucidate the role of Mdm2 in the control of normal heart function. We observed markedly reduced Mdm2 mRNA levels accompanied by highly elevated p53 protein expression in the hearts of wild type mice subjected to myocardial infarction or trans-aortic banding. Accordingly, we generated conditional cardiac-specific Mdm2 gene knockout (Mdm2f/f;mcm) mice. In adulthood, Mdm2f/f;mcm mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction with early mortality post-tamoxifen. A decreased polyubiquitination of myocardial p53 was observed, leading to its stabilization and activation, in the absence of acute stress. In addition, transcriptomic analysis of Mdm2-deficient hearts revealed that there is an induction of E2f1 and c-Myc mRNA levels with reduced expression of the Pgc-1a/Ppara/Esrrb/g axis and Pink1. This was associated with a significant degree of cardiomyocyte apoptosis, and an inhibition of redox homeostasis and mitochondrial bioenergetics. All these processes are early, Mdm2-associated events and contribute to the development of pathological hypertrophy. Our genetic and biochemical data support a role for Mdm2 in cardiac growth control through the regulation of p53, the Pgc-1 family of transcriptional coactivators and the pivotal antioxidant Pink1. PMID:29267372
Sheng, Mingwei; Zhang, Ge; Wang, Jiannan; Yang, Qing; Zhao, Huanhuan; Cheng, Xinxin; Xu, Zhelong
2018-05-15
Although it is well known that remifentanil (Rem) elicits cardiac protection against ischemia/reperfusion (I/R) injury, the underlying mechanism remains unclear. This study tested if Rem can protect the heart from I/R injury by inhibiting endoplasmic reticulum (ER) stress through the maintenance of zinc (Zn) homeostasis. Isolated rat hearts were subjected to 30 minutes of regional ischemia followed by 2 hours of reperfusion. Rem was given by 3 consecutive 5-minute infusions, and each infusion was followed by a 5-minute drug-free perfusion before ischemia. Total Zn concentrations in cardiac tissue, cardiac function, infarct size, and apoptosis were assessed. H9c2 cells were subjected to 6 hours of hypoxia and 2 hours of reoxygenation (hypoxia/reoxygenation [H/R]), and Rem was given for 30 minutes before hypoxia. Metal-responsive transcription factor 1 (MTF1) overexpression plasmids were transfected into H9c2 cells 48 hours before hypoxia. Intracellular Zn level, cell viability, and mitochondrial injury parameters were evaluated. A Zn chelator N,N,N',N'-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN) or an ER stress activator thapsigargin was administrated during in vitro and ex vivo studies. The regulatory molecules related to Zn homeostasis and ER stress in cardiac tissue, and cardiomyocytes were analyzed by Western blotting. Rem caused significant reversion of Zn loss from the heart (Rem + I/R versus I/R, 9.43 ± 0.55 vs 7.53 ± 1.18; P < .05) by suppressing the expression of MTF1 and Zn transporter 1 (ZnT1). The inhibited expression of ER stress markers after Rem preconditioning was abolished by TPEN. Rem preconditioning improved the cardiac function accompanied by the reduction of infarct size (Rem + I/R versus I/R, 21% ± 4% vs 40% ± 6%; P < .05). The protective effects of Rem could be reserved by TPEN and thapsigargin. Similar effects were observed in H9c2 cells exposed to H/R. In addition, MTF1 overexpression blocked the inhibitory effects of Rem on ZnT1 expression and ER stress at reoxygenation. Rem attenuated the collapse of mitochondrial membrane potential (ΔΨm) and the generation of mitochondrial reactive oxygen species by inhibiting ER stress via cardiac Zn restoration (Rem + H/R versus H/R, 79.57% ± 10.62% vs 58.27% ± 4.32%; P < .05). Rem maintains Zn homeostasis at reperfusion by inhibiting MTF1 and ZnT1 expression, leading to the attenuation of ER stress and cardiac injury. Our findings provide a promising therapeutic approach for managing acute myocardial I/R injury.
Bernardo, Bianca C; Ooi, Jenny Y Y; Weeks, Kate L; Patterson, Natalie L; McMullen, Julie R
2018-01-01
The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.
Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart.
Xu, Wenjing; Barrientos, Tomasa; Mao, Lan; Rockman, Howard A; Sauve, Anthony A; Andrews, Nancy C
2015-10-20
Both iron overload and iron deficiency have been associated with cardiomyopathy and heart failure, but cardiac iron utilization is incompletely understood. We hypothesized that the transferrin receptor (Tfr1) might play a role in cardiac iron uptake and used gene targeting to examine the role of Tfr1 in vivo. Surprisingly, we found that decreased iron, due to inactivation of Tfr1, was associated with severe cardiac consequences. Mice lacking Tfr1 in the heart died in the second week of life and had cardiomegaly, poor cardiac function, failure of mitochondrial respiration, and ineffective mitophagy. The phenotype could only be rescued by aggressive iron therapy, but it was ameliorated by administration of nicotinamide riboside, an NAD precursor. Our findings underscore the importance of both Tfr1 and iron in the heart, and may inform therapy for patients with heart failure. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Hyperthyroidism causes cardiac dysfunction by mitochondrial impairment and energy depletion.
Maity, Sangeeta; Kar, Dipak; De, Kakali; Chander, Vivek; Bandyopadhyay, Arun
2013-05-01
This study elucidates the role of metabolic remodeling in cardiac dysfunction induced by hyperthyroidism. Cardiac hypertrophy, structural remodeling, and expression of the genes associated with fatty acid metabolism were examined in rats treated with triiodothyronine (T3) alone (8 μg/100 g body weight (BW), i.p.) for 15 days or along with a peroxisome proliferator-activated receptor alpha agonist bezafibrate (Bzf; 30 μg/100 g BW, oral) and were found to improve in the Bzf co-treated condition. Ultrastructure of mitochondria was damaged in T3-treated rat heart, which was prevented by Bzf co-administration. Hyperthyroidism-induced oxidative stress, reduction in cytochrome c oxidase activity, and myocardial ATP concentration were also significantly checked by Bzf. Heart function studied at different time points during the course of T3 treatment shows an initial improvement and then a gradual but progressive decline with time, which is prevented by Bzf co-treatment. In summary, the results demonstrate that hyperthyroidism inflicts structural and functional damage to mitochondria, leading to energy depletion and cardiac dysfunction.
Shirakabe, Akihiro; Zhai, Peiyong; Ikeda, Yoshiyuki; Saito, Toshiro; Maejima, Yasuhiro; Hsu, Chiao-Po; Nomura, Masatoshi; Egashira, Kensuke; Levine, Beth; Sadoshima, Junichi
2016-03-29
Mitochondrial autophagy is an important mediator of mitochondrial quality control in cardiomyocytes. The occurrence of mitochondrial autophagy and its significance during cardiac hypertrophy are not well understood. Mice were subjected to transverse aortic constriction (TAC) and observed at multiple time points up to 30 days. Cardiac hypertrophy developed after 5 days, the ejection fraction was reduced after 14 days, and heart failure was observed 30 days after TAC. General autophagy was upregulated between 1 and 12 hours after TAC but was downregulated below physiological levels 5 days after TAC. Mitochondrial autophagy, evaluated by electron microscopy, mitochondrial content, and Keima with mitochondrial localization signal, was transiently activated at ≈3 to 7 days post-TAC, coinciding with mitochondrial translocation of Drp1. However, it was downregulated thereafter, followed by mitochondrial dysfunction. Haploinsufficiency of Drp1 abolished mitochondrial autophagy and exacerbated the development of both mitochondrial dysfunction and heart failure after TAC. Injection of Tat-Beclin 1, a potent inducer of autophagy, but not control peptide, on day 7 after TAC, partially rescued mitochondrial autophagy and attenuated mitochondrial dysfunction and heart failure induced by overload. Haploinsufficiency of either drp1 or beclin 1 prevented the rescue by Tat-Beclin 1, suggesting that its effect is mediated in part through autophagy, including mitochondrial autophagy. Mitochondrial autophagy is transiently activated and then downregulated in the mouse heart in response to pressure overload. Downregulation of mitochondrial autophagy plays an important role in mediating the development of mitochondrial dysfunction and heart failure, whereas restoration of mitochondrial autophagy attenuates dysfunction in the heart during pressure overload. © 2016 American Heart Association, Inc.
Cardiac Metabolism in Heart Failure - Implications beyond ATP production
Doenst, Torsten; Nguyen, T. Dung; Abel, E. Dale
2013-01-01
The heart has a high rate of ATP production and turnover which is required to maintain its continuous mechanical work. Perturbations in ATP generating processes may therefore affect contractile function directly. Characterizing cardiac metabolism in heart failure revealed several metabolic alterations termed metabolic remodeling, ranging from changes in substrate utilization to mitochondrial dysfunction, ultimately resulting in ATP deficiency and impaired contractility. However, ATP depletion is not the only relevant consequence of metabolic remodeling during heart failure. By providing cellular building blocks and signaling molecules, metabolic pathways control essential processes such as cell growth and regeneration. Thus, alterations in cardiac metabolism may also affect the progression to heart failure by mechanisms beyond ATP supply. Our aim is therefore to highlight that metabolic remodeling in heart failure not only results in impaired cardiac energetics, but also induces other processes implicated in the development of heart failure such as structural remodeling and oxidative stress. Accordingly, modulating cardiac metabolism in heart failure may have significant therapeutic relevance that goes beyond the energetic aspect. PMID:23989714
Demaison, Luc; Moreau, Daniel; Clauw, Fabienne; Vergely, Catherine; Rochette, Luc
2013-08-01
The aim of this study was to evaluate the involvement of mitochondria in the mechanism of the anti-arrhythmic lidocaine. Rats were fed with a diet containing either n-6 polyunsaturated fatty acids (PUFAs, SSO group) or an equimolecular mixture of n-3 and n-6 PUFAs (FO group) for 8 weeks. The hearts were perfused according to the working mode using a medium with or without lidocaine 5 μm. They were then subjected to local ischemia (20 min) and reperfusion (30 min). Dietary n-3 PUFAs triggered the expected decrease in the n-6/n-3 PUFA ratio of cardiac phospholipids. Reperfusing the ischemic area favored the incidence of severe arrhythmias. Lidocaine treatment abolished almost completely reperfusion arrhythmias in the FO group, but did not display anti-arrhythmic properties in the SSO group. As it was indicated by measurements of the mitochondrial function, lidocaine seemed to favor mitochondrial calcium retention in the FO group, which might prevent cytosolic calcium spikes and reperfusion arrhythmias. In the SSO group, the resistance to lidocaine was associated with an aggravation of cellular damages. The mitochondrial calcium retention capacities were saturated, and lidocaine was unable to increase them, making the drug inefficient in preventing reperfusion arrhythmias. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique. Published by John Wiley & Sons Ltd.
Lu, Songhe; Xu, Dezhong
2013-12-06
Severe cold exposure and pressure overload are both known to prompt oxidative stress and pathological alterations in the heart although the interplay between the two remains elusive. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel activated in response to a variety of exogenous and endogenous physical and chemical stimuli including heat and capsaicin. The aim of this study was to examine the impact of cold exposure on pressure overload-induced cardiac pathological changes and the mechanism involved. Adult male C57 mice were subjected to abdominal aortic constriction (AAC) prior to exposure to cold temperature (4 °C) for 4 weeks. Cardiac geometry and function, levels of TRPV1, mitochondrial, and autophagy-associated proteins including AMPK, mTOR, LC3B, and P62 were evaluated. Sustained cold stress triggered cardiac hypertrophy, compromised depressed myocardial contractile capacity including lessened fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, enhanced ROS production, and mitochondrial injury, the effects of which were negated by the TRPV1 antagonist SB366791. Western blot analysis revealed upregulated TRPV1 level and AMPK phosphorylation, enhanced ratio of LC3II/LC3I, and downregulated P62 following cold exposure. Cold exposure significantly augmented AAC-induced changes in TRPV1, phosphorylation of AMPK, LC3 isoform switch, and p62, the effects of which were negated by SB366791. In summary, these data suggest that cold exposure accentuates pressure overload-induced cardiac hypertrophy and contractile defect possibly through a TRPV1 and autophagy-dependent mechanism. Copyright © 2013. Published by Elsevier Inc.
Zhang, Yingmei; Wang, Cong; Zhou, Jingmin; Sun, Aijun; Hueckstaedt, Lindsay K; Ge, Junbo; Ren, Jun
2017-08-01
Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a cascade of biological processes including aging. A number of autophagy regulators have been identified. Here we demonstrated that mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme with the most common single point mutation in humans, governs cardiac aging through regulation of autophagy. Myocardial mechanical and autophagy properties were examined in young (4months) and old (26-28months) wild-type (WT) and global ALDH2 transgenic mice. ALDH2 overexpression shortened lifespan by 7.7% without affecting aging-associated changes in plasma metabolic profiles. Myocardial function was compromised with aging associated with cardiac hypertrophy, the effects were accentuated by ALDH2. Aging overtly suppressed autophagy and compromised autophagy flux, the effects were exacerbated by ALDH2. Aging dampened phosphorylation of JNK, Bcl-2, IKKβ, AMPK and TSC2 while promoting phosphorylation of mTOR, the effects of which were exaggerated by ALDH2. Co-immunoprecipitation revealed increased dissociation between Bcl-2 and Beclin-1 (result of decreased Bcl-2 phosphorylation) in aging, the effect of which was exacerbated with ALDH2. Chronic treatment of the autophagy inducer rapamycin alleviated aging-induced cardiac dysfunction in both WT and ALDH2 mice. Moreover, activation of JNK and inhibition of either Bcl-2 or IKKβ overtly attenuated ALDH2 activation-induced accentuation of cardiomyocyte aging. Examination of the otherwise elderly individuals revealed a positive correlation between cardiac function/geometry and ALDH2 gene mutation. Taken together, our data revealed that ALDH2 enzyme may suppress myocardial autophagy possibly through a complex JNK-Bcl-2 and IKKβ-AMPK-dependent mechanism en route to accentuation of myocardial remodeling and contractile dysfunction in aging. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang. Copyright © 2017 Elsevier B.V. All rights reserved.
Site-specific quantitative analysis of cardiac mitochondrial protein phosphorylation.
Lam, Maggie P Y; Lau, Edward; Scruggs, Sarah B; Wang, Ding; Kim, Tae-Young; Liem, David A; Zhang, Jun; Ryan, Christopher M; Faull, Kym F; Ping, Peipei
2013-04-09
We report the development of a multiple-reaction monitoring (MRM) strategy specifically tailored to the detection and quantification of mitochondrial protein phosphorylation. We recently derived 68 MRM transitions specific to protein modifications in the respiratory chain, voltage-dependent anion channel, and adenine nucleotide translocase. Here, we have now expanded the total number of MRM transitions to 176 to cover proteins from the tricarboxylic acid cycle, pyruvate dehydrogenase complex, and branched-chain alpha-keto acid dehydrogenase complex. We utilized the transition set to analyze endogenous protein phosphorylation in human heart, mouse heart, and mouse liver. The data demonstrate the potential utility of the MRM workflow for studying the functional details of mitochondrial phosphorylation signaling. This article is part of a Special Issue entitled: From protein structures to clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Novel remodeling of the mouse heart mitochondrial proteome in response to acute insulin stimulation
Pedersen, Brian A; Yazdi, Puya G; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Wang, Ping H
2015-01-01
Mitochondrial dysfunction contributes to the pathophysiology of diabetic cardiomyopathy. The aim of this study was to investigate the acute changes in the mitochondrial proteome in response to insulin stimulation. Cardiac mitochondria from C57BL/6 mice after insulin stimulation were analyzed using two-dimensional fluorescence difference gel electrophoresis. MALDI-TOF MS/MS was utilized to identify differences. Two enzymes involved in metabolism and four structural proteins were identified. Succinyl-CoA ligase [ADP forming] subunit beta was identified as one of the differentially regulated proteins. Upon insulin stimulation, a relatively more acidic isoform of this protein was increased by 53% and its functional activity was decreased by ∼32%. This proteomic remodeling in response to insulin stimulation may play an important role in the normal and diabetic heart. PMID:26610654
Chen, Qun; Xu, Haishan; Xu, Aijun; Ross, Thomas; Bowler, Elizabeth; Hu, Ying; Lesnefsky, Edward J.
2015-01-01
Background Mitochondria are critical to cardiac injury during reperfusion as a result of damage sustained during ischemia, including the loss of bcl-2. We asked if bcl-2 depletion not only leads to selective permeation of the outer mitochondrial membrane (MOMP) favoring cytochrome c release and programmed cell death, but also favors opening of the mitochondrial permeability transition pore (MPTP). An increase in MPTP susceptibility would support a role for bcl-2 depletion mediated cell death in the calcium overload setting of early reperfusion via MPTP as well as later in reperfusion via MOMP as myocardial calcium content normalizes. Methods Calcium retention capacity (CRC) was used to reflect the sensitivity of the MPTP opening in isolated cardiac mitochondria. To study the relationship between bcl-2 inhibition and MPTP opening, mitochondria were incubated with a bcl-2 inhibitor (HA14-1) and CRC measured. The contribution of preserved bcl-2 content to MPTP opening following ischemia-reperfusion was explored using transgenic bcl-2 overexpressed mice. Results CRC was decreased in mitochondria following reperfusion compared to ischemia alone, indicating that reperfusion further sensitizes to MPTP opening. Incubation of ischemia-damaged mitochondria with increasing HA14-1concentrations increased calcium-stimulated MPTP opening, supporting that functional inhibition of bcl-2 during simulated reperfusion favors MPTP opening. Moreover, HA14-1 sensitivity was increased by ischemia compared to non-ischemic controls. Overexpression of bcl-2 attenuated MPTP opening in following ischemia-reperfusion. HA14-1 inhibition also increased the permeability of the outer membrane in the absence of exogenous calcium, indicating that bcl-2 inhibition favors MOMP when calcium is low. Conclusions The depletion and functional inhibition of bcl-2 contributes to cardiac injury by increasing susceptibility to MPTP opening in high calcium environments and MOMP in the absence of calcium overload. Thus, ischemia-damaged mitochondria with decreased bcl-2 content are susceptible to MPTP opening in early reperfusion and MOMP later in reperfusion when cytosolic calcium has normalized. PMID:25756500
Issan, Yossi; Kornowski, Ran; Aravot, Dan; Shainberg, Asher; Laniado-Schwartzman, Michal; Sodhi, Komal; Abraham, Nader G.; Hochhauser, Edith
2014-01-01
Background Oxidative stress plays a key role in exacerbating diabetes and cardiovascular disease. Heme oxygenase-1 (HO-1), a stress response protein, is cytoprotective, but its role in post myocardial infarction (MI) and diabetes is not fully characterized. We aimed to investigate the protection and the mechanisms of HO-1 induction in cardiomyocytes subjected to hypoxia and in diabetic mice subjected to LAD ligation. Methods In vitro: cultured cardiomyocytes were treated with cobalt-protoporphyrin (CoPP) and tin protoporphyrin (SnPP) prior to hypoxic stress. In vivo: CoPP treated streptozotocin-induced diabetic mice were subjected to LAD ligation for 2/24 h. Cardiac function, histology, biochemical damage markers and signaling pathways were measured. Results HO-1 induction lowered release of lactate dehydrogenase (LDH) and creatine phospho kinase (CK), decreased propidium iodide staining, improved cell morphology and preserved mitochondrial membrane potential in cardiomyocytes. In diabetic mice, Fractional Shortening (FS) was lower than non-diabetic mice (35±1%vs.41±2, respectively p<0.05). CoPP-treated diabetic animals improved cardiac function (43±2% p<0.01), reduced CK, Troponin T levels and infarct size compared to non-treated diabetic mice (P<0.01, P<0.001, P<0.01 respectively). CoPP-enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the decrease in superoxide levels in cardiac tissues and plasma TNFα levels (p<0.05). The increased levels of HO-1 by CoPP treatment after LAD ligation led to a shift of the Bcl-2/bax ratio towards the antiapoptotic process (p<0.05). CoPP significantly increased the expression levels of pAKT and pGSK3β (p<0.05) in cardiomyocytes and in diabetic mice with MI. SnPP abolished CoPP's cardioprotective effects. Conclusions HO-1 induction plays a role in cardioprotection against hypoxic damage in cardiomyocytes and in reducing post ischemic cardiac damage in the diabetic heart as proved by the increased levels of pAKT with a concomitant inhibition of pGSK3β leading to preserved mitochondrial membrane potential. PMID:24658657
Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression
Dong, Qinghua; Chen, Long; Lu, Qunwei; Sharma, Sherven; Li, Lei; Morimoto, Sachio; Wang, Guanyu
2014-01-01
Background and Purpose Doxorubicin-based chemotherapy induces cardiotoxicity, which limits its clinical application. We previously reported the protective effects of quercetin against doxorubicin-induced hepatotoxicity. In this study, we tested the effects of quercetin on the expression of Bmi-1, a protein regulating mitochondrial function and ROS generation, as a mechanism underlying quercetin-mediated protection against doxorubicin-induced cardiotoxicity. Experimental Approach Effects of quercetin on doxorubicin-induced cardiotoxicity was evaluated using H9c2 cardiomyocytes and C57BL/6 mice. Changes in apoptosis, mitochondrial function, oxidative stress and related signalling were evaluated in H9c2 cells. Cardiac function, serum enzyme activity and reactive oxygen species (ROS) generation were measured in mice after a single injection of doxorubicin with or without quercetin pre-treatment. Key Results In H9c2 cells, quercetin reduced doxorubicin-induced apoptosis, mitochondrial dysfunction, ROS generation and DNA double-strand breaks. The quercetin-mediated protection against doxorubicin toxicity was characterized by decreased expression of Bid, p53 and oxidase (p47 and Nox1) and by increased expression of Bcl-2 and Bmi-1. Bmi-1 siRNA abolished the protective effect of quercetin against doxorubicin-induced toxicity in H9c2 cells. Furthermore, quercetin protected mice from doxorubicin-induced cardiac dysfunction that was accompanied by reduced ROS levels and lipid peroxidation, but enhanced the expression of Bmi-1 and anti-oxidative superoxide dismutase. Conclusions and Implications Our results demonstrate that quercetin decreased doxorubicin-induced cardiotoxicity in vitro and in vivo by reducing oxidative stress by up-regulation of Bmi-1 expression. The findings presented in this study have potential applications in preventing doxorubicin-induced cardiomyopathy. PMID:24902966
Petrovic, Natasa; Kis, Adrienn; Feldmann, Helena M; Bjursell, Mikael; Parker, Nadeene; Curtis, Keira; Campbell, Mark; Hu, Ping; Zhang, Dongfang; Litwin, Sheldon E; Zaha, Vlad G; Fountain, Kimberly T; Boudina, Sihem; Jimenez-Linan, Mercedes; Blount, Margaret; Lopez, Miguel; Meirhaeghe, Aline; Bohlooly-Y, Mohammad; Storlien, Leonard; Strömstedt, Maria; Snaith, Michael; Orešič, Matej; Abel, E. Dale; Cannon, Barbara; Vidal-Puig, Antonio
2006-01-01
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1β (PGC-1β) has been implicated in important metabolic processes. A mouse lacking PGC-1β (PGC1βKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1βKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT). Under ambient temperature conditions, PGC-1β ablation was partially compensated by up-regulation of PGC-1α in BAT and white adipose tissue (WAT) that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1βKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1β was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1βKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1βKO mice have impaired mitochondrial function. Lack of PGC-1β also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1β plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress. PMID:17090215
Phenyl-alpha-tert-butyl nitrone reverses mitochondrial decay in acute Chagas' disease.
Wen, Jian-Jun; Bhatia, Vandanajay; Popov, Vsevolod L; Garg, Nisha Jain
2006-12-01
In this study, we investigated the mechanism(s) of mitochondrial functional decline in acute Chagas' disease. Our data show a substantial decline in respiratory complex activities (39 to 58%) and ATP (38%) content in Trypanosoma cruzi-infected murine hearts compared with normal controls. These metabolic alterations were associated with an approximately fivefold increase in mitochondrial reactive oxygen species production rate, substantial oxidative insult of mitochondrial membranes and respiratory complex subunits, and >60% inhibition of mtDNA-encoded transcripts for respiratory complex subunits in infected myocardium. The antioxidant phenyl-alpha-tert-butyl nitrone (PBN) arrested the oxidative damage-mediated loss in mitochondrial membrane integrity, preserved redox potential-coupled mitochondrial gene expression, and improved respiratory complex activities (47 to 95% increase) and cardiac ATP level (>or=40% increase) in infected myocardium. Importantly, PBN resulted twofold decline in mitochondrial reactive oxygen species production rate in infected myocardium. Taken together, our data demonstrate the pathological significance of oxidative stress in metabolic decay and energy homeostasis in acute chagasic myocarditis and further suggest that oxidative injuries affecting mitochondrial integrity-dependent expression and activity of the respiratory complexes initiate a feedback cycle of electron transport chain inefficiency, increased reactive oxygen species production, and energy homeostasis in acute chagasic hearts. PBN and other mitochondria-targeted antioxidants may be useful in altering mitochondrial decay and oxidative pathology in Chagas' disease.
Gordon, Taylor R; Montandon, Richard J
2017-01-01
Mitochondrial disease (MD) represents a category of metabolic disorders with a wide range of symptoms across a variety of organ systems. It occurs with an incidence of greater than 1:5000 and can be difficult to specifically diagnose because of the variety of clinical presentations and multiple genomic origins. Although phenotypically variable, MD symptoms often include hypotonia, cardiac defects, dysautonomia, and metabolic dysfunction. Mitochondrial disease presents a unique challenge in terms of anesthetic management, as many anesthetic drugs suppress mitochondrial function. Additional considerations may need to be made in order to evaluate the patient's metabolic compensation prior to surgery. This article presents an in-depth discussion of a case involving a nearly 10-year-old boy with a history of an unspecified form of MD, who presented for endodontic treatment of tooth No. 30 under deep sedation. The article also provides a thorough review of the current literature surrounding the anesthetic management of patients with MD.
MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria.
Chatterjee, Aindrila; Seyfferth, Janine; Lucci, Jacopo; Gilsbach, Ralf; Preissl, Sebastian; Böttinger, Lena; Mårtensson, Christoph U; Panhale, Amol; Stehle, Thomas; Kretz, Oliver; Sahyoun, Abdullah H; Avilov, Sergiy; Eimer, Stefan; Hein, Lutz; Pfanner, Nikolaus; Becker, Thomas; Akhtar, Asifa
2016-10-20
A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.
Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart.
Gong, Guohua; Liu, Xiaoyun; Zhang, Huiliang; Sheu, Shey-Shing; Wang, Wang
2015-10-01
Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions. Copyright © 2015 the American Physiological Society.
Inoue, Naoki; Hirouchi, Taisei; Kasai, Atsushi; Higashi, Shintaro; Hiraki, Natsumi; Tanaka, Shota; Nakazawa, Takanobu; Nunomura, Kazuto; Lin, Bangzhong; Omori, Akiko; Hayata-Takano, Atsuko; Kim, Yoon-Jeong; Doi, Takefumi; Baba, Akemichi; Hashimoto, Hitoshi; Shintani, Norihito
2018-01-08
We recently showed that a 13-kDa protein (p13), the homolog protein of formation of mitochondrial complex V assembly factor 1 in yeast, acts as a potential protective factor in pancreatic islets under diabetes. Here, we aimed to identify known compounds regulating p13 mRNA expression to obtain therapeutic insight into the cellular stress response. A luciferase reporter system was developed using the putative promoter region of the human p13 gene. Overexpression of peroxisome proliferator-activated receptor gamma coactivator 1α, a master player regulating mitochondrial metabolism, increased both reporter activity and p13 expression. Following unbiased screening with 2320 known compounds in HeLa cells, 12 pharmacological agents (including 8 cardiotonics and 2 anthracyclines) that elicited >2-fold changes in p13 mRNA expression were identified. Among them, four cardiac glycosides decreased p13 expression and concomitantly elevated cellular oxidative stress. Additional database analyses showed highest p13 expression in heart, with typically decreased expression in cardiac disease. Accordingly, our results illustrate the usefulness of unbiased compound screening as a method for identifying novel functional roles of unfamiliar genes. Our findings also highlight the importance of p13 in the cellular stress response in heart. Copyright © 2017. Published by Elsevier Inc.
Schwarzer, Michael; Schrepper, Andrea; Amorim, Paulo A; Osterholt, Moritz; Doenst, Torsten
2013-02-15
Years ago a debate arose as to whether two functionally different mitochondrial subpopulations, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), exist in heart muscle. Nowadays potential differences are often ignored. Presumably, SSM are providing ATP for basic cell function, whereas IFM provide energy for the contractile apparatus. We speculated that two distinguishable subpopulations exist that are differentially affected by pressure overload. Male Sprague-Dawley rats were subjected to transverse aortic constriction for 20 wk or sham operation. Contractile function was assessed by echocardiography. Heart tissue was analyzed by electron microscopy. Mitochondria were isolated by differential centrifugation, and respiratory capacity was analyzed using a Clark electrode. Pressure overload induced left ventricular hypertrophy with increased posterior wall diameter and impaired contractile function. Mitochondrial state 3 respiration in control was 50% higher in IFM than in SSM. Pressure overload significantly impaired respiratory rates in both IFM and SSM, but in SSM to a lower extent. As a result, there were no differences between SSM and IFM after 20 wk of pressure overload. Pressure overload reduced total citrate synthase activity, suggesting reduced total mitochondrial content. Electron microscopy revealed normal morphology of mitochondria but reduced total mitochondrial volume density. In conclusion, IFM show greater respiratory capacity in the healthy rat heart and a greater depression of respiratory capacity by pressure overload than SSM. The differences in respiratory capacity of cardiac IFM and SSM in healthy hearts are eliminated with pressure overload-induced heart failure. The strong effect of pressure overload on IFM together with the simultaneous appearance of mitochondrial and contractile dysfunction may support the notion of IFM primarily producing ATP for contractile function.
Defending the mitochondria: The pathways of mitophagy and mitochondrial-derived vesicles.
Roberts, Rosalind F; Tang, Matthew Y; Fon, Edward A; Durcan, Thomas M
2016-10-01
Mitochondria are the powerhouses for the cell, consuming oxygen to generate sufficient energy for the maintenance of normal cellular processes. However, a deleterious consequence of this process are reactive oxygen species generated as side-products of these reactions. As a means to protect mitochondria from damage, cells and mitochondria have developed a wide-range of mitochondrial quality control mechanisms that remove damaged mitochondrial cargo, enabling the mitochondria to repair the damage and ultimately restore their normal function. If the damage is extensive and mitochondria can no longer be repaired, a process termed mitophagy is initiated in which the mitochondria are directed for autophagic clearance. Canonical mitophagy is regulated by two proteins, PINK1 and Parkin, which are mutated in familial forms of Parkinson's disease. In this review, we discuss recent work elucidating the mechanism of PINK1/Parkin-mediated mitophagy, along with recently uncovered PINK1/Parkin-independent mitophagy pathways. Moreover, we describe a novel mitochondrial quality control pathway, involving mitochondrial-derived vesicles that direct distinct and damaged mitochondrial cargo for degradation in the lysosome. Finally, we discuss the association between mitochondrial quality control, cardiac, hepatic and neurodegenerative disease and discuss the possibility of targeting these pathways for therapeutic purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Eisner, Verónica; Gao, Erhe; Csordás, György; Slovinsky, William S.; Paillard, Melanie; Cheng, Lan; Ibetti, Jessica; Chen, S. R. Wayne; Chuprun, J. Kurt; Hoek, Jan B.; Koch, Walter J.; Hajnóczky, György
2017-01-01
Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes. Promptly after isolation, cardiomyocytes showed extensive mitochondrial connectivity and fusion, which decayed in culture (at 24–48 h). Fusion manifested both as rapid content mixing events between adjacent organelles and slower events between both neighboring and distant mitochondria. Loss of fusion in culture likely results from the decline in calcium oscillations/contractile activity and mitofusin 1 (Mfn1), because (i) verapamil suppressed both contraction and mitochondrial fusion, (ii) after spontaneous contraction or short-term field stimulation fusion activity increased in cardiomyocytes, and (iii) ryanodine receptor-2–mediated calcium oscillations increased fusion activity in HEK293 cells and complementing changes occurred in Mfn1. Weakened cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Thus, attenuated mitochondrial fusion might contribute to the pathogenesis of cardiomyopathy. PMID:28096338
Federico, Marilen; Portiansky, Enrique L; Sommese, Leandro; Alvarado, Francisco J; Blanco, Paula G; Zanuzzi, Carolina N; Dedman, John; Kaetzel, Marcia; Wehrens, Xander H T; Mattiazzi, Alicia; Palomeque, Julieta
2017-06-15
Spontaneous sarcoplasmic reticulum (SR) Ca 2+ release events increased in fructose-rich diet mouse (FRD) myocytes vs. control diet (CD) mice, in the absence of significant changes in SR Ca 2+ load. In HEK293 cells, hyperglycaemia significantly enhanced [ 3 H]ryanodine binding and Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) phosphorylation of RyR2-S2814 residue vs. normoglycaemia. These increases were prevented by CaMKII inhibition. FRD significantly augmented cardiac apoptosis in WT vs. CD-WT mice, which was prevented by co-treatment with the reactive oxygen species scavenger Tempol. Oxidative stress was also increased in FRD-SR-autocamide inhibitory peptide (AIP) mice, expressing the SR-targeted CaMKII inhibitor AIP, without any significant enhancement of apoptosis vs. CD-SR-AIP mice. FRD produced mitochondrial swelling and membrane depolarization in FRD-WT mice but not in FRD-S2814A mice, in which the CaMKII site on ryanodine receptor 2 was ablated. FRD decreased mitochondrial area, mean Feret diameter and the mean distance between SR and the outer mitochondrial membrane vs. CD hearts. This remodelling was prevented in AC3I mice, with cardiac-targeted CaMKII inhibition. The impact of cardiac apoptosis in pre-diabetic stages of diabetic cardiomyopathy is unknown. We show that myocytes from fructose-rich diet (FRD) animals exhibit arrhythmias produced by exacerbated Ca 2+ /calmodulin-protein kinase (CaMKII) activity, ryanodine receptor 2 (RyR2) phosphorylation and sarcoplasmic reticulum (SR) Ca 2+ leak. We tested the hypothesis that this mechanism also underlies cardiac apoptosis in pre-diabetes. We generated a pre-diabetic model in FRD mice. FRD mice showed an increase in oxidative stress, hypertrophy and systolic dysfunction. FRD myocytes exhibited enhanced SR Ca 2+ spontaneous events in the absence of SR Ca 2+ load alterations vs. control-diet (CD) myocytes. In HEK293 cells, hyperglycaemia significantly enhanced [ 3 H]ryanodine binding and CaMKII phosphorylation of RyR2-S2814 residue vs. normoglycaemia. CaMKII inhibition prevented hyperglycaemia-induced alterations. FRD also evoked cardiac apoptosis in WT mice vs. CD-WT mice. Co-treatment with the reactive oxygen species scavenger Tempol prevented FRD-induced apoptosis in WT mice. In contrast, FRD enhanced oxidative stress but not apoptosis in FRD-SR-AIP mice, in which a CaMKII inhibitor is targeted to the SR. FRD produced mitochondrial membrane depolarization in WT mice but not in S2814A mice, in which the CaMKII phosphorylation site on RyR2 was ablated. Furthermore, FRD decreased mitochondrial area, mean Feret diameter and mean SR-mitochondrial distance vs. CD-WT hearts. This remodelling was prevented in AC3I mice, with cardiac-targeted CaMKII inhibition. CaMKII phosphorylation of RyR2, SR Ca 2+ leak and mitochondrial membrane depolarization are critically involved in the apoptotic pathway of the pre-diabetic heart. The FRD-induced decrease in SR-mitochondrial distance is likely to additionally favour Ca 2+ transit between the two organelles. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Littlejohns, Ben; Pasdois, Philippe; Duggan, Simon; Bond, Andrew R.; Heesom, Kate; Jackson, Christopher L.; Angelini, Gianni D.; Halestrap, Andrew P.; Suleiman, M.-Saadeh
2014-01-01
Rationale High-fat diet with obesity-associated co-morbidities triggers cardiac remodeling and renders the heart more vulnerable to ischemia/reperfusion injury. However, the effect of high-fat diet without obesity and associated co-morbidities is presently unknown. Objectives To characterize a non-obese mouse model of high-fat diet, assess the vulnerability of hearts to reperfusion injury and to investigate cardiac cellular remodeling in relation to the mechanism(s) underlying reperfusion injury. Methods and Results Feeding C57BL/6J male mice high-fat diet for 20 weeks did not induce obesity, diabetes, cardiac hypertrophy, cardiac dysfunction, atherosclerosis or cardiac apoptosis. However, isolated perfused hearts from mice fed high-fat diet were more vulnerable to reperfusion injury than those from mice fed normal diet. In isolated cardiomyocytes, high-fat diet was associated with higher diastolic intracellular Ca2+ concentration and greater damage to isolated cardiomyocytes following simulated ischemia/reperfusion. High-fat diet was also associated with changes in mitochondrial morphology and expression of some related proteins but not mitochondrial respiration or reactive oxygen species turnover rates. Proteomics, western blot and high-performance liquid chromatography techniques revealed that high-fat diet led to less cardiac oxidative stress, higher catalase expression and significant changes in expression of putative components of the mitochondrial permeability transition pore (mPTP). Inhibition of the mPTP conferred relatively more cardio-protection in the high-fat fed mice compared to normal diet. Conclusions This study shows for the first time that high-fat diet, independent of obesity-induced co-morbidities, triggers changes in cardiac oxidative state, calcium handling and mitochondria which are likely to be responsible for increased vulnerability to cardiac insults. PMID:24950187
Krebs, Philippe; Fan, Weiwei; Chen, Yen-Hui; Tobita, Kimimasa; Downes, Michael R.; Wood, Malcolm R.; Sun, Lei; Xia, Yu; Ding, Ning; Spaeth, Jason M.; Moresco, Eva Marie Y.; Boyer, Thomas G.; Lo, Cecilia Wen Ya; Yen, Jeffrey; Evans, Ronald M.; Beutler, Bruce
2011-01-01
Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2–3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention. PMID:22106289
Yang, Yang; Duan, Weixun; Lin, Yan; Yi, Wei; Liang, Zhenxing; Yan, Juanjuan; Wang, Ning; Deng, Chao; Zhang, Song; Li, Yue; Chen, Wensheng; Yu, Shiqiang; Yi, Dinghua; Jin, Zhenxiao
2013-12-01
Ischemia reperfusion (IR) injury (IRI) is harmful to the cardiovascular system and causes mitochondrial oxidative stress. Silent information regulator 1 (SIRT1), a type of histone deacetylase, contributes to IRI. Curcumin (Cur) is a strong natural antioxidant and is the active component in Curcuma longa; Cur has protective effects against IRI and may regulate the activity of SIRT1. This study was designed to investigate the protective effect of Cur pretreatment on myocardial IRI and to elucidate this potential mechanism. Isolated and in vivo rat hearts and cultured neonatal rat cardiomyocytes were subjected to IR. Prior to this procedure, the hearts or cardiomyocytes were exposed to Cur in the absence or presence of the SIRT1 inhibitor sirtinol or SIRT1 siRNA. Cur conferred a cardioprotective effect, as shown by improved postischemic cardiac function, decreased myocardial infarct size, decreased myocardial apoptotic index, and several biochemical parameters, including the up-regulation of the antiapoptotic protein Bcl2 and the down-regulation of the proapoptotic protein Bax. Sirtinol and SIRT1 siRNA each blocked the Cur-mediated cardioprotection by inhibiting SIRT1 signaling. Cur also resulted in a well-preserved mitochondrial redox potential, significantly elevated mitochondrial superoxide dismutase activity, and decreased formation of mitochondrial hydrogen peroxide and malondialdehyde. These observations indicated that the IR-induced mitochondrial oxidative damage was remarkably attenuated. However, this Cur-elevated mitochondrial function was reversed by sirtinol or SIRT1 siRNA treatment. In summary, our results demonstrate that Cur pretreatment attenuates IRI by reducing IR-induced mitochondrial oxidative damage through the activation of SIRT1 signaling. © 2013 Elsevier Inc. All rights reserved.
Duerr, Jeffrey M; Tucker, Kristina
2007-08-01
Cardiac mitochondria were isolated from Bufo marinus and Rana catesbeiana, two species of amphibian whose cardiovascular systems are adapted to either predominantly aerobic or glycolytic modes of locomotion. Mitochondrial oxidative capacity was compared using VO2 max and respiratory control ratios in the presence of a variety of substrates including pyruvate, lactate, oxaloacetate, beta-hydroxybutyrate, and octanoyl-carnitine. B. marinus cardiac mitochondria exhibited VO2 max values twice that of R. catesbeiana cardiac mitochondria when oxidizing carbohydrate substrates. Pyruvate transport was measured via a radiolabeled-tracer assay in isolated B. marinus and R. catesbeiana cardiac mitochondria. Time-course experiments described both alpha-cyano-4-hydroxycinnamate-sensitive (MCT-like) and phenylsuccinate-sensitive pyruvate uptake mechanisms in both species. Pyruvate uptake by the MCT-like transporter was enhanced in the presence of a pH gradient, whereas the phenylsuccinate-sensitive transporter was inhibited. Notably, anuran cardiac mitochondria exhibited activities of lactate dehydrogenase and pyruvate carboxylase. The presence of both transporters on the inner mitochondrial membrane affords the net uptake of monocarboxylates including pyruvate, beta-hydroxybutyrate, and lactate; the latter potentially indicating the presence of a lactate/pyruvate shuttle allowing oxidation of extramitochondrial NADH. Intramitochondrial lactate dehydrogenase and pyruvate carboxylase enables lactate to be oxidized to pyruvate or converted to anaplerotic oxaloacetate. Kinetics of the MCT-like transporter differed significantly between the two species, suggesting differences in aerobic scope may be in part attributable to differences in mitochondrial carbohydrate utilization. (c) 2007 Wiley-Liss, Inc.
Holmuhamedov, Ekhson L.; Oberlin, Andrew; Short, Kevin; Terzic, Andre; Jahangir, Arshad
2012-01-01
Objective Cardiac subsarcolemmal (SSM) and interfibrillar (IFM) mitochondrial subpopulations possess distinct biochemical properties and differ with respect to their protein and lipid compositions, capacities for respiration and protein synthesis, and sensitivity to metabolic challenge, yet their responsiveness to mitochondrially active cardioprotective therapeutics has not been characterized. This study assessed the differential responsiveness of the two mitochondrial subpopulations to diazoxide, a cardioprotective agent targeting mitochondria. Methods Mitochondrial subpopulations were freshly isolated from rat ventricles and their morphologies assessed by electron microscopy and enzymatic activities determined using standard biochemical protocols with a plate reader. Oxidative phosphorylation was assessed from State 3 respiration using succinate as a substrate. Calcium dynamics and the status of Ca2+-dependent mitochondrial permeability transition (MPT) pore and mitochondrial membrane potential were assessed using standard Ca2+ and TPP+ ion-selective electrodes. Results Compared to IFM, isolated SSM exhibited a higher sensitivity to Ca2+ overload-mediated inhibition of adenosine triphosphate (ATP) synthesis with decreased ATP production (from 375±25 to 83±15 nmol ATP/min/mg protein in SSM, and from 875±39 to 583±45 nmol ATP/min/mg protein in IFM). In addition, SSM exhibited reduced Ca2+-accumulating capacity as compared to IFM (230±13 vs. 450±46 nmol Ca2+/mg protein in SSM and IFM, respectively), suggestive of increased Ca2+ sensitivity of MPT pore opening. Despite enhanced susceptibility to stress, SSM were more responsive to the protective effect of diazoxide (100 μM) against Ca2+ overload-mediated inhibition of ATP synthesis (67% vs. 2% in SSM and IFM, respectively). Conclusion These results provide evidence for the distinct sensitivity of cardiac SSM and IFM toward Ca2+-dependent metabolic stress and the protective effect of diazoxide on mitochondrial energetics. PMID:22973464
SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition
Stary, Victoria; Puppala, Dheeraj; Scherrer-Crosbie, Marielle; Dillmann, Wolfgang H.
2016-01-01
Cardiac alternans has been associated with the incidence of ventricular tachyarrhythmias and sudden cardiac death. The aim of this study was to investigate the effect of impaired mitochondrial function in the genesis of cellular alternans and to examine whether modulating the sarcoplasmic reticulum (SR) Ca2+ ameliorates the level of alternans. Cardiomyocytes isolated from control and doxycyline-induced sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a)-upregulated mice were loaded with two different Ca2+ indicators to selectively measure mitochondrial and cytosolic Ca2+ using a custom-made fluorescence photometry system. The degree of alternans was defined as the alternans ratio (AR) [1 − (small Ca2+ intensity)/(large Ca2+ intensity)]. Blocking of complex I and II, cytochrome-c oxidase, F0F1 synthase, α-ketoglutarate dehydrogenase of the electron transport chain, increased alternans in both control and SERCA2a mice (P < 0.01). Changes in AR in SERCA2a-upregulated mice were significantly less pronounced than those observed in control in seven of nine tested conditions (P < 0.04). N-acetyl-l-cysteine (NAC), rescued alternans in myocytes that were previously exposed to an oxidizing agent (P < 0.001). CGP, an antagonist of the mitochondrial Na+-Ca2+ exchanger, had the most severe effect on AR. Exposure to cyclosporin A, a blocker of the mitochondrial permeability transition pore reduced CGP-induced alternans (P < 0.0001). The major findings of this study are that impairment of mitochondrial Ca2+ cycling and energy production leads to a higher amplitude of alternans in both control and SERCA2a-upregulated mice, but changes in SERCA2a-upregulated mice are less severe, indicating that SERCA2a mice are more capable of sustaining electrical stability during stress. This suggests a relationship between sarcoplasmic Ca2+ content and mitochondrial dysfunction during alternans, which may potentially help to understand changes in Ca2+ signaling in myocytes from diseased hearts, leading to new therapeutic targets. PMID:26846549
Wang, Hao; Sun, Xuming; Chou, Jeff; Lin, Marina; Ferrario, Carlos M; Zapata-Sudo, Gisele; Groban, Leanne
2017-02-01
We previously showed that cardiomyocyte-specific G protein-coupled estrogen receptor (GPER) gene deletion leads to sex-specific adverse effects on cardiac structure and function; alterations which may be due to distinct differences in mitochondrial and inflammatory processes between sexes. Here, we provide the results of Gene Set Enrichment Analysis (GSEA) based on the DNA microarray data from GPER-knockout versus GPER-intact (intact) cardiomyocytes. This article contains complete data on the mitochondrial and inflammatory response-related gene expression changes that were significant in GPER knockout versus intact cardiomyocytes from adult male and female mice. The data are supplemental to our original research article "Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER) leads to left ventricular dysfunction and adverse remodeling: a sex-specific gene profiling" (Wang et al., 2016) [1]. Data have been deposited to the Gene Expression Omnibus (GEO) database repository with the dataset identifier GSE86843.
Afzal, Muhammad Z.; Reiter, Melanie; Gastonguay, Courtney; McGivern, Jered V.; Guan, Xuan; Ge, Zhi-Dong; Mack, David L.; Childers, Martin K.; Ebert, Allison D.; Strande, Jennifer L.
2016-01-01
Background Dystrophin-deficient cardiomyopathy is a growing clinical problem without targeted treatments. We investigated whether nicorandil promotes cardioprotection in human dystrophin-deficient induced pluripotent stem cell (iPSC)-derived cardiomyocytes and the muscular dystrophy mdx mouse heart. Methods and Results Dystrophin-deficient iPSC-derived cardiomyocytes had decreased levels of endothelial nitric oxide synthase and neuronal nitric oxide synthase. The dystrophin-deficient cardiomyocytes had increased cell injury and death after 2 hours of stress and recovery. This was associated with increased levels of reactive oxygen species and dissipation of the mitochondrial membrane potential. Nicorandil pretreatment was able to abolish these stress-induced changes through a mechanism that involved the nitric oxide–cyclic guanosine monophosphate pathway and mitochondrial adenosine triphosphate-sensitive potassium channels. The increased reactive oxygen species levels in the dystrophin-deficient cardiomyocytes were associated with diminished expression of select antioxidant genes and increased activity of xanthine oxidase. Furthermore, nicorandil was found to improve the restoration of cardiac function after ischemia and reperfusion in the isolated mdx mouse heart. Conclusion Nicorandil protects against stress-induced cell death in dystrophin-deficient cardiomyocytes and preserves cardiac function in the mdx mouse heart subjected to ischemia and reperfusion injury. This suggests a potential therapeutic role for nicorandil in dystrophin-deficient cardiomyopathy. PMID:26940570
Báez, Alejandra Lidia; Lo Presti, María Silvina; Fretes, Ricardo; Díaz, Cintia; Pons, Patricia; Bazán, Paola Carolina; Strauss, Mariana; Rivarola, Héctor Walter; Paglini-Oliva, Patricia
2013-03-01
Chagasic cardiopathy has become one of the most frequent causes of heart failure and sudden death, as well as one of the most common causes of cardio-embolic stroke in Latin America. The myocyte response to oxidative stress involves the progression of cellular changes, primarily targeting the mitochondria and modifying therefore the energy supply. In this paper we analysed the effect of the infection of mice with 2 different strains of Trypanosoma cruzi (Tulahuen and SGO Z12) in the chronic indeterminate stage (75 days post-infection), upon the structure and function of cardiac mitochondria. The structural results showed that 83% of the mitochondria from the Tulahuen-infected mice presented an increase in their matrix and 91% of the mitochondria from the SGO Z12-infected group showed a reduction in their diameter (P < 0.05). When the Krebs cycle and mitochondrial respiratory chain functionality was analysed through the measurement of the citrate synthase and complexes I to IV activity, it showed that their activity was altered in all cases in a similar manner in both infected groups. In this paper we have demonstrated that the chronic indeterminate phase is not 'silent' and that cardiac mitochondria are clearly involved in the genesis and progression to the chronic chagasic cardiopathy when different factors alter the host-parasite equilibrium.
Li, Qian; Lian, Chun-Wei; Fang, Li-Qun; Liu, Bin; Yang, Bo
2014-09-01
To investigate whether xenon preconditioning (PC) could protect immature myocardium against ischemia-reperfusion (I/R) injury in a dose-dependent manner and clarify the role of xenon PC on oxidative stress. Forty-eight isolated perfused immature rabbit hearts were randomly divided into four groups (n = 12): The sham group had the hearts perfused continuously for 300 min. In I/R group, the hearts were subjected to 60 min perfusion followed by 60 min ischemia and 180 min reperfusion. In 1 minimum alveolar concentration (MAC) and 0.5 MAC xenon PC groups, the hearts were preconditioned with 1 MAC or 0.5 MAC xenon respectively, following 60 min ischemia and 180 min reperfusion. The cardiac function, myocardial infarct size, mitochondrial structure, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in each group were determined after reperfusion. Compared with I/R group, both 1 MAC and 0. 5 MAC xenon preconditioning significantly improved cardiac function (P < 0.01), reduced myocardial infarct size (P < 0.01) and mitochondrial damage, increased SOD activity and decreased MDA level (P < 0.01). There were no differences between 1 MAC group and 0.5 MAC xenon group (P > 0.05). Xenon preconditioning at 0. 5 and 1 MAC produce similar cardioprotective effects against I/R injury in isolated perfused immature heart.
Myocardial dysfunction in mitochondrial diabetes treated with Coenzyme Q10.
Salles, João Eduardo; Moisés, Valdir A; Almeida, Dirceu R; Chacra, Antonio R; Moisés, Regina S
2006-04-01
Maternally-inherited diabetes and deafness (MIDD) has been related to an A to G transition in the mitochondrial tRNA Leu (UUR) gene at the base pair 3243. Although some previous articles have reported that this mutation may be a cause of cardiomyopathy in diabetes, the degree of cardiac involvement and a specific treatment has not been established. Here, we reported a case of a patient with MIDD who developed congestive heart failure and the therapeutic usefulness of Coenzyme Q10 (CoQ10). In our patient, after the introduction of Coenzyme Q10 150 mg/day, there was a gradual improvement on left ventricular function evaluated by echocardiography. The fractional shortening (FS) and ejection fraction (EF) increased from 26 to 34% and from 49 to 64%, respectively. No side effects were noted. Three months after CoQ10 discontinuation, the parameters of systolic function evaluated by echocardiography decreased, suggesting that CoQ10 had a beneficial effect. Identification of diabetes and cardiomyopathy due to mitochondrial gene mutation may have therapeutic implications and Coenzyme Q10 is a possible adjunctive treatment in such patients.
Aggarwal, Nitin T; Shi, Nian-Qing; Makielski, Jonathan C
2013-01-01
Cardiac ATP-sensitive potassium channels (KATP) are found in both the sarcoplasmic reticulum (sarcKATP) and the inner membrane of mitochondria (mitoKATP). SarcKATP are composed of a pore containing subunit Kir6.2 and a regulatory sulfonylurea receptor subunit (SUR2), but the composition of mitoKATP remains unclear. An unusual intra-exonic splice variant of SUR2 (SUR2A-55) was previously identified in mitochondria of mammalian heart and brain, and by analogy with sarcKATP we proposed SUR2A-55 as a candidate regulatory subunit of mitoKATP. Although SUR2A-55 lacks the first nucleotide binding domain (NBD) and 2 transmembrane domains (TMD), it has a hybrid TMD and retains the second NBD. It resembles a hemi-ABC transporter suggesting it could multimerize to function as a regulatory subunit. A putative mitochondrial targeting signal in the N-terminal domain of SUR2A-55 was removed by truncation and when co-expressed with Kir6.1 and Kir6.2 it targeted to the plasma membrane and yielded KATP currents. Single channel conductance, mean open time, and burst open time of SUR2A-55 based KATP was similar to the full-length SUR2A based KATP. However, the SUR2A-55 KATP were 70-fold less sensitive to block by ATP, and twice as resistant to intracellular Ca2+ inhibition compared with the SUR2A KATP, and were markedly insensitive to KATP drugs, pinacidil, diazoxide, and glybenclamide. These results suggest that the SUR2A-55 based channels would tend to be open under physiological conditions and in ischemia, and could account for cardiac and mitochondrial phenotypes protective for ischemia. PMID:24037327
Kamalov, German; Ahokas, Robert A.; Zhao, Wenyuan; Shahbaz, Atta U.; Bhattacharya, Syamal K.; Sun, Yao; Gerling, Ivan C.
2010-01-01
Intracellular Ca2+ overloading, coupled to induction of oxidative stress, is present at 4-wk aldosterone/salt treatment (ALDOST). This prooxidant reaction in cardiac myocytes and mitochondria accounts for necrotic cell death and subsequent myocardial scarring. It is intrinsically linked to increased intracellular zinc concentration ([Zn2+]i) serving as an antioxidant. Herein, we addressed the temporal responses in coupled Ca2+ and Zn2+ dyshomeostasis, reflecting the prooxidant-antioxidant equilibrium, by examining preclinical (week 1) and pathological (week 4) stages of ALDOST to determine whether endogenous antioxidant defenses would be ultimately overwhelmed to account for this delay in cardiac remodeling. We compared responses in cardiomyocyte free [Ca2+]i and [Zn2+]i and mitochondrial total [Ca2+]m and [Zn2+]m, together with biomarkers of oxidative stress and antioxidant defenses, during 1- and 4-wk ALDOST. At week 1 and compared with controls, we found: 1) elevations in [Ca2+]i and [Ca2+]m were coupled with [Zn2+]i and [Zn2+]m; 2) increased mitochondrial H2O2 production, cardiomyocyte xanthine oxidase activity, and cardiac and mitochondrial 8-isoprostane levels, counterbalanced by increased activity of antioxidant proteins, enzymes, and the nonenzymatic antioxidants that can be considered as cumulative antioxidant capacity; some of these enzymes and proteins (e.g., metallothionein-1, Cu/Zn-superoxide, glutathione synthase) are regulated by metal-responsive transcription factor-1; and 3) although these augmented antioxidant defenses were sustained at week 4, they fell short in combating the persistent intracellular Ca2+ overloading and marked rise in cardiac tissue 8-isoprostane and mitochondrial transition pore opening. Thus a coupled Ca2+ and Zn2+ dyshomeostasis occurs early during ALDOST in cardiac myocytes and mitochondria that regulate redox equilibrium until week 4 when ongoing intracellular Ca2+ overloading and prooxidants overwhelm antioxidant defenses. PMID:19915175
Brandt, Moritz; Garlapati, Venkata; Oelze, Matthias; Sotiriou, Efthymios; Knorr, Maike; Kröller-Schön, Swenja; Kossmann, Sabine; Schönfelder, Tanja; Morawietz, Henning; Schulz, Eberhard; Schultheiss, Heinz-Peter; Daiber, Andreas; Münzel, Thomas; Wenzel, Philip
2016-01-01
Alcoholic cardiomyopathy (ACM) resulting from excess alcohol consumption is an important cause of heart failure (HF). Although it is assumed that the cardiotoxicity of the ethanol (EtOH)-metabolite acetaldehyde (ACA) is central for its development and progression, the exact mechanisms remain obscure. Murine cardiomyocytes (CMs) exposed to ACA or EtOH showed increased superoxide (O2•−) levels and decreased mitochondrial polarization, both being normalized by NADPH oxidase (NOX) inhibition. C57BL/6 mice and mice deficient for the ACA-degrading enzyme mitochondrial aldehyde dehydrogenase (ALDH-2−/−) were fed a 2% EtOH diet for 5 weeks creating an ACA-overload. 2% EtOH-fed ALDH-2−/− mice exhibited a decreased cardiac function, increased heart-to-body and lung-to-body weight ratios, increased cardiac levels of the lipid peroxidation product malondialdehyde (MDA) as well as increased NOX activity and NOX2/glycoprotein 91phox (NOX2/gp91phox) subunit expression compared to 2% EtOH-fed C57BL/6 mice. Echocardiography revealed that ALDH-2−/−/gp91phox−/− mice were protected from ACA-overload-induced HF after 5 weeks of 2% EtOH-diet, demonstrating that NOX2-derived O2•− contributes to the development of ACM. Translated to human pathophysiology, we found increased gp91phox expression in endomyocardial biopsies of ACM patients. In conclusion, ACM is promoted by ACA-driven mitochondrial dysfunction and can be improved by ablation of NOX2/gp91phox. NOX2/gp91phox therefore might be a potential pharmacological target to treat ACM. PMID:27624556
Abnormal mitochondrial respiration in failed human myocardium.
Sharov, V G; Todor, A V; Silverman, N; Goldstein, S; Sabbah, H N
2000-12-01
Chronic heart failure (HF) is associated with morphologic abnormalities of cardiac mitochondria including hyperplasia, reduced organelle size and compromised structural integrity. In this study, we examined whether functional abnormalities of mitochondrial respiration are also present in myocardium of patients with advanced HF. Mitochondrial respiration was examined using a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles obtained from myocardium of failed explanted human hearts due to ischemic (ICM, n=9) or idiopathic dilated (IDC, n=9) cardiomyopathy. Myocardial specimens from five normal donor hearts served as controls (CON). Basal respiratory rate, respiratory rate after addition of the substrates glutamate and malate (V(SUB)), state 3 respiration (after addition of ADP, V(ADP)) and respiration after the addition of atractyloside (V(AT)) were measured in scar-free muscle bundles obtained from the subendocardial (ENDO) and subepicardial (EPI) thirds of the left ventricular (LV) free wall, interventricular septum and right ventricular (RV) free wall. There were no differences in basal and substrate-supported respiration between CON and HF regardless of etiology. V(ADP)was significantly depressed both in ICM and IDC compared to CON in all the regions studied. The respiratory control ratio, V(ADP)/V(AT), was also significantly decreased in HF compared to CON. In both ICM and IDC, V(ADP)was significantly lower in ENDO compared to EPI. The results indicate that mitochondrial respiration is abnormal in the failing human heart. The findings support the concept of low myocardial energy production in HF via oxidative phosphorylation, an abnormality with a potentially impact on global cardiac performance. Copyright 2000 Academic Press.
McFarlin, Brian K; Henning, Andrea L; Venable, Adam S
2017-07-01
Background • Vitamin K1 and K2 are not typically common in a Western diet because they are found in a variety of fermented foods. Vitamin K2 in particular has been demonstrated to restore mitochondrial function and has a key role in production of mitochondrial adenosine triphosphate. Thus, it is reasonable to speculate that dietary supplementation with vitamin K2 could increase the function of muscle with high mitochondrial content (ie, skeletal and cardiac muscle). Objective • The purpose of this study was to determine if 8 wk of dietary supplementation with Vitamin K2 could alter cardiovascular responses to a graded cycle ergometer test. Design • The study was a randomized controlled trial. Setting • The study took place in the Applied Physiology Laboratory of the Department of Biological Sciences at the University of North Texas (Denton, TX, USA). Participants • Participants were aerobically trained males and female athletes (N = 26). Intervention • Participants were randomly assigned either to a control group that received a rice flour placebo or to an intervention group that received vitamin K2. For weeks 1 to 4, participants received 300 mg/d; for weeks 5 to 8, they received 150 mg/d. Subjects assigned to the control group received similar doses to mirror the intervention group. Subjects consumed the supplements during an 8-wk period while they maintained their typical exercise habits. Outcome Measures • At baseline and postintervention, participants completed a standard, graded exercise test on an electronically braked cycle ergometer. Before the test, participants were fitted with a mouth piece, and their oxygen consumption, carbon dioxide production, respiratory rate, and respiratory exchange ratio were measured. In addition, participants were fitted with skin-mounted electrodes that measured noninvasive cardiac output, stroke volume, and heart rate. To assess the cumulative exercise change, an area-under-the-curve (AUC) value was calculated separately for each outcome variable at each treatment time point. Results • Vitamin K2 supplementation was associated with a 12% increase in maximal cardiac output, with P = .031, with a trend toward an increase in heart-rate AUC, with P = .070. No significant changes occurred in stroke volume. Conclusions • Although vitamin K2 supplementation has previously been reported to improve cardiovascular function in diseased patients, to the research team's knowledge, the current study is the first to report its potential in active individuals. More research is needed to fully evaluate the potential effects of the observed effects.
Wang, Shulin; Li, Yunpeng; Song, Xudong; Wang, Xianbao; Zhao, Cong; Chen, Aihua; Yang, Pingzhen
2015-07-02
Febuxostat is a selective inhibitor of xanthine oxidase (XO). XO is a critical source of reactive oxygen species (ROS) during myocardial ischemia/reperfusion (I/R) injury. Inhibition of XO is therapeutically effective in I/R injury. Evidence suggests that febuxostat exerts antioxidant effects by directly scavenging ROS. The present study was performed to investigate the effects of febuxostat on myocardial I/R injury and its underlying mechanisms. We utilized an in vivo mouse model of myocardial I/R injury and an in vitro neonatal rat cardiomyocyte (NRC) model of hypoxia/reoxygenation (H/R) injury. Mice were randomized into five groups: Sham, I/R (I/R + Vehicle), I/R + FEB (I/R + febuxostat), AL + I/R (I/R + allopurinol) and FEB (febuxostat), respectively. The I/R + FEB mice were pretreated with febuxostat (5 mg/kg; i.p.) 24 and 1 h prior to I/R. NRCs received febuxostat (1 and 10 µM) at 24 and 1 h before exposure to hypoxia for 3 h followed by reoxygenation for 3 h. Cardiac function, myocardial infarct size, serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH), and myocardial apoptotic index (AI) were measured in order to ascertain the effects of febuxostat on myocardial I/R injury. Hypoxia/reperfusion (H/R) injury in NRCs was examined using MTT, LDH leakage assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The underlying mechanisms were determined by measuring ROS production, mitochondrial membrane potential (ΔΨm), and expression of cytochrome c, cleaved caspases as well as Bcl-2 protein levels. Myocardial I/R led to an elevation in the myocardial infarct size, serum levels of CK and LDH, cell death and AI. Furthermore, I/R reduced cardiac function. These changes were significantly attenuated by pretreatment with febuxostat and allopurinol, especially by febuxostat. Febuxostat also protected the mitochondrial structure following myocardial I/R, inhibited H/R-induced ROS generation, stabilized the ΔΨm, alleviated cytosolic translocation of mitochondrial cytochrome C, inhibited activation of caspase-3 and -9, upregulated antiapoptotic proteins and downregulated proapoptotic proteins. This study revealed that febuxostat pretreatment mediates the cardioprotective effects against I/R and H/R injury by inhibiting mitochondrial-dependent apoptosis.
Cardiac-Targeted Transgenic Mutant Mitochondrial Enzymes
Kohler, James J.; Hosseini, Seyed H.; Green, Elgin; Hoying-Brandt, Amy; Cucoranu, Ioan; Haase, Chad P.; Russ, Rodney; Srivastava, Jaya; Ivey, Kristopher; Ludaway, Tomika; Kapoor, Victor; Abuin, Allison; Shapoval, Alexsey; Santoianni, Robert; Saada, Ann; Elpeleg, Orly; Lewis, William
2009-01-01
Mitochondrial (mt) DNA biogenesis is critical to cardiac contractility. DNA polymerase gamma (pol γ) replicates mtDNA, whereas thymidine kinase 2 (TK2) monophosphorylates pyrimidines intramitochondrially. Point mutations in POLG and TK2 result in clinical diseases associated with mtDNA depletion and organ dysfunction. Pyrimidine analogs (NRTIs) inhibit Pol γ and mtDNA replication. Cardiac “dominant negative” murine transgenes (TGs; Pol γ Y955G, and TK2 H121N or I212N) defined the role of each in the heart. mtDNA abundance, histopathological features, histochemistry, mitochondrial protein abundance, morphometry, and echocardiography were determined for TGs in “2 × 2” studies with or without pyrimidine analogs. Cardiac mtDNA abundance decreased in Y955C TGs (∼50%) but increased in H121N and I212N TGs (20-70%). Succinate dehydrogenase (SDH) increased in hearts of all mutants. Ultrastructural changes occurred in Y955C and H121N TGs. Histopathology demonstrated hypertrophy in H121N, LV dilation in I212N, and both hypertrophy and dilation in Y955C TGs. Antiretrovirals increased LV mass (≈50%) for all three TGs which combined with dilation indicates cardiomyopathy. Taken together, these studies demonstrate three manifestations of cardiac dysfunction that depend on the nature of the specific mutation and antiretroviral treatment. Mutations in genes for mtDNA biogenesis increase risk for defective mtDNA replication, leading to LV hypertrophy. PMID:18446447
Energy metabolism regulated by HDAC inhibitor attenuates cardiac injury in hemorrhagic rat model
Kuai, Qiyuan; Wang, Chunyan; Wang, Yanbing; Li, Weijing; Zhang, Gongqing; Qiao, Zhixin; He, Min; Wang, Xuanlin; Wang, Yu; Jiang, Xingwei; Su, Lihua; He, Yuezhong; Ren, Suping; Yu, Qun
2016-01-01
A disturbance of energy metabolism reduces cardiac function in acute severe hemorrhagic patients. Alternatively, adequate energy supply reduces heart failure and increases survival. However, the approach to regulating energy metabolism conductive to vital organs is limited, and the underlying molecular mechanism remains unknown. This study assesses the ability of histone deacetylase inhibitors (HDACIs) to preserve cardiac energy metabolism during lethal hemorrhagic injury. In the lethally hemorrhagic rat and hypoxic myocardial cells, energy metabolism and heart function were well maintained following HDACI treatment, as evident by continuous ATP production with normal cardiac contraction. Valproic acid (VPA) regulated the energy metabolism of hemorrhagic heart by reducing lactate synthesis and protecting the mitochondrial ultrastructure and respiration, which were attributable to the inhibition of lactate dehydrogenase A activity and the increased myeloid cell leukemia-1 (mcl-1) gene expression, ultimately facilitating ATP production and consumption. MCL-1, the key target of VPA, mediated this cardioprotective effect under acute severe hemorrhage conditions. Our results suggest that HDACIs promote cardioprotection by improving energy metabolism during hemorrhagic injury and could therefore be an effective strategy to counteract this process in the clinical setting. PMID:27910887
Bozi, Luiz H M; Jannig, Paulo R; Rolim, Natale; Voltarelli, Vanessa A; Dourado, Paulo M M; Wisløff, Ulrik; Brum, Patricia C
2016-11-01
Cardiac endoplasmic reticulum (ER) stress through accumulation of misfolded proteins plays a pivotal role in cardiovascular diseases. In an attempt to reestablish ER homoeostasis, the unfolded protein response (UPR) is activated. However, if ER stress persists, sustained UPR activation leads to apoptosis. There is no available therapy for ER stress relief. Considering that aerobic exercise training (AET) attenuates oxidative stress, mitochondrial dysfunction and calcium imbalance, it may be a potential strategy to reestablish cardiac ER homoeostasis. We test the hypothesis that AET would attenuate impaired cardiac ER stress after myocardial infarction (MI). Wistar rats underwent to either MI or sham surgeries. Four weeks later, rats underwent to 8 weeks of moderate-intensity AET. Myocardial infarction rats displayed cardiac dysfunction and lung oedema, suggesting heart failure. Cardiac dysfunction in MI rats was paralleled by increased protein levels of UPR markers (GRP78, DERLIN-1 and CHOP), accumulation of misfolded and polyubiquitinated proteins, and reduced chymotrypsin-like proteasome activity. These results suggest an impaired cardiac protein quality control. Aerobic exercise training improved exercise capacity and cardiac function of MI animals. Interestingly, AET blunted MI-induced ER stress by reducing protein levels of UPR markers, and accumulation of both misfolded and polyubiquinated proteins, which was associated with restored proteasome activity. Taken together, our study provide evidence for AET attenuation of ER stress through the reestablishment of cardiac protein quality control, which contributes to better cardiac function in post-MI heart failure rats. These results reinforce the importance of AET as primary non-pharmacological therapy to cardiovascular disease. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Uncoupling of oxidative phosphorylation and ATP synthase reversal within the hyperthermic heart.
Power, Amelia; Pearson, Nicholas; Pham, Toan; Cheung, Carlos; Phillips, Anthony; Hickey, Anthony
2014-09-01
Heart failure is a common cause of death with hyperthermia, and the exact cause of hyperthermic heart failure appears elusive. We hypothesize that the energy supply (ATP) of the heart may become impaired due to increased inner-mitochondrial membrane permeability and inefficient oxidative phosphorylation (OXPHOS). Therefore, we assessed isolated working heart and mitochondrial function. Ex vivo working rat hearts were perfused between 37 and 43.5°C and showed break points in all functional parameters at ~40.5°C. Mitochondrial high-resolution respirometry coupled to fluorometry was employed to determine the effects of hyperthermia on OXPHOS and mitochondrial membrane potential (ΔΨ) in vitro using a comprehensive metabolic substrate complement with isolated mitochondria. Relative to 37 and 40°C, 43°C elevated Leak O2 flux and depressed OXPHOS O2 flux and ∆Ψ. Measurement of steady-state ATP production from mitochondria revealed decreased ATP synthesis capacity, and a negative steady-state P:O ratio at 43°C. This approach offers a more powerful analysis of the effects of temperature on OXPHOS that cannot be measured using simple measures such as the traditional respiratory control ratio (RCR) or P:O ratio, which, respectively, can only approach 1 or 0 with inner-membrane failure. At 40°C there was only a slight enhancement of the Leak O2 flux and this did not significantly affect ATP production rate. Therefore, during mild hyperthermia (40°C) there is no enhancement of ATP supply by mitochondria, to accompany increasing cardiac energy demands, while between this and critical hyperthermia (43°C), mitochondria become net consumers of ATP. This consumption may contribute to cardiac failure or permanent damage during severe hyperthermia. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Kwan, Jair C; Gao, Ling; Macdonald, Peter S; Hicks, Mark
2015-03-01
Storage of donor hearts in cardioplegic solutions supplemented with agents that mimic the ischaemic preconditioning response enhanced their post-reperfusion function. The present study examines the minimisation of cell death and activation of pro-survival signalling directed towards maintenance of mitochondrial homeostasis in hearts arrested and stored in two such agents, glyceryl-trinitrate, a nitric oxide donor and cariporide, (a sodium-hydrogen exchange inhibitor). After baseline functional measurement, isolated working rat hearts were arrested and stored for 6h at 4°C in either Celsior(®), Celsior(®) containing 0.1mg/ml glyceryl-trinitrate, 10μM cariporide or both agents. After reperfusion, function was remeasured. Hearts were then processed for immunoblotting or histology. Necrotic and apoptotic markers present in the Celsior(®) group post-reperfusion were abolished by glyceryl-trinitrate, cariporide or both. Increased phosphorylation of ERK and Bcl2, after reperfusion in groups stored in glyceryl-trinitrate, cariporide or both along with increased phospho-STAT3 levels in the glyceryl-trinitrate/cariporide group correlated with functional recovery. Inhibition of STAT3 phosphorylation blocked recovery. No phospho-Akt increase was seen in any treatment. Activation of signalling pathways that favour mitophagy activation (ERK and Bcl2 phosphorylation) and maintenance of mitochondrial transition pore closure after reperfusion (STAT3 and ERK phosphorylation) were crucial for functional recovery of the donor heart. Copyright © 2014 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Lin; Zhang, Ming; Yan, Rui
Viral myocarditis (VMC) is closely related to apoptosis, oxidative stress, innate immunity, and energy metabolism, which are all linked to mitochondrial dysfunction. A close nexus between mitochondrial dynamics and cardiovascular disease with mitochondrial dysfunction has been deeply researched, but there is still no relevant report in viral myocarditis. In this study, we aimed to explore the role of Dynamin-related protein 1 (Drp1)-linked mitochondrial fission in VMC. Mice were inoculated with the Coxsackievirus B3 (CVB3) and treated with mdivi1 (a Drp1 inhibitor). Protein expression of Drp1 was increased in mitochondria while decreased in cytoplasm and accompanied by excessive mitochondrial fission inmore » VMC mice. In addition, midivi1 treatment attenuate inflammatory cells infiltration in myocardium of the mice, serum Cardiac troponin I (CTnI) and Creatine kinase-MB (CK-MB) level. Mdivi1 also could improved the survival rate of mice and mitochondrial dysfunction reflected as the up-regulated mitochondrial marker enzymatic activities of succinate dehydrogenase (SDH), cytochrome c oxidase (COX) and mitochondrial membrane potential (MMP). At the same time, mdivi1 rescued the body weight loss, myocardial injury and apoptosis of cardiomyocyte. Furthermore, decease in LVEDs and increase in EF and FS were detected by echocardiogram, which indicated the improved myocardial function. Thus, Drp1-linked excessive mitochondrial fission contributed to VMC and midivi1 may be a potential therapeutic approach. - Highlights: • The expression of Drp1 is significantly increased in mitochondria while decreased in cytoplasm in VMC mice. • Drp1-linked excessive mitochondrial fission is involved in VMC. • Midivi1 treatment mitigate the mitochondrial damage, inflammation, apoptosis in VMC mice. • The disturbance of mitochondrial dynamics may be a new therapeutic target for VMC.« less
An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics.
Cortassa, Sonia; Aon, Miguel A; Marbán, Eduardo; Winslow, Raimond L; O'Rourke, Brian
2003-04-01
We present an integrated thermokinetic model describing control of cardiac mitochondrial bioenergetics. The model describes the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and mitochondrial Ca(2+) handling. The kinetic component of the model includes effectors of the TCA cycle enzymes regulating production of NADH and FADH(2), which in turn are used by the electron transport chain to establish a proton motive force (Delta mu(H)), driving the F(1)F(0)-ATPase. In addition, mitochondrial matrix Ca(2+), determined by Ca(2+) uniporter and Na(+)/Ca(2+) exchanger activities, regulates activity of the TCA cycle enzymes isocitrate dehydrogenase and alpha-ketoglutarate dehydrogenase. The model is described by twelve ordinary differential equations for the time rate of change of mitochondrial membrane potential (Delta Psi(m)), and matrix concentrations of Ca(2+), NADH, ADP, and TCA cycle intermediates. The model is used to predict the response of mitochondria to changes in substrate delivery, metabolic inhibition, the rate of adenine nucleotide exchange, and Ca(2+). The model is able to reproduce, qualitatively and semiquantitatively, experimental data concerning mitochondrial bioenergetics, Ca(2+) dynamics, and respiratory control. Significant increases in oxygen consumption (V(O(2))), proton efflux, NADH, and ATP synthesis, in response to an increase in cytoplasmic Ca(2+), are obtained when the Ca(2+)-sensitive dehydrogenases are the main rate-controlling steps of respiratory flux. These responses diminished when control is shifted downstream (e.g., the respiratory chain or adenine nucleotide translocator). The time-dependent behavior of the model, under conditions simulating an increase in workload, closely reproduces experimentally observed mitochondrial NADH dynamics in heart trabeculae subjected to changes in pacing frequency. The steady-state and time-dependent behavior of the model support the hypothesis that mitochondrial matrix Ca(2+) plays an important role in matching energy supply with demand in cardiac myocytes.
An Integrated Model of Cardiac Mitochondrial Energy Metabolism and Calcium Dynamics
Cortassa, Sonia; Aon, Miguel A.; Marbán, Eduardo; Winslow, Raimond L.; O'Rourke, Brian
2003-01-01
We present an integrated thermokinetic model describing control of cardiac mitochondrial bioenergetics. The model describes the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and mitochondrial Ca2+ handling. The kinetic component of the model includes effectors of the TCA cycle enzymes regulating production of NADH and FADH2, which in turn are used by the electron transport chain to establish a proton motive force (ΔμH), driving the F1F0-ATPase. In addition, mitochondrial matrix Ca2+, determined by Ca2+ uniporter and Na+/Ca2+ exchanger activities, regulates activity of the TCA cycle enzymes isocitrate dehydrogenase and α-ketoglutarate dehydrogenase. The model is described by twelve ordinary differential equations for the time rate of change of mitochondrial membrane potential (ΔΨm), and matrix concentrations of Ca2+, NADH, ADP, and TCA cycle intermediates. The model is used to predict the response of mitochondria to changes in substrate delivery, metabolic inhibition, the rate of adenine nucleotide exchange, and Ca2+. The model is able to reproduce, qualitatively and semiquantitatively, experimental data concerning mitochondrial bioenergetics, Ca2+ dynamics, and respiratory control. Significant increases in oxygen consumption (VO2), proton efflux, NADH, and ATP synthesis, in response to an increase in cytoplasmic Ca2+, are obtained when the Ca2+-sensitive dehydrogenases are the main rate-controlling steps of respiratory flux. These responses diminished when control is shifted downstream (e.g., the respiratory chain or adenine nucleotide translocator). The time-dependent behavior of the model, under conditions simulating an increase in workload, closely reproduces experimentally observed mitochondrial NADH dynamics in heart trabeculae subjected to changes in pacing frequency. The steady-state and time-dependent behavior of the model support the hypothesis that mitochondrial matrix Ca2+ plays an important role in matching energy supply with demand in cardiac myocytes. PMID:12668482
Files, Matthew D.; Kajimoto, Masaki; O'Kelly Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Des Rosiers, Christine; Isern, Nancy; Portman, Michael A.
2014-01-01
Background Extracorporeal membrane oxygenation (ECMO) provides a bridge to recovery after myocardial injury in infants and children, yet morbidity and mortality remain high. Weaning from the circuit requires adequate cardiac contractile function, which can be impaired by metabolic disturbances induced either by ischemia‐reperfusion and/or by ECMO. We tested the hypothesis that although ECMO partially ameliorates metabolic abnormalities induced by ischemia‐reperfusion, these abnormalities persist or recur with weaning. We also determined if thyroid hormone supplementation (triiodothyronine) during ECMO improves oxidative metabolism and cardiac function. Methods and Results Neonatal piglets underwent transient coronary ischemia to induce cardiac injury then were separated into 4 groups based on loading status. Piglets without coronary ischemia served as controls. We infused into the left coronary artery [2‐13C]pyruvate and [13C6, 15N]l‐leucine to evaluate oxidative metabolism by gas chromatography‐mass spectroscopy and nuclear magnetic resonance methods. ECMO improved survival, increased oxidative substrate contribution through pyruvate dehydrogenase, reduced succinate and fumarate accumulation, and ameliorated ATP depletion induced by ischemia. The functional and metabolic benefit of ECMO was lost with weaning, yet triiodothyronine supplementation during ECMO restored function, increased relative pyruvate dehydrogenase flux, reduced succinate and fumarate, and preserved ATP stores. Conclusions Although ECMO provides metabolic rest by decreasing energy demand, metabolic impairments persist, and are exacerbated with weaning. Treating ECMO‐induced thyroid depression with triiodothyronine improves substrate flux, myocardial oxidative capacity and cardiac contractile function. This translational model suggests that metabolic targeting can improve weaning. PMID:24650924
Files, Matthew D; Kajimoto, Masaki; O'Kelly Priddy, Colleen M; Ledee, Dolena R; Xu, Chun; Des Rosiers, Christine; Isern, Nancy; Portman, Michael A
2014-03-20
Extracorporeal membrane oxygenation (ECMO) provides a bridge to recovery after myocardial injury in infants and children, yet morbidity and mortality remain high. Weaning from the circuit requires adequate cardiac contractile function, which can be impaired by metabolic disturbances induced either by ischemia-reperfusion and/or by ECMO. We tested the hypothesis that although ECMO partially ameliorates metabolic abnormalities induced by ischemia-reperfusion, these abnormalities persist or recur with weaning. We also determined if thyroid hormone supplementation (triiodothyronine) during ECMO improves oxidative metabolism and cardiac function. Neonatal piglets underwent transient coronary ischemia to induce cardiac injury then were separated into 4 groups based on loading status. Piglets without coronary ischemia served as controls. We infused into the left coronary artery [2-(13)C]pyruvate and [(13)C6, (15)N]l-leucine to evaluate oxidative metabolism by gas chromatography-mass spectroscopy and nuclear magnetic resonance methods. ECMO improved survival, increased oxidative substrate contribution through pyruvate dehydrogenase, reduced succinate and fumarate accumulation, and ameliorated ATP depletion induced by ischemia. The functional and metabolic benefit of ECMO was lost with weaning, yet triiodothyronine supplementation during ECMO restored function, increased relative pyruvate dehydrogenase flux, reduced succinate and fumarate, and preserved ATP stores. Although ECMO provides metabolic rest by decreasing energy demand, metabolic impairments persist, and are exacerbated with weaning. Treating ECMO-induced thyroid depression with triiodothyronine improves substrate flux, myocardial oxidative capacity and cardiac contractile function. This translational model suggests that metabolic targeting can improve weaning.
Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury.
Adlam, Victoria J; Harrison, Joanne C; Porteous, Carolyn M; James, Andrew M; Smith, Robin A J; Murphy, Michael P; Sammut, Ivan A
2005-07-01
Mitochondrial oxidative damage contributes to a wide range of pathologies, including cardiovascular disorders and neurodegenerative diseases. Therefore, protecting mitochondria from oxidative damage should be an effective therapeutic strategy. However, conventional antioxidants have limited efficacy due to the difficulty of delivering them to mitochondria in situ. To overcome this problem, we developed mitochondria-targeted antioxidants, typified by MitoQ, which comprises a lipophilic triphenylphosphonium (TPP) cation covalently attached to a ubiquinol antioxidant. Driven by the large mitochondrial membrane potential, the TPP cation concentrates MitoQ several hundred-fold within mitochondria, selectively preventing mitochondrial oxidative damage. To test whether MitoQ was active in vivo, we chose a clinically relevant form of mitochondrial oxidative damage: cardiac ischemia-reperfusion injury. Feeding MitoQ to rats significantly decreased heart dysfunction, cell death, and mitochondrial damage after ischemia-reperfusion. This protection was due to the antioxidant activity of MitoQ within mitochondria, as an untargeted antioxidant was ineffective and accumulation of the TPP cation alone gave no protection. Therefore, targeting antioxidants to mitochondria in vivo is a promising new therapeutic strategy in the wide range of human diseases such as Parkinson's disease, diabetes, and Friedreich's ataxia where mitochondrial oxidative damage underlies the pathology.
Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C Ronald
2014-10-01
Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75-81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications. © FASEB.
Doxorubicin Action on Mitochondria: Relevance to Osteosarcoma Therapy?
Armstrong, Jo; Dass, Crispin R
2018-01-01
The mitochondria may very well determine the final commitment of the cell to death, particularly in times of energy stress. Cancer chemotherapeutics such as the anthracycline doxorubicin perturb mitochondrial structure and function in tumour cells, as evidenced in osteosarcoma, for which doxorubicin is used clinically as frontline therapy. This same mechanism of cell inhibition is also pertinent to doxorubicin's primary cause of side-effects, that to the cardiac tissue, culminating in such dire events as congestive heart failure. Reactive oxygen species are partly to blame for this effect on the mitochondria, which impact the electron transport chain. As this review highlights that, there is much more to be learnt about the mitochondria and how it is affected by such effective but toxic drugs as doxorubicin. Such information will aid researchers who search for cancer treatment able to preserve mitochondrial number and function in normal cells. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Mitochondrial function at extreme high altitude.
Murray, Andrew J; Horscroft, James A
2016-03-01
At high altitude, barometric pressure falls and with it inspired P(O2), potentially compromising O2 delivery to the tissues. With sufficient acclimatisation, the erythropoietic response increases red cell mass such that arterial O2 content (C(aO2)) is restored; however arterial P(O2)(P(aO2)) remains low, and the diffusion of O2 from capillary to mitochondrion is impaired. Mitochondrial respiration and aerobic capacity are thus limited, whilst reactive oxygen species (ROS) production increases. Restoration of P(aO2) with supplementary O2 does not fully restore aerobic capacity in acclimatised individuals, possibly indicating a peripheral impairment. With prolonged exposure to extreme high altitude (>5500 m), muscle mitochondrial volume density falls, with a particular loss of the subsarcolemmal population. It is not clear whether this represents acclimatisation or deterioration, but it does appear to be regulated, with levels of the mitochondrial biogenesis factor PGC-1α falling, and shows similarities to adapted Tibetan highlanders. Qualitative changes in mitochondrial function also occur, and do so at more moderate high altitudes with shorter periods of exposure. Electron transport chain complexes are downregulated, possibly mitigating the increase in ROS production. Fatty acid oxidation capacity is decreased and there may be improvements in biochemical coupling at the mitochondrial inner membrane that enhance O2 efficiency. Creatine kinase expression falls, possibly impairing high-energy phosphate transfer from the mitochondria to myofibrils. In climbers returning from the summit of Everest, cardiac energetic reserve (phosphocreatine/ATP) falls, but skeletal muscle energetics are well preserved, possibly supporting the notion that mitochondrial remodelling is a core feature of acclimatisation to extreme high altitude. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Cardiac system bioenergetics: metabolic basis of the Frank-Starling law
Saks, Valdur; Dzeja, Petras; Schlattner, Uwe; Vendelin, Marko; Terzic, Andre; Wallimann, Theo
2006-01-01
The fundamental principle of cardiac behaviour is described by the Frank-Starling law relating force of contraction during systole with end-diastolic volume. While both work and respiration rates increase linearly with imposed load, the basis of mechano-energetic coupling in heart muscle has remained a long-standing enigma. Here, we highlight advances made in understanding of complex cellular and molecular mechanisms that orchestrate coupling of mitochondrial oxidative phosphorylation with ATP utilization for muscle contraction. Cardiac system bioenergetics critically depends on an interrelated metabolic infrastructure regulating mitochondrial respiration and energy fluxes throughout cellular compartments. The data reviewed indicate the significance of two interrelated systems regulating mitochondrial respiration and energy fluxes in cells: (1) the creatine kinase, adenylate kinase and glycolytic pathways that communicate flux changes generated by cellular ATPases within structurally organized enzymatic modules and networks; and (2) a secondary system based on mitochondrial participation in cellular calcium cycle, which adjusts substrate oxidation and energy-transducing processes to meet increasing cellular energy demands. By conveying energetic signals to metabolic sensors, coupled phosphotransfer reactions provide a high-fidelity regulation of the excitation–contraction cycle. Such integration of energetics with calcium signalling systems provides the basis for ‘metabolic pacing’, synchronizing the cellular electrical and mechanical activities with energy supply processes. PMID:16410283
Galli, Gina L. J.; Lau, Gigi Y.; Richards, Jeffrey G.
2013-01-01
SUMMARY The freshwater turtle Trachemys scripta can survive in the complete absence of O2 (anoxia) for periods lasting several months. In mammals, anoxia leads to mitochondrial dysfunction, which culminates in cellular necrosis and apoptosis. Despite the obvious clinical benefits of understanding anoxia tolerance, little is known about the effects of chronic oxygen deprivation on the function of turtle mitochondria. In this study, we compared mitochondrial function in hearts of T. scripta exposed to either normoxia or 2 weeks of complete anoxia at 5°C and during simulated acute anoxia/reoxygenation. Mitochondrial respiration, electron transport chain activities, enzyme activities, proton conductance and membrane potential were measured in permeabilised cardiac fibres and isolated mitochondria. Two weeks of anoxia exposure at 5°C resulted in an increase in lactate, and decreases in ATP, glycogen, pH and phosphocreatine in the heart. Mitochondrial proton conductance and membrane potential were similar between experimental groups, while aerobic capacity was dramatically reduced. The reduced aerobic capacity was the result of a severe downregulation of the F1FO-ATPase (Complex V), which we assessed as a decrease in enzyme activity. Furthermore, in stark contrast to mammalian paradigms, isolated turtle heart mitochondria endured 20 min of anoxia followed by reoxygenation without any impact on subsequent ADP-stimulated O2 consumption (State III respiration) or State IV respiration. Results from this study demonstrate that turtle mitochondria remodel in response to chronic anoxia exposure and a reduction in Complex V activity is a fundamental component of mitochondrial and cellular anoxia survival. PMID:23926310
Protective Mechanisms of Mitochondria and Heart Function in Diabetes
Tocchetti, Carlo G.; Bhatt, Niraj; Paolocci, Nazareno; Cortassa, Sonia
2015-01-01
Abstract Significance: The heart depends on continuous mitochondrial ATP supply and maintained redox balance to properly develop force, particularly under increased workload. During diabetes, however, myocardial energetic-redox balance is perturbed, contributing to the systolic and diastolic dysfunction known as diabetic cardiomyopathy (DC). Critical Issues: How these energetic and redox alterations intertwine to influence the DC progression is still poorly understood. Excessive bioavailability of both glucose and fatty acids (FAs) play a central role, leading, among other effects, to mitochondrial dysfunction. However, where and how this nutrient excess affects mitochondrial and cytoplasmic energetic/redox crossroads remains to be defined in greater detail. Recent Advances: We review how high glucose alters cellular redox balance and affects mitochondrial DNA. Next, we address how lipid excess, either stored in lipid droplets or utilized by mitochondria, affects performance in diabetic hearts by influencing cardiac energetic and redox assets. Finally, we examine how the reciprocal energetic/redox influence between mitochondrial and cytoplasmic compartments shapes myocardial mechanical activity during the course of DC, focusing especially on the glutathione and thioredoxin systems. Future Directions: Protecting mitochondria from losing their ability to generate energy, and to control their own reactive oxygen species emission is essential to prevent the onset and/or to slow down DC progression. We highlight mechanisms enforced by the diabetic heart to counteract glucose/FAs surplus-induced damage, such as lipid storage, enhanced mitochondria-lipid droplet interaction, and upregulation of key antioxidant enzymes. Learning more on the nature and location of mechanisms sheltering mitochondrial functions would certainly help in further optimizing therapies for human DC. Antioxid. Redox Signal. 22, 1563–1586. PMID:25674814
Metabolic labeling reveals proteome dynamics of mouse mitochondria.
Kim, Tae-Young; Wang, Ding; Kim, Allen K; Lau, Edward; Lin, Amanda J; Liem, David A; Zhang, Jun; Zong, Nobel C; Lam, Maggie P Y; Ping, Peipei
2012-12-01
Mitochondrial dysfunction is associated with many human diseases. Mitochondrial damage is exacerbated by inadequate protein quality control and often further contributes to pathogenesis. The maintenance of mitochondrial functions requires a delicate balance of continuous protein synthesis and degradation, i.e. protein turnover. To understand mitochondrial protein dynamics in vivo, we designed a metabolic heavy water ((2)H(2)O) labeling strategy customized to examine individual protein turnover in the mitochondria in a systematic fashion. Mice were fed with (2)H(2)O at a minimal level (<5% body water) without physiological impacts. Mitochondrial proteins were analyzed from 9 mice at each of the 13 time points between 0 and 90 days (d) of labeling. A novel multiparameter fitting approach computationally determined the normalized peak areas of peptide mass isotopomers at initial and steady-state time points and permitted the protein half-life to be determined without plateau-level (2)H incorporation. We characterized the turnover rates of 458 proteins in mouse cardiac and hepatic mitochondria and found median turnover rates of 0.0402 d(-1) and 0.163 d(-1), respectively, corresponding to median half-lives of 17.2 d and 4.26 d. Mitochondria in the heart and those in the liver exhibited distinct turnover kinetics, with limited synchronization within functional clusters. We observed considerable interprotein differences in turnover rates in both organs, with half-lives spanning from hours to months (≈ 60 d). Our proteomics platform demonstrates the first large-scale analysis of mitochondrial protein turnover rates in vivo, with potential applications in translational research.
Haas, A; Wappler, F
2015-10-01
The mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome is a disease triggered by a disorder in energy production within mitochondria. The cause of this syndrome is a mutation in the mitochondrial DNA where in 80% of cases an A-to-G mutation is present at nucleotide 3243 and with a prevalence of 18.4/100,000 in the population. Predominantly affected are organ systems with a high energy metabolism, such as the heart, brain and musculature. During the premedication visit a thorough patient history and examination with respect to neurological impairments must be carried out. Epilepsy and the appropriate permanent medication lead to possible alterations in effectiveness of anesthetics and muscle relaxants which are difficult to predict. An extensive patient cardiac history and a preoperative electrocardiogram (ECG) for an appraisal of possible disorders in the cardiac conduction system and when necessary extended cardiac diagnostics, are recommended. The monitoring must be adapted depending on the functional limitations and the forthcoming intervention and when necessary a postoperative surveillance in an intensive care unit should be initiated. Knowledge of the special features of MELAS syndrome in association with a consideration of the characteristics of anesthesia in MELAS patients and an individually adapted intensified perioperative surveillance, can contribute to a reduction in perioperative morbidity in patients suffering from MELAS syndrome.
Ralphe, J Carter; Bedell, Kurt; Segar, Jeffrey L; Scholz, Thomas D
2005-05-01
In the heart, elevated thyroid hormone leads to upregulation of metabolic pathways associated with energy production and development of hypertrophy. The malate/aspartate shuttle, which transfers cytosolic-reducing equivalents into the cardiac mitochondria, is increased 33% in hyperthyroid rats. Within the shuttle, the aspartate-glutamate carrier is rate limiting. The excitatory amino acid transporter type 1 (EAAT1) functions as a glutamate carrier in the malate/aspartate shuttle. In this study, we hypothesize that EAAT1 is regulated by thyroid hormone. Adult rats were injected with triiodothyronine (T3) or saline over a period of 8-9 days or provided with propylthiouracil (PTU) in their drinking water for 2 mo. Steady-state mRNA levels of EAAT1 and aralar1 and citrin (both cardiac mitochondrial aspartate-glutamate transporters) were determined by Northern blot analysis and normalized to 18S rRNA. A spectrophotometric assay of maximal malate/aspartate shuttle activity was performed on isolated cardiac mitochondria from PTU-treated and control animals. Protein lysates from mitochondria were separated by SDS-PAGE and probed with a human anti-EAAT1 IgG. Compared with control, EAAT1 mRNA levels (arbitrary units) were increased nearly threefold in T3-treated (3.1 +/- 0.5 vs. 1.1 +/- 0.2; P < 0.05) and decreased in PTU-treated (2.0 +/- 0. 3 vs. 5.2 +/- 1; P < 0.05) rats. Aralar1 mRNA levels were unchanged in T3-treated and somewhat decreased in PTU-treated (7.1 +/- 1.0 vs. 9.3 +/- 0.1, P < 0.05) rats. Citrin mRNA levels were decreased in T3-treated and unchanged in PTU-treated rats. EAAT1 protein levels (arbitrary units) in T3-treated cardiac mitochondria were increased compared with controls (8.9 +/- 0.4 vs. 5.9 +/- 0.6; P < 0.005) and unchanged in PTU-treated mitochondria. No difference in malate/aspartate shuttle capacity was found between PTU-treated and control cardiac mitochondria. Hyperthyroidism in rats is related to an increase in cardiac expression of EAAT1 mRNA and protein. The 49% increase in EAAT1 mitochondrial protein level shows that malate/aspartate shuttle activity increased in hyperthyroid rat cardiac mitochondria. Although hypothyroidism resulted in a decrease in EAAT1 mRNA, neither the EAAT1 protein level nor shuttle activity was affected. EAAT1 regulation by thyroid hormone may facilitate increased metabolic demands of the cardiomyocyte during hyperthyroidism and impact cardiac function in hyperthyroidism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Min, E-mail: chenminyx@gmail.com; Yunnan Centers for Diseases Prevention and Control, Kunming 650022; Wang, Yanru
2010-06-11
Energy metabolism and Ca{sup 2+} handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1{alpha}) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1{alpha} in cardiac Ca{sup 2+} signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1{alpha} via adenoviral transduction. Our data shows that overexpressing PGC-1{alpha} improved myocyte contractility without increasing the amplitude of Ca{sup 2+}more » transients, suggesting that myofilament sensitivity to Ca{sup 2+} increased. Interestingly, the decay kinetics of global Ca{sup 2+} transients and Ca{sup 2+} waves accelerated in PGC-1{alpha}-expressing cells, but the decay rate of caffeine-elicited Ca{sup 2+} transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca{sup 2+}-ATPase (SERCA2a), but not Na{sup +}/Ca{sup 2+} exchange (NCX) contribute to PGC-1{alpha}-induced cytosolic Ca{sup 2+} clearance. Furthermore, PGC-1{alpha} induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1{alpha} did not disturb cardiac Ca{sup 2+} homeostasis, because SR Ca{sup 2+} load and the propensity for Ca{sup 2+} waves remained unchanged. These data suggest that PGC-1{alpha} can ameliorate cardiac Ca{sup 2+} cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1{alpha}-calcium handing pathway sheds new light on the role of PGC-1{alpha} in the therapy of cardiac diseases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ming; Department of Respiratory Medicine, Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi; Wei, Jin, E-mail: weijindr@163.com
2014-06-20
Highlights: • Calreticulin can also be found in cardiomyocyte mitochondria. • The mitochondrial content of calreticulin is increased in DCM hearts. • Increased expression of mitochondrial CRT may induce mitochondrial damage. • Mitochondrial CRT may inhibit the phosphorylation of mitochondrial STAT3. - Abstract: Background: Calreticulin (CRT), a Ca{sup 2+}-binding chaperone of the endoplasmic reticulum, can also be found in several other locations including the cytosol, nucleus, secretory granules, the outer side of the plasma membrane, and the extracellular matrix. Whether CRT is localized at mitochondria of cardiomyocytes and whether such localization is affected under DCM are still unclear. Methods andmore » results: The DCM model was generated in rats by the daily oral administration of furazolidone for thirty weeks. Echocardiographic and hemodynamic studies demonstrated enlarged left ventricular dimensions and reduced systolic and diastolic function in DCM rats. Immuno-electron microscopy and Western blot showed that CRT was present in cardiomyocyte mitochondria and the mitochondrial content of CRT was increased in DCM hearts (P < 0.05). Morphometric analysis showed notable myocardial apoptosis and mitochondrial swelling with fractured or dissolved cristae in the DCM hearts. Compared with the control group, the mitochondrial membrane potential level of the freshly isolated cardiac mitochondria and the enzyme activities of cytochrome c oxidase and succinate dehydrogenase in the model group were significantly decreased (P < 0.05), and the myocardial apoptosis index and the caspase activities of caspase-9 and caspase-3 were significantly increased (P < 0.05). Pearson linear correlation analysis showed that the mitochondrial content of CRT had negative correlations with the mitochondrial function, and a positive correlation with myocardial apoptosis index (P < 0.001). The protein expression level of cytochrome c and the phosphorylation activity of STAT3 in the mitochondrial fraction were significantly decreased in the model group compared with the control group (P < 0.05). Conclusions: These data demonstrate that CRT is localized at cardiomyocyte mitochondria and its mitochondrial content is increased in DCM hearts.« less
Mao, Chenggang; Hou, Xu; Wang, Benzhen; Chi, Jingwei; Jiang, Yanjie; Zhang, Caining; Li, Zipu
2017-01-28
Stem cells provide a promising candidate for the treatment of the fatal pediatric dilated cardiomyopathy (DCM). This study aimed to investigate the effects of intramuscular injection of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) on the cardiac function of a DCM rat model. A DCM model was established by intraperitoneal injections of doxorubicin in Sprague-Dawley rats. hUCMSCs at different concentrations or cultured medium were injected via limb skeletal muscles, with blank medium injected as the control. The rats were monitored for 4 weeks, meanwhile BNP, cTNI, VEGF, HGF, GM-CSF, and LIF in the peripheral blood were examined by ELISA, and cardiac function was monitored by echocardiography (Echo-CG). Finally, the expression of IGF-1, HGF, and VEGF in the myocardium was examined by histoimmunochemistry and real-time PCR, and the ultrastructure of the myocardium was examined by electron microscopy. Injection of hUCMSCs markedly improved cardiac function in the DCM rats by significantly elevating left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS). The BNP and cTNI levels in the peripheral blood were reduced by hUCMSCs, while HGF, LIF, GM-CSF, and VEGF were increased by hUCMSCs. Expression of IGF-1, HGF, and VEGF in the myocardium from the DCM rats was significantly increased by hUCMSC injection. Furthermore, hUCMSCs protected the ultrastructure of cardiomyocytes by attenuating mitochondrial swelling and maintaining sarcolemma integrity. Intramuscular injection of UCMSCs can improve DCM-induced cardiac function impairment and protect the myocardium. These effects may be mediated by regulation of relevant cytokines in serum and the myocardium.
Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells
Samse, Kaitlen; Emathinger, Jacqueline; Hariharan, Nirmala; Quijada, Pearl; Ilves, Kelli; Völkers, Mirko; Ormachea, Lucia; De La Torre, Andrea; Orogo, Amabel M.; Alvarez, Roberto; Din, Shabana; Mohsin, Sadia; Monsanto, Megan; Fischer, Kimberlee M.; Dembitsky, Walter P.; Gustafsson, Åsa B.; Sussman, Mark A.
2015-01-01
Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated β-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics. PMID:25882843
Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells.
Samse, Kaitlen; Emathinger, Jacqueline; Hariharan, Nirmala; Quijada, Pearl; Ilves, Kelli; Völkers, Mirko; Ormachea, Lucia; De La Torre, Andrea; Orogo, Amabel M; Alvarez, Roberto; Din, Shabana; Mohsin, Sadia; Monsanto, Megan; Fischer, Kimberlee M; Dembitsky, Walter P; Gustafsson, Åsa B; Sussman, Mark A
2015-05-29
Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated β-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Li, Qince; Pogwizd, Steven M; Prabhu, Sumanth D; Zhou, Lufang
2014-01-01
Cardiac glycosides have been used for the treatment of heart failure because of their capabilities of inhibiting Na+/K+ ATPase (NKA), which raises [Na+]i and attenuates Ca2+ extrusion via the Na+/Ca2+ exchanger (NCX), causing [Ca2+]i elevation. The resulting [Ca2+]i accumulation further enhances Ca2+-induced Ca2+ release, generating the positive inotropic effect. However, cardiac glycosides have some toxic and side effects such as arrhythmogenesis, confining their extensive clinical applications. The mechanisms underlying the proarrhythmic effect of glycosides are not fully understood. Here we investigated the mechanisms by which glycosides could cause cardiac arrhythmias via impairing mitochondrial energetics using an integrative computational cardiomyocyte model. In the simulations, the effect of glycosides was mimicked by blocking NKA activity. Results showed that inhibiting NKA not only impaired mitochondrial Ca2+ retention (thus suppressed reactive oxygen species (ROS) scavenging) but also enhanced oxidative phosphorylation (thus increased ROS production) during the transition of increasing workload, causing oxidative stress. Moreover, concurrent blocking of mitochondrial Na+/Ca2+ exchanger, but not enhancing of Ca2+ uniporter, alleviated the adverse effects of NKA inhibition. Intriguingly, NKA inhibition elicited Ca2+ transient and action potential alternans under more stressed conditions such as severe ATP depletion, augmenting its proarrhythmic effect. This computational study provides new insights into the mechanisms underlying cardiac glycoside-induced arrhythmogenesis. The findings suggest that targeting both ion handling and mitochondria could be a very promising strategy to develop new glycoside-based therapies in the treatment of heart failure.
Kennedy, Barry E; Charman, Mark; Karten, Barbara
2017-01-01
All animal membranes require cholesterol as an essential regulator of biophysical properties and function, but the levels of cholesterol vary widely among different subcellular compartments. Mitochondria, and in particular the inner mitochondrial membrane, have the lowest levels of cholesterol in the cell. Nevertheless, mitochondria need cholesterol for membrane maintenance and biogenesis, as well as oxysterol, steroid, and hepatic bile acid production. Alterations in mitochondrial cholesterol have been associated with a range of pathological conditions, including cancer, hepatosteatosis, cardiac ischemia, Alzheimer's, and Niemann-Pick Type C Disease. The mechanisms of mitochondrial cholesterol import are not fully elucidated yet, and may vary in different cell types and environmental conditions. Measuring cholesterol trafficking to the mitochondrial membranes is technically challenging because of its low abundance; for example, traditional pulse-chase experiments with isotope-labeled cholesterol are not feasible. Here, we describe improvements to a method first developed by the Miller group at the University of California to measure cholesterol trafficking to the inner mitochondrial membrane (IMM) through the conversion of cholesterol to pregnenolone. This method uses a mitochondria-targeted, ectopically expressed fusion construct of CYP11A1, ferredoxin reductase and ferredoxin. Pregnenolone is formed exclusively from cholesterol at the IMM, and can be analyzed with high sensitivity and specificity through ELISA or radioimmunoassay of the medium/buffer to reflect mitochondrial cholesterol import. This assay can be used to investigate the effects of genetic or pharmacological interventions on mitochondrial cholesterol import in cultured cells or isolated mitochondria.
Dabkowski, Erinne R; O'Connell, Kelly A; Xu, Wenhong; Ribeiro, Rogerio F; Hecker, Peter A; Shekar, Kadambari Chandra; Daneault, Caroline; Des Rosiers, Christine; Stanley, William C
2013-12-01
Supplementation with the n3 polyunsaturated fatty acid docosahexaenoic acid (DHA) is beneficial in heart failure patients, however the mechanisms are unclear. DHA is incorporated into membrane phospholipids, which may prevent mitochondrial dysfunction. Thus we assessed the effects of DHA supplementation on cardiac mitochondria and the development of heart failure caused by aortic pressure overload. Pathological cardiac hypertrophy was generated in rats by thoracic aortic constriction. Animals were fed either a standard diet or were supplemented with DHA (2.3 % of energy intake). After 14 weeks, heart failure was evident by left ventricular hypertrophy and chamber enlargement compared to shams. Left ventricle fractional shortening was unaffected by DHA treatment in sham animals (44.1 ± 1.6 % vs. 43.5 ± 2.2 % for standard diet and DHA, respectively), and decreased with heart failure in both treatment groups, but to a lesser extent in DHA treated animals (34.9 ± 1.7 %) than with the standard diet (29.7 ± 1.5 %, P < 0.03). DHA supplementation increased DHA content in mitochondrial phospholipids and decreased membrane viscosity. Myocardial mitochondrial oxidative capacity was decreased by heart failure and unaffected by DHA. DHA treatment enhanced Ca(2+) uptake by subsarcolemmal mitochondria in both sham and heart failure groups. Further, DHA lessened Ca(2+)-induced mitochondria swelling, an index of permeability transition, in heart failure animals. Heart failure increased hydrogen peroxide-induced mitochondrial permeability transition compared to sham, which was partially attenuated in interfibrillar mitochondria by treatment with DHA. DHA decreased mitochondrial membrane viscosity and accelerated Ca(2+) uptake, and attenuated susceptibility to mitochondrial permeability transition and development of left ventricular dysfunction.
Cardioprotection and lifespan extension by the natural polyamine spermidine
Eisenberg, Tobias; Abdellatif, Mahmoud; Schroeder, Sabrina; Primessnig, Uwe; Stekovic, Slaven; Pendl, Tobias; Harger, Alexandra; Schipke, Julia; Zimmermann, Andreas; Schmidt, Albrecht; Tong, Mingming; Ruckenstuhl, Christoph; Dammbrueck, Christopher; Gross, Angelina S.; Herbst, Viktoria; Magnes, Christoph; Trausinger, Gert; Narath, Sophie; Meinitzer, Andreas; Hu, Zehan; Kirsch, Alexander; Eller, Kathrin; Gutierrez, Didac-Carmona; Büttner, Sabrina; Pietrocola, Federico; Knittelfelder, Oskar; Schrepfer, Emilie; Rockenfeller, Patrick; Simonini, Corinna; Rahn, Alexandros; Horsch, Marion; Moreth, Kristin; Beckers, Johannes; Fuchs, Helmut; Gailus-Durner, Valerie; Neff, Frauke; Janik, Dirk; Rathkolb, Birgit; Rozman, Jan; de Angelis, Martin Hrabe; Moustafa, Tarek; Haemmerle, Guenter; Mayr, Manuel; Willeit, Peter; von Frieling-Salewsky, Marion; Pieske, Burkert; Scorrano, Luca; Pieber, Thomas; Pechlaner, Raimund; Willeit, Johann; Sigrist, Stephan J.; Linke, Wolfgang A.; Mühlfeld, Christian; Sadoshima, Junichi; Dengjel, Joern; Kiechl, Stefan; Kroemer, Guido; Sedej, Simon; Madeo, Frank
2018-01-01
Aging is associated with an increased risk of cardiovascular disease and death. Here we show that oral supplementation of the natural polyamine spermidine extends the lifespan of mice and exerts cardioprotective effects, reducing cardiac hypertrophy and preserving diastolic function in old mice. Spermidine feeding enhanced cardiac autophagy, mitophagy and mitochondrial respiration, and it also improved the mechano-elastical properties of cardiomyocytes in vivo, coinciding with increased titin phosphorylation and suppressed subclinical inflammation. Spermidine feeding failed to provide cardioprotection in mice that lack the autophagy-related protein Atg5 in cardiomyocytes. In Dahl salt-sensitive rats that were fed a high-salt diet, a model for hypertension-induced congestive heart failure, spermidine feeding reduced systemic blood pressure, increased titin phosphorylation and prevented cardiac hypertrophy and a decline in diastolic function, thus delaying the progression to heart failure. In humans, high levels of dietary spermidine, as assessed from food questionnaires, correlated with reduced blood pressure and a lower incidence of cardiovascular disease. Our results suggest a new and feasible strategy for the protection from cardiovascular disease. PMID:27841876
Mitochondrial events responsible for morphine's cardioprotection against ischemia/reperfusion injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Haiyan; Department of Pharmacology, Tianjin Medical University, Tianjin 300070; Huh, Jin
Morphine may induce cardioprotection by targeting mitochondria, but little is known about the exact mitochondrial events that mediate morphine's protection. We aimed to address the role of the mitochondrial Src tyrosine kinase in morphine's protection. Isolated rat hearts were subjected to 30 min ischemia and 2 h of reperfusion. Morphine was given before the onset of ischemia. Infarct size and troponin I release were measured to evaluate cardiac injury. Oxidative stress was evaluated by measuring mitochondrial protein carbonylation and mitochondrial ROS generation. HL-1 cells were subjected to simulated ischemia/reperfusion and LDH release and mitochondrial membrane potential (ΔΨm) were measured. Morphinemore » reduced infarct size as well as cardiac troponin I release which were aborted by the selective Src tyrosine kinase inhibitors PP2 and Src-I1. Morphine also attenuated LDH release and prevented a loss of ΔΨm at reperfusion in a Src tyrosine kinase dependent manner in HL-1 cells. However, morphine failed to reduce LDH release in HL-1 cells transfected with Src siRNA. Morphine increased mitochondrial Src phosphorylation at reperfusion and this was abrogated by PP2. Morphine attenuated mitochondrial protein carbonylation and mitochondrial superoxide generation at reperfusion through Src tyrosine kinase. The inhibitory effect of morphine on the mitochondrial complex I activity was reversed by PP2. These data suggest that morphine induces cardioprotection by preventing mitochondrial oxidative stress through mitochondrial Src tyrosine kinase. Inhibition of mitochondrial complex I at reperfusion by Src tyrosine kinase may account for the prevention of mitochondrial oxidative stress by morphine. - Highlights: • Morphine induced mito-Src phosphorylation and reduced infarct size in rat hearts. • Morphine failed to reduce I/R-induced LDH release in Src-silencing HL-1 cells. • Morphine prevented mitochondria damage caused by I/R through Src. • Morphine reduced mitochondrial ROS generation by inhibiting complex I via Src.« less
Yin, Jian; Guo, Jiabin; Zhang, Qiang; Cui, Lan; Zhang, Li; Zhang, Tingfen; Zhao, Jun; Li, Jin; Middleton, Alistair; Carmichael, Paul L; Peng, Shuangqing
2018-09-01
The usefulness of doxorubicin (DOX), a potent anticancer agent, is limited by its cardiotoxicity. Mitochondria play a central role in DOX-induced cardiotoxicity though the precise mechanisms are still obscure. Increasing evidence indicates that excessive activation of mitophagy and mitochondrial dysfunction are key causal events leading to DOX-induced cardiac injury. The PINK1/parkin pathway has emerged as a critical pathway in regulation of mitophagy as well as mitochondrial function. The present study was aimed to investigate the role of PINK1/parkin pathway in DOX-induced mitochondrial damage and cardiotoxicity. Our results showed that DOX concentration-dependently induced cytotoxicity and mitochondrial toxic effects including mitochondrial superoxide accumulation, decreased mitochondrial membrane potential and mitochondrial DNA copy number, as well as mitochondrial ultrastructural alterations. DOX induced mitophagy as evidenced by increases of the markers of autophagosomes, LC3, Beclin 1, reduction of p62, and co-localization of LC3 in mitochondria. DOX activated PINK1/parkin pathway and promoted translocation of PINK1/parkin to mitochondria. Meanwhile, DOX inhibited the expression of PGC-1α and its downstream targets nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), and reduced the expression of mitochondrial proteins. Inhibition of mitophagy by mdivi-1 was found to attenuate activation of the PINK1/parkin pathway by DOX and preserve mitochondrial biogenesis, consequently mitigating DOX-induced mitochondrial superoxide overproduction and mitochondrial dysfunction. Moreover, scavenging mitochondrial superoxide by Mito-tempo was also found to effectively attenuate activation of the PINK1/parkin pathway and rescue the cells from DOX-induced adverse effects. Taken together, these findings suggest that DOX-induced mitophagy and mitochondrial damage in cardiomyocytes are mediated, at least in part, by dysregulation of the PINK1/parkin pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.
Radiation-induced cardiovascular effects
NASA Astrophysics Data System (ADS)
Tapio, Soile
Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.
Dhingra, Rimpy; Margulets, Victoria; Chowdhury, Subir Roy; Thliveris, James; Jassal, Davinder; Fernyhough, Paul; Dorn, Gerald W.; Kirshenbaum, Lorrie A.
2014-01-01
Doxorubicin (DOX) is widely used for treating human cancers, but can induce heart failure through an undefined mechanism. Herein we describe a previously unidentified signaling pathway that couples DOX-induced mitochondrial respiratory chain defects and necrotic cell death to the BH3-only protein Bcl-2-like 19kDa-interacting protein 3 (Bnip3). Cellular defects, including vacuolization and disrupted mitochondria, were observed in DOX-treated mice hearts. This coincided with mitochondrial localization of Bnip3, increased reactive oxygen species production, loss of mitochondrial membrane potential, mitochondrial permeability transition pore opening, and necrosis. Interestingly, a 3.1-fold decrease in maximal mitochondrial respiration was observed in cardiac mitochondria of mice treated with DOX. In vehicle-treated control cells undergoing normal respiration, the respiratory chain complex IV subunit 1 (COX1) was tightly bound to uncoupling protein 3 (UCP3), but this complex was disrupted in cells treated with DOX. Mitochondrial dysfunction induced by DOX was accompanied by contractile failure and necrotic cell death. Conversely, shRNA directed against Bnip3 or a mutant of Bnip3 defective for mitochondrial targeting abrogated DOX-induced loss of COX1-UCP3 complexes and respiratory chain defects. Finally, Bnip3−/− mice treated with DOX displayed relatively normal mitochondrial morphology, respiration, and mortality rates comparable to those of saline-treated WT mice, supporting the idea that Bnip3 underlies the cardiotoxic effects of DOX. These findings reveal a new signaling pathway in which DOX-induced mitochondrial respiratory chain defects and necrotic cell death are mutually dependent on and obligatorily linked to Bnip3 gene activation. Interventions that antagonize Bnip3 may prove beneficial in preventing mitochondrial injury and heart failure in cancer patients undergoing chemotherapy. PMID:25489073
Correa, Francisco; García, Noemí; Gallardo-Pérez, Juan; Carreno-Fuentes, Liliana; Rodríguez-Enríquez, Sara; Marín-Hernández, Alvaro; Zazueta, Cecilia
2008-01-01
Glycolytic activity during the transition period from anaerobic to aerobic metabolism has been demonstrated to be critical for heart recovery in isolated reperfused hearts. The purpose of this work was to investigate the relevance of the glycolytic pathway in preserving the cardiac function of post-conditioned hearts. The activation of the glycolytic pathway in post-conditioned hearts was evaluated by measuring GLUT-4 insertion, glucose consumption and lactate production. Iodoacetic acid and 2-deoxy-D-glucose were administrated to the working hearts to evaluate the effect of glycolytic inhibition in the post-conditioning protective effect. Post-conditioning maneuvers applied to isolated rat hearts, after prolonged ischemia and before reperfusion, promoted recovery of cardiac mechanical function with sustained increase of GLUT-4 translocation and activation of the glycolytic pathway during ischemia and early reperfusion. Iodoacetate inhibited the protective effect of post-conditioning, without affecting the mitochondrial oxidative capacity. Glycolysis contribution to maintain mechanical function at early reperfusion was observed in post-conditioned hearts perfused with 2-deoxy-D-glucose and in hearts in which iodoacetate was administered only during reperfusion. It is concluded that in the post-conditioned heart, a functional compartmentation of anaerobic energy metabolism, at early reperfusion, plays a significant role in cardiac protection against reperfusion damage. Copyright 2008 S. Karger AG, Basel.
Redox Aspects of Chaperones in Cardiac Function
Penna, Claudia; Sorge, Matteo; Femminò, Saveria; Pagliaro, Pasquale; Brancaccio, Mara
2018-01-01
Molecular chaperones are stress proteins that allow the correct folding or unfolding as well as the assembly or disassembly of macromolecular cellular components. Changes in expression and post-translational modifications of chaperones have been linked to a number of age- and stress-related diseases including cancer, neurodegeneration, and cardiovascular diseases. Redox sensible post-translational modifications, such as S-nitrosylation, glutathionylation and phosphorylation of chaperone proteins have been reported. Redox-dependent regulation of chaperones is likely to be a phenomenon involved in metabolic processes and may represent an adaptive response to several stress conditions, especially within mitochondria, where it impacts cellular bioenergetics. These post-translational modifications might underlie the mechanisms leading to cardioprotection by conditioning maneuvers as well as to ischemia/reperfusion injury. In this review, we discuss this topic and focus on two important aspects of redox-regulated chaperones, namely redox regulation of mitochondrial chaperone function and cardiac protection against ischemia/reperfusion injury. PMID:29615920
Cardiac Aging: From Molecular Mechanisms to Significance in Human Health and Disease
Dai, Dao-Fu; Chen, Tony; Johnson, Simon C.; Szeto, Hazel
2012-01-01
Abstract Cardiovascular diseases (CVDs) are the major causes of death in the western world. The incidence of cardiovascular disease as well as the rate of cardiovascular mortality and morbidity increase exponentially in the elderly population, suggesting that age per se is a major risk factor of CVDs. The physiologic changes of human cardiac aging mainly include left ventricular hypertrophy, diastolic dysfunction, valvular degeneration, increased cardiac fibrosis, increased prevalence of atrial fibrillation, and decreased maximal exercise capacity. Many of these changes are closely recapitulated in animal models commonly used in an aging study, including rodents, flies, and monkeys. The application of genetically modified aged mice has provided direct evidence of several critical molecular mechanisms involved in cardiac aging, such as mitochondrial oxidative stress, insulin/insulin-like growth factor/PI3K pathway, adrenergic and renin angiotensin II signaling, and nutrient signaling pathways. This article also reviews the central role of mitochondrial oxidative stress in CVDs and the plausible mechanisms underlying the progression toward heart failure in the susceptible aging hearts. Finally, the understanding of the molecular mechanisms of cardiac aging may support the potential clinical application of several “anti-aging” strategies that treat CVDs and improve healthy cardiac aging. PMID:22229339
Resolution of mitochondrial oxidant stress improves aged-cardiovascular performance
Owada, Takashi; Yamauchi, Hiroyuki; Miura, Shunsuke; Machii, Hirofumi; Takeishi, Yasuchika
2017-01-01
Background Senescence is a major factor that increases oxidative stress in mitochondria, which contributes toward the pathogenesis of heart disease. However, the effect of antioxidant therapy on cardiac mitochondria in aged-cardiac performance remains elusive. Objectives We postulated that the mitochondrial targeting of superoxide scavenging would have benefits in the aged heart. Methods and results Generation of superoxide in the mitochondria and nicotinamide adenine dinucleotide phosphate oxidase activity increased in the heart of old mice compared with that in young mice. In old mice treated with a mitochondria-targeted antioxidant MitoTEMPO (180 µg/kg/day, 28 days) co-infusion using a subcutaneously implanted minipump, levels of superoxide in the mitochondria and nicotinamide adenine dinucleotide phosphate oxidase activity as well as hydrogen peroxide decreased markedly in cardiomyocytes. Treatment with MitoTEMPO in old mice improved the systolic and diastolic function assessed by echocardiography. Endothelium-dependent vasodilation in isolated coronary arteries and endothelial nitric-oxide synthase phosphorylation were impaired in old mice compared with that in young mice and were improved by MitoTEMPO treatment. Mitochondria from the old mice myocardium showed lower rates of complex I-dependent and II-dependent respiration compared with that from young mice. Supplementation of MitoTEMPO in old mice improved the respiration rates and efficiency of ATP generation in mitochondria to a level similar to that of young mice. Conclusion Resolution of oxidative stress in mitochondria by MitoTEMPO in old mice restored cardiac function and the capacity of coronary vasodilation to the same magnitude observed in young mice. An antioxidant strategy targeting mitochondria could have a therapeutic benefit in heart disease with senescence. PMID:27740971
Optical metabolic imaging of irradiated rat heart exposed to ischemia-reperfusion injury
NASA Astrophysics Data System (ADS)
la Cour, Mette Funding; Mehrvar, Shima; Heisner, James S.; Motlagh, Mohammad Masoudi; Medhora, Meetha; Ranji, Mahsa; Camara, Amadou K. S.
2018-01-01
Whole thoracic irradiation (WTI) is known to cause deterioration in cardiac function. Whether irradiation predisposes the heart to further ischemia and reperfusion (IR) injury is not well known. The aim of this study is to examine the susceptibility of rat hearts to IR injury following a single fraction of 15 Gy WTI and to investigate the role of mitochondrial metabolism in the differential susceptibility to IR injury. After day 35 of irradiation, ex vivo hearts from irradiated and nonirradiated rats (controls) were exposed to 25-min global ischemia followed by 60-min IR, or hearts were perfused without IR for the same protocol duration [time controls (TC)]. Online fluorometry of metabolic indices [redox state: reduced nicotinamide adenine dinucleotide (NADH), oxidized flavin adenine dinucleotide (FAD), and NADH/FAD redox ratio] and functional variables [systolic left ventricular pressure (LVP), diastolic LVP (diaLVP), coronary flow (CF), and heart rate were recorded in the beating heart; developed LVP (dLVP) and rate pressure product (RPP)] were derived. At the end of each experimental protocol, hearts were immediately snap frozen in liquid N2 for later three-dimensional imaging of the mitochondrial redox state using optical cryoimaging. Irradiation caused a delay in recovery of dLVP and RPP after IR when compared to nonirradiated hearts but recovered to the same level at the end of reperfusion. CF in the irradiated hearts recovered better than the control hearts after IR injury. Both fluorometry and 3-D cryoimaging showed that in WTI and control hearts, the redox ratio increased during ischemia (reduced) and decreased on reperfusion (oxidized) when compared to their respective TCs; however, there was no significant difference in the redox state between WTI and controls. In conclusion, our results show that although irradiation of rat hearts compromised baseline cardiovascular function, it did not alter cardiac mitochondrial redox state and induce greater susceptibility of these hearts to IR injury.
Zou, Wei; Zhou, Qixing; Zhang, Xingli; Mu, Li; Hu, Xiangang
2018-09-15
The effects of graphene oxide (GO) carbon nanomaterials on ecosystems have been well characterized, but the toxicity of GO at predicted environmental concentrations to living organisms at the protein level remain largely unknown. In the present work, the adverse effects and mechanisms of GO at predicted environmental concentrations were evaluated by integrating proteomics and standard analyses for the first time. The abundances of 243 proteins, including proteins involved in endocytosis (e.g., cltcb, arf6, capzb and dnm1a), oxidative stress (e.g., gpx4b, sod2, and prdx1), cytoskeleton assembly (e.g., krt8, krt94, lmna and vim), mitochondrial function (e.g., ndufa10, ndufa8, cox5aa, and cox6b1), Ca 2+ handling (e.g., atp1b2a, atp1b1a, atp6v0a1b and ncx4a) and cardiac function (e.g., tpm4a, tpm2, tnni2a.1 and tnnt3b), were found to be notably altered in response to exposure 100 μg/L GO. The results revealed that GO caused malformation and mortality, likely through the downregulation of proteins related to actin filaments and formation of the cytoskeleton, and induced oxidative stress and mitochondrial disorders by altering the levels of antioxidant enzymes and proteins associated with the mitochondrial membrane respiratory chain. Exposure to GO also increased the heart rate of zebrafish larvae and induced pericardial edema, likely by changing the expression of proteins related to Ca 2+ balance and cardiac function. This study provides new proteomic-level insights into GO toxicity against aquatic organisms, which will greatly benefit our understanding of the bio-safety of GO and its toxicity at predicted environmental concentrations. Copyright © 2018 Elsevier Inc. All rights reserved.
Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A.; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C. Ronald
2014-01-01
Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75–81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications.—Vernochet, C., Damilano, F., Mourier, A., Bezy, O., Mori, M. A., Smyth, G., Rosenzweig, A., Larsson, N.-G., Kahn, C. R. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. PMID:25005176
Szczepanek, Karol; Allegood, Jeremy; Aluri, Hema; Hu, Ying; Chen, Qun; Lesnefsky, Edward J
2016-04-01
The content and composition of cardiolipin (CL) is critical for preservation of mitochondrial oxidative phosphorylation (OXPHOS) and inner membrane integrity. Tafazzin (Taz) is an enzyme responsible for remodeling of immature CL containing mixed acyl groups into the mature tetralinoleyl form (C18:2)4-CL. We hypothesized that acquired defects in Taz in the mature heart would impact remodeling of CL and augment cardiac injury. The role of acquired Taz deficiency was studied using the inducible Taz knockdown (TazKD) mouse. Taz-specific shRNA is induced by doxycycline (DOX). One day of DOX intake decreased Taz mRNA in the heart to 20% vs. DOX-treated WT. Knockdown was initiated at an adult age and was stable during long term feeding. CL phenotype was assessed by (C18:2)4-CL content and was reduced 40% vs. WT at two months of DOX. TazKD showed increased production of reactive oxygen species and increased susceptibility to permeability transition pore opening at baseline. However, OXPHOS measured using the rate of oxygen consumption was unchanged in the setting of acquired Taz deficiency. Infarct size, measured in isolated buffer-perfused Langendorff hearts following 25min. Stop flow ischemia and 60min. Reperfusion was not altered in TazKD hearts. Thus, impaired Taz-function with onset at adult age does not enhance susceptibility to ischemia-reperfusion injury. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent
Clinical use of doxorubicin (Adriamycin (registered) ), an antitumor agent, is limited by its oxyradical-mediated cardiotoxicity. We tested the hypothesis that moderate diet restriction protects against doxorubicin-induced cardiotoxicity by decreasing oxidative stress and inducing cardioprotective mechanisms. Male Sprague-Dawley rats (250-275 g) were maintained on diet restriction [35% less food than ad libitum]. Cardiotoxicity was estimated by measuring biomarkers of cardiotoxicity, cardiac function, lipid peroxidation, and histopathology. A LD{sub 100} dose of doxorubicin (12 mg/kg, ip) administered on day 43 led to 100% mortality in ad libitum rats between 7 and 13 days due to higher cardiotoxicity and cardiac dysfunction, whereasmore » all the diet restricted rats exhibited normal cardiac function and survived. Toxicokinetic analysis revealed equal accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the ad libitum and diet restricted hearts. Mechanistic studies revealed that diet restricted rats were protected due to (1) lower oxyradical stress from increased cardiac antioxidants leading to downregulation of uncoupling proteins 2 and 3, (2) induction of cardiac peroxisome proliferators activated receptor-{alpha} and plasma adiponectin increased cardiac fatty acid oxidation (666.9 {+-}14.0 nmol/min/g heart in ad libitum versus 1035.6 {+-} 32.3 nmol/min/g heart in diet restriction) and mitochondrial AMP{alpha}2 protein kinase. The changes led to 51% higher cardiac ATP levels (17.7 {+-} 2.1 {mu}mol/g heart in ad libitum versus 26.7 {+-} 1.9 {mu}mol/g heart in diet restriction), higher ATP/ADP ratio, and (3) increased cardiac erythropoietin and decreased suppressor of cytokine signaling 3, which upregulates cardioprotective JAK/STAT3 pathway. These findings collectively show that moderate diet restriction renders resiliency against doxorubicin cardiotoxicity by lowering oxidative stress, enhancing ATP synthesis, and inducing the JAK/STAT3 pathway.« less
Kumar, Sandeep; Kain, Vasundhara; Sitasawad, Sandhya L
2012-07-01
Cardiac cell apoptosis is the initiating factor of cardiac complications especially diabetic cardiomyopathy. Mitochondria are susceptible to the damaging effects of elevated glucose condition. Calcium overload and oxidative insult are the two mutually non-exclusive phenomena suggested to cause cardiac dysfunction. Here, we examined the effect of high-glucose induced calcium overload in calpain-1 mediated cardiac apoptosis in an in vitro setting. H9c2, rat ventricular myoblast cell line was treated with elevated glucose condition and the cellular consequences were studied. Intracellular calcium trafficking, ROS generation, calpain-1 activation and caspase-12 and caspase-9 pathway were studied using flow cytometry, confocal microscopy and Western blot analysis. High-glucose treatment resulted in increased intracellular calcium ([Ca2+]i) which was mobilized to the mitochondria. Concomitant intra-mitochondrial calcium ([Ca2+]m) increase resulted in enhanced reactive oxygen and nitrogen species generation. These events led to mitochondrial dysfunction and apoptosis. Cardiomyocyte death exhibited several classical markers of apoptosis, including activation of caspases, appearance of annexin V on the outer plasma membrane, increased population of cells with sub-G0/G1 DNA content and nuclear condensation. Key findings include elucidation of cell signaling mechanism of high-glucose induced calcium-dependent cysteine protease calpain-1 activation, which triggers non-conventional caspases as alternate mode of cell death. This information increases the understanding of cardiac cell death under hyperglycemic condition and can possibly be extended for designing new therapeutic strategies for diabetic cardiomyopathy. The novel findings of the study reveal that high glucose induces apoptosis by both mitochondria-dependent and independent pathways via concomitant rise in intracellular calcium. Copyright © 2012 Elsevier B.V. All rights reserved.
Ng, Yi Shiau; Grady, John P; Lax, Nichola Z; Bourke, John P; Alston, Charlotte L; Hardy, Steven A; Falkous, Gavin; Schaefer, Andrew G; Radunovic, Aleksandar; Mohiddin, Saidi A; Ralph, Matilda; Alhakim, Ali; Taylor, Robert W; McFarland, Robert; Turnbull, Douglass M; Gorman, Gráinne S
2016-08-21
To provide insight into the mechanism of sudden adult death syndrome (SADS) and to give new clinical guidelines for the cardiac management of patients with the most common mitochondrial DNA mutation, m.3243A>G. These studies were initiated after two young, asymptomatic adults harbouring the m.3243A>G mutation died suddenly and unexpectedly. The m.3243A>G mutation is present in ∼1 in 400 of the population, although the recognized incidence of mitochondrial DNA (mtDNA) disease is ∼1 in 5000. Pathological studies including histochemistry and molecular genetic analyses performed on various post-mortem samples including cardiac tissues (atrium and ventricles) showed marked respiratory chain deficiency and high levels of the m.3243A>G mutation. Systematic review of cause of death in our m.3243A>G patient cohort showed the person-time incidence rate of sudden adult death is 2.4 per 1000 person-years. A further six cases of sudden death among extended family members have been identified from interrogation of family pedigrees. Our findings suggest that SADS is an important cause of death in patients with m.3243A>G and likely to be due to widespread respiratory chain deficiency in cardiac muscle. The involvement of asymptomatic relatives highlights the importance of family tracing in patients with m.3243A>G and the need for specific cardiac arrhythmia surveillance in the management of this common genetic disease. In addition, these findings have prompted the derivation of cardiac guidelines specific to patients with m.3243A>G-related mitochondrial disease. Finally, due to the prevalence of this mtDNA point mutation, we recommend inclusion of testing for m.3243A>G mutations in the genetic autopsy of all unexplained cases of SADS. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.
Sheleg, Sergey; Hixon, Hugh; Cohen, Bruce; Lowry, David; Nedzved, Mikhail
2008-01-01
We investigated a new cryopreservation method using xenon, a clathrate-forming gas, under medium pressure (100psi). The objective of the study was to determine whether this cryostasis protocol could protect cardiac mitochondria at cryogenic temperatures (below 100 degrees Celsius).We analyzed transmission electron microscopy images to obtain information about changes in mitochondrial morphology induced by cryopreservation of the hearts. Our data showed absence of mitochondrial swelling, rupture of inner and outer membranes, and leakage of mitochondrial matrix into the cytoplasm after applying this cryostasis protocol. The electron microscopy results provided the first evidence that a cryostasis protocol using xenon as a clathrate-forming gas under pressure may have protective effects on intracellular membranes. This cryostasis technology may find applications in developing new approaches for long-term cryopreservation protocols. PMID:18787624
Cardiac metabolic pathways affected in the mouse model of barth syndrome.
Huang, Yan; Powers, Corey; Madala, Satish K; Greis, Kenneth D; Haffey, Wendy D; Towbin, Jeffrey A; Purevjav, Enkhsaikhan; Javadov, Sabzali; Strauss, Arnold W; Khuchua, Zaza
2015-01-01
Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS.
Acosta, Pedro; Sleeper, Meg M.; Barton, Elisabeth R.; Sweeney, H. Lee
2013-01-01
Dystrophin-deficient muscles suffer from free radical injury, mitochondrial dysfunction, apoptosis, and inflammation, among other pathologies that contribute to muscle fiber injury and loss, leading to wheelchair confinement and death in the patient. For some time, it has been appreciated that endurance training has the potential to counter many of these contributing factors. Correspondingly, numerous investigations have shown improvements in limb muscle function following endurance training in mdx mice. However, the effect of long-term volitional wheel running on diaphragm and cardiac function is largely unknown. Our purpose was to determine the extent to which long-term endurance exercise affected dystrophic limb, diaphragm, and cardiac function. Diaphragm specific tension was reduced by 60% (P < 0.05) in mice that performed 1 yr of volitional wheel running compared with sedentary mdx mice. Dorsiflexor mass (extensor digitorum longus and tibialis anterior) and function (extensor digitorum longus) were not altered by endurance training. In mice that performed 1 yr of volitional wheel running, plantarflexor mass (soleus and gastrocnemius) was increased and soleus tetanic force was increased 36%, while specific tension was similar in wheel-running and sedentary groups. Cardiac mass was increased 15%, left ventricle chamber size was increased 20% (diastole) and 18% (systole), and stroke volume was increased twofold in wheel-running compared with sedentary mdx mice. These data suggest that the dystrophic heart may undergo positive exercise-induced remodeling and that limb muscle function is largely unaffected. Most importantly, however, as the diaphragm most closely recapitulates the human disease, these data raise the possibility of exercise-mediated injury in dystrophic skeletal muscle. PMID:23823150
Analyses of Mitochondrial Calcium Influx in Isolated Mitochondria and Cultured Cells.
Maxwell, Joshua T; Tsai, Chin-Hsien; Mohiuddin, Tahmina A; Kwong, Jennifer Q
2018-04-27
Ca 2+ handling by mitochondria is a critical function regulating both physiological and pathophysiological processes in a broad spectrum of cells. The ability to accurately measure the influx and efflux of Ca 2+ from mitochondria is important for determining the role of mitochondrial Ca 2+ handling in these processes. In this report, we present two methods for the measurement of mitochondrial Ca 2+ handling in both isolated mitochondria and cultured cells. We first detail a plate reader-based platform for measuring mitochondrial Ca 2+ uptake using the Ca 2+ sensitive dye calcium green-5N. The plate reader-based format circumvents the need for specialized equipment, and the calcium green-5N dye is ideally suited for measuring Ca 2+ from isolated tissue mitochondria. For our application, we describe the measurement of mitochondrial Ca 2+ uptake in mitochondria isolated from mouse heart tissue; however, this procedure can be applied to measure mitochondrial Ca 2+ uptake in mitochondria isolated from other tissues such as liver, skeletal muscle, and brain. Secondly, we describe a confocal microscopy-based assay for measurement of mitochondrial Ca 2+ in permeabilized cells using the Ca 2+ sensitive dye Rhod-2/AM and imaging using 2-dimensional laser-scanning microscopy. This permeabilization protocol eliminates cytosolic dye contamination, allowing for specific recording of changes in mitochondrial Ca 2+ . Moreover, laser-scanning microscopy allows for high frame rates to capture rapid changes in mitochondrial Ca 2+ in response to various drugs or reagents applied in the external solution. This protocol can be applied to measure mitochondrial Ca 2+ uptake in many cell types including primary cells such as cardiac myocytes and neurons, and immortalized cell lines.
Burlaka, Anatoly; Selyuk, Marina; Gafurov, Marat; Lukin, Sergei; Potaskalova, Viktoria; Sidorik, Evgeny
2014-05-01
To study the effects of electromagnetic radiation (EMR) of ultra high frequency (UHF) in the doses equivalent to the maximal permitted energy load for the staffs of the radar stations on the biochemical processes that occur in the cell organelles. Liver, cardiac and aorta tissues from the male rats exposed to non-thermal UHF EMR in pulsed and continuous modes were studied during 28 days after the irradiation by the electron paramagnetic resonance (EPR) methods including a spin trapping of superoxide radicals. The qualitative and quantitative disturbances in electron transport chain (ETC) of mitochondria are registered. A formation of the iron-nitrosyl complexes of nitric oxide (NO) radicals with the iron-sulphide (FeS) proteins, the decreased activity of FeS-protein N2 of NADH-ubiquinone oxidoreductase complex and flavo-ubisemiquinone growth combined with the increased rates of superoxide production are obtained. (i) Abnormalities in the mitochondrial ETC of liver and aorta cells are more pronounced for animals radiated in a pulsed mode; (ii) the alterations in the functioning of the mitochondrial ETC cause increase of superoxide radicals generation rate in all samples, formation of cellular hypoxia, and intensification of the oxide-initiated metabolic changes; and (iii) electron paramagnetic resonance methods could be used to track the qualitative and quantitative changes in the mitochondrial ETC caused by the UHF EMR.
Duicu, Oana M; Privistirescu, Andreea; Wolf, Adrian; Petruş, Alexandra; Dănilă, Maria D; Raţiu, Corina D; Muntean, Danina M; Sturza, Adrian
2017-11-01
Diabetic cardiomyopathy has been systematically associated with compromised mitochondrial energetics and increased generation of reactive oxygen species (ROS) that underlie its progression to heart failure. Methylene blue is a redox drug with reported protective effects mainly on brain mitochondria. The purpose of the present study was to characterize the effects of acute administration of methylene blue on mitochondrial respiration, H 2 O 2 production, and calcium sensitivity in rat heart mitochondria isolated from healthy and 2 months (streptozotocin-induced) diabetic rats. Mitochondrial respiratory function was assessed by high-resolution respirometry. H 2 O 2 production and calcium retention capacity were measured spectrofluorimetrically. The addition of methylene blue (0.1 μmol·L -1 ) elicited an increase in oxygen consumption of mitochondria energized with complex I and II substrates in both normal and diseased mitochondria. Interestingly, methylene blue elicited a significant increase in H 2 O 2 release in the presence of complex I substrates (glutamate and malate), but had an opposite effect in mitochondria energized with complex II substrate (succinate). No changes in the calcium retention capacity of healthy or diabetic mitochondria were found in the presence of methylene blue. In conclusion, in cardiac mitochondria isolated from diabetic and nondiabetic rat hearts, methylene blue improved respiratory function and elicited a dichotomic, substrate-dependent effect on ROS production.
SWIFT, LUTHER M.; SARVAZYAN, NARINE
2011-01-01
Localization and staining features of the oxidant-sensitive fluorescent probe 2 7 - dichlorofluorescin (DCFH) were evaluated in isolated cardiac muscle cells. Cardiomyocytes rapidly accumulated the probe and retained steady levels of DCFH and its highly fluorescent oxidized product dichlorofluorescein (DCF) in probe-free medium for 1.5 h. DCF was associated with mitochondria and was released by the proton ionophore carbonyl cyanide m-chlorophenylhydrazone but not by saponin, which permeabilizes the plasma membrane. A mitochondrial distribution of DCF was also suggested by experiments with the mitochondrial marker MitoTracker Red, in which quenching was observed between DCF and MitoTracker Red in live cells. Isolated cardiac mitochondria rapidly accumulated DCF, and high micromolar concentrations of the probe inhibited ADP-stimulated respiration rate. The study provides an information base essential for the interpretation and design of experiments with DCF as a marker of oxidative stress in cardiac muscle and reveals preferential localization of the probe in mitochondria. PMID:10710368
Branovets, Jelena; Sepp, Mervi; Kotlyarova, Svetlana; Jepihhina, Natalja; Sokolova, Niina; Aksentijevic, Dunja; Lygate, Craig A.; Neubauer, Stefan; Birkedal, Rikke
2013-01-01
Disruption of the creatine kinase (CK) system in hearts of CK-deficient mice leads to changes in the ultrastructure and regulation of mitochondrial respiration. We expected to see similar changes in creatine-deficient mice, which lack the enzyme guanidinoacetate methyltransferase (GAMT) to produce creatine. The aim of this study was to characterize the changes in cardiomyocyte mitochondrial organization, regulation of respiration, and intracellular compartmentation associated with GAMT deficiency. Three-dimensional mitochondrial organization was assessed by confocal microscopy. On populations of permeabilized cardiomyocytes, we recorded ADP and ATP kinetics of respiration, competition between mitochondria and pyruvate kinase for ADP produced by ATPases, ADP kinetics of endogenous pyruvate kinase, and ATP kinetics of ATPases. These data were analyzed by mathematical models to estimate intracellular compartmentation. Quantitative analysis of morphological and kinetic data as well as derived model fits showed no difference between GAMT-deficient and wild-type mice. We conclude that inactivation of the CK system by GAMT deficiency does not alter mitochondrial organization and intracellular compartmentation in relaxed cardiomyocytes. Thus, our results suggest that the healthy heart is able to preserve cardiac function at a basal level in the absence of CK-facilitated energy transfer without compromising intracellular organization and the regulation of mitochondrial energy homeostasis. This raises questions on the importance of the CK system as a spatial energy buffer in unstressed cardiomyocytes. PMID:23792673
SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition.
Stary, Victoria; Puppala, Dheeraj; Scherrer-Crosbie, Marielle; Dillmann, Wolfgang H; Armoundas, Antonis A
2016-04-15
Cardiac alternans has been associated with the incidence of ventricular tachyarrhythmias and sudden cardiac death. The aim of this study was to investigate the effect of impaired mitochondrial function in the genesis of cellular alternans and to examine whether modulating the sarcoplasmic reticulum (SR) Ca(2+)ameliorates the level of alternans. Cardiomyocytes isolated from control and doxycyline-induced sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a)-upregulated mice were loaded with two different Ca(2+)indicators to selectively measure mitochondrial and cytosolic Ca(2+)using a custom-made fluorescence photometry system. The degree of alternans was defined as the alternans ratio (AR) [1 - (small Ca(2+)intensity)/(large Ca(2+)intensity)]. Blocking of complex I and II, cytochrome-coxidase, F0F1synthase, α-ketoglutarate dehydrogenase of the electron transport chain, increased alternans in both control and SERCA2a mice (P< 0.01). Changes in AR in SERCA2a-upregulated mice were significantly less pronounced than those observed in control in seven of nine tested conditions (P< 0.04).N-acetyl-l-cysteine (NAC), rescued alternans in myocytes that were previously exposed to an oxidizing agent (P< 0.001). CGP, an antagonist of the mitochondrial Na(+)-Ca(2+)exchanger, had the most severe effect on AR. Exposure to cyclosporin A, a blocker of the mitochondrial permeability transition pore reduced CGP-induced alternans (P< 0.0001). The major findings of this study are that impairment of mitochondrial Ca(2+)cycling and energy production leads to a higher amplitude of alternans in both control and SERCA2a-upregulated mice, but changes in SERCA2a-upregulated mice are less severe, indicating that SERCA2a mice are more capable of sustaining electrical stability during stress. This suggests a relationship between sarcoplasmic Ca(2+)content and mitochondrial dysfunction during alternans, which may potentially help to understand changes in Ca(2+)signaling in myocytes from diseased hearts, leading to new therapeutic targets. Copyright © 2016 the American Physiological Society.
Mulligan, Christopher M.; Sparagna, Genevieve C.; Le, Catherine H.; De Mooy, Anthony B.; Routh, Melissa A.; Holmes, Michael G.; Hickson-Bick, Diane L.; Zarini, Simona; Murphy, Robert C.; Xu, Fred Y.; Hatch, Grant M.; McCune, Sylvia A.; Moore, Russell L.; Chicco, Adam J.
2012-01-01
Aims Cardiolipin (CL) is a tetra-acyl phospholipid that provides structural and functional support to several proteins in the inner mitochondrial membrane. The majority of CL in the healthy mammalian heart contains four linoleic acid acyl chains (L4CL). A selective loss of L4CL is associated with mitochondrial dysfunction and heart failure in humans and animal models. We examined whether supplementing the diet with linoleic acid would preserve cardiac L4CL and attenuate mitochondrial dysfunction and contractile failure in rats with hypertensive heart failure. Methods and results Male spontaneously hypertensive heart failure rats (21 months of age) were administered diets supplemented with high-linoleate safflower oil (HLSO) or lard (10% w/w; 28% kilocalorie fat) or without supplemental fat (control) for 4 weeks. HLSO preserved L4CL and total CL to 90% of non-failing levels (vs. 61–75% in control and lard groups), and attenuated 17–22% decreases in state 3 mitochondrial respiration observed in the control and lard groups (P < 0.05). Left ventricular fractional shortening was significantly higher in HLSO vs. control (33 ± 2 vs. 29 ± 2%, P < 0.05), while plasma insulin levels were lower (5.4 ± 1.1 vs. 9.1 ± 2.3 ng/mL; P < 0.05), with no significant effect of lard supplementation. HLSO also increased serum concentrations of several eicosanoid species compared with control and lard diets, but had no effect on plasma glucose or blood pressure. Conclusion Moderate consumption of HLSO preserves CL and mitochondrial function in the failing heart and may be a useful adjuvant therapy for this condition. PMID:22411972
Strobykina, Irina; Semenov, Victor V.; Semenova, Marina; Martelli, Alma; Citi, Valentina; Breschi, Maria C.; Kataev, Vladimir E.; Calderone, Vincenzo
2017-01-01
Mitochondria play a crucial role in the cell fate; in particular, reducing the accumulation of calcium in the mitochondrial matrix offers cardioprotection. This affect is achieved by a mild depolarization of the mitochondrial membrane potential, which prevents the assembly and opening of the mitochondrial permeability transition pore. For this reason, mitochondria are an attractive target for pharmacological interventions that prevent ischaemia/reperfusion injury. Isosteviol is a diterpenoid created from the acid hydrolysis of Stevia rebaudiana Bertoni (fam. Asteraceae) glycosides that has shown protective effects against ischaemia/reperfusion injury, which are likely mediated through the activation of mitochondrial adenosine tri-phosphate (ATP)-sensitive potassium (mitoKATP) channels. Some triphenylphosphonium (triPP)-conjugated derivatives of isosteviol have been developed, and to evaluate the possible pharmacological benefits that result from these synthetic modifications, in this study, the mitochondriotropic properties of isosteviol and several triPP-conjugates were investigated in rat cardiac mitochondria and in the rat heart cell line H9c2. This study’s main findings highlight the ability of isosteviol to depolarize the mitochondrial membrane potential and reduce calcium uptake by the mitochondria, which are typical functions of mitochondrial potassium channel openings. Moreover, triPP-conjugated derivatives showed a similar behavior to isosteviol but at lower concentrations, indicative of their improved uptake into the mitochondrial matrix. Finally, the cardioprotective property of a selected triPP-conjugated derivative was demonstrated in an in vivo model of acute myocardial infarct. PMID:28954424
Wang, Shijun; Zhang, Feng; Zhao, Gang; Cheng, Yong; Wu, Ting; Wu, Bing; Zhang, You-En
2017-09-01
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)-induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase-2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross-clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2 -/- ) and wild-type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin-related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N-acetylcysteine (NAC) or PKC-δ shRNA treatment on glycogen synthase kinase-3β (GSK-3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2 -/- mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC-ε translocation was lower in ALDH2 -/- mice than in WT mice, and PKC-δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre-treatment under I/R injury. In addition, PKC-ε inhibition caused activation of caspase9, caspase3 and Drp1Ser 616 in response to I/R stress. Importantly, expression of phosphorylated GSK-3β (inactive form) was lower in ALDH2 -/- mice than in WT mice, and both were increased by NAC pre-treatment. I/R-induced mitochondrial translocation of GSK-3β was inhibited by PKC-δ shRNA or NAC pre-treatment. In addition, mitochondrial membrane potential (∆Ψ m ) was reduced in ALDH2 -/- mice after I/R, which was partly reversed by the GSK-3β inhibitor (SB216763) or PKC-δ shRNA. Collectively, our data provide the evidence that abnormal PKC-ε/PKC-δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK-3β-dependent mPTP opening, which results in mitochondrial injury-triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2 -/- mice following I/R stress. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Integrated Omic Analysis of a Guinea Pig Model of Heart Failure and Sudden Cardiac Death.
Foster, D Brian; Liu, Ting; Kammers, Kai; O'Meally, Robert; Yang, Ni; Papanicolaou, Kyriakos N; Talbot, C Conover; Cole, Robert N; O'Rourke, Brian
2016-09-02
Here, we examine key regulatory pathways underlying the transition from compensated hypertrophy (HYP) to decompensated heart failure (HF) and sudden cardiac death (SCD) in a guinea pig pressure-overload model by integrated multiome analysis. Relative protein abundances from sham-operated HYP and HF hearts were assessed by iTRAQ LC-MS/MS. Metabolites were quantified by LC-MS/MS or GC-MS. Transcriptome profiles were obtained using mRNA microarrays. The guinea pig HF proteome exhibited classic biosignatures of cardiac HYP, left ventricular dysfunction, fibrosis, inflammation, and extravasation. Fatty acid metabolism, mitochondrial transcription/translation factors, antioxidant enzymes, and other mitochondrial procsses, were downregulated in HF but not HYP. Proteins upregulated in HF implicate extracellular matrix remodeling, cytoskeletal remodeling, and acute phase inflammation markers. Among metabolites, acylcarnitines were downregulated in HYP and fatty acids accumulated in HF. The correlation of transcript and protein changes in HF was weak (R(2) = 0.23), suggesting post-transcriptional gene regulation in HF. Proteome/metabolome integration indicated metabolic bottlenecks in fatty acyl-CoA processing by carnitine palmitoyl transferase (CPT1B) as well as TCA cycle inhibition. On the basis of these findings, we present a model of cardiac decompensation involving impaired nuclear integration of Ca(2+) and cyclic nucleotide signals that are coupled to mitochondrial metabolic and antioxidant defects through the CREB/PGC1α transcriptional axis.
Massive palmitoylation-dependent endocytosis during reoxygenation of anoxic cardiac muscle
Lin, Mei-Jung; Fine, Michael; Lu, Jui-Yun; Hofmann, Sandra L; Frazier, Gary; Hilgemann, Donald W
2013-01-01
In fibroblasts, large Ca transients activate massive endocytosis (MEND) that involves membrane protein palmitoylation subsequent to mitochondrial permeability transition pore (PTP) openings. Here, we characterize this pathway in cardiac muscle. Myocytes with increased expression of the acyl transferase, DHHC5, have decreased Na/K pump activity. In DHHC5-deficient myocytes, Na/K pump activity and surface area/volume ratios are increased, the palmitoylated regulatory protein, phospholemman (PLM), and the cardiac Na/Ca exchanger (NCX1) show greater surface membrane localization, and MEND is inhibited in four protocols. Both electrical and optical methods demonstrate that PTP-dependent MEND occurs during reoxygenation of anoxic hearts. Post-anoxia MEND is ablated in DHHC5-deficient hearts, inhibited by cyclosporine A (CsA) and adenosine, promoted by staurosporine (STS), reduced in hearts lacking PLM, and correlates with impaired post-anoxia contractile function. Thus, the MEND pathway appears to be deleterious in severe oxidative stress but may constitutively contribute to cardiac sarcolemma turnover in dependence on metabolic stress. DOI: http://dx.doi.org/10.7554/eLife.01295.001 PMID:24282237
Characterization of a transgenic short hairpin RNA-induced murine model of Tafazzin deficiency.
Soustek, Meghan S; Falk, Darin J; Mah, Cathryn S; Toth, Matthew J; Schlame, Michael; Lewin, Alfred S; Byrne, Barry J
2011-07-01
Barth's syndrome (BTHS) is an X-linked mitochondrial disease that is due to a mutation in the Tafazzin (TAZ) gene. Based on sequence homology, TAZ has been characterized as an acyltransferase involved in the metabolism of cardiolipin (CL), a unique phospholipid almost exclusively located in the mitochondrial inner membrane. Yeast, Drosophila, and zebrafish models have been invaluable in elucidating the role of TAZ in BTHS, but until recently a mammalian model to study the disease has been lacking. Based on in vitro evidence of RNA-mediated TAZ depletion, an inducible short hairpin RNA (shRNA)-mediated TAZ knockdown (TAZKD) mouse model has been developed (TaconicArtemis GmbH, Cologne, Germany), and herein we describe the assessment of this mouse line as a model of BTHS. Upon induction of the TAZ-specific shRNA in vivo, transgenic mouse TAZ mRNA levels were reduced by >89% in cardiac and skeletal muscle. TAZ deficiency led to the absence of tetralineoyl-CL and accumulation of monolyso-CL in cardiac muscle. Furthermore, mitochondrial morphology from cardiac and skeletal muscle was altered. Skeletal muscle mitochondria demonstrated disrupted cristae, and cardiac mitochondria were significantly enlarged and displace neighboring myofibrils. Physiological measurements demonstrated a reduction in isometric contractile strength of the soleus and a reduction in cardiac left ventricular ejection fraction of TAZKD mice compared with control animals. Therefore, the inducible TAZ-deficient model exhibits some of the molecular and clinical characteristics of BTHS patients and may ultimately help to improve our understanding of BTHS-related cardioskeletal myopathy as well as serve as an important tool in developing therapeutic strategies for BTHS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Aibin; Liu, Jingyi; Institute of Cardiovascular Disease, General Hospital of Beijing Command, PLA, Beijing
Highlights: • Metabolic syndrome exacerbated MI/R induced injury accompanied by decreased Nur77. • ROS led to Nur77 translocation in metabolic syndrome. • Inhibiting relocation of Nur77 to mitochondria reduced ROS-induced cardiomyocyte injury in metabolic syndrome. - Abstract: Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, themore » roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H{sub 2}O{sub 2} led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H{sub 2}O{sub 2} and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the process.« less
Mavrommatis, Evangelos; Shioura, Krystyna M; Los, Tamara; Goldspink, Paul H
2013-09-01
Insulin-like growth factor-1 (IGF-1) isoforms are expressed via alternative splicing. Expression of the minor isoform IGF-1Eb [also known as mechano-growth factor (MGF)] is responsive to cell stress. Since IGF-1 isoforms differ in their E-domain regions, we are interested in determining the biological function of the MGF E-domain. To do so, a synthetic peptide analog was used to gain mechanistic insight into the actions of the E-domain. Treatment of H9c2 cells indicated a rapid cellular uptake mechanism that did not involve IGF-1 receptor activation but resulted in a nuclear localization. Peptide treatment inhibited the intrinsic apoptotic pathway in H9c2 cells subjected to cell stress with sorbitol by preventing the collapse of the mitochondrial membrane potential and inhibition of caspase-3 activation. Therefore, we administered the peptide at the time of myocardial infarction (MI) in mice. At 2 weeks post-MI cardiac function, gene expression and cell death were assayed. A significant decline in both systolic and diastolic function was evident in untreated mice based on PV loop analysis. Delivery of the E-peptide ameliorated the decline in function and resulted in significant preservation of cardiac contractility. Associated with these changes were an inhibition of pathologic hypertrophy and significantly fewer apoptotic nuclei in the viable myocardium of E-peptide-treated mice post-MI. We conclude that administration of the MGF E-domain peptide may provide a means of modulating local tissue IGF-1 autocrine/paracrine actions to preserve cardiac function, prevent cell death, and pathologic remodeling in the heart.
Karro, Niina; Sepp, Mervi; Jugai, Svetlana; Laasmaa, Martin; Vendelin, Marko; Birkedal, Rikke
2017-01-01
Rainbow trout (Oncorhynchus mykiss) cardiomyocytes have a simple morphology with fewer membrane structures such as sarcoplasmic reticulum and t-tubules penetrating the cytosol. Despite this, intracellular ADP diffusion is restricted. Intriguingly, although diffusion is restricted, trout cardiomyocytes seem to lack the coupling between mitochondrial creatine kinase (CK) and respiration. Our aim was to study the distribution of diffusion restrictions in permeabilized trout cardiomyocytes and verify the role of CK. We found a high activity of hexokinase (HK), which led us to reassess the situation in trout cardiomyocytes. We show that diffusion restrictions are more prominent than previously thought. In the presence of a competitive ADP-trapping system, ADP produced by HK, but not CK, was channeled to the mitochondria. In agreement with this, we found no positively charged mitochondrial CK in trout heart homogenate. The results were best fit by a simple mathematical model suggesting that trout cardiomyocytes lack a functional coupling between ATPases and pyruvate kinase. The model simulations show that diffusion is restricted to almost the same extent in the cytosol and by the outer mitochondrial membrane. Furthermore, they confirm that HK, but not CK, is functionally coupled to respiration. In perspective, our results suggest that across a range of species, cardiomyocyte morphology and metabolism go hand in hand with cardiac performance, which is adapted to the circumstances. Mitochondrial CK is coupled to respiration in adult mammalian hearts, which are specialized to high, sustained performance. HK associates with mitochondria in hearts of trout and neonatal mammals, which are more hypoxia-tolerant.
Renal Involvement in Neuropathy, Ataxia, Retinitis Pigmentosa (NARP) Syndrome: A Case Report.
Lemoine, Sandrine; Panaye, Marine; Rabeyrin, Maud; Errazuriz-Cerda, Elisabeth; Mousson de Camaret, Bénédicte; Petiot, Philippe; Juillard, Laurent; Guebre-Egziabher, Fitsum
2018-05-01
We report a case of a patient who had the mitochondrial cytopathy complex of neuropathy, ataxia, and retinitis pigmentosa (NARP) syndrome diagnosed at age 11 years with a biopsy-proven kidney involvement that progressed to end-stage renal disease at age 21 years. Mutations of mitochondrial DNA (mtDNA) are maternally inherited and lead to mitochondrial cytopathies with predominant neurologic manifestations: psychomotor retardation, epilepsy, ataxia, neuropathy, and myopathy. Given the ubiquitous nature of mitochondria, cellular dysfunction can also appear in tissues with high metabolic turnover; thus, there can be cardiac, digestive, ophthalmologic, and kidney complications. Mutations in the MT-ATP6 gene of mtDNA have been shown to cause NARP syndrome without renal involvement. We report a patient who had NARP syndrome diagnosed at age 11 years in whom glomerular proteinuria was present very early after diagnosis. Although neurologic manifestations were stable over time, he developed worsening proteinuria and kidney function. He started dialysis therapy at age 21 years. Kidney biopsy confirmed the mitochondrial cytopathy histologically, with abnormal mitochondria seen on electron microscopy. The MT-ATP6 gene mutation was detected in the kidney biopsy specimen. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Wu, Jianjiang; Yang, Long; Xie, Peng; Yu, Jin; Yu, Tian; Wang, Haiying; Maimaitili, Yiliyaer; Wang, Jiang; Ma, Haiping; Yang, Yining; Zheng, Hong
2017-01-01
Previous studies from our group have demonstrated that sevoflurane post-conditioning (SPC) protects against myocardial ischemia reperfusion injury via elevating the intranuclear expression of hypoxia inducible factor-1 alpha (HIF-1α). However, diabetic SPC is associated with decreased myocardial protection and disruption of the HIF-1 signaling pathway. Previous studies have demonstrated that cobalt chloride (CoCl 2 ) can upregulate HIF-1α expression under diabetic conditions, but whether myocardial protection by SPC can be restored afterward remains unclear. We established a rat model of type 2 diabetes and a Langendorff isolated heart model of ischemia-reperfusion injury. Prior to reperfusion, 2.4% sevoflurane was used as a post-conditioning treatment. The diabetic rats were treated with CoCl 2 24 h before the experiment. At the end of reperfusion, tests were performed to assess myocardial function, infarct size, mitochondrial morphology, nitric oxide (NO), Mitochondrial reactive oxygen species (ROS), mitochondrial respiratory function and enzyme activity, HIF-1α, vascular endothelial growth factor (VEGF) and endothelial NO synthase (eNOS) protein levels. In addition, myocardial protection by SPC was monitored after the blood glucose levels were lowered by insulin. The diabetic state was associated with deficient SPC protection and decreased HIF-1α expression. After treating the diabetic rats with CoCl 2 , SPC significantly upregulated the expression of HIF-1α, VEGF and eNOS, which markedly improved cardiac function, NO, mitochondrial respiratory function, and enzyme activity and decreased the infarction areas and ROS. In addition, these effects were not influenced by blood glucose levels. This study proved that CoCl 2 activates the HIF-1α signaling pathway, which restores SPC-dependent myocardial protection under diabetic conditions, and the protective effects of SPC were independent of blood glucose levels.
Emelyanova, Larisa; Ashary, Zain; Cosic, Milanka; Negmadjanov, Ulugbek; Ross, Gracious; Rizvi, Farhan; Olet, Susan; Kress, David; Sra, Jasbir; Tajik, A Jamil; Holmuhamedov, Ekhson L; Shi, Yang; Jahangir, Arshad
2016-07-01
Mitochondria are critical for maintaining normal cardiac function, and a deficit in mitochondrial energetics can lead to the development of the substrate that promotes atrial fibrillation (AF) and its progression. However, the link between mitochondrial dysfunction and AF in humans is still not fully defined. The aim of this study was to elucidate differences in the functional activity of mitochondrial oxidative phosphorylation (OXPHOS) complexes and oxidative stress in right atrial tissue from patients without (non-AF) and with AF (AF) who were undergoing open-heart surgery and were not significantly different for age, sex, major comorbidities, and medications. The overall functional activity of the electron transport chain (ETC), NADH:O2 oxidoreductase activity, was reduced by 30% in atrial tissue from AF compared with non-AF patients. This was predominantly due to a selective reduction in complex I (0.06 ± 0.007 vs. 0.09 ± 0.006 nmol·min(-1)·citrate synthase activity(-1), P = 0.02) and II (0.11 ± 0.012 vs. 0.16 ± 0.012 nmol·min(-1)·citrate synthase activity(-1), P = 0.003) functional activity in AF patients. Conversely, complex V activity was significantly increased in AF patients (0.21 ± 0.027 vs. 0.12 ± 0.01 nmol·min(-1)·citrate synthase activity(-1), P = 0.005). In addition, AF patients exhibited a higher oxidative stress with increased production of mitochondrial superoxide (73 ± 17 vs. 11 ± 2 arbitrary units, P = 0.03) and 4-hydroxynonenal level (77.64 ± 30.2 vs. 9.83 ± 2.83 ng·mg(-1) protein, P = 0.048). Our findings suggest that AF is associated with selective downregulation of ETC activity and increased oxidative stress that can contribute to the progression of the substrate for AF. Copyright © 2016 the American Physiological Society.
Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun
2012-01-01
Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. PMID:22902401
Wofford, Joshua D; Chakrabarti, Mrinmoy; Lindahl, Paul A
2017-03-31
Cardiac function requires continuous high levels of energy, and so iron, a critical player in mitochondrial respiration, is an important component of the heart. Hearts from 57 Fe-enriched mice were evaluated by Mössbauer spectroscopy. Spectra consisted of a sextet and two quadrupole doublets. One doublet was due to residual blood, whereas the other was due to [Fe 4 S 4 ] 2+ clusters and low-spin Fe II hemes, most of which were associated with mitochondrial respiration. The sextet was due to ferritin; there was no evidence of hemosiderin, a ferritin decomposition product. Iron from ferritin was nearly absent in young hearts, but increased steadily with age. EPR spectra exhibited signals similar to those of brain, liver, and human cells. No age-dependent EPR trends were apparent. Hearts from HFE -/- mice with hemochromatosis contained slightly more iron overall than controls, including more ferritin and less mitochondrial iron; these differences typify slightly older hearts, perhaps reflecting the burden due to this disease. HFE -/- livers were overloaded with ferritin but had low mitochondrial iron levels. IRP2 -/- hearts contained less ferritin than controls but normal levels of mitochondrial iron. Hearts of young mice born to an iron-deficient mother contained normal levels of mitochondrial iron and no ferritin; the heart from the mother contained low ferritin and normal levels of mitochondrial iron. High-spin Fe II ions were nearly undetectable in heart samples; these were evident in brains, livers, and human cells. Previous Mössbauer spectra of unenriched diseased human hearts lacked mitochondrial and blood doublets and included hemosiderin features. This suggests degradation of iron-containing species during sample preparation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Kobara, Miyuki; Furumori-Yukiya, Akiko; Kitamura, Miho; Matsumura, Mihoko; Ohigashi, Makoto; Toba, Hiroe; Nakata, Tetsuo
2015-08-01
Caloric restriction (CR) prevents senescent changes, in which reactive oxygen species (ROS) have a critical role. Left ventricular (LV) hypertrophy is a risk factor for cardiovascular diseases. We examined whether CR alters cardiac redox state and hypertrophy from chronic pressure overload. Male c57BL6 mice were subjected to ascending aortic constriction (AAC) with ad libitum caloric intake (AL + AAC group) or 40% restricted caloric intake (CR + AAC group). CR was initiated 2 weeks before AAC and was continued for 4 weeks. Two weeks after constriction, AAC increased LV wall thickness, impaired transmitral flow velocity, and augmented myocyte hypertrophy and fibrosis, in association with enhancement of BNP and collagen III expressions in the AL + AAC group. In the AL + AAC group, oxidative stress in cardiac tissue and mitochondria were enhanced, and NADPH oxidase activity and mitochondrial ROS production were elevated. These changes were significantly attenuated in the CR + AAC group. Additionally, in antioxidant systems, myocardial glutathione peroxidase and superoxide dismutase activities were enhanced in the CR + AAC group. Chronic pressure overload increased cardiac oxidative damage, in association with cardiac hypertrophy and fibrosis. Short-term CR suppressed oxidative stress and improved cardiac function, suggesting that short-term CR could be a useful strategy to prevent pressure overload-induced cardiac injury. Copyright © 2015 Elsevier Inc. All rights reserved.
Kuhl, U; Lassner, D; Dorner, A; Rohde, M; Escher, F; Seeberg, B; Hertel, E; Tschope, C; Skurk, C; Gross, U M; Schultheiss, H-P; Poller, W
2013-09-01
Recent studies have detected erythrovirus genomes in the hearts of cardiomyopathy and cardiac transplant patients. Assessment of the functional status of viruses may provide clinically important information beyond detection of the viral genomes. Here, we report transcriptional activation of cardiotropic erythrovirus to be associated with strongly altered myocardial gene expression in a distinct subgroup of cardiomyopathy patients. Endomyocardial biopsies (EMBs) from 415 consecutive cardiac erythrovirus (B19V)-positive patients with clinically suspected cardiomyopathy were screened for virus-encoded VP1/VP2 mRNA indicating transcriptional activation of the virus, and correlated with cardiac host gene expression patterns in transcriptionally active versus latent infections, and in virus-free control hearts. Transcriptional activity was detected in baseline biopsies of only 66/415 patients (15.9 %) harbouring erythrovirus. At the molecular level, significant differences between cardiac B19V-positive patients with transcriptionally active versus latent virus were revealed by expression profiling of EMBs. Importantly, latent B19V infection was indistinguishable from controls. Genes involved encode proteins of antiviral immune response, B19V receptor complex, and mitochondrial energy metabolism. Thus, functional mapping of erythrovirus allows definition of a subgroup of B19V-infected cardiomyopathy patients characterized by virus-encoded VP1/VP2 transcripts and anomalous host myocardial transcriptomes. Cardiac B19V reactivation from latency, as reported here for the first time, is a key factor required for erythrovirus to induce altered cardiac gene expression in a subgroup of cardiomyopathy patients. Virus genome detection is insufficient to assess pathogenic potential, but additional transcriptional mapping should be incorporated into future pathogenetic and therapeutic studies both in cardiology and transplantation medicine.
Changes in cardiac energy metabolic pathways in overweighed rats fed a high-fat diet.
Modrego, Javier; de las Heras, Natalia; Zamorano-León, Jose J; Mateos-Cáceres, Petra J; Martín-Fernández, Beatriz; Valero-Muñoz, Maria; Lahera, Vicente; López-Farré, Antonio J
2013-03-01
Heart produces ATP through long-chain fatty acids beta oxidation. To analyze whether in ventricular myocardium, high-fat diet may modify the expression of proteins associated with energy metabolism before myocardial function was affected. Wistar Kyoto rats were divided into two groups: (a) rats fed standard diet (control; n = 6) and (b) rats fed high-fat diet (HFD; n = 6). Proteins from left ventricles were analyzed by two-dimensional electrophoresis, mass spectrometry and Western blotting. Rats fed with HFD showed higher body weight, insulin, glucose, leptin and total cholesterol plasma levels as compared with those fed with standard diet. However, myocardial functional parameters were not different between them. The protein expression of 3-ketoacyl-CoA thiolase, acyl-CoA hydrolase mitochondrial precursor and enoyl-CoA hydratase, three long-chain fatty acid β-oxidation-related enzymes, and carnitine-O-palmitoyltransferase I was significantly higher in left ventricles from HFD rats. Protein expression of triosephosphate isomerase was higher in left ventricles from HFD rats than in those from control. Two α/β-enolase isotypes and glyceraldehyde-3-phosphate isomerase were significantly increased in HFD rats as compared with control. Pyruvate and lactate contents were similar in HFD and control groups. Expression of proteins associated with Krebs cycle and mitochondrial oxidative phosphorylation was higher in HFD rats. Expression of proteins involved in left ventricle metabolic energy was enhanced before myocardial functionality was affected in rats fed with HFD. These findings may probably indicate higher cardiac energy requirement due to weight increase by HFD.
Beutner, Gisela; Eliseev, Roman A.; Porter, George A.
2014-01-01
Mitochondria provide energy in form of ATP in eukaryotic cells. However, it is not known when, during embryonic cardiac development, mitochondria become able to fulfill this function. To assess this, we measured mitochondrial oxygen consumption and the activity of the complexes (Cx) 1 and 2 of the electron transport chain (ETC) and used immunoprecipitation to follow the generation of mitochondrial supercomplexes. We show that in the heart of mouse embryos at embryonic day (E) 9.5, mitochondrial ETC activity and oxidative phosphorylation (OXPHOS) are not coupled, even though the complexes are present. We show that Cx-1 of the ETC is able to accept electrons from the Krebs cycle, but enzyme assays that specifically measure electron flow to ubiquinone or Cx-3 show no activity at this early embryonic stage. At E11.5, mitochondria appear functionally more mature; ETC activity and OXPHOS are coupled and respond to ETC inhibitors. In addition, the assembly of highly efficient respiratory supercomplexes containing Cx-1, -3, and -4, ubiquinone, and cytochrome c begins at E11.5, the exact time when Cx-1 becomes functional activated. At E13.5, ETC activity and OXPHOS of embryonic heart mitochondria are indistinguishable from adult mitochondria. In summary, our data suggest that between E9.5 and E11.5 dramatic changes occur in the mitochondria of the embryonic heart, which result in an increase in OXPHOS due to the activation of complex 1 and the formation of supercomplexes. PMID:25427064
Beutner, Gisela; Eliseev, Roman A; Porter, George A
2014-01-01
Mitochondria provide energy in form of ATP in eukaryotic cells. However, it is not known when, during embryonic cardiac development, mitochondria become able to fulfill this function. To assess this, we measured mitochondrial oxygen consumption and the activity of the complexes (Cx) 1 and 2 of the electron transport chain (ETC) and used immunoprecipitation to follow the generation of mitochondrial supercomplexes. We show that in the heart of mouse embryos at embryonic day (E) 9.5, mitochondrial ETC activity and oxidative phosphorylation (OXPHOS) are not coupled, even though the complexes are present. We show that Cx-1 of the ETC is able to accept electrons from the Krebs cycle, but enzyme assays that specifically measure electron flow to ubiquinone or Cx-3 show no activity at this early embryonic stage. At E11.5, mitochondria appear functionally more mature; ETC activity and OXPHOS are coupled and respond to ETC inhibitors. In addition, the assembly of highly efficient respiratory supercomplexes containing Cx-1, -3, and -4, ubiquinone, and cytochrome c begins at E11.5, the exact time when Cx-1 becomes functional activated. At E13.5, ETC activity and OXPHOS of embryonic heart mitochondria are indistinguishable from adult mitochondria. In summary, our data suggest that between E9.5 and E11.5 dramatic changes occur in the mitochondria of the embryonic heart, which result in an increase in OXPHOS due to the activation of complex 1 and the formation of supercomplexes.
USDA-ARS?s Scientific Manuscript database
Copper (Cu) deficiency may promote the generation of reactive oxygen species (ROS) by the mitochondrial electron transport chain through inhibition of cytochrome c oxidase (CCO) and increased reduction of respiratory complexes upstream from CCO. In the present study, respiration, H2O2 production and...
USDA-ARS?s Scientific Manuscript database
Doxorubicin (DOX) is a chemotherapeutic agent effective in the treatment of many cancers. However, cardiac dysfunction caused by DOX limits its clinical use. DOX is believed to be harmful to cardiomyocytes by interfering with the mitochondrial phospholipid cardiolipin and causing inefficient electro...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qun; Yin, Guotian; Stewart, Sarah
2010-07-09
Ischemia damages the mitochondrial electron transport chain (ETC), mediated in part by damage generated by the mitochondria themselves. Mitochondrial damage resulting from ischemia, in turn, leads to cardiac injury during reperfusion. The goal of the present study was to localize the segment of the ETC that produces the ischemic mitochondrial damage. We tested if blockade of the proximal ETC at complex I differed from blockade distal in the chain at cytochrome oxidase. Isolated rabbit hearts were perfused for 15 min followed by 30 min stop-flow ischemia at 37 {sup o}C. Amobarbital (2.5 mM) or azide (5 mM) was used tomore » block proximal (complex I) or distal (cytochrome oxidase) sites in the ETC. Time control hearts were buffer-perfused for 45 min. Subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) were isolated. Ischemia decreased cytochrome c content in SSM but not in IFM compared to time control. Blockade of electron transport at complex I preserved the cytochrome c content in SSM. In contrast, blockade of electron transport at cytochrome oxidase with azide did not retain cytochrome c in SSM during ischemia. Since blockade of electron transport at complex III also prevented cytochrome c loss during ischemia, the specific site that elicits mitochondrial damage during ischemia is likely located in the segment between complex III and cytochrome oxidase.« less
Dare, Anna J; Logan, Angela; Prime, Tracy A; Rogatti, Sebastian; Goddard, Martin; Bolton, Eleanor M; Bradley, J Andrew; Pettigrew, Gavin J; Murphy, Michael P; Saeb-Parsy, Kourosh
2015-11-01
Free radical production and mitochondrial dysfunction during cardiac graft reperfusion is a major factor in post-transplant ischemia-reperfusion (IR) injury, an important underlying cause of primary graft dysfunction. We therefore assessed the efficacy of the mitochondria-targeted anti-oxidant MitoQ in reducing IR injury in a murine heterotopic cardiac transplant model. Hearts from C57BL/6 donor mice were flushed with storage solution alone, solution containing the anti-oxidant MitoQ, or solution containing the non-anti-oxidant decyltriphenylphosphonium control and exposed to short (30 minutes) or prolonged (4 hour) cold preservation before transplantation. Grafts were transplanted into C57BL/6 recipients and analyzed for mitochondrial reactive oxygen species production, oxidative damage, serum troponin, beating score, and inflammatory markers 120 minutes or 24 hours post-transplant. MitoQ was taken up by the heart during cold storage. Prolonged cold preservation of donor hearts before IR increased IR injury (troponin I, beating score) and mitochondrial reactive oxygen species, mitochondrial DNA damage, protein carbonyls, and pro-inflammatory cytokine release 24 hours after transplant. Administration of MitoQ to the donor heart in the storage solution protected against this IR injury by blocking graft oxidative damage and dampening the early pro-inflammatory response in the recipient. IR after heart transplantation results in mitochondrial oxidative damage that is potentiated by cold ischemia. Supplementing donor graft perfusion with the anti-oxidant MitoQ before transplantation should be studied further to reduce IR-related free radical production, the innate immune response to IR injury, and subsequent donor cardiac injury. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Dare, Anna J.; Logan, Angela; Prime, Tracy A.; Rogatti, Sebastian; Goddard, Martin; Bolton, Eleanor M.; Bradley, J. Andrew; Pettigrew, Gavin J.; Murphy, Michael P.; Saeb-Parsy, Kourosh
2015-01-01
Background Free radical production and mitochondrial dysfunction during cardiac graft reperfusion is a major factor in post-transplant ischemia-reperfusion (IR) injury, an important underlying cause of primary graft dysfunction. We therefore assessed the efficacy of the mitochondria-targeted anti-oxidant MitoQ in reducing IR injury in a murine heterotopic cardiac transplant model. Methods Hearts from C57BL/6 donor mice were flushed with storage solution alone, solution containing the anti-oxidant MitoQ, or solution containing the non–anti-oxidant decyltriphenylphosphonium control and exposed to short (30 minutes) or prolonged (4 hour) cold preservation before transplantation. Grafts were transplanted into C57BL/6 recipients and analyzed for mitochondrial reactive oxygen species production, oxidative damage, serum troponin, beating score, and inflammatory markers 120 minutes or 24 hours post-transplant. Results MitoQ was taken up by the heart during cold storage. Prolonged cold preservation of donor hearts before IR increased IR injury (troponin I, beating score) and mitochondrial reactive oxygen species, mitochondrial DNA damage, protein carbonyls, and pro-inflammatory cytokine release 24 hours after transplant. Administration of MitoQ to the donor heart in the storage solution protected against this IR injury by blocking graft oxidative damage and dampening the early pro-inflammatory response in the recipient. Conclusions IR after heart transplantation results in mitochondrial oxidative damage that is potentiated by cold ischemia. Supplementing donor graft perfusion with the anti-oxidant MitoQ before transplantation should be studied further to reduce IR-related free radical production, the innate immune response to IR injury, and subsequent donor cardiac injury. PMID:26140808
Gu, Anxin; Jie, Yamin; Sun, Liang; Zhao, Shuping; E, Mingyan; You, Qingshan
2015-01-01
Radiation-induced heart disease (RIHD), which is a serious side effect of the radiotherapy applied for various tumors due to the inevitable irradiation of the heart, cannot be treated effectively using current clinical therapies. Here, we demonstrated that rhNRG-1β, an epidermal growth factor (EGF)-like protein, protects myocardium tissue against irradiation-induced damage and preserves cardiac function. rhNRG-1β effectively ameliorated irradiation-induced myocardial nuclear damage in both cultured adult rat-derived cardiomyocytes and rat myocardium tissue via NRG/ErbB2 signaling. By activating ErbB2, rhNRG-1β maintained mitochondrial integrity, ATP production, respiratory chain function and the Krebs cycle status in irradiated cardiomyocytes. Moreover, the protection of irradiated cardiomyocytes and myocardium tissue by rhNRG-1β was at least partly mediated by the activation of the ErbB2-ERK-SIRT1 signaling pathway. Long-term observations further showed that rhNRG-1β administered in the peri-irradiation period exerts continuous protective effects on cardiac pump function, the myocardial energy metabolism, cardiomyocyte volume and interstitial fibrosis in the rats receiving radiation via NRG/ErbB2 signaling. Our findings indicate that rhNRG-1β can protect the myocardium against irradiation-induced damage and preserve cardiac function via the ErbB2-ERK-SIRT1 signaling pathway. PMID:26332771
Cardiac remodeling in response to chronic iron deficiency: role of the erythropoietin receptor.
Naito, Yoshiro; Sawada, Hisashi; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Hirotani, Shinichi; Mano, Toshiaki; Tsujino, Takeshi; Masuyama, Tohru
2015-06-01
Anemia is a common comorbidity of patients with heart failure, and iron deficiency is known as one of the causes of anemia in heart failure. Recent studies have shown that iron deficiency alone, without overt anemia, is associated with poor outcomes in patients with heart failure. Thus, to minimize the mortality in patients with heart failure, it is important to understand the link between iron deficiency and cardiac function. Chronic untreated iron deficiency results in cardiac remodeling, and we have previously reported that erythropoietin (Epo) and cardiac Epo receptor (EpoR) signaling may be associated with its remodeling. However, the link between EpoR signaling and its remodeling remains to be elucidated. Herein, we investigated the role of EpoR signaling on cardiac remodeling in response to chronic iron deficiency. Wild-type mice and transgene-rescued EpoR-null mutant mice, which express EpoR only in the hematopoietic lineage (EpoR-restricted mice), were fed with either a normal or an iron-restricted diet, and the molecular mechanisms were investigated. Dietary iron restriction gradually induced anemia, Epo secretion, and cardiac hypertrophy in wild-type mice. In contrast, EpoR-restricted mice fed with an iron-restricted diet exhibited anemia, left ventricular dilatation, and cardiac dysfunction compared with wild-type mice. Interestingly, altered cardiac mitochondrial biogenesis was observed in EpoR-restricted mice following iron deficiency. Moreover, cardiac p53 expression was increased in EpoR-restricted mice compared with wild-type mice following iron deficiency. These data indicate that EpoR signaling is associated with cardiac remodeling following chronic iron deficiency.
Two-photon induced collagen cross-linking in bioartificial cardiac tissue
NASA Astrophysics Data System (ADS)
Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander
2011-08-01
Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.
Roy Chowdhury, Subir K; Smith, Darrell R; Saleh, Ali; Schapansky, Jason; Marquez, Alexandra; Gomes, Suzanne; Akude, Eli; Morrow, Dwane; Calcutt, Nigel A; Fernyhough, Paul
2012-06-01
Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia. In this study, we tested the hypothesis that deficits in adenosine monophosphate-activated protein kinase/PGC-1α signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy in rodent models of type 1 and type 2 diabetes. Phosphorylation and expression of adenosine monophosphate-activated protein kinase/PGC-1α and mitochondrial respiratory chain complex proteins were downregulated in dorsal root ganglia of both streptozotocin-diabetic rats and db/db mice. Adenoviral-mediated manipulation of endogenous adenosine monophosphate-activated protein kinase activity using mutant proteins modulated neurotrophin-directed neurite outgrowth in cultures of sensory neurons derived from adult rats. Addition of resveratrol to cultures of sensory neurons derived from rats after 3-5 months of streptozotocin-induced diabetes, significantly elevated adenosine monophosphate-activated protein kinase levels, enhanced neurite outgrowth and normalized mitochondrial inner membrane polarization in axons. The bioenergetics profile (maximal oxygen consumption rate, coupling efficiency, respiratory control ratio and spare respiratory capacity) was aberrant in cultured sensory neurons from streptozotocin-diabetic rats and was corrected by resveratrol treatment. Finally, resveratrol treatment for the last 2 months of a 5-month period of diabetes reversed thermal hypoalgesia and attenuated foot skin intraepidermal nerve fibre loss and reduced myelinated fibre mean axonal calibre in streptozotocin-diabetic rats. These data suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the adenosine monophosphate-activated protein kinase/PGC-1α pathway.
Mitochondria-localized caveolin in adaptation to cellular stress and injury
Fridolfsson, Heidi N.; Kawaraguchi, Yoshitaka; Ali, Sameh S.; Panneerselvam, Mathivadhani; Niesman, Ingrid R.; Finley, J. Cameron; Kellerhals, Sarah E.; Migita, Michael Y.; Okada, Hideshi; Moreno, Ana L.; Jennings, Michelle; Kidd, Michael W.; Bonds, Jacqueline A.; Balijepalli, Ravi C.; Ross, Robert S.; Patel, Piyush M.; Miyanohara, Atsushi; Chen, Qun; Lesnefsky, Edward J.; Head, Brian P.; Roth, David M.; Insel, Paul A.; Patel, Hemal H.
2012-01-01
We show here that the apposition of plasma membrane caveolae and mitochondria (first noted in electron micrographs >50 yr ago) and caveolae-mitochondria interaction regulates adaptation to cellular stress by modulating the structure and function of mitochondria. In C57Bl/6 mice engineered to overexpress caveolin specifically in cardiac myocytes (Cav-3 OE), localization of caveolin to mitochondria increases membrane rigidity (4.2%; P<0.05), tolerance to calcium, and respiratory function (72% increase in state 3 and 23% increase in complex IV activity; P<0.05), while reducing stress-induced generation of reactive oxygen species (by 20% in cellular superoxide and 41 and 28% in mitochondrial superoxide under states 4 and 3, respectively; P<0.05) in Cav-3 OE vs. TGneg. By contrast, mitochondrial function is abnormal in caveolin-knockout mice and Caenorhabditis elegans with null mutations in caveolin (60% increase free radical in Cav-2 C. elegans mutants; P<0.05). In human colon cancer cells, mitochondria with increased caveolin have a 30% decrease in apoptotic stress (P<0.05), but cells with disrupted mitochondria-caveolin interaction have a 30% increase in stress response (P<0.05). Targeted gene transfer of caveolin to mitochondria in C57Bl/6 mice increases cardiac mitochondria tolerance to calcium, enhances respiratory function (increases of 90% state 4, 220% state 3, 88% complex IV activity; P<0.05), and decreases (by 33%) cardiac damage (P<0.05). Physical association and apparently the transfer of caveolin between caveolae and mitochondria is thus a conserved cellular response that confers protection from cellular damage in a variety of tissues and settings.—Fridolfsson, H. N., Kawaraguchi, Y., Ali, S. S., Panneerselvam, M., Niesman, I. R., Finley, J. C., Kellerhals, S. E., Migita, M. Y., Okada, H., Moreno, A. L., Jennings, M., Kidd, M. W., Bonds, J. A., Balijepalli, R. C., Ross, R. S., Patel, P. M., Miyanohara, A., Chen, Q., Lesnefsky, E. J., Head, B. P., Roth, D. M., Insel, P. A., Patel, H. H. Mitochondria-localized caveolin in adaptation to cellular stress and injury. PMID:22859372
Nikooie, Rohollah; Rajabi, Hamid; Gharakhanlu, Reza; Atabi, Fereshteh; Omidfar, Kobra; Aveseh, Malihe; Larijani, Bagher
2013-12-01
We hypothesized that a part of therapeutic effects of endurance training on insulin resistance is mediated by increase in cardiac and skeletal muscle mitochondrial lactate transporter, monocarboxylate transporter 1 (MCT1). Therefore, we examined the effect of 7 weeks endurance training on the mRNA and protein expression of MCT1 and MCT4 and their chaperon, CD147, on both sarcolemmal and mitochondrial membrane, separately, in healthy and type 2 diabetic rats. Diabetes was induced by injection of low dose of streptozotocin and feeding with high-fat diet. Insulin resistance was confirmed by homeostasis model assessment-estimated insulin resistance index and accuracy of two membranes separation was confirmed by negative control markers (glucose transporter 1 and cytochrome c oxidase. Real-time PCR and western blotting were used for mRNA and protein expression, respectively. Diabetes dramatically reduced MCT1 and MCT4 mRNA and their expression on sarcolemmal membrane whereas the reduction in MCT1 expression was less in mitochondrial membrane. Training increased the MCT1 mRNA and protein expression in both membranes and decreased insulin resistance as an adaptive consequence. In both tissues increase in CD147 mRNA was only parallel to MCT1 expression. The response of MCT1 on sarcolemmal and mitochondrial membranes was different between cardiac and skeletal muscles which indicate that intracellular lactate kinetic is tissue specific that allows a tissue to coordinate whole organism metabolism.
Padmanabhan, M; Mainzen Prince, P Stanely
2007-02-13
This study was aimed to evaluate the preventive role of S-allylcysteine (SAC) on mitochondrial and lysosomal enzymes in isoproterenol (ISO)-induced rats. Male albino Wistar rats were pretreated with SAC (50, 100 and 150 mg/kg) daily for a period of 45 days. After the treatment period, ISO (150 mg/kg) was subcutaneously injected to rats at an interval of 24 h for two days. The activities of heart mitochondrial enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase and alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome C oxidase) were decreased significantly (p<0.05) in ISO-induced rats. The activities of lysosomal enzymes (beta-glucuronidase, beta-N-acetyl glucosaminidase, beta-galactosidase, cathepsin-D and acid phosphatase) were increased significantly (p<0.05) in serum and heart of ISO-induced rats. Pretreatment with SAC (100 mg/kg and 150 mg/kg) for a period of 45 days increased significantly (p<0.05) the activities of mitochondrial and respiratory chain enzymes and decreased the activities of lysosomal enzymes significantly (p<0.05) in ISO-induced rats. Oral administration of SAC (50, 100 and 150 mg/kg) for a period of 45 days to normal rats did not show any significant (p<0.05) effect in all the parameters studied. The altered electrocardiogram (ECG) of ISO-treated rats was also restored to near normal by treatment with SAC (100 and 150 mg/kg). These results confirm the efficacy of SAC in alleviating ISO-induced cardiac damage.
Sickle cell anemia mice develop a unique cardiomyopathy with restrictive physiology
Bakeer, Nihal; James, Jeanne; Roy, Swarnava; Wansapura, Janaka; Shanmukhappa, Shiva Kumar; Lorenz, John N.; Osinska, Hanna; Backer, Kurt; Huby, Anne-Cecile; Shrestha, Archana; Niss, Omar; Fleck, Robert; Quinn, Charles T.; Taylor, Michael D.; Purevjav, Enkhsaikhan; Aronow, Bruce J.; Towbin, Jeffrey A.; Malik, Punam
2016-01-01
Cardiopulmonary complications are the leading cause of mortality in sickle cell anemia (SCA). Elevated tricuspid regurgitant jet velocity, pulmonary hypertension, diastolic, and autonomic dysfunction have all been described, but a unifying pathophysiology and mechanism explaining the poor prognosis and propensity to sudden death has been elusive. Herein, SCA mice underwent a longitudinal comprehensive cardiac analysis, combining state-of-the-art cardiac imaging with electrocardiography, histopathology, and molecular analysis to determine the basis of cardiac dysfunction. We show that in SCA mice, anemia-induced hyperdynamic physiology was gradually superimposed with restrictive physiology, characterized by progressive left atrial enlargement and diastolic dysfunction with preserved systolic function. This phenomenon was absent in WT mice with experimentally induced chronic anemia of similar degree and duration. Restrictive physiology was associated with microscopic cardiomyocyte loss and secondary fibrosis detectable as increased extracellular volume by cardiac-MRI. Ultrastructural mitochondrial changes were consistent with severe chronic hypoxia/ischemia and sarcomere diastolic-length was shortened. Transcriptome analysis revealed up-regulation of genes involving angiogenesis, extracellular-matrix, circadian-rhythm, oxidative stress, and hypoxia, whereas ion-channel transport and cardiac conduction were down-regulated. Indeed, progressive corrected QT prolongation, arrhythmias, and ischemic changes were noted in SCA mice before sudden death. Sudden cardiac death is common in humans with restrictive cardiomyopathies and long QT syndromes. Our findings may thus provide a unifying cardiac pathophysiology that explains the reported cardiac abnormalities and sudden death seen in humans with SCA. PMID:27503873
Ultrastructure and cytochemistry of cardiac intramitochondrial glycogen.
Sótonyi, P; Somogyi, E; Nemes, A; Juhász-Nagy, S
1976-01-01
Authors have observed abnormalities of glycogen localization in cardiac muscle, after normothermic cardiac arrest. The identification of these intramitrochondrial particles as glycogen was confirmed by selective staining with periodic acid-lead citrat, periodic acid-thiosemicarbazide protein methods and by their selective removal from tissue sections by alfa-amylase. The intramitochondrial glycogen particles were of beta-type. Some intramitochondrial particles were surrounded by paired membranes which resulted from protrusion of parts of mitochondrial membrane.
Ahmet, I; Sawa, Y; Nishimura, M; Kitakaze, M; Matsuda, H
2000-01-15
The preconditioning effect of diadenosine tetraphosphate (AP4A) was reported in ischemia/reperfused hearts, but its effect in heart preservation was unknown. According to the possible role of mitochondrial ATP-sensitive potassium channel (mK(ATP) channel) in the effect of ischemic preconditioning, the contribution of mK(ATP) channel to the effect of AP4A was tested. Isolated rat hearts were arrested and preserved by Eurocollin's (EC) solution at 4 degrees C for 8 hr. AP4A (80 microM) or AP4A with the 5-hydroxydecanoic acid (100 microM), a selective inhibitor of the mK(ATP) channel, was added into the EC solution. The preischemic and postischemic cardiac functions were evaluated on a buffer-perfused Langendorff apparatus before storage and after 20 min of reperfusion. AP4A administration improved the recovery of poststorage cardiac functions (the rate-pressure production, left ventricular systolic pressure, heart rate, coronary flow rate, and derivative of left ventricular systolic pressure; P<0.05) and reduced the leakage of lactate dehydrate and creatine kinase during reperfusion, compared with EC alone. Those effects of AP4A were completely reversed by 5-hydroxydecanoic acid administration in combination subjects. AP4A administration protects the heart through opening of the mK(ATP) channel during hypothermic preservation. Thus, addition of AP4A into cardioplegia may be a novel method of ischemic preconditioning in the transplantation context.
Bround, Michael J.; Wambolt, Rich; Cen, Haoning; Asghari, Parisa; Albu, Razvan F.; Han, Jun; McAfee, Donald; Pourrier, Marc; Scott, Nichollas E.; Bohunek, Lubos; Kulpa, Jerzy E.; Chen, S. R. Wayne; Fedida, David; Brownsey, Roger W.; Borchers, Christoph H.; Foster, Leonard J.; Mayor, Thibault; Moore, Edwin D. W.; Allard, Michael F.
2016-01-01
Cardiac ryanodine receptor (Ryr2) Ca2+ release channels and cellular metabolism are both disrupted in heart disease. Recently, we demonstrated that total loss of Ryr2 leads to cardiomyocyte contractile dysfunction, arrhythmia, and reduced heart rate. Acute total Ryr2 ablation also impaired metabolism, but it was not clear whether this was a cause or consequence of heart failure. Previous in vitro studies revealed that Ca2+ flux into the mitochondria helps pace oxidative metabolism, but there is limited in vivo evidence supporting this concept. Here, we studied heart-specific, inducible Ryr2 haploinsufficient (cRyr2Δ50) mice with a stable 50% reduction in Ryr2 protein. This manipulation decreased the amplitude and frequency of cytosolic and mitochondrial Ca2+ signals in isolated cardiomyocytes, without changes in cardiomyocyte contraction. Remarkably, in the context of well preserved contractile function in perfused hearts, we observed decreased glucose oxidation, but not fat oxidation, with increased glycolysis. cRyr2Δ50 hearts exhibited hyperphosphorylation and inhibition of pyruvate dehydrogenase, the key Ca2+-sensitive gatekeeper to glucose oxidation. Metabolomic, proteomic, and transcriptomic analyses revealed additional functional networks associated with altered metabolism in this model. These results demonstrate that Ryr2 controls mitochondrial Ca2+ dynamics and plays a specific, critical role in promoting glucose oxidation in cardiomyocytes. Our findings indicate that partial RYR2 loss is sufficient to cause metabolic abnormalities seen in heart disease. PMID:27621312
Mitochondrial DNA Mutation Associated with Leber's Hereditary Optic Neuropathy
NASA Astrophysics Data System (ADS)
Wallace, Douglas C.; Singh, Gurparkash; Lott, Marie T.; Hodge, Judy A.; Schurr, Theodore G.; Lezza, Angela M. S.; Elsas, Louis J.; Nikoskelainen, Eeva K.
1988-12-01
Leber's hereditary optic neuropathy is a maternally inherited disease resulting in optic nerve degeneration and cardiac dysrhythmia. A mitochondrial DNA replacement mutation was identified that correlated with this disease in multiple families. This mutation converted a highly conserved arginine to a histidine at codon 340 in the NADH dehydrogenase subunit 4 gene and eliminated an Sfa NI site, thus providing a simple diagnostic test. This finding demonstrated that a nucleotide change in a mitochondrial DNA energy production gene can result in a neurological disease.
Sex differences in the regulation of spatially distinct cardiac mitochondrial subpopulations.
Ribeiro, Rogério Faustino; Ronconi, Karoline Sousa; Morra, Elis Aguiar; Do Val Lima, Patrícia Ribeiro; Porto, Marcella Leite; Vassallo, Dalton Valentim; Figueiredo, Suely Gomes; Stefanon, Ivanita
2016-08-01
Spatially distinct mitochondrial subpopulation may mediate myocardial pathology through permeability transition pore opening (MPTP). The goal of this study was to assess sex differences on the two spatially distinct mitochondrial subpopulations: subsarcolemmal mitochondria (SSM) and intermyofibrillar mitochondria (IFM) based on morphology, membrane potential, mitochondrial function, oxidative phosphorylation, and MPTP. Aged matched Wistar rats were used to study SSM and IFM. Mitochondrial size was larger in SSM than in IFM in both genders. However, SSM internal complexity, yield, and membrane potential were higher in male than in female. The maximal rate of mitochondrial respiration, states 3 and 4, using glutamate + malate as substrate, were higher in IFM and SSM in the male group compared to female. The respiratory control ratio (RCR-state3/state 4), was not different in both SSM and IFM with glutamate + malate. The ADP:O ratio was found higher in IFM and SSM from female compared to males. When pyruvate was used, state 3 was found unchanged in both IFM and SSM, state 4 was also greater in male IFM compared to female. The RCR increased in the SSM while IFM remained the same. State 4 was higher in male SSM while in the IFM remained the same. The IFM presented a higher Ca(2+) retention capacity compared with SSM, however, there was a greater sensitivity to Ca(2+)-induced MPTP in SSM and IFM in the male group compared to female. In conclusion, our data show that spatially distinct mitochondrial subpopulations have sex-based differences in oxidative phosphorylation, morphology, and calcium retention capacity.
Graham, Delyth; Huynh, Ngan N; Hamilton, Carlene A; Beattie, Elisabeth; Smith, Robin A J; Cochemé, Helena M; Murphy, Michael P; Dominiczak, Anna F
2009-08-01
Mitochondria are a major site of reactive oxygen species production, which may contribute to the development of cardiovascular disease. Protecting mitochondria from oxidative damage should be an effective therapeutic strategy; however, conventional antioxidants are ineffective, because they cannot penetrate the mitochondria. This study investigated the role of mitochondrial oxidative stress during development of hypertension in the stroke-prone spontaneously hypertensive rat, using the mitochondria-targeted antioxidant, MitoQ(10). Eight-week-old male stroke-prone spontaneously hypertensive rats were treated with MitoQ(10) (500 mumol/L; n=16), control compound decyltriphenylphosphonium (decylTPP; 500 mumol/L; n=8), or vehicle (n=9) in drinking water for 8 weeks. Systolic blood pressure was significantly reduced by approximately 25 mm Hg over the 8-week MitoQ(10) treatment period compared with decylTPP (F=5.94; P=0.029) or untreated controls (F=65.6; P=0.0001). MitoQ(10) treatment significantly improved thoracic aorta NO bioavailability (1.16+/-0.03 g/g; P=0.002, area under the curve) compared with both untreated controls (0.68+/-0.02 g/g) and decylTPP-treated rats (0.60+/-0.06 g/g). Cardiac hypertrophy was significantly reduced by MitoQ(10) treatment compared with untreated control and decylTPP treatment (MitoQ(10): 4.01+/-0.05 mg/g; control: 4.42+/-0.11 mg/g; and decylTPP: 4.40+/-0.09 mg/g; ANOVA P=0.002). Total MitoQ(10) content was measured in liver, heart, carotid artery, and kidney harvested from MitoQ(10)-treated rats by liquid chromatography-tandem mass spectrometry. All of the organs analyzed demonstrated detectable levels of MitoQ(10), with comparable accumulation in vascular and cardiac tissues. Administration of the mitochondria-targeted antioxidant MitoQ(10) protects against the development of hypertension, improves endothelial function, and reduces cardiac hypertrophy in young stroke-prone spontaneously hypertensive rats. MitoQ(10) provides a novel approach to attenuate mitochondrial-specific oxidative damage with the potential to become a new therapeutic intervention in human cardiovascular disease.
Ghosh, Alok; Trivedi, Prachi P; Timbalia, Shrishiv A; Griffin, Aaron T; Rahn, Jennifer J; Chan, Sherine S L; Gohil, Vishal M
2014-07-01
Mitochondrial respiratory chain biogenesis is orchestrated by hundreds of assembly factors, many of which are yet to be discovered. Using an integrative approach based on clues from evolutionary history, protein localization and human genetics, we have identified a conserved mitochondrial protein, C1orf31/COA6, and shown its requirement for respiratory complex IV biogenesis in yeast, zebrafish and human cells. A recent next-generation sequencing study reported potential pathogenic mutations within the evolutionarily conserved Cx₉CxnCx₁₀C motif of COA6, implicating it in mitochondrial disease biology. Using yeast coa6Δ cells, we show that conserved residues in the motif, including the residue mutated in a patient with mitochondrial disease, are essential for COA6 function, thus confirming the pathogenicity of the patient mutation. Furthermore, we show that zebrafish embryos with zfcoa6 knockdown display reduced heart rate and cardiac developmental defects, recapitulating the observed pathology in the human mitochondrial disease patient who died of neonatal hypertrophic cardiomyopathy. The specific requirement of Coa6 for respiratory complex IV biogenesis, its intramitochondrial localization and the presence of the Cx₉CxnCx₁₀C motif suggested a role in mitochondrial copper metabolism. In support of this, we show that exogenous copper supplementation completely rescues respiratory and complex IV assembly defects in yeast coa6Δ cells. Taken together, our results establish an evolutionarily conserved role of Coa6 in complex IV assembly and support a causal role of the COA6 mutation in the human mitochondrial disease patient. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mitochondria-targeted therapies for acute kidney injury.
Tábara, Luis Carlos; Poveda, Jonay; Martin-Cleary, Catalina; Selgas, Rafael; Ortiz, Alberto; Sanchez-Niño, Maria D
2014-08-08
Acute kidney injury (AKI) is a serious clinical condition with no effective treatment. Tubular cells are key targets in AKI. Tubular cells and, specifically, proximal tubular cells are extremely rich in mitochondria and mitochondrial changes had long been known to be a feature of AKI. However, only recent advances in understanding the molecules involved in mitochondria biogenesis and dynamics and the availability of mitochondria-targeted drugs has allowed the exploration of the specific role of mitochondria in AKI. We now review the morphological and functional mitochondrial changes during AKI, as well as changes in the expression of mitochondrial genes and proteins. Finally, we summarise the current status of novel therapeutic strategies specifically targeting mitochondria such as mitochondrial permeability transition pore (MPTP) opening inhibitors (cyclosporine A (CsA)), quinone analogues (MitoQ, SkQ1 and SkQR1), superoxide dismutase (SOD) mimetics (Mito-CP), Szeto-Schiller (SS) peptides (Bendavia) and mitochondrial division inhibitors (mdivi-1). MitoQ, SkQ1, SkQR1, Mito-CP, Bendavia and mdivi-1 have improved the course of diverse experimental models of AKI. Evidence for a beneficial effect of CsA on human cardiac ischaemia-reperfusion injury derives from a clinical trial; however, CsA is nephrotoxic. MitoQ and Bendavia have been shown to be safe for humans. Ongoing clinical trials are testing the efficacy of Bendavia in AKI prevention following renal artery percutaneous transluminal angioplasty.
Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
Thapa, Dharendra; Zhang, Manling; Manning, Janet R; Guimarães, Danielle A; Stoner, Michael W; O'Doherty, Robert M; Shiva, Sruti; Scott, Iain
2017-08-01
Lysine acetylation is a reversible posttranslational modification and is particularly important in the regulation of mitochondrial metabolic enzymes. Acetylation uses acetyl-CoA derived from fuel metabolism as a cofactor, thereby linking nutrition to metabolic activity. In the present study, we investigated how mitochondrial acetylation status in the heart is controlled by food intake and how these changes affect mitochondrial metabolism. We found that there was a significant increase in cardiac mitochondrial protein acetylation in mice fed a long-term high-fat diet and that this change correlated with an increase in the abundance of the mitochondrial acetyltransferase-related protein GCN5L1. We showed that the acetylation status of several mitochondrial fatty acid oxidation enzymes (long-chain acyl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase, and hydroxyacyl-CoA dehydrogenase) and a pyruvate oxidation enzyme (pyruvate dehydrogenase) was significantly upregulated in high-fat diet-fed mice and that the increase in long-chain and short-chain acyl-CoA dehydrogenase acetylation correlated with increased enzymatic activity. Finally, we demonstrated that the acetylation of mitochondrial fatty acid oxidation proteins was decreased after GCN5L1 knockdown and that the reduced acetylation led to diminished fatty acid oxidation in cultured H9C2 cells. These data indicate that lysine acetylation promotes fatty acid oxidation in the heart and that this modification is regulated in part by the activity of GCN5L1. NEW & NOTEWORTHY Recent research has shown that acetylation of mitochondrial fatty acid oxidation enzymes has greatly contrasting effects on their activity in different tissues. Here, we provide new evidence that acetylation of cardiac mitochondrial fatty acid oxidation enzymes by GCN5L1 significantly upregulates their activity in diet-induced obese mice. Copyright © 2017 the American Physiological Society.
Involvement of cytosolic and mitochondrial iron in iron overload cardiomyopathy: an update.
Gordan, Richard; Wongjaikam, Suwakon; Gwathmey, Judith K; Chattipakorn, Nipon; Chattipakorn, Siriporn C; Xie, Lai-Hua
2018-04-19
Iron overload cardiomyopathy (IOC) is a major cause of death in patients with diseases associated with chronic anemia such as thalassemia or sickle cell disease after chronic blood transfusions. Associated with iron overload conditions, there is excess free iron that enters cardiomyocytes through both L- and T-type calcium channels thereby resulting in increased reactive oxygen species being generated via Haber-Weiss and Fenton reactions. It is thought that an increase in reactive oxygen species contributes to high morbidity and mortality rates. Recent studies have, however, suggested that it is iron overload in mitochondria that contributes to cellular oxidative stress, mitochondrial damage, cardiac arrhythmias, as well as the development of cardiomyopathy. Iron chelators, antioxidants, and/or calcium channel blockers have been demonstrated to prevent and ameliorate cardiac dysfunction in animal models as well as in patients suffering from cardiac iron overload. Hence, either a mono-therapy or combination therapies with any of the aforementioned agents may serve as a novel treatment in iron-overload patients in the near future. In the present article, we review the mechanisms of cytosolic and/or mitochondrial iron load in the heart which may contribute synergistically or independently to the development of iron-associated cardiomyopathy. We also review available as well as potential future novel treatments.
Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G.
Majamaa-Voltti, Kirsi; Peuhkurinen, Keijo; Kortelainen, Marja-Leena; Hassinen, Ilmo E; Majamaa, Kari
2002-08-01
Tissues that depend on aerobic energy metabolism suffer most in diseases caused by mutations in mitochondrial DNA (mtDNA). Cardiac abnormalities have been described in many cases, but their frequency and clinical spectrum among patients with mtDNA mutations is unknown. Thirty-nine patients with the 3243A>G mtDNA mutation were examined, methods used included clinical evaluation, electrocardiogram, Holter recording and echocardiography. Autopsy reports on 17 deceased subjects were also reviewed. The degree of 3243A>G mutation heteroplasmy was determined using an Apa I restriction fragment analysis. Better hearing level (BEHL0.5-4 kHz) was used as a measure of the clinical severity of disease. Left ventricular hypertrophy (LVH) was diagnosed in 19 patients (56%) by echocardiography and in six controls (15%) giving an odds ratio of 7.5 (95% confidence interval; 1.74-67). The dimensions of the left ventricle suggested a concentric hypertrophy. Left ventricular systolic or diastolic dysfunction was observed in 11 patients. Holter recording revealed frequent ventricular extrasystoles (>10/h) in five patients. Patients with LVH differed significantly from those without LVH in BEHL0.5-4 kHz, whereas the contribution of age or the degree of the mutant heteroplasmy in skeletal muscle to the risk of LVH was less remarkable. Structural and functional abnormalities of the heart were common in patients with 3243A>G. The risk of LVH was related to the clinical severity of the phenotype, and to a lesser degree to age, suggesting that patients presenting with any symptoms from the mutation should also be evaluated for cardiac abnormalities.
Diomede, Luisa; Romeo, Margherita; Rognoni, Paola; Beeg, Marten; Foray, Claudia; Ghibaudi, Elena; Palladini, Giovanni; Cherny, Robert A; Verga, Laura; Capello, Gian Luca; Perfetti, Vittorio; Fiordaliso, Fabio; Merlini, Giampaolo; Salmona, Mario
2017-09-20
The knowledge of the mechanism underlying the cardiac damage in immunoglobulin light chain (LC) amyloidosis (AL) is essential to develop novel therapies and improve patients' outcome. Although an active role of reactive oxygen species (ROS) in LC-induced cardiotoxicity has already been envisaged, the actual mechanisms behind their generation remain elusive. This study was aimed at further dissecting the action of ROS generated by cardiotoxic LC in vivo and investigating whether transition metal ions are involved in this process. In the absence of reliable vertebrate model of AL, we used the nematode Caenorhabditis elegans, whose pharynx is an "ancestral heart." LC purified from patients with severe cardiac involvement intrinsically generated high levels of ROS and when administered to C. elegans induced ROS production, activation of the DAF-16/forkhead transcription factor (FOXO) pathway, and expression of proteins involved in stress resistance and survival. Profound functional and structural ROS-mediated mitochondrial damage, similar to that observed in amyloid-affected hearts from AL patients, was observed. All these effects were entirely dependent on the presence of metal ions since addition of metal chelator or metal-binding 8-hydroxyquinoline compounds (chelex, PBT2, and clioquinol) permanently blocked the ROS production and prevented the cardiotoxic effects of amyloid LC. Innovation and Conclusion: Our findings identify the key role of metal ions in driving the ROS-mediated toxic effects of LC. This is a novel conceptual advance that paves the way for new pharmacological strategies aimed at not only counteracting but also totally inhibiting the vicious cycle of redox damage. Antioxid. Redox Signal. 27, 567-582.
da Silva, Marcia Gracindo; Mattos, Elisabete; Camacho-Pereira, Juliana; Domitrovic, Tatiana; Galina, Antonio; Costa, Mauro W; Kurtenbach, Eleonora
2012-01-01
Doxorubicin (DOXO) is an efficient and low-cost chemotherapeutic agent. The use of DOXO is limited by its side effects, including cardiotoxicity, that may progress to cardiac failure as a result of multifactorial events that have not yet been fully elucidated. In the present study, the effects of DOXO at two different doses were analyzed to identify early functional and molecular markers of cardiac distress. One group of rats received 7.5 mg/kg of DOXO (low-dose group) and was followed for 20 weeks. A subset of these animals was then subjected to an additional cycle of DOXO treatment, generating a cumulative dose of 20 mg/kg (high-dose group). Physiological and biochemical parameters were assessed in both treatment groups and in a control group that received saline. Systolic dysfunction was observed only in the high-dose group. Mitochondrial function analysis showed a clear reduction in oxidative cellular respiration for animals in both DOXO treatment groups, with evidence of complex I damage being observed. Transcriptional analysis by quantitative polymerase chain reaction revealed an increase in atrial natriuretic peptide transcript in the high-dose group, which is consistent with cardiac failure. Analysis of transcription levels of key components of the cardiac ubiquitin-proteasome system found that the ubiquitin E3 ligase muscle ring finger 1 (MuRF1) was upregulated in both the low- and high-dose DOXO groups. MuRF2 and MuRF3 were also upregulated in the high-dose group but not in the low-dose group. This molecular profile may be useful as an early physiological and energetic cardiac failure indicator for testing therapeutic interventions in animal models. PMID:23620696
Ayswarya, A.; Kurian, G. A.
2016-01-01
Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM) for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment). Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co-treatment of the mitochondria with hydrogen sulfide preserved the enzyme activity in the in vitro conditions. PMID:27168694
Understanding STAT3 signaling in cardiac ischemia.
O'Sullivan, K E; Breen, E P; Gallagher, H C; Buggy, D J; Hurley, J P
2016-05-01
Cardiovascular disease is the leading cause of death worldwide. It remains one of the greatest challenges to global health and will continue to dominate mortality trends in the future. Acute myocardial infarction results in 7.4 million deaths globally per annum. Current management strategies are centered on restoration of coronary blood flow via percutaneous coronary intervention, coronary artery bypass grafting and administration of anti-platelet agents. Such myocardial reperfusion accounts for 40-50 % of the final infarct size in most cases. Signaling transducer and activator of transcription 3 (STAT3) has been shown to have cardioprotective effects via canonical and non-canonical activation and modulation of mitochondrial and transcriptional responses. A significant body of in vitro and in vivo evidence suggests that activation of the STAT3 signal transduction pathway results in a cardio protective response to ischemia and attempts have been made to modulate this with therapeutic effect. Not only is STAT3 important for cardiomyocyte function, but it also modulates the cardiac microenvironment and communicates with cardiac fibroblasts. To this end, we here review the current evidence supporting the manipulation of STAT3 for therapeutic benefit in cardiac ischemia and identify areas for future research.
Cell and gene therapy for severe heart failure patients: The time and place for Pim-1 Kinase
Siddiqi, Sailay; Sussman, Mark A
2014-01-01
Regenerative therapy in severe heart failure patients presents a challenging set of circumstances including a damaged myocardial environment that accelerates senescence in myocytes and cardiac progenitor cells. Failing myocardium suffers from deterioration of contractile function coupled with impaired regenerative potential that drives the heart toward decompensation. Efficacious regenerative cell therapy for severe heart failure requires disruption of this vicious circle that can be accomplished by alteration of the compromised myocyte phenotype and rejuvenation of progenitor cells. This review focuses upon potential for Pim-1 kinase to mitigate chronic heart failure by improving myocyte quality through preservation of mitochondrial integrity, prevention of hypertrophy and inhibition of apoptosis. In addition, cardiac progenitors engineered with Pim-1 possess enhanced regenerative potential, making Pim-1 an important player in future treatment of severe heart failure. PMID:23984924
Madungwe, Ngonidzashe B; Zilberstein, Netanel F; Feng, Yansheng; Bopassa, Jean C
2016-01-01
Reactive oxygen species (ROS) generation has been implicated in many pathologies including ischemia/reperfusion (I/R) injury. This led to multiple studies on antioxidant therapies to treat cardiovascular diseases but paradoxically, results have so far been mixed as ROS production can be beneficial as a signaling mechanism and in cardiac protection via preconditioning interventions. We investigated whether the differential impact of increased ROS in injury as well as in protection could be explained by their site of production on the mitochondrial electron transport chain. Using amplex red to measure ROS production, we found that mitochondria isolated from hearts after I/R produced more ROS than non-ischemic when complex I substrate (glutamate/malate) was used. Interestingly, the substrates of complex II (succinate) and ubiquinone (sn-glycerol 3-phosphate, G3P) produced less ROS in mitochondria from I/R hearts compared to normal healthy hearts. The inhibitors of complex I (rotenone) and complex III (antimycin A) increased ROS production when glutamate/malate and G3P were used; in contrast, they reduced ROS production when the complex II substrate was used. Mitochondrial calcium retention capacity required to induce mitochondrial permeability transition pore (mPTP) opening was measured using calcium green fluorescence and was found to be higher when mitochondria were treated with G3P and succinate compared to glutamate/malate. Furthermore, Langendorff hearts treated with glutamate/malate exhibited reduced cardiac functional recovery and increased myocardial infarct size compared to hearts treated with G3P. Thus, ROS production by the stimulated respiratory chain complexes I and III has opposite roles: cardio-deleterious when produced in complex I and cardio-protective when produced in complex III. The mechanism of these ROS involves the inhibition of the mPTP opening, a key event in cell death following ischemia/reperfusion injury.
Mitochondrial ROS Drive Sudden Cardiac Death and Chronic Proteome Remodeling in Heart Failure.
Dey, Swati; DeMazumder, Deeptankar; Sidor, Agnieszka; Foster, D B; O'Rourke, Brian
2018-06-13
Rationale: Despite increasing prevalence and incidence of heart failure (HF), therapeutic options remain limited. In early stages of HF, sudden cardiac death (SCD) from ventricular arrhythmias claims many lives. Reactive oxygen species (ROS) have been implicated in both arrhythmias and contractile dysfunction. However, little is known about how ROS in specific subcellular compartments contribute to HF or SCD pathophysiology. The role of ROS in chronic proteome remodeling has not been explored. Objective: We will test the hypothesis that elevated mitochondrial ROS (mROS) is a principal source of oxidative stress in HF and in vivo reduction of mROS mitigates SCD. Methods and Results: Using a unique guinea pig model of non-ischemic HF that recapitulates important features of human HF, including prolonged QT interval and high incidence of spontaneous arrhythmic SCD. Compartment-specific ROS sensors revealed increased mROS in resting and contracting left ventricular (LV) myocytes in failing hearts. Importantly, mitochondrially-targeted antioxidant (MitoTEMPO) normalized global cellular ROS. Further, in vivo MitoTEMPO treatment of HF animals prevented and reversed HF; eliminated SCD by decreasing dispersion of repolarization and ventricular arrhythmias; suppressed chronic HF-induced remodeling of the expression proteome; and prevented specific phosphoproteome alterations. Pathway analysis of mROS-sensitive networks indicated that increased mROS in HF disrupts the normal coupling between cytosolic signals and nuclear gene programs driving mitochondrial function, antioxidant enzymes, Ca2+ handling and action potential repolarization, suggesting new targets for therapeutic intervention. Conclusions: mROS drive both acute emergent events, such as electrical instability responsibly for SCD, and those that mediate chronic HF remodeling, characterized by suppression or altered phosphorylation of metabolic, antioxidant and ion transport protein networks. In vivo reduction of mROS prevents and reverses electrical instability, SCD and HF. Our findings support the feasibility of targeting the mitochondria as a potential new therapy for HF and SCD while identifying new mROS-sensitive protein modifications.
Isoflurane produces sustained cardiac protection after ischemia-reperfusion injury in mice.
Tsutsumi, Yasuo M; Patel, Hemal H; Lai, N Chin; Takahashi, Toshiyuki; Head, Brian P; Roth, David M
2006-03-01
Isoflurane reduces myocardial ischemia-reperfusion injury within hours to days of reperfusion. Whether isoflurane produces sustained cardiac protection has never been examined. The authors studied isoflurane-induced cardiac protection in the intact mouse after 2 h and 2 weeks of reperfusion and determined the dependence of this protection on adenosine triphosphate-dependent potassium channels and the relevance of this protection to myocardial function and apoptosis. Mice were randomly assigned to receive oxygen or isoflurane for 30 min with 15 min of washout. Some mice received mitochondrial (5-hydroxydecanoic acid) or sarcolemmal (HMR-1098) adenosine triphosphate-dependent potassium channel blockers with or without isoflurane. Mice were then subjected to a 30-min coronary artery occlusion followed by 2 h or 2 weeks of reperfusion. Infarct size was determined at 2 h and 2 weeks of reperfusion. Cardiac function and apoptosis were determined 2 weeks after reperfusion. Isoflurane did not change hemodynamics. Isoflurane reduced infarct size after reperfusion when compared with the control groups (27.7 +/- 6.3 vs. 41.7 +/- 6.4% at 2 h and 19.6 +/- 5.9 vs. 28.8 +/- 9.0% at 2 weeks). Previous administration of 5-hydroxydecanoic acid, but not HMR-1098, abolished isoflurane-induced cardiac protection. At 2 weeks, left ventricular end-diastolic diameter was decreased significantly and end-systolic pressure and maximum and minimum dP/dt were improved by isoflurane. Isoflurane-treated mice subjected to ischemia and 2 weeks of reperfusion showed less expression of proapoptotic genes, significantly decreased expression of cleaved caspase-3, and significantly decreased deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling-positive nuclei compared with the control group. Cardiac protection induced by isoflurane against necrotic and apoptotic cell death is associated with an acute memory period that is sustained and functionally relevant 2 weeks after ischemia-reperfusion injury in mice in vivo.
Methylene Blue Partially Rescues Heart Defects in a Drosophila Model of Huntington's Disease.
Heidari, Raheleh; Monnier, Véronique; Martin, Elodie; Tricoire, Hervé
2015-01-01
Huntington's disease (HD) is a Polyglutamine disease caused by the presence of CAG repeats in the first exon of Huntingtin (Htt), a large protein with multiple functions. In addition to neurodegeneration of specific brain regions, notably the striatum, HD also shows alterations in peripheral tissues, such as the heart, skeletal muscles or peripheral endocrine glands. Mutant Huntingtin (mHtt)-driven mitochondrial impairment may underlie some of the CNS and peripheral tissues dysfunctions, especially in tissues with high energy demand such as the heart. The aim of this study is to characterize two new inducible Drosophila HD heart models and to assay the therapeutic potential of methylene blue in these HD models. We report the construction of inducible Drosophila HD heart models, expressing two Nter fragments of the protein encompassing either exon 1 or the first 171 amino acids and the characterization of heart phenotypes in vivo. We show that both mHtt fragments are able to impair fly cardiac function with different characteristics. Additionally, expression of mHtt, which was limited to adulthood only, leads to mild heart impairment, as opposed to a strong and age-dependent phenotype observed when mHtt expression was driven during both developmental and adult stages. We report that treatment with methylene blue (MB), a protective compound in mitochondria-related diseases, partially protects the fly's heart against mHtt-induced toxicity, but does not rescue neuronal or glial phenotypes in other fly models of HD. This may be linked to its low penetration through the fly's blood-brain barrier. Our data suggest that improvement of mitochondrial function by MB, or related compounds, could be an efficient therapeutic strategy to prevent cardiac failure in HD patients.
Leigh Syndrome and the Mitochondrial m.13513G>A Mutation: Expanding the Clinical Spectrum.
Monlleo-Neila, Laura; Toro, Mireia Del; Bornstein, Belen; Garcia-Arumi, Elena; Sarrias, Axel; Roig-Quilis, Manuel; Munell, Francina
2013-11-01
The mitochondrial DNA m.13513G>A mutation in the ND5 subunit gene is a frequent cause of Leigh syndrome. Patients harboring this mutation typically present with ptosis and cardiac conduction abnormalities, particularly Wolff-Parkinson-White syndrome, and have a late clinical onset, which contrasts with the typical infantile form. The authors describe a patient presenting with intrauterine growth retardation and visual impairment at 3 months of age, followed by infantile spasms, severe gastrointestinal dysmotility, and neurological regression. The patient had hyperlactacidemia and bilateral basal ganglia and brainstem lesions on MRI. Although he did not present cardiac conduction abnormalities, his mother had been diagnosed with Wolff-Parkinson-White syndrome. The m.13513G>A mutation was found in the patient's muscle and in several tissues of his mother. The present results expand the phenotype of Leigh syndrome associated with the m.13513G>A mutation, which should be suspected in patients with early-onset mitochondrial encephalopathy with infantile spasms or prominent gastrointestinal smooth muscle involvement.
CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart.
Gomez-Velazquez, Melisa; Badia-Careaga, Claudio; Lechuga-Vieco, Ana Victoria; Nieto-Arellano, Rocio; Tena, Juan J; Rollan, Isabel; Alvarez, Alba; Torroja, Carlos; Caceres, Eva F; Roy, Anna R; Galjart, Niels; Delgado-Olguin, Paul; Sanchez-Cabo, Fatima; Enriquez, Jose Antonio; Gomez-Skarmeta, Jose Luis; Manzanares, Miguel
2017-08-01
Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development.
CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart
Gomez-Velazquez, Melisa; Badia-Careaga, Claudio; Lechuga-Vieco, Ana Victoria; Nieto-Arellano, Rocio; Rollan, Isabel; Alvarez, Alba; Torroja, Carlos; Caceres, Eva F.; Roy, Anna R.; Galjart, Niels; Sanchez-Cabo, Fatima; Enriquez, Jose Antonio; Gomez-Skarmeta, Jose Luis
2017-01-01
Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development. PMID:28846746
Del Forno, Benedetto; Zingaro, Carlo; Di Palma, Enza; Capestro, Filippo; Rescigno, Giuseppe; Torracca, Lucia
2016-09-01
Primary cardiac paragangliomas are extremely rare. Recently this neoplasm has been associated with a familiar syndrome as a result of mutation of genes that encode proteins in the mitochondrial complex II. We report a case of a 46-year-old woman having cases of vertebral paraganglioma in her family showing an unusual anatomic and clinical presentation of cardiac paraganglioma and expressing a genetic mutation never associated before with cardiac localization of this neoplasm. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Florian, Anca; Ludwig, Anna; Stubbe-Dräger, Bianca; Boentert, Matthias; Young, Peter; Waltenberger, Johannes; Rösch, Sabine; Sechtem, Udo; Yilmaz, Ali
2015-05-22
Mitochondrial myopathies (MM) are a heterogeneous group of inherited conditions resulting from a primary defect in the mitochondrial respiratory chain with consecutively impaired cellular energy metabolism. Small sized studies using mainly electrocardiography (ECG) and echocardiography have revealed cardiac abnormalities ranging from conduction abnormalities and arrhythmias to hypertrophic or dilated cardiomyopathy in these patients. Recently, characteristic patterns of cardiac involvement were documented by cardiovascular magnetic resonance (CMR) in patients with chronic progressive external ophthalmoplegia (CPEO)/Kearns-Sayre syndrome (KSS) and with mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS). The present study aimed to characterize the prevalence and pattern of cardiac abnormalities and to test the additional diagnostic value of CMR in this patient population. The hypothesis that different neuromuscular MM syndromes present with different cardiac disease phenotypes was evaluated. Sixty-four MM patients (50 ± 15 years, 44% male) and 25 matched controls (52 ± 14 years, 36% male) prospectively underwent cardiac evaluations including CMR (comprising cine- and late-gadolinium-enhancement (LGE) imaging). Based on the neuromuscular phenotype and genotype, the patients were grouped: (a) CPEO/KSS (N = 33); (b) MELAS/-like (N = 11); c) myoclonic epilepsy with ragged-red fibers (MERRF) (N = 3) and d) other non-specific MM forms (N = 17). Among the 64 MM patients, 34 (53%) had at least one abnormal CMR finding: 18 (28%) demonstrated an impaired left ventricular ejection-fraction (LV-EF <60%), 14 (22%) had unexplained LV hypertrophy and 21 (33%) were LGE-positive. Compared to controls, MM patients showed significantly higher maximal wall thickness (10 ± 3 vs. 8 ± 2 mm, p = 0.005) and concentricity (LV mass to end-diastolic volume: 0.84 ± 0.27 vs. 0.67 ± 0.11, p < 0.0001) with frequent presence of non-ischemic LGE (30% vs. 0%, p = 0.001). CPEO/KSS showed a predominantly intramural pattern of LGE mostly confined to the basal LV inferolateral wall (8/10; 80%) in addition to a tendency toward concentric remodelling. MELAS/-like patients showed the highest frequency of cardiac disease (in 10/11 (91%)), a mostly concentric LV hypertrophy (6/9; 67%) with or without LV systolic dysfunction and a predominantly focal, patchy LGE equally distributed among LV segments (8/11; 73%). Patients with MERRF and non-specific MM had no particular findings. Pathological CMR findings indicating cardiac involvement were detected significantly more often than pathological ECG results or elevated cardiac serum biomarkers (34 (53%) vs. 18 (28%) vs. 21 (33%); p = 0.008). Cardiac involvement is a frequent finding in MM patients - and particularly present in KSS/CPEO as well as MELAS/-like patients. Despite a high variability in clinical presentation, CPEO/KSS patients typically show an intramural pattern of LGE in the basal inferolateral wall whereas MELAS patients are characterized by overt concentric hypertrophy and a rather unique, focally accentuated and diffusely distributed LGE.
Influence of mitochondrion-toxic agents on the cardiovascular system.
Finsterer, Josef; Ohnsorge, Peter
2013-12-01
Cardiovascular disease may be induced or worsened by mitochondrion-toxic agents. Mitochondrion-toxic agents may be classified as those with or without a clinical effect, those which induce cardiac disease only in humans or animals or both, as prescribed drugs, illicit drugs, exotoxins, or nutritiants, as those which affect the heart exclusively or also other organs, as those which are effective only in patients with a mitochondrial disorder or cardiac disease or also in healthy subjects, or as solid, liquid, or volatile agents. In humans, cardiotoxic agents due to mitochondrial dysfunction include anthracyclines (particularly doxorubicin), mitoxantrone, cyclophosphamide, cisplatin, fluorouracil, imatinib, bortezomib, trastuzumab, arsenic trioxide, cyclosporine-A, zidovudine, lamotrigine, glycosides, lidocain, isoproterenol, nitroprusside, pivalic acid, alcohol, cocaine, pesticides, cadmium, mycotoxins, cyanotoxins, meat meal, or carbon monoxide. Even more agents exhibit cardiac abnormalities due to mitochondrion-toxicity only in animals or tissue cultures. The mitochondrion-toxic effect results from impairment of the respiratory chain, the oxidative phosphorylation, the Krebs cycle, or the β-oxidation, from decrease of the mitochondrion-membrane potential, from increased oxidative stress, reduced anti-oxidative capacity, or from induction of apoptosis. Cardiac abnormalities induced via these mechanisms include cardiomyopathy, myocarditis, coronary heart disease, arrhythmias, heart failure, or Takotsubo syndrome. Discontinuation of the cardiotoxic agent results in complete recovery in the majority of the cases. Antioxidants and nutritiants may be of additional help. Particularly coenzyme-Q, riboflavin, vitamin-E, vitamin-C, L-carnitine, vitamin-D, thiamin, folic acid, omega-3 fatty acids, and D-ribose may alleviate mitochondrial cardiotoxic effects. Copyright © 2013 Elsevier Inc. All rights reserved.
Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction.
Zamani, Payman; Rawat, Deepa; Shiva-Kumar, Prithvi; Geraci, Salvatore; Bhuva, Rushik; Konda, Prasad; Doulias, Paschalis-Thomas; Ischiropoulos, Harry; Townsend, Raymond R; Margulies, Kenneth B; Cappola, Thomas P; Poole, David C; Chirinos, Julio A
2015-01-27
Inorganic nitrate (NO3(-)), abundant in certain vegetables, is converted to nitrite by bacteria in the oral cavity. Nitrite can be converted to nitric oxide in the setting of hypoxia. We tested the hypothesis that NO3(-) supplementation improves exercise capacity in heart failure with preserved ejection fraction via specific adaptations to exercise. Seventeen subjects participated in this randomized, double-blind, crossover study comparing a single dose of NO3-rich beetroot juice (NO3(-), 12.9 mmol) with an identical nitrate-depleted placebo. Subjects performed supine-cycle maximal-effort cardiopulmonary exercise tests, with measurements of cardiac output and skeletal muscle oxygenation. We also assessed skeletal muscle oxidative function. Study end points included exercise efficiency (total work/total oxygen consumed), peak VO2, total work performed, vasodilatory reserve, forearm mitochondrial oxidative function, and augmentation index (a marker of arterial wave reflections, measured via radial arterial tonometry). Supplementation increased plasma nitric oxide metabolites (median, 326 versus 10 μmol/L; P=0.0003), peak VO2 (12.6±3.7 versus 11.6±3.1 mL O2·min(-1)·kg(-1); P=0.005), and total work performed (55.6±35.3 versus 49.2±28.9 kJ; P=0.04). However, efficiency was unchanged. NO3(-) led to greater reductions in systemic vascular resistance (-42.4±16.6% versus -31.8±20.3%; P=0.03) and increases in cardiac output (121.2±59.9% versus 88.7±53.3%; P=0.006) with exercise. NO3(-) reduced aortic augmentation index (132.2±16.7% versus 141.4±21.9%; P=0.03) and tended to improve mitochondrial oxidative function. NO3(-) increased exercise capacity in heart failure with preserved ejection fraction by targeting peripheral abnormalities. Efficiency did not change as a result of parallel increases in total work and VO2. NO3(-) increased exercise vasodilatory and cardiac output reserves. NO3(-) also reduced arterial wave reflections, which are linked to left ventricular diastolic dysfunction and remodeling. www.clinicaltrials.gov. Unique identifier: NCT01919177. © 2014 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Hongyan; Li, Yongqiang; Yan, Lijie
Mitochondrial autophagy is an important adaptive stress response and can be modulated by various key molecules. A previous study found that the regulator of calcineurin 1-1L (Rcan1-1L) may regulate mitochondrial autophagy and cause mitochondria degradation in neurocytes. However, the effect of Rcan1-1L on cardiomyocytes has not been determined. In the present study, we aimed to investigate the role of Rcan1-1L in angiotensin II (Ang II)-exposed human cardiomyocytes. Above all, Human adult cardiac myocytes (HACMs) were exposed to 200 nmol/L Ang II for 4 days. Enhanced H{sub 2}O{sub 2} production, cytochrome C release and mitochondrial permeability were observed in these cells,more » which were blocked by valsartan. Consistently, Ang II exposure significantly reduced cardiomyocyte viability. However, transfection of Rcan1-1L vector promoted cell viability and ameliorated the apoptosis caused by Ang II. Rcan1-1L clearly promoted mitochondrial autophagy in HACMs, with elevated autophagy protein (ATG) 5 and light chain 3 (LC3) expression. Transient mitochondrial biogenesis and reduced cytochrome C release was also induced by Rcan1-1L. Additionally, Rcan1-1L significantly inhibited calcineurin/nuclear factor of activated T cells (NFAT) signaling. We thus conclude that Rcan1-1L may play a protective role in Ang II-treated cardiomyocytes through the induction of mitochondrial autophagy, and may be an alternative method of cardiac protection. - Highlights: • Transfection of Rcan1-1L into HACMs promoted cell viability and reduced apoptosis. • Transfection of Rcan1-1L promoted mitochondrial autophagy in HACMs. • Rcan1-1L inhibited the calcineurin/nuclear factor of activated T cells signaling.« less
Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death.
Fazal, Loubina; Laudette, Marion; Paula-Gomes, Sílvia; Pons, Sandrine; Conte, Caroline; Tortosa, Florence; Sicard, Pierre; Sainte-Marie, Yannis; Bisserier, Malik; Lairez, Olivier; Lucas, Alexandre; Roy, Jérôme; Ghaleh, Bijan; Fauconnier, Jérémy; Mialet-Perez, Jeanne; Lezoualc'h, Frank
2017-02-17
Although the second messenger cyclic AMP (cAMP) is physiologically beneficial in the heart, it largely contributes to cardiac disease progression when dysregulated. Current evidence suggests that cAMP is produced within mitochondria. However, mitochondrial cAMP signaling and its involvement in cardiac pathophysiology are far from being understood. To investigate the role of MitEpac1 (mitochondrial exchange protein directly activated by cAMP 1) in ischemia/reperfusion injury. We show that Epac1 (exchange protein directly activated by cAMP 1) genetic ablation ( Epac1 -/- ) protects against experimental myocardial ischemia/reperfusion injury with reduced infarct size and cardiomyocyte apoptosis. As observed in vivo, Epac1 inhibition prevents hypoxia/reoxygenation-induced adult cardiomyocyte apoptosis. Interestingly, a deleted form of Epac1 in its mitochondrial-targeting sequence protects against hypoxia/reoxygenation-induced cell death. Mechanistically, Epac1 favors Ca 2+ exchange between the endoplasmic reticulum and the mitochondrion, by increasing interaction with a macromolecular complex composed of the VDAC1 (voltage-dependent anion channel 1), the GRP75 (chaperone glucose-regulated protein 75), and the IP3R1 (inositol-1,4,5-triphosphate receptor 1), leading to mitochondrial Ca 2+ overload and opening of the mitochondrial permeability transition pore. In addition, our findings demonstrate that MitEpac1 inhibits isocitrate dehydrogenase 2 via the mitochondrial recruitment of CaMKII (Ca 2+ /calmodulin-dependent protein kinase II), which decreases nicotinamide adenine dinucleotide phosphate hydrogen synthesis, thereby, reducing the antioxidant capabilities of the cardiomyocyte. Our results reveal the existence, within mitochondria, of different cAMP-Epac1 microdomains that control myocardial cell death. In addition, our findings suggest Epac1 as a promising target for the treatment of ischemia-induced myocardial damage. © 2017 American Heart Association, Inc.
Kidney-Heart Interactions in Acute Kidney Injury.
Doi, Kent
2016-01-01
Acute kidney injury (AKI) is a common complication in critically ill patients treated in intensive care units. Renal replacement therapy (RRT)-requiring AKI occurs in approximately 5-10% patients in intensive care unit and their mortality rate is unacceptably high (50-60%), despite sufficient control of uremia using remarkably advanced modern RRT techniques. This suggests that there are unrecognized organ interactions following AKI that could worsen the outcomes. Cardiorenal syndrome has been defined based on clinical observations that acute and chronic heart failure causes kidney injury and AKI and that chronic kidney disease worsens heart diseases. Possible pathways that connect these 2 organs have been suggested; however, the precise mechanisms are yet to be clarified, particularly in AKI-induced cardiac dysfunction. This review focuses on acute cardiac dysfunction in the setting of AKI. A recent animal study demonstrated the dysregulation of mitochondrial dynamics caused by an increased dynamin-related protein 1 expression and cellular apoptosis of the heart in a renal ischemia reperfusion model. Although the precise mechanisms that induce cardiac mitochondrial injury in AKI remain unclear, cardiac mitochondria injury could be a novel candidate of drug targets against high mortality in severe AKI. © 2016 S. Karger AG, Basel.
High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent
Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD{sub 10} dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen ledmore » to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-{alpha}, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 {+-} 14.0 nmol/min/g heart in ND versus 400.2 {+-} 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-{alpha}2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating the JAK/STAT3 pathway.« less
Schwarzer, Michael; Osterholt, Moritz; Lunkenbein, Anne; Schrepper, Andrea; Amorim, Paulo; Doenst, Torsten
2014-01-01
We investigated the impact of cardiac reactive oxygen species (ROS) during the development of pressure overload-induced heart failure. We used our previously described rat model where transverse aortic constriction (TAC) induces compensated hypertrophy after 2 weeks, heart failure with preserved ejection fraction at 6 and 10 weeks, and heart failure with systolic dysfunction after 20 weeks. We measured mitochondrial ROS production rates, ROS damage and assessed the therapeutic potential of in vivo antioxidant therapies. In compensated hypertrophy (2 weeks of TAC) ROS production rates were normal at both mitochondrial ROS production sites (complexes I and III). Complex I ROS production rates increased with the appearance of diastolic dysfunction (6 weeks of TAC) and remained high thereafter. Surprisingly, maximal ROS production at complex III peaked at 6 weeks of pressure overload. Mitochondrial respiratory capacity (state 3 respiration) was elevated 2 and 6 weeks after TAC, decreased after this point and was significantly impaired at 20 weeks, when contractile function was also impaired and ROS damage was found with increased hydroxynonenal. Treatment with the ROS scavenger α-phenyl-N-tert-butyl nitrone or the uncoupling agent dinitrophenol significantly reduced ROS production rates at 6 weeks. Despite the decline in ROS production capacity, no differences in contractile function between treated and untreated animals were observed. Increased ROS production occurs early in the development of heart failure with a peak at the onset of diastolic dysfunction. However, ROS production may not be related to the onset of contractile dysfunction. PMID:24951621
Johnsen, Virginia L.; Ma, Lianli; James, Freyja D.; Young, Pampee P.; Wasserman, David H.; Rottman, Jeffrey N.; Hittel, Dustin S.; Shearer, Jane
2012-01-01
Intense interest has been focused on cell-based therapy for the infarcted heart given that stem cells have exhibited the ability to reduce infarct size and mitigate cardiac dysfunction. Despite this, it is unknown whether mesenchymal stem cell (MSC) therapy can prevent metabolic remodeling following a myocardial infarction (MI). This study examines the ability of MSCs to rescue the infarcted heart from perturbed substrate uptake in vivo. C57BL/6 mice underwent chronic ligation of the left anterior descending coronary artery to induce a MI. Echocardiography was performed on conscious mice at baseline as well as 7 and 23 days post-MI. Twenty-eight days following the ligation procedure, hyperinsulinemic euglycemic clamps assessed in vivo insulin sensitivity. Isotopic tracer administration evaluated whole body, peripheral tissue, and cardiac-specific glucose and fatty acid utilization. To gain insight into the mechanisms by which MSCs modulate metabolism, mitochondrial function was assessed by high-resolution respirometry using permeabilized cardiac fibers. Data show that MSC transplantation preserves insulin-stimulated fatty acid uptake in the peri-infarct region (4.25 ± 0.64 vs. 2.57 ± 0.34 vs. 3.89 ± 0.54 μmol·100 g−1·min−1, SHAM vs. MI + PBS vs. MI + MSC; P < 0.05) and prevents increases in glucose uptake in the remote left ventricle (3.11 ± 0.43 vs. 3.81 ± 0.79 vs. 6.36 ± 1.08 μmol·100 g−1·min−1, SHAM vs. MI + PBS vs. MI + MSC; P < 0.05). This was associated with an enhanced efficiency of mitochondrial oxidative phosphorylation with a respiratory control ratio of 3.36 ± 0.18 in MSC-treated cardiac fibers vs. 2.57 ± 0.14 in the infarct-only fibers (P < 0.05). In conclusion, MSC therapy exhibits the potential to rescue the heart from metabolic aberrations following a MI. Restoration of metabolic flexibility is important given the metabolic demands of the heart and the role of energetics in the progression to heart failure. PMID:21971524
Jacobs, Robert Acton; Flück, Daniela; Bonne, Thomas Christian; Bürgi, Simon; Christensen, Peter Møller; Toigo, Marco; Lundby, Carsten
2013-09-01
Six sessions of high-intensity interval training (HIT) are sufficient to improve exercise capacity. The mechanisms explaining such improvements are unclear. Accordingly, the aim of this study was to perform a comprehensive evaluation of physiologically relevant adaptations occurring after six sessions of HIT to determine the mechanisms explaining improvements in exercise performance. Sixteen untrained (43 ± 6 ml·kg(-1)·min(-1)) subjects completed six sessions of repeated (8-12) 60 s intervals of high-intensity cycling (100% peak power output elicited during incremental maximal exercise test) intermixed with 75 s of recovery cycling at a low intensity (30 W) over a 2-wk period. Potential training-induced alterations in skeletal muscle respiratory capacity, mitochondrial content, skeletal muscle oxygenation, cardiac capacity, blood volumes, and peripheral fatigue resistance were all assessed prior to and again following training. Maximal measures of oxygen uptake (Vo2peak; ∼8%; P = 0.026) and cycling time to complete a set amount of work (∼5%; P = 0.008) improved. Skeletal muscle respiratory capacities increased, most likely as a result of an expansion of skeletal muscle mitochondria (∼20%, P = 0.026), as assessed by cytochrome c oxidase activity. Skeletal muscle deoxygenation also increased while maximal cardiac output, total hemoglobin, plasma volume, total blood volume, and relative measures of peripheral fatigue resistance were all unaltered with training. These results suggest that increases in mitochondrial content following six HIT sessions may facilitate improvements in respiratory capacity and oxygen extraction, and ultimately are responsible for the improvements in maximal whole body exercise capacity and endurance performance in previously untrained individuals.
Yang, Zhaokang; Kirton, Hannah M.; Al-Owais, Moza; Thireau, Jérôme; Richard, Sylvain; Peers, Chris
2017-01-01
Abstract Aims: In the heart, β1-adrenergic signaling involves cyclic adenosine monophosphate (cAMP) acting via both protein kinase-A (PKA) and exchange protein directly activated by cAMP (Epac): a guanine nucleotide exchange factor for the small GTPase Rap1. Inhibition of Epac-Rap1 signaling has been proposed as a therapeutic strategy for both cancer and cardiovascular disease. However, previous work suggests that impaired Rap1 signaling may have detrimental effects on cardiac function. The aim of the present study was to investigate the influence of Epac2-Rap1 signaling on the heart using both in vivo and in vitro approaches. Results: Inhibition of Epac2 signaling induced early afterdepolarization arrhythmias in ventricular myocytes. The underlying mechanism involved an increase in mitochondrial reactive oxygen species (ROS) and activation of the late sodium current (INalate). Arrhythmias were blocked by inhibition of INalate or the mitochondria-targeted antioxidant, mitoTEMPO. In vivo, inhibition of Epac2 caused ventricular tachycardia, torsades de pointes, and sudden death. The in vitro and in vivo effects of Epac2 inhibition were mimicked by inhibition of geranylgeranyltransferase-1, which blocks interaction of Rap1 with downstream targets. Innovation: Our findings show for the first time that Rap1 acts as a negative regulator of mitochondrial ROS production in the heart and that impaired Epac2-Rap1 signaling causes arrhythmias due to ROS-dependent activation of INalate. This has implications for the use of chemotherapeutics that target Epac2-Rap1 signaling. However, selective inhibition of INalate provides a promising strategy to prevent arrhythmias caused by impaired Epac2-Rap1 signaling. Conclusion: Epac2-Rap1 signaling attenuates mitochondrial ROS production and reduces myocardial arrhythmia susceptibility. Antioxid. Redox Signal. 27, 117–132. PMID:27649969
van Beek, J H; Westerhof, N
1990-01-01
We determined the speed with which mitochondrial oxygen consumption and therefore the mitochondrial ATP-synthesis adapted to changes in metabolic demand in the rabbit heart. This was done by measuring the oxygen uptake of the whole heart during a stepwise change in heart rate and correcting for the time taken by diffusion and by convective transport in the blood vessels. Data for the correction for transport time were obtained from the response of venous oxygen concentration to a stepwise change of arterial oxygen concentration. The time constant of the response of mitochondrial oxygen consumption to a step change in heart rate was found to be 4-8 s.
Gong, Ping; Li, Chun-Sheng; Hua, Rong; Zhao, Hong; Tang, Zi-Ren; Mei, Xue; Zhang, Ming-Yue; Cui, Juan
2012-01-01
Mild hypothermia is the only effective treatment confirmed clinically to improve neurological outcomes for comatose patients with cardiac arrest. However, the underlying mechanism is not fully elucidated. In this study, our aim was to determine the effect of mild hypothermia on mitochondrial oxidative stress in the cerebral cortex. We intravascularly induced mild hypothermia (33°C), maintained this temperature for 12 h, and actively rewarmed in the inbred Chinese Wuzhishan minipigs successfully resuscitated after 8 min of untreated ventricular fibrillation. Cerebral samples were collected at 24 and 72 h following return of spontaneous circulation (ROSC). We found that mitochondrial malondialdehyde and protein carbonyl levels were significantly increased in the cerebral cortex in normothermic pigs even at 24 h after ROSC, whereas mild hypothermia attenuated this increase. Moreover, mild hypothermia attenuated the decrease in Complex I and Complex III (i.e., major sites of reactive oxygen species production) activities of the mitochondrial respiratory chain and increased antioxidant enzyme manganese superoxide dismutase (MnSOD) activity. This increase in MnSOD activity was consistent with the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and protein expressions, and with the increase of Nrf2 nuclear translocation in normothermic pigs at 24 and 72 h following ROSC, whereas mild hypothermia enhanced these tendencies. Thus, our findings indicate that mild hypothermia attenuates mitochondrial oxidative stress in the cerebral cortex, which may be associated with reduced impairment of mitochondrial respiratory chain enzymes, and enhancement of MnSOD activity and expression via Nrf2 activation. PMID:22532848
The effect of respiration buffer composition on mitochondrial metabolism and function.
Wollenman, Lucas C; Vander Ploeg, Matthew R; Miller, Mackinzie L; Zhang, Yizhu; Bazil, Jason N
2017-01-01
Functional studies on isolated mitochondria critically rely on the right choice of respiration buffer. Differences in buffer composition can lead to dramatically different respiration rates leading to difficulties in comparing prior studies. The ideal buffer facilities high ADP-stimulated respiratory rates and minimizes substrate transport effects so that the ability to distinguish between various treatments and conditions is maximal. In this study, we analyzed a variety of respiration buffers and substrate combinations to determine the optimal conditions to support mitochondrial function through ADP-stimulated respiration and uncoupled respiration using FCCP. The buffers consisted of a standard KCl based buffer (B1) and three modified buffers with chloride replaced by the K-lactobionate, sucrose, and the antioxidant taurine (B2) or K-gluconate (B3). The fourth buffer (B4) was identical to B2 except that K-lactobionate was replaced with K-gluconate. The substrate combinations consisted of metabolites that utilize different pathways of mitochondrial metabolism. To test mitochondrial function, we used isolated cardiac guinea pig mitochondria and measured oxygen consumption for three respiratory states using an Oroboros Oxygraph-2k. These states were the leak state (energized mitochondria in the absence of adenylates), ADP-stimulated state (energized mitochondria in the presence of saturating ADP concentrations), and uncoupled state (energized mitochondria in the presence of FCCP). On average across all substrate combinations, buffers B2, B3, and B4 had an increase of 16%, 26%, and 35% for the leak state, ADP-simulated state, and uncoupled state, respectively, relative to rates using B1. The common feature distinguishing these buffers from B1 is the notable lack of high chloride concentrations. Based on the respiratory rate metrics obtained with the substrate combinations, we conclude that the adenine nucleotide translocase, the dicarboxylate carrier, and the alpha-ketoglutarate exchanger are partially inhibited by chloride. Therefore, when the goal is to maximize ADP-stimulated respiration, buffers containing K-lactobionate or K-gluconate are superior choices compared to the standard KCl-based buffers.
The effect of respiration buffer composition on mitochondrial metabolism and function
Wollenman, Lucas C.; Vander Ploeg, Matthew R.; Miller, Mackinzie L.; Zhang, Yizhu
2017-01-01
Functional studies on isolated mitochondria critically rely on the right choice of respiration buffer. Differences in buffer composition can lead to dramatically different respiration rates leading to difficulties in comparing prior studies. The ideal buffer facilities high ADP-stimulated respiratory rates and minimizes substrate transport effects so that the ability to distinguish between various treatments and conditions is maximal. In this study, we analyzed a variety of respiration buffers and substrate combinations to determine the optimal conditions to support mitochondrial function through ADP-stimulated respiration and uncoupled respiration using FCCP. The buffers consisted of a standard KCl based buffer (B1) and three modified buffers with chloride replaced by the K-lactobionate, sucrose, and the antioxidant taurine (B2) or K-gluconate (B3). The fourth buffer (B4) was identical to B2 except that K-lactobionate was replaced with K-gluconate. The substrate combinations consisted of metabolites that utilize different pathways of mitochondrial metabolism. To test mitochondrial function, we used isolated cardiac guinea pig mitochondria and measured oxygen consumption for three respiratory states using an Oroboros Oxygraph-2k. These states were the leak state (energized mitochondria in the absence of adenylates), ADP-stimulated state (energized mitochondria in the presence of saturating ADP concentrations), and uncoupled state (energized mitochondria in the presence of FCCP). On average across all substrate combinations, buffers B2, B3, and B4 had an increase of 16%, 26%, and 35% for the leak state, ADP-simulated state, and uncoupled state, respectively, relative to rates using B1. The common feature distinguishing these buffers from B1 is the notable lack of high chloride concentrations. Based on the respiratory rate metrics obtained with the substrate combinations, we conclude that the adenine nucleotide translocase, the dicarboxylate carrier, and the alpha-ketoglutarate exchanger are partially inhibited by chloride. Therefore, when the goal is to maximize ADP-stimulated respiration, buffers containing K-lactobionate or K-gluconate are superior choices compared to the standard KCl-based buffers. PMID:29091971
Wu, Jianjiang; Yang, Long; Xie, Peng; Yu, Jin; Yu, Tian; Wang, Haiying; Maimaitili, Yiliyaer; Wang, Jiang; Ma, Haiping; Yang, Yining; Zheng, Hong
2017-01-01
Previous studies from our group have demonstrated that sevoflurane post-conditioning (SPC) protects against myocardial ischemia reperfusion injury via elevating the intranuclear expression of hypoxia inducible factor-1 alpha (HIF-1α). However, diabetic SPC is associated with decreased myocardial protection and disruption of the HIF-1 signaling pathway. Previous studies have demonstrated that cobalt chloride (CoCl2) can upregulate HIF-1α expression under diabetic conditions, but whether myocardial protection by SPC can be restored afterward remains unclear. We established a rat model of type 2 diabetes and a Langendorff isolated heart model of ischemia-reperfusion injury. Prior to reperfusion, 2.4% sevoflurane was used as a post-conditioning treatment. The diabetic rats were treated with CoCl2 24 h before the experiment. At the end of reperfusion, tests were performed to assess myocardial function, infarct size, mitochondrial morphology, nitric oxide (NO), Mitochondrial reactive oxygen species (ROS), mitochondrial respiratory function and enzyme activity, HIF-1α, vascular endothelial growth factor (VEGF) and endothelial NO synthase (eNOS) protein levels. In addition, myocardial protection by SPC was monitored after the blood glucose levels were lowered by insulin. The diabetic state was associated with deficient SPC protection and decreased HIF-1α expression. After treating the diabetic rats with CoCl2, SPC significantly upregulated the expression of HIF-1α, VEGF and eNOS, which markedly improved cardiac function, NO, mitochondrial respiratory function, and enzyme activity and decreased the infarction areas and ROS. In addition, these effects were not influenced by blood glucose levels. This study proved that CoCl2activates the HIF-1α signaling pathway, which restores SPC-dependent myocardial protection under diabetic conditions, and the protective effects of SPC were independent of blood glucose levels. PMID:28659817
Smith, Darrell R.; Saleh, Ali; Schapansky, Jason; Marquez, Alexandra; Gomes, Suzanne; Akude, Eli; Morrow, Dwane; Calcutt, Nigel A.; Fernyhough, Paul
2012-01-01
Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia. In this study, we tested the hypothesis that deficits in adenosine monophosphate-activated protein kinase/PGC-1α signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy in rodent models of type 1 and type 2 diabetes. Phosphorylation and expression of adenosine monophosphate-activated protein kinase/PGC-1α and mitochondrial respiratory chain complex proteins were downregulated in dorsal root ganglia of both streptozotocin-diabetic rats and db/db mice. Adenoviral-mediated manipulation of endogenous adenosine monophosphate-activated protein kinase activity using mutant proteins modulated neurotrophin-directed neurite outgrowth in cultures of sensory neurons derived from adult rats. Addition of resveratrol to cultures of sensory neurons derived from rats after 3–5 months of streptozotocin-induced diabetes, significantly elevated adenosine monophosphate-activated protein kinase levels, enhanced neurite outgrowth and normalized mitochondrial inner membrane polarization in axons. The bioenergetics profile (maximal oxygen consumption rate, coupling efficiency, respiratory control ratio and spare respiratory capacity) was aberrant in cultured sensory neurons from streptozotocin-diabetic rats and was corrected by resveratrol treatment. Finally, resveratrol treatment for the last 2 months of a 5-month period of diabetes reversed thermal hypoalgesia and attenuated foot skin intraepidermal nerve fibre loss and reduced myelinated fibre mean axonal calibre in streptozotocin-diabetic rats. These data suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the adenosine monophosphate-activated protein kinase/PGC-1α pathway. PMID:22561641
Cardiac myocyte exosomes: stability, HSP60, and proteomics.
Malik, Z A; Kott, K S; Poe, A J; Kuo, T; Chen, L; Ferrara, K W; Knowlton, A A
2013-04-01
Exosomes, which are 50- to 100-nm-diameter lipid vesicles, have been implicated in intercellular communication, including transmitting malignancy, and as a way for viral particles to evade detection while spreading to new cells. Previously, we demonstrated that adult cardiac myocytes release heat shock protein (HSP)60 in exosomes. Extracellular HSP60, when not in exosomes, causes cardiac myocyte apoptosis via the activation of Toll-like receptor 4. Thus, release of HSP60 from exosomes would be damaging to the surrounding cardiac myocytes. We hypothesized that 1) pathological changes in the environment, such as fever, change in pH, or ethanol consumption, would increase exosome permeability; 2) different exosome inducers would result in different exosomal protein content; 3) ethanol at "physiological" concentrations would cause exosome release; and 4) ROS production is an underlying mechanism of increased exosome production. We found the following: first, exosomes retained their protein cargo under different physiological/pathological conditions, based on Western blot analyses. Second, mass spectrometry demonstrated that the protein content of cardiac exosomes differed significantly from other types of exosomes in the literature and contained cytosolic, sarcomeric, and mitochondrial proteins. Third, ethanol did not affect exosome stability but greatly increased the production of exosomes by cardiac myocytes. Fourth, ethanol- and hypoxia/reoxygenation-derived exosomes had different protein content. Finally, ROS inhibition reduced exosome production but did not completely inhibit it. In conclusion, exosomal protein content is influenced by the cell source and stimulus for exosome formation. ROS stimulate exosome production. The functions of exosomes remain to be fully elucidated.
Diminished Autophagy Limits Cardiac Injury in Mouse Models of Type 1 Diabetes*
Xu, Xianmin; Kobayashi, Satoru; Chen, Kai; Timm, Derek; Volden, Paul; Huang, Yuan; Gulick, James; Yue, Zhenyu; Robbins, Jeffrey; Epstein, Paul N.; Liang, Qiangrong
2013-01-01
Cardiac autophagy is inhibited in type 1 diabetes. However, it remains unknown if the reduced autophagy contributes to the pathogenesis of diabetic cardiomyopathy. We addressed this question using mouse models with gain- and loss-of-autophagy. Autophagic flux was inhibited in diabetic hearts when measured at multiple time points after diabetes induction by streptozotocin as assessed by protein levels of microtubule-associated protein light chain 3 form 2 (LC3-II) or GFP-LC3 puncta in the absence and presence of the lysosome inhibitor bafilomycin A1. Autophagy in diabetic hearts was further reduced in beclin 1- or Atg16-deficient mice but was restored partially or completely by overexpression of beclin 1 to different levels. Surprisingly, diabetes-induced cardiac damage was substantially attenuated in beclin 1- and Atg16-deficient mice as shown by improved cardiac function as well as reduced levels of oxidative stress, interstitial fibrosis, and myocyte apoptosis. In contrast, diabetic cardiac damage was dose-dependently exacerbated by beclin 1 overexpression. The cardioprotective effects of autophagy deficiency were reproduced in OVE26 diabetic mice. These effects were associated with partially restored mitophagy and increased expression and mitochondrial localization of Rab9, an essential regulator of a non-canonical alternative autophagic pathway. Together, these findings demonstrate that the diminished autophagy is an adaptive response that limits cardiac dysfunction in type 1 diabetes, presumably through up-regulation of alternative autophagy and mitophagy. PMID:23658055
[Modifications in myocardial energy metabolism in diabetic patients
NASA Technical Reports Server (NTRS)
Grynberg, A.
2001-01-01
The capacity of cardiac myocyte to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. Because FA is the main heart fuel (although the most expensive one in oxygen, and prompt to induce deleterious effects), this process is based on a balanced fatty acid (FA) metabolism. Several pathological situations are associated with an accumulation of FA or derivatives, or with an excessive b-oxidation. The diabetic cardiomyocyte is characterised by an over consumption of FA. The control of the FA/glucose balance clearly appears as a new strategy for cytoprotection, particularly in diabetes and requires a reduced FA contribution to ATP production. Cardiac myocytes can control FA mitochondrial entry, but display weak ability to control FA uptake, thus the fate of non beta-oxidized FA appear as a new impairment for the cell. Both the trigger and the regulation of cardiac contraction result from membrane activity, and the other major FA function in the myocardium is their role in membrane homeostasis, through the phospholipid synthesis and remodeling pathways. Sudden death, hypercatecholaminemia, diabetes and heart failure have been associated with an altered PUFA content in cardiac membranes. Experimental data suggest that the 2 metabolic pathways involved in membrane homeostasis may represent therapeutic targets for cytoprotection. The drugs that increase cardiac phospholipid turnover (trimetazidine, ranolazine,...) display anti-ischemic non hemodynamic effect. This effect is based on a redirection of FA utilization towards phospholipid synthesis, which decrease their availability for energy production. A nutritional approach gave also promising results. Besides its anti-arrhythmic effect, the dietary docosahexaenoic acid is able to reduce FA energy consumption and hence oxygen demand. The cardiac metabolic pathways involving FA should be considered as a whole, precariously balanced. The diabetic heart being characterised by a different metabolic "status" with similarities to that of myocardium in coronary disease. Diabetes and other chronic cardiac diseases share common FA metabolism disorders leading to an altered energy balance, a decrease in long chain polyunsaturated Fas, and altered FA profiles in cardiac membranes. These disturbances, however, do not represent independent therapeutic targets, and should be considered as a whole.
Amiodarone inhibits sarcolemmal but not mitochondrial KATP channels in Guinea pig ventricular cells.
Sato, Toshiaki; Takizawa, Taichi; Saito, Tomoaki; Kobayashi, Satoru; Hara, Yukio; Nakaya, Haruaki
2003-12-01
ATP-sensitive K(+) (KATP) channels are present on the sarcolemma (sarcKATP channels) and mitochondria (mitoKATP channels) of cardiac myocytes. Amiodarone, a class III antiarrhythmic drug, reduces sudden cardiac death in patients with organic heart disease. The objective of the present study was to investigate the effects of amiodarone on sarcKATP and mitoKATP channels. Single sarcKATP channel current and flavoprotein fluorescence were measured in guinea pig ventricular myocytes to assay sarcKATP and mitoKATP channel activity, respectively. Amiodarone inhibited the sarcKATP channel currents in a concentration-dependent manner without affecting its unitary amplitude. The IC50 values were 0.35 microM in the inside-out patch exposed to an ATP-free solution and 2.8 microM in the cell-attached patch under metabolic inhibition, respectively. Amiodarone (10 microM) alone did not oxidize the flavoprotein. In addition, the oxidative effect of the mitoKATP channel opener diazoxide (100 microM) was unaffected by amiodarone. Exposure to ouabain (1 mM) for 30 min produced mitochondrial Ca(2+) overload, and the intensity of rhod-2 fluorescence increased to 246 +/- 16% of baseline (n = 9). Amiodarone did not alter the ouabain-induced mitochondrial Ca(2+) overload (236 +/- 10% of baseline, n = 7). Treatment with diazoxide significantly reduced the ouabain-induced mitochondrial Ca(2+) overload (158 +/- 15% of baseline, n = 8, p < 0.05 versus ouabain); this effect was not abolished by amiodarone (154 +/- 10% of baseline, n = 8, p < 0.05 versus ouabain). These results suggest that amiodarone inhibits sarcKATP but not mitoKATP channels in cardiac myocytes. Such an action of amiodarone may effectively prevent ischemic arrhythmias without causing ischemic damage.
Whitnall, Megan; Rahmanto, Yohan Suryo; Sutak, Robert; Xu, Xiangcong; Becker, Erika M.; Mikhael, Marc R.; Ponka, Prem; Richardson, Des R.
2008-01-01
There is no effective treatment for the cardiomyopathy of the most common autosomal recessive ataxia, Friedreich's ataxia (FA). The identification of potentially toxic mitochondrial (MIT) iron (Fe) deposits in FA suggests that Fe plays a role in its pathogenesis. This study used the muscle creatine kinase conditional frataxin (Fxn) knockout (mutant) mouse model that reproduces the classical traits associated with cardiomyopathy in FA. We examined the mechanisms responsible for the increased cardiac MIT Fe loading in mutants. Moreover, we explored the effect of Fe chelation on the pathogenesis of the cardiomyopathy. Our investigation showed that increased MIT Fe in the myocardium of mutants was due to marked transferrin Fe uptake, which was the result of enhanced transferrin receptor 1 expression. In contrast to the mitochondrion, cytosolic ferritin expression and the proportion of cytosolic Fe were decreased in mutant mice, indicating cytosolic Fe deprivation and markedly increased MIT Fe targeting. These studies demonstrated that loss of Fxn alters cardiac Fe metabolism due to pronounced changes in Fe trafficking away from the cytosol to the mitochondrion. Further work showed that combining the MIT-permeable ligand pyridoxal isonicotinoyl hydrazone with the hydrophilic chelator desferrioxamine prevented cardiac Fe loading and limited cardiac hypertrophy in mutants but did not lead to overt cardiac Fe depletion or toxicity. Fe chelation did not prevent decreased succinate dehydrogenase expression in the mutants or loss of cardiac function. In summary, we show that loss of Fxn markedly alters cellular Fe trafficking and that Fe chelation limits myocardial hypertrophy in the mutant. PMID:18621680
Lee, Yee-Ki; Lau, Yee-Man; Ng, Kwong-Man; Lai, Wing-Hon; Ho, Shu-Leong; Tse, Hung-Fat; Siu, Chung-Wah; Ho, Philip Wing-Lok
2016-01-15
Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy, is caused by silencing of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis. Application of our previously established FRDA human induced pluripotent stem cell (hiPSC) derived cardiomyocytes model as a platform to assess the efficacy of treatment with either the antioxidant coenzyme Q10 analog, idebenone (IDE) or the iron chelator, deferiprone (DFP), which are both under clinical trial. DFP was able to more significantly suppress synthesis of reactive oxygen species (ROS) than IDE at the dosages of 25 μM and 10nM respectively which agreed with the reduced rate of intracellular accumulation of iron by DFP treatment from 25 to 50 μM. With regard to cardiac electrical-contraction (EC) coupling function, decay velocity of calcium handling kinetics in FRDA-hiPSC-cardiomyocytes was significantly improved by DFP treatment but not by IDE. Further mechanistic studies revealed that DFP also modulated iron induced mitochondrial stress as reflected by mitochondria network disorganization and decline level of respiratory chain protein, succinate dehydrogenase (CxII) and cytochrome c oxidase (COXIV). In addition, iron-response protein (IRP-1) regulatory loop was overridden by DFP as reflected by resumed level of ferritin (FTH) back to basal level and the attenuated transferrin receptor (TSFR) mRNA level suppression thereby reducing further iron uptake. DFP modulated iron homeostasis in FRDA-hiPSC-cardiomyocytes and effectively relieved stress-stimulation related to cardiomyopathy. The resuming of redox condition led to the significantly improved cardiac prime events, cardiac electrical-coupling during contraction. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G
Majamaa-Voltti, Kirsi; Peuhkurinen, Keijo; Kortelainen, Marja-Leena; Hassinen, Ilmo E; Majamaa, Kari
2002-01-01
Background Tissues that depend on aerobic energy metabolism suffer most in diseases caused by mutations in mitochondrial DNA (mtDNA). Cardiac abnormalities have been described in many cases, but their frequency and clinical spectrum among patients with mtDNA mutations is unknown. Methods Thirty-nine patients with the 3243A>G mtDNA mutation were examined, methods used included clinical evaluation, electrocardiogram, Holter recording and echocardiography. Autopsy reports on 17 deceased subjects were also reviewed. The degree of 3243A>G mutation heteroplasmy was determined using an Apa I restriction fragment analysis. Better hearing level (BEHL0.5–4 kHz) was used as a measure of the clinical severity of disease. Results Left ventricular hypertrophy (LVH) was diagnosed in 19 patients (56%) by echocardiography and in six controls (15%) giving an odds ratio of 7.5 (95% confidence interval; 1.74–67). The dimensions of the left ventricle suggested a concentric hypertrophy. Left ventricular systolic or diastolic dysfunction was observed in 11 patients. Holter recording revealed frequent ventricular extrasystoles (>10/h) in five patients. Patients with LVH differed significantly from those without LVH in BEHL0.5–4 kHz, whereas the contribution of age or the degree of the mutant heteroplasmy in skeletal muscle to the risk of LVH was less remarkable. Conclusions Structural and functional abnormalities of the heart were common in patients with 3243A>G. The risk of LVH was related to the clinical severity of the phenotype, and to a lesser degree to age, suggesting that patients presenting with any symptoms from the mutation should also be evaluated for cardiac abnormalities. PMID:12150714
Jang, Sehwan; Parodi-Rullan, Rebecca; Khuchua, Zaza; Kuznetsov, Andrey V.
2018-01-01
Growing number of studies provide strong evidence that the mitochondrial permeability transition pore (PTP), a non-selective channel in the inner mitochondrial membrane, is involved in the pathogenesis of cardiac ischemia–reperfusion and can be targeted to attenuate reperfusion-induced damage to the myocardium. The molecular identity of the PTP remains unknown and cyclophilin D is the only protein commonly accepted as a major regulator of the PTP opening. Therefore, cyclophilin D is an attractive target for pharmacological or genetic therapies to reduce ischemia–reperfusion injury in various animal models and humans. Most animal studies demonstrated cardioprotective effects of PTP inhibition; however, a recent large clinical trial conducted by international groups demonstrated that cyclosporine A, a cyclophilin D inhibitor, failed to protect the heart in patients with myocardial infarction. These studies, among others, raise the question of whether cyclophilin D, which plays an important physiological role in the regulation of cell metabolism and mitochondrial bioenergetics, is a viable target for cardioprotection. This review discusses previous studies to provide comprehensive information on the physiological role of cyclophilin D as well as PTP opening in the cell that can be taken into consideration for the development of new PTP inhibitors. PMID:28378042
Nederlof, Rianne; Denis, Simone; Lauzier, Benjamin; Rosiers, Christine Des; Laakso, Markku; Hagen, Jacob; Argmann, Carmen; Wanders, Ronald; Houtkooper, Riekelt H; Hollmann, Markus W; Houten, Sander M; Zuurbier, Coert J
2017-07-01
Cardiac hexokinase II (HKII) can translocate between cytosol and mitochondria and change its cellular expression with pathologies such as ischemia-reperfusion, diabetes and heart failure. The cardiac metabolic consequences of these changes are unknown. Here we measured energy substrate utilization in cytosol and mitochondria using stabile isotopes and oxygen consumption of the intact perfused heart for 1) an acute decrease in mitochondrial HKII (mtHKII), and 2) a chronic decrease in total cellular HKII. We first examined effects of 200nM TAT (Trans-Activator of Transcription)-HKII peptide treatment, which was previously shown to acutely decrease mtHKII by ~30%. In Langendorff-perfused hearts TAT-HKII resulted in a modest, but significant, increased oxygen consumption, while cardiac performance was unchanged. At the metabolic level, there was a nonsignificant (p=0.076) ~40% decrease in glucose contribution to pyruvate and lactate formation through glycolysis and to mitochondrial citrate synthase flux (6.6±1.1 vs. 11.2±2.2%), and an 35% increase in tissue pyruvate (27±2 vs. 20±2pmol/mg; p=0.033). Secondly, we compared WT and HKII +/- hearts (50% chronic decrease in total HKII). RNA sequencing revealed no differential gene expression between WT and HKII +/- hearts indicating an absence of metabolic reprogramming at the transcriptional level. Langendorff-perfused hearts showed no significant differences in glycolysis (0.34±0.03μmol/min), glucose contribution to citrate synthase flux (35±2.3%), palmitate contribution to citrate synthase flux (20±1.1%), oxygen consumption or mechanical performance between WT and HKII +/- hearts. These results indicate that acute albeit not chronic changes in mitochondrial HKII modestly affect cardiac oxygen consumption and energy substrate metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.
Ussher, John R.; Koves, Timothy R.; Jaswal, Jagdip S.; Zhang, Liyan; Ilkayeva, Olga; Dyck, Jason R.B.; Muoio, Deborah M.; Lopaschuk, Gary D.
2009-01-01
OBJECTIVE Whereas an impaired ability to oxidize fatty acids is thought to contribute to intracellular lipid accumulation, insulin resistance, and cardiac dysfunction, high rates of fatty acid oxidation could also impair glucose metabolism and function. We therefore determined the effects of diet-induced obesity (DIO) in wild-type (WT) mice and mice deficient for malonyl CoA decarboxylase (MCD−/−; an enzyme promoting mitochondrial fatty acid oxidation) on insulin-sensitive cardiac glucose oxidation. RESEARCH DESIGN AND METHODS WT and MCD−/− mice were fed a low- or high-fat diet for 12 weeks, and intramyocardial lipid metabolite accumulation was assessed. A parallel feeding study was performed to assess myocardial function and energy metabolism (nanomoles per gram of dry weight per minute) in isolated working hearts (+/– insulin). RESULTS DIO markedly reduced insulin-stimulated glucose oxidation compared with low fat–fed WT mice (167 ± 31 vs. 734 ± 125; P < 0.05). MCD−/− mice subjected to DIO displayed a more robust insulin-stimulated glucose oxidation (554 ± 82 vs. 167 ± 31; P < 0.05) and less incomplete fatty acid oxidation, evidenced by a decrease in long-chain acylcarnitines compared with WT counterparts. MCD−/− mice had long-chain acyl CoAs similar to those of WT mice subjected to DIO but had increased triacylglycerol levels (10.92 ± 3.72 vs. 3.29 ± 0.62 μmol/g wet wt; P < 0.05). CONCLUSIONS DIO does not impair cardiac fatty acid oxidation or function, and there exists disassociation between myocardial lipid accumulation and insulin sensitivity. Our results suggest that MCD deficiency is not detrimental to the heart in obesity. PMID:19478144
Dolinsky, Vernon W; Jones, Kelvin E; Sidhu, Robinder S; Haykowsky, Mark; Czubryt, Michael P; Gordon, Tessa; Dyck, Jason R B
2012-01-01
Exercise training (ET) improves endurance capacity by increasing both skeletal muscle mitochondrial number and function, as well as contributing to favourable cardiac remodelling. Interestingly, some of the benefits of regular exercise can also be mimicked by the naturally occurring polyphenol, resveratrol (RESV). However, it is not known whether RESV enhances physiological adaptations to ET. To investigate this, male Wistar rats were randomly assigned to a control chow diet or a chow diet that contained RESV (4 g kg−1 of diet) and subsequently subjected to a programme of progressive treadmill running for 12 weeks. ET-induced improvements in exercise performance were enhanced by 21% (P < 0.001) by the addition of RESV to the diet. In soleus muscle, ET + RESV increased both the twitch (1.8-fold; P < 0.05) and tetanic (1.2-fold; P < 0.05) forces generated during isometric contraction, compared to ET alone. In vivo echocardiography demonstrated that ET + RESV also increased the resting left ventricular ejection fraction by 10% (P < 0.05), and reduced left ventricular wall stress compared to ET alone. These functional changes were accompanied by increased cardiac fatty acid oxidation (1.2-fold; P < 0.05) and favourable changes in cardiac gene expression and signal transduction pathways that optimized the utilization of fatty acids in ET + RESV compared to ET alone. Overall, our findings provide evidence that the capacity for fatty acid oxidation is augmented by the addition of RESV to the diet during ET, and that this may contribute to the improved physical performance of rats following ET. PMID:22473781
Shirasaka, Tomonori; Miyagawa, Shigeru; Fukushima, Satsuki; Saito, Atsuhiro; Shiozaki, Motoko; Kawaguchi, Naomasa; Matsuura, Nariaki; Nakatani, Satoshi; Sakai, Yoshiki; Daimon, Takashi; Okita, Yutaka; Sawa, Yoshiki
2013-08-01
Cardiac functional deterioration in dilated cardiomyopathy (DCM) is known to be reversed by intramyocardial up-regulation of multiple cardioprotective factors, whereas a prostacyclin analog, ONO1301, has been shown to paracrinally activate interstitial cells to release a variety of protective factors. We here hypothesized that intramyocardial delivery of a slow-releasing form of ONO1301 (ONO1301SR) might activate regional myocardium to up-regulate cardiotherapeutic factors, leading to regional and global functional recovery in DCM. ONO1301 elevated messenger RNA and protein level of hepatocyte growth factor, vascular endothelial growth factor, and stromal-derived factor-1 of normal human dermal fibroblasts in a dose-dependent manner in vitro. Intramyocardial delivery of ONO1301SR, which is ONO1301 mixed with polylactic and glycolic acid polymer (PLGA), but not that of PLGA only, yielded significant global functional recovery in a canine rapid pacing-induced DCM model, assessed by echocardiography and cardiac catheterization (n = 5 each). Importantly, speckle-tracking echocardiography unveiled significant regional functional recovery in the ONO1301-delivered territory, consistent to significantly increased vascular density, reduced interstitial collagen accumulation, attenuated myocyte hypertrophy, and reversed mitochondrial structure in the corresponding area. Intramyocardial delivery of ONO1301SR, which is a PLGA-coated slow-releasing form of ONO1301, up-regulated multiple cardiotherapeutic factors in the injected territory, leading to region-specific reverse left ventricular remodeling and consequently a global functional recovery in a rapid-pacing-induced canine DCM model, warranting a further preclinical study to optimize this novel drug-delivery system to treat DCM. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Joo, Jung-Chul; Seol, Myung Do; Yoon, Jin Won; Lee, Young Soo; Kim, Dong-Keun; Choi, Yong Hoon; Ahn, Hyo Seong; Cho, Wook Hyun
2013-03-01
Myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) is a multisystem clinical syndrome manifested by mitochondrial myopathy, encephalopathy, lactic acidosis and recurrent stroke-like episodes. A 27-year-old female with MELAS syndrome presented with cerebral infarction. Echocardiography revealed a thrombus attached to the apex of the hypertrophied left ventricle, with decreased systolic function. The embolism of the intracardiac thrombus might have been the cause of stroke. There should be more consideration given to the increased possibility of intracardiac thrombus formation when a MELAS patient with cardiac involvement is encountered.
Zhu, Pingjun; Hu, Shunying; Jin, Qinhua; Li, Dandan; Tian, Feng; Toan, Sam; Li, Yang; Zhou, Hao; Chen, Yundai
2018-06-01
Receptor-interacting protein 3 (Ripk3)-mediated necroptosis contributes to cardiac ischaemia-reperfusion (IR) injury through poorly defined mechanisms. Our results demonstrated that Ripk3 was strongly upregulated in murine hearts subjected to IR injury and cardiomyocytes treated with LPS and H 2 O 2 . The higher level of Ripk3 was positively correlated to the infarction area expansion, cardiac dysfunction and augmented cardiomyocytes necroptosis. Function study further illustrated that upregulated Ripk3 evoked the endoplasmic reticulum (ER) stress, which was accompanied with an increase in intracellular Ca 2+ level ([Ca 2+ ]c) and xanthine oxidase (XO) expression. Activated XO raised cellular reactive oxygen species (ROS) that mediated the mitochondrial permeability transition pore (mPTP) opening and cardiomyocytes necroptosis. By comparison, genetic ablation of Ripk3 abrogated the ER stress and thus blocked the [Ca 2+ ]c overload-XO-ROS-mPTP pathways, favouring a pro-survival state that ultimately resulted in the inhibition of cardiomyocytes necroptosis in the setting of cardiac IR injury. In summary, the present study helps to elucidate how necroptosis is mediated by ER stress, via the calcium overload /XO/ROS/mPTP opening axis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Sudheesh, N P; Ajith, T A; Janardhanan, K K; Krishnan, C V
2009-08-01
Age-related decline in the capacity to withstand stress, such as ischemia and reperfusion, results in congestive heart failure. Though the mechanisms underlying cardiac decay are not clear, age dependent somatic damages to mitochondrial DNA (mtDNA), loss of mitochondrial function, and a resultant increase in oxidative stress in heart muscle cells may be responsible for the increased risk for cardiovascular diseases. The effect of a safe nutritional supplement, POLY-MVA, containing the active ingredient palladium alpha-lipoic acid complex, was evaluated on the activities of the Krebs cycle enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, II, III, and IV in heart mitochondria of aged male albino rats of Wistar strain. Administration of 0.05 ml/kg of POLY-MVA (which is equivalent to 0.38 mg complexed alpha-lipoic acid/kg, p.o), once daily for 30 days, was significantly (p<0.05) effective to enhance the Krebs cycle dehydrogenases, and mitochondrial electron transport chain complexes. The unique electronic and redox properties of palladium alpha-lipoic acid complex appear to be a key to this physiological effectiveness. The results strongly suggest that this formulation might be effective to protect the aging associated risk of cardiovascular and neurodegenerative diseases.
Fancher, Ibra S; Dick, Gregory M; Hollander, John M
2013-03-28
Our goal was to determine the effects of type I diabetes mellitus on the function and expression of ATP-dependent K(+) channels in cardiac mitochondria (mitoKATP), composed of a pore-forming subunit (Kir6.1) and a diazoxide-sensitive sulphonylurea receptor (SUR1). We tested the hypothesis that diabetes reduces Kir6.1 and SUR1 expression as well as diazoxide-induced depolarization of mitochondrial membrane potential (ΔΨm). Male FVB mice were made diabetic for 5weeks with multiple low dose injections of streptozotocin. Cardiac mitochondria were separated into two populations: subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). mitoKATP expression was determined via Western blot analysis of Kir6.1 and SUR1 proteins. mitoKATP function was determined by measuring ΔΨm with the potentiometric dye rhodamine 123. Diabetes reduced Kir6.1 and SUR1 expression in IFM by over 40% (p<0.05 for both). Similarly, diabetes reduced Kir6.1 expression in SSM by approximately 40% (p<0.05); however, SUR1 expression was unaffected. Opening mitoKATP with diazoxide (100μM) depolarized control IFM ΔΨm by 80% of the valinomycin maximum; diabetic IFM depolarized only 30% (p<0.05). Diazoxide-induced depolarization was much less in SSM (20-30%) and unaffected by diabetes. Our data indicate that diabetes reduces mitoKATP expression and function in IFM. These changes in mitoKATP may provide an opportunity to understand mechanisms leading to diabetic cardiomyopathy and loss of cardioprotective mechanisms in the diabetic heart. Copyright © 2013 Elsevier Inc. All rights reserved.
Chun, Young Wook; Balikov, Daniel A.; Feaster, Tromondae K.; Williams, Charles H.; Sheng, Calvin C.; Lee, Jung-Bok; Boire, Timothy C.; Neely, M. Diana; Bellan, Leon M.; Ess, Kevin C.; Bowman, Aaron B.; Sung, Hak-Joon; Hong, Charles C.
2015-01-01
Cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CMs) hold great promise for modeling human heart diseases. However, iPSC-CMs studied to date resemble immature embryonic myocytes and therefore do not adequately recapitulate native adult cardiomyocyte phenotypes. Since extracellular matrix plays an essential role in heart development and maturation in vivo, we sought to develop a synthetic culture matrix that could enhance functional maturation of iPSC-CMs in vitro. In this study, we employed a library of combinatorial polymers comprising of three functional subunits - poly-ε-caprolacton (PCL), polyethylene glycol (PEG), and carboxylated PCL (cPCL) - as synthetic substrates for culturing human iPSC-CMs. Of these, iPSC-CMs cultured on 4%PEG-96%PCL (each % indicates the corresponding molar ratio) exhibit the greatest contractility and mitochondrial function. These functional enhancements are associated with increased expression of cardiac myosin light chain-2v, cardiac troponin I and integrin alpha-7. Importantly, iPSC-CMs cultured on 4%PEG-95%PCL demonstrate troponin I (TnI) isoform switch from the fetal slow skeletal TnI (ssTnI) to the postnatal cardiac TnI (cTnI), the first report of such transition in vitro. Finally, culturing iPSC-CMs on 4%PEG-96%PCL also significantly increased expression of genes encoding intermediate filaments known to transduce integrin-mediated mechanical signals to the myofilaments. In summary, our study demonstrates that synthetic culture matrices engineered from combinatorial polymers can be utilized to promote in vitro maturation of human iPSC-CMs through the engagement of critical matrix-integrin interactions. PMID:26204225
Zaglia, Tania; Ceriotti, Paola; Campo, Antonio; Borile, Giulia; Armani, Andrea; Carullo, Pierluigi; Prando, Valentina; Coppini, Raffaele; Vida, Vladimiro; Stølen, Tomas O.; Ulrik, Wisløff; Cerbai, Elisabetta; Stellin, Giovanni; Faggian, Giuseppe; De Stefani, Diego; Sandri, Marco; Rizzuto, Rosario; Di Lisa, Fabio; Pozzan, Tullio; Catalucci, Daniele; Mongillo, Marco
2017-01-01
The mitochondrial Ca2+ uniporter complex (MCUC) is a multimeric ion channel which, by tuning Ca2+ influx into the mitochondrial matrix, finely regulates metabolic energy production. In the heart, this dynamic control of mitochondrial Ca2+ uptake is fundamental for cardiomyocytes to adapt to either physiologic or pathologic stresses. Mitochondrial calcium uniporter (MCU), which is the core channel subunit of MCUC, has been shown to play a critical role in the response to β-adrenoreceptor stimulation occurring during acute exercise. The molecular mechanisms underlying the regulation of MCU, in conditions requiring chronic increase in energy production, such as physiologic or pathologic cardiac growth, remain elusive. Here, we show that microRNA-1 (miR-1), a member of the muscle-specific microRNA (myomiR) family, is responsible for direct and selective targeting of MCU and inhibition of its translation, thereby affecting the capacity of the mitochondrial Ca2+ uptake machinery. Consistent with the role of miR-1 in heart development and cardiomyocyte hypertrophic remodeling, we additionally found that MCU levels are inversely related with the myomiR content, in murine and, remarkably, human hearts from both physiologic (i.e., postnatal development and exercise) and pathologic (i.e., pressure overload) myocardial hypertrophy. Interestingly, the persistent activation of β-adrenoreceptors is likely one of the upstream repressors of miR-1 as treatment with β-blockers in pressure-overloaded mouse hearts prevented its down-regulation and the consequent increase in MCU content. Altogether, these findings identify the miR-1/MCU axis as a factor in the dynamic adaptation of cardiac cells to hypertrophy. PMID:29073097
Zhang, Liyan; Affolter, Andreas; Gandhi, Manoj; Hersberger, Martin; Warren, Blair E.; Lemieux, Hélène; Sobhi, Hany F.; Clanachan, Alexander S.; Zaugg, Michael
2014-01-01
Background Insulin resistance and early type-2 diabetes are highly prevalent. However, it is unknown whether Intralipid® and sevoflurane protect the early diabetic heart against ischemia-reperfusion injury. Methods Early type-2 diabetic hearts from Sprague-Dawley rats fed for 6 weeks with fructose were exposed to 15 min of ischemia and 30 min of reperfusion. Intralipid® (1%) was administered at the onset of reperfusion. Peri-ischemic sevoflurane (2 vol.-%) served as alternative protection strategy. Recovery of left ventricular function was recorded and the activation of Akt and ERK 1/2 was monitored. Mitochondrial function was assessed by high-resolution respirometry and mitochondrial ROS production was measured by Amplex Red and aconitase activity assays. Acylcarnitine tissue content was measured and concentration-response curves of complex IV inhibition by palmitoylcarnitine were obtained. Results Intralipid® did not exert protection in early diabetic hearts, while sevoflurane improved functional recovery. Sevoflurane protection was abolished by concomitant administration of the ROS scavenger N-2-mercaptopropionyl glycine. Sevoflurane, but not Intralipid® produced protective ROS during reperfusion, which activated Akt. Intralipid® failed to inhibit respiratory complex IV, while sevoflurane inhibited complex I. Early diabetic hearts exhibited reduced carnitine-palmitoyl-transferase-1 activity, but palmitoylcarnitine could not rescue protection and enhance postischemic functional recovery. Cardiac mitochondria from early diabetic rats exhibited an increased content of subunit IV-2 of respiratory complex IV and of uncoupling protein-3. Conclusions Early type-2 diabetic hearts lose complex IV-mediated protection by Intralipid® potentially due to a switch in complex IV subunit expression and increased mitochondrial uncoupling, but are amenable to complex I-mediated sevoflurane protection. PMID:25127027