On the Evolution of the Cardiac Pacemaker
Burkhard, Silja; van Eif, Vincent; Garric, Laurence; Christoffels, Vincent M.; Bakkers, Jeroen
2017-01-01
The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx), and bone morphogenic protein (Bmp) families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function. PMID:29367536
Mathematical Models of Cardiac Pacemaking Function
NASA Astrophysics Data System (ADS)
Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak
2013-10-01
Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.
Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell
Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.
2015-01-01
Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434
Al-Wakeel, Nadya; O h-Ici, Darach; Schmitt, Katharina R; Messroghli, Daniel R; Riesenkampff, Eugénie; Berger, Felix; Kuehne, Titus; Peters, Bjoern
2016-02-01
In patients with CHD, cardiac MRI is often indicated for functional and anatomical assessment. With the recent introduction of MRI-conditional pacemaker systems, cardiac MRI has become accessible for patients with pacemakers. The present clinical study aims to evaluate safety, susceptibility artefacts, and image reading of cardiac MRI in patients with CHD and MRI-conditional pacemaker systems. Material and methods CHD patients with MRI-conditional pacemaker systems and a clinical need for cardiac MRI were examined with a 1.5-T MRI system. Lead function was tested before and after MRI. Artefacts and image readings were evaluated using a four-point grading scale. A total of nine patients with CHD (mean age 34.0 years, range 19.5-53.6 years) received a total of 11 cardiac MRI examinations. Owing to clinical indications, seven patients had previously been converted from conventional to MRI-conditional pacemaker systems. All MRI examinations were completed without adverse effects. Device testing immediately after MRI and at follow-up showed no alteration of pacemaker device and lead function. Clinical questions could be addressed and answered in all patients. Cardiac MRI can be performed safely with high certainty of diagnosis in CHD patients with MRI-conditional pacemaker systems. In case of clinically indicated lead and box changing, CHD patients with non-MRI-conditional pacemaker systems should be considered for complete conversion to MRI-conditional systems.
Radiation effect on implanted pacemakers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourhamidi, A.H.
1983-10-01
It was previously thought that diagnostic or therapeutic ionizing radiation did not have an adverse effect on the function of cardiac pacemakers. Recently, however, some authors have reported damaging effect of therapeutic radiation on cardiac pulse generators. An analysis of a recently-extracted pacemaker documented the effect of radiation on the pacemaker pulse generator.
Trends in Cardiac Pacemaker Batteries
Mallela, Venkateswara Sarma; Ilankumaran, V; Rao, N.Srinivasa
2004-01-01
Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future. PMID:16943934
Zebrafish heart as a model to study the integrative autonomic control of pacemaker function
Stoyek, Matthew R.; Quinn, T. Alexander; Croll, Roger P.
2016-01-01
The cardiac pacemaker sets the heart's primary rate, with pacemaker discharge controlled by the autonomic nervous system through intracardiac ganglia. A fundamental issue in understanding the relationship between neural activity and cardiac chronotropy is the identification of neuronal populations that control pacemaker cells. To date, most studies of neurocardiac control have been done in mammalian species, where neurons are embedded in and distributed throughout the heart, so they are largely inaccessible for whole-organ, integrative studies. Here, we establish the isolated, innervated zebrafish heart as a novel alternative model for studies of autonomic control of heart rate. Stimulation of individual cardiac vagosympathetic nerve trunks evoked bradycardia (parasympathetic activation) and tachycardia (sympathetic activation). Simultaneous stimulation of both vagosympathetic nerve trunks evoked a summative effect. Effects of nerve stimulation were mimicked by direct application of cholinergic and adrenergic agents. Optical mapping of electrical activity confirmed the sinoatrial region as the site of origin of normal pacemaker activity and identified a secondary pacemaker in the atrioventricular region. Strong vagosympathetic nerve stimulation resulted in a shift in the origin of initial excitation from the sinoatrial pacemaker to the atrioventricular pacemaker. Putative pacemaker cells in the sinoatrial and atrioventricular regions expressed adrenergic β2 and cholinergic muscarinic type 2 receptors. Collectively, we have demonstrated that the zebrafish heart contains the accepted hallmarks of vertebrate cardiac control, establishing this preparation as a viable model for studies of integrative physiological control of cardiac function by intracardiac neurons. PMID:27342878
Proton Beam Therapy Interference With Implanted Cardiac Pacemakers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshiro, Yoshiko; Sugahara, Shinji; Noma, Mio
2008-11-01
Purpose: To investigate the effect of proton beam therapy (PBT) on implanted cardiac pacemaker function. Methods and Materials: After a phantom study confirmed the safety of PBT in patients with cardiac pacemakers, we treated 8 patients with implanted pacemakers using PBT to a total tumor dose of 33-77 gray equivalents (GyE) in dose fractions of 2.2-6.6 GyE. The combined total number of PBT sessions was 127. Although all pulse generators remained outside the treatment field, 4 patients had pacing leads in the radiation field. All patients were monitored by means of electrocardiogram during treatment, and pacemakers were routinely examined beforemore » and after PBT. Results: The phantom study showed no effect of neutron scatter on pacemaker generators. In the study, changes in heart rate occurred three times (2.4%) in 2 patients. However, these patients remained completely asymptomatic throughout the PBT course. Conclusions: PBT can result in pacemaker malfunctions that manifest as changes in pulse rate and pulse patterns. Therefore, patients with cardiac pacemakers should be monitored by means of electrocardiogram during PBT.« less
The retrospectroscope-the invention of the rechargeable cardiac pacemaker: vignette #9.
Fischell, R E
1990-01-01
The idea for a rechargeable cardiac pacemaker came to the author in the late 1960s after reading an advertisement stating that a company's batteries were so good they would last two years in a heart pacemaker. This meant that pacemaker patients would have to undergo surgery for their replacement frequently. Having worked on the development of hermetically sealed, nickel-cadmium batteries that could function for a decade or longer in an orbiting spacecraft, the author constructed the first prototype of a rechargeable cardiac pacemaker around 1968 to show cardiologists at Johns Hopkins Hospital that a pacemaker of indefinitely long life and much smaller size and weight could be built readily. The subsequent development and marketing of the device, which came on the market in 1973, is recounted.
Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels
Weisbrod, David; Khun, Shiraz Haron; Bueno, Hanna; Peretz, Asher; Attali, Bernard
2016-01-01
The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca2+-activated K+ channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity. PMID:26725737
Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels.
Weisbrod, David; Khun, Shiraz Haron; Bueno, Hanna; Peretz, Asher; Attali, Bernard
2016-01-01
The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.
Sacral neuromodulation and cardiac pacemakers.
Roth, Ted M
2010-08-01
Potential for cross-talk between cardiac pacemakers and sacral neuromodulation remains speculative. We present a case series of patients with cardiac pacemakers who underwent staged Interstim (Medtronic, Minneapolis, MN) implantation and patients who had pulse generator implantation who later required cardiac pacemakers. No cross-talk was demonstrated in either group. Sacral neuromodulation appears to be safe in the setting of cardiac pacemakers without cardioversion/defibrillation technology.
XUE, CHENG; ZHANG, JUN; LV, ZHAN; LIU, HUI; HUANG, CONGXIN; YANG, JING; WANG, TEN
2015-01-01
Cardiac stem cells (CSCs) can differentiate into cardiac muscle-like cells; however, it remains unknown whether CSCs may possess the ability to differentiate into pacemaker cells. The aim of the present study was to determine whether angiotensin II (Ang II) could promote the specialization of CSCs into pacemaker-like cells. Mouse CSCs were treated with Ang II from day 3–5, after cell sorting. The differentiation potential of the cells was then analyzed by morphological analysis, flow cytometry, reverse transcription-polymerase chain reaction, immunohistochemistry and patch clamp analysis. Treatment with Ang II resulted in an increased number of cardiac muscle-like cells (32.7±4.8% vs. 21.5±4.8%; P<0.05), and inhibition of smooth muscle-like cells (6.2±7.3% vs. 20.5±5.1%; P<0.05). Following treatment with Ang II, increased levels of the cardiac progenitor-specific markers GATA4 and Nkx2.5 were observed in the cells. Furthermore, the transcript levels of pacemaker function-related genes, including hyperpolarization-activated cyclic nucleotide-gated (HCN)2, HCN4, T-box (Tbx)2 and Tbx3, were significantly upregulated. Immunofluorescence analysis confirmed the increased number of pacemaker-like cells. The pacemaker current (If) was recorded in the cells derived from CSCs, treated with Ang II. In conclusion, treatment of CSCs with Ang II during the differentiation process modified cardiac-specific gene expression and resulted in the enhanced formation of pacemaker-like cells. PMID:25572000
Selective interference with pacemaker activity by electrical dental devices.
Miller, C S; Leonelli, F M; Latham, E
1998-01-01
We sought to determine whether electromagnetic interference with cardiac pacemakers occurs during the operation of contemporary electrical dental equipment. Fourteen electrical dental devices were tested in vitro for their ability to interfere with the function of two Medtronics cardiac pacemakers (one a dual-chamber, bipolar Thera 7942 pacemaker, the other a single-chamber, unipolar Minix 8340 pacemaker). Atrial and ventricular pacemaker output and electrocardiographic activity were monitored by means of telemetry with the use of a Medtronics 9760/90 programmer. Atrial and ventricular pacing were inhibited by electromagnetic interference produced by the electrosurgical unit up to a distance of 10 cm, by the ultrasonic bath cleaner up to 30 cm, and by the magnetorestrictive ultrasonic scalers up to 37.5 cm. In contrast, operation of the amalgamator, electric pulp tester, composite curing light, dental handpieces, electric toothbrush, microwave oven, dental chair and light, ENAC ultrasonic instrument, radiography unit, and sonic scaler did not alter pacing rate or rhythm. These results suggest that certain electrosurgical and ultrasonic instruments may produce deleterious effects in medically fragile patients with cardiac pacemakers.
Mechanism underlying impaired cardiac pacemaking rhythm during ischemia: A simulation study
NASA Astrophysics Data System (ADS)
Bai, Xiangyun; Wang, Kuanquan; Yuan, Yongfeng; Li, Qince; Dobrzynski, Halina; Boyett, Mark R.; Hancox, Jules C.; Zhang, Henggui
2017-09-01
Ischemia in the heart impairs function of the cardiac pacemaker, the sinoatrial node (SAN). However, the ionic mechanisms underlying the ischemia-induced dysfunction of the SAN remain elusive. In order to investigate the ionic mechanisms by which ischemia causes SAN dysfunction, action potential models of rabbit SAN and atrial cells were modified to incorporate extant experimental data of ischemia-induced changes to membrane ion channels and intracellular ion homeostasis. The cell models were incorporated into an anatomically detailed 2D model of the intact SAN-atrium. Using the multi-scale models, the functional impact of ischemia-induced electrical alterations on cardiac pacemaking action potentials (APs) and their conduction was investigated. The effects of vagal tone activity on the regulation of cardiac pacemaker activity in control and ischemic conditions were also investigated. The simulation results showed that at the cellular level ischemia slowed the SAN pacemaking rate, which was mainly attributable to the altered Na+-Ca2+ exchange current and the ATP-sensitive potassium current. In the 2D SAN-atrium tissue model, ischemia slowed down both the pacemaking rate and the conduction velocity of APs into the surrounding atrial tissue. Simulated vagal nerve activity, including the actions of acetylcholine in the model, amplified the effects of ischemia, leading to possible SAN arrest and/or conduction exit block, which are major features of the sick sinus syndrome. In conclusion, this study provides novel insights into understanding the mechanisms by which ischemia alters SAN function, identifying specific conductances as contributors to bradycardia and conduction block.
Froese, Alexander; Breher, Stephanie S.; Waldeyer, Christoph; Schindler, Roland F.R.; Nikolaev, Viacheslav O.; Rinné, Susanne; Wischmeyer, Erhard; Schlueter, Jan; Becher, Jan; Simrick, Subreena; Vauti, Franz; Kuhtz, Juliane; Meister, Patrick; Kreissl, Sonja; Torlopp, Angela; Liebig, Sonja K.; Laakmann, Sandra; Müller, Thomas D.; Neumann, Joachim; Stieber, Juliane; Ludwig, Andreas; Maier, Sebastian K.; Decher, Niels; Arnold, Hans-Henning; Kirchhof, Paulus; Fabritz, Larissa; Brand, Thomas
2012-01-01
Cardiac pacemaker cells create rhythmic pulses that control heart rate; pacemaker dysfunction is a prevalent disorder in the elderly, but little is known about the underlying molecular causes. Popeye domain containing (Popdc) genes encode membrane proteins with high expression levels in cardiac myocytes and specifically in the cardiac pacemaking and conduction system. Here, we report the phenotypic analysis of mice deficient in Popdc1 or Popdc2. ECG analysis revealed severe sinus node dysfunction when freely roaming mutant animals were subjected to physical or mental stress. In both mutants, bradyarrhythmia developed in an age-dependent manner. Furthermore, we found that the conserved Popeye domain functioned as a high-affinity cAMP-binding site. Popdc proteins interacted with the potassium channel TREK-1, which led to increased cell surface expression and enhanced current density, both of which were negatively modulated by cAMP. These data indicate that Popdc proteins have an important regulatory function in heart rate dynamics that is mediated, at least in part, through cAMP binding. Mice with mutant Popdc1 and Popdc2 alleles are therefore useful models for the dissection of the mechanisms causing pacemaker dysfunction and could aid in the development of strategies for therapeutic intervention. PMID:22354168
21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended to...
21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended to...
21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended to...
21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended to...
21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended to...
NASA Technical Reports Server (NTRS)
1996-01-01
Released in 1995, the Trilogy cardiac pacemaker is the fourth generation of a unit developed in the 1970s by NASA, Johns Hopkins Applied Physics Laboratory and St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.). The new system incorporates the company's PDx diagnostic and programming software and a powerful microprocessor that allows more functions to be fully automatic and gives more detailed information on the patient's health and the performance of the pacing systems. The pacemaker incorporates bidirectional telemetry used for space communications for noninvasive communication with the implanted pacemaker, smaller implantable pulse generators from space microminiaturization, and longer-life batteries from technology for spacecraft electrical power systems.
Vinogradova, Tatiana M.; Lakatta, Edward G.
2009-01-01
Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534
Butrous, G S; Meldrum, S J; Barton, D G; Male, J C; Bonnell, J A; Camm, A J
1982-05-01
The effect on an implanted, multiprogrammable pacemaker of power-frequency (50 Hz) electric fields up to an intensity (unperturbed value measured at 1.7 m) of 20 kV/m were assessed in ten paced patients. Radiotelemetric monitoring of the electrocardiogram allowed supervision of the electrocardiogram throughout exposure to the alternating electric field. Displacement body currents of up to 300μA were achieved depending on the position and height of the patient. None of the pacemakers was inhibited, triggered or reverted to fixed rate operation during the exposure. The programmable functions, programmability or output characteristics were not affected. Small changes in cardiac rate and rhythm elicited the correct pacemaker responses. Unlike earlier models of pacemaker, this modern implanted pacemaker, which represents `the state of the art', is not affected by 50 Hz electric fields likely to be encountered when standing underneath power lines.
[Ventricular tachycardia in a patient with rate-responsive cardiac pacemaker].
Himbert, C; Lascault, G; Tonet, J; Coutte, R; Busquet, P; Frank, R; Grosgogeat, Y
1992-11-01
The authors report a case of syncopal ventricular tachycardia in a patient with a respiratory-dependent rate responsive pacemaker, followed-up for valvular heart disease with severe left ventricular dysfunction and sustained atrial and ventricular arrhythmias. The introduction of low dose betablocker therapy with reinforcement of the treatment of cardiac failure controlled the ventricular arrhythmia, after suppression of the data responsive function had been shown to be ineffective. The authors discuss the role of the rate responsive function in the triggering of the ventricular tachycardias.
A Parametric Computational Model of the Action Potential of Pacemaker Cells.
Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L
2018-01-01
A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.
Evaluation of the effects of electric fields on implanted cardiac pacemakers. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, A.J.; Carstensen, E.
1985-02-01
The effects of extra high voltage (EHV) transmission line electric fields on pacemaker function were evaluated in 11 patients with seven different implanted pacemaker models from four manufacturers. Alteration in pacemaker function was demonstrated in five unipolar units (three different models) from two manufacturers during exposure to electric fields ranging from 2 to 9 kV/m, with total body currents from 47 to 175 ..mu..A. These electric fields and body currents are representative of values that can be encountered by individuals standing beneath EHV transmission lines. Transient alterations in pacemaker function observed in this study included inappropriate triggered activity, inhibition ofmore » impulse generation, reduction in rate, and reversion from demand to asynchronous mode. Electromagnetic interference from high voltage transmission lines can induce alterations in pacemaker function in certain designs of these devices. However, pacemaker manufacturers can incorporate appropriate circuits in the pacemaker design to eliminate this problem. 8 references.« less
Safety of capsule endoscopy using human body communication in patients with cardiac devices.
Chung, Joo Won; Hwang, Hye Jin; Chung, Moon Jae; Park, Jeong Youp; Pak, Hui-Nam; Song, Si Young
2012-06-01
The MiroCam (IntroMedic, Ltd., Seoul, Korea) is a small-bowel capsule endoscope that uses human body communication to transmit data. The potential interactions between cardiac devices and the capsule endoscope are causes for concern, but no data are available for this matter. This clinical study was designed to evaluate the potential influence of the MiroCam capsules on cardiac devices. Patients with cardiac pacemakers or implantable cardiac defibrillators referred for evaluation of small bowel disease were prospectively enrolled in this study. Before capsule endoscopy, a cardiologist checked baseline electrocardiograms and functions of the cardiac devices. Cardiac rhythms were continuously monitored by 24-h telemetry during capsule endoscopy in the hospital. After completion of procedures, functions of the cardiac devices were checked again for interference. Images from the capsule endoscopy were reviewed and analyzed for technical problems. Six patients, three with pacemakers and three with implantable cardiac defibrillators, were included in the study. We identified no disturbances in the cardiac devices and no arrhythmias detected on telemetry monitoring during capsule endoscopy. No significant changes in the programmed parameters of the cardiac devices were noted after capsule endoscopy. There were no imaging disturbances from the cardiac devices on capsule endoscopy. Capsule endoscopy using human body communication to transmit data was safely performed in patients with cardiac pacemakers or implantable cardiac defibrillators. Images from the capsule endoscopy were not affected by cardiac devices. A further large-scale study is required to confirm the safety of capsule endoscopy with various types of cardiac devices.
Pacemaker Dependency after Cardiac Surgery: A Systematic Review of Current Evidence.
Steyers, Curtis M; Khera, Rohan; Bhave, Prashant
2015-01-01
Severe postoperative conduction disturbances requiring permanent pacemaker implantation frequently occur following cardiac surgery. Little is known about the long-term pacing requirements and risk factors for pacemaker dependency in this population. We performed a systematic review of the literature addressing rates and predictors of pacemaker dependency in patients requiring permanent pacemaker implantation after cardiac surgery. Using a comprehensive search of the Medline, Web of Science and EMBASE databases, studies were selected for review based on predetermined inclusion and exclusion criteria. A total of 8 studies addressing the endpoint of pacemaker-dependency were identified, while 3 studies were found that addressed the recovery of atrioventricular (AV) conduction endpoint. There were 10 unique studies with a total of 780 patients. Mean follow-up ranged from 6-72 months. Pacemaker dependency rates ranged from 32%-91% and recovery of AV conduction ranged from 16%-42%. There was significant heterogeneity with respect to the definition of pacemaker dependency. Several patient and procedure-specific variables were found to be independently associated with pacemaker dependency, but these were not consistent between studies. Pacemaker dependency following cardiac surgery occurs with variable frequency. While individual studies have identified various perioperative risk factors for pacemaker dependency and non-resolution of AV conduction disease, results have been inconsistent. Well-conducted studies using a uniform definition of pacemaker dependency might identify patients who will benefit most from early permanent pacemaker implantation after cardiac surgery.
Development of the cardiac pacemaker
Liang, Xingqun; Evans, Sylvia M.
2017-01-01
The sinoatrial node (SAN) is the dominant pacemaker of the heart. Abnormalities in SAN formation and function can cause sinus arrhythmia, including sick sinus syndrome and sudden death. A better understanding of genes and signaling pathways that regulate SAN development and function is essential to develop more effective treatment to sinus arrhythmia, including biological pacemakers. In this review, we briefly summarize the key processes of SAN morphogenesis during development, and focus on the transcriptional network that drives SAN development. PMID:27770149
Cardiac pacemaker dysfunction in children after thoracic drainage catheter manipulation.
Lobdell, K W; Walters, H L; Hudson, C; Hakimi, M
1997-05-01
Two children underwent placement of permanent, epicardial-lead, dual-chamber, unipolar pacemaker systems for complete heart block. Postoperatively, both patients demonstrated subcutaneous emphysema-in the area of their pulse generators-temporally related to thoracic catheter manipulation. Acutely, each situation was managed with manual compression of the pulse generator, ascertaining appropriate pacemaker sensing and pacing. Maintenance of compression with pressure dressings, vigilant observation/monitoring, and education of the care givers resulted in satisfactory pacemaker function without invasive intervention.
Pacemaker Dependency after Cardiac Surgery: A Systematic Review of Current Evidence
2015-01-01
Background Severe postoperative conduction disturbances requiring permanent pacemaker implantation frequently occur following cardiac surgery. Little is known about the long-term pacing requirements and risk factors for pacemaker dependency in this population. Methods We performed a systematic review of the literature addressing rates and predictors of pacemaker dependency in patients requiring permanent pacemaker implantation after cardiac surgery. Using a comprehensive search of the Medline, Web of Science and EMBASE databases, studies were selected for review based on predetermined inclusion and exclusion criteria. Results A total of 8 studies addressing the endpoint of pacemaker-dependency were identified, while 3 studies were found that addressed the recovery of atrioventricular (AV) conduction endpoint. There were 10 unique studies with a total of 780 patients. Mean follow-up ranged from 6–72 months. Pacemaker dependency rates ranged from 32%-91% and recovery of AV conduction ranged from 16%-42%. There was significant heterogeneity with respect to the definition of pacemaker dependency. Several patient and procedure-specific variables were found to be independently associated with pacemaker dependency, but these were not consistent between studies. Conclusions Pacemaker dependency following cardiac surgery occurs with variable frequency. While individual studies have identified various perioperative risk factors for pacemaker dependency and non-resolution of AV conduction disease, results have been inconsistent. Well-conducted studies using a uniform definition of pacemaker dependency might identify patients who will benefit most from early permanent pacemaker implantation after cardiac surgery. PMID:26470027
Mainigi, Sumeet K; Chebrolu, Lakshmi Hima Bindu; Romero-Corral, Abel; Mehta, Vinay; Machado, Rodolfo Rozindo; Konecny, Tomas; Pressman, Gregg S
2012-10-01
Cardiac calcification is associated with coronary artery disease, arrhythmias, conduction disease, and adverse cardiac events. Recently, we have described an echocardiographic-based global cardiac calcification scoring system. The objective of this study was to evaluate the severity of cardiac calcification in patients with permanent pacemakers as based on this scoring system. Patients with a pacemaker implanted within the 2-year study period with a previous echocardiogram were identified and underwent blinded global cardiac calcium scoring. These patients were compared to matched control patients without a pacemaker who also underwent calcium scoring. The study group consisted of 49 patients with pacemaker implantation who were compared to 100 matched control patients. The mean calcium score in the pacemaker group was 3.3 ± 2.9 versus 1.8 ± 2.0 (P = 0.006) in the control group. Univariate and multivariate analysis revealed glomerular filtration rate and calcium scoring to be significant predictors of the presence of a pacemaker. Echocardiographic-based calcium scoring correlates with the presence of severe conduction disease requiring a pacemaker. © 2012, Wiley Periodicals, Inc.
Space Derived Health Aids (Cardiac Pacemaker)
NASA Technical Reports Server (NTRS)
1981-01-01
St. Jude Medical's Cardiac Rhythm Management Division's (formerly known as Pacesetter Systems, Inc.) pacer is a rechargeable cardiac pacemaker that eliminates the recurring need for surgery to implant a new battery. The Programalith is an advanced cardiac pacing system which permits a physician to reprogram a patient's implanted pacemaker without surgery. System consists of a pacemaker, together with a physician's console containing the programmer and a data printer. Signals are transmitted by wireless telemetry. Two-way communications, originating from spacecraft electrical power systems technology, allows physician to interrogate the pacemaker as to the status of the heart, then to fine tune the device to best suit the patient's needs.
Phase dependencies of the human baroreceptor reflex
NASA Technical Reports Server (NTRS)
Seidel, H.; Herzel, H.; Eckberg, D. L.
1997-01-01
We studied the influence of respiratory and cardiac phase on responses of the cardiac pacemaker to brief (0.35-s) increases of carotid baroreceptor afferent traffic provoked by neck suction in seven healthy young adult subjects. Cardiac responses to neck suction were measured indirectly from electrocardiographic changes of heart period. Our results show that it is possible to separate the influences of respiratory and cardiac phases at the onset of a neck suction impulse by a product of two factors: one depending only on the respiratory phase and one depending only on the cardiac phase. This result is consistent with the hypothesis that efferent vagal activity is a function of afferent baroreceptor activity, whereas respiratory neurons modulate that medullary throughput independent of the cardiac phase. Furthermore, we have shown that stimulus broadening and stimulus cropping influence the outcome of neck suction experiments in a way that makes it virtually impossible to obtain information on the phase dependency of the cardiac pacemaker's sensitivity to vagal stimulation without accurate knowledge of the functional shape of stimulus broadening.
Effect of 1. 5 tesla nuclear magnetic resonance imaging scanner on implanted permanent pacemakers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, D.L.; Holmes, D.R. Jr.; Gray, J.E.
1987-10-01
Patients with a permanent pacemaker are currently restricted from diagnostic nuclear magnetic resonance (NMR) imaging because of potential adverse effects on the pacemaker by the magnet. Previous work has shown that NMR imaging will result in asynchronous pacing of the pulse generator within a given distance of the magnet. The radiofrequency signal generated by the system may also result in rapid cardiac pacing, which may have deleterious effects. This study utilized a 1.5 tesla unit in an in vivo laboratory animal to evaluate the unit's effects on eight different pulse generators from two manufacturers. All pacemakers functioned in an asynchronousmore » mode when placed within a certain distance of the magnet. In addition, transient reed switch inhibition was observed. Seven of the eight pulse generators paced rapidly when exposed to the radiofrequency signal and there was a dramatic decrease in arterial blood pressure. Whether effective rapid cardiac pacing would occur could not be predicted before exposure to the magnetic resonance unit. Nuclear magnetic resonance imaging with high magnetic fields in patients with a pacemaker should continue to be avoided until the mechanism of the rapid cardiac pacing can be further delineated and either predicted or prevented.« less
Clinical use of isotope cardiac pacemakers (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, J.; Kreutzberg, B.
1973-01-01
Plutoninm-235 having a half-life of 86.4 yrs has proved suitable as a long-life energy source for a cardiac pacemaker. The radiation dose of this pacemaker is below the I. C. R. P.-recommended values. As the isotope pacemaker costs three times as much as a conventional pacemaker, the merits of implanting an isotope pacemaker vs. the conventional kind are discussed. A survey is given of the cases in which an isotope pacemaker has been used. (GE)
Determining a human cardiac pacemaker using fuzzy logic
NASA Astrophysics Data System (ADS)
Varnavsky, A. N.; Antonenco, A. V.
2017-01-01
The paper presents a possibility of estimating a human cardiac pacemaker using combined application of nonlinear integral transformation and fuzzy logic, which allows carrying out the analysis in the real-time mode. The system of fuzzy logical conclusion is proposed, membership functions and rules of fuzzy products are defined. It was shown that the ratio of the value of a truth degree of the winning rule condition to the value of a truth degree of any other rule condition is at least 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, J.E.; Frazier, M.J.
1979-09-01
The effects of 60-Hz electric and magnetic fields of exta-high voltage (EHV) transmission lines on the performance of implanted cardiac pacemakers were studied by: (1) in vitro bench tests of a total of thirteen cardiac pacemakers; (2) in vivo tests of six implanted cardiac pacemakers in baboons; and (3) non-hazardous skin measurement tests on four humans. Analytical methods were developed to predict the thresholds of body current and electric fields capable of affecting normal pacemaker operation in humans. The field strengths calculated to alter implanted pacemaker performance were compared with the range of maximum electric and magnetic field strengths amore » human would normally encounter under transmission lines of various voltages. Results indicate that the electric field or body current necessary to alter the normal operation of pacemakers is highly dependent on the type of pacemaker and the location of the implanted electrodes. However, cardiologists have not so far detected harmful effects of pacemaker reversion to the asynchronous mode in current types of pacemakers and with present methods of implantation. Such interferences can be eliminated by using advanced pacemakers less sensitive to 60-Hz voltages or by using implantation lead arrangements less sensitive to body current.« less
Case study thoracic radiotherapy in an elderly patient with pacemaker: The issue of pacing leads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirova, Youlia M., E-mail: youlia.kirova@curie.net; Menard, Jean; Chargari, Cyrus
2012-07-01
To assess clinical outcome of patients with pacemaker treated with thoracic radiation therapy for T8-T9 paravertebral chloroma. A 92-year-old male patient with chloroma presenting as paravertebral painful and compressive (T8-T9) mass was referred for radiotherapy in the Department of Radiation Oncology, Institut Curie. The patient presented with cardiac dysfunction and a permanent pacemaker that had been implanted prior. The decision of Multidisciplinary Meeting was to deliver 30 Gy in 10 fractions for reducing the symptoms and controlling the tumor growth. The patient received a total dose of 30 Gy in 10 fractions using 4-field conformal radiotherapy with 20-MV photons. Themore » dose to pacemaker was 0.1 Gy but a part of the pacing leads was in the irradiation fields. The patient was treated the first time in the presence of his radiation oncologist and an intensive care unit doctor. Moreover, the function of his pacemaker was monitored during the entire radiotherapy course. No change in pacemaker function was observed during any of the radiotherapy fractions. The radiotherapy was very well tolerated without any side effects. The function of the pacemaker was checked before and after the radiotherapy treatment by the cardiologist and no pacemaker dysfunction was observed. Although updated guidelines are needed with acceptable dose criteria for implantable cardiac devices, it is possible to treat patients with these devices and parts encroaching on the radiation field. This case report shows we were able to safely treat our patient through a multidisciplinary approach, monitoring the patient during each step of the treatment.« less
The effects of nuclear magnetic resonance on patients with cardiac pacemakers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlicek, W.; Geisinger, M.; Castle, L.
1983-04-01
The effect of nuclear magnetic resonance (NMR) imaging on six representative cardiac pacemakers was studied. The results indicate that the threshold for initiating the asynchronous mode of a pacemaker is 17 gauss. Radiofrequency levels are present in an NMR unit and may confuse or possibly inhibit demand pacemakers, although sensing circuitry is normally provided with electromagnetic interference discrimination. Time-varying magnetic fields can generate pulse amplitudes and frequencies to mimic cardiac activity. A serious limitation in the possibility of imaging a patient with a pacemaker would be the alteration of normal pulsing parameters due to time-varying magnetic fields.
NASA Technical Reports Server (NTRS)
1990-01-01
Synchrony, developed by St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.) is an advanced state-of-the-art implantable pacemaker that closely matches the natural rhythm of the heart. The companion element of the Synchrony Pacemaker System is the Programmer Analyzer APS-II which allows a doctor to reprogram and fine tune the pacemaker to each user's special requirements without surgery. The two-way communications capability that allows the physician to instruct and query the pacemaker is accomplished by bidirectional telemetry. APS-II features 28 pacing functions and thousands of programming combinations to accommodate diverse lifestyles. Microprocessor unit also records and stores pertinent patient data up to a year.
Retrieval of the Leadless Cardiac Pacemaker: A Multicenter Experience.
Reddy, Vivek Y; Miller, Marc A; Knops, Reinoud E; Neuzil, Petr; Defaye, Pascal; Jung, Werner; Doshi, Rahul; Castellani, Mark; Strickberger, Adam; Mead, R Hardwin; Doppalapudi, Harish; Lakkireddy, Dhanunjaya; Bennett, Matthew; Sperzel, Johannes
2016-12-01
Leadless cardiac pacemakers have emerged as a safe and effective alternative to conventional transvenous single-chamber ventricular pacemakers. Herein, we report a multicenter experience on the feasibility and safety of acute retrieval (<6 weeks) and chronic retrieval (>6 weeks) of the leadless cardiac pacemaker in humans. This study included patients enrolled in 3 multicenter trials, who received a leadless cardiac pacemaker implant and who subsequently underwent a device removal attempt. The overall leadless pacemaker retrieval success rate was 94%: for patients whose leadless cardiac pacemaker had been implanted for <6 weeks (acute retrieval cohort), complete retrieval was achieved in 100% (n=5/5); for those implanted for ≥ 6 weeks (chronic retrieval cohort), retrieval was achieved in 91% (n=10/11) of patients. The mean duration of time from implant to retrieval attempt was 346 days (range, 88-1188 days) in the chronic retrieval cohort, and nearly two thirds (n=7; 63%) had been implanted for >6 months before the retrieval attempt. There were no procedure-related adverse events at 30 days post retrieval procedure. This multicenter experience demonstrated the feasibility and safety of retrieving a chronically implanted single-chamber (right ventricle) active fixation leadless pacemaker. URL: https://www.clinicaltrials.gov. Unique identifiers: NCT02051972, NCT02030418, and NCT01700244. © 2016 American Heart Association, Inc.
Larsen, P D; Kerr, A J; Hood, M; Harding, S A; Hooks, D; Heaven, D; Lever, N A; Sinclair, S; Boddington, D; Tang, E W; Swampillai, J; Stiles, M K
2017-03-01
The New Zealand Cardiac Implanted Device Registry (Device) has recently been developed under the auspices of the New Zealand Branch of the Cardiac Society of Australia and New Zealand. This study describes the initial Device registry cohort of patients receiving a new pacemaker, their indications for pacing and their perioperative complications. The Device Registry was used to audit patients receiving a first pacemaker between 1 st January 2014 and 1 st June 2015. We examined 1611 patients undergoing first pacemaker implantation. Patients were predominantly male (59%), and had a median age of 70 years. The most common symptom for pacemaker implantation was syncope (39%), followed by dizziness (30%) and dyspnoea (12%). The most common aetiology for a pacemaker was a conduction tissue disorder (35%), followed by sinus node dysfunction (22%). Atrioventricular (AV) block was the most common ECG abnormality, present in 44%. Dual chamber pacemakers were most common (62%), followed by single chamber ventricular pacemakers (34%), and cardiac resynchronisation therapy - pacemakers (CRT-P) (2%). Complications within 24hours of the implant procedure were reported in 64 patients (3.9%), none of which were fatal. The most common complication was the need for reoperation to manipulate a lead, occurring in 23 patients (1.4%). This is the first description of data entered into the Device registry. Patients receiving a pacemaker were younger than in European registries, and there was a low use of CRT-P devices compared to international rates. Complications rates were low and compare favourably to available international data. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Burkhard, Silja Barbara
2018-01-01
Development of specialized cells and structures in the heart is regulated by spatially -restricted molecular pathways. Disruptions in these pathways can cause severe congenital cardiac malformations or functional defects. To better understand these pathways and how they regulate cardiac development we used tomo-seq, combining high-throughput RNA-sequencing with tissue-sectioning, to establish a genome-wide expression dataset with high spatial resolution for the developing zebrafish heart. Analysis of the dataset revealed over 1100 genes differentially expressed in sub-compartments. Pacemaker cells in the sinoatrial region induce heart contractions, but little is known about the mechanisms underlying their development. Using our transcriptome map, we identified spatially restricted Wnt/β-catenin signaling activity in pacemaker cells, which was controlled by Islet-1 activity. Moreover, Wnt/β-catenin signaling controls heart rate by regulating pacemaker cellular response to parasympathetic stimuli. Thus, this high-resolution transcriptome map incorporating all cell types in the embryonic heart can expose spatially restricted molecular pathways critical for specific cardiac functions. PMID:29400650
Racing of the biological pacemaker.
Yu, Han-Gang
2009-01-01
Over the past decade, rapid progress in the molecular studies of cardiac ion channels and stem cells biology has led to efforts to create a biological pacemaker to supplement the widely-used electronic pacemaker. We will review the main concepts of cardiac pacemaker activities in different heart regions and the approaches to design a working biological pacemaker. We will focus on how to use the gene- and cell-based approaches to meet the requirements of a working biological pacemaker. Possible future development and precautions for creation of an effective biological pacemaker superior to the electronic counterpart are also discussed along with recent patents.
Survival time with pacemaker implantation for dogs diagnosed with persistent atrial standstill.
Cervenec, R M; Stauthammer, C D; Fine, D M; Kellihan, H B; Scansen, B A
2017-06-01
To evaluate survival time in dogs with persistent atrial standstill after pacemaker implantation and to compare the survival times for cardiac-related vs. non-cardiac deaths. Secondary objectives were to evaluate the effects of breed and the presence of congestive heart failure (CHF) at the time of diagnosis on survival time. Twenty dogs with persistent atrial standstill and pacemaker implantation. Medical records were searched to identify dogs diagnosed with persistent atrial standstill based on electrocardiogram that underwent pacemaker implantation. Survival after pacemaker implantation was analyzed using the Kaplan-Meier method. The median survival time after pacemaker implantation for all-cause mortality was 866 days. There was no significant difference (p=0.573) in median survival time for cardiac (506 days) vs. non-cardiac deaths (400 days). The presence of CHF at the time of diagnosis did not affect the survival time (P=0.854). No difference in median survival time was noted between breeds (P=0.126). Dogs with persistent atrial standstill have a median survival time of 866 days with pacemaker implantation, though a wide range of survival times was observed. There was no difference in the median survival time for dogs with cardiac-related deaths and those without. Patient breed and the presence of CHF before pacemaker implantation did not affect median survival time. Copyright © 2017 Elsevier B.V. All rights reserved.
Pacemakers and implantable cardioverter defibrillators--general and anesthetic considerations.
Rapsang, Amy G; Bhattacharyya, Prithwis
2014-01-01
A pacemaking system consists of an impulse generator and lead or leads to carry the electrical impulse to the patient's heart. Pacemaker and implantable cardioverter defibrillator codes were made to describe the type of pacemaker or implantable cardioverter defibrillator implanted. Indications for pacing and implantable cardioverter defibrillator implantation were given by the American College of Cardiologists. Certain pacemakers have magnet-operated reed switches incorporated; however, magnet application can have serious adverse effects; hence, devices should be considered programmable unless known otherwise. When a device patient undergoes any procedure (with or without anesthesia), special precautions have to be observed including a focused history/physical examination, interrogation of pacemaker before and after the procedure, emergency drugs/temporary pacing and defibrillation, reprogramming of pacemaker and disabling certain pacemaker functions if required, monitoring of electrolyte and metabolic disturbance and avoiding certain drugs and equipments that can interfere with pacemaker function. If unanticipated device interactions are found, consider discontinuation of the procedure until the source of interference can be eliminated or managed and all corrective measures should be taken to ensure proper pacemaker function should be done. Post procedure, the cardiac rate and rhythm should be monitored continuously and emergency drugs and equipments should be kept ready and consultation with a cardiologist or a pacemaker-implantable cardioverter defibrillator service may be necessary. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Troponin T elevation after permanent pacemaker implantation.
Chen, Xueying; Yu, Ziqing; Bai, Jin; Hu, Shulan; Wang, Wei; Qin, Shengmei; Wang, Jingfeng; Sun, Zhe; Su, Yangang; Ge, Junbo
2017-08-01
The objective of the study is to study the incidence, significance, and factors associated with cardiac troponin T (CTNT) elevation after pacemaker implantation. Three hundred seventy-four patients (104 single-chamber pacemakers or ICD, 243 dual-chamber pacemakers, and 27 cardiac resynchronization therapy/cardiac resynchronization therapy defibrillator) who had normal levels of CTNT at baseline and underwent implantation of a permanent pacemaker system were included in this study. Serum levels of CTNT were measured at baseline, 6 and 24 h after the implantation procedure. The median of CTNT levels increased from 0.012 ng/mL at baseline to 0.032 and 0.019 ng/mL at 6 and 24 h after the procedure, respectively (all p < 0.0001). Elevated CTNT levels were noted in 208 patients (55.6%) at 6 h after the implantation, among which 29 patients (7.8%) had CTNT levels exceeding the range of minimal myocardial damage (>0.09 ng/mL). After 1-year follow-up, the incidence of complications including dislodgement of the lead, pocket infection, pneumothorax, hemothorax, and vein thrombus and cardiac outcomes including hospitalization of heart failure, coronary artery disease, arrhythmia, and cardiovascular mortality was not significantly different between the normal and elevated CTNT groups at 6 h after the procedure. By logistic regression analysis, gender, N-terminal pro-B type natriuretic peptide (NT-pro-BNP) at baseline, left ventricular ejection fractions (LVEF), estimated glomerular filtration rate (eGFR), and fluoroscopy time were independently associated with CTNT elevation after adjusted for age, pacemaker types, right ventricle lead location (RVA or RVOT), heart function, and left ventricular end systolic dimension. Pacemaker implantation was found to be accompanied with CTNT elevation in 55.6% of the patients at 6 h after the procedure, and its kinetics were fast, which might not be related to the complications and adverse cardiac outcomes within 1 year of follow-up. Moreover, gender, NT-pro-BNP at baseline, LVEF, eGFR, and fluoroscopy time were found to be independent predictors of CTNT elevation.
Sick sinus syndrome in HCN1-deficient mice.
Fenske, Stefanie; Krause, Stefanie C; Hassan, Sami I H; Becirovic, Elvir; Auer, Franziska; Bernard, Rebekka; Kupatt, Christian; Lange, Philipp; Ziegler, Tilman; Wotjak, Carsten T; Zhang, Henggui; Hammelmann, Verena; Paparizos, Christos; Biel, Martin; Wahl-Schott, Christian A
2013-12-17
Sinus node dysfunction (SND) is a major clinically relevant disease that is associated with sudden cardiac death and requires surgical implantation of electric pacemaker devices. Frequently, SND occurs in heart failure and hypertension, conditions that lead to electric instability of the heart. Although the pathologies of acquired SND have been studied extensively, little is known about the molecular and cellular mechanisms that cause congenital SND. Here, we show that the HCN1 protein is highly expressed in the sinoatrial node and is colocalized with HCN4, the main sinoatrial pacemaker channel isoform. To characterize the cardiac phenotype of HCN1-deficient mice, a detailed functional characterization of pacemaker mechanisms in single isolated sinoatrial node cells, explanted beating sinoatrial node preparation, telemetric in vivo electrocardiography, echocardiography, and in vivo electrophysiology was performed. On the basis of these experiments we demonstrate that mice lacking the pacemaker channel HCN1 display congenital SND characterized by bradycardia, sinus dysrhythmia, prolonged sinoatrial node recovery time, increased sinoatrial conduction time, and recurrent sinus pauses. As a consequence of SND, HCN1-deficient mice display a severely reduced cardiac output. We propose that HCN1 stabilizes the leading pacemaker region within the sinoatrial node and hence is crucial for stable heart rate and regular beat-to-beat variation. Furthermore, we suggest that HCN1-deficient mice may be a valuable genetic disease model for human SND.
Leadless cardiac pacemakers: present and the future.
Chew, Derek S; Kuriachan, Vikas
2018-01-01
Pacing technology for many decades has been composed of a generator attached to leads that are usually transvenous. Recently, leadless pacemakers have been studied in clinical settings and now available for use in many countries. This includes the single-component Nanostim Leadless Cardiac Pacemaker and Micra Transcatheter Pacing System, as well as the multicomponent Wireless Stimulation Endocardial system. Clinical studies in single-component leadless pacing technology has shown that they can be successfully implanted with minimal complications. The follow-up studies also seem to confirm the findings from the initial clinical trials. These systems offer some advantages over a traditional pacing system comprised of a subcutaneous generator and transvenous leads. In many ways, these leadless systems are disruptive technologies that are changing the traditional pacemaker concept and preferred for some patients. Ongoing research is needed to better assess their long-term function, safety, and end-of-life strategies. In the future, multichamber leadless pacing is expected to be developed and perhaps obviating the need for transvenous leads and their associated complications.
Cardiac Resynchronization Therapy and phase resetting of the sinoatrial node: A conjecture
NASA Astrophysics Data System (ADS)
Cantini, Federico; Varanini, Maurizio; Macerata, Alberto; Piacenti, Marcello; Morales, Maria-Aurora; Balocchi, Rita
2007-03-01
Congestive heart failure is a severe chronic disease often associated with disorders that alter the mechanisms of excitation-contraction coupling that may result in an asynchronous left ventricular motion which may further impair the ability of the failing heart to eject blood. In recent years a therapeutic approach to resynchronize the ventricles (cardiac resynchronization therapy, CRT) has been performed through the use of a pacemaker device able to provide atrial-based biventricular stimulation. Atrial lead senses the spontaneous occurrence of cells depolarization and sends the information to the generator which, in turn, after a settled delay [atrioventricular (AV) delay], sends electrical impulses to both ventricles to stimulate their synchronous contraction. Recent studies performed on heart rate behavior of chronically implanted patients at different epochs after implantation have shown that CRT can lead to sustained overall improvement of heart function with a reduction in morbidity and mortality. At this moment, however, there are no studies about CRT effects on spontaneous heart activity of chronically implanted patients. We performed an experimental study in which the electrocardiographic signal of five subjects under chronic CRT was recorded during the activity of the pacemaker programmed at different AV delays and under spontaneous cardiac activity after pacemaker deactivation. The different behavior of heart rate variability during pacemaker activity and after pacemaker deactivation suggested the hypothesis of a phase resetting mechanism induced by the pacemaker stimulus on the sinoatrial (SA) node, a phenomenon already known in literature for aggregate of cardiac cells, but still unexplored in vivo. The constraints imposed by the nature of our study (in vivo tests) made it impossible to plan an experiment to prove our hypothesis directly. We therefore considered the best attainable result would be to prove the accordance of our data to the conjecture through the use of models and physical considerations. We first used the data of literature on far-field effects of cardiac defibrillators to prove that the pacemaker impulses delivered to the two ventricles were able to induce modifications in membrane voltage at the level of the SA node. To simulate a phase resetting mechanism of the SA node, we used a Van der Pol modified model to allow the possibility of changing the refractory period and the firing frequency of the cells separately. With appropriate parameters of the model we reproduced phase response curves that can account for our experimental data. Furthermore, the simulated curves closely resemble the functional form proposed in literature for perturbed aggregate of cardiac cells. Despite the small sample of subjects investigated and the limited number of ECG recordings at different AV delays, we think we have proved the plausibility of the proposed conjecture.
Current facts on pacemaker electromagnetic interference and their application to clinical care
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sager, D.P.
1987-03-01
The development of the sensing demand cardiac pacemaker brought with it the problem of interference as a result of extraneous electric current and electromagnetic fields. This problem still deserves consideration, not only because harmful disruption of pacemaker function, while infrequent, can occur but also because myths and misunderstandings have flourished on the subject. Misinformation has often led to needless patient anxiety and unnecessary restrictions in activities of daily living. Similarly, when health care practitioners are misinformed about pacemaker interference, potentially hazardous situations can occur in the clinical environment. This article is a review of current information on the sources andmore » effects of electromagnetic interference (EMI) on pacemakers and includes a discussion of their application to patient care.« less
The interference of electronic implants in low frequency electromagnetic fields.
Silny, J
2003-04-01
Electronic implants such as cardiac pacemakers or nerve stimulators can be impaired in different ways by amplitude-modulated and even continuous electric or magnetic fields of strong field intensities. For the implant bearer, possible consequences of a temporary electromagnetic interference may range from a harmless impairment of his well-being to a perilous predicament. Electromagnetic interferences in all types of implants cannot be covered here due to their various locations in the body and their different sensing systems. Therefore, this presentation focuses exemplarily on the most frequently used implant, the cardiac pacemaker. In case of an electromagnetic interference the cardiac pacemaker reacts by switching to inhibition mode or to fast asynchronous pacing. At a higher disturbance voltage on the input of the pacemaker, a regular asynchronous pacing is likely to arise. In particular, the first-named interference could be highly dangerous for the pacemaker patient. The interference threshold of cardiac pacemakers depends in a complex way on a number of different factors such as: electromagnetic immunity and adjustment of the pacemaker, the composition of the applied low-frequency fields (only electric or magnetic fields or combinations of both), their frequencies and modulations, the type of pacemaker system (bipolar, unipolar) and its location in the body, as well as the body size and orientation in the field, and last but not least, certain physiological conditions of the patient (e.g. inhalation, exhalation). In extensive laboratory studies we have investigated the interference mechanisms in more than 100 cardiac pacemakers (older types as well as current models) and the resulting worst-case conditions for pacemaker patients in low-frequency electric and magnetic fields. The verification of these results in different practical everyday-life situations, e.g. in the fields of high-voltage overhead lines or those of electronic article surveillance systems is currently in progress. In case of the vertically-oriented electric 50 Hz fields preliminary results show that per 1 kV/m unimpaired electrical field strength (rms) an interference voltage of about 400 microVpp as worst-case could occur at the input of a unipolar ventricularly controlled, left-pectorally implanted cardiac pacemaker. Thus, already a field strength above ca. 5 kV/m could cause an interference with an implanted pacemaker. The magnetic fields induces an electric disturbance voltage at the input of the pacemaker. The body and the pacemaker system compose several induction loops, whose induced voltages rates add or subtract. The effective area of one representing inductive loop ranges from 100 to 221 cm2. For the unfavourable left-pectorally implantated and atrially-controlled pacemaker with a low interference threshold, the interference threshold ranges between 552 and 16 microT (rms) for magnetic fields at frequencies between 10 and 250 Hz. On this basis the occurrence of interferences with implanted pacemakers is possible in everyday-life situations. But experiments demonstrate a low probability of interference of cardiac pacemakers in practical situations. This apparent contradiction can be explained by a very small band of inhibition in most pacemakers and, in comparison with the worst-case, deviating conditions.
Biofilm on artificial pacemaker: fiction or reality?
Santos, Ana Paula Azevedo; Watanabe, Evandro; Andrade, Denise de
2011-11-01
Cardiac pacing through cardiac pacemaker is one of the most promising alternatives in the treatment of arrhythmias, but it can cause reactions natural or complex reactions, either early or late. This study aimed to describe the scientific evidence on the risk of infection and biofilm formation associated with cardiac pacemaker. This is a study of integrative literature review. It included 14 publications classified into three thematic categories: diagnosis (microbiological and/or clinical), complications and therapy of infections. Staphylococcus epidermidis and Staphylococcus aureus were the microorganisms most frequently isolated. It was not possible to determine the incidence of infection associated with pacemakers, since the studies were generally of prevalence. In terms of therapy, the complete removal of pacemakers stood out, especially in cases of suspected biofilm. Still controversial is the use of systemic antibiotic prophylaxis in reducing the incidence of infection associated with implantation of a pacemaker.
Saito, Yukihiro; Nakamura, Kazufumi; Yoshida, Masashi; Sugiyama, Hiroki; Takano, Makoto; Nagase, Satoshi; Morita, Hiroshi; Kusano, Kengo F; Ito, Hiroshi
2018-05-30
A biological pacemaker is expected to solve the persisting problems of an artificial cardiac pacemaker including short battery life, lead breaks, infection, and electromagnetic interference. We previously reported HCN4 overexpression enhances pacemaking ability of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) in vitro. However, the effect of these cells on bradycardia in vivo has remained unclear. Therefore, we transplanted HCN4-overexpressing mESC-CMs into bradycardia model animals and investigated whether they could function as a biological pacemaker. The rabbit Hcn4 gene was transfected into mouse embryonic stem cells and induced HCN4-overexpressing mESC-CMs. Non-cardiomyocytes were removed under serum/glucose-free and lactate-supplemented conditions. Cardiac balls containing 5 × 10 3 mESC-CMs were made by using the hanging drop method. One hundred cardiac balls were injected into the left ventricular free wall of complete atrioventricular block (CAVB) model rats. Heart beats were evaluated using an implantable telemetry system 7 to 30 days after cell transplantation. The result showed that ectopic ventricular beats that were faster than the intrinsic escape rhythm were often observed in CAVB model rats transplanted with HCN4-overexpressing mESC-CMs. On the other hand, the rats transplanted with non-overexpressing mESC-CMs showed sporadic single premature ventricular contraction but not sustained ectopic ventricular rhythms. These results indicated that HCN4-overexpressing mESC-CMs produce rapid ectopic ventricular rhythms as a biological pacemaker.
Faber, Thomas S; Gradinger, Robert; Treusch, Sven; Morkel, Carsten; Brachmann, Johannes; Bode, Christoph; Zehender, Manfred
2007-09-01
Current studies found an incidence of 12-31% ventricular tachyarrhythmias and sudden cardiac death during cardiac pacing months or even years after pacemaker insertion. MADIT(12) and MUSTT(13) demonstrated that patients with poor LV function after Myocardial infarction (MI) showing non-sustained ventricular tachycardia (nsVT) and inducibility during electrophysiologic testing benefit from an ICD. The present study was dedicated to assess the global incidence of non-sustained ventricular arrhythmias in a general population of pacemaker patients. Special regard was on patients with a potential ICD indication, e.g. those matching the MADIT/MUSTT criteria. Two hundred and thirty-one patients (72 +/- 11 years; 134 men) with an indication for dual chamber pacing entered the study. In all patients pacemaker systems capable of automatic storing of intracardiac electrocardiograms were implanted (Pulsar, Discovery, Guidant). Follow-up time was 15 months after inclusion. In 54 (25.7%) of 210 patients with at least one follow-up, episodes of nsVT were documented by stored electrocardiograms (up to >30 beats, >200 b.p.m.). Multiple-up to nine-episodes of ventricular tachycardia were retrieved in 31 of these patients. Three out of 14 patients with an LVEF <40% after MI presented nsVT during the follow-up. One of these patients received an ICD. A significant number of pacemaker patients present with ventricular tachycardia. Intracardiac electrocardiograms and alert functions from pacemakers may enhance physicians' awareness of the patient's intrinsic arrhythmic profile and help uncover underlying mechanisms of arrhythmias by storing the initiation of the arrhythmia.
Pacemaker explosions in crematoria: problems and possible solutions
Gale, Christopher P; Mulley, Graham P
2002-01-01
The number of artificial cardiac pacemakers is increasing, as is the number of bodies being cremated. Because of the explosive potential of pacemakers when heated, a statutory question on the cremation form asks whether the deceased has a pacemaker and if so whether it has been removed. We sent a questionnaire to all the crematoria in the UK enquiring about the frequency, consequences and prevention of pacemaker explosions. We found that about half of all crematoria in the UK experience pacemaker explosions, that pacemaker explosions may cause structural damage and injury and that most crematoria staff are unaware of the explosive potential of implantable cardiac defibrillators. Crematoria staff rely on the accurate completion of cremation forms, and doctors who sign cremation forms have a legal obligation to provide such information. PMID:12091510
Stem cells as biological heart pacemakers.
Gepstein, Lior
2005-12-01
Abnormalities in the pacemaker function of the heart or in cardiac impulse conduction may result in the appearance of a slow heart rate, traditionally requiring the implantation of a permanent electronic pacemaker. In recent years, a number of experimental approaches have been developed in an attempt to generate biological alternatives to implantable electronic devices. These strategies include, initially, a number of gene therapy approaches (aiming to manipulate the expression of ionic currents or their modulators and thereby convert quiescent cardiomyocytes into pacemaking cells) and, more recently, the use of cell therapy and tissue engineering. The latter approach explored the possibility of grafting pacemaking cells, either derived directly during the differentiation of human embryonic stem cells or engineered from mesenchymal stem cells, into the myocardium. This review will describe each of these approaches, focusing mainly on the stem cell strategies, their possible advantages and shortcomings, as well as the avenues required to make biological pacemaking a clinical reality.
Ruhparwar, Arjang; Er, Fikret; Martin, Ulrich; Radke, Kristin; Gruh, Ina; Niehaus, Michael; Karck, Matthias; Haverich, Axel; Hoppe, Uta C
2007-02-01
Generation of a large number of cells belonging to the cardiac pacemaker system would constitute an important step towards their utilization as a biological cardiac pacemaker system. The aim of the present study was to identify factors, which might induce transformation of a heterogenous population of fetal cardiomyocytes into cells with a pacemaker-like phenotype. Neuregulin-1 (alpha- and beta-isoform) or the cAMP was added to fresh cell cultures of murine embryonic cardiomyocytes. Quantitative northern blot analysis and flowcytometry were performed to detect the expression of connexins 40, 43 and 45. Patch clamp recordings in the whole cell configuration were performed to determine current density of I (f), a characteristic ion current of pacemaker cells. Fetal cardiomyocytes without supplement of neuregulin or cAMP served as control group. Neuregulin and cAMP significantly increased mRNA levels of connexin 40 (Cx-40), a marker of the early differentiating conduction system in mice. On the protein level, flowcytometry revealed no significant differences between treated and untreated groups with regard to the expression of connexins 40, 43 and 45. Treatment with cAMP (11.2 +/- 2.24 pA/pF; P < 0.001) and neuregulin-1-beta (6.23 +/- 1.07 pA/pF; P < 0.001) significantly increased the pacemaker current density compared to control cardiomyocytes (1.76 +/- 0.49 pA/pF). Our results indicate that neuregulin-1 and cAMP possess the capacity to cause significant transformation of a mixed population of fetal cardiomyocytes into cardiac pacemaker-like cells as shown by electrophysiology and increase of Cx-40 mRNA. This method may allow the development of a biological cardiac pacemaker system when applied to adult or embryonic stem cells.
Pacemaker Implants in Children and Adolescents with Chagas Disease in Brazil: 18-Year Incidence
Mizzaci, Carolina Christianini; Souza, Thiago Gonçalves Schroder e; Targueta, Gabriel Pelegrineti; Tótora, Ana Paula Frederico; Mateos, Juan Carlos Pachón; Mateos, José Carlos Pachon
2017-01-01
Background: Chagas disease continues to be a serious public health problem, and accounts for 25-30% of the indications for cardiac stimulation in Brazil. Objective: To assess clinical and epidemiological characteristics of patients with Chagas disease, younger than 18 years, who had undergone pacemaker implantation in Brazil between 1994 and 2011, and its temporal trend. Methods: This was a cross-sectional analysis of data from the Brazilian Pacemaker Registry database. The following variables were analyzed: year when pacemaker was implanted, location, age, sex, ethnic group, functional class and the main electrocardiographic findings at baseline. Results: In a total of 183,123 implants performed between 1994 and 2011, 214 implants of cardiac stimulation device in Chagas disease patients aged younger than 18 years were identified. Mean age at implantation was 5.6 ± 6.2 years. Second- and third-degree atrioventricular blocks corresponded to 71% of indications for pacemaker implantation. Fifty-six percent of the procedures were performed in the southeast region. Regarding the total number of pacemaker implants per year, there was a remarkable increase in the implants for all causes. However, time series analysis of the implants in Chagas disease patients younger than 18 years revealed a significant reduction in the annual number of implants. Conclusion: There has been an important reduction in the number of pacemaker implantations among children and adolescents with Chagas disease, suggesting a reduction in the vertical transmission of the parasite. PMID:28699977
Götze, S; Butter, C; Fleck, E
2006-01-01
Within the last decade, cardiac resynchronization therapy (CRT) has become an evidence-based cornerstone for a subset of patients with chronic heart failure. For those, who suffer from ischemic or non-ischemic cardiomyopathies at NYHA III or IV, have sinus rhythm, a left bundle branch block and a left ventricular ejection fraction below 35%, CRT has evolved as an important treatment option with promising results. Numerous studies have shown that in these patients pacemaker-mediated correction of intra- and interventicular conduction disturbances can improve not only clinical symptoms, exercise tolerance and the frequency of hospitalizations, but even more important the overall mortality. These clinical results are due to several functional aspects. In the failing heart characteristic intra- and interventricular alterations in electrical conduction result in mechanical asynchrony that leads to an abnormal contraction of the left ventricle with delayed activation of the lateral wall, a paradoxical septal movement, a reduced diastolic filling and a mitral regurgitation due to dyssynchrony of papillary muscle activation. It is conceivable that these functional changes have fatal consequences for the failing heart. AV-optimized left- or biventricular stimulation by modern pacemakers can correct the pathological dyssynchrony, thereby improving cardiac function and clinical outcome in these patients. Although tremendous progress in cardiac resynchronization therapy has been made during the last decade, a couple of questions still need to be resolved. Critical issues are the identification of patients, who will predictably benefit from CRT, the value of CRT-pacemakers versus CRT-ICDs, and the usefullness of CRT in patients with atrial fibrillation.
How smart should pacemakers Be?
Saoudi, N; Appl, U; Anselme, F; Voglimacci, M; Cribier, A
1999-03-11
The concept of the "smart" pacemaker has been continuously changing during 40 years of progress in technology. When we talk today about smart pacemakers, it means optimal treatment, diagnosis, and follow-up for patients fitting the current indications for pacemakers. So what is smart today becomes accepted as "state of the art" tomorrow. Originally, implantable pacemakers were developed to save lives from prolonged episodes of bradycardia and/or complete heart block. Now, in addition, they improve quality of life via numerous different functions acting under specific conditions, thanks to the introduction of microprocessors. The devices have become smaller, with the miniaturization of the electrical components, without compromising longevity. Nevertheless, there are still some unmatched objectives for these devices, for example, the optimization of cardiac output and the management of atrial arrhythmias in dual-chamber devices. Furthermore, indications continue to evolve, which in turn require new, additional functions. These functions are often very complex, necessitating computerized programming to simplify application. In addition, the follow-up of these devices is time-consuming, as appropriate system performance has to be regularly monitored. A great many of these functions could be automatically performed and documented, thus enabling physicians and paramedical staff to avoid losing time with routine control procedures. In addition, modern pacemakers offer extensive diagnostic functions to help diagnose patient symptoms and pacemaker system problems. Different types of data are available, and their presentation differs from one company to the other. This huge amount of data can only be managed with automatic diagnostic functions. Thus, the smart pacemaker of the near future should offer high flexibility to permit easy programming of available therapies and follow-up, and extensive, easily comprehensible diagnostic functions.
Ye, Sheng; Zhu, Lvchan; Ning, Botao; Zhang, Chenmei
2017-01-01
Fulminant myocarditis is severe and aggressive, but it is self-limited and usually has a favorable prognosis if the patients can survive the acute phase. When drug treatment is not effective, extracorporeal membrane oxygenation technology should be applied to support cardiopulmonary function. Extracorporeal membrane oxygenation can simultaneously support function of the left ventricle, right ventricle, and lungs, and provide stable blood circulation for patients with heart and respiratory failure, which allows sufficient time for the cardiopulmonary system to recover. Fulminant myocarditis affects cardiac systolic function, as well as the function of autorhythmic cells and the conduction system. If severe bradycardia or atrioventricular block appears, a pacemaker needs to be installed. We report a child with fulminant myocarditis who was treated with extracorporeal membrane oxygenation combined with an artificial pacemaker. PMID:28747842
Ye, Sheng; Zhu, Lvchan; Ning, Botao; Zhang, Chenmei
2017-06-01
Fulminant myocarditis is severe and aggressive, but it is self-limited and usually has a favorable prognosis if the patients can survive the acute phase. When drug treatment is not effective, extracorporeal membrane oxygenation technology should be applied to support cardiopulmonary function. Extracorporeal membrane oxygenation can simultaneously support function of the left ventricle, right ventricle, and lungs, and provide stable blood circulation for patients with heart and respiratory failure, which allows sufficient time for the cardiopulmonary system to recover. Fulminant myocarditis affects cardiac systolic function, as well as the function of autorhythmic cells and the conduction system. If severe bradycardia or atrioventricular block appears, a pacemaker needs to be installed. We report a child with fulminant myocarditis who was treated with extracorporeal membrane oxygenation combined with an artificial pacemaker.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frazier, M.J.
1980-08-01
The electromagnetic fields associated with HVDC converters and transmission lines constitute a unique environment for persons with implanted cardiac pacemakers. A measurement program has been conducted to assess the potential interfering effects of these harmonically rich fields on implanted pacemakers. The experimental procedures that were employed take into account the combined effects of the electric and magnetic fields. The effect of the resulting body current on the response of six pacemakers was assessed in the laboratory, using a previously developed model to relate body current to pacemaker pickup voltage. The results show that R-wave pacemaker reversion can be expected atmore » some locations within the converter facility, but that a large safety margin for unperturbed pacemaker operation exists beneath the transmission lines.« less
Sun, Qing; Schwartz, François; Michel, Jacques; Herve, Yannick; Dalmolin, Renzo
2011-06-01
In this paper, we aim at developing an analog spiking neural network (SNN) for reinforcing the performance of conventional cardiac resynchronization therapy (CRT) devices (also called biventricular pacemakers). Targeting an alternative analog solution in 0.13- μm CMOS technology, this paper proposes an approach to improve cardiac delay predictions in every cardiac period in order to assist the CRT device to provide real-time optimal heartbeats. The primary analog SNN architecture is proposed and its implementation is studied to fulfill the requirement of very low energy consumption. By using the Hebbian learning and reinforcement learning algorithms, the intended adaptive CRT device works with different functional modes. The simulations of both learning algorithms have been carried out, and they were shown to demonstrate the global functionalities. To improve the realism of the system, we introduce various heart behavior models (with constant/variable heart rates) that allow pathologic simulations with/without noise on the signals of the input sensors. The simulations of the global system (pacemaker models coupled with heart models) have been investigated and used to validate the analog spiking neural network implementation.
Excitation model of pacemaker cardiomyocytes of cardiac conduction system
NASA Astrophysics Data System (ADS)
Grigoriev, M.; Babich, L.
2015-11-01
Myocardium includes typical and atypical cardiomyocytes - pacemakers, which form the cardiac conduction system. Excitation from the atrioventricular node in normal conditions is possible only in one direction. Retrograde direction of pulses is impossible. The most important prerequisite for the work of cardiomyocytes is the anatomical integrity of the conduction system. Changes in contractile force of the cardiomyocytes, which appear periodically, are due to two mechanisms of self-regulation - heterometric and homeometric. Graphic course of the excitation pulse propagation along the heart muscle more accurately reveals the understanding of the arrhythmia mechanism. These models have the ability to visualize the essence of excitation dynamics. However, they do not have the proper forecasting function for result estimation. Integrative mathematical model enables further investigation of general laws of the myocardium active behavior, allows for determination of the violation mechanism of electrical and contractile function of cardiomyocytes. Currently, there is no full understanding of the topography of pacemakers and ionic mechanisms. There is a need for the development of direction of mathematical modeling and comparative studies of the electrophysiological arrangement of cells of atrioventricular connection and ventricular conduction system.
MRI-conditional pacemakers: current perspectives.
Ferreira, António M; Costa, Francisco; Tralhão, António; Marques, Hugo; Cardim, Nuno; Adragão, Pedro
2014-01-01
Use of both magnetic resonance imaging (MRI) and pacing devices has undergone remarkable growth in recent years, and it is estimated that the majority of patients with pacemakers will need an MRI during their lifetime. These investigations will generally be denied due to the potentially dangerous interactions between cardiac devices and the magnetic fields and radio frequency energy used in MRI. Despite the increasing reports of uneventful scanning in selected patients with conventional pacemakers under close surveillance, MRI is still contraindicated in those circumstances and cannot be considered a routine procedure. These limitations prompted a series of modifications in generator and lead engineering, designed to minimize interactions that could compromise device function and patient safety. The resulting MRI-conditional pacemakers were first introduced in 2008 and the clinical experience gathered so far supports their safety in the MRI environment if certain conditions are fulfilled. With this technology, new questions and controversies arise regarding patient selection, clinical impact, and cost-effectiveness. In this review, we discuss the potential risks of MRI in patients with electronic cardiac devices and present updated information regarding the features of MRI-conditional pacemakers and the clinical experience with currently available models. Finally, we provide some guidance on how to scan patients who have these devices and discuss future directions in the field.
Potential for Personal Digital Assistant interference with implantable cardiac devices.
Tri, Jeffrey L; Trusty, Jane M; Hayes, David L
2004-12-01
To determine whether the wireless local area network (WLAN) technology, specifically the Personal Digital Assistant (PDA), interferes with implantable cardiac pacemakers and defibrillators. Various pacemakers and defibrillators were tested in vitro at the Mayo Clinic in Rochester, Minn, between March 6 and July 30, 2003. These cardiac devices were exposed to an HP Compaq IPAQ PDA fitted with a Cisco Aironet WLAN card. Initial testing was designed to show whether the Aironet card radiated energy in a consistent pattern from the antenna of the PDA to ensure that subsequent cardiac device testing would not be affected by the orientation of the PDA to the cardiac device. Testing involved placing individual cardiac devices in a simulator and uniformly exposing each device at its most sensitive programmable value to the WLAN card set to maximum power. During testing with the Cisco WLAN Aironet card, all devices programmed to the unipolar or bipolar configuration single- or dual-chamber mode had normal pacing and sensing functions and exhibited no effects of electromagnetic interference except for 1 implantable cardioverter-defibrillator (ICD). This aberration was determined to relate to the design of the investigators' testing apparatus and not to the output of the PDA. The ICD device appropriately identified and labeled the electromagnetic aberration as "noise." We documented no electromagnetic interference caused by the WLAN technology by using in vitro testing of pacemakers and ICDs; however, testing ideally should be completed in vivo to confirm the lack of any clinically important interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-06-01
Beginning in February, 1970, the Nuclear Materials and Equipment Corporation (NUMEC) undertook a program to design, develop and manufacture a radioisotope powered cardiac pacemaker system. The scope of technical work was specified to be: establish system, component, and process cost reduction goals using the prototype Radioisotope Powered Cardiac Pacemaker (RCP) design and develop production techniques to achieve these cost reduction objectives; fabricate radioisotope powered fueled prototype cardiac pacemakers (RCP's) on a pilot production basis; conduct liaison with a Government-designated fueling facility for purposes of defining fueling requirements, fabrication and encapsulation procedures, safety design criteria and quality control and inspection requirements;more » develop and implement Quality Assurance and Reliability Programs; conduct performance, acceptance, lifetime and reliability tests of fueled RCP's in the laboratory; conduct liaison with the National Institutes of Health and with Government specified medical research institutions selected for the purpose of undertaking clinical evaluation of the RCP in humans; monitor and evaluate, on a continuing basis, all test data; and perform necessary safety analyses and tests. Pacemaker designs were developed and quality assurance and manufacturing procedures established. Prototype pacemakers were fabricated. A total of 126 radioisotope powered units were implanted and have been followed clinically for approximately seven years. Four (4) of these units have failed. Eighty-three (83) units remain implanted and satisfactorily operational. An overall failure rate of less than the target 0.15% per month has been achieved.« less
Acute pericarditis with cardiac tamponade induced by pacemaker implantation.
Shingaki, Masami; Kobayashi, Yutaka; Suzuki, Haruo
2015-11-01
An 87-year-old woman was diagnosed with third-degree atrioventricular block and underwent pacemaker implantation. On postoperative day 12, she experienced cardiac tamponade that was suspected on computed tomography to be caused by lead perforation; therefore, we performed open-heart surgery. However, we could not identify a perforation site on the heart, and drained a 400-mL exudative pericardial effusion. Subsequently, we diagnosed the pericardial effusion as due to pericarditis induced by pacemaker implantation. It is sometimes difficult to distinguish pericarditis from pacemaker lead perforation, so both should be included in the differential diagnosis. © The Author(s) 2014.
Herrmann, Stefan; Layh, Beate; Ludwig, Andreas
2011-12-01
HCN pacemaker channels (I(f) channels) are believed to contribute to important functions in the heart; thus these channels became an attractive target for generating transgenic mouse mutants to elucidate their role in physiological and pathophysiological cardiac conditions. A full understanding of cardiac I(f) and the interpretation of studies using HCN mouse mutants require detailed information about the expression profile of the individual HCN subunits. Here we investigate the cardiac expression pattern of the HCN isoforms at the mRNA as well as at the protein level. The specificity of antibodies used was strictly confirmed by the use of HCN1, HCN2 and HCN4 knockout animals. We find a low, but highly differential HCN expression profile outside the cardiac conduction pathway including left and right atria and ventricles. Additionally HCN distribution was investigated in tissue slices of the sinoatrial node, the atrioventricular node, the bundle of His and the bundle branches. The conduction system was marked by acetylcholine esterase staining. HCN4 was confirmed as the predominant isoform of the primary pacemaker followed by a distinct expression of HCN1. In contrast HCN2 shows only a confined expression to individual pacemaker cells. Immunolabeling of the AV-node reveals also a pronounced specificity for HCN1 and HCN4. Compared to the SN and AVN we found a low but selective expression of HCN4 as the only isoform in the atrioventricular bundle. However in the bundle branches HCN1, HCN4 and also HCN2 show a prominent and selective expression pattern. Our results display a characteristic distribution of individual HCN isoforms in several cardiac compartments and reveal that beside HCN4, HCN1 represents the isoform which is selectively expressed in most parts of the conduction system suggesting a substantial contribution of HCN1 to pacemaking. 2011 Elsevier Ltd. All rights reserved.
[Structure and functional organization of integrated cardiac intensive care].
Scherillo, Marino; Miceli, Domenico; Tubaro, Marco; Guiducci, Umberto
2007-05-01
The early invasive strategy for the treatment of acute coronary syndromes and the increasing number of older and sicker patients requiring prolonged and more complex intensive care have induced many changes in the function of the intensive care units. These changes include the statement that specially trained cardiologists and cardiac nurses who can manage patients with acute cardiac conditions should staff the intensive care units. This document indicates the structure of the units and specific recommendations for the number of beds, monitoring system, respirators, pacemaker/defibrillators and additional equipment.
Neck Pain One Week after Pacemaker Generator Replacement.
Graham, Ross F; Wightman, John M
2015-07-01
The incidence of cardiac pacemaker implantation has risen markedly in the past three decades, making awareness of possible postprocedural complications critical to the emergency physician. This case is the first documented instance of internal jugular (IJ) deep vein thrombosis (DVT) from an uncomplicated pacemaker generator replacement. A patient presented to an Emergency Department with a 2-day history of mild left temporal headache migrating to his left neck. The patient did not volunteer this information, but review of systems revealed a temporary transvenous pacemaker inserted through the right IJ vein 1 week previously during a routine exchange of a left-sided cardiac pacemaker generator. Manipulation of the existing pacemaker wires entering the left subclavian vein was minimal. Computed tomographic angiography of the neck demonstrated near-complete thrombotic occlusion of the entire length of his left IJ vein. This required hospital admission for observation and treatment with anticoagulation. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: DVT, with thrombotic extension into adjacent vessels anywhere along the course of pacemaker wires, should be considered by the emergency provider in the evaluation of head, neck, or upper extremity symptoms after recent or remote implantation or manipulation of a transvenous cardiac pacemaker, including generator replacement. Failure to identify and treat appropriately could result in significant morbidity and mortality from airway edema, septic thrombophlebitis, superior vena cava syndrome, superior sagittal sinus thrombosis, or pulmonary embolism. Published by Elsevier Inc.
Permanent Leadless Cardiac Pacemaker Therapy: A Comprehensive Review.
Tjong, Fleur V Y; Reddy, Vivek Y
2017-04-11
A new technology, leadless pacemaker therapy, was recently introduced clinically to address lead- and pocket-related complications in conventional transvenous pacemaker therapy. These leadless devices are self-contained right ventricular single-chamber pacemakers implanted by using a femoral percutaneous approach. In this review of available clinical data on leadless pacemakers, early results with leadless devices are compared with historical results with conventional single-chamber pacing. Both presently manufactured leadless pacemakers show similar complications, which are mostly related to the implant procedure: cardiac perforation, device dislocation, and femoral vascular access site complications. In comparison with conventional transvenous single-chamber pacemakers, slightly higher short-term complication rates have been observed: 4.8% for leadless pacemakers versus 4.1% for conventional pacemakers. The complication rate of the leadless pacemakers is influenced by the implanter learning curve for this new procedure. No long-term outcome data are yet available for the leadless pacemakers. Larger leadless pacing trials, with long-term follow-up and direct randomized comparison with conventional pacing systems, will be required to define the proper clinical role of these leadless systems. Although current leadless pacemakers are limited to right ventricular pacing, future advanced, communicating, multicomponent systems are expected to expand the potential benefits of leadless therapy to a larger patient population. © 2017 American Heart Association, Inc.
Nordbeck, Peter; Fidler, Florian; Friedrich, Michael T; Weiss, Ingo; Warmuth, Marcus; Gensler, Daniel; Herold, Volker; Geistert, Wolfgang; Jakob, Peter M; Ertl, Georg; Ritter, Oliver; Ladd, Mark E; Bauer, Wolfgang R; Quick, Harald H
2012-12-01
There are serious concerns regarding safety when performing magnetic resonance imaging in patients with implanted conductive medical devices, such as cardiac pacemakers, and associated leads, as severe incidents have occurred in the past. In this study, several approaches for altering an implant's lead design were systematically developed and evaluated to enhance the safety of implanted medical devices in a magnetic resonance imaging environment. The individual impact of each design change on radiofrequency heating was then systematically investigated in functional lead prototypes at 1.5 T. Radiofrequency-induced heating could be successfully reduced by three basic changes in conventional pacemaker lead design: (1) increasing the lead tip area, (2) increasing the lead conductor resistance, and (3) increasing outer lead insulation conductivity. The findings show that radiofrequency energy pickup in magnetic resonance imaging can be reduced and, therefore, patient safety can be improved with dedicated construction changes according to a "safe by design" strategy. Incorporation of the described alterations into implantable medical devices such as pacemaker leads can be used to help achieve favorable risk-benefit-ratios when performing magnetic resonance imaging in the respective patient group. Copyright © 2012 Wiley Periodicals, Inc.
Ciavarella, A; Nimmo, J; Hambrook, L
2016-04-01
A 13-year-old neutered male Border Collie was presented with acute onset syncope, weakness and anorexia 10 months after transvenous pacemaker implantation. The patient was laterally recumbent, bradycardic (36 beats/min) and febrile (40.7°C) on presentation. An electrocardiogram (ECG) revealed recurrence of third-degree atrioventricular block with a ventricular escape rhythm. Fluoroscopy identified migration of the pacemaker tip through the apex of the right ventricle. Echocardiography failed to reveal any evidence of pericardial effusion or cardiac tamponade. Full postmortem was performed after euthanasia. The pacemaker lead had perforated the apex of the right ventricle and lodged in the right pleural space. Culture of blood (taken antemortem), pericardial sac, right ventricular wall (surrounding pacemaker lead), pacemaker lead tip and pericardial fluid revealed a pure growth of Moraxella phenylpyruvica. Bacteraemia associated with M. phenylpyruvica has never been reported in the dog, but sporadic cases are reported in humans. Infection could have resulted from either pre-existing myocarditis or opportunistic infection and bacteraemia post pacemaker implantation. Evaluation of the pacemaker function at regular intervals would allow early detection of poor pacemaker-to-myocardium contact, which would prompt further investigation of pacemaker lead abnormalities such as perforation. © 2016 Australian Veterinary Association.
Bioinstrumentation: A Project-Based Engineering Course
ERIC Educational Resources Information Center
Kyle, Aaron M.; Jangraw, David C.; Bouchard, Matthew B.; Downs, Matthew E.
2016-01-01
This paper presents the development, implementation, and assessment of a project-based Bioinstrumentation course. All course lectures and hands-on laboratory activities are related to a central project theme: a cardiac pacemaker. The students create a benchtop cardiac pacemaker by applying instrumentation knowledge acquired in the course to each…
Ambrosi, Christina M.; Boyle, Patrick M.; Chen, Kay; Trayanova, Natalia A.; Entcheva, Emilia
2015-01-01
Multiple cardiac pathologies are accompanied by loss of tissue excitability, which leads to a range of heart rhythm disorders (arrhythmias). In addition to electronic device therapy (i.e. implantable pacemakers and cardioverter/defibrillators), biological approaches have recently been explored to restore pacemaking ability and to correct conduction slowing in the heart by delivering excitatory ion channels or ion channel agonists. Using optogenetics as a tool to selectively interrogate only cells transduced to produce an exogenous excitatory ion current, we experimentally and computationally quantify the efficiency of such biological approaches in rescuing cardiac excitability as a function of the mode of application (viral gene delivery or cell delivery) and the geometry of the transduced region (focal or spatially-distributed). We demonstrate that for each configuration (delivery mode and spatial pattern), the optical energy needed to excite can be used to predict therapeutic efficiency of excitability restoration. Taken directly, these results can help guide optogenetic interventions for light-based control of cardiac excitation. More generally, our findings can help optimize gene therapy for restoration of cardiac excitability. PMID:26621212
Gene therapy to develop a genetically engineered cardiac pacemaker.
Glenn, Christopher M; Pogwizd, Steven M
2003-01-01
While cardiac pacemakers are frequently used for the treatment of bradydysrhythmias (from diseases of the cardiac conduction system), their use is still limited by complications that can be life-threatening and expensive. Genetic engineering approaches offer an opportunity to modulate cellular automaticity in a manner that could have significant therapeutic potential. It is well known that ventricular myocytes exhibit a more negative diastolic potential than do pacemaker cells, in large part because of the inward rectifying potassium current/K1 (which pacemaker cells lack). Taking advantage of these intrinsic electrophysiological differences, a biological pacemaker has recently been developed by Miake et al (Nature 2002; 419:132-133) using adenoviral gene transfer approaches. By isolating the gene responsible for/K1 (the Kir2.1 gene), mutating it to make it a dysfunctional channel (a dominant-negative), inserting the mutated gene into an adenoviral vector, and delivering the virus to the hearts of guinea pigs, the investigators were able to successfully convert some ventricular myocytes to pacemaker cells. While issues of safety and long-term efficacy need to be further established, the results of these experiments provide proof of principle that gene transfer offers great promise for treatment of electrophysiological disorders including conduction system disease.
Essential Role of the m2R-RGS6-IKACh Pathway in Controlling Intrinsic Heart Rate Variability
Posokhova, Ekaterina; Ng, David; Opel, Aaisha; Masuho, Ikuo; Tinker, Andrew; Biesecker, Leslie G.; Wickman, Kevin; Martemyanov, Kirill A.
2013-01-01
Normal heart function requires generation of a regular rhythm by sinoatrial pacemaker cells and the alteration of this spontaneous heart rate by the autonomic input to match physiological demand. However, the molecular mechanisms that ensure consistent periodicity of cardiac contractions and fine tuning of this process by autonomic system are not completely understood. Here we examined the contribution of the m2R-IKACh intracellular signaling pathway, which mediates the negative chronotropic effect of parasympathetic stimulation, to the regulation of the cardiac pacemaking rhythm. Using isolated heart preparations and single-cell recordings we show that the m2R-IKACh signaling pathway controls the excitability and firing pattern of the sinoatrial cardiomyocytes and determines variability of cardiac rhythm in a manner independent from the autonomic input. Ablation of the major regulator of this pathway, Rgs6, in mice results in irregular cardiac rhythmicity and increases susceptibility to atrial fibrillation. We further identify several human subjects with variants in the RGS6 gene and show that the loss of function in RGS6 correlates with increased heart rate variability. These findings identify the essential role of the m2R-IKACh signaling pathway in the regulation of cardiac sinus rhythm and implicate RGS6 in arrhythmia pathogenesis. PMID:24204714
Case report: use caution when applying magnets to pacemakers or defibrillators for surgery.
Schulman, Peter M; Rozner, Marc A
2013-08-01
The application of a magnet to a pacemaker (intended to cause asynchronous pacing) or implanted cardioverter defibrillator (intended to prevent shocks) during surgery without a clear understanding of actual magnet function(s) or precautions can have unexpected, untoward, or harmful consequences. In this report, we present 3 cases in which inadequate assessment of cardiac implanted electronic device (CIED) function, coupled with magnet application, contributed to or resulted in inappropriate antitachycardia pacing or shocks, CIED damage, or patient injury. Although these cases might be rare, they reinforce the need for a timely, detailed preoperative review of CIED function and programming as recommended by the American Society of Anesthesiologists and the Heart Rhythm Society.
Joosten, S; Pammler, K; Silny, J
2009-02-07
The problem of electromagnetic interference of electronic implants such as cardiac pacemakers has been well known for many years. An increasing number of field sources in everyday life and occupational environment leads unavoidably to an increased risk for patients with electronic implants. However, no obligatory national or international safety regulations exist for the protection of this patient group. The aim of this study is to find out the anatomical and physiological worst-case conditions for patients with an implanted pacemaker adjusted to unipolar sensing in external time-varying electric fields. The results of this study with 15 volunteers show that, in electric fields, variation of the interference voltage at the input of a cardiac pacemaker adds up to 200% only because of individual factors. These factors should be considered in human studies and in the setting of safety regulations.
Ghaem, Haleh; Ghorbani, Mohammad; Zare Dorniani, Samira
2017-06-01
Permanent artificial pacemaker is one of the important therapies for treatment of cardiac conduction system problems. The present study aimed to determine the association between some predictive variables and all-cause and cause-specific mortality in the patients who had undergone pacemaker implantation. This study was conducted on 1207 patients who had undergone permanent pacemaker implantation in the hospitals affiliated with Shiraz University of Medical Sciences, Iran, from Mar 2002 to Mar 2012. The variables that existed in the patients' medical records included sex, diabetes mellitus, obesity, cerebrovascular accident, cardiomegaly, smoking, hypertension, ischemic heart disease, congenital heart disease, sick sinus syndrome, and atrial fibrillation. Competing risks model was used to assess the association between the predictive variables and cause-specific (i.e., cardiac and vascular) mortality. The patients' mean age was 66.32±17.92 yr (70.62±14.45 yr in the patients with single-chamber pacemakers vs. 61.91±17.69 yr in those with two-chamber pacemakers) ( P <0.001). Sick sinus syndrome and age increased the risk of all-cause mortality, while two-chamber pacemaker decreased this risk. Obesity increased the risk of cardiac death, and diabetes mellitus and heart valve disease increased the risk of vascular death. The variables predicting mortality in all-cause model were completely different from those in cause-specific model. Moreover, death in such patients may occur due to reasons other than pacemaker. Therefore, future studies, particularly prospective ones, are recommended to use competing risks models.
NASA Astrophysics Data System (ADS)
Aghighi, Alireza; Comtois, Philippe
2017-09-01
Self-organization of spontaneous activity of a network of active elements is important to the general theory of reaction-diffusion systems as well as for pacemaking activity to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes, consisting of resting and pacemaker cells, exhibit spontaneous activation of their electrical activity. Similarly, one proposed approach to the development of biopacemakers as an alternative to electronic pacemakers for cardiac therapy is based on heterogeneous cardiac cells with resting and spontaneously beating phenotypes. However, the combined effect of pacemaker characteristics, density, and spatial distribution of the pacemaker cells on spontaneous activity is unknown. Using a simple stochastic pattern formation algorithm, we previously showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of pacemaker cells. In this study, we show that this behavior is dependent on the pacemaker cell characteristics, with weaker pacemaker cells requiring higher density and larger clusters to sustain multicellular activity. These multicellular structures also demonstrated an increased sensitivity to voltage noise that favored spontaneous activity at lower density while increasing temporal variation in the period of activity. This information will help researchers overcome the current limitations of biopacemakers.
Ethics and the cardiac pacemaker: more than just end-of-life issues.
Hutchison, Katrina; Sparrow, Robert
2018-05-01
For many years, ethical debate about pacemakers has focused on whether and under what circumstances they may be turned off in end of life care. Several other important ethical issues have been neglected, perhaps because the dilemmas they pose for cardiologists are not so immediate. These include: potential conflicts of interest, particularly those arising from the role of industry employed allied professionals (IEAPs) in pacemaker care; unanticipated impacts of commercial competition and the device improvement cycle; risks associated with remotely accessible software; equity in access to healthcare; and questions about reuse of explanted pacemakers in low and middle income countries. This paper analyses these issues in order to facilitate a more comprehensive approach to ethics and the cardiac pacemaker. Cardiologists should be aware of all of these issues and contribute to ongoing discussions about how they are resolved.
Safety of Laser Interstitial Thermal Therapy in Patients With Pacemakers.
Grewal, Sanjeet S; Gorny, Krzysztof R; Favazza, Christopher P; Watson, Robert E; Kaufmann, Timothy J; Van Gompel, Jamie J
2018-02-10
Laser interstitial thermal therapy (LiTT) has increasingly been used as a treatment option for medically refractory epilepsy, tumors, and radiation necrosis. The use of LiTT requires intraoperative magnetic resonance (MR) thermography. This can become an issue in patients with other implanted therapeutic devices such as pacemakers and vagal nerve stimulators due to concerns regarding increases in the specific absorption rate (SAR). This is a technical case report demonstrating a successfully and safely performed LiTT in a 1.5-T magnetic resonance imaging (MRI) in a patient with a pacemaker for mesial temporal sclerosis. An 83-yr-old gentleman who had an implanted cardiac pacemaker presented with medically intractable epilepsy and was confirmed to have mesial temporal sclerosis on imaging. Video electroencephalography demonstrated concordant ipsilateral seizures and semiology. He underwent LiTT for ablation of the mesial temporal lobe. This was performed with the below described protocol with a cardiology nurse monitoring the patient's cardiac condition and a physicist monitoring SAR, and MR imaging quality without any adverse events. This study reports on a protocol of cardiac and MR SAR to safely perform MR-guided LiTT in the setting of traditional pacemakers in patients who are not pacemaker dependent. Copyright © 2018 by the Congress of Neurological Surgeons
Xiang, Mei-Xiang; Wang, Dong-Qi; Xu, Jing; Zhang, Zheng; Hu, Jian-Xin; Wang, Dong-Mei; Gu, Xiang; Liu, He-Ping; Guo, Tao; Yang, Xiang-Jun; Ling, Feng; Lin, Jia-Feng; Cai, Shang-Lang; Zhu, Guo-Bin; Wang, Jian-An
2016-11-20
High cost of imported pacemakers is a main obstacle for Chinese patients suffering from bradyarrhythmia, and a domestically developed pacemaker will help lower the burden. This study aimed to evaluate the safety and efficacy of Qinming8631 DR (Qinming Medical, Baoji, China), the first domestically developed dual-chamber pacemaker of China, compared with a commercially available pacemaker Talos DR (Biotronik, Berlin, Germany) in Chinese patients. A prospective randomized trial was conducted at 14 centers in China. Participants were randomized into trial (Qinming8631 DR) and control (Talos DR) groups. Parameters of the pacing systems were collected immediately after device implantation and during follow-ups. The effective pacing rate at 6-month follow-up was recorded as the primary end point. Electrical properties, magnet response, single- and double-pole polarity conversion, rate response function, and adverse events of the pacing system were analyzed. The Cochran-Mantel-Haenszel Chi-square test, paired t-test, and Wilcoxon signed-rank test were used for measuring primary qualitative outcomes and comparing normally and abnormally distributed measurement data. A total of 225 patients with a diagnosis of bradyarrhythmia and eligible for this study were randomly enrolled into the trial (n = 113) and control (n = 112) groups. They underwent successful pacemaker implantation with acceptable postoperative pacing threshold and sensitivity. Effective pacing rates of trial and control groups were comparable both in the full analysis set and the per protocol set (81.4% vs. 79.5%, P = 0.712 and 95.4% vs. 89.5%, P = 0.143, respectively). In both data sets, noninferiority of the trial group was above the predefined noninferiority limit(-9.5%). This study established the noninferiority of Qinming8631 DR to Talos DR. The safety and efficacy of Qinming8631 DR pacemaker were comparable to those of Talos DR in treating patients with cardiac bradyarrhythmia.
GHAEM, Haleh; GHORBANI, Mohammad; ZARE DORNIANI, Samira
2017-01-01
Background: Permanent artificial pacemaker is one of the important therapies for treatment of cardiac conduction system problems. The present study aimed to determine the association between some predictive variables and all-cause and cause-specific mortality in the patients who had undergone pacemaker implantation. Methods: This study was conducted on 1207 patients who had undergone permanent pacemaker implantation in the hospitals affiliated with Shiraz University of Medical Sciences, Iran, from Mar 2002 to Mar 2012. The variables that existed in the patients’ medical records included sex, diabetes mellitus, obesity, cerebrovascular accident, cardiomegaly, smoking, hypertension, ischemic heart disease, congenital heart disease, sick sinus syndrome, and atrial fibrillation. Competing risks model was used to assess the association between the predictive variables and cause-specific (i.e., cardiac and vascular) mortality. Results: The patients’ mean age was 66.32±17.92 yr (70.62±14.45 yr in the patients with single-chamber pacemakers vs. 61.91±17.69 yr in those with two-chamber pacemakers) (P<0.001). Sick sinus syndrome and age increased the risk of all-cause mortality, while two-chamber pacemaker decreased this risk. Obesity increased the risk of cardiac death, and diabetes mellitus and heart valve disease increased the risk of vascular death. Conclusion: The variables predicting mortality in all-cause model were completely different from those in cause-specific model. Moreover, death in such patients may occur due to reasons other than pacemaker. Therefore, future studies, particularly prospective ones, are recommended to use competing risks models. PMID:28828325
Bieler, M; Sefidpar, M; Engel, U R; Reutter, F W
1976-11-20
The case is reported of a 39-year-old male with Steinert's dystrophia myotonica complicated by cardiac arrhythmias manifested by high-degree a-v block with Stokes-Adams attacks. Implantation of a demand-type cardiac pacemaker brought prompt relief from cardiac symptoms and the patient was able to resume work. The pathologico-anatomical findings in dystrophia myotonica are discussed, together with their possible connection with the type of arrhythmias described.
Implantable cardiac arrhythmia devices--part I: pacemakers.
Kusumoto, Fred M; Goldschlager, Nora
2006-05-01
Implantable cardiac devices have become firmly entrenched as important therapeutic tools for a variety of cardiac conditions. The first part of this two-part review will discuss the contemporary use and follow-up of pacemakers, while the second part will address the use of implantable cardioverter defibrillators and implantable loop recorders. Pacemakers are the only available treatment for symptomatic bradycardia not due to reversible causes. Large randomized studies have demonstrated a small but statistically significant reduction in atrial fibrillation associated with pacing modes that maintain atrioventricular synchrony. In contrast, pacing mode appears to have a less dramatic effect in patients with atrioventricular block. Cardiac resynchronization with specialized left ventricular leads has been shown to reduce symptoms and improve survival in patients with symptomatic heart failure, systolic dysfunction, and widened QRS complexes. For all patients, careful follow-up is necessary to ensure optimal therapeutic benefit of pacing systems.
Implantable automatic scanning pacemaker for termination of supraventricular tachycardia.
Spurrell, R A; Nathan, A W; Bexton, R S; Hellestrand, K J; Nappholz, T; Camm, A J
1982-03-01
Thirteen patients suffering from reentrant supraventricular tachycardia have undergone implantation of a scanning extrastimulus pacemaker. This pacemaker is fully implanted and automatic, and it requires no external control device to activate or control it. The pacemaker is activated when tachycardia occurs. After four cycles an extrastimulus is induced with a preset coupling time from a sensed intracardiac potential, and every four cycles thereafter a further extrastimulus occurs, but on each occasion there is a decrement in coupling cycle by 6 ms until 90 ms of the cardiac cycle has been scanned by extrastimuli. When necessary, two extrastimuli can be introduced with a fixed but preset coupling time between them. Every four beats two extrastimuli are induced but the coupling time between the spontaneous cardiac potential and the first stimulus is decreased by 6 ms until 90 ms of the cardiac cycle has been scanned. The coupling time between the two stimuli is fixed throughout the scan. When termination of tachycardia occurs the successful timing variables are retained in the pacemaker memory so that at the onset of the next episode of tachycardia these settings are used first. Pacemaker pulse width, sensitivity, tachycardia trigger rate, coupling intervals for both stimuli and the use of single or double extrastimuli are all programmable transcutaneously. Three patients required single, and seven patients double ventricular premature stimuli; three patients required double atrial premature stimuli for termination of tachycardia. Despite frequent attacks of tachycardia before implantation, only two patients had a sustained attack of tachycardia after pacemaker implantation.
Taha, Nima; Zhang, Jing; Ranjan, Rupesh; Daneshvar, Samuel; Castillo, Edilzar; Guillen, Elizabeth; Montoya, Martha C; Velasquez, Giovanna; Naqvi, Tasneem Z
2010-08-01
Doppler echocardiography of mitral inflow or aortic outflow or both has been validated and advocated to guide biventricular (Biv) pacemaker optimization. A comprehensive and tailored Doppler echocardiographic evaluation may be required in patients with heart failure to assist with Biv pacemaker optimization. The third heart sound (S(3)), an acoustic cardiographic parameter, has been demonstrated to be a highly specific finding for hemodynamic evaluation in patients with heart failure. The aims of this study were to evaluate the use of comprehensive Doppler echocardiography as a guide during Biv pacemaker optimization in patients after cardiac resynchronization therapy and to evaluate the feasibility of S(3) intensity to be a cost-efficient parameter for Biv pacemaker optimization compared with Doppler echocardiography. Comprehensive Doppler echocardiographic evaluations were performed during Biv pacemaker optimization in 44 patients referred for pacemaker optimization (mean age, 71 + or - 12 years; mean left ventricular ejection fraction, 34 + or - 11%). Blinded assessment of S(3) intensity was performed simultaneously using acoustic cardiography. The correlation and improvement in cardiac hemodynamics were analyzed between the methods. Echocardiographically guided optimization resulted in significant improvements in the left ventricular outflow velocity-time integral (15.92 + or - 4.77 to 18.51 + or - 5.19 cm, P < .001), ejection time (278 + or - 40 to 293 + or - 40 ms, P < .001), myocardial performance index (0.57 + or - 0.19 to 0.44 + or - 0.14, P < .002), and peak pulmonary artery systolic pressure (42 + or - 13 to 36 + or - 11 mm Hg, P < .04) and decreased S(3) intensity from 4.81 + or - 1.84 at baseline to 3.96 + or - 1.22 after optimization (P < .02) for the overall study group and from 6.63 + or - 1.37 to 4.85 + or - 1.13 (P < .001) in the 18 patients with baseline S(3) intensity > 5.0. The correlation between echocardiographic and acoustic cardiographic S(3) intensity for optimal atrioventricular delay was 0.86 (P < .001) and for optimal interventricular delay was 0.64 (P < .001). Optimal atrioventricular delay was identical by echocardiographic and acoustic cardiographic S(3) intensity in 56%, and optimal interventricular delay was identical in 75% of patients. Pacemakers were permanently programmed on the basis of echocardiographic evaluation. In 35 patients available for follow up, the mean New York Heart Association class reduced from 2.55 + or - 0.81 to 1.77 + or - 0.90 (P < .001) and the mean quality-of-life score as assessed by Minnesota Living With Heart Failure Questionnaire improved from 45 + or - 28 to 32 + or - 28 (P = .08) at 2.5 + or - 2.1 months. Comprehensive echocardiographically guided Biv pacemaker optimization produces significant improvement in Doppler echocardiographic hemodynamics, a reduction in S(3) intensity, and an improvement in functional class in patients after cardiac resynchronization therapy. Copyright 2010 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Bajaj, Mandeep; Cunningham, Glenn R.
2014-01-01
Pheochromocytoma should be considered in young patients who have acute cardiac decompensation, even if they have no history of hypertension. Atrioventricular node ablation and pacemaker placement should be considered for stabilizing pheochromocytoma patients with cardiogenic shock due to atrial tachyarrhythmias. A 38-year-old black woman presented with cardiogenic shock (left ventricular ejection fraction, <0.15) that did not respond to the placement of an intra-aortic balloon pump. A TandemHeart® Percutaneous Ventricular Assist Device was inserted emergently. After atrioventricular node ablation and placement of a temporary pacemaker, the TandemHeart was removed. Computed tomography of the abdomen revealed a pheochromocytoma. After placement of a permanent pacemaker, the patient underwent a right adrenalectomy. This is, to our knowledge, the first reported case of pheochromocytoma-induced atrial tachyarrhythmia that led to cardiogenic shock and cardiac arrest unresolved by the placement of 2 different ventricular assist devices, but that was completely reversed by radiofrequency ablation of the atrioventricular node and the placement of a temporary pacemaker. We present the patient's clinical, laboratory, and imaging findings, and we review the relevant literature. PMID:25593537
Two hearts synchronized each other with a DDD pacemaker.
Brunacci, Michele; Valbusa, Alberto; Brunelli, Claudio; Bertero, Giovanni
2016-12-01
: We describe the case of a patient with dyspnea and heterotopic cardiac transplant, ventricular fibrillation from the native heart and sinus rhythm from the transplanted one. The two hearts were synchronized with a pacemaker. Electric external cardioversion and a different type of pacemaker stimulation were successfully performed, with improving symptoms.
[Management of surgery patients with implanted cardiac pacemakers].
Ugljen, R; Dadić, D; Ferek-Petrić, B; Jelić, I; Letica, D; Anić, D; Husar, J
1995-01-01
Patients having cardiac pacemaker implanted may be subjected to various general surgery procedures. Application of electrosurgery for the purpose of resection and coagulation, provides a high frequency electric field which produces electric voltage on the electrodes of the pacing system. This voltage may be detected within the pacing system, and various arrhythmias can be provoked in correlation with underlying rhythm and mode of pacing. Preoperative patient control and proper pacemaker programming can prevent the pacing malfunctions due to the electrosurgery application. Appropriate positioning of the neutral electrode in relation to the pacing system avoids the electric fields intersection and decreases their interference.
NASA Technical Reports Server (NTRS)
1980-01-01
St. Jude Medical's Cardiac Rhythm Management Division, formerly known as Pacesetter Systems, Inc., incorporated Apollo technology into the development of the programmable pacemaker system. This consists of the implantable pacemaker together with a physician's console containing the programmer and a data printer. Physician can communicate with patient's pacemaker by means of wireless telemetry signals transmitted through the communicating head held over the patient's chest. Where earlier pacemakers deliver a fixed type of stimulus once implanted, Programalith enables surgery free "fine tuning" of device to best suit the patient's changing needs.
Reticulated telangiectatic erythema of the pacemaker.
Martin, Lucy K; Wendschuh, Philip; Wendschuh, Peter
2008-05-01
Reticulated telangiectatic erythema is a rare entity; it has been reported to occur following the placement of implanted cardiac devices and drug delivery systems. Histologically, reticulated telangiectatic erythema of the pacemaker is characterized by slight spongiosis and increased dermal telangiectasias. We describe a patient that developed reticulated telangiectatic nonpruritic patches on the left chest after the placement of a pacemaker. The patient responded favorably to the removal of the pacemaker.
Battery Malfunction of a Leadless Cardiac Pacemaker - A Worrisome Single-Center Experience.
Richter, Sergio; Döring, Michael; Ebert, Micaela; Bode, Kerstin; Müssigbrodt, Andreas; Sommer, Philipp; Husser, Daniela; Hindricks, Gerhard
2018-03-14
Leadless cardiac pacemaker (LCP) therapy has been established clinically as a feasible and safe alternative to conventional transvenous pacemaker therapy for patients with an indication for single-chamber right-ventricular pacing. 1-3 However, reports on loss of telemetry and pacing output due to abrupt battery failure called the safety of one of the two commercially available systems seriously into question. The initial battery advisory with the Nanostim™ LCP was issued by the manufacturer in October 2016, who instantly called a global stop to Nanostim™ implants. To this day, similar battery issues have not been described for the Micra™ transcatheter pacing system. Therefore, we thought to analyze the long-term pacemaker performance and rate of battery malfunction of the Nanostim™ LCP in our patient population.
From Pacemaker to Wearable: Techniques for ECG Detection Systems.
Kumar, Ashish; Komaragiri, Rama; Kumar, Manjeet
2018-01-11
With the alarming rise in the deaths due to cardiovascular diseases (CVD), present medical research scenario places notable importance on techniques and methods to detect CVDs. As adduced by world health organization, technological proceeds in the field of cardiac function assessment have become the nucleus and heart of all leading research studies in CVDs in which electrocardiogram (ECG) analysis is the most functional and convenient tool used to test the range of heart-related irregularities. Most of the approaches present in the literature of ECG signal analysis consider noise removal, rhythm-based analysis, and heartbeat detection to improve the performance of a cardiac pacemaker. Advancements achieved in the field of ECG segments detection and beat classification have a limited evaluation and still require clinical approvals. In this paper, approaches on techniques to implement on-chip ECG detector for a cardiac pacemaker system are discussed. Moreover, different challenges regarding the ECG signal morphology analysis deriving from medical literature is extensively reviewed. It is found that robustness to noise, wavelet parameter choice, numerical efficiency, and detection performance are essential performance indicators required by a state-of-the-art ECG detector. Furthermore, many algorithms described in the existing literature are not verified using ECG data from the standard databases. Some ECG detection algorithms show very high detection performance with the total number of detected QRS complexes. However, the high detection performance of the algorithm is verified using only a few datasets. Finally, gaps in current advancements and testing are identified, and the primary challenge remains to be implementing bullseye test for morphology analysis evaluation.
Unudurthi, Sathya D.; Wolf, Roseanne M.; Hund, Thomas J.
2014-01-01
Normal heart rhythm (sinus rhythm) depends on regular activity of the sinoatrial node (SAN), a heterogeneous collection of specialized myocytes in the right atrium. SAN cells, in general, possess a unique electrophysiological profile that promotes spontaneous electrical activity (automaticity). However, while automaticity is required for normal pacemaking, it is not necessarily sufficient. Less appreciated is the importance of the elaborate structure of the SAN complex for proper pacemaker function. Here, we review the important structural features of the SAN with a focus on how these elements help manage a precarious balance between electrical charge generated by the SAN (“source”) and the charge needed to excite the surrounding atrial tissue (“sink”). We also discuss how compromised “source-sink” balance due, for example to fibrosis, may promote SAN dysfunction, characterized by slow and/or asynchronous pacemaker activity and even failure, in the setting of cardiovascular disease (e.g., heart failure, atrial fibrillation). Finally, we discuss implications of the “source-sink” balance in the SAN complex for cell and gene therapies aimed at creating a biological pacemaker as replacement or bridge to conventional electronic pacemakers. PMID:25505419
Measuring dose from radiotherapy treatments in the vicinity of a cardiac pacemaker.
Peet, Samuel C; Wilks, Rachael; Kairn, Tanya; Crowe, Scott B
2016-12-01
This study investigated the dose absorbed by tissues surrounding artificial cardiac pacemakers during external beam radiotherapy procedures. The usefulness of out-of-field reference data, treatment planning systems, and skin dose measurements to estimate the dose in the vicinity of a pacemaker was also examined. Measurements were performed by installing a pacemaker onto an anthropomorphic phantom, and using radiochromic film and optically stimulated luminescence dosimeters to measure the dose in the vicinity of the device during the delivery of square fields and clinical treatment plans. It was found that the dose delivered in the vicinity of the cardiac device was unevenly distributed both laterally and anteroposteriorly. As the device was moved distally from the square field, the dose dropped exponentially, in line with out-of-field reference data in the literature. Treatment planning systems were found to substantially underestimate the dose for volumetric modulated arc therapy, helical tomotherapy, and 3D conformal treatments. The skin dose was observed to be either greater or lesser than the dose received at the depth of the device, depending on the treatment site, and so care should be if skin dose measurements are to be used to estimate the dose to a pacemaker. Square field reference data may be used as an upper estimate of absorbed dose per monitor unit in the vicinity of a cardiac device for complex treatments involving multiple gantry angles. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system.
Abiri, Parinaz; Abiri, Ahmad; Packard, René R Sevag; Ding, Yichen; Yousefi, Alireza; Ma, Jianguo; Bersohn, Malcolm; Nguyen, Kim-Lien; Markovic, Dejan; Moloudi, Shervin; Hsiai, Tzung K
2017-07-21
Pacemakers have existed for decades as a means to restore cardiac electrical rhythms. However, lead-related complications have remained a clinical challenge. While market-released leadless devices have addressed some of the issues, their pacer-integrated batteries cause new health risks and functional limitations. Inductive power transfer enables wireless powering of bioelectronic devices; however, Specific Absorption Rate and size limitations reduce power efficiency for biomedical applications. We designed a remote-controlled system in which power requirements were significantly reduced via intermittent power transfer to control stimulation intervals. In parallel, the cardiac component was miniaturized to facilitate intravascular deployment into the anterior cardiac vein. Given size constraints, efficiency was optimal via a circular receiver coil wrapped into a half-cylinder with a meandering tail. The pacemaker was epicardially tested in a euthanized pig at 60 beats per minute, 2 V amplitude, and 1 ms pulse width, restoring mean arterial pressure from 0 to 37 mmHg. Power consumption was 1 mW at a range of > 3 cm with no misalignment and at 2 cm with 45° displacement misalignment, 45° x-axis angular misalignment, or 45° y-axis angular misalignment. Thus, we demonstrated a remote-controlled miniaturized pacing system with low power consumption, thereby providing a basis for the next generation of wireless implantable devices.
Arsenescu, Cătălina; Georgescu, G I M; Covic, A; Briotă, Laura
2002-01-01
Though sudden cardiac death accounts for as much as 15% of all cause mortality in uremia, reports concerning advanced A-V block, requiring permanent cardiac pacing in end-stage renal disease (ESRD) hemodialysed (HD) patients are very few. This is the first long term prospective study reporting on systematic permanent pacemaker implantation, in a cohort of ESRD patients from a single HD unit. Between 01/06/1997 and 30/12/2001, 396 pacemakers were inserted for advanced, symptomatic A-V block in our institution, including 5 in ESRD, HD patients (M/F--4/1, age 47-73, M +/- SD--61 +/- 12 years) from a single dialysis center, treating 137 patients during the study period. Thus, the incidence and prevalence of A-V defects treated by permanent pacing in uremic patients was 0.81% and 3.65% respectively. Conversely, the incidence and prevalence of ESRD treated by hemodialysis, among patients with advanced A-V conduction disturbances, requiring permanent pacing were 0.28% and 1.26%. Mitral valve calcifications were present in all patients; 3 subjects also had extensive aortic valve calcifications. Left ventricular hypertrophy (echocardiographic Framingham criteria) was present in 4 patients, but the systolic function (ejection fraction and fractional shortening index) was normal in all cases, although a clinical picture of chronic heart failure was seen in 3 subjects preoperatively. A-V conduction defects were attributed to extensive metastatic calcifications, involving the cardiac squeleton, consecutive to severe hyperparathyroidism and inadvertent use of calcitriol and calcium carbonate as phosphate binders. No technical difficulties, short or long-term complications related to pacemaker implantation (4 VVI and 1 VVD devices) were encountered. Acute threshold and sensing values were similar with those of non-uremic patients. During follow-up, one patients died from a non cardiac death. If optimal hemodialysis is provided, benefits of permanent pacing are equal in uremic or non uremic patients and pacemaker implantation should be instituted as a prompt life-saving method in all dialysis patients with chronic symptomatic advanced A-V blocks.
Complications of pacemaker therapy in adults with congenital heart disease: a multicenter study.
Opić, Petra; van Kranenburg, Matthijs; Yap, Sing-Chien; van Dijk, Arie P; Budts, Werner; Vliegen, Hubert W; van Erven, Lieselot; Can, Anil; Sahin, Gulhan; Theuns, Dominic A M J; Witsenburg, Maarten; Roos-Hesselink, Jolien W
2013-10-09
This study aims to investigate indications and complications of permanent cardiac pacing in adults with congenital heart disease (CHD). Two-hundred and seventy-four CHD patients were identified who underwent permanent pacemaker implantation between 1972 and 2009. The indication for pacing was acquired sinus node or AV node conduction disease (63%), sinus node or AV node conduction disease after cardiac surgery (28%), and drug/arrhythmia-related indications (9%). Patients with complex CHD received a pacemaker at younger age (23 versus 31 years, p<0.0001) and more often received an epicardial pacing system (51% versus 23%, p<0.0001) compared to those with simple or moderate CHD. Twenty-nine patients (10.6%) had a periprocedural complication during the primary pacemaker implantation (general population: 5.2%). The most common acute complications were lead dysfunction (4.0%), bleeding (2.6%), pocket infection (1.5%) and pneumothorax (1.5%). During a median follow-up of 12 years, pacemaker-related complications requiring intervention occurred in 95 patients (34.6%). The most common late pacemaker-related complications included lead failure (24.8%), pacemaker dysfunction/early battery depletion (5.1%), pacemaker migration (4.7%) and erosion (4.7%). Pacemaker implantation at younger age (<18 years) was an independent predictor of late pacemaker-related complication (adjusted hazard ratio 1.68, 95% confidence interval 1.07 to 2.63, p=0.023). The risk of periprocedural complications seems higher in the CHD population compared to the general population and more than one-third of CHD patients encountered a pacemaker-related complication during long-term follow-up. This risk increases for those who receive a pacemaker at younger age. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
[Hyperkalemia-induced failure of pacemaker capture and sensing: a case report].
Wang, Y P; Chen, B X; Su, K J; Sun, L J; Zhang, Y; Guo, L J; Gao, W
2014-12-18
Hyperkalemia may induce serious cardiac arrhythmia, with possible life-threatening effects. It may cause cardiac pacemaker (PMK) malfunctioning due to a reduction of the electronegativity of the resting myocardial potential. We report the case of a 71-year-old woman who had a previous history of chronic heart failure, chronic renal failure and DDI pacemaker. She was admitted for disturbance of consciousness. During hospitalization, she was observed for extreme hypotension, acute hyperkalemia, ventricular escape rhythm, associated with failure of pacemaker capture and sensing. She was treated with calcium chloride injection, followed by insulin/glucose and sodium bicarbonate infusions; the electrocardiogram recordings showed an correction of the PMK malfunctioning and serial improvement of the intraventricular conduction. This case supports that hyperkalemia should be closely monitored in the chronic heart failure patients combined with chronic renal failure.
Outcomes of cardiac pacing in adult patients after a Fontan operation.
Egbe, Alexander C; Huntley, Geoffery D; Connolly, Heidi M; Ammash, Naser M; Deshmukh, Abhishek J; Khan, Arooj R; Said, Sameh M; Akintoye, Emmanuel; Warnes, Carole A; Kapa, Suraj
2017-12-01
Cardiac pacing can be challenging after a Fontan operation, and limited data exist regarding pacing in adult Fontan patients. The objectives of our study were to determine risk factors for pacing and occurrence of device-related complications (DRCs) and pacemaker reinterventions. We performed a retrospective review of Fontan patients from 1994 through 2014. We defined DRCs as lead failure, lead recall, cardiac perforation, lead thrombus/vegetation, or device-related infection, and cardiovascular adverse events (CAEs) as venous thrombosis, stroke, death, or heart transplant. Pacemaker reintervention was defined as lead failure or recall. Of 439 patients, 166 (38%) had pacemakers implanted (79 during childhood; 87, adulthood); 114 patients (69%) received epicardial leads initially, and 52 (31%), endocardial leads. Pacing was initially atrial in 52 patients (31%); ventricular, 30 (18%); or dual chamber, 84 (51%). There were 37 reinterventions (1.9% per year) and 48 DRCs (2.4% per year). Pacemaker implantation during childhood was a risk factor for DRCs (hazard ratio, 2.01 [CI, 1.22-5.63]; P = .03). There were 70 CAEs (venous thrombosis, 5; stroke, 11; transplant, 8; and death, 46), yielding a rate of 3.5% per year. DRCs, CAEs, and reintervention rates were comparable for patients with epicardial or endocardial leads. More than one-third of adult Fontan patients referred to Mayo Clinic had pacemaker implantation. Epicardial leads were associated with high rate of pacemaker reinterventions but similar DRC rates in comparison to endocardial leads. Copyright © 2017 Elsevier Inc. All rights reserved.
Terasaki, Fumio; Fujita, Shu-Ichi; Kanzaki, Yumiko; Hirose, Yoshinobu; Ishizaka, Nobukazu
2018-05-30
Fluorine-18 fluorodeoxygluose ( 18 F-FDG) positron emission tomography (PET) is a useful tool for evaluating disease activity in sarcoidosis including cardiac involvement. A 67-year-old patient who developed atrioventricular block requiring permanent pacemaker implantation was diagnosed with cardiac sarcoidosis. The patient did not undergo steroid or immunosuppressive therapy but underwent serial 18 F-FDG PET examination, which showed spontaneous reduction in the myocardial FDG uptake, indicating the remission of immune-inflammatory activity. Although the global systolic function remained preserved, thinning of the septal wall emerged during the clinical course of follow-up, which is characteristic for cardiac sarcoidosis.
Dandamudi, Sanjay; Collins, Jeremy D; Carr, James C; Mongkolwat, Pat; Rahsepar, Amir A; Tomson, Todd T; Verma, Nishant; Arora, Rishi; Chicos, Alex B; Kim, Susan S; Lin, Albert C; Passman, Rod S; Knight, Bradley P
2016-12-01
Studies reporting the safety of magnetic resonance imaging (MRI) in patients with a cardiac implantable electronic device (CIED) have mostly excluded examinations with the device in the magnet isocenter. The purpose of this study was to describe the safety of cardiac and thoracic spine MRI in patients with a CIED. The medical records of patients with a CIED who underwent a cardiac or thoracic spine MRI between January 2011 and December 2014 were reviewed. Devices were interrogated before and after imaging with reprogramming to asynchronous pacing in pacemaker-dependent patients. The clinical interpretability of the MRI and peak and average specific absorption rates (SARs, W/kg) achieved were determined. Fifty-eight patients underwent 51 cardiac and 11 thoracic spine MRI exams. Twenty-nine patients had a pacemaker and 29 had an implantable cardioverter defibrillator. Seventeen percent (n = 10) were pacemaker dependent. Fifty-one patients (89%) had non-MRI-conditional devices. There were no clinically significant changes in atrial and ventricular sensing, impedance, and threshold measurements. There were no episodes of device mode changes, arrhythmias, therapies delivered, electrical reset, or battery depletion. One study was prematurely discontinued due to a patient complaint of chest pain of which the etiology was not determined. Across all examinations, the average peak SAR was 2.0 ± 0.85 W/kg with an average SAR of 0.35 ± 0.37 W/kg. Artifact significantly limiting the clinical interpretation of the study was present in 33% of cardiac MRI studies. When a comprehensive CIED magnetic resonance safety protocol is followed, the risk of performing 1.5-T magnetic resonance studies with the device in the magnet isocenter, including in patients who are pacemaker dependent, is low. Copyright © 2016. Published by Elsevier Inc.
Runtime Verification of Pacemaker Functionality Using Hierarchical Fuzzy Colored Petri-nets.
Majma, Negar; Babamir, Seyed Morteza; Monadjemi, Amirhassan
2017-02-01
Today, implanted medical devices are increasingly used for many patients and in case of diverse health problems. However, several runtime problems and errors are reported by the relevant organizations, even resulting in patient death. One of those devices is the pacemaker. The pacemaker is a device helping the patient to regulate the heartbeat by connecting to the cardiac vessels. This device is directed by its software, so any failure in this software causes a serious malfunction. Therefore, this study aims to a better way to monitor the device's software behavior to decrease the failure risk. Accordingly, we supervise the runtime function and status of the software. The software verification means examining limitations and needs of the system users by the system running software. In this paper, a method to verify the pacemaker software, based on the fuzzy function of the device, is presented. So, the function limitations of the device are identified and presented as fuzzy rules and then the device is verified based on the hierarchical Fuzzy Colored Petri-net (FCPN), which is formed considering the software limits. Regarding the experiences of using: 1) Fuzzy Petri-nets (FPN) to verify insulin pumps, 2) Colored Petri-nets (CPN) to verify the pacemaker and 3) To verify the pacemaker by a software agent with Petri-network based knowledge, which we gained during the previous studies, the runtime behavior of the pacemaker software is examined by HFCPN, in this paper. This is considered a developing step compared to the earlier work. HFCPN in this paper, compared to the FPN and CPN used in our previous studies reduces the complexity. By presenting the Petri-net (PN) in a hierarchical form, the verification runtime, decreased as 90.61% compared to the verification runtime in the earlier work. Since we need an inference engine in the runtime verification, we used the HFCPN to enhance the performance of the inference engine.
42 CFR 410.10 - Medical and other health services: Included services.
Code of Federal Regulations, 2013 CFR
2013-10-01
... vaccinations. (m) Outpatient physical therapy and speech pathology services. (n) Cardiac pacemakers and pacemaker leads. (o) Additional services furnished to enrollees of HMOs or CMPs, as described in § 410.58...
42 CFR 410.10 - Medical and other health services: Included services.
Code of Federal Regulations, 2014 CFR
2014-10-01
... vaccinations. (m) Outpatient physical therapy and speech pathology services. (n) Cardiac pacemakers and pacemaker leads. (o) Additional services furnished to enrollees of HMOs or CMPs, as described in § 410.58...
42 CFR 410.10 - Medical and other health services: Included services.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vaccinations. (m) Outpatient physical therapy and speech pathology services. (n) Cardiac pacemakers and pacemaker leads. (o) Additional services furnished to enrollees of HMOs or CMPs, as described in § 410.58...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrard, C.; Milet, C.
1973-03-15
Following the results presented at the Second International Symposium on Power from Radioisotopes [Madrid, 29th May-1st June 1973] the present report describes the various tests: crush and internal pressures resistance of the radioisotopic sources as well as cremation at 1300 deg C (3370 deg F) performed on the sources, the thermoelectric batteries and the whole cardiac pacemaker.
What Pacemakers Can Teach Us about the Ethics of Maintaining Artificial Organs.
Hutchison, Katrina; Sparrow, Robert
2016-11-01
One day soon it may be possible to replace a failing heart, liver, or kidney with a long-lasting mechanical replacement or perhaps even with a 3-D printed version based on the patient's own tissue. Such artificial organs could make transplant waiting lists and immunosuppression a thing of the past. Supposing that this happens, what will the ongoing care of people with these implants involve? In particular, how will the need to maintain the functioning of artificial organs over an extended period affect patients and their doctors and the responsibilities of those who manufacture such devices? Drawing on lessons from the history of the cardiac pacemaker, this article offers an initial survey of the ethical issues posed by the need to maintain and service artificial organs. We briefly outline the nature and history of cardiac pacemakers, with a particular focus on the need for technical support, maintenance, and replacement of these devices. Drawing on the existing medical literature and on our conversations and correspondence with cardiologists, regulators, and manufacturers, we describe five sources of ethical issues associated with pacemaker maintenance: the location of the devices inside the human body, such that maintenance generates surgical risks; the complexity of the devices, which increases the risk of harms to patients as well as introducing potential injustices in access to treatment; the role of software-particularly software that can be remotely accessed-in the functioning of the devices, which generates privacy and security issues; the impact of continual development and improvement of the device; and the influence of commercial interests in the context of a medical device market in which there are several competing products. Finally, we offer some initial suggestions as to how these questions should be answered. © 2016 The Hastings Center.
Al-Bawardy, Rasha; Krishnaswamy, Amar; Bhargava, Mandeep; Dunn, Justin; Wazni, Oussama; Tuzcu, E Murat; Stewart, William; Kapadia, Samir R
2013-05-01
Implantable cardiac devices, including defibrillators and pacemakers, may be the cause of tricuspid regurgitation (TR) or may worsen existing TR. This review of the literature suggests that TR usually occurs over time after lead implantation. Diagnosis by clinical exam and 2-dimensional echocardiography may be augmented by 3-dimensional echocardiography and/or computed tomography. The mechanism may be mechanical perforation or laceration of leaflets, scarring and restriction of leaflets, or asynchronized activation of the right ventricle. Pacemaker-related TR might cause severe right-sided heart failure, but data regarding associated mortality are lacking. This comprehensive review summarizes the data regarding incidence, mechanism, and treatment of lead-related TR. © 2013 Wiley Periodicals, Inc.
Kaul, Pankaj; Adluri, Krishna; Javangula, Kalyana; Baig, Wasir
2009-01-01
A 59 year old man underwent mechanical tricuspid valve replacement and removal of pacemaker generator along with 4 pacemaker leads for pacemaker endocarditis and superior vena cava obstruction after an earlier percutaneous extraction had to be abandoned, 13 years ago, due to cardiac arrest, accompanied by silent, unsuspected right atrial perforation and exteriorisation of lead. Postoperative course was complicated by tricuspid valve thrombosis and secondary pulmonary embolism requiring TPA thrombolysis which was instantly successful. A review of literature of pacemaker endocarditis and tricuspid thrombosis along with the relevant management strategies is presented. We believe this case report is unusual on account of non operative management of right atrial lead perforation following an unsuccessful attempt at percutaneous removal of right sided infected pacemaker leads and the incidental discovery of the perforated lead 13 years later at sternotomy, presentation of pacemaker endocarditis with a massive load of vegetations along the entire pacemaker lead tract in superior vena cava, right atrial endocardium, tricuspid valve and right ventricular endocardium, leading to a functional and structural SVC obstruction, requirement of an unusually large dose of warfarin postoperatively occasioned, in all probability, by antibiotic drug interactions, presentation of tricuspid prosthetic valve thrombosis uniquely as vasovagal syncope and isolated hypoxia and near instantaneous resolution of tricuspid prosthetic valve thrombosis with Alteplase thrombolysis. PMID:19239701
Ziacchi, Matteo; Palmisano, Pietro; Biffi, Mauro; Ricci, Renato P; Landolina, Maurizio; Zoni-Berisso, Massimo; Occhetta, Eraldo; Maglia, Giampiero; Botto, Gianluca; Padeletti, Luigi; Boriani, Giuseppe
2018-04-01
: Modern pacemakers have an increasing number of programable parameters and specific algorithms designed to optimize pacing therapy in relation to the individual characteristics of patients. When choosing the most appropriate pacemaker type and programing, the following variables must be taken into account: the type of bradyarrhythmia at the time of pacemaker implantation; the cardiac chamber requiring pacing, and the percentage of pacing actually needed to correct the rhythm disorder; the possible association of multiple rhythm disturbances and conduction diseases; the evolution of conduction disorders during follow-up. The goals of device programing are to preserve or restore the heart rate response to metabolic and hemodynamic demands; to maintain physiological conduction; to maximize device longevity; to detect, prevent, and treat atrial arrhythmia. In patients with sinus node disease, the optimal pacing mode is DDDR. Based on all the available evidence, in this setting, we consider appropriate the activation of the following algorithms: rate responsive function in patients with chronotropic incompetence; algorithms to maximize intrinsic atrioventricular conduction in the absence of atrioventricular blocks; mode-switch algorithms; algorithms for autoadaptive management of the atrial pacing output; algorithms for the prevention and treatment of atrial tachyarrhythmias in the subgroup of patients with atrial tachyarrhythmias/atrial fibrillation. The purpose of this two-part consensus document is to provide specific suggestions (based on an extensive literature review) on appropriate pacemaker setting in relation to patients' clinical features.
Endocardial Energy Harvesting by Electromagnetic Induction.
Zurbuchen, Adrian; Haeberlin, Andreas; Bereuter, Lukas; Pfenniger, Alois; Bosshard, Simon; Kernen, Micha; Philipp Heinisch, Paul; Fuhrer, Juerg; Vogel, Rolf
2018-02-01
cardiac pacemakers require regular medical follow-ups to ensure proper functioning. However, device replacements due to battery depletion are common and account for ∼25% of all implantation procedures. Furthermore, conventional pacemakers require pacemaker leads which are prone to fractures, dislocations or isolation defects. The ensuing surgical interventions increase risks for the patients and costs that need to be avoided. in this study, we present a method to harvest energy from endocardial heart motions. We developed a novel generator, which converts the heart's mechanical into electrical energy by electromagnetic induction. A mathematical model has been introduced to identify design parameters strongly related to the energy conversion efficiency of heart motions and fit the geometrical constraints for a miniaturized transcatheter deployable device. The implemented final design was tested on the bench and in vivo. the mathematical model proved an accurate method to estimate the harvested energy. For three previously recorded heart motions, the model predicted a mean output power of 14.5, 41.9, and 16.9 μW. During an animal experiment, the implanted device harvested a mean output power of 0.78 and 1.7 μW at a heart rate of 84 and 160 bpm, respectively. harvesting kinetic energy from endocardial motions seems feasible. Implanted at an energetically favorable location, such systems might become a welcome alternative to extend the lifetime of cardiac implantable electronic device. the presented endocardial energy harvesting concept has the potential to turn pacemakers into battery- and leadless systems and thereby eliminate two major drawbacks of contemporary systems.
Khurwolah, Mohammad Reeaze; Vezi, Brian Zwelethini
In the daily practice of pacemaker insertion, the occurrence of atrial and ventricular lead switch at the pacemaker box header is a rare and unintentional phenomenon, with less than five cases reported in the literature. The lead switch may have dire consequences, depending on the indication for the pacemaker. One of these consequences is pacemaker syndrome, in which the normal sequence of atrial and ventricular activation is impaired, leading to sub-optimal ventricular filling and cardiac output. It is important for the attending physician to recognise any worsening of symptoms in a patient who has recently had a permanent pacemaker inserted. In the case of a dual-chamber pacemaker, switching of the atrial and ventricular leads at the pacemaker box header should be strongly suspected. We present an unusual case of pacemaker syndrome and right ventricular-only pacinginduced left ventricular systolic dysfunction in a patient with a dual-chamber pacemaker.
Integrative Modeling of Electrical Properties of Pacemaker Cardiac Cells
NASA Astrophysics Data System (ADS)
Grigoriev, M.; Babich, L.
2016-06-01
This work represents modeling of electrical properties of pacemaker (sinus) cardiac cells. Special attention is paid to electrical potential arising from transmembrane current of Na+, K+ and Ca2+ ions. This potential is calculated using the NaCaX model. In this respect, molar concentration of ions in the intercellular space which is calculated on the basis of the GENTEX model is essential. Combined use of two different models allows referring this approach to integrative modeling.
From syncitium to regulated pump: a cardiac muscle cellular update
2011-01-01
The primary purpose of this article is to present a basic overview of some key teaching concepts that should be considered for inclusion in an six- to eight-lecture introductory block on the regulation of cardiac performance for graduate students. Within the context of cardiac excitation-contraction coupling, this review incorporates information on Ca2+ microdomains and local control theory, with particular emphasis on the role of Ca2+ sparks as a key regulatory component of ventricular myocyte contraction dynamics. Recent information pertaining to local Ca2+ cycling in sinoatrial nodal cells (SANCs) as a mechanism underlying cardiac automaticity is also presented as part of the recently described coupled-clock pacemaker system. The details of this regulation are emerging; however, the notion that the sequestration and release of Ca2+ from internal stores in SANCs (similar to that observed in ventricular myocytes) regulates the rhythmic excitation of the heart (i.e., membrane ion channels) is an important advancement in this area. The regulatory role of cardiac adrenergic receptors on cardiac rate and function is also included, and fundamental concepts related to intracellular signaling are discussed. An important point of emphasis is that whole organ cardiac dynamics can be traced back to cellular events regulating intracellular Ca2+ homeostasis and, as such, provides an important conceptual framework from which students can begin to think about whole organ physiology in health and disease. Greater synchrony of Ca2+-regulatory mechanisms between ventricular and pacemaker cells should enhance student comprehension of complex regulatory phenomenon in cardiac muscle. PMID:21385997
Sunaga, Akihiro; Masuda, Masaharu; Fujita, Masashi; Iida, Osamu; Kanda, Takashi; Matsuda, Yasuhiro; Morozumi, Takakazu; Mano, Toshiaki; Uematsu, Masaaki
2017-06-01
Sinus bradycardia includes pathologic sick sinus syndrome (SSS) and physiologic bradycardia such as athletes' heart. Pacemaker implantation is indicated for patients with symptomatic SSS; however, the indication remains difficult to determine in those with mild and/or unspecific symptoms. The sympathetic tone is increased in response to reduced cardiac output in SSS, whereas excessive vagal tone has been seen in physiological bradycardia. We sought to determine if cardiac iodine-123-metaiodobenzylguanidine scintigraphy ( 123 I-MIBG) was useful in differentiating pathologic from physiologic sinus bradycardia. Twenty consecutive patients presenting with continuous sinus bradycardia (heart rate of <50 beats/min) in our outpatient clinic (male, eight patients; age, 70 ± 12 years old) were enrolled. The indication for a pacemaker implantation was determined by an experienced electrophysiologist in compliance with the international guidelines. The sympathetic nervous tone was assessed by cardiac 123 I-MIBG. Eight patients (40%) were clinically diagnosed as SSS (type I) including four suffering from obvious symptoms (syncope or dizziness) and four suffering from mild symptoms (fatigue), and had an indication for a pacemaker implantation. The patients with SSS indicated for a pacemaker implantation had a lower early heart-to-mediastinum ratio (2.0 ± 0.6 vs 2.5 ± 0.2, P = 0.043), lower delayed heart to mediastinum ratio (2.0 ± 0.8 vs 2.8 ± 0.3, P = 0.026), and higher washout rate (34 ± 6.0 vs 26 ± 6.0, P = 0.008) than those without. Excessive sympathetic tone detected by 123 I-MIBG may serve as an adjunct to determine the indication for a pacemaker implantation in sinus bradycardia. © 2017 Wiley Periodicals, Inc.
14 CFR 67.211 - Cardiovascular.
Code of Federal Regulations, 2011 CFR
2011-01-01
... any of the following: (a) Myocardial infarction; (b) Angina pectoris; (c) Coronary heart disease that...) Cardiac valve replacement; (e) Permanent cardiac pacemaker implantation; or (f) Heart replacement. ...
14 CFR 67.211 - Cardiovascular.
Code of Federal Regulations, 2014 CFR
2014-01-01
... any of the following: (a) Myocardial infarction; (b) Angina pectoris; (c) Coronary heart disease that...) Cardiac valve replacement; (e) Permanent cardiac pacemaker implantation; or (f) Heart replacement. ...
14 CFR 67.211 - Cardiovascular.
Code of Federal Regulations, 2012 CFR
2012-01-01
... any of the following: (a) Myocardial infarction; (b) Angina pectoris; (c) Coronary heart disease that...) Cardiac valve replacement; (e) Permanent cardiac pacemaker implantation; or (f) Heart replacement. ...
14 CFR 67.211 - Cardiovascular.
Code of Federal Regulations, 2013 CFR
2013-01-01
... any of the following: (a) Myocardial infarction; (b) Angina pectoris; (c) Coronary heart disease that...) Cardiac valve replacement; (e) Permanent cardiac pacemaker implantation; or (f) Heart replacement. ...
Improving pacemaker therapy in congenital heart disease: contractility and resynchronization.
Karpawich, Peter P
2015-01-01
Designed as effective therapy for patients with symptomatic bradycardia, implantable cardiac pacemakers initially served to improve symptoms and survival. With initial applications to the elderly and those with severe myocardial disease, extended longevity was not a major concern. However, with design technology advances in leads and generators since the 1980s, pacemaker therapy is now readily applicable to all age patients, including children with congenital heart defects. As a result, emphasis and clinical interests have advanced beyond simply quantity to quality of life. Adverse cardiac effects of pacing from right ventricular apical or epicardial sites with resultant left bundle branch QRS configurations have been recognized. As a result, and with the introduction of newer catheter-delivered pacing leads, more recent studies have focused on alternative or select pacing sites such as septal, outflow tract, and para-bundle of His. This is especially important in dealing with pacemaker therapy among younger patients and those with congenital heart disease, with expected decades of artificial cardiac stimulation, in which adverse myocellular changes secondary to pacing itself have been reported. As a correlate to these alternate or select pacing sites, applications of left ventricular pacing, either via the coronary sinus, intraseptal or epicardial, alone or in combination with right ventricular pacing, have gained interest for patients with heart failure. Although cardiac resynchronization pacing has, to date, had limited clinical applications among patients with congenital heart disease, the few published reports do indicate potential benefits as a bridge to cardiac transplant. Copyright © 2015 Elsevier Inc. All rights reserved.
A new multiprogrammable isotopic powered cardiac pacemaker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smyth, N.P.; Purdy, D.L.; Sager, D.
1982-09-01
A new multiprogrammable, isotopic-powered cardiac pacemaker was implanted in six patients as a custom device. Five were initial implants and one was a replacement. The patients were studied for up to two years. In five of the six cases it was found advantageous to change one of the programmable parameters. Multiprogrammability is obviously as important in an isotopic pulse generator as in a lithium unit, if not more so, because of the unit's greater longevity. Further studies are continuing in an FDA approved clinical trial.
The Popeye domain containing genes: essential elements in heart rate control
Schindler, Roland F.; Poon, Kar Lai; Simrick, Subreena
2012-01-01
The Popeye domain containing (Popdc) gene family displays preferential expression in skeletal muscle and heart. Only recently a significant gain in the understanding of the function of Popdc genes in the heart has been obtained. The Popdc genes encode membrane proteins harboring an evolutionary conserved Popeye domain, which functions as a binding domain for cyclic adenosine monophosphate (cAMP). Popdc proteins interact with the two-pore channel TREK-1 and enhance its current. This protein interaction is modulated by cAMP. Null mutations of members of the Popdc gene family in zebrafish and mouse are associated with severe cardiac arrhythmia phenotypes. While in zebrafish an atrioventricular block was prevalent, in mouse a stress-induced sinus bradycardia was observed, which was due to the presence of sinus pauses. Moreover, the phenotype develops in an age-dependent manner, being absent in the young animal and becoming increasingly severe, as the animals grow older. This phenotype is reminiscent of the sick sinus syndrome (SSS), which affects mostly the elderly and is characterized by the poor ability of the cardiac pacemaker to adapt the heart rate to the physiological demand. While being a prevalent disease, which is responsible for a large fraction of pacemaker implantations in Western countries, SSS is poorly understood at the molecular level. It is therefore expected that the study of the molecular basis of the stress-induced bradycardia in Popdc mice will shed new light on the etiology of pacemaker disease. PMID:24282731
The Popeye domain containing genes: essential elements in heart rate control.
Schindler, Roland F; Poon, Kar Lai; Simrick, Subreena; Brand, Thomas
2012-12-01
The Popeye domain containing (Popdc) gene family displays preferential expression in skeletal muscle and heart. Only recently a significant gain in the understanding of the function of Popdc genes in the heart has been obtained. The Popdc genes encode membrane proteins harboring an evolutionary conserved Popeye domain, which functions as a binding domain for cyclic adenosine monophosphate (cAMP). Popdc proteins interact with the two-pore channel TREK-1 and enhance its current. This protein interaction is modulated by cAMP. Null mutations of members of the Popdc gene family in zebrafish and mouse are associated with severe cardiac arrhythmia phenotypes. While in zebrafish an atrioventricular block was prevalent, in mouse a stress-induced sinus bradycardia was observed, which was due to the presence of sinus pauses. Moreover, the phenotype develops in an age-dependent manner, being absent in the young animal and becoming increasingly severe, as the animals grow older. This phenotype is reminiscent of the sick sinus syndrome (SSS), which affects mostly the elderly and is characterized by the poor ability of the cardiac pacemaker to adapt the heart rate to the physiological demand. While being a prevalent disease, which is responsible for a large fraction of pacemaker implantations in Western countries, SSS is poorly understood at the molecular level. It is therefore expected that the study of the molecular basis of the stress-induced bradycardia in Popdc mice will shed new light on the etiology of pacemaker disease.
Rimmbach, Christian; Jung, Julia J.; David, Robert
2015-01-01
Treatment of the “sick sinus syndrome” is based on artificial pacemakers. These bear hazards such as battery failure and infections. Moreover, they lack hormone responsiveness and the overall procedure is cost-intensive. “Biological pacemakers” generated from PSCs may become an alternative, yet the typical content of pacemaker cells in Embryoid Bodies (EBs) is extremely low. The described protocol combines “forward programming” of murine PSCs via the sinus node inducer TBX3 with Myh6-promoter based antibiotic selection. This yields cardiomyocyte aggregates consistent of >80% physiologically functional pacemaker cells. These “induced-sinoatrial-bodies” (“iSABs”) are spontaneously contracting at yet unreached frequencies (400-500 bpm) corresponding to nodal cells isolated from mouse hearts and are able to pace murine myocardium ex vivo. Using the described protocol highly pure sinus nodal single cells can be generated which e.g. can be used for in vitro drug testing. Furthermore, the iSABs generated according to this protocol may become a crucial step towards heart tissue engineering. PMID:25742394
Biffi, Mauro; Bertini, Matteo; Saporito, Davide; Belotti, Giuseppina; Quartieri, Fabio; Piancastelli, Maurizio; Pucci, Angelo; Boggian, Giulio; Mazzocca, Gian Franco; Giorgi, Davide; Diotallevi, Paolo; Diemberger, Igor; Martignani, Cristian; Pancaldi, Stefano; Ziacchi, Matteo; Marcantoni, Lina; Toselli, Tiziano; Attala, Simone; Iori, Matteo; Bottoni, Nicola; Argnani, Selina; Tomasi, Corrado; Sassone, Biagio; Boriani, Giuseppe
2016-10-01
We investigated the applicability of the Ventricular Capture Control (VCC) and Atrial Capture Control (ACC) algorithms for automatic management of cardiac stimulation featured by Biotronik pacemakers in a broad, unselected population of pacemaker recipients. Ventricular Capture Control and Atrial Capture Control were programmed to work at a maximum adapted output voltage as 4.8 V in consecutive recipients of Biotronik pacemakers. Ambulatory threshold measurements were made 1 and 12 months after pacemaker implant/replacement in all possible pacing/sensing configurations, and were compared with manual measurements. Among 542 patients aged 80 (73-85) years, 382 had a pacemaker implant and 160 a pacemaker replacement. Ventricular Capture Control could work at long term in 97% of patients irrespectively of pacing indication, lead type, and lead service life, performance being superior with discordant pacing/sensing configurations. Atrial Capture Control could work in 93% of patients at 4.8 V maximum adapted voltage and at any pulse width, regardless of pacing indication, lead type, and service life. At 12-month follow-up, a ventricular threshold increase ≥1.5 V had occurred in 4.4% of patients uneventfully owing to VCC functioning. Projected pacemaker longevity at 1 month was strongly correlated with the 12-month estimate, and exceeded 13 years in >60% of patients. These algorithms for automatic management of pacing output ensure patient safety in the event of a huge increase of pacing threshold, while enabling maximization of battery longevity. Their applicability is quite broad in an unselected pacemaker population irrespectively of lead choice and service of life. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Frozen shoulder syndrome associated with subpectoral defibrillator implantation.
Burke, M C; Drinan, K; Kopp, D E; Kall, J G; Verdino, R J; Paydak, H; Wilber, D J
1999-10-01
Pectoral implantation of transvenous non-thoracotomy internal cardioverter defibrillators (ICD) has resulted in very few complications whether placed subpectorally or subcutaneously. We report the case of a 68 year old man with a subpectorally implanted MINI-plus (Cardiac Pacemakers, Incorporated, St. Paul, Mn.) transvenous ICD who developed nearly instantaneous severe ipsilateral shoulder pain and immobilization. The symptoms progressed despite aggressive physical therapy. We elected to remove the device from the pectoral site and place it in a traditional abdominal position due to the severity, duration and refractoriness of his symptoms. This procedure utilized the chronic Endotak DSP (Model 0125, Cardiac Pacemakers, Incorporated) transvenous lead, a compatible Endotak DSP lead extender (Model 6952, Cardiac Pacemakers, Incorporated) and the above described ICD. Immediate relief of symptoms was accomplished by relocation of the device to an abdominal site. This intervention should be reserved for patients with severely debilitating symptoms. Prospective comparison of subpectoral and subcutaneous surgical approaches with respect to patient comfort and acceptance and complications may be warranted.
Huang, Allen R; Redpath, Calum J; van Walraven, Carl
2015-04-28
Cholinesterase inhibitors are used to treat the symptoms of dementia and can theoretically cause bradycardia. Previous studies suggest that patients taking these medications have an increased risk of undergoing pacemaker insertion. Since these drugs have a marginal impact on patient outcomes, it might be preferable to change drug treatment rather than implant a pacemaker. This population-based study determined the association of people with dementia exposed to cholinesterase inhibitor medication and pacemaker insertion. We used data from the Ontario health administrative databases from January 1, 1993 to June 30, 2012. We included all community-dwelling seniors who had a code for dementia and were exposed to cholinesterase inhibitors (donezepil, galantamine, and rivastigmine) and/or drugs used to treat co-morbidities of hypertension, diabetes, depression and hypothyroidism. We controlled for exposure to anti-arrhythmic drugs. Observation started at first exposure to any medication and continued until the earliest of pacemaker insertion, death, or end of study. 2,353,909 people were included with 96,000 (4.1%) undergoing pacemaker insertion during the observation period. Case-control analysis showed that pacemaker patients were less likely to be coded with dementia (unadjusted OR 0.42 [95%CI 0.41-0.42]) or exposed to cholinesterase inhibitors (unadjusted OR 0.39 [95%CI 0.37-0.41]). That Cohort analysis showed patients with dementia taking cholinesterase inhibitors had a decreased risk of pacemaker insertion (unadj-HR 0.58 [0.55-0.61]). Adjustment for patient age, sex, and other medications did not notably change results, as did restricting the analysis to incident users. Patients taking cholinesterase inhibitors rarely undergo, and have a significantly reduced risk of, cardiac pacemaker insertion.
Horwood, Laura; Attili, Anil; Luba, Frank; Ibrahim, El-Sayed H; Parmar, Hemant; Stojanovska, Jadranka; Gadoth-Goodman, Sharon; Fette, Carey; Oral, Hakan; Bogun, Frank
2017-05-01
Magnetic resonance imaging (MRI) has been reported to be safe in patients with cardiac implantable electronic devices (CIED) provided a specific protocol is followed. The objective of this study was to assess whether this is also true for patients excluded from published protocols. A total of 160 MRIs were obtained in 142 consecutive patients with CIEDs [106 patients had an implantable cardioverter defibrillator (ICD) and 36 had a pacemaker implanted] using an adapted, pre-specified protocol. A cardiac MRI was performed in 95 patients, and a spinal/brain MRI was performed in 47 patients. Forty-six patients (32%) had either abandoned leads (n = 10), and/or were pacemaker dependent with an implanted ICD (n = 19), had recently implanted CIEDs (n = 1), and/or had a CIED device with battery depletion (n = 2), and/or a component of the CIED was recalled or on advisory (n = 32). No major complications occurred. Some device parameters changed slightly, but significantly, right after or at 1-week post-MRI without requiring any reprogramming. In one patient with an ICD on advisory, the pacing rate changed inexplicably during one of his two MRIs from 90 to 50 b.p.m. Using a pre-specified protocol, cardiac and non-cardiac MRIs were performed in CIED patients with pacemaker dependency, abandoned leads, or depleted batteries without occurrence of major adverse events. Patients with devices on advisory need to be monitored carefully during MRI, especially if they are pacemaker dependent. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Percutaneous Resection of Renal Urothelial Carcinoma Using Bipolar Electrocautery
Kwan, Kevin G.; Chew, Ben H.; Luke, Patrick P.W.; Denstedt, John D.
2006-01-01
Percutaneous approaches to upper tract urothelial cancers have been performed in patients unsuitable for radical nephroureterectomy. We present the case of an 82-year-old man with significant comorbidities including dependency on a cardiac pacemaker. Without deactivating the pacemaker, we used bipolar cautery to percutaneously resect a large upper tract urothelial tumor in the renal pelvis. Bipolar cautery is a suitable method of percutaneous or transurethral resection in patients who are pacemaker dependent. PMID:17575777
Cardiac rhythm management devices
Stevenson, Irene; Voskoboinik, Alex
2018-05-01
The last decade has seen ongoing evolution and use of cardiac rhythm management devices, including pacemakers, cardiac resynchronisation therapy, implantable cardioverter defibrillators and loop recorders. General practitioners are increasingly involved in follow-up and management of patients with these devices. The aim of this article is to provide an overview of different cardiac rhythm management devices, including their role, implant procedure, post-procedural care, potential complications and follow‑up. We also include practical advice for patients regarding driving, exercise, sexual intimacy and precautions with regards to electromagnetic interference. Cardiac rhythm management devices perform many functions, including bradycardia pacing, monitoring for arrhythmias, cardiac resynchronisation for heart failure, defibrillation and anti-tachycardia pacing for tachyarrhythmias. Concerns regarding potential device-related complications should be discussed with the implanting physician. In the post-implant period, patients with cardiac rhythm management devices can expect to lead normal, active lives. However, caution must occasionally be exercised in certain situations, such as near appliances with electromagnetic interference. Future innovations will move away from transvenous leads to leadless designs with combinations of different components on a 'modular' basis according to the function required.
Optogenetic pacing in Drosophila melanogaster (Conference Presentation)
NASA Astrophysics Data System (ADS)
Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao
2016-03-01
A non-invasive, contact-less cardiac pacing technology can be a powerful tool in basic cardiac research and in clinics. Currently, electrical pacing is the gold standard for cardiac pacing. Although highly effective in controlling the cardiac function, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its capabilities. Optical pacing of heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids shortcomings in electrical stimulation. Optical coherence tomography has been proved to be an effective technique in non-invasive imaging in vivo with ultrahigh resolution and imaging speed. In the last several years, non-invasive specific optical pacing in animal hearts has been reported in quail, zebrafish, and rabbit models. However, Drosophila Melanogaster, which is a significant model with orthologs of 75% of human disease genes, has rarely been studied concerning their optical pacing in heart. Here, we combined optogenetic control of Drosophila heartbeat with optical coherence microscopy (OCM) technique for the first time. The light-gated cation channel, channelrhodopsin-2 (ChR2) was specifically expressed by transgene as a pacemaker in drosophila heart. By stimulating the pacemaker with 472 nm pulsed laser light at different frequencies, we achieved non-invasive and more specific optical control of the Drosophila heart rhythm, which demonstrates the wide potential of optical pacing for studying cardiac dynamics and development. Imaging capability of our customized OCM system was also involved to observe the pacing effect visually. No tissue damage was found after long exposure to laser pulses, which proved the safety of optogenetic control of Drosophila heart.
Bailey, William M; Mazur, Alexander; McCotter, Craig; Woodard, Pamela K; Rosenthal, Lawrence; Johnson, Whitney; Mela, Theofanie
2016-02-01
Permanent cardiac pacemakers have historically been considered a contraindication to magnetic resonance imaging (MRI). The purpose of the ProMRI Phase B Study, a multicenter, prospective, single-arm, nonrandomized study, was to evaluate the clinical safety of the Biotronik ProMRI pacemaker system in patients undergoing thoracic spine and cardiac MRI. The ProMRI Phase B study enrolled 245 patients with stable baseline pacing indices implanted with an Entovis pacemaker (DR-T or SR-T) and Setrox 53-cm and/or 60-cm lead(s). Device interrogation was performed at enrollment, pre- and post-MRI scan, and 1 and 3 months post-MRI. End-points were (1) freedom from MRI- and pacing system-related serious adverse device effects through 1 month post-MRI; (2) freedom from atrial and ventricular MRI-induced pacing threshold increase (>0.5 V); and (3) freedom from P- and R-wave amplitude attenuation (<50%), or P wave <1.5 mV, or R wave <5.0 mV at 1 month post-MRI. In total, 216 patients completed the MRI and 1-month post-MRI follow-up. One adverse event possibly related to the implanted system and the MRI procedure occurred, resulting in a serious adverse device effect-free rate of 99.6% (220/221; P < .0001. Freedom from atrial and ventricular pacing threshold increase was 100% (194/194, P < .001) and 100% (206/206, P < .001) respectively. Freedom from P- and R-wave amplitude attenuation was 98.2% (167/170, P < .001) and 100% (188/188, P < .001) respectively. The results of the ProMRI Phase B study demonstrate the clinical safety and efficacy of the ProMRI pacemaker system in patients subjected to thoracic spine and cardiac MRI conditions. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Induced Pluripotent Stem Cell–Derived Cardiomyocytes Provide In Vivo Biological Pacemaker Function
Chauveau, Samuel; Anyukhovsky, Evgeny P.; Ben-Ari, Meital; Naor, Shulamit; Jiang, Ya-Ping; Danilo, Peter; Rahim, Tania; Burke, Stephanie; Qiu, Xiaoliang; Potapova, Irina A.; Doronin, Sergey V.; Brink, Peter R.; Binah, Ofer
2017-01-01
Background— Although multiple approaches have been used to create biological pacemakers in animal models, induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) have not been investigated for this purpose. We now report pacemaker function of iPSC-CMs in a canine model. Methods and Results— Embryoid bodies were derived from human keratinocytes, their action potential characteristics determined, and their gene expression profiles and markers of differentiation identified. Atrioventricular blocked dogs were immunosuppressed, instrumented with VVI pacemakers, and injected subepicardially into the anterobasal left ventricle with 40 to 75 rhythmically contracting embryoid bodies (totaling 1.3–2×106 cells). ECG and 24-hour Holter monitoring were performed biweekly. After 4 to 13 weeks, epinephrine (1 μg kg−1 min−1) was infused, and the heart removed for histological or electrophysiological study. iPSC-CMs largely lost the markers of pluripotency, became positive for cardiac-specific markers. and manifested If-dependent automaticity. Epicardial pacing of the injection site identified matching beats arising from that site by week 1 after implantation. By week 4, 20% of beats were electronically paced, 60% to 80% of beats were matching, and mean and maximal biological pacemaker rates were 45 and 75 beats per minute. Maximum night and day rates of matching beats were 53±6.9 and 69±10.4 beats per minute, respectively, at 4 weeks. Epinephrine increased rate of matching beats from 35±4.3 to 65±4.0 beats per minute. Incubation of embryoid bodies with the vital dye, Dil, revealed the persistence of injected cells at the site of administration. Conclusions— iPSC-CMs can integrate into host myocardium and create a biological pacemaker. Although this is a promising development, rate and rhythm of the iPSC-CMs pacemakers remain to be optimized. PMID:28500172
Use of antiarrhythmic drugs in elderly patients.
Lee, Hon-Chi; Tl Huang, Kristin; Shen, Win-Kuang
2011-09-01
Human aging is a global issue with important implications for current and future incidence and prevalence of health conditions and disability. Cardiac arrhythmias, including atrial fibrillation, sudden cardiac death, and bradycardia requiring pacemaker placement, all increase exponentially after the age of 60. It is important to distinguish between the normal, physiological consequences of aging on cardiac electrophysiology and the abnormal, pathological alterations. The age-related cardiac changes include ventricular hypertrophy, senile amyloidosis, cardiac valvular degenerative changes and annular calcification, fibrous infiltration of the conduction system, and loss of natural pacemaker cells and these changes could have a profound effect on the development of arrhythmias. The age-related cardiac electrophysiological changes include up- and down-regulation of specific ion channel expression and intracellular Ca(2+) overload which promote the development of cardiac arrhythmias. As ion channels are the substrates of antiarrhythmic drugs, it follows that the pharmacokinetics and pharmacodynamics of these drugs will also change with age. Aging alters the absorption, distribution, metabolism, and elimination of antiarrhythmic drugs, so liver and kidney function must be monitored to avoid potential adverse drug effects, and antiarrhythmic dosing may need to be adjusted for age. Elderly patients are also more susceptible to the side effects of many antiarrhythmics, including bradycardia, orthostatic hypotension, urinary retention, and falls. Moreover, the choice of antiarrhythmic drugs in the elderly patient is frequently complicated by the presence of co-morbid conditions and by polypharmacy, and the astute physician must pay careful attention to potential drug-drug interactions. Finally, it is important to remember that the use of antiarrhythmic drugs in elderly patients must be individualized and tailored to each patient's physiology, disease processes, and medication regimen.
Capacity of dental equipment to interfere with cardiac implantable electrical devices.
Lahor-Soler, Eduard; Miranda-Rius, Jaume; Brunet-Llobet, Lluís; Sabaté de la Cruz, Xavier
2015-06-01
Patients with cardiac implantable electrical devices should take precautions when exposed to electromagnetic fields. Possible interference as a result of proximity to electromagnets or electricity flow from electronic tools employed in clinical odontology remains controversial. The objective of this study was to examine in vitro the capacity of dental equipment to provoke electromagnetic interference in pacemakers and implantable cardioverter defibrillators. Six electronic dental instruments were tested on three implantable cardioverter defibrillators and three pacemakers from different manufacturers. A simulator model, submerged in physiological saline, with elements that reproduced life-size anatomic structures was used. The instruments were analyzed at differing distances and for different time periods of application. The dental instruments studied displayed significant differences in their capacity to trigger electromagnetic interference. Significant differences in the quantity of registered interference were observed with respect to the variables manufacturer, type of cardiac implant, and application distance but not with the variable time of application. The electronic dental equipment tested at a clinical application distance (20 cm) provoked only slight interference in the pacemakers and implantable cardioverter defibrillators employed, irrespective of manufacturer. © 2015 Eur J Oral Sci.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuesta, A.J.; Bump, D.D.
1980-01-01
Lithium cells have become the primary power source for cardiac pacemakers due to their reliability and longevity at low current drain rates. A lithium-cupric sulfide cell was developed which makes maximum use of the shape of a pacemaker's battery compartment. The cell has a stable voltage throughout 90% of its lifetime. It then drops to a second stable voltage before depletion. The voltage drop creates a small decrease in pacemaker rate, which alerts the physician to replace the pacemaker. No loss of capacity due to self-discharge as been seen to date, and cells have proven to be safe under extrememore » conditions. 2 refs.« less
Tse, Gary; Liu, Tong; Li, Ka Hou Christien; Laxton, Victoria; Wong, Andy On-Tik; Chan, Yin Wah Fiona; Keung, Wendy; Chan, Camie W.Y.; Li, Ronald A.
2017-01-01
Sick sinus syndrome (SSS) encompasses a group of disorders whereby the heart is unable to perform its pacemaker function, due to genetic and acquired causes. Tachycardia-bradycardia syndrome (TBS) is a complication of SSS characterized by alternating tachycardia and bradycardia. Techniques such as genetic screening and molecular diagnostics together with the use of pre-clinical models have elucidated the electrophysiological mechanisms of this condition. Dysfunction of ion channels responsible for initiation or conduction of cardiac action potentials may underlie both bradycardia and tachycardia; bradycardia can also increase the risk of tachycardia, and vice versa. The mainstay treatment option for SSS is pacemaker implantation, an effective approach, but has disadvantages such as infection, limited battery life, dislodgement of leads and catheters to be permanently implanted in situ. Alternatives to electronic pacemakers are gene-based bio-artificial sinoatrial node and cell-based bio-artificial pacemakers, which are promising techniques whose long-term safety and efficacy need to be established. The aim of this article is to review the different ion channels involved in TBS, examine the three-way relationship between ion channel dysfunction, tachycardia and bradycardia in TBS and to consider its current and future therapies. PMID:28204831
Tse, Gary; Liu, Tong; Li, Ka Hou Christien; Laxton, Victoria; Wong, Andy On-Tik; Chan, Yin Wah Fiona; Keung, Wendy; Chan, Camie W Y; Li, Ronald A
2017-03-01
Sick sinus syndrome (SSS) encompasses a group of disorders whereby the heart is unable to perform its pacemaker function, due to genetic and acquired causes. Tachycardia‑bradycardia syndrome (TBS) is a complication of SSS characterized by alternating tachycardia and bradycardia. Techniques such as genetic screening and molecular diagnostics together with the use of pre-clinical models have elucidated the electrophysiological mechanisms of this condition. Dysfunction of ion channels responsible for initiation or conduction of cardiac action potentials may underlie both bradycardia and tachycardia; bradycardia can also increase the risk of tachycardia, and vice versa. The mainstay treatment option for SSS is pacemaker implantation, an effective approach, but has disadvantages such as infection, limited battery life, dislodgement of leads and catheters to be permanently implanted in situ. Alternatives to electronic pacemakers are gene‑based bio‑artificial sinoatrial node and cell‑based bio‑artificial pacemakers, which are promising techniques whose long-term safety and efficacy need to be established. The aim of this article is to review the different ion channels involved in TBS, examine the three‑way relationship between ion channel dysfunction, tachycardia and bradycardia in TBS and to consider its current and future therapies.
Successful pacing using a batteryless sunlight-powered pacemaker.
Haeberlin, Andreas; Zurbuchen, Adrian; Schaerer, Jakob; Wagner, Joerg; Walpen, Sébastien; Huber, Christoph; Haeberlin, Heinrich; Fuhrer, Juerg; Vogel, Rolf
2014-10-01
Today's cardiac pacemakers are powered by batteries with limited energy capacity. As the battery's lifetime ends, the pacemaker needs to be replaced. This surgical re-intervention is costly and bears the risk of complications. Thus, a pacemaker without primary batteries is desirable. The goal of this study was to test whether transcutaneous solar light could power a pacemaker. We used a three-step approach to investigate the feasibility of sunlight-powered cardiac pacing. First, the harvestable power was estimated. Theoretically, a subcutaneously implanted 1 cm(2) solar module may harvest ∼2500 µW from sunlight (3 mm implantation depth). Secondly, ex vivo measurements were performed with solar cells placed under pig skin flaps exposed to a solar simulator and real sunlight. Ex vivo measurements under real sunlight resulted in a median output power of 4941 µW/cm(2) [interquartile range (IQR) 3767-5598 µW/cm(2), median skin flap thickness 3.0 mm (IQR 2.7-3.3 mm)]. The output power strongly depended on implantation depth (ρSpearman = -0.86, P < 0.001). Finally, a batteryless single-chamber pacemaker powered by a 3.24 cm(2) solar module was implanted in vivo in a pig to measure output power and to pace. In vivo measurements showed a median output power of >3500 µW/cm(2) (skin flap thickness 2.8-3.84 mm). Successful batteryless VVI pacing using a subcutaneously implanted solar module was performed. Based on our results, we estimate that a few minutes of direct sunlight (irradiating an implanted solar module) allow powering a pacemaker for 24 h using a suitable energy storage. Thus, powering a pacemaker by sunlight is feasible and may be an alternative energy supply for tomorrow's pacemakers. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J; Chung, J
2015-06-15
Purpose: To verify delivered doses on the implanted cardiac pacemaker, predicted doses with and without dose reduction method were verified using the MOSFET detectors in terms of beam delivery and dose calculation techniques in intensity-modulated radiation therapy (IMRT). Methods: The pacemaker doses for a patient with a tongue cancer were predicted according to the beam delivery methods [step-and-shoot (SS) and sliding window (SW)], intensity levels for dose optimization, and dose calculation algorithms. Dosimetric effects on the pacemaker were calculated three dose engines: pencil-beam convolution (PBC), analytical anisotropic algorithm (AAA), and Acuros-XB. A lead shield of 2 mm thickness was designedmore » for minimizing irradiated doses to the pacemaker. Dose variations affected by the heterogeneous material properties of the pacemaker and effectiveness of the lead shield were predicted by the Acuros-XB. Dose prediction accuracy and the feasibility of the dose reduction strategy were verified based on the measured skin doses right above the pacemaker using mosfet detectors during the radiation treatment. Results: The Acuros-XB showed underestimated skin doses and overestimated doses by the lead-shield effect, even though the lower dose disagreement was observed. It led to improved dose prediction with higher intensity level of dose optimization in IMRT. The dedicated tertiary lead sheet effectively achieved reduction of pacemaker dose up to 60%. Conclusion: The current SS technique could deliver lower scattered doses than recommendation criteria, however, use of the lead sheet contributed to reduce scattered doses.Thin lead plate can be a useful tertiary shielder and it could not acuse malfunction or electrical damage of the implanted pacemaker in IMRT. It is required to estimate more accurate scattered doses of the patient with medical device to design proper dose reduction strategy.« less
Gene- and cell-based bio-artificial pacemaker: what basic and translational lessons have we learned?
Li, RA
2012-01-01
Normal rhythms originate in the sino-atrial node, a specialized cardiac tissue consisting of only a few thousands of pacemaker cells. Malfunction of pacemaker cells due to diseases or aging leads to rhythm generation disorders (for example, bradycardias and sick-sinus syndrome (SSS)), which often necessitate the implantation of electronic pacemakers. Although effective, electronic devices are associated with such shortcomings as limited battery life, permanent implantation of leads, lead dislodging, the lack of autonomic responses and so on. Here, various gene- and cell-based approaches, with a particular emphasis placed on the use of pluripotent stem cells and the hyperpolarization-activated cyclic nucleotide-gated-encoded pacemaker gene family, that have been pursued in the past decade to reconstruct bio-artificial pacemakers as alternatives will be discussed in relation to the basic biological insights and translational regenerative potential. PMID:22673497
Gene- and cell-based bio-artificial pacemaker: what basic and translational lessons have we learned?
Li, R A
2012-06-01
Normal rhythms originate in the sino-atrial node, a specialized cardiac tissue consisting of only a few thousands of nodal pacemaker cells. Malfunction of pacemaker cells due to diseases or aging leads to rhythm generation disorders (for example, bradycardias and sick-sinus syndrome (SSS)), which often necessitate the implantation of electronic pacemakers. Although effective, electronic devices are associated with such shortcomings as limited battery life, permanent implantation of leads, lead dislodging, the lack of autonomic responses and so on. Here, various gene- and cell-based approaches, with a particular emphasis placed on the use of pluripotent stem cells and the hyperpolarization-activated cyclic nucleotide-gated-encoded pacemaker gene family, that have been pursued in the past decade to reconstruct bio-artificial pacemakers as alternatives will be discussed in relation to the basic biological insights and translational regenerative potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ch'ng, Julie; Chan, William; Lee, Paul
2003-06-01
Staphylococcus aureus is a leading cause of septicaemia and infective endocarditis. The overall incidence of staphylococcal bacteraemia is increasing, contributing to 16% of all hospital-acquired bacteraemias. The use of cardiac pacemakers has revolutionized the management of rhythm disturbances, yet this has also resulted in a group of patients at risk of pacemaker lead endocarditis and seeding in the range of 1% to 7%. We describe a 26-year-old man with transposition of the great arteries who had a pacemaker implanted and presented with S. aureus septicaemia 2 years postpacemaker implantation and went on to develop pacemaker lead endocarditis. This report illustratesmore » the risk of endocarditis in the population with congenital heart disease and an intracardiac device.« less
Circadian rhythms and fractal fluctuations in forearm motion
NASA Astrophysics Data System (ADS)
Hu, Kun; Hilton, Michael F.
2005-03-01
Recent studies have shown that the circadian pacemaker --- an internal body clock located in the brain which is normally synchronized with the sleep/wake behavioral cycles --- influences key physiologic functions such as the body temperature, hormone secretion and heart rate. Surprisingly, no previous studies have investigated whether the circadian pacemaker impacts human motor activity --- a fundamental physiologic function. We investigate high-frequency actigraph recordings of forearm motion from a group of young and healthy subjects during a forced desynchrony protocol which allows to decouple the sleep/wake cycles from the endogenous circadian cycle while controlling scheduled behaviors. We investigate both static properties (mean value, standard deviation), dynamical characteristics (long-range correlations), and nonlinear features (magnitude and Fourier-phase correlations) in the fluctuations of forearm acceleration across different circadian phases. We demonstrate that while the static properties exhibit significant circadian rhythms with a broad peak in the afternoon, the dynamical and nonlinear characteristics remain invariant with circadian phase. This finding suggests an intrinsic multi-scale dynamic regulation of forearm motion the mechanism of which is not influenced by the circadian pacemaker, thus suggesting that increased cardiac risk in the early morning hours is not related to circadian-mediated influences on motor activity.
Cardiac Sarcoidosis: The Impact of Age and Implanted Devices on Survival.
Zhou, Ying; Lower, Elyse E; Li, Hui-Ping; Costea, Alexandru; Attari, Mehran; Baughman, Robert P
2017-01-01
To assess the clinical characteristics, diagnosis, and outcome of cardiac sarcoidosis in a single institution sarcoidosis clinic. Patients with cardiac sarcoidosis were identified using refined World Association of Sarcoidosis and Other Granulomatous Diseases (WASOG) criteria of highly probable and probable. Patient demographics, local and systemic treatments, and clinical outcome were collected. Of the 1,815 patients evaluated over a 6-year period, 73 patients met the WASOG criteria for cardiac sarcoidosis. The median age at diagnosis was 46 years, with a median follow-up of 8.8 years. Reduced left ventricular ejection fraction (LVEF) was the most common manifestation (54.8%). Patients with arrhythmias experienced ventricular tachycardia or severe heart block, (35.6% and 19.2%, respectively) with or without reduced LVEF. A total of 45 (61.6%) patients underwent cardiac PET scan and/or MRI, with 41 (91.1%) having a positive study. During follow-up, 10 patients (13.7%) either underwent transplant (n = 3) or died (n = 7) from sarcoidosis. Kaplan-Meier survival curves revealed 5- and 10-year survival rates of 95.5% and 93.4%, respectively. Univariate factors of age at diagnosis < 46 years, implantation of pacemaker or defibrillator, mycophenolate treatment, or LVEF > 40% were associated with improved survival. Cox regression analysis demonstrated that age ≥ 46 years and lack of an implanted pacemaker or defibrillator were the only independent predictors of mortality. The new WASOG criteria were able to characterize cardiac involvement in our sarcoidosis clinic. Age and lack of pacemaker or defibrillator were the significant predictors of mortality for cardiac sarcoidosis, and reduced LVEF < 40% was associated with worse prognosis. ClinicalTrials.gov; No.: NCT02356445; URL: www.clinicaltrials.gov. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Beake, Matthew Jonathan; Bhole, Vinay; Johnston, Tracey; Rasiah, Shree Vishna
2015-02-01
A preterm 29-week gestation baby was delivered because of gross foetal hydrops secondary to congenital complete heart block. Despite a poor prognosis, she survived stabilisation and received emergency epicardial pacing followed by permanent pacemaker insertion on day 13, weighing 1.2 kg.
Guo, Ping; Qiu, Jie; Wang, Yan; Chen, Guangzhi; Proietti, Riccardo; Fadhle, Al-Selmi; Zhao, Chunxia; Wen Wang, Dao
2018-02-01
Fluoroscopy is the imaging modality routinely used for cardiac device implantation and electrophysiological procedures. Due to the rising concern regarding the harmful effects of radiation exposure to both the patients and operation staffs, novel 3D mapping systems have been developed and implemented in electrophysiological procedure for the navigation of catheters inside the heart chambers. Their applicability in cardiac device implantation has been rarely reported. Our aim is to evaluate the feasibility and safety of permanent pacemaker implantation without fluoroscopy. From January 2012 to June 2016, six patients (50 ± 15 years, four of six were female, one of who was at the 25th week of gestation) who underwent permanent pacemaker implantation were included (zero-fluoroscopy group). Data from 20 consecutive cases of implantation performed under fluoroscopy guidance were chosen as a control group (fluoroscopy group). Total implantation procedure time for single-chamber pacemaker was 51.3 ± 13.1 minutes in the zero-fluoroscopy group and 42.6 ± 7.4 minutes in the fluoroscopy group (P = 0.155). The implantation procedural time for a dual-chamber pacemaker was 88.3 ± 19.6 minutes and 67.3 ± 7.6 minutes in the zero-fluoroscopy and fluoroscopy groups (P = 0.013), respectively. No complications were observed during the procedure and the follow-up in the two groups, and all pacemakers worked with satisfactory parameters. Ensite NavX system can be used as a reliable and safe zero-fluoroscopy approach for the implantation of single- or dual-chamber permanent pacemakers in specific patients, such as pregnant women or in extreme situations when the x-ray machine is not available. © 2017 The Authors. Pacing and Clinical Electrophysiology published by Wiley Periodicals, Inc.
Ivanov, Plamen Ch.; Hu, Kun; Hilton, Michael F.; Shea, Steven A.; Stanley, H. Eugene
2007-01-01
The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiological studies demonstrate a 24-h pattern in adverse cardiovascular events with a peak at ≈10 a.m. It is unknown whether this pattern in cardiac risk is caused by a day/night pattern of behaviors, including activity level and/or influences from the internal circadian pacemaker. We recently found that a scaling index of cardiac vulnerability has an endogenous circadian peak at the circadian phase corresponding to ≈10 a.m., which conceivably could contribute to the morning peak in cardiac risk. Here, we test whether this endogenous circadian influence on cardiac dynamics is caused by circadian-mediated changes in motor activity or whether activity and heart rate dynamics are decoupled across the circadian cycle. We analyze high-frequency recordings of motion from young healthy subjects during two complementary protocols that decouple the sleep/wake cycle from the circadian cycle while controlling scheduled behaviors. We find that static activity properties (mean and standard deviation) exhibit significant circadian rhythms with a peak at the circadian phase corresponding to 5–9 p.m. (≈9 h later than the peak in the scale-invariant index of heartbeat fluctuations). In contrast, dynamic characteristics of the temporal scale-invariant organization of activity fluctuations (long-range correlations) do not exhibit a circadian rhythm. These findings suggest that endogenous circadian-mediated activity variations are not responsible for the endogenous circadian rhythm in the scale-invariant structure of heartbeat fluctuations and likely do not contribute to the increase in cardiac risk at ≈10 a.m. PMID:18093917
Ivanov, Plamen Ch; Hu, Kun; Hilton, Michael F; Shea, Steven A; Stanley, H Eugene
2007-12-26
The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiological studies demonstrate a 24-h pattern in adverse cardiovascular events with a peak at approximately 10 a.m. It is unknown whether this pattern in cardiac risk is caused by a day/night pattern of behaviors, including activity level and/or influences from the internal circadian pacemaker. We recently found that a scaling index of cardiac vulnerability has an endogenous circadian peak at the circadian phase corresponding to approximately 10 a.m., which conceivably could contribute to the morning peak in cardiac risk. Here, we test whether this endogenous circadian influence on cardiac dynamics is caused by circadian-mediated changes in motor activity or whether activity and heart rate dynamics are decoupled across the circadian cycle. We analyze high-frequency recordings of motion from young healthy subjects during two complementary protocols that decouple the sleep/wake cycle from the circadian cycle while controlling scheduled behaviors. We find that static activity properties (mean and standard deviation) exhibit significant circadian rhythms with a peak at the circadian phase corresponding to 5-9 p.m. ( approximately 9 h later than the peak in the scale-invariant index of heartbeat fluctuations). In contrast, dynamic characteristics of the temporal scale-invariant organization of activity fluctuations (long-range correlations) do not exhibit a circadian rhythm. These findings suggest that endogenous circadian-mediated activity variations are not responsible for the endogenous circadian rhythm in the scale-invariant structure of heartbeat fluctuations and likely do not contribute to the increase in cardiac risk at approximately 10 a.m.
Russell, Stuart J; Tan, Christine; O'Keefe, Peter; Ashraf, Saeed; Zaidi, Afzal; Fraser, Alan G; Yousef, Zaheer R
2012-02-20
Heart failure patients with stable angina, acute coronary syndromes and valvular heart disease may benefit from revascularisation and/or valve surgery. However, the mortality rate is increased- 5-30%. Biventricular pacing using temporary epicardial wires after surgery is a potential mechanism to improve cardiac function and clinical endpoints. A multi-centred, prospective, randomised, single-blinded, intervention-control trial of temporary biventricular pacing versus standard pacing. Patients with ischaemic cardiomyopathy, valvular heart disease or both, an ejection fraction ≤ 35% and a conventional indication for cardiac surgery will be recruited from 2 cardiac centres. Baseline investigations will include: an electrocardiogram to confirm sinus rhythm and measure QRS duration; echocardiogram to evaluate left ventricular function and markers of mechanical dyssynchrony; dobutamine echocardiogram for viability and blood tests for renal function and biomarkers of myocardial injury- troponin T and brain naturetic peptide. Blood tests will be repeated at 18, 48 and 72 hours. The principal exclusions will be subjects with permanent atrial arrhythmias, permanent pacemakers, infective endocarditis or end-stage renal disease.After surgery, temporary pacing wires will be attached to the postero-lateral wall of the left ventricle, the right atrium and right ventricle and connected to a triple chamber temporary pacemaker. Subjects will be randomised to receive either temporary biventricular pacing or standard pacing (atrial inhibited pacing or atrial-synchronous right ventricular pacing) for 48 hours.The primary endpoint will be the duration of level 3 care. In brief, this is the requirement for invasive ventilation, multi-organ support or more than one inotrope/vasoconstrictor. Haemodynamic studies will be performed at baseline, 6, 18 and 24 hours after surgery using a pulmonary arterial catheter. Measurements will be taken in the following pacing modes: atrial inhibited; right ventricular only; atrial synchronous-right ventricular; atrial synchronous-left ventricular and biventricular pacing. Optimisation of the atrioventricular and interventricular delay will be performed in the biventricular pacing group at 18 hours. The effect of biventricular pacing on myocardial injury, post operative arrhythmias and renal function will also be quantified. ClinicalTrials.gov: NCT01027299.
The role of lithium batteries in modern health care
NASA Astrophysics Data System (ADS)
Holmes, Curtis F.
Since the implantation of the first lithium-powered pacemaker in 1972, biomedical devices powered by lithium batteries have played a significant role in saving lives and providing health-improving therapy. Today a wide variety of devices performing functions from managing cardiac rhythm to relieving pain and administering drugs is available to clinicians. Newer devices such as ventricular assist devices and implantable hearing devices are powered by lithium ion secondary batteries.
21 CFR 870.3640 - Indirect pacemaker generator function analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indirect pacemaker generator function analyzer... Indirect pacemaker generator function analyzer. (a) Identification. An indirect pacemaker generator function analyzer is an electrically powered device that is used to determine pacemaker function or...
21 CFR 870.3640 - Indirect pacemaker generator function analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indirect pacemaker generator function analyzer... Indirect pacemaker generator function analyzer. (a) Identification. An indirect pacemaker generator function analyzer is an electrically powered device that is used to determine pacemaker function or...
21 CFR 870.3640 - Indirect pacemaker generator function analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indirect pacemaker generator function analyzer... Indirect pacemaker generator function analyzer. (a) Identification. An indirect pacemaker generator function analyzer is an electrically powered device that is used to determine pacemaker function or...
21 CFR 870.3640 - Indirect pacemaker generator function analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indirect pacemaker generator function analyzer... Indirect pacemaker generator function analyzer. (a) Identification. An indirect pacemaker generator function analyzer is an electrically powered device that is used to determine pacemaker function or...
14 CFR 67.111 - Cardiovascular.
Code of Federal Regulations, 2011 CFR
2011-01-01
... diagnosis of any of the following: (1) Myocardial infarction; (2) Angina pectoris; (3) Coronary heart disease that has required treatment or, if untreated, that has been symptomatic or clinically significant; (4) Cardiac valve replacement; (5) Permanent cardiac pacemaker implantation; or (6) Heart replacement...
14 CFR 67.311 - Cardiovascular.
Code of Federal Regulations, 2014 CFR
2014-01-01
... diagnosis of any of the following: (a) Myocardial infarction; (b) Angina pectoris; (c) Coronary heart disease that has required treatment or, if untreated, that has been symptomatic or clinically significant; (d) Cardiac valve replacement; (e) Permanent cardiac pacemaker implantation; or (f) Heart replacement. ...
14 CFR 67.311 - Cardiovascular.
Code of Federal Regulations, 2013 CFR
2013-01-01
... diagnosis of any of the following: (a) Myocardial infarction; (b) Angina pectoris; (c) Coronary heart disease that has required treatment or, if untreated, that has been symptomatic or clinically significant; (d) Cardiac valve replacement; (e) Permanent cardiac pacemaker implantation; or (f) Heart replacement. ...
14 CFR 67.111 - Cardiovascular.
Code of Federal Regulations, 2012 CFR
2012-01-01
... diagnosis of any of the following: (1) Myocardial infarction; (2) Angina pectoris; (3) Coronary heart disease that has required treatment or, if untreated, that has been symptomatic or clinically significant; (4) Cardiac valve replacement; (5) Permanent cardiac pacemaker implantation; or (6) Heart replacement...
14 CFR 67.111 - Cardiovascular.
Code of Federal Regulations, 2014 CFR
2014-01-01
... diagnosis of any of the following: (1) Myocardial infarction; (2) Angina pectoris; (3) Coronary heart disease that has required treatment or, if untreated, that has been symptomatic or clinically significant; (4) Cardiac valve replacement; (5) Permanent cardiac pacemaker implantation; or (6) Heart replacement...
14 CFR 67.311 - Cardiovascular.
Code of Federal Regulations, 2012 CFR
2012-01-01
... diagnosis of any of the following: (a) Myocardial infarction; (b) Angina pectoris; (c) Coronary heart disease that has required treatment or, if untreated, that has been symptomatic or clinically significant; (d) Cardiac valve replacement; (e) Permanent cardiac pacemaker implantation; or (f) Heart replacement. ...
14 CFR 67.111 - Cardiovascular.
Code of Federal Regulations, 2013 CFR
2013-01-01
... diagnosis of any of the following: (1) Myocardial infarction; (2) Angina pectoris; (3) Coronary heart disease that has required treatment or, if untreated, that has been symptomatic or clinically significant; (4) Cardiac valve replacement; (5) Permanent cardiac pacemaker implantation; or (6) Heart replacement...
14 CFR 67.311 - Cardiovascular.
Code of Federal Regulations, 2011 CFR
2011-01-01
... diagnosis of any of the following: (a) Myocardial infarction; (b) Angina pectoris; (c) Coronary heart disease that has required treatment or, if untreated, that has been symptomatic or clinically significant; (d) Cardiac valve replacement; (e) Permanent cardiac pacemaker implantation; or (f) Heart replacement. ...
Blažek, Patrick; Ferri-Certić, Jerko; Vražić, Hrvoje; Lennerz, Carsten; Grebmer, Christian; Kaitani, Kazuaki; Karch, Martin; Starčević, Boris; Semmler, Verena; Kolb, Christof
2018-03-20
Fixation of the pacemaker leads during pacemaker implantation leads to an increase of cardiac Troponin T (cTnT) that can be interpreted as a sign of minimal myocardial damage. This trial evaluates whether the mechanism type of lead fixation influences the magnitude of cTnT release. Patients having a de-novo cardiac pacemaker implantation or a lead revision were centrally randomized to receive either a ventricular lead with an active (screw) or passive (tine) fixation mechanism. High-sensitive Troponin T (hsTnT) was determined on the day of the procedure beforehand and on the following day. 326 Patients (median age (IQR) 75.0 (69.0-80.0) years, 64% male) from six international centers were randomized to receive ventricular leads with an active (n = 166) or passive (n = 160) fixation mechanism. Median (IQR) hsTnT levels increased by 0.009 (0.004-0.021) ng/ml in the group receiving screw-in ventricular leads and by 0.008 (0.003-0.030) ng/ml in the group receiving tined ventricular leads (n.s.). In conclusion pacemaker implantations are followed by a release of hsTnT. The choice between active or passive fixation ventricular leads does not have a significant influence on the extent of myocardial injury and the magnitude of hsTnT release.
Effects of electromagnetic pulse (EMP) on cardiac pacemakers. Final report, Nov 88-Oct 89
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, V.J.
1991-11-01
The U.S. Army Harry Diamond Laboratories' (HDL's) Woodbridge Research Facility (WRF) has conducted an investigation into the effects of electromagnetic pulse (EMP) on medical electronics. This report specifically documents the findings on the effects of WRF's Army EMP Simulator Operations (AESOP) on cardiac pacemakers (CPMs). Empirical data are furnished and compared to the results of two independent analytical studies. The studies support the conclusion that damage to CPMs that might be located near the WRF boundaries is not likely. Furthermore, any upset in a CPM's operation is considered unlikely and inconsequential to the health of the CPM wearer. Cardiac pacemakersmore » (CPMs) have experienced significant technological advancements over the last decade, evolving from simple and bulky pulse generators to the small and sophisticated computerized units implanted today. With the implementation of sensitive digital electronics in modern pacemaker designs, concerns have been expressed for the possibility of an increased sensitivity of CPMs to electromagnetic interference (EMI). To some extent these concerns have abated to the increased awareness of the EMI problem by the manufacturers, as evident in better peacemaker designs and the decline in reported malfunctions due to EMI.« less
Aimé, Ezio; Rovida, Marina; Contardi, Danilo; Ricci, Cristian; Gaeta, Maddalena; Innocenti, Ester; Cabral Tantchou-Tchoumi, Jacques
2014-10-01
The primary aim of this pilot study was to prospectively assess a flowchart to screen and diagnose paced patients (pts) affected by sleep apnoeas, by crosschecking indexes derived from pacemakers (minute ventilation sensor on-board) with Sleep-Lab Polygraphy (PG) outcomes. Secondarily, "smoothed" long-term pacemaker indexes (all the information between two consecutive follow-up visits) have been retrospectively compared vs. standard short-term pacemaker indexes (last 24h) at each follow-up (FU) visit, to test their correlation and diagnostic concordance. Data from long-term FU of 61 paced pts were collected. At each visit, the standard short-term apnoea+hypopnoea (PM_AHI) index was retrieved from the pacemaker memory. Patients showing PM_AHI ≥ 30 at least once during FU were proposed to undergo a PG for diagnostic confirmation. Smoothed pacemaker (PM_SAHI) indexes were calculated by averaging the overall number of apnoeas/hypopnoeas over the period between two FU visits, and retrospectively compared with standard PM_AHI. Data were available from 609 consecutive visits (overall 4.64 ± 1.78 years FU). PM_AHI indexes were positive during FU in 40/61 pts (65.6%); 26/40 pts (65%) accepted to undergo a PG recording; Sleep-Lab confirmed positivity in 22/26 pts (84.6% positive predictive value for PM_AHI). A strong correlation (r=0.73) and a high level of concordance were found between smoothed and standard indexes (multivariate analysis, Cohen's-k and Z-score tests). Pacemaker-derived indexes may help in screening paced pts potentially affected by sleep apnoeas. Long-term "smoothed" apnoea indexes could improve the accuracy of pacemaker screening capability, even though this hypothesis must be prospectively confirmed by larger studies. Copyright © 2014 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Nanowires and Electrical Stimulation Synergistically Improve Functions of hiPSC Cardiac Spheroids.
Richards, Dylan J; Tan, Yu; Coyle, Robert; Li, Yang; Xu, Ruoyu; Yeung, Nelson; Parker, Arran; Menick, Donald R; Tian, Bozhi; Mei, Ying
2016-07-13
The advancement of human induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology has shown promising potential to provide a patient-specific, regenerative cell therapy strategy to treat cardiovascular disease. Despite the progress, the unspecific, underdeveloped phenotype of hiPSC-CMs has shown arrhythmogenic risk and limited functional improvements after transplantation. To address this, tissue engineering strategies have utilized both exogenous and endogenous stimuli to accelerate the development of hiPSC-CMs. Exogenous electrical stimulation provides a biomimetic pacemaker-like stimuli that has been shown to advance the electrical properties of tissue engineered cardiac constructs. Recently, we demonstrated that the incorporation of electrically conductive silicon nanowires to hiPSC cardiac spheroids led to advanced structural and functional development of hiPSC-CMs by improving the endogenous electrical microenvironment. Here, we reasoned that the enhanced endogenous electrical microenvironment of nanowired hiPSC cardiac spheroids would synergize with exogenous electrical stimulation to further advance the functional development of nanowired hiPSC cardiac spheroids. For the first time, we report that the combination of nanowires and electrical stimulation enhanced cell-cell junction formation, improved development of contractile machinery, and led to a significant decrease in the spontaneous beat rate of hiPSC cardiac spheroids. The advancements made here address critical challenges for the use of hiPSC-CMs in cardiac developmental and translational research and provide an advanced cell delivery vehicle for the next generation of cardiac repair.
Carrasco, Francisco; Anguita, Manuel; Ruiz, Martín; Castillo, Juan Carlos; Delgado, Mónica; Mesa, Dolores; Romo, Elias; Pan, Manuel; Suárez de Lezo, Jose
2016-06-01
Use of cardiac pacing devices has grown in recent years. Our aim was to evaluate changes in epidemiology and clinical features of infective endocarditis (IE) involving pacemaker devices in a large series of IE over the last 27 years (1987-2013). From 1987 to December 2013, 413 consecutive IE cases were diagnosed in our hospital. During this period, 7424 pacemaker devices were implanted (6917 pacemakers, 239 implantable cardiac defibrillators, 158 resynchronization devices, and 110 resynchronization/defibrillator devices). All consecutive cases of IE on pacemaker devices were included and analysed. Infective endocarditis on pacemaker devices represented 6.1% of all endocarditis cases (25 patients), affecting 3.6/1000 of all implanted pacemakers. Its proportion increased from 1.25% of all endocarditis in 1987-1993 to 4.08% in 1994-2000, 7.69% in 2001-2007 and 9.32% in 2008-2013 (P < 0.01). Its incidence also increased from 1.4/1000 of all pacemaker implants in the period of 1987-1993 to 2.5/1000 in 1994-2000, 3.3/1000 in 2001-2007 and 4.5/1000 implanted devices in 2008-2013 (P < 0.05). Mean age of patients was 68 years, and 80% were male. Causative microorganisms predominantly were Staphylococci (84%: Staphylococcus aureus 48%, Staphylococcus epidermidis 36%). Rate of severe complications was high: persistent sepsis in 60% of cases, heart failure in 20%, and stroke in 12%. Device was removed in 19 patients (76%), mostly by surgery (18 of the 19 cases). Early mortality was 24% (33% of medically, 21% of surgically treated patients, P = 0.82). Infective endocarditis on pacemaker devices has shown an increasing incidence during the past decades, representing almost 10% of all IE in the last 6 years. This is a severe disease, with a high rate of severe complications and requiring removal of device in most cases. In spite of therapy, early mortality is high. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoup, R.L.
1976-07-01
The fabrication of fuel capsules with refractory metal and alloy clads used in nuclear-powered cardiac pacemakers precludes the expedient dissolution of the clad in inorganic acid solutions. An experiment to measure penetration rates of acids on commonly used fuel pellet clads indicated that it is not impossible, but that it would be very difficult to dissolve the multiple cladding. This work was performed because of a suggestion that a /sup 238/PuO/sub 2/-powered pacemaker could be transformed into a terrorism weapon.
2013 Aerospace Medical Certification Statistical Handbook
2014-12-01
etc.), rheumatoid arthritis, unstable knee (locked knee, herniated meniscus, no patella) † Excludes cardiomyopathy, pacemaker, cardiac stents , cardiac...angioplasty with a stent 881 (0.46) 478 (0.40) 2,939 (1.14) 4,298 (0.75) Coronary angioplasty procedure 159 (0.08) 126 (0.10) 559
Tricuspid Valve Dysfunction Following Pacemaker or Cardioverter-Defibrillator Implantation.
Chang, James D; Manning, Warren J; Ebrille, Elisa; Zimetbaum, Peter J
2017-05-09
The potential for cardiac implantable electronic device leads to interfere with tricuspid valve (TV) function has gained increasing recognition as having hemodynamic and clinical consequences associated with incremental morbidity and death. The diagnosis and treatment of lead-related (as distinct from functional) tricuspid regurgitation pose unique challenges. Because of pitfalls in routine diagnostic imaging, a high level of clinical suspicion must be maintained to avoid overlooking the possibility that worsening heart failure is a consequence of mechanical interference with TV leaflet mobility or coaptation and is amenable to lead extraction or valve repair or replacement. The future of cardiac implantable electronic devices includes pacing and perhaps defibrillation without a lead traversing the TV. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
A sub-cc nonlinear piezoelectric energy harvester for powering leadless pacemakers
Ansari, MH; Karami, M Amin
2018-01-01
A miniature nonlinear piezoelectric energy harvester is developed to power state of the art leadless cardiac pacemakers from cardiac motions. The energy harvester is integrated in the leadless pacemaker and is connected to the myocardium. The energy harvester converts myocardial motions to electricity to power leadless pacemakers. The energy is stored in a battery or supercapacitor and is used for pacing. The device is composed of a bimorph piezoelectric beam confined in a gray iron frame. The system is assembled at high temperature and operated at the body temperature. The mismatch in the coefficients of thermal expansion of the beam and the frame causes the beam to buckle in body temperature. This intentional buckling makes the beam unstable and improves the power production and robustness of the device. Having high natural frequency is a major problem in microelectromechanical systems energy harvesters. Considering the small size of the energy harvester, 0.5 cm3, the natural frequency is expected to be high. In our design, the natural frequency is lowered significantly using a buckled beam and a proof mass. Since the beam is buckled, the design is bistable and nonlinear, which could increase the output power. In this article, the device is analytically modeled, and the natural frequencies and mode shapes of the energy harvester are analytically derived. The terms corresponding to geometric nonlinearities are included in the electromechanical coupled governing equations. The simulations show that the device generates sufficient electricity to power leadless pacemakers. PMID:29674842
Cardiac pacing for severe childhood neurally mediated syncope with reflex anoxic seizures
McLeod, K; Wilson, N; Hewitt, J; Norrie, J; Stephenson, J
1999-01-01
OBJECTIVE—To determine whether permanent cardiac pacing could prevent syncope and seizures in children with frequent severe neurally mediated syncope, and if so whether dual chamber pacing was superior to single chamber ventricular pacing. METHODS—Dual chamber pacemakers were implanted into 12 children (eight male, four female) aged 2-14 years (median 2.8 years) with frequent episodes of reflex anoxic seizures and a recorded prolonged asystole during an attack. The pacemaker was programmed to sensing only (ODO), single chamber ventricular pacing with hysteresis (VVI), and dual chamber pacing with rate drop response (DDD) for four month periods, with each patient allocated to one of the six possible sequences of these modes, according to chronological order of pacemaker implantation. The parent and patient were blinded to the pacemaker mode and asked to record all episodes of syncope or presyncope ("near miss" events). The doctor analysing the results was blinded to the patient and pacemaker mode. RESULTS—One patient was withdrawn from the study after the pacemaker was removed because of infection. In the remaining children, both dual chamber and single chamber pacing significantly reduced the number of syncopal episodes compared with sensing only (p = 0.0078 for both). VVI was as effective as DDD for preventing syncope, but DDD was superior to VVI in reducing near miss events (p = 0.016). CONCLUSIONS—Permanent pacing is an effective treatment for children with severe neurally mediated syncope and reflex anoxic seizures. VVI is as effective as DDD in preventing syncope and seizures, but DDD is superior in preventing overall symptoms. Keywords: syncope; reflex anoxic seizures; pacing; paediatric cardiology PMID:10573501
Echocardiography in patients with complications related to pacemakers and cardiac defibrillators.
Almomani, Ahmed; Siddiqui, Khadija; Ahmad, Masood
2014-03-01
The evolving indications and uses for implantable cardiac devices have led to a significant increase in the number of implanted devices each year. Implantation of endocardial leads for permanent pacemakers and cardiac defibrillators can cause many delayed complications. Complications may be mechanical and related to the interaction of the device leads with the valves and endomyocardium, e.g., perforation, infection, and thrombosis, or due to the electrical pacing of the myocardium and conduction abnormalities, e.g., left ventricular dyssynchrony. Tricuspid regurgitation, another delayed complication in these patients, may be secondary to both mechanical and pacing effects of the device leads. Echocardiography plays an important role in the diagnosis of these device-related complications. Both two-dimensional transthoracic echocardiography and transesophageal echocardiography provide useful diagnostic information. Real time three-dimensional echocardiography is a novel technique that can further enhance the detection of lead-related complications. © 2013, Wiley Periodicals, Inc.
Andalam, Sidharta; Ramanna, Harshavardhan; Malik, Avinash; Roop, Parthasarathi; Patel, Nitish; Trew, Mark L
2016-08-01
Virtual heart models have been proposed for closed loop validation of safety-critical embedded medical devices, such as pacemakers. These models must react in real-time to off-the-shelf medical devices. Real-time performance can be obtained by implementing models in computer hardware, and methods of compiling classes of Hybrid Automata (HA) onto FPGA have been developed. Models of ventricular cardiac cell electrophysiology have been described using HA which capture the complex nonlinear behavior of biological systems. However, many models that have been used for closed-loop validation of pacemakers are highly abstract and do not capture important characteristics of the dynamic rate response. We developed a new HA model of cardiac cells which captures dynamic behavior and we implemented the model in hardware. This potentially enables modeling the heart with over 1 million dynamic cells, making the approach ideal for closed loop testing of medical devices.
Üreyen, Çağın Mustafa; Baş, Cem Yunus; Yüksel, İsa Öner; Kuş, Görkem; Çağırcı, Göksel; Arslan, Şakir
2017-01-01
Objective: This retrospective study sought to research the adequacy of the follow-up and optimization of cardiac implantable electronic devices (CIEDs) performed by industry representatives. Methods: A total of 403 consecutive patients (35% females; median age, 67 years; age range 18–97 years) with either pacemakers (n=246), implantable cardioverter-defibrillators (ICDs), (n=117) or cardiac resynchronization therapy with defibrillator (CRT-D) (n=40) applied to our hospital’s outpatient pacemaker clinic for follow-up. These patients had been followed up by industry representatives alone until September 2013 and then by a cardiologist who is dealing with cardiac electrophysiology and has a knowledge of CIED follow-up. Results: It was ascertained that 117 (47.6%) of 246 patients with pacemakers had a programming error. Forty-three (36.8%) of 117 patients were symptomatic, and after reprogramming, all symptoms diminished partially or completely during the follow-up. Moreover, 30 (25.6%) of 117 patients with ICDs had a programming error. Furthermore, 6 (15%) of 40 patients with CRT-Ds had a programming error. To conclude, when all patients with CIEDs were assessed together, it was ascertained that 153 (38%) of 403 patients had programming errors. Conclusion: The prevalence of inappropriate programming of CIEDs by industry representatives was quite higher than expected. Therefore, our study strongly demonstrates that CIED follow-up should not be allowed to be performed entirely by manufacturers’ representatives alone. PMID:28430113
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, J; Place, V; Panda, A
Purpose: Several institutions have developed MRI guidelines for patients with MR-unsafe or MR-conditional pacemakers. Here we highlight the role of a medical physicist in implementing these guidelines for non-pacemaker dependent patients. Guidelines: Implementing these guidelines requires involvement from several medical specialties and a strong collaboration with the site MRI supervisor to develop a structured workflow. A medical physicist is required to be present during the scan to supervise the MR scanning and to maintain a safety checklist that ensures: 1) uninterrupted patient communication with the technologist, 2) continuous patient physiologic monitoring (e.g. blood pressure and electrocardiography) by a trained nurse,more » 3) redundant patient vitals monitoring (e.g. pulse oximetry) due to the possibility of in vivo electrocardiography reading fluctuations during image acquisition. A radiologist is strongly recommended to be available to review the images before patients are discharged from the scanner. Pacemaker MRI should be restricted to 1.5T field strength. The MRI sequences should be optimized by the physicist with regards to: a) SAR: limited to <1.5 W/Kg for MR-unsafe pacemakers in normal operating mode, b) RF exposure time: <30 min, c) Coils: use T/R coils but not restricted to such, d) Artifacts: further optimization of sequences whenever image quality is compromised due to the pacemaker. In particular, cardiac, breast and left-shoulder MRIs are most susceptible to these artifacts. Possible strategies to lower the SAR include: a) BW reduction, 2) echo-train-length reduction, 3) increase TR, 4) decrease number of averages, 5) decrease flip angle, 6) reduce slices and/or a combination of all the options. Conclusion: A medical physicist in collaboration with the MR supervisor plays an important role in the supervision/implementation of safe MR scanning of pacemaker patients. Developing and establishing a workflow has enabled our institution to scan over 30 patients with pacemakers without complications, including 3 cardiac MR exams.« less
Carvalho de Lima, Daniel; Guimarães, Juliana Bohnen; Rodovalho, Gisele Vieira; Silveira, Simonton Andrade; Haibara, Andrea Siqueira; Coimbra, Cândido Celso
2014-08-01
Peripheral sympathetic overdrive in young obese subjects contributes to further aggravation of insulin resistance, diabetes, and hypertension, thus inducing worsening clinical conditions in adulthood. Exercise training has been considered a strategy to repair obesity autonomic dysfunction, thereby reducing the cardiometabolic risk. Therefore, the aim of this study was to assess the effect of early exercise training, starting immediately after weaning, on cardiac autonomic control in diet-induced obese rats. Male Wistar rats (weaning) were divided into four groups: (i) a control group (n = 6); (ii) an exercise-trained control group (n = 6); (iii) a diet-induced obesity group (n = 6); and (iv) an exercise-trained diet-induced obesity group (n = 6). The development of obesity was induced by 9 weeks of palatable diet intake, and the training program was implemented in a motor-driven treadmill (5 times per week) during the same period. After this period, animals were submitted to vein and artery catheter implantation to assess cardiac autonomic balance by methylatropine (3 mg/kg) and propranolol (4 mg/kg) administration. Exercise training increased running performance in both groups (p < 0.05). Exercise training also prevented the increased resting heart rate in obese rats, which seemed to be related to cardiac pacemaker activity preservation (p < 0.05). Additionally, the training program preserved the pressure and bradycardia responses to autonomic blockade in obese rats (p < 0.05). An exercise program beginning at weaning age prevents cardiovascular dysfunction in obese rats, indicating that exercise training may be used as a nonpharmacological therapeutic strategy for the treatment of cardiometabolic diseases.
Edlinger, Christoph; Granitz, Marcel; Paar, Vera; Jung, Christian; Pfeil, Alexander; Eder, Sarah; Wernly, Bernhard; Kammler, Jürgen; Hergan, Klaus; Hoppe, Uta C; Steinwender, Clemens; Lichtenauer, Michael; Kypta, Alexander
2018-05-23
Leadless pacemaker systems are an important upcoming device in clinical rhythmology. Currently two different products are available with the Micra system (Medtronic) being the most used in the clinical setting to date. The possibility to perform magnetic resonance imaging (MRI) is an important feature of modern pacemaker devices. Even though the Micra system is suitable for MRI, little is yet known about its impact on artifacts within the images. The aim of our ex vivo study was to perform cardiac MRI to quantify the artifacts and to evaluate if artifacts limit or inhibit the assessment of the surrounding myocardium. After ex vivo implantation of the leadless pacemaker (LP) in a porcine model, hearts were filled with saline solution and fixed on wooden sticks on a plastic container. The model was examined at 1.5 T and at 3 T using conventional sequences and T2 mapping sequences. In addition, conventional X‑rays and computed tomography (CT) scans were performed. Correct implantation of the LP could be performed in all hearts. In almost all MRI sequences the right ventricle and the septal region surrounding the (LP) were altered by an artifact and therefore would sustain limited assessment; however, the rest of the myocardium remained free of artifacts and evaluable for common radiologic diagnoses. A characteristic shamrock-shaped artifact was generated which appeared to be even more intense in magnitude and brightness when using 3 T compared to 1.5 T. The use of the Micra system in cardiac MRI appeared to be feasible. In our opinion, it will still be possible to make important clinical cardiac MRI diagnoses (the detection of major ischemic areas or inflammatory processes) in patients using the Micra system. We suggest the use of 1.5 T as the preferred method in clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, Wonmo; Kim, Siyong; Kim, Jung-in
2012-10-15
Purpose: To investigate dose perturbations for pacemaker-implanted patients in partial breast irradiation using high dose rate (HDR) balloon brachytherapy. Methods: Monte Carlo (MC) simulations were performed to calculate dose distributions involving a pacemaker in Ir-192 HDR balloon brachytherapy. Dose perturbations by varying balloon-to-pacemaker distances (BPD = 50 or 100 mm) and concentrations of iodine contrast medium (2.5%, 5.0%, 7.5%, and 10.0% by volume) in the balloon were investigated for separate parts of the pacemaker (i.e., battery and substrate). Relative measurements using an ion-chamber were also performed to confirm MC results. Results: The MC and measured results in homogeneous media withoutmore » a pacemaker agreed with published data within 2% from the balloon surface to 100 mm BPD. Further their dose distributions with a pacemaker were in a comparable agreement. The MC results showed that doses over the battery were increased by a factor of 3, compared to doses without a pacemaker. However, there was no significant dose perturbation in the middle of substrate but up to 70% dose increase in the substrate interface with the titanium capsule. The attenuation by iodine contrast medium lessened doses delivered to the pacemaker by up to 9%. Conclusions: Due to inhomogeneity of pacemaker and contrast medium as well as low-energy photons in Ir-192 HDR balloon brachytherapy, the actual dose received in a pacemaker is different from the homogeneous medium-based dose and the external beam-based dose. Therefore, the dose perturbations should be considered for pacemaker-implanted patients when evaluating a safe clinical distance between the balloon and pacemaker.« less
Takahashi, Masao; Badenco, Nicolas; Monteau, Jacques; Gandjbakhch, Estelle; Extramiana, Fabrice; Urena, Marina; Karam, Nicole; Marijon, Eloi; Algalarrondo, Vincent; Teiger, Emmanuel; Lellouche, Nicolas
2018-03-14
This study aimed to assess the impact of pacemaker mode programming on clinical outcomes in patients with high-degree atrioventricular conduction disturbance (AVCD) after transcatheter aortic valve implantation (TAVI). Although high-degree AVCD after TAVI can receive pacemaker, recovery of the AVCD is often observed. Specific pacemaker algorithms (AAI-DDD mode switch) are available which favor spontaneous atrioventricular conduction. Of 1,621 consecutive multi-center TAVI patients, 269 (16.4%) received pacemaker. We retrospectively included 91 patients with persistent high-degree AVCD at hospital discharge. Pacemaker dependency was defined as absence, inadequate intrinsic ventricular rhythm, or ventricular pacing time > 95% on pacemaker interrogation during follow-up. Comparison of heart failure hospitalization and death between conventional DDD (cDDD) and other modes was examined (AAI-DDD and VVI). During a mean follow-up duration of 13 months, the pacemaker dependency rate was 52.8%. Patients with cDDD mode (N = 36: 40.0%) had significantly more pacemaker dependency. Multivariate analysis showed that cDDD mode was independently associated with pacemaker dependency (odds ratio = 3.63, P = 0.03). Moreover, cDDD patients had a significant higher incidence of heart failure hospitalization (Hospitalization: cDDD vs. others = 45.4% vs. 18.2%, P = 0.03) and had a higher incidence of mortality (Death: cDDD vs. the others = 27.0% vs. 4.4%, P = 0.06). Up to half of patients implanted for high-degree AVCD after TAVI had conduction recovery. Patients with cDDD programming at hospital discharge had more pacemaker dependency and a worse cardiac prognosis. Thus, pacemaker mode should be systematically set to promote spontaneous atrioventricular conduction in patients with pacemaker implantation after TAVI. © 2018 Wiley Periodicals, Inc.
Anesthetic management of the neonate with congenital complete heart block: a 16-year review.
Kussman, Barry D; Madril, Danielle R; Thiagarajan, Ravi R; Walsh, Edward P; Laussen, Peter C
2005-12-01
Anesthesia for patients with complete heart block can be associated with significant hemodynamic instability. The aim of this study is to review our anesthetic experience of neonates with congenital complete heart block (CCHB) who underwent placement of either a temporary epicardial pacing system or a permanent epicardial pacemaker. The anesthetic management of neonates with CCHB who underwent pacemaker placement at a single institution over a 16-year period was reviewed. Twenty-four neonates were identified, 17 with a structurally normal heart (NL) and seven with associated congenital heart defects (CHD). Median (range) gestational age was 36.9 (26-41) weeks, birth weight 2.9 (1.0-4.1) kg, and baseline heart rate 47 (38-80) b.min(-1). A temporary epicardial pacing system was placed in six patients (four CHD, two NL; P = 0.003) following institution of mechanical ventilation and inotropic support for a low cardiac output state, and a permanent epicardial pacemaker was placed in 18 patients. Atropine 0.02 mg.kg(-1) IV prior to induction (n = 5) increased heart rate less than 20%. Intraoperative hypotension was documented in nine neonates, five of seven with CHD and four of 17 with NL (P = 0.02). In four patients (44%) hypotension occurred despite concurrent inotropic support. Intraoperative cardiac arrest occurred in one neonate, necessitating institution of extracorporeal membrane oxygenation. Two patients (8.3%) died in hospital from complex CHD and complications of prematurity. Early institution of mechanical ventilation, inotropic support and pacing are necessary in the neonate with CCHB and poor hemodynamic function, particularly with coexisting CHD or prematurity.
21 CFR 870.3720 - Pacemaker electrode function tester.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker electrode function tester. 870.3720... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3720 Pacemaker electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which is...
21 CFR 870.3720 - Pacemaker electrode function tester.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker electrode function tester. 870.3720... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3720 Pacemaker electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which is...
21 CFR 870.3630 - Pacemaker generator function analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker generator function analyzer. 870.3630... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3630 Pacemaker generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is...
21 CFR 870.3720 - Pacemaker electrode function tester.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker electrode function tester. 870.3720... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3720 Pacemaker electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which is...
21 CFR 870.3720 - Pacemaker electrode function tester.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker electrode function tester. 870.3720... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3720 Pacemaker electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which is...
21 CFR 870.3630 - Pacemaker generator function analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker generator function analyzer. 870.3630... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3630 Pacemaker generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is...
21 CFR 870.3630 - Pacemaker generator function analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker generator function analyzer. 870.3630... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3630 Pacemaker generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is...
21 CFR 870.3630 - Pacemaker generator function analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker generator function analyzer. 870.3630... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3630 Pacemaker generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is...
The nuclear pacemaker: Is renewed interest warranted
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsonnet, V.; Berstein, A.D.; Perry, G.Y.
1990-10-01
From 1973 through 1987, 155 radioisotope-powered nuclear pacemakers were implanted in 132 patients at the Newark Beth Israel Medical Center. The longevity of the first 15 devices, all of which were fixed-rate (VOO) pacemakers, was significantly better than that of 15 lithium-chemistry demand (VVI) pacemakers used as control devices (p = 0.0002). Of the entire cohort of 155 nuclear pacemakers, 136 were VVI devices and 19 were VOO units. The patients with VOO pacemakers needed reoperations more often than did those with VVI pacemakers, chiefly for mode change (p less than 0.001). Power-source failure was observed in only 1 case,more » but 47 nuclear pacemakers were removed for other reasons, including component malfunction (15 units), mode change (12 units), high pacing thresholds (8 units) and lead or connector problems (5 units). The actuarial survival at 15 years was 99% for power sources and 82% for the entire pacing systems (pulse generators plus leads). The frequency of malignancy was similar to that of the population at large and primary tumor sites were randomly distributed. Deaths most commonly were due to cardiac causes (68%). Thus, nuclear pacemakers are safe and reliable and their greater initial cost appears to be offset by their longevity and the resulting decrease in the frequency of reoperations. It is reasonable to suggest that further use be made of long-lasting nuclear power sources for modern pacemakers and other implantable rhythm-management devices.« less
An Integrated Cardiology Patient Management System
Kiely, F. Michael
1988-01-01
An integrated clinical database has been developed for all diagnostic cardiac services at Vancouver General Hospital. The system is installed on a Data General MV/10000 computer and utilizes the Flagship Application Generator from EPIC Systems Corp. Clinical information, as well as demographic and administrative data, is collected. The system features a custom menu for each user, whose selections provide direct access to the desired functional modules. The intention is to collect data from all the diagnostic areas of the Division of Cardiology, viz., Cardiac Ultrasound, Cardiac Catheterization Laboratory, Pacemaker Clinic and Electrocardiology (including 24 hour ambulatory EKGs and exercise testing). Automated links to the hospital's Admitting/Discharge/Transfer and Billing/Accounts Receivable systems have been implemented over the hospital's local area network. The system is used to produce routine reports of test results, patient billings, and departmental workload statistics. Inquiry functions permit the rapid location of patient records and produce an integrated profile of cardiology activity. In addition, selective searches of the data are available for research and/or other purposes.
Circadian clock and cardiac vulnerability: A time stamp on multi-scale neuroautonomic regulation
NASA Astrophysics Data System (ADS)
Ivanov, Plamen Ch.
2005-03-01
Cardiovascular vulnerability displays a 24-hour pattern with a peak between 9AM and 11AM. This daily pattern in cardiac risk is traditionally attributed to external factors including activity levels and sleep-wake cycles. However,influences from the endogenous circadian pacemaker independent from behaviors may also affect cardiac control. We investigate heartbeat dynamics in healthy subjects recorded throughout a 10-day protocol wherein the sleep/wake and behavior cycles are desynchronized from the endogenous circadian cycle,enabling assessment of circadian factors while controlling for behavior-related factors. We demonstrate that the scaling exponent characterizing temporal correlations in heartbeat dynamics over multiple time scales does exhibit a significant circadian rhythm with a sharp peak at the circadian phase corresponding to the period 9-11AM, and that this rhythm is independent from scheduled behaviors and mean heart rate. Our findings of strong circadian rhythms in the multi-scale heartbeat dynamics of healthy young subjects indicate that the underlying mechanism of cardiac regulation is strongly influenced by the endogenous circadian pacemaker. A similar circadian effect in vulnerable individuals with underlying cardiovascular disease would contribute to the morning peak of adverse cardiac events observed in epidemiological studies.
Shenthar, Jayaprakash; Bohra, Shomu; Jetley, Vinay; Vora, Amit; Lokhandwala, Yash; Nabar, Ashish; Naik, Ajay; Calambur, Narsimhan; Gupta, S B
2016-01-01
There is limited data regarding the demographics and type of cardiac implantable electronic device (CIED) in India. The aim of this survey was to define trends in CIED implants, which included permanent pacemakers (PM), intracardiac defibrillators (ICD), and cardiac resynchronization therapy pacemakers and defibrillators (CRT-P/D) devices in India. The survey was the initiative of the Indian Society of Electrocardiology and the Indian Heart Rhythm Society. The type of CIED used, their indications, demographic characteristics, clinical status and co-morbidities were collected using a survey form over a period of 1 year. 2117 forms were analysed from 136 centers. PM for bradyarrhythmic indication constituted 80% of the devices implanted with ICD's and CRT-P/D forming approximately 10% each. The most common indication for PM implantation was complete atrio-ventricular block (76%). Single chamber (VVI) pacemakers formed 54% of implants, majority in males (64%). The indication for ICD implantation was almost equal for primary and secondary prevention. A single chamber ICD was most commonly implanted (65%). Coronary artery disease was the etiology in 58.5% of patients with ICD implants. CRT pacemakers were implanted mostly in patients with NYHA III/IV (82%), left ventricular ejection fraction <0.35 (88%) with CRT-P being most commonly used (57%). A large proportion of CIED implants in India are PM for bradyarrhythmic indications, predominantly AV block. ICD's are implanted almost equally for primary and secondary prophylaxis. Most CRT devices are implanted for NYHA Class III. There is a male predominance for implantation of CIED. Copyright © 2015 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.
Okuda, Ken-Ichi; Nagahori, Ryuichi; Yamada, Satomi; Sugimoto, Shinya; Sato, Chikara; Sato, Mari; Iwase, Tadayuki; Hashimoto, Kazuhiro; Mizunoe, Yoshimitsu
2018-01-01
The present study aimed to understand the biofilm formation mechanism of Propionibacterium acnes by analyzing the components and structure of the biofilms. P. acnes strains were isolated from the surface of explanted cardiac pacemaker devices that exhibited no clinical signs of infection. Culture tests using a simple stamp culture method (pressing pacemakers against the surface of agar plates) revealed frequent P. acnes colonization on the surface of cardiac pacemaker devices. P . acnes was isolated from 7/31 devices, and the isolates were categorized by multilocus sequence typing into five different sequence types (STs): ST4 (JK18.2), ST53 (JK17.1), ST69 (JK12.2 and JK13.1), ST124 (JK5.3), ST125 (JK6.2), and unknown ST (JK19.3). An in vitro biofilm formation assay using microtiter plates demonstrated that 5/7 isolates formed biofilms. Inhibitory effects of DNase I and proteinase K on biofilm formation varied among isolates. In contrast, dispersin B showed no inhibitory activity against all isolates. Three-dimensional live/dead imaging of P. acnes biofilms with different biochemical properties using confocal laser microscopy demonstrated different distributions and proportions of living and dead cells. Additionally, it was suggested that extracellular DNA (eDNA) plays a role in the formation of biofilms containing living cells. Ultrastructural analysis of P. acnes biofilms using a transmission electron microscope and atmospheric scanning electron microscope revealed leakage of cytoplasmic components along with cell lysis and fibrous structures of eDNA connecting cells. In conclusion, the biochemical properties and structures of the biofilms differed among P. acnes isolates. These findings may provide clues for establishing countermeasures against biofilm-associated infection by P. acnes .
Okuda, Ken-ichi; Nagahori, Ryuichi; Yamada, Satomi; Sugimoto, Shinya; Sato, Chikara; Sato, Mari; Iwase, Tadayuki; Hashimoto, Kazuhiro; Mizunoe, Yoshimitsu
2018-01-01
The present study aimed to understand the biofilm formation mechanism of Propionibacterium acnes by analyzing the components and structure of the biofilms. P. acnes strains were isolated from the surface of explanted cardiac pacemaker devices that exhibited no clinical signs of infection. Culture tests using a simple stamp culture method (pressing pacemakers against the surface of agar plates) revealed frequent P. acnes colonization on the surface of cardiac pacemaker devices. P. acnes was isolated from 7/31 devices, and the isolates were categorized by multilocus sequence typing into five different sequence types (STs): ST4 (JK18.2), ST53 (JK17.1), ST69 (JK12.2 and JK13.1), ST124 (JK5.3), ST125 (JK6.2), and unknown ST (JK19.3). An in vitro biofilm formation assay using microtiter plates demonstrated that 5/7 isolates formed biofilms. Inhibitory effects of DNase I and proteinase K on biofilm formation varied among isolates. In contrast, dispersin B showed no inhibitory activity against all isolates. Three-dimensional live/dead imaging of P. acnes biofilms with different biochemical properties using confocal laser microscopy demonstrated different distributions and proportions of living and dead cells. Additionally, it was suggested that extracellular DNA (eDNA) plays a role in the formation of biofilms containing living cells. Ultrastructural analysis of P. acnes biofilms using a transmission electron microscope and atmospheric scanning electron microscope revealed leakage of cytoplasmic components along with cell lysis and fibrous structures of eDNA connecting cells. In conclusion, the biochemical properties and structures of the biofilms differed among P. acnes isolates. These findings may provide clues for establishing countermeasures against biofilm-associated infection by P. acnes. PMID:29491850
Permanent cardiac pacing in patients with end-stage renal disease undergoing dialysis.
Wang, I-Kuan; Lin, Kuo-Hung; Lin, Shih-Yi; Lin, Cheng-Li; Chang, Chiz-Tzung; Yen, Tzung-Hai; Sung, Fung-Chang
2016-12-01
Studies investigating the risk of cardiac dysrhythmia warranting permanent pacemaker therapy for end-stage renal disease (ESRD) patients are limited. This study investigated the incidence rate of permanent cardiac pacing in dialysis patients. Using the Taiwan National Health Insurance Database, we identified 28 471 newly diagnosed ESRD patients in 2000-2010 [9700 on peritoneal dialysis (PD) and 18 771 on hemodialysis (HD)] and 113 769 randomly selected controls without kidney disease, frequency-matched by sex, age and diagnosis date. We also established propensity score-matched HD and PD cohorts with 9700 patients each. Incidence rates and hazard ratios (HRs) of implantation were evaluated by the end of 2011. Complications were also evaluated among patients with implantation. The incidence rates of permanent pacemaker implantation were 5.93- and 3.50-fold greater in HD and PD patients than in controls (1.44 and 0.85 versus 0.24 per 1000 person-years, respectively). The adjusted HRs (aHRs) of implantation were 3.26 [95% confidence interval (CI) = 2.41-4.42] and 2.36 (95% CI = 1.56-3.58) for HD and PD patients, respectively, compared with controls. The pacemaker implantation rate was 0.33 per 1000 person-years greater in the propensity score-matched HD cohort than in the PD cohort, with an aHR of 1.30 (95% CI = 0.82-2.05) for the HD cohort compared with the PD cohort. Dialysis patients are at an increased risk of dysrhythmia requiring pacemaker implantation compared with the general population. The risks are not significantly different between HD and PD patients. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Clinical assessment of pacemaker power sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilitch, M.; Parsonnet, V.; Furman, S.
1980-01-01
The development of power sources for cardiac pacemakers has progressed from a 15-year usage of mercury-zinc batteries to widely used and accepted lithium cells. At present, there are about 6 different types of lithium cells incorporated into commercially distributed pacemakers. The authors reviewed experience over a 5-year period with 1711 mercury-zinc, 130 nuclear (P238) and 1912 lithium powered pacemakers. The lithium units have included 698 lithium-iodide, 270 lithium-silver chromate, 135 lithium-thionyl chloride, 31 lithium-lead and 353 lithium-cupric sulfide batteries. 57 of the lithium units have failed (91.2% component failure and 5.3% battery failure). 459 mercury-zinc units failed (25% component failuremore » and 68% battery depletion). The data show that lithium powered pacemaker failures are primarily component, while mercury-zinc failures are primarily battery related. It is concluded that mercury-zinc powered pulse generators are obsolete and that lithium and nuclear (P238) power sources are highly reliable over the 5 years for which data are available. 3 refs.« less
Modeling bipolar stimulation of cardiac tissue
NASA Astrophysics Data System (ADS)
Galappaththige, Suran K.; Gray, Richard A.; Roth, Bradley J.
2017-09-01
Unipolar stimulation of cardiac tissue is often used in the design of cardiac pacemakers because of the low current required to depolarize the surrounding tissue at rest. However, the advantages of unipolar over bipolar stimulation are not obvious at shorter coupling intervals when the tissue near the pacing electrode is relatively refractory. Therefore, this paper analyzes bipolar stimulation of cardiac tissue. The strength-interval relationship for bipolar stimulation is calculated using the bidomain model and a recently developed parsimonious ionic current model. The strength-interval curves obtained using different electrode separations and arrangements (electrodes placed parallel to the fibers versus perpendicular to the fibers) indicate that bipolar stimulation results in more complex activation patterns compared to unipolar stimulation. An unusually low threshold stimulus current is observed when the electrodes are close to each other (a separation of 1 mm) because of break excitation. Unlike for unipolar stimulation, anode make excitation is not present during bipolar stimulation, and an abrupt switch from anode break to cathode make excitation can cause dramatic changes in threshold with very small changes in the interval. These results could impact the design of implantable pacemakers and defibrillators.
Vaillant, Fanny; Lauzier, Benjamin; Ruiz, Matthieu; Shi, Yanfen; Lachance, Dominic; Rivard, Marie-Eve; Bolduc, Virginie; Thorin, Eric; Tardif, Jean-Claude; Des Rosiers, Christine
2016-10-01
While heart rate reduction (HRR) is a target for the management of patients with heart disease, contradictory results were reported using ivabradine, which selectively inhibits the pacemaker I f current, vs. β-blockers like metoprolol. This study aimed at testing whether similar HRR with ivabradine vs. metoprolol differentially modulates cardiac energy substrate metabolism, a factor determinant for cardiac function, in a mouse model of dyslipidemia (hApoB +/+ ;LDLR -/- ). Following a longitudinal study design, we used 3- and 6-mo-old mice, untreated or treated for 3 mo with ivabradine or metoprolol. Cardiac function was evaluated in vivo and ex vivo in working hearts perfused with 13 C-labeled substrates to assess substrate fluxes through energy metabolic pathways. Compared with 3-mo-old, 6-mo-old dyslipidemic mice had similar cardiac hemodynamics in vivo but impaired (P < 0.001) contractile function (aortic flow: -45%; cardiac output: -34%; stroke volume: -35%) and glycolysis (-24%) ex vivo. Despite inducing a similar 10% HRR, ivabradine-treated hearts displayed significantly higher stroke volume values and glycolysis vs. their metoprolol-treated counterparts ex vivo, values for the ivabradine group being often not significantly different from 3-mo-old mice. Further analyses highlighted additional significant cardiac alterations with disease progression, namely in the total tissue level of proteins modified by O-linked N-acetylglucosamine (O-GlcNAc), whose formation is governed by glucose metabolism via the hexosamine biosynthetic pathway, which showed a similar pattern with ivabradine vs. metoprolol treatment. Collectively, our results emphasize the implication of alterations in cardiac glucose metabolism and signaling linked to disease progression in our mouse model. Despite similar HRR, ivabradine, but not metoprolol, preserved cardiac function and glucose metabolism during disease progression. Copyright © 2016 the American Physiological Society.
The mitochondrial uniporter controls fight or flight heart rate increases.
Wu, Yuejin; Rasmussen, Tyler P; Koval, Olha M; Joiner, Mei-Ling A; Hall, Duane D; Chen, Biyi; Luczak, Elizabeth D; Wang, Qiongling; Rokita, Adam G; Wehrens, Xander H T; Song, Long-Sheng; Anderson, Mark E
2015-01-20
Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant-negative (DN) MCU. Here, we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found that MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU-enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment before each heartbeat. Our findings show that MCU is necessary for complete physiological heart rate acceleration and suggest that MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate.
... medicine. Severe cases require additional treatment, such as: Artificial pacemaker. The electronic device is placed under the skin on your chest. It helps your heart maintain a regular beat. Cardiac defibrillation. A brief ...
Percutaneously injectable fetal pacemaker: electrodes, mechanical design and implantation.
Zhou, Li; Chmait, Ramen; Bar-Cohen, Yaniv; Peck, Raymond A; Loeb, Gerald E
2012-01-01
We are developing a self-contained cardiac pacemaker with a small, cylindrical shape (~3 × 20 mm) that permits it to be implanted percutaneously into a fetus to treat complete heart block and consequent hydrops fetalis, which is otherwise fatal. The device uses off-the-shelf components including a rechargeable lithium cell and a highly efficient relaxation oscillator encapsulated in epoxy and glass. A corkscrew electrode made from activated iridium can be screwed into the myocardium, followed by release of the pacemaker and a short, flexible lead entirely within the chest of the fetus to avoid dislodgement from fetal movement. The feasibility of implanting the device percutaneously under ultrasonic imaging guidance was demonstrated in acute adult rabbit experiments.
Fox, Henrik; Nölker, Georg; Gutleben, Klaus-Jürgen; Bitter, Thomas; Horstkotte, Dieter; Oldenburg, Olaf
2014-03-01
Pacemaker apnea scan algorithms are able to screen for sleep apnea. We investigated whether these systems were able to accurately detect sleep-disordered breathing (SDB) in two patients from an outpatient clinic. The first patient suffered from ischemic heart failure and severe central sleep apnea (CSA) and underwent adaptive servoventilation therapy (ASV). The second patient suffered from dilated cardiomyopathy and moderate obstructive sleep apnea (OSA). Pacemaker read-outs did not match polysomnography (PSG) recordings well and overestimated the apnea-hypopnea index. However, ASV therapy-induced SDB improvements were adequately recognized by the apnea scan of the Boston Scientific INVIVE® cardiac resynchronization therapy pacemaker. Detection of obstructive respiratory events using impedance-based technology may underestimate the number of events, as frustrane breathing efforts induce impedance changes without significant airflow. By contrast, in the second case, apnea scan overestimated the number of total events and of obstructive events, perhaps owing to a very sensitive but less specific hypopnea definition and detection within the diagnostic algorithm of the device. These two cases show that a pacemaker apnea scan is able to reflect SDB, but PSG precision is not met by far. The device scan revealed the decline of SDB through ASV therapy for CSA in one patient, but not for OSA in the second case. To achieve reliable monitoring of SDB, further technical developments and clinical studies are necessary.
Tiikkaja, Maria; Aro, Aapo L; Alanko, Tommi; Lindholm, Harri; Sistonen, Heli; Hartikainen, Juha E K; Toivonen, Lauri; Juutilainen, Jukka; Hietanen, Maila
2013-03-01
Electromagnetic interference (EMI) can pose a danger to workers with pacemakers and implantable cardioverter-defibrillators (ICDs). At some workplaces electromagnetic fields are high enough to potentially inflict EMI. The purpose of this in vivo study was to evaluate the susceptibility of pacemakers and ICDs to external electromagnetic fields. Eleven volunteers with a pacemaker and 13 with an ICD were exposed to sine, pulse, ramp, and square waveform magnetic fields with frequencies of 2-200 Hz using Helmholtz coil. The magnetic field flux densities varied to 300 µT. We also tested the occurrence of EMI from an electronic article surveillance (EAS) gate, an induction cooktop, and a metal inert gas (MIG) welding machine. All pacemakers were tested with bipolar settings and three of them also with unipolar sensing configurations. None of the bipolar pacemakers or ICDs tested experienced interference in any of the exposure situations. The three pacemakers with unipolar settings were affected by the highest fields of the Helmholtz coil, and one of them also by the EAS gate and the welding cable. The induction cooktop did not interfere with any of the unipolarly programmed pacemakers. Magnetic fields with intensities as high as those used in this study are rare even in industrial working environments. In most cases, employees can return to work after implantation of a bipolar pacemaker or an ICD, after an appropriate risk assessment. Pacemakers programmed to unipolar configurations can cause danger to their users in environments with high electromagnetic fields, and should be avoided, if possible.
Webster, Gregory; Jordao, Ligia; Martuscello, Maria; Mahajan, Tarun; Alexander, Mark E; Cecchin, Frank; Triedman, John K; Walsh, Edward P; Berul, Charles I
2008-04-01
Concern exists regarding the potential electromagnetic interaction between pacemakers, implantable cardioverter-defibrillators (ICDs) and digital music players (DMPs). A preliminary study reported interference in 50% of patients whose devices were interrogated near Apple iPods. Given the high prevalence of DMP use among young patients, we sought to define the nature of interference from iPods and evaluate other DMPs. Four DMPs (Apple Nano, Apple Video, SanDisk Sansa and Microsoft Zune) were evaluated against pacemakers and ICDs (PM/ICD). Along with continuous monitoring, we recorded a baseline ECG strip, sensing parameters and lead impedance at baseline and for each device. Among 51 patients evaluated (age 6 to 60 years, median 22), there was no interference with intrinsic device function. Interference with the programmer occurred in 41% of the patients. All four DMPs caused programmer interference, including disabled communication between the PM/ICD and programmer, noise in the ECG channel, and lost marker channel indicators. Sensing parameters and lead impedances exhibited no more than baseline variability. When the DMPs were removed six inches, there were no further programmer telemetry interactions. Contrary to a prior report, we did not identify any evidence for electromagnetic interference between a selection of DMPs and intrinsic function of PM/ICDs. The DMPs did sometimes interfere with device-programmer communication, but not in a way that compromised device function. Therefore, we recommend that DMPs not be used during device interrogation, but suggest that there is reassuring counterevidence to mitigate the current high level of concern for interactions between DMPs and implantable cardiac rhythm devices.
Radiology of cardiac devices and their complications
Dipoce, J; Spindola-Franco, H
2015-01-01
This article familiarizes the reader with several different cardiac devices including pacemakers and implantable cardioverter defibrillators, intra-aortic balloon pumps, ventricular assist devices, valve replacements and repairs, shunt-occluding devices and passive constraint devices. Many cardiac devices are routinely encountered in clinical practice. Other devices are in the early stages of development, but circumstances suggest that they too will become commonly found. The radiologist must be familiar with these devices and their complications. PMID:25411826
Matusik, Paweł; Woznica, Natalia; Lelakowsk, Jacek
2010-05-01
Atrial fibrillation (AF) is a frequent problem of patients with pacemakers, and depends not only on disease but also on stimulation method. The aim of the study was to estimate the prevalence of AF before and after pacemaker implantation as well as to assess the influence of VVI and DDD cardiac pacing on onset of AF in patients with complete atrioventricularblock (AVB). We included 155 patients controlled between 2000 and 2008 in Pacemaker Clinic because of AVB III degree, treated with VVI or DDD pacemaker implantation. Information about the health status of the patients was gathered from medical documentation and analysis of clinical ambulatory electrocardiograms. The study group comprised of 68 women and 87 men, mean age 68.7 +/- 13.9 years during implantation. 69% of patients had VVI pacemaker. There were 72.3% of patients with sinus rhythm before pacemaker implantation. During follow-up 4 +/- 2.8 years in 19.6% cases onset of atrial fibrillation de novo was diagnosed (in 31.3% in VVI mode vs. 2.2% in DDD mode; p = 0.00014). Mean time to AF since implantation was approximately 2.5 years. In VVI group (21 persons) amounted 32.1 months, while in 1 patient with DDD pacemaker 18 months. Between group with AF after implantation and with sinus rhythm preserved there was no statistically significant difference in age or gender (p = 0.89512 and p = 0.1253, respectively). Prevalence of atrial fibrillation after pacemaker implantation increased to 40%. Atrial fibrillation is frequent in patients before and after pacemaker implantation, especially in patients stimulated in VVI mode. Major possibility of atrial fibrillation onset after pacemaker implantation should result in more attention during routine ECG examination.
Annamaria, Martino; Andrea, Scapigliati; Michela, Casella; Tommaso, Sanna; Gemma, Pelargonio; Antonio, Dello Russo; Roberto, Zamparelli; Stefano, De Paulis; Fulvio, Bellocci; Rocco, Schiavello
2008-08-01
External electrical cardioversion or defibrillation may be necessary in patients with implanted cardiac pacemaker (PM) or implantable cardioverter defibrillator (ICD). Sudden discharge of high electrical energy employed in direct current (DC) transthoracic countershock may damage the PM/ICD system resulting in a series of possible device malfunctions. For this reason, when defibrillation or cardioversion must be attempted in a patient with a PM or ICD, some precautions should be taken, particularly in PM dependent patients, in order to prevent damage to the device. We report the case of a 76-year-old woman with a dual chamber PM implanted in the right subclavicular region, who received two consecutive transthoracic DC shocks to treat haemodynamically unstable broad QRS complex tachycardia after cardiac surgery performed with a standard sternotomic approach. Because of the sternal wound and thoracic drainage tubes together with the severe clinical compromise, the anterior paddle was positioned near the pulse generator. At the following PM test, a complete battery discharge was detected.
Heparan sulfate storage in the cardiac conduction system triggers atrioventricular block.
Kato, Rie; Miyahara, Hiroaki; Kawano, Tatsuya; Matsuzuka, Atsuko; Noda, Kimiko; Izumi, Tatsuro
2017-05-01
To elucidate the novel biological functions of heparan sulfate (HS) by clinic-pathologically studying a patient with paroxysmal atrioventricular (AV) block. A long-surviving male patient with Sanfilippo syndrome type A presented with paroxysmal AV block at age 33years. He then survived another 2.5years after the onset of paroxysmal AV block and pacemaker implantation. His cardiac histopathological examination at autopsy showed HS storage in the cardiac conduction system (CCS), especially in the atrioventricular node (AVN)-His bundle branches. HS storage in the CCS might trigger AV block, arising from below the AVN-His bundle branches. This is the first description to indicate that HS might be an essential constituent of life-long CCS plasticity and that its storage in the CCS results in AV block. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes—A model
NASA Astrophysics Data System (ADS)
Kanani, S.; Pumir, A.; Krinsky, V.
2008-01-01
One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler Reuter model, as well as with the elaborate dynamic Luo Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I channels is low enough. At too high an expression level of I channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I channels observed in ventricular myocytes, both in the Beeler Reuter and in the dynamic Luo Rudy models are too high to allow to observe oscillations. With expression levels below ˜1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.
Pacsin 2 is required for the maintenance of a normal cardiac function in the developing mouse heart.
Semmler, Judith; Kormann, Jan; Srinivasan, Sureshkumar Perumal; Köster, Annette; Sälzer, Daniel; Reppel, Michael; Hescheler, Jürgen; Plomann, Markus; Nguemo, Filomain
2018-02-01
The Pacsin proteins (Pacsin 1, 2 and 3) play an important role in intracellular trafficking and thereby signal transduction in many cells types. This study was designed to examine the role of Pacsin 2 in cardiac development and function. We investigated the development and electrophysiological properties of Pacsin 2 knockout (P2KO) hearts and single cardiomyocytes isolated from 11.5 and 15.5days old fetal mice. Immunofluorescence experiments confirmed the lack of Pacsin 2 protein expression in P2KO cardiac myocytes in comparison to wildtype (WT). Western blotting demonstrates low expression levels of connexin 43 and T-box 3 proteins in P2KO compared to wildtype (WT). Electrophysiology measurements including online Multi-Electrode Array (MEA) based field potential (FP) recordings on isolated whole heart of P2KO mice showed a prolonged AV-conduction time. Patch clamp measurements of P2KO cardiomyocytes revealed differences in action potential (AP) parameters and decreased pacemaker funny channel (I f ), as well as L-type Ca 2+ channel (I CaL ), and sodium channel (I Na ). These findings demonstrate that Pacsin 2 is necessary for cardiac development and function in mouse embryos, which will enhance our knowledge to better understand the genesis of cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Atar, İlyas; Bal, Uğur; Ertan, Çağatay; Özin, Bülent; Müderrisoğlu, Haldun
2016-01-01
Presence of a cardiac pacemaker or implantable cardioverter defibrillator (ICD) is a relative contraindication to magnetic resonance imaging (MRI). Biventricular ICDs are often used in the treatment of advanced heart failure; however, reports on experience with biventricular ICDs are lacking in the literature. In this case report, we describe a pacemaker-dependent patient with a biventricular ICD on whom an MRI of the lumbar spine was performed without having realized the presence of the ICD.
The distribution of calcium in toad cardiac pacemaker cells during spontaneous firing.
Ju, Y K; Allen, D G
2000-12-01
Isolated, spontaneously active pacemaker cells from the sinus venosus region of the toad heart were loaded with the calcium indicator fluo-3. The cells were examined with a confocal microscope to investigate the distribution of calcium during spontaneous activity. Three classes of calcium-related signals were present. First, intense, localised, time-invariant signals were detected from structures distributed across the cell interior. Based on the insensitivity to saponin and the distribution in the cell, these signals appear to arise from fluo-3 located in the sarcoplasmic reticulum and the nuclear envelope. Second, spatially uniform signals from the cytoplasm were present at rest and showed spontaneous increases in [Ca2+]i which propagated along the cell. These Ca2+ transients were uniform in intensity across the diameter of the cell and we could detect no significant delay in the middle of the cell compared to the edges. However, within the nucleus the Ca2+ transient showed a clear delay compared to the cytoplasm. Third, localised, transient increases in [Ca2+]i (Ca2+ sparks) which did not propagate were also detectable. These could be detected both near the surface membrane and in the interior of the cell and reduced in magnitude and increased in duration in the presence of ryanodine. The frequency of firing of Ca2+ sparks significantly increased in the 200-ms period preceding a spontaneous Ca2+ transient. These results suggest that pacemaker cells contain sarcoplasmic reticulum which is distributed across the cell. The Ca2+ transient is uniform across the cell indicating that near-synchronous release of Ca2+ from the sarcoplasmic reticulum is achieved. Ca2+ sparks occur in pacemaker cells though their role in pacemaker function remains to be elucidated.
In-vitro mapping of E-fields induced near pacemaker leads by simulated MR gradient fields
2009-01-01
Background Magnetic resonance imaging (MRI) of patients with implanted cardiac pacemakers is generally contraindicated but some clinicians condone scanning certain patients. We assessed the risk of inducing unintended cardiac stimulation by measuring electric fields (E) induced near lead tips by a simulated MRI gradient system. The objectives of this study are to map magnetically induced E near distal tips of leads in a saline tank to determine the spatial distribution and magnitude of E and compare them with E induced by a pacemaker pulse generator (PG). Methods We mapped magnetically induced E with 0.1 mm resolution as close as 1 mm from lead tips. We used probes with two straight electrodes (e.g. wire diameter of 0.2 mm separated by 0.9 mm). We generated magnetic flux density (B) with a Helmholtz coil throughout 0.6% saline in a 24 cm diameter tank with (dB/dt) of 1 T/sec (1 kHz sinusoidal waveform). Separately, we measured E near the tip of leads when connected to a PG set to a unipolar mode. Measurements were non-invasive (not altering the leads or PG under study). Results When scaled to 30 T/s (a clinically relevant value), magnetically-induced E exceeded the E produced by a PG. The magnetically-induced E only occurred when B was coincident with or within 15 msec of implantable pacemaker's pulse. Conclusions Potentially hazardous situations are possible during an MR scan due to gradient fields. Unintended stimulation can be induced via abandoned leads and leads connected to a pulse generator with loss of hermetic seal at the connector. Also, pacemaker-dependent patients can receive drastically altered pacing pulses. PMID:20003479
Poller, Wolfram C; Dreger, Henryk; Schwerg, Marius; Melzer, Christoph
2015-01-01
Optimization of the AV-interval (AVI) in DDD pacemakers improves cardiac hemodynamics and reduces pacemaker syndromes. Manual optimization is typically not performed in clinical routine. In the present study we analyze the prevalence of E/A wave fusion and A wave truncation under resting conditions in 160 patients with complete AV block (AVB) under the pre-programmed AVI. We manually optimized sub-optimal AVI. We analyzed 160 pacemaker patients with complete AVB, both in sinus rhythm (AV-sense; n = 129) and under atrial pacing (AV-pace; n = 31). Using Doppler analyses of the transmitral inflow we classified the nominal AVI as: a) normal, b) too long (E/A wave fusion) or c) too short (A wave truncation). In patients with a sub-optimal AVI, we performed manual optimization according to the recommendations of the American Society of Echocardiography. All AVB patients with atrial pacing exhibited a normal transmitral inflow under the nominal AV-pace intervals (100%). In contrast, 25 AVB patients in sinus rhythm showed E/A wave fusion under the pre-programmed AV-sense intervals (19.4%; 95% confidence interval (CI): 12.6-26.2%). A wave truncations were not observed in any patient. All patients with a complete E/A wave fusion achieved a normal transmitral inflow after AV-sense interval reduction (mean optimized AVI: 79.4 ± 13.6 ms). Given the rate of 19.4% (CI 12.6-26.2%) of patients with a too long nominal AV-sense interval, automatic algorithms may prove useful in improving cardiac hemodynamics, especially in the subgroup of atrially triggered pacemaker patients with AV node diseases.
Péterffy, Arpád
2009-10-04
In the early 1960s, cardiac surgery was founded in Debrecen in the department of thoracic surgery, on Professor József Schnitzler's initiative with the cooperation of the head surgeon Arpád Eisert from Nyíregyháza. During the first 5 years, between 1963-1968, 44 closed cardiac surgical procedures were performed (closure of patent ductus arteriosus, pulmonal and mitral stenosis, pericardectomy). The first open heart surgery was performed by Gábor Kovács visiting professor from Szeged in 1968, after the Pemco heart-lung machine, a donation by Béla Köteles and the Presbyterian Church in Cleveland had arrived. The cardiac surgical activity was led by Professor András Gömöry (1972-1983). During the first 20 years 310 open, 220 closed cardiac surgical, and 612 pacemaker operations were performed. After Professor Schnitzler's retirement in 1983, Arpád Péterffy was appointed the head of the entire department (general and cardio-thoracic surgery). In the last 25 years, 18,000 open, 1500 closed and 8500 pacemaker procedures altogether 32,000 were performed. In 2008 associate professor Tamás Szerafin became the head of the department of cardiac surgery.
Cardiac arrhythmias from a malpositioned Greenfield filter in a traumatic quadriplegic.
Bach, J R; Zaneuski, R; Lee, H
1990-10-01
A case study is presented of premature Greenfield filter discharge with intracardiac migration and resulting life-threatening arrhythmias. These arrhythmias also interfered with the patient's transition from ventilatory support via orotracheal intubation to noninvasive positive airway pressure ventilatory support methods. The patient's arrhythmias were controlled by a demand cardiac pacemaker and cardiac glycoside therapy. No anticoagulants were used. She had no further filter migration nor significant complications for 16 months after hospital discharge.
Is pacemaker therapy the right key to patients with vasovagal syncope?
Radovanović, Nikola N; Kirćanski, Bratislav; Raspopović, Srdjan; Pavlović, Siniša U; Jovanović, Velibor; Milašinović, Goran
2016-01-01
Vasovagal syncope is the most common type of reflex syncope. Efficacy of cardiac pacing in this indication has not been the subject of many studies and pacemaker therapy in patients with vasovagal syncope is still controversial. This study aimed to assess the efficacy and safety of pacing therapy in treatment of patients with vasovagal syncope, to determine contribution of new therapeutic models in increasing its success, and to identify risk factors associated with a higher rate of symptoms after pacemaker implantation. A retrospective study included 30 patients with pacemaker implanted due to vasovagal syncope in the Pacemaker Center, Clinical Center of Serbia, between November 2003 and June 2014. Head-up tilt test was performed to diagnose vasovagal syncope. Patients with cardioinhibitory and mixed type of disease were enrolled in the study. Mean age was 48.1 ± 11.1 years and 18 (60%) patients were men. Mean follow-up period was 5.9 ± 3.0 years. Primarily, implantable loop recorder was implanted in 10 (33.3%) patients. Twenty (66.7%) patients presented cardioinhibitory and 10 (33.3%) mixed type of vasovagal syncope. After pacemaker implantation, 11 (36.7%) patients had syncope. In multiple logistic regression analysis we showed that syncope is statistically more likely to occur after pacemaker implantation in patients with mixed type of vasovagal syncope (p = 0.018). There were two (6.7%) perioperative surgical complications. Pacemaker therapy is a safe treatment for patients with vasovagal syncope, whose efficacy can be improved by strict selection of patients. We showed that symptoms occur statistically more often in patients with mixed type of disease after pacemaker implantation.
Okamura, Hideo; Padmanabhan, Deepak; Watson, Robert E; Dalzell, Connie; Acker, Nancy; Jondal, Mary; Romme, Abby L; Cha, Yong-Mei; Asirvatham, Samuel J; Felmlee, Joel P; Friedman, Paul A
2017-05-01
Magnetic resonance imaging (MRI) in patients with non-MRI-conditional cardiac implantable electronic devices (CIEDs) has been shown to be safe when performed under closely monitored protocols. However, the safety of MRI in patients with devices with a nearly depleted battery has not been reported. Prospective data were collected between January 2008 and May 2015 in patients with non-MRI-conditional CIEDs undergoing clinically indicated MRI under institutional protocol. Patients who were pacemaker dependent were excluded. Patients whose devices were at elective replacement indicator (ERI) at the time of MRI or close to ERI (ERI or replacement for battery depletion within 3 months of scan) were identified through database review and analyzed for clinical events. MRI scans (n = 569) were performed in 442 patients. Of these, we identified 13 scans performed with a nearly depleted battery in nine patients. All scans with implantable cardioverter defibrillators (ICDs, n = 9) were uneventful. However, two scans with pacemakers close to ERI resulted in a power-on-reset (PoR) event. One scan with a pacemaker close to ERI that was programmed to DOO mode reached ERI during MRI and automatically changed to VVI mode. Additionally, one scan with a pacemaker at ERI did not allow programming. All pacemakers with events were implanted before 2005. Patients with pacemakers and ICDs with a nearly depleted battery can safely undergo MRI when patients are not pacemaker dependent. Attention should be paid because old devices can result in PoR or ERI during MRI, which may lead to oversensing and inhibition of pacing. © 2017 Wiley Periodicals, Inc.
Percutaneously Inject able Fetal Pacemaker: Electrodes, Mechanical Design and Implantation*
Zhou, Li; Chmait, Ramen; Bar-Cohen, Yaniv; Peck, Raymond A.; Loeb, Gerald E.
2015-01-01
We are developing a self-contained cardiac pacemaker with a small, cylindrical shape (~3×20mm) that permits it to be implanted percutaneously into a fetus to treat complete heart block and consequent hydrops fetalis, which is otherwise fatal. The device uses off-the-shelf components including a rechargeable lithium cell and a highly efficient relaxation oscillator encapsulated in epoxy and glass. A corkscrew electrode made from activated iridium can be screwed into the myocardium, followed by release of the pacemaker and a short, flexible lead entirely within the chest of the fetus to avoid dislodgement from fetal movement. The feasibility of implanting the device percutaneously under ultrasonic imaging guidance was demonstrated in acute adult rabbit experiments. PMID:23367442
Cooke, Ian M
2002-04-01
Investigations of the electrophysiology of crustacean cardiac ganglia over the last half-century are reviewed for their contributions to elucidating the cellular mechanisms and interactions by which a small (as few as nine cells) neuronal network accomplishes extremely reliable, rhythmical, patterned activation of muscular activity-in this case, beating of the neurogenic heart. This ganglion is thus a model for pacemaking and central pattern generation. Favorable anatomy has permitted voltage- and space-clamp analyses of voltage-dependent ionic currents that endow each neuron with the intrinsic ability to respond with rhythmical, patterned impulse activity to nonpatterned stimulation. The crustacean soma and initial axon segment do not support impulse generation but integrate input from stretch-sensitive dendrites and electrotonic and chemically mediated synapses on axonal processes in neuropils. The soma and initial axon produce a depolarization-activated, calcium-mediated, sustained potential, the "driver potential," so-called because it drives a train of impulses at the "trigger zone" of the axon. Extreme reliability results from redundancy and the electrotonic coupling and synaptic interaction among all the neurons. Complex modulation by central nervous system inputs and by neurohormones to adjust heart pumping to physiological demands has long been demonstrated, but much remains to be learned about the cellular and molecular mechanisms of action. The continuing relevance of the crustacean cardiac ganglion as a relatively simple model for pacemaking and central pattern generation is confirmed by the rapidly widening documentation of intrinsic potentials such as plateau potentials in neurons of all major animal groups. The suite of ionic currents (a slowly inactivating calcium current and various potassium currents, with variations) observed for the crustacean cardiac ganglion have been implicated in or proven to underlie a majority of the intrinsic potentials of neurons involved in pattern generation.
Hassinen, Minna; Haverinen, Jaakko; Vornanen, Matti
2017-12-01
Funny current ( I f ), formed by hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels), is supposed to be crucial for the membrane clock regulating the cardiac pacemaker mechanism. We examined the presence and activity of HCN channels in the brown trout ( Salmo trutta fario ) sinoatrial (SA) pacemaker cells and their putative role in heart rate ( f H ) regulation. Six HCN transcripts (HCN1, HCN2a, HCN2ba, HCN2bb, HCN3, and HCN4) were expressed in the brown trout heart. The total HCN transcript abundance was 4.0 and 4.9 times higher in SA pacemaker tissue than in atrium and ventricle, respectively. In the SA pacemaker, HCN3 and HCN4 were the main isoforms representing 35.8 ± 2.7 and 25.0 ± 1.5%, respectively, of the total HCN transcripts. Only a small I f with a mean current density of -1.2 ± 0.37 pA/pF at -140 mV was found in 4 pacemaker cells out of 16 spontaneously beating cells examined, despite the optimization of recording conditions for I f activity. I f was not found in any of the 24 atrial myocytes and 21 ventricular myocytes examined. HCN4 coexpressed with the MinK-related peptide 1 (MiRP1) β-subunit in CHO cells generated large I f currents. In contrast, HCN3 (+MiRP1) failed to produce I f in the same expression system. Cs + (2 mM), which blocked 84 ± 12% of the native I f , reversibly reduced f H 19.2 ± 3.6% of the excised multicellular pacemaker tissue from 53 ± 5 to 44 ± 5 beats/min ( P < 0.05). However, this effect was probably due to the reduction of I Kr , which was also inhibited (63.5 ± 4.6%) by Cs + These results strongly suggest that f H regulation in the brown trout heart is largely independent on I f . Copyright © 2017 the American Physiological Society.
Guo, Gongliang; Yang, Lili; Wu, Jinyi; Sun, Liqun
2017-01-01
Abstract Background: Dextrocardia, or right-lying heart, is an uncommon congenital heart disease in which the apex of the heart is located on the right side of chest. Persistent left superior vena cava (PLSVA) is a rare venous anomaly that is often associated with the abnormalities of cardiac transduction system. A case with combination of dextrocardia, persistent left superior vena cava, and sick sinus syndrome has not been reported. Methods: We used different techniques including cardiac color Doppler echocardiography, 24-hour Holter monitoring, and abdominal ultrasound to make a diagnosis and treated the patient by implanting a VVI pacemaker. Results: A 50-year-old woman was admitted with a syncope. Angiography of the right atrium and superior vena cava, echocardiography, electrocardiography, and abdominal ultrasound revealed the presence of the combination of mirror image dextrocardia, PLSVA, and sick sinus syndrome. The complex structural anomalies presented great technical challenges for interventional treatments. After thorough examination and understanding of the structural anatomy and anomalies of the superior and inferior vena cava and cardiac chambers, we successfully treated this patient by implanting a VVI pacemaker. Conclusion: Physicians must be aware of the complexity of the morphological and anatomical structures of dextrocardia accompanying PLSVC. Given that the diagnosis of situs inversus was performed at a relatively advanced age, it is therefore important to make such a correct diagnosis followed by appropriate therapeutic intervention. PMID:28151908
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott-Walton, B.; Clark, K. M.; Holt, B. R.
1979-11-01
Testimony given before the New York Public Service Commission in two recent cases on the potential environmental effects of 765-kV overhead ac transmission lines is reviewed. The testimony focused on the potential effects of audible noise, on the potential biological effects of the electromagnetic fields, on the potential for electric shocks to people who touch vehicles parked under the proposed lines, on the potential effects of the electromagnetic fields on electronic cardiac pacemakers, and on potential effects of ozone produced by corona discharge from the lines. The testimony fully explored these questions; however, it did not resolve all of them.more » The testimony indicates potential impacts from the audible noise and from the electrostatic shocks that people can receive when they touch a large vehicle parked under the lines. The testimony also indicates that certain cardiac pacemaker and lead combinations may, under certain circumstances, undergo reversion to a fixed rate of pacing in the presence of the fields under the lines, but that little risk to cardiac patients results except possibly for those patients for whom competition between the heart's own rate and the pacemaker rate presents a health risk. The testimony fails to demonstrate biological hazards from the field; further research is necessary to understand better the effects of the fields on biological systems. The testimony indicates that ozone produced by the lines will not significantly affect the environment.« less
Electromagnetic interference with pacemakers caused by portable media players.
Thaker, Jay P; Patel, Mehul B; Jongnarangsin, Krit; Liepa, Valdis V; Thakur, Ranjan K
2008-04-01
Electromagnetic fields generated by electrical devices may cause interference with permanent pacemakers. Media players are becoming a common mode of portable entertainment. The most common media players used worldwide are iPods. These devices are often carried in a shirt chest pocket, which may place the devices close to an implanted pacemaker. The purpose of this study was to determine if iPods cause interference with pacemakers. In this prospective, single-blinded study, 100 patients who had cardiac pacemakers were tested with four types of iPods to assess for interference. Patients were monitored by a single-channel ECG monitor as well as the respective pacemaker programmer via the telemetry wand. iPods were tested by placing them 2 inches anterior to the pacemaker and wand for up to 10 seconds. To simulate actual use, standard-issue headphones were plugged into the iPods. To maintain consistency, the volume was turned up maximally, and the equalizer was turned off. A subset of 25 patients underwent testing on 2 separate days to assess for reproducibility of interference. Pacemaker interference was categorized as type I or type II telemetry interference. Type I interference was associated with atrial and/or ventricular high rates on rate histograms. Type II interference did not affect pacemaker rate counters. Electromagnetic emissions from the four iPods also were evaluated in a Faraday cage to determine the mechanism of the observed interference. One hundred patients (63 men and 37 women; mean age 77.1 +/- 7.6 years) with 11 single-chamber pacemakers and 89 dual-chamber pacemakers underwent 800 tests. The incidence of any type of interference was 51% of patients and 20% of tests. Type I interference was seen in 19% of patients and type II in 32% of patients. Reproducibility testing confirmed that interference occurred regardless of pacing configuration (unipolar or bipolar), pacing mode (AAI, VVI, or DDD), and from one day to the next. Electromagnetic emissions testing from the iPods demonstrated maximum emissions in the pacemaker carrier frequency range when the iPod was turned "on" with the headphones attached. iPods placed within 2 inches of implanted pacemakers monitored via the telemetry wand can cause interference with pacemakers.
Kyu, Kyu; Seow, Swee Chong; Wong, Raymond; Kojodjojo, Pipin
2016-03-17
An elderly Chinese man with moderately impaired left ventricular function, left bundle branch block and ST-elevation myocardial infarction complicated by ventricular septal rupture had class IV heart failure symptoms refractory to medical and surgical interventions. As a treatment of last resort, a cardiac resynchronisation therapy (CRT) pacemaker was implanted apprehensively, as preoperative concerns were raised whether CRT could exacerbate left-to-right shunting, hence negating the potential benefits of CRT. Introduction of CRT significantly improved the patient's haemodynamic status and symptoms, allowing for successful discharge home. To the best of our knowledge, this is the first report of a patient with severely symptomatic acute heart failure, widened QRS and active left-to-right intracardiac shunting, treated successfully with CRT. 2016 BMJ Publishing Group Ltd.
21 CFR 870.3720 - Pacemaker electrode function tester.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker electrode function tester. 870.3720... electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which is... measuring the patient's pacing threshold and intracardiac R-wave potential. (b) Classification. Class II...
Evaluation of a New Cardiac Pacemaker
2013-06-25
Atrial Fibrillation With 2 or 3° AV or Bifascicular Bundle Branch (BBB) Block; Normal Sinus Rhythm With 2 or 3° AV or BBB Block; Sinus Bradycardia With Infrequent Pauses or Unexplained Syncope With EP Findings
Gadler, Fredrik; Valzania, Cinzia; Linde, Cecilia
2015-01-01
The National Swedish Pacemaker and Implantable Cardioverter-Defibrillator (ICD) Registry collects prospective data on all pacemaker and ICD implants in Sweden. We aimed to report the 2012 findings of the Registry concerning electrical devices implantation rates and changes over time, 1 year complications, long-term device longevity and patient survival. Forty-four Swedish implanting centres continuously contribute implantation of pacemakers and ICDs to the Registry by direct data entry on a specific website. Clinical and technical information on 2012 first implants and postoperative complications were analysed and compared with previous years. Patient survival data were obtained from the Swedish population register database. In 2012, the mean pacemaker and ICD first implantation rates were 697 and 136 per million inhabitants, respectively. The number of cardiac resynchronization therapy (CRT) first implantations/million capita was 41 (CRT pacemakers) and 55 (CRT defibrillators), with only a slight increase in CRT-ICD rate compared with 2011. Most device implantations were performed in men. Complication rates for pacemaker and ICD procedures were 5.3 and 10.1% at 1 year, respectively. Device and lead longevity differed among manufacturers. Pacemaker patients were older at the time of first implant and had generally worse survival rate than ICD patients (63 vs. 82% after 5 years). Pacemaker and ICD implantation rates seem to have reached a level phase in Sweden. Implantable cardioverter-defibrillator and CRT implantation rates are very low and do not reflect guideline indications. Gender differences in CRT and ICD implantations are pronounced. Device and patient survival rates are variable, and should be considered when deciding device type. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Marinskis, Germanas; Bongiorni, Maria Grazia; Dagres, Nikolaos; Dobreanu, Dan; Lewalter, Thorsten; Blomström-Lundqvist, Carina
2012-12-01
The purpose of our survey was to evaluate the experience, current practice and attitudes of performing magnetic resonance imaging (MRI) studies in patients with cardiac implantable electronic devices. Fifty-one centre-members of European Heart Rhythm Association Research network have responded to the survey. According to the obtained data, 55.2% of responding centres do not perform MRI scans in patients with non-MRI-certified pacemakers and 65.8% in patients with such implantable cardioverter defibrillators (ICDs). Reported complication rate in patients with non-MRI-certified devices is low and conforms to the literature data. Experience with newer MRI-compatible pacemakers and ICDs is limited to single cases in most centres. This survey shows limited experience with performing MRI studies in patients with implanted pacemakers and ICDs. In concordance with available guidelines, most centres limit MRI scans in patients with non-MRI-certified devices. The implant numbers for MRI-certified devices and experience with performing MRI scans in these patients are still low.
Kypta, Alexander; Blessberger, Hermann; Kammler, Juergen; Lambert, Thomas; Lichtenauer, Michael; Brandstaetter, Walter; Gabriel, Michael; Steinwender, Clemens
2016-09-01
Conventional pacemaker therapy is limited by short- and long-term complications, most notably device infection. Transcatheter pacing systems (TPS) may be beneficial in this kind of patients as they eliminate the need for a device pocket and leads and thus may reduce the risk of re-infection. We assessed a novel procedure in 6 patients with severe device infection who were pacemaker dependent. After lead extraction a single chamber TPS was implanted into the right ventricle. Of the 6 patients who underwent lead extraction due to severe device infection at our institution, 3 were diagnosed with a pocket infection only, whereas the other 3 showed symptoms of both pocket and lead infection. Successful lead extraction and TPS implantation was accomplished in all patients. Four patients were bridged with a temporary pacemaker between 2 hours and 2 days after lead extraction, whereas 2 patients had the TPS implanted during the same procedure just before traditional pacemaker system removal. All patients stayed free of infection during the follow-up period of 12 weeks. An additional positron emission tomography scan was performed in each patient and indicated no signs of an infection around the TPS. Transcather pacemaker implantation was safe and feasible in 6 patients and did not result in re-infection even if implanted before removal of the infected pacemaker system within the same procedure. Therefore, implantation of a TPS may be an option for patients with severe device infection, especially in those with blocked venous access or who are pacemaker dependent. © 2016 Wiley Periodicals, Inc.
Regulation of human cardiac potassium channels by full-length KCNE3 and KCNE4.
Abbott, Geoffrey W
2016-12-06
Voltage-gated potassium (Kv) channels comprise pore-forming α subunits and a multiplicity of regulatory proteins, including the cardiac-expressed and cardiac arrhythmia-linked transmembrane KCNE subunits. After recently uncovering novel, N-terminally extended (L) KCNE3 and KCNE4 isoforms and detecting their transcripts in human atrium, reported here are their functional effects on human cardiac Kv channel α subunits expressed in Xenopus laevis oocytes. As previously reported for short isoforms KCNE3S and KCNE4S, KCNE3L inhibited hERG; KCNE4L inhibited Kv1.1; neither form regulated the HCN1 pacemaker channel. Unlike KCNE4S, KCNE4L was a potent inhibitor of Kv4.2 and Kv4.3; co-expression of cytosolic β subunit KChIP2, which regulates Kv4 channels in cardiac myocytes, partially relieved Kv4.3 but not Kv4.2 inhibition. Inhibition of Kv4.2 and Kv4.3 by KCNE3L was weaker, and its inhibition of Kv4.2 abolished by KChIP2. KCNE3L and KCNE4L also exhibited subunit-specific effects on Kv4 channel complex inactivation kinetics, voltage dependence and recovery. Further supporting the potential physiological significance of the robust functional effects of KCNE4L on Kv4 channels, KCNE4L protein was detected in human atrium, where it co-localized with Kv4.3. The findings establish functional effects of novel human cardiac-expressed KCNE isoforms and further contribute to our understanding of the potential mechanisms influencing cardiomyocyte repolarization.
... cardiac defibrillators and pacemakers You should tell the technologist if you have medical or electronic devices in your body. These objects may interfere with the exam or potentially pose a risk, depending on their nature and the strength of the MRI ...
Monfredi, Oliver; Tsutsui, Kenta; Ziman, Bruce; Stern, Michael D; Lakatta, Edward G; Maltsev, Victor A
2018-03-01
Cardiac pacemaker cells, including cells of the sinoatrial node, are heterogeneous in size, morphology, and electrophysiological characteristics. The exact extent to which these cells differ electrophysiologically is unclear yet is critical to understanding their functioning. We examined major ionic currents in individual intercaval pacemaker cells (IPCs) sampled from the paracristal, intercaval region (including the sinoatrial node) that were spontaneously beating after enzymatic isolation from rabbit hearts. The beating rate was measured at baseline and after inhibition of the Ca 2+ pump with cyclopiazonic acid. Thereafter, in each cell, we consecutively measured the density of funny current ( I f ), delayed rectifier K + current ( I K ) (a surrogate of repolarization capacity), and L-type Ca 2+ current ( I Ca,L ) using whole cell patch clamp . The ionic current densities varied to a greater extent than previously appreciated, with some IPCs demonstrating very small or zero I f . The density of none of the currents was correlated with cell size, while I Ca,L and I f densities were related to baseline beating rates. I f density was correlated with I K density but not with that of I Ca,L . Inhibition of Ca 2+ cycling had a greater beating rate slowing effect in IPCs with lower I f densities. Our numerical model simulation indicated that 1) IPCs with small (or zero) I f or small I Ca,L can operate via a major contribution of Ca 2+ clock, 2) I f -Ca 2+ -clock interplay could be important for robust pacemaking function, and 3) coupled I f - I K function could regulate maximum diastolic potential. Thus, we have demonstrated marked electrophysiological heterogeneity of IPCs. This heterogeneity is manifested in basal beating rate and response to interference of Ca 2+ cycling, which is linked to I f . NEW & NOTEWORTHY In the present study, a hitherto unrecognized range of heterogeneity of ion currents in pacemaker cells from the intercaval region is demonstrated. Relationships between basal beating rate and L-type Ca 2+ current and funny current ( I f ) density are uncovered, along with a positive relationship between I f and delayed rectifier K + current. Links are shown between the response to Ca 2+ cycling blockade and I f density.
Schweizer, Patrick A; Darche, Fabrice F; Ullrich, Nina D; Geschwill, Pascal; Greber, Boris; Rivinius, Rasmus; Seyler, Claudia; Müller-Decker, Karin; Draguhn, Andreas; Utikal, Jochen; Koenen, Michael; Katus, Hugo A; Thomas, Dierk
2017-10-16
Human induced pluripotent stem cells (hiPSC) harbor the potential to differentiate into diverse cardiac cell types. Previous experimental efforts were primarily directed at the generation of hiPSC-derived cells with ventricular cardiomyocyte characteristics. Aiming at a straightforward approach for pacemaker cell modeling and replacement, we sought to selectively differentiate cells with nodal-type properties. hiPSC were differentiated into spontaneously beating clusters by co-culturing with visceral endoderm-like cells in a serum-free medium. Subsequent culturing in a specified fetal bovine serum (FBS)-enriched cell medium produced a pacemaker-type phenotype that was studied in detail using quantitative real-time polymerase chain reaction (qRT-PCR), immunocytochemistry, and patch-clamp electrophysiology. Further investigations comprised pharmacological stimulations and co-culturing with neonatal cardiomyocytes. hiPSC co-cultured in a serum-free medium with the visceral endoderm-like cell line END-2 produced spontaneously beating clusters after 10-12 days of culture. The pacemaker-specific genes HCN4, TBX3, and TBX18 were abundantly expressed at this early developmental stage, while levels of sarcomeric gene products remained low. We observed that working-type cardiomyogenic differentiation can be suppressed by transfer of early clusters into a FBS-enriched cell medium immediately after beating onset. After 6 weeks under these conditions, sinoatrial node (SAN) hallmark genes remained at high levels, while working-type myocardial transcripts (NKX2.5, TBX5) were low. Clusters were characterized by regular activity and robust beating rates (70-90 beats/min) and were triggered by spontaneous Ca 2+ transients recapitulating calcium clock properties of genuine pacemaker cells. They were responsive to adrenergic/cholinergic stimulation and able to pace neonatal rat ventricular myocytes in co-culture experiments. Action potential (AP) measurements of cells individualized from clusters exhibited nodal-type (63.4%) and atrial-type (36.6%) AP morphologies, while ventricular AP configurations were not observed. We provide a novel culture media-based, transgene-free approach for targeted generation of hiPSC-derived pacemaker-type cells that grow in clusters and offer the potential for disease modeling, drug testing, and individualized cell-based replacement therapy of the SAN.
Nonlinear dynamics, chaos and complex cardiac arrhythmias
NASA Technical Reports Server (NTRS)
Glass, L.; Courtemanche, M.; Shrier, A.; Goldberger, A. L.
1987-01-01
Periodic stimulation of a nonlinear cardiac oscillator in vitro gives rise to complex dynamics that is well described by one-dimensional finite difference equations. As stimulation parameters are varied, a large number of different phase-locked and chaotic rhythms is observed. Similar rhythms can be observed in the intact human heart when there is interaction between two pacemaker sites. Simplified models are analyzed, which show some correspondence to clinical observations.
Electromagnetic interference in cardiac rhythm management devices.
Sweesy, Mark W; Holland, James L; Smith, Kerry W
2004-01-01
Clinicians caring for cardiac device patients with implanted pacemakers or cardioverter defibrillators (ICDs) are frequently asked questions by their patients concerning electromagnetic interference (EMI) sources and the devices. EMI may be radiated or conducted and may be present in many different forms including (but not limited to) radiofrequency waves, microwaves, ionizing radiation, acoustic radiation, static and pulsed magnetic fields, and electric currents. Manufacturers have done an exemplary job of interference protection with device features such as titanium casing, signal filtering, interference rejection circuits, feedthrough capacitors, noise reversion function, and programmable parameters. Nevertheless, EMI remains a real concern and a potential danger. Many factors influence EMI including those which the patient can regulate (eg, distance from and duration of exposure) and some the patient cannot control (eg, intensity of the EMI field, signal frequency). Potential device responses are many and range from simple temporary oversensing to permanent device damage Several of the more common EMI-generating devices and their likely effects on cardiac devices are considered in the medical, home, and daily living and work environments.
Russo, Robert J
2013-03-01
Until recently, the presence of a permanent pacemaker or an implantable cardioverter-defibrillator has been a relative contraindication for the performance of magnetic resonance imaging (MRI). A number of small studies have shown that MRI can be performed with minimal risk when patients are properly monitored and device programming is modified appropriately for the procedure. However, the risk of performing MRI for patients with implanted cardiac devices has not been sufficiently evaluated to advocate routine clinical use. The aim of the present protocol is to prospectively determine the rate of adverse clinical events and device parameter changes in patients with implanted non-MRI-conditional cardiac devices undergoing clinically indicated nonthoracic MRI at 1.5 T. The MagnaSafe Registry is a multicenter, prospective cohort study of up to 1500 MRI examinations in patients with pacemakers or implantable cardioverter-defibrillators implanted after 2001 who undergo clinically indicated nonthoracic MRI following a specific protocol to ensure that preventable potential adverse events are mitigated. Adverse events and changes in device parameter measurements that may be associated with the imaging procedure will be documented. Through August 2012, 701 MRI studies have been performed, representing 47% of the total target enrollment. The results of this registry will provide additional documentation of the risk of MRI and will further validate a clinical protocol for screening and the performance of clinically indicated MRI for patients with implanted cardiac devices. Copyright © 2013 Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Peczalski, K.; Palko, T.; Wojciechowski, D.; Dunajski, Z.; Kowalewski, M.
2013-04-01
The cardiac resynchronization therapy is an effective treatment for systolic failure patients. Independent electrical stimulation of left and right ventricle corrects mechanical ventricular dyssynchrony. About 30-40% treated patients do not respond to therapy. In order to improve clinical outcome authors propose the two channels impedance cardiography for assessment of ventricular dyssynchrony. The proposed method is intended for validation of patients diagnosis and optimization of pacemaker settings for cardiac resynchronization therapy. The preliminary study has showed that bichannel impedance cardiography is a promising tool for assessment of ventricular dyssynchrony.
The effect of hyperkalaemia on cardiac rhythm devices.
Barold, S Serge; Herweg, Bengt
2014-04-01
In patients with pacemakers, hyperkalaemia causes three important abnormalities that usually become manifest when the K level exceeds 7 mEq/L: (i) widening of the paced QRS complex from delayed intraventricular conduction velocity, (ii) Increased atrial and ventricular pacing thresholds that may cause failure to capture. In this respect, the atria are more susceptible to loss of capture than the ventricles, and (iii) Increased latency (usually with ventricular pacing) manifested by a greater delay of the interval from the pacemaker stimulus to the onset of depolarization. First-degree ventricular pacemaker exit block may progress to second-degree Wenckebach (type I) exit block characterized by gradual prolongation of the interval from the pacemaker stimulus to the onset of the paced QRS complex ultimately resulting in an ineffectual stimulus. The disturbance may then progress to 2 : 1, 3 : 1 pacemaker exit block, etc., and eventually to complete exit block with total lack of capture. Ventricular undersensing is uncommonly observed because of frequent antibradycardia pacing. During managed ventricular pacing, hyperkalaemia-induced marked first-degree atrioventricular block may induce a pacemaker syndrome. With implantable cardioverter-defibrillators (ICDs) oversensing of the paced or spontaneous T-wave may occur. The latter may cause inappropriate shocks. A raised impedance from the right ventricular coil to the superior vena cava coil may become an important sign of hyperkalaemia in the asymptomatic or the minimally symptomatic ICD patient.
Design and Testing of a Percutaneously Implantable Fetal Pacemaker
Loeb, Gerald E.; Zhou, Li; Zheng, Kaihui; Nicholson, Adriana; Peck, Raymond A.; Krishnan, Anjana; Silka, Michael; Pruetz, Jay; Chmait, Ramen; Bar-Cohen, Yaniv
2012-01-01
We are developing a cardiac pacemaker with a small, cylindrical shape that permits percutaneous implantation into a fetus to treat complete heart block and consequent hydrops fetalis, which can otherwise be fatal. The device uses off-the-shelf components including a rechargeable lithium cell and a highly efficient relaxation oscillator encapsulated in epoxy and glass. A corkscrew electrode made from activated iridium can be screwed into the myocardium, followed by release of the pacemaker and a short, flexible lead entirely within the chest of the fetus to avoid dislodgement from fetal movement. Acute tests in adult rabbits demonstrated the range of electrical parameters required for successful pacing and the feasibility of successfully implanting the device percutaneously under ultrasonic imaging guidance. The lithium cell can be recharged inductively as needed, as indicated by a small decline in the pulsing rate. PMID:22855119
de Oliveira, Grasiele Bess; de Oliveira, Fábio Silveira; Osório, Ana Paula Susin; Medeiros, Alexandre Kreling; Sant'anna, João Ricardo Michielin; Leiria, Tiago Luiz Luz
2016-10-01
Isolated congenital atrioventricular block (ICAVB) is a rare, and pacemaker implantation is the only effective treatment. We sought to identify the predictive factors of adverse events related to pacemaker implantation in ICAVB. This is a cohort study of patients diagnosed with ICAVB who underwent pacemaker implantation from 1980 to 2014 in a single center. During the studied period, a total of 647 patients underwent implantation of their first permanent cardiac pacemaker before 30 years of age. Of these, only 62 (9.5 %) were diagnosed with ICAVB. This condition was diagnosed in utero in 15 (24.2 %) cases, 5 (8.1 %) in the neonatal period, 32 (51.6 %) during childhood, and 10 (16.1 %) during adolescence and young adulthood. The presence of autoantibodies (anti-Ro/SSA) was observed in 41 % of mothers who underwent serological evaluation. Age at the time of the initial pacemaker implant was 9.8 ± 9 years. During a mean follow-up time of 15 years, 1 (1.7 %) death occurred due to infectious endocarditis. Complications related to pacemaker implant were reported in 24 patients (38.7 %). The number of complications was significantly higher in the group with an epimyocardial implantation site (HR 6; CI 2.45-14.95). Ventricular dysfunction occurred in 6 (11.7 %) patients; however, we were not able to identify any predictors of it. Our results showed a low mortality rate after permanent therapy. However, these patients exhibited high morbidity related to the pacemaker system, and the epimyocardial implant site was an independent predictor of complications. Predictors of left ventricular dysfunction were not found in the present study.
High ventricular lead impedance of a DDD pacemaker after cranial magnetic resonance imaging.
Baser, Kazim; Guray, Umit; Durukan, Mine; Demirkan, Burcu
2012-09-01
Management of electromagnetic interference in the form of magnetic resonance imaging (MRI) in patients with pacemakers (PMs) may be challenging. Serious consequences, especially in PM-dependent patients, may be encountered. Changes in device programming, asynchronous pacing, heating of the lead tip(s), and increased thresholds or even device dislocation may be experienced. We report of a patient with a DDD PM who underwent an emergent MRI, after which there was an increase in ventricular impedance as well as increased cardiac biomarkers. ©2011, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.
Ultrasound-guided venous access for pacemakers and defibrillators.
Seto, Arnold H; Jolly, Aaron; Salcedo, Jonathan
2013-03-01
Ultrasound guidance is widely recommended to reduce the risk of complications during central venous catheter placement. However, ultrasound guidance is not commonly utilized for implanting leads for cardiac rhythm management devices. We describe our technique of ultrasound-guided pacemaker implantation, including a novel pull-through technique that allows percutaneous guidewire insertion prior to the first incision. We review the literature and recent advances in ultrasound imaging technology that may facilitate the adoption of ultrasound guidance. Ultrasound guidance provides a safe and rapid technique for extrathoracic subclavian or axillary venous lead placement. © 2012 Wiley Periodicals, Inc.
Hemodynamic instability after pulmonary veins isolation in a patient with dual chamber pacemaker
Kiuchi, Márcio Galindo; Lobato, Guilherme Miglioli; Chen, Shaojie
2017-01-01
Abstract Introduction: The standard treatment of sinus node dysfunction (SND) is the pacemaker implantation, and the ideal methodology for the management of atrial fibrillation (AF) is rhythm control, but this is sometimes very hard to accomplish. For such actions, complete isolation of all pulmonary veins (PVI) is currently widely accepted as the best endpoint. Case Presentation: In this case, we report a female patient, 81 years old, with controlled hypertension, without coronary artery disease, bearer of bilateral knee replacement, and dual chamber pacemaker implanted 1.5 years ago owing to sinus node disease, presenting the following symptoms: presyncope episodes associated with sustained irregular palpitation tachycardia. The evaluation of the pacemaker-recorded episodes of atrial fibrillation, the echocardiogram-presented normal systolic function and measurements, as well as the resting myocardial scintigraphy and with drug use did not demonstrate ischemia and/or fibrosis. The patient was in use of valsartan 320 mg daily, amlodipine 10 mg daily, sotalol hydrochloride 120 mg 2 times daily, and dabigatran 110 mg 2 times daily. At the end of the PVI, the patient presented hemodynamic instability, with a decrease in heart rate to 30 bpm and invasive arterial blood pressure to 60/30 mmHg. The pericardial puncture was quickly carried out with the possibility of cardiac tamponade as the first hypothesis, but no pericardial effusion was found. Next, we detected acute capture loss from the ventricular pacemaker lead, unvarying with high voltage and pulse width, even with stable impedance, sense and keeping the same position visualized by fluoroscopy. And there was soon afterwards induction of sustained ventricular tachycardia degenerating to spontaneous ventricular fibrillation. Electrical cardioversion-defibrillation was performed with 200J, and the sinus rhythm was reestablished, but there was a dead short, and the pacemaker generator was burned and disabled. Conclusions: So, we can speculate that application of atrial radiofrequency for PVI diffused through the tissues, affecting in some way the tip of the ventricular electrode, causing a microlesion in this structure and making it impossible to capture the right ventricle by the pacemaker. As we cannot see it, we can call it of phantom injury of the ventricular lead. PMID:28562571
Kiuchi, Márcio Galindo; Lobato, Guilherme Miglioli; Chen, Shaojie
2017-06-01
The standard treatment of sinus node dysfunction (SND) is the pacemaker implantation, and the ideal methodology for the management of atrial fibrillation (AF) is rhythm control, but this is sometimes very hard to accomplish. For such actions, complete isolation of all pulmonary veins (PVI) is currently widely accepted as the best endpoint. In this case, we report a female patient, 81 years old, with controlled hypertension, without coronary artery disease, bearer of bilateral knee replacement, and dual chamber pacemaker implanted 1.5 years ago owing to sinus node disease, presenting the following symptoms: presyncope episodes associated with sustained irregular palpitation tachycardia. The evaluation of the pacemaker-recorded episodes of atrial fibrillation, the echocardiogram-presented normal systolic function and measurements, as well as the resting myocardial scintigraphy and with drug use did not demonstrate ischemia and/or fibrosis. The patient was in use of valsartan 320 mg daily, amlodipine 10 mg daily, sotalol hydrochloride 120 mg 2 times daily, and dabigatran 110 mg 2 times daily. At the end of the PVI, the patient presented hemodynamic instability, with a decrease in heart rate to 30 bpm and invasive arterial blood pressure to 60/30 mmHg. The pericardial puncture was quickly carried out with the possibility of cardiac tamponade as the first hypothesis, but no pericardial effusion was found. Next, we detected acute capture loss from the ventricular pacemaker lead, unvarying with high voltage and pulse width, even with stable impedance, sense and keeping the same position visualized by fluoroscopy. And there was soon afterwards induction of sustained ventricular tachycardia degenerating to spontaneous ventricular fibrillation. Electrical cardioversion-defibrillation was performed with 200J, and the sinus rhythm was reestablished, but there was a dead short, and the pacemaker generator was burned and disabled. So, we can speculate that application of atrial radiofrequency for PVI diffused through the tissues, affecting in some way the tip of the ventricular electrode, causing a microlesion in this structure and making it impossible to capture the right ventricle by the pacemaker. As we cannot see it, we can call it of phantom injury of the ventricular lead.
Tomasik, Andrzej; Jacheć, Wojciech; Wojciechowska, Celina; Kawecki, Damian; Białkowska, Beata; Romuk, Ewa; Gabrysiak, Artur; Birkner, Ewa; Kalarus, Zbigniew; Nowalany-Kozielska, Ewa
2015-05-01
Dual chamber pacing is known to have detrimental effect on cardiac performance and heart failure occurring eventually is associated with increased mortality. Experimental studies of pacing in dogs have shown contractile dyssynchrony leading to diffuse alterations in extracellular matrix. In parallel, studies on experimental ischemia/reperfusion injury have shown efficacy of valsartan to inhibit activity of matrix metalloproteinase-9, to increase the activity of tissue inhibitor of matrix metalloproteinase-3 and preserve global contractility and left ventricle ejection fraction. To present rationale and design of randomized blinded trial aimed to assess whether 12 month long administration of valsartan will prevent left ventricle remodeling in patients with preserved left ventricle ejection fraction (LVEF ≥ 40%) and first implantation of dual chamber pacemaker. A total of 100 eligible patients will be randomized into three parallel arms: placebo, valsartan 80 mg/daily and valsartan 160 mg/daily added to previously used drugs. The primary endpoint will be assessment of valsartan efficacy to prevent left ventricle remodeling during 12 month follow-up. We assess patients' functional capacity, blood plasma activity of matrix metalloproteinases and their tissue inhibitors, NT-proBNP, tumor necrosis factor alpha, and Troponin T. Left ventricle function and remodeling is assessed echocardiographically: M-mode, B-mode, tissue Doppler imaging. If valsartan proves effective, it will be an attractive measure to improve long term prognosis in aging population and increasing number of pacemaker recipients. ClinicalTrials.org (NCT01805804). Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Tianxin; Mahesh, Guruswamy; Houl, Jerry H; Hardin, Paul E
2015-06-03
Circadian pacemaker neurons in the Drosophila brain control daily rhythms in locomotor activity. These pacemaker neurons can be subdivided into early or late groups depending on whether rhythms in period (per) and timeless (tim) expression are initiated at the first instar (L1) larval stage or during metamorphosis, respectively. Because CLOCK-CYCLE (CLK-CYC) heterodimers initiate circadian oscillator function by activating per and tim transcription, a Clk-GFP transgene was used to mark when late pacemaker neurons begin to develop. We were surprised to see that CLK-GFP was already expressed in four of five clusters of late pacemaker neurons during the third instar (L3) larval stage. CLK-GFP is only detected in postmitotic neurons from L3 larvae, suggesting that these four late pacemaker neuron clusters are formed before the L3 larval stage. A GFP-cyc transgene was used to show that CYC, like CLK, is also expressed exclusively in pacemaker neurons from L3 larval brains, demonstrating that CLK-CYC is not sufficient to activate per and tim in late pacemaker neurons at the L3 larval stage. These results suggest that most late pacemaker neurons develop days before novel factors activate circadian oscillator function during metamorphosis. Copyright © 2015 the authors 0270-6474/15/358662-10$15.00/0.
Magnetic resonance imaging in patients with cardiac pacemakers: era of "MR Conditional" designs.
Shinbane, Jerold S; Colletti, Patrick M; Shellock, Frank G
2011-10-27
Advances in cardiac device technology have led to the first generation of magnetic resonance imaging (MRI) conditional devices, providing more diagnostic imaging options for patients with these devices, but also new controversies. Prior studies of pacemakers in patients undergoing MRI procedures have provided groundwork for design improvements. Factors related to magnetic field interactions and transfer of electromagnetic energy led to specific design changes. Ferromagnetic content was minimized. Reed switches were modified. Leads were redesigned to reduce induced currents/heating. Circuitry filters and shielding were implemented to impede or limit the transfer of certain unwanted electromagnetic effects. Prospective multicenter clinical trials to assess the safety and efficacy of the first generation of MR conditional cardiac pacemakers demonstrated no significant alterations in pacing parameters compared to controls. There were no reported complications through the one month visit including no arrhythmias, electrical reset, inhibition of generator output, or adverse sensations. The safe implementation of these new technologies requires an understanding of the well-defined patient and MR system conditions. Although scanning a patient with an MR conditional device following the strictly defined patient and MR system conditions appears straightforward, issues related to patients with pre-existing devices remain complex. Until MR conditional devices are the routine platform for all of these devices, there will still be challenging decisions regarding imaging patients with pre-existing devices where MRI is required to diagnose and manage a potentially life threatening or serious scenario. A range of other devices including ICDs, biventricular devices, and implantable physiologic monitors as well as guidance of medical procedures using MRI technology will require further biomedical device design changes and testing. The development and implementation of cardiac MR conditional devices will continue to require the expertise and collaboration of multiple disciplines and will need to prove safety, effectiveness, and cost effectiveness in patient care.
Magnetic resonance imaging in patients with cardiac pacemakers: era of "MR Conditional" designs
2011-01-01
Advances in cardiac device technology have led to the first generation of magnetic resonance imaging (MRI) conditional devices, providing more diagnostic imaging options for patients with these devices, but also new controversies. Prior studies of pacemakers in patients undergoing MRI procedures have provided groundwork for design improvements. Factors related to magnetic field interactions and transfer of electromagnetic energy led to specific design changes. Ferromagnetic content was minimized. Reed switches were modified. Leads were redesigned to reduce induced currents/heating. Circuitry filters and shielding were implemented to impede or limit the transfer of certain unwanted electromagnetic effects. Prospective multicenter clinical trials to assess the safety and efficacy of the first generation of MR conditional cardiac pacemakers demonstrated no significant alterations in pacing parameters compared to controls. There were no reported complications through the one month visit including no arrhythmias, electrical reset, inhibition of generator output, or adverse sensations. The safe implementation of these new technologies requires an understanding of the well-defined patient and MR system conditions. Although scanning a patient with an MR conditional device following the strictly defined patient and MR system conditions appears straightforward, issues related to patients with pre-existing devices remain complex. Until MR conditional devices are the routine platform for all of these devices, there will still be challenging decisions regarding imaging patients with pre-existing devices where MRI is required to diagnose and manage a potentially life threatening or serious scenario. A range of other devices including ICDs, biventricular devices, and implantable physiologic monitors as well as guidance of medical procedures using MRI technology will require further biomedical device design changes and testing. The development and implementation of cardiac MR conditional devices will continue to require the expertise and collaboration of multiple disciplines and will need to prove safety, effectiveness, and cost effectiveness in patient care. PMID:22032338
Kim, Mary S.; Tsutsui, Kenta; Stern, Michael D.; Lakatta, Edward G.; Maltsev, Victor A.
2017-01-01
Local Ca2+ Releases (LCRs) are crucial events involved in cardiac pacemaker cell function. However, specific algorithms for automatic LCR detection and analysis have not been developed in live, spontaneously beating pacemaker cells. In the present study we measured LCRs using a high-speed 2D-camera in spontaneously contracting sinoatrial (SA) node cells isolated from rabbit and guinea pig and developed a new algorithm capable of detecting and analyzing the LCRs spatially in two-dimensions, and in time. Our algorithm tracks points along the midline of the contracting cell. It uses these points as a coordinate system for affine transform, producing a transformed image series where the cell does not contract. Action potential-induced Ca2+ transients and LCRs were thereafter isolated from recording noise by applying a series of spatial filters. The LCR birth and death events were detected by a differential (frame-to-frame) sensitivity algorithm applied to each pixel (cell location). An LCR was detected when its signal changes sufficiently quickly within a sufficiently large area. The LCR is considered to have died when its amplitude decays substantially, or when it merges into the rising whole cell Ca2+ transient. Ultimately, our algorithm provides major LCR parameters such as period, signal mass, duration, and propagation path area. As the LCRs propagate within live cells, the algorithm identifies splitting and merging behaviors, indicating the importance of locally propagating Ca2+-induced-Ca2+-release for the fate of LCRs and for generating a powerful ensemble Ca2+ signal. Thus, our new computer algorithms eliminate motion artifacts and detect 2D local spatiotemporal events from recording noise and global signals. While the algorithms were developed to detect LCRs in sinoatrial nodal cells, they have the potential to be used in other applications in biophysics and cell physiology, for example, to detect Ca2+ wavelets (abortive waves), sparks and embers in muscle cells and Ca2+ puffs and syntillas in neurons. PMID:28683095
Maltsev, Alexander V.; Maltsev, Victor A.; Stern, Michael D.
2017-01-01
Intracellular Local Ca releases (LCRs) from sarcoplasmic reticulum (SR) regulate cardiac pacemaker cell function by activation of electrogenic Na/Ca exchanger (NCX) during diastole. Prior studies demonstrated the existence of powerful compensatory mechanisms of LCR regulation via a complex local cross-talk of Ca pump, release and NCX. One major obstacle to study these mechanisms is that LCR exhibit complex Ca release propagation patterns (including merges and separations) that have not been characterized. Here we developed new terminology, classification, and computer algorithms for automatic detection of numerically simulated LCRs and examined LCR regulation by SR Ca pumping rate (Pup) that provides a major contribution to fight-or-flight response. In our simulations the faster SR Ca pumping accelerates action potential-induced Ca transient decay and quickly clears Ca under the cell membrane in diastole, preventing premature releases. Then the SR generates an earlier, more synchronized, and stronger diastolic LCR signal activating an earlier and larger inward NCX current. LCRs at higher Pup exhibit larger amplitudes and faster propagation with more collisions to each other. The LCRs overlap with Ca transient decay, causing an elevation of the average diastolic [Ca] nadir to ~200 nM (at Pup = 24 mM/s). Background Ca (in locations lacking LCRs) quickly decays to resting Ca levels (<100 nM) at high Pup, but remained elevated during slower decay at low Pup. Release propagation is facilitated at higher Pup by a larger LCR amplitude, whereas at low Pup by higher background Ca. While at low Pup LCRs show smaller amplitudes, their larger durations and sizes combined with longer transient decay stabilize integrals of diastolic Ca and NCX current signals. Thus, the local interplay of SR Ca pump and release channels regulates LCRs and Ca transient decay to insure fail-safe pacemaker cell operation within a wide range of rates. PMID:28792496
"Power-on resets" in cardiac implantable electronic devices during magnetic resonance imaging.
Higgins, John V; Sheldon, Seth H; Watson, Robert E; Dalzell, Connie; Acker, Nancy; Cha, Yong-Mei; Asirvatham, Samuel J; Kapa, Suraj; Felmlee, Joel P; Friedman, Paul A
2015-03-01
Magnetic resonance imaging (MRI) has been safely performed in some patients with cardiac implantable electronic devices (CIEDs) under careful monitoring and prespecified conditions. Pacemaker-dependent patients are often excluded, partly because of the potential for "power-on reset" (PoR), which can lead to a change from asynchronous to inhibited pacing with consequent inhibition of pacing due to electromagnetic interference during MRI. The purpose of this study was to review risk factors for PoR during MRI. A prospective study was performed between January 2008 and May 2013 in patients with CIEDs undergoing clinically indicated MRI. Eligible patients were not pacemaker dependent. Devices were interrogated before and after MRI, programmed to an asynchronous mode or an inhibition mode with tachyarrhythmia therapies turned off, and reprogrammed to their original settings after MRI. MRI scans (n = 256) were performed in 198 patients with non-MRI-conditional CIEDs between 2008 and 2013 (median age 66 years; interquartile range 57-77 years; 59% men). PoR occurred during 9 MRI scans (3.5%) in 8 patients. PoR was more frequent with Medtronic devices than with other generator brands (n = 9/139 vs 0/117 [6% vs 0%]; P = .005). Devices with PoR were all released before 2002 and were implanted from 1999 to 2004. Effects of PoR included a decrease in heart rate during MRI (n = 4) and transient anomalous battery life indication (n = 1). All devices functioned normally after MRI. PoR occurs infrequently but can cause deleterious changes in pacing mode and heart rate. MRI should not be performed in pacemaker-dependent patients with older at-risk generators. Continuous monitoring during MRI is essential because unrecognized PoR may inhibit pacing or accelerate battery depletion due to high pacing output. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Wakabayashi, Yasushi; Mitsuhashi, Takeshi; Akashi, Naoyuki; Hayashi, Takekuni; Umemoto, Tomio; Sugawara, Yoshitaka; Fujita, Hideo; Momomura, Shin-Ichi
2018-06-21
Previous studies suggested that right ventricular pacing was associated with pacing-induced cardiac dysfunction (PICD). The purpose of this study was to investigate the clinical characteristics including the incidence of undiagnosed cardiac sarcoidosis (CS) in patients with atrioventricular block (AVB) who manifest PICD. We retrospectively investigated consecutive patients with permanent pacemaker (PPM) undergoing a first-generator replacement surgery with a new PPM or an upgrade procedure to a cardiac resynchronization therapy (CRT) device between December 1, 2011 and June 30, 2017. Patients with AVB showing normal echocardiographic findings before PPM implantation were included and divided into 2 groups: patients with post-PPM left ventricular ejection fraction (LVEF) < 40% and/or undergoing an upgrade procedure to CRT (PICD group) and patients with post-PPM LVEF ≥ 40% who underwent replacement surgery with a new PPM (no-PICD group). There were 15 and 41 patients in the PICD and no-PICD groups, respectively. A wider-paced QRS duration just after the PPM implantation and/or lower pre-PPM LVEF was observed in the PICD group. Furthermore, 46.7% of the PICD patients (7/15) satisfied the diagnostic criteria for CS according to the guideline of the Japanese Circulation Society, although no patients fulfilled these criteria before PPM implantation. In conclusion, a high incidence of CS was observed in patients with AVB who had PICD. However, none of these patients was diagnosed with CS before PPM implantation.
Nordbeck, Peter; Ertl, Georg; Ritter, Oliver
2015-01-01
Magnetic resonance imaging (MRI) has long been regarded a general contraindication in patients with cardiovascular implanted electronic devices such as cardiac pacemakers or cardioverter defibrillators (ICDs) due to the risk of severe complications and even deaths caused by interactions of the magnetic resonance (MR) surrounding and the electric devices. Over the last decade, a better understanding of the underlying mechanisms responsible for such potentially life-threatening complications as well as technical advances have allowed an increasing number of pacemaker and ICD patients to safely undergo MRI. This review lists the key findings from basic research and clinical trials over the last 20 years, and discusses the impact on current day clinical practice. With ‘MR-conditional’ devices being the new standard of care, MRI in pacemaker and ICD patients has been adopted to clinical routine today. However, specific precautions and specifications of these devices should be carefully followed if possible, to avoid patient risks which might appear with new MR technology and further increasing indications and patient numbers. PMID:25796053
21 CFR 870.3630 - Pacemaker generator function analyzer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker generator function analyzer. 870.3630 Section 870.3630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3630 Pacemaker...
Klein-Wiele, Oliver; Garmer, Marietta; Urbien, Rhyan; Busch, Martin; Kara, Kaffer; Mateiescu, Serban; Grönemeyer, Dietrich; Schulte-Hermes, Michael; Garbrecht, Marc; Hailer, Birgit
2015-12-22
Cardiovascular Magnetic Resonance (CMR) with adenosine stress is a valuable diagnostic tool in coronary artery disease (CAD). However, despite the development of MR conditional pacemakers CMR is not yet established in clinical routine for pacemaker patients with known or suspected CAD. A possible reason is that adenosine stress perfusion for ischemia detection in CMR has not been studied in patients with cardiac conduction disease requiring pacemaker therapy. Other than under resting conditions it is unclear whether MR safe pacing modes (paused pacing or asynchronous mode) can be applied safely because the effect of adenosine on heart rate is not precisely known in this entity of patients. We investigate for the first time feasibility and safety of adenosine stress CMR in pacemaker patients in clinical routine and evaluate a pacing protocol that considers heart rate changes under adenosine. We retrospectively analyzed CMR scans of 24 consecutive patients with MR conditional pacemakers (mean age 72.1 ± 11.0 years) who underwent CMR in clinical routine for the evaluation of known or suspected CAD. MR protocol included cine imaging, adenosine stress perfusion and late gadolinium enhancement. Pacemaker indications were sinus node dysfunction (n = 18) and second or third degree AV block (n = 6). Under a pacing protocol intended to avoid competitive pacing on the one hand and bradycardia due to AV block on the other no arrhythmia occurred. Pacemaker stimulation was paused to prevent competitive pacing in sinus node dysfunction with resting heart rate >45 bpm. Sympatho-excitatory effect of adenosine led to a significant acceleration of heart rate by 12.3 ± 8.3 bpm (p < 0.001), no bradycardia occurred. On the contrary in AV block heart rate remained constant; asynchronous pacing above resting heart rate did not interfere with intrinsic rhythm. Adenosine stress CMR appears to be feasible and safe in patients with MR conditional pacemakers. Heart rate response to adenosine has to be considered for the choice of pacing modes during CMR.
[Rhythm disorders and cardiac crypto-malformations].
Davy, J M; Raczka, F; Cung, T T; Combes, N; Bortone, A; Gaty, D
2005-12-01
Faced with a cardiac arrhythmia occuring in an apparently healthy heart, it is necessary to perform an anatomical investigation to detect any unsuspected anomalies. Congenital cardiopathy must certainly be excluded, as this is often responsible for rhythm disorders and/or cardiac conduction defects. Similarly, any acquired conditions, cardiomyopathy, or cardiac tumour must be sought. However, the possibility should always be considered of a minimal congenital malformation, which could be repsonsible for: any type of cardiac arrhythmia: rhythm disorder or conduction defect at the atrial, junctional or ventricular level, with a benign or serious prognosis. Unexpected therapeutic difficulties during radiofrequency ablation procedures or at implantation of pacemakers or defibrillators. Together with rhythm studies, the investigation of choice is high quality imaging, either the classic left or right angiography or the more modern cardiac CT or intracardiac mapping.
Rescuing cardiac automaticity in L-type Cav1.3 channelopathies and beyond.
Mesirca, Pietro; Bidaud, Isabelle; Mangoni, Matteo E
2016-10-15
Pacemaker activity of the sino-atrial node generates the heart rate. Disease of the sinus node and impairment of atrioventricular conduction induce an excessively low ventricular rate (bradycardia), which cannot meet the needs of the organism. Bradycardia accounts for about half of the total workload of clinical cardiologists. The 'sick sinus' syndrome (SSS) is characterized by sinus bradycardia and periods of intermittent atrial fibrillation. Several genetic or acquired risk factors or pathologies can lead to SSS. Implantation of an electronic pacemaker constitutes the only available therapy for SSS. The incidence of SSS is forecast to double over the next 50 years, with ageing of the general population thus urging the development of complementary or alternative therapeutic strategies. In recent years an increasing number of mutations affecting ion channels involved in sino-atrial automaticity have been reported to underlie inheritable SSS. L-type Ca v 1.3 channels play a major role in the generation and regulation of sino-atrial pacemaker activity and atrioventricular conduction. Mutation in the CACNA1D gene encoding Ca v 1.3 channels induces loss-of-function in channel activity and underlies the sino-atrial node dysfunction and deafness syndrome (SANDD). Mice lacking Ca v 1.3 channels (Ca v 1.3 -/- ) fairly recapitulate SSS and constitute a precious model to test new therapeutic approaches to handle this disease. Work in our laboratory shows that targeting G protein-gated K + (I KACh ) channels effectively rescues SSS of Ca v 1.3 -/- mice. This new concept of 'compensatory' ion channel targeting shines new light on the principles underlying the pacemaker mechanism and may open the way to new therapies for SSS. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Ritter, Philippe; Duray, Gabor Z; Steinwender, Clemens; Soejima, Kyoko; Omar, Razali; Mont, Lluís; Boersma, Lucas V A; Knops, Reinoud E; Chinitz, Larry; Zhang, Shu; Narasimhan, Calambur; Hummel, John; Lloyd, Michael; Simmers, Timothy Alexander; Voigt, Andrew; Laager, Verla; Stromberg, Kurt; Bonner, Matthew D; Sheldon, Todd J; Reynolds, Dwight
2015-10-01
Permanent cardiac pacing is the only effective treatment for symptomatic bradycardia, but complications associated with conventional transvenous pacing systems are commonly related to the pacing lead and pocket. We describe the early performance of a novel self-contained miniaturized pacemaker. Patients having Class I or II indication for VVI pacing underwent implantation of a Micra transcatheter pacing system, from the femoral vein and fixated in the right ventricle using four protractible nitinol tines. Prespecified objectives were >85% freedom from unanticipated serious adverse device events (safety) and <2 V 3-month mean pacing capture threshold at 0.24 ms pulse width (efficacy). Patients were implanted (n = 140) from 23 centres in 11 countries (61% male, age 77.0 ± 10.2 years) for atrioventricular block (66%) or sinus node dysfunction (29%) indications. During mean follow-up of 1.9 ± 1.8 months, the safety endpoint was met with no unanticipated serious adverse device events. Thirty adverse events related to the system or procedure occurred, mostly due to transient dysrhythmias or femoral access complications. One pericardial effusion without tamponade occurred after 18 device deployments. In 60 patients followed to 3 months, mean pacing threshold was 0.51 ± 0.22 V, and no threshold was ≥2 V, meeting the efficacy endpoint (P < 0.001). Average R-wave was 16.1 ± 5.2 mV and impedance was 650.7 ± 130 ohms. Early assessment shows the transcatheter pacemaker can safely and effectively be applied. Long-term safety and benefit of the pacemaker will further be evaluated in the trial. ClinicalTrials.gov ID NCT02004873. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.
Kumar, Ashish; Kumar, Manjeet; Komaragiri, Rama
2018-04-19
Bradycardia can be modulated using the cardiac pacemaker, an implantable medical device which sets and balances the patient's cardiac health. The device has been widely used to detect and monitor the patient's heart rate. The data collected hence has the highest authenticity assurance and is convenient for further electric stimulation. In the pacemaker, ECG detector is one of the most important element. The device is available in its new digital form, which is more efficient and accurate in performance with the added advantage of economical power consumption platform. In this work, a joint algorithm based on biorthogonal wavelet transform and run-length encoding (RLE) is proposed for QRS complex detection of the ECG signal and compressing the detected ECG data. Biorthogonal wavelet transform of the input ECG signal is first calculated using a modified demand based filter bank architecture which consists of a series combination of three lowpass filters with a highpass filter. Lowpass and highpass filters are realized using a linear phase structure which reduces the hardware cost of the proposed design approximately by 50%. Then, the location of the R-peak is found by comparing the denoised ECG signal with the threshold value. The proposed R-peak detector achieves the highest sensitivity and positive predictivity of 99.75 and 99.98 respectively with the MIT-BIH arrhythmia database. Also, the proposed R-peak detector achieves a comparatively low data error rate (DER) of 0.002. The use of RLE for the compression of detected ECG data achieves a higher compression ratio (CR) of 17.1. To justify the effectiveness of the proposed algorithm, the results have been compared with the existing methods, like Huffman coding/simple predictor, Huffman coding/adaptive, and slope predictor/fixed length packaging.
Recovery of Ventriculo-Atrial Conduction after Adrenaline in Patients Implanted with Pacemakers.
Cismaru, Gabriel; Gusetu, Gabriel; Muresan, Lucian; Rosu, Radu; Andronache, Marius; Matuz, Roxana; Puiu, Mihai; Mester, Petru; Miclaus, Maria; Pop, Dana; Mircea, Petru Adrian; Zdrenghea, Dumitru
2015-07-01
Ventriculo-atrial (VA) conduction can have negative consequences for patients with implanted pacemakers and defibrillators. There is concern whether impaired VA conduction could recover during stressful situations. Although the influence of isoproterenol and atropine are well established, the effect of adrenaline has not been studied systematically. The objective of this study was to determine if adrenaline can facilitate recovery of VA conduction in patients implanted with pacemakers. A prospective study was conducted on 61 consecutive patients during a 4-month period (April-July 2014). The presence of VA conduction was assessed during the pacemaker implantation procedure. In case of an impaired VA conduction, adrenaline infusio was used as a stress surrogate to test conduction recovery. The indications for pacemaker implantation were: sinus node dysfunction in 18 patients, atrioventricular (AV) block in 40 patients, binodal dysfunction (sinus node+ AV node) in two patients and other (carotid sinus syndrome) in one patient. In the basal state, 15/61 (24.6%) presented spontaneous VA conduction and 46/61 (75.4%) had no VA conduction. After administration of adrenaline, there was VA conduction recovery in 5/46 (10.9%) patients. Adrenaline infusion produced recovery of VA conduction in 10.9% of patients with absent VA conduction in a basal state. Recovery of VA conduction during physiological or pathological stresses could be responsible for the pacemaker syndrome, PMT episodes, or certain implantable cardiac defibrillator detection issues. © 2015 Wiley Periodicals, Inc.
Cardiac abnormality prediction using HMLP network
NASA Astrophysics Data System (ADS)
Adnan, Ja'afar; Ahmad, K. A.; Mat, Muhamad Hadzren; Rizman, Zairi Ismael; Ahmad, Shahril
2018-02-01
Cardiac abnormality often occurs regardless of gender, age and races but depends on the lifestyle. This problem sometimes does not show any symptoms and usually detected once it already critical which lead to a sudden death to the patient. Basically, cardiac abnormality is the irregular electrical signal that generate by the pacemaker of the heart. This paper attempts to develop a program that can detect cardiac abnormality activity through implementation of Hybrid Multilayer Perceptron (HMLP) network. A certain amount of data of the heartbeat signals from the electrocardiogram (ECG) will be used in this project to train the MLP and HMLP network by using Modified Recursive Prediction Error (MRPE) algorithm and to test the network performance.
(Re-)programming of subtype specific cardiomyocytes.
Hausburg, Frauke; Jung, Julia Jeannine; Hoch, Matti; Wolfien, Markus; Yavari, Arash; Rimmbach, Christian; David, Robert
2017-10-01
Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production. In addition, the recent achievement of directly reprogramming somatic cells into cardiomyocytes is likely to become of great importance. In either case, different clinical scenarios will require the generation of highly pure, specific cardiac cellular-subtypes. In this review, we discuss these themes as related to the cardiovascular stem cell and programming field, including a focus on the emergent topic of pacemaker cell generation for the development of biological pacemakers and in vitro drug testing. Copyright © 2017 Elsevier B.V. All rights reserved.
Of pacemakers and statistics: the actuarial method extended.
Dussel, J; Wolbarst, A B; Scott-Millar, R N; Obel, I W
1980-01-01
Pacemakers cease functioning because of either natural battery exhaustion (nbe) or component failure (cf). A study of four series of pacemakers shows that a simple extension of the actuarial method, so as to incorporate Normal statistics, makes possible a quantitative differentiation between the two modes of failure. This involves the separation of the overall failure probability density function PDF(t) into constituent parts pdfnbe(t) and pdfcf(t). The approach should allow a meaningful comparison of the characteristics of different pacemaker types.
Iwazaki, Keigo; Kojima, Toshiya; Murasawa, Takahide; Yokota, Jun; Tanimoto, Hikaru; Matsuda, Jun; Fukuma, Nobuaki; Matsubara, Takumi; Shimizu, Yu; Oguri, Gaku; Hasumi, Eriko; Kubo, Hitoshi; Chang, Kyungho; Fujiu, Katsuhito; Komuro, Issei
2018-05-30
A cardiac resynchronization therapy defibrillator (CRT-D) (Medtronic Inc. Protecta XT) was implanted in a 67-year-old man who had cardiac sarcoidosis with extremely low cardiac function. He had ventricular tachycardia which was controlled by catheter ablation, medication and pacing. The programmed mode was DDI, lower rate was 90 beats/minute, paced AV delay was 150 ms, and the noncompetitive atrial pacing (NCAP) function was programmed as 300 ms.After his admission for pneumonia and heart failure, we changed his DDI mode to a DDD mode because he had atrial tachycardia, which led to inadequate bi-ventricular pacing. After a while, there were cycle lengths which were longer than his device setting and alternately varied. We were able to avoid this phenomenon with AV delay of 120 ms and NCAP of 200 ms.NCAP is an algorithm which creates a gap above a certain period after the detection of an atrial signal during the postventricular atrial refractory period of the pacemaker. This is to prevent atrial tachycardia and repetitive non-reentrant ventriculoatrial (VA) synchrony in the presence of retrograde VA conduction. But in this case, NCAP algorithm induced much lower rate than the programmed basic lower rate. This situation produced some arrhythmias and exacerbated symptoms of heart failure. This had to be paid attention to, especially when the device was programmed at high basic heart rate.
The Visible Heart® project and free-access website 'Atlas of Human Cardiac Anatomy'.
Iaizzo, Paul A
2016-12-01
Pre- and post-evaluations of implantable cardiac devices require innovative and critical testing in all phases of the design process. The Visible Heart ® Project was successfully launched in 1997 and 3 years later the Atlas of Human Cardiac Anatomy website was online. The Visible Heart ® methodologies and Atlas website can be used to better understand human cardiac anatomy, disease states and/or to improve cardiac device design throughout the development process. To date, Visible ® Heart methodologies have been used to reanimate 75 human hearts, all considered non-viable for transplantation. The Atlas is a unique free-access website featuring novel images of functional and fixed human cardiac anatomies from >400 human heart specimens. Furthermore, this website includes education tutorials on anatomy, physiology, congenital heart disease and various imaging modalities. For instance, the Device Tutorial provides examples of commonly deployed devices that were present at the time of in vitro reanimation or were subsequently delivered, including: leads, catheters, valves, annuloplasty rings, leadless pacemakers and stents. Another section of the website displays 3D models of vasculature, blood volumes, and/or tissue volumes reconstructed from computed tomography (CT) and magnetic resonance images (MRI) of various heart specimens. A new section allows the user to interact with various heart models. Visible Heart ® methodologies have enabled our laboratory to reanimate 75 human hearts and visualize functional cardiac anatomies and device/tissue interfaces. The website freely shares all images, video clips and CT/MRI DICOM files in honour of the generous gifts received from donors and their families. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.
Wenckebach upper rate response in single chamber pacemaker.
Barold, S S
2000-07-01
The Medtronic Minix pacemaker during normal function in the VVT mode was found to exhibit a Wenckenbach upper rate response similar to that of dual chamber devices. This behavior occurred only when the upper rate interval was longer than the pacemaker refractory period. In a single chamber device this response may simulate pacemaker malfunction.
Pacemaker Implants in Children and Adolescents with Chagas Disease in Brazil: 18-Year Incidence.
Mizzaci, Carolina Christianini; Souza, Thiago Gonçalves Schroder E; Targueta, Gabriel Pelegrineti; Tótora, Ana Paula Frederico; Mateos, Juan Carlos Pachón; Mateos, José Carlos Pachon
2017-06-01
Chagas disease continues to be a serious public health problem, and accounts for 25-30% of the indications for cardiac stimulation in Brazil. To assess clinical and epidemiological characteristics of patients with Chagas disease, younger than 18 years, who had undergone pacemaker implantation in Brazil between 1994 and 2011, and its temporal trend. This was a cross-sectional analysis of data from the Brazilian Pacemaker Registry database. The following variables were analyzed: year when pacemaker was implanted, location, age, sex, ethnic group, functional class and the main electrocardiographic findings at baseline. In a total of 183,123 implants performed between 1994 and 2011, 214 implants of cardiac stimulation device in Chagas disease patients aged younger than 18 years were identified. Mean age at implantation was 5.6 ± 6.2 years. Second- and third-degree atrioventricular blocks corresponded to 71% of indications for pacemaker implantation. Fifty-six percent of the procedures were performed in the southeast region. Regarding the total number of pacemaker implants per year, there was a remarkable increase in the implants for all causes. However, time series analysis of the implants in Chagas disease patients younger than 18 years revealed a significant reduction in the annual number of implants. There has been an important reduction in the number of pacemaker implantations among children and adolescents with Chagas disease, suggesting a reduction in the vertical transmission of the parasite. A doença de Chagas mantém-se como sério problema de saúde pública e tem sido responsável por aproximadamente 25% a 30% das indicações de estimulação cardíaca no Brasil. Estudar as características clínicas e epidemiológicas dos pacientes menores de 18 anos portadores de doença de Chagas submetidos a implante de marca-passo no território brasileiro entre 1994 e 2011, e sua tendência temporal. Trata-se de um estudo retrospectivo que utilizou informações coletadas pelo Registro Brasileiro de Marca-passo. As variáveis analisadas foram: ano do implante, localidade, idade, sexo, grupo étnico dos pacientes; classificação funcional e os principais achados eletrocardiográficos de base. Em um total de 183 123 implantes realizados entre 1994 e 2011, foram identificados 214 implantes de dispositivos de estimulação cardíaca em portadores de doença de Chagas com idade inferior a 18 anos. A média de idade no momento do implante foi de 5,6 ± 6,2 anos. Bloqueios atrioventriculares de 2º e 3º graus foram responsáveis por 71% das indicações. Dos procedimentos, 55,6% foram realizados na região sudeste. Em relação ao total de implantes de marca-passo por ano, observamos um aumento importante e significante de implante por todas as causas. Entretanto, quando avaliamos a série temporal de implantes em pacientes com doença de Chagas menores que 18 anos, observamos uma redução expressiva e significativa no número anual de implantes. Observa-se uma redução importante do número de implantes de marca-passo em crianças e adolescente chagásicos, o que sugere uma redução da transmissão vertical do parasita.
Rivaud, Mathilde R; Jansen, John A; Postema, Pieter G; Nannenberg, Eline A; Mizusawa, Yuka; van der Nagel, Roel; Wolswinkel, Rianne; van der Made, Ingeborg; Marchal, Gerard A; Rajamani, Sridharan; Belardinelli, Luiz; van Tintelen, J Peter; Tanck, Michael W T; van der Wal, Allard C; de Bakker, Jacques M T; van Rijen, Harold V; Creemers, Esther E; Wilde, Arthur A M; van den Berg, Maarten P; van Veen, Toon A B; Bezzina, Connie R; Remme, Carol Ann
2018-04-27
Management of patients with inherited cardiac ion channelopathy is hindered by variability in disease severity and sudden cardiac death (SCD) risk. Here, we investigated the modulatory role of hypertrophy on arrhythmia and SCD risk in sodium channelopathy. Follow-up data was collected from 164 individuals positive for the SCN5A-1795insD founder mutation and 247 mutation-negative relatives. A total of 38 (obligate) mutation-positive patients died suddenly or suffered life-threatening ventricular arrhythmia. Of these, 18 were aged >40 years, a high proportion of which had a clinical diagnosis of hypertension and/or cardiac hypertrophy. While pacemaker implantation was highly protective in preventing bradycardia-related SCD in young mutation-positive patients, seven of them aged >40 experienced life-threatening arrhythmic events despite pacemaker treatment. Of these, six had a diagnosis of hypertension/hypertrophy, pointing to a modulatory role of this co-morbidity. Induction of hypertrophy in adult mice carrying the homologous mutation (Scn5a1798insD/+) caused SCD and excessive conduction disturbances, confirming a modulatory effect of hypertrophy in the setting of the mutation. The deleterious effects of the interaction between hypertrophy and the mutation were prevented by genetically impairing the pro-hypertrophic response and by pharmacological inhibition of the enhanced late sodium current associated with the mutation. This study provides the first evidence for a modulatory effect of co-existing cardiac hypertrophy on arrhythmia risk and treatment efficacy in inherited sodium channelopathy. Our findings emphasize the need for continued assessment and rigorous treatment of this co-morbidity in SCN5A mutation-positive individuals.
[Sinus rhythm: mechanisms and function].
Lerebours, Guy
2007-01-01
The normal cardiac rhythm originates in a specialized region of the heart, the sinus node that is part of the nodal tissue. The rhythmic, impulse initiation of sinus node pacemaker cells results from a spontaneous diastolic depolarization that is initiated immediately after repolarization of the preceding actions potential. This slow diastolic depolarisation is typical of automatic cells and essential to their function. Several currents are involved in this diastolic depolarisation: a hyperpolarization activated inward current, termed "pacemaker" I(f) current, two Ca2+ currents (a L type and a T type), a delayed K+ current and a Na/Ca exchange current. The frequency of the automatic discharge is the main determinant of heart rate. However the sinus node activity is regulated by adrenergic and cholinergic neurotransmitters. Acetylcholine provokes the hyperpolarization of pacemaker cells and decreases the speed of the spontaneous diastolic depolarisation, thus slowing the sinus rate. Catecholamines lead to sinus tachycardia by increasing the diastolic depolarisation speed. In normal conditions, the observed resting heart rate is lower than the intrinsic frequency of the sinus node due to a "predominance" of the vagal tone. Neural regulation of the heart rate aims at meeting the metabolic needs of the tissues through a varying blood flow. Differences between diurnal and nocturnal mean heart rates are accounted for by neural influences. During the night, the increased vagal tone results in decreased heart rate. The exercise-induced tachycardia results from the sympathetic stimulation. It allows more blood to reach skeletal muscles, and as a consequence an increased supply of oxygen and nutrients. Compared to the variety of clinical arrhythmias, sinus rhythm is the basis for optimal exercise capacity and quality of life.
Palmisano, Pietro; Ziacchi, Matteo; Biffi, Mauro; Ricci, Renato P; Landolina, Maurizio; Zoni-Berisso, Massimo; Occhetta, Eraldo; Maglia, Giampiero; Botto, Gianluca; Padeletti, Luigi; Boriani, Giuseppe
2018-04-01
: The purpose of this two-part consensus document is to provide specific suggestions (based on an extensive literature review) on appropriate pacemaker setting in relation to patients' clinical features. In part 2, criteria for pacemaker choice and programming in atrioventricular blocks and neurally mediate syncope are proposed. The atrioventricular blocks can be paroxysmal or persistent, isolated or associated with sinus node disease. Neurally mediated syncope can be related to carotid sinus syndrome or cardioinhibitory vasovagal syncope. In sinus rhythm, with persistent atrioventricular block, we considered appropriate the activation of mode-switch algorithms, and algorithms for auto-adaptive management of the ventricular pacing output. If the atrioventricular block is paroxysmal, in addition to algorithms mentioned above, algorithms to maximize intrinsic atrioventricular conduction should be activated. When sinus node disease is associated with atrioventricular block, the activation of rate-responsive function in patients with chronotropic incompetence is appropriate. In permanent atrial fibrillation with atrioventricular block, algorithms for auto-adaptive management of the ventricular pacing output should be activated. If the atrioventricular block is persistent, the activation of rate-responsive function is appropriate. In carotid sinus syndrome, adequate rate hysteresis should be programmed. In vasovagal syncope, specialized sensing and pacing algorithms designed for reflex syncope prevention should be activated.
Nanostructured cavity devices for extracellular stimulation of HL-1 cells
NASA Astrophysics Data System (ADS)
Czeschik, Anna; Rinklin, Philipp; Derra, Ulrike; Ullmann, Sabrina; Holik, Peter; Steltenkamp, Siegfried; Offenhäusser, Andreas; Wolfrum, Bernhard
2015-05-01
Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network.Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network. Electronic supplementary information (ESI) available: Comparison of non-filtered and Savitzky-Golay filtered action potential recordings, electrical signals and corresponding optical signals. See DOI: 10.1039/c5nr01690h
Hayashi, Kazuko
2016-12-01
Recently, NuVasive NV-M5 nerve monitoring system, a new transcranial motor-evoked potential (TcMEP) monitor, has been introduced with the spread of flank-approach spinal operations such as extreme lateral interbody fusion, to prevent nerve damage. Conventional TcMEP monitors use changes in MEP wave patterns, such as amplitude and/or latency, whereas the NV-M5 nerve monitor system first measures the MEP baseline waveform from the transcranial-evoked potential then measures the electric current necessary to obtain the standard of the previous baseline wave pattern at subsequent monitoring times. The NV-M5 monitor determines nerve damage according to the increase in necessary electric current threshold. The NV-M5 monitor also uses a local electrical stimulation mode to monitor the safety of setting screws into the lumbar vertebrae. In this way, various electrical stimulations with various durations and frequencies are used, and electrical noise may result in unpredictable interference with cardiac pacemakers. We performed anesthetic management of extreme lateral interbody fusion surgery using the NV-M5 in a patient with an implanted pacemaker, during which TcMEP stimulation caused interference with the implanted pacemaker. Copyright © 2016 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
... wheelchairs. Prosthetic devices are included in the definition of ``medical and other health services'' in section 1861(s)(8) of the Act. Prosthetic devices are defined as devices (other than dental) which replace... examples of prosthetic devices include cardiac pacemakers, cochlear implants, electrical continence aids...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
... wheelchairs. Prosthetic devices are included in the definition of ``medical and other health services'' under section 1861(s)(8) of the Act. Prosthetic devices are defined in this section of the Act as ``devices... insertion of an intraocular lens.'' Other examples of prosthetic devices include cardiac pacemakers...
Lithium batteries. (Latest citations from the COMPENDEX database). Published Search
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-05-01
The bibliography contains citations concerning the design, development, and applications of lithium batteries. Topics include electrochemical aspects, cycling characteristics, performance evaluations, and applications in cardiac pacemaker devices. Batteries using organic compounds, chlorides, and metal sulfides are discussed. (Contains 250 citations and includes a subject term index and title list.)
Lee, Michael S; Nguyen, Heajung; Shlofmitz, Richard
2017-02-01
We analyzed the incidence of bradycardia and the safety of patients with severely calcified coronary lesions who underwent orbital atherectomy without the insertion of a temporary pacemaker. The presence of severely calcified coronary lesions can increase the complexity of percutaneous coronary intervention due to the difficulty in advancing and optimally expanding the stent. High-pressure inflations to predilate calcified lesions may cause angiographic complications like perforation and dissection. Suboptimal stent expansion is associated with stent thrombosis and restenosis. Orbital atherectomy safely and effectively modifies calcified plaque to facilitate optimal stent expansion. The incidence of bradycardia in orbital atherectomy is unknown. Fifty consecutive patients underwent orbital atherectomy from February 2014 to September 2016 at our institution, none of whom underwent insertion of a temporary pacemaker. The final analysis included 47 patients in this retrospective study as 3 patients were excluded because of permanent pacemaker implantation. The primary endpoint was significant bradycardia, defined as bradycardia requiring emergent pacemaker placement or a heart rate <50 bpm at the end of atherectomy. The primary endpoint occurred in 4% of all patients, all driven by patients who experienced a heart rate decreasing to <50 bpm. The major adverse cardiac and cerebral event rate was 6%, driven by death (2%) and myocardial infarction (4%). No patient experienced target-vessel revascularization, stroke, or stent thrombosis. Angiographic complications included perforation in 2%, slow-flow in 4%, and flow-limiting dissection in 0%. Significant bradycardia was uncommon during orbital atherectomy. Performing orbital atherectomy without a temporary pacemaker appears to be safe.
[Telemetry in the clinical setting].
Hilbel, Thomas; Helms, Thomas M; Mikus, Gerd; Katus, Hugo A; Zugck, Christian
2008-09-01
Telemetric cardiac monitoring was invented in 1949 by Norman J Holter. Its clinical use started in the early 1960s. In the hospital, biotelemetry allows early mobilization of patients with cardiovascular risk and addresses the need for arrhythmia or oxygen saturation monitoring. Nowadays telemetry either uses vendor-specific UHF band broadcasting or the digital ISM band (Industrial, Scientific, and Medical Band) standardized Wi-Fi network technology. Modern telemetry radio transmitters can measure and send multiple physiological parameters like multi-channel ECG, NIPB and oxygen saturation. The continuous measurement of oxygen saturation is mandatory for the remote monitoring of patients with cardiac pacemakers. Real 12-lead ECG systems with diagnostic quality are an advantage for monitoring patients with chest pain syndromes or in drug testing wards. Modern systems are light-weight and deliver a maximum of carrying comfort due to optimized cable design. Important for the system selection is a sophisticated detection algorithm with a maximum reduction of artifacts. Home-monitoring of implantable cardiac devices with telemetric functionalities are becoming popular because it allows remote diagnosis of proper device functionality and also optimization of the device settings. Continuous real-time monitoring at home for patients with chronic disease may be possible in the future using Digital Video Broadcasting Terrestrial (DVB-T) technology in Europe, but is currently not yet available.
Gouvêa de Barros, Bruno; Weber dos Santos, Rodrigo; Alonso, Sergio
2015-01-01
The inclusion of nonconducting media, mimicking cardiac fibrosis, in two models of cardiac tissue produces the formation of ectopic beats. The fraction of nonconducting media in comparison with the fraction of healthy myocytes and the topological distribution of cells determines the probability of ectopic beat generation. First, a detailed subcellular microscopic model that accounts for the microstructure of the cardiac tissue is constructed and employed for the numerical simulation of action potential propagation. Next, an equivalent discrete model is implemented, which permits a faster integration of the equations. This discrete model is a simplified version of the microscopic model that maintains the distribution of connections between cells. Both models produce similar results when describing action potential propagation in homogeneous tissue; however, they slightly differ in the generation of ectopic beats in heterogeneous tissue. Nevertheless, both models present the generation of reentry inside fibrotic tissues. This kind of reentry restricted to microfibrosis regions can result in the formation of ectopic pacemakers, that is, regions that will generate a series of ectopic stimulus at a fast pacing rate. In turn, such activity has been related to trigger fibrillation in the atria and in the ventricles in clinical and animal studies. PMID:26583127
Utilization of YouTube as a Tool to Assess Patient Perception Regarding Implanted Cardiac Devices.
Hayes, Kevin; Mainali, Prajeena; Deshmukh, Abhishek; Pant, Sadip; Badheka, Apurva O; Paydak, Hakan
2014-07-01
The outreach of YouTube may have a dramatic role in the widespread dissemination of knowledge on implantable cardioverter devices (ICD). This study was designed to review and analyze the information available on YouTube pertaining to implantable cardiac devices such as implantable cardioverter defibrillators (ICDs) and pacemakers. YouTube was queried for the terms "ICD", "Implantable Cardioverter Defibrillator", and "Pacemaker". The videos were reviewed and categorized as according to content; number of views and "likes" or "dislikes" was recorded by two separate observers. Of the 55 videos reviewed, 18 of the videos were categorized as patient education, 12 were advertisements, 8 were intraoperative videos documenting the device implantation procedures, 7 of the videos were produced to document personal patient experiences, and 4 were categorized as documentation of a public event. 3 were intended to educate health care workers. The remaining 3 were intended to raise public awareness about sudden cardiac death. The videos portraying intraoperative procedures generated the most "likes" or "dislikes" per view. While YouTube provides a logical platform for delivery of health information, the information on this platform is not regulated. Initiative by reputed authorities and posting accurate information in such platform can be a great aid in public education regarding device therapy.
Predicting the risk of sudden cardiac death.
Lerma, Claudia; Glass, Leon
2016-05-01
Sudden cardiac death (SCD) is the result of a change of cardiac activity from normal (typically sinus) rhythm to a rhythm that does not pump adequate blood to the brain. The most common rhythms leading to SCD are ventricular tachycardia (VT) or ventricular fibrillation (VF). These result from an accelerated ventricular pacemaker or ventricular reentrant waves. Despite significant efforts to develop accurate predictors for the risk of SCD, current methods for risk stratification still need to be improved. In this article we briefly review current approaches to risk stratification. Then we discuss the mathematical basis for dynamical transitions (called bifurcations) that may lead to VT and VF. One mechanism for transition to VT or VF involves a perturbation by a premature ventricular complex (PVC) during sinus rhythm. We describe the main mechanisms of PVCs (reentry, independent pacemakers and abnormal depolarizations). An emerging approach to risk stratification for SCD involves the development of individualized dynamical models of a patient based on measured anatomy and physiology. Careful analysis and modelling of dynamics of ventricular arrhythmia on an individual basis will be essential in order to improve risk stratification for SCD and to lay a foundation for personalized (precision) medicine in cardiology. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller-Runkel, R.; Orsolini, G.; Kalokhe, U.P.
1990-11-01
Multiprogrammable pacemakers, using complimentary metaloxide semiconductor (CMOS) circuitry, may fail during radiation therapy. We report about a patient who received 6,400 cGy for unresectable carcinoma of the left lung. In supine treatment position, arms raised above the head, the pacemaker was outside the treated area by a margin of at least 1 cm, shielded by cerrobend blocking mounted on a tray. From thermoluminescent dosimeter (TLD) measurements, we estimate that the pacemaker received 620 cGy in scatter doses. Its function was monitored before, during, and after completion of radiation therapy. The pacemaker was functioning normally until the patient's death 5 monthsmore » after completion of treatment. The relevant electrocardiograms (ECGs) are presented.« less
Electrical interference in non-competitive pacemakers
Sowton, E.; Gray, K.; Preston, T.
1970-01-01
Patients with 41 implanted non-competitive pacemakers were investigated. A variety of domestic electrical equipment, a motor-car, and a physiotherapy diathermy apparatus were each operated in turn at various ranges from the patient. Interference effects on pacemaker function were assessed on the electrocardiograph. Medtronic demand 5841 pacemakers were stopped by diathermy while Cordis Ectocor pacemakers developed a fast discharge rate. Cordis triggered pacemakers (both Atricor and Ectocor) were sensitive to interference from many items of domestic equipment and the motor car. The Elema EM153 ran at an increased rate when an electric razor was running close to the pacemaker. The Devices demand 2980 and the Medtronic demand 5841 were not affected by the domestic equipment tested. The significance of interference effects is discussed in relation to pacemaker design. Images PMID:5470044
Yamauchi, Kaori; Li, Junjun; Morikawa, Kumi; Liu, Li; Shirayoshi, Yasuaki; Nakatsuji, Norio; Elliott, David A; Hisatome, Ichiro; Suemori, Hirofumi
2018-01-01
Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) are a promising source for cell transplantation into the damaged heart, which has limited regenerative ability. Many methods have been developed to obtain large amounts of functional CMs from hPSCs for therapeutic applications. However, during the differentiation process, a mixed population of various cardiac cells, including ventricular, atrial, and pacemaker cells, is generated, which hampers the proper functional analysis and evaluation of cell properties. Here, we established NKX2-5 eGFP/w and MLC2v mCherry/w hPSC double knock-ins that allow for labeling, tracing, purification, and analysis of the development of ventricular cells from early to late stages. As with the endogenous transcriptional activities of these genes, MLC2v-mCherry expression following NKX2-5-eGFP expression was observed under previously established culture conditions, which mimic the in vivo cardiac developmental process. Patch-clamp and microelectrode array electrophysiological analyses showed that the NKX2-5 and MLC2v double-positive cells possess ventricular-like properties. The results demonstrate that the NKX2-5 eGFP/w and MLC2v mCherry/w hPSCs provide a powerful model system to capture region-specific cardiac differentiation from early to late stages. Our study would facilitate subtype-specific cardiac development and functional analysis using the hPSC-derived sources. Copyright © 2017 Elsevier Inc. All rights reserved.
Naughton, Matthew T; Lorenzi-Filho, Geraldo
2009-01-01
Sleep plays a large role in patients with heart failure. In normal subjects, sleep is usually in a supine position with reduced sympathetic drive, elevated vagal tone and as such a relatively lower cardiac output and minute ventilation, allowing for recuperation. Patients with heart failure may not experience the same degree of autonomic activity change and the supine position may place a large strain on the pulmonary system. More than half of all heart failure patients have one of two types of sleep apnea: either obstructive or central sleep apnea. Some patients have both types. Obstructive sleep apnea is likely to be a cause of heart failure due to large negative intrathoracic pressures, apnea related hypoxemia and hypercapnia, terminated by an arousal and surge in systemic blood pressure associated with endothelial damage and resultant premature atherosclerosis. Reversal of obstructive sleep apnea improves blood pressure, systolic contraction and autonomic dysfunction however mortality studies are lacking. Central sleep apnea with Cheyne Stokes pattern of respiration (CSA-CSR) occurs as a result of increased central controller (brainstem driving ventilation) and plant (ventilation driving CO2) gain in the setting of a delayed feed back (i.e., low cardiac output). It is thought this type of apnea is a result of moderately to severely impaired cardiac function and is possibly indicative of high mortality. Treatment of CSA-CSR is best undertaken by treating the underlying cardiac condition which may include with medications, pacemakers, transplantation or continuous positive airway pressure (CPAP). In such patients CPAP exerts unique effects to assist cardiac function and reduce pulmonary edema. Whether CPAP improves survival in this heart failure population remains to be determined.
Brown, James E; Qiang, Rui; Stadnik, Paul J; Stotts, Larry J; Von Arx, Jeffrey A
2017-01-01
Magnetic resonance imaging (MRI) is the preferred modality for soft tissue imaging because of its nonionizing radiation and lack of contrast agent. Due to interactions between the MR system and active implantable medical devices (AIMDs), patients with implants such as pacemakers are generally denied access to MRI, which presents a detriment to that population. It has been estimated that 50-75% of patients with a cardiac device were denied access to MRI scanning and, moreover, that 17% of pacemaker patients need an MRI within 12 months of implantation [1]. In recent years, AIMD manufacturers, such as Biotronik, have assessed the conditional safety of devices in MRI.
Moraes, A P; Silva, E J; Lamas, C C; Portugal, P H; Neves, A A
2016-06-01
To evaluate the potential for electromagnetic interference (EMI) of electronic apex locators (EALs) and a gutta-percha heating device (HD) in patients with implantable cardiac pacemakers (ICPs) or cardioverter-defibrillators (ICDs). Two types of EALs (Romiapex A-15 and Novapex) and a HD (Touch'n Heat) were tested in patients followed in an outpatient clinic for cardiac arrhythmias. The heart rhythm was monitored on a computer screen during all experimental phases. After baseline data collection, the patient held each appliance (turned on) for 30 s, simulating their clinical use. If background noise was detected on the cardiac monitor, the sensitivity of the ICP/ICD was lowered by the cardiologist to evaluate the intensity of the detected EMI. Twelve patients were evaluated (5 female and 7 male), and in nine instances, background noise in their cardiac devices related to the use of the endodontic devices was detected (6 patients). After lowering the sensitivity of the cardiac implants, three patients had more severe EMI in six instances, including pauses in ICP function. The presence of a symptomatic or asymptomatic pause was related to the patient's underlying heart rhythm. The HD device produced background noise more often compared to EALs. These were associated with more severe types of EMI. The EALs and gutta-percha HD were capable of causing background noise detection or pauses in cardiac implants in vivo. The use of electronic dental devices nearby patients with cardiac implants should be carefully considered in clinical practice. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Sharma, Parikshit S; Kaszala, Karoly; Tan, Alex Y; Koneru, Jayanthi N; Shepard, Richard; Ellenbogen, Kenneth A; Huizar, Jose F
2016-08-01
Similar to endless loop tachycardia (ELT), repetitive nonreentrant ventriculoatrial synchrony (RNRVAS) is a ventriculoatrial (VA) synchrony pacemaker-mediated arrhythmia. RNRVAS was first described in 1990 and can only occur in the presence of retrograde VA conduction and dual-chamber or cardiac resynchronization devices with tracking (P-synchronous ventricular pacing such as DDD, DDDR) or nontracking pacing modes that allow AV-sequential pacing (DDI, DDIR). RNRVAS is promoted by (1) high lower rate limit or any feature that allows rapid pacing, (2) long AV intervals, or (3) long postventricular atrial refractory period (PVARP). In contrast to ELT, RNRVAS is a less well-recognized form of pacemaker-mediated arrhythmia; thus, unlike ELT, there are no specific device algorithms to prevent, recognize, and terminate RNRVAS. However, RNRVAS has been recently shown to occur frequently. We present a series of cases, some of which were found fortuitously. Owing to its clinical implications, we propose that algorithms should be developed to prevent, identify, and terminate RNRVAS. Published by Elsevier Inc.
[Sudden cardiac death due to sarcoidosis. Case report].
Sejben, István; Som, Zoltán; Cserni, Gábor
2017-07-01
Sarcoidosis is a systemic granulomatous disease of unknown aetiology, which is characterized by bilateral hilar lymphadenopathy and pulmonary disease. Clinically detected cardiac involvement occurs in 5% of sarcoid patients, although cardiac manifestations are discovered in 25% of the cases at autopsy. Sarcoid heart disease frequently causes atrioventricular block. The authors present the case of a 44-year-old man with bradycardia. On admission, second degree Mobitz II, then third degree atrioventricular block was diagnosed. Coronarography showed normal coronary arteries. 2.5 years following artificial Biotronik Entovis DR type pacemaker implantation, sudden cardiac death occurred. Autopsy revealed sarcoidosis with cardiac, pulmonary, splenic, renal and lymph node involvement. In case of young or middle-aged patients with atrioventricular block, it is best to search for other causes if the most common coronary origin can be excluded. Orv Hetil. 2017; 158(27): 1067-1070.
Perioperative management of patients with cardiac implantable electronic devices.
Poveda-Jaramillo, R; Castro-Arias, H D; Vallejo-Zarate, C; Ramos-Hurtado, L F
2017-05-01
The use of implantable cardiac devices in people of all ages is increasing, especially in the elderly population: patients with pacemakers, cardioverter-defibrillators or cardiac resynchronization therapy devices regularly present for surgery for non-cardiac causes. This review was made in order to collect and analyze the latest evidence for the proper management of implantable cardiac devices in the perioperative period. Through a detailed exploration of PubMed, Academic Search Complete (EBSCO), ClinicalKey, Cochrane (Ovid), the search software UpToDate, textbooks and patents freely available to the public on Google, we selected 33 monographs, which matched the objectives of this publication. Copyright © 2016 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Murine Electrophysiological Models of Cardiac Arrhythmogenesis
2016-01-01
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias. PMID:27974512
Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L
2016-01-01
The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity.
Morel, Nathalie; Lévesque, Kateri; Maltret, Alice; Baron, Gabriel; Hamidou, Mohamed; Orquevaux, Pauline; Piette, Jean-Charles; Barriere, François; Le Bidois, Jérôme; Fermont, Laurent; Fain, Olivier; Theulin, Arnaud; Sassolas, François; Hauet, Quentin; Guettrot-Imbert, Gaëlle; Georgin-Lavialle, Sophie; Deligny, Christophe; Hachulla, Eric; Mouthon, Luc; Le Jeunne, Claire; Ravaud, Philippe; Le Mercier, Delphine; Romefort, Bénédicte; Villain, Elisabeth; Bonnet, Damien; Costedoat-Chalumeau, Nathalie
2017-12-01
Dilated cardiomyopathy (DCM), a well-known complication of cardiac neonatal lupus, is associated with high mortality rate. Its risk factors remain unclear. We analyzed occurrence of postnatal DCM among children with high-degree congenital heart block (CHB) and mothers with anti-SSA and/or anti-SSB antibodies. Among 187 neonates with CHB, 35 (18.8%, one missing data) had DCM and 22 (11.8%) died during a median follow-up of 7years [range: birth-36years]. On multivariate analysis, factors associated with postnatal DCM were in utero DCM (P=0.0199; HR=3.13 [95% CI: 1.20-8.16]), non-European origin (P=0.0052; HR=4.10 [95% CI: 1.81-9.28]) and pacemaker implantation (P=0.0013; HR=5.48 [95% CI: 1.94-15.47]). Postnatal DCM could be categorized in two subgroups: neonatal DCM (n=13, diagnosed at a median age of 0day [birth-4days]) and late-onset DCM (n=22, diagnosed at a median age of 15.2months [3.6months-22.8years]). Factors associated with neonatal DCM were in utero DCM, hydrops, endocardial fibroelastosis and pericardial effusion, whereas those associated with late-onset DCM were non-European origin, in utero mitral valve insufficiency, and pacemaker implantation. Fluorinated steroids showed no protective effect against late-onset DCM (P=0.27; HR=1.65 [95% CI: 0.63-4.25]). Probability of survival at 10years was 23.1% for newborns diagnosed neonatally with DCM, 53.9% for those who developed late-onset DCM, and 98.6% for those without DCM. Neonatal and late-onset DCM appear to be two different entities. None of the known risk factors associated with neonatal DCM predicted late-onset DCM. Long-term follow-up of cardiac function is warranted in all children with CHB. Copyright © 2017 Elsevier B.V. All rights reserved.
Kaese, Sven; Bögeholz, Nils; Pauls, Paul; Dechering, Dirk; Olligs, Jan; Kölker, Katharina; Badawi, Sascha; Frommeyer, Gerrit; Pott, Christian; Eckardt, Lars
2017-08-01
The cardiac sodium/calcium (Na + /Ca 2+ ) exchanger (NCX) contributes to diastolic depolarization in cardiac pacemaker cells. Increased NCX activity has been found in heart failure and atrial fibrillation. The influence of increased NCX activity on resting heart rate, beta-adrenergic-mediated increase in heart rate, and cardiac conduction properties is unknown. The purpose of this study was to investigate the influence of NCX overexpression in a homozygous transgenic whole-heart mouse model (NCX-OE) on sinus and AV nodal function. Langendorff-perfused, beating whole hearts of NCX-OE and the corresponding wild-type (WT) were studied ± isoproterenol (ISO; 0.2 μM). Epicardial ECG, AV nodal Wenckebach cycle length (AVN-WCL), and retrograde AVN-WCL were obtained. At baseline, basal heart rate was unaltered between NCX-OE and WT (WT: cycle length [CL] 177.6 ± 40.0 ms, no. of hearts [n] = 20; NCX-OE: CL 185.9 ± 30.5 ms, n = 18; P = .21). In the presence of ISO, NCX-OE exhibited a significantly higher heart rate compared to WT (WT: CL 133.4 ± 13.4 ms, n = 20; NCX-OE: CL 117.7 ± 14.2 ms, n = 18; P <.001). ISO led to a significant shortening of the anterograde and retrograde AVN-WCL without differences between NCX-OE and WT. This study is the first to demonstrate that increased NCX activity enhances beta-adrenergic increase of heart rate. Mechanistically, increased NCX inward mode activity may promote acceleration of diastolic depolarization in sinus nodal pacemaker cells, thus enhancing chronotropy in NCX-OE. These findings suggest a novel potential therapeutic target for heart rate control in the presence of increased NCX activity, such as heart failure. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-04
....Prosthetic devices are included in the definition of ``medical and other health services'' under section 1861(s)(8) of the Act. Prosthetic devices are defined in this section of the Act as ``devices (other than... intraocular lens.'' Other examples of prosthetic devices include cardiac pacemakers, cochlear implants...
Transfer of space technology to industry
NASA Technical Reports Server (NTRS)
Hamilton, J. T.
1974-01-01
Some of the most significant applications of the NASA aerospace technology transfer to industry and other government agencies are briefly outlined. The technology utilization program encompasses computer programs for structural problems, life support systems, fuel cell development, and rechargeable cardiac pacemakers as well as reliability and quality research for oil recovery operations and pollution control.
Lithium batteries. (Latest citations from the EI Compendex*plus database). Published Search
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-12-01
The bibliography contains citations concerning the design, development, and applications of lithium batteries. Topics include electrochemical aspects, cycling characteristics, performance evaluations, and applications in cardiac pacemaker devices. Batteries using organic compounds, chlorides, and metal sulfides are discussed. (Contains 250 citations and includes a subject term index and title list.)
Lithium batteries. (Latest citations from the EI Compendex*plus database). Published Search
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-03-01
The bibliography contains citations concerning the design, development, and applications of lithium batteries. Topics include electrochemical aspects, cycling characteristics, performance evaluations, and applications in cardiac pacemaker devices. Batteries using organic compounds, chlorides, and metal sulfides are discussed. (Contains 250 citations and includes a subject term index and title list.)
Nordbeck, Peter; Ritter, Oliver; Weiss, Ingo; Warmuth, Marcus; Gensler, Daniel; Burkard, Natalie; Herold, Volker; Jakob, Peter M; Ertl, Georg; Ladd, Mark E; Quick, Harald H; Bauer, Wolfgang R
2011-01-01
Implanted medical devices such as cardiac pacemakers pose a potential hazard in magnetic resonance imaging. Electromagnetic fields have been shown to cause severe radio frequency-induced tissue heating in some cases. Imaging exclusion zones have been proposed as an instrument to reduce patient risk. The purpose of this study was to further assess the impact of the imaging landmark on the risk for unintended implant heating by measuring the radio frequency-induced electric fields in a body phantom under several imaging conditions at 1.5T. The results show that global radio frequency-induced coupling is highest with the torso centered along the superior-inferior direction of the transmit coil. The induced E-fields inside the body shift when changing body positioning, reducing both global and local radio frequency coupling if body and/or conductive implant are moved out from the transmit coil center along the z-direction. Adequate selection of magnetic resonance imaging landmark can significantly reduce potential hazards in patients with implanted medical devices. © 2010 Wiley-Liss, Inc.
A Screening of UNF Targets Identifies Rnb, a Novel Regulator of Drosophila Circadian Rhythms.
Kozlov, Anatoly; Jaumouillé, Edouard; Machado Almeida, Pedro; Koch, Rafael; Rodriguez, Joseph; Abruzzi, Katharine C; Nagoshi, Emi
2017-07-12
Behavioral circadian rhythms are controlled by multioscillator networks comprising functionally different subgroups of clock neurons. Studies have demonstrated that molecular clocks in the fruit fly Drosophila melanogaster are regulated differently in clock neuron subclasses to support their specific functions (Lee et al., 2016; Top et al., 2016). The nuclear receptor unfulfilled ( unf ) represents a regulatory node that provides the small ventral lateral neurons (s-LNvs) unique characteristics as the master pacemaker (Beuchle et al., 2012). We previously showed that UNF interacts with the s-LNv molecular clocks by regulating transcription of the core clock gene period ( per ) (Jaumouillé et al., 2015). To gain more insight into the mechanisms by which UNF contributes to the functioning of the circadian master pacemaker, we identified UNF target genes using chromatin immunoprecipitation. Our data demonstrate that a previously uncharacterized gene CG7837 , which we termed R and B ( Rnb ), acts downstream of UNF to regulate the function of the s-LNvs as the master circadian pacemaker. Mutations and LNv-targeted adult-restricted knockdown of Rnb impair locomotor rhythms. RNB localizes to the nucleus, and its loss-of-function blunts the molecular rhythms and output rhythms of the s-LNvs, particularly the circadian rhythms in PDF accumulation and axonal arbor remodeling. These results establish a second pathway by which UNF interacts with the molecular clocks in the s-LNvs and highlight the mechanistic differences in the molecular clockwork within the pacemaker circuit. SIGNIFICANCE STATEMENT Circadian behavior is generated by a pacemaker circuit comprising diverse classes of pacemaker neurons, each of which contains a molecular clock. In addition to the anatomical and functional diversity, recent studies have shown the mechanistic differences in the molecular clockwork among the pacemaker neurons in Drosophila Here, we identified the molecular characteristics distinguishing the s-LNvs, the master pacemaker of the locomotor rhythms, from other clock neuron subtypes. We demonstrated that a newly identified gene Rnb is an s-LNv-specific regulator of the molecular clock and essential for the generation of circadian locomotor behavior. Our results provide additional evidence to the emerging view that the differential regulation of the molecular clocks underlies the functional differences among the pacemaker neuron subgroups. Copyright © 2017 the authors 0270-6474/17/376673-13$15.00/0.
Samar, Huma; Yamrozik, June A; Williams, Ronald B; Doyle, Mark; Shah, Moneal; Bonnet, Christopher A; Biederman, Robert W W
2017-09-01
The objective of this study was to assess the diagnostic usefulness of thoracic and nonthoracic magnetic resonance imaging (MRI) imaging in patients with implantable cardiac devices (permanent pacemaker or implantable cardioverter-defibrillators [ICDs]) to determine if there was a substantial benefit to patients with regard to diagnosis and/or management. MRI is infrequently performed on patients with conventional pacemakers or ICDs. Multiple studies have documented the safety of MRI scans in patients with implanted devices, yet the diagnostic value of this approach has not been established. Evaluation data were acquired in 136 patients with implanted cardiac devices who underwent MRIs during a 10-year period at a single institution. Specific criteria were followed for all patients to objectively define if the diagnosis by MRI enhanced patient care; 4 questions were answered after scan interpretation by both MRI technologists and MRI physicians who performed the scan. 1) Did the primary diagnosis change? 2) Did the MRI provide additional information to the existing diagnosis? 3) Was the pre-MRI (tentative) diagnosis confirmed? 4) Did patient management change? If "Yes" was answered to any of the preceding questions, the MRI scan was considered to be of value to patient diagnosis and/or therapy. In 97% (n = 132) of patients, MR added value to patient diagnosis and management. In 49% (n = 67) of patients, MRI added additional valuable information to the primary diagnosis, and in 30% (n = 41) of patients, MRI changed the principle diagnosis and subsequent management of the patient. No safety issues were encountered, and no adverse effects of undergoing the MRI scan were noted in any patient. MRI in patients with implanted pacemakers and defibrillators added value to patient diagnosis and management, which justified the risk of the procedure. Published by Elsevier Inc.
Haverinen, Jaakko; Abramochkin, Denis V; Kamkin, Andre; Vornanen, Matti
2017-02-01
Temperature-induced changes in cardiac output (Q̇) in fish are largely dependent on thermal modulation of heart rate (f H ), and at high temperatures Q̇ collapses due to heat-dependent depression of f H This study tests the hypothesis that firing rate of sinoatrial pacemaker cells sets the upper thermal limit of f H in vivo. To this end, temperature dependence of action potential (AP) frequency of enzymatically isolated pacemaker cells (pacemaker rate, f PM ), spontaneous beating rate of isolated sinoatrial preparations (f SA ), and in vivo f H of the cold-acclimated (4°C) brown trout (Salmo trutta fario) were compared under acute thermal challenges. With rising temperature, f PM steadily increased because of the acceleration of diastolic depolarization and shortening of AP duration up to the break point temperature (T BP ) of 24.0 ± 0.37°C, at which point the electrical activity abruptly ceased. The maximum f PM at T BP was much higher [193 ± 21.0 beats per minute (bpm)] than the peak f SA (94.3 ± 6.0 bpm at 24.1°C) or peak f H (76.7 ± 2.4 at 15.7 ± 0.82°C) (P < 0.05). These findings strongly suggest that the frequency generator of the sinoatrial pacemaker cells does not limit f H at high temperatures in the brown trout in vivo. Copyright © 2017 the American Physiological Society.
Cano Pérez, Óscar; Pombo Jiménez, Marta; Coma Samartín, Raúl
2015-12-01
This report describes the results of the analysis of pacemaker implant and replacement data submitted to the Spanish Pacemaker Registry in 2014, with special reference to pacing mode selection. The report is based on the processing of information provided by the European Pacemaker Patient Identification Card. Information was received from 117 hospitals, with a total of 12 358 cards, representing 34% of estimated activity. Use of conventional generators and resynchronization devices was 784 and 64.4 units per million population, respectively. The mean age of patients receiving an implant was 77.3 years. Men received 59% of implants and 56.4% of replacements. Most patients receiving generator implants and replacements were in the age range 80 to 89 years. Most endocardial leads used were bipolar, and 84.2% had an active fixation system. Pacing was in VVI/R mode despite being in sinus rhythm in 24.7% of patients with sick sinus syndrome and 24% of those with atrioventricular block. The use of pacemaker generators and resynchronization devices per million population continued to increase. Most implanted leads had active fixation and approximately 20% had magnetic resonance imaging protection. Age and sex directly influenced pacing mode selection, which could have been improved in more than 20% of cases. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Markou, T; Theophilidis, G
2000-11-01
Combined intracellular and extracellular recordings from various parts of the isolated dorsal vessel of Tenebrio molitor revealed some of the following electrophysiological properties of the heart and the aorta. (i) The wave of depolarization causing forward pulsation of the dorsal vessel was always transmitted from posterior to anterior, with a conduction velocity of 0.014 m s(-1) in the heart and 0.001 m s(-1) in the aorta when the heart rate was 60 beats min(-1). (ii) There was no pacemaker activity in the aorta. (iii) The duration of the compound action potential in the aortic muscle depended on the duration of the pacemaker action potential generated in the heart. (iv) Isolated parts of the heart continued to contract rhythmically for hours, indicating powerful pacemaker activity in individual cardiac segments. (v) There was a direct relationship between action potential duration and the length of the preceding diastolic interval. (vi) The rhythmic wave of depolarization was dependent on the influx of Ca(2+). (vii) The recovery of the electrical properties of myocardial cells that had been disrupted by sectioning was rapid. (viii) In hearts sectioned into two halves, the rhythmic pacemaker action potentials recorded simultaneously from the two isolated halves eventually drifted out of phase, but they had the same intrinsic frequency. In the light of these data, we discuss two alternative models for the generation of spontaneous rhythmic pumping movements of the heart and aorta.
Twenty-Seven Years Experience With Transvenous Pacemaker Implantation in Children Weighing <10 kg.
Konta, Laura; Chubb, Mark Henry; Bostock, Julian; Rogers, Jan; Rosenthal, Eric
2016-02-01
Epicardial pacemaker implantation is the favored approach in children weighing <10 kg in many units. The high incidence of premature failure and fractures with earlier epicardial leads led our unit to undertake transvenous pacemaker implantation in neonates and infants from 1987. To date there have been no long-term follow-up reports of what is for many a controversial strategy. Between 1987 and 2003, 37 neonates and infants-median age 6.7 months (1 day to 3 years) and median weight 4.6 kg (2.7-10 kg)-had a permanent transvenous pacing system implanted. Pacing leads were placed into the right ventricular apex/outflow tract through a subclavian vein puncture with a redundant loop in the atrium. Three patients were lost to follow-up, 4 patients died from complications of cardiac surgery, and 2 patients had their system removed. At long-term follow-up in 28 patients at a median of 17.2 (range, 11.2-27.4) years, 10 patients have a single chamber ventricular pacemaker, 14 a dual chamber pacemaker, 3 a biventricular pacemaker, and 1 has a single chamber implantable cardioverter defibrillator. Subclavian vein patency was assessed in 26 patients. The overall subclavian vein occlusion rate was 10 of 13 (77%) <5 kg and 2 of 13 (15%) >5 kg during long-term follow-up. After a median of 14.3 (range, 13.4-17.6) years of pacing, 7 patients continue with their original lead. Transvenous pacing in infants <10 kg results in encouraging short- and long-term clinical outcomes. Subclavian vein occlusion remains an important complication, occurring predominantly in those weighing <5 kg. © 2016 American Heart Association, Inc.
Safety evaluation of a leadless transcatheter pacemaker for magnetic resonance imaging use.
Soejima, Kyoko; Edmonson, Jonathan; Ellingson, Michael L; Herberg, Ben; Wiklund, Craig; Zhao, Jing
2016-10-01
Increased magnetic resonance imaging (MRI) adoption and demand are driving the need for device patients to have safe access to MRI. The aim of this study was to address the interactions of MRI with the Micra transcatheter pacemaker system. A strategy was developed to evaluate potential MRI risks including device heating, unintended cardiac stimulation, force, torque, vibration, and device malfunction. Assessment of MRI-induced device heating was conducted using a phantom containing gelled saline, and Monte Carlo simulations incorporating these results were conducted to simulate numerous combinations of human body models, position locations in the MRI scanner bore, and a variety of coil designs. Lastly, a patient with a Micra pacemaker who underwent a clinically indicated MRI scan is presented. Compared to traditional MRI conditional pacemakers, the overall risk with Micra was greatly reduced because of the small size of the device and the absence of a lead. The modeling results predicted that the nonperfused temperature rise of the device would be less than 0.4°C at 1.5 T and 0.5°C at 3 T and that the risk of device heating with multiple device implants was not increased as compared with a single device. The clinical case study revealed no MRI-related complications. The MRI safety assessment tests conducted for the Micra pacemaker demonstrate that patients with a single device or multiple devices can safely undergo MRI scans in both 1.5- and 3-T MRI scanners. No MRI-related complications were observed in a patient implanted with a Micra pacemaker undergoing a clinically indicated scan. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Choisy, Stéphanie C M; James, Andrew F; Hancox, Jules C
2012-07-06
The atrioventricular node (AVN) is a vital component of the pacemaker-conduction system of the heart, co-ordinating conduction of electrical excitation from cardiac atria to ventricles and acting as a secondary pacemaker. The electrical behaviour of the AVN is modulated by vagal activity via activation of muscarinic potassium current, IKACh. However, it is not yet known if this response exhibits 'fade' or desensitization in the AVN, as established for the heart's primary pacemaker--the sinoatrial node. In this study, acute activation of IKACh in rabbit single AVN cells was investigated using whole-cell patch clamp at 37 °C. 0.1-1 μM acetylcholine (ACh) rapidly activated a robust IKACh in AVN myocytes during a descending voltage-ramp protocol. This response was inhibited by tertiapin-Q (TQ; 300 nM) and by the M2 muscarinic ACh receptor antagonist AFDX-116 (1 μM). During sustained ACh exposure the elicited IKACh exhibited bi-exponential fade (τf of 2.0 s and τs 76.9 s at -120 mV; 1 μM ACh). 10 nM ET-1 elicited a current similar to IKACh, which faded with a mono-exponential time-course (τ of 52.6 s at -120 mV). When ET-1 was applied following ACh, the ET-1 activated response was greatly attenuated, demonstrating that ACh could desensitize the response to ET-1. For neither ACh nor ET-1 was the rate of current fade dependent upon the initial response magnitude, which is inconsistent with K+ flux mediated changes in electrochemical driving force as the underlying mechanism. Collectively, these findings demonstrate that TQ sensitive inwardly rectifying K+ current in cardiac AVN cells, elicited by M2 muscarinic receptor or ET-1 receptor activation, exhibits fade due to rapid desensitization. Copyright © 2012 Elsevier Inc. All rights reserved.
Bitter, Thomas; Gutleben, Klaus-Jürgen; Horstkotte, Dieter; Oldenburg, Olaf
2014-01-01
Sleep-disordered breathing (SDB) is of growing interest in cardiology because SDB is a highly prevalent comorbidity in patients with a variety of cardiovascular diseases. The prevalence of SDB is particularly high in patients with cardiac dysrhythmias and/or heart failure. In this setting, many patients now have implantable cardiac devices, such as pacemakers, implantable cardioverter-defibrillators or implanted cardiac resynchronisation therapy devices (CRT). Treatment of SDB using implantable cardiac devices has been studied previously, with atrial pacing and CRT being shown not to bring about satisfactory results in SDB care. The latest generations of these devices have the capacity to determine transthoracic impedance, to detect and quantify breathing efforts and to identify SDB. The capability of implantable cardiac devices to detect SDB is of potential importance for patients with cardiovascular disease, allowing screening for SDB, monitoring of the course of SDB in relation to cardiac status, and documenting of the effects of treatment. PMID:26835077
Fox, Henrik; Bitter, Thomas; Gutleben, Klaus-Jürgen; Horstkotte, Dieter; Oldenburg, Olaf
2014-08-01
Sleep-disordered breathing (SDB) is of growing interest in cardiology because SDB is a highly prevalent comorbidity in patients with a variety of cardiovascular diseases. The prevalence of SDB is particularly high in patients with cardiac dysrhythmias and/or heart failure. In this setting, many patients now have implantable cardiac devices, such as pacemakers, implantable cardioverter-defibrillators or implanted cardiac resynchronisation therapy devices (CRT). Treatment of SDB using implantable cardiac devices has been studied previously, with atrial pacing and CRT being shown not to bring about satisfactory results in SDB care. The latest generations of these devices have the capacity to determine transthoracic impedance, to detect and quantify breathing efforts and to identify SDB. The capability of implantable cardiac devices to detect SDB is of potential importance for patients with cardiovascular disease, allowing screening for SDB, monitoring of the course of SDB in relation to cardiac status, and documenting of the effects of treatment.
Nazarian, Saman; Hansford, Rozann; Roguin, Ariel; Goldsher, Dorith; Zviman, Menekhem M.; Lardo, Albert C.; Caffo, Brian S.; Frick, Kevin D.; Kraut, Michael A.; Kamel, Ihab R.; Calkins, Hugh; Berger, Ronald D.; Bluemke, David A.; Halperin, Henry R.
2015-01-01
Background Magnetic resonance imaging (MRI) is avoided in most patients with implanted cardiac devices because of safety concerns. Objective To define the safety of a protocol for MRI at the commonly used magnetic strength of 1.5 T in patients with implanted cardiac devices. Design Prospective nonrandomized trial. (ClinicalTrials.gov registration number: NCT01130896) Setting One center in the United States (94% of examinations) and one in Israel. Patients 438 patients with devices (54% with pacemakers and 46% with defibrillators) who underwent 555 MRI studies. Intervention Pacing mode was changed to asynchronous for pacemaker-dependent patients and to demand for others. Tachy-arrhythmia functions were disabled. Blood pressure, electrocardiography, oximetry, and symptoms were monitored by a nurse with experience in cardiac life support and device programming who had immediate backup from an electrophysiologist. Measurements Activation or inhibition of pacing, symptoms, and device variables. Results In 3 patients (0.7% [95% CI, 0% to 1.5%]), the device reverted to a transient back-up programming mode without long-term effects. Right ventricular (RV) sensing (median change, 0 mV [interquartile range {IQR}, −0.7 to 0 V]) and atrial and right and left ventricular lead impedances (median change, −2 Ω[IQR, −13 to 0 Ω], −4 Ω [IQR, −16 to 0 Ω], and −11 Ω [IQR, −40 to 0 Ω], respectively) were reduced immediately after MRI. At long-term follow-up (61% of patients), decreased RV sensing (median, 0 mV, [IQR, −1.1 to 0.3 mV]), decreased RV lead impedance (median, −3 Ω, [IQR, −29 to 15 Ω]), increased RV capture threshold (median, 0 V, IQR, [0 to 0.2 Ω]), and decreased battery voltage (median, −0.01 V, IQR, −0.04 to 0 V) were noted. The observed changes did not require device revision or reprogramming. Limitations Not all available cardiac devices have been tested. Long-term in-person or telephone follow-up was unavailable in 43 patients (10%), and some data were missing. Those with missing long-term capture threshold data had higher baseline right atrial and right ventricular capture thresholds and were more likely to have undergone thoracic imaging. Defibrillation threshold testing and random assignment to a control group were not performed. Conclusion With appropriate precautions, MRI can be done safely in patients with selected cardiac devices. Because changes in device variables and programming may occur, electrophysiologic monitoring during MRI is essential. Primary Funding Source National Institutes of Health. PMID:21969340
RUSSO, VINCENZO; DI MEO, FEDERICA; PAPA, ANDREA ANTONIO; CIOPPA, NADIA DELLA; PROIETTI, RICCARDO; RUSSO, MARIA GIOVANNA; CALABRÒ, RAFFAELE; POLITANO, LUISA
2014-01-01
P-wave dispersion is a non invasive indicator of intra-atrial conduction heterogeneity producing substrate for reentry, which is a pathophysiological mechanism of atrial fibrillation. The relationship between P-wave dispersion (PD) and atrial fibrillation (AF) in Myotonic dystrophy type 1 (DM1) patients is still unclear. Atrial Preference Pacing (APP) is an efficient algorithm to prevent paroxysmal AF in patients implanted with dual-chamber pacemaker. Aim of our study was to evaluate the possible correlation between atrial preference pacing algorithm, P-wave dispersion and AF burden in DM1 patients with normal cardiac function underwent permanent dual-chamber pacemaker implantation. We enrolled 50 patients with DM1 (age 50.3 ± 7.3; 11 F) underwent dual-chamber pacemaker implantation for various degree of atrioventricula block. The study population was randomized following 1 months stabilization period to APP algorithm features programmed OFF or ON. Patients were assessed every 3 months for the first year, and every 6 months thereafter up to 3 years. At each follow-up visit, we counted: the number of premature atrial beats, the number and the mean duration of AF episodes, AF burden and the percentage of atrial and ventricular pacing. APP ON Group showed lower number of AF episodes (117 ± 25 vs. 143 ± 37; p = 0.03) and AF burden (3059 ± 275 vs. 9010 ± 630 min; p < 0.04) than APP OFF Group. Atrial premature beats count (44903 ± 30689 vs. 13720 ± 7717 beats; p = 0.005) and Pwave dispersion values (42,1 ± 11 ms vs. 29,1 ± 4,2 ms, p = 0,003) were decreased in APP ON Group. We found a significant positive correlation between PD and AF burden (R = 0,8, p = 0.007). Atrial preference pacing algorithm, decreasing the number of atrial premature beats and the P-wave dispersion, reduces the onset and perpetuator factors of AF episodes and decreases the AF burden in DM1 patients underwent dual chamber pacemaker implantation for various degree of atrioventricular blocks and documented atrial fibrillation. PMID:25873781
'Cardiogenic vertigo'--true vertigo as the presenting manifestation of primary cardiac disease.
Newman-Toker, David E; Camargo, Carlos A
2006-03-01
A 90-year-old woman presented to a hospital emergency department with a brief loss of consciousness that was heralded by spinning vertigo lasting approximately 2 min. She had a long history of intermittent brief episodes of rotatory vertigo, presyncope, and non-vertiginous dizziness, occurring either with or without loss of consciousness. Although initially attributed to symptomatic carotid artery stenosis, these episodes persisted, despite surgical restoration of carotid artery blood flow 1 year after her first syncope. Her medical history was otherwise notable for hypertension, mild depression and a gradual decline in gait and balance function attributed to left hip arthritis and older age. Bedside history and examination, non-contrast head CT scan, electrocardiogram, transthoracic echocardiogram, and bedside cardiac telemetry. Sick sinus syndrome or severe reflex bradycardia with asystole causing recurrent, episodic vertigo, presyncope, non-vertiginous dizziness and syncope (Stokes-Adams attacks). Placement of a temporary pacing wire, followed by surgical implantation of a single-chamber ventricular (VVI) pacemaker.
Technology utilization program report
NASA Technical Reports Server (NTRS)
1974-01-01
The application of aerospace technology to the solution of public health and industrial problems is reported. Data cover: (1) development of an externally rechargeable cardiac pacemaker, (2) utilization of ferrofluids-colloidal suspensions of ferrite particles - in the efficient separation of nonferrous metals as Ni, Zn, Cu, and Al from shredded automobile scrap, and (3) development of a breathing system for fire fighters.
Lithium batteries. (Latest citations from the EI Compendex*plus database). Published Search
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-02-01
The bibliography contains citations concerning the design, development, and applications of lithium batteries. Topics include electrochemical aspects, cycling characteristics, performance evaluations, and applications in cardiac pacemaker devices. Batteries using organic compounds, chlorides, and metal sulfides are discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)
Lithium batteries. (Latest citations from the EI Compendex*plus database). Published Search
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-10-01
The bibliography contains citations concerning the design, development, and applications of lithium batteries. Topics include electrochemical aspects, cycling characteristics, performance evaluations, and applications in cardiac pacemaker devices. Batteries using organic compounds, chlorides, and metal sulfides are discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)
Tricuspid Regurgitation and Mortality in Patients with Transvenous Permanent Pacemaker Leads
Delling, Francesca N.; Hassan, Zena K.; Piatkowski, Gail; Tsao, Connie W.; Rajabali, Alefiyah; Markson, Lawrence J.; Zimetbaum, Peter J.; Manning, Warren J.; Chang, James D.; Mukamal, Kenneth J.
2016-01-01
Estimates of the prevalence and importance of significant tricuspid regurgitation (STR) related to implantable device leads are based mainly on case reports, small observational studies or mixed samples that include defibrillators. We sought to assess whether patients with permanent pacemaker (PPM) leads have an increased risk of STR and to determine mortality associated with PPM-related TR in a large longitudinal single-center cohort. We examined the prevalence of STR (defined as moderate-severe or ≥ 3+) among all echocardiograms performed between 2005 and 2011 excluding those with defibrillators. We then examined mortality risk according to the prevalence of PPM and STR after adjusting for cardiac co-morbidities, left ventricular (LV) systolic/diastolic function, and pulmonary artery hypertension. We screened 93592 echocardiograms (1245 with PPM) among 58556 individual patients (634 with PPM). The prevalence of STR was higher in patients following PPM placement (mean age 79 ± 3 years; 54% males) compared to patients without a PPM (adjusted odds ratio 2.32, 95% confidence interval [CI], 1.54–3.49; p<0.0001). Among patients with a PPM lead, the presence of STR was associated with increased mortality (adjusted hazard ratios [HR] 1.40, 95% CI 1.04–2.11, p=0.027 versus no STR). Compared to having neither a PPM lead nor STR, adjusted HR for death were 2.13 (95% CI, 1.93–2.34) for STR but no PPM, 1.04 (0.89–1.22) for PPM without STR, and 1.55 (1.13–2.14) for PPM with STR. In conclusion, in a sample comprising over 58,000 individual patients, PPM leads are associated with higher risk of STR after adjustment for LV systolic/diastolic function and pulmonary artery hypertension; similarly to STR from other cardiac pathologies, PPM-related STR is associated with increased mortality. PMID:26833208
Sah, Rajan; Mesirca, Pietro; Mason, Xenos; Gibson, William; Bates-Withers, Christopher; Van den Boogert, Marjolein; Chaudhuri, Dipayan; Pu, William T; Mangoni, Matteo E; Clapham, David E
2013-07-09
Transient receptor potential (TRP) channels are a superfamily of broadly expressed ion channels with diverse physiological roles. TRPC1, TRPC3, and TRPC6 are believed to contribute to cardiac hypertrophy in mouse models. Human mutations in TRPM4 have been linked to progressive familial heart block. TRPM7 is a divalent-permeant channel and kinase of unknown function, recently implicated in the pathogenesis of atrial fibrillation; however, its function in ventricular myocardium remains unexplored. We generated multiple cardiac-targeted knockout mice to test the hypothesis that TRPM7 is required for normal ventricular function. Early cardiac Trpm7 deletion (before embryonic day 9; TnT/Isl1-Cre) results in congestive heart failure and death by embryonic day 11.5 as a result of hypoproliferation of the compact myocardium. Remarkably, Trpm7 deletion late in cardiogenesis (about embryonic day 13; αMHC-Cre) produces viable mice with normal adult ventricular size, function, and myocardial transcriptional profile. Trpm7 deletion at an intermediate time point results in 50% of mice developing cardiomyopathy associated with heart block, impaired repolarization, and ventricular arrhythmias. Microarray analysis reveals elevations in transcripts of hypertrophy/remodeling genes and reductions in genes important for suppressing hypertrophy (Hdac9) and for ventricular repolarization (Kcnd2) and conduction (Hcn4). These transcriptional changes are accompanied by action potential prolongation and reductions in transient outward current (Ito; Kcnd2). Similarly, the pacemaker current (If; Hcn4) is suppressed in atrioventricular nodal cells, accounting for the observed heart block. Trpm7 is dispensable in adult ventricular myocardium under basal conditions but is critical for myocardial proliferation during early cardiogenesis. Loss of Trpm7 at an intermediate developmental time point alters the myocardial transcriptional profile in adulthood, impairing ventricular function, conduction, and repolarization.
Mora, Guillermo
2014-03-01
Locating pacemaker electrodes can become complicated by congenital abnormalities such as persistent left superior vena cava (LSVC). To evaluate a technique for the implanting of ventricular electrode in patients with persistent LSVC. The study was carried out from June 2001 to June 2010 involving all patients who were admitted to the Hospital Universitario Mayor, Instituto de Corazon de Bogota and Hospital Universitario Clinica San Rafael (Bogota-Colombia) for implanting pacemakers or cardiac defibrillators. LSVC was diagnosed by fluoroscopic observation (anterior-posterior view) of the course of the stylet. Four steps were followed: 1) Move the electrode with a straight stylet to the right atrium. 2) Change the straight stylet by a conventional J stylet and push the electrode to the lateral or anterolateral wall of the right atrium. 3) Remove the guide 3-5 cm and 4) Push the electrode which crosses the tricuspid valve into the right ventricle and finally deploy the active fixation mechanism. A total of 1198 patients were admitted for pacemaker or cardiac defibrillator implant during the 9-year study period, 1114 received a left subclavian venous approach. There were 573 males and 541 females. Persistent LSVC was found in five patients (0.45%) Fluoroscopy time for implanting the ventricular electrode ranged from 60 to 250 seconds, 40 to 92 minutes being taken to complete the whole procedure. We present a simple and rapid technique for electrode placement in patients with LSVC using usual J guide and active fixation electrodes with high success.
Kanadaşı, Mehmet; Caylı, Murat; Sahin, Durmuş Yıldıray; Sen, Ömer; Koç, Mevlüt; Usal, Ayhan; Batur, Mustafa Kemal; Demirtaş, Mustafa
2011-07-01
Although it has been known that optimization of atrioventricular delay (AVD) has favorable effect on the left ventricular functions in patients with DDD pacemaker, the effect of different AVDs on left atrium (LA) and left atrial appendage (LAA) functions has not been exactly evaluated. The aim of the present study was to assess the effect of different AVDs on LA and LAA functions in DDD pacemaker implanted patients with atrioventricular block. Forty-eight patients with DDD pacemaker were enrolled into the study. Patients were divided into two groups according to the echocardiographic diastolic function: Group I (normal diastolic function) and Group II (diastolic dysfunction). LAA emptying velocity on pulsed wave Doppler and LAA late systolic wave velocity by using tissue Doppler were recorded. Patients were paced for five successive continuous pacing periods of 10 minutes duration using five selective AVDs (80-250 ms). Significant effect on LA and LAA functions has not been observed by the setting of AVD in Group I. However, when the AVD was gradually shortened form 150 ms to 80 ms, LA and LAA functions gradually decreased in Group II patients. When AVD increased to 200 ms, LA and LAA functions were improved. Further increase in AVD resulted in decreased LA and LAA functions. Setting of AVD has not significant effect on the LA and LAA functions in patients with normal diastolic function, but moderate prolongation of AVD in physiological limits improved LA and LAA functions in DDD pacemaker implanted patients with diastolic dysfunction. © 2011, Wiley Periodicals, Inc.
El-Said, Howaida; Hegde, Sanjeet; Moore, John
2014-01-01
The patient was a male infant with L-transposition of great arteries (L-TGA), Ebstein's anomaly of the tricuspid valve, subvalvar aortic stenosis, ventricular septal defect (VSD), hypoplastic right ventricle, arch hypoplasia, and congenital complete heart block. He underwent a Norwood procedure, aortic arch repair, permanent pacemaker implantation, and a 3.5-mm aortopulmonary shunt at 4 days of age. At the time of his surgery, left ventricular function was in the normal range (ejection fraction [EF] = 67%). However by 3 months of age, he was noted to have developed moderate-severe biventricular dysfunction (left ventricular ejection fraction [LVEF] = 34%). Atresia of the coronary sinus with a small left superior venacava (LSVC) and a bridging vein was discovered during cardiac catheterization at this time. The coronary sinus mean pressure was 17 mm Hg, and the common atrial mean pressure was 6 mmHg. We opened the atretic coronary sinus ostium using radiofrequency ablation and stent placement. There was dramatic improvement in ventricular function observed over a 2-month period. Follow-up cardiac catheterization 5 months later revealed the stent in the coronary sinus to be widely patent with no intimal buildup, and the ventricular function was normal (LVEF = 58%). The patient had a bidirectional Glenn procedure with an uncomplicated postoperative course and is currently awaiting Fontan completion. © 2013 Wiley Periodicals, Inc.
A fully implantable pacemaker for the mouse: from battery to wireless power.
Laughner, Jacob I; Marrus, Scott B; Zellmer, Erik R; Weinheimer, Carla J; MacEwan, Matthew R; Cui, Sophia X; Nerbonne, Jeanne M; Efimov, Igor R
2013-01-01
Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice.
[Possibilities of minimal invasive cardiac catheter interventions in the dog].
Glaus, T M; Unterer, S; Tomsa, K; Baumgartner, C; Geissbühler, U; Gardelle, O; Reusch, C
2003-09-01
The therapeutic possibilities in veterinary cardiology have developed rapidly in the past few years. Whereas until recently cardiac intervention in dogs could only be performed by thoracotomy, new minimally invasive techniques are adopted. Procedures like balloondilatation of pulmonic stenosis, coil embolisation of patent ductus arteriosus, pacemaker implantation in symptomatic bradyarrhyhtmia, and palliative balloon pericardiotomy are becoming more and more established. These alternative interventional methods are attractive, because no postsurgical pain and no complications potentially associated with thoracotomy ensue. The knowledge of such new treatment modalities and particularly the indications for an intervention are prerequisites to apply them optimally and broadly.
Maglia, Giampiero; Curnis, Antonio; Brieda, Marco; Anaclerio, Matteo; Caccavo, Vincenzo; Bonfanti, Paolo; Melissano, Donato; Caravati, Fabrizio; Giovene, Lisa; Gargaro, Alessio
2015-10-01
Despite the fact that magnetic resonance (MR)-conditional pacemaker and lead systems have been introduced more than 5 years ago, it is still not clear whether they have actually facilitated the access of pacemaker patients to this important diagnostic tool. Factors limiting MR scans in daily practice in patients with MR-conditional cardiac implantable electronic device (CIED) systems may be related to organizational, cultural and sometimes legal aspects. The Really ProMRI registry is an ongoing survey designed to assess the annual rate of MR examinations in patients with MR-conditional implants, with either pacemakers or implantable cardioverter defibrillators, and to detect the main factors limiting MRI. The primary endpoint of the Really ProMRI registry is to assess the current access to MRI of patients with MR-conditional pacemaker or implantable cardioverter defibrillator systems during normal practice. Data in the literature reported a 17% annual incidence of medical conditions requiring MRI in CIED patients. The Really ProMRI registry has been designed to detect 4.5% absolute difference with an 80% statistical power, by recruiting 600 patients already implanted with MR-conditional CIED implant. Patients will be followed up for 1 year, during which they will be asked to refer any prescription, execution or denial of an MR examination by patient questionnaires and original source documents. The ongoing Really ProMRI registry will assess the actual rate of and factors limiting the access to MRI for patients with MR-conditional CIEDs.
Atrio-ventricular junction ablation and pacemaker treatment: a comparison between men and women.
Carnlöf, Carina; Insulander, Per; Jensen-Urstad, Mats; Iwarzon, Marie; Gadler, Fredrik
2018-06-01
To explore sex differences regarding indication for atrio-ventricular junction ablation (AVJ), choice of pacing system, complications to pacemaker treatment, long-term outcome, and cause of death after AVJ ablation. 700 patients who had undergone AVJ ablation between January 1990 and December 2010 were included. Data were retrieved from the patients´ medical records and the Swedish Pacemaker and Implantable Cardioverter-Defibrillator Registry. Information about admission to hospital and cause of death was retrieved from the National Board of Health and Welfare. Mean follow-up was 90 ± 64 months. Indication for AVJ ablation, choice of pacing system, and outcome after AVJ ablation differed between the sexes. The men had more often permanent atrial fibrillation, p = .0001, and a VVIR pacemaker or cardiac resynchronization therapy (CRT) implanted prior to ablation, p = .0001. Heart failure was present in 44% of the men vs. 28% of the women, p = .0001. LVEF decreased slightly in the whole cohort after the AVJ ablation. There were no sex differences in complication rates due to the pacemaker/ICD treatment, p = .3 or mortality due to AVJ ablation. In this long-term follow-up in patients with atrial fibrillation treated with AVJ ablation and pacing, indication, choice of pacing system, and morbidity differed but there were no sex differences regarding survival or primary cause of death found. The main factor influencing survival was age at the time of ablation. Women less often received treatment with ICD and/or CRT when indication was present compared with men.
Najib, Mohammad Q.; Vittala, Satya S.; Challa, Suresh; Raizada, Amol; Tondato, Fernando J.; Lee, Howard R.; Chaliki, Hari P.
2013-01-01
Patients with permanent pacemaker or automatic implantable cardioverter-defibrillator (AICD) leads have an increased prevalence of tricuspid regurgitation. However, the roles of cardiac rhythm and lead-placement duration in the development of severe tricuspid regurgitation are unclear. We reviewed echocardiographic data on 26 consecutive patients who had severe tricuspid regurgitation after permanent pacemaker or AICD placement; before treatment, they had no organic tricuspid valve disease, pulmonary hypertension, left ventricular dysfunction, or severe tricuspid regurgitation. We compared the results to those of 26 control subjects who had these same devices but no more than mild tricuspid regurgitation. The patients and control subjects were similar in age (mean, 81 ±6 vs 81 ±8 yr; P = 0.83), sex (male, 42% vs 46%; P = 0.78), and left ventricular ejection fraction (0.60 ±0.06 vs 0.58 ± 0.05; P = 0.4). The patients had a higher prevalence of atrial fibrillation (92% vs 65%; P=0.01) and longer median duration of pacemaker or AICD lead placement (49.5 vs 5 mo; P < 0.001). After adjusting for age, sex, and right ventricular systolic pressure by multivariate logistic regression analysis, we found that atrial fibrillation (odds ratio=6.4; P = 0.03) and duration of lead placement (odds ratio=1.5/yr; P = 0.001) were independently associated with severe tricuspid regurgitation. Out study shows that atrial fibrillation and longer durations of lead placement might increase the risk of severe tricuspid regurgitation in patients with permanent pacemakers or AICDs. PMID:24391312
The GIRK1 subunit potentiates G protein activation of cardiac GIRK1/4 hetero-tetramers
Touhara, Kouki K; Wang, Weiwei; MacKinnon, Roderick
2016-01-01
G protein gated inward rectifier potassium (GIRK) channels are gated by direct binding of G protein beta-gamma subunits (Gβγ), signaling lipids, and intracellular Na+. In cardiac pacemaker cells, hetero-tetramer GIRK1/4 channels and homo-tetramer GIRK4 channels play a central role in parasympathetic slowing of heart rate. It is known that the Na+ binding site of the GIRK1 subunit is defective, but the functional difference between GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers remains unclear. Here, using purified proteins and the lipid bilayer system, we characterize Gβγ and Na+ regulation of GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers. We find in GIRK4 homo-tetramers that Na+ binding increases Gβγ affinity and thereby increases the GIRK4 responsiveness to G protein stimulation. GIRK1/4 hetero-tetramers are not activated by Na+, but rather are in a permanent state of high responsiveness to Gβγ, suggesting that the GIRK1 subunit functions like a GIRK4 subunit with Na+ permanently bound. DOI: http://dx.doi.org/10.7554/eLife.15750.001 PMID:27074664
[Loss of capture by myocardial ischemia: A case report].
Sonou, A; Adjagba, P M; Hounkponou, M; Codjo, L; Houéhanou-Sonou, C; Assani, S; Yessoufou, T; Sacca, J; Houénassi, M
2017-02-01
We report the case of a patient with pacemaker who presented chest pain during exercise followed by fainting. He has a history of arterial hypertension and diabetes. The initial examination was normal; the ventricular stimulation threshold was 1.125 volts (V) and cardiac enzymes were normal. Stress test has reproduced chest pain followed by loss of pacemaker capture and asystole. Coronary angiography showed a tight stenosis of the proximal anterior interventricular artery dilated by a drug-eluting stent. The control of stress test was normal. A stent thrombosis eight days later led to an acute coronary syndrome with recurrent syncope due to the loss of ventricular capture. The ventricular pacing threshold was then 2.25V. After revascularization and stabilization of the patient's clinical status, this threshold returned to 1.125V. This clinic case has confirmed that coronary artery disease could increase pacing threshold. It also highlights the usefulness of automatic capture algorithms in coronary patients. The stress test cannot only help to detect coronary artery disease but also allows the optimization of programming the pacemaker. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Biological Effects of Electromagnetic Fields
2006-11-27
cerebral activity reflected by high levels of c-Fos- positive neurons in certain brain areas (14). The brain tissue of seizure proneness can be...radiation triggers seizures and increases cerebral c-Fos positivity in rats pretreated with subconvulsive doses of...psychiatric, cardiovascular or neurological diseases); or have a cardiac or cerebral pacemaker. They have no history of head, eye or thorax injury involving
Neuropeptide Secreted from a Pacemaker Activates Neurons to Control a Rhythmic Behavior
Wang, Han; Girskis, Kelly; Janssen, Tom; Chan, Jason P.; Dasgupta, Krishnakali; Knowles, James A.; Schoofs, Liliane; Sieburth, Derek
2013-01-01
Summary Background Rhythmic behaviors are driven by endogenous biological clocks in pacemakers, which must reliably transmit timing information to target tissues that execute rhythmic outputs. During the defecation motor program in C. elegans, calcium oscillations in the pacemaker (intestine), which occur about every 50 seconds, trigger rhythmic enteric muscle contractions through downstream GABAergic neurons that innervate enteric muscles. However, the identity of the timing signal released by the pacemaker and the mechanism underlying the delivery of timing information to the GABAergic neurons are unknown. Results Here we show that a neuropeptide-like protein (NLP-40) released by the pacemaker triggers a single rapid calcium transient in the GABAergic neurons during each defecation cycle. We find that mutants lacking nlp-40 have normal pacemaker function, but lack enteric muscle contractions. NLP-40 undergoes calcium-dependent release that is mediated by the calcium sensor, SNT-2/synaptotagmin. We identify AEX-2, the G protein-coupled receptor on the GABAergic neurons, as the receptor of NLP-40. Functional calcium imaging reveals that NLP-40 and AEX-2/GPCR are both necessary for rhythmic activation of these neurons. Furthermore, acute application of synthetic NLP-40-derived peptide depolarizes the GABAergic neurons in vivo. Conclusions Our results show that NLP-40 carries the timing information from the pacemaker via calcium-dependent release and delivers it to the GABAergic neurons by instructing their activation. Thus, we propose that rhythmic release of neuropeptides can deliver temporal information from pacemakers to downstream neurons to execute rhythmic behaviors. PMID:23583549
Recent advances in pacemaker and implantable defibrillator therapy for young patients.
Walsh, Edward P; Cecchin, Frank
2004-03-01
This review is intended to highlight major clinical advances over the past year related to (1). biventricular pacing as a treatment for dilated myopathy, (2). growing clinical experience with implantable cardioverter defibrillators in pediatrics, (3). technical advances in standard antibradycardia pacing, and (4). an appraisal of the newly updated ACC/AHA/NASPE guidelines for device implant in children and adolescents. Complex rhythm devices are being used more frequently in children. Biventricular pacing to improve ventricular contractility is a rapidly evolving technology that has now been applied to children and young adults with intraventricular conduction delay, such as bundle branch block after cardiac surgery. Implantable defibrillators are also being used for an expanding list of conditions, although lead dysfunction is seen as a fairly common complication in active young patients. Guidelines for device implantation have been developed, but the weight of evidence remains somewhat limited by the paucity of pediatric data in this field. Thanks to refinements in lead design and generator technology, coupled with rapidly expanding clinical indications, pacemakers and implantable defibrillators have become increasingly important components of cardiac therapy for young patients. Expanded multicenter clinical studies will be needed to develop more objective guidelines for use of this advanced technology.
Possible complication of bee stings and a review of the cardiac effects of bee stings.
Gupta, Prabha Nini; Kumar, B Krishna; Velappan, Praveen; Sudheer, M D
2016-11-01
We report the case of a patient who, ∼3 weeks after multiple bee stings, developed a prolonged heart block, syncope and cardiac arrest. This required a temporary pacemaker to be implanted, which was later replaced with a permanent pacemaker. An ECG taken following surgery for a fractured humerus 6 years earlier was reportedly normal. The patient had been a rubber tapper who walked ∼1.5 km/day, but after the bee attack he was no longer able to walk or get up from the bed without experiencing syncope. We presume that the bee venom caused these signs, as well as the resulting heart block, which persisted long after the bee sting had subsided. Since his coronary angiogram was normal we believe he had a Kounis type involvement of the cardiovascular system, namely profound coronary spasm that caused complete heart block that did not recover. Another probable reason for the complete heart block could have been that the bees had consumed the pollen of a rhododendron flower, causing 'grayanotoxin' poisoning and severe heart block. The other effects of bee sting are discussed briefly. 2016 BMJ Publishing Group Ltd.
Characterization of piezoelectric device for implanted pacemaker energy harvesting
NASA Astrophysics Data System (ADS)
Jay, Sunny; Caballero, Manuel; Quinn, William; Barrett, John; Hill, Martin
2016-10-01
Novel implanted cardiac pacemakers that are powered by energy harvesters driven by the cardiac motion and have a 40 year lifetime are currently under development. To satisfy space constraints and energy requirements of the device, silicon-based MEMS energy harvesters are being developed in the EU project (MANpower1). Such MEMS harvesters for vibration frequencies below 50 Hz have not been widely reported. In this paper, an analytical model and a 3D finite element model (FEM) to predict displacement and open circuit voltage, validated through experimental analysis using an off-the-shelf low frequency energy harvester, are presented. The harvester was excited through constant amplitude sinusoidal base displacement over a range of 20 to 70 Hz passing through its first mode natural frequency at 47 Hz. At resonance both models predict displacements with an error of less than 2% when compared to the experimental result. Comparing the two models, the application of the experimentally measured damping ratio differs for accurate displacement prediction and the differences in symmetry in the measured and modelled displacement and voltage data around the resonance frequency indicate the two piezoelectric voltage models use different fundamental equations.
Dubner, Sergio; Auricchio, Angelo; Steinberg, Jonathan S; Vardas, Panos; Stone, Peter; Brugada, Josep; Piotrowicz, Ryszard; Hayes, David L; Kirchhof, Paulus; Breithardt, Günter; Zareba, Wojciech; Schuger, Claudio; Aktas, Mehmet K; Chudzik, Michal; Mittal, Suneet; Varma, Niraj
2012-02-01
We are in the midst of a rapidly evolving era of technology-assisted medicine. The field of telemedicine provides the opportunity for highly individualized medical management in a way that has never been possible before. Evolving medical technologies using cardiac implantable devices (CIEDs) with capabilities for remote monitoring permit evaluation of multiple parameters of cardiovascular physiology and risk, including cardiac rhythm, device function, blood pressure values, the presence of myocardial ischaemia, and the degree of compensation of congestive heart failure. Cardiac risk, device status, and response to therapies can now be assessed with these electronic systems of detection and reporting. This document reflects the extensive experience from investigators and innovators around the world who are shaping the evolution of this rapidly expanding field, focusing in particular on implantable pacemakers (IPGs), implantable cardioverter-defibrillators (ICDs), devices for cardiac resynchronization therapy (CRT) (both, with and without defibrillation properties), loop recorders, and haemodynamic monitoring devices. This document covers the basic methodologies, guidelines for their use, experience with existing applications, and the legal and reimbursement aspects associated with their use. To adequately cover this important emerging topic, the International Society for Holter and Noninvasive Electrocardiology (ISHNE) and the European Heart Rhythm Association (EHRA) combined their expertise in this field. We hope that the development of this field can contribute to improve care of our cardiovascular patients.
Lupo, Pierpaolo; Cappato, Riccardo; Di Leo, Giovanni; Secchi, Francesco; Papini, Giacomo D E; Foresti, Sara; Ali, Hussam; De Ambroggi, Guido M G; Sorgente, Antonio; Epicoco, Gianluca; Cannaò, Paola M; Sardanelli, Francesco
2018-06-01
To investigate safety and diagnostic value of 1.5-T MRI in carriers of conventional pacemaker (cPM) or conventional implantable defibrillator (cICD). We prospectively compared cPM/cICD-carriers undergoing MRI (study group, SG), excluding those device-dependent or implanted <6 weeks before enrolment or prior to 01/01/2000, with cPM/cICD-carriers undergoing chest x-ray, CT or follow-up (reference group, RG). 142 MRI (55 cardiac) were performed in 120 patients with cPM (n=71) or cICD (n=71). In the RG 98 measurements were performed in 95 patients with cPM (n=40) or cICD (n=58). No adverse events were observed. No MRI prolonged/interrupted. All cPM/cICD were correctly reprogrammed after MRI without malfunctions. One temporary communication failure was observed in one cPM-carrier. Immediately after MRI, 12/14 device interrogation parameters did not change significantly (clinically negligible changes of battery voltage and cICD charging time), without significant variations for SG versus RG. Three-12 months after MRI, 9/11 device interrogation parameters did not change significantly (clinically negligible changes of battery impedance/voltage). Non-significant changes of three markers of myocardial necrosis. Non-cardiac MRI: 82/87 diagnostic without artefacts; 4/87 diagnostic with artefacts; 1/87 partially diagnostic. Cardiac MRI: in cPM-carriers, 14/15 diagnostic with artefacts, 1/15 partially diagnostic; in cICD-carriers, 9/40 diagnostic with artefacts, 22 partially diagnostic, nine non-diagnostic. A favourable risk-benefit ratio of 1.5-T MRI in cPM/cICD carriers was reported. • Cooperation between radiologists and cardiac electrophysiologists allowed safe 1.5-T MRI in cPM/cICD-carriers. • No adverse events for 142 MRI in 71 cPM-carriers and 71 cICD-carriers. • Ninety-nine per cent (86/87) of non-cardiac MRI in cPM/cICD-carriers were diagnostic. • All cPM-carrier cardiac MRIs had artefacts, 14 examinations diagnostic, 1 partially diagnostic. • Twenty-three per cent (9/40) of cardiac MRI in cICD-carriers were non-diagnostic.
Bonavent, Tina Bennett; Nielsen, Xiaohui Chen; Kristensen, Kjeld Skødebjerg; Ihlemann, Nikolaj; Moser, Claus; Christensen, Jens Jørgen
2016-01-01
Cardiobacterium hominis and Cardiobacterium valvarum are well known, though rare, etiologic agents of infective endocarditis. Cardiac devices are increasingly implanted. Two cases of infective episodes in pacemaker (PM) treated patients with respectively C. hominis and C. valvarum are presented. In one case blood-culture bottles yielded growth of C. hominis at two episodes with two years apart. At the second episode a vegetation was recognized at the PM lead and the PM device and lead was removed. In the C. valvarum case, echocardiography revealed a bicuspid aortic valve with severe regurgitation and a more than 1 cm sized vegetation. The cases illustrate the diversity in disease severity by Cardiobacterium species. Careful follow up has to be performed in order not to overlook a relatively silent relapsing infection.
[Sport for pacemaker patients].
Israel, C W
2012-06-01
Sport activity is an important issue in many patients with a pacemaker either because they performed sport activities before pacemaker implantation to reduce the cardiovascular risk or to improve the course of an underlying cardiovascular disease (e.g. coronary artery disease, heart failure) by sports. Compared to patients with an implantable cardioverter defibrillator (ICD) the risks from underlying cardiovascular disease (e.g. ischemia, heart failure), arrhythmia, lead dysfunction or inappropriate therapy are less important or absent. Sport is contraindicated in dyspnea at rest, acute heart failure, new complex arrhythmia, acute myocarditis and acute myocardial infarction, valvular disease with indications for intervention and surgery and comorbidities which prevent physical activity. Patients with underlying cardiovascular disease (including hypertension) should preferably perform types and levels of physical activity that are aerobic (with dynamic exercise) such as running, swimming, cycling instead of sport with high anaerobic demands and high muscular workload. In heart failure, studies demonstrated advantages of isometric sport that increases the amount of muscle, thereby preventing cardiac cachexia. Sport with a risk of blows to the chest or physical contact (e.g. boxing, rugby, martial arts) should be avoided. Implantation, programming and follow-up should respect specific precautions to allow optimal physical activity with a pacemaker including implantation of bipolar leads on the side contralateral to the dominant hand, individual programming of the upper sensor and tracking rate and regular exercise testing.
Tang, Gilbert H L; Kaple, Ryan; Cohen, Martin; Dutta, Tanya; Undemir, Cenap; Ahmad, Hasan; Poniros, Angelica; Bennett, Joanne; Feng, Cheng; Lansman, Steven
2017-02-03
Pacemaker lead-associated severe tricuspid regurgitation (TR) can lead to right heart failure and poor prognosis. Surgery in these patients carries significant morbidities. We describe a successful treatment of symptomatic severe TR by leadless pacemaker implantation followed by tricuspid valve (TV) repair with the MitraClip NT. A 71-year-old frail female with poor functional status, chronic atrial fibrillation and permanent pacemaker implantation in 2012 presented with symptomatic moderate-severe mitral regurgitation (MR) and severe TR with the pacemaker lead as the culprit. She was deemed extreme risk for double valve surgery and, because of her pacemaker dependency, the decision was to stage her interventions first with transcatheter mitral repair, then laser lead extraction and leadless pacemaker implantation to free the TV from tethering, then TV repair. An obstructive LAD lesion was identified and treated during mitral repair with the MitraClip NT. The Micra leadless pacemaker implantation and subsequent TV repair with the MitraClip NT were successful and the patient's MR improved to mild and TR to moderate, respectively. We report here a first successful transcatheter strategy to treat lead-associated severe TR by leadless pacemaker and MitraClip. Removing the pacemaker lead relieved leaflet tethering and improved the reparability of the TV.
Safety of Magnetic Resonance Imaging in Patients with Cardiac Devices.
Nazarian, Saman; Hansford, Rozann; Rahsepar, Amir A; Weltin, Valeria; McVeigh, Diana; Gucuk Ipek, Esra; Kwan, Alan; Berger, Ronald D; Calkins, Hugh; Lardo, Albert C; Kraut, Michael A; Kamel, Ihab R; Zimmerman, Stefan L; Halperin, Henry R
2017-12-28
Patients who have pacemakers or defibrillators are often denied the opportunity to undergo magnetic resonance imaging (MRI) because of safety concerns, unless the devices meet certain criteria specified by the Food and Drug Administration (termed "MRI-conditional" devices). We performed a prospective, nonrandomized study to assess the safety of MRI at a magnetic field strength of 1.5 Tesla in 1509 patients who had a pacemaker (58%) or an implantable cardioverter-defibrillator (42%) that was not considered to be MRI-conditional (termed a "legacy" device). Overall, the patients underwent 2103 thoracic and nonthoracic MRI examinations that were deemed to be clinically necessary. The pacing mode was changed to asynchronous mode for pacing-dependent patients and to demand mode for other patients. Tachyarrhythmia functions were disabled. Outcome assessments included adverse events and changes in the variables that indicate lead and generator function and interaction with surrounding tissue (device parameters). No long-term clinically significant adverse events were reported. In nine MRI examinations (0.4%; 95% confidence interval, 0.2 to 0.7), the patient's device reset to a backup mode. The reset was transient in eight of the nine examinations. In one case, a pacemaker with less than 1 month left of battery life reset to ventricular inhibited pacing and could not be reprogrammed; the device was subsequently replaced. The most common notable change in device parameters (>50% change from baseline) immediately after MRI was a decrease in P-wave amplitude, which occurred in 1% of the patients. At long-term follow-up (results of which were available for 63% of the patients), the most common notable changes from baseline were decreases in P-wave amplitude (in 4% of the patients), increases in atrial capture threshold (4%), increases in right ventricular capture threshold (4%), and increases in left ventricular capture threshold (3%). The observed changes in lead parameters were not clinically significant and did not require device revision or reprogramming. We evaluated the safety of MRI, performed with the use of a prespecified safety protocol, in 1509 patients who had a legacy pacemaker or a legacy implantable cardioverter-defibrillator system. No long-term clinically significant adverse events were reported. (Funded by Johns Hopkins University and the National Institutes of Health; ClinicalTrials.gov number, NCT01130896 .).
21 CFR 870.3640 - Indirect pacemaker generator function analyzer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indirect pacemaker generator function analyzer. 870.3640 Section 870.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3640...
Fukuta, Motoyuki; Mizutani, Noboru; Waseda, Katsuhisa
2005-01-01
This study was designed to determine the susceptibility of implanted cardiac arrhythmia devices to electromagnetic interference in and around a magnetically levitated linear motor car [High-Speed Surface Transport (HSST)]. During the study, cardiac devices were connected to a phantom model that had similar characteristics to the human body. Three pacemakers from three manufacturers and one implantable cardioverter-defibrillator (ICD) were evaluated in and around the magnetically levitated vehicle. The system is based on a normal conductive system levitated by the attractive force of magnets and propelled by a linear induction motor without wheels. The magnetic field strength at 40 cm from the vehicle in the nonlevitating state was 0.12 mT and that during levitation was 0.20 mT. The magnetic and electric field strengths on a seat close to the variable voltage/variable frequency inverter while the vehicle was moving and at rest were 0.13 mT, 2.95 V/m and 0.04 mT, 0.36 V/m, respectively. Data recorded on a seat close to the reactor while the vehicle was moving and at rest were 0.09 mT, 2.45 V/m and 0.05 mT, 1.46 V/m, respectively. Measured magnetic and electric field strengths both inside and outside the linear motor car were too low to result in device inactivation. No sensing, pacing, or arrhythmic interactions were noted with any pacemaker or ICD programmed in either bipolar and unipolar configurations. In conclusion, our data suggest that a permanent programming change or a device failure is unlikely to occur and that the linear motor car system is probably safe for patients with one of the four implanted cardiac arrhythmia devices used in this study under the conditions tested.
Vamos, Mate; Erath, Julia W; Benz, Alexander P; Bari, Zsolt; Duray, Gabor Z; Hohnloser, Stefan H
2017-03-01
Two leadless pacemaker (PM) systems were recently developed to avoid pocket- and lead-related complications. As leadless PMs are implanted with a large delivery catheter, cardiac perforation remains a major safety concern. We aimed to provide a literature review on incidence of cardiac perforation with conventional and with leadless PM systems. A systematic review over the last 25 years for studies reporting data on PM lead perforation was performed. Findings were synthesized descriptively. Where control groups were available, data were meta-analyzed to identify important clinical risk factors. A total of 28 studies comprising 60,744 patients undergoing conventional PM implantation were analyzed. The incidence of lead perforation ranged from 0% to 6.37% (mean 0.82%, weighted mean 0.31%, median of 0.40%). There was no significant difference in perforation risk between atrial and ventricular electrodes (POR 0.72, 95% confidence interval [CI], 0.28-1.87, P = 0.50) and between MRI conditional and conventional leads (POR 5.93, 95% CI, 0.72-48.76, P = 0.10). The use of active fixation leads (POR 4.25, 95% CI, 1.00-17.95, P = 0.05) and utilization of DDD versus VVI PM systems (POR 3.50, 95% CI, 1.48-8.28, P < 0.01) were associated with higher rates of perforation. In the 2 leadless PM studies, the incidence of cardiac perforation was 1.52% for each. PM lead perforation rates vary in individual studies with an overall low incidence. Leadless PMs seem to be associated with a slightly higher perforation risk, most likely reflecting a learning curve effect of this novel technology. © 2016 Wiley Periodicals, Inc.
A Fully Implantable Pacemaker for the Mouse: From Battery to Wireless Power
Zellmer, Erik R.; Weinheimer, Carla J.; MacEwan, Matthew R.; Cui, Sophia X.; Nerbonne, Jeanne M.; Efimov, Igor R.
2013-01-01
Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice. PMID:24194832
Effect of monopolar radiofrequency energy on pacemaker function.
Govekar, Henry R; Robinson, Thomas N; Varosy, Paul D; Girard, Guillaume; Montero, Paul N; Dunn, Christina L; Jones, Edward L; Stiegmann, Greg V
2012-10-01
This study aimed to quantify the clinical parameters of mono- and bipolar instruments that inhibit pacemaker function. The specific aims were to quantify pacer inhibition resulting from the monopolar instrument by altering the generator power setting, the generator mode, the distance between the active electrode and the pacemaker, and the location of the dispersive electrode. A transvenous ventricular lead pacemaker overdrive paced the native heart rate of an anesthetized pig. The primary outcome variable was pacer inhibition quantified as the number of beats dropped by the pacemaker during 5 s of monopolar active electrode activation. Lowering the generator power setting from 60 to 30 W decreased the number of dropped paced events (2.3 ± 1.2 vs 1.6 ± 0.8 beats; p = 0.045). At 30 W of power, use of the cut mode decreased the number of dropped paced beats compared with the coagulation mode (0.6 ± 0.5 vs 1.6 ± 0.8; p = 0.015). At 30 W coagulation, firing the active electrode at different distances from the pacemaker generator (3.75, 7.5, 15, and 30 cm) did not change the number of dropped paced beats (p = 0.314, analysis of variance [ANOVA]). The dispersive electrode was placed in four locations (right/left gluteus, right/left shoulder). More paced beats were dropped when the current vector traveled through the pacemaker/leads than when it did not (1.5 ± 1.0 vs 0.2 ± 0.4; p < 0.001). Clinical parameters that reduce the inhibition of a pacemaker by monopolar instruments include lowering the generator power setting, using cut (vs coagulation) mode, and locating the dispersive electrode so the current vector does not traverse the pacemaker generator or leads.
Opthof, Tobias
2007-02-01
The sinus node is an inhomogeneous structure. In the embryonic heart all myocytes have sinus node type pacemaker channels (I (f)) in their sarcolemma. Shortly before birth, these channels disappear from the ventricular myocytes. The response of the adult sinus node to changes in the interstitium, in particular to (neuro)transmitters, results from the interplay between the responses of all of its constituent cells. The response of the whole sinus node cannot be simply deduced from these cellular responses, because all cells have different responses to specific agonists. A biological pacemaker will be more homogeneous. Therefore it can be anticipated that tuning of cycle length may be problematic. It is discussed that efforts to create a biological pacemaker responsive to vagal stimulation, may be counterproductive, because it may have the potential risk of 'standstill' of the biological pacemaker. A normal sinus node remains spontaneously active at high concentrations of acetylcholine, because it has areas that are unresponsive to acetylcholine. The same is pertinent to other substances with a negative chronotropic effect. Such functional inhomogeneity is lacking in biological pacemakers.
Pacemaker failure associated with therapeutic radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, C.; Mutter, M.
1988-11-01
A 48-year-old white man with a multiprogrammable Intramedics 259-01 pacemaker was treated for inoperable lung cancer with a course of cobalt-60 radiotherapy (total 3500 rad). Several weeks subsequent to his last radiation treatment, the patient presented to the emergency department with chest and abdominal pain, shortness of breath, hypotension, and tachycardia. A paced tachycardia was noted, and application of a magnet over the pacemaker completely inhibited its function, allowing a normal sinus rhythm to ensue and the patient's symptoms to be relieved. Pacemaker failure probably was a complication of radiotherapy.
Cho, Eun Jeong; Park, Seung-Jung; Park, Kyoung Min; On, Young Keun; Kim, June Soo
2016-01-15
Prolongation of corrected QT (QTc) interval reflects an increased risk of fatal arrhythmia and cardiac death in various populations. However, it is not clear whether the paced-QTc (p-QTc) interval is associated with new-onset left ventricular systolic dysfunction (new-LVSD) or cardiac death. In 491 consecutive patients (64 ± 14 years) with preserved LV ejection fraction (64 ± 7%), the p-QTc interval was measured within 2 weeks after PPM implantation. We assessed the rates of new-LVSD and cardiac death based on the degree of p-QTc interval. During the follow-up period (78 ± 51 months), new-LVSD and cardiac death were identified in 53 (10.8%) and 26 (5.3%) patients, respectively. Patients with new-LVSD had more frequent atrioventricular block (P=0.041), a higher percentage of ventricular pacing (P=0.005), a longer p-QRS duration (P<0.001), and more prolonged p-QTc interval (P<0.001) compared to those without new-LVSD. There was a graded increase in the rates of new-LVSD (P<0.001) and cardiac death (P=0.001) from the patients in the lowest to those in the highest tertile of the p-QTc interval. Additionally, the incidence of cardiac death was significantly elevated especially in the patients with new-LVSD and wider p-QTc interval. In Cox regression analyses, the p-QTc interval was independently associated with new-LVSD and cardiac death even after adjusted with various relevant confounding factors. Prolonged p-QTc interval was closely associated with new-LVSD and cardiac death after PPM implantation in patients with preserved LV systolic function. The rate of cardiac death significantly increased especially in patients who showed more p-QTc widening along with new-LVSD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Elber Duverger, James; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe
2014-11-01
Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction-diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh-Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation.
NASA Astrophysics Data System (ADS)
Hendabadi, Sahar; Martinez-Legazpi, Pablo; Benito, Yolanda; Bermejo, Javier; Del Alamo, Juan Carlos; Shadden, Shawn
2013-11-01
Cardiac resynchronization therapy (CRT) is used to help restore coordinated pumping of the ventricles by overcoming delays in electrical conduction due to cardiac disease. This is accomplished by a specialized cardiac pacemaker that is able to adjust the atrioventricular (AV) delay.A major clinical challenge is to adjust the pacing strategy to best coordinate the blood flow mechanics of ventricular filling and ejection. To this end, we have studied the difference in the vortex formation and its evolution inside the left ventricle (LV) for 4 different AV delays in a cohort of patients with implanted pacemakers. A reconstruction algorithm was used to obtain 2D velocity over the apical long-axis view of the LV from color Doppler and B-mode ultrasound data. To study blood transport, we have identified Lagrangian coherent structures to determine moving boundaries of the blood volumes injected to the LV in diastole and ejected to the aorta in systole. In all cases, we have analyzed the differences in filling and ejection patterns and the blood transport during the E-wave and A-wave formation.Finally we have assessed the influence of the AV delay on 2 indices of stasis, direct flow and residence time.The findings shed insight to the optimization of AV delays in patients undergoing CRT. NIH award 5R21HL108268 and grants PIS09/02603 and RD06/0010 from the Plan Nacional de Investigacion Cientifica, Spain.
Mairesse, Georges H; Braunschweig, Frieder; Klersy, Katherine; Cowie, Martin R; Leyva, Francisco
2015-05-01
Remote monitoring (RM) of cardiac implantable electronic devices (CIEDs) permits early detection of arrhythmias, device, and lead failure and may also be useful in risk-predicting patient-related outcomes. Financial benefits for patients and healthcare organizations have also been shown. We sought to assess the implementation and funding of RM of CIEDs, including conventional pacemakers (PMs), implantable cardioverter defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices in Europe. Electronic survey from 43 centres in 15 European countries. In the study sample, RM was available in 22% of PM patients, 74% of ICD patients, and 69% of CRT patients. The most significant perceived benefits were the early detection of atrial arrhythmias in pacemaker patients, lead failure in ICD patients, and worsening heart failure in CRT patients. Remote monitoring was reported to lead a reduction of in-office follow-ups for all devices. The most important reported barrier to the implementation of RM for all CIEDs was lack of reimbursement (80% of centres). Physicians regard RM of CIEDs as a clinically useful technology that affords significant benefits for patients and healthcare organizations. Remote monitoring, however, is perceived as increasing workload. Reimbursement for RM is generally perceived as a major barrier to implementation. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
A cardiac implantable device infection by Raoultella planticola in an immunocompromized patient.
Adjodah, Chandra; D'Ivernois, Chistophe; Leyssene, David; Berneau, Jean-Baptiste; Hemery, Yann
2017-02-01
Introduction. Infection of cardiac implantable electronic devices is a severe condition associated with high mortality, particularly in patients who are dependent upon heart-pacing devices. Staphylococci are found in 70 % of reported cases. Case presentation. We report the case of a cardiac-pacemaker infection in a 79-year-old man, cumulating a history of rheumatoid arthritis treated by corticosteroids and methotrexate by a recently identified micro-organism: Raoultella planticola . He presented local signs of infection on his VVI pacemaker implantation site and underwent urgent pocket device replacement under cefamandole antibioprophylaxis. On incision thick pus oozed out. It was necessary to perform a complete hardware extraction comprising the pulse generator and the ancient lead. Pus was inoculated into aerobic and anaerobic culture vials and Gram staining unveiled Gram-negative rods. Microbiology analysis identified the organism as R. planticola. A new pacing device was inserted on the contrlateral pectoral region. Ciprofloxacin enabled full recovery. A literature review concerning this pathogen revealed that it is involved in severe infections such as bloodstream infections, peritonitis, cellulitis, pneumonia and lung abscesses, and urinary tract infections. In these case reports, underlying co-morbidities were identified such as solid active neoplasia, recent chemotherapy, corticosteroids, solid-organ-recipient patients and recent open surgery. Conclusion. R. planticola is a serious emerging pathogen and contributes to the burden of various infectious conditions. Its pathogenicity and occurrence should be known by clinicians and a high level of awareness is necessary to precisely identify it provide the correct antibiotic regimen.
Management of radiation therapy patients with cardiac defibrillator or pacemaker.
Salerno, Francesca; Gomellini, Sara; Caruso, Cristina; Barbara, Raffaele; Musio, Daniela; Coppi, Tamara; Cardinale, Mario; Tombolini, Vincenzo; de Paula, Ugo
2016-06-01
The increasing growth of population with cardiac implantable electronic devices (CIEDs) such as Pacemaker (PM) and Implantable Cardiac Defibrillators (ICD), requires particular attention in management of patients needing radiation treatment. This paper updates and summarizes some recommendations from different international guidelines. Ionizing radiation and/or electromagnetic interferences could cause device failure. Current approaches to treatment in patients who have these devices vary among radiation oncology centres. We refer to the German Society of Radiation Oncology and Cardiology guidelines (ed. 2015); to the Society of Cardiology Australia and New Zealand Statement (ed. 2015); to the guidelines in force in the Netherlands (ed. 2012) and to the Italian Association of Radiation Oncology recommendations (ed. 2013) as reported in the guidelines for the treatment of breast cancer in patients with CIED. Although there is not a clear cut-off point, risk of device failure increases with increasing doses. Cumulative dose and pacing dependency have been combined to categorize patients into low-, medium- and high-risk groups. Measures to secure patient safety are described for each category. The use of energy ≤6MV is preferable and it's strongly recommended not to exceed a total dose of 2 Gy to the PM and 1 Gy for ICD. Given the dangers of device malfunction, radiation oncology departments should adopt all the measures designed to minimize the risk to patients. For this reason, a close collaboration between cardiologist, radiotherapist and physicist is necessary.
Membrane currents underlying activity in frog sinus venosus
Brown, Hilary F.; Giles, Wayne; Noble, Susan J.
1977-01-01
1. The spontaneous electrical activity of small strips of muscle from the sinus venosus region of the heart of Rana catesbeiana was investigated using the double sucrose gap technique. The voltage clamp was used to record the ionic currents underlying the pace-maker depolarization and the action potential. 2. The records of spontaneous electrical activity are very similar to those obtained from the sinus venosus using micro-electrodes. Moreover, the pace-maker activity is almost completely insensitive to tetrodotoxin (TTX) at 2·0 × 10-6 g/ml., which suggests that the pace-maker responses can be classified as primary, as opposed to follower pacing. 3. In response to short rectangular depolarizing voltage clamp pulses, only one inward current is activated. This current is almost completely insensitive to TTX but can be blocked by manganese ions. It appears, therefore, to be equivalent to the slow inward (Ca2+/Na+) current, Isi, of other cardiac tissues. The threshold for Isi is near to the maximum diastolic potential, indicating that it must be activated during the pace-maker depolarization. 4. Interruption of the normal pace-maker depolarization by rapid activation of the voltage clamp circuit reveals the time-dependent decay of outward current. This current reverses between -75 and -90 mV and, therefore, is probably carried mainly by potassium ions. 5. Outward current decay is not a simple exponential, and Hodgkin—Huxley analysis suggests that two distinct components of outward current may be present. One of these is activated in the potential range of the pace-maker depolarization and the other at more positive potentials. Both outward currents reach full, steady-state activation at about zero mV, i.e. within the `plateau' range of the sinus action potential. 6. These results are compared with other recently published voltage clamp data from the rabbit sino—atrial node. 7. A hypothesis for the generation of pace-maker activity is presented which involves (i) decay of outward current and (ii) activation of the slow inward current, Isi. PMID:303699
Permanent epicardial pacing in pediatric patients: 12-year experience at a single center.
Kwak, Jae Gun; Kim, Soo-Jin; Song, Jin Young; Choi, Eun Young; Lee, Sang Yoon; Shim, Woo Sup; Lee, Chang-Ha; Lee, Cheul; Park, Chun Soo
2012-02-01
Permanent cardiac pacing is not often done in children, and when done is usually accomplished through epicardial pacing. We reviewed a 12-year experience with the implantation of epicardial pacemakers by our clinical group. Fifty-three patients who underwent their first implantation of an epicardial pacemaker before the age of 18 years and between 1997 and 2009 were included in our study. The mean age of the patients at the time of first pacemaker implantation was 5.7±4.8 years. Indications for pacemaker implantation included postoperative or congenital atrioventricular block and sinus node dysfunction. The patients underwent 105 operations for the replacement of pacemaker pulse generators and 75 operations for the replacement of pacemaker leads. The most commonly used generator mode was the rate-responsive accelerometer-based (DDDR) mode, which was used in 40.9% of the patients. We used more non-steroid-eluting leads (70.1%) than steroid-eluting leads (29.1%). The overall duration of follow-up in the study was 8.0±4.5 years (range, 2.1 months to approximately 17.0 years). Freedom from the need for generator replacement was 98.0%, 60.7%, and 11.1% at 1, 5, and 8 years, respectively. A tendency toward early generator exhaustion was observed among younger patients (p=0.058). The generator mode used for pacing did not significantly affect generator longevity. Freedom from the need for lead replacement was 98.3%, 83.8%, and 63.6% at 1, 5, and 10 years, respectively. The mean longevity of the leads used in the study was 10.8±0.8 years. Neither patient age at the time of lead implantation nor type of lead significantly affected lead longevity. Lead longevity was sufficiently long and did not vary significantly according to type of lead. Generator longevity was not affected by lead type, generator mode, or patient age at the time of pacemaker implantation. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Perinatal outcome in fetuses with heterotaxy syndrome and atrioventricular block or bradycardia.
Escobar-Diaz, Maria C; Tworetzky, Wayne; Friedman, Kevin; Lafranchi, Terra; Fynn-Thompson, Francis; Alexander, Mark E; Mah, Douglas Y
2014-08-01
Congenital atrioventricular (AV) block is commonly associated with heterotaxy syndrome; together they have reportedly low survival rates (10-25%). However, information about perinatal outcome and predictors of non-survival after prenatal diagnosis of this association is scarce. Therefore, we studied fetuses with heterotaxy syndrome and bradycardia or AV-block diagnosed between 1995 and 2011, and analyzed pre and post-natal variables. The primary outcome was death and the secondary outcome was pacemaker placement. Of the 154 fetuses with heterotaxy syndrome, 91 had polysplenia syndrome, 22/91(24%) with bradycardia or AV-block. Thirteen (59%) patients had sinus bradycardia at diagnosis, 8 (36%) complete AV block, and 1 (5%) second-degree AV-block. Three patients elected for termination of pregnancy (3/22, 14%), 4 had spontaneous fetal demise (4/22, 18%), and 15 (15/22, 68%) were live-born. Of the fetuses with bradycardia/AV-block, 30% presented with hydrops, 20% had ventricular rates <55 beats/min, and 10% had cardiac dysfunction. Excluding termination of pregnancy, 15/19 fetuses (79%) survived to birth. Among the 15 live-born patients, 4 had bradycardia and 11 had AV-block. A further 3 patients died in infancy, all with AV-block who required pacemakers in the neonatal period. Thus, the 1-year survival rate, excluding termination of pregnancy, was 63% (12/19). Of the remaining 12 patients, 9 required pacemaker. Predictors of perinatal death included hydrops (p < 0.0001), ventricular dysfunction (p = 0.002), prematurity (p = 0.04), and low ventricular rates (p = 0.04). In conclusion, we found a higher survival rate (63%) than previously published in patients with heterotaxy syndrome and AV block or bradycardia diagnosed prenatally. Hydrops, cardiac dysfunction, prematurity and low ventricular rates were predictors of death.
Perinatal Outcome in Fetuses with Heterotaxy Syndrome and Atrioventricular Block or Bradycardia
Tworetzky, Wayne; Friedman, Kevin; Lafranchi, Terra; Fynn-Thompson, Francis; Alexander, Mark E.; Mah, Douglas Y.
2015-01-01
Congenital atrioventricular (AV) block is commonly associated with heterotaxy syndrome; together they have reportedly low survival rates (10–25 %). However, information about perinatal outcome and predictors of nonsurvival after prenatal diagnosis of this association is scarce. Therefore, we studied fetuses with heterotaxy syndrome and bradycardia or AV-block diagnosed between 1995 and 2011, and analyzed pre and post-natal variables. The primary outcome was death and the secondary outcome was pacemaker placement. Of the 154 fetuses with heterotaxy syndrome, 91 had polysplenia syndrome, 22/91(24 %) with bradycardia or AV-block. Thirteen (59 %) patients had sinus bradycardia at diagnosis, 8 (36 %) complete AV block, and 1 (5 %) second-degree AV-block. Three patients elected for termination of pregnancy (3/22, 14 %), 4 had spontaneous fetal demise (4/22, 18 %), and 15 (15/22, 68 %) were live-born. Of the fetuses with bradycardia/AV-block, 30 % presented with hydrops, 20 % had ventricular rates <55 beats/min, and 10 % had cardiac dysfunction. Excluding termination of pregnancy, 15/19 fetuses (79 %) survived to birth. Among the 15 live-born patients, 4 had bradycardia and 11 had AV-block. A further 3 patients died in infancy, all with AV-block who required pacemakers in the neonatal period. Thus, the 1-year survival rate, excluding termination of pregnancy, was 63 % (12/19). Of the remaining 12 patients, 9 required pacemaker. Predictors of perinatal death included hydrops (p < 0.0001), ventricular dysfunction (p = 0.002), prematurity (p = 0.04), and low ventricular rates (p = 0.04). In conclusion, we found a higher survival rate (63 %) than previously published in patients with heterotaxy syndrome and AV block or bradycardia diagnosed prenatally. Hydrops, cardiac dysfunction, prematurity and low ventricular rates were predictors of death. PMID:24509635
Nanostructured cavity devices for extracellular stimulation of HL-1 cells.
Czeschik, Anna; Rinklin, Philipp; Derra, Ulrike; Ullmann, Sabrina; Holik, Peter; Steltenkamp, Siegfried; Offenhäusser, Andreas; Wolfrum, Bernhard
2015-01-01
Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network.
STEM promotion through museum exhibits on cardiac monitoring & cardiac rhythm management.
Countryman, Jordan D; Dow, Douglas E
2014-01-01
Formal education in science, technology, engineering and math (STEM) does not successfully engage all of the students who have potential to become skilled in STEM activities and careers. Museum exhibits may be able to reach and engage a broader range of the public. STEM Exhibits that are both understandable and capture the imagination of viewers may contribute toward increased interest in STEM activities. One such topic for such an exhibit could be cardiac pacemakers and cardioverter defibrillators that sustain life. Although museums have existed for centuries, the available types of exhibit designs has dramatically increased in recent decades due to innovations in technology. Science and technology museums have especially taken advantage of the progression of exhibit design to developed new ways to communicate to their viewers. These novel presentation tools allow museums to more effectively convey to and engage viewers. This paper examines the techniques employed by museums in exhibits and considers the practices of several museums with exhibits related to cardiac monitoring (CM) and cardiac rhythm management (CRM).
Neuropeptide secreted from a pacemaker activates neurons to control a rhythmic behavior.
Wang, Han; Girskis, Kelly; Janssen, Tom; Chan, Jason P; Dasgupta, Krishnakali; Knowles, James A; Schoofs, Liliane; Sieburth, Derek
2013-05-06
Rhythmic behaviors are driven by endogenous biological clocks in pacemakers, which must reliably transmit timing information to target tissues that execute rhythmic outputs. During the defecation motor program in C. elegans, calcium oscillations in the pacemaker (intestine), which occur about every 50 s, trigger rhythmic enteric muscle contractions through downstream GABAergic neurons that innervate enteric muscles. However, the identity of the timing signal released by the pacemaker and the mechanism underlying the delivery of timing information to the GABAergic neurons are unknown. Here, we show that a neuropeptide-like protein (NLP-40) released by the pacemaker triggers a single rapid calcium transient in the GABAergic neurons during each defecation cycle. We find that mutants lacking nlp-40 have normal pacemaker function, but lack enteric muscle contractions. NLP-40 undergoes calcium-dependent release that is mediated by the calcium sensor, SNT-2/synaptotagmin. We identify AEX-2, the G-protein-coupled receptor on the GABAergic neurons, as the receptor for NLP-40. Functional calcium imaging reveals that NLP-40 and AEX-2/GPCR are both necessary for rhythmic activation of these neurons. Furthermore, acute application of synthetic NLP-40-derived peptide depolarizes the GABAergic neurons in vivo. Our results show that NLP-40 carries the timing information from the pacemaker via calcium-dependent release and delivers it to the GABAergic neurons by instructing their activation. Thus, we propose that rhythmic release of neuropeptides can deliver temporal information from pacemakers to downstream neurons to execute rhythmic behaviors. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sanna, M Germana; Vincent, Kevin P; Repetto, Emanuela; Nguyen, Nhan; Brown, Steven J; Abgaryan, Lusine; Riley, Sean W; Leaf, Nora B; Cahalan, Stuart M; Kiosses, William B; Kohno, Yasushi; Brown, Joan Heller; McCulloch, Andrew D; Rosen, Hugh; Gonzalez-Cabrera, Pedro J
2016-01-01
The molecular pharmacology of the G protein-coupled receptors for sphingosine 1-phosphate (S1P) provides important insight into established and new therapeutic targets. A new, potent bitopic S1P3 antagonist, SPM-354, with in vivo activity, has been used, together with S1P3-knockin and S1P3-knockout mice to define the spatial and functional properties of S1P3 in regulating cardiac conduction. We show that S1P3 is a key direct regulator of cardiac rhythm both in vivo and in isolated perfused hearts. 2-Amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol in vivo and S1P in isolated hearts induced a spectrum of cardiac effects, ranging from sinus bradycardia to complete heart block, as measured by a surface electrocardiogram in anesthetized mice and in volume-conducted Langendorff preparations. The agonist effects on complete heart block are absent in S1P3-knockout mice and are reversed in wild-type mice with SPM-354, as characterized and described here. Homologous knockin of S1P3-mCherry is fully functional pharmacologically and is strongly expressed by immunohistochemistry confocal microscopy in Hyperpolarization Activated Cyclic Nucleotide Gated Potassium Channel 4 (HCN4)-positive atrioventricular node and His-Purkinje fibers, with relative less expression in the HCN4-positive sinoatrial node. In Langendorff studies, at constant pressure, SPM-354 restored sinus rhythm in S1P-induced complete heart block and fully reversed S1P-mediated bradycardia. S1P3 distribution and function in the mouse ventricular cardiac conduction system suggest a direct mechanism for heart block risk that should be further studied in humans. A richer understanding of receptor and ligand usage in the pacemaker cells of the cardiac system is likely to be useful in understanding ventricular conduction in health, disease, and pharmacology. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Seckel syndrome with severe sinus bradycardia.
Ramasamy, Chandramohan; Satheesh, Santhosh; Selvaraj, Raja
2015-03-01
Seckel syndrome is an uncommon form of microcephalic dwarfism. The authors report a young boy with Seckel syndrome who presented with severe sinus bradycardia with symptoms of syncope and presyncope. Implantation of a permanent pacemaker was necessary in view of the severe symptoms. Although uncommon, cardiac abnormalities have been rarely reported in Seckel syndrome. This is the one of the few reports of rhythm abnormalities in this condition.
The use of lithium batteries in biomedical devices
NASA Astrophysics Data System (ADS)
Owens, Boone B.
1989-06-01
Lithium batteries have played an important role in the development of useful implantable biomedical devices. The cardiac pacemaker is the most well known of these devices and high energy, long-life reliable lithium primary cells have effectively replaced all of the alkaline cells previously used in these electronic systems. The recent development of higher power devices such as drug pumps and cardiac defibrillators require the use of batteries with higher energy and power capabilities. High rate rechargeable batteries that can be configured as flat prismatic cells would be especially useful in some of these new applications. Lithium polymer electrolyte batteries may find a useful role in these new areas.
Cardiac arrhythmias during exercise testing in healthy men.
NASA Technical Reports Server (NTRS)
Beard, E. F.; Owen, C. A.
1973-01-01
Clinically healthy male executives who participate in a long-term physical conditioning program have demonstrated cardiac arrhythmia during and after periodic ergometric testing at submaximal and maximal levels. In 1,385 tests on 248 subjects, it was found that 34% of subjects demonstrated an arrhythmia at some time and 13% of subjects developed arrhythmia on more than one test. Premature systoles of ventricular origin were most common, but premature systoles of atrial origin, premature systoles of junctional origin, paroxysmal atrial tachycardia, atrioventricular block, wandering pacemaker, and pre-excitation were also seen. Careful post-test monitoring and pulse rate regulated training sessions are suggested for such programs.
[Temporary Pacemakers - Step by Step].
Graf, Matthias; Stiller, Patrick; Karch, Martin
2018-06-01
Symptomatic bradycardia is usually caused by abnormalities of atrioventricular conduction or sinus node dysfunction. Reversible and irreversible causes must be considered.Temporary pacemakers are used in the emergency treatment in case of severe bradyarrhythmia.They help to bridge the acute phase until spontaneous restoration of atrioventricular or sinus node function or -if spontaneous restoration fails- until a permanent pacemaker system was implanted.In the following article we discuss the commonly used temporary pacemaker systems. We demonstrate their use and correct programming by an illustrated step by step explanation. For troubleshooting a flow chart was added. © Georg Thieme Verlag KG Stuttgart · New York.
Pacemaker limitation of tachycardia in hypovolemic shock.
Sparacino, Nicholas; Geninatti, Marilyn; Moore, Gregory
2011-11-01
A 49-year-old white man was admitted to the emergency department with nausea and diarrhea of 11 hours duration. He had experienced crampy abdominal pain as well. He reported that his stools had been dark and malodorous. He had no prior history of gastrointestinal disorders, nor travel, unusual oral or liquid intake. There was a remote history of alcohol abuse, but no hepatitis or cirrhosis. Recent alcohol intake was denied by the patient. He had no medical allergies. His past medical history was pertinent for a history of hypertension, congestive heart failure, and a dual chamber pacemaker insertion. There was no history of diabetes mellitus, smoking, or myocardial infarction. Medications included lisinopril, a small dose of aspirin daily, and thyroid supplement. Family history was negative for cardiomyopathy, sudden cardiac death, gastric or duodenal ulcers, colon cancer, or any congenital abnormalities.
Correlative studies of structural and functional imaging in primary progressive aphasia.
Panegyres, P K; McCarthy, M; Campbell, A; Lenzo, N; Fallon, M; Thompson, J
2008-01-01
To compare and contrast structural and functional imaging in primary progressive aphasia (PPA). A cohort of 8 patients diagnosed with PPA presenting with nonfluency were prospectively evaluated. All patients had structural imaging in the form of MRI and in 1 patient CAT scanning on account of a cardiac pacemaker. All patients had single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging. SPECT and PET imaging had 100% correlation. Anatomical imaging was abnormal in only 6 of the 8 patients. Wernicke's area showed greater peak Z score reduction and extent of area affected than Broca's area (McNemar paired test: P = .008 for Z score reduction; P = .0003 for extent). PET scanning revealed significant involvement of the anterior cingulum. Functional imaging in PPA: (a) identified more patients correctly than anatomic imaging highlighting the importance of SPECT and PET in the diagnosis; and (b) demonstrated the heterogeneous involvement of disordered linguistic networks in PPA suggesting its syndromic nature.
Influence of Slippery Pacemaker Leads on Lead-Induced Venous Occlusion
NASA Astrophysics Data System (ADS)
Yang, Weiguang; Bhatia, Sagar; Obenauf, Dayna; Resse, Max; Esmaily-Moghadam, Mahdi; Feinstein, Jeffrey; Pak, On Shun
2016-11-01
The use of medical devices such as pacemakers and implantable cardiac defibrillators have become commonplace to treat arrhythmias. Pacing leads with electrodes are used to send electrical pulses to the heart to treat either abnormally slow heart rates, or abnormal rhythms. Lead induced vessel occlusion, which is commonly seen after placement of pacemaker or ICD leads, may result in lead malfunction and/or SVC syndrome, and makes lead extraction difficult. The association between the anatomic locations at risk for thrombosis and regions of venous stasis have been reported previously. The computational studies reveal obvious flow stasis in the proximity of the leads, due to the no-slip boundary condition imposed on the lead surface. With the advent of recent technologies capable of creating slippery surfaces that can repel complex fluids including blood, we explore computationally how local flow structures may be altered in the regions around the leads when the no-slip boundary condition on the lead surface is relaxed using various slip lengths. The findings evaluate the possibility of mitigating risks of lead-induced thrombosis and occlusion by implementing novel surface conditions (i.e. theoretical coatings) on the leads.
Pacemaker remote monitoring in the pediatric population: is it a real solution?
Leoni, Loira; Padalino, Massimo; Biffanti, Roberta; Ferretto, Sonia; Vettor, Giulia; Corrado, Domenico; Stellin, Giovanni; Milanesi, Ornella; Iliceto, Sabino
2015-05-01
Clinical utility of remote monitoring of implantable cardiac devices has been previously demonstrated in several trials in the adult population. The aim of this study was to assess the clinical utility of remote monitoring in a pediatric population undergoing pacemakers implantation. The study population included 73 consecutive pediatric patients who received an implantable pacemaker. The remote device check was programmed for every 3 months and all patients had a yearly out-patient visit. Data on device-related events, hospitalization, and other clinical information were collected during remote checks and out-patient visits. During a mean follow-up of 18 ± 10 months, 470 remote transmissions were collected and analyzed. Two deaths were reported. Eight transmissions (1.7%) triggered an urgent out-patient visit. Twenty percent of transmissions reported evidence of significant clinical or technical events. All young patients and their families were very satisfied when using remote monitoring to replace out-patient visits. The ease in use, together with satisfaction and acceptance of remote monitoring in pediatric patients, brought very good results. The remote management of our pediatric population was safe and remote monitoring adequately replaced the periodic out-patient device checks without compromising patient safety. ©2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helgeson, W.D.; Fester, K.E.
1980-01-01
Electrochemical discharge data for Li/I/sub 2/-P2VP pacemaker batteries at various discharge currents show the efficiency of the battery to be a function of discharge current. Depending on the iodine:P2VP cathode composition, the optimum current drain occurs between discharge currents of 100 to 200 /mu/a. As current drain is reduced to pacemaker application drains, 15-25 /mu/a, the efficiency of the Li/I/sub 2/-P2VP battery decreases. The loss in efficiency at pacemaker rates is attributed primarily to self-discharge. The efficiency of Li/I/sub 2/-P2VP batteries is improved by increasing the percent of iodine in the cathode. I/sub 2/:P2VP weight ratios of 10:1, 15:1 andmore » 20:1 have been discharged at various currents and the data indicate that there is significant improvement in efficiency at pacemaker rate in going from 10:1 to 20:1 cathode weight ratio. 2 refs.« less
NASA Astrophysics Data System (ADS)
Yu, Haitao; Wang, Jiang; Liu, Chen; Deng, Bin; Wei, Xile
2011-12-01
We study the phenomenon of stochastic resonance on a modular neuronal network consisting of several small-world subnetworks with a subthreshold periodic pacemaker. Numerical results show that the correlation between the pacemaker frequency and the dynamical response of the network is resonantly dependent on the intensity of additive spatiotemporal noise. This effect of pacemaker-driven stochastic resonance of the system depends extensively on the local and the global network structure, such as the intra- and inter-coupling strengths, rewiring probability of individual small-world subnetwork, the number of links between different subnetworks, and the number of subnetworks. All these parameters play a key role in determining the ability of the network to enhance the noise-induced outreach of the localized subthreshold pacemaker, and only they bounded to a rather sharp interval of values warrant the emergence of the pronounced stochastic resonance phenomenon. Considering the rather important role of pacemakers in real-life, the presented results could have important implications for many biological processes that rely on an effective pacemaker for their proper functioning.
Cardiac Conduction through Engineered Tissue
Choi, Yeong-Hoon; Stamm, Christof; Hammer, Peter E.; Kwaku, Kevin F.; Marler, Jennifer J.; Friehs, Ingeborg; Jones, Mara; Rader, Christine M.; Roy, Nathalie; Eddy, Mau-Thek; Triedman, John K.; Walsh, Edward P.; McGowan, Francis X.; del Nido, Pedro J.; Cowan, Douglas B.
2006-01-01
In children, interruption of cardiac atrioventricular (AV) electrical conduction can result from congenital defects, surgical interventions, and maternal autoimmune diseases during pregnancy. Complete AV conduction block is typically treated by implanting an electronic pacemaker device, although long-term pacing therapy in pediatric patients has significant complications. As a first step toward developing a substitute treatment, we implanted engineered tissue constructs in rat hearts to create an alternative AV conduction pathway. We found that skeletal muscle-derived cells in the constructs exhibited sustained electrical coupling through persistent expression and function of gap junction proteins. Using fluorescence in situ hybridization and polymerase chain reaction analyses, myogenic cells in the constructs were shown to survive in the AV groove of implanted hearts for the duration of the animal’s natural life. Perfusion of hearts with fluorescently labeled lectin demonstrated that implanted tissues became vascularized and immunostaining verified the presence of proteins important in electromechanical integration of myogenic cells with surrounding recipient rat cardiomyocytes. Finally, using optical mapping and electrophysiological analyses, we provide evidence of permanent AV conduction through the implant in one-third of recipient animals. Our experiments provide a proof-of-principle that engineered tissue constructs can function as an electrical conduit and, ultimately, may offer a substitute treatment to conventional pacing therapy. PMID:16816362
Michel, Miriam; Egender, Friedemann; Heßling, Vera; Dähnert, Ingo; Gebauer, Roman
2016-01-01
Background Postoperative junctional ectopic tachycardia (JET) occurs frequently after pediatric cardiac surgery. R-wave synchronized atrial (AVT) pacing is used to re-establish atrioventricular synchrony. AVT pacing is complex, with technical pitfalls. We sought to establish and to test a low-cost simulation model suitable for training and analysis in AVT pacing. Methods A simulation model was developed based on a JET simulator, a simulation doll, a cardiac monitor, and a pacemaker. A computer program simulated electrocardiograms. Ten experienced pediatric cardiologists tested the model. Their performance was analyzed using a testing protocol with 10 working steps. Results Four testers found the simulation model realistic; 6 found it very realistic. Nine claimed that the trial had improved their skills. All testers considered the model useful in teaching AVT pacing. The simulation test identified 5 working steps in which major mistakes in performance test may impede safe and effective AVT pacing and thus permitted specific training. The components of the model (exclusive monitor and pacemaker) cost less than $50. Assembly and training-session expenses were trivial. Conclusions A realistic, low-cost simulation model of AVT pacing is described. The model is suitable for teaching and analyzing AVT pacing technique. PMID:26943363
Paniccia, Alessandro; Rozner, Marc; Jones, Edward L; Townsend, Nicole T; Varosy, Paul D; Dunning, James E; Girard, Guillaume; Weyer, Christopher; Stiegmann, Gregory V; Robinson, Thomas N
2014-12-01
Surgical energy-based devices emit energy, which can interfere with other electronic devices (eg, implanted cardiac pacemakers and/or defibrillators). The purpose of this study was to quantify the amount of unintentional energy (electromagnetic interference [EMI]) transferred to an implanted cardiac defibrillator by common surgical energy-based devices. A transvenous cardiac defibrillator was implanted in an anesthetized pig. The primary outcome measure was the average maximum EMI occurring on the implanted cardiac device during activations of multiple different surgical energy-based devices. The EMI transferred to the implanted cardiac device is as follows: traditional bipolar 30 W .01 ± .004 mV, advanced bipolar .004 ± .003 mV, ultrasonic shears .01 ± .004 mV, monopolar Bovie 30 W coagulation .50 ± .20 mV, monopolar Bovie 30 W blend .92 ± .63 mV, monopolar instrument without dispersive electrode .21 ± .07 mV, plasma energy 3.48 ± .78 mV, and argon beam coagulator 2.58 ± .34 mV. Surgeons can minimize EMI on implanted cardiac defibrillators by preferentially utilizing bipolar and ultrasonic devices. Copyright © 2014 Elsevier Inc. All rights reserved.
Senile Systemic Amyloidosis: Clinical Features at Presentation and Outcome
Pinney, Jennifer H.; Whelan, Carol J.; Petrie, Aviva; Dungu, Jason; Banypersad, Sanjay M.; Sattianayagam, Prayman; Wechalekar, Ashutosh; Gibbs, Simon D. J.; Venner, Christopher P.; Wassef, Nancy; McCarthy, Carolyn A.; Gilbertson, Janet A.; Rowczenio, Dorota; Hawkins, Philip N.; Gillmore, Julian D.; Lachmann, Helen J.
2013-01-01
Background Cardiac amyloidosis is a fatal disease whose prognosis and treatment rely on identification of the amyloid type. In our aging population transthyretin amyloidosis (ATTRwt) is common and must be differentiated from other amyloid types. We report the clinical presentation, natural history, and prognostic features of ATTRwt compared with cardiac‐isolated AL amyloidosis and calculate the probability of disease diagnosis of ATTRwt from baseline factors. Methods and Results All patients with biopsy‐proven ATTRwt (102 cases) and isolated cardiac AL (36 cases) seen from 2002 to 2011 at the UK National Amyloidosis Center were included. Median survival from the onset of symptoms was 6.07 years in the ATTRwt group and 1.7 years in the AL group. Positive troponin, a pacemaker, and increasing New York Heart Association (NYHA) class were associated with worse survival in ATTRwt patients on univariate analysis. All patients with isolated cardiac AL and 24.1% of patients with ATTRwt had evidence of a plasma cell dyscrasia. Older age and lower N‐terminal pro‐B‐type natriuretic peptide (NT pro‐BNP) were factors significantly associated with ATTRwt. Patients aged 70 years and younger with an NT pro‐BNP <183 pmol/L were more likely to have ATTRwt, as were patients older than 70 years with an NT pro‐BNP <1420 pmol/L. Conclusions Factors at baseline associated with a worse outcome in ATTRwt are positive troponin T, a pacemaker, and NYHA class IV symptoms. The age of the patient at diagnosis and NT pro‐BNP level can aid in distinguishing ATTRwt from AL amyloidosis. PMID:23608605
The effect of endotoxin on heart rate dynamics in diabetic rats.
Meamar, Morvarid; Dehpour, Tara; Mazloom, Roham; Sharifi, Fatemeh; Raoufy, Mohammad R; Dehpour, Ahmad R; Mani, Ali R
2015-05-01
The effect of endotoxin on heart rate variability (HRV) was assessed in diabetic and controls rats using a telemetric system. Endotoxin induced a reduction in sample entropy of cardiac rhythm in control animals. However, this effect was significantly blunted in streptozotocin-induced diabetic rats. Since uncoupling of cardiac pacemaker from cholinergic control is linked to reduced HRV in endotoxemia, chronotropic responsiveness to cholinergic stimulation was assessed in isolated atria. Endotoxemia was associated with impaired responsiveness to carbacholine in control rats. However, endotoxemia did not impair cholinergic responsiveness in diabetic atria. These findings corroborates with development of endotoxin tolerance in diabetic rats. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparison of DDD versus VVIR pacing modes in elderly patients with atrioventricular block.
Kılıçaslan, Barış; Vatansever Ağca, Fahriye; Kılıçaslan, Esin Evren; Kınay, Ozan; Tigen, Kürşat; Cakır, Cayan; Nazlı, Cem; Ergene, Oktay
2012-06-01
Dual-chamber pacing is believed to have an advantage over single-chamber ventricular pacing. The aim of this study was to determine whether elderly patients who have implanted pacemakers for complete atrioventricular block gain significant benefits from dual-chamber (DDD) pacemakers compared with single chamber ventricular (VVIR) pacemakers. This study was designed as a randomized, two-period crossover study-each pacing mode was maintained for 1 month. Thirty patients (16 men, mean age 68.87 ± 6.89 years) with implanted DDD pacemakers were submitted to a standard protocol, which included an interview, pacemaker syndrome assessment, health related quality of life (HRQoL) questionnaires assessed by an SF-36 test, 6-minute walk test (6MWT), and transthoracic echocardiographic examinations. All of these parameters were obtained on both DDD and VVIR mode pacing. Paired data were compared. HRQoL scores were similar, and 6MWT results did not differ between the two groups. VVIR pacing elicited significant enlargement of the left atrium and impaired left ventricular diastolic functions as compared with DDD pacing. Two patients reported subclinical pacemaker syndrome, but this was not statistically significant. Our study revealed that in active elderly patients with complete heart block, DDD pacing and VVIR pacing yielded similar improvements in QoL and exercise performance. However, after a short follow-up period, we noted that VVIR pacing caused significant left atrial enlargement and impaired left ventricular diastolic functions.
van Hemel, N M; Dijkman, B; de Voogt, W G; Beukema, W P; Bosker, H A; de Cock, C C; Jordaens, L J L M; van Gelder, I C; van Gelder, L M; van Mechelen, R; Ruiter, J H; Sedney, M I; Slegers, L C
2004-01-01
Today, new pacing algorithms and stimulation methods for the prevention and interruption of atrial tachyarrhythmias can be applied on patients who need bradycardia pacing for conventional reasons. In addition, biventricular pacing as additive treatment for patients with severe congestive heart failure due to ventricular systolic dysfunction and prolonged intraventricular conduction has shown to improve symptoms and reduce hospital admissions. These new pacing technologies and the optimising of the pacing programmes are complex, expensive and time-consuming. Based on many clinical studies the indications for these devices are beginning to emerge. To support the cardiologist's decision-making and to prevent waste of effort and resources, the 'ad hoc committee' has provided preliminary recommendations for implantable devices to treat atrial tachyarrhythmias and to extend the treatment of congestive heart failure respectively.
[A unique case of secondary takotsubo syndrome].
Arcari, Luca; Limite, Luca Rosario; Autore, Camillo; Volpe, Massimo; Musumeci, Maria Beatrice
2018-04-01
Takotsubo syndrome (TTS) is an acute cardiac syndrome characterized by transient systolic left ventricular dysfunction frequently preceded by stressful events. It typically affects postmenopausal women without angiographic evidence of obstructive coronary artery disease. We report here an uncommon occurrence of secondary TTS in a male with coronary artery disease after exogenous catecholamine administration and pacemaker implantation. This unexpected case suggests that, in such clinical scenario, a TTS diagnosis might be considered even in unsuspected individuals.
Intermittent pacemaker dysfunction caused by digital mobile telephones.
Naegeli, B; Osswald, S; Deola, M; Burkart, F
1996-05-01
This study was designed to evaluate possible interactions between digital mobile telephones and implanted pacemakers. Electromagnetic fields may interfere with normal pacemaker function. Development of bipolar sensing leads and modern noise filtering techniques have lessened this problem. However, it remains unclear whether these features also protect from high frequency noise arising from digital cellular phones. In 39 patients with an implanted pacemaker (14 dual-chamber [DDD], 8 atrial-synchronized ventricular-inhibited [VDD(R)] and 17 ventricular-inhibited [VVI(R)] pacemakers), four mobile phones with different levels of power output (2 and 8 W) were tested in the standby, dialing and operating mode. During continuous electrocardiographic monitoring, 672 tests were performed in each mode with the phones positioned over the pulse generator, the atrial and the ventricular electrode tip. The tests were carried out at different sensitivity settings and, where possible, in the unipolar and bipolar pacing modes as well. In 7 (18%) of 39 patients, a reproducible interference was induced during 26 (3.9%) of 672 tests with the operating phones in close proximity (<10 cm) to the pacemaker. In 22 dual-chamber (14 DDD, 8 VDD) pacemakers, atrial triggering occurred in 7 (2.8%) of 248 and ventricular inhibition in 5 (2.8%) of 176 tests. In 17 VVI(R) systems, pacemaker inhibition was induced in 14 (5.6%) of 248 tests. Interference was more likely to occur at higher power output of the phone and at maximal sensitivity of the pacemakers (maximal vs. nominal sensitivity, 6% vs. 1.8% positive test results, p = 0.009). When the bipolar and unipolar pacing modes were compared in the same patients, ventricular inhibition was induced only in the unipolar mode (12.5% positive test results, p = 0.0003). Digital mobile phones in close proximity to implanted pacemakers may cause intermittent pacemaker dysfunction with inappropriate ventricular tracking and potentially dangerous pacemaker inhibition.
Lukyanenko, Yevgeniya O; Younes, Antoine; Lyashkov, Alexey E; Tarasov, Kirill V; Riordon, Daniel R; Lee, Joonho; Sirenko, Syevda G; Kobrinsky, Evgeny; Ziman, Bruce; Tarasova, Yelena S; Juhaszova, Magdalena; Sollott, Steven J; Graham, David R; Lakatta, Edward G
2016-09-01
Constitutive Ca(2+)/calmodulin (CaM)-activation of adenylyl cyclases (ACs) types 1 and 8 in sinoatrial nodal cells (SANC) generates cAMP within lipid-raft-rich microdomains to initiate cAMP-protein kinase A (PKA) signaling, that regulates basal state rhythmic action potential firing of these cells. Mounting evidence in other cell types points to a balance between Ca(2+)-activated counteracting enzymes, ACs and phosphodiesterases (PDEs) within these cells. We hypothesized that the expression and activity of Ca(2+)/CaM-activated PDE Type 1A is higher in SANC than in other cardiac cell types. We found that PDE1A protein expression was 5-fold higher in sinoatrial nodal tissue than in left ventricle, and its mRNA expression was 12-fold greater in the corresponding isolated cells. PDE1 activity (nimodipine-sensitive) accounted for 39% of the total PDE activity in SANC lysates, compared to only 4% in left ventricular cardiomyocytes (LVC). Additionally, total PDE activity in SANC lysates was lowest (10%) in lipid-raft-rich and highest (76%) in lipid-raft-poor fractions (equilibrium sedimentation on a sucrose density gradient). In intact cells PDE1A immunolabeling was not localized to the cell surface membrane (structured illumination microscopy imaging), but located approximately within about 150nm inside of immunolabeling of hyperpolarization-activated cyclic nucleotide-gated potassium channels (HCN4), which reside within lipid-raft-rich microenvironments. In permeabilized SANC, in which surface membrane ion channels are not functional, nimodipine increased spontaneous SR Ca(2+) cycling. PDE1A mRNA silencing in HL-1 cells increased the spontaneous beating rate, reduced the cAMP, and increased cGMP levels in response to IBMX, a broad spectrum PDE inhibitor (detected via fluorescence resonance energy transfer microscopy). We conclude that signaling via cAMP generated by Ca(2+)/CaM-activated AC in SANC lipid raft domains is limited by cAMP degradation by Ca(2+)/CaM-activated PDE1A in non-lipid raft domains. This suggests that local gradients of [Ca(2+)]-CaM or different AC and PDE1A affinity regulate both cAMP production and its degradation, and this balance determines the intensity of Ca(2+)-AC-cAMP-PKA signaling that drives SANC pacemaker function. Copyright © 2016. Published by Elsevier Ltd.
If and SR Ca2+ release both contribute to pacemaker activity in canine sinoatrial node cells
Gao, Zhan; Chen, Biyi; Joiner, Mei-ling A.; Wu, Yuejin; Guan, Xiaoqun; Koval, Olha M.; Chaudhary, Ashok K.; Cunha, Shane R.; Mohler, Peter J.; Martins, James B.; Song, Long-Sheng; Anderson, Mark E.
2010-01-01
Increasing evidence suggests that cardiac pacemaking is the result of two sinoatrial node (SAN) cell mechanisms: a ‘voltage clock’ and a Ca2+ dependent process, or ‘Ca2+ clock.’ The voltage clock initiates action potentials (APs) by SAN cell membrane potential depolarization from inward currents, of which the pacemaker current (If) is thought to be particularly important. A Ca2+ dependent process triggers APs when sarcoplasmic reticulum (SR) Ca2+ release activates inward current carried by the forward mode of the electrogenic Na+/Ca2+ exchanger (NCX). However, these mechanisms have mostly been defined in rodents or rabbits, but are unexplored in single SAN cells from larger animals. Here, we used patch-clamp and confocal microscope techniques to explore the roles of the voltage and Ca2+ clock mechanisms in canine SAN pacemaker cells. We found that ZD7288, a selective If antagonist, significantly reduced basal automaticity and induced irregular, arrhythmia-like activity in canine SAN cells. In addition, ZD7288 impaired but did not eliminate the SAN cell rate acceleration by isoproterenol. In contrast, ryanodine significantly reduced the SAN cell acceleration by isoproterenol, while ryanodine reduction of basal automaticity was modest (∼14%) and did not reach statistical significance. Importantly, pretreatment with ryanodine eliminated SR Ca2+ release, but did not affect basal or isoproterenol-enhanced If. Taken together, these results indicate that voltage and Ca2+ dependent automaticity mechanisms coexist in canine SAN cells, and suggest If and SR Ca2+ release cooperate to determine baseline and catecholamine-dependent automaticity in isolated dog SAN cells. PMID:20380837
Naveh, Sivan; Perlman, Gidon Y; Elitsur, Yair; Planer, David; Gilon, Dan; Leibowitz, David; Lotan, Chaim; Danenberg, Haim; Alcalai, Ronny
2017-02-01
Conduction disorders requiring permanent pacemaker (PPM) implantation are a known complication of transcatheter aortic valve implantation (TAVI). Indications for permanent pacing in this setting are still controversial. The study aim was to characterize the natural history of conduction disorders related to TAVI, and to identify predictors for long-term pacing dependency. Consecutive patients who underwent TAVI were included in this prospective observational study. The conduction system was investigated by reviewing 12-lead ECGs during hospitalization and up to 1-year follow-up and by analyzing pacemaker interrogation data. Multivariate analysis was performed in order to identify independent predictors for pacemaker dependency. Of 110 patients included in the analysis, 38 (34.5%) underwent PPM implantation. Of those, 26 (68.4%) had a long-term pacing dependency (required PPM), while 12 (31.6%) did not (not-required PPM). Logistic regression revealed that baseline RBBB (P = 0.01, OR = 18.0), baseline PR interval (P = 0.019, OR = 1.14), post-TAVI PR interval and the change in PR interval from baseline (P < 0.001 for both, OR = 1.17 for each 10 milliseconds increment) were independent predictors for long-term pacing dependency. A PR interval increment of greater than 28 milliseconds had the best accuracy in predicting pacemaker dependency. Increased pre- and postprocedural PR intervals and pre-existing RBBB are reliable predictors for long-term PPM dependency, while left bundle branch block or QRS width are misleading factors. Our study suggests that the decision for implanting PPM after TAVI should be based mostly on the prolongation of the PR interval. © 2016 Wiley Periodicals, Inc.
Regueiro, Ander; Abdul-Jawad Altisent, Omar; Del Trigo, María; Campelo-Parada, Francisco; Puri, Rishi; Urena, Marina; Philippon, François; Rodés-Cabau, Josep
2016-05-01
Available data on the clinical impact of new-onset left bundle branch block (LBBB) and permanent pacemaker implantation (PPI) after transcatheter aortic valve replacement (TAVR) remains controversial. We aimed to evaluate the impact of (1) periprocedural new-onset LBBB or PPI post-TAVR on cardiac mortality and all-cause 1-year mortality and (2) new-onset LBBB on the need for PPI at 1-year follow-up. We performed a systematic search from PubMed and EMBASE databases for studies reporting raw data on new-onset LBBB post-TAVR and the need for PPI or mortality at 1-year follow-up, or on 1-year mortality according to the need for periprocedural PPI post-TAVR. Data from 17 studies, including 4756 patients (8 studies) and 7032 patients (11 studies) for the evaluation of the impact of new-onset LBBB and periprocedural PPI post-TAVR were sourced, respectively (with 2 studies used for both outcomes). New-onset LBBB post-TAVR was associated with a higher risk of PPI (risk ratio [RR], 2.18; 95% confidence interval [CI], 1.28-3.70) and cardiac death (RR, 1.39; 95% CI, 1.04-1.86) during follow-up, as well with a tendency toward an increase in all-cause mortality (RR, 1.21; 95% CI, 0.98-1.50). Periprocedural PPI post-TAVR was not associated with any increased risk of all-cause mortality at 1 year (RR, 1.03; 95% CI, 0.9-1.18), yet a tendency toward a protective effect on cardiac death was observed (RR, 0.78; 95% CI, 0.60-1.03). New-onset LBBB post-TAVR is a marker of an increased risk of cardiac death and need for PPI at 1-year follow-up. The need for PPI early post-TAVR did not increase the risk of death. © 2016 American Heart Association, Inc.
Wolff-Parkinson-White Syndrome with Ventricular Hypertrophy in a Brazilian Family
de Paula van der Steld, Lenises; Campuzano, Oscar; Pérez-Serra, Alexandra; de Barros Zamorano, Mabel Moura; Matos, Selma Sousa; Brugada, Ramon
2017-01-01
Case series Patient: — Final Diagnosis: PRKAG2 syndrome Symptoms: Palpitation • dyspnea and fatigue • syncope Medication: — Clinical Procedure: Radiofrequency catheter ablation • pacemaker implantion • antiarrhythmic drugs Specialty: Cardiology Objective: Rare disease Background: PRKAG2 syndrome diagnosis is already well-defined as Wolff-Parkinson-White syndrome (WPW), ventricular hypertrophy (VH) due to glycogen accumulation, and conduction system disease (CSD). Because of its rarity, there is a lack of literature focused on the treatment. The present study aimed to describe appropriate strategies for the treatment of affected family members with PRKAG2 syndrome with a long follow-up period. Case Report: We studied 60 selected individuals from 84 family members (32 males, 53.3%) (mean age 27±16 years). Patients with WPW and/or VH were placed in a group of 18 individuals, in which 11 (61.1%) had VH and WPW, 6 (33.3%) had isolated WPW, and 1 (5.6%) had isolated VH. Palpitations occurred in 16 patients (88.9%), chest pain in 11 (61.1%), dizziness in 13 (72.2%), syncope in 15 (83.3%), and dyspnea in 13 (72%). Sudden cardiac death (SCD) occurred in 2 (11.1%), and 2 patients with cardiac arrest (CA) had asystole and pre-excited atrial flutter-fibrillation (AFL and AF) as the documented mechanism. Transient ischemic attack (TIA) and learning/language disabilities with delayed development were observed. Genetic analysis identified a new missense pathogenic variant (p.K290I) in the PRKAG2 gene. Cardiac histopathology demonstrated the predominance of vacuoles containing glycogen derivative and fibrosis. The treatment was based on hypertension and diabetes mellitus (DM) control, antiarrhythmic drugs (AD), anticoagulation, and radiofrequency catheter ablation (RCA). Six patients (33.3%) underwent pacemaker implantation (PM). Conclusions: The present study describes the clinical treatment for a rare cardiac syndrome caused by a PRKAG2 mutation. PMID:28690312
Welsh, David K.
2016-01-01
Circadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in culture. In the present study, we examined the relationship between intrinsic myocardial function and circadian rhythms in cultures from mouse heart. We cultured ventricular explants or dispersed cardiomyocytes from neonatal mice expressing a PER2::LUC bioluminescent reporter of circadian clock gene expression. We found that isoproterenol, a β-adrenoceptor agonist known to increase heart rate and contractility, also amplifies PER2 circadian rhythms in ventricular explants. We found robust, cell-autonomous PER2 circadian rhythms in dispersed cardiomyocytes. Single-cell rhythms were initially synchronized in ventricular explants but desynchronized in dispersed cells. In addition, we developed a method for long-term, simultaneous monitoring of clock gene expression, contraction rate, and basal intracellular Ca2+ level in cardiomyocytes using PER2::LUC in combination with GCaMP3, a genetically encoded fluorescent Ca2+ reporter. In contrast to robust PER2 circadian rhythms in cardiomyocytes, we detected no rhythms in contraction rate and only weak rhythms in basal Ca2+ level. In summary, we found that PER2 circadian rhythms of cardiomyocytes are cell-autonomous, amplified by adrenergic signaling, and synchronized by intercellular communication in ventricle explants, but we detected no robust circadian rhythms in contraction rate or basal Ca2+. PMID:27459195
NASA Astrophysics Data System (ADS)
Ojeda, David; Le Rolle, Virginie; Tse Ve Koon, Kevin; Thebault, Christophe; Donal, Erwan; Hernández, Alfredo I.
2013-11-01
In this paper, lumped-parameter models of the cardiovascular system, the cardiac electrical conduction system and a pacemaker are coupled to generate mitral ow pro les for di erent atrio-ventricular delay (AVD) con gurations, in the context of cardiac resynchronization therapy (CRT). First, we perform a local sensitivity analysis of left ventricular and left atrial parameters on mitral ow characteristics, namely E and A wave amplitude, mitral ow duration, and mitral ow time integral. Additionally, a global sensitivity analysis over all model parameters is presented to screen for the most relevant parameters that a ect the same mitral ow characteristics. Results provide insight on the in uence of left ventricle and atrium in uence on mitral ow pro les. This information will be useful for future parameter estimation of the model that could reproduce the mitral ow pro les and cardiovascular hemodynamics of patients undergoing AVD optimization during CRT.
Cybersecurity for Cardiac Implantable Electronic Devices: What Should You Know?
Baranchuk, Adrian; Refaat, Marwan M; Patton, Kristen K; Chung, Mina K; Krishnan, Kousik; Kutyifa, Valentina; Upadhyay, Gaurav; Fisher, John D; Lakkireddy, Dhanunjaya R
2018-03-20
Medical devices have been targets of hacking for over a decade, and this cybersecurity issue has affected many types of medical devices. Lately, the potential for hacking of cardiac devices (pacemakers and defibrillators) claimed the attention of the media, patients, and health care providers. This is a burgeoning problem that our newly electronically connected world faces. In this paper from the Electrophysiology Section Council, we briefly discuss various aspects of this relatively new threat in light of recent incidents involving the potential for hacking of cardiac devices. We explore the possible risks for the patients and the effect of device reconfiguration in an attempt to thwart cybersecurity threats. We provide an outline of what can be done to improve cybersecurity from the standpoint of the manufacturer, government, professional societies, physician, and patient. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Evaluation of wireless stimulation of the endocardium, WiSE, technology for treatment heart failure.
Seifert, M; Butter, C
2016-06-01
There are several unsolved limitations in delivering cardiac resynchronization therapy. 30-40% of patients fail to have any clinical benefit after 6 months caused by different reasons. Endocardial stimulation rather than conventional epicardial pacing has been shown to: be more physiologically, improve electrical stimulation of the left ventricular, give less dispersion of repolarisation and result in better resynchronization. The Wireless Cardiac Stimulation in Left Ventricle, WiCS-LV, system provides an option for wireless, left ventricular endocardial pacing triggered from a conventional right ventricular pacing spike from a co-implant. Expert commentary: The feasibility of the WiCS-LV system has been successfully demonstrated in a population of failed cardiac resynchronization patients, either failed implantation procedure of a conventional system, non-responder to conventional therapy or upgrade from pacemaker or defibrillator, where a conventional system was not an option. WiCS-LV is innovative technology with promising safety, performance and preliminary efficacy.
Quasiperiodicity route to chaos in cardiac conduction model
NASA Astrophysics Data System (ADS)
Quiroz-Juárez, M. A.; Vázquez-Medina, R.; Ryzhii, E.; Ryzhii, M.; Aragón, J. L.
2017-01-01
It has been suggested that cardiac arrhythmias are instances of chaos. In particular that the ventricular fibrillation is a form of spatio-temporal chaos that arises from normal rhythm through a quasi-periodicity or Ruelle-Takens-Newhouse route to chaos. In this work, we modify the heterogeneous oscillator model of cardiac conduction system proposed in Ref. [Ryzhii E, Ryzhii M. A heterogeneous coupled oscillator model for simulation of ECG signals. Comput Meth Prog Bio 2014;117(1):40-49. doi:10.1016/j.cmpb.2014.04.009.], by including an ectopic pacemaker that stimulates the ventricular muscle to model arrhythmias. With this modification, the transition from normal rhythm to ventricular fibrillation is controlled by a single parameter. We show that this transition follows the so-called torus of quasi-periodic route to chaos, as verified by using numerical tools such as power spectrum and largest Lyapunov exponent.
Proposed diagnostic reference levels for 3 common cardiac interventional procedures in Ireland
NASA Astrophysics Data System (ADS)
D'Helft, C.; McGee, A. M.; Rainford, L. A.; Mc Fadden, S. L.; Hughes, C. M.; Winder, R. J.; Brennan, P. C.
2007-03-01
Radiation doses for 3 common types of cardiac radiological examinations where investigated: coronary angiography (CA), percutaneous coronary intervention (PCI) and pacemaker insertions (PPI). 22 cardiac imaging suites participated in the study. Radiation dose was monitored for 1804 adult patients using dose area product (DAP) meters. Operational and examination details such as cardiologist grade, patient details and examination complexity were recorded for each examination. Both intra and inter-hospital variations where demonstrated by the results. Individual patient DAP values ranged from 136-23,101cGycm2, 475-41,038cGycm2 and 45- 17,192cGycm2 for CA, PCI and PPI respectively, with third quartile values of 4,173cGycm2, 8,836cGycm2 and 2,051cGycm2. Screening times varied from 0.22-27.6mins, 1.8-98mins and 0.33-54.5mins for CA, PCI and PPI respectively.
Glukhov, Alexey V.; Kalyanasundaram, Anuradha; Lou, Qing; Hage, Lori T.; Hansen, Brian J.; Belevych, Andriy E.; Mohler, Peter J.; Knollmann, Björn C.; Periasamy, Muthu; Györke, Sandor; Fedorov, Vadim V.
2015-01-01
Aims Loss-of-function mutations in Calsequestrin 2 (CASQ2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT patients also exhibit bradycardia and atrial arrhythmias for which the underlying mechanism remains unknown. We aimed to study the sinoatrial node (SAN) dysfunction due to loss of CASQ2. Methods and results In vivo electrocardiogram (ECG) monitoring, in vitro high-resolution optical mapping, confocal imaging of intracellular Ca2+ cycling, and 3D atrial immunohistology were performed in wild-type (WT) and Casq2 null (Casq2−/−) mice. Casq2−/− mice exhibited bradycardia, SAN conduction abnormalities, and beat-to-beat heart rate variability due to enhanced atrial ectopic activity both at baseline and with autonomic stimulation. Loss of CASQ2 increased fibrosis within the pacemaker complex, depressed primary SAN activity, and conduction, but enhanced atrial ectopic activity and atrial fibrillation (AF) associated with macro- and micro-reentry during autonomic stimulation. In SAN myocytes, CASQ2 deficiency induced perturbations in intracellular Ca2+ cycling, including abnormal Ca2+ release, periods of significantly elevated diastolic Ca2+ levels leading to pauses and unstable pacemaker rate. Importantly, Ca2+ cycling dysfunction occurred not only at the SAN cellular level but was also globally manifested as an increased delay between action potential (AP) and Ca2+ transient upstrokes throughout the atrial pacemaker complex. Conclusions Loss of CASQ2 causes abnormal sarcoplasmic reticulum Ca2+ release and selective interstitial fibrosis in the atrial pacemaker complex, which disrupt SAN pacemaking but enhance latent pacemaker activity, create conduction abnormalities and increase susceptibility to AF. These functional and extensive structural alterations could contribute to SAN dysfunction as well as AF in CPVT patients. PMID:24216388
Papaioannou, Vasilios E; Verkerk, Arie O; Amin, Ahmed S; de Bakker, Jaques MT
2013-01-01
Heart rate variability (HRV) is an indirect estimator of autonomic modulation of heart rate and is considered a risk marker in critical illness, particularly in heart failure and severe sepsis. A reduced HRV has been found in critically ill patients and has been associated with neuro-autonomic uncoupling or decreased baroreflex sensitivity. However, results from human and animal experimental studies indicate that intracardiac mechanisms might also be responsible for interbeat fluctuations. These studies have demonstrated that different membrane channel proteins and especially the so-called ‘funny’ current (If), an hyperpolarization-activated, inward current that drives diastolic depolarization resulting in spontaneous activity in cardiac pacemaker cells, are altered during critical illness. Furthermore, membrane channels kinetics seem to have significant impact upon HRV, whose early decrease might reflect a cellular metabolic stress. In this review article we present research findings regarding intracardiac origin of HRV, at the cellular level and in both isolated sinoatrial node and whole ex vivo heart preparations. In addition, we will review results from various experimental studies that support the interrelation between If and HRV during endotoxemia. We suggest that reduced HRV during sepsis could also be associated with altered pacemaker cell membrane properties, due to ionic current remodeling. PMID:22920474
SU-F-T-325: On the Use of Bolus in Dosimetry and Dose Reduction for Pacemaker and Defibrillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W; Kenneth, R; Higgins, S
Purpose: Special attention is required in planning and administering radiation therapy to patients with cardiac implantable electronic devices (CIEDs), such as pacemaker and defibrillator. The range of dose to CIEDs that can induce malfunction is very large among CIEDs. Significant defects have been reported at dose as low as 0.15Gy. Failures causing discomfort have been reported at dose as low as 0.05Gy. Therefore, accurate estimation of dose to CIED and dose reduction are both important even if the dose is expected to be less than the often-used 2Gy limit. We investigate the use of bolus in in vivo dosimetry formore » CIEDs. Methods: In our clinic, high-energy beams (>10MV) are not used for patients with CIED due to neutron production. Solid water phantom measurements of out-of-field dose for a 6MV beam were performed using parallel plate chamber at different depth with and without 2cm bolus covering the chamber. In vivo dosimetry at skin surface above the pacemaker was performed with and without bolus for 3 patients with pacemaker <5cm from the field edge. Results: Chamber measured dose at depth ∼1 to 1.5cm below the skin surface, where the CIED is normally located, was reduced by ∼6% – 20% with bolus. The dose reduction became smaller at deeper depth. In vivo dosimetry at skin surface also yielded ∼20% – 60% lower dose when using bolus for the 3 patients. In general, TPS calculation underestimated the dose. The dose measured with bolus is closer to the dose at the depth of the pacemaker and less affected by contaminant electrons and linac head leakage. Conclusion: In vivo CIED dose measurements should be performed with 1 to 2cm bolus covering the dosimeter on the skin above the CIED for more accurate CIED dose estimation. The use of bolus also reduces the dose delivered to CIED.« less
van Dijk, Joris D; Ottervanger, Jan Paul; Delnoy, Peter Paul H M; Lagerweij, Martine C M; Knollema, Siert; Slump, Cornelis H; Jager, Pieter L
2017-01-01
New X-ray technology providing new image processing techniques may reduce radiation exposure. The aim of this study was to quantify this radiation exposure reduction for patients during pacemaker and implantable cardioverter defibrillator (ICD) implantation. In this retrospective study, 1185 consecutive patients who had undergone de novo pacemaker or ICD implantation during a 2-year period were included. All implantations in the first year were performed using the reference technology (Allura Xper), whereas in the second year, the new X-ray technology (AlluraClarity) was used. Radiation exposure, expressed as the dose area product (DAP), was compared between the two time periods to determine the radiation exposure reduction for pacemaker and ICD implantations without cardiac resynchronization therapy (CRT) and with CRT. Procedure duration and contrast volume were used as measures to compare complexity and image quality. The study population consisted of 591 patients who had undergone an implantation using the reference technology, and 594 patients with the new X-ray technology. The two groups did not differ in age, gender, or body mass index. The DAP decreased with 69 % from 16.4 ± 18.5 to 5.2 ± 6.6 Gy cm 2 for the non-CRT implantations (p < 0.001). The DAP decreased with 75 % from 72.1 ± 60.0 to 17.8 ± 17.4 Gy cm 2 for the CRT implantations (p < 0.001). Nevertheless, procedure duration and contrast volume did not differ when using the new technology (p = 0.09 and p = 0.20, respectively). Introduction of new X-ray technology resulted in a radiation exposure reduction of more than 69 % for patients during pacemaker and ICD implantation while image quality was unaffected.
Bailey, William M; Rosenthal, Lawrence; Fananapazir, Lameh; Gleva, Marye; Mazur, Alexander; Rinaldi, C A; Kypta, Alexander; Merkely, Béla; Woodard, Pamela K
2015-06-01
Permanent cardiac pacemakers have historically been considered a contraindication to magnetic resonance imaging (MRI). The purpose of the ProMRI/ProMRI AFFIRM Study, which was a multicenter, prospective, single-arm, nonrandomized study, was to evaluate the clinical safety of the Biotronik ProMRI Pacemaker System under specific MRI conditions. The ProMRI Study (in the United States) and the ProMRI AFFIRM study (outside the United States) with identical design enrolled 272 patients with stable baseline pacing indices implanted with an Entovis or Evia pacemaker (DR-T or SR-T) and Setrox or Safio 53-cm or 60-cm lead. Device interrogation was performed at enrollment, pre-MRI and post-MRI scan, and 1 and 3 months post-MRI. End-points were (1) freedom from MRI- and pacing system-related serious adverse device effects (SADEs) through 1 month post-MRI, (2) freedom from atrial and ventricular MRI-induced pacing threshold increase (>0.5 V), and (3) freedom from P- and R-wave amplitude attenuation (<50%), or P wave <1.5 mV, or R wave <5.0 mV at 1 month post-MRI. Two hundred twenty-six patients completed the MRI and 1-month post-MRI follow-up. No adverse events related to the implanted system and the MRI procedure occurred, resulting in an SADE-free rate of 100.0% (229/229, P <.001). Freedom from atrial and ventricular pacing threshold increase was 99.0% (189/191, P = .003) and 100% (217/217, P <.001), respectively. Freedom from P- and R- wave amplitude attenuation was 99.4% (167/168, P <.001) and 99.5% (193/194, P <.001), respectively. The results of the ProMRI/ProMRI AFFIRM studies demonstrate the clinical safety and efficacy of the ProMRI pacemaker system in patients subjected to head and lower lumbar MRI conditions. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Guag, Joshua; Addissie, Bisrat; Witters, Donald
2017-03-20
There have been concerns that Electromagnetic security systems such as walk-through metal detectors (WTMDs) can potentially cause electromagnetic interference (EMI) in certain active medical devices including implantable cardiac pacemakers and implantable neurostimulators. Incidents of EMI between WTMDs and active medical devices also known as personal medical electronic devices (PMED) continue to be reported. This paper reports on emission measurements of sample WTMDs and testing of 20 PMEDs in a WTMD simulation system. Magnetic fields from sample WTMD systems were characterized for emissions and exposure of certain PMEDs. A WTMD simulator system designed and evaluated by FDA in previous studies was used to mimic the PMED exposures to the waveform from sample WTMDs. The simulation system allows for controlled PMED exposure enabling careful study with adjustable magnetic field strengths and exposure duration, and provides flexibility for PMED exposure at elevated levels in order to study EMI effects on the PMED. The PMED samples consisted of six implantable cardiac pacemakers, six implantable cardioverter defibrillators (ICD), five implantable neurostimulators, and three insulin pumps. Each PMED was exposed in the simulator to the sample WTMD waveforms using methods based on appropriate consensus test standards for each of the device type. Testing the sample PMEDs using the WTMD simulator revealed EMI effects on two implantable pacemakers and one implantable neurostimulator for exposure field strength comparable to actual WTMD field strength. The observed effects were transient and the PMEDs returned to pre-exposure operation within a few seconds after removal from the simulated WTMD exposure fields. No EMI was observed for the sample ICDs or insulin pumps. The findings are consistent with earlier studies where certain sample PMEDs exhibited EMI effects. Clinical implications were not addressed in this study. Additional studies are needed to evaluate potential PMED EMI susceptibilities over a broader range of security systems.
Stockburger, Martin; Boveda, Serge; Moreno, Javier; Da Costa, Antoine; Hatala, Robert; Brachmann, Johannes; Butter, Christian; Garcia Seara, Javier; Rolando, Mara; Defaye, Pascal
2015-01-01
Aim Right ventricular pacing (VP) has been hypothesized to increase the risk in heart failure (HF) and atrial fibrillation (AF). The ANSWER study evaluated, whether an AAI-DDD changeover mode to minimize VP (SafeR) improves outcome compared with DDD in a general dual-chamber pacemaker population. Methods and results ANSWER was a randomized controlled multicentre trial assessing SafeR vs. standard DDD in sinus node disease (SND) or AV block (AVB) patients. After a 1-month run-in period, they were randomized (1 : 1) and followed for 3 years. Pre-specified co-primary end-points were VP and the composite of hospitalization for HF, AF, or cardioversion. Pre-specified secondary end-points were cardiac death or HF hospitalizations and cardiovascular hospitalizations. ANSWER enrolled 650 patients (52.0% SND, 48% AVB) at 43 European centres and randomized in SafeR (n = 314) or DDD (n = 318). The SafeR mode showed a significant decrease in VP compared with DDD (11.5 vs. 93.6%, P < 0.0001 at 3 years). Deaths and syncope did not differ between randomization arms. No significant difference between groups [HR = 0.78; 95% CI (0.48–1.25); P = 0.30] was found in the time to event of the co-primary composite of hospitalization for HF, AF, or cardioversion, nor in the individual components. SafeR showed a 51% risk reduction (RR) in experiencing cardiac death or HF hospitalization [HR = 0.49; 95% CI (0.27–0.90); P = 0.02] and 30% RR in experiencing cardiovascular hospitalizations [HR = 0.70; 95% CI (0.49–1.00); P = 0.05]. Conclusion SafeR safely and significantly reduced VP in a general pacemaker population though had no effect on hospitalization for HF, AF, or cardioversion, when compared with DDD. PMID:25179761
Moulki, Naeem; Kealhofer, Jessica V; Benditt, David G; Gravely, Amy; Vakil, Kairav; Garcia, Santiago; Adabag, Selcuk
2018-06-16
Bifascicular block and prolonged PR interval on the electrocardiogram (ECG) have been associated with complete heart block and sudden cardiac death. We sought to determine if cardiac implantable electronic devices (CIED) improve survival in these patients. We assessed survival in relation to CIED status among 636 consecutive patients with bifascicular block and prolonged PR interval on the ECG. In survival analyses, CIED was considered as a time-varying covariate. Average age was 76 ± 9 years, and 99% of the patients were men. A total of 167 (26%) underwent CIED (127 pacemaker only) implantation at baseline (n = 23) or during follow-up (n = 144). During 5.4 ± 3.8 years of follow-up, 83 (13%) patients developed complete or high-degree atrioventricular block and 375 (59%) died. Patients with a CIED had a longer survival compared to those without a CIED in the traditional, static analysis (log-rank p < 0.0001) but not when CIED was considered as a time-varying covariate (log-rank p = 0.76). In the multivariable model, patients with a CIED had a 34% lower risk of death (hazard ratio 0.66, 95% confidence interval 0.52-0.83; p = 0.001) than those without CIED in the traditional analysis but not in the time-varying covariate analysis (hazard ratio 1.05, 95% confidence interval 0.79-1.38; p = 0.76). Results did not change in the subgroup with a pacemaker only. Bifascicular block and prolonged PR interval on ECG are associated with a high incidence of complete atrioventricular block and mortality. However, CIED implantation does not have a significant influence on survival when time-varying nature of CIED implantation is considered.
Passeri, Elena; Bonomi, Marco; Dangelo, Francesco; Persani, Luca; Corbetta, Sabrina
2014-09-27
Physiological functioning of the testes is important for cardiac health besides for virilisation, physical strength, behavior and reproduction; moreover, hypogonadism has been demonstrated as a significant risk marker of increased all-cause and cardiovascular mortality. We reported two cases of long-standing hypogonadotropic hypogonadism presenting with wasting, bradycardia and heart failure. The two patients were admitted to emergency department for deep weakness, unresponsive anemia and severe bradycardia, requiring in one case the implanting of a monocameral pace-maker for treatment of heart failure. No previous cardiologic disorders were known and cardiac ischemia was ruled out in both patients. The first patient presented congenital hypogonadotropic hypogonadism combined with mild central hypothyroidism and growth hormone deficiency occurred in the peripubertal age, while the second one was diagnosed with isolated adult-onset severe central hypogonadism. Testosterone deficiency was the main feature in both patients as physical examination revealed clinical stigmata of hypogonadism and testosterone replacement induced a dramatic improvement of general condition. Genetic analysis of genes involved in hypogonadotropic hypogonadism failed to identify alterations. Long-standing hypogonadism in males can be associated with life threatening body alterations including severe bradycardia and heart failure.
Pulsed Nd:YAG laser welding of cardiac pacemaker batteries with reduced heat input
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuerschbach, P.W.; Hinkley, D.A.
1997-03-01
The effects of Nd:YAG laser beam welding process parameters on the resulting heat input in 304L stainless steel cardiac pacemaker batteries have been studied. By careful selection of process parameters, the results can be used to reduce temperatures near glass-to-metal seals and assure hermeticity in laser beam welding of high reliability components. Three designed response surface experiments were used to compare welding performance with lenses of varying focal lengths. The measured peak temperatures at the glass-to-metal seals varied from 65 to 140 C (149 to 284 F) and depended strongly on the levels of the experimental factors. It was foundmore » that welds of equivalent size can be made with significantly reduced temperatures. The reduction in battery temperatures has been attributed to an increase in the melting efficiency. This increase is thought to be due primarily to increased travel speeds, which were facilitated by high peak powers and low pulse energies. For longer focal length lenses, weld fusion zone widths were found to be greater even without a corresponding increase in the size of the weld. It was also found that increases in laser beam irradiance either by higher peak powers or smaller spot sizes created deeper and larger welds. These gains were attributed to an increase in the laser energy transfer efficiency.« less
Ballesteros Peña, Sendoa
2013-04-01
To estimate the frequency of therapeutic errors and to evaluate the diagnostic accuracy in the recognition of shockable rhythms by automated external defibrillators. A retrospective descriptive study. Nine basic life support units from Biscay (Spain). Included 201 patients with cardiac arrest, since 2006 to 2011. The study was made of the suitability of treatment (shock or not) after each analysis and medical errors identified. The sensitivity, specificity and predictive values with 95% confidence intervals were then calculated. A total of 811 electrocardiographic rhythm analyses were obtained, of which 120 (14.1%), from 30 patients, corresponded to shockable rhythms. Sensitivity and specificity for appropriate automated external defibrillators management of a shockable rhythm were 85% (95% CI, 77.5% to 90.3%) and 100% (95% CI, 99.4% to 100%), respectively. Positive and negative predictive values were 100% (95% CI, 96.4% to 100%) and 97.5% (95% CI, 96% to 98.4%), respectively. There were 18 (2.2%; 95% CI, 1.3% to 3.5%) errors associated with defibrillator management, all relating to cases of shockable rhythms that were not shocked. One error was operator dependent, 6 were defibrillator dependent (caused by interaction of pacemakers), and 11 were unclassified. Automated external defibrillators have a very high specificity and moderately high sensitivity. There are few operator dependent errors. Implanted pacemakers interfere with defibrillator analyses. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Expression and distribution of voltage-gated ion channels in ferret sinoatrial node.
Brahmajothi, Mulugu V; Morales, Michael J; Campbell, Donald L; Steenbergen, Charles; Strauss, Harold C
2010-10-01
Spontaneous diastolic depolarization in the sinoatrial (SA) node enables it to serve as pacemaker of the heart. The variable cell morphology within the SA node predicts that ion channel expression would be heterogeneous and different from that in the atrium. To evaluate ion channel heterogeneity within the SA node, we used fluorescent in situ hybridization to examine ion channel expression in the ferret SA node region and atrial appendage. SA nodal cells were distinguished from surrounding cardiac myocytes by expression of the slow (SA node) and cardiac (surrounding tissue) forms of troponin I. Nerve cells in the sections were identified by detection of GAP-43 and cytoskeletal middle neurofilament. Transcript expression was characterized for the 4 hyperpolarization-activated cation channels, 6 voltage-gated Na(+) channels, 3 voltage-gated Ca(2+) channels, 24 voltage-gated K(+) channel α-subunits, and 3 ancillary subunits. To ensure that transcript expression was representative of protein expression, immunofluorescence was used to verify localization patterns of voltage-dependent K(+) channels. Colocalizations were performed to observe any preferential patterns. Some overlapping and nonoverlapping binding patterns were observed. Measurement of different cation channel transcripts showed heterogeneous expression with many different patterns of expression, attesting to the complexity of electrical activity in the SA node. This study provides insight into the possible role ion channel heterogeneity plays in SA node pacemaker activity.
Use of lithium batteries in biomedical devices. Technical report No. 8, July 1988-June 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, B.B.
1989-06-15
Lithium batteries have played an important role in the development of useful implantable biomedical devices. The cardiac pacemaker is the most well known of these devices and high-energy, long-life reliable lithium primary cells have effectively replaced all of the alkaline cells previously used in these electronic systems. The recent development of higher-power devices such as drug pumps and cardiac defibrillators require the use of batteries with higher energy and power capabilities. High rate rechargeable batteries that can be configured as flat prismatic cells would be especially useful in some of these new applications. Lithium polymer electrolyte-batteries may find a usefulmore » role in these new areas.« less
Lu, T Z; Kostelecki, W; Sun, C L F; Dong, N; Pérez Velázquez, J L; Feng, Z-P
2016-12-01
The spontaneous rhythmic firing of action potentials in pacemaker neurons depends on the biophysical properties of voltage-gated ion channels and background leak currents. The background leak current includes a large K + and a small Na + component. We previously reported that a Na + -leak current via U-type channels is required to generate spontaneous action potential firing in the identified respiratory pacemaker neuron, RPeD1, in the freshwater pond snail Lymnaea stagnalis. We further investigated the functional significance of the background Na + current in rhythmic spiking of RPeD1 neurons. Whole-cell patch-clamp recording and computational modeling approaches were carried out in isolated RPeD1 neurons. The whole-cell current of the major ion channel components in RPeD1 neurons were characterized, and a conductance-based computational model of the rhythmic pacemaker activity was simulated with the experimental measurements. We found that the spiking rate is more sensitive to changes in the Na + leak current as compared to the K + leak current, suggesting a robust function of Na + leak current in regulating spontaneous neuronal firing activity. Our study provides new insight into our current understanding of the role of Na + leak current in intrinsic properties of pacemaker neurons. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
van Dijk, Vincent F; Delnoy, Peter Paul H M; Smit, Jaap Jan J; Ramdat Misier, R Anand; Elvan, Arif; van Es, H Wouter; Rensing, Benno J W M; Raciti, Giovanni; Boersma, Lucas V A
2017-07-01
Modern pacemakers are designed to allow patients to undergo magnetic resonance imaging (MRI) under a set of specific conditions. Aim of this study is to provide confirmatory evidence of safety and performance of a new pacing system (ImageReady™, Boston Scientific) in patients undergoing 1.5 and 3T MRI. Two prospective, nonrandomized, single-arm studies were designed to provide confirmatory data of no impact of MRI on device function, lead parameters, and patient conditions in subjects implanted with the system undergoing a clinically non-indicated 1.5T and 3T MRI, respectively. Device measurements were done within 1 hour before and after the scan and at 1 month follow-up. Thirty-two subjects underwent MRI visit (17 subjects with 1.5T MRI and 15 subjects with 3T MRI). There were no unanticipated adverse effects related to the pacemaker. Device measurements taken pre- and post-MRI scan did not show any clinical relevant change that could indicate an effect of the MRI on the device or at the lead-tissue interface (RV threshold change: 0.01 ± 0.13 V, P = 0.60; RA threshold change: 0.01 ± 0.11 V, P = 0.53; R wave change: -0.44 ± 1.73 mV, P = 0.36; R wave change: 0.12 ± 1.67 mV, P = 0.73), with data confirmed at 1-month follow-up visit. The study documented safety of the pacing system in the 1.5T and 3T MRI environment by showing no adverse events related to device or MRI scan. Additional data are required to cover the more complex scenarios involving different diagnostic needs, conditions of use, clinical conditions, and new emerging technologies. © 2017 Wiley Periodicals, Inc.
Right Ventricular Outflow Tract Septal Pacing Is Superior to Right Ventricular Apical Pacing
Zou, Cao; Song, Jianping; Li, Hui; Huang, Xingmei; Liu, Yuping; Zhao, Caiming; Shi, Xin; Yang, Xiangjun
2015-01-01
Background The effects of right ventricular apical pacing (RVAP) and right ventricular outflow tract (RVOT) septal pacing on atrial and ventricular electrophysiology have not been thoroughly compared. Methods and Results To identify a more favorable pacing strategy with fewer adverse effects, 80 patients who had complete atrioventricular block with normal cardiac function and who were treated with either RVAP (n=42) or RVOT septal pacing (n=38) were recruited after an average of 2 years of follow‐up. The data from electrocardiography and echocardiography performed before pacemaker implantation and at the end of follow‐up were collected. The patients in the RVOT septal pacing and RVAP groups showed similar demographic and clinical characteristics before pacing treatments. After a mean follow‐up of 2 years, the final maximum P‐wave duration; P‐wave dispersion; Q‐, R‐, and S‐wave complex duration; left atrial volume index; left ventricular end‐systolic diameter; ratio of transmitral early diastolic filling velocity to mitral annular early diastolic velocity; and interventricular mechanical delay in the RVOT septal pacing group were significantly less than those in the RVAP group (P<0.05). The final left ventricular ejection fraction of the RVOT septal pacing group was significantly higher than that of the RVAP group (P<0.05). Conclusions Compared with RVAP, RVOT septal pacing has fewer adverse effects regarding atrial electrical activity and structure in patients with normal cardiac function. PMID:25896891
Gold, Michael R; Padhiar, Amie; Mealing, Stuart; Sidhu, Manpreet K; Tsintzos, Stelios I; Abraham, William T
2017-03-01
This study investigated the cost effectiveness of early cardiac resynchronization therapy (CRT) implantation among patients with mild heart failure (HF). The differential cost effectiveness between CRT using a defibrillator (CRT-Ds) and CRT using a pacemaker (CRT-P) was also assessed. Cardiac resynchronization has been shown to be cost effective in New York Heart Association (NYHA) functional classes III/IV but is less studied in class II HF. The incremental costs of early CRT implementation in mild HF compared with the costs potentially avoided because of delaying disease progression to advanced HF are also unknown. Finally, combined biventricular pacing and defibrillator (CRT-D) devices are more expensive than biventricular pacemakers (CRT-P), but the relative cost effectiveness is controversial. Data from the 5-year follow-up phase of REVERSE (REsynchronization reVErses Remodeling in Systolic Left vEntricular Dysfunction) were used. The economics were evaluated from the U.S. Medicare perspective based on published clinical projections. Probabilistic estimates yielded $8,840/quality-adjusted life year (QALY) gained (95% confidence interval [CI]: $6,705 to $10,804/QALY gained) for CRT-ON versus CRT-OFF (i.e., programmed "ON" or "OFF" at pre-specified post-implantation timings) and $43,678/QALY gained for CRT-D versus CRT-P (95% CI: $35,164 to $53,589/QALY gained) over the patient's lifetime. Results were robust to choice of patient subgroup and alterations of ±10% to key model parameters. An "early" CRT-D class II strategy totaled $95,292 compared with $91,511 for a "late" implantation. An "early" implant offered on average 1.00 year of additional survival for $3,781, resulting in an ICER of $3,795/LY gained. This study demonstrates CRT cost effectiveness in mild HF. The incremental CRT-D costs are justified by the anticipated benefits, despite increased procurement costs and shorter generator longevities. "Early" CRT-D implants have essential cost parity with "late" implants while increasing the patient's survival. (REsynchronization reVErses Remodeling in Systolic Left vEntricular Dysfunction [REVERSE]; NCT00271154). Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Sláma, Karel; Lukáš, Jan
2011-02-01
Larvae of the greater waxmoth (Galleria mellonella) become paralysed by the venom of the braconid wasp (Habrobracon hebetor) a few minutes after intoxication. The profound neuromuscular paralysis, which may last for several weeks, includes all somatic muscles that are innervated through neuromuscular transmission. The peristaltic contractions of the heart and intestine, which are regulated by the depolarisation potentials of the myocardium or intestinal epithelial muscles, remain unaffected and fully functional. Heartbeat patterns and intestinal pulsations were monitored in the motionless, paralysed larvae by means of advanced electrocardiographic recording methods (contact thermography, pulse-light optocardiography). The records revealed more or less constant cardiac pulsations characterised by 20-25 systolic contractions per minute. The contractions were peristaltically propagated in the forward (anterograde) direction, with a more or less constant speed of 10mm per second (23-25°C). Additional electrocardiographic investigations on larvae immobilised by decapitation revealed the autonomic (brain independent) nature of heartbeat regulation. Sectioning performed in the middle of the heart (4th abdominal segment) seriously impaired the pacemaker rhythmicity and slowed down the rate of heartbeat in the anterior sections. By contrast, the functions of the posterior compartments of the disconnected heart remained unaffected. These results confirmed our previous conclusions about the existence of an autonomic, myogenic, pacemaker nodus in the terminal part of an insect heart. They show an analogy to the similar myogenic, sinoatrial or atrioventricular nodi regulating rhythmicity of the human heart. Peristaltic contractions of the intestine also represent a purely myogenic system, which is fully functional in larvae with complete neuromuscular paralysis. Unlike the constant anterograde direction of the heartbeat, intestinal peristaltic waves periodically reversed anterograde and retrograde directions. A possibility that the functional similarity between insect and human hearts may open new avenues in the field of comparative cardiology has been discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Khanal, J; Poudyal, R R; Devkota, S; Thapa, S; Dhungana, R R
2015-01-01
Permanent pacemaker implantation is a minimally invasive surgical procedure in the management of patients with cardiac problems. However, complications during and after implantation are not uncommon. There is lack of evidences in rate of complications with the selection of pacemakers in Nepal. Therefore, this study was performed to compare the frequency of implantation and complication rate between single chamber and dual chamber pacemaker. The present study is based on all consecutive pacemaker implantations in a single centre between April 2014 and May 2015. A total of 116 patients were categorized into two cohorts according to the type of pacemaker implanted- single chamber or dual chamber. All patients had regular 2-weeks follow-up intervals with standardized documentation of all relevant patient data till 6-week after implantation. Data were presented as means ± standard deviation (SD) for continuous variables and as proportions for categorical variables. Comparison of continuous variables between the groups was made with independent Student's t-test. For discrete variables distribution between groups were compared with Chi-square test. The mean age (±SD) of total population at implant was 64.08 (± 15.09) years. Dual chamber units were implanted in 44 (37.93%) of patients, single chamber in 72 (62.06%). Only 14 women (31.81%) received dual chamber compared with 42 women (58.33%) who received single chamber (Chi-square=18, DF=1, P = 0.0084). Complete atrioventricular block was the commonest (56.03%) indication for permanent pacemaker insertion followed by sick sinus syndrome (33.62%), symptomatic high-grade AV block (11.20%). Hypertension (dual chamber 21.55%, single chamber 40.51%) was the most common comorbidity in both cohorts. Complications occurred in 11 (9.48%) patients. More proportion of complication occurred in single chamber group (9 patients, 12.50%) than in dual chamber (2 patients, 4.54%). Complications occurring in dual chamber group include pocket hematoma 1 patient (2.27%) and arrhythmia in 1 patient (2.27%). Similarly, complications occurring in single chamber include RV perforation in two patients (2.77%) and one each (1.38%) had pocket hematoma, pneumothorax, infection, swelling at pocket site, arrhythmia in the form of NSVT, leads displacement, DVT and mortality. Women were more likely to receive single chamber systems than men. More proportion of complication occurred in single chamber group than in dual chamber. Future prospective studies on larger number of patients are needed to confirm and support our findings.
Li, Jie; Blankenship, Meredith L.; Baccei, Mark L.
2013-01-01
Pacemaker neurons in neonatal spinal nociceptive circuits generate intrinsic burst-firing and are distinguished by a lower “leak” membrane conductance compared to adjacent, non-bursting neurons. However, little is known about which subtypes of leak channels regulate the level of pacemaker activity within the developing rat superficial dorsal horn (SDH). Here we demonstrate that a hallmark feature of lamina I pacemaker neurons is a reduced conductance through inward-rectifying potassium (Kir) channels at physiological membrane potentials. Differences in the strength of inward rectification between pacemakers and non-pacemakers indicate the presence of functionally distinct Kir currents in these two populations at room temperature. However, Kir currents in both groups showed high sensitivity to block by extracellular Ba2+ (IC50 ~ 10 µM), which suggests the presence of ‘classical’ Kir (Kir2.x) channels in the neonatal SDH. The reduced Kir conductance within pacemakers is unlikely to be explained by an absence of particular Kir2.x isoforms, as immunohistochemical analysis revealed the expression of Kir2.1, Kir2.2 and Kir2.3 within spontaneously bursting neurons. Importantly, Ba2+ application unmasked rhythmic burst-firing in ~42% of non-bursting lamina I neurons, suggesting that pacemaker activity is a latent property of a sizeable population of SDH cells during early life. In addition, the prevalence of spontaneous burst-firing within lamina I was enhanced in the presence of high internal concentrations of free Mg2+, consistent with its documented ability to block Kir channels from the intracellular side. Collectively, the results indicate that Kir channels are key modulators of pacemaker activity in newborn central pain networks. PMID:23426663
Pombo Jiménez, Marta; Cano Pérez, Óscar; Fidalgo Andrés, María Luisa; Lorente Carreño, Diego; Coma Samartín, Raúl
2016-12-01
We describe the results of the analysis of the devices implanted and conveyed to the Spanish Pacemaker Registry in 2015. The report is based on the processing of information provided by the European Pacemaker Patient Identification Card. We received information from 111 hospitals, with a total of 12 555 cards, representing 32.1% of all the estimated activity. The use of conventional generators and resynchronization devices was 820 and 73 units per million population, respectively. The mean age of the patients receiving an implantation was 77.7 years, and more than 50% of the devices were implanted in patients over 80 years of age. Overall, 58.6% of the implants and 58.8% of the replacements were performed in men. All of the endocardial leads employed were bipolar, 81.5% had an active fixation system, and 16.5% were compatible with magnetic resonance. Although dual chamber sequential pacing continues to be more widespread, pacing with VVI/R mode is used because up to 23.8% of the patients with sinus node disease are in sinus rhythm, as are 24.1% of those with atrioventricular block. The total use of pacemaker generators in Spain has increased by about 5% with respect to 2014. The majority of the leads implanted are of active fixation, and less than 20% are protected from magnetic resonance. The factors directly related to the selection of pacing mode are age and sex. In around 20% of patients, the choice of the pacing mode could be improved. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Late deterioration of left ventricular function after right ventricular pacemaker implantation.
Bellmann, Barbara; Muntean, Bogdan G; Lin, Tina; Gemein, Christopher; Schmitz, Kathrin; Schauerte, Patrick
2016-09-01
Right ventricular (RV) pacing induces a left bundle branch block pattern on ECG and may promote heart failure. Patients with dual chamber pacemakers (DCPs) who present with progressive reduction in left ventricular ejection fraction (LVEF) secondary to RV pacing are candidates for cardiac resynchronization therapy (CRT). This study analyzes whether upgrading DCP to CRT with the additional implantation of a left ventricular (LV) lead improves LV function in patients with reduced LVEF following DCP implantation. Twenty-two patients (13 males) implanted with DCPs and a high RV pacing percentage (>90%) were evaluated in term of new-onset heart failure symptoms. The patients were enrolled in this retrospective single-center study after obvious causes for a reduced LVEF were excluded with echocardiography and coronary angiography. In all patients, DCPs were then upgraded to biventricular devices. LVEF was analyzed with a two-sided t-test. QRS duration and brain natriuretic peptide (BNP) levels were analyzed with the unpaired t-test. LVEF declined after DCP implantation from 54±10% to 31±7%, and the mean QRS duration was 161±20 ms during RV pacing. NT-pro BNP levels were elevated (3365±11436 pmol/L). After upgrading to a biventricular device, a biventricular pacing percentage of 98.1±2% was achieved. QRS duration decreased to 108±16 ms and 106±20 ms after 1 and 6 months, respectively. There was a significant increase in LVEF to 38±8% and 41±11% and a decrease in NT-pro BNP levels to 3088±2326 pmol/L and 1860±1838 pmol/L at 1 and 6 months, respectively. Upgrading to CRT may be beneficial in patients with DCPs and heart failure induced by a high RV pacing percentage.
Fabbri, Alan; Fantini, Matteo; Wilders, Ronald
2017-01-01
Key points We constructed a comprehensive mathematical model of the spontaneous electrical activity of a human sinoatrial node (SAN) pacemaker cell, starting from the recent Severi–DiFrancesco model of rabbit SAN cells.Our model is based on electrophysiological data from isolated human SAN pacemaker cells and closely matches the action potentials and calcium transient that were recorded experimentally.Simulated ion channelopathies explain the clinically observed changes in heart rate in corresponding mutation carriers, providing an independent qualitative validation of the model.The model shows that the modulatory role of the ‘funny current’ (I f) in the pacing rate of human SAN pacemaker cells is highly similar to that of rabbit SAN cells, despite its considerably lower amplitude.The model may prove useful in the design of experiments and the development of heart‐rate modulating drugs. Abstract The sinoatrial node (SAN) is the normal pacemaker of the mammalian heart. Over several decades, a large amount of data on the ionic mechanisms underlying the spontaneous electrical activity of SAN pacemaker cells has been obtained, mostly in experiments on single cells isolated from rabbit SAN. This wealth of data has allowed the development of mathematical models of the electrical activity of rabbit SAN pacemaker cells. The present study aimed to construct a comprehensive model of the electrical activity of a human SAN pacemaker cell using recently obtained electrophysiological data from human SAN pacemaker cells. We based our model on the recent Severi–DiFrancesco model of a rabbit SAN pacemaker cell. The action potential and calcium transient of the resulting model are close to the experimentally recorded values. The model has a much smaller ‘funny current’ (I f) than do rabbit cells, although its modulatory role is highly similar. Changes in pacing rate upon the implementation of mutations associated with sinus node dysfunction agree with the clinical observations. This agreement holds for both loss‐of‐function and gain‐of‐function mutations in the HCN4, SCN5A and KCNQ1 genes, underlying ion channelopathies in I f, fast sodium current and slow delayed rectifier potassium current, respectively. We conclude that our human SAN cell model can be a useful tool in the design of experiments and the development of drugs that aim to modulate heart rate. PMID:28185290
Electromechanical integration of cardiomyocytes derived from human embryonic stem cells.
Kehat, Izhak; Khimovich, Leonid; Caspi, Oren; Gepstein, Amira; Shofti, Rona; Arbel, Gil; Huber, Irit; Satin, Jonathan; Itskovitz-Eldor, Joseph; Gepstein, Lior
2004-10-01
Cell therapy is emerging as a promising strategy for myocardial repair. This approach is hampered, however, by the lack of sources for human cardiac tissue and by the absence of direct evidence for functional integration of donor cells into host tissues. Here we investigate whether cells derived from human embryonic stem (hES) cells can restore myocardial electromechanical properties. Cardiomyocyte cell grafts were generated from hES cells in vitro using the embryoid body differentiating system. This tissue formed structural and electromechanical connections with cultured rat cardiomyocytes. In vivo integration was shown in a large-animal model of slow heart rate. The transplanted hES cell-derived cardiomyocytes paced the hearts of swine with complete atrioventricular block, as assessed by detailed three-dimensional electrophysiological mapping and histopathological examination. These results demonstrate the potential of hES-cell cardiomyocytes to act as a rate-responsive biological pacemaker and for future myocardial regeneration strategies.
Sharma, Sushma; Nair, Pradeep P; Murgai, Aditya; Selvaraj, Raja J
2013-01-01
Thiopentone sodium is one of the important drugs in the armamentarium for terminating refractory status epilepticus, a neurological emergency. We report a case of thiopentone-related bradycardia during the management of the new onset refractory status epilepticus in a young man, which was circumvented by prophylactic insertion of temporary pacemaker while thiopentone infusion was continued. A systematic approach was employed to manage the status epilepticus, including infusion of thiamine and glucose followed by antiepileptic drugs. The patient was ventilated and infused with lorazepam, phenytoin, sodium valproate, levetiracetam and midazolam followed by thiopentone sodium. With the introduction of thiopentone the seizures could be controlled but the patient developed severe bradycardia and junctional rhythm. The bradycardia disappeared when thiopentone was withdrawn and reappeared when the drug was reintroduced. Propofol infusion was tried with no respite in seizures. Later thiopentone sodium was reintroduced after inserting temporary cardiac pacemaker. Seizure was controlled and patient was weaned off the ventilator. PMID:24130206
Sharma, Sushma; Nair, Pradeep P; Murgai, Aditya; Selvaraj, Raja J
2013-10-15
Thiopentone sodium is one of the important drugs in the armamentarium for terminating refractory status epilepticus, a neurological emergency. We report a case of thiopentone-related bradycardia during the management of the new onset refractory status epilepticus in a young man, which was circumvented by prophylactic insertion of temporary pacemaker while thiopentone infusion was continued. A systematic approach was employed to manage the status epilepticus, including infusion of thiamine and glucose followed by antiepileptic drugs. The patient was ventilated and infused with lorazepam, phenytoin, sodium valproate, levetiracetam and midazolam followed by thiopentone sodium. With the introduction of thiopentone the seizures could be controlled but the patient developed severe bradycardia and junctional rhythm. The bradycardia disappeared when thiopentone was withdrawn and reappeared when the drug was reintroduced. Propofol infusion was tried with no respite in seizures. Later thiopentone sodium was reintroduced after inserting temporary cardiac pacemaker. Seizure was controlled and patient was weaned off the ventilator.
Ciraj-Bjelac, Olivera; Antic, Vojislav; Selakovic, Jovana; Bozovic, Predrag; Arandjic, Danijela; Pavlovic, Sinisa
2016-12-01
The purpose of this study was to assess the patient exposure and staff eye dose levels during implantation procedures for all types of pacemaker therapy devices performed under fluoroscopic guidance and to investigate potential correlation between patients and staff dose levels. The mean eye dose during pacemaker/defibrillator implementation was 12 µSv for the first operator, 8.7 µSv for the second operator/nurse and 0.50 µSv for radiographer. Corresponding values for cardiac resynchronisation therapy procedures were 30, 26 and 2.0 µSv, respectively. Significant (p < 0.01) correlation between the eye dose and the kerma-area product was found for the first operator and radiographers, but not for other staff categories. The study revealed eye dose per procedure and eye dose normalised to patient dose indices for different staff categories and provided an input for radiation protection in electrophysiology procedures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
An Unexpected Cause of Bradycardia in a Patient with Bacterial Meningitis.
Ioannou, Petros; Velegraki, Magdalini; Soundoulounaki, Stella; Gikas, Achilleas; Kofteridis, Diamantis P
2017-01-01
Sinus bradycardia which is a sinus rhythm with a resting heart rate of less than 60 bpm is caused by intrinsic cardiac disorders like sick sinus syndrome or inferior myocardial infarction, metabolic and environmental causes (such as hypothyroidism and electrolyte disorders), medications (such as beta-blockers and amiodarone), infection (such as myocarditis), increased intracranial pressure, and toxic exposure, while it can sometimes be a normal phenomenon, especially during sleep, in athletes, and during pregnancy. Symptomatic sinus bradycardia should warrant a thorough work-up in order to identify any reversible causes; otherwise, placement of a permanent pacemaker could be needed. We present the case of a patient who was admitted due to confusion and fever and was found to have pneumococcal meningitis and bacteremia, and during his hospital stay he developed symptomatic sinus bradycardia that was of intractable cause and persistent. Placement of a permanent pacemaker was chosen until the night staff of the hospital discovered by chance the neglected cause of his bradycardia.
Pacemaker mediated tachycardia as a complication of the autointrinsic conduction search function.
Dennis, Malcolm J; Sparks, Paul B
2004-06-01
The autointrinsic conduction search (AICS) option, featured on some DDD pacemakers, performs periodic assessments of atrioventricular (AV) conduction capability during a single beat AV delay extension. Demonstration of ventricular conduction during the prolonged AV delay, permits ongoing AV delay extension if the patient's intrinsic conduction is preferred to ventricular pacing. A case is presented where the wide separation of atrial and ventricular pacing during the conduction search permitted retrograde ventriculoatrial conduction, precipitating pacemaker mediated tachycardia (PMT) on seven occasions in one patient. Two onset patterns are reported, both attributable to the AICS option. Recommendations for prevention strategies are made.
Smith, G Troy
2006-01-01
The neural circuit that controls the electric organ discharge (EOD) of the brown ghost knifefish (Apteronotus leptorhynchus) contains two spontaneous oscillators. Both pacemaker neurons in the medulla and electromotor neurons (EMNs) in the spinal cord fire spontaneously at frequencies of 500-1,000 Hz to control the EOD. These neurons continue to fire in vitro at frequencies that are highly correlated with in vivo EOD frequency. Previous studies used channel blocking drugs to pharmacologically characterize ionic currents that control high-frequency firing in pacemaker neurons. The goal of the present study was to use similar techniques to investigate ionic currents in EMNs, the other type of spontaneously active neuron in the electromotor circuit. As in pacemaker neurons, high-frequency firing of EMNs was regulated primarily by tetrodotoxin-sensitive sodium currents and by potassium currents that were sensitive to 4-aminopyridine and kappaA-conotoxin SIVA, but resistant to tetraethylammonium. EMNs, however, differed from pacemaker neurons in their sensitivity to some channel blocking drugs. Alpha-dendrotoxin, which blocks a subset of Kv1 potassium channels, increased firing rates in EMNs, but not pacemaker neurons; and the sodium channel blocker muO-conotoxin MrVIA, which reduced firing rates of pacemaker neurons, had no effect on EMNs. These results suggest that similar, but not identical, ionic currents regulate high-frequency firing in EMNs and pacemaker neurons. The differences in the ionic currents expressed in pacemaker neurons and EMNs might be related to differences in the morphology, connectivity, or function of these two cell types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apicello, L; Riegel, A; Jamshidi, A
2015-06-15
Purpose: A sufficient amount of ionizing radiation can cause failure to components of pacemakers. Studies have shown that permanent damage can occur after a dose of 10 Gy and minor damage to functionality occurs at doses as low as 2 Gy. Optically stimulated thermoluminescent dosimeters (OSLDs) can be used as in vivo dosimeters to predict dose to be deposited throughout the treatment. The purpose of this work is to determine the effectiveness of using OSLDs for in vivo dosimetry of pacemaker dose. Methods: As part of a clinical in vivo dosimetry experience, OSLDs were placed at the site of themore » pacemaker by the therapist for one fraction of the radiation treatment. OSLD measurements were extrapolated to the total dose to be received by the pacemaker during treatment. A total of 79 measurements were collected from November 2011 to December 2013 on six linacs. Sixty-six (66) patients treated in various anatomical sites had the dose of their pacemakers monitored. Results: Of the 79 measurements recorded, 76 measurements (96 %) were below 2 Gy. The mean and standard deviation were 50.12 ± 76.41 cGy. Of the 3 measurements that exceeded 2 Gy, 2 measurements matched the dose predicted in the treatment plan and 1 was repeated after an unexpectedly high Result. The repeated measurement yielded a total dose less than 2 Gy. Conclusion: This analysis suggests OSLDs may be used for in vivo monitoring of pacemaker dose. Further research should be performed to assess the effect of increased backscatter from the pacemaker device.« less
A novel approach to the pacemaker infection with non-thermal atmospheric pressure plasma
NASA Astrophysics Data System (ADS)
Zhang, Yuchen; Li, Yu; Li, Yinglong; Yu, Shuang; Li, Haiyan; Zhang, Jue
2017-08-01
Although the pacemaker (PM) is a key cardiac implantable electrical device for life-threatening arrhythmias treatment, the related infection is a challenge. Thus, the aim of this study is to validate cold plasma as a potential technology for the disinfection of infected pacemakers. Fifty donated PMs were cleaned and sterilized before use and then infected with Staphylococcus aureus ( S. aureus). Then, each experimental group was treated with cold plasma treatment for 1 min, 3 min, 5 min and 7 min, while the control group was immersed with sterilized water. Effectiveness of disinfection was evaluated by using CFU counting method and confocal laser scanning microscopy (CLSM). The physicochemical properties of water treated with cold plasma at different time were evaluated, including water temperature change and oxidation reduction potential (ORP). The major reactive species generated by the cold plasma equipment during cold plasma were analyzed with optical emission spectroscopy (OES). No live bacteria were detected with CFU counting method after 7 min of cold plasma treatment, which matches with the CLSM results. The ORP value of water and H2O2 concentration changed significantly after treating with cold plasma. Furthermore, reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially NO, O (777 nm) and O (844 nm) were probably key inactivation agents in cold plasma treatment. These results indicate that cold plasma could be an effective technology for the disinfection of implantable devices.
Skarda, R T; Bednarski, R M; Muir, W W; Hubbell, J A; Mason, D E
1995-01-01
The purpose of this study was to review the effects of sedatives and anesthetics in 137 dogs and 13 cats with congenital or acquired heart disease which were referred for diagnostic, therapeutic, and surgical interventions: correction of patent ductus arteriosus (PDA-ligation, 28%), cardiac catheterization with angiogram and angioplasty (22%), pacemaker implantation (18%), exploratory lateral thoracotomy (8.7%), correction of right aortic arch (ring anomaly, 3.3%), correction of subvalvular aortic stenosis (2.7%), correction of PDA with coil in patients with mitral regurgitation and congestive heart failure (2%), pericardectomy and removal of heart-base tumors (2%), palliative surgery for ventricular septal defect (VSD, 0.7%), and sick patients with deleterious cardiac arrhythmias (0.7%). The anesthetic plan considered the risks of anesthesia based upon preoperative patient assessment, classification scheme for functional phases of heart failure, and anesthetic drug effects of the cardiovascular system. The effects of sedatives and anesthetic drugs on determinants of cardiac output are described. The most commonly used drugs for premedication, induction, and maintenance of anesthesia were midazolam-oxymorphone (20%), thiopental or etomidate (30%), and isoflurane (64%). Prompt therapy was given to control arrhythmias and provide organ perfusion, pain relief, muscle relaxation and renal diuresis, using lidocaine, dopamine, fentanyl, atracurium, and furosemide in 17.3% 14.7%, 12%, 10%, and 8.7% of animals, respectively. Methods of routine and advanced patient monitoring are described.
Flaherty, G; De Freitas, S
2016-12-12
Cardiovascular disease is the leading cause of death in adult international travellers. Patients living with heart disease should receive specific, individualised pre-travel health advice. The purpose of this article is to provide evidence-based advice to physicians who are consulted by travellers with cardiovascular disease. Fitness-to-travel evaluation will often be conducted by the general practitioner but other medical specialists may also be consulted for advice. Patients with chronic medical conditions should purchase travel health insurance. The general pre-travel health consultation addresses food and water safety, insect and animal bite avoidance, malaria chemoprophylaxis, and travel vaccinations. Patients with devices such as cardiac pacemakers should be familiar with how these may be affected by travel. Cardiac medications may cause adverse effects in cold or hot environments, and specific precautions must be followed by anticoagulated travellers. The physician should be aware of how to access medical care abroad, and of the potential for imported tropical diseases in returned travellers.
Energy harvesting by implantable abiotically catalyzed glucose fuel cells
NASA Astrophysics Data System (ADS)
Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.
Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.
Intrinsically active and pacemaker neurons in pluripotent stem cell-derived neuronal populations.
Illes, Sebastian; Jakab, Martin; Beyer, Felix; Gelfert, Renate; Couillard-Despres, Sébastien; Schnitzler, Alfons; Ritter, Markus; Aigner, Ludwig
2014-03-11
Neurons generated from pluripotent stem cells (PSCs) self-organize into functional neuronal assemblies in vitro, generating synchronous network activities. Intriguingly, PSC-derived neuronal assemblies develop spontaneous activities that are independent of external stimulation, suggesting the presence of thus far undetected intrinsically active neurons (IANs). Here, by using mouse embryonic stem cells, we provide evidence for the existence of IANs in PSC-neuronal networks based on extracellular multielectrode array and intracellular patch-clamp recordings. IANs remain active after pharmacological inhibition of fast synaptic communication and possess intrinsic mechanisms required for autonomous neuronal activity. PSC-derived IANs are functionally integrated in PSC-neuronal populations, contribute to synchronous network bursting, and exhibit pacemaker properties. The intrinsic activity and pacemaker properties of the neuronal subpopulation identified herein may be particularly relevant for interventions involving transplantation of neural tissues. IANs may be a key element in the regulation of the functional activity of grafted as well as preexisting host neuronal networks.
Intrinsically Active and Pacemaker Neurons in Pluripotent Stem Cell-Derived Neuronal Populations
Illes, Sebastian; Jakab, Martin; Beyer, Felix; Gelfert, Renate; Couillard-Despres, Sébastien; Schnitzler, Alfons; Ritter, Markus; Aigner, Ludwig
2014-01-01
Summary Neurons generated from pluripotent stem cells (PSCs) self-organize into functional neuronal assemblies in vitro, generating synchronous network activities. Intriguingly, PSC-derived neuronal assemblies develop spontaneous activities that are independent of external stimulation, suggesting the presence of thus far undetected intrinsically active neurons (IANs). Here, by using mouse embryonic stem cells, we provide evidence for the existence of IANs in PSC-neuronal networks based on extracellular multielectrode array and intracellular patch-clamp recordings. IANs remain active after pharmacological inhibition of fast synaptic communication and possess intrinsic mechanisms required for autonomous neuronal activity. PSC-derived IANs are functionally integrated in PSC-neuronal populations, contribute to synchronous network bursting, and exhibit pacemaker properties. The intrinsic activity and pacemaker properties of the neuronal subpopulation identified herein may be particularly relevant for interventions involving transplantation of neural tissues. IANs may be a key element in the regulation of the functional activity of grafted as well as preexisting host neuronal networks. PMID:24672755
Adelborg, Kasper; Sundbøll, Jens; Munch, Troels; Frøslev, Trine; Sørensen, Henrik Toft; Bøtker, Hans Erik; Schmidt, Morten
2016-01-01
Objective Danish medical registries are widely used for cardiovascular research, but little is known about the data quality of cardiac interventions. We computed positive predictive values (PPVs) of codes for cardiac examinations, procedures and surgeries registered in the Danish National Patient Registry during 2010–2012. Design Population-based validation study. Setting We randomly sampled patients from 1 university hospital and 2 regional hospitals in the Central Denmark Region. Participants 1239 patients undergoing different cardiac interventions. Main outcome measure PPVs with medical record review as reference standard. Results A total of 1233 medical records (99% of the total sample) were available for review. PPVs ranged from 83% to 100%. For examinations, the PPV was overall 98%, reflecting PPVs of 97% for echocardiography, 97% for right heart catheterisation and 100% for coronary angiogram. For procedures, the PPV was 98% overall, with PPVs of 98% for thrombolysis, 92% for cardioversion, 100% for radiofrequency ablation, 98% for percutaneous coronary intervention, and 100% for both cardiac pacemakers and implantable cardiac defibrillators. For cardiac surgery, the overall PPVs was 99%, encompassing PPVs of 100% for mitral valve surgery, 99% for aortic valve surgery, 98% for coronary artery bypass graft surgery, and 100% for heart transplantation. The accuracy of coding was consistent within age, sex, and calendar year categories, and the agreement between independent reviewers was high (99%). Conclusions Cardiac examinations, procedures and surgeries have high PPVs in the Danish National Patient Registry. PMID:27940630
Cardiac sarcoidosis resembling panic disorder: a case report.
Tokumitsu, Keita; Demachi, Jun; Yamanoi, Yukichi; Oyama, Shigeto; Takeuchi, Junko; Yachimori, Koji; Yasui-Furukori, Norio
2017-01-13
Sarcoidosis is a systemic disease of unknown etiology, in which granulomas develop in various organs, including the skin, lungs, eyes, or heart. It has been reported that patients with sarcoidosis are more likely to develop panic disorder than members of the general population. However, there are many unknown factors concerning the causal relationship between these conditions. We present the case of a 57-year-old woman who appeared to have panic disorder, as she experienced repeated panic attacks induced by transient complete atrioventricular block, associated with cardiac sarcoidosis. Psychotherapy and pharmacotherapy were not effective in the treatment of her panic attacks. However, when we implanted a permanent pacemaker and initiated steroid treatment for cardiac sarcoidosis, panic attacks were ameliorated. Based on these findings, we diagnosed the patient's symptoms as an anxiety disorder associated with cardiac sarcoidosis, rather than panic disorder. This report highlights the importance of considering cardiac sarcoidosis in the differential diagnosis of panic disorder. This cardiac disease should be considered especially in patients have a history of cardiac disease (e.g., arrhythmia) and atypical presentations of panic symptoms. Panic disorder is a psychiatric condition that is typically diagnosed after other medical conditions have been excluded. Because the diagnosis of sarcoidosis is difficult in some patients, caution is required. The palpitations and symptoms of heart failure associated with cardiac sarcoidosis can be misdiagnosed as psychiatric symptoms of panic disorder. The condition described in the current case study appears to constitute a physical disease, the diagnosis of which requires significant consideration and caution.
Duvall, Laura B.; Taghert, Paul H.
2012-01-01
The neuropeptide Pigment Dispersing Factor (PDF) is essential for normal circadian function in Drosophila. It synchronizes the phases of M pacemakers, while in E pacemakers it decelerates their cycling and supports their amplitude. The PDF receptor (PDF-R) is present in both M and subsets of E cells. Activation of PDF-R stimulates cAMP increases in vitro and in M cells in vivo. The present study asks: What is the identity of downstream signaling components that are associated with PDF receptor in specific circadian pacemaker neurons? Using live imaging of intact fly brains and transgenic RNAi, we show that adenylate cyclase AC3 underlies PDF signaling in M cells. Genetic disruptions of AC3 specifically disrupt PDF responses: they do not affect other Gs-coupled GPCR signaling in M cells, they can be rescued, and they do not represent developmental alterations. Knockdown of the Drosophila AKAP-like scaffolding protein Nervy also reduces PDF responses. Flies with AC3 alterations show behavioral syndromes consistent with known roles of M pacemakers as mediated by PDF. Surprisingly, disruption of AC3 does not alter PDF responses in E cells—the PDF-R(+) LNd. Within M pacemakers, PDF-R couples preferentially to a single AC, but PDF-R association with a different AC(s) is needed to explain PDF signaling in the E pacemakers. Thus critical pathways of circadian synchronization are mediated by highly specific second messenger components. These findings support a hypothesis that PDF signaling components within target cells are sequestered into “circadian signalosomes,” whose compositions differ between E and M pacemaker cell types. PMID:22679392
Duvall, Laura B; Taghert, Paul H
2012-01-01
The neuropeptide Pigment Dispersing Factor (PDF) is essential for normal circadian function in Drosophila. It synchronizes the phases of M pacemakers, while in E pacemakers it decelerates their cycling and supports their amplitude. The PDF receptor (PDF-R) is present in both M and subsets of E cells. Activation of PDF-R stimulates cAMP increases in vitro and in M cells in vivo. The present study asks: What is the identity of downstream signaling components that are associated with PDF receptor in specific circadian pacemaker neurons? Using live imaging of intact fly brains and transgenic RNAi, we show that adenylate cyclase AC3 underlies PDF signaling in M cells. Genetic disruptions of AC3 specifically disrupt PDF responses: they do not affect other Gs-coupled GPCR signaling in M cells, they can be rescued, and they do not represent developmental alterations. Knockdown of the Drosophila AKAP-like scaffolding protein Nervy also reduces PDF responses. Flies with AC3 alterations show behavioral syndromes consistent with known roles of M pacemakers as mediated by PDF. Surprisingly, disruption of AC3 does not alter PDF responses in E cells--the PDF-R(+) LNd. Within M pacemakers, PDF-R couples preferentially to a single AC, but PDF-R association with a different AC(s) is needed to explain PDF signaling in the E pacemakers. Thus critical pathways of circadian synchronization are mediated by highly specific second messenger components. These findings support a hypothesis that PDF signaling components within target cells are sequestered into "circadian signalosomes," whose compositions differ between E and M pacemaker cell types.
Clinical benefits of remote versus transtelephonic monitoring of implanted pacemakers.
Crossley, George H; Chen, Jane; Choucair, Wassim; Cohen, Todd J; Gohn, Douglas C; Johnson, W Ben; Kennedy, Eleanor E; Mongeon, Luc R; Serwer, Gerald A; Qiao, Hongyan; Wilkoff, Bruce L
2009-11-24
The purpose of this study was to evaluate remote pacemaker interrogation for the earlier diagnosis of clinically actionable events compared with traditional transtelephonic monitoring and routine in-person evaluation. Pacemaker patient follow-up procedures have evolved from evaluating devices with little programmability and diagnostic information solely in person to transtelephonic rhythm strip recordings that allow monitoring of basic device function. More recently developed remote monitoring technology leverages expanded device capabilities, augmenting traditional transtelephonic monitoring to evaluate patients via full device interrogation. The time to first diagnosis of a clinically actionable event was compared in patients who were followed by remote interrogation (Remote) and those who were followed per standard of care with office visits augmented by transtelephonic monitoring (Control). Patients were randomized 2:1. Remote arm patients transmitted pacemaker information at 3-month intervals. Control arm patients with a single-chamber pacemaker transmitted at 2-month intervals. Control arm patients with dual-chamber devices transmitted at 2-month intervals with an office visit at 6 months. All patients were seen in office at 12 months. The mean time to first diagnosis of clinically actionable events was earlier in the Remote arm (5.7 months) than in the Control arm (7.7 months). Three (2%) of the 190 events in the Control arm and 446 (66%) of 676 events in the Remote arm were identified remotely. The strategic use of remote pacemaker interrogation follow-up detects actionable events that are potentially important more quickly and more frequently than transtelephonic rhythm strip recordings. The use of transtelephonic rhythm strips for pacemaker follow-up is of little value except for battery status determinations. (PREFER [Pacemaker Remote Follow-up Evaluation and Review]; NCT00294645).
Streckfuss-Bömeke, Katrin; Wolf, Frieder; Azizian, Azadeh; Stauske, Michael; Tiburcy, Malte; Wagner, Stefan; Hübscher, Daniela; Dressel, Ralf; Chen, Simin; Jende, Jörg; Wulf, Gerald; Lorenz, Verena; Schön, Michael P; Maier, Lars S; Zimmermann, Wolfram H; Hasenfuss, Gerd; Guan, Kaomei
2013-09-01
Induced pluripotent stem cells (iPSCs) provide a unique opportunity for the generation of patient-specific cells for use in disease modelling, drug screening, and regenerative medicine. The aim of this study was to compare human-induced pluripotent stem cells (hiPSCs) derived from different somatic cell sources regarding their generation efficiency and cardiac differentiation potential, and functionalities of cardiomyocytes. We generated hiPSCs from hair keratinocytes, bone marrow mesenchymal stem cells (MSCs), and skin fibroblasts by using two different virus systems. We show that MSCs and fibroblasts are more easily reprogrammed than keratinocytes. This corresponds to higher methylation levels of minimal promoter regions of the OCT4 and NANOG genes in keratinocytes than in MSCs and fibroblasts. The success rate and reprogramming efficiency was significantly higher by using the STEMCCA system than the OSNL system. All analysed hiPSCs are pluripotent and show phenotypical characteristics similar to human embryonic stem cells. We studied the cardiac differentiation efficiency of generated hiPSC lines (n = 24) and found that MSC-derived hiPSCs exhibited a significantly higher efficiency to spontaneously differentiate into beating cardiomyocytes when compared with keratinocyte-, and fibroblast-derived hiPSCs. There was no significant difference in the functionalities of the cardiomyocytes derived from hiPSCs with different origins, showing the presence of pacemaker-, atrial-, ventricular- and Purkinje-like cardiomyocytes, and exhibiting rhythmic Ca2+ transients and Ca2+ sparks in hiPSC-derived cardiomyocytes. Furthermore, spontaneously and synchronously beating and force-developing engineered heart tissues were generated. Human-induced pluripotent stem cells can be reprogrammed from all three somatic cell types, but with different efficiency. All analysed iPSCs can differentiate into cardiomyocytes, and the functionalities of cardiomyocytes derived from different cell origins are similar. However, MSC-derived hiPSCs revealed a higher cardiac differentiation efficiency than keratinocyte- and fibroblast-derived hiPSCs.
Myopotential inhibition of a bipolar pacemaker caused by electrode insulation defect.
Amikam, S; Peleg, H; Lemer, J; Riss, E
1977-01-01
A patient is described in whom myopotentials orginating from the anterior abdominal wall muscle suppressed the implanted demand pacemaker despite its bipolar mode of action. This phenomenon was shown by simultaneous recording of the electrocardiogram the electromyogram. At operation, a defect in the insulation of a previously repaired epicardial electrode was found lying in close proximity to these muscles. After repair of the insulation defect, normal pacemaker function was restored. It is suggested that the myopotentials leaked into the pacing system through the insulation defect, thereby suppressing the demand unit, which maintained its bipolar mode of pacing throughout. Images PMID:145229
Albers, H. Elliott; Walton, James C.; Gamble, Karen L.; McNeill, John K.; Hummer, Daniel L.
2016-01-01
Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker. PMID:27894927
Fifty years of pacemaker advancements.
Steinhaus, David
2008-12-01
A 1957 power blackout in Minnesota prompted C. Walton Lillehei, MD, a pioneer in open heart surgery, to ask Earl Bakken, the co-founder of Medtronic, Inc., to create a battery-operated pacemaker for pediatric patients. That conversation led to the development of the first external battery-operated pacemaker. That first bulky device is far removed from the tiny implantable computers available to heart patients today. Now, the size of two silver dollars stacked on top of one another, a pacemaker is prescribed for a person whose heart beats too slowly or pauses irregularly. Slightly larger devices have more recently evolved from pacing and regulating the heartbeat to being able to provide therapeutic high voltage shocks when needed to stop runaway fast heart rates, recording heart activity, and other physiologic functions, even resynchronizing the heart's chambers-all while providing information on the patient's condition and device performance to the doctor remotely or in the office.
Oxidized CaMKII causes cardiac sinus node dysfunction in mice
Swaminathan, Paari Dominic; Purohit, Anil; Soni, Siddarth; Voigt, Niels; Singh, Madhu V.; Glukhov, Alexey V.; Gao, Zhan; He, B. Julie; Luczak, Elizabeth D.; Joiner, Mei-ling A.; Kutschke, William; Yang, Jinying; Donahue, J. Kevin; Weiss, Robert M.; Grumbach, Isabella M.; Ogawa, Masahiro; Chen, Peng-Sheng; Efimov, Igor; Dobrev, Dobromir; Mohler, Peter J.; Hund, Thomas J.; Anderson, Mark E.
2011-01-01
Sinus node dysfunction (SND) is a major public health problem that is associated with sudden cardiac death and requires surgical implantation of artificial pacemakers. However, little is known about the molecular and cellular mechanisms that cause SND. Most SND occurs in the setting of heart failure and hypertension, conditions that are marked by elevated circulating angiotensin II (Ang II) and increased oxidant stress. Here, we show that oxidized calmodulin kinase II (ox-CaMKII) is a biomarker for SND in patients and dogs and a disease determinant in mice. In wild-type mice, Ang II infusion caused sinoatrial nodal (SAN) cell oxidation by activating NADPH oxidase, leading to increased ox-CaMKII, SAN cell apoptosis, and SND. p47–/– mice lacking functional NADPH oxidase and mice with myocardial or SAN-targeted CaMKII inhibition were highly resistant to SAN apoptosis and SND, suggesting that ox-CaMKII–triggered SAN cell death contributed to SND. We developed a computational model of the sinoatrial node that showed that a loss of SAN cells below a critical threshold caused SND by preventing normal impulse formation and propagation. These data provide novel molecular and mechanistic information to understand SND and suggest that targeted CaMKII inhibition may be useful for preventing SND in high-risk patients. PMID:21785215
Bhatia, Atul; Cooley, Ryan; Berger, Marcie; Blanck, Zalmen; Dhala, Anwer; Sra, Jasbir; Axtell-Mcbride, Kathleen; Vandervort, Cheryl; Akhtar, Masood
2004-06-01
Since the introduction of the implantable cardioverter defibrillator (ICD) for the management of patients with high risk of arrhythmic SCD, there has been increasing use of this device. Its basic promise to effectively terminate ventricular tachycardia (VT)-ventricular fibrillation (VF) has been repeatedly met. In several randomized trials, the ICD has been shown to be superior to conventional anti-arrhythmic therapy, both in patients with documented VT-VF (secondary prevention) and those with high risk such as left ventricular ejection fraction and no prior sustained VT-VF (primary prevention). In both groups, the ICD showed overall and cardiac mortality reduction. The device now can more accurately detect VT-VF and differentiate these from other arrhythmias through a series of algorithms and direct-chamber sensing. Therapy options include painless antitachycardia pacing, low-energy cardioversion, and high-energy defibrillation. The technique implant is now simple as a pacemaker with one lead attached to an active (hot) can functioning as the other electrode. Among other improvements is its weight, volume, multiprogrammability, and storage of information,dual-chamber pacing and sensing, dual-chamber defibrillation, and addition of biventricular pacing for cardiac synchronization. It is anticipated that further improvement in ICD technology will take place and the list of indications will grow.
Vocalization frequency and duration are coded in separate hindbrain nuclei.
Chagnaud, Boris P; Baker, Robert; Bass, Andrew H
2011-06-14
Temporal patterning is an essential feature of neural networks producing precisely timed behaviours such as vocalizations that are widely used in vertebrate social communication. Here we show that intrinsic and network properties of separate hindbrain neuronal populations encode the natural call attributes of frequency and duration in vocal fish. Intracellular structure/function analyses indicate that call duration is encoded by a sustained membrane depolarization in vocal prepacemaker neurons that innervate downstream pacemaker neurons. Pacemaker neurons, in turn, encode call frequency by rhythmic, ultrafast oscillations in their membrane potential. Pharmacological manipulations show prepacemaker activity to be independent of pacemaker function, thus accounting for natural variation in duration which is the predominant feature distinguishing call types. Prepacemaker neurons also innervate key hindbrain auditory nuclei thereby effectively serving as a call-duration corollary discharge. We propose that premotor compartmentalization of neurons coding distinct acoustic attributes is a fundamental trait of hindbrain vocal pattern generators among vertebrates.
Vocalization frequency and duration are coded in separate hindbrain nuclei
Chagnaud, Boris P.; Baker, Robert; Bass, Andrew H.
2011-01-01
Temporal patterning is an essential feature of neural networks producing precisely timed behaviours such as vocalizations that are widely used in vertebrate social communication. Here we show that intrinsic and network properties of separate hindbrain neuronal populations encode the natural call attributes of frequency and duration in vocal fish. Intracellular structure/function analyses indicate that call duration is encoded by a sustained membrane depolarization in vocal prepacemaker neurons that innervate downstream pacemaker neurons. Pacemaker neurons, in turn, encode call frequency by rhythmic, ultrafast oscillations in their membrane potential. Pharmacological manipulations show prepacemaker activity to be independent of pacemaker function, thus accounting for natural variation in duration which is the predominant feature distinguishing call types. Prepacemaker neurons also innervate key hindbrain auditory nuclei thereby effectively serving as a call-duration corollary discharge. We propose that premotor compartmentalization of neurons coding distinct acoustic attributes is a fundamental trait of hindbrain vocal pattern generators among vertebrates. PMID:21673667
Nee, Sean
2018-05-01
Survival analysis in biology and reliability theory in engineering concern the dynamical functioning of bio/electro/mechanical units. Here we incorporate effects of chaotic dynamics into the classical theory. Dynamical systems theory now distinguishes strong and weak chaos. Strong chaos generates Type II survivorship curves entirely as a result of the internal operation of the system, without any age-independent, external, random forces of mortality. Weak chaos exhibits (a) intermittency and (b) Type III survivorship, defined as a decreasing per capita mortality rate: engineering explicitly defines this pattern of decreasing hazard as 'infant mortality'. Weak chaos generates two phenomena from the normal functioning of the same system. First, infant mortality- sensu engineering-without any external explanatory factors, such as manufacturing defects, which is followed by increased average longevity of survivors. Second, sudden failure of units during their normal period of operation, before the onset of age-dependent mortality arising from senescence. The relevance of these phenomena encompasses, for example: no-fault-found failure of electronic devices; high rates of human early spontaneous miscarriage/abortion; runaway pacemakers; sudden cardiac death in young adults; bipolar disorder; and epilepsy.
2018-01-01
Survival analysis in biology and reliability theory in engineering concern the dynamical functioning of bio/electro/mechanical units. Here we incorporate effects of chaotic dynamics into the classical theory. Dynamical systems theory now distinguishes strong and weak chaos. Strong chaos generates Type II survivorship curves entirely as a result of the internal operation of the system, without any age-independent, external, random forces of mortality. Weak chaos exhibits (a) intermittency and (b) Type III survivorship, defined as a decreasing per capita mortality rate: engineering explicitly defines this pattern of decreasing hazard as ‘infant mortality’. Weak chaos generates two phenomena from the normal functioning of the same system. First, infant mortality—sensu engineering—without any external explanatory factors, such as manufacturing defects, which is followed by increased average longevity of survivors. Second, sudden failure of units during their normal period of operation, before the onset of age-dependent mortality arising from senescence. The relevance of these phenomena encompasses, for example: no-fault-found failure of electronic devices; high rates of human early spontaneous miscarriage/abortion; runaway pacemakers; sudden cardiac death in young adults; bipolar disorder; and epilepsy. PMID:29892407
Levin, Ricardo; Leacche, Marzia; Petracek, Michael R; Deegan, Robert J; Eagle, Susan S; Thompson, Annemarie; Pretorius, Mias; Solenkova, Nataliya V; Umakanthan, Ramanan; Brewer, Zachary E; Byrne, John G
2010-08-01
In this study, the therapeutic use of pacing pulmonary artery catheters in association with minimally invasive cardiac surgery was evaluated. A retrospective study. A single institutional university hospital. Two hundred twenty-four consecutive patients undergoing minimally invasive cardiac surgery through a small (5-cm) right anterolateral thoracotomy using fibrillatory arrest without aortic cross-clamping. Two hundred eighteen patients underwent mitral valve surgery (97%) alone or in combination with other procedures. Six patients underwent other cardiac operations. In all patients, the pacing pulmonary artery catheter was used intraoperatively to induce ventricular fibrillation during the cooling period, and in the postoperative period it also was used in 37 (17%) patients who needed to be paced, mainly for bradyarrhythmias (51%). There were no complications related to the insertion of the catheters. Six (3%) patients experienced a loss of pacing capture, and 2 (1%) experienced another complication requiring the surgical removal of the catheter. Seven (3%) patients needed postoperative implantation of a permanent pacemaker. In combination with minimally invasive cardiac surgery, pacing pulmonary artery catheters were therapeutically useful to induce ventricular fibrillatory arrest intraoperatively and for obtaining pacing capability in the postoperative period. Their use was associated with a low number of complications. Copyright 2010 Elsevier Inc. All rights reserved.
Wang, Chunguo; Ye, Minhua; Lin, Jiang; Jin, Jiang; Hu, Quanteng; Zhu, Chengchu; Chen, Baofu
2018-01-01
Introduction Surgical ablation is a generally established treatment for patients with atrial fibrillation undergoing concomitant cardiac surgery. Left atrial (LA) lesion set for ablation is a simplified procedure suggested to reduce the surgery time and morbidity after procedure. The present meta-analysis aims to explore the outcomes of left atrial lesion set versus no ablative treatment in patients with AF undergoing cardiac surgery. Methods A literature research was performed in six database from their inception to July 2017, identifying all relevant randomized controlled trials (RCTs) comparing left atrial lesion set versus no ablative treatment in AF patient undergoing cardiac surgery. Data were extracted and analyzed according to predefined clinical endpoints. Results Eleven relevant RCTs were included for analysis in the present study. The prevalence of sinus rhythm in ablation group was significantly higher at discharge, 6-month and 1-year follow-up period. The morbidity including 30 day mortality, late all-cause mortality, reoperation for bleeding, permanent pacemaker implantation and neurological events were of no significant difference between two groups. Conclusions The result of our meta-analysis demonstrates that left atrial lesion set is an effective and safe surgical ablation strategy for AF patients undergoing concomitant cardiac surgery. PMID:29360851
Varma, Niraj; Mittal, Suneet; Prillinger, Julie B; Snell, Jeff; Dalal, Nirav; Piccini, Jonathan P
2017-05-10
Whether outcomes differ between sexes following treatment with pacemakers (PM), implantable cardioverter defibrillators, and cardiac resynchronization therapy (CRT) devices is unclear. Consecutive US patients with newly implanted PM, implantable cardioverter defibrillators, and CRT devices from a large remote monitoring database between 2008 and 2011 were included in this observational cohort study. Sex-specific all-cause survival postimplant was compared within each device type using a multivariable Cox proportional hazards model, stratified on age and adjusted for remote monitoring utilization and ZIP-based socioeconomic variables. A total of 269 471 patients were assessed over a median 2.9 [interquartile range, 2.2, 3.6] years. Unadjusted mortality rates (MR; deaths/100 000 patient-years) were similar between women versus men receiving PMs (n=115 076, 55% male; MR 4193 versus MR 4256, respectively; adjusted hazard ratio, 0.87; 95% CI, 0.84-0.90; P <0.001) and implantable cardioverter defibrillators (n=85 014, 74% male; MR 4417 versus MR 4479, respectively; adjusted hazard ratio, 0.98; 95% CI, 0.93-1.02; P =0.244). In contrast, survival was superior in women receiving CRT defibrillators (n=61 475, 72% male; MR 5270 versus male MR 7175; adjusted hazard ratio, 0.73; 95% CI, 0.70-0.76; P <0.001) and also CRT pacemakers (n=7906, 57% male; MR 5383 versus male MR 7625, adjusted hazard ratio, 0.69; 95% CI, 0.61-0.78; P <0.001). This relative difference increased with time. These results were unaffected by age or remote monitoring utilization. Women accounted for less than 30% of high-voltage implants and fewer than half of low-voltage implants in a large, nation-wide cohort. Survival for women and men receiving implantable cardioverter defibrillators and PMs was similar, but dramatically greater for women receiving both defibrillator- and PM-based CRT. © 2017 The Authors and St. Jude Medical. Published on behalf of the American Heart Association, Inc., by Wiley.
The impact of overhead lines for employees with stents
NASA Astrophysics Data System (ADS)
Syrek, P.; Skowron, M.
2017-05-01
The aim of article is to discuss interaction between stents implanted in the body of worker and harmonic magnetic field in the vicinity of electric wires. In last decades, a growing proportion of people has any devices implanted, to list: cardiac pacemakers, cardioverter - defibrillators. Recommendations of International Commision on Non-ionizing Radiation Protection (ICNIRP), and resctrictions imposed in different states, may exlude specific individuals from their duties. The autors focused on the situation, when the employee with stent, works in the immediate vicinity of overhead electric wires, cleaning with dry ice the electric insulators.
Fauchier, Laurent; Alonso, Christine; Anselme, Frédéric; Blangy, Hugues; Bordachar, Pierre; Boveda, Serge; Clementy, Nicolas; Defaye, Pascal; Deharo, Jean-Claude; Friocourt, Patrick; Gras, Daniel; Halimi, Franck; Klug, Didier; Mansourati, Jacques; Obadia, Benjamin; Pasquié, Jean-Luc; Pavin, Dominique; Sadoul, Nicolas; Taieb, Jérôme; Piot, Olivier; Hanon, Olivier
2016-09-01
Despite the increasingly high rate of implantation of pacemakers (PM) and cardioverter-defibrillators (ICD) in elderly patients, data supporting their clinical and cost-effectiveness in this age stratum are ambiguous and contradictory. We reviewed the data regarding the applicability, safety, and effectiveness of the conventional pacing, ICD and cardiac resynchronization therapy (CRT) in elderly patients. Although peri-procedural risk may be slightly higher in the elderly, the procedure of implantation of PMs and ICDs is still relatively safe in this age group. In older patients with sinus node disease, a general consensus is that dual chamber pacing, along with the programming of an algorithm to minimise ventricular pacing is preferred. In very old patients presenting with intermittent or suspected AV block, VVI pacing may be appropriate. In terms of correcting potentially life-threatening arrhythmias, the effectiveness of ICD therapy is comparable in older and younger individuals. However, the assumption of persistent ICD benefit in the elderly population is questionable, as any advantage of the device on arrhythmic death may be attenuated by a higher total non-arrhythmic mortality. While septuagenarians and octogenarians have higher annual all-cause mortality rates, ICD therapy may remain effective in selected patients at high risk of arrhythmic death and with minimum comorbidities despite advanced age. ICD implantation among the elderly, as a group, may not be cost-effective, but the procedure may reach cost-effectiveness in those expected to live >5-7 years after implantation. The elderly patients usually experience a significant functional improvement after CRT, similar to that observed in middle-aged patients. Management of CRT non responders remains globally the same, while considering a less aggressive approach in terms of re interventions (revision of LV lead placement, addition of a RV or LV lead, LV endocardial pacing configuration). Overall, age, comorbidities and comprehensive geriatric assessment should be the decisive factor in making a decision on device implantation selection for survival and well-being benefit in elderly patients.
NASA Astrophysics Data System (ADS)
Rajchl, Martin; Abhari, Kamyar; Stirrat, John; Ukwatta, Eranga; Cantor, Diego; Li, Feng P.; Peters, Terry M.; White, James A.
2014-03-01
Multi-center trials provide the unique ability to investigate novel techniques across a range of geographical sites with sufficient statistical power, the inclusion of multiple operators determining feasibility under a wider array of clinical environments and work-flows. For this purpose, we introduce a new means of distributing pre-procedural cardiac models for image-guided interventions across a large scale multi-center trial. In this method, a single core facility is responsible for image processing, employing a novel web-based interface for model visualization and distribution. The requirements for such an interface, being WebGL-based, are minimal and well within the realms of accessibility for participating centers. We then demonstrate the accuracy of our approach using a single-center pacemaker lead implantation trial with generic planning models.
Ishizaki, Masatoshi; Fujimoto, Akiko; Ueyama, Hidetsugu; Nishida, Yasuto; Imamura, Shigehiro; Uchino, Makoto; Ando, Yukio
2015-01-01
We herein present a report of three patients with Becker muscular dystrophy in the same family who developed complete atrioventricular block or ventricular tachycardia with severe cardiomyopathy. Our cases became unable to walk in their teens, and were introduced to mechanical ventilation due to respiratory muscle weakness in their twenties and thirties. In all three cases, a medical device such as a permanent cardiac pacemaker or an implantable cardiac defibrillator was considered to be necessary. The duplication of exons 3-4 in the dystrophin gene was detected in two of the patients. In patients with Becker muscular dystrophy, complete atrioventricular block or ventricular tachycardia within a family has rarely been reported. Thus attention should be paid to the possibility of severe arrhythmias in the severe phenotype of Becker muscular dystrophy.
Cardiac cell: a biological laser?
Chorvat, D; Chorvatova, A
2008-04-01
We present a new concept of cardiac cells based on an analogy with lasers, practical implementations of quantum resonators. In this concept, each cardiac cell comprises a network of independent nodes, characterised by a set of discrete energy levels and certain transition probabilities between them. Interaction between the nodes is given by threshold-limited energy transfer, leading to quantum-like behaviour of the whole network. We propose that in cardiomyocytes, during each excitation-contraction coupling cycle, stochastic calcium release and the unitary properties of ionic channels constitute an analogue to laser active medium prone to "population inversion" and "spontaneous emission" phenomena. This medium, when powered by an incoming threshold-reaching voltage discharge in the form of an action potential, responds to the calcium influx through L-type calcium channels by stimulated emission of Ca2+ ions in a coherent, synchronised and amplified release process known as calcium-induced calcium release. In parallel, phosphorylation-stimulated molecular amplification in protein cascades adds tuneable features to the cells. In this framework, the heart can be viewed as a coherent network of synchronously firing cardiomyocytes behaving as pulsed laser-like amplifiers, coupled to pulse-generating pacemaker master-oscillators. The concept brings a new viewpoint on cardiac diseases as possible alterations of "cell lasing" properties.
Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard; Jørgensen, Ole Dan; Nielsen, Jens Cosedis
2014-01-01
Aims Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient morbidity, healthcare costs, and possibly increased mortality. Methods and results Population-based cohort study in all Danish patients who underwent a CIED procedure from May 2010 to April 2011. Data on complications were gathered on review of all patient charts while baseline data were obtained from the Danish Pacemaker and ICD Register. Adjusted risk ratios (aRRs) with 95% confidence intervals were estimated using binary regression. The study population consisted of 5918 consecutive patients. A total of 562 patients (9.5%) experienced at least one complication. The risk of any complication was higher if the patient was a female (aRR 1.3; 1.1–1.6), underweight (aRR 1.5; 1.1–2.3), implanted in a centre with an annual volume <750 procedures (0–249 procedures: aRR 1.6; 1.1–2.2, 250–499: aRR 2.0; 1.6–2.7, 500–749: aRR 1.5; 1.2–1.8), received a dual-chamber ICD (aRR 2.0; 1.4–2.7) or CRT-D (aRR 2.6; 1.9–3.4), underwent system upgrade or lead revision (aRR 1.3; 1.0–1.7), had an operator with an annual volume <50 procedures (aRR 1.9; 1.4–2.6), or underwent an emergency, out-of-hours procedure (aRR 1.5; 1.0–2.3). Conclusion CIED complications are more frequent than generally acknowledged. Both patient- and procedure-related predictors may identify patients with a particularly high risk of complications. This information should be taken into account both in individual patient treatment and in the planning of future organization of CIED treatment. PMID:24347317
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avery, S; Christodouleas, J; Delaney, K
2014-06-01
Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBsmore » to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.« less
Varma, Niraj; Piccini, Jonathan P; Snell, Jeffery; Fischer, Avi; Dalal, Nirav; Mittal, Suneet
2015-06-23
Remote monitoring (RM) technology embedded within cardiac rhythm devices permits continuous monitoring, which may result in improved patient outcomes. This study used "big data" to assess whether RM is associated with improved survival and whether this is influenced by the type of cardiac device and/or its degree of use. We studied 269,471 consecutive U.S. patients implanted between 2008 and 2011 with pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), or cardiac resynchronization therapy (CRT) with pacing capability (CRT-P)/defibrillation capability (CRT-D) with wireless RM. We analyzed weekly use and all-cause survival for each device type by the percentage of time in RM (%TRM) stratified by age. Socioeconomic influences on %TRM were assessed using 8 census variables from 2012. The group had implanted PMs (n = 115,076; 43%), ICDs (n = 85,014; 32%), CRT-D (n = 61,475; 23%), and CRT-P (n = 7,906; 3%). When considered together, 127,706 patients (47%) used RM, of whom 67,920 (53%) had ≥75%TRM (high %TRM) and 59,786 (47%) <75%TRM (low %TRM); 141,765 (53%) never used RM (RM None). RM use was not affected by age or sex, but demonstrated wide geographic and socioeconomic variability. Survival was better in high %TRM versus RM None (hazard ratio [HR]: 2.10; p < 0.001), in high %TRM versus low %TRM (HR: 1.32; p < 0.001), and also in low %TRM versus RM None (HR: 1.58; p < 0.001). The same relationship was observed when assessed by individual device type. RM is associated with improved survival, irrespective of device type (including PMs), but demonstrates a graded relationship with the level of adherence. The results support the increased application of RM to improve patient outcomes. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Skarda, R T; Muir, W W; Bednarski, R M; Hubbell, J A; Mason, D E
1995-01-01
The purpose of this study was to review the incidence of cardiac arrhythmias in 137 anesthetized dogs and 13 anesthetized cats with congenital or acquired heart disease that were referred for correction of following procedures: patent ductus arteriosus (PDA-ligation, 28%), cardiac catheterization with angiogram and angioplasty (22%), pacemaker implantation (18%), exploratory lateral thoracotomy (8.7%), correction of right aortic arch (ring anomaly, 3.3%), correction of subvalvular aortic stenosis (2.7%), correction of PDA with coil in patients with mitral regurgitation and congestive heart failure (2%), pericardectomy and removal of heart base tumor (2%), and palliative surgery for ventricular septal defect (VSD, 0.7%). The anesthetic plan considered the risks of anesthesia based upon the pathophysiology of cardiac lesions and the anesthetic drug effects on the cardiovascular system. Recommendations are made for dogs with decreased cardiac contractility, cardiac disease with volume overload, cardiac disease with pressure overload, and pericardial tamponade. The percentages of animals and their associated cardiac arrhythmias after premedication and during and after anesthesia were: sinus bradycardia (15.3%), sinus tachycardia (3.3%), atrial flutter (0.7%), atrial fibrillation (0.7%), premature ventricular contraction (14%), and ventricular tachycardia (1.3%). Prompt therapy was given to a percentage of animals in order to control arrhythmia and support cardiovascular system, by using atropine or glycopyrrolate (14%), lidocaine (17.3%), and dopamine (14.7%).(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Hardy, Neil; Dvir, Hila; Fenton, Flavio
Existing pacemakers consider the rectangular pulse to be the optimal form of stimulation current. However, other waveforms for the use of pacemakers could save energy while still stimulating the heart. We aim to find the optimal waveform for pacemaker use, and to offer a theoretical explanation for its advantage. Since the pacemaker battery is a charge source, here we probe the stimulation current waveforms with respect to the total charge delivery. In this talk we present theoretical analysis and numerical simulations of myocyte ion-channel currents acting as an additional source of charge that adds to the external stimulating charge for stimulation purposes. Therefore, we find that as the action potential emerges, the external stimulating current can be reduced accordingly exponentially. We then performed experimental studies in rabbit and cat hearts and showed that indeed exponential truncated pulses with less total charge can still induce activation in the heart. From the experiments, we present curves showing the savings in charge as a function of exponential waveform and we calculated that the longevity of the pacemaker battery would be ten times higher for the exponential current compared to the rectangular waveforms. Thanks to Petit Undergraduate Research Scholars Program and NSF# 1413037.
Decreased human circadian pacemaker influence after 100 days in space: a case study
NASA Technical Reports Server (NTRS)
Monk, T. H.; Kennedy, K. S.; Rose, L. R.; Linenger, J. M.
2001-01-01
OBJECTIVE: The objectives of this study were (1) to assess the circadian rhythms and sleep of a healthy, 42-year-old male astronaut experiencing microgravity (weightlessness) for nearly 5 months while living aboard Space Station Mir as it orbited Earth and (2) to determine the effects of prolonged space flight on the endogenous circadian pacemaker, as indicated by oral temperature and subjective alertness rhythms, and their ramifications for sleep, alertness, and performance. METHODS: For three 12- to 14-day blocks of time (spread throughout the mission), oral temperatures were taken and subjective alertness was self-rated five times per day. Sleep diaries and performance tests were also completed daily during each block. RESULTS: Examination of the subject's circadian alertness and oral temperature rhythms suggested that the endogenous circadian pacemaker seemed to function quite well up to 90 days in space. Thereafter (on days 110-122), the influence of the endogenous circadian pacemaker on oral temperature and subjective alertness circadian rhythms was considerably weakened, with consequent disruptions in sleep. CONCLUSIONS: Space missions lasting more than 3 months might result in diminished circadian pacemaker influence in astronauts, leading to eventual sleep problems.
Remodeling of sinus node function after catheter ablation of right atrial flutter.
Daoud, Emile G; Weiss, Raul; Augostini, Ralph S; Kalbfleisch, Steven J; Schroeder, Jason; Polsinelli, Georgia; Hummel, John D
2002-01-01
The purpose of this study was to investigate the effect of ablation of right atrial flutter upon sinus node function in humans. This study enrolled 35 patients. Twenty-four patients (16 men and 8 women; age 68 +/- 11 years) were referred for ablation of persistent atrial flutter (duration 8 +/- 11 months). After ablation, there was abnormal sinus node function defined as a corrected sinus node recovery time (CSNRT) > or = 550 msec. The control group consisted of 11 patients who were undergoing pacemaker implantation for sinus node disease but did not have a history of atrial dysrhythmias or ablation. Within 24 hours of ablation or pacemaker implantation, baseline maximal CSNRT was measured through a permanent pacemaker by AAI pacing at six cycle lengths: 600, 550, 500, 450, 400, and 350 msec. CSNRT then was measured in the same manner at 48 hours, 14 days, and 3 months after ablation/pacemaker implantation. P wave amplitude and duration, and percent atrial sensing also were assessed at the same intervals. For patients undergoing atrial flutter ablation, there was progressive temporal recovery of CSNRT (1,204 +/- 671 msec at baseline vs 834 +/- 380 msec at 3 months; P < 0.001) and a significant increase in the percent atrial sensing and P wave amplitude at 3 months compared with baseline (P < 0.001). In control subjects, there was no change in the CSNRT, percent atrial pacing, or P wave amplitude. After ablation of persistent atrial flutter, there is temporal recovery of CSNRT and increase in spontaneous atrial activity. These findings suggest that atrial flutter induces reversible changes in sinus node function.
Exposed Subcutaneous Implantable Devices: An Operative Protocol for Management and Salvage
D’Arpa, Salvatore; Cordova, Adriana; Moschella, Francesco
2015-01-01
Background: Implantable venous and electrical devices are prone to exposure and infection. Indications for management are controversial, but—especially if infected—exposed devices are often removed and an additional operation is needed to replace the device, causing a delay in chemotherapy and prolonging healing time. We present our protocol for device salvage, on which limited literature is available. Methods: Between 2007 and 2013, 17 patients were treated (12 venous access ports, 3 cardiac pacemakers, and 2 subcutaneous neural stimulators). Most patients were operated within 7 days from exposure. All patients received only a single perioperative dose of prophylactic antibiotic. In cases of gross infection (n = 1), the device was immediately replaced. In the absence of clinical signs of infection: Complete capsulectomy and aggressive cleaning with an n-acetylcysteine solution and saline solution. Primary exposure of venous ports with sufficient skin coverage (n = 10): the device was covered with local skin flaps. Recurrent cases, cases with insufficient skin coverage or big devices (n = 7): the device was moved to a subpectoral pocket. Mean follow-up was 19 months. Results: Sixteen devices were saved. Only one grossly infected pacemaker was removed and replaced immediately. Only in 1 case, exposure of a venous port recurred after 18 months and was successfully moved to a subpectoral pocket. Chemotherapy was always restarted as scheduled and electrical devices remained functional. Conclusions: This protocol allows—with a straightforward operation and simple measures—to save exposed devices even several days after exposure. Submuscular placement or immediate replacement is indicated only in selected cases. PMID:26034650
Makkar, Akash; Prisciandaro, Joann; Agarwal, Sunil; Lusk, Morgan; Horwood, Laura; Moran, Jean; Fox, Colleen; Hayman, James A; Ghanbari, Hamid; Roberts, Brett; Belardi, Diego; Latchamsetty, Rakesh; Crawford, Thomas; Good, Eric; Jongnarangsin, Krit; Bogun, Frank; Chugh, Aman; Oral, Hakan; Morady, Fred; Pelosi, Frank
2012-12-01
Radiation therapy's (RT's) effects on cardiac implantable electronic devices (CIEDs) such as implantable cardioverter-defibrillators (ICDs) and pacemakers (PMs) are not well established, leading to device removal or relocation in preparation for RT. To determine the effect of scattered RT on CIED performance. We analyzed 69 patients--50 (72%) with PMs and 19 (28%) with ICDs--receiving RT at the University of Michigan. Collected data included device model, anatomic location, and treatment beam energies, treatment type, and estimated dose to the device. Patients were treated with either high-energy (16-MV) and/or low-energy (6 MV) photon beams with or without electron beams (6-16 MeV). The devices were interrogated with pre- and post-RT and/or weekly with either in-treatment or home interrogation, depending on the patient's dependence on the device and the estimated or measured delivered dose. Outcomes analyzed were inappropriate ICD therapies, device malfunctions, or device-related clinical events. The PMs were exposed to 84.4 ± 99.7 cGy of radiation, and the ICDs were exposed to 92.1 ± 72.6 cGy of radiation. Two patients with ICDs experienced a partial reset of the ICD with the loss of historic diagnostic data after receiving 123 and 4 cGy, respectively. No device malfunction or premature battery depletion was observed at 6-month follow-up from RT completion. CIED malfunction due to indirect RT exposure is uncommon. Regular in-treatment or home interrogation should be done to detect and treat these events and to ensure that diagnostic data are preserved. Copyright © 2012 Elsevier Inc. All rights reserved.
New-Onset Left Bundle Branch Block Induced by Transcutaneous Aortic Valve Implantation.
Massoullié, Grégoire; Bordachar, Pierre; Ellenbogen, Kenneth A; Souteyrand, Géraud; Jean, Frédéric; Combaret, Nicolas; Vorilhon, Charles; Clerfond, Guillaume; Farhat, Mehdi; Ritter, Philippe; Citron, Bernard; Lusson, Jean-R; Motreff, Pascal; Ploux, Sylvain; Eschalier, Romain
2016-03-01
New-onset left bundle branch block (LBBB) is a specific concern of transcutaneous aortic valve implantation (TAVI) given its estimated incidence ranging from 5% to 65%. This high rate of occurrence is dependent on the type of device used (size and shape), implantation methods, and patient co-morbidities. The appearance of an LBBB after TAVI reflects a very proximal lesion of the left bundle branch as it exits the bundle of His. At times transient, its persistence can lead to permanent pacemaker implantation in 15% to 20% of cases, most often for high-degree atrioventricular block. The management of LBBB after TAVI is currently not defined by international societies resulting in individual centers developing their own management strategy. The potential consequences of LBBB are dysrhythmias (atrioventricular block, syncope, and sudden death) and functional (heart failure) complications. Prompt postprocedural recognition and management (permanent pacemaker implantation) of patients prevents the occurrence of potential complications and may constitute the preferred approach in this frail and elderly population despite additional costs and complications of cardiac pacing. Moreover, the expansion of future indications for TAVI necessitates better identification of the predictive factors for the development of LBBB. Indeed, long-term right ventricular pacing may potentially increase the risk of developing heart failure in this population. In conclusion, it is thus imperative to not only develop new aortic prostheses with a less-deleterious impact on the conduction system but also to prescribe appropriate pacing modes in this frail population. Copyright © 2016 Elsevier Inc. All rights reserved.
Centrifuge-simulated suborbital spaceflight in subjects with cardiac implanted devices.
Blue, Rebecca S; Reyes, David P; Castleberry, Tarah L; Vanderploeg, James M
2015-04-01
Future commercial spaceflight participants (SFPs) with conditions requiring personal medical devices represent a unique challenge. The behavior under stress of cardiac implanted devices (CIDs) such as pacemakers is of special concern. No known data currently exist on how such devices may react to the stresses of spaceflight. We examined the responses of two volunteer subjects with CIDs to G forces in a centrifuge to evaluate how similar potential commercial SFPs might tolerate the forces of spaceflight. Two subjects, 75- and 79-yr-old men with histories of atrial fibrillation and implanted dual-lead, rate-responsive pacemakers, underwent seven centrifuge runs over 2 d. Day 1 consisted of two +Gz runs (peak = +3.5 Gz, run 2) and two +Gx runs (peak = +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx/+Gz). Data collected included blood pressures, electrocardiograms, pulse oximetry, neurovestibular exams, and postrun questionnaires regarding motion sickness, disorientation, greyout, and other symptoms. Despite both subjects' significant medical histories, neither had abnormal physiological responses. Post-spin analysis demonstrated no lead displacement, damage, or malfunction of either CID. Potential risks to SFPs with CIDs include increased arrhythmogenesis, lead displacement, and device damage. There are no known prior studies of individuals with CIDs exposed to accelerations anticipated during the dynamic phases of suborbital spaceflight. These cases demonstrate that even individuals with significant medical histories and implanted devices can tolerate the acceleration exposures of commercial spaceflight. Further investigation will determine which personal medical devices present significant risks during suborbital flight and beyond.
Heart block and cardiac embolization of fractured inferior vena cava filter.
Abudayyeh, Islam; Takruri, Yessar; Weiner, Justin B
2016-01-01
A 66-year-old man underwent a placement of an inferior vena cava filter before a gastric surgery 9 years prior, presented to the emergency room with a complete atrioventricular block. Chest x-ray and transthoracic echocardiogram showed struts migrating to right ventricle with tricuspid regurgitation. Cardiothoracic surgery was consulted and declined an open surgical intervention due to the location of the embolized fragments and the patient's overall condition. It was also felt that the fragments had migrated chronically and were adhered to the cardiac structures. The patient underwent a dual-chamber permanent pacemaker implantation. Post-implant fluoroscopy showed no displacement of the inferior vena cava filter struts due to the pacemaker leads indicating that the filter fracture had likely been a chronic process. This case highlights a rare combination of complications related to inferior vena cava filter fractures and the importance of assessing for such fractures in chronic placements. Inferior vena cava filter placement for a duration greater than 1 month can be associated with filter fractures and strut migration which may lead to, although rare, serious or fatal complications such as complete atrioventricular conduction system disruption and valvular damage including significant tricuspid regurgitation. Assessing for inferior vena cava filter fractures in chronic filter placement is important to avoid such complications. When possible, retrieval of the filter should be considered in all patients outside the acute setting in order to avoid filter-related complications. Filter retrieval rates remain low even when a retrievable filter is in place and the patient no longer has a contraindication to anticoagulation.
Muto, Carmine; Calvi, Valeria; Botto, Giovanni Luca; Pecora, Domenico; Ciaramitaro, Gianfranco; Valsecchi, Sergio; Malacrida, Maurizio; Maglia, Giampiero
2014-11-01
The main objective of research in pacemaker therapy has been to provide the best physiologic way to pace the heart. Despite the good results provided by right ventricular pacing minimization and by biventricular pacing in specific subsets of heart failure patients, these options present many limitations for standard pacemaker recipients. In these patients, pacing the right ventricle at alternative sites could result in a lower degree of left intraventricular dyssynchrony. Despite the lack of strong evidence and the difficulty in placing and accurately classifying the final lead position, pacing at alternative right ventricular sites seems to have become a standard procedure at many implanting centers. The RIGHT PACE study is a multi-center, prospective, single-blind, double-arm, intervention-control trial comparing right ventricular pacing from the apex and from the septal site in terms of left intraventricular dyssynchrony. A total of 408 patients with indications for cardiac pacing but without indications for ICD and/or CRT will be enrolled. Investigators will be divided on the basis of their prior experience of selective site pacing lead implantation and patients will be treated according to the clinical practice of the centers. After device implantation, they will be followed up for 24 months through evaluation of clinical, echocardiographic and safety/system-performance variables. This study might provide important information about the impact of the right ventricular pacing on the left ventricular dyssynchrony, and about acute and chronic responses to selective site pacing, as adopted in current clinical practice. This trial is registered at ClinicalTrials.gov (ID:NCT01647490). Right Ventricular Lead Placement in a Pacemaker Population: Evaluation of apical and alternative position. ClinicalTrials.gov: NCT01647490. Copyright © 2014 Elsevier Inc. All rights reserved.
Hauswirth, O.; Noble, D.; Tsien, R. W.
1972-01-01
1. Experiments on sheep Purkinje fibres were designed to determine whether the current mechanisms responsible for delayed rectification at the pace-maker (negative to -50 mV) and plateau (positive to -50 mV) ranges of potential are kinetically separable and independent. 2. Hyperpolarizations from the plateau range were shown to produce decay of a single component of outward current within the plateau range, but two components were evident when the hyperpolarizations entered the pace-maker range. 3. The time courses of recovery of the two components were too similar at -25 mV to allow temporal resolution at this potential. Clear temporal resolution was, however, possible at potentials between -55 and -95 mV. An indirect method of resolving the two components at -25 mV was used. 4. The kinetic properties of the two components correspond to those previously described for the pace-maker potassium current, iK2, and the outward plateau current, ix1 (Noble & Tsien, 1968, 1969a). 5. The instantaneous (fully activated) current—voltage relation for iK2 was reconstructed from the analysed current records. It was found that this relation shows a negative slope conductance at all potentials positive to -75 mV and that the current tends towards zero at zero membrane potential. 6. The results are compared with those predicted by two reaction models of the iK2 and ix1 mechanisms. It is concluded that iK2 and ix1 are kinetically separable but that it is not possible with present techniques to decide whether they are controlled by the same or completely independent membrane structures. It is also shown that the instantaneous current—voltage relation calculated for iK2 does not depend on whether the controlling mechanisms are assumed to be independent or linked. PMID:4679715
Mazza, Andrea; Bendini, Maria Grazia; De Cristofaro, Raffaele; Lovecchio, Mariolina; Valsecchi, Sergio; Leggio, Massimo; Boriani, Giuseppe
2017-06-01
Previous studies have shown that the presence of left bundle branch block (LBBB) is associated with an increased risk of cardiac mortality and heart failure (HF). Recently, new criteria to define strict LBBB have been proposed: QRS duration ≥140 ms for men and ≥130 ms for women, along with mid-QRS notching or slurring in ≥2 contiguous leads. We assessed the prevalence and prognostic significance of LBBB according to classical (QRS duration ≥120ms) and strict criteria in permanent pacemaker patients. We retrospectively enrolled 723 consecutive patients who had undergone single- or dual-chamber pacemaker implantation at the study center from July 2002 to December 2014. Patients with a left ventricular ejection fraction ≤35% or a prior diagnosis of HF were excluded. LBBB was reported in 54 (7%) patients, and strict-LBBB in 15 (2%) patients. During a median follow-up of 48 months (range, 18-92 months), 147 (20%) patients reached the combined endpoint of death or HF hospitalization. Patients with LBBB and those with strict-LBBB displayed significantly higher rates of death or HF hospitalization (log-rank test, all P < 0.0001). In particular, strict-LBBB was associated with the worst outcome. The presence of LBBB according to classical definition criteria (hazard ratio [HR] = 1.98, confidence interval [CI]: 1.23-3.19, P = 0.005) and to strict criteria (HR = 2.20; CI: 1.04-4.65; P = 0.039) were both confirmed as independent predictors of death or HF hospitalization after adjustment for relevant clinical covariates. Among patients who had undergone standard pacemaker implantation, the prevalence of LBBB was 7% according to classical definition criteria and 2% according to strict criteria. The presence of LBBB, and particularly of strict-LBBB, at the baseline predicted a poor outcome in terms of death or HF hospitalization. © 2017 Wiley Periodicals, Inc.
Effect of daily remote monitoring on pacemaker longevity: a retrospective analysis.
Ricci, Renato Pietro; Morichelli, Loredana; Quarta, Laura; Porfili, Antonio; Magris, Barbara; Giovene, Lisa; Torcinaro, Sergio; Gargaro, Alessio
2015-02-01
Energy demand of remote monitoring in cardiac implantable electronic devices has never been investigated. Biotronik Home Monitoring (HM) is characterized by daily transmissions that may affect longevity. The aim of the study was to retrospectively compare longevity of a specific dual-chamber pacemaker model in patients with HM on and patients with HM off. Hospital files of 201 patients (mean age 87 ± 10 years, 78 men) who had received a Biotronik Cylos DR-T pacemaker between April 2006 and May 2010 for standard indication were reviewed. In 134 patients (67%), HM was activated. The primary end point was device replacement due to battery depletion. The median follow-up period was 56.4 months (interquartile range 41.8-65.2 months). The estimated device longevity was 71.1 months (95% confidence interval [CI] 69.1-72.3 months) in the HM-on group and 60.4 months (CI 55.9-65.1 months) in the HM-off group (P < .0001). The frequency of inhospital visits with significant device reprogramming was higher in the HM-on group than in the HM-off group (33.3% vs 25.0%, respectively; P = .03). Lower ventricular pulse amplitude (2.3 ± 0.4 V vs 2.7 ± 0.5 V; P < .0001) and pacing percentage (49% ± 38% vs 64% ± 38%; P = .02), both calculated as time-weighted averages, were observed with HM on as compared with HM off. Patient attrition was significantly lower in the HM-on group (9.7%; 95% CI 3.0%-28.7%) than in the HM-off group (45.6%; 95% CI 30.3%-64.3%) (P < .0001). In normal practice, energy demand of HM, if present, was overshadowed by programming optimization likely favored by continuous monitoring. Pacemakers controlled remotely with HM showed an 11-month longer longevity. Patient retention was superior. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Jilek, Clemens; Tzeis, Stylianos; Reents, Tilko; Estner, Heidi-Luise; Fichtner, Stephanie; Ammar, Sonia; Wu, Jinjin; Hessling, Gabriele; Deisenhofer, Isabel; Kolb, Christof
2010-10-01
Electromagnetic interference with pacemaker and implantable cardioverter defibrillator (ICD) systems may cause temporary or permanent system malfunction of implanted devices. The aim of this study was to evaluate potential interference of a novel magnetic navigation system with implantable rhythm devices. A total of 121 devices (77 pacemakers, 44 ICDs) were exposed to an activated NIOBE II® Magnetic Navigation System (Stereotaxis, St. Louis, MO, USA) at the maximal magnetic field strength of 0.1 Tesla and evaluated in vitro with respect to changes in parameter settings of the device, changes of the battery status/detection of elective replacement indication, or alterations of data stored in the device. A total of 115 out of 121 (95%) devices were free of changes in parameter settings, battery status, and internally stored data after repeated exposition to the electromagnetic field of the remote magnetic navigation system. Interference with the magnetic navigation field was observed in 6 pacemakers, resulting in reprogramming to a power-on-reset mode with or without detection of the elective replacement indication in 5 devices and abnormal variance of battery status in one device. All pacemakers could be reprogrammed to the initial modes and the battery status proved to be normal some minutes after the pacemakers had been removed from the magnetic field. Interference of a remote magnetic navigation system (at maximal field strength) with pacemakers and ICDs not connected to leads with antitachycardic detection and therapies turned off is rare. Occurring functional abnormalities could be reprogrammed in our sample. An in vitro study will give information about interference of devices connected to leads. © 2010 Wiley Periodicals, Inc.
Parekh, Rulan S; Meoni, Lucy A; Jaar, Bernard G; Sozio, Stephen M; Shafi, Tariq; Tomaselli, Gordon F; Lima, Joao A; Tereshchenko, Larisa G; Estrella, Michelle M; Kao, W H Linda
2015-04-24
Sudden cardiac death occurs commonly in the end-stage renal disease population receiving dialysis, with 25% dying of sudden cardiac death over 5 years. Despite this high risk, surprisingly few prospective studies have studied clinical- and dialysis-related risk factors for sudden cardiac death and arrhythmic precursors of sudden cardiac death in end-stage renal disease. We present a brief summary of the risk factors for arrhythmias and sudden cardiac death in persons with end-stage renal disease as the rationale for the Predictors of Arrhythmic and Cardiovascular Risk in End Stage Renal Disease (PACE) study, a prospective cohort study of patients recently initiated on chronic hemodialysis, with the overall goal to understand arrhythmic and sudden cardiac death risk. Participants were screened for eligibility and excluded if they already had a pacemaker or an automatic implantable cardioverter defibrillator. We describe the study aims, design, and data collection of 574 incident hemodialysis participants from the Baltimore region in Maryland, U.S.A.. Participants were recruited from 27 hemodialysis units and underwent detailed clinical, dialysis and cardiovascular evaluation at baseline and follow-up. Cardiovascular phenotyping was conducted on nondialysis days with signal averaged electrocardiogram, echocardiogram, pulse wave velocity, ankle, brachial index, and cardiac computed tomography and angiography conducted at baseline. Participants were followed annually with study visits including electrocardiogram, pulse wave velocity, and ankle brachial index up to 4 years. A biorepository of serum, plasma, DNA, RNA, and nails were collected to study genetic and serologic factors associated with disease. Studies of modifiable risk factors for sudden cardiac death will help set the stage for clinical trials to test therapies to prevent sudden cardiac death in this high-risk population.
Cardiac resynchronization therapy for patients with cardiac sarcoidosis.
Sairaku, Akinori; Yoshida, Yukihiko; Nakano, Yukiko; Hirayama, Haruo; Maeda, Mayuho; Hashimoto, Haruki; Kihara, Yasuki
2017-05-01
Sarcoidosis with cardiac involvement is a rare pathological condition, and therefore cardiac resynchronization therapy (CRT) for patients with cardiac sarcoidosis is even further rare. We aimed to clarify the clinical features of patients with cardiac sarcoidosis who received CRT. We retrospectively reviewed the clinical data on CRT at three cardiovascular centres to detect cardiac sarcoidosis patients. We identified 18 (8.9%) patients with cardiac sarcoidosis who met the inclusion criteria out of 202 with systolic heart failure who received CRT based on the guidelines. The majority of the patients were female [15 (83.3%)] and underwent an upgrade from a pacemaker or implantable cardioverter defibrillator [13 (72.2%)]. We found 1 (5.6%) cardiovascular death during the follow-up period (mean ± SD, 4.7 ± 3.0 years). Seven (38.9%) patients had a composite outcome of cardiovascular death or hospitalization from worsening heart failure within 5 years after the CRT. Twelve (66.7%) patients had a history of sustained ventricular arrhythmias or those occurring after the CRT. Among the overall patients, no significant improvement was found in either the end-systolic volume or left ventricular ejection fraction (LVEF) 6 months after the CRT. A worsening LVEF was, however, more likely to be seen in 5 (27.8%) patients with ventricular arrhythmias after the CRT than in those without (P = 0.04). An improved clinical composite score was seen in 10 (55.6%) patients. Cardiac sarcoidosis patients receiving CRT may have poor LV reverse remodelling and a high incidence of ventricular arrhythmias. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.
Genetic loci associated with heart rate variability and their effects on cardiac disease risk
Nolte, Ilja M.; Munoz, M. Loretto; Tragante, Vinicius; Amare, Azmeraw T.; Jansen, Rick; Vaez, Ahmad; von der Heyde, Benedikt; Avery, Christy L.; Bis, Joshua C.; Dierckx, Bram; van Dongen, Jenny; Gogarten, Stephanie M.; Goyette, Philippe; Hernesniemi, Jussi; Huikari, Ville; Hwang, Shih-Jen; Jaju, Deepali; Kerr, Kathleen F.; Kluttig, Alexander; Krijthe, Bouwe P.; Kumar, Jitender; van der Laan, Sander W.; Lyytikäinen, Leo-Pekka; Maihofer, Adam X.; Minassian, Arpi; van der Most, Peter J.; Müller-Nurasyid, Martina; Nivard, Michel; Salvi, Erika; Stewart, James D.; Thayer, Julian F.; Verweij, Niek; Wong, Andrew; Zabaneh, Delilah; Zafarmand, Mohammad H.; Abdellaoui, Abdel; Albarwani, Sulayma; Albert, Christine; Alonso, Alvaro; Ashar, Foram; Auvinen, Juha; Axelsson, Tomas; Baker, Dewleen G.; de Bakker, Paul I. W.; Barcella, Matteo; Bayoumi, Riad; Bieringa, Rob J.; Boomsma, Dorret; Boucher, Gabrielle; Britton, Annie R.; Christophersen, Ingrid; Dietrich, Andrea; Ehret, George B.; Ellinor, Patrick T.; Eskola, Markku; Felix, Janine F.; Floras, John S.; Franco, Oscar H.; Friberg, Peter; Gademan, Maaike G. J.; Geyer, Mark A.; Giedraitis, Vilmantas; Hartman, Catharina A.; Hemerich, Daiane; Hofman, Albert; Hottenga, Jouke-Jan; Huikuri, Heikki; Hutri-Kähönen, Nina; Jouven, Xavier; Junttila, Juhani; Juonala, Markus; Kiviniemi, Antti M.; Kors, Jan A.; Kumari, Meena; Kuznetsova, Tatiana; Laurie, Cathy C.; Lefrandt, Joop D.; Li, Yong; Li, Yun; Liao, Duanping; Limacher, Marian C.; Lin, Henry J.; Lindgren, Cecilia M.; Lubitz, Steven A.; Mahajan, Anubha; McKnight, Barbara; zu Schwabedissen, Henriette Meyer; Milaneschi, Yuri; Mononen, Nina; Morris, Andrew P.; Nalls, Mike A.; Navis, Gerjan; Neijts, Melanie; Nikus, Kjell; North, Kari E.; O'Connor, Daniel T.; Ormel, Johan; Perz, Siegfried; Peters, Annette; Psaty, Bruce M.; Raitakari, Olli T.; Risbrough, Victoria B.; Sinner, Moritz F.; Siscovick, David; Smit, Johannes H.; Smith, Nicholas L.; Soliman, Elsayed Z.; Sotoodehnia, Nona; Staessen, Jan A.; Stein, Phyllis K.; Stilp, Adrienne M.; Stolarz-Skrzypek, Katarzyna; Strauch, Konstantin; Sundström, Johan; Swenne, Cees A.; Syvänen, Ann-Christine; Tardif, Jean-Claude; Taylor, Kent D.; Teumer, Alexander; Thornton, Timothy A.; Tinker, Lesley E.; Uitterlinden, André G.; van Setten, Jessica; Voss, Andreas; Waldenberger, Melanie; Wilhelmsen, Kirk C.; Willemsen, Gonneke; Wong, Quenna; Zhang, Zhu-Ming; Zonderman, Alan B.; Cusi, Daniele; Evans, Michele K.; Greiser, Halina K.; van der Harst, Pim; Hassan, Mohammad; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kääb, Stefan; Kähönen, Mika; Kivimaki, Mika; Kooperberg, Charles; Kuh, Diana; Lehtimäki, Terho; Lind, Lars; Nievergelt, Caroline M.; O'Donnell, Chris J.; Oldehinkel, Albertine J.; Penninx, Brenda; Reiner, Alexander P.; Riese, Harriëtte; van Roon, Arie M.; Rioux, John D.; Rotter, Jerome I.; Sofer, Tamar; Stricker, Bruno H.; Tiemeier, Henning; Vrijkotte, Tanja G. M.; Asselbergs, Folkert W.; Brundel, Bianca J. J. M.; Heckbert, Susan R.; Whitsel, Eric A.; den Hoed, Marcel; Snieder, Harold; de Geus, Eco J. C.
2017-01-01
Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (−0.74
Signaling of Pigment-Dispersing Factor (PDF) in the Madeira Cockroach Rhyparobia maderae
Funk, Nico W.; Giese, Maria; Baz, El-Sayed; Stengl, Monika
2014-01-01
The insect neuropeptide pigment-dispersing factor (PDF) is a functional ortholog of vasoactive intestinal polypeptide, the coupling factor of the mammalian circadian pacemaker. Despite of PDF's importance for synchronized circadian locomotor activity rhythms its signaling is not well understood. We studied PDF signaling in primary cell cultures of the accessory medulla, the circadian pacemaker of the Madeira cockroach. In Ca2+ imaging studies four types of PDF-responses were distinguished. In regularly bursting type 1 pacemakers PDF application resulted in dose-dependent long-lasting increases in Ca2+ baseline concentration and frequency of oscillating Ca2+ transients. Adenylyl cyclase antagonists prevented PDF-responses in type 1 cells, indicating that PDF signaled via elevation of intracellular cAMP levels. In contrast, in type 2 pacemakers PDF transiently raised intracellular Ca2+ levels even after blocking adenylyl cyclase activity. In patch clamp experiments the previously characterized types 1–4 could not be identified. Instead, PDF-responses were categorized according to ion channels affected. Application of PDF inhibited outward potassium or inward sodium currents, sometimes in the same neuron. In a comparison of Ca2+ imaging and patch clamp experiments we hypothesized that in type 1 cells PDF-dependent rises in cAMP concentrations block primarily outward K+ currents. Possibly, this PDF-dependent depolarization underlies PDF-dependent phase advances of pacemakers. Finally, we propose that PDF-dependent concomitant modulation of K+ and Na+ channels in coupled pacemakers causes ultradian membrane potential oscillations as prerequisite to efficient synchronization via resonance. PMID:25269074
Rate-dependent Loss of Capture during Ventricular Pacing.
Wang, Jingfeng; Chen, Haiyan; Su, Yangang; Ge, Junbo
2015-01-01
A 63-year-old patient who had undergone atrial septal defect surgical repair received implantation of a single chamber VVI pacemaker for long RR intervals during atrial fibrillation. One week later, an intermittent loss of capture and sensing failure was detected at a pacing rate of 70 beats/min. However, a successful capture was observed during rapid pacing. Consequently, the pacing rate was temporarily adjusted to 90 beats/min. At the 3-month follow-up, the pacemaker was shown to be functioning properly independent of the pacing rate. An echocardiogram showed that the increased pacing rates were accompanied by a reduction in the right ventricular outflow tract dimension. The pacemaker was then permanently programmed at a lower rate of 60 beats/min.
Levy, T; Walker, S; Mason, M; Spurrell, P; Rex, S; Brant, S; Paul, V
2001-01-01
OBJECTIVE—To determine the importance of rhythm regulation or rate control in patients with permanent atrial fibrillation (AF) and normal left ventricular function. PATIENTS AND INTERVENTIONS—Thirty six patients with a mixed fast and slow ventricular response rate to their AF were randomised to either His bundle ablation (HBA) and VVIR pacemaker (HBA group) or VVI pacemaker and atrioventricular modifying drugs (Med group). Outcomes assessed at one, three, six, and 12 months included exercise duration and quality of life. RESULTS—Exercise duration significantly improved from baseline in both groups. There was no difference in outcome between the groups (Med +40% v HBA +20%, p = NS). The heart rate profile on exercise was similarly slowed in both groups compared to baseline. Quality of life significantly improved in both treatment arms for the modified Karolinska questionnaire (KQ) (Med +50% v HBA +50%, p = NS) and the Nottingham health profile (NHP) (Med +40% v HBA +20%, p = NS). However, for the individual symptom scores of each questionnaire more were improved in the Med group (KQ-Med 6 improved v HBA 4, NHP-Med 3 v HBA 1). Left ventricular function was equally preserved by both treatments during follow up. CONCLUSION—In these patients control of ventricular response rate with either HBA + VVIR pacemaker or atrioventricular modifying drugs + VVI pacemaker will lead to a significant improvement in exercise duration and quality of life. Rhythm regulation by HBA did not confer additional benefit, suggesting rate control alone is necessary for the successful symptomatic treatment of these patients in permanent AF. Keywords: ablation; atrial fibrillation; pacemaker; atrioventricular modifying drugs PMID:11156667
Klose, Markus; Duvall, Laura; Li, Weihua; Liang, Xitong; Ren, Chi; Steinbach, Joe Henry; Taghert, Paul H
2016-05-18
The neuropeptide PDF promotes the normal sequencing of circadian behavioral rhythms in Drosophila, but its signaling mechanisms are not well understood. We report daily rhythmicity in responsiveness to PDF in critical pacemakers called small LNvs. There is a daily change in potency, as great as 10-fold higher, around dawn. The rhythm persists in constant darkness and does not require endogenous ligand (PDF) signaling or rhythmic receptor gene transcription. Furthermore, rhythmic responsiveness reflects the properties of the pacemaker cell type, not the receptor. Dopamine responsiveness also cycles, in phase with that of PDF, in the same pacemakers, but does not cycle in large LNv. The activity of RalA GTPase in s-LNv regulates PDF responsiveness and behavioral locomotor rhythms. Additionally, cell-autonomous PDF signaling reversed the circadian behavioral effects of lowered RalA activity. Thus, RalA activity confers high PDF responsiveness, providing a daily gate around the dawn hours to promote functional PDF signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
Liang, Xitong; Ren, Chi; Steinbach, Joe Henry; Taghert, Paul H.
2016-01-01
The neuropeptide PDF promotes the normal sequencing of circadian behavioral rhythms in Drosophila, but its signaling mechanisms are not well understood. We report daily rhythmicity in responsiveness to PDF in critical pacemakers called small LNvs. There is a daily change in potency, as great as 10-fold higher, around dawn. The rhythm persists in constant darkness, does not require endogenous ligand (PDF) signaling, or rhythmic receptor gene transcription. Furthermore, rhythmic responsiveness reflects the properties of the pacemaker cell type, not the receptor. Dopamine responsiveness also cycles, in phase with that of PDF, in the same pacemakers, but does not cycle in large LNv. The activity of RalA GTPase in s-LNv regulates PDF responsiveness and behavioral locomotor rhythms. Additional, cell autonomous PDF signaling reversed the circadian behavioral effects of lowered RalA activity. Thus RalA activity confers high PDF responsiveness, providing a daily gate around the dawn hours to promote functional PDF signaling. PMID:27161526
Nakamura, R K; Russell, N J; Shelton, G D
2012-06-01
A nine-year-old neutered female mixed breed dog presented for evaluation following a five-day history of lethargy, inappetence, weakness, abdominal distension and generalised muscle atrophy. Persistent vatrial standstill with a junctional rhythm was identified on electrocardiogram. Echocardiogram identified moderate dilation of all cardiac chambers and mild thickening of the mitral and tricuspid valves. Serology was negative for Neospora caninum and Toxoplasma gondii. Permanent pacemaker implantation was performed in addition to endomyocardial and skeletal muscle biopsies. Cryosections from the biceps femoris muscle showed numerous nemaline rod bodies while endomyocardial biopsies were possibly consistent with end-stage myocarditis. Rod bodies have rarely been reported in the veterinary literature. To the authors' knowledge, this is the first report of adult-onset nemaline rod myopathy and hypothyroidism with concurrent cardiac disease in a dog. © 2012 British Small Animal Veterinary Association.
Ogirala, Ajay; Stachel, Joshua R; Mickle, Marlin H
2011-11-01
Increasing density of wireless communication and development of radio frequency identification (RFID) technology in particular have increased the susceptibility of patients equipped with cardiac rhythmic monitoring devices (CRMD) to environmental electro magnetic interference (EMI). Several organizations reported observing CRMD EMI from different sources. This paper focuses on mathematically analyzing the energy as perceived by the implanted device, i.e., voltage. Radio frequency (RF) energy transmitted by RFID interrogators is considered as an example. A simplified front-end equivalent circuit of a CRMD sensing circuitry is proposed for the analysis following extensive black-box testing of several commercial pacemakers and implantable defibrillators. After careful understanding of the mechanics of the CRMD signal processing in identifying the QRS complex of the heart-beat, a mitigation technique is proposed. The mitigation methodology introduced in this paper is logical in approach, simple to implement and is therefore applicable to all wireless communication protocols.
Banerjee, Rupa; Pratap, Nitesh; Kalpala, Rakesh; Reddy, D Nageshwar
2014-03-01
Electrical stimulation therapy (EST) has been shown to increase lower esophageal sphincter (LES) pressure in animals; however, data on the effect of EST on LES pressure in patients with gastroesophageal reflux disease (GERD) are lacking. The aim of our study was to investigate the effect of EST on LES pressure and esophageal function in patients with GERD. Patients with a diagnosis of GERD responsive to proton pump inhibitors (PPIs), increased esophageal acid on 24-h pH monitoring off GERD medications, basal LES pressure >5 mmHg, hernia <2 cm and esophagitis
Mitov, Vladimir M; Perisic, Zoran; Jolic, Aleksandar; Kostic, Tomislav; Aleksic, Aleksandar; Aleksic, Zeljka
2016-07-01
The study was aimed at assessing the difference between the right ventricle apex versus the right ventricular outflow tract lead position in functional capacity in the patients with the preserved left ventricular ejection fraction after 12 months of pacemaker stimulation. This was a prospective, randomized, follow-up study, which lasted for 12 months. The study sample included 132 consecutive patients who were implanted with permanent anti-bradicardiac pacemaker. Regarding the right ventricular lead position the patients were divided into two groups: the right ventricle apex group consisting of 61 patients with right ventricular apex lead position. The right ventricular outflow tract group included 71 patients with right ventricular outflow tract lead position. Functional capacity was assessed by Minnesota Living With Heart Failure score, New York Heart Association class and Six Minute Walk Test. Left ventricular ejection fraction was assessed by echocardiography. Minnesota Living With Heart Failure score and New York Heart Association class had a statistically significant improvement in both study groups. The patients from right ventricle apex group walked 20.95% (p=O.03) more in comparison to starting values. The patients from right ventricular outflow tract group walked only 13.63% (p=0.09) longer distance than the startingoneConclusion. Analysis of tests of functional status New York Heart Association class and Minnesota Living With Heart Failure questionnaire showed an even improvement in the right ventricle apex and right ventricular outflow tract groups. Analysis of 6 minute walk test showed that only the patients with the preserved left ventricular ejection fraction from the right ventricle apex group had a significant improvement after 12 months of pacemaker stimulation..
Poetschke, Christina; Dragicevic, Elena; Duda, Johanna; Benkert, Julia; Dougalis, Antonios; DeZio, Roberta; Snutch, Terrance P; Striessnig, Joerg; Liss, Birgit
2015-09-18
The preferential degeneration of Substantia nigra dopamine midbrain neurons (SN DA) causes the motor-symptoms of Parkinson's disease (PD). Voltage-gated L-type calcium channels (LTCCs), especially the Cav1.3-subtype, generate an activity-related oscillatory Ca(2+) burden in SN DA neurons, contributing to their degeneration and PD. While LTCC-blockers are already in clinical trials as PD-therapy, age-dependent functional roles of Cav1.3 LTCCs in SN DA neurons remain unclear. Thus, we analysed juvenile and adult Cav1.3-deficient mice with electrophysiological and molecular techniques. To unmask compensatory effects, we compared Cav1.3 KO mice with pharmacological LTCC-inhibition. LTCC-function was not necessary for SN DA pacemaker-activity at either age, but rather contributed to their pacemaker-precision. Moreover, juvenile Cav1.3 KO but not WT mice displayed adult wildtype-like, sensitised inhibitory dopamine-D2-autoreceptor (D2-AR) responses that depended upon both, interaction of the neuronal calcium sensor NCS-1 with D2-ARs, and on voltage-gated T-type calcium channel (TTCC) activity. This functional KO-phenotype was accompanied by cell-specific up-regulation of NCS-1 and Cav3.1-TTCC mRNA. Furthermore, in wildtype we identified an age-dependent switch of TTCC-function from contributing to SN DA pacemaker-precision in juveniles to pacemaker-frequency in adults. This novel interplay of Cav1.3 L-type and Cav3.1 T-type channels, and their modulation of SN DA activity-pattern and D2-AR-sensitisation, provide new insights into flexible age- and calcium-dependent activity-control of SN DA neurons and its pharmacological modulation.
Differentially Timed Extracellular Signals Synchronize Pacemaker Neuron Clocks
Collins, Ben; Kaplan, Harris S.; Cavey, Matthieu; Lelito, Katherine R.; Bahle, Andrew H.; Zhu, Zhonghua; Macara, Ann Marie; Roman, Gregg; Shafer, Orie T.; Blau, Justin
2014-01-01
Synchronized neuronal activity is vital for complex processes like behavior. Circadian pacemaker neurons offer an unusual opportunity to study synchrony as their molecular clocks oscillate in phase over an extended timeframe (24 h). To identify where, when, and how synchronizing signals are perceived, we first studied the minimal clock neural circuit in Drosophila larvae, manipulating either the four master pacemaker neurons (LNvs) or two dorsal clock neurons (DN1s). Unexpectedly, we found that the PDF Receptor (PdfR) is required in both LNvs and DN1s to maintain synchronized LNv clocks. We also found that glutamate is a second synchronizing signal that is released from DN1s and perceived in LNvs via the metabotropic glutamate receptor (mGluRA). Because simultaneously reducing Pdfr and mGluRA expression in LNvs severely dampened Timeless clock protein oscillations, we conclude that the master pacemaker LNvs require extracellular signals to function normally. These two synchronizing signals are released at opposite times of day and drive cAMP oscillations in LNvs. Finally we found that PdfR and mGluRA also help synchronize Timeless oscillations in adult s-LNvs. We propose that differentially timed signals that drive cAMP oscillations and synchronize pacemaker neurons in circadian neural circuits will be conserved across species. PMID:25268747
Acute exposure to 2G phase shifts the rat circadian timing system
NASA Technical Reports Server (NTRS)
Hoban-Higgins, T. M.; Murakami, D. M.; Tandon, T.; Fuller, C. A.
1995-01-01
The circadian timing system (CTS) provides internal and external temporal coordination of an animal's physiology and behavior. In mammals, the generation and coordination of these circadian rhythms is controlled by a neural pacemaker, the suprachiasmatic nucleus (SCN), located within the hypothalamus. The pacemaker is synchronized to the 24 hour day by time cures (zeitgebers) such as the light/dark cycle. When an animal is exposed to an environment without time cues, the circadian rhythms maintain internal temporal coordination, but exhibit a 'free-running' condition in which the period length is determined by the internal pacemaker. Maintenance of internal and external temporal coordination are critical for normal physiological and psychological function in human and non-human primates. Exposure to altered gravitational environments has been shown to affect the amplitude, mean, and timing of circadian rhythms in species ranging from unicellular organisms to man. However, it has not been determined whether altered gravitational fields have a direct effect on the neural pacemaker, or affect peripheral parameters. In previous studies, the ability of a stimulus to phase shift circadian rhythms was used to determine whether a stimulus has a direct effect on the neural pacemaker. The present experiment was performed in order to determine whether acute exposure to a hyperdynamic field could phase shift circadian rhythms.
An unusual presentation of papillary fibroelastoma originating from right ventricular outflow tract.
Erdogan, Mehmet; Guney, Murat Can; Ayhan, Hüseyin; Kasapkara, Hacı Ahmet; Uğuz, Emrah; Durmaz, Tahir; Keleş, Telat; Bozkurt, Engin
2017-03-01
Papillary fibroelastomas (PFEs) are primary cardiac tumors with a benign and avascular nature. Majority of the PFEs are originated from the valvular endocardium, while the most common site is aortic valve. In this case, we present a patient with multiple PFEs originating from the right ventricular outflow tract who was admitted to our clinic with exertional dyspnea. As far as we know, this is the first case of this unusual presentation of multiple PFEs and also had a history of breast cancer and permanent pacemaker reported in the literature. © 2017, Wiley Periodicals, Inc.
Yatomi, A; Iguchi, A; Uemura, K; Sakamoto, N; Iwase, S; Mano, T
1989-03-01
Muscle sympathetic nerve activity was recorded in a 57-year-old male patient suffering from severe hypotensive attacks with bradycardia for 10 years. Continuous blood pressure recording demonstrated frequent drastic falls in pressure. Disappearance and reappearance of muscle sympathetic nerve activity coincided with the onset and termination of attacks. Awakening from sleep or emotional and/or cardiovascular stress seems to trigger hypotension. Cardiac pacemaker was not useful in limiting the attack, because right ventricular pacing caused abrupt falls in both blood pressure and heart rate.
Radiofrequency ablation for benign thyroid nodules.
Bernardi, S; Stacul, F; Zecchin, M; Dobrinja, C; Zanconati, F; Fabris, B
2016-09-01
Benign thyroid nodules are an extremely common occurrence. Radiofrequency ablation (RFA) is gaining ground as an effective technique for their treatment, in case they become symptomatic. Here we review what are the current indications to RFA, its outcomes in terms of efficacy, tolerability, and cost, and also how it compares to the other conventional and experimental treatment modalities for benign thyroid nodules. Moreover, we will also address the issue of treating with this technique patients with cardiac pacemakers (PM) or implantable cardioverter-defibrillators (ICD), as it is a rather frequent occurrence that has never been addressed in detail in the literature.
History of special metallurgical (SM) building remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maul, G.F. Jr.
1996-12-31
Throughout most of the 1960s the SM-Building was a very busy and undoubtedly exciting place to work. The SNAP Program was in full swing then, producing heat sources, first for demonstration purposes, then for communications and weather satellites. As the program evolved, Mound was engaged in producing plutonium-powered heat sources for medical applications, including the famous cardiac pacemaker, which supplied rhythmic electrical pulses to the human heart in order to regulate the heart beat. This paper reviews the steps the building went through in the process of being shut down, decommissioned, and finally removed.
DDD pacemaker for severe heart failure-alternate to CRT.
Krishnamani, N C
Patients with severe systolic Heart Failure continue to have poor quality of life and increased mortality in spite of optimal medical management. Cardiac Resynchronization Therapy [CRT] is promising modality in patients with systolic heart failure and electrocardiographic [ECG] evidence of left bundle branch block [LBBB]. Cost issues continue to elude many deserving cases of this therapy in our society. Relatively cost effective Dual chamber pacing [DDD] with right atrial and isolated left ventricular pacing [RA-LV] can be a good alternative. Copyright © 2016 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.
Surgical management of tricuspid stenosis
Cevasco, Marisa
2017-01-01
Tricuspid valve stenosis (TS) is rare, affecting less than 1% of patients in developed nations and approximately 3% of patients worldwide. Detection requires careful evaluation, as it is almost always associated with left-sided valve lesions that may obscure its significance. Primary TS is most frequently caused by rheumatic valvulitis. Other causes include carcinoid, radiation therapy, infective endocarditis, trauma from endomyocardial biopsy or pacemaker placement, or congenital abnormalities. Surgical management of TS is not commonly addressed in standard cardiac texts but is an important topic for the practicing surgeon. This paper will elucidate the anatomy, pathophysiology, and surgical management of TS. PMID:28706872
Chirife, Raul; Ruiz, G Aurora; Gayet, Enrique; Muratore, Claudio; Mazzetti, Héctor; Pellegrini, Alejandro; Tentori, M Cristina
2013-10-01
Our objective was to evaluate the systolic index (SI), the ratio between rate-corrected left ventricular ejection time (LVETc), and a preejection period surrogate (PEPsu), to assess cardiac function in patients with DDD and cardiac resynchronization therapy (CRT) pacemakers. LVETc and PEPsu were automatically measured from electrocardiogram and finger photoplethismography. Atrioventricular (AV) and mode switch (CRT to DDD) were used as hemodynamic challenges. Performance of SI, beat-by-beat systolic blood pressure (SBP), and Doppler aortic velocity/time integral (AoVTI) were compared in 36 patients, and SI's detection of CRT to DDD mode switch in nine patients, responders to CRT. AVs were changed from 30 ms to 250 ms (20 ms steps) at constant paced heart rate, alternating with a reference AV (RefAV), to reduce hemodynamic drift. The coefficient of variation (standard deviation/mean) of SI, SBP, and AoVTI during all RefAVs were used as error marker. The percentage detection of hemodynamic changes during AV transitions was a marker of sensitivity. Fifty-five patients (males 62%, age 69.6 ± 17) were studied. SI detected 441 of 544 transitions (81%) versus 361 (66%) of SBP (P = 0.005). Error during RefAVs was smaller for SI (3.4%) as compared to AoVTI (7.8%, P = 0.015) and to SBP (5.7%, P = 0.005). SIs correlated with AoVTI (R from 0.71 to 0.98, all P < 0.001). SI detected all CRT to DDD changes (P < 0.001). The noninvasive SI obtained with a simple, observer-independent hemodynamic assessment procedure has higher accuracy than SBP and AoVTI and better sensitivity than SBP. It detects mechanical resynchronization in CRT and allows programming a suitable AV delay. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.
Mitov, Vladimir; Perisić, Zoran; Jolić, Aleksandar; Adamović, Dragana; Zastranović, Lale; Aleksić, Aleksandar; Kostić, Tomislav; Božinović, Nenad; Aleksić, Zeljka; Soldatović, Ivan
2013-01-01
Our aim was to analyze any changes during diastole in patients with normal left ventricular ejection fraction (LVEF), after pacemaker stimulation from the right ventricular outflow tract (RVOT) and right ventricular apex (RVA) lead position. This was a prospective, randomized, follow up study, which lasted for 12 months. Our research included 132 consecutive patients who were implanted with a permanent antibradycardiac pacemaker. Regarding the right ventricle lead position the patients were divided into two groups: The RVOT group--71 patients, with right ventricle outflow tract lead position and the RVA group--61 patients, with right ventricle apex lead position. We measured LVEF and diastolic parameters: peak filling ratio and time to peak filling ratio obtained by radionuclide ventriculography (RNV). The LVEF and various diastolic parameters and left atrial diameter were obtained by echocardiography. Based on the values of deceleration time of early diastolic filling (DTE), and other diastolic parameters like left atrial diameter, all the patients were classified into three degrees of diastolic dysfunction. Our results showed that there was no group difference in distribution of gender, age, body mass index (BMI), VVI to DDD pacemakers implantation ratio, RNV parameters (LVEF, peak filling rate (PFR), time to PFR (TPFR)) and echocardiography parameters: LVEF and parameters of diastolic dysfunction. After 12 months of pacemaker stimulation, LVEF by RNV remained the same in the RVOT group 51.31±15.80% (P=0.75), and also in the RVA group 53.83±6.57%, (P=0.19). In the RVOT group the PFR was highly lower and this finding was significant (P=0.01), while TPFR was also significantly lower (P=0.03). By dividing the patients according to the degree of diastolic dysfunction we found that most patients in both groups at enrollment had a second degree diastolic dysfunction. In both groups diastolic dysfunction increased, the number of patients with third degree diastolic dysfunction increased, and the number of patients with second degree diastolic dysfunction decreased, however, the worsening of diastolic function was significant only in the RVOT group. In conclusion, pacemaker stimulation from RVOT, but not in RVA, leads to progression of diastolic dysfunction in patients with preserved LVEF. This negative effect of pacemaker stimulation from RVOT on diastolic parameters was confirmed by two independent methods, RNV and echocardiography.