Science.gov

Sample records for cardiomyocyte nfat activation

  1. Na+/H+ Exchanger 1 Directly Binds to Calcineurin A and Activates Downstream NFAT Signaling, Leading to Cardiomyocyte Hypertrophy

    PubMed Central

    Hisamitsu, Takashi; Nakamura, Tomoe Y.

    2012-01-01

    The calcineurin A (CaNA) subunit was identified as a novel binding partner of plasma membrane Na+/H+ exchanger 1 (NHE1). CaN is a Ca2+-dependent phosphatase involved in many cellular functions, including cardiac hypertrophy. Direct binding of CaN to the 715PVITID720 sequence of NHE1, which resembles the consensus CaN-binding motif (PXIXIT), was observed. Overexpression of NHE1 promoted serum-induced CaN/nuclear factor of activated T cells (NFAT) signaling in fibroblasts, as indicated by enhancement of NFAT promoter activity and nuclear translocation, which was attenuated by NHE1 inhibitor. In neonatal rat cardiomyocytes, NHE1 stimulated hypertrophic gene expression and the NFAT pathway, which were inhibited by a CaN inhibitor, FK506. Importantly, CaN activity was strongly enhanced with increasing pH, so NHE1 may promote CaN/NFAT signaling via increased intracellular pH. Indeed, Na+/H+ exchange activity was required for NHE1-dependent NFAT signaling. Moreover, interaction of CaN with NHE1 and clustering of NHE1 to lipid rafts were also required for this response. Based on these results, we propose that NHE1 activity may generate a localized membrane microdomain with higher pH, thereby sensitizing CaN to activation and promoting NFAT signaling. In cardiomyocytes, such signaling can be a pathway of NHE1-dependent hypertrophy. PMID:22688515

  2. O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy

    PubMed Central

    Facundo, Heberty T.; Brainard, Robert E.; Watson, Lewis J.; Ngoh, Gladys A.; Hamid, Tariq; Prabhu, Sumanth D.

    2012-01-01

    The regulation of cardiomyocyte hypertrophy is a complex interplay among many known and unknown processes. One specific pathway involves the phosphatase calcineurin, which regulates nuclear translocation of the essential cardiac hypertrophy transcription factor, nuclear factor of activated T-cells (NFAT). Although metabolic dysregulation is frequently described during cardiac hypertrophy, limited insights exist regarding various accessory pathways. One metabolically derived signal, beta-O-linked N-acetylglucosamine (O-GlcNAc), has emerged as a highly dynamic posttranslational modification of serine and threonine residues regulating physiological and stress processes. Given the metabolic dysregulation during hypertrophy, we hypothesized that NFAT activation is dependent on O-GlcNAc signaling. Pressure overload-induced hypertrophy (via transverse aortic constriction) in mice or treatment of neonatal rat cardiac myocytes with phenylephrine significantly enhanced global O-GlcNAc signaling. NFAT-luciferase reporter activity revealed O-GlcNAc-dependent NFAT activation during hypertrophy. Reversal of enhanced O-GlcNAc signaling blunted cardiomyocyte NFAT-induced changes during hypertrophy. Taken together, these results demonstrate a critical role of O-GlcNAc signaling in NFAT activation during hypertrophy and provide evidence that O-GlcNAc signaling is coordinated with the onset and progression of cardiac hypertrophy. This represents a potentially significant and novel mechanism of cardiac hypertrophy, which may be of particular interest in future in vivo studies of hypertrophy. PMID:22408028

  3. Lercanidipine attenuates angiotensin II-induced cardiomyocyte hypertrophy by blocking calcineurin-NFAT3 and CaMKII-HDAC4 signaling.

    PubMed

    Chen, Yuezhang; Yuan, Jie; Jiang, Guoliang; Zhu, Jianbing; Zou, Yunzeng; Lv, Qianzhou

    2017-10-01

    Previous studies have demonstrated that lercanidipine, a calcium channel blocker, may protect against cardiac hypertrophy; however, the underlying mechanisms remain unclear. In the present study, the effects of lercanidipine on hypertrophy and the mechanisms involved were investigated. Cardiomyocytes isolated from neonatal rats were cultured and treated with angiotensin II (Ang II) in the presence or absence of lercanidipine or tacrolimus (FK506, a calcineurin inhibitor). Reverse transcription‑quantitative polymerase chain reaction was used to assess the mRNA expression of genes of interest, whereas the protein expression of calcium‑dependent signaling molecules was detected using western blot analysis. In addition, the cell surface area and the nuclear translocation of target proteins were evaluated using immunofluorescence. The results of the present study demonstrated that lercanidipine and FK506 inhibited Ang II‑induced cardiomyocyte hypertrophy, as evidenced by decreases in fetal gene (atrial natriuretic peptide and brain natriuretic peptide) expression levels and cell surface area. Notably, lercanidipine suppressed Ang II‑induced activation of calcineurin A (CnA) and nuclear factor of activated T cells 3 (NFAT3). In addition, calcium/calmodulin‑dependent kinase II (CaMKII)‑histone deacetylase 4 (HDAC4) signaling was also inhibited by lercanidipine. In conclusion, the present study demonstrated that lercanidipine may ameliorate cardiomyocyte hypertrophy, possibly partially by blocking Cn-NFAT3 and CaMKII-HDAC4 signaling.

  4. The role of NF-AT transcription factors in T cell activation and differentiation.

    PubMed

    Serfling, E; Berberich-Siebelt, F; Chuvpilo, S; Jankevics, E; Klein-Hessling, S; Twardzik, T; Avots, A

    2000-10-20

    The family of genuine NF-AT transcription factors consists of four members (NF-AT1 [or NF-ATp], NF-AT2 [or NF-ATc], NF-AT3 and NF-AT4 [or NF-ATx]) which are characterized by a highly conserved DNA binding domain (is designated as Rel similarity domain) and a calcineurin binding domain. The binding of the Ca(2+)-dependent phosphatase calcineurin to this region controls the nuclear import and exit of NF-ATs. This review deals (1) with the structure of NF-AT proteins, (2) the DNA binding of NF-AT factors and their interaction with AP-1, (3) NF-AT target genes, (4) signalling pathways leading to NF-AT activation: the role of protein kinases and calcineurin, (5) the nuclear entry and exit of NF-AT factors, (6) transcriptional transactivation by NF-AT factors, (7) the structure and expression of the chromosomal NF-AT2 gene, and (8) NF-AT factors in Th cell differentiation. The experimental data presented and discussed in the review show that NF-AT factors are major players in the control of T cell activation and differentiation and, in all likelihood, also of the cell cycle and apoptosis of T lymphocytes.

  5. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    SciTech Connect

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj; Schönberger, Tanja; Noegel, Angelika A.; Gawaz, Meinrad; Lang, Florian

    2014-02-28

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca{sup 2+} signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7{sup −/−}) and wild-type mice (anxa7{sup +/+}) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7{sup −/−} mice than in anxa7{sup +/+} mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions.

  6. Nuclear factor of activated T-cells (NFAT) plays a role in SV40 infection

    SciTech Connect

    Manley, Kate; O'Hara, Bethany A.; Atwood, Walter J.

    2008-03-01

    Recent evidence highlighted a role for the transcription factor, nuclear factor of activated T-cells (NFAT), in the transcription of the human polyomavirus JCV. Here we show that NFAT is also important in the transcriptional control of the related polyomavirus, Simian Virus 40 (SV40). Inhibition of NFAT activity reduced SV40 infection of Vero, 293A, and HeLa cells, and this block occurred at the stage of viral transcription. Both NFAT3 and NFAT4 bound to the SV40 promoter through {kappa}B sites located within the 72 bp repeated enhancer region. In Vero cells, NFAT was involved in late transcription, but in HeLa and 293A cells both early and late viral transcription required NFAT activity. SV40 large T-Ag was found to increase NFAT activity and provided a positive feedback loop to transactivate the SV40 promoter.

  7. NFAT5 Is Activated by Hypoxia: Role in Ischemia and Reperfusion in the Rat Kidney

    PubMed Central

    Villanueva, Sandra; Suazo, Cristian; Santapau, Daniela; Pérez, Francisco; Quiroz, Mariana; Carreño, Juan E.; Illanes, Sebastián; Lavandero, Sergio; Michea, Luis; Irarrazabal, Carlos E.

    2012-01-01

    The current hypothesis postulates that NFAT5 activation in the kidney's inner medulla is due to hypertonicity, resulting in cell protection. Additionally, the renal medulla is hypoxic (10–18 mmHg); however there is no information about the effect of hypoxia on NFAT5. Using in vivo and in vitro models, we evaluated the effect of reducing the partial pressure of oxygen (PO2) on NFAT5 activity. We found that 1) Anoxia increased NFAT5 expression and nuclear translocation in primary cultures of IMCD cells from rat kidney. 2) Anoxia increased transcriptional activity and nuclear translocation of NFAT5 in HEK293 cells. 3) The dose-response curve demonstrated that HIF-1α peaked at 2.5% and NFAT5 at 1% of O2. 4) At 2.5% of O2, the time-course curve of hypoxia demonstrated earlier induction of HIF-1α gene expression than NFAT5. 5) siRNA knockdown of NFAT5 increased the hypoxia-induced cell death. 6) siRNA knockdown of HIF-1α did not affect the NFAT5 induction by hypoxia. Additionally, HIF-1α was still induced by hypoxia even when NFAT5 was knocked down. 7) NFAT5 and HIF-1α expression were increased in kidney (cortex and medulla) from rats subjected to an experimental model of ischemia and reperfusion (I/R). 7) Experimental I/R increased the NFAT5-target gene aldose reductase (AR). 8) NFAT5 activators (ATM and PI3K) were induced in vitro (HEK293 cells) and in vivo (I/R kidneys) with the same timing of NFAT5. 8) Wortmannin, which inhibits ATM and PI3K, reduces hypoxia-induced NFAT5 transcriptional activation in HEK293 cells. These results demonstrate for the first time that NFAT5 is induced by hypoxia and could be a protective factor against ischemic damage. PMID:22768306

  8. Syndecan-4 is essential for development of concentric myocardial hypertrophy via stretch-induced activation of the calcineurin-NFAT pathway.

    PubMed

    Finsen, Alexandra V; Lunde, Ida G; Sjaastad, Ivar; Østli, Even K; Lyngra, Marianne; Jarstadmarken, Hilde O; Hasic, Almira; Nygård, Ståle; Wilcox-Adelman, Sarah A; Goetinck, Paul F; Lyberg, Torstein; Skrbic, Biljana; Florholmen, Geir; Tønnessen, Theis; Louch, William E; Djurovic, Srdjan; Carlson, Cathrine R; Christensen, Geir

    2011-01-01

    Sustained pressure overload leads to compensatory myocardial hypertrophy and subsequent heart failure, a leading cause of morbidity and mortality. Further unraveling of the cellular processes involved is essential for development of new treatment strategies. We have investigated the hypothesis that the transmembrane Z-disc proteoglycan syndecan-4, a co-receptor for integrins, connecting extracellular matrix proteins to the cytoskeleton, is an important signal transducer in cardiomyocytes during development of concentric myocardial hypertrophy following pressure overload. Echocardiographic, histochemical and cardiomyocyte size measurements showed that syndecan-4(-/-) mice did not develop concentric myocardial hypertrophy as found in wild-type mice, but rather left ventricular dilatation and dysfunction following pressure overload. Protein and gene expression analyses revealed diminished activation of the central, pro-hypertrophic calcineurin-nuclear factor of activated T-cell (NFAT) signaling pathway. Cardiomyocytes from syndecan-4(-/-)-NFAT-luciferase reporter mice subjected to cyclic mechanical stretch, a hypertrophic stimulus, showed minimal activation of NFAT (1.6-fold) compared to 5.8-fold increase in NFAT-luciferase control cardiomyocytes. Accordingly, overexpression of syndecan-4 or introducing a cell-permeable membrane-targeted syndecan-4 polypeptide (gain of function) activated NFATc4 in vitro. Pull-down experiments demonstrated a direct intracellular syndecan-4-calcineurin interaction. This interaction and activation of NFAT were increased by dephosphorylation of serine 179 (pS179) in syndecan-4. During pressure overload, phosphorylation of syndecan-4 was decreased, and association between syndecan-4, calcineurin and its co-activator calmodulin increased. Moreover, calcineurin dephosphorylated pS179, indicating that calcineurin regulates its own binding and activation. Finally, patients with hypertrophic myocardium due to aortic stenosis had increased

  9. Calcineurin-NFAT activation and DSCR-1 auto-inhibitory loop: how is homoeostasis regulated?

    PubMed

    Minami, Takashi

    2014-04-01

    Calcineurin-nuclear factor of activated T cells (NFAT) signalling plays a critical role not only in the immune and nervous systems, but also in cardiovascular development and pathological endothelial cell activation during angiogenesis or inflammation. Studies in NFAT-null mice demonstrated that there is high redundancy between functions of the different NFAT family members. Deletion of only one NFAT causes mild phenotypes, but compound deletions of multiple NFAT family members leads to severe abnormalities in multiple organ systems. Genome-wide transcription analysis revealed that many NFAT target genes are related to cell growth and inflammation, whereas the gene most strongly induced by NFAT in endothelial cells is an auto-inhibitory molecule, Down syndrome critical region (DSCR)-1. The NFAT-DSCR-1 signalling axis may vary depending on the cell-type or signal dosage level under the microenvironment. In the endothelium, stable expression of the DSCR-1 short isoform attenuates septic inflammatory shock, tumour growth and tumour metastasis to lung. Moreover, dysfunction of DSCR-1 and the NFAT priming kinase, DYRK1A, prevents NFAT nuclear occupancy. This change in NFAT nuclear localization is responsible for many of the features of Down syndrome. Thus, fine-tuning of the NFAT-DSCR-1 negative feedback loop may enable therapeutic manipulation in vasculopathic diseases.

  10. Regulation of NFAT by poly(ADP-ribose) polymerase activity in T cells.

    PubMed

    Valdor, Rut; Schreiber, Valérie; Saenz, Luis; Martínez, Teresa; Muñoz-Suano, Alba; Dominguez-Villar, Margarita; Ramírez, Pablo; Parrilla, Pascual; Aguado, Enrique; García-Cózar, Francisco; Yélamos, José

    2008-04-01

    The nuclear factor of activated T cells (NFAT) family of transcription factors is pivotal for T lymphocyte functionality. All relevant NFAT activation events upon T cells stimulation such as nuclear translocation, DNA binding, and transcriptional activity have been shown to be dictated by its phosphorylation state. Here, we provide evidence for a novel post-translational modification that regulates NFAT. Indeed, NFATc1 and NFATc2 are poly(ADP-ribosyl)ated by poly-ADP-ribose polymerase-1 (PARP-1). Moreover, we have also found a physical interaction between PARP-1 and both NFATc1 and NFATc2. Interestingly, PARP is activated during T cell stimulation in the absence of DNA damage, leading to ADP-ribose polymers formation and transfer to nuclear acceptor proteins. Our data suggest that poly(ADP-ribosyl)ation modulates the activation of NFAT in T cells, as PARP inhibition causes an increase in NFAT-dependent transactivation and a delay in NFAT nuclear export. Poly(ADP-ribosyl)ation will expedited NFAT export from the nucleus directly or by priming/facilitating NFAT phosphorylation. Altogether, these data point to PARP-1 and poly(ADP-ribosyl)ation as a novel regulatory mechanism of NFAT at nuclear level, suggesting a potential use of PARP as a new therapeutic target in the modulation of NFAT.

  11. Expression, localisation and functional activation of NFAT-2 in normal human skin, psoriasis, and cultured keratocytes

    PubMed Central

    Al-Daraji, Wael I; Malak, Tamer T.; Prescott, Richard J.; Abdellaoui, Adel; Ali, Mahmud M.; Dabash, Tarek; Zelger, Bettina G.; Zelger, Bernhard

    2009-01-01

    Ciclosporin A (CsA) is widely utilized for the treatment of inflammatory skin diseases such as psoriasis. The therapeutic effects of CsA are thought to be mediated via its immunosuppressive action on infiltrating lymphocytes in skin lesions. CsA and tacrolimus block T cell activation by inhibiting the phosphatase calcineurin and preventing translocation from the cytoplasm to the nucleus of the transcription factor Nuclear Factor of Activated T cells (NFAT). As calcineurin and NFAT 1 have been shown to be functionally active in cultured human keratocytes, expression of other NFAT family members such as NFAT-2 and possible functional activation was investigated in human keratocytes. RT-PCR and Western Analysis were used to investigate the presence of NFAT-2 mRNA and protein in human keratocytes. Tissue culture of human keratocytes and immunostaining of cells on coverslips and confocal microscopy were used to assess the degree of nuclear localisation of NFAT-2 in cultured cells. Keratome biopsies were taken from patients with psoriasis (lesional and non-lesional skin) and normal skin and immunohistochemistry was used to assess the NFAT-2 localisation in these biopsies using a well characterized anti-NFAT-2 antibody. The NFAT-2 mRNA and protein expression was demonstrated using RT-PCR and Western blotting. Moreover, the expression of NFAT-2 in normal skin, non-lesional and lesional psoriasis showed a striking basal staining suggesting a role for NFAT-2 in keratocytes proliferation. A range of cell types in the skin express NFAT-2. The expression of NFAT-2 in human keratocytes and response to different agonists provides perhaps a unique opportunity to examine the regulation, subcellular localization and kinetics of translocation of different NFATs in primary cultured human cells. In these experiments the author assessed the expression, localization of NFAT-2 in cultured human keratocytes and measured the degree of nuclear localisaion of NFAT-2 using immunofluorescence

  12. NFAT regulates pre-synaptic development and activity-dependent plasticity in Drosophila

    PubMed Central

    Freeman, Amanda; Franciscovich, Amy; Bowers, Mallory; Sandstrom, David J.; Sanyal, Subhabrata

    2010-01-01

    The calcium-regulated transcription factor NFAT is emerging as a key regulator of neuronal development and plasticity but precise cellular consequences of NFAT function remain poorly understood. Here, we report that the single Drosophila NFAT homolog is widely expressed in the nervous system including motor neurons and unexpectedly controls neural excitability. Likely due to this effect on excitability, NFAT regulates overall larval locomotion and both chronic and acute forms of activity-dependent plasticity at the larval glutamatergic neuro-muscular synapse. Specifically, NFAT-dependent synaptic phenotypes include changes in the number of pre-synaptic boutons, stable modifications in synaptic microtubule architecture and pre-synaptic transmitter release, while no evidence is found for synaptic retraction or alterations in the level of the synaptic cell adhesion molecule FasII. We propose that NFAT regulates pre-synaptic development and constraints long-term plasticity by dampening neuronal excitability. PMID:21185939

  13. Band-pass processing in a GPCR signaling pathway selects for NFAT transcription factor activation.

    PubMed

    Sumit, M; Neubig, R R; Takayama, S; Linderman, J J

    2015-11-01

    Many biological processes are rhythmic and proper timing is increasingly appreciated as being critical for development and maintenance of physiological functions. To understand how temporal modulation of an input signal influences downstream responses, we employ microfluidic pulsatile stimulation of a G-protein coupled receptor, the muscarinic M3 receptor, in single cells with simultaneous real-time imaging of both intracellular calcium and NFAT nuclear localization. Interestingly, we find that reduced stimulation with pulses of ligand can give more efficient transcription factor activation, if stimuli are timed appropriately. Our experiments and computational analyses show that M3 receptor-induced calcium oscillations form a low pass filter while calcium-induced NFAT translocation forms a high pass filter. The combination acts as a band-pass filter optimized for intermediate frequencies of stimulation. We demonstrate that receptor desensitization and NFAT translocation rates determine critical features of the band-pass filter and that the band-pass may be shifted for different receptors or NFAT dynamics. As an example, we show that the two NFAT isoforms (NFAT4 and NFAT1) have shifted band-pass windows for the same receptor. While we focus specifically on the M3 muscarinic receptor and NFAT translocation, band-pass processing is expected to be a general theme that applies to multiple signaling pathways.

  14. Dual effect of lithium on NFAT5 activity in kidney cells

    PubMed Central

    Küper, Christoph; Beck, Franz-Xaver; Neuhofer, Wolfgang

    2015-01-01

    Lithium salts are used widely for treatment of bipolar and other mental disorders. Lithium therapy is accompanied frequently by renal side effects, such as nephrogenic diabetes insipidus or chronic kidney disease (CKD), but the molecular mechanisms underlying these effects are still poorly understood. In the present study we examined the effect of lithium on the activity of the osmosensitive transcriptional activator nuclear factor of activated T cells 5 (NFAT5, also known as TonEBP), which plays a key role in renal cellular osmoprotection and urinary concentrating ability. Interestingly, we found different effects of lithium on NFAT5 activity, depending on medium osmolality and incubation time. When cells were exposed to lithium for a relative short period (24 h), NFAT5 activity was significantly increased, especially under isosmotic conditions, resulting in an enhanced expression of the NFAT5 target gene heat shock protein 70 (HSP70). Further analysis revealed that the increase of NFAT5 activity depended primarily on an enhanced activity of the c-terminal transactivation domain (TAD), while NFAT5 protein abundance was largely unaffected. Enhanced activity of the TAD is probably mediated by lithium-induced inhibitory phosphorylation of glycogen synthase kinase 3β (GSK-3β), which is in accordance with previous studies. When cells were exposed to lithium for a longer period (96 h), cellular NFAT5 activity and subsequently expression of HSP70 significantly decreased under hyperosmotic conditions, due to diminished NFAT5 protein abundance, also resulting from GSK-3β inhibition. Taken together, our results provide evidence that lithium has opposing effects on NFAT5 activity, depending on environmental osmolality and exposure duration. The potential impacts of these observations on the diverse effects of lithium on kidney function are discussed. PMID:26441681

  15. The osmoprotective function of the NFAT5 transcription factor in T cell development and activation.

    PubMed

    Trama, Jason; Go, William Y; Ho, Steffan N

    2002-11-15

    The NFAT5/TonEBP transcription factor, a recently identified rel/NF-kappaB family member, activates transcription of osmocompensatory genes in response to extracellular hyperosmotic stress. However, the function of NFAT5 under isosmotic conditions present in vivo remains unknown. Here we demonstrate that NFAT5 is necessary for optimal T cell development in vivo and allows for optimal cell growth ex vivo under conditions associated with osmotic stress. Transgenic mice expressing an inhibitory form of NFAT5 in developing and mature T cells exhibited a 30% reduction in thymic cellularity evenly distributed among thymic subsets, consistent with the uniform expression and nuclear localization of NFAT5 in each subset. This was associated with a 25% reduction in peripheral CD4(+) T cells and a 50% reduction in CD8(+) T cells. While transgenic T cells exhibited no impairment in cell growth or cytokine production under normal culture conditions, impaired cell growth was observed under both hyperosmotic conditions and isosmotic conditions associated with osmotic stress. Transgenic thymocytes also demonstrated increased sensitivity to osmotic stress. Consistent with this, the system A amino acid transporter gene ATA2 exhibited NFAT5 dependence under hypertonic conditions but not in response to amino acid deprivation. Expression of the TNF-alpha gene, a putative NFAT5 target, was not altered in transgenic T cells. These results not only demonstrate an osmoprotective function for NFAT5 in primary cells but also show that NFAT5 is necessary for optimal thymic development in vivo, suggesting that developing thymocytes within the thymic microenvironment are subject to an osmotic stress that is effectively countered by NFAT5-dependent responses.

  16. Microglial phenotype is regulated by activity of the transcription factor, NFAT

    PubMed Central

    Nagamoto-Combs, Kumi

    2010-01-01

    The transcription factor family, nuclear factor of activated T cells (NFAT), regulates immune cell phenotype. Four different calcium/calmodulin-regulated isoforms have been identified in the periphery, but isoform expression in microglia, the resident immune cells of the central nervous system, has not been fully defined. In this study microglial NFAT isoform expression and involvement in regulating inflammatory responses in murine primary microglia culture was examined. Western blot analysis demonstrated robust detection of NFATc1 and c2 isoforms in microglia. Electrophoretic mobility shift assays demonstrated increased NFAT-DNA binding from nuclear extracts of lipopolysaccharide (LPS) stimulated microglia. Moreover, LPS-stimulated microglia behaved similarly to T cell receptor agonist antibody-stimulated Jurkat cells demonstrating a transient increase in NFAT-driven luciferase reporter gene expression. LPS-induced NFAT-luciferase activity in microglia was attenuated by pretreatment with tat-VIVIT, a cell-permeable NFAT inhibitory peptide. Furthermore, LPS-mediated secretion of microglial cytokines, TNF-α and MCP-1, was decreased by treatment with tat-VIVIT but not with tat-VEET, a negative control peptide. These results demonstrate that NFAT plays a role in regulating proinflammatory responses in cultured murine microglia. PMID:20631193

  17. TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription

    PubMed Central

    Schlöndorff, Johannes; del Camino, Donato; Carrasquillo, Robert; Lacey, Vanessa; Pollak, Martin R.

    2009-01-01

    Mutations in the canonical transient receptor potential channel TRPC6 lead to an autosomal dominant form of human kidney disease characterized histologically by focal and segmental glomerulosclerosis. Several of these mutations enhance the amplitude and duration of the channel current. However, the effect of these mutations on the downstream target of TRPC6, the nuclear factor of activated T cell (NFAT) transcription factors, has not been previously examined. Here we demonstrate that all three TRPC6 mutations previously shown to enhance channel activity lead to enhanced basal NFAT-mediated transcription in several cell lines, including cultured podocytes. These effects are dependent on channel activity and are dominant when mutants are coexpressed with wild-type TRPC6. While TRPC6 mutants do not demonstrate an increase in basal channel currents, a subset of cells expressing the R895C and E897K mutants have elevated basal calcium levels as measured by Fura-2 imaging. Activation of NFAT by TRPC6 mutants is blocked by inhibitors of calcineurin, calmodulin-dependent kinase II, and phosphatidylinositol 3-kinase. PP2 partially inhibits NFAT activation by mutant TRPC6 independently of Src, Yes, or Fyn. Differences in channel glycosylation and surface expression do not explain the ability of mutants to enhance NFAT activation. Taken together, these results identify the activation of the calcineurin-NFAT pathway as a potential mediator of focal segmental glomerulosclerosis. PMID:19129465

  18. Novel NFAT sites that mediate activation of the interleukin-2 promoter in response to T-cell receptor stimulation.

    PubMed Central

    Rooney, J W; Sun, Y L; Glimcher, L H; Hoey, T

    1995-01-01

    The transcription factors NFAT and AP-1 have been shown to be essential for inducible interleukin-2 (IL-2) expression in activated T cells. NFAT has been previously reported to bind to two sites in the IL-2 promoter: in association with AP-1 at the distal antigen response element at -280 and at -135. On the basis of DNase I footprinting with recombinant NFAT and AP-1 proteins, gel shift assays, and transfection experiments, we have identified three additional NFAT sites in the IL-2 promoter. Strikingly, all five NFAT sites are essential for the full induction of promoter activity in response to T-cell receptor stimulation. Four of the five NFAT sites are part of composite elements able to bind AP-1 in association with NFAT. These sites display a diverse range of cooperativity and interdependency on NFAT and AP-1 proteins for binding. One of the NFAT sites directly overlaps the CD28-responsive element. We present evidence that CD28 inducibility is conferred by the AP-1 component in NFAT-AP-1 composite elements. These findings provide further insight into the mechanisms involved in the regulation of the IL-2 promoter. PMID:7565783

  19. Mitochondrial Ca2+ Cycling Facilitates Activation of the Transcription Factor NFAT in Sensory Neurons

    PubMed Central

    Kim, Man-Su; Usachev, Yuriy M.

    2009-01-01

    Ca2+-dependent gene regulation controls many aspects of neuronal plasticity. Significant progress has been made toward understanding the roles of voltage- and ligand-gated Ca2+ channels in triggering specific transcriptional responses. In contrast, the functional importance of Ca2+ buffers and Ca2+ transporters in neuronal gene regulation is less clear despite their critical contribution to the spatio-temporal control of Ca2+ signals. Here we examined the role of mitochondrial Ca2+ uptake and release in regulating the Ca2+-dependent transcription factor NFAT that has been implicated in synaptic plasticity, axonal growth and neuronal survival. Intense stimulation of sensory neurons by action potentials or TRPV1 agonists induced rapid activation and nuclear import of NFAT. Nuclear translocation of NFAT was associated with a characteristic prolonged [Ca2+]i elevation (plateau) that resulted from Ca2+ uptake by, and its subsequent release from mitochondria. Measurements using a mitochondrial Ca2+ indicator, mtPericam, showed that this process recruited mitochondria throughout the cell body, including the perinuclear region. [Ca2+]i levels attained during the plateau phase were similar to or higher than those required for NFAT activation (200–300 nM). The elimination of the [Ca2+]i plateau by blocking either mitochondrial Ca2+ uptake via the uniporter or Ca2+ release via the mitochondrial Na+/Ca2+ exchanger strongly reduced nuclear import of NFAT. Furthermore, preventing Ca2+ mobilization via the mitochondrial Na+/Ca2+ exchanger diminished NFAT-mediated transcription. Collectively, these data implicate activity-induced Ca2+ uptake and prolonged release from mitochondria as a novel regulatory mechanism in neuronal excitation-transcription coupling. PMID:19793968

  20. Herpesviral G protein-coupled receptors activate NFAT to induce tumor formation via inhibiting the SERCA calcium ATPase.

    PubMed

    Zhang, Junjie; He, Shanping; Wang, Yi; Brulois, Kevin; Lan, Ke; Jung, Jae U; Feng, Pinghui

    2015-03-01

    G protein-coupled receptors (GPCRs) constitute the largest family of proteins that transmit signal to regulate an array of fundamental biological processes. Viruses deploy diverse tactics to hijack and harness intracellular signaling events induced by GPCR. Herpesviruses encode multiple GPCR homologues that are implicated in viral pathogenesis. Cellular GPCRs are primarily regulated by their cognate ligands, while herpesviral GPCRs constitutively activate downstream signaling cascades, including the nuclear factor of activated T cells (NFAT) pathway. However, the roles of NFAT activation and mechanism thereof in viral GPCR tumorigenesis remain unknown. Here we report that GPCRs of human Kaposi's sarcoma-associated herpesvirus (kGPCR) and cytomegalovirus (US28) shortcut NFAT activation by inhibiting the sarcoplasmic reticulum calcium ATPase (SERCA), which is necessary for viral GPCR tumorigenesis. Biochemical approaches, entailing pharmacological inhibitors and protein purification, demonstrate that viral GPCRs target SERCA2 to increase cytosolic calcium concentration. As such, NFAT activation induced by vGPCRs was exceedingly sensitive to cyclosporine A that targets calcineurin, but resistant to inhibition upstream of ER calcium release. Gene expression profiling identified a signature of NFAT activation in endothelial cells expressing viral GPCRs. The expression of NFAT-dependent genes was up-regulated in tumors derived from tva-kGPCR mouse and human KS. Employing recombinant kGPCR-deficient KSHV, we showed that kGPCR was critical for NFAT-dependent gene expression in KSHV lytic replication. Finally, cyclosporine A treatment diminished NFAT-dependent gene expression and tumor formation induced by viral GPCRs. These findings reveal essential roles of NFAT activation in viral GPCR tumorigenesis and a mechanism of "constitutive" NFAT activation by viral GPCRs.

  1. AKAP-Anchored PKA Maintains Neuronal L-type Calcium Channel Activity and NFAT Transcriptional Signaling

    PubMed Central

    Murphy, Jonathan G.; Sanderson, Jennifer L.; Gorski, Jessica A.; Scott, John D.; Catterall, William A.; Sather, William A.; Dell’Acqua, Mark L.

    2014-01-01

    Summary In neurons, Ca2+ influx through L-type voltage-gated Ca2+ channels (LTCC) couples electrical activity to changes in transcription. LTCC activity is elevated by the cAMP-dependent protein kinase (PKA) and depressed by the Ca2+-dependent phosphatase calcineurin (CaN), with both enzymes localized to the channel by A-kinase anchoring protein (AKAP) 79/150. AKAP79/150 anchoring of CaN also promotes LTCC activation of transcription through dephosphorylation of the nuclear factor of activated T-cells (NFAT). We report here that genetic disruption of PKA anchoring to AKAP79/150 also interferes with LTCC activation of CaN-NFAT signaling in neurons. Disruption of AKAP-PKA anchoring promoted redistribution of the kinase out of dendritic spines, profound decreases in LTCC phosphorylation and Ca2+ influx, and impaired NFAT movement to the nucleus and activation of transcription. Our findings support a model wherein basal activity of AKAP79/150-anchored PKA opposes CaN to preserve LTCC phosphorylation, thereby sustaining LTCC activation of CaN-NFAT signaling to the neuronal nucleus. PMID:24835999

  2. AKAP-anchored PKA maintains neuronal L-type calcium channel activity and NFAT transcriptional signaling.

    PubMed

    Murphy, Jonathan G; Sanderson, Jennifer L; Gorski, Jessica A; Scott, John D; Catterall, William A; Sather, William A; Dell'Acqua, Mark L

    2014-06-12

    L-type voltage-gated Ca2+ channels (LTCC) couple neuronal excitation to gene transcription. LTCC activity is elevated by the cyclic AMP (cAMP)-dependent protein kinase (PKA) and depressed by the Ca2+-dependent phosphatase calcineurin (CaN), and both enzymes are localized to the channel by A-kinase anchoring protein 79/150 (AKAP79/150). AKAP79/150 anchoring of CaN also promotes LTCC activation of transcription through dephosphorylation of the nuclear factor of activated T cells (NFAT). We report here that the basal activity of AKAP79/150-anchored PKA maintains neuronal LTCC coupling to CaN-NFAT signaling by preserving LTCC phosphorylation in opposition to anchored CaN. Genetic disruption of AKAP-PKA anchoring promoted redistribution of the kinase out of postsynaptic dendritic spines, profound decreases in LTCC phosphorylation and Ca2+ influx, and impaired NFAT movement to the nucleus and activation of transcription. Thus, LTCC-NFAT transcriptional signaling in neurons requires precise organization and balancing of PKA and CaN activities in the channel nanoenvironment, which is only made possible by AKAP79/150 scaffolding.

  3. Nuclear factor of activated T cells (NFAT) signaling regulates PTEN expression and intestinal cell differentiation

    PubMed Central

    Wang, Qingding; Zhou, Yuning; Jackson, Lindsey N.; Johnson, Sara M.; Chow, Chi-Wing; Evers, B. Mark

    2011-01-01

    The nuclear factor of activated T cell (NFAT) proteins are a family of transcription factors (NFATc1–c4) involved in the regulation of cell differentiation and adaptation. Previously we demonstrated that inhibition of phosphatidylinositol 3-kinase or overexpression of PTEN enhanced intestinal cell differentiation. Here we show that treatment of intestinal-derived cells with the differentiating agent sodium butyrate (NaBT) increased PTEN expression, NFAT binding activity, and NFAT mRNA expression, whereas pretreatment with the NFAT signaling inhibitor cyclosporine A (CsA) blocked NaBT-mediated PTEN induction. Moreover, knockdown of NFATc1 or NFATc4, but not NFATc2 or NFATc3, attenuated NaBT-induced PTEN expression. Knockdown of NFATc1 decreased PTEN expression and increased the phosphorylation levels of Akt and downstream targets Foxo1 and GSK-3α/β. Furthermore, overexpression of NFATc1 or the NFATc4 active mutant increased PTEN and p27kip1 expression and decreased Akt phosphorylation. In addition, pretreatment with CsA blocked NaBT-mediated induction of intestinal alkaline phosphatase (IAP) activity and villin and p27kip1 expression; knockdown of either NFATc1 or NFATc4 attenuated NaBT-induced IAP activity. We provide evidence showing that NFATc1 and NFATc4 are regulators of PTEN expression. Importantly, our results suggest that NFATc1 and NFATc4 regulation of intestinal cell differentiation may be through PTEN regulation. PMID:21148296

  4. The NFAT-1 DNA binding complex in activated T cells contains Fra-1 and JunB.

    PubMed Central

    Boise, L H; Petryniak, B; Mao, X; June, C H; Wang, C Y; Lindsten, T; Bravo, R; Kovary, K; Leiden, J M; Thompson, C B

    1993-01-01

    Activation of T cells induces transcription of the interleukin-2 (IL-2) gene. IL-2 expression is regulated through the binding of transcription factors to multiple sites within the IL-2 enhancer. One such cis-acting element within the IL-2 enhancer is the NFAT-1 (nuclear factor of activated T cells) binding site. NFAT-1 binding activity is absent in resting cells but is induced upon T-cell activation. The induction of NFAT-1 binding activity can be inhibited by cyclosporin A, potentially accounting for the ability of cyclosporin A to inhibit IL-2 production by T cells. We have previously reported that the NFAT-1 binding complex is composed of at least two proteins and that the 5' portion of the NFAT-1 sequence acts as a binding site for one or more proteins from the Ets family of transcription factors. We now report that the 3' portion of the NFAT-1 sequence contains a variant AP-1 binding site. NFAT-1 binding can be specifically inhibited by oligonucleotides containing a consensus AP-1 site. Moreover, mutation of the AP-1 site at the 3' end of the NFAT-1 sequence inhibits both NFAT-1 binding and the ability of the NFAT-1 binding site to activate expression from a reporter plasmid upon T-cell activation. Since AP-1 sites bind dimeric protein complexes composed of individual members of the Fos and Jun families of transcription factors, we used antibodies specific for individual Fos and Jun family members to determine whether they are present in the NFAT-1 binding complex. These experiments demonstrated that the NFAT-1 binding complex contains JunB and Fra-1 proteins. Northern (RNA) blot analyses demonstrate that both fra-1 and junB mRNAs are induced upon T-cell activation, although fra-1 mRNA is present even in quiescent T cells. Of interest, junB is not expressed in quiescent T cells, and it is induced with kinetics that are similar to those for the induction of IL-2 mRNA expression. Taken together, these results suggested that the JunB-Fra-1 heterodimer is the

  5. Fermentation, Isolation, Structure, and antidiabetic activity of NFAT-133 produced by Streptomyces strain PM0324667

    PubMed Central

    2011-01-01

    Type-2 diabetes is mediated by defects in either insulin secretion or insulin action. In an effort to identify extracts that may stimulate glucose uptake, similar to insulin, a high throughput-screening assay for measuring glucose uptake in skeletal muscle cells was established. During the screening studies to discover novel antidiabetic compounds from microbial resources a Streptomyces strain PM0324667 (MTCC 5543, the Strain accession number at Institute of Microbial Technology, Chandigarh, India), an isolate from arid soil was identified which expressed a secondary metabolite that induced glucose uptake in L6 skeletal muscle cells. By employing bioactivity guided fractionation techniques, a tri-substituted simple aromatic compound with anti-diabetic potential was isolated. It was characterized based on MS and 2D NMR spectral data and identified as NFAT-133 which is a known immunosuppressive agent that inhibits NFAT-dependent transcription in vitro. Our investigations revealed the antidiabetic potential of NFAT-133. The compound induced glucose uptake in differentiated L6 myotubes with an EC50 of 6.3 ± 1.8 μM without activating the peroxisome proliferator-activated receptor-γ. Further, NFAT-133 was also efficacious in vivo in diabetic animals and reduced systemic glucose levels. Thus it is a potential lead compound which can be considered for development as a therapeutic for the treatment of type-2 diabetes. We have reported herewith the isolation of the producer microbe, fermentation, purification, in vitro, and in vivo antidiabetic activity of the compound. PMID:22104600

  6. 14-3-3-β and -{varepsilon} contribute to activation of the osmoprotective transcription factor NFAT5 by increasing its protein abundance and its transactivating activity.

    PubMed

    Izumi, Yuichiro; Burg, Maurice B; Ferraris, Joan D

    2014-01-01

    Abstract Having previously found that high NaCl causes rapid exit of 14-3-3 isoforms from the nucleus, we used siRNA-mediated knockdown to test whether 14-3-3s contribute to the high NaCl-induced increase in the activity of the osmoprotective transcription factor NFAT5. We find that, when NaCl is elevated, knockdown of 14-3-3-β and/or 14-3-3-ε decreases NFAT5 transcriptional activity, as assayed both by luciferase reporter and by the mRNA abundance of the NFAT5 target genes aldose reductase and the sodium- and chloride-dependent betaine transporter, BGT1. Knockdown of other 14-3-3 isoforms does not significantly affect NFAT5 activity. 14-3-3-β and/or 14-3-3-ε do not act by affecting the nuclear localization of NFAT5, but by at least two other mechanisms: (1) 14-3-3-β and 14-3-3-ε increase protein abundance of NFAT5 and (2) they increase NFAT5 transactivating activity. When NaCl is elevated, knockdown of 14-3-3-β and/or 14-3-3-ε reduces the protein abundance of NFAT5, as measured by Western blot, without affecting the level of NFAT5 mRNA, and the knockdown also decreases NFAT5 transactivating activity, as measured by luciferase reporter. The 14-3-3s increase NFAT5 protein, not by increasing its translation, but by decreasing the rate at which it is degraded, as measured by cycloheximide chase. It is not clear at this point whether the 14-3-3s affect NFAT5 directly or indirectly through their effects on other proteins that signal activation of NFAT5.

  7. Selective and strain-specific NFAT4 activation by the Toxoplasma gondii polymorphic dense granule protein GRA6

    PubMed Central

    Sasai, Miwa; Ohshima, Jun; Lee, Youngae; Bando, Hironori; Takeda, Kiyoshi

    2014-01-01

    Toxoplasma gondii infection results in co-option and subversion of host cellular signaling pathways. This process involves discharge of T. gondii effector molecules from parasite secretory organelles such as rhoptries and dense granules. We report that the T. gondii polymorphic dense granule protein GRA6 regulates activation of the host transcription factor nuclear factor of activated T cells 4 (NFAT4). GRA6 overexpression robustly and selectively activated NFAT4 via calcium modulating ligand (CAMLG). Infection with wild-type (WT) but not GRA6-deficient parasites induced NFAT4 activation. Moreover, GRA6-deficient parasites failed to exhibit full virulence in local infection, and the treatment of WT mice with an NFAT inhibitor mitigated virulence of WT parasites. Notably, NFAT4-deficient mice displayed prolonged survival, decreased recruitment of CD11b+ Ly6G+ cells to the site of infection, and impaired expression of chemokines such as Cxcl2 and Ccl2. In addition, infection with type I parasites culminated in significantly higher NFAT4 activation than type II parasites due to a polymorphism in the C terminus of GRA6. Collectively, our data suggest that GRA6-dependent NFAT4 activation is required for T. gondii manipulation of host immune responses to maximize the parasite virulence in a strain-dependent manner. PMID:25225460

  8. The cardiac calsequestrin gene transcription is modulated at the promoter by NFAT and MEF-2 transcription factors.

    PubMed

    Estrada-Avilés, Rafael; Rodríguez, Gabriela; Zarain-Herzberg, Angel

    2017-01-01

    Calsequestrin-2 (CASQ2) is the main Ca2+-binding protein inside the sarcoplasmic reticulum of cardiomyocytes. Previously, we demonstrated that MEF-2 and SRF binding sites within the human CASQ2 gene (hCASQ2) promoter region are functional in neonatal cardiomyocytes. In this work, we investigated if the calcineurin/NFAT pathway regulates hCASQ2 expression in neonatal cardiomyocytes. The inhibition of NFAT dephosphorylation with CsA or INCA-6, reduced both the luciferase activity of hCASQ2 promoter constructs (-3102/+176 bp and -288/+176 bp) and the CASQ2 mRNA levels in neonatal rat cardiomyocytes. Additionally, NFATc1 and NFATc3 over-expressing neonatal cardiomyocytes showed a 2-3-fold increase in luciferase activity of both hCASQ2 promoter constructs, which was prevented by CsA treatment. Site-directed mutagenesis of the -133 bp MEF-2 binding site prevented trans-activation of hCASQ2 promoter constructs induced by NFAT overexpression. Chromatin Immunoprecipitation (ChIP) assays revealed NFAT and MEF-2 enrichment within the -288 bp to +76 bp of the hCASQ2 gene promoter. Besides, a direct interaction between NFAT and MEF-2 proteins was demonstrated by protein co-immunoprecipitation experiments. Taken together, these data demonstrate that NFAT interacts with MEF-2 bound to the -133 bp binding site at the hCASQ2 gene promoter. In conclusion, in this work, we demonstrate that the Ca2+-calcineurin/NFAT pathway modulates the transcription of the hCASQ2 gene in neonatal cardiomyocytes.

  9. Lithium Regulates Keratinocyte Proliferation Via Glycogen Synthase Kinase 3 and NFAT2 (Nuclear Factor of Activated T Cells 2)

    PubMed Central

    Hampton, Philip J; Jans, Ralph; Flockhart, Ross J; Parker, Graeme; Reynolds, Nick J

    2012-01-01

    Certain environmental factors including drugs exacerbate or precipitate psoriasis. Lithium is the commonest cause of drug-induced psoriasis but underlying mechanisms are currently unknown. Lithium inhibits glycogen synthase kinase 3 (GSK-3). As lithium does not exacerbate other T-cell-mediated chronic inflammatory diseases, we investigated whether lithium may be acting directly on epidermal keratinocytes by inhibiting GSK-3. We report that lithium-induced keratinocyte proliferation at therapeutically relevant doses (1–2 mM) and increased the proportion of cells in S phase of the cell cycle. Inhibition of GSK-3 in keratinocytes by retroviral transduction of GSK-binding protein (an endogenous inhibitory protein) or through a highly selective pharmacological inhibitor also resulted in increased keratinocyte proliferation. Nuclear factor of activated T cells (NFAT) is an important substrate for GSK-3 and for cyclosporin, an effective treatment for psoriasis that inhibits NFAT activation in keratinocytes as well as in lymphocytes. Both lithium and genetic/pharmacological inhibition of GSK-3 resulted in increased nuclear localization of NFAT2 (NFATc1) and increased NFAT transcriptional activation. Finally, retroviral transduction of NFAT2 increased keratinocyte proliferation whereas siRNA-mediated knockdown of NFAT2 reduced keratinocyte proliferation and decreased epidermal thickness in an organotypic skin equivalent model. Taken together, these data identify GSK-3 and NFAT2 as key regulators of keratinocyte proliferation and as potential molecular targets relevant to lithium-provoked psoriasis. J. Cell. Physiol. 227: 1529–1537, 2012. © 2011 Wiley Periodicals, Inc. PMID:21678407

  10. Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation.

    PubMed Central

    Linette, G P; Li, Y; Roth, K; Korsmeyer, S J

    1996-01-01

    BCL-2-deficient T cells demonstrate accelerated cell cycle progression and increased apoptosis following activation. Increasing the levels of BCL-2 retarded the G0-->S transition, sustained the levels of cyclin-dependent kinase inhibitor p27Kip1, and repressed postactivation death. Proximal signal transduction events and immediate early gene transcription were unaffected. However, the transcription and synthesis of interleukin 2 and other delayed early cytokines were markedly attenuated by BCL-2. In contrast, a cysteine protease inhibitor that also blocks apoptosis had no substantial affect upon cytokine production. InterleUkin 2 expression requires several transcription factors of which nuclear translocation of NFAT (nuclear factor of activated T cells) and NFAT-mediated transactivation were impaired by BCL-2. Thus, select genetic aberrations in the apoptotic pathway reveal a cell autonomous coregulation of activation. Images Fig. 3 Fig. 4 Fig. 7 PMID:8790367

  11. Cardiomyocyte Hypertrophy in Arrhythmogenic Cardiomyopathy.

    PubMed

    Gerçek, Mustafa; Gerçek, Muhammed; Kant, Sebastian; Simsekyilmaz, Sakine; Kassner, Astrid; Milting, Hendrik; Liehn, Elisa A; Leube, Rudolf E; Krusche, Claudia A

    2017-04-01

    Arrhythmogenic cardiomyopathy (AC) is a hereditary disease leading to sudden cardiac death or heart failure. AC pathology is characterized by cardiomyocyte loss and replacement fibrosis. Our goal was to determine whether cardiomyocytes respond to AC progression by pathological hypertrophy. To this end, we examined tissue samples from AC patients with end-stage heart failure and tissue samples that were collected at different disease stages from desmoglein 2-mutant mice, a well characterized AC model. We find that cardiomyocyte diameters are significantly increased in right ventricles of AC patients. Increased mRNA expression of the cardiac stress marker natriuretic peptide B is also observed in the right ventricle of AC patients. Elevated myosin heavy chain 7 mRNA expression is detected in left ventricles. In desmoglein 2-mutant mice, cardiomyocyte diameters are normal during the concealed disease phase but increase significantly after acute disease onset on cardiomyocyte death and fibrotic myocardial remodeling. Hypertrophy progresses further during the chronic disease stage. In parallel, mRNA expression of myosin heavy chain 7 and natriuretic peptide B is up-regulated in both ventricles with right ventricular preference. Calcineurin/nuclear factor of activated T cells (Nfat) signaling, which is linked to pathological hypertrophy, is observed during AC progression, as evidenced by Nfatc2 and Nfatc3 mRNA in cardiomyocytes and increased mRNA of the Nfat target regulator of calcineurin 1. Taken together, we demonstrate that pathological hypertrophy occurs in AC and is secondary to cardiomyocyte loss and cardiac remodeling.

  12. Nickel differentially regulates NFAT and NF-{kappa}B activation in T cell signaling

    SciTech Connect

    Saito, Rumiko; Hirakawa, Satoshi; Ohara, Hiroshi; Yasuda, Makoto; Yamazaki, Tomomi; Nishii, Shigeaki; Aiba, Setsuya

    2011-08-01

    Nickel is a potent hapten that induces contact hypersensitivity in human skin. While nickel induces the maturation of dendritic cells via NF-{kappa}B and p38 MAPK activation, it also exerts immunosuppressive effects on T cells through an unknown mechanism. To elucidate the molecular mechanisms of its effects on T cells, we examined the effects of NiCl{sub 2} on mRNA expression in human CD3+ T cells stimulated with CD3 and CD28 antibodies. Using a DNA microarray and Gene Ontology, we identified 70 up-regulated (including IL-1{beta}, IL-6 and IL-8) and 61 down-regulated (including IL-2, IL-4, IL-10 and IFN-{gamma}) immune responsive genes in NiCl{sub 2}-treated T cells. The DNA microarray results were verified using real-time PCR and a Bio-Plex{sup TM} suspension protein array. Suppression of IL-2 and IFN-{gamma} gene transcription by NiCl{sub 2} was also confirmed using Jurkat T cells transfected with IL-2 or IFN-{gamma} luciferase reporter genes. To explore the NiCl{sub 2}-regulated signaling pathway, we examined the binding activity of nuclear proteins to NFAT, AP-1, and NF-{kappa}B consensus sequences. NiCl{sub 2} significantly and dose-dependently suppressed NFAT- and AP-1-binding activity, but augmented NF-{kappa}B-binding activity. Moreover, NiCl{sub 2} decreased nuclear NFAT expression in stimulated T cells. Using Jurkat T cells stimulated with PMA/ionomycin, we demonstrated that NiCl{sub 2} significantly suppressed stimulation-evoked cytosolic Ca{sup 2+} increases, suggesting that NiCl{sub 2} regulates NFAT signals by acting as a blocker of Ca{sup 2+} release-activated Ca{sup 2+} (CRAC) channels. These data showed that NiCl{sub 2} decreases NFAT and increases NF-{kappa}B signaling in T cells. These results shed light on the effects of nickel on the molecular regulation of T cell signaling. - Graphical Abstract: Nickel suppresses stimulation-evoked cytosolic Ca{sup 2+} increase, which results in the suppression of NFAT signals. On the other hand, Ni rather

  13. Expression of nuclear factor of activated T cells (NFAT) and downstream muscle-specific proteins in ground squirrel skeletal and heart muscle during hibernation.

    PubMed

    Zhang, Yichi; Storey, Kenneth B

    2016-01-01

    The thirteen-lined ground squirrel (Ictidomys tridecemlineatus) undergoes remarkable adaptive changes during hibernation. Interestingly, skeletal muscle remodelling occurs during the torpor-arousal cycle of hibernation to prevent net muscle loss despite inactivity. Reversible cardiomyocyte hypertrophy occurs in cardiac muscle, allowing the heart to preserve cardiac output during hibernation, while avoiding chronic maladaptive hypertrophy post-hibernation. We propose that calcium signalling proteins [calcineurin (Cn), calmodulin (CaM), and calpain], the nuclear factor of activated T cell (NFAT) family of transcription factors, and the NFAT targets myoferlin and myomaker contribute significantly to adaptations taking place in skeletal and cardiac muscle during hibernation. Protein-level analyses were performed over several conditions: euthermic room temperature (ER), euthermic cold room (EC), entrance into (EN), early (ET), and late torpor (LT) time points, in addition to early (EA), interbout (IA), and late arousal (LA) time points using immunoblotting and DNA-protein interaction (DPI) enzyme-linked immunosorbent assay (ELISAs). In skeletal and cardiac muscle, NFATc2 protein levels were elevated during torpor. NFATc4 increased throughout the torpor-arousal cycle in both tissues, and NFATc1 showed this trend in cardiac muscle only. NFATc3 showed an elevation in DNA-binding activity but not expression during torpor. Myoferlin protein levels dramatically increased during torpor in both skeletal and cardiac muscle. Myomaker levels also increased significantly in cardiac muscle during torpor. Cardiac Cn levels remained stable, whereas CaM and calpain decreased throughout the torpor-arousal cycle. Activation and/or upregulation of NFATc2, c3, myoferlin, and myomaker at torpor could be part of a stress-response mechanism to preserve skeletal muscle mass, whereas CaM and calpain appear to initiate the rapid reversal of cardiac hypertrophy during arousal through

  14. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    SciTech Connect

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-07-11

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies.

  15. NFATc2 recruits cJun homodimers to an NFAT site to synergistically activate interleukin-2 transcription

    PubMed Central

    Walters, Ryan D.; Drullinger, Linda F.; Kugel, Jennifer F.; Goodrich, James A.

    2013-01-01

    Transcription of interleukin-2 (IL-2), a pivotal cytokine in the mammalian immune response, is induced by NFAT and AP-1 transcriptional activators in stimulated T cells. NFATc2 and cJun drive high levels of synergistic human IL-2 transcription, which requires a unique interaction between the C-terminal activation domain of NFATc2 and cJun homodimers. Here we studied the mechanism by which this interaction contributes to synergistic activation of IL-2 transcription. We found that NFATc2 can recruit cJun homodimers to the −45 NFAT element, which lacks a neighboring AP-1 site. The bZip domain of cJun is sufficient to interact with the C-terminal activation domain of NFATc2 in the absence of DNA and this interaction is inhibited by AP-1 DNA. When the −45 NFAT site was replaced by either a NFAT/AP-1 composite site or a single AP-1 site the specificity for cJun homodimers in synergistically activating IL-2 transcription was lost, and cJun/cFos heterodimers strongly activated transcription. These studies support a model in which IL-2 transcriptional synergy is mediated by the unique recruitment of a cJun homodimer to the −45 NFAT site by NFATc2, where it acts as a co-activator for IL-2 transcription. PMID:23665382

  16. Virion encapsidated HIV-1 Vpr induces NFAT to prime non-activated T cells for productive infection

    PubMed Central

    Höhne, Kristin; Businger, Ramona; van Nuffel, Anouk; Bolduan, Sebastian; Koppensteiner, Herwig; Baeyens, Ann; Vermeire, Jolien; Malatinkova, Eva; Verhasselt, Bruno; Schindler, Michael

    2016-01-01

    The majority of T cells encountered by HIV-1 are non-activated and do not readily allow productive infection. HIV-1 Vpr is highly abundant in progeny virions, and induces signalling and HIV-1 LTR transcription. We hence hypothesized that Vpr might be a determinant of non-activated T-cell infection. Virion-delivered Vpr activated nuclear factor of activated T cells (NFAT) through Ca2+ influx and interference with the NFAT export kinase GSK3β. This leads to NFAT translocation and accumulation within the nucleus and was required for productive infection of unstimulated primary CD4+ T cells. A mutagenesis approach revealed correlation of Vpr-mediated NFAT activation with its ability to enhance LTR transcription and mediate cell cycle arrest. Upon NFAT inhibition, Vpr did not augment resting T-cell infection, and showed reduced G2/M arrest and LTR transactivation. Altogether, Vpr renders unstimulated T cells more permissive for productive HIV-1 infection and stimulates activation of productively infected as well as virus-exposed T cells. Therefore, it could be involved in the establishment and reactivation of HIV-1 from viral reservoirs and might have an impact on the levels of immune activation, which are determinants of HIV-1 pathogenesis. PMID:27383627

  17. Virion encapsidated HIV-1 Vpr induces NFAT to prime non-activated T cells for productive infection.

    PubMed

    Höhne, Kristin; Businger, Ramona; van Nuffel, Anouk; Bolduan, Sebastian; Koppensteiner, Herwig; Baeyens, Ann; Vermeire, Jolien; Malatinkova, Eva; Verhasselt, Bruno; Schindler, Michael

    2016-07-01

    The majority of T cells encountered by HIV-1 are non-activated and do not readily allow productive infection. HIV-1 Vpr is highly abundant in progeny virions, and induces signalling and HIV-1 LTR transcription. We hence hypothesized that Vpr might be a determinant of non-activated T-cell infection. Virion-delivered Vpr activated nuclear factor of activated T cells (NFAT) through Ca(2+) influx and interference with the NFAT export kinase GSK3β. This leads to NFAT translocation and accumulation within the nucleus and was required for productive infection of unstimulated primary CD4(+) T cells. A mutagenesis approach revealed correlation of Vpr-mediated NFAT activation with its ability to enhance LTR transcription and mediate cell cycle arrest. Upon NFAT inhibition, Vpr did not augment resting T-cell infection, and showed reduced G2/M arrest and LTR transactivation. Altogether, Vpr renders unstimulated T cells more permissive for productive HIV-1 infection and stimulates activation of productively infected as well as virus-exposed T cells. Therefore, it could be involved in the establishment and reactivation of HIV-1 from viral reservoirs and might have an impact on the levels of immune activation, which are determinants of HIV-1 pathogenesis. © 2016 The Authors.

  18. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex.

    PubMed

    Sharma, Sonia; Findlay, Gregory M; Bandukwala, Hozefa S; Oberdoerffer, Shalini; Baust, Beate; Li, Zhigang; Schmidt, Valentina; Hogan, Patrick G; Sacks, David B; Rao, Anjana

    2011-07-12

    Nuclear factor of activated T cells (NFAT) proteins are Ca(2+)-regulated transcription factors that control gene expression in many cell types. NFAT proteins are heavily phosphorylated and reside in the cytoplasm of resting cells; when cells are stimulated by a rise in intracellular Ca(2+), NFAT proteins are dephosphorylated by the Ca(2+)/calmodulin-dependent phosphatase calcineurin and translocate to the nucleus to activate target gene expression. Here we show that phosphorylated NFAT1 is present in a large cytoplasmic RNA-protein scaffold complex that contains a long intergenic noncoding RNA (lincRNA), NRON [noncoding (RNA) repressor of NFAT]; a scaffold protein, IQ motif containing GTPase activating protein (IQGAP); and three NFAT kinases, casein kinase 1, glycogen synthase kinase 3, and dual specificity tyrosine phosphorylation regulated kinase. Combined knockdown of NRON and IQGAP1 increased NFAT dephosphorylation and nuclear import exclusively after stimulation, without affecting the rate of NFAT rephosphorylation and nuclear export; and both NRON-depleted T cells and T cells from IQGAP1-deficient mice showed increased production of NFAT-dependent cytokines. Our results provide evidence that a complex of lincRNA and protein forms a scaffold for a latent transcription factor and its regulatory kinases, and support an emerging consensus that lincRNAs that bind transcriptional regulators have a similar scaffold function.

  19. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex

    PubMed Central

    Sharma, Sonia; Findlay, Gregory M.; Bandukwala, Hozefa S.; Oberdoerffer, Shalini; Baust, Beate; Li, Zhigang; Schmidt, Valentina; Hogan, Patrick G.; Sacks, David B.; Rao, Anjana

    2011-01-01

    Nuclear factor of activated T cells (NFAT) proteins are Ca2+-regulated transcription factors that control gene expression in many cell types. NFAT proteins are heavily phosphorylated and reside in the cytoplasm of resting cells; when cells are stimulated by a rise in intracellular Ca2+, NFAT proteins are dephosphorylated by the Ca2+/calmodulin-dependent phosphatase calcineurin and translocate to the nucleus to activate target gene expression. Here we show that phosphorylated NFAT1 is present in a large cytoplasmic RNA-protein scaffold complex that contains a long intergenic noncoding RNA (lincRNA), NRON [noncoding (RNA) repressor of NFAT]; a scaffold protein, IQ motif containing GTPase activating protein (IQGAP); and three NFAT kinases, casein kinase 1, glycogen synthase kinase 3, and dual specificity tyrosine phosphorylation regulated kinase. Combined knockdown of NRON and IQGAP1 increased NFAT dephosphorylation and nuclear import exclusively after stimulation, without affecting the rate of NFAT rephosphorylation and nuclear export; and both NRON-depleted T cells and T cells from IQGAP1-deficient mice showed increased production of NFAT-dependent cytokines. Our results provide evidence that a complex of lincRNA and protein forms a scaffold for a latent transcription factor and its regulatory kinases, and support an emerging consensus that lincRNAs that bind transcriptional regulators have a similar scaffold function. PMID:21709260

  20. Angular-type furocoumarins from the roots of Angelica atropurpurea and their inhibitory activity on the NFAT signal transduction pathway.

    PubMed

    Nagasawa, Azumi; Sakasai, Mitsuyoshi; Sakaguchi, Daishi; Moriwaki, Shigeru; Nishizawa, Yoshinori; Kitahara, Takashi

    2014-12-01

    One new (1) and two known angular-type (2,3) furocoumarins, isoarchangelicin (1), archangelicin (2), and 2'-angeloyl-3'-isovaleryl vaginate (3), were isolated from the roots of Angelica atropurpurea. The structure of the new compound was established on the basis of one- and two-dimensional NMR spectra and other spectroscopic studies. The inhibitory activity of these three compounds and a deacylated form of archangelicin (4) on the nuclear factor of activated T cells (NFAT) signal transduction pathway was tested by NFAT-responsive luciferase reporter gene assay in cultured cells. Although 4 did not exhibit inhibitory activity on NFAT signaling, 1-3 exhibited dose-dependent inhibition with IC50 values of 16.5 (1), 9.0 (2), and 9.2 (3) μM.

  1. A protease-independent function for SPPL3 in NFAT activation.

    PubMed

    Makowski, Stefanie L; Wang, Zhaoquan; Pomerantz, Joel L

    2015-01-01

    The signal peptide peptidase (SPP)-related intramembrane aspartyl proteases are a homologous group of polytopic membrane proteins, some of which function in innate or adaptive immunity by cleaving proteins involved in antigen presentation or intracellular signaling. Signal peptide peptidase-like 3 (SPPL3) is a poorly characterized endoplasmic reticulum (ER)-localized member of this family, with no validated cellular substrates. We report here the isolation of SPPL3 in a screen for activators of NFAT, a transcription factor that controls lymphocyte development and function. We find that SPPL3 is required downstream of T cell receptor engagement for maximal Ca(2+) influx and NFAT activation. Surprisingly, the proteolytic activity of SPPL3 is not required for its role in this pathway. SPPL3 enhances the signal-induced association of stromal interaction molecule 1 (STIM1) and Orai1 and is even required for the full activity of constitutively active STIM1 variants that bind Orai1 independently of ER Ca(2+) release. SPPL3 associates with STIM1 through at least two independent domains, the transmembrane region and the CRAC activation domain (CAD), and can promote the association of the STIM1 CAD with Orai1. Our results assign a function in lymphocyte signaling to SPPL3 and highlight the emerging importance of nonproteolytic functions for members of the intramembrane aspartyl protease family. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Targeted STIM deletion impairs calcium homeostasis, NFAT activation, and growth of smooth muscle

    PubMed Central

    Mancarella, Salvatore; Potireddy, Santhi; Wang, Youjun; Gao, Hui; Gandhirajan, Rajesh Kumar; Autieri, Michael; Scalia, Rosario; Cheng, Zhongjian; Wang, Hong; Madesh, Muniswamy; Houser, Steven R.; Gill, Donald L.

    2013-01-01

    The Ca2+-sensing stromal interaction molecule (STIM) proteins are crucial Ca2+ signal coordinators. Cre-lox technology was used to generate smooth muscle (sm)-targeted STIM1-, STIM2-, and double STIM1/STIM2-knockout (KO) mouse models, which reveal the essential role of STIM proteins in Ca2+ homeostasis and their crucial role in controlling function, growth, and development of smooth muscle cells (SMCs). Compared to Cre+/− littermates, sm-STIM1-KO mice showed high mortality (50% by 30 d) and reduced bodyweight. While sm-STIM2-KO was without detectable phenotype, the STIM1/STIM double-KO was perinatally lethal, revealing an essential role of STIM1 partially rescued by STIM2. Vascular and intestinal smooth muscle tissues from sm-STIM1-KO mice developed abnormally with distended, thinned morphology. While depolarization-induced aortic contraction was unchanged in sm-STIM1-KO mice, α1-adrenergic-mediated contraction was 26% reduced, and store-dependent contraction almost eliminated. Neointimal formation induced by carotid artery ligation was suppressed by 54%, and in vitro PDGF-induced proliferation was greatly reduced (79%) in sm-STIM1-KO. Notably, the Ca2+ store-refilling rate in STIM1-KO SMCs was substantially reduced, and sustained PDGF-induced Ca2+ entry was abolished. This defective Ca2+ homeostasis prevents PDGF-induced NFAT activation in both contractile and proliferating SMCs. We conclude that STIM1-regulated Ca2+ homeostasis is crucial for NFAT-mediated transcriptional control required for induction of SMC proliferation, development, and growth responses to injury.—Mancarella, S., Potireddy, S., Wang, Y., Gao, H., Gandhirajan, K., Autieri, M., Scalia, R., Cheng, Z., Wang, H., Madesh, M., Houser, S. R., Gill, D. L. Targeted STIM deletion impairs calcium homeostasis, NFAT activation, and growth of smooth muscle. PMID:23159931

  3. Anabolic steroids activate calcineurin-NFAT signaling and thereby increase myotube size and reduce denervation atrophy.

    PubMed

    Qin, Weiping; Pan, Jiangping; Wu, Yong; Bauman, William A; Cardozo, Christopher

    2015-01-05

    Anabolic androgens have been shown to reduce muscle loss due to immobilization, paralysis and many other medical conditions, but the molecular basis for these actions is poorly understood. We have recently demonstrated that nandrolone, a synthetic androgen, slows muscle atrophy after nerve transection associated with down-regulation of regulator of calcineurin 2 (RCAN2), a calcineurin inhibitor, suggesting a possible role of calcineurin-NFAT signaling. To test this possibility, rat gastrocnemius muscle was analyzed at 56 days after denervation. In denervated muscle, calcineurin activity declined and NFATc4 was excluded from the nucleus and these effects were reversed by nandrolone. Similarly, nandrolone increased calcineurin activity and nuclear NFATc4 levels in cultured L6 myotubes. Nandrolone also induced cell hypertrophy that was blocked by cyclosporin A or overexpression of RCAN2. Finally protection against denervation atrophy by nandrolone in rats was blocked by cyclosporin A. These results demonstrate for the first time that nandrolone activates calcineurin-NFAT signaling, and that such signaling is important in nandrolone-induced cell hypertrophy and protection against paralysis-induced muscle atrophy.

  4. Calcineurin/nuclear factors of activated T cells (NFAT)-activating and immunoreceptor tyrosine-based activation motif (ITAM)-containing protein (CNAIP), a novel ITAM-containing protein that activates the calcineurin/NFAT-signaling pathway.

    PubMed

    Yang, Jianhua; Hu, Guanghui; Wang, Shen-Wu; Li, Yucheng; Martin, Rachel; Li, Kang; Yao, Zhengbin

    2003-05-09

    We report in this study the identification and characterization of a novel protein that we designated as calcineurin/NFAT-activating and immunoreceptor tyrosine-based activation motif (ITAM)-containing protein (CNAIP). The predicted 270-amino acid sequence contains an N-terminal signal peptide, an immunoglobin domain in the extracellular region, a transmembrane domain and an ITAM in the cytoplasmic tail. Quantitative reverse transcription-PCR showed that CNAIP was preferentially expressed in neutrophils, monocytes, mast cells, and other immune-related cells. Co-transfection of CNAIP expression constructs with luciferase reporter plasmids in HMC-1 cells resulted in activation of interleukin-13 and tumor necrosis factor-alpha promoters, which was mediated through the calcineurin/NFAT-signaling pathway. Mutation of either or both tyrosines in the ITAM abolished transcriptional activation induced by CNAIP, indicating that the ITAM is indispensable for CNAIP function in activating cytokine gene promoters. Thus, it is concluded that CNAIP is a novel ITAM-containing protein that activates the calcineurin/NFAT-signaling pathway and the downstream cytokine gene promoters.

  5. SH3BP2 is an activator of NFAT activity and osteoclastogenesis

    SciTech Connect

    Lietman, Steven A. Yin Lihong; Levine, Michael A.

    2008-07-11

    Heterozygous activating mutations in exon 9 of SH3BP2 have been found in most patients with cherubism, an unusual genetic syndrome characterized by excessive remodeling of the mandible and maxilla due to spontaneous and excessive osteoclastic bone resorption. Osteoclasts differentiate after binding of sRANKL to RANK induces a number of downstream signaling effects, including activation of the calcineurin/NFAT (nuclear factor of activated T cells) pathway. Here, we have investigated the functional significance of SH3BP2 protein on osteoclastogenesis in the presence of sRANKL. Our results indicate that SH3BP2 both increases nuclear NFATc1 in sRANKL treated RAW 264.7 preosteoclast cells and enhances expression of tartrate resistant acid phosphatase (TRAP), a specific marker of osteoclast differentiation. Moreover, overexpression of SH3BP2 in RAW 264.7 cells potentiates sRANKL-stimulated phosphorylation of PLC{gamma}1 and 2, thus providing a mechanistic pathway for the rapid translocation of NFATc1 into the nucleus and increased osteoclastogenesis in cherubism.

  6. Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy

    PubMed Central

    Putinski, Charis; Abdul-Ghani, Mohammad; Stiles, Rebecca; Brunette, Steve; Dick, Sarah A.; Fernando, Pasan; Megeney, Lynn A.

    2013-01-01

    Cardiomyocyte hypertrophy is the cellular response that mediates pathologic enlargement of the heart. This maladaptation is also characterized by cell behaviors that are typically associated with apoptosis, including cytoskeletal reorganization and disassembly, altered nuclear morphology, and enhanced protein synthesis/translation. Here, we investigated the requirement of apoptotic caspase pathways in mediating cardiomyocyte hypertrophy. Cardiomyocytes treated with hypertrophy agonists displayed rapid and transient activation of the intrinsic-mediated cell death pathway, characterized by elevated levels of caspase 9, followed by caspase 3 protease activity. Disruption of the intrinsic cell death pathway at multiple junctures led to a significant inhibition of cardiomyocyte hypertrophy during agonist stimulation, with a corresponding reduction in the expression of known hypertrophic markers (atrial natriuretic peptide) and transcription factor activity [myocyte enhancer factor-2, nuclear factor kappa B (NF-κB)]. Similarly, in vivo attenuation of caspase activity via adenoviral expression of the biologic effector caspase inhibitor p35 blunted cardiomyocyte hypertrophy in response to agonist stimulation. Treatment of cardiomyocytes with procaspase 3 activating compound 1, a small-molecule activator of caspase 3, resulted in a robust induction of the hypertrophy response in the absence of any agonist stimulation. These results suggest that caspase-dependent signaling is necessary and sufficient to promote cardiomyocyte hypertrophy. These results also confirm that cell death signal pathways behave as active remodeling agents in cardiomyocytes, independent of inducing an apoptosis response. PMID:24101493

  7. Curcumin Suppresses T Cell Activation by Blocking Ca2+ Mobilization and Nuclear Factor of Activated T Cells (NFAT) Activation

    PubMed Central

    Kliem, Christian; Merling, Anette; Giaisi, Marco; Köhler, Rebecca; Krammer, Peter H.; Li-Weber, Min

    2012-01-01

    Curcumin is the active ingredient of the spice turmeric and has been shown to have a number of pharmacologic and therapeutic activities including antioxidant, anti-microbial, anti-inflammatory, and anti-carcinogenic properties. The anti-inflammatory effects of curcumin have primarily been attributed to its inhibitory effect on NF-κB activity due to redox regulation. In this study, we show that curcumin is an immunosuppressive phytochemical that blocks T cell-activation-induced Ca2+ mobilization with IC50 = ∼12.5 μm and thereby prevents NFAT activation and NFAT-regulated cytokine expression. This finding provides a new mechanism for curcumin-mediated anti-inflammatory and immunosuppressive function. We also show that curcumin can synergize with CsA to enhance immunosuppressive activity because of different inhibitory mechanisms. Furthermore, because Ca2+ is also the secondary messenger crucial for the TCR-induced NF-κB signaling pathway, our finding also provides another mechanism by which curcumin suppresses NF-κB activation. PMID:22303019

  8. High NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1.

    PubMed

    Zhou, Xiaoming; Wang, Hong; Burg, Maurice B; Ferraris, Joan D

    2013-08-01

    Activation of the transcription factor NFAT5 by high NaCl involves changes in phosphorylation. By siRNA screening, we previously found that protein targeting to glycogen (PTG), a regulatory subunit of protein phosphatase1 (PP1), contributes to regulation of high NaCl-induced NFAT5 transcriptional activity. The present study addresses the mechanism involved. We find that high NaCl-induced inhibition of PTG elevates NFAT5 activity by increasing NFAT5 transactivating activity, protein abundance, and nuclear localization. PTG acts via a catalytic subunit PP1γ. PTG associates physically with PP1γ, and NaCl reduces both this association and remaining PTG-associated PP1γ activity. High NaCl-induced phosphorylation of p38, ERK, and SHP-1 contributes to activation of NFAT5. Knockdown of PTG does not affect phosphorylation of p38 or ERK. However, PTG and PP1γ bind to SHP-1, and knockdown of either PTG or PP1γ increases high NaCl-induced phosphorylation of SHP-1-S591, which inhibits SHP-1. Mutation of SHP-1-S591 to alanine, which cannot be phosphorylated, increases inhibition of NFAT5 by SHP-1. Thus high NaCl reduces the stimulatory effect of PTG and PP1γ on SHP-1, which in turn reduces the inhibitory effect of SHP-1 on NFAT5. Our findings add to the known functions of PTG, which was previously recognized only for its glycogenic activity.

  9. FOXP1 enhances tumor cell migration by repression of NFAT1 transcriptional activity in MDA-MB-231 cells.

    PubMed

    Oskay Halacli, Sevil

    2017-01-01

    Until now, forkhead box P1 (FOXP1) has been identified as a tumor suppressor in several correlation studies in breast cancer. Although FOXP1 is defined as a transcriptional repressor that interacts with other transcription factors in various mechanistic studies, there is no study that explains its repressor functions in breast cancer biology. This study demonstrated the repressor function of FOXP1 on nuclear factor of activated T cells (NFAT1) and the migratory effect of this repression in MDA-MB-231 breast cancer cells. Co-immunoprecipitation experiments were performed for the investigation of protein-protein interaction between two transcription factors. Protein-protein interaction on DNA was investigated with EMSA and transcriptional effects of FOXP1 on NFAT1, luciferase reporter assay was performed. Wound healing assay was used to analyze the effects of overexpression of FOXP1 on tumor cell migration. This study showed that FOXP1 has protein-protein interaction with NFAT1 on DNA and enhances breast cancer cell migration by repressing NFAT1 transcriptional activity and FOXP1 shows oncogenic function by regulating breast cancer cell motility.

  10. Leishmania infantum-chagasi activates SHP-1 and reduces NFAT5/TonEBP activity in the mouse kidney inner medulla.

    PubMed

    Zhou, Xiaoming; Wang, Hong; Koles, Nancy L; Zhang, Aihong; Aronson, Naomi E

    2014-09-01

    Visceral leishmaniasis patients have been reported to have a urine concentration defect. Concentration of urine by the renal inner medulla is essentially dependent on a transcription factor, NFAT5/TonEBP, because it activates expression of osmoprotective genes betaine/glycine transporter 1 (BGT1) and sodium/myo-inositol transporter (SMIT), and water channel aquaporin-2, all of which are imperative for concentrating urine. Leishmania parasites evade macrophage immune defenses by activating protein tyrosine phosphatases, among which SHP-1 is critical. We previously demonstrated that SHP-1 inhibits tonicity-dependent activation of NFAT5/TonEBP in HEK293 cells through screening a genome-wide small interfering (si) RNA library against phosphatases (Zhou X, Gallazzini M, Burg MB, Ferraris JD. Proc Natl Acad Sci USA 107: 7072-7077, 2010). We sought to examine whether Leishmania can activate SHP-1 and inhibit NFAT5/TonEBP activity in the renal inner medulla in a murine model of visceral leishmaniasis by injection of female BALB/c mice with a single intravenous dose of 5 × 10(5) L. chagasi metacyclic promastigotes. We found that SHP-1 is expressed in the kidney inner medulla. L. chagasi activates SHP-1 with an increase in stimulatory phosphorylation of SHP-1-Y536 in the region. L. chagasi reduces expression of NFAT5/TonEBP mRNA and protein as well as expression of its targeted genes: BGT1, SMIT, and aquaporin-2. The culture supernatant from L. chagasi metacyclic promastigotes increases SHP-1 protein abundance and potently inhibits NFAT5 transcriptional activity in mIMCD3 cells. However, L. chagasi in our animal model has no significant effect on urinary concentration. We conclude that L. chagasi, most likely through its secreted virulence factors, activates SHP-1 and reduces NFAT5/TonEBP gene expression, which leads to reduced NFAT5/TonEBP transcriptional activity in the kidney inner medulla.

  11. Novel STIM1-dependent control of Ca2+ clearance regulates NFAT activity during T-cell activation.

    PubMed

    Samakai, Elsie; Hooper, Robert; Martin, Kayla A; Shmurak, Maya; Zhang, Yi; Kappes, Dietmar J; Tempera, Italo; Soboloff, Jonathan

    2016-11-01

    Antigen presentation to the T-cell receptor leads to sustained cytosolic Ca(2+) elevation, which is critical for T-cell activation. We previously showed that in activated T cells, Ca(2+) clearance is inhibited by the endoplasmic reticulum Ca(2+) sensor stromal interacting molecule 1 (STIM1) via association with the plasma membrane Ca(2+)/ATPase 4 (PMCA4) Ca(2+) pump. Having further observed that expression of both proteins is increased in activated T cells, the current study focused on mechanisms regulating both up-regulation of STIM1 and PMCA4 and assessing how this up-regulation contributes to control of Ca(2+) clearance. Using a STIM1 promoter luciferase vector, we found that the zinc finger transcription factors early growth response (EGR) 1 and EGR4, but not EGR2 or EGR3, drive luciferase activity. We further found that neither STIM1 nor PMCA4 is up-regulated when both EGR1 and EGR4 are knocked down using RNA interference. Further, under these conditions, activation-induced Ca(2+) clearance inhibition was eliminated with little effect on Ca(2+) entry. Finally, we found that nuclear factor of activated T-cell (NFAT) activity is profoundly attenuated if Ca(2+) clearance is not inhibited by STIM1. These findings reveal a critical role for STIM1-mediated control of Ca(2+) clearance in NFAT induction during T-cell activation.-Samakai, E., Hooper, R., Martin, K. A., Shmurak, M., Zhang, Y., Kappes, D. J., Tempera, I., Soboloff, J. Novel STIM1-dependent control of Ca(2+) clearance regulates NFAT activity during T-cell activation. © FASEB.

  12. Pseudoephedrine inhibits T-cell activation by targeting NF-κB, NFAT and AP-1 signaling pathways.

    PubMed

    Fiebich, Bernd L; Collado, Juan A; Stratz, Cristian; Valina, Christian; Hochholzer, Willibald; Muñoz, Eduardo; Bellido, Luz M

    2012-02-01

    Pseudoephedrine (PSE) is a stereoisomer of ephedrine that is commonly used as a nasal decongestant in combination with other anti-inflammatory drugs for the symptomatic treatment of some common pathologies such as common cold. Herein, we describe for the first time the effects of PSE on T-cell activation events. We found that PSE inhibits interleukin-2 (IL-2) and tumor necrosis factor (TNF) alpha-gene transcription in stimulated Jurkat cells, a human T-cell leukemia cell line. To further characterize the inhibitory mechanisms of PSE at the transcriptional level, we examined the transcriptional activities of nuclear factor kappa B (NF-κB), nuclear factor of activated T cells (NFAT), and activator protein-1 (AP-1) transcription factors and found that PSE inhibited NF-κB-dependent transcriptional activity without affecting either the phosphorylation, the degradation of the cytoplasmic NF-κB inhibitory protein, IκBα or the DNA-binding activity. However, phosphorylation of the p65/RelA subunit was clearly inhibited by PSE in stimulated cells. In addition, PSE inhibited the transcriptional activity of NFAT without interfering with the calcium-induced NFAT dephosphorylation event, which represents the major signaling pathway for its activation. NFAT cooperates with c-Jun, a compound of the AP-1 complex, to activate target genes, and we also found that PSE inhibited both JNK activation and AP-1 transcriptional activity. These findings provide new mechanistic insights into the potential immunomodulatory activities of PSE and highlight their potential in designing novel therapeutic strategies to manage inflammatory diseases.

  13. Calcineurin/NFAT signalling inhibits myeloid haematopoiesis

    PubMed Central

    Fric, Jan; Lim, Clarice X F; Koh, Esther G L; Hofmann, Benjamin; Chen, Jinmiao; Tay, Hock Soon; Isa, Siti Aminah Bte Mohammad; Mortellaro, Alessandra; Ruedl, Christiane; Ricciardi-Castagnoli, Paola

    2012-01-01

    Nuclear factor of activated T cells (NFAT) comprises a family of transcription factors that regulate T cell development, activation and differentiation. NFAT signalling can also mediate granulocyte and dendritic cell (DC) activation, but it is unknown whether NFAT influences their development from progenitors. Here, we report a novel role for calcineurin/NFAT signalling as a negative regulator of myeloid haematopoiesis. Reconstituting lethally irradiated mice with haematopoietic stem cells expressing an NFAT-inhibitory peptide resulted in enhanced development of the myeloid compartment. Culturing bone marrow cells in media supplemented with Flt3-L in the presence of the calcineurin/NFAT inhibitor Cyclosporin A increased numbers of differentiated DC. Global gene expression analysis of untreated DC and NFAT-inhibited DC revealed differential expression of transcripts that regulate cell cycle and apoptosis. In conclusion, these results provide evidence that calcineurin/NFAT signalling negatively regulates myeloid lineage development. The finding that inhibition of NFAT enhances myeloid development provides a novel insight into understanding how the treatment with drugs targeting calcineurin/NFAT signalling influence the homeostasis of the innate immune system. PMID:22311511

  14. The hepatitis B virus X protein activates nuclear factor of activated T cells (NF-AT) by a cyclosporin A-sensitive pathway.

    PubMed Central

    Lara-Pezzi, E; Armesilla, A L; Majano, P L; Redondo, J M; López-Cabrera, M

    1998-01-01

    The X gene product of the human hepatitis B virus (HBx) is a transcriptional activator of various viral and cellular genes. We recently have determined that the production of tumor necrosis factor-alpha (TNF-alpha) by HBV-infected hepatocytes is transcriptionally up-regulated by HBx, involving nuclear factor of activated T cells (NF-AT)-dependent activation of the TNF-alpha gene promoter. Here we show that HBx activates NF-AT by a cyclosporin A-sensitive mechanism involving dephosphorylation and nuclear translocation of the transcription factor. Luciferase gene expression assays demonstrated that HBx transactivates transcription through NF-AT-binding sites and activates a Gal4-NF-AT chimeric protein. DNA-protein interaction assays revealed that HBx induces the formation of NF-AT-containing DNA-binding complexes. Immunofluorescence analysis demonstrated that HBx induces the nuclear translocation of NF-AT, which can be blocked by the immunosuppressive drug cyclosporin A. Furthermore, immunoblot analysis showed that the HBx-induced activation and translocation of NF-AT are associated with its dephosphorylation. Thus, HBx may play a relevant role in the intrahepatic inflammatory processes by inducing locally the expression of cytokines that are regulated by NF-AT. PMID:9843511

  15. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells

    PubMed Central

    Martinez, Gustavo J.; Pereira, Renata M.; Äijö, Tarmo; Kim, Edward Y.; Marangoni, Francesco; Pipkin, Matthew E.; Togher, Susan; Heissmeyer, Vigo; Zhang, Yi Chen; Crotty, Shane; Lamperti, Edward D.; Ansel, K. Mark; Mempel, Thorsten R.; Lähdesmäki, Harri; Hogan, Patrick G.; Rao, Anjana

    2015-01-01

    SUMMARY During persistent antigen stimulation, CD8+ T cells show a gradual decrease in effector function, referred to as exhaustion, which impairs responses in the setting of tumors and infections. Here we demonstrate that the transcription factor NFAT controls the program of T cell exhaustion. When expressed in cells, an engineered form of NFAT1 unable to interact with AP-1 transcription factors diminished T cell receptor (TCR) signaling, increased the expression of inhibitory cell surface receptors, and interfered with the ability of CD8+ T cells to protect against Listeria infection and attenuate tumor growth in vivo. We defined the genomic regions occupied by endogenous and engineered NFAT1 in primary CD8+ T cells, and showed that genes directly induced by the engineered NFAT1 overlapped with genes expressed in exhausted CD8+ T cells in vivo. Our data show that NFAT promotes T cell anergy and exhaustion by binding at sites that do not require cooperation with AP-1. PMID:25680272

  16. NFAT Proteins: Emerging Roles in Cancer Progression

    PubMed Central

    Mancini, Maria; Toker, Alex

    2010-01-01

    Preface The roles of nuclear factor of activated T cells (NFAT) transcription factors have been extensively studied in the immune system. However, ubiquitous expression of NFAT isoforms in mammalian tissues has been recently observed, as well as an emerging role for these transcription factors in human cancer. Various NFAT isoforms are functional in tumor cells and multiple compartments in the tumor microenvironment including fibroblasts, endothelial cells and infiltrating immune cells. How do NFAT isoforms regulate the complex interplay between these compartments during carcinoma progression? The answers lie with the multiple functions attributed to NFAT including cell growth, survival, invasion and angiogenesis. In addition to sorting out the complex role of NFAT in cancer we face the challenge of targeting this pathway therapeutically. PMID:19851316

  17. Modulation of NFAT-5, an outlying member of the NFAT family, in human keratinocytes and skin

    PubMed Central

    Al-Daraji, Wael I; Afolayan, John; Zelger, Bettina G; Abdellaoui, Adel; Zelger, Bernhard

    2009-01-01

    Background Cyclosporin A (CsA) and tacrolimus block T cell activation by inhibiting the phosphatase calcineurin and preventing translocation from the cytoplasm to the nucleus of the transcription factor Nuclear Factor of Activated T cells (NFAT). NFAT compose a family of transcription factors that are turned on during T cell activation. Aims To study the expression of NFAT-5 mRNA and protein in normal human keratinocytes and to investigate the cellular and subcellular pattern of expression of NFAT-5 in normal human skin and psoriasis, and analyze effects of different agonists and ultraviolet radiation on NFAT-5 in normal human skin. Methods Tissue cultures, Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR), Western analysis, immunostaining, confocal microscopy. Results Sequencing of RT-PCR products confirmed the identity of the product that showed 100 % homology with the predicted NFAT-5 sequence. anti-NFAT-5 mainly detected a single band in cultured keratinocytes and dermal fibroblasts using Western analysis. Immunohistochemistry showed that epidermal keratinocytes and dermal fibroblasts in normal human and psoriatic skin express NFAT-5. NFAT-5 showed predominantly nuclear localization in epidermal keratinocytes and dermal fibroblasts within five normal adult skin biopsies. Our data also suggest that UV irradiation reduces NFAT-5 nuclear localization within the epidermis. Unlike NFAT 1-4, NFAT-5/TonEBP was localized to both nucleus and cytoplasm of cultured keratinocytes. Cyclosporin A induces nuclear membrane translocation of NFAT-5 in cultured keratinocytes and raffinose (a hypertonicity inducing agent) induces more nuclear localization of NFAT-5 compared to untreated cells. In addition, differentiation-promoting agonists that induce sustained rise in intracellular calcium did not result in changes in NFAT-5 localization in cultured keratinocytes. Conclusion These studies provide the first observation of expression of NFAT-5/TonEBP mRNA protein in

  18. Calcineurin/NFAT Activation-Dependence of Leptin Synthesis and Vascular Growth in Response to Mechanical Stretch

    PubMed Central

    Soudani, Nadia; Ghantous, Crystal M.; Farhat, Zein; Shebaby, Wassim N.; Zibara, Kazem; Zeidan, Asad

    2016-01-01

    Background and Aims: Hypertension and obesity are important risk factors of cardiovascular disease. They are both associated with high leptin levels and have been shown to promote vascular hypertrophy, through the RhoA/ROCK and ERK1/2 phosphorylation. Calcineurin/NFAT activation also induces vascular hypertrophy by upregulating various genes. This study aimed to decipher whether a crosstalk exists between the RhoA/ROCK pathway, Ca2+/calcineurin/NFAT pathway, and ERK1/2 phosphorylation in the process of mechanical stretch-induced vascular smooth muscle cell (VSMC) hypertrophy and leptin synthesis. Methods and Results: Rat portal vein (RPV) organ culture was used to investigate the effect of mechanical stretch and exogenous leptin (3.1 nM) on VSMC hypertrophy and leptin synthesis. Results showed that stretching the RPV significantly upregulated leptin secretion, mRNA, and protein expression, which were inhibited by the calcium channel blocker nifedipine (10 μM), the selective calcineurin inhibitor FK506 (1 nM), and the ERK1/2 inhibitor PD98059 (1 μM). The transcription inhibitor actinomycin D (0.1 μM) and the translation inhibitor cycloheximide (1 mM) significantly decreased stretch-induced leptin protein expression. Mechanical stretch or leptin caused an increase in wet weight changes and protein synthesis, considered as hypertrophic markers, while they were inhibited by FK506 (0.1 nM; 1 nM). In addition, stretch or exogenous leptin significantly increased calcineurin activity and MCIP1 expression whereas leptin induced NFAT nuclear translocation in VSMCs. Moreover, in response to stretch or exogenous leptin, the Rho inhibitor C3 exoenzyme (30 ng/mL), the ROCK inhibitor Y-27632 (10 μM), and the actin depolymerization agents Latrunculin B (50 nM) and cytochalasin D (1 μM) reduced calcineurin activation and NFAT nuclear translocation. ERK1/2 phosphorylation was inhibited by FK506 and C3. Conclusions: Mechanical stretch-induced VSMC hypertrophy and leptin

  19. Ginseng inhibits cardiomyocyte hypertrophy and heart failure via NHE-1 inhibition and attenuation of calcineurin activation.

    PubMed

    Guo, Juan; Gan, Xiaohong Tracey; Haist, James V; Rajapurohitam, Venkatesh; Zeidan, Asad; Faruq, Nazo Said; Karmazyn, Morris

    2011-01-01

    Ginseng is a medicinal plant used widely in Asia that has gained popularity in the West during the past decade. Increasing evidence suggests a therapeutic role for ginseng in the cardiovascular system. The pharmacological properties of ginseng are mainly attributed to ginsenosides, the principal bioactive constituents in ginseng. The present study was carried out to determine whether ginseng exerts a direct antihypertrophic effect in cultured cardiomyocytes and whether it modifies the heart failure process in vivo. Moreover, we determined the potential underlying mechanisms for these actions. Experiments were performed on cultured neonatal rat ventricular myocytes as well as adult rats subjected to coronary artery ligation (CAL). Treatment of cardiomyocytes with the α(1) adrenoceptor agonist phenylephrine (PE) for 24 hours produced a marked hypertrophic effect as evidenced by significantly increased cell surface area and ANP gene expression. These effects were attenuated by ginseng in a concentration-dependent manner with a complete inhibition of hypertrophy at a concentration of 10 μg/mL. Phenylephrine-induced hypertrophy was associated with increased gene and protein expression of the Na(+)-H(+) exchanger 1 (NHE-1), increased NHE-1 activity, increased intracellular concentrations of Na(+) and Ca(2+), enhanced calcineurin activity, increased translocation of NFAT3 into nuclei, and GATA-4 activation, all of which were significantly inhibited by ginseng. Upregulation of these systems was also evident in rats subjected to 4 weeks of CAL. However, animals treated with ginseng demonstrated markedly reduced hemodynamic and hypertrophic responses, which were accompanied by attenuation of upregulation of NHE-1 and calcineurin activity. Taken together, our results demonstrate a robust antihypertrophic and antiremodeling effect of ginseng, which is mediated by inhibition of NHE-1-dependent calcineurin activation.

  20. Optogenetic activation of Gq signalling modulates pacemaker activity of cardiomyocytes.

    PubMed

    Beiert, Thomas; Bruegmann, Tobias; Sasse, Philipp

    2014-06-01

    Investigation of Gq signalling with pharmacological agonists of Gq-coupled receptors lacks spatio-temporal precision. The aim of this study was to establish melanopsin, a light-sensitive Gq-coupled receptor, as a new tool for the investigation of spatial and temporal effects of Gq stimulation on pacemaking in cardiomyocytes at an early developmental stage. A vector for ubiquitous expression of melanopsin was tested in HEK293FT cells, which showed light-induced production of inositol-1,4,5-trisphosphate and elevation of intracellular Ca(2+) concentration. Mouse embryonic stem cells were stably transfected with this plasmid and differentiated into spontaneously beating embryoid bodies (EBs). Cardiomyocytes within EBs showed melanopsin expression and illumination (60 s, 308.5 nW/mm(2), 470 nm) of EBs increased beating rate within 10.2 ± 1.7 s to 317.1 ± 16.3% of baseline frequency. Illumination as short as 5 s was sufficient for generating the maximal frequency response. After termination of illumination, baseline frequency was reached with a decay constant of 27.1 ± 2.5 s. The light-induced acceleration of beating frequency showed a sigmoid dependence on light intensity with a half maximal effective light intensity of 41.7 nW/mm(2). Interestingly, EBs showed a high rate of irregular contractions after termination of high-intensity illumination. Local Gq activation by illumination of a small region in a functional syncytium of cardiomyocytes led to pacemaker activity within the illuminated area. Light-induced Gq activation in melanopsin-expressing cardiomyocytes increases beating rate and generates local pacemaker activity. We propose that melanopsin is a powerful optogenetic tool for the investigation of spatial and temporal aspects of Gq signalling in cardiovascular research. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  1. Osmoprotective Transcription Factor NFAT5/TonEBP Modulates Nuclear Factor-κB Activity

    PubMed Central

    Roth, Isabelle; Leroy, Valérie; Kwon, H. Moo; Martin, Pierre-Yves; Féraille, Eric

    2010-01-01

    Tonicity-responsive binding-protein (TonEBP or NFAT5) is a widely expressed transcription factor whose activity is regulated by extracellular tonicity. TonEBP plays a key role in osmoprotection by binding to osmotic response element/TonE elements of genes that counteract the deleterious effects of cell shrinkage. Here, we show that in addition to this “classical” stimulation, TonEBP protects cells against hypertonicity by enhancing nuclear factor-κB (NF-κB) activity. We show that hypertonicity enhances NF-κB stimulation by lipopolysaccharide but not tumor necrosis factor-α, and we demonstrate overlapping protein kinase B (Akt)-dependent signal transduction pathways elicited by hypertonicity and transforming growth factor-α. Activation of p38 kinase by hypertonicity and downstream activation of Akt play key roles in TonEBP activity, IκBα degradation, and p65 nuclear translocation. TonEBP affects neither of these latter events and is itself insensitive to NF-κB signaling. Rather, we reveal a tonicity-dependent interaction between TonEBP and p65 and show that NF-κB activity is considerably enhanced after binding of NF-κB-TonEBP complexes to κB elements of NF-κB–responsive genes. We demonstrate the key roles of TonEBP and Akt in renal collecting duct epithelial cells and in macrophages. These findings reveal a novel role for TonEBP and Akt in NF-κB activation on the onset of hypertonic challenge. PMID:20685965

  2. Osmoprotective transcription factor NFAT5/TonEBP modulates nuclear factor-kappaB activity.

    PubMed

    Roth, Isabelle; Leroy, Valérie; Kwon, H Moo; Martin, Pierre-Yves; Féraille, Eric; Hasler, Udo

    2010-10-01

    Tonicity-responsive binding-protein (TonEBP or NFAT5) is a widely expressed transcription factor whose activity is regulated by extracellular tonicity. TonEBP plays a key role in osmoprotection by binding to osmotic response element/TonE elements of genes that counteract the deleterious effects of cell shrinkage. Here, we show that in addition to this "classical" stimulation, TonEBP protects cells against hypertonicity by enhancing nuclear factor-κB (NF-κB) activity. We show that hypertonicity enhances NF-κB stimulation by lipopolysaccharide but not tumor necrosis factor-α, and we demonstrate overlapping protein kinase B (Akt)-dependent signal transduction pathways elicited by hypertonicity and transforming growth factor-α. Activation of p38 kinase by hypertonicity and downstream activation of Akt play key roles in TonEBP activity, IκBα degradation, and p65 nuclear translocation. TonEBP affects neither of these latter events and is itself insensitive to NF-κB signaling. Rather, we reveal a tonicity-dependent interaction between TonEBP and p65 and show that NF-κB activity is considerably enhanced after binding of NF-κB-TonEBP complexes to κB elements of NF-κB-responsive genes. We demonstrate the key roles of TonEBP and Akt in renal collecting duct epithelial cells and in macrophages. These findings reveal a novel role for TonEBP and Akt in NF-κB activation on the onset of hypertonic challenge.

  3. Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes.

    PubMed

    Tappia, Paramjit S; Maddaford, Thane G; Hurtado, Cecilia; Panagia, Vincenzo; Pierce, Grant N

    2003-01-10

    The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF.

  4. Identification and evolution of an NFAT gene involving Branchiostoma belcheri innate immunity.

    PubMed

    Song, Xiaojun; Hu, Jing; Jin, Ping; Chen, Liming; Ma, Fei

    2013-10-01

    The Nuclear Factor of Activated T cells (NFAT) plays an important role in innate and adaptive immunity, but no NFAT genes have yet been identified in amphioxus species. Here we identified and characterized an NFAT-like gene from Branchiostoma belcheri, and also studied extensively the evolutionary history of NFAT family genes. We found that the amphioxus genome contains an AmphiNFAT gene encoding an NFAT homolog. The AmphiNFAT gene was found to be involved in the innate immune response to LPS stimulation in B. belcheri and was ubiquitously and differentially expressed in all investigated tissues. The NFAT family genes were present in a common ancestor with cnidaria, and NFAT1-4 paralogs were lost early in Branchiostoma and Strongylocentrotus genomes. We discovered that NFAT family genes underwent strong purifying selection. Taken together, our findings provide an insight into the innate immune response of amphioxus and the evolution of the NFAT gene family.

  5. 14‐3‐3‐β and ‐ε contribute to activation of the osmoprotective transcription factor NFAT5 by increasing its protein abundance and its transactivating activity

    PubMed Central

    Izumi, Yuichiro; Burg, Maurice B.; Ferraris, Joan D.

    2014-01-01

    Abstract Having previously found that high NaCl causes rapid exit of 14‐3‐3 isoforms from the nucleus, we used siRNA‐mediated knockdown to test whether 14‐3‐3s contribute to the high NaCl‐induced increase in the activity of the osmoprotective transcription factor NFAT5. We find that, when NaCl is elevated, knockdown of 14‐3‐3‐β and/or 14‐3‐3‐ε decreases NFAT5 transcriptional activity, as assayed both by luciferase reporter and by the mRNA abundance of the NFAT5 target genes aldose reductase and the sodium‐ and chloride‐dependent betaine transporter, BGT1. Knockdown of other 14‐3‐3 isoforms does not significantly affect NFAT5 activity. 14‐3‐3‐β and/or 14‐3‐3‐ε do not act by affecting the nuclear localization of NFAT5, but by at least two other mechanisms: (1) 14‐3‐3‐β and 14‐3‐3‐ε increase protein abundance of NFAT5 and (2) they increase NFAT5 transactivating activity. When NaCl is elevated, knockdown of 14‐3‐3‐β and/or 14‐3‐3‐ε reduces the protein abundance of NFAT5, as measured by Western blot, without affecting the level of NFAT5 mRNA, and the knockdown also decreases NFAT5 transactivating activity, as measured by luciferase reporter. The 14‐3‐3s increase NFAT5 protein, not by increasing its translation, but by decreasing the rate at which it is degraded, as measured by cycloheximide chase. It is not clear at this point whether the 14‐3‐3s affect NFAT5 directly or indirectly through their effects on other proteins that signal activation of NFAT5. PMID:24771694

  6. Inhibitory phosphorylation of GSK-3β by AKT, PKA, and PI3K contributes to high NaCl-induced activation of the transcription factor NFAT5 (TonEBP/OREBP).

    PubMed

    Zhou, Xiaoming; Wang, Hong; Burg, Maurice B; Ferraris, Joan D

    2013-04-01

    High NaCl activates the transcription factor nuclear factor of activated T cells 5 (NFAT5), leading to increased transcription of osmoprotective target genes. Kinases PKA, PI3K, AKT1, and p38α were known to contribute to the high NaCl-induced increase of NFAT5 activity. We now identify another kinase, GSK-3β. siRNA-mediated knock-down of GSK-3β increases NFAT5 transcriptional and transactivating activities without affecting high NaCl-induced nuclear localization of NFAT5 or NFAT5 protein expression. High NaCl increases phosphorylation of GSK-3β-S9, which inhibits GSK-3β. In GSK-3β-null mouse embryonic fibroblasts transfection of GSK-3β, in which serine 9 is mutated to alanine, so that it cannot be inhibited by phosphorylation at that site, inhibits high NaCl-induced NFAT5 transcriptional activity more than transfection of wild-type GSK-3β. High NaCl-induced phosphorylation of GSK-3β-S9 depends on PKA, PI3K, and AKT, but not p38α. Overexpression of PKA catalytic subunit α or of catalytically active AKT1 reduces inhibition of NFAT5 by GSK-3β, but overexpression of p38α together with its catalytically active upstream kinase, MKK6, does not. Thus, GSK-3β normally inhibits NFAT5 by suppressing its transactivating activity. When activated by high NaCl, PKA, PI3K, and AKT1, but not p38α, increase phosphorylation of GSK-3β-S9, which reduces the inhibitory effect of GSK-3β on NFAT5, and thus contributes to activation of NFAT5.

  7. NFAT1 C-terminal domains are necessary but not sufficient for inducing cell death.

    PubMed

    Faget, Douglas V; Lucena, Pedro I; Robbs, Bruno K; Viola, João P B

    2012-01-01

    The proteins belonging to the nuclear factor of activated T cells (NFAT) family of transcription factors are expressed in several cell types and regulate genes involved in differentiation, cell cycle and apoptosis. NFAT proteins share two conserved domains, the NFAT-homology region (NHR) and a DNA-binding domain (DBD). The N- and C-termini display two transactivation domains (TAD-N and TAD-C) that have low sequence similarity. Due to the high sequence conservation in the NHR and DBD, NFAT members have some overlapping roles in gene regulation. However, several studies have shown distinct roles for NFAT proteins in the regulation of cell death. The TAD-C shows low sequence similarity among NFAT family members, but its contribution to specific NFAT1-induced phenotypes is poorly understood. Here, we described at least two regions of NFAT1 TAD-C that confer pro-apoptotic activity to NFAT1. These regions extend from amino acids 699 to 734 and 819 to 850 of NFAT1. We also showed that the NFAT1 TAD-C is unable to induce apoptosis by itself and requires a functional DBD. Furthermore, we showed that when fused to NFAT1 TAD-C, NFAT2, which is associated with cell transformation, induces apoptosis in fibroblasts. Together, these results suggest that the NFAT1 TAD-C includes NFAT death domains that confer to different NFAT members the ability to induce apoptosis.

  8. NFAT1 C-Terminal Domains Are Necessary but Not Sufficient for Inducing Cell Death

    PubMed Central

    Faget, Douglas V.; Lucena, Pedro I.; Robbs, Bruno K.; Viola, João P. B.

    2012-01-01

    The proteins belonging to the nuclear factor of activated T cells (NFAT) family of transcription factors are expressed in several cell types and regulate genes involved in differentiation, cell cycle and apoptosis. NFAT proteins share two conserved domains, the NFAT-homology region (NHR) and a DNA-binding domain (DBD). The N- and C-termini display two transactivation domains (TAD-N and TAD-C) that have low sequence similarity. Due to the high sequence conservation in the NHR and DBD, NFAT members have some overlapping roles in gene regulation. However, several studies have shown distinct roles for NFAT proteins in the regulation of cell death. The TAD-C shows low sequence similarity among NFAT family members, but its contribution to specific NFAT1-induced phenotypes is poorly understood. Here, we described at least two regions of NFAT1 TAD-C that confer pro-apoptotic activity to NFAT1. These regions extend from amino acids 699 to 734 and 819 to 850 of NFAT1. We also showed that the NFAT1 TAD-C is unable to induce apoptosis by itself and requires a functional DBD. Furthermore, we showed that when fused to NFAT1 TAD-C, NFAT2, which is associated with cell transformation, induces apoptosis in fibroblasts. Together, these results suggest that the NFAT1 TAD-C includes NFAT death domains that confer to different NFAT members the ability to induce apoptosis. PMID:23110116

  9. NFAT activation by membrane potential follows a calcium pathway distinct from other activity-related transcription factors in skeletal muscle cells.

    PubMed

    Valdés, Juan Antonio; Gaggero, Eduardo; Hidalgo, Jorge; Leal, Nancy; Jaimovich, Enrique; Carrasco, M Angélica

    2008-03-01

    Depolarization of skeletal muscle cells triggers intracellular Ca2+ signals mediated by ryanodine and inositol 1,4,5-trisphosphate (IP3) receptors. Previously, we have reported that K+-induced depolarization activates transcriptional regulators ERK, cAMP response element-binding protein, c-fos, c-jun, and egr-1 through IP3-dependent Ca2+ release, whereas NF-kappa B activation is elicited by both ryanodine and IP3 receptor-mediated Ca2+ signals. We have further shown that field stimulation with electrical pulses results in an NF-kappa B activation increase dependent of the amount of pulses and independent of their frequency. In this work, we report the results obtained for nuclear factor of activated T cells (NFAT)-mediated transcription and translocation generated by both K+ and electrical stimulation protocols in primary skeletal muscle cells and C2C12 cells. The Ca2+ source for NFAT activation is through release by ryanodine receptors and extracellular Ca2+ entry. We found this activation to be independent of the number of pulses within a physiological range of stimulus frequency and enhanced by long-lasting low-frequency stimulation. Therefore, activation of the NFAT signaling pathway differs from that of NF-kappa B and other transcription factors. Calcineurin enzyme activity correlated well with the relative activation of NFAT translocation and transcription using different stimulation protocols. Furthermore, both K+-induced depolarization and electrical stimulation increased mRNA levels of the type 1 IP3 receptor mediated by calcineurin activity, which suggests that depolarization may regulate IP3 receptor transcription. These results confirm the presence of at least two independent pathways for excitation-transcription coupling in skeletal muscle cells, both dependent on Ca2+ release and triggered by the same voltage sensor but activating different intracellular release channels.

  10. Immunosuppressive activity of endovanilloids: N-arachidonoyl-dopamine inhibits activation of the NF-kappa B, NFAT, and activator protein 1 signaling pathways.

    PubMed

    Sancho, Rocío; Macho, Antonio; de La Vega, Laureano; Calzado, Marco A; Fiebich, Bernd L; Appendino, Giovanni; Muñoz, Eduardo

    2004-02-15

    Endogenous N-acyl dopamines such as N-arachidonoyldopamine (NADA) and N-oleoyldopamine have been recently identified as a new class of brain neurotransmitters sharing endocannabinoid and endovanilloid biological activities. As endocannabinoids show immunomodulatory activity, and T cells play a key role in the onset of several diseases that affect the CNS, we have evaluated the immunosuppressive activity of NADA and N-oleoyldopamine in human T cells, discovering that both compounds are potent inhibitors of early and late events in TCR-mediated T cell activation. Moreover, we found that NADA specifically inhibited both IL-2 and TNF-alpha gene transcription in stimulated Jurkat T cells. To further characterize the inhibitory mechanisms of NADA at the transcriptional level, we examined the DNA binding and transcriptional activities of NF-kappaB, NF-AT, and AP-1 transcription factors in Jurkat cells. We found that NADA inhibited NF-kappaB-dependent transcriptional activity without affecting either degradation of the cytoplasmic NF-kappaB inhibitory protein, IkappaBalpha, or DNA binding activity. However, phosphorylation of the p65/RelA subunit was clearly inhibited by NADA in stimulated cells. In addition, NADA inhibited both binding to DNA and the transcriptional activity of NF-AT and AP-1, as expected from the inhibition of NF-AT1 dephosphorylation and c-Jun N-terminal kinase activation in stimulated T cells. Finally, overexpression of a constitutively active form of calcineurin demonstrated that this phosphatase may represent one of the main targets of NADA. These findings provide new mechanistic insights into the anti-inflammatory activities of NADA and highlight their potential to design novel therapeutic strategies to manage inflammatory diseases.

  11. Angiotensin II activates the calcineurin/NFAT signaling pathway and induces cyclooxygenase-2 expression in rat endometrial stromal cells.

    PubMed

    Abraham, Florencia; Sacerdoti, Flavia; De León, Romina; Gentile, Teresa; Canellada, Andrea

    2012-01-01

    Cyclooxygenase (COX)-2, the inducible isoform of cyclooxygenase, plays a role in the process of uterine decidualization and blastocyst attachment. On the other hand, overexpression of COX-2 is involved in the proliferation of the endometrial tissue during endometriosis. Deregulation of the renin-angiotensin-system plays a role in the pathophysiology of endometriosis and pre-eclampsia. Angiotensin II increases intracellular Ca(2+) concentration by targeting phospholypase C-gamma in endometrial stromal cells (ESC). A key element of the cellular response to Ca(2+) signals is the activity of the Ca(2+)- and calmodulin-dependent phosphatase calcineurin. Our first aim was to study whether angiotensin II stimulated Cox-2 gene expression in rat ESC and to analyze whether calcineurin activity was involved. In cells isolated from non-pregnant uteri, COX-2 expression--both mRNA and protein--was induced by co-stimulation with phorbol ester and calcium ionophore (PIo), as well as by angiotensin II. Pretreatment with the calcineurin inhibitor cyclosporin A inhibited this induction. We further analyzed the role of the calcineurin/NFAT signaling pathway in the induction of Cox-2 gene expression in non-pregnant rat ESC. Cyclosporin A abolished NFATc1 dephosphorylation and translocation to the nucleus. Cyclosporin A also inhibited the transcriptional activity driven by the Cox-2 promoter. Exogenous expression of the peptide VIVIT -specific inhibitor of calcineurin/NFAT binding- blocked the activation of Cox-2 promoter and the up-regulation of COX-2 protein in these cells. Finally we analyzed Cox-2 gene expression in ESC of early-pregnant rats. COX-2 expression--both mRNA and protein--was induced by stimulation with PIo as well as by angiotensin II. This induction appears to be calcineurin independent, since it was not abrogated by cyclosporin A. In conclusion, angiotensin II induced Cox-2 gene expression by activating the calcineurin/NFAT signaling pathway in endometrial stromal

  12. miR-20b Inhibits T Cell Proliferation and Activation via NFAT Signaling Pathway in Thymoma-Associated Myasthenia Gravis

    PubMed Central

    Xin, Yanzhong; Cai, Hongfei; Lu, Tianyu; Zhang, Yan; Yang, Yue

    2016-01-01

    Purpose. We examined the role of miR-20b in development of thymoma-associated myasthenia gravis, especially in T cell proliferation and activation. Materials and Methods. Using qRT-PCR, we assessed expression levels of miR-20b and its target genes in cultured cells and patient samples and examined the proliferation of cultured cells, using MTT cell proliferation assays and flow cytometry based cell cycle analysis. Activation of T cells was determined by both flow cytometry and qRT-PCR of activation-specific marker genes. Results. Expression of miR-20b was downregulated in samples of thymoma tissues and serum from patients with thymoma-associated myasthenia gravis. In addition, T cell proliferation and activation were inhibited by ectopic overexpression of miR-20b, which led to increased T cell proliferation and activation. NFAT5 and CAMTA1 were identified as targets of miR-20b. Expression levels of NFAT5 and CAMTA1 were inhibited by miR-20b expression in cultured cells, and the expression levels of miR-20b and NFAT5/CAMTA1 were inversely correlated in patients with thymoma-associated myasthenia gravis. Conclusion. miR-20b acts as a tumor suppressor in the development of thymoma and thymoma-associated myasthenia gravis. The tumor suppressive function of miR-20b in thymoma could be due to its inhibition of NFAT signaling by repression of NFAT5 and CAMTA1 expression. PMID:27833920

  13. Interleukin-7 induces HIV replication in primary naive T cells through a nuclear factor of activated T cell (NFAT)-dependent pathway

    SciTech Connect

    Managlia, Elizabeth Z. . E-mail: lalharth@rush.edu

    2006-07-05

    Interleukin (IL)-7 plays several roles critical to T cell maturation, survival, and homeostasis. Because of these functions, IL-7 is under investigation as an immune-modulator for therapeutic use in lymphopenic clinical conditions, including HIV. We reported that naive T cells, typically not permissive to HIV, can be productively infected when pre-treated with IL-7. We evaluated the mechanism by which IL-7-mediates this effect. IL-7 potently up-regulated the transcriptional factor NFAT, but had no effect on NF{kappa}B. Blocking NFAT activity using a number of reagents, such as Cyclosporin A, FK-506, or the NFAT-specific inhibitor known as VIVIT peptide, all markedly reduced IL-7-mediated induction of HIV replication in naive T cells. Additional neutralization of cytokines present in IL-7-treated cultures and/or those that have NFAT-binding sequences within their promotors indicated that IL-10, IL-4, and most significantly IFN{gamma}, all contribute to IL-7-induction of HIV productive replication in naive T cells. These data clarify the mechanism by which IL-7 can overcome the block to HIV productive infection in naive T cells, despite their quiescent cell status. These findings are relevant to the treatment of HIV disease and understanding HIV pathogenesis in the naive CD4+ T cell compartment, especially in light of the vigorous pursuit of IL-7 as an in vivo immune modulator.

  14. Activation of PI3Kγ/Akt pathway increases cardiomyocyte HMGB1 expression in diabetic environment

    PubMed Central

    Song, Jia; Liu, Qian; Tang, Han; Tao, Aibin; Wang, Hao; Kao, Raymond; Rui, Tao

    2016-01-01

    Background The high mobility group box 1 (HMGB1) protein mediates the cardiomyocyte–cardiac fibroblast interaction that contributes to induction of myocardial fibrosis in diabetes mellitus (DM). In the present study, we aim to investigate the intracellular signaling pathway that leads to cardiomyocyte HMGB1 expression under a diabetic environment. Results HMGB1 expression is increased in high concentration of glucose (HG)-conditioned cardiomyocytes. Challenging cardiomyocytes with HG also increased PI3Kγ and Akt phosphorylation. Inhibition of PI3Kγ (CRISPR/Cas9 knockout plasmid or AS605240) prevented HG-induced Akt phosphorylation and HMGB1 expression by the cardiomyocytes. In addition, inhibition of Akt (Akt1/2/3 siRNA or A6730) attenuated HG-induced HMGB1 production. Finally, challenging cardiomyocytes with HG resulted in increased reactive oxygen species (ROS) production. Treatment of cardiomyocytes with an antioxidant (Mitotempo) abolished HG-induced PI3Kγ and Akt activation, as well as HMGB1 production. Materials and Methods Isolated rat cardiomyocytes were cultured with a high concentration of glucose. Cardiomyocyte phosphatidylinositol 3-kinase gamma (PI3Kγ) and Akt activation were determined by Western blot. Cardiomyocyte HMGB1 production was evaluated with Western blot and enzyme-linked immunosorbent assay (ELISA), while cardiomyocyte oxidative stress was determined with a DCFDA fluorescence probe. Conclusions Our results suggest that the cardiomyocytes incur an oxidative stress under diabetic condition, which subsequently activates the PI3Kγ/Akt cell-signaling pathway and further increases HMGB1 expression. PMID:27821807

  15. Osmotic induction of placental growth factor in retinal pigment epithelial cells in vitro: contribution of NFAT5 activity.

    PubMed

    Hollborn, Margrit; Reichmuth, Konrad; Prager, Philipp; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon

    2016-08-01

    One risk factor of neovascular age-related macular degeneration is systemic hypertension; hypertension is mainly caused by extracellular hyperosmolarity after consumption of dietary salt. In retinal pigment epithelial (RPE) cells, high extracellular osmolarity induces vascular endothelial growth factor (VEGF)-A (Hollborn et al. in Mol Vis 21:360-377, 2015). The aim of the present study was to determine whether extracellular hyperosmolarity and chemical hypoxia trigger the expression of further VEGF family members including placental growth factor (PlGF) in human RPE cells. Hyperosmotic media were made up by addition of 100 mM NaCl or sucrose. Chemical hypoxia was induced by CoCl2. Gene expression was quantified by real-time RT-PCR, and secretion of PlGF-2 was investigated with ELISA. Nuclear factor of activated T cell 5 (NFAT5) was depleted using siRNA. Extracellular hyperosmolarity triggered expression of VEGF-A, VEGF-D, and PlGF genes, and secretion of PlGF-2. Hypoosmolarity decreased PlGF gene expression. Hypoxia induced expression of VEGF-A, VEGF-B, VEGF-D, and PlGF genes. Extracellular hyperosmolarity and hypoxia produced additive PlGF gene expression. Both hyperosmolarity and hypoxia induced expression of KDR and FLT-4 receptor genes, while hyperosmolarity caused neuropilin-2 and hypoxia neuropilin-1 gene expression. The hyperosmotic, but not the hypoxic, PlGF gene expression was in part mediated by NFAT5. The expression of PlGF in RPE cells depends on the extracellular osmolarity. The data suggest that high consumption of dietary salt may exacerbate the angiogenic response of RPE cells in the hypoxic retina via transcriptional activation of various VEGF family member genes.

  16. Activation of NFAT-Dependent Gene Expression by Nef: Conservation among Divergent Nef Alleles, Dependence on SH3 Binding and Membrane Association, and Cooperation with Protein Kinase C-θ

    PubMed Central

    Manninen, Aki; Huotari, Päivi; Hiipakka, Marita; Renkema, G. Herma; Saksela, Kalle

    2001-01-01

    Here we show that the potential to regulate NFAT is a conserved property of different Nef alleles and that Nef residues involved in membrane targeting and SH3 binding are critical for this function. Cotransfection of an activated protein kinase C-θ (PKC-θ) with Nef implicated PKC-θ as a possible physiological cofactor of Nef in promoting NFAT-dependent gene expression and T-cell activation. PMID:11222731

  17. Application of intact cell-based NFAT-β-lactamase reporter assay for Pasteurella multocida toxin-mediated activation of calcium signaling pathway

    PubMed Central

    Luo, Shuhong; Ho, Mengfei; Wilson, Brenda A.

    2009-01-01

    Pasteurella multocida toxin (PMT) stimulates and subsequently uncouples phospholipase C β1 (PLCβ1) signal transduction through its selective action on the alpha subunit of the Gq protein. Here, we describe the application of an NFAT-β-lactamase reporter assay as a functional readout for PMT-induced activation of the Gq-protein-coupled PLCβ1-IP3-Ca2+ signaling pathway. Use of the NFAT-β-lactamase reporter assay with a cell-permeable fluorogenic substrate provides high sensitivity due to the absence of endogenous β-lactamase activity in mammalian cells. This assay system was optimized for cell density, dose and time exposure of PMT stimulation. It is suited for quantitative characterization of PMT activity in mammalian cells and for use as a high-throughput screening method for PMT deletion and point mutants suitable for vaccine development. This method has application for diagnostic screening of clinical isolates of toxinogenic P. multocida. PMID:18190943

  18. Sublethal Caspase Activation Promotes Generation of Cardiomyocytes from Embryonic Stem Cells

    PubMed Central

    Österholm, Cecilia; Wang, Heng; Beltrán-Rodríguez, Antonio; Varas-Godoy, Manuel; Månsson-Broberg, Agneta; Uhlén, Per; Simon, András; Grinnemo, Karl-Henrik

    2015-01-01

    Generation of new cardiomyocytes is critical for cardiac repair following myocardial injury, but which kind of stimuli is most important for cardiomyocyte regeneration is still unclear. Here we explore if apoptotic stimuli, manifested through caspase activation, influences cardiac progenitor up-regulation and cardiomyocyte differentiation. Using mouse embryonic stem cells as a cellular model, we show that sublethal activation of caspases increases the yield of cardiomyocytes while concurrently promoting the proliferation and differentiation of c-Kit+/α-actininlow cardiac progenitor cells. A broad-spectrum caspase inhibitor blocked these effects. In addition, the caspase inhibitor reversed the mRNA expression of genes expressed in cardiomyocytes and their precursors. Our study demonstrates that sublethal caspase-activation has an important role in cardiomyocyte differentiation and may have significant implications for promoting cardiac regeneration after myocardial injury involving exogenous or endogenous cell sources. PMID:25763592

  19. Role of phospholipase A2 in activation of isolated cardiomyocyte respiration in postinfarction cardiosclerosis.

    PubMed

    Egorova, M V; Afanas'ev, S A; Popov, S V

    2008-12-01

    The rate of oxygen consumption by isolated cardiomyocytes was studied in rats with experimental postinfarction cardiosclerosis. The increase in oxygen consumption under these condition was comparable to that in melittin- and arachidonic acid-induced activation of phospholipase A2 in cardiomyocytes of intact animals. Bromophenacyl bromide inhibition of phospholipase A2 in cardiomyocytes of rats with postinfarction cardiosclerosis led to reduction of oxygen consumption rate to values characteristic of intact animal cardiomyocytes. The results confirm the hypothesis according to which high oxygen consumption in postinfarction cardiosclerosis is related to increased activity of phospholipase A2.

  20. Nuclear factor of activated T cell (NFAT) transcription proteins regulate genes involved in adipocyte metabolism and lipolysis

    SciTech Connect

    Holowachuk, Eugene W. . E-mail: geneh@telenet.net

    2007-09-21

    NFAT involvement in adipocyte physiological processes was examined by treatment with CsA and/or GSK3{beta} inhibitors (Li{sup +} or TZDZ-8), which prevent or increase NFAT nuclear translocation, respectively. CsA treatment reduced basal and TNF{alpha}-induced rates of lipolysis by 50%. Adipocytes preincubated with Li{sup +} or TZDZ-8 prior to CsA and/or TNF{alpha}, exhibited enhanced basal rates of lipolysis and complete inhibition of CsA-mediated decreased rates of lipolysis. CsA treatment dramatically reduced the mRNA levels of adipocyte-specific genes (aP2, HSL, PPAR{gamma}, ACS and Adn), compared with control or TNF{alpha}-treatment, whereas Li{sup +} pretreatment blocked the inhibitory effects of CsA, and mRNA levels of aP2, HSL, PPAR{gamma}, and ACS were found at or above control levels. NFAT nuclear localization, assessed by EMSA, confirmed that CsA or Li{sup +} treatments inhibited or increased NFAT nuclear translocation, respectively. These results show that NFAT proteins in mature adipocytes participate in the transcriptional control of genes involved in adipocyte metabolism and lipolysis.

  1. TRPC4α and TRPC4β Similarly Affect Neonatal Cardiomyocyte Survival during Chronic GPCR Stimulation

    PubMed Central

    Kirschmer, Nadine; Bandleon, Sandra; von Ehrlich-Treuenstätt, Viktor; Hartmann, Sonja; Schaaf, Alice; Lamprecht, Anna-Karina; Miranda-Laferte, Erick; Langsenlehner, Tanja; Ritter, Oliver; Eder, Petra

    2016-01-01

    The Transient Receptor Potential Channel Subunit 4 (TRPC4) has been considered as a crucial Ca2+ component in cardiomyocytes promoting structural and functional remodeling in the course of pathological cardiac hypertrophy. TRPC4 assembles as homo or hetero-tetramer in the plasma membrane, allowing a non-selective Na+ and Ca2+ influx. Gαq protein-coupled receptor (GPCR) stimulation is known to increase TRPC4 channel activity and a TRPC4-mediated Ca2+ influx which has been regarded as ideal Ca2+ source for calcineurin and subsequent nuclear factor of activated T-cells (NFAT) activation. Functional properties of TRPC4 are also based on the expression of the TRPC4 splice variants TRPC4α and TRPC4β. Aim of the present study was to analyze cytosolic Ca2+ signals, signaling, hypertrophy and vitality of cardiomyocytes in dependence on the expression level of either TRPC4α or TRPC4β. The analysis of Ca2+ transients in neonatal rat cardiomyocytes (NRCs) showed that TRPC4α and TRPC4β affected Ca2+ cycling in beating cardiomyocytes with both splice variants inducing an elevation of the Ca2+ transient amplitude at baseline and TRPC4β increasing the Ca2+ peak during angiotensin II (Ang II) stimulation. NRCs infected with TRPC4β (Ad-C4β) also responded with a sustained Ca2+ influx when treated with Ang II under non-pacing conditions. Consistent with the Ca2+ data, NRCs infected with TRPC4α (Ad-C4α) showed an elevated calcineurin/NFAT activity and a baseline hypertrophic phenotype but did not further develop hypertrophy during chronic Ang II/phenylephrine stimulation. Down-regulation of endogenous TRPC4α reversed these effects, resulting in less hypertrophy of NRCs at baseline but a markedly increased hypertrophic enlargement after chronic agonist stimulation. Ad-C4β NRCs did not exhibit baseline calcineurin/NFAT activity or hypertrophy but responded with an increased calcineurin/NFAT activity after GPCR stimulation. However, this effect was not translated into an

  2. Modulation of cardiomyocyte activity using pulsed laser irradiated gold nanoparticles

    PubMed Central

    Gentemann, Lara; Kalies, Stefan; Coffee, Michelle; Meyer, Heiko; Ripken, Tammo; Heisterkamp, Alexander; Zweigerdt, Robert; Heinemann, Dag

    2016-01-01

    Can photothermal gold nanoparticle mediated laser manipulation be applied to induce cardiac contraction? Based on our previous work, we present a novel concept of cell stimulation. A 532 nm picosecond laser was employed to heat gold nanoparticles on cardiomyocytes. This leads to calcium oscillations in the HL-1 cardiomyocyte cell line. As calcium is connected to the contractility, we aimed to alter the contraction rate of native and stem cell derived cardiomyocytes. A contraction rate increase was particularly observed in calcium containing buffer with neonatal rat cardiomyocytes. Consequently, the study provides conceptual ideas for a light based, nanoparticle mediated stimulation system. PMID:28101410

  3. A ketogenic diet increases succinic dehydrogenase activity in aging cardiomyocytes.

    PubMed

    Balietti, Marta; Fattoretti, Patrizia; Giorgetti, Belinda; Casoli, Tiziana; Di Stefano, Giuseppina; Solazzi, Moreno; Platano, Daniela; Aicardi, Giorgio; Bertoni-Freddari, Carlo

    2009-08-01

    Impairment of energy metabolism and an increase of reactive oxygen species (ROS) production seem to play a major role in age-related apoptotic loss of cardiomyocytes. Succinic dehydrogenase (SDH) is an important marker of the mitochondrial capability to provide an adequate amount of ATP. Moreover, because of its unique redox properties, SDH activity contributes to maintain the reduced state of the ubiquinone pool. Recent reports have shown that ketone body intake improves cardiac metabolic efficiency and exerts a cardioprotective antioxidant action, we therefore performed a cytochemical investigation of SDH activity in cardiomyocytes of late-adult (19-month-old) rats fed for 8 weeks with a medium-chain triglycerides ketogenic diet (MCT-KD). Young, age-matched and old animals fed with a standard chow were used as controls. The overall area of the precipitates (PA) from SDH activity and the area of the SDH-positive mitochondria (MA) were measured. The percent ratios PA/MA and MA/total myocardial tissue area (MA/TA) were the parameters taken into account. We found that PA/MA was significantly higher in young control rats and in MCT-KD-fed rats versus late-adult and old control rats and in young control versus MCT-KD-fed rats. MA/TA of MCT-KD-fed rats was significantly higher versus age-matched and old control rats and tended to be higher versus young control rats; this parameter was significantly higher in young versus old control rats. Thus, MCT-KD intake partially recovers age-related decrease of SDH activity and increases the myocardial area occupied by metabolically active mitochondria. These effects might counteract metabolic alterations leading to apoptosis-induced myocardial atrophy and failure during aging.

  4. NFATs and Alzheimer’s Disease

    PubMed Central

    Abdul, Hafiz Mohmmad; Furman, Jennifer L.; Sama, Michelle A.; Mathis, Diana M.; Norris, Christopher M.

    2010-01-01

    Nuclear factor of activated T cells (NFAT) is a transcription factor that translocates from cytosol to nucleus following dephosphorylation by the Ca2+/calmodulin dependent protein phosphatase calcineurin (CN). In nervous tissue, aberrant CN signaling is increasingly linked to a variety of pathologic features associated with Alzheimer’s disease (AD), including synaptic dysfunction, glial activation, and neuronal death. Consistent with this linkage, our recent work on postmortem human hippocampal tissue discovered increased nuclear accumulation of select NFAT isoforms at different stages of AD. Some of these changes occurred at the early stages of the disease process and/or paralleled diminishing cognitive status. In addition, inhibition of astrocytic NFAT activity in primary cultures of neurons and glia dampened glutamate levels and alleviated neuronal death in response to pathogenic amyloid-β peptides. In this article, we discuss our recent findings and expand upon the possible isoform specific contributions of NFATs to the progression of AD. We also consider the possible benefits of using NFAT inhibitors to treat AD and other neurodegenerative disorders, as well. PMID:20401186

  5. NFAT regulates induction of COX-2 and apoptosis of keratinocytes in response to ultraviolet radiation exposure

    PubMed Central

    Flockhart, R. J.; Diffey, B. L.; Farr, P. M.; Lloyd, J.; Reynolds, N. J.

    2008-01-01

    The nuclear factor of activated T cells (NFAT) transcription factors are regulated by calcium/calcineurin signals and play important roles in T cells, muscle, bone, and neural tissue. NFAT is expressed in the epidermis, and although recent data suggest that NFAT is involved in the skin’s responses to ultraviolet radiation (UVR), the wavelengths of radiation that activate NFAT and the biological function of UV-activated NFAT remain undefined. We demonstrate that NFAT transcriptional activity is preferentially induced by UVB wavelengths in keratinocytes. The derived action spectrum for NFAT activation indicates that NFAT transcriptional activity is inversely associated with wavelength. UVR also evoked NFAT2 nuclear translocation in a parallel wavelength-dependent fashion and both transcriptional activation and nuclear translocation were inhibited by the calcineurin inhibitor cyclosporin A. UVR also evoked NFAT2 nuclear translocation in three-dimensional skin equivalents. Evidence suggests that COX-2 contributes to UV-induced carcinogenesis. Inhibiting UV-induced NFAT activation in keratinocytes, reduced COX-2 protein induction, and increased UV-induced apoptosis. COX-2 luciferase reporters lacking functional NFAT binding sites were less responsive to UVR, highlighting that NFAT is required for UV-induced COX-2 induction. Taken together, these data suggest that the proinflammatory, antiapoptotic, and procarcinogenic functions of UV-activated COX-2 may be mediated, in part, by upstream NFAT signaling. Flockhart, R. J., Diffey, B. L., Farr, P. M., Lloyd, J., Reynolds, N. J. NFAT regulates induction of COX-2 and apoptosis of keratinocytes in response to ultraviolet radiation exposure. PMID:18708588

  6. NFAT2 Isoforms Differentially Regulate Gene Expression, Cell Death, and Transformation through Alternative N-Terminal Domains.

    PubMed

    Lucena, Pedro I; Faget, Douglas V; Pachulec, Emilia; Robaina, Marcela C; Klumb, Claudete E; Robbs, Bruno K; Viola, João P B

    2016-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors is composed of four calcium-responsive proteins (NFAT1 to -4). The NFAT2 (also called NFATc1) gene encodes the isoforms NFAT2α and NFAT2β that result mainly from alternative initiation exons that provide two different N-terminal transactivation domains. However, the specific roles of the NFAT2 isoforms in cell physiology remain unclear. Because previous studies have shown oncogenic potential for NFAT2, this study emphasized the role of the NFAT2 isoforms in cell transformation. Here, we show that a constitutively active form of NFAT2α (CA-NFAT2α) and CA-NFAT2β distinctly control death and transformation in NIH 3T3 cells. While CA-NFAT2α strongly induces cell transformation, CA-NFAT2β leads to reduced cell proliferation and intense cell death through the upregulation of tumor necrosis factor alpha (TNF-α). CA-NFAT2β also increases cell death and upregulates Fas ligand (FasL) and TNF-α in CD4(+) T cells. Furthermore, we demonstrate that differential roles of NFAT2 isoforms in NIH 3T3 cells depend on the N-terminal domain, where the NFAT2β-specific N-terminal acidic motif is necessary to induce cell death. Interestingly, the NFAT2α isoform is upregulated in Burkitt lymphomas, suggesting an isoform-specific involvement of NFAT2 in cancer development. Finally, our data suggest that alternative N-terminal domains of NFAT2 could provide differential mechanisms for the control of cellular functions.

  7. NFAT2 Isoforms Differentially Regulate Gene Expression, Cell Death, and Transformation through Alternative N-Terminal Domains

    PubMed Central

    Lucena, Pedro I.; Faget, Douglas V.; Pachulec, Emilia; Robaina, Marcela C.; Klumb, Claudete E.

    2015-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors is composed of four calcium-responsive proteins (NFAT1 to -4). The NFAT2 (also called NFATc1) gene encodes the isoforms NFAT2α and NFAT2β that result mainly from alternative initiation exons that provide two different N-terminal transactivation domains. However, the specific roles of the NFAT2 isoforms in cell physiology remain unclear. Because previous studies have shown oncogenic potential for NFAT2, this study emphasized the role of the NFAT2 isoforms in cell transformation. Here, we show that a constitutively active form of NFAT2α (CA-NFAT2α) and CA-NFAT2β distinctly control death and transformation in NIH 3T3 cells. While CA-NFAT2α strongly induces cell transformation, CA-NFAT2β leads to reduced cell proliferation and intense cell death through the upregulation of tumor necrosis factor alpha (TNF-α). CA-NFAT2β also increases cell death and upregulates Fas ligand (FasL) and TNF-α in CD4+ T cells. Furthermore, we demonstrate that differential roles of NFAT2 isoforms in NIH 3T3 cells depend on the N-terminal domain, where the NFAT2β-specific N-terminal acidic motif is necessary to induce cell death. Interestingly, the NFAT2α isoform is upregulated in Burkitt lymphomas, suggesting an isoform-specific involvement of NFAT2 in cancer development. Finally, our data suggest that alternative N-terminal domains of NFAT2 could provide differential mechanisms for the control of cellular functions. PMID:26483414

  8. The profile of immune modulation by cannabidiol (CBD) involves deregulation of nuclear factor of activated T cells (NFAT).

    PubMed

    Kaplan, Barbara L F; Springs, Alison E B; Kaminski, Norbert E

    2008-09-15

    Cannabidiol (CBD) is a cannabinoid compound derived from Cannabis Sativa that does not possess high affinity for either the CB1 or CB2 cannabinoid receptors. Similar to other cannabinoids, we demonstrated previously that CBD suppressed interleukin-2 (IL-2) production from phorbol ester plus calcium ionophore (PMA/Io)-activated murine splenocytes. Thus, the focus of the present studies was to further characterize the effect of CBD on immune function. CBD also suppressed IL-2 and interferon-gamma (IFN-gamma) mRNA expression, proliferation, and cell surface expression of the IL-2 receptor alpha chain, CD25. While all of these observations support the fact that CBD suppresses T cell function, we now demonstrate that CBD suppressed IL-2 and IFN-gamma production in purified splenic T cells. CBD also suppressed activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) transcriptional activity, which are critical regulators of IL-2 and IFN-gamma. Furthermore, CBD suppressed the T cell-dependent anti-sheep red blood cell immunoglobulin M antibody forming cell (anti-sRBC IgM AFC) response. Finally, using splenocytes derived from CB1(-/-)/CB2(-/-) mice, it was determined that suppression of IL-2 and IFN-gamma and suppression of the in vitro anti-sRBC IgM AFC response occurred independently of both CB1 and CB2. However, the magnitude of the immune response to sRBC was significantly depressed in CB1(-/-)/CB2(-/-) mice. Taken together, these data suggest that CBD suppresses T cell function and that CB1 and/or CB2 play a critical role in the magnitude of the in vitro anti-sRBC IgM AFC response.

  9. Potent Anti-Inflammatory Activity of Ursolic Acid, a Triterpenoid Antioxidant, Is Mediated through Suppression of NF-κB, AP-1 and NF-AT

    PubMed Central

    Checker, Rahul; Sandur, Santosh K.; Sharma, Deepak; Patwardhan, Raghavendra S.; Jayakumar, S.; Kohli, Vineet; Sethi, Gautam; Aggarwal, Bharat B.; Sainis, Krishna B.

    2012-01-01

    Background Ursolic acid (UA), a pentacyclic triterpenoid carboxylic acid, is the major component of many plants including apples, basil, cranberries, peppermint, rosemary, oregano and prunes and has been reported to possess antioxidant and anti-tumor properties. These properties of UA have been attributed to its ability to suppress NF-κB (nuclear factor kappa B) activation. Since NF-κB, in co-ordination with NF-AT (nuclear factor of activated T cells) and AP-1(activator protein-1), is known to regulate inflammatory genes, we hypothesized that UA might exhibit potent anti-inflammatory effects. Methodology/Principal Findings The anti-inflammatory effects of UA were assessed in activated T cells, B cells and macrophages. Effects of UA on ERK, JNK, NF-κB, AP-1 and NF-AT were studied to elucidate its mechanism of action. In vivo efficacy of UA was studied using mouse model of graft-versus-host disease. UA inhibited activation, proliferation and cytokine secretion in T cells, B cells and macrophages. UA inhibited mitogen-induced up-regulation of activation markers and co-stimulatory molecules in T and B cells. It inhibited mitogen-induced phosphorylation of ERK and JNK and suppressed the activation of immunoregulatory transcription factors NF-κB, NF-AT and AP-1 in lymphocytes. Treatment of cells with UA prior to allogenic transplantation significantly delayed induction of acute graft-versus-host disease in mice and also significantly reduced the serum levels of pro-inflammatory cytokines IL-6 and IFN-γ. UA treatment inhibited T cell activation even when added post-mitogenic stimulation demonstrating its therapeutic utility as an anti-inflammatory agent. Conclusions/Significance The present study describes the detailed mechanism of anti-inflammatory activity of UA. Further, UA may find application in the treatment of inflammatory disorders. PMID:22363615

  10. Transcriptional Regulation of TMP21 by NFAT

    PubMed Central

    2011-01-01

    Background TMP21 is a member of the p24 cargo protein family, which is involved in protein transport between the Golgi apparatus and ER. Alzheimer's Disease (AD) is the most common neurodegenerative disorder leading to dementia and deposition of amyloid β protein (Aβ) is the pathological feature of AD pathogenesis. Knockdown of TMP21 expression by siRNA causes a sharp increase in Aβ production; however the underlying mechanism by which TMP21 regulates Aβ generation is unknown, and human TMP21 gene expression regulation has not yet been studied. Results In this report we have cloned a 3.3-kb fragment upstream of the human TMP21 gene. The transcription start site (TSS) of the human TMP21 gene was identified. A series of nested deletions of the 5' flanking region of the human TMP21 gene were subcloned into the pGL3-basic luciferase reporter plasmid. We identified the -120 to +2 region as containing the minimal sequence necessary for TMP21 gene promoter activity. Gel shift assays revealed that the human TMP21 gene promoter contains NFAT response elements. Expression of NFAT increased TMP21 gene expression and inhibition of NFAT by siRNA reduced TMP21 gene expression. Conclusion NFAT plays a very important role in the regulation of human TMP21 gene expression. This study demonstrates that the human TMP21 gene expression is transcriptionally regulated by NFAT signaling. PMID:21375783

  11. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation

    PubMed Central

    Aix, Esther; Gutiérrez-Gutiérrez, Óscar; Sánchez-Ferrer, Carlota; Aguado, Tania

    2016-01-01

    The molecular mechanisms that drive mammalian cardiomyocytes out of the cell cycle soon after birth remain largely unknown. Here, we identify telomere dysfunction as a critical physiological signal for cardiomyocyte cell-cycle arrest. We show that telomerase activity and cardiomyocyte telomere length decrease sharply in wild-type mouse hearts after birth, resulting in cardiomyocytes with dysfunctional telomeres and anaphase bridges and positive for the cell-cycle arrest protein p21. We further show that premature telomere dysfunction pushes cardiomyocytes out of the cell cycle. Cardiomyocytes from telomerase-deficient mice with dysfunctional telomeres (G3 Terc−/−) show precocious development of anaphase-bridge formation, p21 up-regulation, and binucleation. In line with these findings, the cardiomyocyte proliferative response after cardiac injury was lost in G3 Terc−/− newborns but rescued in G3 Terc−/−/p21−/− mice. These results reveal telomere dysfunction as a crucial signal for cardiomyocyte cell-cycle arrest after birth and suggest interventions to augment the regeneration capacity of mammalian hearts. PMID:27241915

  12. TIM-3 Suppresses Anti-CD3/CD28-Induced TCR Activation and IL-2 Expression through the NFAT Signaling Pathway.

    PubMed

    Tomkowicz, Brian; Walsh, Eileen; Cotty, Adam; Verona, Raluca; Sabins, Nina; Kaplan, Fred; Santulli-Marotto, Sandy; Chin, Chen-Ni; Mooney, Jill; Lingham, Russell B; Naso, Michael; McCabe, Timothy

    2015-01-01

    TIM-3 (T cell immunoglobulin and mucin-domain containing protein 3) is a member of the TIM family of proteins that is preferentially expressed on Th1 polarized CD4+ and CD8+ T cells. Recent studies indicate that TIM-3 serves as a negative regulator of T cell function (i.e. T cell dependent immune responses, proliferation, tolerance, and exhaustion). Despite having no recognizable inhibitory signaling motifs, the intracellular tail of TIM-3 is apparently indispensable for function. Specifically, the conserved residues Y265/Y272 and surrounding amino acids appear to be critical for function. Mechanistically, several studies suggest that TIM-3 can associate with interleukin inducible T cell kinase (ITK), the Src kinases Fyn and Lck, and the p85 phosphatidylinositol 3-kinase (PI3K) adaptor protein to positively or negatively regulate IL-2 production via NF-κB/NFAT signaling pathways. To begin to address this discrepancy, we examined the effect of TIM-3 in two model systems. First, we generated several Jurkat T cell lines stably expressing human TIM-3 or murine CD28-ECD/human TIM-3 intracellular tail chimeras and examined the effects that TIM-3 exerts on T cell Receptor (TCR)-mediated activation, cytokine secretion, promoter activity, and protein kinase association. In this model, our results demonstrate that TIM-3 inhibits several TCR-mediated phenotypes: i) NF-kB/NFAT activation, ii) CD69 expression, and iii) suppression of IL-2 secretion. To confirm our Jurkat cell observations we developed a primary human CD8+ cell system that expresses endogenous levels of TIM-3. Upon TCR ligation, we observed the loss of NFAT reporter activity and IL-2 secretion, and identified the association of Src kinase Lck, and PLC-γ with TIM-3. Taken together, our results support the conclusion that TIM-3 is a negative regulator of TCR-function by attenuating activation signals mediated by CD3/CD28 co-stimulation.

  13. Transcriptional regulation of bone and joint remodeling by NFAT

    PubMed Central

    Sitara, Despina; Aliprantis, Antonios O.

    2010-01-01

    Summary Osteoporosis and arthritis are highly prevalent diseases and a significant cause of morbidity and mortality worldwide. These diseases result from aberrant tissue remodeling leading to weak, fracture-prone bones or painful, dysfunctional joints. The nuclear factor of activated T cells (NFAT) transcription factor family controls diverse biologic processes in vertebrates. Here, we review the scientific evidence that links NFAT-regulated gene transcription to bone and joint pathology. A particular emphasis is placed on the role of NFATs in bone resorption and formation by osteoclasts and osteoblasts, respectively. In addition, emerging data that connect NFATs with cartilage biology, angiogenesis, nociception, and neurogenic inflammation are explored. The goal of this article is to highlight the importance of tissue remodeling in musculoskeletal disease and situate NFAT-driven cellular responses within this context to inspire future research endeavors. PMID:20193006

  14. Estrogen controls embryonic stem cell proliferation via store-operated calcium entry and the nuclear factor of activated T-cells (NFAT).

    PubMed

    Wong, Chun-Kit; So, Wing-Yan; Law, Sau-Kwan; Leung, Fung-Ping; Yau, Ka-Long; Yao, Xiaoqiang; Huang, Yu; Li, Xiangdong; Tsang, Suk-Ying

    2012-06-01

    Embryonic stem cells (ESCs) can self-renew indefinitely and differentiate into all cell lineages. Calcium is a universal second messenger which regulates a number of cellular pathways. Previous studies showed that store-operated calcium channels (SOCCs) but not voltage-operated calcium channels are present in mouse ESCs (mESCs). In this study, store-operated calcium entry (SOCE) was found to exist in mESCs using confocal microscopy. SOCC blockers lanthanum, 2-aminoethoxydiphenyl borate (2-APB) and SKF-96365 reduced mESC proliferation in a concentration-dependent manner, suggesting that SOCE is important for ESC proliferation. Pluripotent markers, Sox-2, Klf-4, and Nanog, were down-regulated by 2-APB, suggesting that self-renewal property of mESCs relies on SOCE. 17β-estradiol (E2) enhanced mESC proliferation. This enhanced proliferation was associated with an increment of SOCE. Both stimulated proliferation and increased SOCE could be reversed by SOCC blockers suggesting that E2 mediates its stimulatory effect on proliferation via enhancing SOCE. Also, cyclosporin A and INCA-6, inhibitors of calcineurin [phosphatase that de-phosphorylates and activates nuclear factor of activated T-cells (NFAT)], reversed the proliferative effect of E2, indicating that NFAT is involved in E2-stimulated proliferation. Interestingly, E2 caused the nuclear translocation of NFATc4, and this could be reversed by 2-APB. These results suggested that NFATc4 is the downstream target of E2-induced SOCE. The present investigation provides the first line of evidence that SOCE and NFAT are crucial for ESCs to maintain their unique characteristics. In addition, the present investigation also provides novel information on the mechanisms of how E2, an important female sex hormone, affects ESC proliferation.

  15. Brain-derived neurotrophic factor activation of NFAT (nuclear factor of activated T-cells)-dependent transcription: a role for the transcription factor NFATc4 in neurotrophin-mediated gene expression.

    PubMed

    Groth, Rachel D; Mermelstein, Paul G

    2003-09-03

    A member of the neurotrophin family, brain-derived neurotrophic factor (BDNF) regulates neuronal survival and differentiation during development. Within the adult brain, BDNF is also important in neuronal adaptive processes, such as the activity-dependent plasticity that underlies learning and memory. These long-term changes in synaptic strength are mediated through alterations in gene expression. However, many of the mechanisms by which BDNF is linked to transcriptional and translational regulation remain unknown. Recently, the transcription factor NFATc4 (nuclear factor of activated T-cells isoform 4) was discovered in neurons, where it is believed to play an important role in long-term changes in neuronal function. Interestingly, NFATc4 is particularly sensitive to the second messenger systems activated by BDNF. Thus, we hypothesized that NFAT-dependent transcription may be an important mediator of BDNF-induced plasticity. In cultured rat CA3-CA1 hippocampal neurons, BDNF activated NFAT-dependent transcription via TrkB receptors. Inhibition of calcineurin blocked BDNF-induced nuclear translocation of NFATc4, thus preventing transcription. Further, phospholipase C was a critical signaling intermediate between BDNF activation of TrkB and the initiation of NFAT-dependent transcription. Both inositol 1,4,5-triphosphate (IP3)-mediated release of calcium from intracellular stores and activation of protein kinase C were required for BDNF-induced NFAT-dependent transcription. Finally, increased expression of IP3 receptor 1 and BDNF after neuronal exposure to BDNF was linked to NFAT-dependent transcription. These results suggest that NFATc4 plays a crucial role in neurotrophin-mediated synaptic plasticity.

  16. How do kinases contribute to tonicity-dependent regulation of the transcription factor NFAT5?

    PubMed Central

    Zhou, Xiaoming

    2016-01-01

    NFAT5 plays a critical role in maintaining the renal functions. Its dis-regulation in the kidney leads to or is associated with certain renal diseases or disorders, most notably the urinary concentration defect. Hypertonicity, which the kidney medulla is normally exposed to, activates NFAT5 through phosphorylation of a signaling molecule or NFAT5 itself. Hypotonicity inhibits NFAT5 through a similar mechanism. More than a dozen of protein and lipid kinases have been identified to contribute to tonicity-dependent regulation of NFAT5. Hypertonicity activates NFAT5 by increasing its nuclear localization and transactivating activity in the early phase and protein abundance in the late phase. The known mechanism for inhibition of NFAT5 by hypotonicity is a decrease of nuclear NFAT5. The present article reviews the effect of each kinase on NFAT5 nuclear localization, transactivation and protein abundance, and the relationship among these kinases, if known. Cyclosporine A and tacrolimus suppress immune reactions by inhibiting the phosphatase calcineurin-dependent activation of NFAT1. It is hoped that this review would stimulate the interest to seek explanations from the NFAT5 regulatory pathways for certain clinical presentations and to explore novel therapeutic approaches based on the pathways. On the basic science front, this review raises two interesting questions. The first one is how these kinases can specifically signal to NFAT5 in the context of hypertonicity or hypotonicity, because they also regulate other cellular activities and even opposite activities in some cases. The second one is why these many kinases, some of which might have redundant functions, are needed to regulate NFAT5 activity. This review reiterates the concept of signaling through cooperation. Cells need these kinases working in a coordinated way to provide the signaling specificity that is lacking in the individual one. Redundancy in regulation of NFAT5 is a critical strategy for cells to

  17. How do kinases contribute to tonicity-dependent regulation of the transcription factor NFAT5?

    PubMed

    Zhou, Xiaoming

    2016-01-06

    NFAT5 plays a critical role in maintaining the renal functions. Its dis-regulation in the kidney leads to or is associated with certain renal diseases or disorders, most notably the urinary concentration defect. Hypertonicity, which the kidney medulla is normally exposed to, activates NFAT5 through phosphorylation of a signaling molecule or NFAT5 itself. Hypotonicity inhibits NFAT5 through a similar mechanism. More than a dozen of protein and lipid kinases have been identified to contribute to tonicity-dependent regulation of NFAT5. Hypertonicity activates NFAT5 by increasing its nuclear localization and transactivating activity in the early phase and protein abundance in the late phase. The known mechanism for inhibition of NFAT5 by hypotonicity is a decrease of nuclear NFAT5. The present article reviews the effect of each kinase on NFAT5 nuclear localization, transactivation and protein abundance, and the relationship among these kinases, if known. Cyclosporine A and tacrolimus suppress immune reactions by inhibiting the phosphatase calcineurin-dependent activation of NFAT1. It is hoped that this review would stimulate the interest to seek explanations from the NFAT5 regulatory pathways for certain clinical presentations and to explore novel therapeutic approaches based on the pathways. On the basic science front, this review raises two interesting questions. The first one is how these kinases can specifically signal to NFAT5 in the context of hypertonicity or hypotonicity, because they also regulate other cellular activities and even opposite activities in some cases. The second one is why these many kinases, some of which might have redundant functions, are needed to regulate NFAT5 activity. This review reiterates the concept of signaling through cooperation. Cells need these kinases working in a coordinated way to provide the signaling specificity that is lacking in the individual one. Redundancy in regulation of NFAT5 is a critical strategy for cells to

  18. The adaptor protein 3BP2 associates with VAV guanine nucleotide exchange factors to regulate NFAT activation by the B-cell antigen receptor.

    PubMed

    Foucault, Isabelle; Le Bras, Séverine; Charvet, Céline; Moon, Chéol; Altman, Amnon; Deckert, Marcel

    2005-02-01

    Engagement of the B-cell antigen receptor (BCR) activates kinases of the Src and Syk families and signaling complexes assembled by adaptor proteins, which dictate B-cell fate and function. The adaptor 3BP2/SH3BP2, an Abl Src homology domain 3 (SH3)-binding and Syk-kinases interacting protein, exhibits positive regulatory roles in T, natural killer (NK), and basophilic cells. However, its involvement in BCR signaling is completely unknown. Here we show that 3BP2 is tyrosine phosphorylated following BCR aggregation on B lymphoma cells, and that 3BP2 is a substrate for Syk and Fyn, but not Btk. To further explore the function of 3BP2 in B cells, we screened a yeast 2-hybrid B-lymphocyte library and found 3BP2 as a binding partner of Vav proteins. The interaction between 3BP2 and Vav proteins involved both constitutive and inducible mechanisms. 3BP2 also interacted with other components of the BCR signaling pathway, including Syk and phospholipase C gamma (PLC-gamma). Furthermore, overexpression and RNAi blocking experiments showed that 3BP2 regulated BCR-mediated activation of nuclear factor of activated T cells (NFATs). Finally, evidence was provided that 3BP2 functionally cooperates with Vav proteins and Rho GTPases to activate NFATs. Our results show that 3BP2 may regulate BCR-mediated gene activation through Vav proteins.

  19. Moesin is activated in cardiomyocytes in experimental autoimmune myocarditis and mediates cytoskeletal reorganization with protrusion formation.

    PubMed

    Miyawaki, Akimitsu; Mitsuhara, Yusuke; Orimoto, Aya; Nakayasu, Yusuke; Tsunoda, Shin-Ichi; Obana, Masanori; Maeda, Makiko; Nakayama, Hiroyuki; Yoshioka, Yasuo; Tsutsumi, Yasuo; Fujio, Yasushi

    2016-08-01

    Acute myocarditis is a self-limiting disease. Most patients with myocarditis recover without cardiac dysfunction in spite of limited capacity of myocardial regeneration. Therefore, to address intrinsic reparative machinery of inflamed hearts, we investigated the cellular dynamics of cardiomyocytes in response to inflammation using experimental autoimmune myocarditis (EAM) model. EAM was induced by immunization of BALB/c mice with α-myosin heavy chain peptides twice. The inflammatory reaction was evoked with myocardial damage with the peak at 3 wk after the first immunization (EAM3w). Morphological and functional restoration started from EAM3w, when active protrusion formation, a critical process of myocardial healing, was observed in cardiomyocytes. Shotgun proteomics revealed that cytoskeletal proteins were preferentially increased in cardiomyocytes at EAM3w, compared with preimmunized (EAM0w) hearts, and that moesin was the most remarkably upregulated among them. Immunoblot analyses demonstrated that the expression of both total and phosphorylated moesin was upregulated in isolated cardiomyocytes from EAM3w hearts. Immunofluorescence staining showed that moesin was localized at cardiomyocyte protrusions at EAM3w. Adenoviral vectors expressing wild-type, constitutively active and inactive form of moesin (wtMoesin, caMoesin, and iaMoesin, respectively) were transfected in neonatal rat cardiomyocytes. The overexpression of wtMoesin and caMoesin resulted in protrusion formation, while not iaMoesin. Finally, we found that cardiomyocyte protrusions were accompanied by cell-cell contact formation. The expression of moesin was upregulated in cardiomyocytes under inflammation, inducing protrusion formation in a phosphorylation-dependent fashion. Moesin signal could be a novel therapeutic target that stimulates myocardial repair by promoting contact formation of cardiomyocytes.

  20. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ(9)-tetrahydrocannabinol in human CD4(+) T cells.

    PubMed

    Ngaotepprutaram, Thitirat; Kaplan, Barbara L F; Kaminski, Norbert E

    2013-11-15

    We have previously reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4(+) T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ(9)-THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ(9)-THC attenuated CD40L expression in human CD4(+) T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ(9)-THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ(9)-THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ(9)-THC suppresses human T cell function.

  1. Blueberry polyphenols prevent cardiomyocyte death by preventing calpain activation and oxidative stress.

    PubMed

    Louis, Xavier Lieben; Thandapilly, Sijo Joseph; Kalt, Wilhelmina; Vinqvist-Tymchuk, Melinda; Aloud, Basma Milad; Raj, Pema; Yu, Liping; Le, Hoa; Netticadan, Thomas

    2014-08-01

    The purpose of this study was to examine the efficacy of an aqueous wild blueberry extract and five wild blueberry polyphenol fractions on an in vitro model of heart disease. Adult rat cardiomyocytes were pretreated with extract and fractions, and then exposed to norepinephrine (NE). Cardiomyocyte hypertrophy, cell death, oxidative stress, apoptosis and cardiomyocyte contractile function as well as the activities of calpain, superoxide dismutase (SOD) and catalase (CAT) were measured in cardiomyocytes treated with and without NE and blueberry fraction (BF). Four of five blueberry fractions prevented cell death and cardiomyocyte hypertrophy induced by NE. Total phenolic fraction was used for all further analysis. The NE-induced increase in oxidative stress, nuclear condensation, calpain activity and lowering of SOD and CAT activities were prevented upon pretreatment with BF. Reduced contractile function was also significantly improved with BF pretreatment. Blueberry polyphenols prevent NE-induced adult cardiomyocyte hypertrophy and cell death. The protective effects of BF may be in part attributed to a reduction in calpain activity and oxidative stress.

  2. Cardiomyocytes with disrupted CFTR function require CaMKII and Ca(2+)-activated Cl(-) channel activity to maintain contraction rate.

    PubMed

    Sellers, Zachary M; De Arcangelis, Vania; Xiang, Yang; Best, Philip M

    2010-07-01

    The physiological role of the cystic fibrosis transmembrane conductance regulator (CFTR) in cardiomyocytes remains unclear. Using spontaneously beating neonatal ventricular cardiomyocytes from wild-type (WT) or CFTR knockout (KO) mice, we examined the role of CFTR in the modulation of cardiomyocyte contraction rate. Contraction rates of spontaneously beating myocytes were captured by video imaging. Real-time changes in intracellular ([Ca(2+)](i)) and protein kinase A (PKA) activity were measured by fura-2 and fluorescence resonance energy transfer, respectively. Acute inhibition of CFTR in WT cardiomyocytes using the CFTR inhibitor CFTR(inh)-172 transiently inhibited the contraction rate. By contrast, cardiomyocytes from CFTR KO mice displayed normal contraction rates. Further investigation revealed that acute inhibition of CFTR activity in WT cardiomyocytes activated L-type Ca(2+) channels, leading to a transient increase of [Ca(2+)](i) and inhibition of PKA activity. Additionally, we found that contraction rate normalization following acute CFTR inhibition in WT cardiomyocytes or chronic deletion in cardiomyocytes from CFTR KO mice requires the activation of Ca(2+)/calmodulin-dependent kinase II (CaMKII) and Ca(2+)-activated Cl(-) channels (CaCC) because simultaneous addition of myristoylated-autocamtide-2-related inhibitory peptide or niflumic acid and CFTR(inh)-172 to WT cardiomyocytes or treatment of cardiomyoctes from CFTR KO mice with these agents caused sustained attenuation of contraction rates. Our results demonstrate that regulation of cardiomyocyte contraction involves CFTR. They also reveal that activation of CaMKII and CaCC compensates for loss of CFTR function. Increased dependence on CaMKII upon loss of CFTR function might leave cystic fibrosis patients at increased risk of heart dysfunction and disease.

  3. Hawthorn (Crataegus monogyna Jacq.) extract exhibits atropine-sensitive activity in a cultured cardiomyocyte assay.

    PubMed

    Salehi, Satin; Long, Shannon R; Proteau, Philip J; Filtz, Theresa M

    2009-01-01

    Hawthorn (Crataegus spp.) plant extract is used as a herbal alternative medicine for the prevention and treatment of various cardiovascular diseases. Recently, it was shown that hawthorn extract preparations caused negative chronotropic effects in a cultured neonatal murine cardiomyocyte assay, independent of beta-adrenergic receptor blockade. The aim of this study was to further characterize the effect of hawthorn extract to decrease the contraction rate of cultured cardiomyocytes. To test the hypothesis that hawthorn is acting via muscarinic receptors, the effect of hawthorn extract on atrial versus ventricular cardiomyocytes in culture was evaluated. As would be expected for activation of muscarinic receptors, hawthorn extract had a greater effect in atrial cells. Atrial and/or ventricular cardiomyocytes were then treated with hawthorn extract in the presence of atropine or himbacine. Changes in the contraction rate of cultured cardiomyocytes revealed that both muscarinic antagonists significantly attenuated the negative chronotropic activity of hawthorn extract. Using quinuclidinyl benzilate, L-[benzylic-4,4'-(3)H] ([(3)H]-QNB) as a radioligand antagonist, the effect of a partially purified hawthorn extract fraction to inhibit muscarinic receptor binding was quantified. Hawthorn extract fraction 3 dose-dependently inhibited [(3)H]-QNB binding to mouse heart membranes. Taken together, these findings suggest that decreased contraction frequency by hawthorn extracts in neonatal murine cardiomyocytes may be mediated via muscarinic receptor activation.

  4. Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes.

    PubMed

    Leychenko, Anna; Konorev, Eugene; Jijiwa, Mayumi; Matter, Michelle L

    2011-01-01

    Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF), which acts as an angiogenic factor and a modulator of cardiomyocyte function, is regulated by mechanical stretch. Mechanical stretch promotes VEGF secretion in neonatal cardiomyocytes. Whether this effect is retained in adult cells and the molecular mechanism mediating stretch-induced VEGF secretion has not been elucidated. Our objective was to investigate whether cyclic mechanical stretch induces VEGF secretion in adult cardiomyocytes and to identify the molecular mechanism mediating VEGF secretion in these cells. Isolated primary adult rat cardiomyocytes (ARCMs) were subjected to cyclic mechanical stretch at an extension level of 10% at 30 cycles/min that induces hypertrophic responses. Cyclic mechanical stretch induced a 3-fold increase in VEGF secretion in ARCMs compared to non-stretch controls. This increase in stretch-induced VEGF secretion correlated with NFkB activation. Cyclic mechanical stretch-mediated VEGF secretion was blocked by an NFkB peptide inhibitor and expression of a dominant negative mutant IkBα, but not by inhibitors of the MAPK/ERK1/2 or PI3K pathways. Chromatin immunoprecipitation assays demonstrated an interaction of NFkB with the VEGF promoter in stretched primary cardiomyocytes. Moreover, VEGF secretion is increased in the stretched myocardium during pressure overload-induced hypertrophy. These findings are the first to demonstrate that NFkB activation plays a role in mediating VEGF secretion upon cyclic mechanical stretch in adult cardiomyocytes. Signaling by NFkB initiated in response to cyclic mechanical stretch may therefore coordinate the hypertrophic response in adult

  5. Stretch-Induced Hypertrophy Activates NFkB-Mediated VEGF Secretion in Adult Cardiomyocytes

    PubMed Central

    Leychenko, Anna; Konorev, Eugene; Jijiwa, Mayumi; Matter, Michelle L.

    2011-01-01

    Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF), which acts as an angiogenic factor and a modulator of cardiomyocyte function, is regulated by mechanical stretch. Mechanical stretch promotes VEGF secretion in neonatal cardiomyocytes. Whether this effect is retained in adult cells and the molecular mechanism mediating stretch-induced VEGF secretion has not been elucidated. Our objective was to investigate whether cyclic mechanical stretch induces VEGF secretion in adult cardiomyocytes and to identify the molecular mechanism mediating VEGF secretion in these cells. Isolated primary adult rat cardiomyocytes (ARCMs) were subjected to cyclic mechanical stretch at an extension level of 10% at 30 cycles/min that induces hypertrophic responses. Cyclic mechanical stretch induced a 3-fold increase in VEGF secretion in ARCMs compared to non-stretch controls. This increase in stretch-induced VEGF secretion correlated with NFkB activation. Cyclic mechanical stretch-mediated VEGF secretion was blocked by an NFkB peptide inhibitor and expression of a dominant negative mutant IkBα, but not by inhibitors of the MAPK/ERK1/2 or PI3K pathways. Chromatin immunoprecipitation assays demonstrated an interaction of NFkB with the VEGF promoter in stretched primary cardiomyocytes. Moreover, VEGF secretion is increased in the stretched myocardium during pressure overload-induced hypertrophy. These findings are the first to demonstrate that NFkB activation plays a role in mediating VEGF secretion upon cyclic mechanical stretch in adult cardiomyocytes. Signaling by NFkB initiated in response to cyclic mechanical stretch may therefore coordinate the hypertrophic response in adult

  6. NFAT2 Regulates Generation of Innate-Like CD8+ T Lymphocytes and CD8+ T Lymphocytes Responses

    PubMed Central

    Pachulec, Emilia; Neitzke-Montinelli, Vanessa; Viola, João P. B.

    2016-01-01

    Nuclear factor of activated T cells (NFAT) 2 null mutant mice die in utero of cardiac failure, precluding analysis of the role of NFAT2 in lymphocyte responses. Only the NFAT2−/−/Rag-1−/− chimeric mice model gave insight into the role of NFAT2 transcription factor in T lymphocyte development, activation, and differentiation. As reports are mainly focused on the role of NFAT2 in CD4+ T lymphocytes activation and differentiation, we decided to investigate NFAT2’s impact on CD8+ T lymphocyte responses. We report that NFAT2 is phosphorylated and inactive in the cytoplasm of naive CD8+ T cells, and upon TCR stimulation, it is dephosphorylated and translocated into the nucleus. To study the role of NFAT2 in CD8+ T responses, we employed NFAT2fl/flCD4-Cre mice with NFAT2 deletion specifically in T cells. Interestingly, the absence of NFAT2 in T cells resulted in increased percentage of non-conventional innate-like CD8+ T cells. These cells were CD122+, rapid producer of interferon gamma (IFN-γ) and had characteristics of conventional memory CD8+ T cells. We also observed an expansion of PLZF+ expressing CD3+ thymocyte population in the absence of NFAT2 and increased IL-4 production. Furthermore, we found that CD8+ T lymphocytes deficient in NFAT2 had reduced activation, proliferation, and IFN-γ and IL-2 production at suboptimal TCR strength. NFAT2 absence did not significantly influence differentiation of CD8+ T cells into cytotoxic effector cells but reduced their IFN-γ production. This work documents NFAT2 as a negative regulator of innate-like CD8+ T cells development. NFAT2 is required for complete CD8+ T cell responses at suboptimal TCR stimulation and regulates IFN-γ production by cytotoxic CD8+ T cells in vitro. PMID:27766099

  7. NFAT5 regulates the canonical Wnt pathway and is required for cardiomyogenic differentiation

    SciTech Connect

    Adachi, Atsuo; Takahashi, Tomosaburo; Ogata, Takehiro; Imoto-Tsubakimoto, Hiroko; Nakanishi, Naohiko; Ueyama, Tomomi; Matsubara, Hiroaki

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer NFAT5 protein expression is downregulated during cardiomyogenesis. Black-Right-Pointing-Pointer Inhibition of NFAT5 function suppresses canonical Wnt signaling. Black-Right-Pointing-Pointer Inhibition of NFAT5 function attenuates mesodermal induction. Black-Right-Pointing-Pointer NFAT5 function is required for cardiomyogenesis. -- Abstract: While nuclear factor of activated T cells 5 (NFAT5), a transcription factor implicated in osmotic stress response, is suggested to be involved in other processes such as migration and proliferation, its role in cardiomyogenesis is largely unknown. Here, we examined the role of NFAT5 in cardiac differentiation of P19CL6 cells, and observed that it was abundantly expressed in undifferentiated P19CL6 cells, and its protein expression was significantly downregulated by enhanced proteasomal degradation during DMSO-induced cardiomyogenesis. Expression of a dominant negative mutant of NFAT5 markedly attenuated cardiomyogenesis, which was associated with the inhibition of mesodermal differentiation. TOPflash reporter assay revealed that the transcriptional activity of canonical Wnt signaling was activated prior to mesodermal differentiation, and this activation was markedly attenuated by NFAT5 inhibition. Pharmacological activation of canonical Wnt signaling by [2 Prime Z, 3 Prime E]-6-bromoindirubin-3 Prime -oxime (BIO) restored Brachyury expression in NFAT5DN-expressing cells. Inhibition of NFAT5 markedly attenuated Wnt3 and Wnt3a induction. Expression of Dkk1 and Cerberus1, which are secreted Wnt antagonists, was also inhibited by NFAT5 inhibition. Thus, endogenous NFAT5 regulates the coordinated expression of Wnt ligands and antagonists, which are essential for cardiomyogenesis through the canonical Wnt pathway. These results demonstrated a novel role of NFAT5 in cardiac differentiation of stem cells.

  8. Balanced interactions of calcineurin with AKAP79 regulate Ca2+–calcineurin–NFAT signaling

    PubMed Central

    Li, Huiming; Pink, Matthew D.; Murphy, Jonathan G.; Stein, Alexander; Dell'Acqua, Mark L.; Hogan, Patrick G

    2012-01-01

    In hippocampal neurons, the scaffold protein AKAP79 recruits the phosphatase calcineurin to L-type Ca2+ channels, and couples Ca2+ influx to activation of calcineurin and of its substrate, the transcription factor NFAT. Here we show that an IAIIIT anchoring site in human AKAP79 binds the same surface of calcineurin as the PxIxIT recognition peptide of NFAT, albeit more strongly. A modest decrease in calcineurin-AKAP affinity due to an altered anchoring sequence is compatible with NFAT activation, whereas a further decrease impairs activation. Counterintuitively, increasing calcineurin-AKAP affinity increases recruitment of calcineurin to the scaffold but impairs NFAT activation, probably due both to slower release of active calcineurin from the scaffold and to sequestration of active calcineurin by “decoy” AKAP sites. We propose that calcineurin-AKAP79 scaffolding promotes NFAT signaling by balancing strong recruitment of calcineurin with its efficient release to communicate with NFAT. PMID:22343722

  9. Cardiomyocytes with disrupted CFTR function require CaMKII and Ca2+-activated Cl− channel activity to maintain contraction rate

    PubMed Central

    Sellers, Zachary M; De Arcangelis, Vania; Xiang, Yang; Best, Philip M

    2010-01-01

    The physiological role of the cystic fibrosis transmembrane conductance regulator (CFTR) in cardiomyocytes remains unclear. Using spontaneously beating neonatal ventricular cardiomyocytes from wild-type (WT) or CFTR knockout (KO) mice, we examined the role of CFTR in the modulation of cardiomyocyte contraction rate. Contraction rates of spontaneously beating myocytes were captured by video imaging. Real-time changes in intracellular ([Ca2+]i) and protein kinase A (PKA) activity were measured by fura-2 and fluorescence resonance energy transfer, respectively. Acute inhibition of CFTR in WT cardiomyocytes using the CFTR inhibitor CFTRinh-172 transiently inhibited the contraction rate. By contrast, cardiomyocytes from CFTR KO mice displayed normal contraction rates. Further investigation revealed that acute inhibition of CFTR activity in WT cardiomyoctyes activated L-type Ca2+ channels, leading to a transient increase of [Ca2+]i and inhibition of PKA activity. Additionally, we found that contraction rate normalization following acute CFTR inhibition in WT cardiomyocytes or chronic deletion in cardiomyocytes from CFTR KO mice requires the activation of Ca2+/calmodulin-dependent kinase II (CaMKII) and Ca2+-activated Cl− channels (CaCC) because simultaneous addition of myristoylated-autocamtide-2-related inhibitory peptide or niflumic acid and CFTRinh-172 to WT cardiomyocytes or treatment of cardiomyoctes from CFTR KO mice with these agents caused sustained attenuation of contraction rates. Our results demonstrate that regulation of cardiomyocyte contraction involves CFTR. They also reveal that activation of CaMKII and CaCC compensates for loss of CFTR function. Increased dependence on CaMKII upon loss of CFTR function might leave cystic fibrosis patients at increased risk of heart dysfunction and disease. PMID:20442264

  10. NFAT Targets Signaling Molecules to Gene Promoters in Pancreatic β-Cells

    PubMed Central

    Borenstein-Auerbach, Nofit; McGlynn, Kathleen; Kunnathodi, Faisal; Shahbazov, Rauf; Syed, Ilham; Kanak, Mazhar; Takita, Morihito; Levy, Marlon F.; Naziruddin, Bashoo

    2015-01-01

    Nuclear factor of activated T cells (NFAT) is activated by calcineurin in response to calcium signals derived by metabolic and inflammatory stress to regulate genes in pancreatic islets. Here, we show that NFAT targets MAPKs, histone acetyltransferase p300, and histone deacetylases (HDACs) to gene promoters to differentially regulate insulin and TNF-α genes. NFAT and ERK associated with the insulin gene promoter in response to glucagon-like peptide 1, whereas NFAT formed complexes with p38 MAPK (p38) and Jun N-terminal kinase (JNK) upon promoters of the TNF-α gene in response to IL-1β. Translocation of NFAT and MAPKs to gene promoters was calcineurin/NFAT dependent, and complex stability required MAPK activity. Knocking down NFATc2 expression, eliminating NFAT DNA binding sites, or interfering with NFAT nuclear import prevented association of MAPKs with gene promoters. Inhibiting p38 and JNK activity increased NFAT-ERK association with promoters, which repressed TNF-α and enhanced insulin gene expression. Moreover, inhibiting p38 and JNK induced a switch from NFAT-p38/JNK-histone acetyltransferase p300 to NFAT-ERK-HDAC3 complex formation upon the TNF-α promoter, which resulted in gene repression. Histone acetyltransferase/HDAC exchange was reversed on the insulin gene by p38/JNK inhibition in the presence of glucagon-like peptide 1, which enhanced gene expression. Overall, these data indicate that NFAT directs signaling enzymes to gene promoters in islets, which contribute to protein-DNA complex stability and promoter regulation. Furthermore, the data suggest that TNF-α can be repressed and insulin production can be enhanced by selectively targeting signaling components of NFAT-MAPK transcriptional/signaling complex formation in pancreatic β-cells. These findings have therapeutic potential for suppressing islet inflammation while preserving islet function in diabetes and islet transplantation. PMID:25496032

  11. Mutations that reduce its specific DNA binding inhibit high NaCl-induced nuclear localization of the osmoprotective transcription factor NFAT5

    PubMed Central

    Izumi, Yuichiro; Li, Jinxi; Villers, Courtney; Hashimoto, Kosuke; Burg, Maurice B.

    2012-01-01

    The transcription factor nuclear factor of activated T cell 5 (NFAT5) is activated by the stress of hypertonicity (e.g., high NaCl). Increased expression of NFAT5 target genes causes accumulation of protective organic osmolytes and heat shock proteins. Under normotonic conditions (∼300 mosmol/kgH2O), NFAT5 is distributed between the nucleus and cytoplasm, hypertonicity causes it to translocate into the nucleus, and hypotonicity causes it to translocate into the cytoplasm. The mechanism of translocation is complex and not completely understood. NFAT5-T298 is a known contact site of NFAT5 with its specific DNA element [osmotic response element (ORE)]. In the present study, we find that mutation of NFAT5-T298 to alanine or aspartic acid not only reduces binding of NFAT5 to OREs (EMSA) but also proportionately reduces high NaCl-induced nuclear translocation of NFAT5. Combined mutation of other NFAT5 DNA contact sites (R293A/E299A/R302A) also greatly reduces both specific DNA binding and nuclear localization of NFAT5. NFAT5-T298 is a potential phosphorylation site, but, using protein mass spectrometry, we do not find phosphorylation at NFAT5-T298. Further, decreased high NaCl-induced nuclear localization of NFAT5 mutated at T298 does not involve previously known regulatory mechanisms, including hypotonicity-induced export of NFAT5, regulated by phosphorylation of NFAT5-S155, XPO1 (CRM1/exportin1)-mediated export of NFAT5 from the nucleus, or hypertonicity-induced elevation of NUP88, which enhances nuclear localization of NFAT5. We conclude that specific DNA binding of NFAT5 contributes to its nuclear localization, by mechanisms, as yet undetermined, but independent of ones previously described to regulate NFAT5 distribution. PMID:22992674

  12. Scaffold protein enigma homolog activates CREB whereas a short splice variant prevents CREB activation in cardiomyocytes.

    PubMed

    Ito, Jumpei; Iijima, Masumi; Yoshimoto, Nobuo; Niimi, Tomoaki; Kuroda, Shun'ichi; Maturana, Andrés D

    2015-12-01

    Enigma Homolog (ENH1 or Pdlim5) is a scaffold protein composed of an N-terminal PDZ domain and three LIM domains at the C-terminal end. The enh gene encodes for several splice variants with opposing functions. ENH1 promotes cardiomyocytes hypertrophy whereas ENH splice variants lacking LIM domains prevent it. ENH1 interacts with various Protein Kinase C (PKC) isozymes and Protein Kinase D1 (PKD1). In addition, the binding of ENH1's LIM domains to PKC is sufficient to activate the kinase without stimulation. The downstream events of the ENH1-PKC/PKD1 complex remain unknown. PKC and PKD1 are known to phosphorylate the transcription factor cAMP-response element binding protein (CREB). We tested whether ENH1 could play a role in the activation of CREB. We found that, in neonatal rat ventricular cardiomyocytes, ENH1 interacts with CREB, is necessary for the phosphorylation of CREB at ser133, and the activation of CREB-dependent transcription. On the contrary, the overexpression of ENH3, a LIM-less splice variant, inhibited the phosphorylation of CREB. ENH3 overexpression or shRNA knockdown of ENH1 prevented the CREB-dependent transcription. Our results thus suggest that ENH1 plays an essential role in CREB's activation and dependent transcription in cardiomyocytes. At the opposite, ENH3 prevents the CREB transcriptional activity. In conclusion, these results provide a first molecular explanation to the opposing functions of ENH splice variants.

  13. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes.

    PubMed

    Lyu, Linmao; Wang, Hui; Li, Bin; Qin, Qingyun; Qi, Lei; Nagarkatti, Mitzi; Nagarkatti, Prakash; Janicki, Joseph S; Wang, Xing Li; Cui, Taixing

    2015-12-01

    Chronic activation of the myocardial renin angiotensin system (RAS) elevates the local level of angiotensin II (Ang II) thereby inducing pathological cardiac hypertrophy, which contributes to heart failure. However, the precise underlying mechanisms have not been fully delineated. Herein we report a novel paracrine mechanism between cardiac fibroblasts (CF)s and cardiomyocytes whereby Ang II induces pathological cardiac hypertrophy. In cultured CFs, Ang II treatment enhanced exosome release via the activation of Ang II receptor types 1 (AT1R) and 2 (AT2R), whereas lipopolysaccharide, insulin, endothelin (ET)-1, transforming growth factor beta (TGFβ)1 or hydrogen peroxide did not. The CF-derived exosomes upregulated the expression of renin, angiotensinogen, AT1R, and AT2R, downregulated angiotensin-converting enzyme 2, and enhanced Ang II production in cultured cardiomyocytes. In addition, the CF exosome-induced cardiomyocyte hypertrophy was blocked by both AT1R and AT2R antagonists. Exosome inhibitors, GW4869 and dimethyl amiloride (DMA), inhibited CF-induced cardiomyocyte hypertrophy with little effect on Ang II-induced cardiomyocyte hypertrophy. Mechanistically, CF exosomes upregulated RAS in cardiomyocytes via the activation of mitogen-activated protein kinases (MAPKs) and Akt. Finally, Ang II-induced exosome release from cardiac fibroblasts and pathological cardiac hypertrophy were dramatically inhibited by GW4869 and DMA in mice. These findings demonstrate that Ang II stimulates CFs to release exosomes, which in turn increase Ang II production and its receptor expression in cardiomyocytes, thereby intensifying Ang II-induced pathological cardiac hypertrophy. Accordingly, specific targeting of Ang II-induced exosome release from CFs may serve as a novel therapeutic approach to treat cardiac pathological hypertrophy and heart failure.

  14. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player.

    PubMed

    Mognol, G P; Carneiro, F R G; Robbs, B K; Faget, D V; Viola, J P B

    2016-04-21

    The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca(2+)-regulated members (NFAT1-NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis.

  15. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player

    PubMed Central

    Mognol, G P; Carneiro, F R G; Robbs, B K; Faget, D V; Viola, J P B

    2016-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca2+-regulated members (NFAT1–NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis. PMID:27100893

  16. CD43-mediated signals induce DNA binding activity of AP-1, NF-AT, and NFkappa B transcription factors in human T lymphocytes.

    PubMed

    Santana, M A; Pedraza-Alva, G; Olivares-Zavaleta, N; Madrid-Marina, V; Horejsi, V; Burakoff, S J; Rosenstein, Y

    2000-10-06

    Although numerous reports document a role for CD43 in T cell signaling, the direct participation of this molecule in cell activation has been questioned. In this study we show that CD43 ligation on human normal peripheral T cells was sufficient to induce interleukin-2, CD69, and CD40-L gene expression, without requiring signals provided by additional receptor molecules. This response was partially inhibited by cyclosporin A and staurosporine, suggesting the participation of both the Ca(2+) and the protein kinase C pathways in CD43 signaling. Consistent with the transient CD43-dependent intracellular Ca(2+) peaks reported by others, signals generated through the CD43 molecule resulted in the induction of NF-AT DNA binding activity. CD43-dependent signals resulted also in AP-1 and NFkappaB activation, probably as a result of protein kinase C involvement. AP-1 complexes bound to the AP-1 sequence contained c-Jun, and those bound to the NF-AT-AP-1 composite site contained c-Jun and Fos. NFkappaB complexes containing p65 could be found as early as 1 h after CD43 cross-linking, suggesting that CD43 participates in early events of T cell activation. The induction of the interleukin-2, CD69, and CD-40L genes and the participation of AP-1, NF-AT, and NFkappaB in the CD43-mediated signaling cascade implicate an important role for this molecule in the regulation of gene expression and cell function.

  17. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    SciTech Connect

    Guo, Kai; Jin, Faguang

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  18. Inhibition of chymotryptic-like standard proteasome activity exacerbates doxorubicin-induced cytotoxicity in primary cardiomyocytes.

    PubMed

    Spur, Eva-Margarete; Althof, Nadine; Respondek, Dorota; Klingel, Karin; Heuser, Arnd; Overkleeft, Hermen S; Voigt, Antje

    2016-04-15

    The anthracycline doxorubicin (DOX) is a potent anticancer agent for multiple myeloma (MM). A major limitation of this drug is the induction of death in cardiomyocytes leading to heart failure. Here we report on the role of the ubiquitin-proteasome system (UPS) as a critical surveillance pathway for preservation of cell vitality counteracting DOX treatment. Since in addition to DOX also suppression of proteasome activity is a rational therapeutic strategy for MM, we examined how small molecular compounds with clinically relevant proteasome subunit specificity affect DOX cytotoxicity. We found that during DOX-treatment, the activity of the β5 standard proteasome subunit is crucial for limiting off-target cytotoxicity in primary cardiomyocytes. In contrast, we demonstrate that the β5 equivalent LMP7 of the immunoproteasome represents a safe target for subunit-specific inhibitors in DOX-exposed cardiomyocytes. Neither inhibition of LMP7 in primary cardiomyocytes nor genetic ablation of LMP7 in heart tissue influenced the development of DOX cardiotoxicity. Our results indicate that as compared to compounds like carfilzomib, which target both the β5 standard proteasome and the LMP7 immunoproteasome subunit, immunoproteasome-specific inhibitors with known anti-tumor capacity for MM cells might be advantageous for reducing cardiomyocyte death, when a combination therapy with DOX is envisaged. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Lactosylceramide promotes hypertrophy through ROS generation and activation of ERK1/2 in cardiomyocytes

    PubMed Central

    Mishra, Sumita; Chatterjee, Subroto

    2014-01-01

    Hypertrophy is central to several heart diseases; however, not much is known about the role of glycosphingolipids (GSLs) in this phenotype. Since GSLs have been accorded several physiological functions, we sought to determine whether these compounds affect cardiac hypertrophy. By using a rat cardiomyoblast cell line, H9c2 cells and cultured primary neonatal rat cardiomyocytes, we have determined the effects of GSLs on hypertrophy. Our study comprises (a) measurement of [3H]-leucine incorporation into protein, (b) measurement of cell size and morphology by immunofluorescence microscopy and (c) real-time quantitative mRNA expression assay for atrial natriuretic peptide and brain natriuretic peptide. Phenylephrine (PE), a well-established agonist of cardiac hypertrophy, served as a positive control in these studies. Subsequently, mechanistic studies were performed to explore the involvement of various signaling transduction pathways that may contribute to hypertrophy in these cardiomyocytes. We observed that lactosylceramide specifically exerted a concentration- (50–100 µM) and time (48 h)-dependent increase in hypertrophy in cardiomyocytes but not a library of other structurally related GSLs. Further, in cardiomyocytes, LacCer generated reactive oxygen species, stimulated the phosphorylation of p44 mitogen activated protein kinase and protein kinase-C, and enhanced c-jun and c-fos expression, ultimately leading to hypertrophy. In summary, we report here that LacCer specifically induces hypertrophy in cardiomyocytes via an “oxygen-sensitive signal transduction pathway.” PMID:24658420

  20. Inhibition of aldehyde dehydrogenase 2 activity enhances antimycin-induced rat cardiomyocytes apoptosis through activation of MAPK signaling pathway.

    PubMed

    Zhang, Peng; Xu, Danling; Wang, Shijun; Fu, Han; Wang, Keqiang; Zou, Yunzeng; Sun, Aijun; Ge, Junbo

    2011-12-01

    Aldehyde dehydrogenase 2 (ALDH2), a mitochondrial-specific enzyme, has been proved to be involved in oxidative stress-induced cell apoptosis, while little is known in cardiomyocytes. This study was aimed at investigating the role of ALDH2 in antimycin A-induced cardiomyocytes apoptosis by suppressing ALDH2 activity with a specific ALDH2 inhibitor Daidzin. Antimycin A (40μg/ml) was used to induce neonatal cardiomyocytes apoptosis. Daidzin (60μM) effectively inhibited ALDH2 activity by 50% without own effect on cell apoptosis, and significantly enhanced antimycin A-induced cardiomyocytes apoptosis from 33.5±4.4 to 56.5±6.4% (Hochest method, p<0.05), and from 57.9±1.9 to 74.0±11.9% (FACS, p<0.05). Phosphorylation of activated MAPK signaling pathway, including extracellular signal-regulated kinase (ERK1/2), c-Jun NH2-terminal kinase (JNK) and p38 was also increased in antimycin A and daidzin treated cardiomyocytes compared to the cells treated with antimycin A alone. These findings indicated that modifying mitochondrial ALDH2 activity/expression might be a potential therapeutic option on reducing oxidative insults induced cardiomyocytes apoptosis.

  1. Resveratrol prevents norepinephrine induced hypertrophy in adult rat cardiomyocytes, by activating NO-AMPK pathway.

    PubMed

    Thandapilly, Sijo J; Louis, Xavier L; Yang, Tonghua; Stringer, Danielle M; Yu, Liping; Zhang, Shetuan; Wigle, Jeffrey; Kardami, Elissavet; Zahradka, Peter; Taylor, Carla; Anderson, Hope D; Netticadan, Thomas

    2011-10-01

    Increased adrenergic drive is a major factor influencing the development of pathological cardiac hypertrophy, a stage which precedes overt heart failure. We examined the effect of resveratrol, a polyphenol (found predominantly in grapes), in preventing norepinephrine induced hypertrophy of adult cardiomyocyte, and the role of nitric oxide (NO) and adenosine monophosphate kinase (AMPK) in the effects of resveratrol. Cardiomyocytes isolated from adult rats were pretreated, or not, with resveratrol and then exposed to norepinephrine for 24h. In other experiments cardiomyocytes were also treated with different pharmacological inhibitors of NO synthase, AMPK and sirtuin for elucidating the signaling pathways underlying the effect of resveratrol. In order to validate the role of these signaling molecules in the in vivo settings, we also examined hearts from resveratrol treated spontaneously hypertensive rats (SHR), a genetic model of essential hypertension. Cardiomyocyte hypertrophy was determined by morphometry and (3)H-phenylalanine incorporation assay. NO levels and AMPK activity were measured using a specific assay kit and western blot analysis respectively. In vitro, resveratrol prevented the norepinephrine-induced increase in cardiomyocytes size and protein synthesis. Pharmacological inhibition of NO-AMPK signaling abolished the anti-hypertrophic action of resveratrol. Consistent with the in vitro findings, the anti-hypertrophic effect of resveratrol in the SHR model was associated with increases in NO and AMPK activity. This study demonstrates that NO-AMPK signaling is linked to the anti-hypertrophic effect of resveratrol in adult cardiomyocytes in vitro, and in the SHR model in vivo. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. NFAT regulates calcium-sensing receptor-mediated TNF production

    SciTech Connect

    abdullah, huda ismail; Pedraza, Paulina L.; Hao, Shoujin; Rodland, Karin D.; McGiff, John C.; Ferreri, Nicholas R.

    2006-05-01

    Because nuclear factor of activated T cells (NFAT) has been implicated in TNF production as well as osmoregulation and salt and water homeostasis, we addressed whether calcium-sensing receptor (CaR)-mediated TNF production in medullary thick ascending limb (mTAL) cells was NFAT dependent. TNF production in response to addition of extracellular Ca2+ (1.2 mM) was abolished in mTAL cells transiently transfected with a dominant-negative CaR construct (R796W) or pretreated with the phosphatidylinositol phospholipase C (PI-PLC) inhibitor U-73122. Cyclosporine A (CsA), an inhibitor of the serine/threonine phosphatase calcineurin, and a peptide ligand, VIVIT, that selectively inhibits calcineurin-NFAT signaling, also prevented CaR-mediated TNF production. Increases in calcineurin activity in cells challenged with Ca2+ were inhibited after pretreatment with U-73122 and CsA, suggesting that CaR activation increases calcineurin activity in a PI-PLC-dependent manner. Moreover, U-73122, CsA, and VIVIT inhibited CaR-dependent activity of an NFAT construct that drives expression of firefly luciferase in transiently transfected mTAL cells. Collectively, these data verify the role of calcineurin and NFAT in CaR-mediated TNF production by mTAL cells. Activation of the CaR also increased the binding of NFAT to a consensus oligonucleotide, an effect that was blocked by U-73122 and CsA, suggesting that a calcineurin- and NFAT-dependent pathway increases TNF production in mTAL cells. This mechanism likely regulates TNF gene transcription as U-73122, CsA, and VIVIT blocked CaR-dependent activity of a TNF promoter construct. Elucidating CaR-mediated signaling pathways that regulate TNF production in the mTAL will be crucial to understanding mechanisms that regulate extracellular fluid volume and salt balance.

  3. NFAT regulates calcium-sensing receptor-mediated TNF production.

    PubMed

    Abdullah, Huda Ismail; Pedraza, Paulina L; Hao, Shoujin; Rodland, Karin D; McGiff, John C; Ferreri, Nicholas R

    2006-05-01

    Because nuclear factor of activated T cells (NFAT) has been implicated in TNF production as well as osmoregulation and salt and water homeostasis, we addressed whether calcium-sensing receptor (CaR)-mediated TNF production in medullary thick ascending limb (mTAL) cells was NFAT dependent. TNF production in response to addition of extracellular Ca(2+) (1.2 mM) was abolished in mTAL cells transiently transfected with a dominant-negative CaR construct (R796W) or pretreated with the phosphatidylinositol phospholipase C (PI-PLC) inhibitor U-73122. Cyclosporine A (CsA), an inhibitor of the serine/threonine phosphatase calcineurin, and a peptide ligand, VIVIT, that selectively inhibits calcineurin-NFAT signaling, also prevented CaR-mediated TNF production. Increases in calcineurin activity in cells challenged with Ca(2+) were inhibited after pretreatment with U-73122 and CsA, suggesting that CaR activation increases calcineurin activity in a PI-PLC-dependent manner. Moreover, U-73122, CsA, and VIVIT inhibited CaR-dependent activity of an NFAT construct that drives expression of firefly luciferase in transiently transfected mTAL cells. Collectively, these data verify the role of calcineurin and NFAT in CaR-mediated TNF production by mTAL cells. Activation of the CaR also increased the binding of NFAT to a consensus oligonucleotide, an effect that was blocked by U-73122 and CsA, suggesting that a calcineurin- and NFAT-dependent pathway increases TNF production in mTAL cells. This mechanism likely regulates TNF gene transcription as U-73122, CsA, and VIVIT blocked CaR-dependent activity of a TNF promoter construct. Elucidating CaR-mediated signaling pathways that regulate TNF production in the mTAL will be crucial to understanding mechanisms that regulate extracellular fluid volume and salt balance.

  4. AMP-activated protein kinase α1-sensitive activation of AP-1 in cardiomyocytes.

    PubMed

    Voelkl, Jakob; Alesutan, Ioana; Primessnig, Uwe; Feger, Martina; Mia, Sobuj; Jungmann, Andreas; Castor, Tatsiana; Viereck, Robert; Stöckigt, Florian; Borst, Oliver; Gawaz, Meinrad; Schrickel, Jan Wilko; Metzler, Bernhard; Katus, Hugo A; Müller, Oliver J; Pieske, Burkert; Heinzel, Frank R; Lang, Florian

    2016-08-01

    AMP-activated protein kinase (Ampk) regulates myocardial energy metabolism and plays a crucial role in the response to cell stress. In the failing heart, an isoform shift of the predominant Ampkα2 to the Ampkα1 was observed. The present study explored possible isoform specific effects of Ampkα1 in cardiomyocytes. To this end, experiments were performed in HL-1 cardiomyocytes, as well as in Ampkα1-deficient and corresponding wild-type mice and mice following AAV9-mediated cardiac overexpression of constitutively active Ampkα1. As a result, in HL-1 cardiomyocytes, overexpression of constitutively active Ampkα1 increased the phosphorylation of Pkcζ. Constitutively active Ampkα1 further increased AP-1-dependent transcriptional activity and mRNA expression of the AP-1 target genes c-Fos, Il6 and Ncx1, effects blunted by Pkcζ silencing. In HL-1 cardiomyocytes, angiotensin-II activated AP-1, an effect blunted by silencing of Ampkα1 and Pkcζ, but not of Ampkα2. In wild-type mice, angiotensin-II infusion increased cardiac Ampkα1 and cardiac Pkcζ protein levels, as well as c-Fos, Il6 and Ncx1 mRNA expression, effects blunted in Ampkα1-deficient mice. Pressure overload by transverse aortic constriction (TAC) similarly increased cardiac Ampkα1 and Pkcζ abundance as well as c-Fos, Il6 and Ncx1 mRNA expression, effects again blunted in Ampkα1-deficient mice. AAV9-mediated cardiac overexpression of constitutively active Ampkα1 increased Pkcζ protein abundance and the mRNA expression of c-Fos, Il6 and Ncx1 in cardiac tissue. In conclusion, Ampkα1 promotes myocardial AP-1 activation in a Pkcζ-dependent manner and thus contributes to cardiac stress signaling.

  5. Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling

    PubMed Central

    Abdul, Hafiz Mohmmad; Sama, Michelle A.; Furman, Jennifer L.; Mathis, Diana M.; Beckett, Tina L.; Weidner, Adam M.; Patel, Ela S.; Baig, Irfan; Murphy, M. Paul; 3rd, Harry LeVine; Kraner, Susan D.; Norris, Christopher M.

    2009-01-01

    Upon activation by calcineurin, the nuclear factor of activated T cells (NFAT) translocates to the nucleus and guides the transcription of numerous molecules involved in inflammation and Ca2+ dysregulation, both of which are prominent features of Alzheimer’s disease (AD). However, NFAT signaling in AD remains relatively uninvestigated. Using isolated cytosolic and nuclear fractions prepared from rapid-autopsy postmortem human brain tissue, we show that NFATs 1 and 3 shifted to nuclear compartments in the hippocampus at different stages of neuropathology and cognitive decline, while NFAT2 remained unchanged. NFAT1 exhibited greater association with isolated nuclear fractions in subjects with mild cognitive impairment (MCI), while NFAT3 showed a strong nuclear bias in subjects with severe dementia and AD. Similar to NFAT1, calcineurin-Aα also exhibited a nuclear bias in the early stages of cognitive decline. But, unlike NFAT1 and similar to NFAT3, the nuclear bias for calcineurin became more pronounced as cognition worsened. Changes in calcineurin/NFAT3 were directly correlated to soluble Aβ(1-42) levels in postmortem hippocampus, and oligomeric Aβ, in particular, robustly stimulated NFAT activation in primary rat astrocyte cultures. Oligomeric Aβ also caused a significant reduction in excitatory amino acid transporter 2 (EAAT2) protein levels in astrocyte cultures, which was blocked by NFAT inhibition. Moreover, inhibition of astrocytic NFAT activity in mixed cultures ameliorated Aβ-dependent elevations in glutamate and neuronal death. The results suggest that NFAT signaling is selectively altered in AD and may play an important role in driving Aβ-mediated neurodegeneration. PMID:19828810

  6. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    SciTech Connect

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  7. Pathological impact of hyperpolarization-activated chloride current peculiar to rat pulmonary vein cardiomyocytes.

    PubMed

    Okamoto, Yosuke; Kawamura, Koichi; Nakamura, Yuta; Ono, Kyoichi

    2014-01-01

    Pulmonary veins (PVs) are believed to be a crucial origin of atrial fibrillation. We recently reported that rat PV cardiomyocytes exhibit arrhythmogenic automaticity in response to norepinephrine. Herein, we further characterized the electrophysiological properties underlying the potential arrhythmogenicity of PV cardiomyocytes. Patch clamping studies revealed a time dependent hyperpolarization-activated inward current in rat PV cardiomyocytes, but not in left atrial (LA) myocytes. The current was Cs(+) resistant, and was not affected by removal of external Na(+) or K(+). The current was inhibited with Cd(2+), and the reversal potential was sensitive to changes in [Cl(-)] on either side of the membrane in a manner consistent with a Cl(-) selective channel. Cl(-) channel blockers attenuated the current, and slowed or completely inhibited the norepinephrine-induced automaticity. The biophysical properties of the hyperpolarization-activated Cl(-) current in rat PVs were different from those of ClC-2 currents previously reported: (i) the voltage-dependent activation of the Cl(-) current in rat PVs was shifted to negative potentials as [Cl(-)]i increased, (ii) the Cl(-) current was enhanced by extracellular acidification, and (iii) extracellular hyper-osmotic stress increased the current, whereas hypo-osmotic cell swelling suppressed the current. qPCR analysis revealed negligible ClC-2 mRNA expression in the rat PV. These findings suggest that rat PV cardiomyocytes possess a peculiar voltage-dependent Cl(-) channel, and that the channel may play a functional role in norepinephrine-induced automaticity.

  8. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    PubMed

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. NFAT1 transcription factor regulates cell cycle progression and cyclin E expression in B lymphocytes.

    PubMed

    Teixeira, Leonardo K; Carrossini, Nina; Sécca, Cristiane; Kroll, José E; DaCunha, Déborah C; Faget, Douglas V; Carvalho, Lilian D S; de Souza, Sandro J; Viola, João P B

    2016-09-01

    The NFAT family of transcription factors has been primarily related to T cell development, activation, and differentiation. Further studies have shown that these ubiquitous proteins are observed in many cell types inside and outside the immune system, and are involved in several biological processes, including tumor growth, angiogenesis, and invasiveness. However, the specific role of the NFAT1 family member in naive B cell proliferation remains elusive. Here, we demonstrate that NFAT1 transcription factor controls Cyclin E expression, cell proliferation, and tumor growth in vivo. Specifically, we show that inducible expression of NFAT1 inhibits cell cycle progression, reduces colony formation, and controls tumor growth in nude mice. We also demonstrate that NFAT1-deficient naive B lymphocytes show a hyperproliferative phenotype and high levels of Cyclin E1 and E2 upon BCR stimulation when compared to wild-type B lymphocytes. NFAT1 transcription factor directly regulates Cyclin E expression in B cells, inhibiting the G1/S cell cycle phase transition. Bioinformatics analysis indicates that low levels of NFAT1 correlate with high expression of Cyclin E1 in different human cancers, including Diffuse Large B-cell Lymphomas (DLBCL). Together, our results demonstrate a repressor role for NFAT1 in cell cycle progression and Cyclin E expression in B lymphocytes, and suggest a potential function for NFAT1 protein in B cell malignancies.

  10. The novel cardiac z-disc protein CEFIP regulates cardiomyocyte hypertrophy by modulating calcineurin signaling.

    PubMed

    Dierck, Franziska; Kuhn, Christian; Rohr, Claudia; Hille, Susanne; Braune, Julia; Sossalla, Samuel; Molt, Sibylle; van der Ven, Peter F M; Fürst, Dieter O; Frey, Norbert

    2017-09-15

    The z-disc is a structural component at the lateral borders of the sarcomere and is important for mechanical stability and contractility of both cardiac and skeletal muscles. Of note, the sarcomeric z-disc also represents a nodal point in cardiomyocyte function and signaling. Mutations of numerous z-disc proteins are associated with cardiomyopathies and muscle diseases. To identify additional z-disc proteins that might contribute to cardiac disease, we employed an in silico screen for cardiac-enriched cDNAs. This screen yielded a previously uncharacterized protein named cardiac-enriched FHL2-interacting protein (CEFIP), which exhibited a heart- and skeletal muscle-specific expression profile. Importantly, CEFIP was located at the z-disc and was up-regulated in several models of cardiomyopathy. We also found that CEFIP overexpression induced the fetal gene program and cardiomyocyte hypertrophy. Yeast two-hybrid screens revealed that CEFIP interacts with the calcineurin-binding protein four and a half LIM domains 2 (FHL2). Because FHL2 binds calcineurin, a phosphatase controlling hypertrophic signaling, we examined the effects of CEFIP on the calcineurin/nuclear factor of activated T-cell (NFAT) pathway. These experiments revealed that CEFIP overexpression further enhances calcineurin-dependent hypertrophic signal transduction, and its knockdown repressed hypertrophy and calcineurin/NFAT activity. In summary, we report on a previously uncharacterized protein CEFIP that modulates calcineurin/NFAT signaling in cardiomyocytes, a finding with possible implications for the pathogenesis of cardiomyopathy. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Phenylephrine promotes cardiac fibroblast proliferation through calcineurin-NFAT pathway.

    PubMed

    Wang, Jing; Wang, Yibing; Zhang, Wei; Zhao, Xi; Chen, Xiangfan; Xiao, Wenyan; Zhang, Lingling; Chen, Yunxuan; Zhu, Weizhong

    2016-01-01

    Ca(2+)/calmodulin-dependent calcineurin (CaN) plays an important role in various Ca(+2) signaling pathways, among which are those involved in cardiac diseases. It has also been shown that a heightened sympathetic tone accelerates the development of heart failure. The present study investigates whether the CaN-mediated nuclear factor of activated T-cells (NFAT) pathway is involved in cultured neonatal rat cardiac fibroblast proliferation induced by phenylephrine. CF proliferation was assessed by a cell survival assay and cell counts. Green fluorescent protein-tagged NFAT3 was used to determine the cellular location of NFAT3. CaN activity and protein levels were also determined by an activity assay kit and Western blotting, respectively. Results showed that phenylephrine promoted CF proliferation, which was abolished by α1-adrenergic receptor antagonist (prazosin), a blocker of Ca(+2) influx (nifedipine), an intracellular Ca(2+) buffer (BAPTA-AM), CaN inhibitors (cyclosporin A and FK506), and over-expression of dominant negative CaN. Phenylephrine activated CaN and evoked NFAT3 nuclear translocation, both of which were blocked by cyclosporine A (CsA) or over-expression of dominant negative CaN. These results suggest that the Ca(2+)/CaN/NFAT pathway mediates PE-induced CF proliferation, and this pathway might be a possible therapeutic target in cardiac fibrosis.

  12. Adenosine monophosphate-activated protein kinase attenuates cardiomyocyte hypertrophy through regulation of FOXO3a/MAFbx signaling pathway.

    PubMed

    Chen, Baolin; Wu, Qiang; Xiong, Zhaojun; Ma, Yuedong; Yu, Sha; Chen, Dandan; Huang, Shengwen; Dong, Yugang

    2016-09-01

    Control of cardiac muscle mass is thought to be determined by a dynamic balance of protein synthesis and degradation. Recent studies have demonstrated that atrophy-related forkhead box O 3a (FOXO3a)/muscle atrophy F-box (MAFbx) signaling pathway plays a central role in the modulation of proteolysis and exert inhibitory effect on cardiomyocyte hypertrophy. In this study, we tested the hypothesis that adenosine monophosphate-activated protein kinase (AMPK) activation attenuates cardiomyocyte hypertrophy by regulating FOXO3a/MAFbx signaling pathway and its downstream protein degradation. The results showed that activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) attenuated cardiomyocyte hypertrophy induced by angiotensin II (Ang II). The antihypertrophic effects of AICAR were blunted by AMPK inhibitor Compound C. In addition, AMPK dramatically increased the activity of transcription factor FOXO3a, up-regulated the expression of its downstream ubiquitin ligase MAFbx, and enhanced cardiomyocyte proteolysis. Meanwhile, the effects of AMPK on protein degradation and cardiomyocyte hypertrophy were blocked after MAFbx was silenced by transfection of cardiomyocytes with MAFbx-siRNA. These results indicate that AMPK plays an important role in the inhibition of cardiomyocyte hypertrophy by activating protein degradation via FOXO3a/MAFbx signaling pathway.

  13. Balanced interactions of calcineurin with AKAP79 regulate Ca2+-calcineurin-NFAT signaling

    SciTech Connect

    Li, Huiming; Pink, Matthew D; Murphy, Jonathan G; Stein, Alexander; Dell,; Acqua, Mark L; Hogan, Patrick G

    2012-04-30

    In hippocampal neurons, the scaffold protein AKAP79 recruits the phosphatase calcineurin to L-type Ca2+ channels and couples Ca2+ influx to activation of calcineurin and of its substrate, the transcription factor NFAT. Here we show that an IAIIIT anchoring site in human AKAP79 binds the same surface of calcineurin as the PxIxIT recognition peptide of NFAT, albeit more strongly. A modest decrease in calcineurin-AKAP affinity due to an altered anchoring sequence is compatible with NFAT activation, whereas a further decrease impairs activation. Counterintuitively, increasing calcineurin-AKAP affinity increases recruitment of calcineurin to the scaffold but impairs NFAT activation; this is probably due to both slower release of active calcineurin from the scaffold and sequestration of active calcineurin by 'decoy' AKAP sites. We propose that calcineurin-AKAP79 scaffolding promotes NFAT signaling by balancing strong recruitment of calcineurin with its efficient release to communicate with NFAT.

  14. A new role for an old friend: NFAT and stem cell quiescence.

    PubMed

    Oro, Anthony E

    2008-02-07

    NFAT proteins are calcium-regulated transcription factors that play a critical role during the timing and activation of many vertebrate tissues. A recent paper in Cell (Horsley et al., 2008) demonstrates a role of the calcineurin-NFAT-CDK4 pathway in maintaining hair follicle stem cell quiescence.

  15. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    SciTech Connect

    Feng, Shan-Li; Sun, Ming-Rui; Li, Ting-Ting; Yin, Xin; Xu, Chang-Qing; Sun, Yi-Hua

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  16. Expression, fermentation and purification of a predicted intrinsically disordered region of the transcription factor, NFAT5.

    PubMed

    DuMond, Jenna F; He, Yi; Burg, Maurice B; Ferraris, Joan D

    2015-11-01

    Hypertonicity stimulates Nuclear Factor of Activated T-cells 5 (NFAT5) nuclear localization and transactivating activity. Many transcription factors are known to contain intrinsically disordered regions (IDRs) which become more structured with local environmental changes such as osmolality, temperature and tonicity. The transactivating domain of NFAT5 is predicted to be intrinsically disordered under normal tonicity, and under high NaCl, the activity of this domain is increased. To study the binding of co-regulatory proteins at IDRs a cDNA construct expressing the NFAT5 TAD was created and transformed into Escherichia coli cells. Transformed E. coli cells were mass produced by fermentation and extracted by cell lysis to release the NFAT5 TAD. The NFAT5 TAD was subsequently purified using a His-tag column, cation exchange chromatography as well as hydrophobic interaction chromatography and then characterized by mass spectrometry (MS). Published by Elsevier Inc.

  17. Labdane diterpenes protect against anoxia/reperfusion injury in cardiomyocytes: involvement of AKT activation

    PubMed Central

    Cuadrado, I; Fernández-Velasco, M; Boscá, L; de las Heras, B

    2011-01-01

    Several labdane diterpenes exert anti-inflammatory and cytoprotective actions; therefore, we have investigated whether these molecules protect cardiomyocytes in an anoxia/reperfusion (A/R) model, establishing the molecular mechanisms involved in the process. The cardioprotective activity of three diterpenes (T1, T2 and T3) was studied in the H9c2 cell line and in isolated rat cardiomyocyte subjected to A/R injury. In both cases, treatment with diterpenes T1 and T2 protected from A/R-induced apoptosis, as deduced by a decrease in the percentage of apoptotic and caspase-3 active positive cells, a decrease in the Bcl-2/Bax ratio and an increase in the expression of antiapoptotic proteins. Analysis of cell survival signaling pathways showed that diterpenes T1 and T2 added after A/R increased phospho-AKT and phospho-ERK 1/2 levels. These cardioprotective effects were lost when AKT activity was pharmacologically inhibited. Moreover, the labdane-induced cardioprotection involves activation of AMPK, suggesting a role for energy homeostasis in their mechanism of action. Labdane diterpenes (T1 and T2) also exerted cardioprotective effects against A/R-induced injury in isolated cardiomyocytes and the mechanisms involved activation of specific survival signals (PI3K/AKT pathways, ERK1/2 and AMPK) and inhibition of apoptosis. PMID:22071634

  18. Ets-1 facilitates nuclear entry of NFAT proteins and their recruitment to the IL-2 promoter

    PubMed Central

    Tsao, Hsiao-Wei; Tai, Tzong-Shyuan; Tseng, William; Chang, Hui-Hsin; Grenningloh, Roland; Miaw, Shi-Chuen; Ho, I-Cheng

    2013-01-01

    E26 transformation-specific sequence 1 (Ets-1), the prototype of the ETS family of transcription factors, is critical for the expression of IL-2 by murine Th cells; however, its mechanism of action is still unclear. Here we show that Ets-1 is also essential for optimal production of IL-2 by primary human Th cells. Although Ets-1 negatively regulates the expression of Blimp1, a known suppressor of IL-2 expression, ablation of B lymphocyte-induced maturation protein 1 (Blimp1) does not rescue the expression of IL-2 by Ets-1-deficient Th cells. Instead, Ets-1 physically and functionally interacts with the nuclear factor of activated T-cells (NFAT) and is required for the recruitment of NFAT to the IL-2 promoter. In addition, Ets-1 is located in both the nucleus and cytoplasm of resting Th cells. Nuclear Ets-1 quickly exits the nucleus in response to calcium-dependent signals and competes with NFAT proteins for binding to protein components of noncoding RNA repressor of NFAT complex (NRON), which serves as a cytoplasmic trap for phosphorylated NFAT proteins. This nuclear exit of Ets-1 precedes rapid nuclear entry of NFAT and Ets-1 deficiency results in impaired nuclear entry, but not dephosphorylation, of NFAT proteins. Thus, Ets-1 promotes the expression of IL-2 by modulating the activity of NFAT. PMID:24019486

  19. Ets-1 facilitates nuclear entry of NFAT proteins and their recruitment to the IL-2 promoter.

    PubMed

    Tsao, Hsiao-Wei; Tai, Tzong-Shyuan; Tseng, William; Chang, Hui-Hsin; Grenningloh, Roland; Miaw, Shi-Chuen; Ho, I-Cheng

    2013-09-24

    E26 transformation-specific sequence 1 (Ets-1), the prototype of the ETS family of transcription factors, is critical for the expression of IL-2 by murine Th cells; however, its mechanism of action is still unclear. Here we show that Ets-1 is also essential for optimal production of IL-2 by primary human Th cells. Although Ets-1 negatively regulates the expression of Blimp1, a known suppressor of IL-2 expression, ablation of B lymphocyte-induced maturation protein 1 (Blimp1) does not rescue the expression of IL-2 by Ets-1-deficient Th cells. Instead, Ets-1 physically and functionally interacts with the nuclear factor of activated T-cells (NFAT) and is required for the recruitment of NFAT to the IL-2 promoter. In addition, Ets-1 is located in both the nucleus and cytoplasm of resting Th cells. Nuclear Ets-1 quickly exits the nucleus in response to calcium-dependent signals and competes with NFAT proteins for binding to protein components of noncoding RNA repressor of NFAT complex (NRON), which serves as a cytoplasmic trap for phosphorylated NFAT proteins. This nuclear exit of Ets-1 precedes rapid nuclear entry of NFAT and Ets-1 deficiency results in impaired nuclear entry, but not dephosphorylation, of NFAT proteins. Thus, Ets-1 promotes the expression of IL-2 by modulating the activity of NFAT.

  20. GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy.

    PubMed

    Duran, Javier; Oyarce, Cesar; Pavez, Mario; Valladares, Denisse; Basualto-Alarcon, Carla; Lagos, Daniel; Barrientos, Genaro; Troncoso, Mayarling Francisca; Ibarra, Cristian; Estrada, Manuel

    2016-01-01

    Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT) is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β) is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc) in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A) inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis). Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results suggest that

  1. GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy

    PubMed Central

    Duran, Javier; Oyarce, Cesar; Pavez, Mario; Valladares, Denisse; Basualto-Alarcon, Carla; Lagos, Daniel; Barrientos, Genaro; Troncoso, Mayarling Francisca; Ibarra, Cristian

    2016-01-01

    Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT) is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β) is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc) in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A) inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis). Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results suggest that

  2. Effect of Citrocard on functional activity of cardiomyocyte mitochondria during chronic alcohol intoxication.

    PubMed

    Perfilova, V N; Ostrovskii, O V; Verovskii, V E; Popova, T A; Lebedeva, S A; Dib, H

    2007-03-01

    Chronic administration of 50% ethanol in a dose of 8 g/kg produces a toxic effect on functional activity of cardiomyocyte mitochondria, which manifested in decreased rates of respiration and oxidative phosphorylation. Structural GABA analogue Citrocard (phenibut citrate) and reference preparation piracetam in doses of 50 and 200 mg/kg, respectively, prevented the damaging effect of alcohol, which was seen from increased indexes of oxidative phosphorylation in treated animals compared to the control group.

  3. PPARdelta activation inhibits angiotensin II induced cardiomyocyte hypertrophy by suppressing intracellular Ca2+ signaling pathway.

    PubMed

    Lee, Kuy-Sook; Park, Jin-Hee; Lee, Seahyoung; Lim, Hyun-Joung; Park, Hyun-Young

    2009-04-01

    Peroxisome proliferator-activated receptors delta (PPARdelta) is known to be expressed ubiquitously, and the predominant PPAR subtype of cardiac cells. However, relatively less is known regarding the role of PPARdelta in cardiac cells except that PPARdelta ligand treatment protects cardiac hypertrophy by inhibiting NF-kappaB activation. Thus, in the present study, we examined the effect of selective PPARdelta ligand L-165041 on angiotensin II (AngII) induced cardiac hypertrophy and its underlying mechanism using cardiomyocyte. According to our data, L-165041 (10 microM) inhibited AngII-induced [(3)H] leucine incorporation, induction of the fetal gene atrial natriuretic factor (ANF) and increase of cardiomyocyte size. Previous studies have implicated the activation of focal adhesion kinase (FAK) in the progress of cardiomyocyte hypertrophy. L-165041 pretreatment significantly inhibited AngII-induced intracellular Ca(2+) increase and subsequent phosphorylation of FAK. Further experiment using Ca(2+) ionophore A23187 confirmed that Ca(2+) induced FAK phosphorylation, and this was also blocked by L-165041 pretreatment. In addition, overexpression of PPARdelta using adenovirus significantly inhibited AngII-induced intracellular Ca(2+) increase and FAK expression, while PPARdelta siRNA treatment abolished the effect of L-165041. These data indicate that PPARdelta ligand L-165041 inhibits AngII induced cardiac hypertrophy by suppressing intracellular Ca(2+)/FAK/ERK signaling pathway in a PPARdelta dependent mechanism.

  4. Placental insufficiency decreases cell cycle activity and terminal maturation in fetal sheep cardiomyocytes

    PubMed Central

    Louey, Samantha; Jonker, Sonnet S; Giraud, George D; Thornburg, Kent L

    2007-01-01

    Umbilicoplacental embolization (UPE) in sheep has been used to investigate the effects of placental insufficiency on fetal development. However, its specific effects on the heart have been little studied. The aim of this study was to determine the effects of placental insufficiency, induced by UPE, on cardiomyocyte size, maturation and proliferation. Instrumented fetal sheep underwent UPE for either 10 or 20 days. Hearts were collected at 125 ± 1 days (10 day group) or 136 ± 1 days (20 day group) of gestation (term ∼145 days). Cell size, maturational state (as measured by the proportion of binucleated myocytes) and cell cycle activity (as measured by positive staining of cells for Ki-67) were determined in dissociated cardiomyocytes. UPE fetuses were hypoxaemic, but mean arterial pressures were not different from controls. UPE fetuses were lighter than control fetuses (10 days: −21%, P < 0.05; 20 days: −27%, P < 0.01) and had smaller hearts, but heart weight was appropriate for body weight. Neither lengths nor widths were different between control and UPE cardiomyocytes at either age. Ten days of UPE did not significantly alter the proportion of binucleated myocytes or cell cycle activity in either ventricle. However, 20 days of UPE reduced cell cycle activity in both ventricles by ∼70% (P < 0.05); the proportion of binucleated myocytes was also lower in UPE fetuses at this age (left ventricle: 31.1 ± 12.0 versus 46.0 ± 6.6%, P < 0.05; right ventricle: 29.4 ± 12.3 versus 46.3 ± 5.3%, P < 0.05). It is concluded that in the absence of fetal arterial hypertension, placental insufficiency is associated with substantially depressed growth of the heart through suppressed proliferation and maturation of cardiomyocytes. PMID:17234700

  5. NFAT5 regulates transcription of the mouse telomerase reverse transcriptase gene

    SciTech Connect

    Fujiki, Tsukasa; Udono, Miyako; Kotake, Yojiro; Yamashita, Makiko; Shirahata, Sanetaka; Katakura, Yoshinori

    2010-12-10

    We aimed to clarify the transcription-regulation mechanisms of the mouse telomerase reverse transcriptase gene (mTERT). First, we searched for the promoter region required for transcriptional activation of mTERT and identified an enhancer cis-element (named mTERT-EE) located between - 200 and - 179 bp of the mouse TERT gene (mTERT). EMSA results suggested that nuclear factor of activated T cells (NFAT) member proteins bind to mTERT-EE. We then identified NFAT5 as the factor binding to mTERT-EE and found that it activates the transcription of the mTERT core promoter. The results that siRNA directed against NFAT5 significantly reduced mTERT expression and mTERT core promoter activity and that the expressions of NFAT5 and mTERT were well correlated in various mouse tissues except liver suggest that NFAT5 dominantly and directly regulates mTERT expression. To clarify their functionality further, we investigated the effect of hypertonic stress, a known stimulus affecting the expression and transcriptional activity of NFAT5, on mTERT expression. The result indicated that hypertonic stress activates mTERT transcription via the activation and recruitment of NFAT5 to the mTERT promoter. These results provide useful information about the transcription-regulation mechanisms of mTERT.

  6. Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin II are prevented by AMP-activated protein kinase.

    PubMed

    Stuck, Bettina Johanna; Lenski, Matthias; Böhm, Michael; Laufs, Ulrich

    2008-11-21

    Angiotensin II induces cardiomyocyte hypertrophy, but its consequences on cardiomyocyte metabolism and energy supply are not completely understood. Here we investigate the effect of angiotensin II on glucose and fatty acid utilization and the modifying role of AMP-activated protein kinase (AMPK), a key regulator of metabolism and proliferation. Treatment of H9C2 cardiomyocytes with angiotensin II (Ang II, 1 microm, 4 h) increased [(3)H]leucine incorporation, up-regulated the mRNA expression of the hypertrophy marker genes MLC, ANF, BNP, and beta-MHC, and decreased the phosphorylation of the negative mTOR-regulator tuberin (TSC-2). Rat neonatal cardiomyocytes showed similar results. Western blot analysis revealed a time- and concentration-dependent down-regulation of AMPK-phosphorylation in the presence of angiotensin II, whereas the protein expression of the catalytic alpha-subunit remained unchanged. This was paralleled by membrane translocation of glucose-transporter type 4 (GLUT4), increased uptake of [(3)H]glucose and transient down-regulation of phosphorylation of acetyl-CoA carboxylase (ACC), whereas fatty acid uptake remained unchanged. Similarly, short-term transaortic constriction in mice resulted in down-regulation of P-AMPK and P-ACC but up-regulation of GLUT4 membrane translocation in the heart. Preincubation of cardiomyocytes with the AMPK stimulator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR; 1 mM, 4 h) completely prevented the angiotensin II-induced cardiomyocytes hypertrophy. In addition, AICAR reversed the metabolic effects of angiotensin II: GLUT4 translocation was reduced, but ACC phosphorylation and TSC phosphorylation were elevated. In summary, angiotensin II-induced hypertrophy of cardiomyocytes is accompanied by decreased activation of AMPK, increased glucose uptake, and decreased mTOR inhibition. Stimulation with the AMPK activator AICAR reverses these metabolic changes, increases fatty acid utilization, and inhibits

  7. Mechanical unloading activates FoxO3 to trigger Bnip3-dependent cardiomyocyte atrophy.

    PubMed

    Cao, Dian J; Jiang, Nan; Blagg, Andrew; Johnstone, Janet L; Gondalia, Raj; Oh, Misook; Luo, Xiang; Yang, Kai-Chun; Shelton, John M; Rothermel, Beverly A; Gillette, Thomas G; Dorn, Gerald W; Hill, Joseph A

    2013-04-08

    Mechanical assist device therapy has emerged recently as an important and rapidly expanding therapy in advanced heart failure, triggering in some patients a beneficial reverse remodeling response. However, mechanisms underlying this benefit are unclear. In a model of mechanical unloading of the left ventricle, we observed progressive myocyte atrophy, autophagy, and robust activation of the transcription factor FoxO3, an established regulator of catabolic processes in other cell types. Evidence for FoxO3 activation was similarly detected in unloaded failing human myocardium. To determine the role of FoxO3 activation in cardiac muscle in vivo, we engineered transgenic mice harboring a cardiomyocyte-specific constitutively active FoxO3 mutant (caFoxO3(flox);αMHC-Mer-Cre-Mer). Expression of caFoxO3 triggered dramatic and progressive loss of cardiac mass, robust increases in cardiomyocyte autophagy, declines in mitochondrial biomass and function, and early mortality. Whereas increases in cardiomyocyte apoptosis were not apparent, we detected robust increases in Bnip3 (Bcl2/adenovirus E1B 19-kDa interacting protein 3), an established downstream target of FoxO3. To test the role of Bnip3, we crossed the caFoxO3(flox);αMHC-Mer-Cre-Mer mice with Bnip3-null animals. Remarkably, the atrophy and autophagy phenotypes were significantly blunted, yet the early mortality triggered by FoxO3 activation persisted. Rather, declines in cardiac performance were attenuated by proteasome inhibitors. Consistent with involvement of FoxO3-driven activation of the ubiquitin-proteasome system, we detected time-dependent activation of the atrogenes program and sarcomere protein breakdown. In aggregate, these data point to FoxO3, a protein activated by mechanical unloading, as a master regulator that governs both the autophagy-lysosomal and ubiquitin-proteasomal pathways to orchestrate cardiac muscle atrophy.

  8. NFAT5-sensitive Orai1 expression and store-operated Ca(2+) entry in megakaryocytes.

    PubMed

    Sahu, Itishri; Pelzl, Lisann; Sukkar, Basma; Fakhri, Hajar; Al-Maghout, Tamer; Cao, Hang; Hauser, Stefan; Gutti, Ravi; Gawaz, Meinrad; Lang, Florian

    2017-08-01

    The transcription factor nuclear factor of activated T cells 5 (NFAT5) is up-regulated in several clinical disorders, including dehydration. NFAT5-sensitive genes include serum and glucocorticoid-inducible kinase 1 (SGK1). The kinase is a powerful regulator of Orai1, a Ca(2+) channel accomplishing store-operated Ca(2+) entry (SOCE). Orai1 is stimulated after intracellular store depletion by the Ca(2+) sensors stromal interaction molecule 1 (STIM1), or STIM2, or both. In the present study, we explored whether nuclear factor of activated T cell (NFAT)-5 influences Ca(2+) signaling in megakaryocytes. To this end, human megakaryocytic (MEG-01) cells were transfected with NFAT5 or with siNFAT5. Platelets and megakaryocytes were isolated from wild-type mice with either access to water ad libitum or dehydration by 36 h of water deprivation. Transcript levels were determined with quantitative RT-PCR and protein abundance by Western blot analysis and flow cytometry, cytosolic (intracellular) Ca(2+) concentration ([Ca(2+)]i) by fura-2-fluorescence. SOCE was estimated from the increase of [Ca(2+)]i following readdition of extracellular Ca(2+) after store depletion with thapsigargin (1 µM). Platelet degranulation was estimated from P-selectin abundance and integrin activation from αIIbβ3 integrin abundance determined by flow cytometry. As a result, NFAT5 transfection or exposure to hypertonicity (+40 mM NaCl) of MEG-01 cells increased Orai1, Orai2, STIM1, and STIM2 transcript levels. Orai1 transcript levels were decreased by NFAT5 silencing. NFAT5 transfection and IκB inhibitor BMS 345541 (5 µM) increased SOCE, whereas NFAT5 silencing and SGK1 inhibitor GSK650394 (10 µM) decreased SOCE. In the mice, dehydration increased NFAT5 and Orai1 protein abundance in megakaryocytes and NFAT5, Orai1, and Orai2 abundance in platelets. Dehydration further augmented the degranulation and integrin activation by thrombin and collagen-related peptide. In summary, NFAT5 is a powerful

  9. NOD1 Activation Induces Cardiac Dysfunction and Modulates Cardiac Fibrosis and Cardiomyocyte Apoptosis

    PubMed Central

    Fernández-Velasco, María; Prieto, Patricia; Terrón, Verónica; Benito, Gemma; Flores, Juana M.; Delgado, Carmen; Zaragoza, Carlos; Lavin, Begoña; Gómez-Parrizas, Mónica; López-Collazo, Eduardo; Martín-Sanz, Paloma; Boscá, Lisardo

    2012-01-01

    The innate immune system is responsible for the initial response of an organism to potentially harmful stressors, pathogens or tissue injury, and accordingly plays an essential role in the pathogenesis of many inflammatory processes, including some cardiovascular diseases. Toll like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLRs) are pattern recognition receptors that play an important role in the induction of innate immune and inflammatory responses. There is a line of evidence supporting that activation of TLRs contributes to the development and progression of cardiovascular diseases but less is known regarding the role of NLRs. Here we demonstrate the presence of the NLR member NOD1 (nucleotide-binding oligomerization domain containing 1) in the murine heart. Activation of NOD1 with the specific agonist C12-iEDAP, but not with the inactive analogue iE-Lys, induces a time- and dose-dependent cardiac dysfunction that occurs concomitantly with cardiac fibrosis and apoptosis. The administration of iEDAP promotes the activation of the NF-κB and TGF-β pathways and induces apoptosis in whole hearts. At the cellular level, both native cardiomyocytes and cardiac fibroblasts expressed NOD1. The NLR activation in cardiomyocytes was associated with NF-κB activation and induction of apoptosis. NOD1 stimulation in fibroblasts was linked to NF-κB activation and to increased expression of pro-fibrotic mediators. The down-regulation of NOD1 by specific siRNAs blunted the effect of iEDAP on the pro-fibrotic TGF-β pathway and cell apoptosis. In conclusion, our report uncovers a new pro-inflammatory target that is expressed in the heart, NOD1. The specific activation of this NLR induces cardiac dysfunction and modulates cardiac fibrosis and cardiomyocyte apoptosis, pathological processes involved in several cardiac diseases such as heart failure. PMID:23028889

  10. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ{sup 9}-tetrahydrocannabinol in human CD4{sup +} T cells

    SciTech Connect

    Ngaotepprutaram, Thitirat; Kaplan, Barbara L.F.; Kaminski, Norbert E.

    2013-11-15

    We have previously reported that Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4{sup +} T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ{sup 9}-THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ{sup 9}-THC attenuated CD40L expression in human CD4{sup +} T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ{sup 9}-THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ{sup 9}-THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ{sup 9}-THC suppresses human T cell function. - Highlights: • Δ{sup 9}-THC attenuated CD40L expression in activated human CD4+ T cells. • Δ{sup 9}-THC suppressed DNA-binding activity of NFAT and NFκB. • Δ{sup 9}-THC impaired elevation of intracellular Ca2+. • Δ{sup 9}-THC did not affect phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β.

  11. Aβ mediates Sigma receptor degradation via CaN/NFAT pathway

    PubMed Central

    Fang, Min; Zhang, Pei; Zhao, Yanxin; Jin, Aiping; Liu, Xueyuan

    2016-01-01

    Sigma receptor is an endoplasmic reticulum protein and belongs to non-opioid receptor. Increasing evidence shows that Sigma receptor activation can significantly attenuate AD induced neurological dysfunction and the functional deficiency of Sigma receptor plays an important role in the Aβ induced neuronal loss. This study aimed to investigate the influence of extracellular accumulation of Aβ on the Sigma receptor expression. Our results showed the increase in extracellular Aβ had little influence on the mRNA expression of Sigma receptor, but gradually reduced its protein expression. Co-immunoprecipitation was employed to evaluate the interaction of Sigma receptor with other proteins. Results showed BIP could bind to Sigma receptor to affect the ubiquitination of Sigma receptor. Further investigation showed there was a NFAT binding site at the promoter of BIP. Then, Western blot assay was performed to detect NFAT expression. Results showed extracellular Aβ affected the nuclear translocation of NFAT and the CaN activity of NFAT also increased with the accumulation of extracellular Aβ. In this study, NFAT-BIP luciferase reporter gene system was constructed. Results showed NFAT was able to regulate the transcription of BIP. Thus, we speculate that extracellular Aβ accumulation may activate CaN/NFAT signaling pathway to induce chaperone BIP expression, which results in Sigma receptor ubiquitination and its degradation. PMID:27648137

  12. Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stress.

    PubMed

    Reuland, Danielle J; Khademi, Shadi; Castle, Christopher J; Irwin, David C; McCord, Joe M; Miller, Benjamin F; Hamilton, Karyn L

    2013-03-01

    Increased production of reactive oxygen species has been implicated in the pathogenesis of cardiovascular disease (CVD), and enhanced endogenous antioxidants have been proposed as a mechanism for regulating redox balance. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcriptional regulator of phase II antioxidant enzymes, and activation of Nrf2 has been suggested to be an important step in attenuating oxidative stress associated with CVD. A well-defined combination of five widely studied medicinal plants derived from botanical sources (Bacopa monniera, Silybum marianum (milk thistle), Withania somnifera (Ashwagandha), Camellia sinensis (green tea), and Curcuma longa (turmeric)) has been shown to activate Nrf2 and induce phase II enzymes through the antioxidant response element. The purpose of these experiments was to determine if treatment of cardiomyocytes with this phytochemical composition, marketed as Protandim, activates Nrf2, induces phase II detoxification enzymes, and protects cardiomyocytes from oxidant-induced apoptosis in a Nrf2-dependent manner. In cultured HL-1 cardiomyocytes, phytochemical treatment was associated with nuclear accumulation of Nrf2, significant induction of phase II enzymes, and concomitant protection against hydrogen peroxide-induced apoptosis. The protection against oxidant stress was abolished when Nrf2 was silenced by shRNA, suggesting that our phytochemical treatment worked through the Nrf2 pathway. Interestingly, phytochemical treatment was found to be a more robust activator of Nrf2 than oxidant treatment, supporting the use of the phytochemicals as a potential treatment to increase antioxidant defenses and protect heart cells against an oxidative challenge. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Ligand activation of cannabinoid receptors attenuates hypertrophy of neonatal rat cardiomyocytes.

    PubMed

    Lu, Yan; Akinwumi, Bolanle C; Shao, Zongjun; Anderson, Hope D

    2014-11-01

    : Endocannabinoids are bioactive amides, esters, and ethers of long-chain polyunsaturated fatty acids. Evidence suggests that activation of the endocannabinoid pathway offers cardioprotection against myocardial ischemia, arrhythmias, and endothelial dysfunction of coronary arteries. As cardiac hypertrophy is a convergence point of risk factors for heart failure, we determined a role for endocannabinoids in attenuating endothelin-1-induced hypertrophy and probed the signaling pathways involved. The cannabinoid receptor ligand anandamide and its metabolically stable analog, R-methanandamide, suppressed hypertrophic indicators including cardiomyocyte enlargement and fetal gene activation (ie, the brain natriuretic peptide gene) elicited by endothelin-1 in isolated neonatal rat ventricular myocytes. The ability of R-methanandamide to suppress myocyte enlargement and fetal gene activation was mediated by CB2 and CB1 receptors, respectively. Accordingly, a CB2-selective agonist, JWH-133, prevented only myocyte enlargement but not brain natriuretic peptide gene activation. A CB1/CB2 dual agonist with limited brain penetration, CB-13, inhibited both hypertrophic indicators. CB-13 activated AMP-activated protein kinase (AMPK) and, in an AMPK-dependent manner, endothelial nitric oxide synthase (eNOS). Disruption of AMPK signaling, using compound C or short hairpinRNA knockdown, and eNOS inhibition using L-NIO abolished the antihypertrophic actions of CB-13. In conclusion, CB-13 inhibits cardiomyocyte hypertrophy through AMPK-eNOS signaling and may represent a novel therapeutic approach to cardioprotection.

  14. Study of the union method of microelectrode array and AFM for the recording of electromechanical activities in living cardiomyocytes.

    PubMed

    Tian, Jian; Tu, Chunlong; Huang, Bobo; Liang, Yitao; Zhou, Jian; Ye, Xuesong

    2017-07-01

    Electrophysiology and mechanics are two essential components in the functions of cardiomyocytes and skeletal muscle cells. The simultaneous recording of electrophysiological and mechanical activities is important for the understanding of mechanisms underlying cell functions. For example, on the one hand, mechanisms under cardiovascular drug effects will be investigated in a comprehensive way by the simultaneous recording of electrophysiological and mechanical activities. On the other hand, computational models of electromechanics provide a powerful tool for the research of cardiomyocytes. The electrical and mechanical activities are important in cardiomyocyte models. The simultaneous recording of electrophysiological and mechanical activities can provide much experimental data for the models. Therefore, an efficient method for the simultaneous recording of the electrical and mechanical data from cardiomyocytes is required for the improvement of cardiac modeling. However, as far as we know, most of the previous methods were not easy to be implemented in the electromechanical recording. For this reason, in this study, a union method of microelectrode array and atomic force microscope was proposed. With this method, the extracellular field potential and beating force of cardiomyocytes were recorded simultaneously with a low root-mean-square noise level of 11.67 μV and 60 pN. Drug tests were conducted to verify the feasibility of the experimental platform. The experimental results suggested the method would be useful for the cardiovascular drug screening and refinement of the computational cardiomyocyte models. It may be valuable for exploring the functional mechanisms of cardiomyocytes and skeletal muscle cells under physiological or pathological conditions.

  15. NFAT Gene Family in Inflammation and Cancer

    PubMed Central

    Pan, M.-G.; Xiong, Y.; Chen, F.

    2013-01-01

    Calcineurin-NFAT signaling is critical for numerous aspects of vertebrate function during and after embryonic development. Initially discovered in T cells, the NFAT gene family, consisting of five members, regulates immune system, inflammatory response, angiogenesis, cardiac valve formation, myocardial development, axonal guidance, skeletal muscle development, bone homeostasis, development and metastasis of cancer, and many other biological processes. In this review we will focus on the NFAT literature relevant to the two closely related pathological systems: inflammation and cancer. PMID:22950383

  16. Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression.

    PubMed

    López-Rodríguez, Cristina; Antos, Christopher L; Shelton, John M; Richardson, James A; Lin, Fangming; Novobrantseva, Tatiana I; Bronson, Roderick T; Igarashi, Peter; Rao, Anjana; Olson, Eric N

    2004-02-24

    The transcription factor NFAT5/TonEBP, a member of the NFAT/Rel family of transcription factors, has been implicated in diverse cellular responses, including the response to osmotic stress, integrin-dependent cell migration, T cell activation, and the Ras pathway in Drosophila. To clarify the in vivo role of NFAT5, we generated NFAT5-null mice. Homozygous mutants were genetically underrepresented after embryonic day 14.5. Surviving mice manifested a progressive and profound atrophy of the kidney medulla with impaired activation of several osmoprotective genes, including those encoding aldose reductase, Na+/Cl--coupled betaine/gamma-aminobutyric acid transporter, and the Na+/myo-inositol cotransporter. The aldose reductase gene is controlled by a tonicity-responsive enhancer, which was refractory to hypertonic stress in fibroblasts lacking NFAT5, establishing this enhancer as a direct transcriptional target of NFAT5. Our findings demonstrate a central role for NFAT5 as a tonicity-responsive transcription factor required for kidney homeostasis and function.

  17. Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression

    PubMed Central

    López-Rodríguez, Cristina; Antos, Christopher L.; Shelton, John M.; Richardson, James A.; Lin, Fangming; Novobrantseva, Tatiana I.; Bronson, Roderick T.; Igarashi, Peter; Rao, Anjana; Olson, Eric N.

    2004-01-01

    The transcription factor NFAT5/TonEBP, a member of the NFAT/Rel family of transcription factors, has been implicated in diverse cellular responses, including the response to osmotic stress, integrin-dependent cell migration, T cell activation, and the Ras pathway in Drosophila. To clarify the in vivo role of NFAT5, we generated NFAT5-null mice. Homozygous mutants were genetically underrepresented after embryonic day 14.5. Surviving mice manifested a progressive and profound atrophy of the kidney medulla with impaired activation of several osmoprotective genes, including those encoding aldose reductase, Na+/Cl–-coupled betaine/γ-aminobutyric acid transporter, and the Na+/myo-inositol cotransporter. The aldose reductase gene is controlled by a tonicity-responsive enhancer, which was refractory to hypertonic stress in fibroblasts lacking NFAT5, establishing this enhancer as a direct transcriptional target of NFAT5. Our findings demonstrate a central role for NFAT5 as a tonicity-responsive transcription factor required for kidney homeostasis and function. PMID:14983020

  18. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5.

    PubMed

    Buxadé, Maria; Lunazzi, Giulia; Minguillón, Jordi; Iborra, Salvador; Berga-Bolaños, Rosa; Del Val, Margarita; Aramburu, José; López-Rodríguez, Cristina

    2012-02-13

    Toll-like receptors (TLRs) engage networks of transcriptional regulators to induce genes essential for antimicrobial immunity. We report that NFAT5, previously characterized as an osmostress responsive factor, regulates the expression of multiple TLR-induced genes in macrophages independently of osmotic stress. NFAT5 was essential for the induction of the key antimicrobial gene Nos2 (inducible nitric oxide synthase [iNOS]) in response to low and high doses of TLR agonists but is required for Tnf and Il6 mainly under mild stimulatory conditions, indicating that NFAT5 could regulate specific gene patterns depending on pathogen burden intensity. NFAT5 exhibited two modes of association with target genes, as it was constitutively bound to Tnf and other genes regardless of TLR stimulation, whereas its recruitment to Nos2 or Il6 required TLR activation. Further analysis revealed that TLR-induced recruitment of NFAT5 to Nos2 was dependent on inhibitor of κB kinase (IKK) β activity and de novo protein synthesis, and was sensitive to histone deacetylases. In vivo, NFAT5 was necessary for effective immunity against Leishmania major, a parasite whose clearance requires TLRs and iNOS expression in macrophages. These findings identify NFAT5 as a novel regulator of mammalian anti-pathogen responses.

  19. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5

    PubMed Central

    Buxadé, Maria; Lunazzi, Giulia; Minguillón, Jordi; Iborra, Salvador; Berga-Bolaños, Rosa; del Val, Margarita; Aramburu, José

    2012-01-01

    Toll-like receptors (TLRs) engage networks of transcriptional regulators to induce genes essential for antimicrobial immunity. We report that NFAT5, previously characterized as an osmostress responsive factor, regulates the expression of multiple TLR-induced genes in macrophages independently of osmotic stress. NFAT5 was essential for the induction of the key antimicrobial gene Nos2 (inducible nitric oxide synthase [iNOS]) in response to low and high doses of TLR agonists but is required for Tnf and Il6 mainly under mild stimulatory conditions, indicating that NFAT5 could regulate specific gene patterns depending on pathogen burden intensity. NFAT5 exhibited two modes of association with target genes, as it was constitutively bound to Tnf and other genes regardless of TLR stimulation, whereas its recruitment to Nos2 or Il6 required TLR activation. Further analysis revealed that TLR-induced recruitment of NFAT5 to Nos2 was dependent on inhibitor of κB kinase (IKK) β activity and de novo protein synthesis, and was sensitive to histone deacetylases. In vivo, NFAT5 was necessary for effective immunity against Leishmania major, a parasite whose clearance requires TLRs and iNOS expression in macrophages. These findings identify NFAT5 as a novel regulator of mammalian anti-pathogen responses. PMID:22312110

  20. Spatiotemporal Stability of Neonatal Rat Cardiomyocyte Monolayers Spontaneous Activity Is Dependent on the Culture Substrate

    PubMed Central

    Boudreau-Béland, Jonathan; Duverger, James Elber; Petitjean, Estelle; Maguy, Ange; Ledoux, Jonathan; Comtois, Philippe

    2015-01-01

    In native conditions, cardiac cells must continuously comply with diverse stimuli necessitating a perpetual adaptation. Polydimethylsiloxane (PDMS) is commonly used in cell culture to study cellular response to changes in the mechanical environment. The aim of this study was to evaluate the impact of using PDMS substrates on the properties of spontaneous activity of cardiomyocyte monolayer cultures. We compared PDMS to the gold standard normally used in culture: a glass substrate. Although mean frequency of spontaneous activity remained unaltered, incidence of reentrant activity was significantly higher in samples cultured on glass compared to PDMS substrates. Higher spatial and temporal instability of the spontaneous rate activation was found when cardiomyocytes were cultured on PDMS, and correlated with decreased connexin-43 and increased CaV3.1 and HCN2 mRNA levels. Compared to cultures on glass, cultures on PDMS were associated with the strongest response to isoproterenol and acetylcholine. These results reveal the importance of carefully selecting the culture substrate for studies involving mechanical stimulation, especially for tissue engineering or pharmacological high-throughput screening of cardiac tissue analog. PMID:26035822

  1. Peroxisome Proliferator-Activated Receptor γ Activity is Required for Appropriate Cardiomyocyte Differentiation

    PubMed Central

    Peymani, Maryam; Ghaedi, Kamran; Irani, Shiva; Nasr-Esfahani, Mohammad Hossein

    2016-01-01

    Objective Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the PPAR nuclear receptor superfamily. Although PPARγ acts as a master transcription factor in adipocyte differentiation, it is also associated with a variety of cell functions including carbohydrate and lipid metabolism, glucose homeostasis, cell proliferation and cell differentiation. This study aimed to assess the expression level of PPARγ in order to address its role in cardiac cell differentiation of mouse embryonic stem cells (mESCs). Materials and Methods In this an intervening study, mESCs were subjected to cardiac differentiation. Total RNA was extracted from the cells and quantitative real time polymerase chain reaction (qPCR) was carried out to estimate level of gene expression. Furthermore, the requirement of PPARγ in cardiac differentiation of mESCs, during cardiac progenitor cells (CPCs) formation, was examined by applying the respective agonist and antagonist. Results The obtained data revealed an elevation in the expression level of PPARγ during spontaneous formation of CPCs and cardiomyocytes. Our results indicated that during CPC formation, PPARγ inactivation via treatment with GW9662 (GW) reduced expression of CPC and cardiac markers. Conclusion We conclude that PPARγ modulation has an effective role on cardiac differentiation of mESCs at the early stage of cardiomyogenesis. PMID:27540527

  2. Brx shines a light on the route from hyperosmolarity to NFAT5.

    PubMed

    Aramburu, Jose; López-Rodríguez, Cristina

    2009-04-07

    Nuclear factor of activated T cells 5 (NFAT5) is a member of the Rel family of transcription factors and is an essential inducer of osmoprotective gene products in mammalian cells. Its activation by hypertonicity requires p38 mitogen-activated protein kinase (MAPK) signaling and other pathways. A study now elucidates a signaling cascade regulated by the guanine nucleotide exchange factor Brx that leads to the activation of p38alpha MAPK and the induction of nfat5 messenger RNA in response to osmotic stress in lymphocytes and renal medullary cells. Brx-deficient lymphocytes showed impaired responses to hypertonicity, and brx(+/-) mice exhibited immune defects similar to those of nfat5-deficient mice. These findings support a major role for Brx in regulating the osmoprotective function of NFAT5 in different cell types.

  3. The pro-angiogenic cytokine pleiotrophin potentiates cardiomyocyte apoptosis through inhibition of endogenous AKT/PKB activity.

    PubMed

    Li, Jinliang; Wei, Hong; Chesley, Alan; Moon, Chanil; Krawczyk, Melissa; Volkova, Maria; Ziman, Bruce; Margulies, Kenneth B; Talan, Mark; Crow, Michael T; Boheler, Kenneth R

    2007-11-30

    Pleiotrophin is a development-regulated cytokine and growth factor that can promote angiogenesis, cell proliferation, or differentiation, and it has been reported to have neovasculogenic effects in damaged heart. Developmentally, it is prominently expressed in fetal and neonatal hearts, but it is minimally expressed in normal adult heart. Conversely, we show in a rat model of myocardial infarction and in human dilated cardiomyopathy that pleiotrophin is markedly up-regulated. To elucidate the effects of pleiotrophin on cardiac contractile cells, we employed primary cultures of rat neonatal and adult cardiomyocytes. We show that pleiotrophin is released from cardiomyocytes in vitro in response to hypoxia and that the addition of recombinant pleiotrophin promotes caspase-mediated genomic DNA fragmentation in a dose- and time-dependent manner. Functionally, it potentiates the apoptotic response of neonatal cardiomyocytes to hypoxic stress and to ultraviolet irradiation and of adult cardiomyocytes to hypoxia-reoxygenation. Moreover, UV-induced apoptosis in neonatal cardiomyocytes can be partially inhibited by small interfering RNA-mediated knockdown of endogenous pleiotrophin. Mechanistically, pleiotrophin antagonizes IGF-1 associated Ser-473 phosphorylation of AKT/PKB, and it concomitantly decreases both BAD and GSK3beta phosphorylation. Adenoviral expression of constitutively active AKT and lithium chloride-mediated inhibition of GSK3beta reduce the potentiated programmed cell death elicited by pleiotrophin. These latter data indicate that pleiotrophin potentiates cardiomyocyte cell death, at least partially, through inhibition of AKT signaling. In conclusion, we have uncovered a novel function for pleiotrophin on heart cells following injury. It fosters cardiomyocyte programmed cell death in response to pro-apoptotic stress, which may be critical to myocardial injury repair.

  4. Volume-sensitive outwardly rectifying chloride channel blockers protect against high glucose-induced apoptosis of cardiomyocytes via autophagy activation

    PubMed Central

    Wang, Lin; Shen, Mingzhi; Guo, Xiaowang; Wang, Bo; Xia, Yuesheng; Wang, Ning; Zhang, Qian; Jia, Lintao; Wang, Xiaoming

    2017-01-01

    Hyperglycemia is a well-characterized contributing factor for cardiac dysfunction and heart failure among diabetic patients. Apoptosis of cardiomyocytes plays a major role during the onset and pathogenesis of diabetic cardiomyopathy (DCM). Nonetheless, the molecular machinery underlying hyperglycemia-induced cardiac damage and cell death remains elusive. In the present study, we found that chloride channel blockers, 4,4′-diisothiocya-natostilbene-2,2′- disulfonic acid (DIDS) and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), inhibited high glucose-activated volume-sensitive outwardly rectifying (VSOR) Cl− channel and improved the viability of cardiomyocytes. High glucose induced cardiomyocyte apoptosis by suppressing the autophagic stress, which can be reversed via blockade of VSOR Cl− channel. VSOR activation in high glucose-treated cardiomyocytes was attributed to increased intracellular levels of reactive oxygen species (ROS). Taken together, our study unraveled a role of VSOR chloride currents in impaired autophagy and increased apoptosis of high glucose-exposed cardiomyocyte, and has implications for a therapeutic potential of VSOR chloride channel blockers in DCM. PMID:28300155

  5. Volume-sensitive outwardly rectifying chloride channel blockers protect against high glucose-induced apoptosis of cardiomyocytes via autophagy activation.

    PubMed

    Wang, Lin; Shen, Mingzhi; Guo, Xiaowang; Wang, Bo; Xia, Yuesheng; Wang, Ning; Zhang, Qian; Jia, Lintao; Wang, Xiaoming

    2017-03-16

    Hyperglycemia is a well-characterized contributing factor for cardiac dysfunction and heart failure among diabetic patients. Apoptosis of cardiomyocytes plays a major role during the onset and pathogenesis of diabetic cardiomyopathy (DCM). Nonetheless, the molecular machinery underlying hyperglycemia-induced cardiac damage and cell death remains elusive. In the present study, we found that chloride channel blockers, 4,4'-diisothiocya-natostilbene-2,2'- disulfonic acid (DIDS) and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), inhibited high glucose-activated volume-sensitive outwardly rectifying (VSOR) Cl(-) channel and improved the viability of cardiomyocytes. High glucose induced cardiomyocyte apoptosis by suppressing the autophagic stress, which can be reversed via blockade of VSOR Cl(-) channel. VSOR activation in high glucose-treated cardiomyocytes was attributed to increased intracellular levels of reactive oxygen species (ROS). Taken together, our study unraveled a role of VSOR chloride currents in impaired autophagy and increased apoptosis of high glucose-exposed cardiomyocyte, and has implications for a therapeutic potential of VSOR chloride channel blockers in DCM.

  6. AKAP150 participates in calcineurin/NFAT activation during the down-regulation of voltage-gated K(+) currents in ventricular myocytes following myocardial infarction.

    PubMed

    Nieves-Cintrón, Madeline; Hirenallur-Shanthappa, Dinesh; Nygren, Patrick J; Hinke, Simon A; Dell'Acqua, Mark L; Langeberg, Lorene K; Navedo, Manuel; Santana, Luis F; Scott, John D

    2016-07-01

    The Ca(2+)-responsive phosphatase calcineurin/protein phosphatase 2B dephosphorylates the transcription factor NFATc3. In the myocardium activation of NFATc3 down-regulates the expression of voltage-gated K(+) (Kv) channels after myocardial infarction (MI). This prolongs action potential duration and increases the probability of arrhythmias. Although recent studies infer that calcineurin is activated by local and transient Ca(2+) signals the molecular mechanism that underlies the process is unclear in ventricular myocytes. Here we test the hypothesis that sequestering of calcineurin to the sarcolemma of ventricular myocytes by the anchoring protein AKAP150 is required for acute activation of NFATc3 and the concomitant down-regulation of Kv channels following MI. Biochemical and cell based measurements resolve that approximately 0.2% of the total calcineurin activity in cardiomyocytes is associated with AKAP150. Electrophysiological analyses establish that formation of this AKAP150-calcineurin signaling dyad is essential for the activation of the phosphatase and the subsequent down-regulation of Kv channel currents following MI. Thus AKAP150-mediated targeting of calcineurin to sarcolemmal micro-domains in ventricular myocytes contributes to the local and acute gene remodeling events that lead to the down-regulation of Kv currents.

  7. Mechanical Unloading Activates FoxO3 to Trigger Bnip3‐Dependent Cardiomyocyte Atrophy

    PubMed Central

    Cao, Dian J.; Jiang, Nan; Blagg, Andrew; Johnstone, Janet L.; Gondalia, Raj; Oh, Misook; Luo, Xiang; Yang, Kai‐Chun; Shelton, John M.; Rothermel, Beverly A.; Gillette, Thomas G.; Dorn, Gerald W.; Hill, Joseph A.

    2013-01-01

    Background Mechanical assist device therapy has emerged recently as an important and rapidly expanding therapy in advanced heart failure, triggering in some patients a beneficial reverse remodeling response. However, mechanisms underlying this benefit are unclear. Methods and Results In a model of mechanical unloading of the left ventricle, we observed progressive myocyte atrophy, autophagy, and robust activation of the transcription factor FoxO3, an established regulator of catabolic processes in other cell types. Evidence for FoxO3 activation was similarly detected in unloaded failing human myocardium. To determine the role of FoxO3 activation in cardiac muscle in vivo, we engineered transgenic mice harboring a cardiomyocyte‐specific constitutively active FoxO3 mutant (caFoxO3flox;αMHC‐Mer‐Cre‐Mer). Expression of caFoxO3 triggered dramatic and progressive loss of cardiac mass, robust increases in cardiomyocyte autophagy, declines in mitochondrial biomass and function, and early mortality. Whereas increases in cardiomyocyte apoptosis were not apparent, we detected robust increases in Bnip3 (Bcl2/adenovirus E1B 19‐kDa interacting protein 3), an established downstream target of FoxO3. To test the role of Bnip3, we crossed the caFoxO3flox;αMHC‐Mer‐Cre‐Mer mice with Bnip3‐null animals. Remarkably, the atrophy and autophagy phenotypes were significantly blunted, yet the early mortality triggered by FoxO3 activation persisted. Rather, declines in cardiac performance were attenuated by proteasome inhibitors. Consistent with involvement of FoxO3‐driven activation of the ubiquitin‐proteasome system, we detected time‐dependent activation of the atrogenes program and sarcomere protein breakdown. Conclusions In aggregate, these data point to FoxO3, a protein activated by mechanical unloading, as a master regulator that governs both the autophagy‐lysosomal and ubiquitin‐proteasomal pathways to orchestrate cardiac muscle atrophy. PMID:23568341

  8. Rapid fusion between mesenchymal stem cells and cardiomyocytes yields electrically active, non-contractile hybrid cells

    PubMed Central

    Shadrin, Ilya Y.; Yoon, Woohyun; Li, Liqing; Shepherd, Neal; Bursac, Nenad

    2015-01-01

    Cardiac cell therapies involving bone marrow-derived human mesenchymal stem cells (hMSCs) have shown promising results, although their mechanisms of action are still poorly understood. Here, we investigated direct interactions between hMSCs and cardiomyocytes in vitro. Using a genetic Ca2+ indicator gCaMP3 to efficiently label hMSCs in co-cultures with neonatal rat ventricular myocytes (NRVMs), we determined that 25–40% of hMSCs (from 4 independent donors) acquired periodic Ca2+ transients and cardiac markers through spontaneous fusion with NRVMs. Sharp electrode and voltage-clamp recordings in fused cells showed action potential properties and Ca2+ current amplitudes in between those of non-fused hMSCs and NRVMs. Time-lapse video-microscopy revealed the first direct evidence of active fusion between hMSCs and NRVMs within several hours of co-culture. Application of blebbistatin, nifedipine or verapamil caused complete and reversible inhibition of fusion, suggesting potential roles for actomyosin bridging and Ca2+ channels in the fusion process. Immunostaining for Cx43, Ki67, and sarcomeric α-actinin showed that fused cells remain strongly coupled to surrounding NRVMs, but downregulate sarcomeric structures over time, acquiring a non-proliferative and non-contractile phenotype. Overall, these results describe the phenotype and mechanisms of hybrid cell formation via fusion of hMSCs and cardiomyocytes with potential implications for cardiac cell therapy. PMID:26159124

  9. Rapid fusion between mesenchymal stem cells and cardiomyocytes yields electrically active, non-contractile hybrid cells.

    PubMed

    Shadrin, Ilya Y; Yoon, Woohyun; Li, Liqing; Shepherd, Neal; Bursac, Nenad

    2015-07-10

    Cardiac cell therapies involving bone marrow-derived human mesenchymal stem cells (hMSCs) have shown promising results, although their mechanisms of action are still poorly understood. Here, we investigated direct interactions between hMSCs and cardiomyocytes in vitro. Using a genetic Ca(2+) indicator gCaMP3 to efficiently label hMSCs in co-cultures with neonatal rat ventricular myocytes (NRVMs), we determined that 25-40% of hMSCs (from 4 independent donors) acquired periodic Ca(2+) transients and cardiac markers through spontaneous fusion with NRVMs. Sharp electrode and voltage-clamp recordings in fused cells showed action potential properties and Ca(2+) current amplitudes in between those of non-fused hMSCs and NRVMs. Time-lapse video-microscopy revealed the first direct evidence of active fusion between hMSCs and NRVMs within several hours of co-culture. Application of blebbistatin, nifedipine or verapamil caused complete and reversible inhibition of fusion, suggesting potential roles for actomyosin bridging and Ca(2+) channels in the fusion process. Immunostaining for Cx43, Ki67, and sarcomeric α-actinin showed that fused cells remain strongly coupled to surrounding NRVMs, but downregulate sarcomeric structures over time, acquiring a non-proliferative and non-contractile phenotype. Overall, these results describe the phenotype and mechanisms of hybrid cell formation via fusion of hMSCs and cardiomyocytes with potential implications for cardiac cell therapy.

  10. Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity.

    PubMed

    Vinciguerra, Manlio; Santini, Maria Paola; Claycomb, William C; Ladurner, Andreas G; Rosenthal, Nadia

    2009-12-10

    Oxidative and hypertrophic stresses contribute to the pathogenesis of heart failure. Insulin-like growth factor-1 (IGF-1) is a peptide hormone with a complex post-transcriptional regulation, generating distinct isoforms. Locally acting IGF-1 isoform (mIGF-1) helps the heart to recover from toxic injury and from infarct. In the murine heart, moderate overexpression of the NAD(+)-dependent deacetylase SirT1 was reported to mitigate oxidative stress. SirT1 is known to promote lifespan extension and to protect from metabolic challenges. Circulating IGF-1 and SirT1 play antagonizing biological roles and share molecular targets in the heart, in turn affecting cardiomyocyte physiology. However, how different IGF-1 isoforms may impact SirT1 and affect cardiomyocyte function is unknown. Here we show that locally acting mIGF-1 increases SirT1 expression/activity, whereas circulating IGF-1 isoform does not affect it, in cultured HL-1 and neonatal cardiomyocytes. mIGF-1-induced SirT1 activity exerts protection against angiotensin II (Ang II)-triggered hypertrophy and against paraquat (PQ) and Ang II-induced oxidative stress. Conversely, circulating IGF-1 triggered itself oxidative stress and cardiomyocyte hypertrophy. Interestingly, potent cardio-protective genes (adiponectin, UCP-1 and MT-2) were increased specifically in mIGF-1-overexpressing cardiomyocytes, in a SirT1-dependent fashion. Thus, mIGF-1 protects cardiomyocytes from oxidative and hypertrophic stresses via SirT1 activity, and may represent a promising cardiac therapeutic.

  11. Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity

    PubMed Central

    Vinciguerra, Manlio; Santini, Maria Paola; Claycomb, William C.; Ladurner, Andreas G.; Rosenthal, Nadia

    2010-01-01

    Oxidative and hypertrophic stresses contribute to the pathogenesis of heart failure. Insulin-like growth factor-1 (IGF-1) is a peptide hormone with a complex post-transcriptional regulation, generating distinct isoforms. Locally acting IGF-1 isoform (mIGF-1) helps the heart to recover from toxic injury and from infarct. In the murine heart, moderate overexpression of the NAD+-dependent deacetylase SirT1 was reported to mitigate oxidative stress. SirT1 is known to promote lifespan extension and to protect from metabolic challenges. Circulating IGF-1 and SirT1 play antagonizing biological roles and share molecular targets in the heart, in turn affecting cardiomyocyte physiology. However, how different IGF-1 isoforms may impact SirT1 and affect cardiomyocyte function is unknown. Here we show that locally acting mIGF-1 increases SirT1 expression/activity, whereas circulating IGF-1 isoform does not affect it, in cultured HL-1 and neonatal cardiomyocytes. mIGF-1-induced SirT1 activity exerts protection against angiotensin II (Ang II)-triggered hypertrophy and against paraquat (PQ) and Ang II-induced oxidative stress. Conversely, circulating IGF-1 triggered itself oxidative stress and cardiomyocyte hypertrophy. Interestingly, potent cardio-protective genes (adiponectin, UCP-1 and MT-2) were increased specifically in mIGF-1-overexpressing cardiomyocytes, in a SirT1-dependent fashion. Thus, mIGF-1 protects cardiomyocytes from oxidative and hypertrophic stresses via SirT1 activity, and may represent a promising cardiac therapeutic. PMID:20228935

  12. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    SciTech Connect

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  13. NFAT5 Contributes to Osmolality-Induced MCP-1 Expression in Mesothelial Cells

    PubMed Central

    Küper, Christoph; Beck, Franz-X.; Neuhofer, Wolfgang

    2012-01-01

    Increased expression of the C-C chemokine monocyte chemoattractant protein-1 (MCP-1) in mesothelial cells in response to high glucose concentrations and/or high osmolality plays a crucial role in the development of peritoneal fibrosis during continuous ambulatory peritoneal dialysis (CAPD). Recent studies suggest that in kidney cells osmolality-induced MCP-1 upregulation is mediated by the osmosensitive transcription factor, nuclear factor of activated T cells 5 (NFAT5). The present study addressed the question of whether activation of NFAT5 by hyperosmolality, as present in PD fluids, contributes to MCP-1 expression in the mesothelial cell line Met5A. Hyperosmolality, induced by addition of glucose, NaCl, or mannitol to the growth medium, increased NFAT5 activity and stimulated MCP-1 expression in Met5A cells. siRNA-mediated knockdown of NFAT5 attenuated osmolality-induced MCP-1 upregulation substantially. Hyperosmolality also induced activation of nuclear factor-κB (NF-κB). Accordingly, pharmacological inhibition of NF-κB significantly decreased osmolality-induced MCP-1 expression. Taken together, these results indicate that high osmolalities activate the transcription factor NFAT5 in mesothelial cells. NFAT5 in turn upregulates MCP-1, likely in combination with NF-κB, and thus may participate in the development of peritoneal fibrosis during CAPD. PMID:22619484

  14. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    SciTech Connect

    Kiso, Hironori; Ohba, Takayoshi; Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka; Murakami, Manabu; Ono, Kyoichi; Watanabe, Hiroyuki; Ito, Hiroshi

    2013-07-05

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression.

  15. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes.

    PubMed

    Kijlstra, Jan David; Hu, Dongjian; Mittal, Nikhil; Kausel, Eduardo; van der Meer, Peter; Garakani, Arman; Domian, Ibrahim J

    2015-12-08

    The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening.

  16. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Kijlstra, Jan David; Hu, Dongjian; Mittal, Nikhil; Kausel, Eduardo; van der Meer, Peter; Garakani, Arman; Domian, Ibrahim J.

    2015-01-01

    Summary The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening. PMID:26626178

  17. UCR1C is a novel activator of phosphodiesterase 4 (PDE4) long isoforms and attenuates cardiomyocyte hypertrophy

    PubMed Central

    Wang, Li; Burmeister, Brian T.; Johnson, Keven R.; Baillie, George S.; Karginov, Andrei V.; Skidgel, Randal A.; O’Bryan, John P.; Carnegie, Graeme K.

    2015-01-01

    Hypertrophy increases the risk of heart failure and arrhythmia. Prevention or reversal of the maladaptive hypertrophic phenotype has thus been proposed to treat heart failure. Chronic β-adrenergic receptor (β-AR) stimulation induces cardiomyocyte hypertrophy by elevating 3′, 5′-cyclic adenosine monophosphate (cAMP) levels and activating downstream effectors such protein kinase A (PKA). Conversely, hydrolysis of cAMP by phosphodiesterases (PDEs) spatiotemporally restricts cAMP signaling. Here, we demonstrate that PDE4, but not PDE3, is critical in regulating cardiomyocyte hypertrophy, and may represent a potential target for preventing maladaptive hypertrophy. We identify a sequence within the upstream conserved region 1 of PDE4D, termed UCR1C, as a novel activator of PDE4 long isoforms. UCR1C activates PDE4 in complex with A-Kinase anchoring protein (AKAP)-Lbc resulting in decreased PKA signaling facilitated by AKAP-Lbc. Expression of UCR1C in cardiomyocytes inhibits hypertrophy in response to chronic β-AR stimulation. This effect is partially due to inhibition of nuclear PKA activity, which decreases phosphorylation of the transcription factor cAMP response element-binding protein (CREB). In conclusion, PDE4 activation by UCR1C attenuates cardiomyocyte hypertrophy by specifically inhibiting nuclear PKA activity. PMID:25683917

  18. NFAT5 in cellular adaptation to hypertonic stress – regulations and functional significance

    PubMed Central

    2013-01-01

    The Nuclear Factor of Activated T Cells-5 (NFAT5), also known as OREBP or TonEBP, is a member of the nuclear factors of the activated T cells family of transcription factors. It is also the only known tonicity-regulated transcription factor in mammals. NFAT5 was initially known for its role in the hypertonic kidney inner medulla for orchestrating a genetic program to restore the cellular homeostasis. Emerging evidence, however, suggests that NFAT5 might play a more diverse functional role, including a pivotal role in blood pressure regulation and the development of autoimmune diseases. Despite the growing significance of NFAT5 in physiology and diseases, our understanding of how its activity is regulated remains very limited. Furthermore, how changes in tonicities are converted into functional outputs via NFAT5 remains elusive. Therefore, this review aims to summarize our current knowledge on the functional roles of NFAT5 in osmotic stress adaptation and the signaling pathways that regulate its activity. PMID:23618372

  19. Modification of STIM1 by O-linked N-Acetylglucosamine (O-GlcNAc) Attenuates Store-operated Calcium Entry in Neonatal Cardiomyocytes*

    PubMed Central

    Zhu-Mauldin, Xiaoyuan; Marsh, Susan A.; Zou, Luyun; Marchase, Richard B.; Chatham, John C.

    2012-01-01

    Store-operated calcium entry (SOCE) is a major Ca2+ signaling pathway responsible for regulating numerous transcriptional events. In cardiomyocytes SOCE has been shown to play an important role in regulating hypertrophic signaling pathways, including nuclear translocation of NFAT. Acute activation of pathways leading to O-GlcNAc synthesis have been shown to impair SOCE-mediated transcription and in diabetes, where O-GlcNAc levels are chronically elevated, cardiac hypertrophic signaling is also impaired. Therefore the goal of this study was to determine whether changes in cardiomyocyte O-GlcNAc levels impaired the function of STIM1, a widely recognized mediator of SOCE. We demonstrated that acute activation of SOCE in neonatal cardiomyocytes resulted in STIM1 puncta formation, which was inhibited in a dose-dependent manner by increasing O-GlcNAc synthesis with glucosamine or inhibiting O-GlcNAcase with thiamet-G. Glucosamine and thiamet-G also inhibited SOCE and were associated with increased O-GlcNAc modification of STIM1. These results suggest that activation of cardiomyocyte O-GlcNAcylation attenuates SOCE via STIM1 O-GlcNAcylation and that this may represent a new mechanism by which increased O-GlcNAc levels regulate Ca2+-mediated events in cardiomyocytes. Further, since SOCE is a fundamental mechanism underlying Ca2+ signaling in most cells and tissues, it is possible that STIM1 represents a nexus linking protein O-GlcNAcylation with Ca2+-mediated transcription. PMID:22992728

  20. Follicular regulatory T cells control humoral autoimmunity via NFAT2-regulated CXCR5 expression.

    PubMed

    Vaeth, Martin; Müller, Gerd; Stauss, Dennis; Dietz, Lena; Klein-Hessling, Stefan; Serfling, Edgar; Lipp, Martin; Berberich, Ingolf; Berberich-Siebelt, Friederike

    2014-03-10

    Maturation of high-affinity B lymphocytes is precisely controlled during the germinal center reaction. This is dependent on CD4(+)CXCR5(+) follicular helper T cells (TFH) and inhibited by CD4(+)CXCR5(+)Foxp3(+) follicular regulatory T cells (TFR). Because NFAT2 was found to be highly expressed and activated in follicular T cells, we addressed its function herein. Unexpectedly, ablation of NFAT2 in T cells caused an augmented GC reaction upon immunization. Consistently, however, TFR cells were clearly reduced in the follicular T cell population due to impaired homing to B cell follicles. This was TFR-intrinsic because only in these cells NFAT2 was essential to up-regulate CXCR5. The physiological relevance for humoral (auto-)immunity was corroborated by exacerbated lupuslike disease in the presence of NFAT2-deficient TFR cells.

  1. NFAT1 and NFAT3 Cooperate with HDAC4 during Regulation of Alternative Splicing of PMCA Isoforms in PC12 Cells

    PubMed Central

    Kosiorek, Michalina; Podszywalow-Bartnicka, Paulina; Zylinska, Ludmila; Pikula, Slawomir

    2014-01-01

    Background The bulk of human genes undergo alternative splicing (AS) upon response to physiological stimuli. AS is a great source of protein diversity and biological processes and is associated with the development of many diseases. Pheochromocytoma is a neuroendocrine tumor, characterized by an excessive Ca2+-dependent secretion of catecholamines. This underlines the importance of balanced control of calcium transport via regulation of gene expression pattern, including different calcium transport systems, such as plasma membrane Ca2+-ATPases (PMCAs), abundantly expressed in pheochromocytoma chromaffin cells (PC12 cells). PMCAs are encoded by four genes (Atp2b1, Atp2b2, Atp2b3, Atp2b4), whose transcript products undergo alternative splicing giving almost 30 variants. Results In this scientific report, we propose a novel mechanism of regulation of PMCA alternative splicing in PC12 cells through cooperation of the nuclear factor of activated T-cells (NFAT) and histone deacetylases (HDACs). Luciferase assays showed increased activity of NFAT in PC12 cells, which was associated with altered expression of PMCA. RT-PCR experiments suggested that inhibition of the transcriptional activity of NFAT might result in the rearrangement of PMCA splicing variants in PC12 cells. NFAT inhibition led to dominant expression of 2x/c, 3x/a and 4x/a PMCA variants, while in untreated cells the 2w,z/b, 3z,x/b,c,e,f, and 4x/b variants were found as well. Furthermore, chromatin immunoprecipitation experiments showed that NFAT1-HDAC4 or NFAT3-HDAC4 complexes might be involved in regulation of PMCA2x splicing variant generation. Conclusions We suggest that the influence of NFAT/HDAC on PMCA isoform composition might be important for altered dopamine secretion by PC12 cells. PMID:24905014

  2. Aleglitazar, a dual peroxisome proliferator-activated receptor-α and -γ agonist, protects cardiomyocytes against the adverse effects of hyperglycaemia

    PubMed Central

    Chen, Yan; Chen, Hongmei; Birnbaum, Yochai; Nanhwan, Manjyot K; Bajaj, Mandeep; Ye, Yumei; Qian, Jinqiao

    2017-01-01

    Purpose: To assess the effects of Aleglitazar on hyperglycaemia-induced apoptosis. Methods: We incubated human cardiomyocytes, cardiomyocytes from cardiac-specific peroxisome proliferator-activated receptor-γ knockout or wild-type mice in normoglycaemic or hyperglycaemic conditions (glucose 25 mM). Cells were treated with different concentrations of Aleglitazar for 48 h. We measured viability, apoptosis, caspase-3 activity, cytochrome-C release, total antioxidant capacity and reactive oxygen species formation in the treated cardiomyocytes. Human cardiomyocytes were transfected with short interfering RNA against peroxisome proliferator-activated receptor-α or peroxisome proliferator-activated receptor-γ. Results: Aleglitazar attenuated hyperglycaemia-induced apoptosis, caspase-3 activity and cytochrome-C release and increased viability in human cardiomyocyte, cardiomyocytes from cardiac-specific peroxisome proliferator-activated receptor-γ knockout and wild-type mice. Hyperglycaemia reduced the antioxidant capacity and Aleglitazar significantly blunted this effect. Hyperglycaemia-induced reactive oxygen species production was attenuated by Aleglitazar in both human cardiomyocyte and wild-type mice cardiomyocytes. Aleglitazar improved cell viability in cells exposed to hyperglycaemia. The protective effect was partially blocked by short interfering RNA against peroxisome proliferator-activated receptor-α alone and short interfering RNA against peroxisome proliferator-activated receptor-γ alone and completely blocked by short interfering RNA to both peroxisome proliferator-activated receptor-α and peroxisome proliferator-activated receptor-γ. Conclusion: Aleglitazar protects cardiomyocytes against hyperglycaemia-induced apoptosis by combined activation of both peroxisome proliferator-activated receptor-α and peroxisome proliferator-activated receptor-γ in a short-term vitro model. PMID:28111985

  3. Activity, Inhibition, and Induction of Cytochrome P450 2J2 in Adult Human Primary Cardiomyocytes

    PubMed Central

    Evangelista, Eric A.; Kaspera, Rüdiger; Mokadam, Nahush A.; Jones, J. P.

    2013-01-01

    Cytochrome P450 2J2 plays a significant role in the epoxidation of arachidonic acid to signaling molecules important in cardiovascular events. CYP2J2 also contributes to drug metabolism and is responsible for the intestinal clearance of ebastine. However, the interaction between arachidonic acid metabolism and drug metabolism in cardiac tissue, the main expression site of CYP2J2, has not been examined. Here we investigate an adult-derived human primary cardiac cell line as a suitable model to study metabolic drug interactions (inhibition and induction) of CYP2J2 in cardiac tissue. The primary human cardiomyocyte cell line demonstrated similar mRNA-expression profiles of P450 enzymes to adult human ventricular tissue. CYP2J2 was the dominant isozyme with minor contributions from CYP2D6 and CYP2E1. Both terfenadine and astemizole oxidation were observed in this cell line, whereas midazolam was not metabolized suggesting lack of CYP3A activity. Compared with recombinant CYP2J2, terfenadine was hydroxylated in cardiomyocytes at a similar Km value of 1.5 μM. The Vmax of terfenadine hydroxylation in recombinant enzyme was found to be 29.4 pmol/pmol P450 per minute and in the cells 6.0 pmol/pmol P450 per minute. CYP2J2 activity in the cell line was inhibited by danazol, astemizole, and ketoconazole in submicromolar range, but also by xenobiotics known to cause cardiac adverse effects. Of the 14 compounds tested for CYP2J2 induction, only rosiglitazone increased mRNA expression, by 1.8-fold. This cell model can be a useful in vitro model to investigate the role of CYP2J2-mediated drug metabolism, arachidonic acid metabolism, and their association to drug induced cardiotoxicity. PMID:24021950

  4. Effect of Berberine on PPAR α /NO Activation in High Glucose- and Insulin-Induced Cardiomyocyte Hypertrophy.

    PubMed

    Wang, Mingfeng; Wang, Jia; Tan, Rui; Wu, Qin; Qiu, Hongmei; Yang, Junqing; Jiang, Qingsong

    2013-01-01

    Rhizoma coptidis, the root of Coptis chinensis Franch, has been used in China as a folk medicine in the treatment of diabetes for thousands of years. Berberine, one of the active ingredients of Rhizoma coptidis, has been reported to improve symptoms of diabetes and to treat experimental cardiac hypertrophy, respectively. The objective of this study was to evaluate the potential effect of berberine on cardiomyocyte hypertrophy in diabetes and its possible influence on peroxisome proliferator-activated receptor- α (PPAR α )/nitric oxide (NO) signaling pathway. The cardiomyocyte hypertrophy induced by high glucose (25.5 mmol/L) and insulin (0.1  μ mol/L) (HGI) was characterized in rat primary cardiomyocyte by measuring the cell surface area, protein content, and atrial natriuretic factor mRNA expression level. Protein and mRNA expression were measured by western blot and real-time RT-PCR, respectively. The enzymatic activity of NO synthase (NOS) was measured using a spectrophotometric assay, and NO concentration was measured using the Griess assay. HGI significantly induced cardiomyocyte hypertrophy and decreased the expression of PPAR α and endothelial NOS at the mRNA and protein levels, which occurred in parallel with declining NOS activity and NO concentration. The effect of HGI was inhibited by berberine (0.1 to 100  μ mol/L), fenofibrate (0.3  μ mol/L), or L-arginine (100  μ mol/L). MK886 (0.3  μ mol/L), a selective PPAR α antagonist, could abolish the effects of berberine and fenofibrate. N (G) -nitro-L-arginine-methyl ester (100  μ mol/L), a NOS inhibitor, could block the effects of L-arginine, but only partially blocked the effects of berberine. These results suggest that berberine can blunt HGI-induced cardiomyocyte hypertrophy in vitro, through the activation of the PPAR α /NO signaling pathway.

  5. Parallel activation of Ca(2+)-induced survival and death pathways in cardiomyocytes by sorbitol-induced hyperosmotic stress.

    PubMed

    Chiong, M; Parra, V; Eisner, V; Ibarra, C; Maldonado, C; Criollo, A; Bravo, R; Quiroga, C; Contreras, A; Vicencio, J M; Cea, P; Bucarey, J L; Molgó, J; Jaimovich, E; Hidalgo, C; Kroemer, G; Lavandero, S

    2010-08-01

    Hyperosmotic stress promotes rapid and pronounced apoptosis in cultured cardiomyocytes. Here, we investigated if Ca(2+) signals contribute to this response. Exposure of cardiomyocytes to sorbitol [600 mosmol (kg water)(-1)] elicited large and oscillatory intracellular Ca(2+) concentration increases. These Ca(2+) signals were inhibited by nifedipine, Cd(2+), U73122, xestospongin C and ryanodine, suggesting contributions from both Ca(2+) influx through voltage dependent L-type Ca(2+) channels plus Ca(2+) release from intracellular stores mediated by IP(3) receptors and ryanodine receptors. Hyperosmotic stress also increased mitochondrial Ca(2+) levels, promoted mitochondrial depolarization, reduced intracellular ATP content, and activated the transcriptional factor cyclic AMP responsive element binding protein (CREB), determined by increased CREB phosphorylation and electrophoretic mobility shift assays. Incubation with 1 mM EGTA to decrease extracellular [Ca(2+)] prevented cardiomyocyte apoptosis induced by hyperosmotic stress, while overexpression of an adenoviral dominant negative form of CREB abolished the cardioprotection provided by 1 mM EGTA. These results suggest that hyperosmotic stress induced by sorbitol, by increasing Ca(2+) influx and raising intracellular Ca(2+) concentration, activates Ca(2+) release from stores and causes cell death through mitochondrial function collapse. In addition, the present results suggest that the Ca(2+) increase induced by hyperosmotic stress promotes cell survival by recruiting CREB-mediated signaling. Thus, the fate of cardiomyocytes under hyperosmotic stress will depend on the balance between Ca(2+)-induced survival and death pathways.

  6. Context-dependent regulation of Th17-associated genes and IFNγ expression by the transcription factor NFAT5.

    PubMed

    Alberdi, Maria; Iglesias, Marcos; Tejedor, Sonia; Merino, Ramón; López-Rodríguez, Cristina; Aramburu, Jose

    2017-01-01

    Stress-activated transcription factors influence T-cell function in different physiopathologic contexts. NFAT5, a relative of nuclear factor κB and the calcineurin-activated NFATc transcription factors, protects mammalian cells from hyperosmotic stress caused by the elevation of extracellular sodium levels. In T cells exposed to hypernatremia, NFAT5 not only induces osmoprotective gene products but also cytokines and immune receptors, which raises the question of whether this factor could regulate other T-cell functions in osmostress-independent contexts. Here we have used mice with a conditional deletion of Nfat5 in mature T lymphocytes to explore osmostress-dependent and -independent functions of this factor. In vitro experiments with CD4 T cells stimulated in hyperosmotic medium showed that NFAT5 enhanced the expression of IL-2 and the Th17-associated gene products RORγt and IL-23R. By contrast, NFAT5-deficient CD4 T cells activated in vivo by anti-CD3 antibody exhibited a different activation profile and were skewed towards enhanced interferon γ (IFNγ) and IL-17 expression and attenuated Treg responses. Using a model of experimental colitis, we observed that mice lacking NFAT5 in T cells exhibited exacerbated intestinal colitis and enhanced expression of IFNγ in draining lymph nodes and colon. These results show that NFAT5 can modulate different T-cell responses depending on stress conditions and stimulatory context.

  7. Context-dependent regulation of Th17-associated genes and IFNγ expression by the transcription factor NFAT5

    PubMed Central

    Alberdi, Maria; Iglesias, Marcos; Tejedor, Sonia; Merino, Ramón; López-Rodríguez, Cristina; Aramburu, Jose

    2017-01-01

    Stress-activated transcription factors influence T-cell function in different physiopathologic contexts. NFAT5, a relative of nuclear factor κB and the calcineurin-activated NFATc transcription factors, protects mammalian cells from hyperosmotic stress caused by the elevation of extracellular sodium levels. In T cells exposed to hypernatremia, NFAT5 not only induces osmoprotective gene products but also cytokines and immune receptors, which raises the question of whether this factor could regulate other T-cell functions in osmostress-independent contexts. Here we have used mice with a conditional deletion of Nfat5 in mature T lymphocytes to explore osmostress-dependent and -independent functions of this factor. In vitro experiments with CD4 T cells stimulated in hyperosmotic medium showed that NFAT5 enhanced the expression of IL-2 and the Th17-associated gene products RORγt and IL-23R. By contrast, NFAT5-deficient CD4 T cells activated in vivo by anti-CD3 antibody exhibited a different activation profile and were skewed towards enhanced interferon γ (IFNγ) and IL-17 expression and attenuated Treg responses. Using a model of experimental colitis, we observed that mice lacking NFAT5 in T cells exhibited exacerbated intestinal colitis and enhanced expression of IFNγ in draining lymph nodes and colon. These results show that NFAT5 can modulate different T-cell responses depending on stress conditions and stimulatory context. PMID:27479742

  8. TNF-α Contributes to Caspase-3 Independent Apoptosis in Neuroblastoma Cells: Role of NFAT

    PubMed Central

    Álvarez, Susana; Blanco, Almudena; Fresno, Manuel; Muñoz-Fernández, Ma Ángeles

    2011-01-01

    There is increasing evidence that soluble factors in inflammatory central nervous system diseases not only regulate the inflammatory process but also directly influence electrophysiological membrane properties of neurons and astrocytes. In this context, the cytokine TNF-α (tumor necrosis factor-α) has complex injury promoting, as well as protective, effects on neuronal viability. Up-regulated TNF-α expression has also been found in various neurodegenerative diseases such as cerebral malaria, AIDS dementia, Alzheimer's disease, multiple sclerosis, and stroke, suggesting a potential pathogenic role of TNF-α in these diseases as well. We used the neuroblastoma cells SK-N-MC. Transcriptional activity was measured using luciferase reporter gene assays by using lipofectin. We performed cotransfection experiments of NFAT (nuclear factor of activated T cells) promoter constructed with a dominant negative version of NFAT (dn-NFAT). Cell death was performed by MTT (3-(4,5-dimethylthiazol-2-yl)5,5-diphenyltetrazolium bromide) and TUNEL assays. NFAT translocation was confirmed by Western blot. Involvement of NFAT in cell death was assessed by using VIVIT. P53, Fas-L, caspase-3, and caspase-9 expressions were carried out by Western blot. The mechanisms involved in TNF-α-induced cell death were assessed by using microarray analysis. TNF-α causes neuronal cell death in the absence of glia. TNF-α treatment results in nuclear translocation of NFAT through activation of calcineurin in a Ca2+ independent manner. We demonstrated the involvement of FasL/Fas, cytochrome c, and caspase-9 but the lack of caspase-3 activation. NB cell death was absolutely reverted in the presence of VIVIT, and partially diminished by anti-Fas treatment. These data demonstrate that TNF-α promotes FasL expression through NFAT activation in neuroblastoma cells and this event leads to increased apoptosis through independent caspase-3 activation. PMID:21298033

  9. Characterization of a Ca2+-activated nonselective cation channel during dedifferentiation of cultured rat ventricular cardiomyocytes.

    PubMed

    Guinamard, R; Rahmati, M; Lenfant, J; Bois, P

    2002-07-15

    Cardiac hypertrophy is associated with electrical activity modifications, including sustained depolarization, that lead to a propensity for arrhythmias. The ionic currents underlying the sustained depolarization are not well defined. Similar modifications were reported on adult rat cardiomyocytes in primary culture undergoing dedifferentiation. Using the single-channel measurements on these cells, we identified the appearance of a Ca2+-activated nonselective cation channel (NSCCa) during the dedifferentiation process. In excised inside-out patches the channel presented a linear I/V relationship with a conductance of 26.5 pS. It was equally selective for Na+ and K+ and impermeable to Cl- and Ca2+ ions. The open probability increased with depolarization and with rise in intracellular calcium concentration. The channel activity was reduced by intracellular ATP and suppressed by flufenamic acid. Channel detection increased after incubation with a purinergic receptor agonist (ATPgS) or a PKC activator (PMA). Furthermore, occurrence of the channel developed during the culture. Absent at one day in vitro (d.i.v.), channel activity was present in 5, 46, 27 and 19% of patches after 4, 7, 14 and 21 d.i.v., respectively. We suggest that the channel may be associated with pro-arrhythmic signaling, in particular during the release of transmitters from autonomic nerve endings in the hypertrophied hearts.

  10. Hyperosmotic stress-dependent NFkappaB activation is regulated by reactive oxygen species and IGF-1 in cultured cardiomyocytes.

    PubMed

    Eisner, Verónica; Criollo, Alfredo; Quiroga, Clara; Olea-Azar, Claudio; Santibañez, Juan Francisco; Troncoso, Rodrigo; Chiong, Mario; Díaz-Araya, Guillermo; Foncea, Rocío; Lavandero, Sergio

    2006-08-07

    We have recently shown that hyperosmotic stress activates p65/RelB NFkappaB in cultured cardiomyocytes with dichotomic actions on caspase activation and cell death. It remains unexplored how NFkappaB is regulated in cultured rat cardiomyocytes exposed to hyperosmotic stress. We study here: (a) if hyperosmotic stress triggers reactive oxygen species (ROS) generation and in turn whether they regulate NFkappaB and (b) if insulin-like growth factor-1 (IGF-1) modulates ROS production and NFkappaB activation in hyperosmotically-stressed cardiomyocytes. The results showed that hyperosmotic stress generated ROS in cultured cardiac myocytes, in particular the hydroxyl and superoxide species, which were inhibited by N-acetylcysteine (NAC). Hyperosmotic stress-induced NFkappaB activation as determined by IkappaBalpha degradation and NFkappaB DNA binding. NFkappaB activation and procaspase-3 and -9 fragmentation were prevented by NAC and IGF-1. However, this growth factor did not decrease ROS generation induced by hyperosmotic stress, suggesting that its actions over NFkappaB and caspase activation may be due to modulation of events downstream of ROS generation. We conclude that hyperosmotic stress induces ROS, which in turn activates NFkappaB and caspases. IGF-1 prevents NFkappaB activation by a ROS-independent mechanism.

  11. A novel chimeric natriuretic peptide reduces cardiomyocyte hypertrophy through the NHE-1-calcineurin pathway.

    PubMed

    Kilic, Ana; Rajapurohitam, Venkatesh; Sandberg, Sharon M; Zeidan, Asad; Hunter, J Craig; Said Faruq, Nazo; Lee, Candace Y; Burnett, John C; Karmazyn, Morris

    2010-12-01

    Natriuretic peptides (NPs) inhibit cardiomyocyte hypertrophy through a cyclic GMP (cGMP)-dependent process, although these effects are associated with substantial vasodilatation. In this study, we used CU-NP, a non-vasodilatating novel NP synthesized from the ring structure of human C-type NP (CNP) and both C- and N-termini of urodilatin, and investigated whether it can directly modulate cardiomyocyte hypertrophy. Experiments were carried out in cultured neonatal rat ventricular myocytes exposed to phenylephrine, angiotensin II, or endothelin-1 in the absence or presence of CU-NP. CU-NP produced a concentration- and time-dependent increase in intracellular cGMP levels. The hypertrophic responses to all agonists were abrogated by 10 nM CU-NP. CU-NP treatment also prevented increased activity, gene and protein expression of sodium-hydrogen exchanger-1 (NHE-1) as well as elevations in intracellular Na(+) concentrations caused by hypertrophic agents. In addition, these effects were associated with a more than two-fold increase in activity of the Ca(2+)-dependent protein phosphatase calcineurin that peaked 6 h after addition of hypertrophic stimuli. Early (1-3 h) calcineurin activation was unaffected by CU-NP, although activation at 6 and 24 h was prevented by CU-NP as was the resultant translocation of the transcriptional factor NFAT into nuclei. Our study demonstrates a direct anti-hypertrophic effect of the chimeric peptide CU-NP via NHE-1 inhibition, thereby preventing calcineurin activation and NFAT nuclear import. Thus, CU-NP represents a novel fusion peptide of CNP and urodilatin that has the potential to be developed into a therapeutic agent to treat cardiac hypertrophy and heart failure.

  12. T-plastin expression downstream to the calcineurin/NFAT pathway is involved in keratinocyte migration.

    PubMed

    Brun, Cécilia; Demeaux, Agathe; Guaddachi, Frédéric; Jean-Louis, Francette; Oddos, Thierry; Bagot, Martine; Bensussan, Armand; Jauliac, Sébastien; Michel, Laurence

    2014-01-01

    Cutaneous wound healing requires keratinocyte proliferation, migration and differentiation to restore the barrier function of the skin. The calcineurin/nuclear factor of activated-T-cell (NFAT) signaling pathway has been recently shown to be involved in keratinocyte growth, differentiation and migration. It is induced by an increased intracellular calcium rate and its inhibition results in decreased capacities of keratinocytes to migrate. Nevertheless, the link between calcineurin activation and keratinocyte migration remains unknown. Recently, Orai1, a pore subunit of a store-operated calcium channel that favors calcium influx, was shown to play a critical role to control proliferation and migration of basal keratinocytes. Of interest, the actin-bundling T-plastin is crucial in cell motility through cross-linking to actin filament and its synthesis was shown to be induced by calcium influx and regulated by the calcineurin/NFAT pathway in tumor Sezary cells. We investigated herein the role of the calcineurin/NFAT pathway-dependent T-plastin in keratinocyte migration, by quantifying T-plastin expression in keratinocytes and by analyzing their migration under calcineurin inhibition or knockdown of NFAT2 or T-plastin. We did confirm the role of the calcineurin/NFAT pathway in keratinocyte migration as shown by their decreased capacities to migrate after FK506 treatment or siNFAT2 transfection in both scratching and Boyden assays. The expression of NFAT2 and T-plastin in keratinocytes was decreased under FK506 treatment, suggesting that T-plastin plays a role in keratinocyte migration downstream to the calcineurin/NFAT pathway. Accordingly, siRNA knockdown of T-plastin expression also decreased their migration capacities. Actin lamellipodia formation as well as FAK and β6-integrin expression were also significantly decreased after treatment with FK506 or siRNA, reinforcing that NFAT2-dependent T-plastin expression plays a role in keratinocyte migration. These results

  13. AMP-activated protein kinase-dependent autophagy mediated the protective effect of sonic hedgehog pathway on oxygen glucose deprivation-induced injury of cardiomyocytes.

    PubMed

    Xiao, Qing; Yang, Ya; Qin, Yuan; He, Yan-Hua; Chen, Kui-Xiang; Zhu, Jian-Wei; Zhang, Gui-Ping; Luo, Jian-Dong

    2015-02-13

    Sonic hedgehog (Shh) pathway has been reported to protect cardiomyocytes in myocardial infarction (MI), but the underlying mechanism is not clear. Here, we provide evidence that Shh pathway induces cardiomyocytes survival through AMP-activated protein kinase-dependent autophagy. Shh pathway agonist SAG increased the expression of LC3-II, and induced the formation of autophagosomes in cultured H9c2 cardiomyocytes under oxygen glucose deprivation (OGD) 1 h and 4 h. Moreover, SAG induced a profound AMP-activated protein kinase (AMPK) activation, and then directly phosphorylated and activated the downstream autophagy initiator Ulk1, independent of the autophagy suppressor mammalian target of rapamycin (mTOR) complex 1. Taken together, our results have shown that Shh activates AMPK-dependent autophagy in cardiomyocytes under OGD, suggesting a role of autophagy in Shh-induced cellular protection.

  14. SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-κB.

    PubMed

    Chen, Chun-Juan; Fu, Yu-Cai; Yu, Wei; Wang, Wei

    2013-01-11

    Oxidative stress-mediated cell death in cardiomyocytes reportedly plays an important role in many cardiac pathologies. Our previous report demonstrated that mitochondrial SIRT3 plays an essential role in mediating cell survival in cardiac myocytes, and that resveratrol protects cardiomyocytes from oxidative stress-induced apoptosis by activating SIRT3. However, the exact mechanism by which SIRT3 prevents oxidative stress remains unknown. Here, we show that exposure of H9c2 cells to 50 μM H(2)O(2) for 6h caused a significant increase in cell death and the down-regulation of SIRT3. Reactive oxygen species (ROS)-mediated NF-κB activation was involved in this SIRT3 down-regulation. The SIRT3 activator, resveratrol, which is considered an important antioxidant, protected against H(2)O(2)-induced cell death, whereas the SIRT inhibitor, nicotinamide, enhanced cell death. Moreover, resveratrol negatively regulated H(2)O(2)-induced NF-κB activation, whereas nicotinamide enhanced H(2)O(2)-induced NF-κB activation. We also found that SOD2, Bcl-2 and Bax, the downstream genes of NF-κB, were involved in this pathological process. These results suggest that SIRT3 protects cardiomyocytes exposed to oxidative stress from apoptosis via a mechanism that may involve the NF-κB pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Resveratrol inhibits doxorubicin-induced cardiotoxicity via sirtuin 1 activation in H9c2 cardiomyocytes.

    PubMed

    Liu, Mi-Hua; Shan, Jian; Li, Jian; Zhang, Yuan; Lin, Xiao-Long

    2016-08-01

    Doxorubicin (DOX) is an efficient drug used in cancer therapy; however, it can induce severe cytotoxicity, which limits its clinical application. In the present study, the effects of resveratrol (RES) on sirtuin 1 (SIRT1) activation in mediating DOX-induced cytotoxicity in H9c2 cardiac cells was investigated. H9c2 cells were exposed to 5 µM DOX for 24 h to establish a model of DOX cardiotoxicity. Apoptosis of H9c2 cardiomyocytes was assessed using the MTT assay and Hoechst nuclear staining. The results demonstrated that pretreating H9c2 cells with RES prior to the exposure of DOX resulted in increased cell viability and a decreased quantity of apoptotic cells. Western blot analysis demonstrated that DOX decreased the expression level of SIRT1. These effects were significantly alleviated by co-treatment with RES. In addition, the results demonstrated that DOX administration amplified forkhead box O1 (FoxO1) and P53 expression levels in H9c2 cells. RES was also found to protect against DOX-induced increases of FoxO1 and P53 expression levels in H9c2 cells. Furthermore, the protective effects of RES were arrested by the SIRT1 inhibitor nicotinamide. In conclusion, the results demonstrated that RES protected H9c2 cells against DOX-induced injuries via SIRT1 activation.

  16. The Diuretic Torasemide Does Not Prevent Aldosterone-Mediated Mineralocorticoid Receptor Activation in Cardiomyocytes

    PubMed Central

    Gravez, Basile; Tarjus, Antoine; Jimenez-Canino, Ruben; El Moghrabi, Soumaya; Messaoudi, Smail; de la Rosa, Diego Alvarez; Jaisser, Frederic

    2013-01-01

    Aldosterone binds to the mineralocorticoid receptor (MR) and exerts pleiotropic effects beyond enhancing renal sodium reabsorption. Excessive mineralocorticoid signaling is deleterious during the evolution of cardiac failure, as evidenced by the benefits provided by adding MR antagonists (MRA) to standard care in humans. In animal models of cardiovascular diseases, MRA reduce cardiac fibrosis. Interestingly diuretics such as torasemide also appear efficient to improve cardiovascular morbidity and mortality, through several mechanisms. Among them, it has been suggested that torasemide could block aldosterone binding to the MR. To evaluate whether torasemide acts as a MRA in cardiomyocytes, we compared its effects with a classic MRA such as spironolactone. We monitored ligand-induced nuclear translocation of MR-GFP and MR transactivation activity in the cardiac-like cell line H9C2 using a reporter gene assay and known endogenous aldosterone-regulated cardiac genes. Torasemide did not modify MR nuclear translocation. Aldosterone-induced MR transactivation activity was reduced by the MRA spironolactone, not by torasemide. Spironolactone blocked the induction by aldosterone of endogenous MR-responsive genes (Sgk-1, PAI-1, Orosomucoid-1, Rgs-2, Serpina-3, Tenascin-X), while torasemide was ineffective. These results show that torasemide is not an MR antagonist; its association with MRA in heart failure may however be beneficial, through actions on complementary pathways. PMID:24040049

  17. Osmotic regulation of NFAT5 expression in RPE cells: The involvement of purinergic receptor signaling

    PubMed Central

    Fischer, Sarah; Kuhrt, Heidrun; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon

    2017-01-01

    Purpose Systemic hypertension is a risk factor for age-related neovascular retinal diseases. The major condition that induces hypertension is the intake of dietary salt (NaCl) resulting in increased extracellular osmolarity. High extracellular NaCl was has been shown to induce angiogenic factor production in RPE cells, in part via the transcriptional activity of nuclear factor of activated T cell 5 (NFAT5). Here, we determined the signaling pathways that mediate the osmotic expression of the NFAT5 gene in RPE cells. Methods Cultured human RPE cells were stimulated with high (+100 mM) NaCl. Alterations in gene and protein expression were determined with real-time reverse transcriptase (RT)-PCR and western blot analysis, respectively. Results NaCl-induced NFAT5 gene expression was fully inhibited by calcium chelation and blockers of inositol triphosphate (IP3) receptors and phospholipases C and A2. Blockers of phospholipases C and A2 also prevented the NaCl-induced increase of the cellular NFAT5 protein level. Inhibitors of multiple intracellular signaling transduction pathways and kinases, including p38 mitogen-activated protein kinase (MAPK), extracellular signal–regulated kinases 1 and 2 (ERK1/2), c-Jun NH2-terminal kinase (JNK), phosphatidylinositol-3 kinase (PI3K), protein kinases A and C, Src tyrosine kinases, and calpains, as well as cyclooxygenase inhibitors, decreased the NaCl-induced expression of the NFAT5 gene. In addition, autocrine purinergic signaling mediated by a release of ATP and a nucleoside transporter-mediated release of adenosine, activation of P2X7, P2Y1, P2Y2, and adenosine A1 receptors, but not adenosine A2A receptors, is required for the full expression of the NFAT5 gene under hyperosmotic conditions. NaCl-induced NFAT5 gene expression is in part dependent on the activity of nuclear factor κB (NF-κB). The NaCl-induced expression of NFAT5 protein was prevented by inhibitors of phospholipases C and A2 and an inhibitor of NF-κB, but it

  18. NFAT is required for spontaneous pulmonary hypertension in superoxide dismutase 1 knockout mice

    PubMed Central

    Ramiro-Diaz, Juan Manuel; Nitta, Carlos H.; Maston, Levi D.; Codianni, Simon; Giermakowska, Wieslawa; Resta, Thomas C.

    2013-01-01

    Elevated reactive oxygen species are implicated in pulmonary hypertension (PH). Superoxide dismutase (SOD) limits superoxide bioavailability, and decreased SOD activity is associated with PH. A decrease in SOD activity is expected to increase superoxide and reduce hydrogen peroxide levels. Such an imbalance of superoxide/hydrogen peroxide has been implicated as a mediator of nuclear factor of activated T cells (NFAT) activation in epidermal cells. We have shown that NFATc3 is required for chronic hypoxia-induced PH. However, it is unknown whether NFATc3 is activated in the pulmonary circulation in a mouse model of decreased SOD1 activity and whether this leads to PH. Therefore, we hypothesized that an elevated pulmonary arterial superoxide/hydrogen peroxide ratio activates NFATc3, leading to PH. We found that SOD1 knockout (KO) mice have elevated pulmonary arterial wall superoxide and decreased hydrogen peroxide levels compared with wild-type (WT) littermates. Right ventricular systolic pressure (RVSP) was elevated in SOD1 KO and was associated with pulmonary arterial remodeling. Vasoreactivity to endothelin-1 was also greater in SOD1 KO vs. WT mice. NFAT activity and NFATc3 nuclear localization were increased in pulmonary arteries from SOD1 KO vs. WT mice. Administration of A-285222 (selective NFAT inhibitor) decreased RVSP, arterial wall thickness, vasoreactivity, and NFAT activity in SOD1 KO mice to WT levels. The SOD mimetic, tempol, also reduced NFAT activity, NFATc3 nuclear localization, and RVSP to WT levels. These findings suggest that an elevated superoxide/hydrogen peroxide ratio activates NFAT in pulmonary arteries, which induces vascular remodeling and increases vascular reactivity leading to PH. PMID:23475768

  19. Effect of phosphodiesterase 4 inhibitors on NFAT-dependent cyclooxygenase-2 expression in human T lymphocytes.

    PubMed

    Jimenez, José L; Iñiguez, Miguel A; Muñoz-Fernández, M Angeles; Fresno, Manuel

    2004-12-01

    Transcriptional induction of cyclooxygenase-2 (COX-2) occurs early after T cell receptor triggering and has functional implications in inflammation. Here, we show that phosphodiesterase (PDE)-4 inhibitors block COX-2 induction and prostaglandin synthesis in activated T cells. COX-2 inhibition by PDE4 inhibitors occurs mainly at the transcriptional level. Two response elements for the nuclear factor of activated T cells (NFAT) in the COX-2 promoter were required for inhibition by these drugs. PDE4 inhibitors did not affect NFAT nuclear translocation upon T cell activation; rather they prevented NFAT binding to DNA and induction of the transactivation function of GAL4-NFAT. These effects seem to be cAMP/PKA independent as they were not mimicked by the permeable analog dBcAMP or by forskolin, neither can be reverted by the PKA inhibitors H89 or KT-5720. These results may explain some of the anti-inflammatory properties of PDE4 inhibitors through the blockade of NFAT-mediated transactivation of pro-inflammatory genes such as COX-2.

  20. The potential role of NFAT5 and osmolarity in peritoneal injury.

    PubMed

    Seeger, Harald; Kitterer, Daniel; Latus, Joerg; Alscher, Mark Dominik; Braun, Niko; Segerer, Stephan

    2015-01-01

    A rise in osmotic concentration (osmolarity) activates the transcription factor Nuclear Factor of Activated T Cells 5 (NFAT5, also known as Tonicity-responsive Enhancer Binding Protein, TonEBP). This is part of a regulatory mechanism of cells adjusting to environments of high osmolarity. Under physiological conditions these are particularly important in the kidney. Activation of NFAT5 results in the modulation of various genes including some which promote inflammation. The osmolarity increases in patients with renal failure. Additionally, in peritoneal dialysis the cells of the peritoneal cavity are repeatedly exposed to a rise and fall in osmotic concentrations. Here we review the current information about NFAT5 activation in uremic patients and patients on peritoneal dialysis. We suggest that high osmolarity promotes injury in the "uremic" milieu, which results in inflammation locally in the peritoneal membrane, but most likely also in the systemic circulation.

  1. NFAT restricts osteochondroma formation from entheseal progenitors

    PubMed Central

    Tsang, Kelly; He, Lizhi; Garcia, Roberto A.; Ermann, Joerg; Mizoguchi, Fumitaka; Zhang, Minjie; Aliprantis, Antonios O.

    2016-01-01

    Osteochondromas are common benign osteocartilaginous tumors in children and adolescents characterized by cartilage-capped bony projections on the surface of bones. These tumors often cause pain, deformity, fracture, and musculoskeletal dysfunction, and they occasionally undergo malignant transformation. The pathogenesis of osteochondromas remains poorly understood. Here, we demonstrate that nuclear factor of activated T cells c1 and c2 (NFATc1 and NFATc2) suppress osteochondromagenesis through individual and combinatorial mechanisms. In mice, conditional deletion of NFATc1 in mesenchymal limb progenitors, Scleraxis-expressing (Scx-expressing) tendoligamentous cells, or postnatally in Aggrecan-expressing cells resulted in osteochondroma formation at entheses, the insertion sites of ligaments and tendons onto bone. Combinatorial deletion of NFATc1 and NFATc2 gave rise to larger and more numerous osteochondromas in inverse proportion to gene dosage. A population of entheseal NFATc1- and Aggrecan-expressing cells was identified as the osteochondroma precursor, previously believed to be growth plate derived or perichondrium derived. Mechanistically, we show that NFATc1 restricts the proliferation and chondrogenesis of osteochondroma precursors. In contrast, NFATc2 preferentially inhibits chondrocyte hypertrophy and osteogenesis. Together, our findings identify and characterize a mechanism of osteochondroma formation and suggest that regulating NFAT activity is a new therapeutic approach for skeletal diseases characterized by defective or exaggerated osteochondral growth. PMID:27158674

  2. Conditional deletion of cardiomyocyte peroxisome proliferator-activated receptor γ enhances myocardial ischemia-reperfusion injury in mice.

    PubMed

    Hobson, Michael J; Hake, Paul W; O'Connor, Michael; Schulte, Christine; Moore, Victoria; James, Jeanne M; Piraino, Giovanna; Zingarelli, Basilia

    2014-01-01

    The nuclear transcription factor peroxisome proliferator-activated receptor γ (PPARγ) is a key regulator of the inflammatory response to an array of biologic insults. We have previously demonstrated that PPARγ ligands reduce myocardial ischemia-reperfusion injury in rodents. In the current study, we directly determined the role of cardiomyocyte PPARγ in ischemia-reperfusion injury, using a model of conditional cardiomyocyte-specific deletion of PPARγ in vivo. In mice, α-myosin heavy chain-restricted Cre-mediated PPARγ deficiency was induced by tamoxifen treatment (30 mg/kg intraperitoneally) for 4 days (PPARγ mice), whereas controls included mice treated with the oil diluent vehicle (PPARγ mice). Western blot and histochemical analyses confirmed that expression of PPARγ protein was abolished in cardiomyocytes of mice treated with tamoxifen, but not with vehicle. After tamoxifen or vehicle treatment, animals were subjected to 30-min ligation of the left anterior descending coronary artery followed by 2-h reperfusion. In PPARγ mice, myocardial ischemia and reperfusion induced extensive myocardial damage, which was associated with elevated tissue activity of myeloperoxidase, indicating infiltration of neutrophils, and elevated plasma levels of troponin I when compared with PPARγ mice. Upon echocardiographic analysis, PPARγ mice also demonstrated ventricular dilatation and systolic dysfunction. Plasma levels of the proinflammatory cytokines interleukin 1β and interleukin 6 were higher in PPARγ mice when compared with PPARγ mice. These pathological events in PPARγ mice were associated with enhanced nuclear factor κB DNA binding in the infarcted hearts. Thus, our data suggest that cardiomyocyte PPARγ is a crucial protective receptor and may prevent reperfusion injury by modulating mechanisms of inflammation.

  3. Memory in a fractional-order cardiomyocyte model alters properties of alternans and spontaneous activity

    NASA Astrophysics Data System (ADS)

    Comlekoglu, T.; Weinberg, S. H.

    2017-09-01

    Cardiac memory is the dependence of electrical activity on the prior history of one or more system state variables, including transmembrane potential (Vm), ionic current gating, and ion concentrations. While prior work has represented memory either phenomenologically or with biophysical detail, in this study, we consider an intermediate approach of a minimal three-variable cardiomyocyte model, modified with fractional-order dynamics, i.e., a differential equation of order between 0 and 1, to account for history-dependence. Memory is represented via both capacitive memory, due to fractional-order Vm dynamics, that arises due to non-ideal behavior of membrane capacitance; and ionic current gating memory, due to fractional-order gating variable dynamics, that arises due to gating history-dependence. We perform simulations for varying Vm and gating variable fractional-orders and pacing cycle length and measure action potential duration (APD) and incidence of alternans, loss of capture, and spontaneous activity. In the absence of ionic current gating memory, we find that capacitive memory, i.e., decreased Vm fractional-order, typically shortens APD, suppresses alternans, and decreases the minimum cycle length (MCL) for loss of capture. However, in the presence of ionic current gating memory, capacitive memory can prolong APD, promote alternans, and increase MCL. Further, we find that reduced Vm fractional order (typically less than 0.75) can drive phase 4 depolarizations that promote spontaneous activity. Collectively, our results demonstrate that memory reproduced by a fractional-order model can play a role in alternans formation and pacemaking, and in general, can greatly increase the range of electrophysiological characteristics exhibited by a minimal model.

  4. PEDF Inhibits the Activation of NLRP3 Inflammasome in Hypoxia Cardiomyocytes through PEDF Receptor/Phospholipase A2.

    PubMed

    Zhou, Zhongxin; Wang, Zhu; Guan, Qiuhua; Qiu, Fan; Li, Yufeng; Liu, Zhiwei; Zhang, Hao; Dong, Hongyan; Zhang, Zhongming

    2016-12-12

    The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome has been linked to sterile inflammation, which is involved in ischemic injury in myocardial cells. Pigment epithelium-derived factor (PEDF) is a multifunctional secreted glycoprotein with many biological activities, such as anti-inflammatory, antioxidant and anti-angiogenic properties. However, it is not known whether and how PEDF acts to regulate the activation of the NLRP3 inflammasome in cardiomyocytes. In the present study, we used the neonatal cardiomyocytes models of ischemia-like conditions to evaluate the mitochondrial fission and the activation of the NLRP3 inflammasome. We also determined the mechanism by which PEDF inhibits hypoxia-induced activation of the NLRP3 inflammasome. We found that PEDF decreased the activation of the NLRP3 inflammasome in neonatal cardiomyocytes through pigment epithelial-derived factor receptor/calcium-independent phospholipase A2 (PEDFR/iPLA2). Meanwhile, PEDF reduced Drp1-induced mitochondrial fission and mitochondrial fission-induced mitochondrial DNA (mtDNA), as well as mitochondrial reactive oxygen species (mtROS) release into cytosol through PEDFR/iPLA2. We also found that PEDF inhibited mitochondrial fission-induced NLRP3 inflammasome activation. Furthermore, previous research has found that endogenous cytosolic mtDNA and mtROS can serve as activators of NLRP3 inflammasome activity. Therefore, we hypothesized that PEDF can protect against hypoxia-induced activation of the NLRP3 inflammasome by inhibiting mitochondrial fission though PEDFR/iPLA2.

  5. PEDF Inhibits the Activation of NLRP3 Inflammasome in Hypoxia Cardiomyocytes through PEDF Receptor/Phospholipase A2

    PubMed Central

    Zhou, Zhongxin; Wang, Zhu; Guan, Qiuhua; Qiu, Fan; Li, Yufeng; Liu, Zhiwei; Zhang, Hao; Dong, Hongyan; Zhang, Zhongming

    2016-01-01

    The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome has been linked to sterile inflammation, which is involved in ischemic injury in myocardial cells. Pigment epithelium-derived factor (PEDF) is a multifunctional secreted glycoprotein with many biological activities, such as anti-inflammatory, antioxidant and anti-angiogenic properties. However, it is not known whether and how PEDF acts to regulate the activation of the NLRP3 inflammasome in cardiomyocytes. In the present study, we used the neonatal cardiomyocytes models of ischemia-like conditions to evaluate the mitochondrial fission and the activation of the NLRP3 inflammasome. We also determined the mechanism by which PEDF inhibits hypoxia-induced activation of the NLRP3 inflammasome. We found that PEDF decreased the activation of the NLRP3 inflammasome in neonatal cardiomyocytes through pigment epithelial-derived factor receptor/calcium-independent phospholipase A2 (PEDFR/iPLA2). Meanwhile, PEDF reduced Drp1-induced mitochondrial fission and mitochondrial fission-induced mitochondrial DNA (mtDNA), as well as mitochondrial reactive oxygen species (mtROS) release into cytosol through PEDFR/iPLA2. We also found that PEDF inhibited mitochondrial fission-induced NLRP3 inflammasome activation. Furthermore, previous research has found that endogenous cytosolic mtDNA and mtROS can serve as activators of NLRP3 inflammasome activity. Therefore, we hypothesized that PEDF can protect against hypoxia-induced activation of the NLRP3 inflammasome by inhibiting mitochondrial fission though PEDFR/iPLA2. PMID:27973457

  6. Differential Activation of Cultured Neonatal Cardiomyocytes by Plasmalemmal Versus Intracellular G Protein-coupled Receptor 55*

    PubMed Central

    Yu, Justine; Deliu, Elena; Zhang, Xue-Quian; Hoffman, Nicholas E.; Carter, Rhonda L.; Grisanti, Laurel A.; Brailoiu, G. Cristina; Madesh, Muniswamy; Cheung, Joseph Y.; Force, Thomas; Abood, Mary E.; Koch, Walter J.; Tilley, Douglas G.; Brailoiu, Eugen

    2013-01-01

    The L-α-lysophosphatidylinositol (LPI)-sensitive receptor GPR55 is coupled to Ca2+ signaling. Low levels of GPR55 expression in the heart have been reported. Similar to other G protein-coupled receptors involved in cardiac function, GPR55 may be expressed both at the sarcolemma and intracellularly. Thus, to explore the role of GPR55 in cardiomyocytes, we used calcium and voltage imaging and extracellular administration or intracellular microinjection of GPR55 ligands. We provide the first evidence that, in cultured neonatal ventricular myocytes, LPI triggers distinct signaling pathways via GPR55, depending on receptor localization. GPR55 activation at the sarcolemma elicits, on one hand, Ca2+ entry via L-type Ca2+ channels and, on the other, inositol 1,4,5-trisphosphate-dependent Ca2+ release. The latter signal is further amplified by Ca2+-induced Ca2+ release via ryanodine receptors. Conversely, activation of GPR55 at the membrane of intracellular organelles promotes Ca2+ release from acidic-like Ca2+ stores via the endolysosomal NAADP-sensitive two-pore channels. This response is similarly enhanced by Ca2+-induced Ca2+ release via ryanodine receptors. Extracellularly applied LPI produces Ca2+-independent membrane depolarization, whereas the Ca2+ signal induced by intracellular microinjection of LPI converges to hyperpolarization of the sarcolemma. Collectively, our findings point to GPR55 as a novel G protein-coupled receptor regulating cardiac function at two cellular sites. This work may serve as a platform for future studies exploring the potential of GPR55 as a therapeutic target in cardiac disorders. PMID:23814062

  7. Regulator of Calcineurin 1 Gene Isoform 4, Down-regulated in Hepatocellular Carcinoma, Prevents Proliferation, Migration, and Invasive Activity of Cancer Cells and Metastasis of Orthotopic Tumors by Inhibiting Nuclear Translocation of NFAT1.

    PubMed

    Jin, Haojie; Wang, Cun; Jin, Guangzhi; Ruan, Haoyu; Gu, Dishui; Wei, Lin; Wang, Hui; Wang, Ning; Arunachalam, Einthavy; Zhang, Yurong; Deng, Xuan; Yang, Chen; Xiong, Yi; Feng, Hugang; Yao, Ming; Fang, Jingyuan; Gu, Jianren; Cong, Wenming; Qin, Wenxin

    2017-09-01

    xenograft tumors, with fewer metastases and blood vessels, than control HCC cells. In HCC cells, RCAN1.4 inhibited expression of insulin-like growth factor 1 and vascular endothelial growth factor A by reducing calcineurin activity and blocking nuclear translocation of nuclear factor of activated T cells (NFAT1). HCC cells incubated with the calcineurin inhibitor cyclosporin A had decreased nuclear level of NFAT1. HCC cells had hypermethylation of a CpG island in the 5' regulatory region of RCAN1.4, which reduced its expression. RCAN1.4 is down-regulated in HCC tissues, compared with non-tumor liver tissues. RCAN1.4 prevents cell proliferation, migration, and invasion in vitro; overexpressed RCAN1.4 in HCC cells prevents growth, angiogenesis, and metastases of xenograft tumors by inhibiting calcineurin activity and nuclear translocation of NFAT1. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Cardiomyocyte-specific IκB kinase (IKK)/NF-κB activation induces reversible inflammatory cardiomyopathy and heart failure

    PubMed Central

    Maier, Harald J.; Schips, Tobias G.; Wietelmann, Astrid; Krüger, Marcus; Brunner, Cornelia; Sauter, Martina; Klingel, Karin; Böttger, Thomas; Braun, Thomas; Wirth, Thomas

    2012-01-01

    Inflammation is a major factor in heart disease. IκB kinase (IKK) and its downstream target NF-κB are regulators of inflammation and are activated in cardiac disorders, but their precise contributions and targets are unclear. We analyzed IKK/NF-κB function in the heart by a gain-of-function approach, generating an inducible transgenic mouse model with cardiomyocyte-specific expression of constitutively active IKK2. In adult animals, IKK2 activation led to inflammatory dilated cardiomyopathy and heart failure. Transgenic hearts showed infiltration with CD11b+ cells, fibrosis, fetal reprogramming, and atrophy of myocytes with strong constitutively active IKK2 expression. Upon transgene inactivation, the disease was reversible even at an advanced stage. IKK-induced cardiomyopathy was dependent on NF-κB activation, as in vivo expression of IκBα superrepressor, an inhibitor of NF-κB, prevented the development of disease. Gene expression and proteomic analyses revealed enhanced expression of inflammatory cytokines, and an IFN type I signature with activation of the IFN-stimulated gene 15 (ISG15) pathway. In that respect, IKK-induced cardiomyopathy resembled Coxsackievirus-induced myocarditis, during which the NF-κB and ISG15 pathways were also activated. Vice versa, in cardiomyocytes lacking the regulatory subunit of IKK (IKKγ/NEMO), the induction of ISG15 was attenuated. We conclude that IKK/NF-κB activation in cardiomyocytes is sufficient to cause cardiomyopathy and heart failure by inducing an excessive inflammatory response and myocyte atrophy. PMID:22753500

  9. Hyperosmotic stress activates p65/RelB NFkappaB in cultured cardiomyocytes with dichotomic actions on caspase activation and cell death.

    PubMed

    Eisner, Verónica; Quiroga, Clara; Criollo, Alfredo; Eltit, José Miguel; Chiong, Mario; Parra, Valentina; Hidalgo, Karla; Toro, Barbra; Díaz-Araya, Guillermo; Lavandero, Sergio

    2006-06-12

    NFkappaB is a participant in the process whereby cells adapt to stress. We have evaluated the activation of NFkappaB pathway by hyperosmotic stress in cultured cardiomyocytes and its role in the activation of caspase and cell death. Exposure of cultured rat cardiomyocytes to hyperosmotic conditions induced phosphorylation of IKKalpha/beta as well as degradation of IkappaBalpha. All five members of the NFkappaB family were identified in cardiomyocytes. Analysis of the subcellular distribution of NFkappaB isoforms in response to hyperosmotic stress showed parallel migration of p65 and RelB from the cytosol to the nucleus. Measurement of the binding of NFkappaB to the consensus DNA kappaB-site binding by EMSA revealed an oscillatory profile with maximum binding 1, 2 and 6h after initiation of the hyperosmotic stress. Supershift analysis revealed that p65 and RelB (but not p50, p52 or cRel) were involved in the binding of NFkappaB to DNA. Hyperosmotic stress also resulted in activation of the NFkappaB-lux reporter gene, transient activation of caspases 9 and 3 and phosphatidylserine externalization. The effect on cell viability was not prevented by ZVAD (a general caspase inhibitor). Blockade of NFkappaB with AdIkappaBalpha, an IkappaBalpha dominant negative overexpressing adenovirus, prevented activation of caspase 9 (more than that caspase 3) but did not affect cell death in hyperosmotically stressed cardiomyocytes. We conclude that hyperosmotic stress activates p65 and RelB NFkappaB isoforms and NFkappaB mediates caspase 9 activation in cardiomyocytes. However cell death triggered by hyperosmotic stress was caspase- and NFkappaB-independent.

  10. [Inhibitors of NFAT-calcineurin pathway].

    PubMed

    Miyatake, Shoichiro; Kaminuma, Osamu

    2005-09-01

    Cyclosporin A(CsA) and tacrolimus (FK506) are important immunosuppressants to inhibit rejection of transplanted organs and to treat various immunological disorders, however those drugs produce major side effects. Those drugs form complexes with cellular proteins, immunophilins (cyclophilin for CsA and FKBP for tacrolimus) and inhibit Ca-calmodulin dependent phosphatase calcineurin through direct binding. Calcineurin dephosphorylates various substrates including NFAT family proteins required for the expression of immunoregulatory molecules especially cytokines. NFAT-calcineurin pathway offers a good model system to apply new technology to develop drugs. Enzyme-substrate interaction could be an important target to develop drugs with high specificity accompanied with less side effects.

  11. Cross-talk between calcineurin/NFAT and Jak/STAT signalling induces cardioprotective αB-crystallin gene expression in response to hypertrophic stimuli

    PubMed Central

    Manukyan, Irena; Galatioto, Josephine; Mascareno, Eduardo; Bhaduri, Sikha; Siddiqui, MAQ

    2010-01-01

    Abstract Among the stress proteins that are up-regulated in the heart due to imposed biomechanical stress, αB-crystallin (CryAB) is the most abundant and pivotal in rendering protection against stress-induced cell damage. Cardiomyocyte-specific expression of the CryAB gene was shown to be dependent upon an intact αBE4 cis-element located in the CryAB enhancer. To date, there is no evidence on the identity of regulatory proteins and associated signalling molecules that control CryAB expression in cardiomyocytes. In this study, we define a mechanism by which the calcineurin/NFAT and Jak/STAT pathways regulate CryAB gene expression in response to a hypertrophic agonist endothelin-1 (En-1), in hypertrophic hearts of mice with pressure overload (TAC) and in heart-targeted calcineurin over-expressing mice (MHC-CnA). We observed that in response to various hypertrophic stimuli the transcription factors NFAT, Nished and STAT3 form a dynamic ternary complex and interact with the αBE4 promoter element of the CryAB gene. Both dominant negative NFAT and AG490, an inhibitor of the Jak2 phosphorylation, inhibited CryAB gene transcription in transient transfection assays. AG490 was also effective in blocking the nuclear translocation of NFAT and STAT3 in cardiomyocytes treated with En-1. We observed a marked increase in CryAB gene expression in MHC-CnA mouse hearts accompanied with increased phosphorylation of STAT3. We conclude that hypertrophy-dependent CryAB gene expression can be attributed to a functional linkage between the Jak/STAT and calcineurin/NFAT signalling pathways, each of which are otherwise known to be involved independently in the deleterious outcome in cardiac hypertrophy. PMID:19538478

  12. Cross-talk between calcineurin/NFAT and Jak/STAT signalling induces cardioprotective alphaB-crystallin gene expression in response to hypertrophic stimuli.

    PubMed

    Manukyan, Irena; Galatioto, Josephine; Mascareno, Eduardo; Bhaduri, Sikha; Siddiqui, M A Q

    2010-06-01

    Among the stress proteins that are up-regulated in the heart due to imposed biomechanical stress, alphaB-crystallin (CryAB) is the most abundant and pivotal in rendering protection against stress-induced cell damage. Cardiomyocyte-specific expression of the CryAB gene was shown to be dependent upon an intact alphaBE4 cis-element located in the CryAB enhancer. To date, there is no evidence on the identity of regulatory proteins and associated signalling molecules that control CryAB expression in cardiomyocytes. In this study, we define a mechanism by which the calcineurin/NFAT and Jak/STAT pathways regulate CryAB gene expression in response to a hypertrophic agonist endothelin-1 (En-1), in hypertrophic hearts of mice with pressure overload (TAC) and in heart-targeted calcineurin over-expressing mice (MHC-CnA). We observed that in response to various hypertrophic stimuli the transcription factors NFAT, Nished and STAT3 form a dynamic ternary complex and interact with the alphaBE4 promoter element of the CryAB gene. Both dominant negative NFAT and AG490, an inhibitor of the Jak2 phosphorylation, inhibited CryAB gene transcription in transient transfection assays. AG490 was also effective in blocking the nuclear translocation of NFAT and STAT3 in cardiomyocytes treated with En-1. We observed a marked increase in CryAB gene expression in MHC-CnA mouse hearts accompanied with increased phosphorylation of STAT3. We conclude that hypertrophy-dependent CryAB gene expression can be attributed to a functional linkage between the Jak/STAT and calcineurin/NFAT signalling pathways, each of which are otherwise known to be involved independently in the deleterious outcome in cardiac hypertrophy.

  13. Peptide affinity analysis of proteins that bind to an unstructured NH2-terminal region of the osmoprotective transcription factor NFAT5.

    PubMed

    DuMond, Jenna F; Ramkissoon, Kevin; Zhang, Xue; Izumi, Yuichiro; Wang, Xujing; Eguchi, Koji; Gao, Shouguo; Mukoyama, Masashi; Burg, Maurice B; Ferraris, Joan D

    2016-04-01

    NFAT5 is an osmoregulated transcription factor that particularly increases expression of genes involved in protection against hypertonicity. Transcription factors often contain unstructured regions that bind co-regulatory proteins that are crucial for their function. The NH2-terminal region of NFAT5 contains regions predicted to be intrinsically disordered. We used peptide aptamer-based affinity chromatography coupled with mass spectrometry to identify protein preys pulled down by one or more overlapping 20 amino acid peptide baits within a predicted NH2-terminal unstructured region of NFAT5. We identify a total of 467 unique protein preys that associate with at least one NH2-terminal peptide bait from NFAT5 in either cytoplasmic or nuclear extracts from HEK293 cells treated with elevated, normal, or reduced NaCl concentrations. Different sets of proteins are pulled down from nuclear vs. cytoplasmic extracts. We used GeneCards to ascertain known functions of the protein preys. The protein preys include many that were previously known, but also many novel ones. Consideration of the novel ones suggests many aspects of NFAT5 regulation, interaction and function that were not previously appreciated, for example, hypertonicity inhibits NFAT5 by sumoylating it and the NFAT5 protein preys include components of the CHTOP complex that desumoylate proteins, an action that should contribute to activation of NFAT5.

  14. Peptide affinity analysis of proteins that bind to an unstructured NH2-terminal region of the osmoprotective transcription factor NFAT5

    PubMed Central

    DuMond, Jenna F.; Ramkissoon, Kevin; Zhang, Xue; Izumi, Yuichiro; Wang, Xujing; Eguchi, Koji; Gao, Shouguo; Mukoyama, Masashi; Ferraris, Joan D.

    2016-01-01

    NFAT5 is an osmoregulated transcription factor that particularly increases expression of genes involved in protection against hypertonicity. Transcription factors often contain unstructured regions that bind co-regulatory proteins that are crucial for their function. The NH2-terminal region of NFAT5 contains regions predicted to be intrinsically disordered. We used peptide aptamer-based affinity chromatography coupled with mass spectrometry to identify protein preys pulled down by one or more overlapping 20 amino acid peptide baits within a predicted NH2-terminal unstructured region of NFAT5. We identify a total of 467 unique protein preys that associate with at least one NH2-terminal peptide bait from NFAT5 in either cytoplasmic or nuclear extracts from HEK293 cells treated with elevated, normal, or reduced NaCl concentrations. Different sets of proteins are pulled down from nuclear vs. cytoplasmic extracts. We used GeneCards to ascertain known functions of the protein preys. The protein preys include many that were previously known, but also many novel ones. Consideration of the novel ones suggests many aspects of NFAT5 regulation, interaction and function that were not previously appreciated, for example, hypertonicity inhibits NFAT5 by sumoylating it and the NFAT5 protein preys include components of the CHTOP complex that desumoylate proteins, an action that should contribute to activation of NFAT5. PMID:26757802

  15. NFAT2 inhibitor ameliorates diabetic nephropathy and podocyte injury in db/db mice

    PubMed Central

    Zhang, Li; Li, Ruizhao; Shi, Wei; Liang, Xinling; Liu, Shuangxin; Ye, Zhiming; Yu, Chunping; Chen, Yuanhan; Zhang, Bin; Wang, Wenjian; Lai, Yuxiong; Ma, Jianchao; Li, Zhuo; Tan, Xiaofan

    2013-01-01

    BACKGROUND AND PURPOSE Podocyte injury plays a key role in the development of diabetic nephropathy (DN). We have recently shown that 11R-VIVIT, an inhibitor of cell-permeable nuclear factor of activated T-cells (NFAT), attenuates podocyte apoptosis induced by high glucose in vitro. However, it is not known whether 11R-VIVIT has a protective effect on DN, especially podocyte injury, under in vivo diabetic conditions. Hence, we examined the renoprotective effects of 11R-VIVIT in diabetic db/db mice and the possible mechanisms underlying its protective effects on podocyte injury in vivo and in vitro. EXPERIMENTAL APPROACH Type 2 diabetic db/db mice received i.p. injections of 11R-VIVIT (1 mg·kg−1) three times a week and were killed after 8 weeks. Immortalized mouse podocytes were cultured under different experimental conditions. KEY RESULTS 11R-VIVIT treatment markedly attenuated the albuminuria in diabetic db/db mice and also alleviated mesangial matrix expansion and podocyte injury. However, body weight, food and water intake, and glucose levels were unaffected. It also attenuated the increased NFAT2 activation and enhanced urokinase-type plasminogen activator receptor (uPA receptor) expression in glomerulor podocytes. In cultured podocytes, the increased nuclear accumulation of NFAT2 and uPA receptor expression induced by high glucose treatment was prevented by 11R-VIVIT or NFAT2-knockdown; this was accompanied by improvements in the filtration barrier function of the podocyte monolayer. CONCLUSIONS AND IMPLICATIONS The NFAT inhibitor 11R-VIVIT might be a useful therapeutic strategy for protecting podocytes and treating DN. The calcinerin/NFAT2/uPA receptor signalling pathway should be exploited as a therapeutic target for protecting podocytes from injury in DN. PMID:23826864

  16. Intermedilysin induces EGR-1 expression through calcineurin/NFAT pathway in human cholangiocellular carcinoma cells

    SciTech Connect

    Susilowati, Heni; Okamura, Hirohiko; Hirota, Katsuhiko; Shono, Masayuki; Yoshida, Kaya; Murakami, Keiji; Tabata, Atsushi; Nagamune, Hideaki; Haneji, Tatsuji; Miyake, Yoichiro

    2011-01-07

    Research highlights: {yields} ILY leads to the accumulation of [Ca{sup 2+}]i in the nucleus in HuCCT1 cells. {yields} ILY induced activation of NFAT1 through a calcineurin-dependent pathway. {yields} Calcineuri/NFAT pathway is involved in EGR-1 expression in response to ILY treatment. -- Abstract: Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellular calcium ([Ca{sup 2+}]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-{kappa}B translocation in human hepatic HepG2 cells, ILY did not affect NF-{kappa}B localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca{sup 2+}]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.

  17. Reconciling depressed Ca2+ sparks occurrence with enhanced RyR2 activity in failing mice cardiomyocytes.

    PubMed

    Ruiz-Hurtado, Gema; Li, Linwei; Fernández-Velasco, María; Rueda, Angélica; Lefebvre, Florence; Wang, Yueyi; Mateo, Philippe; Cassan, Cécile; Gellen, Barnabas; Benitah, Jean Pierre; Gómez, Ana María

    2015-10-01

    Abnormalities in cardiomyocyte Ca2+ handling contribute to impaired contractile function in heart failure (HF). Experiments on single ryanodine receptors (RyRs) incorporated into lipid bilayers have indicated that RyRs from failing hearts are more active than those from healthy hearts. Here, we analyzed spontaneous Ca2+ sparks (brief, localized increased in [Ca2+]i) to evaluate RyR cluster activity in situ in a mouse post-myocardial infarction (PMI) model of HF. The cardiac ejection fraction of PMI mice was reduced to ∼30% of that of sham-operated (sham) mice, and their cardiomyocytes were hypertrophied. The [Ca2+]i transient amplitude and sarcoplasmic reticulum (SR) Ca2+ load were decreased in intact PMI cardiomyocytes compared with those from sham mice, and spontaneous Ca2+ sparks were less frequent, whereas the fractional release and the frequency of Ca2+ waves were both increased, suggesting higher RyR activity. In permeabilized cardiomyocytes, in which the internal solution can be controlled, Ca2+ sparks were more frequent in PMI cells (under conditions of similar SR Ca2+ load), confirming the enhanced RyR activity. However, in intact cells from PMI mice, the Ca2+ sparks frequency normalized by the SR Ca2+ load in that cell were reduced compared with those in sham mice, indicating that the cytosolic environment in intact cells contributes to the decrease in Ca2+ spark frequency. Indeed, using an internal "failing solution" with less ATP (as found in HF), we observed a dramatic decrease in Ca2+ spark frequency in permeabilized PMI and sham myocytes. In conclusion, our data show that, even if isolated RyR channels show more activity in HF, concomitant alterations in intracellular media composition and SR Ca2+ load may mask these effects at the Ca2+ spark level in intact cells. Nonetheless, in this scenario, the probability of arrhythmogenic Ca2+ waves is enhanced, and they play a potential role in the increase in arrhythmia events in HF patients.

  18. Reconciling depressed Ca2+ sparks occurrence with enhanced RyR2 activity in failing mice cardiomyocytes

    PubMed Central

    Li, Linwei; Fernández-Velasco, María; Rueda, Angélica; Lefebvre, Florence; Wang, Yueyi; Mateo, Philippe; Cassan, Cécile; Gellen, Barnabas; Benitah, Jean Pierre

    2015-01-01

    Abnormalities in cardiomyocyte Ca2+ handling contribute to impaired contractile function in heart failure (HF). Experiments on single ryanodine receptors (RyRs) incorporated into lipid bilayers have indicated that RyRs from failing hearts are more active than those from healthy hearts. Here, we analyzed spontaneous Ca2+ sparks (brief, localized increased in [Ca2+]i) to evaluate RyR cluster activity in situ in a mouse post-myocardial infarction (PMI) model of HF. The cardiac ejection fraction of PMI mice was reduced to ∼30% of that of sham-operated (sham) mice, and their cardiomyocytes were hypertrophied. The [Ca2+]i transient amplitude and sarcoplasmic reticulum (SR) Ca2+ load were decreased in intact PMI cardiomyocytes compared with those from sham mice, and spontaneous Ca2+ sparks were less frequent, whereas the fractional release and the frequency of Ca2+ waves were both increased, suggesting higher RyR activity. In permeabilized cardiomyocytes, in which the internal solution can be controlled, Ca2+ sparks were more frequent in PMI cells (under conditions of similar SR Ca2+ load), confirming the enhanced RyR activity. However, in intact cells from PMI mice, the Ca2+ sparks frequency normalized by the SR Ca2+ load in that cell were reduced compared with those in sham mice, indicating that the cytosolic environment in intact cells contributes to the decrease in Ca2+ spark frequency. Indeed, using an internal “failing solution” with less ATP (as found in HF), we observed a dramatic decrease in Ca2+ spark frequency in permeabilized PMI and sham myocytes. In conclusion, our data show that, even if isolated RyR channels show more activity in HF, concomitant alterations in intracellular media composition and SR Ca2+ load may mask these effects at the Ca2+ spark level in intact cells. Nonetheless, in this scenario, the probability of arrhythmogenic Ca2+ waves is enhanced, and they play a potential role in the increase in arrhythmia events in HF patients. PMID

  19. Effect of hawthorn (Crataegus oxycantha) crude extract and chromatographic fractions on multiple activities in a cultured cardiomyocyte assay.

    PubMed

    Long, S R; Carey, R A; Crofoot, K M; Proteau, P J; Filtz, T M

    2006-11-01

    Extracts of hawthorn (Crataegus oxycantha) have become popular herbal supplements for their well-recognized cardiotonic effects. Many commercial preparations have been used successfully in the treatment of congestive heart failure, although the active principles within these extracts have yet to be conclusively identified. Several hawthorn preparations were studied and found to have negative chronotropic effects in a cultured neonatal murine cardiomyocyte assay using unpaced cells. As compared to conventional cardiac drugs (i.e., epinephrine, milrinone, ouabain, or propranolol), hawthorn extract has a unique activity profile. Hawthorn extract appears to be anti-arrhythmic and capable of inducing rhythmicity in quiescent cardiomyocytes. Hawthorn extract does not cause beta-adrenergic receptor blockade at concentrations which cause negative chronotropic effects. Commercial hawthorn preparations, extracts prepared from dried leaves and those made from dried berries have similar chronotropic activities. When crude extracts are separated using size-exclusion chromatography, several fractions retain multiple cardiac activities. Assays with chromatographic fractions reveal that multiple dissimilar cardioactive components may exist within the extract, making the identification of individual active constituents more challenging.

  20. Epicardial calcineurin-NFAT signals through Smad2 to direct coronary smooth muscle cell and arterial wall development.

    PubMed

    Yang, Jin; Zeini, Miriam; Lin, Chieh-Yu; Lin, Chien-Jung; Xiong, Yiqin; Shang, Ching; Han, Pei; Li, Wei; Quertermous, Thomas; Zhou, Bin; Chang, Ching-Pin

    2014-01-01

    Congenital coronary artery anomalies produce serious events that include syncope, arrhythmias, myocardial infarction, or sudden death. Studying the mechanism of coronary development will contribute to the understanding of the disease and help design new diagnostic or therapeutic strategies. Here, we characterized a new calcineurin-NFAT signalling which specifically functions in the epicardium to regulate the development of smooth muscle wall of the coronary arteries. Using tissue-specific gene deletion, we found that calcineurin-NFAT signals in the embryonic epicardium to direct coronary smooth muscle cell development. The smooth muscle wall of coronary arteries fails to mature in mice with epicardial deletion of calcineurin B1 (Cnb1), and accordingly these mutant mice develop cardiac dysfunction with reduced exercise capacity. Inhibition of calcineurin at various developmental windows shows that calcineurin-NFAT signals within a narrow time window at embryonic Day 12.5-13.5 to regulate coronary smooth muscle cell development. Within the epicardium, NFAT transcriptionally activates the expression of Smad2, whose gene product is critical for transducing transforming growth factor β (TGFβ)-Alk5 signalling to control coronary development. Our findings demonstrate new spatiotemporal and molecular actions of calcineurin-NFAT that dictate coronary arterial wall development and a new mechanism by which calcineurin-NFAT integrates with TGFβ signalling during embryonic development.

  1. Peroxisomes in cardiomyocytes and the peroxisome / peroxisome proliferator-activated receptor-loop.

    PubMed

    Colasante, Claudia; Chen, Jiangping; Ahlemeyer, Barbara; Baumgart-Vogt, Eveline

    2015-03-01

    It is well established that the heart is strongly dependent on fatty acid metabolism. In cardiomyocytes there are two distinct sites for the β-oxidisation of fatty acids: the mitochondrion and the peroxisome. Although the metabolism of these two organelles is believed to be tightly coupled, the nature of this relationship has not been fully investigated. Recent research has established the significant contribution of mitochondrial function to cardiac ATP production under normal and pathological conditions. In contrast, limited information is available on peroxisomal function in the heart. This is despite these organelles harbouring metabolic pathways that are potentially cardio-protective, and findings that patients with peroxisomal diseases, such as adult Refsum´s disease, can develop heart failure. In this article, we provide a comprehensive overview on the current knowledge of peroxisomes and the regulation of lipid metabolism by PPARs in cardiomyocytes. We also present new experimental evidence on the differential expression of peroxisome-related genes in the heart chambers and demonstrate that even a mild peroxisomal biogenesis defect (Pex11α-/-) can induce profound alterations in the cardiomyocyte´s peroxisomal compartment and related gene expression, including the concomitant deregulation of specific PPARs. The possible impact of peroxisomal dysfunction in the heart is discussed and a model for the modulation of myocardial metabolism via a peroxisome/PPAR-loop is proposed.

  2. Neuronal Ca(2+) sensor-1 contributes to stress tolerance in cardiomyocytes via activation of mitochondrial detoxification pathways.

    PubMed

    Nakamura, Tomoe Y; Nakao, Shu; Wakabayashi, Shigeo

    2016-10-01

    Identification of the molecules involved in cell death/survival pathways is important for understanding the mechanisms of cell loss in cardiac disease, and thus is clinically relevant. Ca(2+)-dependent signals are often involved in these pathways. Here, we found that neuronal Ca(2+)-sensor-1 (NCS-1), a Ca(2+)-binding protein, has an important role in cardiac survival during stress. Cardiomyocytes derived from NCS-1-deficient (Ncs1(-/-)) mice were more susceptible to oxidative and metabolic stress than wild-type (WT) myocytes. Cellular ATP levels and mitochondrial respiration rates, as well as the levels of mitochondrial marker proteins, were lower in Ncs1(-/-) myocytes. Although oxidative stress elevated mitochondrial proton leak, which exerts a protective effect by inhibiting the production of reactive oxygen species in WT myocytes, this response was considerably diminished in Ncs1(-/-) cardiomyocytes, and this would be a major reason for cell death. Consistently, H2O2-induced loss of mitochondrial membrane potential, a critical early event in cell death, was accelerated in Ncs1(-/-) myocytes. Furthermore, NCS-1 was upregulated in hearts subjected to ischemia-reperfusion, and ischemia-reperfusion injury was more severe in Ncs1(-/-) hearts. Activation of stress-induced Ca(2+)-dependent survival pathways, such as Akt and PGC-1α (which promotes mitochondrial biogenesis and function), was diminished in Ncs1(-/-) hearts. Overall, these data demonstrate that NCS-1 contributes to stress tolerance in cardiomyocytes at least in part by activating certain Ca(2+)-dependent survival pathways that promote mitochondrial biosynthesis/function and detoxification pathways.

  3. EGCG Blocked Phenylephrin-Induced Hypertrophy in H9C2 Cardiomyocytes, by Activating AMPK-Dependent Pathway

    PubMed Central

    Zhao, Li; Qin, Yuan

    2015-01-01

    AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism. Previous studies have shown that activation of AMPK results in suppression of cardiac myocyte hypertrophy via inhibition of the p70S6 kinase (p70S6K) and eukaryotic elongation factor-2 (eEF2) signaling pathways. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea, possesses multiple protective effects on the cardiovascular system including cardiac hypertrophy. However, the molecular mechanisms has not been well investigated. In this study, we found that EGCG could significantly reduce natriuretic peptides type A (Nppa), brain natriuretic polypeptide (BNP) mRNA expression and decrease cell surface area in H9C2 cardiomyocytes stimulated with phenylephrine (PE). Moreover, we showed that AMPK is activated in H9C2 cardiomyocytes by EGCG, and AMPK-dependent pathway participates in the inhibitory effects of EGCG on cardiac hypertrophy. Taken together, our findings provide the first evidence that the effect of EGCG against cardiac hypertrophy may be attributed to its activation on AMPK-dependent signaling pathway, suggesting the therapeutic potential of EGCG on the prevention of cardiac remodeling in patients with pressure overload hypertrophy. PMID:25954124

  4. α₁ adrenoceptor activation by norepinephrine inhibits LPS-induced cardiomyocyte TNF-α production via modulating ERK1/2 and NF-κB pathway.

    PubMed

    Yu, Xiaohui; Jia, Baoyin; Wang, Faqiang; Lv, Xiuxiu; Peng, Xuemei; Wang, Yiyang; Li, Hongmei; Wang, Yanping; Lu, Daxiang; Wang, Huadong

    2014-02-01

    Cardiomyocyte tumour necrosis factor α (TNF-α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)-induced cardiomyocyte TNF-α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS-induced TNF-α production in a dose-dependent manner. α₁- adrenoceptor (AR) antagonist (prazosin), but neither β₁- nor β₂-AR antagonist, abrogated the inhibitory effect of NE on LPS-stimulated TNF-α production. Furthermore, phenylephrine (PE), an α₁-AR agonist, also suppressed LPS-induced TNF-α production. NE inhibited p38 phosphorylation and NF-κB activation, but enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and c-Fos expression in LPS-treated cardiomyocytes, all of which were reversed by prazosin pre-treatment. To determine whether ERK1/2 regulates c-Fos expression, p38 phosphorylation, NF-κB activation and TNF-α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c-Fos expression, p38 mitogen-activated protein kinase (MAPK) phosphorylation and TNF-α production, but not NF-κB activation in LPS-challenged cardiomyocytes. In addition, pre-treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS-induced TNF-α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c-Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF-α production and prevented LPS-provoked cardiac dysfunction. Altogether, these findings indicate that activation of α₁-AR by NE suppresses LPS-induced cardiomyocyte TNF-α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF-κB activation.

  5. β-Adrenergic stimulation activates protein kinase Cε and induces extracellular signal-regulated kinase phosphorylation and cardiomyocyte hypertrophy.

    PubMed

    Li, Lin; Cai, Hongyan; Liu, Hua; Guo, Tao

    2015-06-01

    The cardiac adrenergic signaling pathway is important in the induction of cardiac hypertrophy. The cardiac adrenergic pathway involves two main branches, phospholipase C (PLC)/protein kinase C (PKC) and the adenylate cyclase (cAMPase)/protein kinase A (PKA) signaling pathways. It is hypothesized that PLC/PKC and cAMPase/PKA are activated by the α‑adrenergic receptor (αAR) and the β‑adrenergic receptor (βAR), respectively. Previous studies have demonstrated that exchange protein directly activated by cAMP (Epac), a guanine exchange factor, activates phospholipase Cε. It is possible that there are βAR‑activated PKC pathways mediated by Epac and PLC. In the present study, the role of Epac and PLC in βAR activated PKC pathways in cardiomyocytes was investigated. It was found that PKCε activation and translocation were induced by the βAR agonist, isoproterenol (Iso). Epac agonist 8‑CPT‑2'OMe‑cAMP also enhanced PKCε activation. βAR stimulation activated PKCε in the cardiomyocytes and was regulated by Epac. Iso‑induced change in PKCε was not affected in the cardiomyocytes, which were infected with adenovirus coding rabbit muscle cAMP‑dependent protein kinase inhibitor. However, Iso‑induced PKCε activation was inhibited by the PLC inhibitor, U73122. The results suggested that Iso‑induced PKCε activation was independent of PKA, but was regulated by PLC. To further investigate the downstream signal target of PKCε activation, the expression of phosphorylated extracellular signal‑regulated kinase (pERK)1/2 and the levels of ERK phosphorylation was analyzed. The results revealed that Iso‑induced PKCε activation led to an increase in the expression of pERK1/2. ERK phosphorylation was inhibited by the PKCε inhibitor peptide. Taken together, these data demonstrated that the βAR is able to activate PKCε dependent on Epac and PLC, but independent of PKA.

  6. Guanylyl cyclase (GC)-A and GC-B activities in ventricles and cardiomyocytes from failed and non-failed human hearts: GC-A is inactive in the failed cardiomyocyte

    PubMed Central

    Dickey, Deborah M.; Dries, Daniel L.; Margulies, Kenneth B.; Potter, Lincoln R.

    2014-01-01

    Cardiomyocytes release atrial natriuretic peptide (ANP) and B-type natriuretic peptide to stimulate processes that compensate for the failing heart by activating guanylyl cyclase (GC)-A. C-type natriuretic peptide is also elevated in the failing heart and inhibits cardiac remodeling by activating the homologous receptor, GC-B. We previously reported that GC-A is the most active membrane GC in normal mouse ventricles while GC-B is the most active membrane GC in failing ventricles due to increased GC-B and decreased GC-A activities. Here, we examined ANP and CNP-specific GC activity in membranes obtained from non-failing and failing human left ventricles and in membranes from matched cardiomyocyte-enriched pellet preparations. Similar to our findings in the murine study, we found that CNP-dependent GC activity was about half of the ANP-dependent GC activity in the non-failing ventricular and was increased in the failing ventricle. ANP and CNP increased GC activity 9- and 5-fold in non-failing ventricles, respectively. In contrast to the mouse study, in failing human ventricles, ANP-dependent activity was unchanged compared to non-failing values whereas CNP-dependent activity increased 35% (p=0.005). Compared with ventricular membranes, basal GC activity was reduced an order of magnitude in membranes derived from myocyte-enriched pellets from non-failing ventricles. ANP increased GC activity 2.4-fold but CNP only increased GC activity 1.3-fold. In contrast, neither ANP nor CNP increased GC activity in equivalent preparations from failing ventricles. We conclude that: 1) GC-B activity is increased in non-myocytes from failing human ventricles, possibly as a result of increased fibrosis, 2) human ventricular cardiomyocytes express low levels of GC-A and much lower levels or possibly no GC-B, and 3) GC-A in cardiomyocytes from failing human hearts is refractory to ANP stimulation. PMID:22133375

  7. Identification of a phospholipase C-gamma1 (PLC-gamma1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-gamma1 and NFAT.

    PubMed

    Yablonski, D; Kadlecek, T; Weiss, A

    2001-07-01

    SLP-76 is an adapter protein required for T-cell receptor (TCR) signaling. In particular, TCR-induced tyrosine phosphorylation and activation of phospholipase C-gamma1 (PLC-gamma1), and the resultant TCR-inducible gene expression, depend on SLP-76. Nonetheless, the mechanisms by which SLP-76 mediates PLC-gamma1 activation are not well understood. We now demonstrate that SLP-76 directly interacts with the Src homology 3 (SH3) domain of PLC-gamma1. Structure-function analysis of SLP-76 revealed that each of the previously defined protein-protein interaction domains can be individually deleted without completely disrupting SLP-76 function. Additional deletion mutations revealed a new, 67-amino-acid functional domain within the proline-rich region of SLP-76, which we have termed the P-1 domain. The P-1 domain mediates a constitutive interaction of SLP-76 with the SH3 domain of PLC-gamma1 and is required for TCR-mediated activation of Erk, PLC-gamma1, and NFAT (nuclear factor of activated T cells). The adjacent Gads-binding domain of SLP-76, also within the proline-rich region, mediates inducible recruitment of SLP-76 to a PLC-gamma1-containing complex via the recruitment of both PLC-gamma1 and Gads to another cell-type-specific adapter, LAT. Thus, TCR-induced activation of PLC-gamma1 entails the binding of PLC-gamma1 to both LAT and SLP-76, a finding that may underlie the requirement for both LAT and SLP-76 to mediate the optimal activation of PLC-gamma1.

  8. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA{sub 2} activity

    SciTech Connect

    Takatani-Nakase, Tomoka Takahashi, Koichi

    2015-07-17

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA{sub 2}, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA{sub 2} activity, leading to avoidance of non-apoptotic cell death.

  9. INHIBITION OF THE NFAT PATHWAY ALLEVIATES AMYLOID BETA NEUROTOXICITY IN A MOUSE MODEL OF ALZHEIMER’S DISEASE

    PubMed Central

    Hudry, Eloise; Wu, Hai-Yan; Arbel-Ornath, Michal; Hashimoto, Tadafumi; Matsouaka, Roland; Fan, Zhanyun; Spires-Jones, Tara; Betensky, Rebecca; Bacskai, Brian J.; Hyman, Bradley T

    2012-01-01

    Amyloid β (Aβ) peptides, the main pathological species associated with Alzheimer’s disease (AD), disturb intracellular calcium homeostasis, which in turn activates the calcium-dependent phosphatase calcineurin (CaN). CaN activation induced by Aβ leads to pathological morphological changes in neurons, and overexpression of constitutively active calcineurin is sufficient to generate a similar phenotype, even without Aβ. Here, we tested the hypothesis that calcineurin mediates neurodegenerative effects via activation of the nuclear transcription factor of activated T-cells (NFAT). We found that both spine loss and dendritic branching simplification induced by Aβ exposure were mimicked by constitutively active NFAT, and abolished when NFAT activation was blocked using the genetically encoded inhibitor VIVIT. When VIVIT was specifically addressed to the nucleus, identical beneficial effects were observed, thus enforcing the role of NFAT transcriptional activity in Aβ-related neurotoxicity. In vivo, when VIVIT or its nuclear counterpart were overexpressed in a transgenic model of Alzheimer’s disease via a gene therapy approach, the spine loss and neuritic abnormalities observed in the vicinity of amyloid plaques were blocked. Overall, these results suggest that NFAT/calcineurin transcriptional cascades contribute to Aβ synaptotoxicity, and may provide a new specific set of pathways for neuroprotective strategies. PMID:22378890

  10. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo

    PubMed Central

    Passier, Robert; Zeng, Hong; Frey, Norbert; Naya, Francisco J.; Nicol, Rebekka L.; McKinsey, Timothy A.; Overbeek, Paul; Richardson, James A.; Grant, Stephen R.; Olson, Eric N.

    2000-01-01

    Hypertrophic growth is an adaptive response of the heart to diverse pathological stimuli and is characterized by cardiomyocyte enlargement, sarcomere assembly, and activation of a fetal program of cardiac gene expression. A variety of Ca2+-dependent signal transduction pathways have been implicated in cardiac hypertrophy, but whether these pathways are independent or interdependent and whether there is specificity among them are unclear. Previously, we showed that activation of the Ca2+/calmodulin-dependent protein phosphatase calcineurin or its target transcription factor NFAT3 was sufficient to evoke myocardial hypertrophy in vivo. Here, we show that activated Ca2+/calmodulin-dependent protein kinases-I and -IV (CaMKI and CaMKIV) also induce hypertrophic responses in cardiomyocytes in vitro and that CaMKIV overexpressing mice develop cardiac hypertrophy with increased left ventricular end-diastolic diameter and decreased fractional shortening. Crossing this transgenic line with mice expressing a constitutively activated form of NFAT3 revealed synergy between these signaling pathways. We further show that CaMKIV activates the transcription factor MEF2 through a posttranslational mechanism in the hypertrophic heart in vivo. Activated calcineurin is a less efficient activator of MEF2-dependent transcription, suggesting that the calcineurin/NFAT and CaMK/MEF2 pathways act in parallel. These findings identify MEF2 as a downstream target for CaMK signaling in the hypertrophic heart and suggest that the CaMK and calcineurin pathways preferentially target different transcription factors to induce cardiac hypertrophy. PMID:10811847

  11. Prokineticin 1 modulates IL-8 expression via the calcineurin/NFAT signaling pathway.

    PubMed

    Maldonado-Pérez, David; Brown, Pamela; Morgan, Kevin; Millar, Robert P; Thompson, E Aubrey; Jabbour, Henry N

    2009-07-01

    Prokineticins and their receptors are expressed in various cellular compartments in human endometrium, with prokineticin 1 (PROK1) showing a dynamic pattern of expression across the menstrual cycle and during pregnancy. Previous studies suggest that PROK1 can play an important role in implantation and early pregnancy by inducing vascular remodeling and increasing vascular permeability. Here we demonstrate that PROK1 induces the expression of IL-8, a chemokine with angiogenic properties, in endometrial epithelial Ishikawa cells stably expressing prokineticin receptor 1 and in human first trimester decidua. We also show that IL-8 promoter activity is induced by PROK1 and that this requires the presence of AP1 and NFAT motifs. The role of calcineurin/NFAT signaling pathway is confirmed by the use of specific chemical inhibitors. Additionally, PROK1 induces the expression of the regulator of calcineurin 1 isoform 4 (RCAN1-4) via the calcineurin/NFAT pathway. A modulatory role for RCAN1-4 is demonstrated by RCAN1-4 overexpression which results in the inhibition of PROK1-induced IL-8 expression whereas reduction in RCAN1-4 endogenous expression results in an increase in PROK1-induced IL-8 production. Our findings show that in endometrial cells PROK1 can activate the calcineurin/NFAT pathway to induce IL-8 expression and that this is negatively modulated by the induction of expression of RCAN1-4.

  12. NFAT5 genes are part of the osmotic regulatory system in Atlantic salmon (Salmo salar).

    PubMed

    Lorgen, Marlene; Jorgensen, Even H; Jordan, William C; Martin, Samuel A M; Hazlerigg, David G

    2017-02-01

    The anadromous Atlantic salmon utilizes both fresh and salt water (FW and SW) habitats during its life cycle. The parr-smolt transformation (PST) is an important developmental transition from a FW adapted juvenile parr to a SW adapted smolt. Physiological changes in osmoregulatory tissues, particularly the gill, are key in maintaining effective ion regulation during PST. Changes are initiated prior to SW exposure (preparative phase), and are completed when smolts enter the sea (activational phase) where osmotic stress may directly stimulate changes in gene expression. In this paper we identify 4 nuclear factor of activated T cells (NFAT5, an osmotic stress transcription factor) paralogues in Atlantic salmon, which showed strong homology in characterized functional domains with those identified in other vertebrates. Two of the identified paralogues (NFAT5b1 and NFAT5b2) showed increased expression following transfer from FW to SW. This effect was largest in parr that were maintained under short day photoperiod, and showed the highest increases in chloride ion levels in response to SW exposure. The results of this study suggest that NFAT5 is involved in the osmotic stress response of Atlantic salmon. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Tanshinone IIA Prevents Leu27IGF-II-Induced Cardiomyocyte Hypertrophy Mediated by Estrogen Receptor and Subsequent Akt Activation.

    PubMed

    Weng, Yueh-Shan; Wang, Hsueh-Fang; Pai, Pei-Ying; Jong, Gwo-Ping; Lai, Chao-Hung; Chung, Li-Chin; Hsieh, Dennis Jine-Yuan; HsuanDay, Cecilia; Kuo, Wei-Wen; Huang, Chih-Yang

    2015-01-01

    IGF-IIR plays important roles as a key regulator in myocardial pathological hypertrophy and apoptosis, which subsequently lead to heart failure. Salvia miltiorrhiza Bunge (Danshen) is a traditional Chinese medicinal herb used to treat cardiovascular diseases. Tanshinone IIA is an active compound in Danshen and is structurally similar to 17[Formula: see text]-estradiol (E[Formula: see text]. However, whether tanshinone IIA improves cardiomyocyte survival in pathological hypertrophy through estrogen receptor (ER) regulation remains unclear. This study investigates the role of ER signaling in mediating the protective effects of tanshinone IIA on IGF-IIR-induced myocardial hypertrophy. Leu27IGF-II (IGF-II analog) was shown in this study to specifically activate IGF-IIR expression and ICI 182,780 (ICI), an ER antagonist used to investigate tanshinone IIA estrogenic activity. We demonstrated that tanshinone IIA significantly enhanced Akt phosphorylation through ER activation to inhibit Leu27IGF-II-induced calcineurin expression and subsequent NFATc3 nuclear translocation to suppress myocardial hypertrophy. Tanshinone IIA reduced the cell size and suppressed ANP and BNP, inhibiting antihypertrophic effects induced by Leu27IGF-II. The cardioprotective properties of tanshinone IIA that inhibit Leu27IGF-II-induced cell hypertrophy and promote cell survival were reversed by ICI. Furthermore, ICI significantly reduced phospho-Akt, Ly294002 (PI3K inhibitor), and PI3K siRNA significantly reduced the tanshinone IIA-induced protective effect. The above results suggest that tanshinone IIA inhibited cardiomyocyte hypertrophy, which was mediated through ER, by activating the PI3K/Akt pathway and inhibiting Leu27IGF-II-induced calcineurin and NFATC3. Tanshinone IIA exerted strong estrogenic activity and therefore represented a novel selective ER modulator that inhibits IGF-IIR signaling to block cardiac hypertrophy.

  14. Rcan1-1L overexpression induces mitochondrial autophagy and improves cell survival in angiotensin II-exposed cardiomyocytes

    SciTech Connect

    Duan, Hongyan; Li, Yongqiang; Yan, Lijie; Yang, Haitao; Wu, Jintao; Qian, Peng; Li, Bing; Wang, Shanling

    2015-07-01

    Mitochondrial autophagy is an important adaptive stress response and can be modulated by various key molecules. A previous study found that the regulator of calcineurin 1-1L (Rcan1-1L) may regulate mitochondrial autophagy and cause mitochondria degradation in neurocytes. However, the effect of Rcan1-1L on cardiomyocytes has not been determined. In the present study, we aimed to investigate the role of Rcan1-1L in angiotensin II (Ang II)-exposed human cardiomyocytes. Above all, Human adult cardiac myocytes (HACMs) were exposed to 200 nmol/L Ang II for 4 days. Enhanced H{sub 2}O{sub 2} production, cytochrome C release and mitochondrial permeability were observed in these cells, which were blocked by valsartan. Consistently, Ang II exposure significantly reduced cardiomyocyte viability. However, transfection of Rcan1-1L vector promoted cell viability and ameliorated the apoptosis caused by Ang II. Rcan1-1L clearly promoted mitochondrial autophagy in HACMs, with elevated autophagy protein (ATG) 5 and light chain 3 (LC3) expression. Transient mitochondrial biogenesis and reduced cytochrome C release was also induced by Rcan1-1L. Additionally, Rcan1-1L significantly inhibited calcineurin/nuclear factor of activated T cells (NFAT) signaling. We thus conclude that Rcan1-1L may play a protective role in Ang II-treated cardiomyocytes through the induction of mitochondrial autophagy, and may be an alternative method of cardiac protection. - Highlights: • Transfection of Rcan1-1L into HACMs promoted cell viability and reduced apoptosis. • Transfection of Rcan1-1L promoted mitochondrial autophagy in HACMs. • Rcan1-1L inhibited the calcineurin/nuclear factor of activated T cells signaling.

  15. Peptide affinity analysis of proteins that bind to an unstructured region containing the transactivating domain of the osmoprotective transcription factor NFAT5.

    PubMed

    DuMond, Jenna F; Zhang, Xue; Izumi, Yuichiro; Ramkissoon, Kevin; Wang, Guanghui; Gucek, Marjan; Wang, Xujing; Burg, Maurice B; Ferraris, Joan D

    2016-10-07

    NFAT5 is a transcription factor originally identified because it is activated by hypertonicity and that activation increases expression of genes that protect against the adverse effects of the hypertonicity. However, its targets also include genes not obviously related to tonicity. The transactivating domain of NFAT5 is contained in its c-terminal region, which is predicted to be unstructured. Unstructured regions are common in transcription factors particularly in transactivating domains where they can bind co-regulatory proteins essential to their function. To identify potential binding partners of NFAT5 from either cytoplasmic or nuclear HEK293 cell extracts, we used peptide affinity chromatography followed by mass spectrometry. Peptide aptamer-baits consisted of overlapping 20 amino acid peptides within the predicted c-terminal unstructured region of NFAT5. We identify a total of 351 unique protein preys that associate with at least one c-terminal peptide bait from NFAT5 in either cytoplasmic or nuclear extracts from cells incubated at various tonicities (NaCl varied). In addition to finding many proteins already known to associate with NFAT5, we found many new ones whose function suggest novel aspects of NFAT5 regulation, interaction and function. Relatively few of the proteins pulled down by peptide baits from NFAT5 are generally involved in transcription and most, therefore, are likely to be specifically related to the regulation of NFAT5 or its function. The novel associated proteins are involved with cancer, effects of hypertonicity on chromatin, development, splicing of mRNA, transcription and vesicle trafficking. Copyright © 2016, Physiological Genomics.

  16. Zinc pyrithione salvages reperfusion injury by inhibiting NADPH oxidase activation in cardiomyocytes.

    PubMed

    Kasi, Viswanath; Bodiga, Sreedhar; Kommuguri, Upendra Nadh; Sankuru, Suneetha; Bodiga, Vijaya Lakshmi

    2011-07-01

    Zinc pyrithione (ZPT), has a strong anti-apoptotic effect when administered just before reperfusion. Because oxidative stress has been proposed to contribute to myocardial reperfusion injury, we tested whether ZPT can reduce the production of reactive oxygen species during reoxygenation in cultured neonatal rat cardiac myocytes and evaluated the role of NADPH oxidase in hypoxia/reoxygenation (H/R) injury. The cells were subjected to 8h of simulated ischemia, followed by either 30 min or 16 h of reoxygenation. ZPT when started just before reoxygenation significantly reduced superoxide generation, LDH release and improved cell survival compared to H/R. Attenuation of the ROS production by ZPT paralleled its capacity to prevent pyknotic nuclei formation. In addition, ZPT reversed the H/R-induced expression of NOX2 and p47(phox) phosphorylation indicating that ZPT directly protects cardiomyocytes from reperfusion injury by a mechanism that attenuates NADPH oxidase mediated intracellular oxidative stress.

  17. Nanoelectropulse intracellular perturbation and electropermeabilization technology: phospholipid translocation, calcium bursts, chromatin rearrangement, cardiomyocyte activation, and tumor cell sensitivity.

    PubMed

    Vernier, P Thomas; Sun, Yinghua; Wang, Jingjing; Thu, Mya Mya; Garon, Edward; Valderrabano, Miguel; Marcu, Laura; Koeffler, H Phillip; Gundersen, Martin A

    2005-01-01

    Nanosecond, megavolt-per-meter pulsed electric fields scramble the asymmetric arrangement of phospholipids in the plasma membrane, release intracellular calcium, trigger cardiomyocyte activity, and induce apoptosis in mammalian cancer cells, without the permeabilizing effects associated with longer, lower-field pulses. Dose dependencies with respect to pulse width, amplitude, and repetition rate, and total pulse count are observed for all of these phenomena. Sensitivities vary among cell types; cells of lymphoid origin growing in suspension are more susceptible to nanoelectropulse exposure than solid tumor lines. Simple electrical models of the cell are useful for first-order explanations, but more sophisticated treatments will be required for analysis and prediction at both biomolecular and tissue levels.

  18. The acetaminophen-derived bioactive N-acylphenolamine AM404 inhibits NFAT by targeting nuclear regulatory events.

    PubMed

    Caballero, Francisco J; Navarrete, Carmen M; Hess, Sandra; Fiebich, Bernd L; Appendino, Giovanni; Macho, Antonio; Muñoz, Eduardo; Sancho, Rocío

    2007-04-01

    AM404 is a synthetic TRPV1/CB(1) hybrid ligand with inhibitory activity on the anandamide transporter and is used for the pharmacological manipulation of the endocannabinoid system. It has been recently described that acetaminophen is metabolised in the brain to form the bioactive N-acylphenolamine AM404 and therefore, we have evaluated the effect of this metabolite in human T cells, discovering that AM404 is a potent inhibitor of TCR-mediated T-cell activation. Moreover, we found that AM404 specifically inhibited both IL-2 and TNF-alpha gene transcription and TNF-alpha synthesis in CD3/CD28-stimulated Jurkat T cells in a FAAH independent way. To further characterize the biochemical inhibitory mechanisms of AM404, we examined the signaling pathways that regulate the activation of the transcription factors NF-kappaB, NFAT and AP-1 in Jurkat cells. We found that AM404 inhibited both the binding to DNA and the transcriptional activity of endogenous NFAT and the transcriptional activity driven by the over expressed fusion protein Gal4-NFAT (1-415). However, AM404 did not affect early steps in NFAT signaling such as CD3-induced calcium mobilization and NFAT1 dephosphorylation. The NFAT inhibitory activity of AM404 seems to be quite specific since this compound did not interfere with the signaling pathways leading to AP-1 or NF-kappaB activation. These findings provide new mechanistic insights into the immunological effects of AM404 which in part could explain some of the activities ascribed to the widely used acetaminophen.

  19. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes.

    PubMed

    Bazzazi, Hojjat; Sang, Lingjie; Dick, Ivy E; Joshi-Mukherjee, Rosy; Yang, Wanjun; Yue, David T

    2015-09-01

    Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The sensors are uniformly distributed in neonatal myocytes and respond efficiently to single electrically evoked calcium transients and show cumulative activation at frequencies of 0.5 and 1 Hz. In adult myocytes, the calcineurin sensors appear to be localized to the cardiac z-lines, and respond to cumulative calcium transients at frequencies of 0.5 and 1 Hz. The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes

  20. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes

    PubMed Central

    Bazzazi, Hojjat; Sang, Lingjie; Dick, Ivy E; Joshi-Mukherjee, Rosy; Yang, Wanjun; Yue, David T

    2015-01-01

    Abstract The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes. Finally, mathematical modelling combined with quantitative FRET measurements provided novel insights into the kinetics and integration of calcineurin activation in response to myocyte Ca transients. In all, DuoCaN and UniCaN stand as valuable new tools for understanding the role of calcineurin in normal and pathological signalling. Key points Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The

  1. Identification of novel regulatory NFAT and TFII-I binding elements in the calbindin-D28k promoter in response to serum deprivation.

    PubMed

    Hajibeigi, Asghar; Dioum, Elhadji M; Guo, Jianfei; Öz, Orhan K

    2015-09-25

    Calbindin-D28k, a key regulator of calcium homeostasis plays a cytoprotective role in various tissues. We used serum free (SFM) and charcoal stripped serum (csFBS) culture media as models of cellular stress to modulate calbindin D28k expression and identify regulatory cis-elements and trans-acting factors in kidney and beta cells. The murine calbindin-D28k promoter activity was significantly upregulated under SFM or csFBS condition. Promoter analysis revealed evolutionary conserved regulatory cis-elements and deletion of 23 nt from +117/+139 as critical for basal transcription. Bioinformatics analysis of the promoter revealed conserved NFAT and TFII regulators elements. Forced expression of NFAT stimulated promoter activity. Inhibition of NFAT transcriptional activity by FK506 attenuated calbindin-D28k expression. TFII-I was shown to be necessary for basal promoter activity and to act cooperatively with NFAT. Using chromatin immunoprecipitation (ChIP) assays, NFAT was shown to bind to both proximal and distal promoter regions. ChIP assays also revealed recruitment of TFII to the -36/+139 region. Knockdown of TFII-I decreased promoter activity. In summary, calbindin-D28k expression during serum deprivation is partly regulated by NFAT and TF-II. This regulation may be important in vivo during ischemia and growth factor withdrawal to regulate cellular function and maintenance.

  2. Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5.

    PubMed

    Aramburu, José; Drews-Elger, Katherine; Estrada-Gelonch, Anaïs; Minguillón, Jordi; Morancho, Beatriz; Santiago, Verónica; López-Rodríguez, Cristina

    2006-11-30

    Stress, be it from environmental factors or intrinsic to the cell as result of growth and metabolism, can be harmful to cells. Mammalian cells have developed numerous mechanisms to respond to diverse forms of stress. These mechanisms combine signaling cascades and activation of gene expression programs to orchestrate an adaptive response that will allow the cell to survive and resume its normal functioning. In this review we will focus on the transcription factor NFAT5, a fundamental regulator of the response to osmotic stress in mammalian cells. Identified in 1999, NFAT5 is the latest addition to the Rel family, which comprises the NF-kappaB and NFATc proteins. Though in some of its structural and functional features NFAT5 is a hybrid between these two major groups of Rel proteins, it has unique characteristics that make it stand on its own as a third type of Rel transcription factor. Since its discovery, NFAT5 has been studied mostly in the context of the hypertonicity stress response. The advent of mouse models deficient in NFAT5 and other recent advances have confirmed a fundamental osmoprotective role for this factor in mammals, but also revealed features that suggest it may have a wider range of functions.

  3. Na+/H+ exchanger isoform 1 induced cardiomyocyte hypertrophy involves activation of p90 ribosomal s6 kinase.

    PubMed

    Jaballah, Maiy; Mohamed, Iman A; Alemrayat, Bayan; Al-Sulaiti, Fatima; Mlih, Mohamed; Mraiche, Fatima

    2015-01-01

    Studies using pharmacological and genetic approaches have shown that increased activity/expression of the Na+/H+ exchanger isoform 1 (NHE1) play a critical role in the pathogenesis of cardiac hypertrophy. Despite the importance of NHE1 in cardiac hypertrophy, severe cerebrovascular side effects were associated with the use of NHE1 inhibitors when administered to patients with myocardial infarctions. p90 ribosomal S6 Kinase (RSK), a downstream regulator of the mitogen-activated protein kinase pathway, has also been implicated in cardiac hypertrophy. We hypothesized that RSK plays a role in the NHE1 induced cardiomyocyte hypertrophic response. Infection of H9c2 cardiomyoblasts with the active form of the NHE1 adenovirus induced hypertrophy and was associated with an increase in the phosphorylation of RSK (P<0.05). Parameters of hypertrophy such as cell area, protein content and atrial natriuretic mRNA expression were significantly reduced in H9c2 cardiomyoblasts infected with active NHE1 in the presence of dominant negative RSK (DN-RSK) (P<0.05). These results confirm that NHE1 lies upstream of RSK. Increased phosphorylation and activation of GATA4 at Ser261 was correlated with increased RSK phosphorylation. This increase was reversed upon inhibition of RSK or NHE1. These findings demonstrate for the first time that the NHE1 mediated hypertrophy is accounted for by increased activation and phosphorylation of RSK, which subsequently increased the phosphorylation of GATA4; eventually activating fetal gene transcriptional machinery.

  4. Mitochondrial activity and oxidative stress functions are influenced by the activation of AhR-induced CYP1A1 overexpression in cardiomyocytes.

    PubMed

    Zhou, Bing; Wang, Xi; Li, Feng; Wang, Yingting; Yang, Lei; Zhen, Xiaolong; Tan, Wuhong

    2017-07-01

    There is an endemic cardiomyopathy currently occurring in China, termed, Keshan disease (KD). The authors previously compared mitochondrial‑associated gene expression profiles of peripheral blood mononuclear cells (PBMCs) derived from KD patients and normal controls, using mitochondria‑focused cDNA microarray technology. The results detected an upregulation of the enzyme‑associated CYP1A1 gene, (ratios ≥2.0). The aryl hydrocarbon receptor (AhR) regulates the expression of numerous cytochrome P450 (CYP) genes including members of the CYP1 family; CYP1A1 and CYP1A2. Several previous studies have suggested roles for the aryl hydrocarbon receptor (AhR) and the genes that it regulates. An example involves cytochrome P4501A1 (CYP1A1), in the pathogenesis of heart failure, cardiac hypertrophy and other cardiomyopathies. Mitochondria comprise ~30% of the intracellular volume in mammalian cardiomyocytes, and subtle alterations in mitochondria can markedly influence cardiomyopathies. The present study investigated alterations in the activity and functions of mitochondria following AhR‑induced overexpression of CYP1A1. AC16 cells were treated with the CYP1A1 inducer 2,3,7,8‑tetrachlorodibenzo‑p‑dioxin (TCDD), and cytotoxicity was then evaluated in MTT assays. Reverse transcription‑quantitative polymerase chain reactions, western blot analysis and 7‑ethoxyresorufin O‑deacylase assays were performed to analyze the mRNA and protein levels, and the enzymatic activity of CYP1A1. Mitochondrial activity and mass were analyzed using an inverted fluorescence microscope and a fluorescence microplate reader. Reactive oxygen species (ROS) activity was analyzed using flow cytometry. The results of the current study demonstrated that TCDD gradually increased mRNA and protein levels of AhR and CYP1A1, in addition to the enzymatic activity. Mitochondrial activity and the quality of mitochondrial membranes were also significantly attenuated, and mitochondrial ROS

  5. Caveolin-3 Overexpression Attenuates Cardiac Hypertrophy via Inhibition of T-type Ca2+ Current Modulated by Protein Kinase Cα in Cardiomyocytes*

    PubMed Central

    Markandeya, Yogananda S.; Phelan, Laura J.; Woon, Marites T.; Keefe, Alexis M.; Reynolds, Courtney R.; August, Benjamin K.; Hacker, Timothy A.; Roth, David M.; Patel, Hemal H.; Balijepalli, Ravi C.

    2015-01-01

    Pathological cardiac hypertrophy is characterized by subcellular remodeling of the ventricular myocyte with a reduction in the scaffolding protein caveolin-3 (Cav-3), altered Ca2+ cycling, increased protein kinase C expression, and hyperactivation of calcineurin/nuclear factor of activated T cell (NFAT) signaling. However, the precise role of Cav-3 in the regulation of local Ca2+ signaling in pathological cardiac hypertrophy is unclear. We used cardiac-specific Cav-3-overexpressing mice and in vivo and in vitro cardiac hypertrophy models to determine the essential requirement for Cav-3 expression in protection against pharmacologically and pressure overload-induced cardiac hypertrophy. Transverse aortic constriction and angiotensin-II (Ang-II) infusion in wild type (WT) mice resulted in cardiac hypertrophy characterized by significant reduction in fractional shortening, ejection fraction, and a reduced expression of Cav-3. In addition, association of PKCα and angiotensin-II receptor, type 1, with Cav-3 was disrupted in the hypertrophic ventricular myocytes. Whole cell patch clamp analysis demonstrated increased expression of T-type Ca2+ current (ICa, T) in hypertrophic ventricular myocytes. In contrast, the Cav-3-overexpressing mice demonstrated protection from transverse aortic constriction or Ang-II-induced pathological hypertrophy with inhibition of ICa, T and intact Cav-3-associated macromolecular signaling complexes. siRNA-mediated knockdown of Cav-3 in the neonatal cardiomyocytes resulted in enhanced Ang-II stimulation of ICa, T mediated by PKCα, which caused nuclear translocation of NFAT. Overexpression of Cav-3 in neonatal myocytes prevented a PKCα-mediated increase in ICa, T and nuclear translocation of NFAT. In conclusion, we show that stable Cav-3 expression is essential for protecting the signaling mechanisms in pharmacologically and pressure overload-induced cardiac hypertrophy. PMID:26170457

  6. Peroxisome Proliferator-Activated Receptor α Reduces Endothelin-1-Caused Cardiomyocyte Hypertrophy by Inhibiting Nuclear Factor-κB and Adiponectin

    PubMed Central

    Jen, Hsu-Lung; Liu, Po-Len; Chen, Jaw-Wen; Lin, Shing-Jong

    2016-01-01

    Peroxisome proliferator-activated receptor α (PPARα) plays a role in the pathogenesis of cardiac hypertrophy, although its underlying mechanism remains unclear. The purpose of this study was to evaluate the effect of PPARα activation on endothelin-1- (ET-1-) caused cardiomyocyte hypertrophy and explore its underlying mechanisms. Human cardiomyocytes (HCMs) were cultured with or without ET-1, whereafter the inhibitory effects of fenofibrate, a PPARα activator, on cell size and adiponectin protein were tested. We examined the activation of extracellular signal-regulated kinase (ERK) and p38 proteins caused by ET-1 and the inhibition of the ERK and p38 pathways on ET-1-induced cell size and adiponectin expression. Moreover, we investigated the interaction of PPARα with adiponectin and nuclear factor-κB (NF-κB) by electrophoretic mobility shift assays and coimmunoprecipitation. ET-1 treatment significantly increased cell size, suppressed PPARα expression, and enhanced the expression of adiponectin. Pretreatment with fenofibrate inhibited the increase in cell size and enhancement of adiponectin expression. ET-1 significantly activated the ERK and p38 pathways, whereas PD98059 and SB205380, respectively, inhibited them. Our results suggest that activated PPARα can decrease activation of adiponectin and NF-κB and inhibit ET-1-induced cardiomyocyte hypertrophy. PMID:27807394

  7. Microparticles from apoptotic RAW 264.7 macrophage cells carry tumour necrosis factor-α functionally active on cardiomyocytes from adult mice

    PubMed Central

    Milbank, Edward; Soleti, Raffaella; Martinez, Emilie; Lahouel, Badreddine; Hilairet, Grégory; Martinez, M. Carmen; Andriantsitohaina, Ramaroson; Noireaud, Jacques

    2015-01-01

    After ischaemic injury and in patients with atherosclerosis, the pool of inflammatory macrophages is enlarged in the heart and in atherosclerotic plaques. Monocyte/macrophage-derived microparticles (MPs) are part of the pathological process of unstable atherosclerotic plaques. The present study focused on effects of MPs, produced by apoptotic murine RAW 264.7 macrophage cell line, in adult murine cardiomyocytes. Flow cytometry and western blot analysis showed that these MPs contained the soluble form of tumour necrosis factor alpha (TNF-α). Cardiomyocyte sarcomere shortening amplitudes and kinetics were reduced within 5 min of exposure to these MPs. Conversely, Ca2+ transient amplitude and kinetics were not modified. The contractile effects of MPs were completely prevented after pretreatment with nitric oxide synthase, guanylate cyclase or TNF-α inhibitors as well as blocking TNF-α receptor 1 with neutralizing antibody. Microscopy showed that, after 1 h, MPs were clearly surrounding rod-shaped cardiomyocytes, and after 2 h they were internalized into cardiomyocytes undergoing apoptosis. After 4 h of treatment with MPs, cardiomyocytes expressed increased caspase-3, caspase-8, Bax and cytochrome C. Thus, MPs from apoptotic macrophages induced a negative inotropic effect and slowing of both contraction and relaxation, similar to that observed in the presence of TNF-α. The use of specific inhibitors strongly suggests that TNF-α receptors and the guanylate cyclase/cGMP/PKG pathway were involved in the functional responses to these MPs and that the mitochondrial intrinsic pathway was implicated in their proapoptotic effects. These data suggest that MPs issued from activated macrophages carrying TNF-α could contribute to propagation of inflammatory signals leading to myocardial infarction. PMID:26498917

  8. Structural heterogeneity promotes triggered activity, reflection and arrhythmogenesis in cardiomyocyte monolayers

    PubMed Central

    Auerbach, David S; Grzȩda, Krzysztof R; Furspan, Philip B; Sato, Priscila Y; Mironov, Sergey; Jalife, José

    2011-01-01

    Abstract Patients with structural heart disease are predisposed to arrhythmias by incompletely understood mechanisms. We hypothesized that tissue expansions promote source-to-sink mismatch leading to early after-depolarizations (EADs) and reflection of impulses in monolayers of well-polarized neonatal rat ventricular cardiomyocytes. We traced electrical propagation optically in patterned monolayers consisting of two wide regions connected by a thin isthmus. Structural heterogeneities provided a substrate for EADs, retrograde propagation along the same pathway (reflection) and reentry initiation. Reflection always originated during the action potential (AP) plateau at the distal expansion. To determine whether increased sodium current (INa) would promote EADs, we employed adenoviral transfer of Nav1.5 (Ad-Nav1.5). Compared with uninfected and adenoviral expression of green fluorescent protein (Ad-GFP; viral control), Ad-Nav1.5 significantly increased Nav1.5 protein expression, peak and persistent INa density, AP upstroke velocity, AP duration, conduction velocity and EAD incidence, as well as reflection incidence (29.2%, n = 48 vs. uninfected, 9.4%, n = 64; and Ad-GFP, 4.8%, n = 21). Likewise, the persistent INa agonist veratridine (0.05–3 μm) prolonged the AP, leading to EADs and reflection. Reflection led to functional reentry distally and bigeminal and trigeminal rhythms proximally. Reflection was rare in the absence of structural heterogeneities. Computer simulations demonstrated the importance of persistent INa in triggering reflection and predicted that the gradient between the depolarizing cells at the distal expansion and the repolarizing cells within the isthmus enabled retrograde flow of depolarizing electrotonic current to trigger EADs and reflection. A combination of a substrate (structural heterogeneity) and a trigger (increased persistent INa and EADs) promotes reflection and arrhythmogenesis. PMID:21486795

  9. NADPH oxidase 4 regulates cardiomyocyte differentiation via redox activation of c-Jun protein and the cis-regulation of GATA-4 gene transcription.

    PubMed

    Murray, Thomas V A; Smyrnias, Ioannis; Shah, Ajay M; Brewer, Alison C

    2013-05-31

    NADPH oxidase 4 (Nox4) generates reactive oxygen species (ROS) that can modulate cellular phenotype and function in part through the redox modulation of the activity of transcription factors. We demonstrate here the potential of Nox4 to drive cardiomyocyte differentiation in pluripotent embryonal carcinoma cells, and we show that this involves the redox activation of c-Jun. This in turn acts to up-regulate GATA-4 expression, one of the earliest markers of cardiotypic differentiation, through a defined and highly conserved cis-acting motif within the GATA-4 promoter. These data therefore suggest a mechanism whereby ROS act in pluripotential cells in vivo to regulate the initial transcription of critical tissue-restricted determinant(s) of the cardiomyocyte phenotype, including GATA-4. The ROS-dependent activation, mediated by Nox4, of widely expressed redox-regulated transcription factors, such as c-Jun, is fundamental to this process.

  10. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury

    PubMed Central

    Furman, Jennifer L.; Sompol, Pradoldej; Kraner, Susan D.; Pleiss, Melanie M.; Putman, Esther J.; Dunkerson, Jacob; Mohmmad Abdul, Hafiz; Roberts, Kelly N.; Scheff, Stephen W.

    2016-01-01

    Increasing evidence suggests that the calcineurin (CN)-dependent transcription factor NFAT (Nuclear Factor of Activated T cells) mediates deleterious effects of astrocytes in progressive neurodegenerative conditions. However, the impact of astrocytic CN/NFAT signaling on neural function/recovery after acute injury has not been investigated extensively. Using a controlled cortical impact (CCI) procedure in rats, we show that traumatic brain injury is associated with an increase in the activities of NFATs 1 and 4 in the hippocampus at 7 d after injury. NFAT4, but not NFAT1, exhibited extensive labeling in astrocytes and was found throughout the axon/dendrite layers of CA1 and the dentate gyrus. Blockade of the astrocytic CN/NFAT pathway in rats using adeno-associated virus (AAV) vectors expressing the astrocyte-specific promoter Gfa2 and the NFAT-inhibitory peptide VIVIT prevented the injury-related loss of basal CA1 synaptic strength and key synaptic proteins and reduced the susceptibility to induction of long-term depression. In conjunction with these seemingly beneficial effects, VIVIT treatment elicited a marked increase in the expression of the prosynaptogenic factor SPARCL1 (hevin), especially in hippocampal tissue ipsilateral to the CCI injury. However, in contrast to previous work on Alzheimer's mouse models, AAV-Gfa2-VIVIT had no effects on the levels of GFAP and Iba1, suggesting that synaptic benefits of VIVIT were not attributable to a reduction in glial activation per se. Together, the results implicate the astrocytic CN/NFAT4 pathway as a key mechanism for disrupting synaptic remodeling and homeostasis in the hippocampus after acute injury. SIGNIFICANCE STATEMENT Similar to microglia, astrocytes become strongly “activated” with neural damage and exhibit numerous morphologic/biochemical changes, including an increase in the expression/activity of the protein phosphatase calcineurin. Using adeno-associated virus (AAV) to inhibit the calcineurin

  11. Redox regulation of cardiomyocyte cell cycling via an ERK1/2 and c-Myc-dependent activation of cyclin D2 transcription

    PubMed Central

    Murray, Thomas V.A.; Smyrnias, Ioannis; Schnelle, Moritz; Mistry, Rajesh K.; Zhang, Min; Beretta, Matteo; Martin, Daniel; Anilkumar, Narayana; de Silva, Shana M.; Shah, Ajay M.; Brewer, Alison C.

    2015-01-01

    Adult mammalian cardiomyocytes have a very limited capacity to proliferate, and consequently the loss of cells after cardiac stress promotes heart failure. Recent evidence suggests that administration of hydrogen peroxide (H2O2), can regulate redox-dependent signalling pathway(s) to promote cardiomyocyte proliferation in vitro, but the potential relevance of such a pathway in vivo has not been tested. We have generated a transgenic (Tg) mouse model in which the H2O2-generating enzyme, NADPH oxidase 4 (Nox4), is overexpressed within the postnatal cardiomyocytes, and observed that the hearts of 1–3 week old Tg mice pups are larger in comparison to wild type (Wt) littermate controls. We demonstrate that the cardiomyocytes of Tg mouse pups have increased cell cycling capacity in vivo as determined by incorporation of 5-bromo-2′-deoxyuridine. Further, microarray analyses of the transcriptome of these Tg mouse hearts suggested that the expression of cyclin D2 is significantly increased. We investigated the molecular mechanisms which underlie this more proliferative phenotype in isolated neonatal rat cardiomyocytes (NRCs) in vitro, and demonstrate that Nox4 overexpression mediates an H2O2-dependent activation of the ERK1/2 signalling pathway, which in turn phosphorylates and activates the transcription factor c-myc. This results in a significant increase in cyclin D2 expression, which we show to be mediated, at least in part, by cis-acting c-myc binding sites within the proximal cyclin D2 promoter. Overexpression of Nox4 in NRCs results in an increase in their proliferative capacity that is ablated by the silencing of cyclin D2. We further demonstrate activation of the ERK1/2 signalling pathway, increased phosphorylation of c-myc and significantly increased expression of cyclin D2 protein in the Nox4 Tg hearts. We suggest that this pathway acts to maintain the proliferative capacity of cardiomyocytes in Nox4 Tg pups in vivo and so delays their exit from the cell

  12. Cruciferous vegetable phytochemical sulforaphane affects phase II enzyme expression and activity in rat cardiomyocytes through modulation of Akt signaling pathway.

    PubMed

    Leoncini, Emanuela; Malaguti, Marco; Angeloni, Cristina; Motori, Elisa; Fabbri, Daniele; Hrelia, Silvana

    2011-09-01

    The isothiocyanate sulforaphane (SF), abundant in Cruciferous vegetables, is known to induce antioxidant/detoxification enzymes in many cancer cell lines, but studies focused on its cytoprotective action in nontransformed cells are just at the beginning. Since we previously demonstrated that SF elicits cardioprotection through an indirect antioxidative mechanism, the aim of this study was to analyze the signaling pathways through which SF exerts its protective effects. Using cultured rat cardiomyocytes, we investigated the ability of SF to activate Akt/protein kinase B (PKB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathways, which are implicated in cardiac cell survival, and to increase the phosphorylation of Nuclear factor E2-related factor 2 (Nrf2) and its binding to the antioxidant response element. By means of specific inhibitors, we demonstrated that the Phosphatidylinositol 3-kinase (PI3K)/Akt pathway represents a mechanism through which SF influences both expression and activity of glutathione reductase, glutathione-S-transferase, thioredoxin reductase, and NAD(P)H:quinone oxidoreductase-1, analyzed by western immunoblotting and spectrophotometric assay, respectively, and modulates Nrf2 binding and phosphorylation resulting in a cytoprotective action against oxidative damage. Results of this study confirm the importance of phase II enzymes modulation as cytoprotective mechanism and support the nutritional assumption of Cruciferous vegetables as source of nutraceutical cardioprotective agents. © 2011 Institute of Food Technologists®

  13. HIV-1 gp120 induces NFAT nuclear translocation in resting CD4+ T-cells

    SciTech Connect

    Cicala, Claudia . E-mail: ccicala@nih.gov; Arthos, James; Censoplano, Nina; Cruz, Catherine; Chung, Eva; Martinelli, Elena; Lempicki, Richard A.; Natarajan, Ven; VanRyk, Donald; Daucher, Marybeth; Fauci, Anthony S.

    2006-02-05

    The replication of human immunodeficiency virus (HIV) in CD4+ T-cells is strongly dependent upon the state of activation of infected cells. Infection of sub-optimally activated cells is believed to play a critical role in both the transmission of virus and the persistence of CD4+ T-cell reservoirs. There is accumulating evidence that HIV can modulate signal-transduction pathways in a manner that may facilitate replication in such cells. We previously demonstrated that HIV gp120 induces virus replication in resting CD4+ T cells isolated from HIV-infected individuals. Here, we show that in resting CD4+ T-cells, gp120 activates NFATs and induces their translocation into the nucleus. The HIV LTR encodes NFAT recognition sites, and NFATs may play a critical role in promoting viral replication in sub-optimally activated cells. These observations provide insight into a potential mechanism by which HIV is able to establish infection in resting cells, which may have implications for both transmission of HIV and the persistence of viral reservoirs.

  14. AKAP5 keeps L-type channels and NFAT on their toes.

    PubMed

    Navedo, Manuel F; Hell, Johannes W

    2014-06-12

    In this issue of Cell Reports, Murphy et al. and Dittmer et al. present exciting new insight into the regulation of Ca2+ influx via the L-type Ca2+ channel Cav1.2 and how increased Ca2+ influx translates into localized activation of the nuclear transcription factor NFAT upon depolarization in neurons. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Cardiomyocyte proliferation contributes to heart growth in young humans

    PubMed Central

    Mollova, Mariya; Bersell, Kevin; Walsh, Stuart; Savla, Jainy; Das, Lala Tanmoy; Park, Shin-Young; Silberstein, Leslie E.; dos Remedios, Cristobal G.; Graham, Dionne; Colan, Steven; Kühn, Bernhard

    2013-01-01

    The human heart is believed to grow by enlargement but not proliferation of cardiomyocytes (heart muscle cells) during postnatal development. However, recent studies have shown that cardiomyocyte proliferation is a mechanism of cardiac growth and regeneration in animals. Combined with evidence for cardiomyocyte turnover in adult humans, this suggests that cardiomyocyte proliferation may play an unrecognized role during the period of developmental heart growth between birth and adolescence. We tested this hypothesis by examining the cellular growth mechanisms of the left ventricle on a set of healthy hearts from humans aged 0–59 y (n = 36). The percentages of cardiomyocytes in mitosis and cytokinesis were highest in infants, decreasing to low levels by 20 y. Although cardiomyocyte mitosis was detectable throughout life, cardiomyocyte cytokinesis was not evident after 20 y. Between the first year and 20 y of life, the number of cardiomyocytes in the left ventricle increased 3.4-fold, which was consistent with our predictions based on measured cardiomyocyte cell cycle activity. Our findings show that cardiomyocyte proliferation contributes to developmental heart growth in young humans. This suggests that children and adolescents may be able to regenerate myocardium, that abnormal cardiomyocyte proliferation may be involved in myocardial diseases that affect this population, and that these diseases might be treatable through stimulation of cardiomyocyte proliferation. PMID:23302686

  16. Prolonged AT1R activation induces CaV1.2 channel internalization in rat cardiomyocytes.

    PubMed

    Hermosilla, Tamara; Encina, Matías; Morales, Danna; Moreno, Cristian; Conejeros, Carolina; Alfaro-Valdés, Hilda M; Lagos-Meza, Felipe; Simon, Felipe; Altier, Christophe; Varela, Diego

    2017-08-31

    The cardiac L-type calcium channel is a multi-subunit complex that requires co-assembling of the pore-forming subunit CaV1.2 with auxiliary subunits CaVα2δ and CaVβ. Its traffic has been shown to be controlled by these subunits and by the activation of various G-protein coupled receptors (GPCR). Here, we explore the consequences of the prolonged activation of angiotensin receptor type 1 (AT1R) over CaV1.2 channel trafficking. Bioluminescence Resonance Energy Transfer (BRET) assay between β-arrestin and L-type channels in angiotensin II-stimulated cells was used to assess the functional consequence of AT1R activation, while immunofluorescence of adult rat cardiomyocytes revealed the effects of GPCR activation on CaV1.2 trafficking. Angiotensin II exposure results in β-arrestin1 recruitment to the channel complex and an apparent loss of CaV1.2 immunostaining at the T-tubules. Accordingly, angiotensin II stimulation causes a decrease in L-type current, Ca(2+) transients and myocyte contractility, together with a faster repolarization phase of action potentials. Our results demonstrate that prolonged AT1R activation induces β-arrestin1 recruitment and the subsequent internalization of CaV1.2 channels with a half-dose of AngII on the order of 100 nM, suggesting that this effect depends on local renin-angiotensin system. This novel AT1R-dependent CaV1.2-trafficking modulation likely contributes to angiotensin II-mediated cardiac remodeling.

  17. The Transcription Factor NFAT Exhibits Signal Memory during Serial T Cell Interactions with Antigen Presenting Cells

    PubMed Central

    Marangoni, Francesco; Murooka, Thomas T.; Manzo, Teresa; Kim, Edward Y.; Carrizosa, Esteban; Elpek, Natalie M.; Mempel, Thorsten R.

    2012-01-01

    Summary Interactions with antigen-presenting cells (APCs) interrupt T cell migration through tissues and trigger signaling pathways that converge on the activation of transcriptional regulators, including NFAT, which control T cell function and differentiation. Both stable and unstable modes of cognate T cell-APC interactions have been observed in vivo, but the functional significance of unstable, serial contacts has remained unclear. Here we used multiphoton intravital microscopy in lymph nodes and tumors to show that while NFAT nuclear import was fast (t1/2 max~1min), nuclear export was slow (t1/2~20min) in T cells. During delayed export, nuclear NFAT constituted a short-term imprint of transient TCR signals and remained transcriptionally active for the T cell tolerance gene Egr2, but not for the effector gene Ifng, which required continuous TCR triggering for expression. This provides a potential mechanistic basis for the observation that a predominance of unstable APC interactions correlates with the induction of T cell tolerance. PMID:23313588

  18. Activation of SIRT3 attenuates triptolide-induced toxicity through closing mitochondrial permeability transition pore in cardiomyocytes.

    PubMed

    Yang, Yanqin; Wang, Wenwen; Xiong, Zhewen; Kong, Jiamin; Qiu, Yuwen; Shen, Feihai; Huang, Zhiying

    2016-08-01

    Triptolide (TP), an active component of the traditional Chinese herb Tripterygium wilfordii Hook f. (TWHF), has multiple pharmacological effects. However, the severe toxicity of TP greatly restricts its clinical applications. Although TP exposure causes serious heart injury, the mechanism underlying TP-induced cardiotoxicity has rarely been investigated. In previous studies, we found that TP-induced oxidative stress was involved in the mitochondria-dependent apoptosis of cardiomyocytes. Opening of the mitochondrial permeability transition pore (mPTP) is the key to the mitochondrial dysfunction in cardiac toxicity. The aim of this study was to investigate the potential cardioprotective effects of sirtuin 3 (SIRT3) on the mPTP. In the present study, the cytotoxicity of TP was accompanied by the up-regulation of the SIRT3 protein level and its rapid aggregation in nuclei and mitochondria. The SIRT3-FOXO3 signaling pathway was activated simultaneously, resulting in increased transcription of manganese superoxide dismutase (MnSOD) and catalase (CAT) for the elimination of reactive oxygen species (ROS). In addition, augmentation of the SIRT3 level via the overexpression plasmid SIRT3-Flag provided resistance to TP-induced cellular damage, whereas knocking down the SIRT3 level via siRNA accelerated the damage. Because it is an activator of SIRT3, the protective effect of resveratrol was also evaluated in H9c2 cells. In conclusion, the current results suggest that activation of SIRT3 substantially ameliorates the detrimental effects of TP by closing the mPTP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A bioengineered hydrogel system enables targeted and sustained intramyocardial delivery of neuregulin, activating the cardiomyocyte cell cycle and enhancing ventricular function in a murine model of ischemic cardiomyopathy.

    PubMed

    Cohen, Jeffrey E; Purcell, Brendan P; MacArthur, John W; Mu, Anbin; Shudo, Yasuhiro; Patel, Jay B; Brusalis, Christopher M; Trubelja, Alen; Fairman, Alexander S; Edwards, Bryan B; Davis, Mollie S; Hung, George; Hiesinger, William; Atluri, Pavan; Margulies, Kenneth B; Burdick, Jason A; Woo, Y Joseph

    2014-07-01

    Neuregulin-1β (NRG) is a member of the epidermal growth factor family possessing a critical role in cardiomyocyte development and proliferation. Systemic administration of NRG demonstrated efficacy in cardiomyopathy animal models, leading to clinical trials using daily NRG infusions. This approach is hindered by requiring daily infusions and off-target exposure. Therefore, this study aimed to encapsulate NRG in a hydrogel to be directly delivered to the myocardium, accomplishing sustained localized NRG delivery. NRG was encapsulated in hydrogel, and release over 14 days was confirmed by ELISA in vitro. Sprague-Dawley rats were used for cardiomyocyte isolation. Cells were stimulated by PBS, NRG, hydrogel, or NRG-hydrogel (NRG-HG) and evaluated for proliferation. Cardiomyocytes demonstrated EdU (5-ethynyl-2'-deoxyuridine) and phosphorylated histone H3 positivity in the NRG-HG group only. For in vivo studies, 2-month-old mice (n=60) underwent left anterior descending coronary artery ligation and were randomized to the 4 treatment groups mentioned. Only NRG-HG-treated mice demonstrated phosphorylated histone H3 and Ki67 positivity along with decreased caspase-3 activity compared with all controls. NRG was detected in myocardium 6 days after injection without evidence of off-target exposure in NRG-HG animals. At 2 weeks, the NRG-HG group exhibited enhanced left ventricular ejection fraction, decreased left ventricular area, and augmented borderzone thickness. Targeted and sustained delivery of NRG directly to the myocardial borderzone augments cardiomyocyte mitotic activity, decreases apoptosis, and greatly enhances left ventricular function in a model of ischemic cardiomyopathy. This novel approach to NRG administration avoids off-target exposure and represents a clinically translatable strategy in myocardial regenerative therapeutics. © 2014 American Heart Association, Inc.

  20. Interleukin-13-induced MUC5AC expression is regulated by a PI3K–NFAT3 pathway in mouse tracheal epithelial cells

    SciTech Connect

    Yan, Fugui; Li, Wen; Zhou, Hongbin; Wu, Yinfang; Ying, Songmin; Chen, Zhihua; Shen, Huahao

    2014-03-28

    Highlights: • IL-13 specifically induced NFAT3 activation in mouse tracheal epithelial cells. • CsA and LY294002 significantly blocked IL-13-induced MUC5AC production. • The PI3K–NFAT3 pathway is positively involved in IL-13-induced MUC5AC production. - Abstract: Interleukin-13 (IL-13) plays a critical role in asthma mucus overproduction, while the mechanisms underlying this process are not fully elucidated. Previous studies showed that nuclear factor of activated T cells (NFAT) is involved in the pathogenesis of asthma, but whether it can directly regulate IL-13-induced mucus (particularly MUC5AC) production is still not clear. Here we showed that IL-13 specifically induced NFAT3 activation through promoting its dephosphorylation in air–liquid interface (ALI) cultures of mouse tracheal epithelial cells (mTECs). Furthermore, both Cyclosporin A (CsA, a specific NFAT inhibitor) and LY294002 (a Phosphoinositide 3-kinase (PI3K) inhibitor) significantly blocked IL-13-induced MUC5AC mRNA and protein production through the inhibition of NFAT3 activity. We also confirmed that CsA could not influence the forkhead Box A2 (Foxa2) and mouse calcium dependent chloride channel 3 (mClca3) expression in IL-13-induced MUC5AC production, which both are known to be important in IL-13-stimulated mucus expression. Our study is the first to demonstrate that the PI3K–NFAT3 pathway is positively involved in IL-13-induced mucus production, and provided novel insights into the molecular mechanism of asthma mucus hypersecretion.

  1. In Vitro Inhibition of NFAT5-Mediated Induction of CCL2 in Hyperosmotic Conditions by Cyclosporine and Dexamethasone on Human HeLa-Modified Conjunctiva-Derived Cells

    PubMed Central

    Baudouin, Christophe; Gard, Carole; Brignole-Baudouin, Françoise

    2016-01-01

    Purpose To investigate the pro-inflammatory intracellular mechanisms induced by an in vitro model of dry eye disease (DED) on a Hela-modified conjunctiva-derived cells in hyperosmolarity (HO) stress conditions. This study focused on CCL2 induction and explored the implications of the nuclear factor of activated T-cells 5 (NFAT5) as well as mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NFĸB). This work was completed by an analysis of the effects of cyclosporine A (CsA), dexamethasone (Dex) and doxycycline (Dox) on HO-induced CCL2 and NFAT5 induction. Methods A human HeLa-modified conjunctiva-derived cell line was cultured in NaCl-hyperosmolar medium for various exposure times. Cellular viability, CCL2 secretion, NFAT5 and CCL2 gene expression, and intracytoplasmic NFAT5 were assessed using the Cell Titer Blue® assay, enzyme-linked immunosorbent assay (ELISA), RT-qPCR and immunostaining, respectively. In selected experiments, inhibitors of MAPKs or NFκB, therapeutic agents or NFAT5 siRNAs were added before the hyperosmolar stimulations. Results HO induced CCL2 secretion and expression as well as NFAT5 gene expression and translocation. Adding NFAT5-siRNA before hyperosmolar stimulation led to a complete inhibition of CCL2 induction and to a decrease in cellular viability. p38 MAPK (p38), c-Jun NH2-terminal kinase (JNK) and NFĸB inhibitors, CsA and Dex induced a partial inhibition of HO-induced CCL2, while Dox and extracellular signal-regulated kinase (ERK) inhibitor did not. Dex also induced a partial inhibition of HO-induced NFAT5 gene expression but not CsA or Dox. Conclusions These in vitro results suggest a potential role of CCL2 in DED and highlight the crucial role of NFAT5 in the pro-inflammatory effect of HO on HeLa-modified conjunctiva-derived cells, a rarely studied cellular type. This inflammatory pathway involving NFAT5 and CCL2 could offer a promising target for developing new therapies to treat DED, warranting further

  2. Glucocorticoid-induced TNF receptor expression by T cells is reciprocally regulated by NF-kappaB and NFAT.

    PubMed

    Zhan, Yifan; Gerondakis, Steve; Coghill, Elise; Bourges, Dorothee; Xu, Yuekang; Brady, Jamie L; Lew, Andrew M

    2008-10-15

    Although the transcription factor Foxp3 is implicated in regulating glucocorticoid-induced TNF receptor (GITR) expression in the T regulatory cell lineage, little is known about how GITR is transcriptionally regulated in conventional T cells. In this study, we provide evidence that TCR-mediated GITR expression depends on the ligand affinity and the maturity of conventional T cells. A genetic dissection of GITR transcriptional control revealed that of the three transcription factors downstream of the classical NF-kappaB pathway (RelA, cRel, and NF-kappaB1), RelA is a critical positive regulator of GITR expression, although cRel and NF-kappaB1 also play a positive regulatory role. Consistent with this finding, inhibiting NF-kappaB using Bay11-7082 reduces GITR up-regulation. In contrast, NFAT acts as a negative regulator of GITR expression. This was evidenced by our findings that agents suppressing NFAT activity (e.g., cyclosporin A and FK506) enhanced TCR-mediated GITR expression, whereas agents enhancing NFAT activity (e.g., lithium chloride) suppressed TCR-mediated GITR up-regulation. Critically, the induction of GITR was found to confer protection to conventional T cells from TCR-mediated apoptosis. We propose therefore that two major transcriptional factors activated downstream of the TCR, namely, NF-kappaB and NFAT, act reciprocally to balance TCR-mediated GITR expression in conventional T cells, an outcome that appears to influence cell survival.

  3. 5'-Hydroxymethylcytosine Precedes Loss of CpG Methylation in Enhancers and Genes Undergoing Activation in Cardiomyocyte Maturation.

    PubMed

    Kranzhöfer, David K; Gilsbach, Ralf; Grüning, Björn A; Backofen, Rolf; Nührenberg, Thomas G; Hein, Lutz

    2016-01-01

    Cardiomyocytes undergo major changes in DNA methylation during maturation and transition to a non-proliferative state after birth. 5'-hydroxylation of methylated cytosines (5hmC) is not only involved in DNA loss of CpG methylation but is also thought to be an epigenetic mark with unique distribution and functions. Here, we sought to get insight into the dynamics of 5'-hydroxymethylcytosine in newborn and adult cardiomyocytes. Cardiomyocyte nuclei from newborn and adult C57BL/6 mice were purified by flow cytometric sorting. 5hmC-containing DNA was captured by selective chemical labeling, followed by deep sequencing. Sequencing reads of library replicates were mapped independently (n = 3 for newborn, n = 2 for adult mice) and merged for further analysis steps. 5hmC coverage was normalized to read length and the total number of mapped reads (RPKM). MethylC-Seq, ChIP-Seq and RNA-Seq data sets of newborn and adult cardiomyocytes served to elucidate specific features of 5hmC at gene bodies and around low methylated regions (LMRs) representing regulatory genomic regions with enhancer function. 163,544 and 315,220 5hmC peaks were identified in P1 and adult cardiomyocytes, respectively. Of these peaks, 66,641 were common between P1 and adult cardiomyocytes with more than 50% reciprocal overlap. P1 and adult 5hmC peaks were overrepresented in genic features such as exons, introns, 3'- and 5'-untranslated regions (UTRs), promotors and transcription end sites (TES). During cardiomyocyte maturation, 5hmC was found to be enriched at sites of subsequent DNA loss of CpG methylation such as gene bodies of upregulated genes (i.e. Atp2a2, Tnni3, Mb, Pdk4). Additionally, centers of postnatally established enhancers were premarked by 5hmC before DNA loss of CpG methylation. Simultaneous analysis of 5hmC-Seq, MethylC-Seq, RNA-Seq and ChIP-Seq data at two defined time points of cardiomyocyte maturation demonstrates that 5hmC is positively associated with gene expression and decorates

  4. 5'-Hydroxymethylcytosine Precedes Loss of CpG Methylation in Enhancers and Genes Undergoing Activation in Cardiomyocyte Maturation

    PubMed Central

    Kranzhöfer, David K.; Gilsbach, Ralf; Grüning, Björn A.; Backofen, Rolf; Nührenberg, Thomas G.; Hein, Lutz

    2016-01-01

    Background Cardiomyocytes undergo major changes in DNA methylation during maturation and transition to a non-proliferative state after birth. 5’-hydroxylation of methylated cytosines (5hmC) is not only involved in DNA loss of CpG methylation but is also thought to be an epigenetic mark with unique distribution and functions. Here, we sought to get insight into the dynamics of 5’-hydroxymethylcytosine in newborn and adult cardiomyocytes. Methods Cardiomyocyte nuclei from newborn and adult C57BL/6 mice were purified by flow cytometric sorting. 5hmC-containing DNA was captured by selective chemical labeling, followed by deep sequencing. Sequencing reads of library replicates were mapped independently (n = 3 for newborn, n = 2 for adult mice) and merged for further analysis steps. 5hmC coverage was normalized to read length and the total number of mapped reads (RPKM). MethylC-Seq, ChIP-Seq and RNA-Seq data sets of newborn and adult cardiomyocytes served to elucidate specific features of 5hmC at gene bodies and around low methylated regions (LMRs) representing regulatory genomic regions with enhancer function. Results 163,544 and 315,220 5hmC peaks were identified in P1 and adult cardiomyocytes, respectively. Of these peaks, 66,641 were common between P1 and adult cardiomyocytes with more than 50% reciprocal overlap. P1 and adult 5hmC peaks were overrepresented in genic features such as exons, introns, 3’- and 5’-untranslated regions (UTRs), promotors and transcription end sites (TES). During cardiomyocyte maturation, 5hmC was found to be enriched at sites of subsequent DNA loss of CpG methylation such as gene bodies of upregulated genes (i.e. Atp2a2, Tnni3, Mb, Pdk4). Additionally, centers of postnatally established enhancers were premarked by 5hmC before DNA loss of CpG methylation. Conclusions Simultaneous analysis of 5hmC-Seq, MethylC-Seq, RNA-Seq and ChIP-Seq data at two defined time points of cardiomyocyte maturation demonstrates that 5hmC is positively

  5. Calcineurin-NFAT signaling critically regulates early lineage specification in mouse embryonic stem cells and embryos.

    PubMed

    Li, Xiang; Zhu, Lili; Yang, Acong; Lin, Jiangwei; Tang, Fan; Jin, Shibo; Wei, Zhe; Li, Jinsong; Jin, Ying

    2011-01-07

    Self-renewal and pluripotency are hallmarks of embryonic stem cells (ESCs). However, the signaling pathways that trigger their transition from self-renewal to differentiation remain elusive. Here, we report that calcineurin-NFAT signaling is both necessary and sufficient to switch ESCs from an undifferentiated state to lineage-specific cells and that the inhibition of this pathway can maintain long-term ESC self-renewal independent of leukemia inhibitory factor. Mechanistically, this pathway converges with the Erk1/2 pathway to regulate Src expression and promote the epithelial-mesenchymal transition (EMT), a process required for lineage specification in response to differentiation stimuli. Furthermore, calcineurin-NFAT signaling is activated when the earliest differentiation event occurs in mouse embryos, and its inhibition disrupts extraembryonic lineage development. Collectively, our results demonstrate that the NFAT and Erk1/2 cascades form a signaling switch for early lineage segregation in mouse ESCs and provide significant insights into the regulation of the balance between ESC self-renewal and early lineage specification. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. DYRK1A Controls HIV-1 Replication at a Transcriptional Level in an NFAT Dependent Manner

    PubMed Central

    Booiman, Thijs; Loukachov, Vladimir V.; van Dort, Karel A.; van ’t Wout, Angélique B.; Kootstra, Neeltje A.

    2015-01-01

    Background Transcription of the HIV-1 provirus is regulated by both viral and host proteins and is very important in the context of viral latency. In latently infected cells, viral gene expression is inhibited as a result of the sequestration of host transcription factors and epigenetic modifications. Results In our present study we analyzed the effect of host factor dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) on HIV-1 replication. We show that DYRK1A controls HIV-1 replication by regulating provirus transcription. Downregulation or inhibition of DYRK1A increased LTR-driven transcription and viral replication in cell lines and primary PBMC. Furthermore, inhibition of DYRK1A resulted in reactivation of latent HIV-1 provirus to a similar extent as two commonly used broad-spectrum HDAC inhibitors. We observed that DYRK1A regulates HIV-1 transcription via the Nuclear Factor of Activated T-cells (NFAT) by promoting its translocation from the nucleus to the cytoplasm. Therefore, inhibition of DYRK1A results in increased nuclear levels of NFAT and increased NFAT binding to the viral LTR and thus increasing viral transcription. Conclusions Our data indicate that host factor DYRK1A plays a role in the regulation of viral transcription and latency. Therefore, DYRK1A might be an attractive candidate for therapeutic strategies targeting the viral reservoir. PMID:26641855

  7. Tumor necrosis factor receptor-associated protein 1 improves hypoxia-impaired energy production in cardiomyocytes through increasing activity of cytochrome c oxidase subunit II.

    PubMed

    Xiang, Fei; Ma, Si-Yuan; Zhang, Dong-Xia; Zhang, Qiong; Huang, Yue-Sheng

    2016-10-01

    Tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes against hypoxia, but the underlying mechanisms are not completely understood. In the present study, we used gain- and loss-of-function approaches to explore the effects of tumor necrosis factor receptor-associated protein 1 and cytochrome c oxidase subunit II on energy production in hypoxic cardiomyocytes. Hypoxia repressed ATP production in cultured cardiomyocytes, whereas overexpression of tumor necrosis factor receptor-associated protein 1 significantly improved ATP production. Conversely, knockdown of tumor necrosis factor receptor-associated protein 1 facilitated the hypoxia-induced decrease in ATP synthesis. Further investigation revealed that tumor necrosis factor receptor-associated protein 1 induced the expression and activity of cytochrome c oxidase subunit II, a component of cytochrome c oxidase that is important in mitochondrial respiratory chain function. Moreover, lentiviral-mediated overexpression of cytochrome c oxidase subunit II antagonized the decrease in ATP synthesis caused by knockdown of tumor necrosis factor receptor-associated protein 1, whereas knockdown of cytochrome c oxidase subunit II attenuated the increase in ATP synthesis caused by overexpression of tumor necrosis factor receptor-associated protein 1. In addition, inhibition of cytochrome c oxidase subunit II by a specific inhibitor sodium azide suppressed the ATP sy nthesis induced by overexpressed tumor necrosis factor receptor-associated protein 1. Hence, tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes from hypoxia at least partly via potentiation of energy generation, and cytochrome c oxidase subunit II is one of the downstream effectors that mediates the tumor necrosis factor receptor-associated protein 1-mediated energy generation program.

  8. Cross talk among PMCA, calcineurin and NFAT transcription factors in control of calmodulin gene expression in differentiating PC12 cells.

    PubMed

    Boczek, Tomasz; Lisek, Malwina; Ferenc, Bozena; Zylinska, Ludmila

    2017-04-01

    Brain aging is characterized by progressive loss of plasma membrane calcium pump (PMCA) and its activator - calmodulin (CaM), but the mechanism of this phenomenon remains unresolved. CaM encoded by three genes Calm1, Calm2, Calm3, works to translate Ca(2+) signal into changes in frequently opposite cellular activities. This unique function allows CaM to affect gene expression via stimulation of calcineurin (CaN) and its downstream target - nuclear factor of activated T-cells (NFAT) and to terminate Ca(2+) signal by stimulation of its extrusion. PMCA, which exists in four isoforms PMCA1-4, may in turn shape the pattern of Ca(2+) transients and control CaN activity by its direct binding. Therefore, the interplay between PMCA, CaM and CaN/NFAT is highly plausible. To verify that, we used differentiated PC12 cells with reduced expression of PMCA2 or PMCA3 to mimic the potential changes in aged brain. Manipulation in PMCAs level decreased CaM protein in PMCA2 or PMCA3-reduced lines that was accompanied by down-regulation of Calm1 and Calm2 in both lines, but Calm3 only in PMCA2-reduced cells. Further studies showed substantially higher NFATc2 nuclear accumulation and increased NFAT transcriptional activity. Blocking of CaN/NFAT signalling resulted in almost full CaM recovery, mainly due to up-regulation of Calm2 and Calm3 genes. Moreover, higher occupancy of Calm2 and Calm3 promoters by NFATc2 and increased expression of these genes in response to NFATc2 silencing were demonstrated in PMCA2 and PMCA3-reduced lines. Our results indicate that decrease in CaM level in response to PMCAs downregulation can be driven by CaN/NFAT pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Developing DYRK inhibitors derived from the meridianins as a means of increasing levels of NFAT in the nucleus.

    PubMed

    Shaw, Simon J; Goff, Dane A; Lin, Nan; Singh, Rajinder; Li, Wei; McLaughlin, John; Baltgalvis, Kristen A; Payan, Donald G; Kinsella, Todd M

    2017-06-01

    A structure-activity relationship has been developed around the meridianin scaffold for inhibition of Dyrk1a. The compounds have been focussed on the inhibition of kinase Dyrk1a, as a means to retain the transcription factor NFAT in the nucleus. NFAT is responsible for up-regulation of genes responsible for the induction of a slow, oxidative skeletal muscle phenotype, which may be an effective treatment for diseases where exercise capacity is compromised. The SAR showed that while strong Dyrk1a binding was possible with the meridianin scaffold the compounds have no effect on NFAT localisation, however, by moving from the indole to a 6-azaindole scaffold both potent Dyrk1a binding and increased NFAT residence time in the nucleus were obtained - properties not observed with the reported Dyrk1a inhibitors. One compound was shown to be effective in an ex vivo muscle fiber assay. The increased biological activity is thought to arise from the added interaction between the azaindole nitrogen and the lysine residue in the back pocket. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Identifying panaxynol, a natural activator of nuclear factor erythroid-2 related factor 2 (Nrf2) from American ginseng as a suppressor of inflamed macrophage-induced cardiomyocyte hypertrophy

    PubMed Central

    Qu, Chen; Li, Bin; Lai, Yimu; Li, Hechu; Windust, Anthony; Hofseth, Lorne J.; Nagarkatti, Mitzi; Nagarkatti, Prakash; Wang, Xing Li; Tang, Dongqi; Janicki, Joseph S.; Tian, Xingsong; Cui, Taixing

    2015-01-01

    Ethnopharmacological relevance American ginseng is capable of ameliorating cardiac dysfunction and activating Nrf2, a master regulator of antioxidant defense, in the heart. This study was designed to isolate compounds from American ginseng and to determine those responsible for the Nrf2-mediated resolution of inflamed macrophage-induced cardiomyocyte hypertrophy. Materials and methods A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. A bioassay-based fractionization of American ginseng was performed to identify the putative substances which could activate Nrf2-mediated suppression of pro-inflammatory cytokine expression in macrophages and macrophage-mediated pro-hypertrophic growth in cardiomyocytes. Results A hexane fraction of an anti-inflammatory crude extract of American ginseng was found to be most effective in suppressing the inflammatory responses in macrophages. Preparative, reverse-phase HPLC and a comparative analysis by analytical scale LC–UV/MS revealed the hexane fraction contains predominantly C17 polyacetylenes and linolenic acid. Panaxynol, one of the major polyacetylenes, was found to be a potent Nrf2 activator. Panaxynol posttranscriptionally activated Nrf2 by inhibiting Kelch-like ECH-associated protein (Keap) 1-mediated degradation without affecting the binding of Keap1 and Nrf2. Moreover, panaxynol suppressed a selected set of cytokine expression via the activation of Nrf2 while minimally regulating nuclear factor-kappa B (NF-κB)-mediated cytokine expression in macrophages. It also dramatically inhibited the inflamed macrophage-mediated cardiomyocyte death and hypertrophy by activating Nrf2 in macrophages. Conclusions These results demonstrate that American ginseng-derived panaxynol is a specific Nrf2 activator and panaxynol-activated Nrf2 signaling is at least partly responsible for American ginseng-induced health benefit in the heart. PMID

  11. Identifying panaxynol, a natural activator of nuclear factor erythroid-2 related factor 2 (Nrf2) from American ginseng as a suppressor of inflamed macrophage-induced cardiomyocyte hypertrophy.

    PubMed

    Qu, Chen; Li, Bin; Lai, Yimu; Li, Hechu; Windust, Anthony; Hofseth, Lorne J; Nagarkatti, Mitzi; Nagarkatti, Prakash; Wang, Xing Li; Tang, Dongqi; Janicki, Joseph S; Tian, Xingsong; Cui, Taixing

    2015-06-20

    American ginseng is capable of ameliorating cardiac dysfunction and activating Nrf2, a master regulator of antioxidant defense, in the heart. This study was designed to isolate compounds from American ginseng and to determine those responsible for the Nrf2-mediated resolution of inflamed macrophage-induced cardiomyocyte hypertrophy. A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. A bioassay-based fractionization of American ginseng was performed to identify the putative substances which could activate Nrf2-mediated suppression of pro-inflammatory cytokine expression in macrophages and macrophage-mediated pro-hypertrophic growth in cardiomyocytes. A hexane fraction of an anti-inflammatory crude extract of American ginseng was found to be most effective in suppressing the inflammatory responses in macrophages. Preparative, reverse-phase HPLC and a comparative analysis by analytical scale LC-UV/MS revealed the hexane fraction contains predominantly C17 polyacetylenes and linolenic acid. Panaxynol, one of the major polyacetylenes, was found to be a potent Nrf2 activator. Panaxynol posttranscriptionally activated Nrf2 by inhibiting Kelch-like ECH-associated protein (Keap) 1-mediated degradation without affecting the binding of Keap1 and Nrf2. Moreover, panaxynol suppressed a selected set of cytokine expression via the activation of Nrf2 while minimally regulating nuclear factor-kappa B (NF-κB)-mediated cytokine expression in macrophages. It also dramatically inhibited the inflamed macrophage-mediated cardiomyocyte death and hypertrophy by activating Nrf2 in macrophages. These results demonstrate that American ginseng-derived panaxynol is a specific Nrf2 activator and panaxynol-activated Nrf2 signaling is at least partly responsible for American ginseng-induced health benefit in the heart. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Regulation of the hyperosmotic induction of aquaporin 5 and VEGF in retinal pigment epithelial cells: Involvement of NFAT5

    PubMed Central

    Vogler, Stefanie; Reichenbach, Andreas; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon

    2015-01-01

    Purpose High intake of dietary salt increases extracellular osmolarity, which results in hypertension, a risk factor of neovascular age-related macular degeneration. Neovascular retinal diseases are associated with edema. Various factors and channels, including vascular endothelial growth factor (VEGF) and aquaporins (AQPs), influence neovascularization and the development of edema. Therefore, we determined whether extracellular hyperosmolarity alters the expression of VEGF and AQPs in cultured human retinal pigment epithelial (RPE) cells. Methods Human RPE cells obtained within 48 h of donor death were prepared and cultured. Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Alterations in gene expression and protein secretion were determined with real-time RT–PCR and ELISA, respectively. The levels of signaling proteins and nuclear factor of activated T cell 5 (NFAT5) were determined by western blotting. DNA binding of NFAT5 was determined with EMSA. NFAT5 was knocked down with siRNA. Results Extracellular hyperosmolarity stimulated VEGF gene transcription and the secretion of VEGF protein. Hyperosmolarity also increased the gene expression of AQP5 and AQP8, induced the phosphorylation of p38 MAPK and ERK1/2, increased the expression of HIF-1α and NFAT5, and induced the DNA binding of NFAT5. The hyperosmotic expression of VEGF was dependent on the activation of p38 MAPK, ERK1/2, JNK, PI3K, HIF-1, and NFAT5. The hyperosmotic induction of AQP5 was in part dependent on the activation of p38 MAPK, ERK1/2, NF-κB, and NFAT5. Triamcinolone acetonide inhibited the hyperosmotic expression of VEGF but not AQP5. The expression of AQP5 was decreased by hypoosmolarity, serum, and hypoxia. Conclusions Hyperosmolarity induces the gene transcription of AQP5, AQP8, and VEGF, as well as the secretion of VEGF from RPE cells. The data suggest that high salt intake resulting in osmotic stress may aggravate neovascular retinal diseases and

  13. Elevated extracellular glucose and uncontrolled type 1 diabetes enhance NFAT5 signaling and disrupt the transverse tubular network in mouse skeletal muscle

    PubMed Central

    Hernández-Ochoa, Erick O; Robison, Patrick; Contreras, Minerva; Shen, Tiansheng; Zhao, Zhiyong; Schneider, Martin F

    2012-01-01

    The transcription factor nuclear factor of activated T-cells 5 (NFAT5) is a key protector from hypertonic stress in the kidney, but its role in skeletal muscle is unexamined. Here, we evaluate the effects of glucose hypertonicity and hyperglycemia on endogenous NFAT5 activity, transverse tubular system morphology and Ca2+ signaling in adult murine skeletal muscle fibers. We found that exposure to elevated glucose (25–50 mmol/L) increased NFAT5 expression and nuclear translocation, and NFAT-driven transcriptional activity. These effects were insensitive to the inhibition of calcineurin A, but sensitive to both p38a mitogen-activated protein kinases and phosphoinositide 3-kinase-related kinase inhibition. Fibers exposed to elevated glucose exhibited disrupted transverse tubular morphology, characterized by swollen transverse tubules and an increase in longitudinal connections between adjacent transverse tubules. Ca2+ transients elicited by a single, brief electric field stimuli were increased in amplitude in fibers challenged by elevated glucose. Muscle fibers from type 1 diabetic mice exhibited increased NFAT5 expression and transverse tubule disruptions, but no differences in electrically evoked Ca2+ transients. Our results suggest the hypothesis that these changes in skeletal muscle could play a role in the pathophysiology of acute and severe hyperglycemic episodes commonly observed in uncontrolled diabetes. PMID:22966145

  14. microRNA 184 regulates expression of NFAT1 in umbilical cord blood CD4+ T cells

    PubMed Central

    Weitzel, R. Patrick; Lesniewski, Mathew L.; Haviernik, Peter; Kadereit, Suzanne; Leahy, Patrick; Greco, Nicholas J.

    2009-01-01

    The reduced expression of nuclear factor of activated T cells-1 (NFAT1) protein in umbilical cord blood (UCB)–derived CD4+ T cells and the corresponding reduction in inflammatory cytokine secretion after stimulation in part underlies their phenotypic differences from adult blood (AB) CD4+ T cells. This muted response may contribute to the lower incidence and severity of high-grade acute graft-versus-host disease (aGVHD) exhibited by UCB grafts. Here we provide evidence that a specific microRNA, miR-184, inhibits NFAT1 protein expression elicited by UCB CD4+ T cells. Endogenous expression of miR-184 in UCB is 58.4-fold higher compared with AB CD4+ T cells, and miR-184 blocks production of NFAT1 protein through its complementary target sequence on the NFATc2 mRNA without transcript degradation. Furthermore, its negative effects on NFAT1 protein and downstream interleukin-2 (IL-2) transcription are reversed through antisense blocking in UCB and can be replicated via exogenous transfection of precursor miR-184 into AB CD4+ T cells. Our findings reveal a previously uncharacterized role for miR-184 in UCB CD4+ T cells and a novel function for microRNA in the early adaptive immune response. PMID:19286996

  15. Transcription mediated by NFAT is highly inducible in effector CD4+ T helper 2 (Th2) cells but not in Th1 cells.

    PubMed Central

    Rincón, M; Flavell, R A

    1997-01-01

    Transcriptional factors of the NFAT family play an important role in regulating the expression of several cytokine genes during the immune response, such as the genes for interleukin 2 (IL-2) and IL-4, among others. Upon antigen stimulation, precursor CD4+ T helper (pTh) cells proliferate and differentiate into two populations of effector cells (eTh1 and eTh2), each one expressing a specific pattern of cytokines that distinguishes them from their precursors. eTh2 cells are the major source of IL-4, while gamma interferon is produced by eTh1 cells. Here we have used reporter transgenic mice to show that DNA binding and transcriptional activities of NFAT are transiently induced during the differentiation of pTh cells into either eTh1 or eTh2 cells to mediate the expression of IL-2 as a common growth factor in both pathways. However, although NFAT DNA binding is similarly induced in both eTh1 and eTh2 cells upon antigen stimulation, only the NFAT complexes present in eTh2 cells are able to mediate high-level transcription, and relatively little NFAT transcriptional activity was induced in eTh1 cells. In contrast to activated pTh cells, neither eTh1 nor eTh2 cells produced significant IL-2 upon stimulation, but the high levels of NFAT transcriptional activities directly correlate with the IL-4 production induced in response to antigen stimulation in eTh2 cells. These data suggest that activated NFAT is involved in the effector function of eTh2 cells and that the failure of eTh1 cells to produce IL-4 in response to an antigen is due, at least partially, to a failure to induce high-level transcription of the IL-4 gene by NFAT. Regulation of NFAT could be therefore a critical element in the polarization to eTh1 or eTh2. PMID:9032280

  16. Caspase-dependent protein phosphatase 2A activation contributes to endotoxin-induced cardiomyocyte contractile dysfunction.

    PubMed

    Neviere, Remi; Hassoun, Sidi Mohamed; Decoster, Brigitte; Bouazza, Youcef; Montaigne, David; Maréchal, Xavier; Marciniak, Camille; Marchetti, Philippe; Lancel, Steve

    2010-10-01

    Several studies report calcium mishandling, sarcomere disarray, and caspase activation during heart failure. Although active caspases have been shown to cleave myofibrillar proteins, little is known regarding their effects on calcium handling proteins. Therefore, we aimed to explore how endotoxin-induced caspase activation disrupts intracellular calcium regulation. Randomized controlled trial. Small animal research laboratory. Adult male Sprague-Dawley rats. Sepsis was induced by injection of endotoxin (10 mg/kg, intravenously). Caspase inhibition was achieved by coinjection with zVAD.fmk (3 mg/kg, intravenously). We first isolated adult rat ventricular myocytes from control, endotoxin, and (endotoxin + zVAD)-treated rats to characterize contractile parameters and cellular calcium homeostasis. Underlying molecular mechanisms responsible for calcium mishandling were explored on sarcoplasmic reticulum vesicles and mitochondria prepared from treated animals. All experiments were performed 4 hrs postendotoxin treatment. zVAD normalized reductions in fractional cell shortening and relaxation rate triggered by endotoxin treatment. Both sarco-/endoplasmic reticulum Ca-ATPase and mitochondria-dependent calcium uptakes were impaired after endotoxin treatment and prevented when myocytes were isolated from zVAD-treated endotoxinic rat hearts. zVAD blocked endotoxin-induced phospholamban dephosphorylation, protein phosphatase 2A activation, and mitochondrial calcium retention capacity reduction. To strengthen these results, control sarcoplasmic reticulum vesicles and mitochondria were incubated with active recombinant caspase-3. Although no effects were observed on mitochondria, caspase-3 directly exerts detrimental effects on sarcoplasmic reticulum calcium uptake capacity by activating protein phosphatase 2A, leading to phospholamban dephosphorylation. Caspase inhibition protects from endotoxin-induced sarcoplasmic reticulum calcium uptake capacity reduction and mitochondrial

  17. Hypoxia-inducible factor 1 mediates hypoxia-induced cardiomyocyte lipid accumulation by reducing the DNA binding activity of peroxisome proliferator-activated receptor {alpha}/retinoid X receptor

    SciTech Connect

    Belanger, Adam J.; Luo Zhengyu; Vincent, Karen A.; Akita, Geoffrey Y.; Cheng, Seng H.; Gregory, Richard J.; Jiang Canwen

    2007-12-21

    In response to cellular hypoxia, cardiomyocytes adapt to consume less oxygen by shifting ATP production from mitochondrial fatty acid {beta}-oxidation to glycolysis. The transcriptional activation of glucose transporters and glycolytic enzymes by hypoxia is mediated by hypoxia-inducible factor 1 (HIF-1). In this study, we examined whether HIF-1 was involved in the suppression of mitochondrial fatty acid {beta}-oxidation in hypoxic cardiomyocytes. We showed that either hypoxia or adenovirus-mediated expression of a constitutively stable hybrid form (HIF-1{alpha}/VP16) suppressed mitochondrial fatty acid metabolism, as indicated by an accumulation of intracellular neutral lipid. Both treatments also reduced the mRNA levels of muscle carnitine palmitoyltransferase I which catalyzes the rate-limiting step in the mitochondrial import of fatty acids for {beta}-oxidation. Furthermore, adenovirus-mediated expression of HIF-1{alpha}/VP16 in cardiomyocytes under normoxic conditions also mimicked the reduction in the DNA binding activity of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})/retinoid X receptor (RXR), in the presence or absence of a PPAR{alpha} ligand. These results suggest that HIF-1 may be involved in hypoxia-induced suppression of fatty acid metabolism in cardiomyocytes by reducing the DNA binding activity of PPAR{alpha}/RXR.

  18. Blockade of hypoxia-reoxygenation-mediated collagen type I expression and MMP activity by overexpression of TGF-beta1 delivered by AAV in mouse cardiomyocytes.

    PubMed

    Hu, Chang-Ping; Dandapat, Abhijit; Liu, Yong; Hermonat, Paul L; Mehta, Jawahar L

    2007-09-01

    Transforming growth factor (TGF)-beta(1) is one of the most pleiotropic and multifunctional peptides known. While the cardioprotective effect of TGF-beta(1) during ischemia is well known, the specific role of TGF-beta(1) in altering the cardiac remodeling process remains unclear. This study was designed to examine the regulation of hypoxia-reoxygenation-mediated collagen type I expression and activity of matrix metalloproteinases (MMPs) by overexpression of TGF-beta(1) in cultured HL-1 mouse cardiomyocytes. TGF-beta(1) was overexpressed in cardiomyocytes by transfection with adeno-associated virus (AAV)/TGF-beta(1)(Latent) or with AAV/TGF-beta(1)(ACT) (active TGF-beta(1)). Twenty-four hours of hypoxia followed by 3 h of reoxygenation (H-R) markedly enhanced (pro)collagen type I expression and activity of MMPs concomitant with an increase in reactive oxygen species (ROS) release and LOX-1 expression. Overexpression of TGF-beta(1) reduced these alterations induced by H-R. TGF-beta(1) overexpression also blocked H-R-mediated p38 and p44/42 MAPK activation. Transfection with AAV/TGF-beta(1)(ACT) was superior to that with AAV/TGF-beta(1)(Latent). These data for the first time demonstrate that H-R induces signals for cardiac remodeling in cardiomyocytes and TGF-beta(1) can modulate, possibly via antioxidant mechanism, these signals. These findings contribute to further understanding of the role of TGF-beta(1) in the cardiac remodeling process.

  19. Oxidative stress in cardiomyocytes contributes to decreased SERCA2a activity in rats with metabolic syndrome.

    PubMed

    Balderas-Villalobos, Jaime; Molina-Muñoz, Tzindilu; Mailloux-Salinas, Patrick; Bravo, Guadalupe; Carvajal, Karla; Gómez-Viquez, Norma L

    2013-11-01

    Ca(+) mishandling due to impaired activity of cardiac sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA2a) has been associated with the development of left ventricular diastolic dysfunction in insulin-resistant cardiomyopathy. However, the molecular causes underlying SERCA2a alterations induced by insulin resistance and related metabolic disorders, such as metabolic syndrome (MetS), are not completely understood. In this study, we used a sucrose-fed rat model of MetS to test the hypothesis that decreased SERCA2a activity is mediated by elevated oxidative stress produced in the MetS heart. Production of ROS and cytosolic Ca(2+) concentration were recorded in left ventricular myocytes using confocal imaging. The level of SERCA2a oxidation was determined in left ventricular homogenates by biotinylated iodoacetamide labeling. Compared with control rats, sucrose-fed rats exhibited several characteristics of MetS, including central obesity, insulin resistance, hyperinsulinemia, and hypertriglyceridemia. Moreover, relative to myocytes from control rats, myocytes from MetS rats exhibited elevated basal production of ROS accompanied by slowed cytosolic Ca(2+) removal, reflected by prolonged Ca(2+) transients. The slowed cytosolic Ca(2+) removal was associated with a significant decrease in SERCA2a-mediated Ca(2+) reuptake and increased SERCA2a oxidation. Importantly, myocytes from MetS rats treated with the antioxidant N-acetylcysteine showed normal ROS levels and SERCA2a-mediated Ca(2+) reuptake as well as accelerated cytosolic Ca(2+) removal. These data suggest that elevated oxidative stress may induce oxidative modifications on SERCA2a leading to abnormal function of this protein in the MetS heart.

  20. Ah Receptor Activation by Dioxin Disrupts Activin, BMP, and WNT Signals During the Early Differentiation of Mouse Embryonic Stem Cells and Inhibits Cardiomyocyte Functions

    PubMed Central

    Wang, Qin; Kurita, Hisaka; Carreira, Vinicius; Ko, Chia-I; Fan, Yunxia; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Puga, Alvaro

    2016-01-01

    The AHR is a ligand-activated transcription factor that mediates gene-environment interactions. Genome-wide expression profiling during differentiation of mouse ES cells into cardiomyocytes showed that AHR activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin; Dioxin (TCDD), its prototypical ligand, disrupted the expression of multiple homeobox transcription factors and inhibited cardiomyocyte contractility. Here we treated ES cells with TCDD at daily differentiation intervals to investigate whether TCDD-induced loss of contractility had a developmental window of sensitivity. Surprisingly, contractility was an AHR-dependent TCDD target solely between differentiation days 0 and 3 during the period of panmesoderm development, when TCDD also disrupted expression of genes in the TGFβ/BMP2/4 and wingless-type MMTV integration site (WNT)signaling pathways, suppressed the secretion of bone morphogenetic protein (BMP4), WNT3a, and WNT5a and elevated the secretion of Activin A, as determined by ELISA of the secreted proteins in the culture medium. Supplementing the culture medium with BMP4, WNT3a, or WNT5a during the first 3 days of differentiation successfully countered TCDD-induced impairment of contractility, while anti-WNT3a, or anti-WNT5a antibodies or continuous Noggin (a BMP4 antagonist) or Activin A treatment inhibited the contractile phenotype. In Ahr+/+, but not in Ahr−/− ES cells, TCDD treatment significantly increased mitochondrial copy number, suggestive of mitochondrial stress and remodeling. Sustained AHR activation during ES cell differentiation appears to disrupt the expression of signals critical to the ontogeny of cardiac mesoderm and cause the loss of contractility in the resulting cardiomyocyte lineage. PMID:26572662

  1. Ah Receptor Activation by Dioxin Disrupts Activin, BMP, and WNT Signals During the Early Differentiation of Mouse Embryonic Stem Cells and Inhibits Cardiomyocyte Functions.

    PubMed

    Wang, Qin; Kurita, Hisaka; Carreira, Vinicius; Ko, Chia-I; Fan, Yunxia; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Puga, Alvaro

    2016-02-01

    The AHR is a ligand-activated transcription factor that mediates gene-environment interactions. Genome-wide expression profiling during differentiation of mouse ES cells into cardiomyocytes showed that AHR activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin; Dioxin (TCDD), its prototypical ligand, disrupted the expression of multiple homeobox transcription factors and inhibited cardiomyocyte contractility. Here we treated ES cells with TCDD at daily differentiation intervals to investigate whether TCDD-induced loss of contractility had a developmental window of sensitivity. Surprisingly, contractility was an AHR-dependent TCDD target solely between differentiation days 0 and 3 during the period of panmesoderm development, when TCDD also disrupted expression of genes in the TGFβ/BMP2/4 and wingless-type MMTV integration site (WNT)signaling pathways, suppressed the secretion of bone morphogenetic protein (BMP4), WNT3a, and WNT5a and elevated the secretion of Activin A, as determined by ELISA of the secreted proteins in the culture medium. Supplementing the culture medium with BMP4, WNT3a, or WNT5a during the first 3 days of differentiation successfully countered TCDD-induced impairment of contractility, while anti-WNT3a, or anti-WNT5a antibodies or continuous Noggin (a BMP4 antagonist) or Activin A treatment inhibited the contractile phenotype. In Ahr(+/+), but not in Ahr(-) (/) (-) ES cells, TCDD treatment significantly increased mitochondrial copy number, suggestive of mitochondrial stress and remodeling. Sustained AHR activation during ES cell differentiation appears to disrupt the expression of signals critical to the ontogeny of cardiac mesoderm and cause the loss of contractility in the resulting cardiomyocyte lineage.

  2. FGF10 promotes regional foetal cardiomyocyte proliferation and adult cardiomyocyte cell-cycle re-entry.

    PubMed

    Rochais, Francesca; Sturny, Rachel; Chao, Cho-Ming; Mesbah, Karim; Bennett, Michael; Mohun, Tim J; Bellusci, Saverio; Kelly, Robert G

    2014-12-01

    Cardiomyocyte proliferation gradually declines during embryogenesis resulting in severely limited regenerative capacities in the adult heart. Understanding the developmental processes controlling cardiomyocyte proliferation may thus identify new therapeutic targets to modulate the cell-cycle activity of cardiomyocytes in the adult heart. This study aims to determine the mechanism by which fibroblast growth factor 10 (FGF10) controls foetal cardiomyocyte proliferation and to test the hypothesis that FGF10 promotes the proliferative capacity of adult cardiomyocytes. Analysis of Fgf10(-/-) hearts and primary cardiomyocyte cultures reveals that altered ventricular morphology is associated with impaired proliferation of right but not left-ventricular myocytes. Decreased FOXO3 phosphorylation associated with up-regulated p27(kip) (1) levels was observed specifically in the right ventricle of Fgf10(-/-) hearts. In addition, cell-type-specific expression analysis revealed that Fgf10 and its receptor, Fgfr2b, are expressed in cardiomyocytes and not cardiac fibroblasts, consistent with a cell-type autonomous role of FGF10 in regulating regional specific myocyte proliferation in the foetal heart. Furthermore, we demonstrate that in vivo overexpression of Fgf10 in adult mice promotes cardiomyocyte but not cardiac fibroblast cell-cycle re-entry. FGF10 regulates regional cardiomyocyte proliferation in the foetal heart through a FOXO3/p27(kip1) pathway. In addition, FGF10 triggers cell-cycle re-entry of adult cardiomyocytes and is thus a potential target for cardiac repair. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  3. Toward label-free Raman-activated cell sorting of cardiomyocytes derived from human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Pascut, Flavius C.; Goh, Huey T.; George, Vinoj; Denning, Chris; Notingher, Ioan

    2011-04-01

    Raman micro-spectroscopy (RMS) has been recently proposed for label-free phenotypic identification of human embryonic stem cells (hESC)-derived cardiomyocytes. However, the methods used for measuring the Raman spectra led to acquisition times of minutes per cell, which is prohibitive for rapid cell sorting applications. In this study we evaluated two measurement strategies that could reduce the measurement time by a factor of more than 100. We show that sampling individual cells with a laser beam focused to a line could eliminate the need of cell raster scanning and achieve high prediction accuracies (>95% specificity and >96% sensitivity) with acquisition times ~5 seconds per cell. However, the use of commercially-available higher power lasers could potentially lead to sorting speeds of ~10 cells per s. This would start to progress RMS to the field of cell sorting for applications such as enrichment and purification of hESC-derived cardiomyocytes.

  4. Immunodeficiency and autoimmune enterocolopathy linked to NFAT5 haploinsufficiency.

    PubMed

    Boland, Brigid S; Widjaja, Christella E; Banno, Asoka; Zhang, Bing; Kim, Stephanie H; Stoven, Samantha; Peterson, Michael R; Jones, Marilyn C; Su, H Irene; Crowe, Sheila E; Bui, Jack D; Ho, Samuel B; Okugawa, Yoshinaga; Goel, Ajay; Marietta, Eric V; Khosroheidari, Mahdieh; Jepsen, Kristen; Aramburu, Jose; López-Rodríguez, Cristina; Sandborn, William J; Murray, Joseph A; Harismendy, Olivier; Chang, John T

    2015-03-15

    The link between autoimmune diseases and primary immunodeficiency syndromes has been increasingly appreciated. Immunologic evaluation of a young man with autoimmune enterocolopathy and unexplained infections revealed evidence of immunodeficiency, including IgG subclass deficiency, impaired Ag-induced lymphocyte proliferation, reduced cytokine production by CD8(+) T lymphocytes, and decreased numbers of NK cells. Genetic evaluation identified haploinsufficiency of NFAT5, a transcription factor regulating immune cell function and cellular adaptation to hyperosmotic stress, as a possible cause of this syndrome. Inhibition or deletion of NFAT5 in normal human and murine cells recapitulated several of the immune deficits identified in the patient. These results provide evidence of a primary immunodeficiency disorder associated with organ-specific autoimmunity linked to NFAT5 deficiency.

  5. Immunodeficiency and Autoimmune Enterocolopathy Linked to NFAT5 Haploinsufficiency

    PubMed Central

    Boland, Brigid S.; Widjaja, Christella E.; Banno, Asoka; Zhang, Bing; Kim, Stephanie H.; Stoven, Samantha; Peterson, Michael R.; Jones, Marilyn C.; Su, H. Irene; Crowe, Sheila E.; Bui, Jack D.; Ho, Samuel B.; Okugawa, Yoshinaga; Goel, Ajay; Marietta, Eric V.; Khosroheidari, Mahdieh; Jepsen, Kristen L.; Aramburu, Jose; Lopez-Rodriguez, Cristina; Sandborn, William J.; Murray, Joseph A.; Harismendy, Olivier; Chang, John T.

    2015-01-01

    The link between autoimmune diseases and primary immunodeficiency syndromes has been increasingly appreciated. Immunologic evaluation of a young man with autoimmune enterocolopathy and unexplained infections revealed evidence of immunodeficiency, including IgG subclass deficiency, impaired antigen-induced lymphocyte proliferation, reduced cytokine production by CD8+ T lymphocytes, and decreased numbers of natural killer (NK) cells. Genetic evaluation identified haploinsufficiency of NFAT5, a transcription factor regulating immune cell function and cellular adaptation to hyperosmotic stress, as a possible cause of this syndrome. Inhibition or deletion of NFAT5 in normal human and murine cells recapitulated several of the immune deficits identified in the patient. These results provide evidence of a primary immunodeficiency disorder associated with organ-specific autoimmunity linked to NFAT5 deficiency. PMID:25667416

  6. Dose-dependent electrophysiological effects of the myosin activator omecamtiv mecarbil in canine ventricular cardiomyocytes.

    PubMed

    Szentandrassy, N; Horvath, B; Vaczi, K; Kistamas, K; Masuda, L; Magyar, J; Banyasz, T; Papp, Z; Nanasi, P P

    2016-08-01

    Omecamtiv mecarbil (OM) is a myosin activator agent recently developed for treatment of heart failure. Although its action on extending systolic ejection time and increasing left ventricular ejection fraction is well documented, no data is available regarding its possible side-effects on cardiac ion channels. Therefore, the present study was designed to investigate the effects of OM on action potential morphology and the underlying ion currents in isolated canine ventricular myocytes using sharp microelectrodes, conventional patch clamp, and action potential voltage clamp techniques. OM displayed a concentration-dependent action on action potential configuration: 1 μM OM had no effect, while action potential duration and phase-1 repolarization were reduced and the plateau potential was depressed progressively at higher concentrations (10 - 100 μM; P < 0.05 compared to control). Accordingly, OM (10 μM) decreased the density of the transient outward K(+) current (Ito), the L-type Ca(2+) current (ICa) and the rapid delayed rectifier K(+) current (IKr), but failed to modify the inward rectifier K(+) current (IK1). It is concluded, that although the therapeutic concentrations of OM are not likely to influence cardiac ion currents significantly, alterations of the major cardiac ion currents can be anticipated at concentrations above those clinically tolerated.

  7. 5-aminolevulinic acid combined with sodium ferrous citrate ameliorates H2O2-induced cardiomyocyte hypertrophy via activation of the MAPK/Nrf2/HO-1 pathway.

    PubMed

    Zhao, Mingyi; Guo, Huiming; Chen, Jimei; Fujino, M; Ito, H; Takahashi, K; Abe, F; Nakajima, M; Tanaka, T; Wang, Jinju; Huang, Huanlei; Zheng, Shaoyi; Hei, Mingyan; Li, Jiaxin; Huang, Shuai; Li, Jiani; Ma, Xiaotang; Chen, Yanfang; Zhao, Lingling; Zhuang, Jian; Zhu, Ping; Li, X K

    2015-04-15

    Hydrogen peroxide (H2O2) causes cell damage via oxidative stress. Heme oxygenase-1 (HO-1) is an antioxidant enzyme that can protect cardiomyocytes against oxidative stress. In this study, we investigated whether the heme precursor 5-aminolevulinic acid (5-ALA) with sodium ferrous citrate (SFC) could protect cardiomyocytes from H2O2-induced hypertrophy via modulation of HO-1 expression. HL-1 cells pretreated with/without 5-ALA and SFC were exposed to H2O2 to induce a cardiomyocyte hypertrophy model. Hypertrophy was evaluated by planar morphometry, (3)H-leucine incorporation, and RT-PCR analysis of hypertrophy-related gene expressions. Reactive oxygen species (ROS) production was assessed by 5/6-chloromethyl-2',7'-ichlorodihydrofluorescein diacetate acetylester. HO-1 and nuclear factor erythroid 2-related factor 2 (Nrf2) protein expressions were analyzed by Western blot. In our experiments, HL-1 cells were transfected with Nrf2 siRNA or treated with a signal pathway inhibitor. We found several results. 1) ROS production, cell surface area, protein synthesis, and expressions of hypertrophic marker genes, including atrial natriuretic peptide, brain natriuretic peptide, atrial natriuretic factor, and β-myosin heavy chain, were decreased in HL-1 cells pretreated with 5-ALA and SFC. 2) 5-ALA and SFC increased HO-1 expression in a dose- and time-dependent manner, associated with upregulation of Nrf2. Notably, Nrf2 siRNA dramatically reduced HO-1 expression in HL-1 cells. 3) ERK1/2, p38, and SAPK/JNK signaling pathways were activated and modulate 5-ALA- and SFC-enhanced HO-1 expression. SB203580 (p38 kinase), PD98059 (ERK), or SP600125 (JNK) inhibitors significantly reduced this effect. In conclusion, our data suggest that 5-ALA and SFC protect HL-1 cells from H2O2-induced cardiac hypertrophy via activation of the MAPK/Nrf2/HO-1 signaling pathway.

  8. NFAT5 induction by the pre-T-cell receptor serves as a selective survival signal in T-lymphocyte development.

    PubMed

    Berga-Bolaños, Rosa; Alberdi, Maria; Buxadé, Maria; Aramburu, José; López-Rodríguez, Cristina

    2013-10-01

    The Rel-like transcription factors nuclear factor kappa B (NF-κB) and the calcineurin-dependent nuclear factor of activated T cells (NFATc) control specific points of thymocyte maturation. Thymocytes also express a distinct member of the Rel family, the calcineurin-independent, osmostress response regulator NFAT5. Here we show that IKKβ regulates the expression of NFAT5 in thymocytes, which in turn contributes to the survival of T-cell receptor αβ thymocytes and the transition from the β-selection checkpoint to the double-positive stage in an osmostress-independent manner. NFAT5-deficient thymocytes had normal expression and proximal signaling of the pre-T-cell receptor but exhibited a partial defect in β-chain allelic exclusion and increased apoptosis. Further analysis showed that NFAT5 regulated the expression of the prosurvival factors A1 and Bcl2 and attenuated the proapoptotic p53/Noxa axis. These findings position NFAT5 as a target of the IKKβ/NF-κB pathway in thymocytes and as a downstream effector of the prosurvival role of the pre-T-cell receptor.

  9. NFAT5 induction by the pre–T-cell receptor serves as a selective survival signal in T-lymphocyte development

    PubMed Central

    Berga-Bolaños, Rosa; Alberdi, Maria; Buxadé, Maria; Aramburu, José; López-Rodríguez, Cristina

    2013-01-01

    The Rel-like transcription factors nuclear factor kappa B (NF-κB) and the calcineurin-dependent nuclear factor of activated T cells (NFATc) control specific points of thymocyte maturation. Thymocytes also express a distinct member of the Rel family, the calcineurin-independent, osmostress response regulator NFAT5. Here we show that IKKβ regulates the expression of NFAT5 in thymocytes, which in turn contributes to the survival of T-cell receptor αβ thymocytes and the transition from the β-selection checkpoint to the double-positive stage in an osmostress-independent manner. NFAT5-deficient thymocytes had normal expression and proximal signaling of the pre–T-cell receptor but exhibited a partial defect in β-chain allelic exclusion and increased apoptosis. Further analysis showed that NFAT5 regulated the expression of the prosurvival factors A1 and Bcl2 and attenuated the proapoptotic p53/Noxa axis. These findings position NFAT5 as a target of the IKKβ/NF-κB pathway in thymocytes and as a downstream effector of the prosurvival role of the pre–T-cell receptor. PMID:24043824

  10. Calcineurin/NFAT Signaling Represses Genes Vamp1 and Vamp2 via PMCA-Dependent Mechanism during Dopamine Secretion by Pheochromocytoma Cells

    PubMed Central

    Kosiorek, Michalina; Zylinska, Ludmila; Zablocki, Krzysztof; Pikula, Slawomir

    2014-01-01

    Background Plasma membrane Ca2+-ATPases (PMCA) extrude Ca2+ ions out of the cell and contribute to generation of calcium oscillations. Calcium signaling is crucial for transcriptional regulation of dopamine secretion by neuroendocrine PC12 cells. Low resting [Ca2+]c in PC12 cells is maintained mainly by two Ca2+-ATPases, PMCA2 and PMCA3. Recently, we found that Ca2+ dependent phosphatase calcineurin was excessively activated under conditions of experimental downregulation of PMCA2 or PMCA3. Thus, the aim of this study was to explain if, via modulation of the Ca2+/calcineurin-dependent nuclear factor of activated T cells (NFAT) pathway, PMCA2 and PMCA3 affect intracellular signaling in pheochromocytoma/neuronal cells/PC12 cells. Secondly, we tested whether this might influence dopamine secretion by PC12 cells. Results PMCA2- and PMCA3-deficient cells displayed profound decrease in dopamine secretion accompanied by a permanent increase in [Ca2+]c. Reduction in secretion might result from changes in NFAT signaling, following altered PMCA pattern. Consequently, activation of NFAT1 and NFAT3 transcription factors was observed in PMCA2- or PMCA3-deficient cells. Furthermore, chromatin immunoprecipitation assay indicated that NFATs could be involved in repression of Vamp genes encoding vesicle associated membrane proteins (VAMP). Conclusions PMCA2 and PMCA3 are crucial for dopamine secretion in PC12 cells. Reduction in PMCA2 or PMCA3 led to calcium-dependent activation of calcineurin/NFAT signaling and, in consequence, to repression of the Vamp gene and deterioration of the SNARE complex formation in PC12 cells. PMID:24667359

  11. Regulation of AP-1 and NFAT transcription factors during thymic selection of T cells.

    PubMed Central

    Rincon, M; Flavell, R A

    1996-01-01

    The ability of thymocytes to express cytokine genes changes during the different stages of thymic development. Although CD4- CD8- thymocytes are able to produce a wide spectrum of cytokines in response to a T-cell receptor (TcR)-independent stimulus, as they approach the double-positive (DP) CD4+ CD8+ stage, they lose the ability to produce cytokine. After the DP stage, thymocytes become single-positive CD4+ or CD8+ thymocytes which reacquire the ability to secrete cytokines. In an attempt to understand the molecular basis of this specific regulatin, we use AP-1-luciferase and newly generated NFAT-luciferase transgenic mice to analyze the transcriptional and DNA-binding activities of these two transcription factors that are involved in the regulation of cytokine gene expression. Here, we show that both AP-1 and NFAT transcriptional activities are not inducible in the majority of DP cells but that during the differentiation of DP cells to the mature single-positive stage, thymocytes regain this inducibility. Subpopulation analysis demonstrates that this inducibility is reacquired at the DP stage before the down-modulation of one of the coreceptors. Indeed AP-1 inducibility, just like the ability to express the interleukin-2 gene, is reacquired during the differentiation of DP TcRlow CD69low heat-stable antigen (HSA)high thymocytes to DP TcRhigh CD69high HSAhigh cells, which is considered to be the consequence of the first signal that initiates positive selection. We therefore propose that the inability of DP thymocytes to induce AP-1 and NFAT activities is one of the causes for the lack of cytokine gene expression at this stage and that this inducibility is reacquired at the latest stage of DP differentiation as a consequence of positive selection. This could be a mechanism to prevent the activation of DP thymocytes before selection has taken place. PMID:8622652

  12. A Proliferative Burst During Preadolescence Establishes the Final Cardiomyocyte Number

    PubMed Central

    Naqvi, Nawazish; Li, Ming; Calvert, John W.; Tejada, Thor; Lambert, Jonathan P.; Wu, Jianxin; Kesteven, Scott H.; Holman, Sara R.; Matsuda, Torahiro; Lovelock, Joshua D.; Howard, Wesley W.; Iismaa, Siiri E.; Chan, Andrea Y.; Crawford, Brian H.; Wagner, Mary B.; Martin, David I. K.; Lefer, David J.; Graham, Robert M.; Husain, Ahsan

    2014-01-01

    SUMMARY It is widely believed that perinatal cardiomyocyte terminal differentiation blocks cytokinesis, thereby causing binucleation and limiting regenerative repair after injury. This suggests that heart growth should occur entirely by cardiomyocyte hypertrophy during preadolescence when, in mice, cardiac mass increases many-fold over a few weeks. Here we show thata thyroid hormone surge activates the IGF-1/IGF1-R/Akt pathway on postnatal day-15andinitiates a brief but intense proliferative burst of predominantly binuclear cardiomyocytes. This proliferation increases cardiomyocyte numbers by ~40%, causing a major disparity between heart and cardiomyocyte growth. Also, the response to cardiac injury at postnatal day15 is intermediate between that observed at postnatal day-2 and -21, further suggesting persistence of cardiomyocyte proliferative capacity beyond the perinatal period. If replicated in humans, this may allow novel regenerative therapies for heart diseases. PMID:24813607

  13. A proliferative burst during preadolescence establishes the final cardiomyocyte number.

    PubMed

    Naqvi, Nawazish; Li, Ming; Calvert, John W; Tejada, Thor; Lambert, Jonathan P; Wu, Jianxin; Kesteven, Scott H; Holman, Sara R; Matsuda, Torahiro; Lovelock, Joshua D; Howard, Wesley W; Iismaa, Siiri E; Chan, Andrea Y; Crawford, Brian H; Wagner, Mary B; Martin, David I K; Lefer, David J; Graham, Robert M; Husain, Ahsan

    2014-05-08

    It is widely believed that perinatal cardiomyocyte terminal differentiation blocks cytokinesis, thereby causing binucleation and limiting regenerative repair after injury. This suggests that heart growth should occur entirely by cardiomyocyte hypertrophy during preadolescence when, in mice, cardiac mass increases many-fold over a few weeks. Here, we show that a thyroid hormone surge activates the IGF-1/IGF-1-R/Akt pathway on postnatal day 15 and initiates a brief but intense proliferative burst of predominantly binuclear cardiomyocytes. This proliferation increases cardiomyocyte numbers by ~40%, causing a major disparity between heart and cardiomyocyte growth. Also, the response to cardiac injury at postnatal day 15 is intermediate between that observed at postnatal days 2 and 21, further suggesting persistence of cardiomyocyte proliferative capacity beyond the perinatal period. If replicated in humans, this may allow novel regenerative therapies for heart diseases.

  14. Gypenoside Protects Cardiomyocytes against Ischemia-Reperfusion Injury via the Inhibition of Mitogen-Activated Protein Kinase Mediated Nuclear Factor Kappa B Pathway In Vitro and In Vivo

    PubMed Central

    Yu, Haijie; Shi, Liye; Qi, Guoxian; Zhao, Shijie; Gao, Yuan; Li, Yuzhe

    2016-01-01

    Gypenoside (GP) is the major effective component of Gynostemma pentaphyllum and has been shown to encompass a variety of pharmacological activities. In this study, we investigated whether GP is able to protect cardiomyocytes against injury myocardial ischemia–reperfusion (I/R) injury by using in vitro oxygen-glucose deprivation–reoxygenation (OGD/R) H9c2 cell model and in vivo myocardial I/R rat model. We found that GP pre-treatment alleviated the impairments on the cardiac structure and function in I/R injured rats. Moreover, pre-treatment with GP significantly inhibited IκB-α phosphorylation and nuclear factor (NF)-κB p65 subunit translocation into nuclei. GP and the MAPK pathway inhibitors also reduced the phosphorylation of ERK, JNK, and p38 in vitro. Specific inhibition of ERK, JNK, and p38 increased the cell viability of OGD/R injured cells. Taken together, our data demonstrated that GP protects cardiomyocytes against I/R injury by inhibiting NF-κB p65 activation via the MAPK signaling pathway both in vitro and in vivo. These findings suggest that GP may be a promising agent for the prevention or treatment of myocardial I/R injury. PMID:27313532

  15. Activation of NADPH oxidase 4 in the endoplasmic reticulum promotes cardiomyocyte autophagy and survival during energy stress through the protein kinase RNA-activated-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/activating transcription factor 4 pathway.

    PubMed

    Sciarretta, Sebastiano; Zhai, Peiyong; Shao, Dan; Zablocki, Daniela; Nagarajan, Narayani; Terada, Lance S; Volpe, Massimo; Sadoshima, Junichi

    2013-11-08

    Autophagy is an essential survival mechanism during energy stress in the heart. Oxidative stress is activated by energy stress, but its role in mediating autophagy is poorly understood. NADPH oxidase (Nox) 4 is an enzyme that generates reactive oxygen species (ROS) at intracellular membranes. Whether Nox4 acts as a sensor of energy stress to mediate activation of autophagy is unknown. We investigated whether Nox4 is involved in the regulation of autophagy and cell survival during energy stress in cardiomyocytes. Production of ROS in cardiomyocytes was increased during glucose deprivation (GD) in a Nox4-dependent manner. Protein levels and the ROS-producing activity of Nox4 were increased in the endoplasmic reticulum (ER), but not in mitochondria, in response to GD. Selective knockdown of Nox4, but not Nox2, or selective reduction of ROS in the ER with ER-targeted catalase, but not mitochondria-targeted perioxiredoxin 3, abrogated GD-induced autophagy. Nox4 promoted autophagy during GD through activation of the protein kinase RNA-activated-like ER kinase pathway by suppression of prolyl hydroxylase 4. The decrease in cell survival during GD in the presence of Nox4 knockdown was rescued by reactivation of autophagy by Atg7 overexpression, indicating that the effect of Nox4 on cell survival is critically mediated through regulation of autophagy. Nox4 was activated during fasting and prolonged ischemia in the mouse heart, where Nox4 is also required for autophagy activation and cardioprotection. Nox4 critically mediates autophagy in response to energy stress in cardiomyocytes by eliciting ROS in the ER and stimulating the protein kinase RNA-activated-like ER kinase signaling pathway.

  16. Tert-butylhydroquinone attenuates the ethanol-induced apoptosis of and activates the Nrf2 antioxidant defense pathway in H9c2 cardiomyocytes

    PubMed Central

    SHI, XIAOJING; LI, YANG; HU, JUN; YU, BO

    2016-01-01

    Tert-butylhydroquinone (tBHQ), an inducer of nuclear factor erythroid 2-related factor 2 (Nrf2), has been demonstrated to attenuate oxidative stress-induced injury and the apoptosis of human neural stem cells and other cell types. However, whether tBHQ is able to exert a protective effect against oxidative stress and the apoptosis of cardiomyocytes has not yet been determined. Thus, the objective of the present study was to determine whether tBHQ protects H9c2 cardiomyocytes against ethanol-induced apoptosis. For this purpose, four sets of experiments were performed under standard culture conditions as follows: i) untreated control cells; ii) cell treatment with 200 mM ethanol; iii) cell treatment with 5 µM tBHQ; and iv) cell pre-treatment with 5 µM tBHQ for 24 h, followed by medium change and co-culture with 200 mM ethanol containing 5 µM tBHQ for a further 24 h. The viability of the cardiomyocytes was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The levels of intracellular reactive oxygen species (ROS) and apoptosis were assessed by flow cytometry. Protein expression was measured by western blot analysis, and Nrf2 nuclear localization was observed by immunofluorescence. Exposure to ethanol led to a decrease in the protein expression of Nrf2 and its downstream antioxidant enzymes, accompanied by an increase in ROS generation and in the apoptosis of H9c2 cells. Pre-treatment with tBHQ significantly prevented the H9c2 cells from undergoing ethanol-induced apoptosis. tBHQ also increased the expression of B-cell lymphoma-2 (Bcl-2), whereas Bcl-2-associated X protein (Bax) expression was decreased. tBHQ promoted Nrf2 nuclear localization and increased the expression of Nrf2, superoxide dismutase (SOD), catalase (CAT) and heme oxygenase-1 (HO-1), and simultaneously inhibited the ethanol-induced overproduction of intracellular ROS. Therefore, tBHQ confers protection against the ethanol-induced apoptosis of and activates the

  17. Tert-butylhydroquinone attenuates the ethanol-induced apoptosis of and activates the Nrf2 antioxidant defense pathway in H9c2 cardiomyocytes.

    PubMed

    Shi, Xiaojing; Li, Yang; Hu, Jun; Yu, Bo

    2016-07-01

    induced apoptosis of and activates the Nrf2 antioxidant pathway in H9c2 cardiomyocytes.

  18. Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence

    PubMed Central

    Fernàndez-Castillo, N; Cabana-Domínguez, J; Soriano, J; Sànchez-Mora, C; Roncero, C; Grau-López, L; Ros-Cucurull, E; Daigre, C; van Donkelaar, M M J; Franke, B; Casas, M; Ribasés, M; Cormand, B

    2015-01-01

    Cocaine reward and reinforcing effects are mediated mainly by dopaminergic neurotransmission. In this study, we aimed at evaluating gene expression changes induced by acute cocaine exposure on SH-SY5Y-differentiated cells, which have been widely used as a dopaminergic neuronal model. Expression changes and a concomitant increase in neuronal activity were observed after a 5 μM cocaine exposure, whereas no changes in gene expression or in neuronal activity took place at 1 μM cocaine. Changes in gene expression were identified in a total of 756 genes, mainly related to regulation of transcription and gene expression, cell cycle, adhesion and cell projection, as well as mitogen-activeated protein kinase (MAPK), CREB, neurotrophin and neuregulin signaling pathways. Some genes displaying altered expression were subsequently targeted with predicted functional single-nucleotide polymorphisms (SNPs) in a case–control association study in a sample of 806 cocaine-dependent patients and 817 controls. This study highlighted associations between cocaine dependence and five SNPs predicted to alter microRNA binding at the 3′-untranslated region of the NFAT5 gene. The association of SNP rs1437134 with cocaine dependence survived the Bonferroni correction for multiple testing. A functional effect was confirmed for this variant by a luciferase reporter assay, with lower expression observed for the rs1437134G allele, which was more pronounced in the presence of hsa-miR-509. However, brain volumes in regions of relevance to addiction, as assessed with magnetic resonance imaging, did not correlate with NFAT5 variation. These results suggest that the NFAT5 gene, which is upregulated a few hours after cocaine exposure, may be involved in the genetic predisposition to cocaine dependence. PMID:26506053

  19. Cooperative involvement of NFAT and SnoN mediates transforming growth factor-β (TGF-β) induced EMT in metastatic breast cancer (MDA-MB 231) cells.

    PubMed

    Sengupta, Suman; Jana, Samir; Biswas, Subir; Mandal, Palash Kumar; Bhattacharyya, Arindam

    2013-12-01

    Epithelial to mesenchymal transition (EMT) is a secondary phenomenon concomitantly associated with the tumor progression. The regulatory signals and mechanistic details of EMT are not fully elucidated. Here, we shared a TGF-β mediated mechanism of EMT in breast cancer (MDA-MB 231) cells. Initial exposure of TGF-β for 48 h, enhanced the rate of cell proliferation and associated with EMT of MDA-MB 231 cells. The EMT was characterized by observing the increased N-cadherin, fibronectin, Snail expression and associated with the morphological change with a reduced E-cadherin expression. NFAT, a transcription factor, alters tumor suppressive function of TGF-β towards tumor progression. Up regulation of NFAT, coupled with a foremost translocation of one oncogenic protein SnoN from cytoplasm to nucleus was noticed during this TGF-β mediated EMT. Silencing of NFAT also showed the inhibition of TGF-β mediated EMT characterized by down regulation of N-cadherin and associated with reduced expression of SnoN. In addition, it was also observed that NFAT sequestering the Smad3 prevents the proteasome mediated degradation of SnoN and this SnoN has a role on the regulation of MMP-2, MMP-9 activity. Increased Smad3-SnoN interaction and proteasome mediated degradation of SnoN were detected after silencing of NFAT with a reduced MMP-2, MMP-9 activity. All of these observations provide a fresh mechanism in which by a twofold involvement of NFAT and SnoN plays a crucial role in TGF-β mediated EMT by recruiting the effector molecules N-cadherin and MMP-2, MMP-9.

  20. Asymmetric Recognition of Nonconsensus AP-1 Sites by Fos-Jun and Jun-Jun Influences Transcriptional Cooperativity with NFAT1

    PubMed Central

    Ramirez-Carrozzi, Vladimir; Kerppola, Tom

    2003-01-01

    Many regulatory elements in eukaryotic promoters do not correspond to optimal recognition sequences for the transcription factors that regulate promoter function by binding to the elements. The sequence of the binding site may influence the structural and functional properties of regulatory protein complexes. Fos-Jun heterodimers were found to bind nonconsensus AP-1 sites in a preferred orientation. Oriented Fos-Jun heterodimer binding was attributed to nonidentical recognition of the two half-sites by Fos and Jun. Jun bound preferentially to the consensus half-site, whereas Fos was able to bind nonconsensus half-sites. The orientation of heterodimer binding affected the transcriptional cooperativity of Fos-Jun-NFAT1 complexes at composite regulatory elements in mammalian cells. Jun dimerization with Fos versus ATF2 caused it to bind opposite half-sites at nonconsensus AP-1 elements. Similarly, ATF2 bound to opposite half-sites in Fos-ATF2-NFAT1 and ATF2-Jun-NFAT1 complexes. The orientations of nonconsensus AP-1 sites within composite regulatory elements affected the cooperativity of Fos-Jun as well as Jun-Jun binding with NFAT1. Since Jun homodimers cannot bind to AP-1 sites in a preferred orientation, the effects of the orientations of nonconsensus AP-1 sites on the stabilities of Jun-Jun-NFAT1 complexes are likely to be due to asymmetric conformational changes in the two subunits of the homodimer. Nonconsensus AP-1 site orientation also affected the synergy of transcription activation between Jun homodimers and NFAT1 at composite regulatory elements. The asymmetric recognition of nonconsensus AP-1 sites can therefore influence the transcriptional activities of Fos and Jun both through effects on the orientation of heterodimer binding and through differential conformational changes in the two subunits of the dimer. PMID:12588992

  1. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy

    PubMed Central

    Ucar, Ahmet; Gupta, Shashi K.; Fiedler, Jan; Erikci, Erdem; Kardasinski, Michal; Batkai, Sandor; Dangwal, Seema; Kumarswamy, Regalla; Bang, Claudia; Holzmann, Angelika; Remke, Janet; Caprio, Massimiliano; Jentzsch, Claudia; Engelhardt, Stefan; Geisendorf, Sabine; Glas, Carolina; Hofmann, Thomas G.; Nessling, Michelle; Richter, Karsten; Schiffer, Mario; Carrier, Lucie; Napp, L. Christian; Bauersachs, Johann; Chowdhury, Kamal; Thum, Thomas

    2012-01-01

    Pathological growth of cardiomyocytes (hypertrophy) is a major determinant for the development of heart failure, one of the leading medical causes of mortality worldwide. Here we show that the microRNA (miRNA)-212/132 family regulates cardiac hypertrophy and autophagy in cardiomyocytes. Hypertrophic stimuli upregulate cardiomyocyte expression of miR-212 and miR-132, which are both necessary and sufficient to drive the hypertrophic growth of cardiomyocytes. MiR-212/132 null mice are protected from pressure-overload-induced heart failure, whereas cardiomyocyte-specific overexpression of the miR-212/132 family leads to pathological cardiac hypertrophy, heart failure and death in mice. Both miR-212 and miR-132 directly target the anti-hypertrophic and pro-autophagic FoxO3 transcription factor and overexpression of these miRNAs leads to hyperactivation of pro-hypertrophic calcineurin/NFAT signalling and an impaired autophagic response upon starvation. Pharmacological inhibition of miR-132 by antagomir injection rescues cardiac hypertrophy and heart failure in mice, offering a possible therapeutic approach for cardiac failure. PMID:23011132

  2. 17(R),18(S)-Epoxyeicosatetraenoic Acid, A Potent Eicosapentaenoic Acid (EPA)-Derived Regulator of Cardiomyocyte Contraction: Structure-Activity Relationships and Stable Analogs

    PubMed Central

    Falck, John R.; Wallukat, Gerd; Puli, Narender; Goli, Mohan; Arnold, Cosima; Konkel, Anne; Rothe, Michael; Fischer, Robert; Müller, Dominik N.; Schunck, Wolf-Hagen

    2011-01-01

    17(R),18(S)-Epoxyeicosatetraenoic acid [17(R),18(S)-EETeTr], a cytochrome P450 epoxygenase metabolite of eicosapentaenoic acid (EPA), exerts negative chronotropic effects and protects neonatal rat cardiomyocytes against Ca2+-overload with an EC50 ~1–2 nM. Structure-activity studies revealed a cis-Δ11,12- or Δ14,15-olefin and a 17(R),18(S)-epoxide are minimal structural elements for anti-arrhythmic activity whereas antagonist activity was often associated with the combination of a Δ14,15-olefin and a 17(S),18(R)-epoxide. Compared with natural material, the agonist and antagonist analogs are chemically and metabolically more robust and several show promise as templates for future development of clinical candidates. PMID:21591683

  3. Imperatorin inhibits T-cell proliferation by targeting the transcription factor NFAT.

    PubMed

    Márquez, Nieves; Sancho, Rocío; Ballero, Mauro; Bremner, Paul; Appendino, Giovanni; Fiebich, Bernd L; Heinrich, Michael; Muñoz, Eduardo

    2004-11-01

    In our ongoing research into anti-inflammatory compounds from medicinal plants in the Mediterranean area, we have isolated several furanocoumarins from the roots of Oppopanax chironium (L.), and have evaluated them for activity related to T-cell functionality. Heraclenin (1) and imperatorin (2) significantly inhibited T cell receptor-mediated proliferation in human primary T cells in a concentration-dependent manner. In transient transfection experiments with a plasmid containing the IL-2 promoter we found that imperatorin is a potent inhibitor of IL-2 gene transcription. To further characterize the inhibitory mechanisms of imperatorin at the transcriptional level, we examined the DNA-binding and transcriptional activities of NF-kappaB, NFAT, and AP-1 transcription factors in Jurkat T cells. We found that imperatorin inhibited both the NFAT binding to DNA and transcriptional activities, without affecting significantly the activation of the NF-kappaB and AP-1 transcription factors. These findings provide new insights into the molecular mechanisms involved in the immunomodulatory and anti-inflammatory activities of natural furanocoumarins.

  4. The neuropeptide catestatin promotes vascular smooth muscle cell proliferation through the Ca{sup 2+}-calcineurin-NFAT signaling pathway

    SciTech Connect

    Guo, Xiaoxia; Zhou, Chunyan; Sun, Ningling

    2011-04-22

    Highlights: {yields} Catestatin stimulates proliferation of vascular smooth muscle cells in a dose-dependent manner. {yields} Catestatin provokes sustained increase in intracellular Ca{sup 2+}. {yields} Catestatin produces increased activation of calcineurin and promotes NFATc1 translocation into the nucleus. -- Abstract: The Chromogranin A-derived neuropeptide catestatin is an endogenous nicotinic cholinergic antagonist that acts as a pleiotropic hormone. Since catestatin shares several functions with other members derived from the chromogranin/secretogranin protein family and other neuropeptides which exert proliferative effects on vascular smooth muscle cells (VSMCs), we therefore hypothesized that catestatin would regulate VSMC proliferation. The present study demonstrates that catestatin caused a dose-dependent induction of proliferation in rat aortic smooth muscle cells and furthermore evoked a sustained increase in intracellular calcium. This subsequently leaded to enhanced activation of the Ca{sup 2+}/calmodulin-dependent phosphatase, calcineurin and resulted in an activation of the Ca{sup 2+}-dependent transcription factor, nuclear factor of activated T cells (NFAT), initiating transcription of proliferative genes. In addition, cyclosporin A (CsA), a potent inhibitor of calcineurin, abrogated catestatin-mediated effect on VSMCs, indicating that the calcineurin-NFAT signaling is strongly required for catestatin-induced growth of VSMCs. The present study establishes catestatin as a novel proliferative cytokine on vascular smooth muscle cells and this effect is mediated by the Ca{sup 2+}-calcineurin-NFAT signaling pathway.

  5. NFAT5 regulates T lymphocyte homeostasis and CD24-dependent T cell expansion under pathologic hypernatremia.

    PubMed

    Berga-Bolaños, Rosa; Drews-Elger, Katherine; Aramburu, Jose; López-Rodríguez, Cristina

    2010-12-01

    Immune cells rely on the transcription factor NFAT5 to adapt to hypertonic stress. The hypertonicity-dependent role of NFAT5 in T cells in vivo remains unclear because mouse models of NFAT5 deficiency have produced substantially different T cell phenotypes. In this study, we analyzed the T cell compartment in NFAT5-null and T cell-specific NFAT5 knockout mice. We found that NFAT5-null mice had constitutive, pronounced hypernatremia and suffered a severe immunodeficiency, with T cell lymphopenia, altered CD8 naive/memory homeostasis, and inability to reject allogeneic tumors. By contrast, T cell-specific NFAT5 knockout mice had normal plasma tonicity, rejected allogeneic tumors, and exhibited only a mild, low-penetrance memory bias in CD8 cells. Notably, when T cells from these mice were cultured ex vivo in hypernatremic media, they exhibited features found in NFAT5-null mice, with pronounced naive/memory imbalance and impaired homeostatic survival in response to IL-7, as well as a severe inhibition of their mitogen-induced proliferation. By analyzing surface receptors whose expression might be affected in NFAT5-deficient cells, we identified CD24 as a novel NFAT5 target induced by hypertonicity both in vitro and in vivo, and required to sustain T cell expansion under osmostress. NFAT5 bound to the Cd24 promoter in response to hypertonicity facilitated the local derepression of chromatin and enhanced the expression of CD24 mRNA and protein. Altogether, our results indicate that the systemic hypernatremia of NFAT5-null mice is a major contributor to their immunodeficiency, and highlight the role of NFAT5 and CD24 in the homeostasis of T cells under osmostress in vivo.

  6. The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARα-cyclophilin D interaction in cardiomyocytes.

    PubMed

    Barreto-Torres, Giselle; Hernandez, Jessica Soto; Jang, Sehwan; Rodríguez-Muñoz, Adlín R; Torres-Ramos, Carlos A; Basnakian, Alexei G; Javadov, Sabzali

    2015-04-01

    AMP kinase (AMPK) plays an important role in the regulation of energy metabolism in cardiac cells. Furthermore, activation of AMPK protects the heart from myocardial infarction and heart failure. The present study examines whether or not AMPK affects the peroxisome proliferator-activated receptor-α (PPARα)/mitochondria pathway in response to acute oxidative stress in cultured cardiomyocytes. Cultured H9c2 rat embryonic cardioblasts were exposed to H2O2-induced acute oxidative stress in the presence or absence of metformin, compound C (AMPK inhibitor), GW6471 (PPARα inhibitor), or A-769662 (AMPK activator). Results showed that AMPK activation by metformin reverted oxidative stress-induced inactivation of AMPK and prevented oxidative stress-induced cell death. In addition, metformin attenuated reactive oxygen species generation and depolarization of the inner mitochondrial membrane. The antioxidative effects of metformin were associated with the prevention of mitochondrial DNA damage in cardiomyocytes. Coimmunoprecipitation studies revealed that metformin abolished oxidative stress-induced physical interactions between PPARα and cyclophilin D (CypD), and the abolishment of these interactions was associated with inhibition of permeability transition pore formation. The beneficial effects of metformin were not due to acetylation or phosphorylation of PPARα in response to oxidative stress. In conclusion, this study demonstrates that the protective effects of metformin-induced AMPK activation against oxidative stress converge on mitochondria and are mediated, at least in part, through the dissociation of PPARα-CypD interactions, independent of phosphorylation and acetylation of PPARα and CypD. Copyright © 2015 the American Physiological Society.

  7. Isorhamnetin inhibits H₂O₂-induced activation of the intrinsic apoptotic pathway in H9c2 cardiomyocytes through scavenging reactive oxygen species and ERK inactivation.

    PubMed

    Sun, Bing; Sun, Gui-Bo; Xiao, Jing; Chen, Rong-Chang; Wang, Xin; Wu, Ying; Cao, Li; Yang, Zhi-Hong; Sun, Xiao-Bo

    2012-02-01

    As a traditional Chinese medicine, the sea buckthorn (Hippophae rhamnoides L.) has a long history in the treatment of ischemic heart disease and circulatory disorders. However, the active compounds responsible for and the underlying mechanisms of these effects are not fully understood. In this article, isorhamnetin pretreatment counteracted H(2)O(2)-induced apoptotic damage in H9c2 cardiomyocytes. Isorhamnetin did not inhibit the death receptor-dependent or extrinsic apoptotic pathways, as characterized by its absence in both caspase-8 inactivation and tBid downregulation along with unchanged Fas and TNFR1 mRNA levels. Instead, isorhamnetin specifically suppressed the mitochondria-dependent or intrinsic apoptotic pathways, as characterized by inactivation of caspase-9 and -3, maintenance of the mitochondrial membrane potential (ΔΨm), and regulation of a series of Bcl-2 family genes upstream of ΔΨm. The anti-apoptotic effects of isorhamnetin were linked to decreased ROS generation. H(2)O(2) activated ERK and p53, whereas isorhamnetin inhibited their activation. ERK overexpression overrode the isorhamnetin-induced inhibition of the intrinsic apoptotic pathway in H9c2 cardiomyocytes, which indicated that an ERK-dependent pathway was involved. Furthermore, N-acetyl cysteine (a potent ROS scavenger) could attenuate the H(2)O(2)-induced apoptosis. However, PD98059 (an ERK-specific inhibitor) could not effectively antagonize ROS generation, which indicates that ROS may be an upstream inducer of ERK. In conclusion, isorhamnetin inhibits the H(2)O(2)-induced activation of the intrinsic apoptotic pathway via ROS scavenging and ERK inactivation. Therefore, isorhamnetin is a promising reagent for the treatment of ROS-induced cardiomyopathy.

  8. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    SciTech Connect

    Zawawi, M.S.F.; Dharmapatni, A.A.S.S.K.; Cantley, M.D.; McHugh, K.P.; Haynes, D.R.; Crotti, T.N.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real

  9. FasL expression in cardiomyocytes activates the ERK1/2 pathway, leading to dilated cardiomyopathy and advanced heart failure.

    PubMed

    Huby, Anne-Cecile; Turdi, Subat; James, Jeanne; Towbin, Jeffrey A; Purevjav, Enkhsaikhan

    2016-02-01

    Increase in the apoptotic molecule Fas ligand (FasL) in serum and cardiomyocytes has been shown to be associated with progressive dilated cardiomyopathy (DCM) and congestive heart failure (CHF) in humans. However, the underlying mechanism(s) of FasL-related deterioration of heart function remain obscure. The aim of the present study is to determine roles of myocardial FasL in the activation of alternative pathways such as extracellular-signal-regulated kinase 1/2 (ERK1/2), inflammation or fibrosis and to identify effective treatments of progressive DCM and advanced CHF. Transgenic mice with cardiomyocyte-specific overexpression of FasL were investigated and treated with an ERK1/2 inhibitor (U-0126), losartan (los), prednisolone (pred) or placebo. Morpho-histological and molecular studies were subsequently performed. FasL mice showed significantly higher mortality compared with wild-type (WT) littermates due to DCM and advanced CHF. Prominent perivascular and interstitial fibrosis, increased interleukin secretion and diffuse CD3-positive cell infiltration were evident in FasL hearts. Up-regulation of the short form of Fas-associated death domain (FADD)-like interleukin 1β-converting enzyme (FLICE) inhibitory protein (s-FLIP), RIP (receptor-interacting protein) and ERK1/2 and down-regulation of transforming growth factor beta 1 (TGFβ1) and nuclear factor-κB (NF-κB) was determined in the myocardium, whereas expression of ERK1/2, periostin (Postn) and osteopontin increased in cardiac fibroblasts. U-0126 and los increased CHF survival by 75% compared with pred and placebo groups. U-0126 had both anti-fibrotic and anti-apoptotic effects, whereas los reduced fibrosis only. Myocardial FasL expression in mice activates differential robust fibrotic, apoptotic and inflammatory responses via ERK1/2 in cardiomyocytes and cardiac fibroblasts inducing DCM and CHF. Blocking the ERK1/2 pathway prevented progression of FasL-induced DCM and CHF by reducing fibrosis, inflammation

  10. Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion-induced activation of JNK-1 and C-JUN.

    PubMed

    Sato, M; Bagchi, D; Tosaki, A; Das, D K

    2001-09-15

    The mechanism of cardioprotection with red wine consumption was studied by examining the antideath signaling cascade of one of the principle components of red wine, proanthocyanidins. Grape seed proanthocyanidin extract (GSPE) was administered orally (100 mg/kg/d) supplemented with regular diet for 3 weeks to a group of rats while the other group was given the regular diet only for the same period of time. After 3 weeks, rats were sacrificed, hearts excised, and perfused via Langendorff mode. After stabilization, hearts were perfused in the working mode for baseline measurement of contractile function. Hearts were then made globally ischemic for 30 min followed by 2 h of reperfusion. Contractile function was continuously monitored during reperfusion, and free radical production was examined by electron spin resonance (ESR) technique. Cardiomyocyte apoptosis was examined by TUNEL staining in conjunction with an antibody against myocin heavy chain to specifically detect myocytes. Induction of JNK-1 and c-fos proteins was studied by Western blot analysis using respective antibodies followed by densitometric scanning. The results indicated significant induction of JNK-1 and c-fos proteins in the ischemic/reperfused myocardium, which was inhibited by the proanthocyanidin extract. In concert, GSPE significantly reduced the appearance of apoptotic cardiomyocytes in the ischemic/reperfused hearts. GSPE also significantly reduced the appearance of the reactive oxygen species in the hearts. Improved postischemic contractile recovery was achieved with GSPE suggesting its cardioprotective action. The results of this study indicated that GSPE functioned as an in vivo antioxidant, and its cardioprotective properties may be at least partially attributed to its ability to block antideath signal through the inhibition of proapoptotic transcription factor and gene, JNK-1 and c-Jun.

  11. Assessment of costimulation and coinhibition in a triple parameter T cell reporter line: Simultaneous measurement of NF-κB, NFAT and AP-1.

    PubMed

    Jutz, Sabrina; Leitner, Judith; Schmetterer, Klaus; Doel-Perez, Iago; Majdic, Otto; Grabmeier-Pfistershammer, Katharina; Paster, Wolfgang; Huppa, Johannes B; Steinberger, Peter

    2016-03-01

    Engagement of the T cell receptor complex reprograms T cells for proliferation, cytokine production and differentiation towards effector cells. This process depends on activating costimulatory signals and is counteracted by coinhibitory molecules. Three transcription factors, namely NF-κB, NFAT and AP-1, have a major role in inducing the transcriptional program that is required for T cell activation and differentiation. Here we describe the generation of a triple parameter reporter based on the human Jurkat T cell line, where response elements for NF-κB, NFAT and AP-1 drive the expression of the fluorescent proteins CFP, eGFP and mCherry, respectively. The emission spectra of these proteins allow simultaneous assessment of NF-κB, NFAT and AP-1 activity in response to stimulation. Ligation of the TCR complex induced moderate reporter activity, which was strongly enhanced upon coengagement of the costimulatory receptors CD2 or CD28. Moreover, we have generated and tested triple parameter reporter cells that harbor costimulatory and inhibitory receptors not endogenously expressed in the Jurkat cells. In these experiments we could show that engagement of the costimulatory molecule 4-1BB enhances NF-κB and AP-1 activity, whereas coinhibition via PD-1 or BTLA strongly reduced the activation of NF-κB and NFAT. Engagement of BTLA significantly inhibited AP-1, whereas PD-1 had little effect on the activation of this transcription factor. Our triple parameter reporter T cell line is an excellent tool to assess the effect of costimulatory and coinhibitory receptors on NF-κB, NFAT and AP-1 activity and has a wide range of applications beyond the evaluation of costimulatory pathways.

  12. Calcineurin/Nfat signaling is required for perinatal lung maturation and function

    PubMed Central

    Davé, Vrushank; Childs, Tawanna; Xu, Yan; Ikegami, Machiko; Besnard, Valérie; Maeda, Yutaka; Wert, Susan E.; Neilson, Joel R.; Crabtree, Gerald R.; Whitsett, Jeffrey A.

    2006-01-01

    Pulmonary surfactant proteins and lipids are required for lung function after birth. Lung immaturity and resultant surfactant deficiency cause respiratory distress syndrome, a common disorder contributing to morbidity and mortality in preterm infants. Surfactant synthesis increases prior to birth in association with formation of the alveoli that mediate efficient gas exchange. To identify mechanisms controlling perinatal lung maturation, the Calcineurin b1 (Cnb1) gene was deleted in the respiratory epithelium of the fetal mouse. Deletion of Cnb1 caused respiratory failure after birth and inhibited the structural maturation of the peripheral lung. Synthesis of surfactant and a lamellar body–associated protein, ABC transporter A3 (ABCA3), was decreased prior to birth. Nuclear factor of activated T cells (Nfat) calcineurin-dependent 3 (Nfatc3), a transcription factor modulated by calcineurin, was identified as a direct activator of Sftpa, Sftpb, Sftpc, Abca3, Foxa1, and Foxa2 genes. The calcineurin/Nfat pathway controls the morphologic maturation of lungs prior to birth and regulates expression of genes involved in surfactant homeostasis that are critical for adaptation to air breathing. PMID:16998587

  13. Spontaneously beating cardiomyocytes derived from white mature adipocytes

    PubMed Central

    Jumabay, Medet; Zhang, Rui; Yao, Yucheng; Goldhaber, Joshua I.; Boström, Kristina I.

    2010-01-01

    Aims Adipose stromal cells and dissociated brown adipose tissue have been shown to generate cardiomyocyte-like cells. However, it is not clear whether white mature adipocytes have the same potential, even though a close relationship has been found between adipocytes and vascular endothelial cells, another cardiovascular cell type. The objective of this study was to examine if white adipocytes would be able to supply cardiomyocytes. Methods and results We prepared a highly purified population of lipid-filled adipocytes from mice, 6–7 weeks of age. When allowed to lose lipids, the adipocytes assumed a fibroblast-like morphology, so-called dedifferentiated fat (DFAT) cells. Subsequently, 10–15% of the DFAT cells spontaneously differentiated into cardiomyocyte-like cells, in which the cardiomyocyte phenotype was identified by morphological observations, expression of cardiomyocyte-specific markers, and immunocytochemical staining. In addition, electrophysiological studies revealed pacemaker activity in these cells, and functional studies showed that a β-adrenergic agonist stimulated the beating rate, whereas a β-antagonist reduced it. In vitro treatment of newly isolated adipocytes or DFAT cells with inhibitors of bone morphogenetic proteins (BMP) and Wnt signalling promoted the development of the cardiomyocyte phenotype as determined by the number or beating colonies of cardiomyocyte-like cells and expression of troponin I, a cardiomyocyte-specific marker. Inhibition of BMP was most effective in promoting the cardiomyocyte phenotype in adipocytes, whereas Wnt-inhibition was most effective in DFAT cells. Conclusion White mature adipocytes can differentiate into cardiomyocyte-like cells, suggesting a link between adipocyte and cardiomyocyte differentiation. PMID:19643806

  14. Endoplasmic reticulum potassium-hydrogen exchanger and small conductance calcium-activated potassium channel activities are essential for ER calcium uptake in neurons and cardiomyocytes.

    PubMed

    Kuum, Malle; Veksler, Vladimir; Liiv, Joanna; Ventura-Clapier, Renee; Kaasik, Allen

    2012-02-01

    Calcium pumping into the endoplasmic reticulum (ER) lumen is thought to be coupled to a countertransport of protons through sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) and the members of the ClC family of chloride channels. However, pH in the ER lumen remains neutral, which suggests a mechanism responsible for proton re-entry. We studied whether cation-proton exchangers could act as routes for such a re-entry. ER Ca(2+) uptake was measured in permeabilized immortalized hypothalamic neurons, primary rat cortical neurons and mouse cardiac fibers. Replacement of K(+) in the uptake solution with Na(+) or tetraethylammonium led to a strong inhibition of Ca(2+) uptake in neurons and cardiomyocytes. Furthermore, inhibitors of the potassium-proton exchanger (quinine or propranolol) but not of the sodium-proton exchanger reduced ER Ca(2+) uptake by 56-82%. Externally added nigericin, a potassium-proton exchanger, attenuated the inhibitory effect of propranolol. Inhibitors of small conductance calcium-sensitive K(+) (SK(Ca)) channels (UCL 1684, dequalinium) blocked the uptake of Ca(2+) by the ER in all preparations by 48-94%, whereas inhibitors of other K(+) channels (IK(Ca), BK(Ca) and K(ATP)) had no effect. Fluorescence microscopy and western blot analysis revealed the presence of both SK(Ca) channels and the potassium-proton exchanger leucine zipper-EF-hand-containing transmembrane protein 1 (LETM1) in ER in situ and in the purified ER fraction. The data obtained demonstrate that SK(Ca) channels and LETM1 reside in the ER membrane and that their activity is essential for ER Ca(2+) uptake.

  15. Fractalkine Depresses Cardiomyocyte Contractility

    PubMed Central

    Taube, David; Xu, Jiang; Yang, Xiao-Ping; Undrovinas, Albertas; Peterson, Edward; Harding, Pamela

    2013-01-01

    Background Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO) exhibit reduced cardiac function. Gene array on left ventricles (LV) showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium. Methods Fractalkine was measured in LV of 28–32 week old male EP4 KO and wild type controls (WT) by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM) from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso) stimulation. Results LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca2+ transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery. Conclusions Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium. PMID:23936109

  16. Fractalkine depresses cardiomyocyte contractility.

    PubMed

    Taube, David; Xu, Jiang; Yang, Xiao-Ping; Undrovinas, Albertas; Peterson, Edward; Harding, Pamela

    2013-01-01

    Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO) exhibit reduced cardiac function. Gene array on left ventricles (LV) showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium. Fractalkine was measured in LV of 28-32 week old male EP4 KO and wild type controls (WT) by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM) from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso) stimulation. LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca(2+) transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery. Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium.

  17. Degradation of p21Cip1 through anaphase-promoting complex/cyclosome and its activator Cdc20 (APC/CCdc20) ubiquitin ligase complex-mediated ubiquitylation is inhibited by cyclin-dependent kinase 2 in cardiomyocytes.

    PubMed

    Yamada, Kazuhiko; Tamamori-Adachi, Mimi; Goto, Ikuko; Iizuka, Masayoshi; Yasukawa, Takashi; Aso, Teijiro; Okazaki, Tomoki; Kitajima, Shigetaka

    2011-12-23

    Cyclin-dependent kinase inhibitor p21Cip1 plays a crucial role in regulating cell cycle arrest and differentiation. It is known that p21Cip1 increases during terminal differentiation of cardiomyocytes, but its expression control and biological roles are not fully understood. Here, we show that the p21Cip1 protein is stabilized in cardiomyocytes after mitogenic stimulation, due to its increased CDK2 binding and inhibition of ubiquitylation. The APC/CCdc20 complex is shown to be an E3 ligase mediating ubiquitylation of p21Cip1 at the N terminus. CDK2, but not CDC2, suppressed the interaction of p21Cip1 with Cdc20, thereby leading to inhibition of anaphase-promoting complex/cyclosome and its activator Cdc20 (APC/CCdc20)-mediated p21Cip1 ubiquitylation. It was further demonstrated that p21Cip1 accumulation caused G2 arrest of cardiomyocytes that were forced to re-enter the cell cycle. Taken together, these data show that the stability of the p21Cip1 protein is actively regulated in terminally differentiated cardiomyocytes and plays a role in inhibiting their uncontrolled cell cycle progression. Our study provides a novel insight on the control of p21Cip1 by ubiquitin-mediated degradation and its implication in cell cycle arrest in terminal differentiation.

  18. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease

    PubMed Central

    Gilsbach, Ralf; Preissl, Sebastian; Grüning, Björn A.; Schnick, Tilman; Burger, Lukas; Benes, Vladimir; Würch, Andreas; Bönisch, Ulrike; Günther, Stefan; Backofen, Rolf; Fleischmann, Bernd K.; Schübeler, Dirk; Hein, Lutz

    2014-01-01

    The heart is a highly specialized organ with essential function for the organism throughout life. The significance of DNA methylation in shaping the phenotype of the heart remains only partially known. Here we generate and analyse DNA methylomes from highly purified cardiomyocytes of neonatal, adult healthy and adult failing hearts. We identify large genomic regions that are differentially methylated during cardiomyocyte development and maturation. Demethylation of cardiomyocyte gene bodies correlates strongly with increased gene expression. Silencing of demethylated genes is characterized by the polycomb mark H3K27me3 or by DNA methylation. De novo methylation by DNA methyltransferases 3A/B causes repression of fetal cardiac genes, including essential components of the cardiac sarcomere. Failing cardiomyocytes partially resemble neonatal methylation patterns. This study establishes DNA methylation as a highly dynamic process during postnatal growth of cardiomyocytes and their adaptation to pathological stress in a process tightly linked to gene regulation and activity. PMID:25335909

  19. Pluripotent Stem Cell Derived Cardiomyocytes for Cardiac Repair

    PubMed Central

    Lundy, Scott D.; Gantz, Jay A.; Pagan, Chelsea M.; Filice, Dominic; Laflamme, Michael A.

    2014-01-01

    Opinion Statement The adult mammalian heart has limited capacity for generation, so a major injury such as a myocardial infarction results in the permanent loss of up to one billion cardiomyocytes. The field of cardiac cell therapy aims to replace these lost contractile units with de novo cardiomyocytes to restore lost systolic function and prevent progression to heart failure. Arguably the ideal cell for this application is the human cardiomyocyte itself, which can electromechanically couple with host myocardium and contribute active systolic force. Pluripotent stem cells from both human embryonic or induced pluripotent lineages are attractive sources for cardiomyocytes, and preclinical investigation of these cells is in progress. Recent work has focused on efficient generation and purification of cardiomyocytes, tissue engineering efforts, and examining the consequences of cell transplantation from mechanical, vascular, and electrical standpoints. Here we discuss historical and contemporary aspects of pluripotent stem cell-based cardiac cell therapy, with an emphasis on recent preclinical studies with translational goals. PMID:24838687

  20. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease.

    PubMed

    Gilsbach, Ralf; Preissl, Sebastian; Grüning, Björn A; Schnick, Tilman; Burger, Lukas; Benes, Vladimir; Würch, Andreas; Bönisch, Ulrike; Günther, Stefan; Backofen, Rolf; Fleischmann, Bernd K; Schübeler, Dirk; Hein, Lutz

    2014-10-22

    The heart is a highly specialized organ with essential function for the organism throughout life. The significance of DNA methylation in shaping the phenotype of the heart remains only partially known. Here we generate and analyse DNA methylomes from highly purified cardiomyocytes of neonatal, adult healthy and adult failing hearts. We identify large genomic regions that are differentially methylated during cardiomyocyte development and maturation. Demethylation of cardiomyocyte gene bodies correlates strongly with increased gene expression. Silencing of demethylated genes is characterized by the polycomb mark H3K27me3 or by DNA methylation. De novo methylation by DNA methyltransferases 3A/B causes repression of fetal cardiac genes, including essential components of the cardiac sarcomere. Failing cardiomyocytes partially resemble neonatal methylation patterns. This study establishes DNA methylation as a highly dynamic process during postnatal growth of cardiomyocytes and their adaptation to pathological stress in a process tightly linked to gene regulation and activity.

  1. NKCC2A and NFAT5 regulate renal TNF production induced by hypertonic NaCl intake.

    PubMed

    Hao, Shoujin; Bellner, Lars; Ferreri, Nicholas R

    2013-03-01

    Pathways that contribute to TNF production by the kidney are not well defined. Mice given 1% NaCl in the drinking water for 3 days exhibited a 2.5-fold increase in urinary, but not plasma, TNF levels compared with mice given tap water. Since furosemide attenuated the increase in TNF levels, we hypothesized that hypertonic NaCl intake increases renal TNF production by a pathway involving the Na(+)-K(+)-2Cl(-) cotransporter (NKCC2). A 2.5-fold increase in NKCC2A mRNA accumulation was observed in medullary thick ascending limb (mTAL) tubules from mice given 1% NaCl; a concomitant 2-fold increase in nuclear factor of activated T cells 5 (NFAT5) mRNA and protein expression was observed in the outer medulla. Urinary TNF levels were reduced in mice given 1% NaCl after an intrarenal injection of a lentivirus construct designed to specifically knockdown NKCC2A (EGFP-N2A-ex4); plasma levels of TNF did not change after injection of EGFP-N2A-ex4. Intrarenal injection of EGFP-N2A-ex4 also inhibited the increase of NFAT5 mRNA abundance in the outer medulla of mice given 1% NaCl. TNF production by primary cultures of mTAL cells increased approximately sixfold in response to an increase in osmolality to 400 mosmol/kgH2O produced with NaCl and was inhibited in cells transiently transfected with a dnNFAT5 construct. Transduction of cells with EGFP-N2A-ex4 also prevented increases in TNF mRNA and protein production in response to high NaCl concentration and reduced transcriptional activity of a NFAT5 promoter construct. Since NKCC2A expression is restricted to the TAL, NKCC2A-dependent activation of NFAT5 is part of a pathway by which the TAL produces TNF in response to hypertonic NaCl intake.

  2. Proliferation of mouse embryonic stem cell progeny and the spontaneous contractile activity of cardiomyocytes are affected by microtopography.

    PubMed

    Biehl, Jesse K; Yamanaka, Satoshi; Desai, Tejal A; Boheler, Kenneth R; Russell, Brenda

    2009-08-01

    The niche in which stem cells reside and differentiate is a complex physicochemical microenvironment that regulates cell function. The role played by three-dimensional physical contours was studied on cell progeny derived from mouse embryonic stem cells using microtopographies created on PDMS (poly-dimethyl-siloxane) membranes. While markers of differentiation were not affected, the proliferation of heterogeneous mouse embryonic stem cell-derived progeny was attenuated by 15 microm-, but not 5 microm-high microprojections. This reduction was reversed by Rho kinase and myosin light chain kinase inhibition, which diminishes the tension generating ability of stress fibers. Purified cardiomyocytes derived from embryonic stem cells also showed significant blunting of proliferation and increased beating rates compared with cells grown on flat substrates. Thus, proliferation of stem cell-derived progeny appears to be regulated by microtopography through tension-generation of contractility in the third-dimension. These results emphasize the importance of topographic cues in the modulation of stem cell progeny behavior.

  3. Nuclear orphan receptor NR2F6 directly antagonizes NFAT and RORγt binding to the Il17a promoter

    PubMed Central

    Hermann-Kleiter, Natascha; Meisel, Marlies; Fresser, Friedrich; Thuille, Nikolaus; Müller, Mathias; Roth, Lukas; Katopodis, Andreas; Baier, Gottfried

    2012-01-01

    Interleukin-17A (IL-17A) is the signature cytokine produced by Th17 CD4+ T cells and has been tightly linked to autoimmune pathogenesis. In particular, the transcription factors NFAT and RORγt are known to activate Il17a transcription, although the detailed mechanism of action remains incompletely understood. Here, we show that the nuclear orphan receptor NR2F6 can attenuate the capacity of NFAT to bind to critical regions of the Il17a gene promoter. In addition, because NR2F6 binds to defined hormone response elements (HREs) within the Il17a locus, it interferes with the ability of RORγt to access the DNA. Consistently, NFAT and RORγt binding within the Il17a locus were enhanced in Nr2f6-deficient CD4+ Th17 cells but decreased in Nr2f6-overexpressing transgenic CD4+ Th17 cells. Taken together, our findings uncover an example of antagonistic regulation of Il17a transcription through the direct reciprocal actions of NR2F6 versus NFAT and RORγt. PMID:22921335

  4. Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis.

    PubMed

    Zhang, Lei; Cheng, Linfang; Wang, Qiqi; Zhou, Dongchen; Wu, Zhigang; Shen, Ling; Zhang, Li; Zhu, Jianhua

    2015-03-01

    Coronary artery disease (CAD) is a major health problem worldwide. The most severe form of CAD is acute coronary syndrome (ACS). Recent studies have demonstrated the beneficial role of atorvastatin in ACS; however, the mechanisms underlying this effect have not been fully clarified. Growing evidence indicates that activation of the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays an important role in oxidative stress-induced cardiomyocyte apoptosis during ACS. In this study, we examined whether atorvastatin inhibits H2O2-induced LOX-1 expression and H9c2 cardiomyocyte apoptosis, and investigated the underlying signaling pathway. Treatment of H9c2 cardiomyocytes with H2O2 resulted in elevated expression of LOX-1 mRNA and protein, as well as increased caspase-3 and -9 protein expression and cell apoptosis. H2O2-induced LOX-1 expression, caspase protein expression, and cardiomyocyte apoptosis were attenuated by pretreatment with atorvastatin. Atorvastatin activated H2O2-inhibited phosphorylation of Akt in a concentration-dependent manner. The Akt inhibitor, LY294002, inhibited the effect of atorvastatin on inducing Akt phosphorylation and on suppressing H2O2-mediated caspase up-regulation and cell apoptosis. These findings indicate that atorvastatin protects cardiomyocyte from oxidative stress via inhibition of LOX-1 expression and apoptosis, and that activation of H2O2-inhibited phosphorylation of Akt may play an important role in the protective function of atorvastatin.

  5. Live cell screening platform identifies PPARδ as a regulator of cardiomyocyte proliferation and cardiac repair

    PubMed Central

    Magadum, Ajit; Ding, Yishu; He, Lan; Kim, Teayoun; Vasudevarao, Mohankrishna Dalvoy; Long, Qinqiang; Yang, Kevin; Wickramasinghe, Nadeera; Renikunta, Harsha V; Dubois, Nicole; Weidinger, Gilbert; Yang, Qinglin; Engel, Felix B

    2017-01-01

    Zebrafish can efficiently regenerate their heart through cardiomyocyte proliferation. In contrast, mammalian cardiomyocytes stop proliferating shortly after birth, limiting the regenerative capacity of the postnatal mammalian heart. Therefore, if the endogenous potential of postnatal cardiomyocyte proliferation could be enhanced, it could offer a promising future therapy for heart failure patients. Here, we set out to systematically identify small molecules triggering postnatal cardiomyocyte proliferation. By screening chemical compound libraries utilizing a Fucci-based system for assessing cell cycle stages, we identified carbacyclin as an inducer of postnatal cardiomyocyte proliferation. In vitro, carbacyclin induced proliferation of neonatal and adult mononuclear rat cardiomyocytes via a peroxisome proliferator-activated receptor δ (PPARδ)/PDK1/p308Akt/GSK3β/β-catenin pathway. Inhibition of PPARδ reduced cardiomyocyte proliferation during zebrafish heart regeneration. Notably, inducible cardiomyocyte-specific overexpression of constitutively active PPARδ as well as treatment with PPARδ agonist after myocardial infarction in mice induced cell cycle progression in cardiomyocytes, reduced scarring, and improved cardiac function. Collectively, we established a cardiomyocyte proliferation screening system and present a new drugable target with promise for the treatment of cardiac pathologies caused by cardiomyocyte loss. PMID:28621328

  6. Functional expression and regulation of hyperpolarization-activated cyclic nucleotide-gated channels (HCN) in mouse iPS cell-derived cardiomyocytes after UTF1 -neo selection.

    PubMed

    Semmler, Judith; Lehmann, Martin; Pfannkuche, Kurt; Reppel, Michael; Hescheler, Jürgen; Nguemo, Filomain

    2014-01-01

    In vitro reprogramming of somatic cells holds great potential to serve as an autologous source of cells for tissue repair. However, major difficulties in achieving this potential include obtaining homogeneous and stable cells for transplantation. High electrical activity of cells such as cardiomyocytes (CMs) is crucial for both, safety and efficiency of cell replacement therapy. Moreover, the function of the cardiac pacemaker is controlled by the activities of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Here we have examined changes in HCN gene expression and function during cardiomyogenesis. We differentiated murine iPS cells selected by an undifferentiated transcription factor 1 (UTF1) -promoter-driven G418 resistance to CMs in vitro and characterized them by RT-PCR, immunocytochemistry, and electrophysiology. As key cardiac markers alpha-actinin and cardiac troponin T could be identified in derived CMs. Immunocytochemical staining of CMs showed the presence of all HCN subunits (HCN1-4). Electrophysiology experiments revealed developmental changes of action potentials and If currents as well as functional hormonal regulation and sensitivity to If channel blockers. We conclude that iPS cells derived from UTF-selection give rise to functional CMs in vitro, with established hormonal regulation pathways and functionally expressed If current in a development-dependent manner; and have all phenotypes with the pacemaker as predominant subtype. This might be of great importance for transplantation purposes. © 2014 S. Karger AG, Basel.

  7. Investigating mitochondrial metabolism in contracting HL-1 cardiomyocytes following hypoxia and pharmacological HIF activation identifies HIF-dependent and independent mechanisms of regulation.

    PubMed

    Ambrose, Lucy J A; Abd-Jamil, Amira H; Gomes, Renata S M; Carter, Emma E; Carr, Carolyn A; Clarke, Kieran; Heather, Lisa C

    2014-11-01

    Hypoxia is a consequence of cardiac disease and downregulates mitochondrial metabolism, yet the molecular mechanisms through which this occurs in the heart are incompletely characterized. Therefore, we aimed to use a contracting HL-1 cardiomyocyte model to investigate the effects of hypoxia on mitochondrial metabolism. Cells were exposed to hypoxia (2% O2) for 6, 12, 24, and 48 hours to characterize the metabolic response. Cells were subsequently treated with the hypoxia inducible factor (HIF)-activating compound, dimethyloxalylglycine (DMOG), to determine whether hypoxia-induced mitochondrial changes were HIF dependent or independent, and to assess the suitability of this cultured cardiac cell line for cardiovascular pharmacological studies. Hypoxic cells had increased glycolysis after 24 hours, with glucose transporter 1 and lactate levels increased 5-fold and 15-fold, respectively. After 24 hours of hypoxia, mitochondrial networks were more fragmented but there was no change in citrate synthase activity, indicating that mitochondrial content was unchanged. Cellular oxygen consumption was 30% lower, accompanied by decreases in the enzymatic activities of electron transport chain (ETC) complexes I and IV, and aconitase by 81%, 96%, and 72%, relative to controls. Pharmacological HIF activation with DMOG decreased cellular oxygen consumption by 43%, coincident with decreases in the activities of aconitase and complex I by 26% and 30%, indicating that these adaptations were HIF mediated. In contrast, the hypoxia-mediated decrease in complex IV activity was not replicated by DMOG treatment, suggesting HIF-independent regulation of this complex. In conclusion, 24 hours of hypoxia increased anaerobic glycolysis and decreased mitochondrial respiration, which was associated with changes in ETC and tricarboxylic acid cycle enzyme activities in contracting HL-1 cells. Pharmacological HIF activation in this cardiac cell line allowed both HIF-dependent and independent

  8. EDF-1 downregulates the CaM/Cn/NFAT signaling pathway during adipogenesis

    SciTech Connect

    López-Victorio, Carlos J.; Velez-delValle, Cristina; Beltrán-Langarica, Alicia; Kuri-Harcuch, Walid

    2013-03-01

    Highlights: ► EDF-1 participates early adipogenesis in 3T3F442A cells induced with Staurosporine/Dexamethasone. ► EDF-1 associates with CaM and Cn, most likely inactivating Cn. ► EDF-1/CaM complex seems to prevent NFATc1 activation by Cn. ► EDF-1 regulates the Cn/CaM/NFATc1 pathway during adipogenesis. ► EDF-1 may regulate the activation of Cn through a complex formation with CaM. - Abstract: The endothelial differentiation factor-1 (EDF-1) is a calmodulin binding protein that regulates calmodulin-dependent enzymes. In endothelial cells, this factor can form a protein complex with calmodulin. We analyzed the relationship between this factor and the members of calmodulin/calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathway during adipogenesis of 3T3-F442A cells. We found that the expression of edf1 is upregulated during early adipogenesis, whereas that of calcineurin gene is lowered, suggesting that this pathway should be downregulated to allow for adipogenesis to occur. We also found that EDF-1 associates with calmodulin and calcineurin, most likely inactivating calcineurin. Our results showed that EDF-1 inactivates the calmodulin/calcineurin/NFAT pathway via sequestration of calmodulin, during early adipogenesis, and we propose a mechanism that negatively regulates the activation of calcineurin through a complex formation between EDF-1 and calmodulin. This finding raises the possibility that modulating this pathway might offer some alternatives to regulate adipose biology.

  9. KMUP-1 Attenuates Endothelin-1-Induced Cardiomyocyte Hypertrophy through Activation of Heme Oxygenase-1 and Suppression of the Akt/GSK-3β, Calcineurin/NFATc4 and RhoA/ROCK Pathways.

    PubMed

    Liou, Shu-Fen; Hsu, Jong-Hau; Chen, You-Ting; Chen, Ing-Jun; Yeh, Jwu-Lai

    2015-06-05

    The signaling cascades of the mitogen activated protein kinase (MAPK) family, calcineurin/NFATc4, and PI3K/Akt/GSK3, are believed to participate in endothelin-1 (ET-1)-induced cardiac hypertrophy. The aim of this study was to investigate whether KMUP-1, a synthetic xanthine-based derivative, prevents cardiomyocyte hypertrophy induced by ET-1 and to elucidate the underlying mechanisms. We found that in H9c2 cardiomyocytes, stimulation with ET-1 (100 nM) for 4 days induced cell hypertrophy and enhanced expressions of hypertrophic markers, including atrial natriuretic peptide and brain natriuretic peptide, which were all inhibited by KMUP-1 in a dose-dependent manner. In addition, KMUP-1 prevented ET-1-induced intracellular reactive oxygen species generation determined by the DCFH-DA assay in cardiomyocytes. KMUP-1 also attenuated phosphorylation of ERK1/2 and Akt/GSK-3β, and activation of calcineurin/NFATc4 and RhoA/ROCK pathways induced by ET-1. Furthermore, we found that the expression of heme oxygenase-1 (HO-1), a stress-response enzyme implicated in cardio-protection, was up-regulated by KMUP-1. Finally, KMUP-1 attenuated ET-1-stimulated activator protein-1 DNA binding activity. In conclusion, KMUP-1 attenuates cardiomyocyte hypertrophy induced by ET-1 through inhibiting ERK1/2, calcineurin/NFATc4 and RhoA/ROCK pathways, with associated cardioprotective effects via HO-1 activation. Therefore, KMUP-1 may have a role in pharmacological therapy of cardiac hypertrophy.

  10. Activation of Nox4 in the Endoplasmic Reticulum Promotes Cardiomyocyte Autophagy and Survival during Energy Stress through the PERK/eIF-2α/ATF4 pathway

    PubMed Central

    Sciarretta, Sebastiano; Zhai, Peiyong; Shao, Dan; Zablocki, Daniela; Nagarajan, Narayani; Terada, Lance S.; Volpe, Massimo; Sadoshima, Junichi

    2013-01-01

    Rationale Autophagy is an essential survival mechanism during energy stress in the heart. Oxidative stress is activated by energy stress, but its role in mediating autophagy is poorly understood. Nox4 is an enzyme that generates reactive oxygen species (ROS) at intracellular membranes. Whether Nox4 acts as a sensor of energy stress to mediate activation of autophagy is unknown. Objective We investigated whether Nox4 is involved in the regulation of autophagy and cell survival during energy stress in cardiomyocytes (CMs). Methods and Results Production of ROS in CMs was increased during glucose deprivation (GD) in a Nox4-dependent manner. Protein levels and the ROS-producing activity of Nox4 were increased in the endoplasmic reticulum (ER), but not in mitochondria, in response to GD. Selective knockdown of Nox4, but not Nox2, or selective reduction of ROS in the ER with ER-targeted catalase, but not mitochondria-targeted perioxiredoxin3, abrogated GD-induced autophagy. Nox4 promoted autophagy during GD through activation of the PKR-like ER kinase (PERK) pathway by suppression of prolyl hydroxylase4 (PHD4). The decrease in cell survival during GD in the presence of Nox4 knockdown was rescued by reactivation of autophagy by Atg7 overexpression, indicating that the effect of Nox4 upon cell survival is critically mediated through regulation of autophagy. Nox4 was activated during fasting and prolonged ischemia in the mouse heart, where Nox4 is also required for autophagy activation and cardioprotection. Conclusions Nox4 critically mediates autophagy in response to energy stress in CMs by eliciting ROS in the ER and stimulating the PERK signaling pathway. PMID:24081881

  11. Age-related attenuation of isoflurane preconditioning in human atrial cardiomyocytes: roles for mitochondrial respiration and sarcolemmal adenosine triphosphate-sensitive potassium channel activity.

    PubMed

    Mio, Yasushi; Bienengraeber, Martin W; Marinovic, Jasna; Gutterman, David D; Rakic, Mladen; Bosnjak, Zeljko J; Stadnicka, Anna

    2008-04-01

    Clinical trials suggest that anesthetic-induced preconditioning (APC) produces cardioprotection in humans, but the mechanisms of APC and significance of aging for APC in humans are not well understood. Here, the impact of age on the role of two major effectors of APC, mitochondria and sarcolemmal adenosine triphosphate-sensitive potassium (sarcKATP) channels, in preconditioning of the human atrial myocardium were investigated. Right atrial appendages were obtained from adult patients undergoing cardiac surgery and assigned to mid-aged (MA) and old-aged (OA) groups. APC was induced by isoflurane in isolated myocardium and isolated cardiomyocytes. Mitochondrial oxygen consumption measurements, myocyte survival testing, and patch clamp techniques were used to investigate mitochondrial respiratory function and sarcKATP channel activity. After in vitro APC with isoflurane, the respiratory function of isolated mitochondria was better preserved after hypoxia-reoxygenation stress in MA than in OA. In isolated intact myocytes, APC significantly decreased oxidative stress-induced cell death in MA but not in OA, and isoflurane protection from cell death was attenuated by the sarcKATP channel inhibitor HMR-1098. Further, the properties of single sarcKATP channels were similar in MA and OA, and isoflurane sensitivity of pinacidil-activated whole cell KATP current was no different between MA and OA myocytes. Anesthetic-induced preconditioning with isoflurane decreases stress-induced cell death and preserves mitochondrial respiratory function to a greater degree in MA than in OA myocytes; however, sarcKATP channel activity is not differentially affected by isoflurane. Therefore, effectiveness of APC in humans may decrease with advancing age partly because of altered mitochondrial function of myocardial cells.

  12. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death.

    PubMed

    Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A; Quest, Andrew F G; Lavandero, Sergio

    2013-08-01

    Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca(2+) overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca(2+) levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca(2+) influx, mitochondrial network fragmentation and loss of the mitochondrial Ca(2+) buffer capacity. These biochemical events increase cytosolic Ca(2+) levels and trigger cardiomyocyte death via the activation of calpains. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death

    PubMed Central

    Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A.; Quest, Andrew F.G.; Lavandero, Sergio

    2014-01-01

    Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulatenumerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca2+ overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca2+ levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca2+ influx, mitochondrial network fragmentation and loss of the mitochondrial Ca2+ buffer capacity. These biochemical events increase cytosolic Ca2+ levels and trigger cardiomyocyte death via the activation of calpains. PMID:23602992

  14. Two inhibitory systems and CKIs regulate cell cycle exit of mammalian cardiomyocytes after birth

    SciTech Connect

    Tane, Shoji; Okayama, Hitomi; Ikenishi, Aiko; Amemiya, Yuki; Nakayama, Keiichi I.; Takeuchi, Takashi

    2015-10-16

    Mammalian cardiomyocytes actively proliferate during embryonic stages, following which they exit their cell cycle after birth, and the exit is maintained. Previously, we showed that two inhibitory systems (the G1-phase inhibitory system: repression of cyclin D1 expression; the M-phase inhibitory system: inhibition of CDK1 activation) maintain the cell cycle exit of mouse adult cardiomyocytes. We also showed that two CDK inhibitors (CKIs), p21{sup Cip1} and p27{sup Kip1}, regulate the cell cycle exit in a portion of postnatal cardiomyocytes. It remains unknown whether the two inhibitory systems are involved in the cell cycle exit of postnatal cardiomyocytes and whether p21{sup Cip1} and p27{sup Kip1} also inhibit entry to M-phase. Here, we showed that more than 40% of cardiomyocytes entered an additional cell cycle by induction of cyclin D1 expression at postnatal stages, but M-phase entry was inhibited in the majority of cardiomyocytes. Marked cell cycle progression and endoreplication were observed in cardiomyocytes of p21{sup Cip1} knockout mice at 4 weeks of age. In addition, tri- and tetranucleated cardiomyocytes increased significantly in p21{sup Cip1} knockout mice. These data showed that the G1-phase inhibitory system and two CKIs (p21{sup Cip1} and p27{sup Kip1}) inhibit entry to an additional cell cycle in postnatal cardiomyocytes, and that the M-phase inhibitory system and p21{sup Cip1} inhibit M-phase entry of cardiomyocytes which have entered the additional cell cycle. - Highlights: • Many postnatal cardiomyocytes entered an additional cell cycle by cyclin D1 induction. • The majority of cardiomyocytes could not enter M-phase after cyclin D1 induction. • Cell cycle progressed markedly in p21{sup Cip1} knockout mice after postnatal day 14. • Tri- and tetranucleated cardiomyocytes increased in p21{sup Cip1} knockout mice.

  15. Identification of the distinct promoters for the two transcripts of apoptosis related protein 3 and their transcriptional regulation by NFAT and NFkappaB.

    PubMed

    Yang, Guodong; Yu, Fang; Fu, Haiyan; Lu, Fan; Huang, Bo; Bai, Liyuan; Zhao, Zhongliang; Yao, Libo; Lu, Zifan

    2007-08-01

    APR3 (apoptosis related protein 3) is a novel gene highly conserved across species. Analysis of the data about APR3 available at GEO profiles revealed consistent and significant changes of APR3 expression level in certain developmental and inflammatory processes. Based on the search and analysis of all the submitted mRNA sequence, we postulated that the two transcripts may arise from separate promoter activities rather than previously assumed alternative splicing. Through reporter assay and PCR data, we identified the distinct promoters for the two transcripts of APR3. Furthermore, exogenous expression of a constitutively active mutant of transcription factor NFAT was able to enhance both the promoter activities of APR3. Sequential deletion of the promoter from the 5' side and mutation of the promoter suggested the functional NFAT binding sites might localize between -96 bp and -47 bp. In contrast, exogenous expression of a constitutively active mutant of the transcription factor NFkB inhibited APR3 transcription. Our data suggested that APR3 might be functionally important in certain processes under which NFAT and/or NFkappaB are/is activated.

  16. Cerium Oxide Nanoparticles Inhibits Oxidative Stress and Nuclear Factor-κB Activation in H9c2 Cardiomyocytes Exposed to Cigarette Smoke Extract

    PubMed Central

    Wang, Kangkai; Kolattukudy, Pappachan E.

    2011-01-01

    Cigarette smoke contains and generates a large amount of reactive oxygen species (ROS) that affect normal cellular function and have pathogenic consequences in the cardiovascular system. Increased oxidative stress and inflammation are considered to be an important mechanism of cardiovascular injury induced by cigarette smoke. Antioxidants may serve as effective therapeutic agents against smoke-related cardiovascular disease. Because of the presence of oxygen vacancies on its surface and self-regenerative cycle of its dual oxidation states, Ce3+ and Ce4+, cerium oxide (CeO2) nanoparticles offer a potential to quench ROS in biological systems. In this study, we determined the ability of CeO2 nanoparticles to protect against cigarette smoke extract (CSE)-induced oxidative stress and inflammation in cultured rat H9c2 cardiomyocytes. CeO2 nanoparticles pretreatment of H9c2 cells resulted in significant inhibition of CSE-induced ROS production and cell death. Pretreatment of H9c2 cells with CeO2 nanoparticles suppressed CSE-induced phosphorylation of IκBα, nuclear translocation of p65 subunit of nuclear factor-κB (NF-κB), and NF-κB reporter activity in H9c2 cells. CeO2 nanoparticles pretreatment also resulted in a significant down-regulation of NF-κB-regulated inflammatory genes tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and inducible nitric-oxide synthase and further inhibited CSE-induced depletion of antioxidant enzymes, such as copper zinc superoxide dismutase, manganese superoxide dismutase, and intracellular glutathione content. These results indicate that CeO2 nanoparticles can inhibit CSE-induced cell damage via inhibition of ROS generation, NF-κB activation, inflammatory gene expression, and antioxidant depletion and may have a great potential for treatment of smoking-related diseases. PMID:21464334

  17. Basal autophagy protects cardiomyocytes from doxorubicin-induced toxicity.

    PubMed

    Pizarro, Marcela; Troncoso, Rodrigo; Martínez, Gonzalo J; Chiong, Mario; Castro, Pablo F; Lavandero, Sergio

    2016-08-31

    Doxorubicin (Doxo) is one of the most effective anti-neoplastic agents but its cardiotoxicity has been an important clinical limitation. The major mechanism of Doxo-induced cardiotoxicity is associated to its oxidative capacity. However, other processes are also involved with significant consequences for the cardiomyocyte. In recent years, a number of studies have investigated the role of autophagy on Doxo-induced cardiotoxicity but to date it is not clear how Doxo alters that process and its consequence on cardiomyocytes viability. Here we investigated the effect of Doxo 1uM for 24h of stimulation on cultured neonatal rat cardiomyocytes. We showed that Doxo inhibits basal autophagy. This inhibition is due to both Akt/mTOR signaling pathway activation and Beclin 1 level decrease. To assess the role of autophagy on Doxo-induced cardiomyocyte death, we evaluated the effects 3-methyladenine (3-MA), bafilomycin A1 (BafA), siRNA Beclin 1 (siBeclin 1) and rapamycin (Rapa) on cell viability. Inhibition of autophagy with 3-MA, BafA and siBeclin 1 increased lactate dehydrogenase (LDH) release but, when autophagy was induced by Rapa, Doxo-induced cardiomyocyte death was decreased. These results suggest that Doxo inhibits basal autophagy and contributes to cardiomyocyte death. Activation of autophagy could be used as a strategy to protect the heart against Doxo toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Naturally Engineered Maturation of Cardiomyocytes

    PubMed Central

    Scuderi, Gaetano J.; Butcher, Jonathan

    2017-01-01

    Ischemic heart disease remains one of the most prominent causes of mortalities worldwide with heart transplantation being the gold-standard treatment option. However, due to the major limitations associated with heart transplants, such as an inadequate supply and heart rejection, there remains a significant clinical need for a viable cardiac regenerative therapy to restore native myocardial function. Over the course of the previous several decades, researchers have made prominent advances in the field of cardiac regeneration with the creation of in vitro human pluripotent stem cell-derived cardiomyocyte tissue engineered constructs. However, these engineered constructs exhibit a functionally immature, disorganized, fetal-like phenotype that is not equivalent physiologically to native adult cardiac tissue. Due to this major limitation, many recent studies have investigated approaches to improve pluripotent stem cell-derived cardiomyocyte maturation to close this large functionality gap between engineered and native cardiac tissue. This review integrates the natural developmental mechanisms of cardiomyocyte structural and functional maturation. The variety of ways researchers have attempted to improve cardiomyocyte maturation in vitro by mimicking natural development, known as natural engineering, is readily discussed. The main focus of this review involves the synergistic role of electrical and mechanical stimulation, extracellular matrix interactions, and non-cardiomyocyte interactions in facilitating cardiomyocyte maturation. Overall, even with these current natural engineering approaches, pluripotent stem cell-derived cardiomyocytes within three-dimensional engineered heart tissue still remain mostly within the early to late fetal stages of cardiomyocyte maturity. Therefore, although the end goal is to achieve adult phenotypic maturity, more emphasis must be placed on elucidating how the in vivo fetal microenvironment drives cardiomyocyte maturation. This

  19. Cardioprotective activity of urocortin by preventing caspase-independent, non-apoptotic death in cultured neonatal rat cardiomyocytes exposed to ischemia

    SciTech Connect

    Takatani-Nakase, Tomoka; Takahashi, Koichi

    2010-11-12

    Research highlights: {yields} Ischemia induces high level of iPLA{sub 2} resulting in caspase-independent myocyte death. {yields} Urocortin causes iPLA{sub 2} down-regulation leading to avoidance of non-apoptotic death. {yields} The survival-promoting effect of urocortin is abrogated by CRH receptor antagonist. -- Abstract: Caspase-independent, non-apoptotic cell death in ischemic heart disease is considered to be one of the important therapeutic targets, however, the detailed mechanisms of this cell death process are not clear. In this study, we investigated the mechanisms of non-apoptotic cell death in cultured neonatal rat cardiomyocytes during ischemia, and the cardioprotection by preventing the mechanisms. We found that ischemia caused elevation of the phospholipase A{sub 2} (iPLA{sub 2}) expression in the myocytes, leading to distinctive non-apoptotic nuclear shrinkage, and cell death. Moreover, we investigated whether the potent cardioprotective corticotropin-releasing hormone (CRH), urocortin, which had been less focused on non-apoptotic cell death, inhibits the ischemic myocyte death. Ischemia-augmented nuclear shrinkage of the myocytes was suppressed by the pretreatment of {approx}10 nM urocortin before the cells were exposed to ischemia. Urocortin could significantly suppress the expression and activity of iPLA{sub 2}, resulting in preventing the ischemia-induced cell death. The survival-promoting effect of urocortin was abrogated by the CRH receptor antagonist astressin. These findings provide the first evidence linking the targets of the urocortin-mediated cardioprotection to the suppression of the caspase-independent, non-apoptotic death in cardiac myocytes exposed to ischemia.

  20. L-364,373 fails to activate the slow delayed rectifier K+ current in canine ventricular cardiomyocytes.

    PubMed

    Magyar, János; Horváth, Balázs; Bányász, Tamás; Szentandrássy, Norbert; Birinyi, Péter; Varró, András; Szakonyi, Zsolt; Fülöp, Ferenc; Nánási, Péter P

    2006-04-01

    Activators of the slow delayed rectifier K+ current (I(Ks)) are promising tools to suppress ventricular arrhythmias originating from prolongation of action potentials. A recently synthesized compound, L-364,373, was shown to activate I(Ks) in ventricular cells isolated from guinea pigs and rabbits. Due to the interspecies differences known to exist in the properties of the delayed rectifier K+ currents, the effect of L-364,373 on I(Ks) was studied and compared with that of another I(Ks) activator mefenamic acid in canine ventricular myocytes. Mefenamic acid (100 microM) significantly increased the amplitude of the fully activated I(Ks) current, as well as the I(Ks) current tails, by shifting the voltage dependence of its activation towards negative voltages and increased the time constant for deactivation. In contrast, L-364,373, up to concentrations of 3 microM, failed to augment I(Ks) at any membrane potential studied, but slightly increased the time constant of deactivation. It is concluded that human studies are required to evaluate the therapeutically beneficial effects of I(Ks) activators. Rodent cardiac tissues are not suitable for this purpose.

  1. Simple non-invasive analysis of embryonic stem cell-derived cardiomyocytes beating in vitro

    NASA Astrophysics Data System (ADS)

    Radaszkiewicz, Katarzyna Anna; Sýkorová, Dominika; Karas, Pavel; Kudová, Jana; Kohút, Lukáš; Binó, Lucia; Večeřa, Josef; Víteček, Jan; Kubala, Lukáš; Pacherník, Jiří

    2016-02-01

    The analysis of digital video output enables the non-invasive screening of various active biological processes. For the monitoring and computing of the beating parameters of cardiomyocytes in vitro, CB Analyser (cardiomyocyte beating analyser) software was developed. This software is based on image analysis of the video recording of beating cardiomyocytes. CB Analyser was tested using cardiomyocytes derived from mouse embryonic stem cells at different stages of cardiomyogenesis. We observed that during differentiation (from day 18), the beat peak width decreased, which corresponded to the increased speed of an individual pulse. However, the beating frequency did not change. Further, the effects of epinephrine modulating mature cardiomyocyte functions were tested to validate the CB Analyser analysis. In conclusion, data show that CB Analyser is a useful tool for evaluating the functions of both developing and mature cardiomyocytes under various conditions in vitro.

  2. Cav3.2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage

    PubMed Central

    Lin, Shin-Shiou; Tzeng, Bing-Hsiean; Lee, Kuan-Rong; Smith, Richard J. H.; Campbell, Kevin P.; Chen, Chien-Chang

    2014-01-01

    Intracellular Ca2+ transient is crucial in initiating the differentiation of mesenchymal cells into chondrocytes, but whether voltage-gated Ca2+ channels are involved remains uncertain. Here, we show that the T-type voltage-gated Ca2+ channel Cav3.2 is essential for tracheal chondrogenesis. Mice lacking this channel (Cav3.2−/−) show congenital tracheal stenosis because of incomplete formation of cartilaginous tracheal support. Conversely, Cav3.2 overexpression in ATDC5 cells enhances chondrogenesis, which could be blunted by both blocking T-type Ca2+ channels and inhibiting calcineurin and suggests that Cav3.2 is responsible for Ca2+ influx during chondrogenesis. Finally, the expression of sex determination region of Y chromosome (SRY)-related high-mobility group-Box gene 9 (Sox9), one of the earliest markers of committed chondrogenic cells, is reduced in Cav3.2−/− tracheas. Mechanistically, Ca2+ influx via Cav3.2 activates the calcineurin/nuclear factor of the activated T-cell (NFAT) signaling pathway, and a previously unidentified NFAT binding site is identified within the mouse Sox9 promoter using a luciferase reporter assay and gel shift and ChIP studies. Our findings define a previously unidentified mechanism that Ca2+ influx via the Cav3.2 T-type Ca2+ channel regulates Sox9 expression through the calcineurin/NFAT signaling pathway during tracheal chondrogenesis. PMID:24778262

  3. Sanggenon C protects against pressure overload‑induced cardiac hypertrophy via the calcineurin/NFAT2 pathway.

    PubMed

    Xiao, Lili; Gu, Yulei; Gao, Lu; Shangguan, Jiahong; Chen, Yang; Zhang, Yanzhou; Li, Ling

    2017-10-01

    The effects of Sanggenon C on oxidative stress and inflammation have previously been reported; however, little is currently known regarding the effects of Sanggenon C on cardiac hypertrophy and fibrosis. In the present study, aortic banding (AB) was performed on mice to induce cardiac hypertrophy. After 1 week AB surgery, mice were treated daily with 10 or 20 mg/kg Sanggenon C for 3 weeks. Subsequently, cardiac function was detected using echocardiography and catheter‑based measurements of hemodynamic parameters. In addition, the extent of cardiac hypertrophy was evaluated by pathological staining and molecular analysis of heart tissue in each group. After 4 weeks of AB, vehicle‑treated mice exhibited cardiac hypertrophy, fibrosis, and deteriorated systolic and diastolic function, whereas treatment with 10 and 20 mg/kg Sanggenon C treatment ameliorated these alterations, as evidenced by attenuated cardiac hypertrophy and fibrosis, and preserved cardiac function. Furthermore, AB‑induced activation of calcineurin and nuclear factor of activated T cells 2 (NFAT2) was reduced following Sanggenon C treatment. These results suggest that Sanggenon C may exert protective effects against cardiac hypertrophy and fibrosis via suppression of the calcineurin/NFAT2 pathway.

  4. The Impact of Circulating Mitochondrial DNA on Cardiomyocyte Apoptosis and Myocardial Injury After TLR4 Activation in Experimental Autoimmune Myocarditis.

    PubMed

    Wu, Bangwei; Ni, Huanchun; Li, Jian; Zhuang, Xinyu; Zhang, Jinjin; Qi, Zhiyong; Chen, Qiying; Wen, Zhichao; Shi, Haiming; Luo, Xinping; Jin, Bo

    2017-01-01

    Mitochondrial DNA (mtDNA), acting as a newly found 'danger-associated molecular patterns' (DAMPs), is released into circulation upon tissue injury and performs as a considerable activator of inflammation and immune response. However, the role of circulating mtDNA in experimental autoimmune myocarditis (EAM) as well as Toll like receptor4 (TLR4) mediated cardiac inflammation and injury remains unknown. A model of EAM was established in BALB/c mice by immunization with porcine cardiac myosin. Lipopolysaccharide (LPS) was used to stimulate TLR4 activation in EAM mice and H9C2 cells. LPS stimulation significantly aggravated cardiac inflammation and tissue injury in EAM, as demonstrated by increased myocardium inflammatory cell infiltration, and up-regulated inflammatory cytokines and troponin I(TnI) level in serum. Circulating mtDNA level was increased in EAM and TLR4 activation led to a greater elevation, which may be related to Reactive oxygen species (ROS) stress involved mtDNA damage characterized by reduced mtDNA copy number in myocardium tissue. In addition, the expression of Toll like receptor9 (TLR9), a ligand of mtDNA, was significantly up-regulated in the myocardium of EAM and EAM LPS group; meanwhile, TLR9 inhibition by ODN 2088 caused an inhibited apoptosis in LPS treated H9C2 cells. Moreover, in EAM and EAM LPS group, simultaneously giving ODN 2088 treatment significantly ameliorated cardiac inflammation and tissue injury compared with untreated group. Increased circulating mtDNA combined with upregulated TLR9 expression may corporately play a role in EAM as well as TLR4 activation mediated cardiac inflammation and injury. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Cardiomyocytes from phorbol myristate acetate-activated mesenchymal stem cells restore electromechanical function in infarcted rat hearts

    PubMed Central

    Song, Heesang; Hwang, Hye Jin; Chang, Woochul; Song, Byeong-Wook; Cha, Min-Ji; Lim, Soyeon; Choi, Eun Ju; Ham, Onju; Lee, Chang Youn; Park, Jun-Hee; Lee, Se-Yeon; Choi, Eunmi; Lee, Chungkeun; Lee, Myoungho; Lee, Moon-Hyoung; Kim, Sung-Hou; Jang, Yangsoo; Hwang, Ki-Chul

    2011-01-01

    Despite the safety and feasibility of mesenchymal stem cell (MSC) therapy, an optimal cell type has not yet emerged in terms of electromechanical integration in infarcted myocardium. We found that poor to moderate survival benefits of MSC-implanted rats were caused by incomplete electromechanical integration induced by tissue heterogeneity between myocytes and engrafted MSCs in the infarcted myocardium. Here, we report the development of cardiogenic cells from rat MSCs activated by phorbol myristate acetate, a PKC activator, that exhibited high expressions of cardiac-specific markers and Ca2+ homeostasis-related proteins and showed adrenergic receptor signaling by norepinephrine. Histological analysis showed high connexin 43 coupling, few inflammatory cells, and low fibrotic markers in myocardium implanted with these phorbol myristate acetate-activated MSCs. Infarct hearts implanted with these cells exhibited restoration of conduction velocity through decreased tissue heterogeneity and improved myocardial contractility. These findings have major implications for the development of better cell types for electromechanical integration of cell-based treatment for infarcted myocardium. PMID:21173226

  6. Functional integrity of the t-tubular system in cardiomyocytes depends on p21-activated kinase 1

    PubMed Central

    DeSantiago, Jaime; Bare, Dan J; Ke, Yunbo; Sheehan, Katherine A.; Solaro, R. John; Banach, Kathrin

    2013-01-01

    p21-activated kinase (Pak1), a serine-threonine protein kinase, regulates cytoskeletal dynamics and cell motility. Recent experiments further demonstrate that loss of Pak1 results in exaggerated hypertrophic growth in response to pathophysiological stimuli. Calcium (Ca) signaling plays an important role in the regulation of transcription factors involved in hypertrophic remodeling. Here we aimed to determine the role of Pak1 in cardiac excitation-contraction coupling (ECC). Ca transients were recorded in isolated, ventricular myocytes (VMs) from WT and Pak1−/− mice. Pak1−/− Ca transients had a decreased amplitude, prolonged rise time and delayed recovery time. Di-8-ANNEPS staining revealed a decreased t-tubular density in Pak1−/− VMs that coincided with decreased cell capacitance and increased dis-synchrony of Ca induced Ca release (CICR) at individual release units. These changes were not observed in atrial myocytes of Pak1−/− mice where the t-tubular system is only sparsely developed. Experiments in cultured rabbit VMs supported a role of Pak1 in the maintenance of the t-tubular structure. T-tubular density in rabbit VMs significantly decreased within 24h of culture. This was accompanied by a decrease of the Ca transient amplitude and a prolongation of its rise time. However, overexpression of constitutively active Pak1 in VMs attenuated the structural remodeling as well as changes in ECC. The results provide significant support for a prominent role of Pak1 activity not only in the functional regulation of ECC but for the structural maintenance of the t-tubular system whose remodeling is an integral feature of hypertrophic remodeling. PMID:23612118

  7. Electrical stimulation of neonatal cardiomyocytes results in the sequential activation of nuclear genes governing mitochondrial proliferation and differentiation

    PubMed Central

    Xia, Yang; Buja, L. Maximilian; Scarpulla, Richard C.; McMillin, Jeanie B.

    1997-01-01

    Electrical stimulation of neonatal cardiac myocytes produces hypertrophy and cellular maturation with increased mitochondrial content and activity. To investigate the patterns of gene expression associated with these processes, cardiac myocytes were stimulated for varying times up to 72 hr in serum-free culture. The mRNA contents for genes associated with transcriptional activation [c-fos, c-jun, JunB, nuclear respiratory factor 1 (NRF-1)], mitochondrial proliferation [cytochrome c (Cyt c), cytochrome oxidase], and mitochondrial differentiation [carnitine palmitoyltransferase I (CPT-I) isoforms] were measured. The results establish a temporal pattern of mRNA induction beginning with c-fos (0.25–3 hr) and followed sequentially by c-jun (0.5–3 hr), JunB (0.5–6 hr), NRF-1 (1–12 hr), Cyt c (12–72 hr), and muscle-specific CPT-I (48–72 hr). Induction of the latter was accompanied by a marked decrease in the liver-specific CPT-I mRNA, thus supporting the developmental fidelity of this pattern of gene regulation. Consistent with a transcriptional mechanism, electrical stimulation increased c-fos, β-myosin heavy chain, and Cyt c promoter activities. These increases coincided with a rise in their respective endogenous gene transcripts. NRF-1, cAMP response element, and Sp-1 site mutations within the Cyt c promoter reduced luciferase expression in both stimulated and nonstimulated myocytes. Mutations in the NRF-1 and CRE sites inhibited the induction by electrical stimulation (5-fold and 2-fold, respectively) whereas mutation of the Sp-1 site maintained or increased the fold induction. This finding is consistent with the appearance of NRF-1 and fos/jun mRNAs prior to that of Cyt c and suggests that induction of these transcription factors is a prerequisite for the transcriptional activation of Cyt c expression. These results support a regulatory role for NRF-1 and possibly AP-1 in the initiation of mitochondrial proliferation. PMID:9326621

  8. Pro-survival function of MEF2 in cardiomyocytes is enhanced by β-blockers

    PubMed Central

    Hashemi, S; Salma, J; Wales, S; McDermott, JC

    2015-01-01

    β1-Adrenergic receptor (β1-AR) stimulation increases apoptosis in cardiomyocytes through activation of cAMP/protein kinase A (PKA) signaling. The myocyte enhancer factor 2 (MEF2) proteins function as important regulators of myocardial gene expression. Previously, we reported that PKA signaling directly represses MEF2 activity. We determined whether (a) MEF2 has a pro-survival function in cardiomyocytes, and (b) whether β-adrenergic/PKA signaling modulates MEF2 function in cardiomyocytes. Initially, we observed that siRNA-mediated gene silencing of MEF2 induces cardiomyocyte apoptosis as indicated by flow cytometry. β1-AR activation by isoproterenol represses MEF2 activity and promotes apoptosis in cultured neonatal cardiomyocytes. Importantly, β1-AR mediated apoptosis was abrogated in cardiomyocytes expressing a PKA-resistant form of MEF2D (S121/190A). We also observed that a β1-blocker, Atenolol, antagonizes isoproterenol-induced apoptosis while concomitantly enhancing MEF2 transcriptional activity. β-AR stimulation modulated MEF2 cellular localization in cardiomyocytes and this effect was reversed by β-blocker treatment. Furthermore, Kruppel-like factor 6, a MEF2 target gene in the heart, functions as a downstream pro-survival factor in cardiomyocytes. Collectively, these data indicate that (a) MEF2 has an important pro-survival role in cardiomyocytes, and (b) β-adrenergic signaling antagonizes the pro-survival function of MEF2 in cardiomyocytes and β-blockers promote it. These observations have important clinical implications that may contribute to novel strategies for preventing cardiomyocyte apoptosis associated with heart pathology. PMID:27551452

  9. Collagen regulates transforming growth factor-β receptors of HL-1 cardiomyocytes through activation of stretch and integrin signaling.

    PubMed

    Lu, Yen-Yu; Lin, Yung-Kuo; Kao, Yu-Hsun; Chung, Cheng-Chih; Yeh, Yung-Hsin; Chen, Shih-Ann; Chen, Yi-Jen

    2016-10-01

    The extracellular matrix (ECM) and transforming growth factor-β (TGF)-β are important in cardiac fibrosis, however, the effects of the ECM on TGF‑β signaling remain to be fully elucidated. The aims of the present study were to evaluate the role of collagen in TGF‑β signaling and examine the underlying mechanisms. In the present study, western blot analysis was used to examine TGF‑β signaling in HL‑1 cells treated with and without (control) type I collagen (10 µg/ml), which was co‑administered with either an anti‑β1 integrin antibody (10 µg/ml) or a stretch‑activated channel inhibitor (gadolinium; 50 µM). Cell proliferation and adhesion assays were used to investigate the roles of integrin, mechanical stretch and mitogen‑activated protein kinases (MAPKs) on cell proliferation and adhesion. The type I collagen (10 µg/ml)‑treated HL‑1 cells were incubated with or without anti‑β1 integrin antibody (10 µg/ml), gadolinium (50 µM) or inhibitors of p38 (SB203580; 3 µM), extracellular signal‑regulated kinase (ERK; PD98059; 50 µM) and c‑Jun N‑terminal kinase (JNK; SP600125; 50 µM). Compared with the control cells, the collagen‑treated HL‑1 cells had lower expression levels of type I and type II TGF‑β receptors (TGFβRI and TGFβRII), with an increase in phosphorylated focal adhesion kinase (FAK), p38 and ERK1/2, and a decrease in JNK. Incubation with the anti‑β1 integrin antibody reversed the collagen‑induced downregulation of the expression of TGFβRII and phosphorylated FAK. Gadolinium downregulated the expression levels of TGFβRI and small mothers against decapentaplegic (Smad)2/3, and decreased the levels of phosphorylated p38, ERK1/2 and JNK. In addition, gadolinium reversed the collagen‑induced activation of p38 and ERK1/2. In the presence of gadolinium and anti‑β1 integrin antibody, collagen regulated the expression levels of TGFβRI, TGFβRII and Smad2/3, but did not alter the phosphorylation

  10. Berberine Sulfate Attenuates Osteoclast Differentiation through RANKL Induced NF-κB and NFAT Pathways.

    PubMed

    Zhou, Lin; Song, Fangming; Liu, Qian; Yang, Mingli; Zhao, Jinmin; Tan, Renxiang; Xu, Jun; Zhang, Ge; Quinn, Julian M W; Tickner, Jennifer; Xu, Jiake

    2015-11-13

    Osteoporosis, a metabolic bone disease, is characterized by an excessive formation and activation of osteoclasts. Anti-catabolic treatment using natural compounds has been proposed as a potential therapeutic strategy against the osteoclast related osteolytic diseases. In this study, the activity of berberine sulfate (an orally available form of berberine) on osteoclast differentiation and its underlying molecular mechanisms of action were investigated. Using bone marrow macrophages (BMMs) derived osteoclast culture system, we showed that berberine sulfate at the dose of 0.25, 0.5 and 1 μM significantly inhibited the formation of osteoclasts. Notably, berberine sulfate at these doses did not affect the BMM viability. In addition, we observed that berberine sulfate inhibited the expression of osteoclast marker genes, including cathepsin K (Ctsk), nuclear factor of activated T cells cytoplasmic 1 (NFATc1), tartrate resistant acid phosphatase (TRAcP, Acp5) and Vacuolar-type H+-ATPase V0 subunit D2 (V-ATPase d2). Luciferase reporter gene assay and Western blot analysis further revealed that berberine sulfate inhibits receptor for activation of nuclear factor ligand (RANKL)-induced NF-κB and NFAT activity. Taken together, our results suggest that berberine sulfate is a natural compound potentially useful for the treatment of osteoporosis.

  11. Berberine Sulfate Attenuates Osteoclast Differentiation through RANKL Induced NF-κB and NFAT Pathways

    PubMed Central

    Zhou, Lin; Song, Fangming; Liu, Qian; Yang, Mingli; Zhao, Jinmin; Tan, Renxiang; Xu, Jun; Zhang, Ge; Quinn, Julian M. W.; Tickner, Jennifer; Xu, Jiake

    2015-01-01

    Osteoporosis, a metabolic bone disease, is characterized by an excessive formation and activation of osteoclasts. Anti-catabolic treatment using natural compounds has been proposed as a potential therapeutic strategy against the osteoclast related osteolytic diseases. In this study, the activity of berberine sulfate (an orally available form of berberine) on osteoclast differentiation and its underlying molecular mechanisms of action were investigated. Using bone marrow macrophages (BMMs) derived osteoclast culture system, we showed that berberine sulfate at the dose of 0.25, 0.5 and 1 μM significantly inhibited the formation of osteoclasts. Notably, berberine sulfate at these doses did not affect the BMM viability. In addition, we observed that berberine sulfate inhibited the expression of osteoclast marker genes, including cathepsin K (Ctsk), nuclear factor of activated T cells cytoplasmic 1 (NFATc1), tartrate resistant acid phosphatase (TRAcP, Acp5) and Vacuolar-type H+-ATPase V0 subunit D2 (V-ATPase d2). Luciferase reporter gene assay and Western blot analysis further revealed that berberine sulfate inhibits receptor for activation of nuclear factor ligand (RANKL)-induced NF-κB and NFAT activity. Taken together, our results suggest that berberine sulfate is a natural compound potentially useful for the treatment of osteoporosis. PMID:26580592

  12. Lead induces COX-2 expression in glial cells in a NFAT-dependent, AP-1/NFκB-independent manner

    PubMed Central

    Wei, Jinlong; Du, Kejun; Cai, Qinzhen; Ma, Lisha; Jiao, Zhenzhen; Tan, Jinrong; Xu, Zhou; Li, Jingxia; Luo, Wenjin; Chen, Jingyuan; Gao, Jimin; Zhang, Dongyun; Huang, Chuanshu

    2014-01-01

    Epidemiologic studies have provided solid evidence for the neurotoxic effect of lead for decades of years. In view of the fact that children are more vulnerable to the neurotoxicity of lead, lead exposure has been an urgent public health concern for decades of years. The modes of action of lead neurotoxic effects include disturbance of neurotransmitter storage and release, damage of mitochondria, as well as induction of apoptosis in cerebrovascular endothelial cells, astroglia and oligodendroglia. Our studies here, from a novel point of view, demonstrates that lead specifically caused induction of COX-2, a well known inflammatory mediator in neurons and glia cells. Furthermore, we revealed that COX-2 was induced by lead in a transcription-dependent manner, which relayed on transcription factor NFAT, rather than AP-1 and NFκB, in glial cells. Considering the important functions of COX-2 in mediation of inflammation reaction and oxidative stress, our studies here provide a mechanistic insight into the understanding of lead-associated inflammatory neurotoxicity effect via activation of pro-inflammatory NFAT3/COX-2 axis. PMID:25193092

  13. Transcription of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase type 3 gene, ATP2A3, is regulated by the calcineurin/NFAT pathway in endothelial cells

    PubMed Central

    Hadri, Lahouaria; Pavoine, Catherine; Lipskaia, Larissa; Yacoubi, Sabrina; Lompré, Anne-Marie

    2005-01-01

    Histamine, known to induce Ca2+ oscillations in endothelial cells, was used to alter Ca2+ cycling. Treatment of HUVEC (human umbilical-vein endothelial cell)-derived EA.hy926 cells with histamine for 1–3 days increased the levels of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) 3, but not of SERCA 2b, transcripts and proteins. Promoter-reporter gene assays demonstrated that this increase in expression was due to activation of SERCA 3 gene transcription. The effect of histamine was abolished by mepyramine, but not by cimetidine, indicating that the H1 receptor, but not the H2 receptor, was involved. The histamine-induced up-regulation of SERCA 3 was abolished by cyclosporin A and by VIVIT, a peptide that prevents calcineurin and NFAT (nuclear factor of activated T-cells) from interacting, indicating involvement of the calcineurin/NFAT pathway. Histamine also induced the nuclear translocation of NFAT. NFAT did not directly bind to the SERCA 3 promoter, but activated Ets-1 (E twenty-six-1), which drives the expression of the SERCA 3 gene. Finally, cells treated with histamine and loaded with fura 2 exhibited an improved capacity in eliminating high cytosolic Ca2+ concentrations, in accordance with an increase in activity of a low-affinity Ca2+-ATPase, like SERCA 3. Thus chronic treatment of endothelial cells with histamine up-regulates SERCA 3 transcription. The effect of histamine is mediated by the H1R (histamine 1 receptor) and involves activation of the calcineurin/NFAT pathway. By increasing the rate of Ca2+ sequestration, up-regulation of SERCA 3 counteracts the cytosolic increase in Ca2+ concentration. PMID:16250893

  14. L-carnitine protects against carboplatin-mediated renal injury: AMPK- and PPARα-dependent inactivation of NFAT3.

    PubMed

    Sue, Yuh-Mou; Chou, Hsiu-Chu; Chang, Chih-Cheng; Yang, Nian-Jie; Chou, Ying; Juan, Shu-Hui

    2014-01-01

    We have previously shown that carboplatin induces inflammation and apoptosis in renal tubular cells (RTCs) through the activation of the nuclear factor of activated T cells-3 (NFAT3) protein by reactive oxygen species (ROS), and that the ROS-mediated activation of NFAT3 is prevented by N-acetyl cysteine and heme oxygenase-1 treatment. In the current study, we investigated the underlying molecular mechanisms of the protective effect of L-carnitine on carboplatin-mediated renal injury. Balb/c mice and RTCs were used as model systems. Carboplatin-induced apoptosis in RTCs was examined using terminal-deoxynucleotidyl-transferase-mediated dUTP nick end labeling. We evaluated the effects of the overexpression of the peroxisome-proliferator-activated receptor alpha (PPARα) protein, the knockdown of PPARα gene, and the blockade of AMPK activation and PPARα to investigate the underlying mechanisms of the protective effect of L-carnitine on carboplatin-mediated renal injury. Carboplatin reduced the nuclear translocation, phosphorylation, and peroxisome proliferator responsive element transactivational activity of PPARα. These carboplatin-mediated effects were prevented by L-carnitine through a mechanism dependent on AMPK phosphorylation and subsequent PPARα activation. The activation of PPARα induced cyclooxygenase 2 (COX-2) and prostacyclin (PGI2) synthase expression that formed a positive feedback loop to further activate PPARα. The coimmunoprecipitation of the nuclear factor (NF) κB proteins increased following the induction of PPARα by L-carnitine, which reduced NFκB transactivational activity and cytokine expression. The in vivo study showed that the inactivation of AMPK suppressed the protective effect of L-carnitine in carboplatin-treated mice, indicating that AMPK phosphorylation is required for PPARα activation in the L-carnitine-mediated protection of RTC apoptosis caused by carboplatin. The results of our study provide molecular evidence that L

  15. Overexpression of the Large-Conductance, Ca2+-Activated K+ (BK) Channel Shortens Action Potential Duration in HL-1 Cardiomyocytes.

    PubMed

    Stimers, Joseph R; Song, Li; Rusch, Nancy J; Rhee, Sung W

    2015-01-01

    Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome.

  16. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration.

    PubMed

    Zhao, Long; Borikova, Asya L; Ben-Yair, Raz; Guner-Ataman, Burcu; MacRae, Calum A; Lee, Richard T; Burns, C Geoffrey; Burns, Caroline E

    2014-01-28

    The human heart's failure to replace ischemia-damaged myocardium with regenerated muscle contributes significantly to the worldwide morbidity and mortality associated with coronary artery disease. Remarkably, certain vertebrate species, including the zebrafish, achieve complete regeneration of amputated or injured myocardium through the proliferation of spared cardiomyocytes. Nonetheless, the genetic and cellular determinants of natural cardiac regeneration remain incompletely characterized. Here, we report that cardiac regeneration in zebrafish relies on Notch signaling. Following amputation of the zebrafish ventricular apex, Notch receptor expression becomes activated specifically in the endocardium and epicardium, but not the myocardium. Using a dominant negative approach, we discovered that suppression of Notch signaling profoundly impairs cardiac regeneration and induces scar formation at the amputation site. We ruled out defects in endocardial activation, epicardial activation, and dedifferentiation of compact myocardial cells as causative for the regenerative failure. Furthermore, coronary endothelial tubes, which we lineage traced from preexisting endothelium in wild-type hearts, formed in the wound despite the myocardial regenerative failure. Quantification of myocardial proliferation in Notch-suppressed hearts revealed a significant decrease in cycling cardiomyocytes, an observation consistent with a noncell autonomous requirement for Notch signaling in cardiomyocyte proliferation. Unexpectedly, hyperactivation of Notch signaling also suppressed cardiomyocyte proliferation and heart regeneration. Taken together, our data uncover the exquisite sensitivity of regenerative cardiomyocyte proliferation to perturbations in Notch signaling.

  17. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation.

    PubMed

    Zawawi, M S F; Dharmapatni, A A S S K; Cantley, M D; McHugh, K P; Haynes, D R; Crotti, T N

    2012-10-19

    Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcRγ) and DNAX-activating protein 12kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin (β3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p<0.05) reduced the expression of NFATc1, CathK, OSCAR, FcRγ, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p<0.05) decreased CathK, OSCAR, FcRγ, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the

  18. Excitation–Contraction Coupling of the Mouse Embryonic Cardiomyocyte

    PubMed Central

    Rapila, Risto; Korhonen, Topi; Tavi, Pasi

    2008-01-01

    In the mammalian embryo, the primitive tubular heart starts beating during the first trimester of gestation. These early heartbeats originate from calcium-induced contractions of the developing heart muscle cells. To explain the initiation of this activity, two ideas have been presented. One hypothesis supports the role of spontaneously activated voltage-gated calcium channels, whereas the other emphasizes the role of Ca2+ release from intracellular stores initiating spontaneous intracellular calcium oscillations. We show with experiments that both of these mechanisms coexist and operate in mouse cardiomyocytes during embryonic days 9–11. Further, we characterize how inositol-3-phosphate receptors regulate the frequency of the sarcoplasmic reticulum calcium oscillations and thus the heartbeats. This study provides a novel view of the regulation of embryonic cardiomyocyte activity, explaining the functional versatility of developing cardiomyocytes and the origin and regulation of the embryonic heartbeat. PMID:18794377

  19. Excitation-contraction coupling of the mouse embryonic cardiomyocyte.

    PubMed

    Rapila, Risto; Korhonen, Topi; Tavi, Pasi

    2008-10-01

    In the mammalian embryo, the primitive tubular heart starts beating during the first trimester of gestation. These early heartbeats originate from calcium-induced contractions of the developing heart muscle cells. To explain the initiation of this activity, two ideas have been presented. One hypothesis supports the role of spontaneously activated voltage-gated calcium channels, whereas the other emphasizes the role of Ca(2+) release from intracellular stores initiating spontaneous intracellular calcium oscillations. We show with experiments that both of these mechanisms coexist and operate in mouse cardiomyocytes during embryonic days 9-11. Further, we characterize how inositol-3-phosphate receptors regulate the frequency of the sarcoplasmic reticulum calcium oscillations and thus the heartbeats. This study provides a novel view of the regulation of embryonic cardiomyocyte activity, explaining the functional versatility of developing cardiomyocytes and the origin and regulation of the embryonic heartbeat.

  20. Mesenchymal Stem Cells and Cardiomyocytes Interplay to Prevent Myocardial Hypertrophy

    PubMed Central

    Tan, Xueying; Zhang, Yong; Li, Xingda; Wang, Xinyue; Zhu, Jiuxin; Wang, Yang; Yang, Fan; Wang, Baoqiu; Liu, Yanju; Xu, Chaoqian; Pan, Zhenwei; Wang, Ning; Yang, Baofeng

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) have emerged as a promising therapeutic strategy for cardiovascular disease. However, there is no evidence so far that BMSCs can heal pathological myocardial hypertrophy. In this study, BMSCs were indirectly cocultured with neonatal rat ventricular cardiomyocytes (NRVCs) in vitro or intramyocardially transplanted into hypertrophic hearts in vivo. The results showed that isoproterenol (ISO)-induced typical hypertrophic characteristics of cardiomyocytes were prevented by BMSCs in the coculture model in vitro and after BMSC transplantation in vivo. Furthermore, activation of the Ca2+/calcineurin/nuclear factor of activated T cells cytoplasmic 3 (NFATc3) hypertrophic pathway in NRVCs was abrogated in the presence of BMSCs both in vitro and in vivo. Interestingly, inhibition of vascular endothelial growth factor (VEGF) release from BMSCs, but not basic fibroblast growth factor and insulin-like growth factor 1, abolished the protective effects of BMSCs on cardiomyocyte hypertrophy. Consistently, VEGF administration attenuated ISO-induced enlargement of cellular size; the upregulation of atrial natriuretic peptide, brain natriuretic peptide, and β-myosin heavy chain expression; and the activation of Ca2+/calcineurin/NFATc3 hypertrophic pathways, and these pathways can be abrogated by blocking VEGFR-1 in cardiomyocytes, indicating that VEGF receptor 1 is involved in the antihypertrophic role of VEGF. We further found that the ample VEGF secretion contributing to the antihypertrophic effects of BMSCs originates from the crosstalk of BMSCs and cardiac cells but not BMSCs or cardiomyocytes alone. Interplay of mesenchymal stem cells with cardiomyocytes produced synergistic effects on VEGF release. In summary, crosstalk between mesenchymal stem cells and cardiomyocytes contributes to the inhibition of myocardial hypertrophy via inhibiting Ca2+/calcineurin/NFATc3 hypertrophic pathways in cardiac cells. These results provide the

  1. Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase.

    PubMed

    Tan, Wei-Qi; Wang, Kun; Lv, Dao-Yuan; Li, Pei-Feng

    2008-10-31

    The forkhead transcription factor Foxo3a is able to inhibit cardiomyocyte hypertrophy. However, its underlying molecular mechanism remains to be fully understood. Our present study demonstrates that Foxo3a can regulate cardiomyocyte hypertrophy through transactivating catalase. Insulin was able to induce cardiomyocyte hypertrophy with an elevated level of reactive oxygen species (ROS). The antioxidant agents, including catalase and N-acetyl-L-cysteine, could inhibit cardiomyocyte hypertrophy induced by insulin, suggesting that ROS is necessary for insulin to induce hypertrophy. Strikingly, we observed that the levels of catalase were decreased in response to insulin treatment. The transcriptional activity of Foxo3a depends on its phosphorylation status with the nonphosphorylated but not phosphorylated form to be functional. Insulin treatment led to an increase in the phosphorylated levels of Foxo3a. To understand the relationship between Foxo3a and catalase in the hypertrophic pathway, we characterized that catalase was a transcriptional target of Foxo3a. Foxo3a bound to the promoter region of catalase and stimulated its activity. The inhibitory effect of Foxo3a on cardiomyocyte hypertrophy depended on its transcriptional regulation of catalase. Finally, we identified that myocardin was a downstream mediator of ROS in conveying the hypertrophic signal of insulin or insulin-like growth factor-1. Foxo3a could negatively regulate myocardin expression levels through up-regulating catalase and the consequent reduction of ROS levels. Taken together, our results reveal that Foxo3a can inhibit hypertrophy by transcriptionally targeting catalase.

  2. AMPK and substrate availability regulate creatine transport in cultured cardiomyocytes.

    PubMed

    Darrabie, Marcus D; Arciniegas, Antonio Jose Luis; Mishra, Rajashree; Bowles, Dawn E; Jacobs, Danny O; Santacruz, Lucia

    2011-05-01

    Profound alterations in myocellular creatine and phosphocreatine levels are observed during human heart failure. To maintain its intracellular creatine stores, cardiomyocytes depend upon a cell membrane creatine transporter whose regulation is not clearly understood. Creatine transport capacity in the intact heart is modulated by substrate availability, and it is reduced in the failing myocardium, likely adding to the energy imbalance that characterizes heart failure. AMPK, a key regulator of cellular energy homeostasis, acts by switching off energy-consuming pathways in favor of processes that generate energy. Our objective was to determine the effects of substrate availability and AMPK activation on creatine transport in cardiomyocytes. We studied creatine transport in rat neonatal cardiomyocytes and HL-1 cardiac cells expressing the human creatine transporter cultured in the presence of varying creatine concentrations and the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribonucleoside (AICAR). Transport was enhanced in cardiomyocytes following incubation in creatine-depleted medium or AICAR. The changes in transport were due to alterations in V(max) that correlated with changes in total and cell surface creatine transporter protein content. Our results suggest a positive role for AMPK in creatine transport modulation for cardiomyocytes in culture.

  3. Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5).

    PubMed

    Halterman, Julia A; Kwon, H Moo; Wamhoff, Brian R

    2012-01-01

    Tonicity-responsive enhancer binding protein (TonEBP/nuclear factor of activated T-cells 5 [NFAT5]) is a Rel homology transcription factor classically known for its osmosensitive role in regulating cellular homeostasis during states of hypo- and hypertonic stress. A recently growing body of research indicates that TonEBP is not solely regulated by tonicity, but that it can be stimulated by various tonicity-independent mechanisms in both hypertonic and isotonic tissues. Physiological and pathophysiological stimuli such as cytokines, growth factors, receptor and integrin activation, contractile agonists, ions, and reactive oxygen species have been implicated in the positive regulation of TonEBP expression and activity in diverse cell types. These new data demonstrate that tonicity-independent stimulation of TonEBP is critical for tissue-specific functions like enhanced cell survival, migration, proliferation, vascular remodeling, carcinoma invasion, and angiogenesis. Continuing research will provide a better understanding as to how these and other alternative TonEBP stimuli regulate gene expression in both health and disease.

  4. Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5)

    PubMed Central

    Halterman, Julia A.; Kwon, H. Moo

    2012-01-01

    Tonicity-responsive enhancer binding protein (TonEBP/nuclear factor of activated T-cells 5 [NFAT5]) is a Rel homology transcription factor classically known for its osmosensitive role in regulating cellular homeostasis during states of hypo- and hypertonic stress. A recently growing body of research indicates that TonEBP is not solely regulated by tonicity, but that it can be stimulated by various tonicity-independent mechanisms in both hypertonic and isotonic tissues. Physiological and pathophysiological stimuli such as cytokines, growth factors, receptor and integrin activation, contractile agonists, ions, and reactive oxygen species have been implicated in the positive regulation of TonEBP expression and activity in diverse cell types. These new data demonstrate that tonicity-independent stimulation of TonEBP is critical for tissue-specific functions like enhanced cell survival, migration, proliferation, vascular remodeling, carcinoma invasion, and angiogenesis. Continuing research will provide a better understanding as to how these and other alternative TonEBP stimuli regulate gene expression in both health and disease. PMID:21998140

  5. Tanshinone IIA ameliorates apoptosis of cardiomyocytes induced by endoplasmic reticulum stress

    PubMed Central

    Feng, Jun; Li, Shusheng

    2016-01-01

    The fat-soluble diterpenoids tanshinone IIA (TSA) is the major active element of Danshen, which has widespread cardioprotective effect. However, the mechanism of its beneficial effect on cardiomyocytes has not been fully investigated. Here, we aim to demonstrate that TSA ameliorates apoptosis of cardiomyocytes activated by endoplasmic reticulum stress (ERS). Primary cultures of neonatal rat cardiomyocytes are used, in which ERS-mediated apoptosis is induced by tunicamycin (Tm). Apoptosis of cardiomyocytes are detected by Hoechst staining and caspase 3 activity analysis. Protein expression of ERS markers are detected by Western blot, and level of miroRNA-133 (miR-133) is detected by real-time polymerase chain reaction. Tm treatment significantly triggers the apoptosis and ERS of cardiomyocytes. TSA dramatically ameliorates apoptosis and ERS of cardiomyocytes induced by Tm. Interestingly, level of miR-133 is reduced by Tm treatment, which is reversed by TSA. The cardioprotective effect of TSA on apoptosis and ERS of cardiomyocytes is blocked by anti-miR-133. These results suggest that TSA protects cardiomyocytes through ameliorated ERS-mediated apoptosis, which may be resulted from upregulation of miR-133. PMID:27465140

  6. Preservation of cardiomyocytes from the adult heart.

    PubMed

    Abi-Gerges, Najah; Pointon, Amy; Pullen, Georgia F; Morton, Michael J; Oldman, Karen L; Armstrong, Duncan; Valentin, Jean-Pierre; Pollard, Christopher E

    2013-11-01

    Cardiomyocytes represent one of the most useful models to conduct cardiac research. A single adult heart yields millions of cardiomyocytes, but these cells do not survive for long after isolation. We aimed to determine whether inhibition of myosin II ATPase that is essential for muscle contraction may preserve fully differentiated adult cardiomyocytes. Using inhibitors of the myosin II ATPase, blebbistatin and N-benzyl-p-toluene sulphonamide (BTS), we preserved freshly isolated fully differentiated adult primary cardiomyocytes that were stored at a refrigerated temperature. Specifically, preserved cardiomyocytes stayed viable for a 2-week period with a stable expression of cardiac genes and retained the expression of key markers characteristic of cardiomyocytes. Furthermore, voltage-clamp, action potential, calcium transient and contractility studies confirmed that the preserved cardiomyocytes are comparable to freshly isolated cells. Long-term exposure of preserved cardiomyocytes to four tyrosine kinase inhibitors, sunitinib malate, dasatinib, sorafenib tosylate and imatinib mesylate, revealed their potential to induce cardiac toxicity that was manifested with a decrease in contractility and induction of cell death, but this toxicity was not observed in acute experiments conducted over the time course amenable to freshly prepared cardiomyocytes. This study introduces the concept that the inhibition of myosin II ATPase safeguards the structure and function of fully differentiated adult cardiomyocytes. The fact that these preserved cardiomyocytes can be used for numerous days after preparation makes them a robust and versatile tool in cardiac research and allows the investigation of long-term exposure to novel drugs on cardiomyocyte function. © 2013.

  7. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    SciTech Connect

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-04-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA.

  8. Timing of cardiomyocyte growth, maturation, and attrition in perinatal sheep

    PubMed Central

    Jonker, Sonnet S.; Louey, Samantha; Giraud, George D.; Thornburg, Kent L.; Faber, J. Job

    2015-01-01

    Studies in altricial rodents attribute dramatic changes in perinatal cardiomyocyte growth, maturation, and attrition to stimuli associated with birth. Our purpose was to determine whether birth is a critical trigger controlling perinatal cardiomyocyte growth, maturation and attrition in a precocial large mammal, sheep (Ovis aries). Hearts from 0–61 d postnatal lambs were dissected or enzymatically dissociated. Cardiomyocytes were measured by micromorphometry, cell cycle activity assessed by immunohistochemistry, and nuclear number counted after DNA staining. Integration of this new data with published fetal data from our laboratory demonstrate that a newly appreciated >30% decrease in myocyte number occurred in the last 10 d of gestation (P < 0.0005) concomitant with an increase in cleaved poly (ADP-ribose) polymerase 1 (P < 0.05), indicative of apoptosis. Bisegmental linear regressions show that most changes in myocyte growth kinetics occur before birth (median = 15.2 d; P < 0.05). Right ventricular but not left ventricular cell number increases in the neonate, by 68% between birth and 60 d postnatal (P = 0.028). We conclude that in sheep few developmental changes in cardiomyocytes result from birth, excepting the different postnatal degrees of free wall hypertrophy between the ventricles. Furthermore, myocyte number is reduced in both ventricles immediately before term, but proliferation increases myocyte number in the neonatal right ventricle.—Jonker, S. S., Louey, S., Giraud, G. D., Thornburg, K. L., Faber, J. J. Timing of cardiomyocyte growth, maturation, and attrition in perinatal sheep. PMID:26139099

  9. Profilin modulates sarcomeric organization and mediates cardiomyocyte hypertrophy

    PubMed Central

    Kooij, Viola; Viswanathan, Meera C.; Lee, Dong I.; Rainer, Peter P.; Schmidt, William; Kronert, William A.; Harding, Sian E.; Kass, David A.; Bernstein, Sanford I.; Van Eyk, Jennifer E.; Cammarato, Anthony

    2016-01-01

    Aims Heart failure is often preceded by cardiac hypertrophy, which is characterized by increased cell size, altered protein abundance, and actin cytoskeletal reorganization. Profilin is a well-conserved, ubiquitously expressed, multifunctional actin-binding protein, and its role in cardiomyocytes is largely unknown. Given its involvement in vascular hypertrophy, we aimed to test the hypothesis that profilin-1 is a key mediator of cardiomyocyte-specific hypertrophic remodelling. Methods and results Profilin-1 was elevated in multiple mouse models of hypertrophy, and a cardiomyocyte-specific increase of profilin in Drosophila resulted in significantly larger heart tube dimensions. Moreover, adenovirus-mediated overexpression of profilin-1 in neonatal rat ventricular myocytes (NRVMs) induced a hypertrophic response, measured by increased myocyte size and gene expression. Profilin-1 silencing suppressed the response in NRVMs stimulated with phenylephrine or endothelin-1. Mechanistically, we found that profilin-1 regulates hypertrophy, in part, through activation of the ERK1/2 signalling cascade. Confocal microscopy showed that profilin localized to the Z-line of Drosophila myofibrils under normal conditions and accumulated near the M-line when overexpressed. Elevated profilin levels resulted in elongated sarcomeres, myofibrillar disorganization, and sarcomeric disarray, which correlated with impaired muscle function. Conclusion Our results identify novel roles for profilin as an important mediator of cardiomyocyte hypertrophy. We show that overexpression of profilin is sufficient to induce cardiomyocyte hypertrophy and sarcomeric remodelling, and silencing of profilin attenuates the hypertrophic response. PMID:26956799

  10. Resveratrol protects adult cardiomyocytes against oxidative stress mediated cell injury.

    PubMed

    Movahed, A; Yu, L; Thandapilly, S J; Louis, X L; Netticadan, T

    2012-11-15

    Recent studies from our laboratory have showed that resveratrol, a polyphenol found predominantly in grapes rendered strong cardioprotection in animal models of heart disease. The cardioprotection which was observed was primarily associated with the ability of resveratrol to reduce oxidative stress in these models. The aim of the current study was to corroborate the role of resveratrol as an inhibitor of oxidative stress and explore the underlying mechanisms of its action in heart disease. For this purpose, we used a cell model of oxidative stress, the hydrogen peroxide (H(2)O(2)) exposed adult rat cardiomyocytes, which was treated with and without resveratrol (30 μM); cardiomyocytes which were not exposed to resveratrol served as controls. Cell injury, cell death and oxidative stress measurements as well as the activities of the major endogenous antioxidants superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were carried out in control and H(2)O(2) exposed cardiomyocytes, treated with and without resveratrol. Pharmacological blockade using specific blockers of the antioxidant enzymes were used to confirm their role in mediating resveratrol action in H(2)O(2) exposed cardiomyocytes. The status of H(2)O(2) and antioxidant enzymes in serum samples from spontaneously hypertensive rats (SHR) treated with and without resveratrol (2.5 mg/kg body weight) was also examined. Our results showed significant cell injury and death in H(2)O(2) exposed cardiomyocytes which was prevented upon resveratrol treatment. SOD and CAT activities were decreased in H(2)O(2) exposed adult rat cardiomyocytes; treatment with resveratrol significantly prevented this reduction. However, GPx activity was not altered in the H(2)O(2) exposed cardiomyocytes in comparison to controls. Pharmacological blockade of SOD and/or CAT prevented the beneficial effect of resveratrol. In SHR, H(2)O(2) levels were increased, but CAT activity was decreased, while SOD remained unchanged

  11. Differential conditions for early after-depolarizations and triggered activity in cardiomyocytes derived from transgenic LQT1 and LQT2 rabbits

    PubMed Central

    Liu, Gong-Xin; Choi, Bum-Rak; Ziv, Ohad; Li, Weiyan; de Lange, Enno; Qu, Zhilin; Koren, Gideon

    2012-01-01

    Non-technical summary Long QT syndrome (LQTS) is a genetic disorder characterized by recurrent syncope and sudden cardiac death (SCD). Type 1 (LQT1) and Type 2 (LQT2) LQTS account for 90% of the genotyped mutations in patients with this disorder. These syndromes have been associated with different sympathetic modes for initiation of cardiac arrest. Using isolated cardiomyocytes and Langendorff-perfused hearts from transgenic rabbit models of LQT1 and LQT2, we have identified differential conditions and cellular mechanisms for the generation of early afterdepolarizations (EADs), abnormal depolarizations during the plateau and repolarization phase of action potentials and the hallmark of the arrhythmias in LQTS. These differences explain why different types of increased autonomic nervous system activity, i.e. sympathetic surge vs. high sympathetic tone, are associated with the initiation of polymorphic ventricular tachycardia in LQTS patients with different genetic background. Abstract Early after-depolarization (EAD), or abnormal depolarization during the plateau phase of action potentials, is a hallmark of long-QT syndrome (LQTS). More than 13 genes have been identified as responsible for LQTS, and elevated risks for EADs may depend on genotypes, such as exercise in LQT1 vs. sudden arousal in LQT2 patients. We investigated mechanisms underlying different high-risk conditions that trigger EADs using transgenic rabbit models of LQT1 and LQT2, which lack IKs and IKr (slow and fast components of delayed rectifying K+ current), respectively. Single-cell patch-clamp studies show that prolongation of action potential duration (APD) can be further enhanced by lowering extracellular potassium concentration ([K+]o) from 5.4 to 3.6 mm. However, only LQT2 myocytes developed spontaneous EADs following perfusion with lower [K+]o, while there was no EAD formation in littermate control (LMC) or LQT1 myocytes, although APDs were also prolonged in LMC myocytes and LQT1 myocytes

  12. Bajijiasu Abrogates Osteoclast Differentiation via the Suppression of RANKL Signaling Pathways through NF-κB and NFAT

    PubMed Central

    Hong, Guoju; Zhou, Lin; Shi, Xuguang; He, Wei; Wang, Haibin; Wei, Qiushi; Chen, Peng; Qi, Longkai; Tickner, Jennifer; Lin, Li; Xu, Jiake

    2017-01-01

    Pathological osteolysis is commonly associated with osteoporosis, bone tumors, osteonecrosis, and chronic inflammation. It involves excessive resorption of bone matrix by activated osteoclasts. Suppressing receptor activator of NF-κB ligand (RANKL) signaling pathways has been proposed to be a good target for inhibiting osteoclast differentiation and bone resorption. Bajijiasu—a natural compound derived from Morinda officinalis F. C. How—has previously been shown to have anti-oxidative stress property; however, its effect and molecular mechanism of action on osteoclastogenesis and bone resorption remains unclear. In the present study, we found that Bajijiasu dose-dependently inhibited RANKL-induced osteoclast formation and bone resorption from 0.1 mM, and reached half maximal inhibitory effects (IC50) at 0.4 mM without toxicity. Expression of RANKL-induced osteoclast specific marker genes including cathepsin K (Ctsk), nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), tartrate resistant acid phosphatase (TRAcP), vacuolar-type H+-ATPase V0 subunit D2 (V-ATPase d2), and (matrix metalloproteinase-2 (MMP2) was inhibited by Bajijiasu treatment. Luciferase reporter gene studies showed that Bajijiasu could significantly reduce the expression and transcriptional activity of NFAT as well as RANKL-induced NF-κB activation in a dose-dependent manner. Further, Bajijiasu was found to decrease the RANKL-induced phosphorylation of extracellular signal-regulated kinases (ERK), inhibitor of κB-α (IκB-α), NFAT, and V-ATPase d2. Taken together, this study revealed Bajijiasu could attenuate osteoclast formation and bone resorption by mediating RANKL signaling pathways, indicative of a potential effect of Bajijiasu on osteolytic bone diseases. PMID:28106828

  13. [SOI-nanowire biosensor for the detection of D-NFAT 1 protein].

    PubMed

    Malsagova, K A; Ivanov, Yu D; Pleshakova, T O; Kozlov, A F; Krohin, N V; Kaysheva, A L; Shumov, I D; Popov, V P; Naumova, O V; Fomin, B I; Nasimov, D A

    2015-01-01

    The nanowire (NW) detection is one of fast-acting and high-sensitive methods allowing to reveal potentially relevant protein molecules. A NW biosensor based on the silicon-on-insulator (SOI)-structures was used for biospecific label-free detection of NFAT 1 (D-NFAT 1) oncomarker in real time. For this purpose, SOI-nanowires (NWs) were modified with aptamers against NFAT 1 used as molecular probes. It was shown that using this biosensor it is possible to reach the sensitivity of ~10(-15) M. This sensitivity was comparable with that of the NW biosensor with immobilized antibodies used as macromolecular probes. The results demonstrate promising approaches used to form the sensor elements for high-sensitive disease diagnostics.

  14. Different Densities of Na-Ca Exchange Current in T-Tubular and Surface Membranes and Their Impact on Cellular Activity in a Model of Rat Ventricular Cardiomyocyte

    PubMed Central

    2017-01-01

    The ratio of densities of Na-Ca exchanger current (INaCa) in the t-tubular and surface membranes (INaCa-ratio) computed from the values of INaCa and membrane capacitances (Cm) measured in adult rat ventricular cardiomyocytes before and after detubulation ranges between 1.7 and 25 (potentially even 40). Variations of action potential waveform and of calcium turnover within this span of the INaCa-ratio were simulated employing previously developed model of rat ventricular cell incorporating separate description of ion transport systems in the t-tubular and surface membranes. The increase of INaCa-ratio from 1.7 to 25 caused a prolongation of APD (duration of action potential at 90% repolarisation) by 12, 9, and 6% and an increase of peak intracellular Ca2+ transient by 45, 19, and 6% at 0.1, 1, and 5 Hz, respectively. The prolonged APD resulted from the increase of INaCa due to the exposure of a larger fraction of Na-Ca exchangers to higher Ca2+ transients under the t-tubular membrane. The accompanying rise of Ca2+ transient was a consequence of a higher Ca2+ load in sarcoplasmic reticulum induced by the increased Ca2+ cycling between the surface and t-tubular membranes. However, the reason for large differences in the INaCa-ratio assessed from measurements in adult rat cardiomyocytes remains to be explained. PMID:28321411

  15. Conjugated linoleic acid prevents high glucose-induced hypertrophy and contractile dysfunction in adult rat cardiomyocytes.

    PubMed

    Aloud, Basma Milad; Raj, Pema; O'Hara, Kimberley; Shao, Zongjun; Yu, Liping; Anderson, Hope D; Netticadan, Thomas

    2016-02-01

    Diabetes mellitus is associated with increased risk and incidence of cardiovascular morbidity and mortality, independently of other risk factors typically associated with diabetes such as coronary artery disease and hypertension. This promotes the development of a distinct condition of the heart muscle known as diabetic cardiomyopathy. We have previously shown that conjugated linoleic acid (CLA) prevents endothelin-1-induced cardiomyocyte hypertrophy. However, the effects of CLA in preventing alterations in cardiomyocyte structure and function due to high glucose are unknown. We therefore hypothesized that CLA will have protective effects in an in vitro model of diabetic cardiomyopathy using adult rat cardiomyocytes exposed to high glucose. Our results demonstrate that subjecting adult rat cardiomyocytes to high glucose (25 mmol/L) for 24 hours significantly impaired the contractile function as evidenced by decreases in maximal velocity of shortening, peak shortening, and maximal velocity of relengthening. High glucose-induced contractile dysfunction was inhibited by pretreatment with CLA (30 μmol/L; 1 hour). In addition to contractile aberrations, exposing adult rat cardiomyocytes to high glucose for 48 hours induced cardiomyocyte hypertrophy. High glucose-induced cardiomyocyte hypertrophy was likewise prevented by CLA. The antihypertrophic effects of CLA were abolished when cardiomyocytes were pretreated with the pharmacologic inhibitor of peroxisome proliferator-activated receptor γ, GW9662 (1 μmol/L). In conclusion, our findings show that exposing cardiomyocytes to high glucose results in cardiomyocyte functional and structural abnormalities, and these abnormalities are prevented by pretreatment with CLA and mediated, in part, by peroxisome proliferator-activated receptor γ activation. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  16. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid

    PubMed Central

    Zhao, Mingyue; Lu, Lihui; Lei, Song; Chai, Hua; Wu, Siyuan; Tang, Xiaoju; Bao, Qinxue; Chen, Li; Wu, Wenchao; Liu, Xiaojing

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardiac myocytes (NCMs) or H9c2 cells to study lipotoxicity. Our results demonstrated that cardiomyocyte hypertrophy was induced by PA treatment, determined by upregulation of hypertrophic marker genes and cell surface area enlargement. Upon PA treatment, the expression of RIPK1 and RIPK3 was increased. Pretreatment with the RIPK1 inhibitor necrostatin-1 (Nec-1), the PA-induced cardiomyocyte hypertrophy, was attenuated. Knockdown of RIPK1 or RIPK3 by siRNA suppressed the PA-induced myocardial hypertrophy. Moreover, a crosstalk between necroptosis and endoplasmic reticulum (ER) stress was observed in PA-treated cardiomyocytes. Inhibition of RIPK1 with Nec-1, phosphorylation level of AKT (Ser473), and mTOR (Ser2481) was significantly reduced in PA-treated cardiomyocytes. In conclusion, RIPKs-dependent necroptosis might be crucial in PA-induced myocardial hypertrophy. Activation of mTOR may mediate the effect of necroptosis in cardiomyocyte hypertrophy induced by PA. PMID:27057269

  17. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid.

    PubMed

    Zhao, Mingyue; Lu, Lihui; Lei, Song; Chai, Hua; Wu, Siyuan; Tang, Xiaoju; Bao, Qinxue; Chen, Li; Wu, Wenchao; Liu, Xiaojing

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardiac myocytes (NCMs) or H9c2 cells to study lipotoxicity. Our results demonstrated that cardiomyocyte hypertrophy was induced by PA treatment, determined by upregulation of hypertrophic marker genes and cell surface area enlargement. Upon PA treatment, the expression of RIPK1 and RIPK3 was increased. Pretreatment with the RIPK1 inhibitor necrostatin-1 (Nec-1), the PA-induced cardiomyocyte hypertrophy, was attenuated. Knockdown of RIPK1 or RIPK3 by siRNA suppressed the PA-induced myocardial hypertrophy. Moreover, a crosstalk between necroptosis and endoplasmic reticulum (ER) stress was observed in PA-treated cardiomyocytes. Inhibition of RIPK1 with Nec-1, phosphorylation level of AKT (Ser473), and mTOR (Ser2481) was significantly reduced in PA-treated cardiomyocytes. In conclusion, RIPKs-dependent necroptosis might be crucial in PA-induced myocardial hypertrophy. Activation of mTOR may mediate the effect of necroptosis in cardiomyocyte hypertrophy induced by PA.

  18. Evodiamine inhibits angiotensin II-induced rat cardiomyocyte hypertrophy.

    PubMed

    He, Na; Gong, Qi-Hai; Zhang, Feng; Zhang, Jing-Yi; Lin, Shu-Xian; Hou, Hua-Hua; Wu, Qin; Sun, An-Sheng

    2017-09-05

    To investigate the effects of evodiamine (Evo), a component of Evodiaminedia rutaecarpa Juss.) Benth, on cardiomyocyte hypertrophy induced by angiotensin II (Ang II) and further explore the potential mechanisms. Cardiomyocytes from neonatal Sprague Dawley rats were isolated and characterized, and then the cadiomyocyte cultures were randomly divided into control, model (Ang II 0.1 μmol/L), and Evo (0.03, 0.3, 3 μmol/L) groups. The cardiomyocyte surface area, protein level, intracellular free calcium ([Ca(2+)]i) concentration, activity of nitric oxide synthase (NOS) and content of nitric oxide (NO) were measured, respectively. The mRNA expressions of atrial natriuretic factor (ANF), calcineurin (CaN), extracellular signal-regulated kinase-2 (ERK-2), and endothelial nitric oxide synthase (eNOS) of cardiomyocytes were analyzed by real-time reverse transcriptionpolymerase chain reaction. The protein expressions of calcineurin catalytic subunit (CnA) and mitogen-activated protein kinase phosphatase-1 (MKP-1) were detected by Western blot analysis. Compared with the control group, Ang II induced cardiomyocytes hypertrophy, as evidenced by increased cardiomyocyte surface area, protein content, and ANF mRNA expression; increased intracellular free calcium ([Ca(2+)]i) concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but decreased MKP-1 protein expression (P<0.05 or P<0.01). Compared with Ang II, Evo (0.3, 3 μmol/L) significantly attenuated Ang II-induced cardiomyocyte hypertrophy, decreased the [Ca(2+)]i concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but increased MKP-1 protein expression (P<0.05 or P<0.01). Most interestingly, Evo increased the NOS activity and NO production, and upregulated the eNOS mRNA expression (P<0.05). Evo signifificantly attenuated Ang II-induced cardiomyocyte hypertrophy, and this effect was partly due to promotion of NO production, reduction of [Ca(2+)]i concentration, and inhibition of CaN and

  19. Na+/H+ exchanger isoform 1-induced osteopontin expression facilitates cardiomyocyte hypertrophy.

    PubMed

    Mohamed, Iman A; Gadeau, Alain-Pierre; Fliegel, Larry; Lopaschuk, Gary; Mlih, Mohamed; Abdulrahman, Nabeel; Fillmore, Natasha; Mraiche, Fatima

    2015-01-01

    Enhanced expression and activity of the Na+/H+ exchanger isoform 1 (NHE1) has been implicated in cardiomyocyte hypertrophy in various experimental models. The upregulation of NHE1 was correlated with an increase in osteopontin (OPN) expression in models of cardiac hypertrophy (CH), and the mechanism for this remains to be delineated. To determine whether the expression of active NHE1-induces OPN and contributes to the hypertrophic response in vitro, cardiomyocytes were infected with the active form of the NHE1 adenovirus or transfected with OPN silencing RNA (siRNA-OPN) and characterized for cardiomyocyte hypertrophy. Expression of NHE1 in cardiomyocytes resulted in a significant increase in cardiomyocyte hypertrophy markers: cell surface area, protein content, ANP mRNA and expression of phosphorylated-GATA4. NHE1 activity was also significantly increased in cardiomyocytes expressing active NHE1. Interestingly, transfection of cardiomyocytes with siRNA-OPN significantly abolished the NHE1-induced cardiomyocyte hypertrophy. siRNA-OPN also significantly reduced the activity of NHE1 in cardiomyocytes expressing NHE1 (68.5±0.24%; P<0.05), confirming the role of OPN in the NHE1-induced hypertrophic response. The hypertrophic response facilitated by NHE1-induced OPN occurred independent of the extracellular-signal-regulated kinases and Akt, but required p90-ribosomal S6 kinase (RSK). The ability of OPN to facilitate the NHE1-induced hypertrophic response identifies OPN as a potential therapeutic target to reverse the hypertrophic effect induced by the expression of active NHE1.

  20. Na+/H+ Exchanger Isoform 1-Induced Osteopontin Expression Facilitates Cardiomyocyte Hypertrophy

    PubMed Central

    Mohamed, Iman A.; Gadeau, Alain-Pierre; Fliegel, Larry; Lopaschuk, Gary; Mlih, Mohamed; Abdulrahman, Nabeel; Fillmore, Natasha; Mraiche, Fatima

    2015-01-01

    Enhanced expression and activity of the Na+/H+ exchanger isoform 1 (NHE1) has been implicated in cardiomyocyte hypertrophy in various experimental models. The upregulation of NHE1 was correlated with an increase in osteopontin (OPN) expression in models of cardiac hypertrophy (CH), and the mechanism for this remains to be delineated. To determine whether the expression of active NHE1-induces OPN and contributes to the hypertrophic response in vitro, cardiomyocytes were infected with the active form of the NHE1 adenovirus or transfected with OPN silencing RNA (siRNA-OPN) and characterized for cardiomyocyte hypertrophy. Expression of NHE1 in cardiomyocytes resulted in a significant increase in cardiomyocyte hypertrophy markers: cell surface area, protein content, ANP mRNA and expression of phosphorylated-GATA4. NHE1 activity was also significantly increased in cardiomyocytes expressing active NHE1. Interestingly, transfection of cardiomyocytes with siRNA-OPN significantly abolished the NHE1-induced cardiomyocyte hypertrophy. siRNA-OPN also significantly reduced the activity of NHE1 in cardiomyocytes expressing NHE1 (68.5±0.24%; P<0.05), confirming the role of OPN in the NHE1-induced hypertrophic response. The hypertrophic response facilitated by NHE1-induced OPN occurred independent of the extracellular-signal-regulated kinases and Akt, but required p90-ribosomal S6 kinase (RSK). The ability of OPN to facilitate the NHE1-induced hypertrophic response identifies OPN as a potential therapeutic target to reverse the hypertrophic effect induced by the expression of active NHE1. PMID:25884410

  1. Expression of glucocorticoid-induced leucine zipper (GILZ) in cardiomyocytes.

    PubMed

    Aguilar, David C; Strom, Josh; Xu, Beibei; Kappeler, Kyle; Chen, Qin M

    2013-06-01

    Glucocorticoids (GCs) are frequently prescribed pharmacological agents most notably for their immunosuppressive effects. Endogenous GCs mediate biological processes such as energy metabolism and tissue development. At the cellular level, GCs bind to the glucocorticoid receptor (GR), a cytosolic protein that translocates to the nuclei and functions to alter transcription upon ligand binding. Among a long list of genes activated by GCs is the glucocorticoid-induced leucine zipper (GILZ). GC-induced GILZ expression has been well established in lymphocytes and mediates GC-induced apoptosis. Unlike lymphocytes, cardiomyocytes respond to GCs by gaining resistance against apoptosis. We determined GILZ expression in cardiomyocytes in vivo and in vitro. Expression of GILZ in mouse hearts as a result of GC administration was confirmed by Western blot analyses. GCs induced dose- and time-dependent elevation of GILZ expression in primary cultured rat cardiomyocytes, with dexamethasone (Dex) as low as 0.1 μM being effective. Time course analysis indicated that GILZ protein levels increased at 8 h and peaked at 48 h after exposure to 1 μM Dex. H9c2(2-1) cell line showed a similar response of GILZ induction by Dex as primary cultured rat cardiomyocytes, providing a convenient model for studying the biological significance of GILZ expression. With corticosterone (CT), an endogenous form of corticosteroids in rodents, 0.1-2.5 μM was found to induce GILZ in H9c2(2-1) cells. Time course analysis with 1 μM CT indicated induction of GILZ at 6 h with peak expression at 18 h. Inhibition of the GR by mifepristone led to blunting of GILZ induction by GCs. Our data demonstrate GILZ induction in cardiomyocytes both in vivo and in vitro by GCs, pointing to H9c2(2-1) cells as a valid model for studying the biological function of GILZ in cardiomyocytes.

  2. Expression of Glucocorticoid Induced Leucine Zipper (GILZ) in Cardiomyocytes

    PubMed Central

    Aguilar, David C.; Strom, Josh; Xu, Beibei; Kappeler, Kyle; Chen, Qin M.

    2014-01-01

    Glucocorticoids (GCs) are frequently prescribed pharmacological agents most notably for their immunosuppressive effects. Endogenous GCs mediate biological processes such as energy metabolism and tissue development. At the cellular level, GCs bind to the Glucocorticoid Receptor (GR), a cytosolic protein that translocates to the nuclei and functions to alter transcription upon ligand binding. Amongst a long list of genes activated by GCs is the Glucocorticoid Induced Leucine Zipper (GILZ). GC induced GILZ expression has been well established in lymphocytes and mediates GC induced apoptosis. Unlike lymphocytes, cardiomyocytes respond to GCs by gaining resistance against apoptosis. We determined GILZ expression in cardiomyocytes in vivo and in vitro. Expression of GILZ in mouse hearts as a result of GC administration was confirmed by Western blot analyses. GCs induced dose and time dependent elevation of GILZ expression in primary cultured rat cardiomyocytes, with dexamethasone (Dex) as low as 0.1 M being effective. Time course analysis indicated that GILZ protein levels increased at 8 hr and peaked at 48 hr after exposure to 1 M Dex. H9c2(2-1) cell line showed a similar response of GILZ induction by Dex as primary cultured rat cardiomyocytes, providing a convenient model for studying the biological significance of GILZ expression. With corticosterone (CT), an endogenous form of corticosteroids in rodents, 0.1–2.5 M was found to induce GILZ in H9c2(2-1) cells. Time course analysis with 1 M CT indicated induction of GILZ at 6 hr with peak expression at 18 hr. Inhibition of the GR by mifepristone led to blunting of GILZ induction by GCs. Our data demonstrate GILZ induction in cardiomyocytes both in vivo and in vitro by GCs, pointing to H9c2(2-1) cells as a valid model for studying the biological function of GILZ in cardiomyocytes. PMID:23090754

  3. Regulation of L-type inward calcium channel activity by captopril and angiotensin II via the phosphatidyl inositol 3-kinase pathway in cardiomyocytes from volume-overload hypertrophied rat hearts

    PubMed Central

    Alvin, Zikiar; Laurence, Graham G.; Coleman, Bernell R; Zhao, Aiqiu; Hajj-Moussa, Majd; Haddad, Georges E.

    2011-01-01

    Heart failure can be caused by pro-hypertrophic humoral factors such as angiotensin II (Ang II), which regulates protein kinase activities. The intermingled responses of these kinases lead to the early compensated cardiac hypertrophy, but later to the uncompensated phase of heart failure. We have shown that although beneficial, cardiac hypertrophy is associated with modifications in ion channels that are mainly mediated through mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase (PI3K) activation. This study evaluates the control of L-type Ca2+ current (ICa,L) by the Ang II/PI3K pathway in hypertrophied ventricular myocytes from volume-overload rats using the perforated patch-clamp technique. To assess activation of the ICa,L in cardiomyocytes, voltages of 350 ms in 10 mV increments from a holding potential of −85 mV were applied to cardiocytes, with a pre-pulse to −45 mV for 300 ms. Volume overload-induced hypertrophy reduces ICa,L, whereas addition of Ang II alleviates the hypertrophic-induced decrease in a PI3K-dependent manner. Acute administration of Ang II (10−6 mol/L) to normal adult cardiomyocytes had no effect; however, captopril reduced their basal ICa,L. In parallel, captopril regressed the hypertrophy and inverted the Ang II effect on ICa,L seemingly through a PI3K upstream effector. Thus, it seems that regression of cardiac hypertrophy by captopril improved ICa,L partly through PI3K. PMID:21423294

  4. Silencing cardiomyocyte TLR4 reduces injury following hypoxia.

    PubMed

    Avlas, Orna; Srara, Smadar; Shainberg, Asher; Aravot, Dan; Hochhauser, Edith

    2016-11-01

    Toll-like receptor 4 (TLR4), the receptor for lipopolysaccharide (LPS) of gram-negative pathogens expressed in the heart, is activated by several endogenous ligands associated with tissue injury in response to myocardial infarction (MI). The aim of this study was to investigate the involvement of TLR4 signaling in cardiomyocytes dysfunction following hypoxia (90min) using multiple methodologies such as knocking down TLR4 and small interfering RNA (siTLR4). Cardiomyocytes of C57Bl/6 mice (WT) subjected to hypoxic stress showed increased cardiac release of LDH, HMGB1, IκB, TNF-α and myocardial apoptotic and necrotic markers (BAX, PI) compared to TLR4 knock out mice (TLR4KO). Treating these cardiomyocytes with siRNA against TLR4 decreased the damage markers (LDH, IκB, TNF-α). TLR4 silencing during hypoxic stress resulted in the activation of the p-AKT and p-GSK3β (by ∼25%). The latter is an indicator that there is a reduction of mitochondrial permeability transition pore (mPTP) opening following hypoxic myocardial induced injury leading to preserved mitochondrial membrane potential. Silencing TLR4 in cardiomyocytes improved cell survival following hypoxic injury through activation of the AKT/GSK3β pathway, reduced inflammatory and apoptotic signals. These findings suggest that TLR4 may serve as a potential target in the treatment of ischemic myocardial injury. Moreover, RNA interfering targeting TLR4 expression represents a therapeutic strategy.

  5. Cardiomyocyte-driven gel network for bio mechano-informatic wet robotics.

    PubMed

    Hoshino, Takayuki; Imagawa, Kentaro; Akiyama, Yoshitake; Morishima, Keisuke

    2012-12-01

    This paper reports on a cellular mechano-informatics network gel robot which was powered by culturing cardiomyocytes in the micro gel structure. Contraction activities propagated through the cardiomyocyte gel network will transmit a spatial mechanical wave as information about the chemical and mechanical responses to environmental changes. The cardiomyocyte gel network robot transmits electrically excited potential and mechanical stretch-induced contractions as information carried on the gel network. The cardiomyocyte gel network robot was fabricated from a mixture of primary cardiomyocytes and collagen gel and molded in a PDMS casting mold, which could produce serial, parallel lattice, or radial pattern networks. Fluorescent calcium imaging showed that the calcium activity of the cardiomyocytes in the gel network was segmented in small domains in the gel network; however, the local contraction that started on one branch of the gel network was propagated to a neighboring branch, and the propagation velocity was increased with increasing concentration of adrenaline. This increase was limited to ~20 mm/s. This proposed mechano-informatics kineticism will provide not only mechano-informatics for cardiomyocyte powered wet robotics but will also help show how cardiac disease occurs in activity propagation systems.

  6. Mathematical model of mouse embryonic cardiomyocyte excitation-contraction coupling.

    PubMed

    Korhonen, Topi; Rapila, Risto; Tavi, Pasi

    2008-10-01

    Excitation-contraction (E-C) coupling is the mechanism that connects the electrical excitation with cardiomyocyte contraction. Embryonic cardiomyocytes are not only capable of generating action potential (AP)-induced Ca(2+) signals and contractions (E-C coupling), but they also can induce spontaneous pacemaking activity. The spontaneous activity originates from spontaneous Ca(2+) releases from the sarcoplasmic reticulum (SR), which trigger APs via the Na(+)/Ca(2+) exchanger (NCX). In the AP-driven mode, an external stimulus triggers an AP and activates voltage-activated Ca(2+) intrusion to the cell. These complex and unique features of the embryonic cardiomyocyte pacemaking and E-C coupling have never been assessed with mathematical modeling. Here, we suggest a novel mathematical model explaining how both of these mechanisms can coexist in the same embryonic cardiomyocytes. In addition to experimentally characterized ion currents, the model includes novel heterogeneous cytosolic Ca(2+) dynamics and oscillatory SR Ca(2+) handling. The model reproduces faithfully the experimentally observed fundamental features of both E-C coupling and pacemaking. We further validate our model by simulating the effect of genetic modifications on the hyperpolarization-activated current, NCX, and the SR Ca(2+) buffer protein calreticulin. In these simulations, the model produces a similar functional alteration to that observed previously in the genetically engineered mice, and thus provides mechanistic explanations for the cardiac phenotypes of these animals. In general, this study presents the first model explaining the underlying cellular mechanism for the origin and the regulation of the heartbeat in early embryonic cardiomyocytes.

  7. Mathematical Model of Mouse Embryonic Cardiomyocyte Excitation–Contraction Coupling

    PubMed Central

    Korhonen, Topi; Rapila, Risto; Tavi, Pasi

    2008-01-01

    Excitation–contraction (E–C) coupling is the mechanism that connects the electrical excitation with cardiomyocyte contraction. Embryonic cardiomyocytes are not only capable of generating action potential (AP)-induced Ca2+ signals and contractions (E–C coupling), but they also can induce spontaneous pacemaking activity. The spontaneous activity originates from spontaneous Ca2+ releases from the sarcoplasmic reticulum (SR), which trigger APs via the Na+/Ca2+ exchanger (NCX). In the AP-driven mode, an external stimulus triggers an AP and activates voltage-activated Ca2+ intrusion to the cell. These complex and unique features of the embryonic cardiomyocyte pacemaking and E–C coupling have never been assessed with mathematical modeling. Here, we suggest a novel mathematical model explaining how both of these mechanisms can coexist in the same embryonic cardiomyocytes. In addition to experimentally characterized ion currents, the model includes novel heterogeneous cytosolic Ca2+ dynamics and oscillatory SR Ca2+ handling. The model reproduces faithfully the experimentally observed fundamental features of both E–C coupling and pacemaking. We further validate our model by simulating the effect of genetic modifications on the hyperpolarization-activated current, NCX, and the SR Ca2+ buffer protein calreticulin. In these simulations, the model produces a similar functional alteration to that observed previously in the genetically engineered mice, and thus provides mechanistic explanations for the cardiac phenotypes of these animals. In general, this study presents the first model explaining the underlying cellular mechanism for the origin and the regulation of the heartbeat in early embryonic cardiomyocytes. PMID:18794378

  8. Nuclear Factor of Activated T Cells and Cytokines Gene Expression of the T Cells in AIDS Patients with Immune Reconstitution Inflammatory Syndrome during Highly Active Antiretroviral Therapy

    PubMed Central

    Chen, Heling; Xie, Yirui; Su, Junwei; Huang, Ying; Xu, Lijun; Yin, Michael; Zhou, Qihui

    2017-01-01

    Background. The etiology of immune reconstitution inflammatory syndrome (IRIS) in AIDS patients after the initiation of HAART remains unknown. Several researches indicated that the development of IRIS is associated with the production and variation of cytokines, whose gene expression are closely related to the Ca2+/CN-nuclear factor of activated T cells (NFAT) pathway. Methods. We studied the expression of NFAT isoforms and their major target cytokines genes in peripheral blood CD3+ T cells of subjects through fluorescence quantitative PCR and explored the expression changes of these genes before and after HAART. Results. After the initiation of HARRT, NFAT1, IL-6, and IL-8 gene expression showed a reversal trend in the CD3+ T cells of the IRIS group and changed from low expression before HARRT to high expression after HARRT. In particular, the relative gene expression of NFAT1 was markedly higher compared with the other three isoforms. The IRIS group also showed higher NFAT4, NFAT2, NFAT1, IL-1β, IL-10, IL-2, IL-18, and TNF-α gene expression than the non-IRIS group. Conclusion. This study suggested that high expression levels of IL-2, IL-6, IL-8, TNF-α, IL-1β, IL-10, IL-12, and IL-18 can predict the risk of IRIS. The increased expression of NFAT1 and NFAT4 may promote the expression of cytokines, such as IL-6, IL-8, and TNF-α, which may promote the occurrence of IRIS. PMID:28316373

  9. Human-induced pluripotent stem cell-derived cardiomyocytes for studies of cardiac ion transporters

    PubMed Central

    Fine, Michael; Lu, Fang-Min; Lin, Mei-Jung; Moe, Orson; Wang, Hao-Ran

    2013-01-01

    Human-induced pluripotent stem cells (hiPSCs) can differentiate into functional cardiomyocytes (iCell Cardiomyocytes) with ion channel activities that are remarkably similar to adult cardiomyocytes. Here, we extend this characterization to cardiac ion transporters. Additionally, we document facile molecular biological manipulation of iCell Cardiomyocytes to overexpress and knockdown transporters and regulatory proteins. Na/Ca exchange (NCX1) and Na/K pump currents were recorded via patch clamp, and Na/H and Cl/OH exchanges were recorded via oscillating proton-selective microelectrodes during patch clamp. Flux densities of all transport systems are similar to those of nonrodent adult cardiomyocytes. NCX1 protein and NCX1 currents decline after NCX1 small interfering (si)RNA transfection with similar time courses (τ ≈ 2 days), and an NCX1-Halo fusion protein is internalized after its extracellular labeling by AlexaFluor488 Ligand with a similar time course. Loss of the cardiac regulatory protein phospholemman (PLM) occurs over a longer time course (τ ≈ 60 h) after PLM small interfering RNA transfection. Similar to multiple previous reports for adult cardiomyocytes, Na/K pump currents in iCell Cardiomyocytes are not enhanced by activating cAMP production with either maximal or submaximal cytoplasmic Na and using either forskolin or isoproterenol to activate adenylate cyclases. Finally, we describe Ca influx-dependent changes of iCell Cardiomyocyte capacitance (Cm). Large increases of Cm occur during Ca influx via NCX1, thereby documenting large internal membrane reserves that can fuse to the sarcolemma, and subsequent declines of Cm document active endocytic processes. Together, these results document a great potential of iCell Cardiomyocytes for both short- and long-term studies of cardiac ion transporters and their regulation. PMID:23804202

  10. Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis

    PubMed Central

    Han, Peidong; Bloomekatz, Joshua; Ren, Jie; Zhang, Ruilin; Grinstein, Jonathan D.; Zhao, Long; Burns, C. Geoffrey; Burns, Caroline E.; Anderson, Ryan M.; Chi, Neil C.

    2016-01-01

    Many organs are composed of complex tissue walls that are structurally organized to optimize organ function. In particular, the ventricular myocardial wall of the heart is comprised of an outer compact layer that concentrically encircles the ridge-like inner trabecular layer. Although disruption in the morphogenesis of this myocardial wall can lead to various forms of congenital heart disease (CHD)1 and non-compaction cardiomyopathies2, it remains unclear how embryonic cardiomyocytes assemble to form ventricular wall layers of appropriate spatial dimensions and myocardial mass. Here, we utilize advanced genetic and imaging tools in zebrafish to reveal an interplay between myocardial Notch and Erbb2 signaling that directs the spatial allocation of myocardial cells to their proper morphologic positions in the ventricular wall. Although previous studies have shown that endocardial Notch signaling non-cell-autonomously promotes myocardial trabeculation through Erbb2 and BMP signaling3, we discover that distinct ventricular cardiomyocyte clusters exhibit myocardial Notch activity that cell-autonomously inhibits Erbb2 signaling and prevents cardiomyocyte sprouting and trabeculation. Myocardial-specific Notch inactivation leads to ventricles of reduced size and increased wall thickness due to excessive trabeculae, whereas widespread myocardial Notch activity results in ventricles of increased size with a single-cell thick wall but no trabeculae. Notably, this myocardial Notch signaling is activated non-cell-autonomously by neighboring Erbb2-activated cardiomyocytes that sprout and form nascent trabeculae. Thus, these findings support an interactive cellular feedback process that guides the assembly of cardiomyocytes to morphologically create the ventricular myocardial wall and more broadly provides insight into the cellular dynamics of how diverse cell lineages organize to create form. PMID:27357797

  11. Cloning of a cellular factor, interleukin binding factor, that binds to NFAT-like motifs in the human immunodeficiency virus long terminal repeat.

    PubMed Central

    Li, C; Lai, C F; Sigman, D S; Gaynor, R B

    1991-01-01

    Human immunodeficiency virus (HIV) gene expression is regulated by both general transcription factors and factors induced by activation of T lymphocytes such as NF-kappa B and the nuclear factor of activated T cells (NFAT). Within the HIV long terminal repeat (LTR), two purine-rich domains between nucleotides -283 and -195 have homology to a regulatory region found in the interleukin 2 promoter, which binds NFAT and other cellular factors. In the HIV LTR, this region has been demonstrated to have both positive and negative regulatory effects on HIV gene expression. In an attempt to clone genes encoding cellular factors that bind to these NFAT-like elements in the HIV LTR, we used lambda gt11 expression cloning with oligonucleotides corresponding to these binding motifs. A ubiquitously expressed cDNA encoding a 60-kDa protein, which we termed interleukin binding factor (ILF), binds specifically to these purine-rich motifs in the HIV LTR. This factor also binds to similar purine-rich motifs in the interleukin 2 promoter, through with lower affinity than to HIV LTR sequences. Sequence analysis reveals that the DNA binding domain of ILF has strong homology to the recently described fork head DNA binding domain found in the Drosophila homeotic protein fork head and a family of hepatocyte nuclear factors, HNF-3. Other domains found in ILF include a nucleotide binding site, an N-glycosylation motif, a signal for ubiquitin-mediated degradation, and a potential nuclear localization signal. These results describe a DNA binding protein that may be involved in both positive and negative regulation of important viral and cellular promoter elements. Images PMID:1909027

  12. Exploring Regulatory Mechanisms of Atrial Myocyte Hypertrophy of Mitral Regurgitation through Gene Expression Profiling Analysis: Role of NFAT in Cardiac Hypertrophy

    PubMed Central

    Chang, Tzu-Hao; Chen, Mien-Cheng; Chang, Jen-Ping; Huang, Hsien-Da; Ho, Wan-Chun; Lin, Yu-Sheng; Pan, Kuo-Li; Huang, Yao-Kuang; Liu, Wen-Hao; Wu, Chia-Chen

    2016-01-01

    Background Left atrial enlargement in mitral regurgitation (MR) predicts a poor prognosis. The regulatory mechanisms of atrial myocyte hypertrophy of MR patients remain unknown. Methods and Results This study comprised 14 patients with MR, 7 patients with aortic valve disease (AVD), and 6 purchased samples from normal subjects (NC). We used microarrays, enrichment analysis and quantitative RT-PCR to study the gene expression profiles in the left atria. Microarray results showed that 112 genes were differentially up-regulated and 132 genes were differentially down-regulated in the left atria between MR patients and NC. Enrichment analysis of differentially expressed genes demonstrated that “NFAT in cardiac hypertrophy” pathway was not only one of the significant associated canonical pathways, but also the only one predicted with a non-zero score of 1.34 (i.e. activated) through Ingenuity Pathway Analysis molecule activity predictor. Ingenuity Pathway Analysis Global Molecular Network analysis exhibited that the highest score network also showed high association with cardiac related pathways and functions. Therefore, 5 NFAT associated genes (PPP3R1, PPP3CB, CAMK1, MEF2C, PLCE1) were studies for validation. The mRNA expressions of PPP3CB and MEF2C were significantly up-regulated, and CAMK1 and PPP3R1 were significantly down-regulated in MR patients compared to NC. Moreover, MR patients had significantly increased mRNA levels of PPP3CB, MEF2C and PLCE1 compared to AVD patients. The atrial myocyte size of MR patients significantly exceeded that of the AVD patients and NC. Conclusions Differentially expressed genes in the “NFAT in cardiac hypertrophy” pathway may play a critical role in the atrial myocyte hypertrophy of MR patients. PMID:27907007

  13. Identification of genes directly regulated by the intrinsic circadian clock within the cardiomyocyte

    USDA-ARS?s Scientific Manuscript database

    Circadian rhythms in cardiovascular physiology (e.g., heart rate, cardiac output) and pathophysiology (e.g., arrhythmias) are firmly established. These phenomena have been attributed primarily to circadian rhythms in neurohumoral influences (e.g., sympathetic activity). Nevertheless, cardiomyocytes ...

  14. NFAT5 and SLC4A10 Loci Associate with Plasma Osmolality.

    PubMed

    Böger, Carsten A; Gorski, Mathias; McMahon, Gearoid M; Xu, Huichun; Chang, Yen-Pei C; van der Most, Peter J; Navis, Gerjan; Nolte, Ilja M; de Borst, Martin H; Zhang, Weihua; Lehne, Benjamin; Loh, Marie; Tan, Sian-Tsung; Boerwinkle, Eric; Grams, Morgan E; Sekula, Peggy; Li, Man; Wilmot, Beth; Moon, James G; Scheet, Paul; Cucca, Francesco; Xiao, Xiangjun; Lyytikäinen, Leo-Pekka; Delgado, Graciela; Grammer, Tanja B; Kleber, Marcus E; Sedaghat, Sanaz; Rivadeneira, Fernando; Corre, Tanguy; Kutalik, Zoltan; Bergmann, Sven; Nielson, Carrie M; Srikanth, Priya; Teumer, Alexander; Müller-Nurasyid, Martina; Brockhaus, Anne Catharina; Pfeufer, Arne; Rathmann, Wolfgang; Peters, Annette; Matsumoto, Martha; de Andrade, Mariza; Atkinson, Elizabeth J; Robinson-Cohen, Cassianne; de Boer, Ian H; Hwang, Shih-Jen; Heid, Iris M; Gögele, Martin; Concas, Maria Pina; Tanaka, Toshiko; Bandinelli, Stefania; Nalls, Mike A; Singleton, Andrew; Tajuddin, Salman M; Adeyemo, Adebowale; Zhou, Jie; Doumatey, Ayo; McWeeney, Shannon; Murabito, Joanne; Franceschini, Nora; Flessner, Michael; Shlipak, Michael; Wilson, James G; Chen, Guanjie; Rotimi, Charles N; Zonderman, Alan B; Evans, Michele K; Ferrucci, Luigi; Devuyst, Olivier; Pirastu, Mario; Shuldiner, Alan; Hicks, Andrew A; Pramstaller, Peter Paul; Kestenbaum, Bryan; Kardia, Sharon L R; Turner, Stephen T; Study, LifeLines Cohort; Briske, Tamara Ellefson; Gieger, Christian; Strauch, Konstantin; Meisinger, Christa; Meitinger, Thomas; Völker, Uwe; Nauck, Matthias; Völzke, Henry; Vollenweider, Peter; Bochud, Murielle; Waeber, Gerard; Kähönen, Mika; Lehtimäki, Terho; März, Winfried; Dehghan, Abbas; Franco, Oscar H; Uitterlinden, Andre G; Hofman, Albert; Taylor, Herman A; Chambers, John C; Kooner, Jaspal S; Fox, Caroline S; Hitzemann, Robert; Orwoll, Eric S; Pattaro, Cristian; Schlessinger, David; Köttgen, Anna; Snieder, Harold; Parsa, Afshin; Cohen, David M

    2017-03-30

    Disorders of water balance, an excess or deficit of total body water relative to body electrolyte content, are common and ascertained by plasma hypo- or hypernatremia, respectively. We performed a two-stage genome-wide association study meta-analysis on plasma sodium concentration in 45,889 individuals of European descent (stage 1 discovery) and 17,637 additional individuals of European descent (stage 2 replication), and a transethnic meta-analysis of replicated single-nucleotide polymorphisms in 79,506 individuals (63,526 individuals of European descent, 8765 individuals of Asian Indian descent, and 7215 individuals of African descent). In stage 1, we identified eight loci associated with plasma sodium concentration at P<5.0 × 10(-6) Of these, rs9980 at NFAT5 replicated in stage 2 meta-analysis (P=3.1 × 10(-5)), with combined stages 1 and 2 genome-wide significance of P=5.6 × 10(-10) Transethnic meta-analysis further supported the association at rs9980 (P=5.9 × 10(-12)). Additionally, rs16846053 at SLC4A10 showed nominally, but not genome-wide, significant association in combined stages 1 and 2 meta-analysis (P=6.7 × 10(-8)). NFAT5 encodes a ubiquitously expressed transcription factor that coordinates the intracellular response to hypertonic stress but was not previously implicated in the regulation of systemic water balance. SLC4A10 encodes a sodium bicarbonate transporter with a brain-restricted expression pattern, and variant rs16846053 affects a putative intronic NFAT5 DNA binding motif. The lead variants for NFAT5 and SLC4A10 are cis expression quantitative trait loci in tissues of the central nervous system and relevant to transcriptional regulation. Thus, genetic variation in NFAT5 and SLC4A10 expression and function in the central nervous system may affect the regulation of systemic water balance.

  15. Regulation of the pro-inflammatory cytokine osteopontin by GIP in adipocytes - A role for the transcription factor NFAT and phosphodiesterase 3B

    SciTech Connect

    Omar, Bilal; Banke, Elin; Guirguis, Emilia; Aakesson, Lina; Manganiello, Vincent; Lyssenko, Valeriya; Groop, Leif; Gomez, Maria F.; Degerman, Eva

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. Black-Right-Pointing-Pointer GIP-induced osteopontin expression is NFAT-dependent. Black-Right-Pointing-Pointer Osteopontin expression is PDE3-dependent. Black-Right-Pointing-Pointer Osteopontin expression is increased in PDE3B KO mice. -- Abstract: The incretin - glucose-dependent insulinotropic polypeptide (GIP) - and the pro-inflammatory cytokine osteopontin are known to have important roles in the regulation of adipose tissue functions. In this work we show that GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. The GIP-induced increase in osteopontin expression was inhibited by the NFAT (the transcription factor nuclear factor of activated T-cells) inhibitor A-285222. Also, the NFAT kinase glycogen synthase kinase (GSK) 3 was upregulated by GIP. To test whether cAMP might be involved in GIP-mediated effects on osteopontin a number of strategies were used. Thus, the {beta}3-adrenergic receptor agonist CL316,243 stimulated osteopontin expression, an effects which was mimicked by OPC3911, a specific inhibitor of phosphodiesterase 3. Furthermore, treatment of phosphodiesterase 3B knock-out mice with CL316,243 resulted in a dramatic upregulation of osteopontin in adipose tissue which was not the case in wild-type mice. In summary, we delineate mechanisms by which GIP stimulates osteopontin in adipocytes. Given the established link between osteopontin and insulin resistance, our data suggest that GIP by stimulating osteopontin expression, also could promote insulin resistance in adipocytes.

  16. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification

    PubMed Central

    Li, Dan L.; Wang, Zhao V.; Ding, Guanqiao; Tan, Wei; Luo, Xiang; Criollo, Alfredo; Xie, Min; Jiang, Nan; May, Herman; Kyrychenko, Viktoriia; Schneider, Jay W.; Gillette, Thomas G.; Hill, Joseph A.

    2016-01-01

    Background The clinical use of doxorubicin is limited by cardiotoxicity. Histopathologic changes include interstitial myocardial fibrosis and appearance of vacuolated cardiomyocytes. Whereas dysregulation of autophagy in the myocardium has been implicated in a variety of cardiovascular diseases, the role of autophagy in doxorubicin cardiomyopathy remains poorly defined. Methods and Results Most models of doxorubicin cardiotoxicity involve intraperitoneal injection of high-dose drug, which elicits lethargy, anorexia, weight loss, and peritoneal fibrosis, all of which confound the interpretation of autophagy. Given this, we first established a model that provokes modest and progressive cardiotoxicity without constitutional symptoms, reminiscent of the effects seen in patients. We report that doxorubicin blocks cardiomyocyte autophagic flux in vivo and in cardiomyocytes in culture. This block was accompanied by robust accumulation of undegraded autolysosomes. We go on to localize the site of block as a defect in lysosome acidification. To test the functional relevance of doxorubicin-triggered autolysosome accumulation, we studied animals with diminished autophagic activity due to haploinsufficiency for Beclin 1. Beclin 1+/− mice exposed to doxorubicin were protected in terms of structural and functional changes within the myocardium. Conversely, animals over-expressing Beclin 1 manifested an amplified cardiotoxic response. Conclusions Doxorubicin blocks autophagic flux in cardiomyocytes by impairing lysosome acidification and lysosomal function. Reducing autophagy initiation protects against doxorubicin cardiotoxicity. PMID:26984939

  17. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification.

    PubMed

    Li, Dan L; Wang, Zhao V; Ding, Guanqiao; Tan, Wei; Luo, Xiang; Criollo, Alfredo; Xie, Min; Jiang, Nan; May, Herman; Kyrychenko, Viktoriia; Schneider, Jay W; Gillette, Thomas G; Hill, Joseph A

    2016-04-26

    The clinical use of doxorubicin is limited by cardiotoxicity. Histopathological changes include interstitial myocardial fibrosis and the appearance of vacuolated cardiomyocytes. Whereas dysregulation of autophagy in the myocardium has been implicated in a variety of cardiovascular diseases, the role of autophagy in doxorubicin cardiomyopathy remains poorly defined. Most models of doxorubicin cardiotoxicity involve intraperitoneal injection of high-dose drug, which elicits lethargy, anorexia, weight loss, and peritoneal fibrosis, all of which confound the interpretation of autophagy. Given this, we first established a model that provokes modest and progressive cardiotoxicity without constitutional symptoms, reminiscent of the effects seen in patients. We report that doxorubicin blocks cardiomyocyte autophagic flux in vivo and in cardiomyocytes in culture. This block was accompanied by robust accumulation of undegraded autolysosomes. We go on to localiz